intel.

Intel® 64 and IA-32 Architectures
Software Developer’'s Manual

Volume 2B:
Instruction Set Reference, N-Z

NOTE: The Intel 64 and IA-32 Architectures Software Developer’s Manual
consists of five volumes: Basic Architecture, Order Number 253665;
Instruction Set Reference A-M, Order Number 253666; Instruction Set
Reference N-Z, Order Number 253667; System Programming Guide,
Part 1, Order Number 253668; System Programming Guide, Part 2,
Order Number 253669. Refer to all five volumes when evaluating your
design needs.

Order Number: 253667-021
September 2006

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED
FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Developers must not rely on the absence or characteristics of any features or instructions marked “reserved”
or “undefined.” Improper use of reserved or undefined features or instructions may cause unpredictable be-
havior or failure in developer's software code when running on an Intel processor. Intel reserves these fea-
tures or instructions for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from their unauthorized use.

The Intel® 64 architecture processors may contain design defects or errors known as errata. Current char-
acterized errata are available on request.

Hyper-Threading Technology requires a computer system with an Intel® processor supporting Hyper-
Threading Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will
vary depending on the specific hardware and software you use. For more information, see http://www.in-
tel.com/technology/hyperthread/index.ntm; including details on which processors support HT Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will_vary depending on hardware and software configurations. Intel® Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, oper-
ating system, device drivers and applications enabled for Intel™ 64 architecture. Processors will not operate
(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary de-
pending on your hardware and software configurations. Consult with your system vendor for more infor-
mation.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability
and a supporting operating system. Check with your PC manufacturer on whether your system delivers Ex-
ecute Disable Bit functionality.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2
Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, and VTune are trademarks or registered trade-
marks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

or call 1-800-548-4725
or visit Intel’'s website at http://www.intel.com

Copyright © 1997-2006 Intel Corporation

i Vol. 2B

CHAPTER 4
INSTRUCTION SET REFERENCE, N-Z

4.1 INSTRUCTIONS (N-2)

Chapter 4 continues an alphabetical discussion of Intel® 64 and 1A-32 instructions
(N-Z). See also: Chapter 3, “Instruction Set Reference, A-M,” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2A.

Vol.2B 4-1

INSTRUCTION SET REFERENCE, N-Z

NEG—Two’s Complement Negation

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

F6/3 NEG r/m8 Valid Valid Two's complement negate
r/m8.

REX +F6 /3 NEG r/m8* Valid N.E. Two's complement negate
r/m8.

F7 /3 NEG /m16 Valid Valid Two's complement negate
r/m16.

F7 /3 NEG r/m32 Valid Valid Two's complement negate
r/m32.

REXW +F7/3 NEGr/m64 Valid N.E. Two's complement negate
r/mé4.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix
is used: AH, BH, CH, DH.

Description

Replaces the value of operand (the destination operand) with its two's complement.
(This operation is equivalent to subtracting the operand from 0.) The destination
operand is located in a general-purpose register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

IFDEST=0
THEN CF «- O;
ELSE CF « 1;
Fl;
DEST <« [- (DEST)]

Flags Affected

The CF flag set to O if the source operand is O; otherwise it is set to 1. The OF, SF, ZF,
AF, and PF flags are set according to the result.

4-2 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference
is made while the current privilege level is 3.

Vol.2B 4-3

INSTRUCTION SET REFERENCE, N-Z

NOP—No Operation

Instructio 64-Bit Compat/
Opcode n Mode Leg Mode Description
90 NOP Valid Valid One byte no-operation instruction.
OF 1F /0 NOP Valid Valid Multi-byte no-operation instruction.
r/m16
OF 1F /0 NOP Valid Valid Multi-byte no-operation instruction.
r/m32

Description

This instruction performs no operation. It is a one-byte or multi-byte NOP that takes
up space in the instruction stream but does not impact machine context, except for
the EIP register.

The multi-byte form of NOP is available on processors with model encoding:
® CPUID.O1H.EAX[Bytes 11:8] = 0110B or 1111B

The multi-byte NOP instruction does not alter the content of a register and will not
issue a memory operation. The instruction’s operation is the same in non-64-bit
modes and 64-bit mode.

Operation

The one-byte NOP instruction is an alias mnemonic for the XCHG (E)AX, (E)AX
instruction.

The multi-byte NOP instruction performs no operation on supported processors and
generates undefined opcode exception on processors that do not support the multi-
byte NOP instruction.

The memory operand form of the instruction allows software to create a byte
sequence of “no operation” as one instruction. For situations where multiple-byte
NOPs are needed, the recommended operations (32-bit mode and 64-bit mode) are:

Table 4-1. Recommended Multi-Byte Sequence of NOP Instruction

Length Assembly Byte Sequence

2 bytes 66 NOP 66 90H

3 bytes NOP DWORD ptr [EAX] OF 1F OOH

4 bytes NOP DWORD ptr [EAX + 00H] OF 1F 40 OOH

5 bytes NOP DWORD ptr [EAX + EAX*T + O0H] OF 1F 44 00 OOH

6 bytes 66 NOP DWORD ptr [EAX + EAX*1 + O0H] 66 OF 1F 44 00 O0H

4-4 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Table 4-1. Recommended Multi-Byte Sequence of NOP Instruction (Contd.)

Length Assembly Byte Sequence
7 bytes NOP DWORD ptr [EAX + 00000000H] OF 1F 80 00 00 00 OOH
8 bytes NOP DWORD ptr [EAX + EAX*1 + 00000000H] OF 1F 84 00 00 00 00 O0OH
9 bytes 66 NOP DWORD ptr [EAX + EAX*T + 66 OF 1F 84 00 00 00 00
00000000H] OOH
Flags Affected
None.

Exceptions (All Operating Modes)

None.

Vol.2B 4-5

INSTRUCTION SET REFERENCE, N-Z

NOT—One's Complement Negation

Instructio 64-Bit Compat/
Opcode n Mode Leg Mode Description
F6 /2 NOT r/m8 Valid Valid Reverse each bit of r/m8.
REX +F6 /2 NOT r/m8* Valid N.E. Reverse each bit of r/m8.
F7 /2 NOT /m16 Valid Valid Reverse each bit of /m16.
F7 /2 NOT /m32 Valid Valid Reverse each bit of /m32.
REX.W + F7 NOT r/m64 Valid N.E. Reverse each bit of /m64.
/2
NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix
is used: AH, BH, CH, DH.

Description

Performs a bitwise NOT operation (each 1 is set to 0, and each O is set to 1) on the
destination operand and stores the result in the destination operand location. The
destination operand can be a register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

DEST « NOT DEST;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

4-6 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code)If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference
is made while the current privilege level is 3.

Vol.2B 4-7

INSTRUCTION SET REFERENCE, N-Z

OR—Logical Inclusive OR

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

0Cib OR AL, imm8 Valid Valid AL OR imm8.

0D iw OR AX,imm16 Valid Valid AX OR imm16.

oD id OR EAX, imm32 Valid Valid EAX OR imm32.

REX.W + 0D id OR RAX, imm32 Valid N.E. RAX OR imm32 (sign-
extended).

80/1ib OR r/m8, imm8 Valid Valid r/m8 OR imm8.

REX +80/1 ib OR r/m8* imm8 Valid N.E. r/m8 OR imm8.

81 /1 iw OR r/m16,imm16 Valid Valid r/m16 OR imm16.

81/1id OR r/m32, imm32 Valid Valid r/m32 OR imm32.

REXW +81/1id OR r/m64,imm32 Valid N.E. r/m64 OR imm32 (sign-
extended).

83/1ib OR r/m16, imm8 Valid Valid r/m16 OR imm8 (sign-
extended).

83/1ib OR r/m32, imm8 Valid Valid r/m32 OR imm8 (sign-
extended).

REXW +83/1ib OR r/m64, imm8 Valid N.E. r/m64 OR imm8 (sign-
extended).

08/r OR r/m8, r8 Valid Valid r/m8O0R r8.

REX +08/r OR r/m8*, r8* Valid N.E. r/m8OR r8.

09/r OR r/m16,r16 Valid Valid r/m16 OR r16.

09/r OR r/m32, r32 Valid Valid r/m32 OR r32.

REXW + 09 /r OR r/m64, r64 Valid N.E. r/m64 OR r64.

OA/r OR r8 r/m8 Valid Valid r8 OR r/m8.

REX+O0A/r OR r8% r/m8* Valid N.E. r8 OR r/m8.

oB/r ORr16,r/m16 Valid Valid r16 OR r/m1ie.

0B /r OR r32, r/m32 Valid Valid r32 OR r/m32.

REX.W + 0B /r OR r64, r/m64 Valid N.E. r64 OR r/m64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix
is used: AH, BH, CH, DH.

Description

Performs a bitwise inclusive OR operation between the destination (first) and source
(second) operands and stores the result in the destination operand location. The
source operand can be an immediate, a register, or a memory location; the destina-
tion operand can be a register or a memory location. (However, two memory oper-
ands cannot be used in one instruction.) Each bit of the result of the OR instruction is

4-8 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

set to O if both corresponding bits of the first and second operands are O; otherwise,
each bit is set to 1.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

DEST « DEST OR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the
result. The state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

Vol.2B 4-9

INSTRUCTION SET REFERENCE, N-Z

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

4-10 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
66 OF 56 /r ORPD xmm1, Valid Valid Bitwise OR of
xmmZ2/m128 xmmZ2/m128and xmm1.
Description

Performs a bitwise logical OR of the two packed double-precision floating-point
values from the source operand (second operand) and the destination operand (first
operand), and stores the result in the destination operand. The source operand can
be an XMM register or a 128-bit memory location. The destination operand is an XMM
register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[127:0] < DEST[127:0] BitwiseOR SRC[127:0];

Intel® C/C++ Compiler Intrinsic Equivalent

ORPD __m128d _mm_or_pd(__m128da, __m128d b)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = O.

Vol.2B 4-11

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP(0)

#NM
#UD

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#PF(fault-code)
#NM
#UD

4-12 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = 0.

INSTRUCTION SET REFERENCE, N-Z

ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF 56 /r ORPS xmm1, xmm2/m128 Valid Valid Bitwise OR of
xmm2/m128 and
xmmT.
Description

Performs a bitwise logical OR of the four packed single-precision floating-point values
from the source operand (second operand) and the destination operand (first
operand), and stores the result in the destination operand. The source operand can
be an XMM register or a 128-bit memory location. The destination operand is an XMM
register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[127:0] < DEST[127:0] BitwiseOR SRC[127:0];

Intel C/C++ Compiler Intrinsic Equivalent
ORPS __m128 _mm_or_ps(__m128a,_m128Db)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

Vol.2B 4-13

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP(0)

#NM
#UD

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#PF(fault-code)
#NM
#UD

4-14 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE[bit 25] = 0.

INSTRUCTION SET REFERENCE, N-Z

OUT—Output to Port

64-Bit Compat/

Opcode* Instruction Mode Leg Mode Description

E6 ib OUT imm8, AL Valid Valid Output byte in AL to I/0 port
address imm8.

€7 ib OUT imm8, AX Valid Valid Output word in AX to I/0 port
address imm8.

€7 ib OUT imm8, EAX Valid Valid Output doubleword in EAX to
I/0 port address imm8.

EE OUT DX, AL Valid Valid Output byte in AL to I/0 port
address in DX.

EF OUT DX, AX Valid Valid Output word in AX to I/0 port
address in DX.

EF OUT DX, EAX Valid Valid Output doubleword in EAX to

I/0 port address in DX.

NOTES:
* See IA-32 Architecture Compatibility section below.

Description

Copies the value from the second operand (source operand) to the 1/0 port specified
with the destination operand (first operand). The source operand can be register AL,
AX, or EAX, depending on the size of the port being accessed (8, 16, or 32 bits,
respectively); the destination operand can be a byte-immediate or the DX register.
Using a byte immediate allows 1/0 port addresses O to 255 to be accessed; using the
DX register as a source operand allows 1/0 ports from O to 65,535 to be accessed.

The size of the 1/0 port being accessed is determined by the opcode for an 8-bit 1/0
port or by the operand-size attribute of the instruction for a 16- or 32-bit 1/0 port.

At the machine code level, 1/0 instructions are shorter when accessing 8-bit 1/0
ports. Here, the upper eight bits of the port address will be 0.

This instruction is only useful for accessing 1/0 ports located in the processor’s 1/0
address space. See Chapter 13, “Input/Output,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1, for more information on accessing 1/0
ports in the 1/0 address space.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

After executing an OUT instruction, the Pentium® processor insures that the EWBE#
pin has been sampled active before it begins to execute the next instruction. (Note
that the instruction can be prefetched if EWBE# is not active, but it will not be

Vol.2B 4-15

INSTRUCTION SET REFERENCE, N-Z

executed until the EWBE# pin is sampled active.) Only the Pentium processor family
has the EWBE# pin.

Operation

IF (PE = 1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)
IF (Any I/0 Permission Bit for I/0 port being accessed = 1)
THEN (* I/0 operation is not allowed *)
#GP(0);
ELSE (* I/0 operation is allowed *)
DEST « SRC; (* Writes to selected I/0 port *)
Fl;
ELSE (Real Mode or Protected Mode with CPL < IOPL *)
DEST « SRC; (* Writes to selected I/0 port *)
Fl;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the 1/0 privilege
level (IOPL) and any of the corresponding 1I/0 permission bits in
TSS for the 1/0 port being accessed is 1.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

#GP(0) If any of the 1/0 permission bits in the TSS for the 1/0 port being
accessed is 1.
#PF(fault-code) If a page fault occurs.

Compatibility Mode Exceptions
Same as protected mode exceptions.

64-Bit Mode Exceptions
Same as protected mode exceptions.

4-16 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

OUTS/0UTSB/OUTSW/0OUTSD—0utput String to Port

64-Bit Compat/

Opcode* Instruction Mode LegMode Description

6E OUTS DX, m8 Valid Valid Output byte from memory
location specified in DS:(E)SI or
RSI to I/0 port specified in
DX**,

6F OUTSDX, m16 Valid Valid Output word from memory
location specified in DS:(E)SI or
RSI to I/0 port specified in
DX**,

6F OUTS DX, m32 Valid Valid Output doubleword from

memory location specified in
DS:(E)Sl or RSI to I/0 port
specified in DX**.

6E OUTSB Valid Valid Output byte from memory
location specified in DS:(E)SI or
RSl to I/0 port specified in
DX**,

6F OuUTSW Valid Valid Output word from memory
location specified in DS:(E)SI or
RSI to 1/0 port specified in
DX**,

6F OUTSD Valid Valid Output doubleword from
memory location specified in
DS:(E)SI or RSI to I/0 port
specified in DX**.

NOTES:
* See IA-32 Architecture Compatibility section below.

** In 64-bit mode, only 64-bit (RSI) and 32-bit (ESI) address sizes are supported. In non-64-bit
mode, only 32-bit (ESI) and 16-bit (SI) address sizes are supported.

Description

Copies data from the source operand (second operand) to the 1/0 port specified with
the destination operand (first operand). The source operand is a memory location,
the address of which is read from either the DS:Sl, DS:ESI or the RSI registers
(depending on the address-size attribute of the instruction, 16, 32 or 64, respec-
tively). (The DS segment may be overridden with a segment override prefix.) The
destination operand is an 1/0 port address (from O to 65,535) that is read from the
DX register. The size of the 1/0 port being accessed (that is, the size of the source
and destination operands) is determined by the opcode for an 8-bit 1/0 port or by the
operand-size attribute of the instruction for a 16- or 32-bit 1/0 port.

Vol.2B 4-17

INSTRUCTION SET REFERENCE, N-Z

At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified
with the OUTS mnemonic) allows the source and destination operands to be specified
explicitly. Here, the source operand should be a symbol that indicates the size of the
1/0 port and the source address, and the destination operand must be DX. This
explicit-operands form is provided to allow documentation; however, note that the
documentation provided by this form can be misleading. That is, the source operand
symbol must specify the correct type (size) of the operand (byte, word, or double-
word), but it does not have to specify the correct location. The location is always
specified by the DS:(E)SI or RSI registers, which must be loaded correctly before the
OUTS instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword
versions of the OUTS instructions. Here also DS:(E)SI is assumed to be the source
operand and DX is assumed to be the destination operand. The size of the 1/0 port is
specified with the choice of mnemonic: OUTSB (byte), OUTSW (word), or OUTSD
(doubleword).

After the byte, word, or doubleword is transferred from the memory location to the
1/0 port, the SI/ESI/RSI register is incremented or decremented automatically
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is O, the
(E)SI register is incremented; if the DF flag is 1, the SI/ESI/RSI register is decre-
mented.) The SI/ESI/RSI register is incremented or decremented by 1 for byte oper-
ations, by 2 for word operations, and by 4 for doubleword operations.

The OUTS, OUTSB, OUTSW, and OUTSD instructions can be preceded by the REP
prefix for block input of ECX bytes, words, or doublewords. See “REP/REPE/REPZ
/REPNE/REPNZ—Repeat String Operation Prefix” in this chapter for a description of
the REP prefix. This instruction is only useful for accessing 1/0 ports located in the
processor’s 1/0 address space. See Chapter 13, “Input/Output,” in the Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 1, for more information on
accessing 1/0 ports in the 1/0 address space.

In 64-bit mode, the default operand size is 32 bits; operand size is not promoted by
the use of REX.W. In 64-bit mode, the default address size is 64 bits, and 64-bit
address is specified using RSI by default. 32-bit address using ESI is support using
the prefix 67H, but 16-bit address is not supported in 64-bit mode.

IA-32 Architecture Compatibility

After executing an OUTS, OUTSB, OUTSW, or OUTSD instruction, the Pentium
processor insures that the EWBE# pin has been sampled active before it begins to
execute the next instruction. (Note that the instruction can be prefetched if EWBE#
is not active, but it will not be executed until the EWBE# pin is sampled active.) Only
the Pentium processor family has the EWBE# pin.

For the Pentium 4, Intel® Xeon®, and P6 processor family, upon execution of an
OUTS, OUTSB, OUTSW, or OUTSD instruction, the processor will not execute the next
instruction until the data phase of the transaction is complete.

4-18 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Operation

IF (PE = 1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)
IF (Any I/0 Permission Bit for I/0 port being accessed = 1)
THEN (* I/0 operation is not allowed *)
#GP(0);
ELSE (* I/0 operation is allowed *)
DEST « SRC; (* Writes to I/0 port *)
Fl;
ELSE (Real Mode or Protected Mode or 64-Bit Mode with CPL < I0PL *)
DEST « SRC; (* Writes to I/0 port *)
Fl;

Byte transfer:

IF 64-bit mode
Then
IF 64-Bit Address Size
THEN
IFDF=0
THEN RSI <~ RSIRSI + 1;
ELSERSI «~RSlor - 1;
Fl;
ELSE (* 32-Bit Address Size *)
IFDF=0
THEN ESI«ESI+1;
ELSE ESI < ESI-1;
Fl;
Fl;
ELSE
IFDF=0

THEN (E)SI <« (E)SI+1;
ELSE (E)SI « (E)SI - 1;
Fl;
Fl;
Word transfer:
IF 64-bit mode
Then
IF 64-Bit Address Size
THEN
IFDF=0
THEN RSI <~ RSIRSI + 2;
ELSE RSl «~ RSl or - 2;
Fl;

Vol.2B 4-19

INSTRUCTION SET REFERENCE, N-Z

ELSE (* 32-Bit Address Size *)
IFDF=0
THEN ESI <« ESI+2;
ELSE ESI«ESI-2;

Fl;
FI;
ELSE
IFDF=0
THEN (E)SI « (E)SI+ 2;
ELSE (E)SI « (E)SI - 2;
Fl;
Fl;
Doubleword transfer:
IF 64-bit mode
Then
IF 64-Bit Address Size
THEN
IFDF=0
THEN RSI < RSIRSI + 4;
ELSE RSl «- RSl or - 4;
Fl;
ELSE (* 32-Bit Address Size *)
IFDF=0
THEN ESI <« ESI+4;
ELSE €SIl «— ESI - 4;
Fl;
FI;
ELSE
IFDF=0
THEN (E)SI « (E)SI+ 4;
ELSE (E)SI « (E)SI - 4;
Fl;
Fl;
Flags Affected
None.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the 1/0 privilege
level (IOPL) and any of the corresponding 1/0 permission bits in
TSS for the 1/0 port being accessed is 1.

4-20 Vol.2B

#PF(fault-code)
#AC(0)

INSTRUCTION SET REFERENCE, N-Z

If a memory operand effective address is outside the limit of the
CS, DS, ES, FS, or GS segment.

If the segment register contains a NULL segment selector.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP

#SS

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

Virtual-8086 Mode Exceptions

#GP(0)

#PF(fault-code)
#AC(0)

If any of the 1/0 permission bits in the TSS for the 1/0 port being
accessed is 1.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the CPL is greater than (has less privilege) the 1/0 privilege
level (IOPL) and any of the corresponding 1I/0 permission bits in
TSS for the 1/0 port being accessed is 1.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Vol.2B 4-21

INSTRUCTION SET REFERENCE, N-Z

PABSB/PABSW/PABSD — Packed Absolute Value

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF381C/r PABSB mm1, Valid Valid Compute the absolute value of
mm2/m64 bytes in mm2/m64 and store
UNSIGNED result in mm1.
66 OF 38 1C PABSB xmm1, Valid Valid Compute the absolute value of
Ir xmm2/m128 bytes in xmm2/m128 and store
UNSIGNED result in xmm1.
OF381D/r PABSW mm1, Valid Valid Compute the absolute value of 16-
mm2/m64 bit integers in mm2/m64 and store
UNSIGNED result in mm1.
66 0F 381D PABSW xmm1, Valid Valid Compute the absolute value of 16-
Ir xmm2/m128 bit integers in xmm2/m128 and
store UNSIGNED result in xmm1.
OF381E/r PABSD mm1, Valid Valid Compute the absolute value of 32-
mm2/m64 bit integers in mm2/m64 and store
UNSIGNED result in mm1.
66 OF 38 1E PABSD xmmf1, Valid Valid Compute the absolute value of 32-
Ir xmm2/m128 bit integers in xmm2/m128 and
store UNSIGNED result in xmm1.
Description

PABSB/W/D computes the absolute value of each data element of the source operand
(the second operand) and stores the UNSIGNED results in the destination operand
(the first operand). PABSB operates on signed bytes, PABSW operates on 16-bit
words, and PABSD operates on signed 32-bit integers. The source operand can be an
MMX register or a 64-bit memory location, or it can be an XMM register or a 128-bit
memory location. The destination operand can be an MMX or an XMM register. Both
operands can be MMX register or XMM registers. When the source operand is a
128-bit memory operand, the operand must be aligned on a 16byte boundary or a

general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation

PABSB with 64 bit operands

Unsigned DEST[7..0] <- ABS(SRC[7.0])

Repeat operation for 2nd through 7th bytes
Unsigned DEST[63.56] <- ABS(SRC[63..56])

4-22 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

PABSB with 128 bit operands:
Unsigned DEST[7..0] <- ABS(SRC[7..0])
Repeat operation for 2nd through 15th bytes
Unsigned DEST[127..120] <- ABS(SRC[127..120])

PABSW with 64 bit operands:
Unsigned DEST[15..0] <- ABS(SRC[15..0])
Repeat operation for 2nd through 3rd 16-bit words
Unsigned DEST[63.48] <- ABS(SRC[63..48])

PABSW with 128 bit operands:
Unsigned DEST[15..0] <- ABS(SRC[15..0])
Repeat operation for 2nd through 7th 16-bit words
Unsigned DEST[127..112] <- ABS(SRC[127..112])

PABSD with 64 bit operands:
Unsigned DEST[31..0] <- ABS(SRC[31..0])
Unsigned DEST[63..32] <- ABS(SRC[63..32])

PABSD with 128 bit operands:
Unsigned DEST[31..0] <- ABS(SRC[31..0])
Repeat operation for 2nd through 3rd 32-bit double words
Unsigned DEST[127..96] <- ABS(SRC[127..96])

Intel C/C++ Compiler Intrinsic Equivalents

PABSB __m64 _mm_abs_pi8 (__m64 a)
PABSB __m128i _mm_abs_epi8 (_m128i a)
PABSW __ m64 _mm_abs_pi16 (__m64 a)
PABSW __m128i _mm_abs_epi16 (_m128ia)
PABSD __m64 _mm_abs_pi32 (__m64 a)
PABSD __m128i _mm_abs_epi32 (__m128ia)

Protected Mode Exceptions

#GP(0): If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.

Vol.2B 4-23

INSTRUCTION SET REFERENCE, N-Z

If CPUID.SSSE3(ECX bit 9) = 0.

#NM If TS bit in CRO is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0): If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD: If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) =0
#NM If TS bit in CRO is set.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.SSSE3[bit 9] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

4-24 \Vol.2B

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-25

INSTRUCTION SET REFERENCE, N-Z

PACKSSWB/PACKSSDW—Pack with Signed Saturation

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF 63 /r PACKSSWB mm1, Valid Valid Converts 4 packed signed word
mm2/mb64 integers from mm1 and from

mmZ2/m64 into 8 packed signed
byte integers in mm1 using signed

saturation.
66 OF 63 /r PACKSSWB xmm1, Valid Valid Converts 8 packed signed word
xmmZ2/m128 integers from xmm71 and from

xxm2/m128into 16 packed
signed byte integers in xxm1
using signed saturation.
OF6B/r PACKSSDW mm1, Valid Valid Converts 2 packed signed
mmZ2/m64 doubleword integers from mm1
and from mmZ2/m64 into 4 packed
signed word integers in mm1
using signed saturation.
66 OF 6B/r PACKSSDW xmm1, Valid Valid Converts 4 packed signed
xmm2/m128 doubleword integers from xmm1
and from xxm2/m128into 8
packed signed word integers in
xxm1 using signed saturation.

Description

Converts packed signed word integers into packed signed byte integers (PACKSSWB)
or converts packed signed doubleword integers into packed signed word integers
(PACKSSDW), using saturation to handle overflow conditions. See Figure 4-1 for an
example of the packing operation.

64-Bit SRC 64-Bit DEST
D C B A
D|C|B|A
64-Bit DEST

Figure 4-1. Operation of the PACKSSDW Instruction Using 64-bit Operands

The PACKSSWB instruction converts 4 or 8 signed word integers from the destination
operand (first operand) and 4 or 8 signed word integers from the source operand
(second operand) into 8 or 16 signed byte integers and stores the result in the desti-

4-26 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

nation operand. If a signed word integer value is beyond the range of a signed byte
integer (that is, greater than 7FH for a positive integer or greater than 80H for a
negative integer), the saturated signed byte integer value of 7FH or 80H, respec-
tively, is stored in the destination.

The PACKSSDW instruction packs 2 or 4 signed doublewords from the destination
operand (first operand) and 2 or 4 signed doublewords from the source operand
(second operand) into 4 or 8 signed words in the destination operand (see Figure 4-1).
If a signed doubleword integer value is beyond the range of a signed word (that is,
greater than 7FFFH for a positive integer or greater than 8000H for a negative
integer), the saturated signed word integer value of 7FFFH or 8000H, respectively, is
stored into the destination.

The PACKSSWB and PACKSSDW instructions operate on either 64-bit or 128-bit
operands. When operating on 64-bit operands, the destination operand must be an
MMX technology register and the source operand can be either an MMX technology
register or a 64-bit memory location. When operating on 128-bit operands, the desti-
nation operand must be an XMM register and the source operand can be either an
XMM register or a 128-bit memory location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PACKSSWB instruction with 64-bit operands:
DEST[7:0] « SaturateSignedWordToSignedByte DEST[15:0];
DEST[15:8] «- SaturateSignedWordToSignedByte DEST[31:16];
DEST[23:16] « SaturateSignedWordToSignedByte DEST[47:32];
DEST[31:24] « SaturateSignedWordToSignedByte DEST[63:48];
DEST[39:32] « SaturateSignedWordToSignedByte SRC[15:0];
DEST[47:40] « SaturateSignedWordToSignedByte SRC[31:16];
DEST[55:48] « SaturateSignedWordToSignedByte SRC[47:32];
DEST[63:56] « SaturateSignedWordToSignedByte SRC[63:48];

PACKSSDW instruction with 64-bit operands:
DEST[15:0] « SaturateSignedDoublewordToSignedWord DEST[31:0];
DEST[31:16] « SaturateSignedDoublewordToSignedWord DEST[63:32];
DEST[47:32] « SaturateSignedDoublewordToSignedWord SRC[31:0];
DEST[63:48] « SaturateSignedDoublewordToSignedWord SRC[63:32];

PACKSSWB instruction with 128-bit operands:
DEST[7:0] <« SaturateSignedWordToSignedByte (DEST[15:0]);
DEST[15:8] « SaturateSignedWordToSignedByte (DEST[31:16]);
DEST[23:16] « SaturateSignedWordToSignedByte (DEST[47:32]);
DEST[31:24] « SaturateSignedWordToSignedByte (DEST[63:48]);
DEST[39:32] « SaturateSignedWordToSignedByte (DEST[79:64])
DEST[47:40] « SaturateSignedWordToSignedByte (DEST[95:80])

a

a

Vol.2B 4-27

INSTRUCTION SET REFERENCE, N-Z

DEST[55:48] « SaturateSignedWordToSignedByte (DEST[111:96]);
DEST[63:56] « SaturateSignedWordToSignedByte (DEST[127:112]);

DEST[79:72] « SaturateSignedWordToSignedByte (SRC[31:16]);

(

(
DEST[71:64] « SaturateSignedWordToSignedByte (SRC[15:0]);

(

(

DEST[87:80] « SaturateSignedWordToSignedByte (SRC[47:32]);
DEST[95:88] «— SaturateSignedWordToSignedByte (SRC[63:48]);
DEST[103:96] <« SaturateSignedWordToSignedByte (SRC[79:64));
DEST[111:104] « SaturateSignedWordToSignedByte (SRC[95:80]);
DEST[119:112] « SaturateSignedWordToSignedByte (SRC[111:96]);
DEST[127:120] « SaturateSignedWordToSignedByte (SRC[127:112]);

PACKSSDW instruction with 128-bit operands:
DEST[15:0] <« SaturateSignedDwordToSignedWord (DEST[31:0]);
DEST[31:16] « SaturateSignedDwordToSignedWord (DEST[63:32]);

DEST[47:32] « SaturateSignedDwordToSignedWord

DEST[95:64]);

(
(
DEST[63:48] « SaturateSignedDwordToSignedWord (DEST[127:96]);
DEST[79:64] « SaturateSignedDwordToSignedWord (SRC[31:0]);
DEST[95:80] « SaturateSignedDwordToSignedwWord (SRC[63:32]);
DEST[111:96] « SaturateSignedDwordToSignedWord (SRC[95:64]);
DEST[127:112] « SaturateSignedDwordToSignedword (SRC[127:96]);

Intel C/C++ Compiler Intrinsic Equivalents

PACKSSWB
PACKSSDW

Flags Affected

None.

__m64 _mm_packs_pi16(_m64 m1, __m64 m2)
__m64 _mm_packs_pi32 (__m64 m1, _m64 m2)

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD
#NM

HMF
#PF(fault-code)

4-28 Vol.2B

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-29

INSTRUCTION SET REFERENCE, N-Z

PACKUSWB—Pack with Unsigned Saturation

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF67/r PACKUSWB mm, Valid Valid Converts 4 signed word integers
mm/mé64 from mm and 4 signed word

integers from mm/m64 into 8
unsigned byte integers in mm
using unsigned saturation.

66 OF 67 /r PACKUSWB xmm1, Valid Valid Converts 8 signed word integers

xmm2/m128 from xmm?1 and 8 signed word

integers from xmm2/m128 into
16 unsigned byte integers in
xmm1 using unsigned saturation.

Description

Converts 4 or 8 signed word integers from the destination operand (first operand)
and 4 or 8 signed word integers from the source operand (second operand) into 8 or
16 unsigned byte integers and stores the result in the destination operand. (See
Figure 4-1 for an example of the packing operation.) If a signed word integer value is
beyond the range of an unsigned byte integer (that is, greater than FFH or less than
OOH), the saturated unsigned byte integer value of FFH or OOH, respectively, is stored
in the destination.

The PACKUSWSB instruction operates on either 64-bit or 128-bit operands. When
operating on 64-bit operands, the destination operand must be an MMX technology
register and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PACKUSWB instruction with 64-bit operands:
DEST[7:0] « SaturateSignedWordToUnsignedByte DEST[15:0];
DEST[15:8] « SaturateSignedWordToUnsignedByte DEST[31:16];
DEST[23:16] « SaturateSignedWordToUnsignedByte DEST[47:32];
DEST[31:24] « SaturateSignedWordToUnsignedByte DEST[63:48];
DEST[39:32] « SaturateSignedWordToUnsignedByte SRC[15:0];
DEST[47:40] « SaturateSignedWordToUnsignedByte SRC[31:16];
DEST[55:48] « SaturateSignedWordToUnsignedByte SRC[47:32];
DEST[63:56] « SaturateSignedWordToUnsignedByte SRC[63:48];

4-30 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

PACKUSWB instruction with 128-bit operands:
DEST[7:0] « SaturateSignedWordToUnsignedByte (DEST[15:0]);
DEST[15:8] <« SaturateSignedWordToUnsignedByte (DEST[31:16])

DEST[23:16] <« SaturateSignedWordToUnsignedByte (DEST[47:32])
DEST[31:24] « SaturateSignedWordToUnsignedByte (DEST[63:48]);
)

r

DEST[39:32] «— SaturateSignedWordToUnsignedByte (DEST[79:64]);
DEST[47:40] « SaturateSignedWordToUnsignedByte (DEST[95:80]);

DEST[63:56] «— SaturateSignedWordToUnsignedByte (DEST[127:112]);
DEST[71:64] « SaturateSignedWordToUnsignedByte (SRC[15:0]);
DEST[79:72] « SaturateSignedWordToUnsignedByte (SRC[31:16]);

(
(
(
DEST[55:48] «— SaturateSignedWordToUnsignedByte (DEST[111:96]);
(
(
(
(

DEST[87:80] « SaturateSignedwWordToUnsignedByte (SRC[47:32]);
DEST[95:88] « SaturateSignedwWordToUnsignedByte (SRC[63:48]);
DEST[103:96] <« SaturateSignedWordToUnsignedByte (SRC[79:64]);
DEST[111:104] «— SaturateSignedWordToUnsignedByte (SRC[95:80]);
DEST[119:112] « SaturateSignedWordToUnsignedByte (SRC[111:96]);
DEST[127:120] «— SaturateSignedWordToUnsignedByte (SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalent

PACKUSWB

Flags Affected

None.

__m64 _mm_packs_pul6(_m64 m1, __m64 m2)

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

H#HMF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.
If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-31

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-32 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PADDB/PADDW/PADDD—Add Packed Integers

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

OF FC/r PADDB mm, Valid Valid Add packed byte integers from
mm/mé64 mm/m64 and mm.

66 OF FC/r PADDB xmm1, Valid Valid Add packed byte integers from
xmmZ2/m128 xmmZ2/m128and xmm1.

OF FD /r PADDW mm, Valid Valid Add packed word integers from
mm/mé64 mm/m64 and mm.

66 OF FD PADDW xmm1, Valid Valid Add packed word integers from

Ir xmmZ2/m128 xmmZ2/m128and xmm1.

OF FE /1 PADDD mm, Valid Valid Add packed doubleword integers
mm/mé64 from mm/m64 and mm.

66 OF FE/r PADDD xmm1, Valid Valid Add packed doubleword integers
xmmZ2/m128 from xmmZ2/m128 and xmm]1.

Description

Performs a SIMD add of the packed integers from the source operand (second
operand) and the destination operand (first operand), and stores the packed integer
results in the destination operand. See Figure 9-4 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD opera-
tion. Overflow is handled with wraparound, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PADDB instruction adds packed byte integers. When an individual result is too
large to be represented in 8 bits (overflow), the result is wrapped around and the low
8 bits are written to the destination operand (that is, the carry is ignored).

The PADDW instruction adds packed word integers. When an individual result is too
large to be represented in 16 bits (overflow), the result is wrapped around and the
low 16 bits are written to the destination operand.

The PADDD instruction adds packed doubleword integers. When an individual result
is too large to be represented in 32 bits (overflow), the result is wrapped around and
the low 32 bits are written to the destination operand.

Note that the PADDB, PADDW, and PADDD instructions can operate on either
unsigned or signed (two's complement notation) packed integers; however, it does
not set bits in the EFLAGS register to indicate overflow and/or a carry. To prevent

Vol.2B 4-33

INSTRUCTION

undetected
ated on.

SET REFERENCE, N-Z2

overflow conditions, software must control the ranges of values oper-

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PADDB instruction with 64-bit operands:

DEST[7:0]

<« DEST[7:0] + SRC[7:0];

(* Repeat add operation for 2nd through 7th byte *)

DEST[63:5

6] < DEST[63:56] + SRC[63:56];

PADDB instruction with 128-bit operands:

DEST[7:0]

<« DEST[7:0] + SRC[7:0];

(* Repeat add operation for 2nd through 14th byte *)

DEST[127:

PADDW instru
DEST[15:0

120] « DEST[111:120] + SRC[127:120];

ction with 64-bit operands:
] < DEST[15:0] + SRC[15:0];

(* Repeat add operation for 2nd and 3th word *)
DEST[63:48] « DEST[63:48] + SRC[63:48];

PADDW instru

ction with 128-bit operands:

DEST[15:0] « DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd through 7th word *)
DEST[127:112] «— DEST[127:112] + SRC[127:112];

PADDD instruction with 64-bit operands:
DEST[31:0] «<— DEST[31:0] + SRC[31:0];
DEST[63:32] < DEST[63:32] + SRC[63:32];

PADDD instruction with 128-bit operands:
DEST[31:0] «- DEST[31:0] + SRC[31:0];
(* Repeat add operation for 2nd and 3th doubleword *)
DEST[127:96] < DEST[127:96] + SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalents

PADDB
PADDB
PADDW
PADDW
PADDD
PADDD

4-34 Vol.2B

m64 _mm_add_pi8(__m64 m1, __m64 m2)
m128i_mm_add_epi8 (__m128ia,__m128ib)

__m64 _mm_addw_pi16(_m64 m1, __m64 m2)
__m128i _mm_add_epi16 (_m128i3,
__m64 _mm_add_pi32(_m64 m1, __m64 m2)

__m128i _mm_add_epi32 (_m128ia,__m128ib)

m128i b)

INSTRUCTION SET REFERENCE, N-Z

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Vol.2B 4-35

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

4-36 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PADDQ—Add Packed Quadword Integers

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

OF D4 /r PADDQ mm1, Valid Valid Add quadword integer
mm2/mé64 mmZ2/m64 to mm]1.

66 OF D4 /r PADDQ xmm1, Valid Valid Add packed quadword
xmm2/m128 integers xmm2/m128 to

xmmT1.
Description

Adds the first operand (destination operand) to the second operand (source operand)
and stores the result in the destination operand. The source operand can be a quad-
word integer stored in an MMX technology register or a 64-bit memory location, or it
can be two packed quadword integers stored in an XMM register or an 128-bit
memory location. The destination operand can be a quadword integer stored in an
MMX technology register or two packed quadword integers stored in an XMM register.
When packed quadword operands are used, a SIMD add is performed. When a quad-
word result is too large to be represented in 64 bits (overflow), the result is wrapped
around and the low 64 bits are written to the destination element (that is, the carry
is ignored).

Note that the PADDQ instruction can operate on either unsigned or signed (two’s
complement notation) integers; however, it does not set bits in the EFLAGS register
to indicate overflow and/or a carry. To prevent undetected overflow conditions, soft-
ware must control the ranges of the values operated on.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PADDAQ instruction with 64-Bit operands:
DEST[63:0] «— DEST[63:0] + SRC[63:0];

PADDQ instruction with 128-Bit operands:
DEST[63:0] < DEST[63:0] + SRC[63:0];
DEST[127:64] < DEST[127:64] + SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalents

PADDQ __m64 _mm_add_si64 (__m64 a, __m64 b)
PADDQ __m128i _mm_add_epi64 (_m128ia, __m128ib)

Vol.2B 4-37

INSTRUCTION SET REFERENCE, N-Z

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

H#NM

HMF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = O.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
H#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

4-38 Vol.2B

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = O.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-39

INSTRUCTION SET REFERENCE, N-Z

PADDSB/PADDSW—Add Packed Signed Integers with Signed
Saturation

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF EC/r PADDSB mm, Valid Valid Add packed signed byte
mm/mé64 integers from mm/m64 and
mm and saturate the results.
66 OF EC/r PADDSB xmm]1, Valid Valid Add packed signed byte
xmmZ2/m128 integers from xmmZ2/m128
and xmm1 saturate the results.
OFED /r PADDSW mm, Valid Valid Add packed signed word
mm/mé64 integers from mm/m64 and
mm and saturate the results.
66 OFED /r PADDSW xmm1, Valid Valid Add packed signed word
xmm2/m128 integers from xmm2/m128
and xmm1 and saturate the
results.
Description

Performs a SIMD add of the packed signed integers from the source operand (second
operand) and the destination operand (first operand), and stores the packed integer
results in the destination operand. See Figure 9-4 in the Intel® 64 and 1A-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD opera-
tion. Overflow is handled with signed saturation, as described in the following
paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PADDSB instruction adds packed signed byte integers. When an individual byte

result is beyond the range of a signed byte integer (that is, greater than 7FH or less
than 80H), the saturated value of 7FH or 80H, respectively, is written to the destina-
tion operand.

The PADDSW instruction adds packed signed word integers. When an individual word
result is beyond the range of a signed word integer (that is, greater than 7FFFH or
less than 8000H), the saturated value of 7FFFH or 8000H, respectively, is written to
the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

4-40 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Operation

PADDSB instruction with 64-bit operands:
DEST[7:0] «— SaturateToSignedByte(DEST[7:0] + SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] « SaturateToSignedByte(DEST[63:56] + SRC[63:56]);

PADDSB instruction with 128-bit operands:
DEST[7:0] «SaturateToSignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] « SaturateToSignedByte (DEST[111:120] + SRC[127:120]);

PADDSW instruction with 64-bit operands
DEST[15:0] « SaturateToSignedWord(DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd and 7th words *)
DEST[63:48] « SaturateToSignedWord(DEST[63:48] + SRC[63:48]);

PADDSW instruction with 128-bit operands
DEST[15:0] « SaturateToSignedwWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] « SaturateToSignedWord (DEST[127:112] + SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PADDSB __m64 _mm_adds_pi8(_m64 m1, __m64 m2)
PADDSB _ m128i _mm_adds_epi8 (_m128ia, __m128ib)
PADDSW __m64 _mm_adds_pi16(_m64 m1, __m64 m2)
PADDSW _ m128i _mm_adds_epi16 (_m128ia, __m128ib)

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

Vol.2B 4-41

INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

4-42 \Vol.2B

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-43

INSTRUCTION SET REFERENCE, N-Z

PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned
Saturation

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OFDC/r PADDUSB mm, Valid Valid Add packed unsigned byte
mm/m64 integers from mm/m64 and mm
and saturate the results.
66 OF DC/r PADDUSB xmmT1, Valid Valid Add packed unsigned byte
xmm2/m128 integers from xmmZ2/m128 and
xmm1 saturate the results.
OFDD/r PADDUSW mm, Valid Valid Add packed unsigned word
mm/m64 integers from mm/m64 and mm
and saturate the results.
66 OFDD /r PADDUSW xmmT1, Valid Valid Add packed unsigned word
xmm2/m128 integers from xmm2/m128 to

xmm1 and saturate the results.

Description

Performs a SIMD add of the packed unsigned integers from the source operand
(second operand) and the destination operand (first operand), and stores the packed
integer results in the destination operand. See Figure 9-4 in the Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD
operation. Overflow is handled with unsigned saturation, as described in the
following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PADDUSB instruction adds packed unsigned byte integers. When an individual
byte result is beyond the range of an unsigned byte integer (that is, greater than
FFH), the saturated value of FFH is written to the destination operand.

The PADDUSW instruction adds packed unsigned word integers. When an individual
word result is beyond the range of an unsigned word integer (that is, greater than
FFFFH), the saturated value of FFFFH is written to the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

4-44 \ol.2B

INSTRUCTION SET REFERENCE, N-Z

Operation

PADDUSB instruction with 64-bit operands:
DEST[7:0] « SaturateToUnsignedByte(DEST[7:0] + SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] « SaturateToUnsignedByte(DEST[63:56] + SRC[63:56]

PADDUSB instruction with 128-bit operands:
DEST[7:0] «— SaturateToUnsignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] <« SaturateToUnSignedByte (DEST[127:120] + SRC[127:120]);

PADDUSW instruction with 64-bit operands:
DEST[15:0] «— SaturateToUnsignedWord(DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd and 3rd words *)
DEST[63:48] « SaturateToUnsignedWord(DEST[63:48] + SRC[63:48]);

PADDUSW instruction with 128-bit operands:
DEST[15:0] « SaturateToUnsignedWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] <« SaturateToUnSignedWord (DEST[127:112] + SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents
PADDUSB __m64 _mm_adds_pu8(__m64 m1, __m64 m2)

PADDUSW __m64 _mm_adds_pu16(_m64 m1, __m64 m2)
PADDUSB __m128i _mm_adds_epu8 (_m128ia, __m128ib)
PADDUSW __m128i _mm_adds_epul6 (_m128ia,__m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

Vol.2B 4-45

INSTRUCTION SET REFERENCE, N-Z

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

4-46 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD

#NM

H#HMF
#PF(fault-code)
#AC(0)

INSTRUCTION SET REFERENCE, N-Z

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-47

INSTRUCTION SET REFERENCE, N-Z

PALIGNR — Packed Align Right

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF 3A OF PALIGNR mm1, Valid Valid Concatenate destination and
mm2/m64, imm8 source operands, extract byte-

aligned result shifted to the right
by constant into mm1.

66 OF 3A OF PALIGNR xmm1, Valid Valid Concatenate destination and
xmm2/m128, source operands, extract byte-
imm8 aligned result shifted to the right

by constant into xmm1

Description

PALIGNR concatenates the destination operand (the first operand) and the source
operand (the second operand) into an intermediate composite, shifts the composite
at byte granularity to the right by a constant immediate, and extracts the right-
aligned result into the destination. The first and the second operands can be an MMX
or an XMM register. The immediate value is considered unsigned. Immediate shift
counts larger than the 2L (i.e. 32 for 128-bit operands, or 16 for 64-bit operands)
produce a zero result. Both operands can be MMX register or XMM registers. When
the source operand is a 128-bit memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation

PALIGNR with 64-bit operands:
temp1[127:0] = CONCATENATE(DEST,SRC)>>(imm8*8)
DEST[63:0] = temp1[63:0]

PALIGNR with 128-bit operands:
temp1[255:0] = CONCATENATE(DEST,SRC)>>(imm8*8)
DEST[127:0] = temp1[127:0]

Intel C/C++ Compiler Intrinsic Equivalents

PALIGNR __m64 _mm_alignr_pi8 (__m64 a, __m64 b, int n)
PALIGNR __m128i _mm_alignr_epi8 (_m128ia,__m128ib, intn)

4-48 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.

#NM If TS bit in CRO is set.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
#NM If TS bit in CRO is set.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

Vol.2B 4-49

INSTRUCTION SET REFERENCE, N-Z

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

4-50 Vol.2B

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = O.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PAND—Logical AND

64-
Bit Compat/
Opcode Instruction Mode Leg Mode Description
OFDB/r PAND mm, mm/m64 Valid Valid Bitwise AND mm/m64 and
mm.
66 OFDB/r PAND xmm], Valid Valid Bitwise AND of
xmmz2/m128 xmm2/m128 and xmm]1.

Description

Performs a bitwise logical AND operation on the source operand (second operand)
and the destination operand (first operand) and stores the result in the destination
operand. The source operand can be an MMX technology register or a 64-bit memory
location or it can be an XMM register or a 128-bit memory location. The destination
operand can be an MMX technology register or an XMM register. Each bit of the result
is set to 1 if the corresponding bits of the first and second operands are 1; otherwise,
it is set to O.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST « (DEST AND SRC);

Intel C/C++ Compiler Intrinsic Equivalent

PAND __m64 _mm_and_si64 (__m64 m1, __m64 m2)
PAND __m128i _mm_and_si128 (_m128ia, __m128ib)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

Vol.2B 4-51

INSTRUCTION SET REFERENCE, N-Z

#SS(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an

unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

4-52 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

#UD

#NM

H#HMF
#PF(fault-code)
#AC(0)

INSTRUCTION SET REFERENCE, N-Z

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-53

INSTRUCTION SET REFERENCE, N-Z

PANDN—Logical AND NOT

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF DF /r PANDN mm, mm/m64 Valid Valid Bitwise AND NOT of
mm/m64 and mm.
66 OF DF /r PANDN xmm1, xmm2/m128 Valid Valid Bitwise AND NOT of
xmm2/m128 and
xmm1.
Description

Performs a bitwise logical NOT of the destination operand (first operand), then
performs a bitwise logical AND of the source operand (second operand) and the
inverted destination operand. The result is stored in the destination operand. The
source operand can be an MMX technology register or a 64-bit memory location or it
can be an XMM register or a 128-bit memory location. The destination operand can
be an MMX technology register or an XMM register. Each bit of the result is set to 1 if
the corresponding bit in the first operand is O and the corresponding bit in the second
operand is 1; otherwise, it is set to O.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST < ((NOT DEST) AND SRC);

Intel C/C++ Compiler Intrinsic Equivalent

PANDN _ m64 _mm_andnot_si64 (__m64 m1, __mb64 m2)
PANDN _m128i _mm_andnot_si128 (_m128ia, __m128ib)

Flags Affected

None.

Numeric Exceptions

None.

4-54 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

Vol.2B 4-55

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

4-56 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PAUSE—Spin Loop Hint

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description

F3 90 PAUSE Valid Valid Gives hint to processor that improves
performance of spin-wait loops.

Description

Improves the performance of spin-wait loops. When executing a “spin-wait loop,” a
Pentium 4 or Intel Xeon processor suffers a severe performance penalty when exiting
the loop because it detects a possible memory order violation. The PAUSE instruction
provides a hint to the processor that the code sequence is a spin-wait loop. The
processor uses this hint to avoid the memory order violation in most situations,
which greatly improves processor performance. For this reason, it is recommended
that a PAUSE instruction be placed in all spin-wait loops.

An additional function of the PAUSE instruction is to reduce the power consumed by
a Pentium 4 processor while executing a spin loop. The Pentium 4 processor can
execute a spin-wait loop extremely quickly, causing the processor to consume a lot of
power while it waits for the resource it is spinning on to become available. Inserting
a pause instruction in a spin-wait loop greatly reduces the processor’s power
consumption.

This instruction was introduced in the Pentium 4 processors, but is backward compat-
ible with all 1A-32 processors. In earlier 1A-32 processors, the PAUSE instruction
operates like a NOP instruction. The Pentium 4 and Intel Xeon processors implement
the PAUSE instruction as a pre-defined delay. The delay is finite and can be zero for
some processors. This instruction does not change the architectural state of the
processor (that is, it performs essentially a delaying no-op operation).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Execute_Next_Instruction(DELAY);

Numeric Exceptions

None.

Exceptions (All Operating Modes)

None.

Vol.2B 4-57

INSTRUCTION SET REFERENCE, N-Z

PAVGB/PAVGW—Average Packed Integers

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OFEQ/r PAVGB mm1, Valid Valid Average packed unsigned byte
mm2/m64 integers from mm2/m64 and mm1
with rounding.
66 OF €O, /r PAVGB xmm1, Valid Valid Average packed unsigned byte
xmm2/m128 integers from xmmZ2/m128 and
xmm1 with rounding.
OFE3/r PAVGW mm1, Valid Valid Average packed unsigned word
mmZ2/m64 integers from mm2/m64 and mm1
with rounding.
66 0FE3/r PAVGW xmm1, Valid Valid Average packed unsigned word
xmmZ2/m128 integers from xmmZ2/m128 and

xmm1 with rounding.

Description

Performs a SIMD average of the packed unsigned integers from the source operand
(second operand) and the destination operand (first operand), and stores the results
in the destination operand. For each corresponding pair of data elements in the first
and second operands, the elements are added together, a 1 is added to the tempo-
rary sum, and that result is shifted right one bit position. The source operand can be
an MMX technology register or a 64-bit memory location or it can be an XMM register
or a 128-bit memory location. The destination operand can be an MMX technology
register or an XMM register.

The PAVGB instruction operates on packed unsigned bytes and the PAVGW instruc-
tion operates on packed unsigned words.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PAVGB instruction with 64-bit operands:
SRC[7:0) « (SRC[7:0) + DEST[7:0) + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 6 *)
SRC[63:56) « (SRC[63:56) + DEST[63:56) + 1) >> 1;

PAVGW instruction with 64-bit operands:
SRC[15:0) «— (SRC[15:0) + DEST[15:0) + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 and 3 *)
SR([63:48) < (SRC[63:48) + DEST[63:48) + 1) >> 1;

4-58 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

PAVGB instruction with 128-bit operands:
SRC[7:0) « (SRC[7:0) + DEST[7:0) + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 14 *)
SRC[63:56) « (SRC[63:56) + DEST[63:56) + 1) >> 1;

PAVGW instruction with 128-bit operands:
SRC[15:0) «<— (SRC[15:0) + DEST[15:0) + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 through 6 *)
SRC[127:48) < (SRC[127:112) + DEST[127:112) + 1) >> 1;

Intel C/C++ Compiler Intrinsic Equivalent

PAVGB __m64_mm_avg_pu8 (__m64 a, __m64 b)

PAVGW __m64_mm_avg_pul6 (__m64 a, __m64 b)

PAVGB __m128i _mm_avg_epu8 (_m128ia,_m128ib)
PAVGW _ m128i _mm_avg_epul6 (_m128ia,__m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-59

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-60 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF 74 /r PCMPEQB mm, Valid Valid Compare packed bytes in
mm/m64 mm/m64 and mm for equality.
66 OF 74 /r PCMPEQB xmml, Valid Valid Compare packed bytes in
xmmZ2/m128 xmmZ2/m128and xmm1 for
equality.
OF 75 /r PCMPEQW mm, Valid Valid Compare packed words in
mm/m64 mm/m64 and mm for equality.
66 OF 75/r PCMPEQW xmm1, Valid Valid Compare packed words in
xmmZ2/m128 xmmZ2/m128 and xmm1 for
equality.
OF 76 /r PCMPEQD mm, Valid Valid Compare packed doublewords
mm/m64 in mm/m64 and mm for
equality.
66 0F 76 /r PCMPEQD xmm1, Valid Valid Compare packed doublewords
xmm2/m128 in xmmZ2/m128and xmm1 for
equality.
Description

Performs a SIMD compare for equality of the packed bytes, words, or doublewords in
the destination operand (first operand) and the source operand (second operand). If
a pair of data elements is equal, the corresponding data element in the destination
operand is set to all 1s; otherwise, it is set to all 0s. The source operand can be an
MMX technology register or a 64-bit memory location, or it can be an XMM register or
a 128-bit memory location. The destination operand can be an MMX technology
register or an XMM register.

The PCMPEQB instruction compares the corresponding bytes in the destination and
source operands; the PCMPEQW instruction compares the corresponding words in
the destination and source operands; and the PCMPEQD instruction compares the
corresponding doublewords in the destination and source operands.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PCMPEQB instruction with 64-bit operands:
IF DEST[7:0] = SRC[7:0]
THEN DEST[7:0) «— FFH;
ELSE DEST[7:0] « O; FI;
(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)

Vol.2B 4-61

INSTRUCTION SET REFERENCE, N-Z

IF DEST[63:56] = SRC[63:56]
THEN DEST[63:56] « FFH;
ELSE DEST[63:56] « O; FI;

PCMPEQB instruction with 128-bit operands:
IF DEST[7:0] = SRC[7:0]
THEN DEST[7:0) < FFH;
ELSE DEST[7:0] «- O; FI;
(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)
IF DEST[63:56] = SRC[63:56]
THEN DEST[63:56] « FFH;
ELSE DEST[63:56] « O; FI;

PCMPEQW instruction with 64-bit operands:
IF DEST[15:0] = SRC[15:0]
THEN DEST[15:0] «— FFFFH;
ELSE DEST[15:0] «- O; FI;
(* Continue comparison of 2nd and 3rd words in DEST and SRC *)
IF DEST[63:48] = SRC[63:48]
THEN DEST[63:48] < FFFFH;
ELSE DEST[63:48] «— O; FI;

PCMPEQW instruction with 128-bit operands:
IF DEST[15:0] = SRC[15:0]
THEN DEST[15:0] < FFFFH;
ELSE DEST[15:0] < O; FI;
(* Continue comparison of 2nd through 7th words in DEST and SRC *)
IF DEST[63:48] = SRC[63:48]
THEN DEST[63:48] < FFFFH;
ELSE DEST[63:48] «- O; FI;

PCMPEQD instruction with 64-bit operands:
IF DEST[31:0] = SRC[31:0]
THEN DEST[31:0] «— FFFFFFFFH;
ELSE DEST[31:0] «- O; FI;
IF DEST[63:32] = SRC[63:32]
THEN DEST[63:32] < FFFFFFFFH;
ELSE DEST[63:32] < O; FI;

PCMPEQD instruction with 128-bit operands:
IF DEST[31:0] = SRC[31:0]
THEN DEST[31:0] «— FFFFFFFFH;
ELSE DEST[31:0] «- O; FI;
(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)
IF DEST[63:32] = SRC[63:32]

4-62 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

THEN DEST[63:32] « FFFFFFFFH;
ELSE DEST[63:32] « O; FI;

Intel C/C++ Compiler Intrinsic Equivalents

PCMPEQB __m64 _mm_cmpeq_pi8 (__m64 m1, __m64 m2)
PCMPEQW __m64 _mm_cmpeq_pi16 (__m64 m1, __m64 m2)
PCMPEQD __m64 _mm_cmpeq_pi32 (__m64 m1, _m64 m2)
PCMPEQB __m128i _mm_cmpeq_epi8 (__m128ia,__m128ib)
PCMPEQW __m128i _mm_cmpeq_epi16 (_m128ia, __ m128ib)
PCMPEQD __m128i _mm_cmpeq_epi32 (_m128ia, __m128ib)

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

Vol.2B 4-63

INSTRUCTION SET REFERENCE, N-Z

#UD

#NM
#MF

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

H#NM

HMF
#PF(fault-code)
#AC(0)

4-64 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for
Greater Than

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF64/r PCMPGTB mm, Valid Valid Compare packed signed byte
mm/m64 integers in mm and mm/m64
for greater than.
66 0F64/r PCMPGTB xmm1, Valid Valid Compare packed signed byte
xmmZ2/m128 integers in xmm1 and
xmmZ2/m128 for greater than.
OF65/r PCMPGTW mm, Valid Valid Compare packed signed word
mm/m64 integers in mm and mm/m64
for greater than.
66 0F65/r PCMPGTW xmm1, Valid Valid Compare packed signed word
xmmZ2/m128 integers in xmm1 and
xmmZ2/m128 for greater than.
OF 66 /r PCMPGTD mm, Valid Valid Compare packed signed
mm/m64 doubleword integers in mmand
mm/m64 for greater than.
66 OF66/r PCMPGTD xmm1, Valid Valid Compare packed signed
xmm2/m128 doubleword integers in xmm1
and xmmZ2/m1.28 for greater
than.
Description

Performs a SIMD signed compare for the greater value of the packed byte, word, or
doubleword integers in the destination operand (first operand) and the source
operand (second operand). If a data element in the destination operand is greater
than the corresponding date element in the source operand, the corresponding data
element in the destination operand is set to all 1s; otherwise, it is set to all Os. The
source operand can be an MMX technology register or a 64-bit memory location, or it
can be an XMM register or a 128-bit memory location. The destination operand can
be an MMX technology register or an XMM register.

The PCMPGTB instruction compares the corresponding signed byte integers in the
destination and source operands; the PCMPGTW instruction compares the corre-
sponding signed word integers in the destination and source operands; and the
PCMPGTD instruction compares the corresponding signed doubleword integers in the
destination and source operands.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Vol.2B 4-65

INSTRUCTION SET REFERENCE, N-Z

Operation

PCMPGTB instruction with 64-bit operands:
IF DEST[7:0] > SRC[7:0]
THEN DEST[7:0) « FFH;
ELSE DEST[7:0] < O; FI;
(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)
IF DEST[63:56] > SRC[63:56]
THEN DEST[63:56] < FFH;
ELSE DEST[63:56] < O; FI;

PCMPGTB instruction with 128-bit operands:
IF DEST[7:0] > SRC[7:0]
THEN DEST[7:0) «— FFH;
ELSE DEST[7:0] « O; FI;
(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)
IF DEST[63:56] > SRC[63:56]
THEN DEST[63:56] « FFH;
ELSE DEST[63:56] «- O; FI;

PCMPGTW instruction with 64-bit operands:
IF DEST[15:0] > SRC[15:0]
THEN DEST[15:0] «— FFFFH;
ELSE DEST[15:0] «- O; FI;
(* Continue comparison of 2nd and 3rd words in DEST and SRC *)
IF DEST[63:48] > SRC[63:48]
THEN DEST[63:48] < FFFFH;
ELSE DEST[63:48] «— O; FI;

PCMPGTW instruction with 128-bit operands:
IF DEST[15:0] > SRC[15:0]
THEN DEST[15:0] «— FFFFH;
ELSE DEST[15:0] «- O; FI;
(* Continue comparison of 2nd through 7th words in DEST and SRC *)
IF DEST[63:48] > SRC[63:48]
THEN DEST[63:48] « FFFFH;
ELSE DEST[63:48] < O; FI;

PCMPGTD instruction with 64-bit operands:
IF DEST[31:0] > SRC[31:0]
THEN DEST[31:0] «— FFFFFFFFH;
ELSE DEST[31:0] « O; FI;
IF DEST[63:32] > SRC[63:32]
THEN DEST[63:32] «— FFFFFFFFH;
ELSE DEST[63:32] «- O; FI;

4-66 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

PCMPGTD instruction with 128-bit operands:
IF DEST[31:0] > SRC[31:0]
THEN DEST[31:0] < FFFFFFFFH;
ELSE DEST[31:0] - O; FI;
(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)
IF DEST[63:32] > SRC[63:32]
THEN DEST[63:32] «— FFFFFFFFH;
ELSE DEST[63:32] « O; FI;

Intel C/C++ Compiler Intrinsic Equivalents

PCMPGTB __m64 _mm_cmpgt_pi8 (__m64 m1, __m64 m2)
PCMPGTW __m64 _mm_pcmpgt_pi16 (__m64 m1, __m64 m2)
DCMPGTD __m64 _mm_pcmpgt_pi32 (__m64 m1, __m64 m2)
PCMPGTB __m128i _mm_cmpgt_epi8 (_m128ia,_m128ib
PCMPGTW __m128i _mm_cmpgt_epil16 (_m128ia,_m128ib
DCMPGTD __m128i _mm_cmpgt_epi32 (_m128ia,_m128ib

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

Vol.2B 4-67

INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

4-68 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-69

INSTRUCTION SET REFERENCE, N-Z

PEXTRW—Extract Word

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OFC5/rib PEXTRW r32, Valid Valid Extract the word specified by
mm, imm8 imm8 from mm and move it to
r32, bits 15-0. Zero-extend
the result.
REXW +OF C5/r PEXTRW r64, Valid N.E. Extract the word specified by
ib mm, imm8 imm8 from mm and move it to
r64, bits 15-0. Zero-extend
the result.
66 OF C5/rib PEXTRW r32, Valid Valid Extract the word specified by
Xxmm, imm8 imm8 from xmm and move it
to r32, bits 15-0. Zero-extend
the result.
REXW +66 OFC5 PEXTRW ré4, Valid N.E. Extract the word specified by
/rib xmm, imm8 imm8 from xmm and move it
to r64, bits 15-0. Zero-extend
the result.
Description

Copies the word in the source operand (second operand) specified by the count
operand (third operand) to the destination operand (first operand). The source
operand can be an MMX technology register or an XMM register. The destination
operand is the low word of a general-purpose register. The count operand is an 8-bit
immediate. When specifying a word location in an MMX technology register, the 2
least-significant bits of the count operand specify the location; for an XMM register,
the 3 least-significant bits specify the location. The high word of the destination
operand is cleared (set to all 0s).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15). Use of REX.W permits the use of
64-bit general purpose registers.

Operation
IF (64-Bit Mode and REX.W used and 64-bit register selected)
THEN
FOR (PEXTRW instruction with 64-bit source operand)
{ SEL <~ COUNT AND 3H;
TEMP « (SRC >> (SEL * 16)) AND FFFFH;
r64[15:0] « TEMP[15:0];
r64[63:16] «<— ZERO_FILL; };
FOR (PEXTRW instruction with 128-bit source operand)

4-70 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

{ SEL <~ COUNT AND 7H;
TEMP « (SRC >> (SEL * 16)) AND FFFFH;
r64[15:0] < TEMP[15:0];
r64[63:16] < ZERO_FILL; }
ELSE
FOR (PEXTRW instruction with 64-bit source operand)
{ SEL < COUNT AND 3H;
TEMP « (SRC >> (SEL * 16)) AND FFFFH;
r32[15:0] « TEMP[15:0];
r32[31:16] « ZERO_FILL; };
FOR (PEXTRW instruction with 128-bit source operand)
{ SEL < COUNT AND 7H;
TEMP « (SRC >> (SEL * 16)) AND FFFFH;
r32[15:0] < TEMP[15:0];
r32[31:16] <« ZERO_FILL; };
Fl;

Intel C/C++ Compiler Intrinsic Equivalent

PEXTRW int_mm_extract_pi16 (__m64 a3, int n)
PEXTRW int _mm_extract_epi16 (_m128i a, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-71

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)

#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#UD

#NM
#MF

4-72 \Vol.2B

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

INSTRUCTION SET REFERENCE, N-Z

PHADDW/PHADDD — Packed Horizontal Add

64-Bit Compat/ Description

Opcode Instruction Mode Leg Mode

OF 3801 /r PHADDW mm1, Valid Valid Add 16-bit signed integers
mm2/m64 horizontally, pack to MM1.

66 0F 3801 /r PHADDW xmm1, Valid Valid Add 16-bit signed integers
xmm2/m128 horizontally, pack to XMM1.

0OF 3802 /r PHADDD mmT1, Valid Valid Add 32-bit signed integers
mm2/m64 horizontally, pack to MM1.

66 0F 3802 /r PHADDD xmm1, Valid Valid Add 32-bit signed integers
xmm2/m128 horizontally, pack to XMM1.

Description

PHADDW adds two adjacent 16-bit signed integers horizontally from the source and
destination operands and packs the 16-bit signed results to the destination operand
(first operand). PHADDD adds two adjacent 32-bit signed integers horizontally from
the source and destination operands and packs the 32-bit signed results to the desti-
nation operand (first operand). Both operands can be MMX or XMM registers. When

the source operand is a 128-bit memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation

PHADDW with 64-bit operands:
mm1[15-0] =mm1[31-16] + mm1[15-0];
mm1[31-16] = mm1[63-48] + mm1[47-32];
mm1[47-32] = mm2/m64[31-16] + mm2/m64[15-0];
mm1[63-48] = mm2/m64[63-48] + mm2/m64[47-32];

PHADDW with 128-bit operands :
xmm1[15-0] = xmm1[31-16] + xmm1[15-0];
xmm1[31-16] = xmm1[63-48] + xmm1[47-32];
xmm1[47-32] = xmm1[95-80] + xmm1[79-64];
xmm1[63-48] = xmm1[127-112] + xmm1[111-96];
xmm1[79-64] = xmm2/m128[31-16] + xmm2/m128[15-0];
xmm1[95-80] = xmm2/m128[63-48] + xmm2/m128[47-32];
xmm1[111-96] = xmm2/m128[95-80] + xmm2/m128[79-64];
xmm1[127-112] = xmm2/m128[127-112] + xmm2/m128[111-96];

Vol.2B 4-73

INSTRUCTION SET REFERENCE, N-Z

PHADDD with 64-bit operands :
mm1[31-0] =mm1[63-32] + mm1[31-0];
mm1[63-32] = mm2/m64[63-32] + mm2/m64[31-0];

PHADDD with 128-bit operands:
xmm1[31-0] = xmm1[63-32] + xmm1[31-0];
xmm1[63-32] = xmm1[127-96] + xmm1[95-64];
xmm1[95-64] = xmm2/m128[63-32] + xmm2/m128[31-0];
xmm1[127-96] = xmm2/m128[127-96] + xmm2/m128[95-64];

Intel C/C++ Compiler Intrinsic Equivalents

PHADDW _ m64 _mm_hadd_pi16 (__m64 a, __m64 b)
PHADDW __m128i _mm_hadd_epi16 (__m128ia,__m128ib)
PHADDD _ m64 _mm_hadd_pi32 (__m64 a, __m64 b)
PHADDD _ m128i _mm_hadd_epi32 (_m128ia,__m128ib)

Protected Mode Exceptions

#GP(0): If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM(bit 2)= 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.

#NM If TS bit in CRO is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

4-74 \Vol.2B

#UD

#NM
#MF

INSTRUCTION SET REFERENCE, N-Z

If CRO.EM = 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If TS bit in CRO is set.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)
#AC(0)

If a page fault occurs.

(64-bit operations only). If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSSE3[bit 9] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-75

INSTRUCTION SET REFERENCE, N-Z

PHADDSW — Packed Horizontal Add and Saturate

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

OF3803/r PHADDSW mm1, Valid Valid Add 16-bit signed integers
mm2/m64 horizontally, pack saturated

integers to MM1.

66 0F 3803 PHADDSW Valid Valid Add 16-bit signed integers

Ir xmm1, horizontally, pack saturated
xmm2/m128 integers to XMM1.

Description

PHADDSW adds two adjacent signed 16-bit integers horizontally from the source and
destination operands and saturates the signed results; packs the signed, saturated
16-bit results to the destination operand (first operand) Both operands can be MMX
or XMM registers. When the source operand is a 128-bit memory operand, the
operand must be aligned on a 16-byte boundary or a general-protection exception
(#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation

PHADDSW with 64-bit operands:
mm1[15-0] = SaturateToSignedWord((mm1[31-16] + mm1[15-0]);
mm1[31-16] = SaturateToSignedWord(mm1[63-48] + mm1[47-32]);
mm1[47-32] = SaturateToSignedWord(mm2/m64[31-16] + mm2/m64[15-0]);
mm1[63-48] = SaturateToSignedWord(mm2/m64[63-48] + mm2/m64[47-32]);

PHADDSW with 128-bit operands :
xmm1[15-0]= SaturateToSignedWord(xmm1[31-16] + xmm1[15-0]);
xmm1[31-16] = SaturateToSignedWord(xmm1[63-48] + xmm1[47-32]);
xmm1[47-32] = SaturateToSignedWord(xmm1[95-80] + xmm1[79-64]);
xmm1[63-48] = SaturateToSignedWord(xmm1[127-112] + xmm1[111-96]);
xmm1[79-64] = SaturateToSignedWord(xmm2/m128[31-16] + xmm2/m128[15-0]);
xmm1[95-80] = SaturateToSignedWord(xmm2/m128[63-48] + xmm2/m128[47-32]);
xmm1[111-96] = SaturateToSignedWord(xmm2/m128[95-80] + xmm2/m128[79-64));
xmm1[127-112] = SaturateToSignedWord(xmm2/m128[127-112] + xmm2/m128[111-96]);

Intel C/C++ Compiler Intrinsic Equivalent

PHADDSW __m64 _mm_hadds_pi16 (__m64 a, __m64 b)
PHADDSW __m128i _mm_hadds_epi16 (__m128ia, __m128ib)

4-76 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.

#NM If TS bit in CRO is set.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0): (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
#NM If TS bit in CRO is set.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

Vol.2B 4-77

INSTRUCTION SET REFERENCE, N-Z

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

4-78 Vol.2B

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = O.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PHSUBW/PHSUBD — Packed Horizontal Subtract

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

OF 3805 /r PHSUBW mm1, Valid Valid Subtract 16-bit signed
mm2/m64 integers horizontally,

pack to MM1.

66 0F 3805 /r PHSUBW Valid Valid Subtract 16-bit signed
xmm1, integers horizontally,
xmm2/m128 pack to XMM1.

OF 3806 /r PHSUBD mm1, Valid Valid Subtract 32-bit signed
mm2/m64 integers horizontally,

pack to MMT1.

66 OF 3806 /r PHSUBDxmm1, Valid Valid Subtract 32-bit signed
xmm2/m128 integers horizontally,

pack to XMM1.
Description

PHSUBW performs horizontal subtraction on each adjacent pair of 16-bit signed inte-
gers by subtracting the most significant word from the least significant word of each
pair in the source and destination operands, and packs the signed 16-bit results to
the destination operand (first operand). PHSUBD performs horizontal subtraction on
each adjacent pair of 32-bit signed integers by subtracting the most significant
doubleword from the least significant doubleword of each pair, and packs the signed
32-bit result to the destination operand. Both operands can be MMX or XMM regis-
ters. When the source operand is a 128-bit memory operand, the operand must be
aligned on a 16-byte boundary or a general-protection exception (#GP) will be
generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation

PHSUBW with 64-bit operands:
mm1[15-0] = mm1[15-0] - mm1[31-16];
mm1[31-16] = mm1[47-32] - mm1[63-48];
mm1[47-32] = mm2/m64[15-0] - mm2/m64[31-16];
mm1[63-48] = mm2/m64[47-32] - mm2/m64[63-48];

PHSUBW with 128-bit operands:
xmm1[15-0] = xmm1[15-0] - xmm1[31-16];
xmm1[31-16] = xmm1[47-32] - xmm1[63-48];
xmm1[47-32] = xmm1[79-64] - xmm1[95-80];
xmm1[63-48] = xmm1[111-96] - xmm1[127-112];

Vol.2B 4-79

INSTRUCTION SET REFERENCE, N-Z

xmm1[79-64] = xmm2/m128[15-0] - xmm2/m128[31-16];
xmm1[95-80] = xmm2/m128[47-32] - xmm2/m128[63-48];
xmm1[111-96] = xmm2/m128[79-64] - xmm2/m128[95-80];
xmm1[127-112] = xmm2/m128[111-96] - xmm2/m128[127-112];

PHSUBD with 64-bit operands:
mm1[31-0] = mm1[31-0] - mm1[63-32];
mm1[63-32] = mm2/m64[31-0] - mm2/m64[63-32];
PHSUBD with 128-bit operands:
xmm1[31-0] = xmm1[31-0] - xmm1[63-32];
xmm1[63-32] = xmm1[95-64] - xmm1[127-96];
xmm1[95-64] = xmm2/m128[31-0] - xmm2/m128[63-32];
xmm1[127-96] = xmm2/m128[95-64] - xmm2/m128[127-96];

Intel C/C++ Compiler Intrinsic Equivalents

PHSUBW __m64 _mm_hsub_pi16 (__m64 a, __m64 b)
PHSUBW __m128i _mm_hsub_epi16 (_m128ia,__m128ib)
PHSUBD __m64 _mm_hsub_pi32 (__m64 a, __m64 b)
PHSUBD __ m128i _mm_hsub_epi32 (_m128ia,__m128ib)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.

#NM If TS bit in CRO is set.

H#HMF If there is a pending x87 FPU exception (64-bit operations only).

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

4-80 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Real Mode Exceptions

#GP(0): If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD: If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
#NM If TS bit in CRO is set.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSSE3[bit 9] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-81

INSTRUCTION SET REFERENCE, N-Z

PHSUBSW — Packed Horizontal Subtract and Saturate

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

OF 3807 /r PHSUBSW Valid Valid Subtract 16-bit signed
mmT, integer horizontally, pack
mmZ2/m64 saturated integers to

MM1.

66 OF 38 07 /r PHSUBSW Valid Valid Subtract 16-bit signed
xmm1, integer horizontally, pack
xmm2/m128 saturated integers to

XMM1
Description

PHSUBSW performs horizontal subtraction on each adjacent pair of 16-bit signed
integers by subtracting the most significant word from the least significant word of
each pair in the source and destination operands. The signed, saturated 16-bit
results are packed to the destination operand (first operand). Both operands can be
MMX or XMM register. When the source operand is a 128-bit memory operand, the
operand must be aligned on a 16-byte boundary or a general-protection exception
(#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation

PHSUBSW with 64-bit operands:
mm1[15-0] = SaturateToSignedwWord(mm1[15-0] - mm1[31-16]);
mm1[31-16] = SaturateToSignedWord(mm1[47-32] - mm1[63-48]);
mm1[47-32] = SaturateToSignedwWord(mm2/m64[15-0] - mm2/m64[31-16]));
mm1[63-48] = SaturateToSignedwWord(mm2/m64[47-32] - mm2/m64[63-48));

PHSUBSW with 128-bit operands:
xmm1[15-0] = SaturateToSignedWord(xmm1[15-0] - xmm1[31-16]);
xmm1[31-16] = SaturateToSignedWord(xmm1[47-32] - xmm1[63-48]);
xmm1[47-32] = SaturateToSignedWord(xmm1[79-64] - xmm1[95-80]);
xmm1[63-48] = SaturateToSignedWord(xmm1[111-96] - xmm1[127-112]);
xmm1[79-64] = SaturateToSignedWord(xmm2/m128[15-0] - xmm2/m128[31-16]);
xmm1[95-80] =SaturateToSignedWord(xmm2/m128[47-32] - xmm2/m128[63-48]);
xmm1[111-96] =SaturateToSignedWord(xmm2/m128[79-64] - xmm2/m128[95-80));
xmm1[127-112]= SaturateToSignedWord(xmm2/m128[111-96] - xmm2/m128[127-112]);

4-82 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent

PHSUBSW __m64 _mm_hsubs_pi16 (__m64 3, __m64 b)
PHSUBSW __m128i _mm_hsubs_epi16 (__m128ia, __m128ib)

Protected Mode Exceptions

#GP(0) if a memory operand effective address is outside the CS, DS, ES,
FS or GS segments.

If not aligned on 16-byte boundary, regardless of segment
(128-bit operations only).

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.

If CR4.0OSFXSR(bit 9) = 0 (128-bit operations only).
If CPUID.SSSE3(ECX bit 9) = 0.

#NM If TS bit in CRO is set.

H#MF If there is a pending x87 FPU exception (64-bit operations only).

#AC(0) If alignment checking is enabled and unaligned memory refer-
ence is made while the current privilege level is 3 (64-bit opera-
tions only).

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

If not aligned on 16-byte boundary, regardless of segment
(128-bit operations only).

#UD If CRO.EM = 1.
If CR4.0SFXSR(bit 9) = 0 (128-bit operations only).
If CPUID.SSSE3(ECX bit 9) = 0.
#NM If TS bit in CRO is set.
H#MF If there is a pending x87 FPU exception (64-bit operations only).

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and unaligned memory refer-
ence is made (64-bit operations only).

Vol.2B 4-83

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

4-84 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSSE3[bit 9] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PINSRW—Insert Word

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF C4 /rib PINSRW mm, Valid Valid Insert the low word from
r32/m16, imm8 r32or from m16into mm

at the word position
specified by imm8
REX.W + OF C4 /rib PINSRW mm, Valid N.E. Insert the low word from
r64/m16, imm8 r64 or from m16 into mm
at the word position
specified by imm8

66 0FC4 /rib PINSRW xmm, Valid Valid Move the low word of r32
r32/m16, imm8 or from m76 into xmm at
the word position
specified by imm8.
REXW +66 OF C4 /rib PINSRW xmm, Valid N.E. Move the low word of r64
r64/m16, imm8 or from m76 into xmm at
the word position
specified by imm8.
Description

Copies a word from the source operand (second operand) and inserts it in the desti-
nation operand (first operand) at the location specified with the count operand (third
operand). (The other words in the destination register are left untouched.) The
source operand can be a general-purpose register or a 16-bit memory location.
(When the source operand is a general-purpose register, the low word of the register
is copied.) The destination operand can be an MMX technology register or an XMM
register. The count operand is an 8-bit immediate. When specifying a word location in
an MMX technology register, the 2 least-significant bits of the count operand specify
the location; for an XMM register, the 3 least-significant bits specify the location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15). Use of REX.W permits the use of
64 bit general purpose registers.

Operation

PINSRW instruction with 64-bit source operand:
SEL <~ COUNT AND 3H;
CASE (Determine word position) OF
SEL « O: MASK <« 000000000000FFFFH;
SEL« 1: MASK « 00000000FFFFO000H;
SEL « 2 MASK « 0000FFFFO0000000H;
SEL « 3: MASK « FFFFOO0000000000H;

Vol.2B 4-85

INSTRUCTION SET REFERENCE, N-Z

DEST « (DEST AND NOT MASK) OR (((SRC << (SEL * 16)) AND MASK);

PINSRW instruction with 128-bit source operand:
SEL <~ COUNT AND 7H;
CASE (Determine word position) OF

SEL « O: MASK <« 0000000000000000000000000000FFFFH;
SEL « T: MASK <« 000000000000000000000000FFFFO000H;
SEL « 2: MASK <« 00000000000000000000FFFFO0000000H;
SEL « 3 MASK <« 0000000000000000FFFFO00000000000H;
SEL « 4: MASK <« 000000000000FFFFO000000000000000H;
SEL « 5: MASK <« 00000000FFFFO0000000000000000000H;
SEL « 6: MASK <« 0000FFFFO00000000000000000000000H;
SEL « 7: MASK « FFFFO000000000000000000000000000H;

DEST <« (DEST AND NOT MASK) OR (((SRC << (SEL * 16)) AND MASK);

Intel C/C++ Compiler Intrinsic Equivalent

PINSRW __m64 _mm_insert_pi16 (__m64 3, intd, intn)
PINSRW __m128i _mm_insert_epi16 (_m128i a, int b, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-86 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to FFFFH.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Vol.2B 4-87

INSTRUCTION SET REFERENCE, N-Z

PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

OF 3804 /r PMADDUBSW Valid Valid Multiply signed and
mmT, unsigned bytes, add
mm2/m64 horizontal pair of signed

words, pack saturated
signed-words to MM1.

66 OF 3804 /r PMADDUBSW Valid Valid Multiply signed and
xmm1, unsigned bytes, add
xmm2/m128 horizontal pair of signed

words, pack saturated
signed-words to XMM1.

Description

PMADDUBSW multiplies vertically each unsigned byte of the destination operand
(first operand) with the corresponding signed byte of the source operand (second
operand), producing intermediate signed 16-bit integers. Each adjacent pair of
signed words is added and the saturated result is packed to the destination operand.
For example, the lowest-order bytes (bits 7-0) in the source and destination oper-
ands are multiplied and the intermediate signed word result is added with the corre-
sponding intermediate result from the 2nd lowest-order bytes (bits 15-8) of the
operands; the sign-saturated result is stored in the lowest word of the destination
register (15-0). The same operation is performed on the other pairs of adjacent
bytes. Both operands can be MMX register or XMM registers. When the source
operand is a 128-bit memory operand, the operand must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation

PMADDUBSW with 64 bit operands:
DEST[15-0] = SaturateToSignedWord(SRC[15-8]*DEST[15-8]+SRC[7-0]*DEST[7-01);
DEST[31-16] = SaturateToSignedWord(SRC[31-24]*DEST[31-24]+SRC[23-16]*DEST[23-16]);
DEST[47-32] = SaturateToSignedWord(SRC[47-40]1*DEST[47-40]+SRC[39-32]*DEST[39-32]);
DEST[63-48] = SaturateToSignedWord(SRC[63-56]*DEST[63-56]+SRC[55-481*DEST[55-48));

PMADDUBSW with 128 bit operands:
DEST[15-0] = SaturateToSignedWord(SRC[15-8]* DEST[15-8]+SRC[7-0]*DEST[7-0]);
// Repeat operation for 2nd through 7th word
SRC1/DEST[127-112] = SaturateToSignedWord(SRC[127-120]*DEST[127-1201+ SRC[119-
112]* DEST[119-112));

4-88 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalents

PMADDUBSW __m64 _mm_maddubs_pi16 (__m64 a, __m64 b)
PMADDUBSW __m128i _mm_maddubs_epi16 (__m128ia, __m128iDb)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.
If CR4.0OSFXSR(bit 9) = 0 (128-bit operations only)
If CPUID.SSSE3(ECX bit 9) = 0.

#NM If TS bit in CRO is set.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
#NM If TS bit in CRO is set.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Vol.2B 4-89

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

4-90 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSSE3[bit 9] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PMADDWD—Multiply and Add Packed Integers

64-
Bit Compat/
Opcode Instruction Mode Leg Mode Description
OFF5/r PMADDWD mm, Valid Valid Multiply the packed words in mm
mm/m64 by the packed words in mm/m64,
add adjacent doubleword results,
and store in mm.
66 OF F5/r PMADDWD xmm1, Valid Valid Multiply the packed word integers
xmm2/m128 in xmm1 by the packed word

integers in xmmZ2/m128, add
adjacent doubleword results, and
store in xmm]1.

Description

Multiplies the individual signed words of the destination operand (first operand) by
the corresponding signed words of the source operand (second operand), producing
temporary signed, doubleword results. The adjacent doubleword results are then
summed and stored in the destination operand. For example, the corresponding low-
order words (15-0) and (31-16) in the source and destination operands are multi-
plied by one another and the doubleword results are added together and stored in
the low doubleword of the destination register (31-0). The same operation is
performed on the other pairs of adjacent words. (Figure 4-2 shows this operation
when using 64-bit operands.) The source operand can be an MMX technology register
or a 64-bit memory location, or it can be an XMM register or a 128-bit memory loca-
tion. The destination operand can be an MMX technology register or an XMM register.

The PMADDWD instruction wraps around only in one situation: when the 2 pairs of
words being operated on in a group are all 8000H. In this case, the result wraps
around to 80000000H.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Vol.2B 4-91

INSTRUCTION SET REFERENCE, N-Z

SRC X3 X2 X1 X0
DEST Y3 Y2 Y1 YO

TEMP X3 % Y3 X2 * Y2 X1 * Y1 X0 % YO
DEST (X3%Y3) + (X2+Y2)| (X1¥Y1) + (XO*Y0)

Figure 4-2. PMADDWD Execution Model Using 64-bit Operands

Operation

PMADDWD instruction with 64-bit operands:
DEST[31:0] « (DEST[15:0] * SRC[15:0]) + (DEST[31:16] * SRC[31:16]);
DEST[63:32] «— (DEST[47:32] = SRC[47:32]) + (DEST[63:48] * SRC[63:48]);

PMADDWD instruction with 128-bit operands:
DEST[31:0] « (DEST[15:0] * SRC[15:0]) + (DEST[31:16] * SRC[31:16]);
DEST[63:32] «— (DEST[47:32] * SRC[47:32]) + (DEST[63:48] * SRC[63:48]);
DEST[95:64] «— (DEST[79:64] * SRC[79:64]) + (DEST[95:80] * SRC[95:801);
DEST[127:96] «— (DEST[111:96] * SRC[111:96]) + (DEST[127:112] * SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalent

PMADDWD __m64 _mm_madd_pi16(_m64 m1, _m64 m2)
PMADDWD __m128i _mm_madd_epi16 (_m128ia, __m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

4-92 Vol.2B

#UD

#NM

H#HMF
#PF(fault-code)
#AC(0)

INSTRUCTION SET REFERENCE, N-Z

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.
If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

Vol.2B 4-93

INSTRUCTION SET REFERENCE, N-Z

#UD

H#NM

H#MF
#PF(fault-code)
#AC(0)

4-94 Vol.2B

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PMAXSW—Maximum of Packed Signed Word Integers

64-
Bit Compat/
Opcode Instruction Mode LegMode Description
OF EE /1 PMAXSW mm1, Valid Valid Compare signed word integers in
mm2/m64 mmZ2/m64 and mm1 and return
maximum values.
66 OF EE/r PMAXSW xmm1, Valid Valid Compare signed word integers in
xmm2/m128 xmmZ2/m128and xmm1 and return

maximum values.

Description

Performs a SIMD compare of the packed signed word integers in the destination
operand (first operand) and the source operand (second operand), and returns the
maximum value for each pair of word integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMAXSW instruction for 64-bit operands:
IF DEST[15:0] > SRC[15:0]) THEN
DEST[15:0] «— DEST[15:0];
ELSE
DEST[15:0] «— SRC[15:0]; FI;
(* Repeat operation for 2nd and 3rd words in source and destination operands *)
IF DEST[63:48] > SRC[63:48]) THEN
DEST[63:48] «— DEST[63:48];
ELSE
DEST[63:48] « SRC[63:48]; FI;

PMAXSW instruction for 128-bit operands:
IF DEST[15:0] > SRC[15:0]) THEN
DEST[15:0] «<— DEST[15:0];
ELSE
DEST[15:0] «— SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)

Vol.2B 4-95

INSTRUCTION SET REFERENCE, N-Z

IF DEST[127:112] > SRC[127:112]) THEN
DEST[127:112] « DEST[127:112];
ELSE
DEST[127:112] < SRC[127:112]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSW __m64 _mm_max_pi16(_m64 a, __m64 b)
PMAXSW _ m128i _mm_max_epi16 (_m128ia, __m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

4-96 Vol.2B

#UD

#NM
#MF

INSTRUCTION SET REFERENCE, N-Z

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#HMF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-97

INSTRUCTION SET REFERENCE, N-Z

PMAXUB—Maximum of Packed Unsigned Byte Integers

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF DE/r PMAXUB mm1, Valid Valid Compare unsigned byte
mmZ2/mé64 integers in mm2/m64 and
mm1 and returns maximum
values.
66 OF DE/r PMAXUB xmm], Valid Valid Compare unsigned byte
xmm2/m128 integers in xmmZ2/m128 and
xmm1 and returns maximum
values.
Description

Performs a SIMD compare of the packed unsigned byte integers in the destination
operand (first operand) and the source operand (second operand), and returns the
maximum value for each pair of byte integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMAXUB instruction for 64-bit operands:
IF DEST[7:0] > SRC[17:0]) THEN
DEST[7:0] < DEST[7:0];
ELSE
DEST[7:0] «- SRC[7:0]; FI;
(* Repeat operation for 2nd through 7th bytes in source and destination operands *)
IF DEST[63:56] > SRC[63:56]) THEN
DEST[63:56] « DEST[63:56];
ELSE
DEST[63:56] « SRC[63:56]; FI;

PMAXUB instruction for 128-bit operands:
IF DEST[7:0] > SRC[17:0]) THEN
DEST[7:0] « DEST[7:0];
ELSE
DEST[7:0] « SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] > SRC[127:120]) THEN

4-98 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

DEST[127:120] <« DEST[127:120];
ELSE
DEST[127:120] <« SRC[127:120]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUB _ m64 _mm_max_pu8(__m64 a, __m64 b)
PMAXUB _ m128i _mm_max_epu8 (__m128ia, __m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

Vol.2B 4-99

INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-100 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

PMINSW—Minimum of Packed Signed Word Integers

Compat/
64-Bit Leg
Opcode Instruction Mode Mode Description
OFEA/r PMINSW mm1, Valid Valid Compare signed word integers in
mm2/m64 mmZ2/m64 and mm1 and return
minimum values.
66 OF EA PMINSW xmm1, Valid Valid Compare signed word integers in
Ir xmm2/m128 xmmZ2/m128and xmm1 and return

minimum values.

Description

Performs a SIMD compare of the packed signed word integers in the destination
operand (first operand) and the source operand (second operand), and returns the
minimum value for each pair of word integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMINSW instruction for 64-bit operands:
IF DEST[15:0] < SRC[15:0] THEN
DEST[15:0] «— DEST[15:0];
ELSE
DEST[15:0] «— SRC[15:0]; FI;
(* Repeat operation for 2nd and 3rd words in source and destination operands *)
IF DEST[63:48] < SRC[63:48] THEN
DEST[63:48] «— DEST[63:48];
ELSE
DEST[63:48] « SRC[63:48]; FI;

PMINSW instruction for 128-bit operands:
IF DEST[15:0] < SRC[15:0] THEN
DEST[15:0] «<— DEST[15:0];
ELSE
DEST[15:0] «— SRC[15:0]; FI;

Vol.2B 4-101

INSTRUCTION SET REFERENCE, N-Z

(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] < SRC/m64[127:112] THEN
DEST[127:112] «<— DEST[127:112];

ELSE

DEST[127:112] < SRC[127:112]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMINSW _ m64 _mm_min_pi16 (__m64 a, __m64 b)
PMINSW __m128i _mm_min_epi16 (_m128ia, __m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0)

4-102 Vol. 2B

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD

#NM
#MF

INSTRUCTION SET REFERENCE, N-Z

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.O1H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-103

INSTRUCTION SET REFERENCE, N-Z

PMINUB—Minimum of Packed Unsigned Byte Integers

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OFDA/r PMINUB mm]1, Valid Valid Compare unsigned byte integers
mmZ2/m64 in mm2/m64 and mm1 and
returns minimum values.
66 OF DA /r PMINUB xmm1, Valid Valid Compare unsigned byte integers
xmm2/m128 in xmmZ2/m128 and xmm1 and

returns minimum values.

Description

Performs a SIMD compare of the packed unsigned byte integers in the destination
operand (first operand) and the source operand (second operand), and returns the
minimum value for each pair of byte integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMINUB instruction for 64-bit operands:
IF DEST[7:0] < SRC[17:0] THEN
DEST[7:0] < DEST[7:0];
ELSE
DEST[7:0] « SRC[7:0]; FI;
(* Repeat operation for 2nd through 7th bytes in source and destination operands *)
IF DEST[63:56] < SRC[63:56] THEN
DEST[63:56] «— DEST[63:56];
ELSE
DEST[63:56] « SRC[63:56]; FI;

PMINUB instruction for 128-bit operands:
IF DEST[7:0] < SRC[17:0] THEN
DEST[7:0] <~ DEST[7:0];
ELSE
DEST[7:0] < SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] < SRC[127:120] THEN
DEST[127:120] <~ DEST[127:120];

4-104 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

ELSE
DEST[127:120] < SRC[127:120]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMINUB __m64 _m_min_pu8 (__m64 a3, __ m64 b)
PMINUB _ m128i _mm_min_epu8 (_m128ia,__m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

Vol.2B 4-105

INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-106 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

PMOVMSKB—Move Byte Mask

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF D7 /r PMOVMSKB Valid Valid Move a byte mask of mm
r32, mm to r32.
REXW +OF D7 /r PMOVMSKB Valid N.E. Move a byte mask of mm
r64, mm to the lower 32-bits of r64
and zero-fill the upper
32-bits.
66 OF D7 /r PMOVMSKB Valid Valid Move a byte mask of xmm
r32, xmm to r32.
REXW + 66 OF D7 /r PMOVMSKB Valid N.E. Move a byte mask of xmm
64, xmm to the lower 32-bits of r64
and zero-fill the upper
32-bits.
Description

Creates a mask made up of the most significant bit of each byte of the source
operand (second operand) and stores the result in the low byte or word of the desti-
nation operand (first operand). The source operand is an MMX technology register or
an XMM register; the destination operand is a general-purpose register. When oper-
ating on 64-bit operands, the byte mask is 8 bits; when operating on 128-bit oper-
ands, the byte mask is 16-bits.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15). Use of REX.W permits the use of
64 bit general purpose registers.

Operation

PMOVMSKB instruction with 64-bit source operand and r32:
r32[0] « SRC[7];
r32[1] « SRC[15];
(* Repeat operation for bytes 2 through 6 *)
r32[7] < SRC[63];
r32[31:8] <~ ZERO_FILL;

PMOVMSKB instruction with 128-bit source operand and r32:
r32[0] «- SRC[7];
r32[1] « SRC[15];
(* Repeat operation for bytes 2 through 14 *)
r32[15] « SRC[127];
r32[31:16] « ZERO_FILL;

Vol.2B 4-107

INSTRUCTION SET REFERENCE, N-Z

PMOVMSKB instruction with 64-bit source operand and r64:
r64[0] < SRC[7];
r64[1] < SRC[15];
(* Repeat operation for bytes 2 through 6 *)
r64[7] < SRC[63];
r64[63:8] «— ZERO_FILL;

PMOVMSKB instruction with 128-bit source operand and r64:
r64[0] < SRC[7];
r64[1] < SRC[15];
(* Repeat operation for bytes 2 through 14 *)
r64[15] «- SRC[127];
r64[63:16] <— ZERO_FILL;

Intel C/C++ Compiler Intrinsic Equivalent

PMOVMSKB int_mm_movemask_pi8(__m64 a)
PMOVMSKB int _mm_movemask_epi8 (_m128i a)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions

Same exceptions as in Protected Mode.

4-108 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.

Vol.2B 4-109

INSTRUCTION SET REFERENCE, N-Z

PMULHRSW — Packed Multiply High with Round and Scale

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

OF380B/r PMULHRSW Valid Valid Multiply 16-bit signed
mm1, words, scale and round
mm2/m64 signed doublewords, pack

high 16 bits to MM1.

66 OF 380B /r PMULHRSW Valid Valid Multiply 16-bit signed
xmm1, words, scale and round
xmm2/m128 signed doublewords, pack

high 16 bits to XMMT.

Description

PMULHRSW multiplies vertically each signed 16-bit integer from the destination
operand (first operand) with the corresponding signed 16-bit integer of the source
operand (second operand), producing intermediate, signed 32-bit integers. Each
intermediate 32-bit integer is truncated to the 18 most significant bits. Rounding is
always performed by adding 1 to the least significant bit of the 18-bit intermediate
result. The final result is obtained by selecting the 16 bits immediately to the right of
the most significant bit of each 18-bit intermediate result and packed to the destina-
tion operand. Both operands can be MMX register or XMM registers. When the source
operand is a 128-bit memory operand, the operand must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation

PMULHRSW wi64-bit operands:
tempO0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;
temp1[31:0] = INT32 ((DEST[31:15] * SRC[31:15]) >>14) + 1;
temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >> 14) + 1;
temp3[31:0] = INT32 ((DEST[63:48] * SRc[63:48]) >> 14) + 1;
DEST[15:0] = tempO[16:1];
DEST[31:15] = temp1[16:1];
DEST[47:32] = temp2[16:1];
DEST[63:48] = temp3[16:1];

PMULHRSW with 128-bit operand:
temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;
temp1[31:0] = INT32 ((DEST[31:15] * SRC[31:15]) >>14) + 1;
temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >>14) + 1;
temp3[31:0] = INT32 ((DEST[63:48] * SRC[63:48]) >>14) + 1;
temp4[31:0] = INT32 ((DEST[79:64] * SRC[79:64]) >>14) + 1;

,\,\,\,\
== =

4-110 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

temp5[31:0] = INT32 ((DEST[95:80] * SRC[95:80]) >>14) + 1;
temp6[31:0] = INT32 ((DEST[111:96] * SRC[111:96]) >>14) + 1;
temp7[31:0]1 = INT32 ((DEST[127:112] * SRC[127:112) >>14) + 1;
DEST[15:0] = tempO[16:1];

DEST[31:15] = temp1[16:1];

DEST[47:32] = temp2[16:1];

DEST[63:48] = temp3[16:1];

DEST[79:64] = temp4[16:1];

DEST[95:80] = temp5[16:1];

DEST[111:96] = temp6[16:1];

DEST[127:112] = temp7[16:1];

Intel C/C++ Compiler Intrinsic Equivalents

PMULHRSW __m64 _mm_mulhrs_pi16 (__m64 a, __m64 b)
PMULHRSW __m128i _mm_mulhrs_epi16 (_m128ia, __m128ib)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.

#NM If TS bit in CRO is set.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.

Vol.2B 4-111

INSTRUCTION SET REFERENCE, N-Z

#NM If TS bit in CRO is set.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSSE3[bit 9] = 0.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-112 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

PMULHUW—Multiply Packed Unsigned Integers and Store High Result

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OFE4/r PMULHUW mm1, Valid Valid Multiply the packed unsigned
mmZ2/mé64 word integers in mm1 register

and mmZ2/m64, and store the
high 16 bits of the results in

mmT1.
66 OF E4 /1 PMULHUW xmm1, Valid Valid Multiply the packed unsigned
xmm2/m128 word integers in xmm71 and

xmmZ2/m128, and store the
high 16 bits of the results in
xmmT1.

Description

Performs a SIMD unsigned multiply of the packed unsigned word integers in the
destination operand (first operand) and the source operand (second operand), and
stores the high 16 bits of each 32-bit intermediate results in the destination operand.
(Figure 4-3 shows this operation when using 64-bit operands.) The source operand
can be an MMX technology register or a 64-bit memory location, or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX tech-
nology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

SRC X3 X2 X1 X0
DEST Y3 Y2 Y1 YO

TEMP| Z3=X3xY3 72 =X2 % Y2 Z1=X1+*Y1 Z0 = X0 * YO
DEST 73[31:16] | Z2[31:16] | Z1[31:16] | Z0[31:16]

Figure 4-3. PMULHUW and PMULHW Instruction Operation Using 64-bit Operands

Operation

PMULHUW instruction with 64-bit operands:
TEMPO[31:0] < DEST[15:0] * SRC[15:0]; (* Unsigned multiplication *)
TEMP1[31:0] <~ DEST[31:16] * SRC[31:16];

Vol.2B 4-113

TEMP2[31:0] <
TEMP3[31:0] «
DEST[15:0] <

DEST[31:16] «
DEST[47:32] «
DEST[63:48] «

TEMPO[31:0] «
TEMP1[31:0] «
TEMP2[31:0] «
TEMP3[31:0] «
TEMP4[31:0] «
TEMP5[31:0] «
TEMP6[31:0] «
TEMP7[31:0] «
DEST[15:0] <
DEST[31:16] «
DEST[47:32] «
DEST[63:48] «
DEST[79:64] «
DEST[95:80] «
DEST[111:96] «

INSTRUCTION SET REFERENCE, N-Z

DEST[47:32] * SRC[47:32];
DEST[63:48] * SRC[63:48];
TEMPO[31:16];
TEMP1[31:16];
TEMP2[31:16];
TEMP3[31:16];

PMULHUW instruction with 128-bit operands:

DEST[15:0] * SRC[15:0]; (* Unsigned multiplication *)
DEST[31:16] * SRC[31:16];
DEST[47:32] * SRC[47:32];
DEST[63:48] * SRC[63:48];
DEST[79:64] * SRC[79:64];
DEST[95:80] * SRC[95:80];
DEST[111:96] * SRC[111:96];
DEST[127:112] = SRC[127:112];
TEMPO[31:16];

TEMP1[31:16];

TEMP2[31:16];

TEMP3[31:16];

TEMP4[31:16];

TEMP5[31:16];

TEMP6[31:16];

DEST[127:112] « TEMP7[31:16];

Intel C/C++ Compiler Intrinsic Equivalent

PMULHUW __m64 _mm_mulhi_pu16(_m64 a, __m64 b)
PMULHUW __m128i _mm_mulhi_epul6 (_m128ia, __m128ib)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS

segment limit.

4-114 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

Vol.2B 4-115

INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-116 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

PMULHW—Multiply Packed Signed Integers and Store High Result

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OFES/r PMULHW mm, Valid Valid Multiply the packed signed word
mm/m64 integers in mm71 register and
mmZ2/m64, and store the high 16
bits of the results in mm1.
66 OFE5 /r PMULHW xmm1, Valid Valid Multiply the packed signed word

integers in xmm1 and
xmmZ2/m128, and store the high
16 bits of the results in xmm1.

xmmZ2/m128

Description

Performs a SIMD signed multiply of the packed signed word integers in the destina-
tion operand (first operand) and the source operand (second operand), and stores
the high 16 bits of each intermediate 32-bit result in the destination operand.
(Figure 4-3 shows this operation when using 64-bit operands.) The source operand
can be an MMX technology register or a 64-bit memory location, or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX tech-
nology register or an XMM register.

n 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMULHW instruction with 64-bit operands:

TEMPO[31:0] <
TEMP1[31:0]
TEMP2[31:0]
TEMP3[31:0]
DEST[15:0] «

DEST[31:16] «
DEST[47:32] «
DEST[63:48] «

TEMPO[31:0] «
TEMP1[31:0]
TEMP2[31:0] «
TEMP3[31:0]
TEMP4[31:0] «
TEMP5[31:0] «
TEMP6[31:0] «

DEST[15:0] * SRC[15:0]; (* Signed multiplication *)
DEST[31:16] * SRC[31:16];

DEST[47:32] * SRC[47:32];

DEST[63:48] * SRC[63:48];

TEMPO[31:16];

TEMP1[31:16];

TEMP2[31:16];

TEMP3[31:16];

PMULHW instruction with 128-bit operands:

DEST[15:0] * SRC[15:0]; (* Signed multiplication *)
DEST[31:16] * SRC[31:16];

DEST[47:32] * SRC[47:32];

DEST[63:48] * SRC[63:48];

DEST[79:64] * SRC[79:64];

DEST[95:80] * SRC[95:80];

DEST[111:96] * SRC[111:96];

Vol.2B 4-117

INSTRUCTION SET REFERENCE, N-Z

TEMP7[31:0] <
DEST[15:0] <
DEST[31:16] «
DEST[47:32] «
DEST[63:48] «
DEST[79:64] «
DEST[95:80] «
DEST[111:96] «

DEST[127:112] * SRC[127:112];
TEMPO[31:16];
TEMP1[31:16];
TEMP2[31:16];
TEMP3[31:16];
TEMP4[31:16];
TEMP5[31:16];
TEMP6[31:16];

DEST[127:112] « TEMP7[31:16];

Intel C/C++ Compiler Intrinsic Equivalent

PMULHW _ m64 _mm_mulhi_pi16 (__m64 m1,

m64 m2)

PMULHW __m128i _mm_mulhi_epi16 (_m128ia, __m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-118 Vol. 2B

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-119

INSTRUCTION SET REFERENCE, N-Z

PMULLW—Multiply Packed Signed Integers and Store Low Result

64-Bit Compat/

Opcode Instruction Mode LegMode Description
OFD5/r PMULLW mm, Valid Valid Multiply the packed signed word
mm/mé64 integers in mm1 register and

mmZ2/m64, and store the low 16
bits of the results in mm1.
66 OFD5/r PMULLW xmm1, Valid Valid Multiply the packed signed word
xmm2/m128 integers in xmm1 and
xmm2/m128, and store the low
16 bits of the results in xmm1.

Description

Performs a SIMD signed multiply of the packed signed word integers in the destina-
tion operand (first operand) and the source operand (second operand), and stores
the low 16 bits of each intermediate 32-bit result in the destination operand.

(Figure 4-3 shows this operation when using 64-bit operands.) The source operand
can be an MMX technology register or a 64-bit memory location, or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX tech-
nology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

SRC X3 X2 X1 X0
DEST Y3 Y2 Y1 YO

TEMP | Z3=X3%*Y3 Z2=X2%Y2 Z1=X1%Y1 Z0=X0* Y0
DEST Z3[15:.0] | z2[15:0] | z1[15:0] | ZO[15:0]

Figure 4-4. PMULLU Instruction Operation Using 64-bit Operands

Operation

PMULLW instruction with 64-bit operands:
TEMPO[31:0] « DEST[15:0] * SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] « DEST[31:16] * SRC[31:16];
TEMP2[31:0] <~ DEST[47:32] * SRC[47:32];
TEMP3[31:0] « DEST[63:48] * SRC[63:48];

4-120 Vol.2B

DEST[15:0] <
DEST[31:16] «
DEST[47:32] «
DEST[63:48] «

TEMPO[31:0] <
TEMP1[31:0] <
TEMP2[31:0] «
TEMP3[31:0] «
TEMP4[31:0] <
TEMP5[31:0] <
TEMP6[31:0] <
TEMP7[31:0] <
DEST[15:0] «
DEST[31:16] «
DEST[47:32] «
DEST[63:48] «
DEST[79:64] «
DEST[95:80] «
DEST[111:96] «

INSTRUCTION SET REFERENCE, N-Z

TEMPO[15:0];
TEMP1[15:0];
TEMP2[15:0];
TEMP3[15:0];

PMULLW instruction with 64-bit operands:

DEST[15:0] * SRC[15:0]; (* Signed multiplication *)
DEST[31:16] * SRC[31:16];
DEST[47:32] * SRC[47:32];
DEST[63:48] * SRC[63:48];
DEST[79:64] * SRC[79:64];
DEST[95:80] * SRC[95:80];
DEST[111:96] * SRC[111:96];
DEST[127:112] * SRC[127:112];
TEMPO[15:0];

TEMP1[15:0];

TEMP2[15:0];

TEMP3[15:0];

TEMP4[15:0];

TEMP5[15:0];

TEMP6[15:0];

DEST[127:112] « TEMP7[15:0];

Intel C/C++ Compiler Intrinsic Equivalent

PMULLW __m64 _mm_mullo_pi16(_m64 m1, __m64 m2)
PMULLW _ m128i _mm_mullo_epi16 (_m128ia,__m128ib)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS

segment limit.

Vol.2B 4-121

INSTRUCTION SET REFERENCE, N-Z

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

4-122 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD

#NM

H#HMF
#PF(fault-code)
#AC(0)

INSTRUCTION SET REFERENCE, N-Z

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-123

INSTRUCTION SET REFERENCE, N-Z

PMULUDQ—Multiply Packed Unsigned Doubleword Integers

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OFF4/r PMULUDQ mm1, Valid Valid Multiply unsigned doubleword
mmZ2/mé64 integer in mm1 by unsigned

doubleword integer in mm2/m64,
and store the quadword result in

mm1.
66 OF F4 /r PMULUDQ xmm1, Valid Valid Multiply packed unsigned
xmm2/m128 doubleword integers in xmm1 by

packed unsigned doubleword
integers in xmmZ2/m128, and store
the quadword results in xmm1.

Description

Multiplies the first operand (destination operand) by the second operand (source
operand) and stores the result in the destination operand. The source operand can be
an unsigned doubleword integer stored in the low doubleword of an MMX technology
register or a 64-bit memory location, or it can be two packed unsigned doubleword
integers stored in the first (low) and third doublewords of an XMM register or an
128-bit memory location. The destination operand can be an unsigned doubleword
integer stored in the low doubleword an MMX technology register or two packed
doubleword integers stored in the first and third doublewords of an XMM register. The
result is an unsigned quadword integer stored in the destination an MMX technology
register or two packed unsigned quadword integers stored in an XMM register. When
a quadword result is too large to be represented in 64 bits (overflow), the result is
wrapped around and the low 64 bits are written to the destination element (that is,
the carry is ignored).

For 64-bit memory operands, 64 bits are fetched from memory, but only the low
doubleword is used in the computation; for 128-bit memory operands, 128 bits are
fetched from memory, but only the first and third doublewords are used in the
computation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMULUDQ instruction with 64-Bit operands:
DEST[63:0] <~ DEST[31:0] * SRC[31:0];

PMULUDQ instruction with 128-Bit operands:
DEST[63:0] «— DEST[31:0] * SRC[31:0];
DEST[127:64] «— DEST[95:64] * SRC[95:64];

4-124 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent

PMULUDQ __m64 _mm_mul_su32 (__m64 a, __m64 b)
PMULUDQ __m128i _mm_mul_epu32 (_m128ia,__m128iDb)
Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = O.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

Vol.2B 4-125

INSTRUCTION SET REFERENCE, N-Z

#AC(0)

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

4-126 Vol. 2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, N-Z

Instructio 64-Bit Compat/

Opcode n Mode LegMode Description

8F /0 POPr/m16 Valid Valid Pop top of stack into m16; increment
stack pointer.

8F /0 POPr/m32 NE. Valid Pop top of stack into m32; increment
stack pointer.

8F /0 POPr/m64 Valid N.E. Pop top of stack into m64; increment
stack pointer. Cannot encode 32-bit
operand size.

58+ rw POPr16 Valid Valid Pop top of stack into r16; increment stack
pointer.

58+ rd POP r32 N.E. Valid Pop top of stack into r32; increment stack
pointer.

58+ rd POP r64 Valid N.E. Pop top of stack into r64; increment stack
pointer. Cannot encode 32-bit operand
size.

1F POP DS Invalid Valid Pop top of stack into DS; increment stack
pointer.

07 POP ES Invalid Valid Pop top of stack into ES; increment stack
pointer.

17 POP SS Invalid Valid Pop top of stack into SS; increment stack
pointer.

OF A1 POP FS Valid Valid Pop top of stack into FS; increment stack
pointer by 16 bits.

OF A1 POP FS N.E. Valid Pop top of stack into FS; increment stack
pointer by 32 bits.

OF A1 POP FS Valid N.E. Pop top of stack into FS; increment stack
pointer by 64 bits.

OF AS POP GS Valid Valid Pop top of stack into GS; increment stack
pointer by 16 bits.

OF A9 POP GS N.E. Valid Pop top of stack into GS; increment stack
pointer by 32 bits.

OF A9 POP GS Valid N.E. Pop top of stack into GS; increment stack
pointer by 64 bits.

Description

Loads the value from the top of the stack to the location specified with the destina-
tion operand (or explicit opcode) and then increments the stack pointer. The destina-
tion operand can be a general-purpose register, memory location, or segment

register.

Vol.2B 4-127

INSTRUCTION SET REFERENCE, N-Z

The address-size attribute of the stack segment determines the stack pointer size
(16, 32, 64 bits) and the operand-size attribute of the current code segment deter-
mines the amount the stack pointer is incremented (2, 4, 8 bytes).

For example, if the address- and operand-size attributes are 32, the 32-bit ESP
register (stack pointer) is incremented by 4; if they are 16, the 16-bit SP register is
incremented by 2. (The B flag in the stack segment’s segment descriptor determines
the stack’s address-size attribute, and the D flag in the current code segment’s
segment descriptor, along with prefixes, determines the operand-size attribute and
also the address-size attribute of the destination operand.)

If the destination operand is one of the segment registers DS, ES, FS, GS, or SS, the
value loaded into the register must be a valid segment selector. In protected mode,
popping a segment selector into a segment register automatically causes the
descriptor information associated with that segment selector to be loaded into the
hidden (shadow) part of the segment register and causes the selector and the
descriptor information to be validated (see the “Operation” section below).

A NULL value (0000-0003) may be popped into the DS, ES, FS, or GS register without
causing a general protection fault. However, any subsequent attempt to reference a
segment whose corresponding segment register is loaded with a NULL value causes
a general protection exception (#GP). In this situation, no memory reference occurs
and the saved value of the segment register is NULL.

The POP instruction cannot pop a value into the CS register. To load the CS register
from the stack, use the RET instruction.

If the ESP register is used as a base register for addressing a destination operand in
memory, the POP instruction computes the effective address of the operand after it
increments the ESP register. For the case of a 16-bit stack where ESP wraps to OH as
a result of the POP instruction, the resulting location of the memory write is
processor-family-specific.

The POP ESP instruction increments the stack pointer (ESP) before data at the old top
of stack is written into the destination.

A POP SS instruction inhibits all interrupts, including the NMI interrupt, until after
execution of the next instruction. This action allows sequential execution of POP SS
and MOV ESP, EBP instructions without the danger of having an invalid stack during
an interrupt!. However, use of the LSS instruction is the preferred method of loading
the SS and ESP registers.

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after
a POP SS instruction, the breakpoint may not be triggered. However, in a sequence of instruc-
tions that POP the SS register, only the first instruction in the sequence is guaranteed to delay
an interrupt.

In the following sequence, interrupts may be recognized before POP ESP executes:

POP SS
POP SS
POP ESP

4-128 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional

registers (R8-R15). When in 64-bit mode, POPs using 32-bit operands are not encod-
able and POPs to DS, ES, SS are not valid. See the summary chart at the beginning

of this section for encoding data and limits.

Operation
IF StackAddrSize = 32
THEN
IF OperandSize = 32
THEN
DEST « SS:ESP; (* Copy a doubleword *)
ESP « ESP + 4;
ELSE (* OperandSize = 16%*)
DEST « SS:ESP; (* Copy a word *)
ESP « ESP + 2;
Fl;
ELSE IF StackAddrSize = 64
THEN
IF OperandSize = 64
THEN
DEST « SS:RSP; (* Copy quadword *)
RSP «- RSP + 8;
ELSE (* OperandSize = 16%*)
DEST « SS:RSP; (* Copy a word *)
RSP «- RSP + 2;
Fl;
Fl;
ELSE StackAddrSize = 16
THEN
IF OperandSize = 16
THEN
DEST « SS:SP; (* Copy a word *)
SP « SP +2;
ELSE (* OperandSize = 32 *)
DEST « SS:SP; (* Copy a doubleword *)
SP « SP + 4;
Fl;

Fl;

Loading a segment register while in protected mode results in special actions, as
described in the following listing. These checks are performed on the segment
selector and the segment descriptor it points to.

Vol.2B 4-129

INSTRUCTION SET REFERENCE, N-Z

64-BIT_MODE
IF FS, or GS is loaded with non-NULL selector;
THEN
IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)
AND (both RPL and CPL > DPL))
THEN #GP(selector);
IF segment not marked present
THEN #NP(selector);
ELSE
SegmentRegister «- segment selector;
SegmentRegister «- segment descriptor;

Fl;
FI;
IF FS, or GS is loaded with a NULL selector;
THEN
SegmentRegister «- segment selector;
SegmentRegister «- segment descriptor;
Fl;

PREOTECTED MODE OR COMPATIBILITY MODE;

IF SS is loaded;
THEN

IF segment selector is NULL
THEN #GP(0);

Fl;

IF segment selector index is outside descriptor table limits
or segment selector's RPL = CPL
or segment is not a writable data segment

or DPL = CPL
THEN #GP(selector);
Fl;
IF segment not marked present
THEN #SS(selector);
ELSE
SS « segment selector;
SS « segment descriptor;
Fl;

Fl;

4-130 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

IF DS, ES, FS, or GS is loaded with non-NULL selector;

THEN

IF segment selector index is outside descriptor table limits
or segment is not a data or readable code segment
or ((segment is a data or nonconforming code segment)
and (both RPL and CPL > DPL))

THEN #GP(selector);
FI;
IF segment not marked present
THEN #NP(selector);
ELSE

Fl;
Fl;

SegmentRegister < segment selector;
SegmentRegister < segment descriptor;

IF DS, €S, FS, or GS is loaded with a NULL selector

THEN

SegmentRegister < segment selector;
SegmentRegister «- segment descriptor;

Fl;

Flags Affected

None.

Protected Mode Exceptions

#GP(0)

#GP(selector)

If attempt is made to load SS register with NULL segment
selector.

If the destination operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

If segment selector index is outside descriptor table limits.

If the SS register is being loaded and the segment selector's RPL
and the segment descriptor’s DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a
non-writable data segment.

Vol.2B 4-131

INSTRUCTION SET REFERENCE, N-Z

#SS(0)

#SS(selector)
#NP

#PF(fault-code)
#AC(0)

If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is not a data or readable code segment.

If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is a data or nonconforming code segment,
but both the RPL and the CPL are greater than the DPL.

If the current top of stack is not within the stack segment.

If a memory operand effective address is outside the SS
segment limit.

If the SS register is being loaded and the segment pointed to is
marked not present.

If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is marked not present.

If a page fault occurs.

If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

Real-Address Mode Exceptions

#GP

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

Virtual-8086 Mode Exceptions

#GP(0)

#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a page fault occurs.

If an unaligned memory reference is made while alignment
checking is enabled.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#GP(0)
#SS(V)
#GP(selector)

#AC(0)

4-132 Vol. 2B

If the memory address is in a non-canonical form.
If the stack address is in a non-canonical form.
If the descriptor is outside the descriptor table limit.

If the FS or GS register is being loaded and the segment pointed
to is not a data or readable code segment.

If the FS or GS register is being loaded and the segment pointed
to is a data or nonconforming code segment, but both the RPL
and the CPL are greater than the DPL.

If an unaligned memory reference is made while alignment
checking is enabled.

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) If a page fault occurs.

#NP If the FS or GS register is being loaded and the segment pointed
to is marked not present.

Vol.2B 4-133

INSTRUCTION SET REFERENCE, N-Z

POPA/POPAD—Pop All General-Purpose Registers

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
61 POPA Invalid Valid Pop DI, SI, BP, BX, DX, CX, and AX.
61 POPAD Invalid Valid Pop EDI, ESI, EBP, EBX, EDX, ECX,
and EAX.
Description

Pops doublewords (POPAD) or words (POPA) from the stack into the general-purpose
registers. The registers are loaded in the following order: EDI, ESI, EBP, EBX, EDX,
ECX, and EAX (if the operand-size attribute is 32) and DI, Sl, BP, BX, DX, CX, and AX
(if the operand-size attribute is 16). (These instructions reverse the operation of the
PUSHA/PUSHAD instructions.) The value on the stack for the ESP or SP register is
ignored. Instead, the ESP or SP register is incremented after each register is loaded.

The POPA (pop all) and POPAD (pop all double) mnemonics reference the same
opcode. The POPA instruction is intended for use when the operand-size attribute is
16 and the POPAD instruction for when the operand-size attribute is 32. Some
assemblers may force the operand size to 16 when POPA is used and to 32 when
POPAD is used (using the operand-size override prefix [66H] if necessary). Others
may treat these mnemonics as synonyms (POPA/POPAD) and use the current setting
of the operand-size attribute to determine the size of values to be popped from the
stack, regardless of the mnemonic used. (The D flag in the current code segment’s
segment descriptor determines the operand-size attribute.)

This instruction executes as described in non-64-bit modes. It is not valid in 64-bit
mode.

Operation
IF 64-Bit Mode
THEN
#UD;
ELSE
IF OperandSize = 32 (* Instruction = POPAD *)
THEN
EDI « Pop();
ESI « Pop();
EBP « Pop();
Increment ESP by 4; (* Skip next 4 bytes of stack *)
EBX « Pop();
EDX « Pop();
ECX « Pop();
EAX « Pop();

4-134 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

ELSE (* OperandSize = 16, instruction = POPA *)
DI « Pop();
Sl «- Pop();
BP « Pop();
Increment ESP by 2; (* Skip next 2 bytes of stack *)
BX <« Pop();
DX « Pop();
CX « Pop();
AX « Pop();

Fl;

Fl;

Flags Affected

None.

Protected Mode Exceptions

#SS(0) If the starting or ending stack address is not within the stack
segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current

privilege level is 3 and alignment checking is enabled.

Real-Address Mode Exceptions

#SS If the starting or ending stack address is not within the stack
segment.

Virtual-8086 Mode Exceptions

#SS(0) If the starting or ending stack address is not within the stack
segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment

checking is enabled.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

Vol.2B 4-135

INSTRUCTION SET REFERENCE, N-Z

POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
aD POPF Valid Valid Pop top of stack into lower 16 bits
of EFLAGS.
aD POPFD N.E. Valid Pop top of stack into EFLAGS.
REXW +9D POPFQ Valid N.E. Pop top of stack and zero-extend
into RFLAGS.

Description

Pops a doubleword (POPFD) from the top of the stack (if the current operand-size
attribute is 32) and stores the value in the EFLAGS register, or pops a word from the
top of the stack (if the operand-size attribute is 16) and stores it in the lower 16 bits
of the EFLAGS register (that is, the FLAGS register). These instructions reverse the
operation of the PUSHF/PUSHFD instructions.

The POPF (pop flags) and POPFD (pop flags double) mnemonics reference the same
opcode. The POPF instruction is intended for use when the operand-size attribute is
16; the POPFD instruction is intended for use when the operand-size attribute is 32.
Some assemblers may force the operand size to 16 for POPF and to 32 for POPFD.
Others may treat the mnemonics as synonyms (POPF/POPFD) and use the setting of
the operand-size attribute to determine the size of values to pop from the stack.

The effect of POPF/POPFD on the EFLAGS register changes, depending on the mode
of operation. When the processor is operating in protected mode at privilege level O
(or in real-address mode, the equivalent to privilege level 0), all non-reserved flags
in the EFLAGS register except RFL, VIP, VIF, and VM may be modified. VIP, VIF and
VM remain unaffected.

When operating in protected mode with a privilege level greater than 0, but less than
or equal to I0OPL, all flags can be modified except the IOPL field and VIP, VIF, and VM.
Here, the IOPL flags are unaffected, the VIP and VIF flags are cleared, and the VM
flag is unaffected. The interrupt flag (IF) is altered only when executing at a level at
least as privileged as the IOPL. If a POPF/POPFD instruction is executed with insuffi-
cient privilege, an exception does not occur but privileged bits do not change.

When operating in virtual-8086 mode, the IOPL must be equal to 3 to use
POPF/POPFD instructions; VM, RF, IOPL, VIP, and VIF are unaffected. If the IOPL is
less than 3, POPF/POPFD causes a general-protection exception (#GP).

In 64-bit mode, use REX.W to pop the top of stack to RFLAGS. The mnemonic
assigned is POPFQ (note that the 32-bit operand is not encodable). POPFQ pops 64

1. RFis always zero after execution of POPF. This is because POPF, like all instructions, clears RF as
it begins to execute.

4-136 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

bits from the stack, loads the lower 32 bits into RFLAGS, and zero extends the upper
bits of RFLAGS.

See Chapter 3 of the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 1, for more information about the EFLAGS registers.

Operation

IF VM =0 (* Not in Virtual-8086 Mode *)
THENIFCPL=0
THEN
IF OperandSize = 32;

THEN
EFLAGS <« Pop(); (* 32-bit pop *)
(* All non-reserved flags except RF, VIP, VIF, and VM can be modified;
VIP and VIF are cleared; RF, VM, and all reserved bits are unaffected. *)

ELSE IF (Operandsize = 64)
RFLAGS = Pop(); (* 64-bit pop *)
(* All non-reserved flags except RF, VIP, VIF, and VM can be modified; VIP
and VIF are cleared; RF, VM, and all reserved bits are unaffected.*)

ELSE (* OperandSize =16 *)
EFLAGS[15:0] « Pop(); (* 16-bit pop *)
(* All non-reserved flags can be modified. *)

Fl;
ELSE (*CPL>07%)
IF OperandSize = 32
THEN
IF CPL > IOPL
THEN
EFLAGS « Pop(); (* 32-bit pop *)
(* All non-reserved bits except IF, IOPL, RF, VIP, and
VIF can be modified; IF, IOPL, RF, VM, and all reserved
bits are unaffected; VIP and VIF are cleared. *)
ELSE
EFLAGS « Pop(); (* 32-bit pop *)
(* All non-reserved bits except IOPL, RF, VIP, and VIF can be
modified; I0OPL, RF, VM, and all reserved bits are
unaffected; VIP and VIF are cleared. *)
Fl;
ELSE IF (Operandsize = 64)
IF CPL > IOPL

THEN
RFLAGS « Pop(); (* 64-bit pop *)
(* All non-reserved bits except IF, IOPL, RF, VIP, and
VIF can be modified; IF, IOPL, RF, VM, and all reserved
bits are unaffected; VIP and VIF are cleared. *)

ELSE

Vol.2B 4-137

INSTRUCTION SET REFERENCE, N-Z

RFLAGS « Pop(); (* 64-bit pop *)
(* All non-reserved bits except IOPL, RF, VIP, and VIF can be
modified; IOPL, RF, VM, and all reserved bits are
unaffected; VIP and VIF are cleared. *)
Fl;
ELSE (* OperandSize = 16 *)
EFLAGS[15:0] « Pop(); (* 16-bit pop *)
(* All non-reserved bits except IOPL can be modified; IOPL and all
reserved bits are unaffected. *)
Fl;
Fl;
ELSE (* In Virtual-8086 Mode *)
IFIOPL=3
THEN IF OperandSize = 32
THEN
EFLAGS « Pop();
(* All non-reserved bits except VM, RF, IOPL, VIP, and VIF can be
modified; VM, RF, IOPL, VIP, VIF, and all reserved bits are unaffected. *)
ELSE
EFLAGS[15:0] « Pop(); FI;
(* All non-reserved bits except IOPL can be modified;
IOPL and all reserved bits are unaffected. *)
ELSE (* IOPL < 3 ¥)
#GP(0); (* Trap to virtual-8086 monitor. *)
Fl;
Fl;
Fl;

Flags Affected

All flags may be affected; see the Operation section for details.

Protected Mode Exceptions

#SS(0) If the top of stack is not within the stack segment.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current

privilege level is 3 and alignment checking is enabled.

Real-Address Mode Exceptions
#SS If the top of stack is not within the stack segment.

4-138 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If the 1/0 privilege level is less than 3.

If an attempt is made to execute the POPF/POPFD instruction
with an operand-size override prefix.

If the top of stack is not within the stack segment.
If a page fault occurs.

If an unalighed memory reference is made while alignment
checking is enabled.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#GP(0)
#SS(0)
#PF(fault-code)
#AC(0)

If the memory address is in a non-canonical form.
If the stack address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Vol.2B 4-139

INSTRUCTION SET REFERENCE, N-Z

POR—Bitwise Logical OR

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OFEB/r POR mm, mm/m64 Valid Valid Bitwise OR of mm/m64 and mm.
66 OFEB/r POR xmm1, Valid Valid Bitwise OR of xmmZ2/m128 and
xmm2/m128 xmm1.
Description

Performs a bitwise logical OR operation on the source operand (second operand) and
the destination operand (first operand) and stores the result in the destination
operand. The source operand can be an MMX technology register or a 64-bit memory
location or it can be an XMM register or a 128-bit memory location. The destination
operand can be an MMX technology register or an XMM register. Each bit of the result
is set to 1 if either or both of the corresponding bits of the first and second operands
are 1; otherwise, it is set to O.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST « DEST OR SRC;

Intel C/C++ Compiler Intrinsic Equivalent

POR __m64 _mm_or_si64(__m64 m1, __m64 m2)

POR __m128i _mm_or_si128(_m128im1,_m128im2)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

4-140 Vol.2B

#UD

#NM

H#HMF
#PF(fault-code)
#AC(0)

INSTRUCTION SET REFERENCE, N-Z

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.
If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

Vol.2B 4-141

INSTRUCTION SET REFERENCE, N-Z

#UD

H#NM

H#MF
#PF(fault-code)
#AC(0)

4-142 Vol. 2B

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PREFETCHh—Prefetch Data Into Caches

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

OF 18 PREFETCHTO m8 Valid Valid Move data from m8 closer to the

n processor using TO hint.

OF 18 PREFETCHT1 m8 Valid Valid Move data from m8 closer to the

/2 processor using T1 hint.

OF 18 PREFETCHTZ2 m8 Valid Valid Move data from m8 closer to the

/3 processor using T2 hint.

OF 18 PREFETCHNTA m8 Valid Valid Move data from m8 closer to the

/0 processor using NTA hint.
Description

Fetches the line of data from memory that contains the byte specified with the source
operand to a location in the cache hierarchy specified by a locality hint:

® TO (temporal data)—prefetch data into all levels of the cache hierarchy.
— Pentium lll processor—1st- or 2nd-level cache.
— Pentium 4 and Intel Xeon processors—2nd-level cache.

® T1 (temporal data with respect to first level cache)—prefetch data into level 2
cache and higher.

— Pentium lll processor—2nd-level cache.
— Pentium 4 and Intel Xeon processors—2nd-level cache.

® T2 (temporal data with respect to second level cache)—prefetch data into level 2
cache and higher.

— Pentium lll processor—2nd-level cache.
— Pentium 4 and Intel Xeon processors—2nd-level cache.

® NTA (non-temporal data with respect to all cache levels)—prefetch data into non-
temporal cache structure and into a location close to the processor, minimizing
cache pollution.

— Pentium Il processor—1st-level cache
— Pentium 4 and Intel Xeon processors—2nd-level cache

The source operand is a byte memory location. (The locality hints are encoded into
the machine level instruction using bits 3 through 5 of the ModR/M byte. Use of any
ModR/M value other than the specified ones will lead to unpredictable behavior.)

If the line selected is already present in the cache hierarchy at a level closer to the
processor, no data movement occurs. Prefetches from uncacheable or WC memory
are ignored.

Vol.2B 4-143

INSTRUCTION SET REFERENCE, N-Z

The PREFETCHh instruction is merely a hint and does not affect program behavior. If
executed, this instruction moves data closer to the processor in anticipation of future
use.

The implementation of prefetch locality hints is implementation-dependent, and can
be overloaded or ignored by a processor implementation. The amount of data
prefetched is also processor implementation-dependent. It will, however, be a
minimum of 32 bytes.

It should be noted that processors are free to speculatively fetch and cache data from
system memory regions that are assigned a memory-type that permits speculative
reads (that is, the WB, WC, and WT memory types). A PREFETCHh instruction is
considered a hint to this speculative behavior. Because this speculative fetching can
occur at any time and is not tied to instruction execution, a PREFETCHh instruction is
not ordered with respect to the fence instructions (MFENCE, SFENCE, and LFENCE) or
locked memory references. A PREFETCHh instruction is also unordered with respect
to CLFLUSH instructions, other PREFETCHh instructions, or any other general instruc-
tion. It is ordered with respect to serializing instructions such as CPUID, WRMSR,
OUT, and MOV CR.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FETCH (m8);

Intel C/C++ Compiler Intrinsic Equivalent

void_mm_prefetch(char *p, int i)

The argument “*p” gives the address of the byte (and corresponding cache line) to
be prefetched. The value “i” gives a constant (_ MM_HINT_TO, _MM_HINT_T1,
_MM_HINT_T2, or _MM_HINT_NTA) that specifies the type of prefetch operation to
be performed.

Numeric Exceptions

None.

Exceptions (All Operating Modes)

None.

4-144 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

PSADBW—Compute Sum of Absolute Differences

64-
Bit Compat/
Opcode Instruction Mode LegMode Description
OF F6 /r PSADBW mm1, Valid Valid Computes the absolute differences of the
mm2/m64 packed unsigned byte integers from mmZ2
/m64 and mm1; differences are then
summed to produce an unsigned word
integer result.
66 OF PSADBW xmm1, Valid Valid Computes the absolute differences of the
F6/r xmmZ2/m128 packed unsigned byte integers from xmmZ2

/m128and xmm1; the 8 low differences
and 8 high differences are then summed
separately to produce two unsigned word
integer results.

Description

Computes the absolute value of the difference of 8 unsigned byte integers from the
source operand (second operand) and from the destination operand (first operand).
These 8 differences are then summed to produce an unsigned word integer result
that is stored in the destination operand. The source operand can be an MMX tech-
nology register or a 64-bit memory location or it can be an XMM register or a 128-bit
memory location. The destination operand can be an MMX technology register or an
XMM register. Figure 4-5 shows the operation of the PSADBW instruction when using
64-bit operands.

When operating on 64-bit operands, the word integer result is stored in the low word
of the destination operand, and the remaining bytes in the destination operand are
cleared to all Os.

When operating on 128-bit operands, two packed results are computed. Here, the 8
low-order bytes of the source and destination operands are operated on to produce a
word result that is stored in the low word of the destination operand, and the 8 high-
order bytes are operated on to produce a word result that is stored in bits 64 through
79 of the destination operand. The remaining bytes of the destination operand are
cleared.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Vol.2B 4-145

INSTRUCTION SET REFERENCE, N-Z

SRC X7 X6 X5 X4 X3 X2 X1 X0

DEST Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO

TEMP | ABS(X7:Y7)| ABS(X6:Y6)| ABS(X5:Y5) | ABS(X4:Y4) [ABS(X3:Y3)| ABS(X2:Y2) | ABS(X1:Y1) | ABS(X0:Y0)

DEST 00H 00H 00H 00H 00H 00H | SUM(TEMP7..TEMPO)

Figure 4-5. PSADBW Instruction Operation Using 64-bit Operands

Operation

PSADBW instructions when using 64-bit operands:
TEMPO « ABS(DEST[7:0] — SRC[7:0]);
(* Repeat operation for bytes 2 through 6 *)
TEMP7 « ABS(DEST[63:56] — SRC[63:56]);
DEST[15:0] «- SUM(TEMPO:TEMP7?);
DEST[63:16] «- 000000000000H;

PSADBW instructions when using 128-bit operands:
TEMPO «— ABS(DEST[7:0] — SRC[7:0]);
(* Repeat operation for bytes 2 through 14 *)
TEMP15 « ABS(DEST[127:120] — SRC[127:120]);
DEST[15:0] < SUM(TEMPO:TEMP7?);
DEST[63:6] <~ 000000000000H;
DEST[79:64] < SUM(TEMP8.TEMP15);
DEST[127:80] < 000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent

PSADBW __m64_mm_sad pu8(__m64 a,__m64 b)
PSADBW __m128i_mm_sad_epu8(_m128ia, __m128ib)

Flags Affected

None.

Numeric Exceptions

None.

4-146 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

Vol.2B 4-147

INSTRUCTION SET REFERENCE, N-Z

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

4-148 Vol. 2B

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PSHUFB — Packed Shuffle Bytes

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 3800 /r PSHUFB mm1, Valid Valid Shuffle bytes in mm1
mm2/m64 according to contents of
mm2/m64.
66 OF 3800 /r PSHUFBxmm1, Valid Valid Shuffle bytes in xmm1
xmm2/m128 according to contents of
xmm2/m128.
Description

PSHUFB performs in-place shuffles of bytes in the destination operand (the first
operand) according to the shuffle control mask in the source operand (the second
operand). The instruction permutes the data in the destination operand, leaving the
shuffle mask unaffected. If the most significant bit (bit[7]) of each byte of the shuffle
control mask is set, then constant zero is written in the result byte. Each byte in the
shuffle control mask forms an index to permute the corresponding byte in the desti-
nation operand. The value of each index is the least significant 4 bits (128-bit opera-
tion) or 3 bits (64-bit operation) of the shuffle control byte. Both operands can be
MMX register or XMM registers. When the source operand is a 128-bit memory
operand, the operand must be aligned on a 16-byte boundary or a general-protection
exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation

PSHUFB with 64 bit operands:
fori=0to7{

if (SRC[(i * 8)+7]1==1) then
DEST[(i*8)+7...(i*8)+0] <- O;

else
index[2..0] <- SRC[(i*8)+2 .. (i*8)+0];
DEST[(i*8)+7...(i*8)+0] <- DEST[(index*8+7).(index*8+0)];

endif;

}

PSHUFB with 128 bit operands:
fori=0to15¢
if (SRC[(i * 8)+7]==1) then
DESTI[(i*8)+7.(i*8)+0] <- O;
else
index[3..0] <- SRC[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7.(i*8)+0] <- DEST[(index*8+7)..(index*8+0)];

Vol.2B 4-149

INSTRUCTION SET REFERENCE, N-Z

endif
}
MM2
07H 07H FFH 80H 01H 00H 00H 00H
MM1
04H | O1H 07H 03H 02H 02H FFH 01H
04H 04H 00H 00H FFH 01H 01H 01H

Figure 4-6. PSHUB with 64-Bit Operands

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFB __m64 _mm_shuffle_pi8 (__m64 a, __m64 b)
PSHUFB __m128i _mm_shufflehi_epi16(_m128i g, int n)

Protected Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)

#UD

#NM
#MF
#AC(0)

4-150 Vol.2B

If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If CRO.EM = 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If TS bit in CRO is set.

(64-bit operations only) If there is a pending x87 FPU exception.

(64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
#NM If TS bit in CRO is set.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSSE3[bit 9] = 0.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-151

INSTRUCTION SET REFERENCE, N-Z

PSHUFD—Shuffle Packed Doublewords

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
66 OF 70 /rib PSHUFD xmm1, Valid Valid Shuffle the doublewords
xmm2/m128, imm8 in xmmZ2/m128 based on

the encoding in imm8 and
store the result in xmm71.

Description

Copies doublewords from source operand (second operand) and inserts them in the
destination operand (first operand) at the locations selected with the order operand
(third operand). Figure 4-7 shows the operation of the PSHUFD instruction and the
encoding of the order operand. Each 2-bit field in the order operand selects the
contents of one doubleword location in the destination operand. For example, bits O
and 1 of the order operand select the contents of doubleword O of the destination
operand. The encoding of bits 0 and 1 of the order operand (see the field encoding in
Figure 4-7) determines which doubleword from the source operand will be copied to
doubleword 0 of the destination operand.

SRC X3 X2 X1 X0

DEST Y3 Y2 Y1l YO

SN ST

Encoding 00B - X0
ORDER of Fields in 01B - X1
ORDER 10B - X2

76543210 Operand 11B - X3

Figure 4-7. PSHUFD Instruction Operation

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The order operand is an 8-bit immediate. Note
that this instruction permits a doubleword in the source operand to be copied to more
than one doubleword location in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

4-152 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Operation

DEST[31:0] < (SRC >> (ORDER[1:0] * 32))[31:0];
DEST[63:32] « (SRC >> (ORDER[3:2] * 32))[31:0];
DEST[95:64] « (SRC >> (ORDER[5:4] * 32))[31:0];
DEST[127:96] <« (SRC >> (ORDER[7:6] * 32))[31:0];

Intel C/C++ Compiler Intrinsic Equivalent
PSHUFD __m128i _mm_shuffle_epi32(_m128i 3, int n)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = O.
#NM If CRO.TS[bit 3] = 1.

Vol.2B 4-153

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = O.
#NM If CRO.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.

4-154 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

PSHUFHW—-Shuffle Packed High Words

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
F30F 70 /rib PSHUFHW xmm1, xmm2/ Valid Valid Shuffle the high words in
m128, imm8 xmmZ2/m128 based on

the encoding in imm8and
store the result in xmm71.

Description

Copies words from the high quadword of the source operand (second operand) and
inserts them in the high quadword of the destination operand (first operand) at word
locations selected with the order operand (third operand). This operation is similar to
the operation used by the PSHUFD instruction, which is illustrated in Figure 4-7. For
the PSHUFHW instruction, each 2-bit field in the order operand selects the contents
of one word location in the high quadword of the destination operand. The binary
encodings of the order operand fields select words (0, 1, 2 or 3, 4) from the high
quadword of the source operand to be copied to the destination operand. The low
quadword of the source operand is copied to the low quadword of the destination
operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The order operand is an 8-bit immediate. Note
that this instruction permits a word in the high quadword of the source operand to be
copied to more than one word location in the high quadword of the destination
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] < SRC[63:0];
DEST[79:64] < (SRC >> (ORDER[1:0] * 16))[79:64];
DEST[95:80] « (SRC >> (ORDER[3:2] * 16))[79:64];
DEST[111:96] < (SRC >> (ORDER[5:4] * 16))[79:64];
DEST[127:112] < (SRC >> (ORDER[7:6] * 16))[79:64];

Intel C/C++ Compiler Intrinsic Equivalent
PSHUFHW __m128i _mm_shufflehi_epi16(_m128i a, int n)

Flags Affected

None.

Vol.2B 4-155

INSTRUCTION SET REFERENCE, N-Z

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM
#PF(fault-code)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

If a page fault occurs.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

4-156 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = O.
#NM If CRO.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.

Vol.2B 4-157

INSTRUCTION SET REFERENCE, N-Z

PSHUFLW—Shuffle Packed Low Words

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
F20F 70 /rib PSHUFLW xmmT, Valid Valid Shuffle the low words in
xmm2/m128, imm8 xmmZ2/m128based on the

encoding in imm8 and store
the result in xmm71.

Description

Copies words from the low quadword of the source operand (second operand) and
inserts them in the low quadword of the destination operand (first operand) at word
locations selected with the order operand (third operand). This operation is similar to
the operation used by the PSHUFD instruction, which is illustrated in Figure 4-7. For
the PSHUFLW instruction, each 2-bit field in the order operand selects the contents of
one word location in the low quadword of the destination operand. The binary encod-
ings of the order operand fields select words (O, 1, 2, or 3) from the low quadword of
the source operand to be copied to the destination operand. The high quadword of
the source operand is copied to the high quadword of the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The order operand is an 8-bit immediate. Note
that this instruction permits a word in the low quadword of the source operand to be
copied to more than one word location in the low quadword of the destination
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[15:0] < (SRC >> (ORDER[1:0] * 16))[15:0];
DEST[31:16] < (SRC >> (ORDER[3:2] * 16))[15:0];
DEST[47:32] « (SRC >> (ORDER[5:4] * 16))[15:0];
DEST[63:48] < (SRC >> (ORDER[7:6] * 16))[15:0];
DEST[127:64] « SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalent
PSHUFLW __m128i _mm_shufflelo_epi16(_m128i a, int n)

Flags Affected

None.

4-158 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = O.
#NM If CRO.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

Vol.2B 4-159

INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = O.
#NM If CRO.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.

4-160 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

PSHUFW—Shuffle Packed Words

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF70/r PSHUFW mm]1, Valid Valid Shuffle the words in mm2/m64
ib mm2/m64, imm8 based on the encoding in imm8and

store the result in mm1.

Description

Copies words from the source operand (second operand) and inserts them in the
destination operand (first operand) at word locations selected with the order operand
(third operand). This operation is similar to the operation used by the PSHUFD
instruction, which is illustrated in Figure 4-7. For the PSHUFW instruction, each 2-bit
field in the order operand selects the contents of one word location in the destination
operand. The encodings of the order operand fields select words from the source
operand to be copied to the destination operand.

The source operand can be an MMX technology register or a 64-bit memory location.
The destination operand is an MMX technology register. The order operand is an 8-bit
immediate. Note that this instruction permits a word in the source operand to be
copied to more than one word location in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[15:0] * (SRC >> (ORDER[1:0] * 16))[15:0];
DEST[31:16] " (SRC >> (ORDER[3:2] * 16))[15:0];
DEST[47:32] " (SRC >> (ORDER[5:4] * 16))[15:0];
DEST[63:48] * (SRC >> (ORDER[7:6] * 16))[15:0];
Intel C/C++ Compiler Intrinsic Equivalent
PSHUFW __m64 _mm_shuffle_pi16(__m64 a, int n)

Flags Affected

None.

Numeric Exceptions

None.

Vol.2B 4-161

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CRO.EM[bit 2] = 1.

#NM If CRO.TS[bit 3] = 1.

H#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

#NM If CRO.TS[bit 3] = 1.

H#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#UD If CRO.EM[bit 2] = 1.

#NM If CRO.TS[bit 3] = 1.

H#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

4-162 Vol. 2B

PSIGNB/PSIGNW/PSIGND — Packed SIGN

INSTRUCTION SET REFERENCE, N-Z

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

OF 3808 /r PSIGNBmm1, Valid Valid Negate packed byte integers in mm1
mm2/m64 if the corresponding sign in

mm2/m64 is less than zero.

66 OF 3808 PSIGNB Valid Valid Negate packed byte integers in

Ir xmm1, xmm1 if the corresponding sign in
xmm2/m128 xmm2/m128 is less than zero.

OF 3809 /r PSIGNW Valid Valid Negate packed 16-bit integers in
mm1, mm1 if the corresponding sign in
mm2/m64 mm2/m64 is less than zero.

66 OF 38 09 PSIGNW Valid Valid Negate packed 16-bit integers in

Ir xmm1, xmm1 if the corresponding sign in
xmm2/m128 xmm2/m128is less than zero.

OF380A /r PSIGNDmm1, Valid Valid Negate packed doubleword integers
mm2/m64 in mm1 if the corresponding sign in

mm2/m64 is less than zero.

66 OF 380A PSIGND Valid Valid Negate packed doubleword integers

Ir xmm1, in xmm1 if the corresponding sign in
xmm2/m128 xmm2/m128is less than zero.

Description

PSIGNB/PSIGNW/PSIGND negates each data element of the destination operand

(the first operand) if the sign of the corresponding data element in the source
operand (the second operand) is less than zero. If the sign of a data element in the
source operand is positive, the corresponding data element in the destination
operand is unchanged. If a data element in the source operand is zero, the corre-
sponding data element in the destination operand is set to zero.

PSIGNB operates on signed bytes. PSIGNW operates on 16-bit signed words.
PSIGND operates on signed 32-bit integers. Both operands can be MMX register or
XMM registers. When the source operand is a 128bit memory operand, the operand
must be aligned on a 16-byte boundary or a general-protection exception (#GP) will
be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation

PSIGNB with 64 bit operands:
if (SRC[7.0]1<0)
DEST[7..0] <- Neg(DEST[7..0])
else if(SRC[7..0] == 0)

Vol.2B 4-163

INSTRUCTION SET REFERENCE, N-Z

DEST[7..0] <-0
else if(SRC[7..0] > 0)
DEST[7..0] <- DESTI[7..0]
Repeat operation for 2nd through 7th bytes

if (SRC[63.56] < 0)

DEST[63..56] <- Neg(DEST[63..56])
else if(SRC[63.. 56] == 0)

DEST[63..56] <- 0
else if(SRC[63. 56] > 0)

DEST[63..56] <- DEST[63..56]

PSIGNB with 128 bit operands:
if (SRC[7..0]<0)
DEST[7..0] <- Neg(DEST[7..0])
else if(SRC[7..0] ==0)
DEST[7..0] <-0
else if(SRC[7..0] > 0)
DEST[7..0] <- DESTI[7..0]
Repeat operation for 2nd through 15th bytes
if (SRC[127..120]<0)
DEST[127..120] <- Neg(DEST[127..120])
else if(SRC[127..120]1==0)
DEST[127..120]1<- 0
else if(SRC[127..1201>0)
DEST[127..120] <- DEST[127..120]

PSIGNW with 64 bit operands:
if (SRC[15.0]1<0)
DEST[15..0] <- Neg(DEST[15..0])
else if(SRC[15..0] ==0)
DEST[15..0]<-0
else if(SRC[15.0] > 0)
DEST[15..0] <- DEST[15..0]
Repeat operation for 2nd through 3rd words
if (SRC[63.48]<0)
DEST[63..48] <- Neg(DEST[63...48])
else if(SRC[63.48] == 0)
DEST[63..48] <-0
else if(SRC[63.48] > 0)
DEST[63..48] <- DEST[63..48]

PSIGNW with 128 bit operands:
if (SRC[15.0]<0)

4-164 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

DEST[15..0] <- Neg(DEST[15..0])
else if(SRC[15..0] ==0)
DEST[15..0] <- 0
else if(SRC[15.0]1 > 0)
DEST[15..0] <- DEST[15..0]
Repeat operation for 2nd through 7th words
if (SRC[127..112]<0)
DEST[127..112] <- Neg(DEST[127..112])
else if(SRC[127..112]==0)
DEST[127..112] <-0
else if(SRC[127..112]>0)
DEST[127..112] <- DEST[127..112]

PSIGND with 64 bit operands:
if (SRC[31..0]<0)
DEST[31..0] <- Neg(DEST[31..0])
else if(SRC[31..0]==0)
DEST[31..0] <-0
else if(SRC[31.0]1 > 0)
DEST[31..0] <- DEST[31..0]
if (SRC[63.32]<0)
DEST[63..32] <- Neg(DEST[63...32])
else if(SRC[63..32] ==0)
DEST[63..32]1<-0
else if(SRC[63..32] > 0)
DEST[63...32] <- DEST[63..32]

PSIGND with 128 bit operands:
if (SRC[31..0]<0)
DEST[31..0] <- Neg(DEST[31..0])
else if(SRC[31..0] ==0)
DEST[31..0] <-0
else if(SRC[31.0]1 > 0)
DEST[31..0] <- DEST[31..0]
Repeat operation for 2nd through 3rd double words
if (SRC[127.96]1<0)
DEST[127..96] <- Neg(DEST[127..96])
else if(SRC[127..96]==0)
DEST[127..96] <-0
else if(SRC[127..96] > 0)
DEST[127..96] <- DEST[127..96]

Intel C/C++ Compiler Intrinsic Equivalent
PSIGNB __m64 _mm_sign_pi8 (__m64 a, __m64 b)

Vol.2B 4-165

INSTRUCTION SET REFERENCE, N-Z

PSIGNB __m128i _mm_sign_epi8 (_m128ia, __m128ib)
PSIGNW __m64 _mm_sign_pi16 (__m64 a, __m64 b)
PSIGNW __m128i_mm_sign_epi16 (__m128ia, __m128ib)
PSIGND __m64 _mm_sign_pi32 (__m64 a, __m64 b)
PSIGND __m128i_mm_sign_epi32 (__m128ia, __m128ib)

Protected Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#UD

#NM
#MF
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If CRO.EM = 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If TS bit in CRO is set.

(64-bit operations only) If there is a pending x87 FPU exception.

(64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0)

#UD

#NM
#MF

If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

(128-bit operations only) If CRO.EM = 1. If CR4.0SFXSR(bit 9)
=0.

If CPUID.SSSE3(ECX bit 9) = 0.

If TS bit in CRO is set.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)
#AC(0)

4-166 Vol. 2B

If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSSE3[bit 9] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-167

INSTRUCTION SET REFERENCE, N-Z

PSLLDQ—Shift Double Quadword Left Logical

Compat/
64-Bit Leg
Opcode Instruction Mode Mode Description
66 OF 73/7ib PSLLDQ xmm1, Valid Valid Shift xmm1 left by imm8 bytes
imm8 while shifting in Os.
Description

Shifts the destination operand (first operand) to the left by the number of bytes spec-
ified in the count operand (second operand). The empty low-order bytes are cleared
(set to all 0s). If the value specified by the count operand is greater than 15, the

destination operand is set to all 0s. The destination operand is an XMM register. The

count operand is an 8-bit immediate.

Operation

TEMP « COUNT;
IF (TEMP > 15) THEN TEMP « 16; FI;
DEST « DEST << (TEMP = 8);

Intel C/C++ Compiler Intrinsic Equivalent
PSLLDQ _ m128i _mm_slli_si128 (_m128i a, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.

Real-Address Mode Exceptions

Same exceptions as in Protected Mode.

4-168 Vol. 2B

Virtual-8086 Mode Exceptions

Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.

INSTRUCTION SET REFERENCE, N-Z

Vol.2B 4-169

INSTRUCTION SET REFERENCE, N-Z

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

64-
Bit Compat/
Opcode Instruction Mode Leg Mode Description
OFF1/r PSLLW mm, Valid Valid Shift words in mm left
mm/m64 mm/m64 while shifting in Os.
66 OF F1 /r PSLLW xmm1, Valid Valid Shift words in xmm1 left by
xmm2/m128 xmmZ2/m128 while shifting in
Os.
OF71/6ib PSLLW xmm1, imm8 Valid Valid Shift words in mm left by imm8
while shifting in Os.
66 0F71/6ib PSLLW xmm1, imm8 Valid Valid Shift words in xmm1 left by
imm8 while shifting in Os.
OFF2/r PSLLD mm, Valid Valid Shift doublewords in mm left
mm/m64 by mm/m64 while shifting in
Os.
66 OF F2 /1 PSLLD xmm1, Valid Valid Shift doublewords in xmm1 left
xmm2/m128 by xmmZ2/m128 while shifting
in Os.
OF72/61ib PSLLD mm, imm8 Valid Valid Shift doublewords in mm left
by imm8 while shifting in Os.
66 0F72/6ib PSLLD xmm1, imm8 Valid Valid Shift doublewords in xmm1 left
by imm8 while shifting in Os.
OFF3/r PSLLQ mm, Valid Valid Shift quadword in mm left by
mm/m64 mm/m64 while shifting in Os.
66 OF F3 /r PSLLQ xmm1, Valid Valid Shift quadwords in xmm1 left
xmmZ2/m128 by xmmZ2/m128 while shifting
in Os.
OF73/6ib PSLLQ mm, imm8 Valid Valid Shift quadword in mm left by
imm8 while shifting in Os.
66 OF 73/6ib PSLLQ xmm1, imm8 Valid Valid Shift quadwords in xmm1 left
by imm8 while shifting in Os.
Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in
the destination operand (first operand) to the left by the number of bits specified in
the count operand (second operand). As the bits in the data elements are shifted left,
the empty low-order bits are cleared (set to 0). If the value specified by the count
operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a quad-
word), then the destination operand is set to all Os. Figure 4-8 gives an example of
shifting words in a 64-bit operand.

4-170 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

The destination operand may be an MMX technology register or an XMM register; the
count operand can be either an MMX technology register or an 64-bit memory loca-
tion, an XMM register or a 128-bit memory location, or an 8-bit immediate. Note that
only the first 64-bits of a 128-bit count operand are checked to compute the count.

Pre-Shift
DEST X3 X2 X X0
Shift Left
with Zero J J
Extension
Y \ Y
POSE%@% X3 << COUNT | X2 << COUNT | X1 << COUNT | X0 << COUNT

Figure 4-8. PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit Operand

The PSLLW instruction shifts each of the words in the destination operand to the left
by the number of bits specified in the count operand; the PSLLD instruction shifts
each of the doublewords in the destination operand; and the PSLLQ instruction shifts
the quadword (or quadwords) in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSLLW instruction with 64-bit operand:
IF (COUNT > 15)
THEN
DEST[64:0] <~ 0000000000000000H;
ELSE
DEST[15:0] «— ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] « ZeroExtend(DEST[63:48] << COUNT);
Fl;

PSLLD instruction with 64-bit operand:

IF (COUNT > 31)

THEN
DEST[64:0] <~ 0000000000000000H;

ELSE
DEST[31:0] « ZeroExtend(DEST[31:0] << COUNT);
DEST[63:32] « ZeroExtend(DEST[63:32] << COUNT);

Fl;

PSLLQ instruction with 64-bit operand:
IF (COUNT > 63)

Vol.2B 4-171

INSTRUCTION SET REFERENCE, N-Z

THEN

DEST[64:0] «~ 0000000000000000H;
ELSE

DEST « ZeroExtend(DEST << COUNT);
Fl;

PSLLW instruction with 128-bit operand:
COUNT <« COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN
DEST[128:0] «~ 00000000000000000000000000000000H;
ELSE
DEST[15:0] « ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] « ZeroExtend(DEST[127:112] << COUNT);
FI;

PSLLD instruction with 128-bit operand:
COUNT <« COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN
DEST[128:0] «+- 00000000000000000000000000000000H;
ELSE
DEST[31:0] « ZeroExtend(DEST[31:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] « ZeroExtend(DEST[127:96] << COUNT);
Fl;

PSLLQ instruction with 128-bit operand:

COUNT « COUNT_SOURCE[63:0];

IF (COUNT > 63)

THEN
DEST[128:0] «~ 00000000000000000000000000000000H;

ELSE
DEST[63:0] <« ZeroExtend(DEST[63:0] << COUNT);
DEST[127:64] <« ZeroExtend(DEST[127:64] << COUNT);

Fl;

Intel C/C++ Compiler Intrinsic Equivalents

PSLLW __m64 _mm_slli_pi16 (__m64 m, int count)
PSLLW __m64 _mm_sll_pi16(_m64 m, __m64 count)
PSLLW __m128i _mm_slli_pi16(_m64 m, int count)

PSLLW __m128i _mm_slli_pi16(_m128i m, __m128i count)

4-172 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

PSLLD __m64 _mm_slli_pi32(__m64 m, int count)

PSLLD __m64 _mm_sll_pi32(_m64 m, _m64 count)

PSLLD __m128i _mm_slli_epi32(_m128i m, int count)
PSLLD __m128i _mm_sll_epi32(_m128i m, __m128i count)
PSLLQ __m64 _mm_slli_si64(_m64 m, int count)

PSLLQ __m64 _mm_sll_si64(_m64 m, __m64 count)
PSLLQ __m128i _mm_slli_si64(_m128i m, int count)
PSLLQ __m128i _mm_sll_si64(_m128i m, __m128i count)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0)

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

Vol.2B 4-173

INSTRUCTION SET REFERENCE, N-Z

#UD

#NM
#MF

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-174 Vol. 2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PSRAW/PSRAD—Shift Packed Data Right Arithmetic

64-Bit Compat/
Opcode Instruction Mode LegMode Description
OFET/r PSRAW mm, Valid Valid Shift words in mm right by
mm/m64 mm/m64 while shifting in sign
bits.
66 OF E1 /r PSRAW xmm1, Valid Valid Shift words in xmm1 right by
xmm2/m128 xmmZ2/m128 while shifting in
sign bits.
OF 71 /4ib PSRAW mm, Valid Valid Shift words in mmright by imm8
imm8 while shifting in sign bits
66 0F 71 /4ib PSRAW xmm1, Valid Valid Shift words in xmm1 right by
imm8 imm8 while shifting in sign bits
OFE2/r PSRAD mm, Valid Valid Shift doublewords in mm right
mm/mé64 by mm/m64 while shifting in
sign bits.
66 OF E2 /1 PSRAD xmm1, Valid Valid Shift doubleword in xmm?1 right
xmmZ2/m128 by xmmZ2 /m128 while shifting
in sign bits.
OF 72 /4ib PSRAD mm, Valid Valid Shift doublewords in mm right
imm8 by imm8 while shifting in sign
bits.
66 0F72/4ib PSRAD xmm1, Valid Valid Shift doublewords in xmm1 right
imm8 by imm8 while shifting in sign
bits.
Description

Shifts the bits in the individual data elements (words or doublewords) in the destina-
tion operand (first operand) to the right by the number of bits specified in the count
operand (second operand). As the bits in the data elements are shifted right, the
empty high-order bits are filled with the initial value of the sign bit of the data
element. If the value specified by the count operand is greater than 15 (for words) or
31 (for doublewords), each destination data element is filled with the initial value of
the sign bit of the element. (Figure 4-9 gives an example of shifting words in a 64-bit

operand.)

Vol.2B 4-175

INSTRUCTION SET REFERENCE, N-Z

Pre-Shift
DEST X3 X2

X1

X0

Shift Right

with Sign
Extension

Y A

Y

Post-Shift

DEST | X3>> COUNT | X2 >> COUNT | X1>> COUNT

X0 >> COUNT

Figure 4-9. PSRAW and PSRAD Instruction Operation Using a 64-bit Operand

The destination operand may be an MMX technology register or an XMM register; the
count operand can be either an MMX technology register or an 64-bit memory loca-
tion, an XMM register or a 128-bit memory location, or an 8-bit immediate. Note that
only the first 64-bits of a 128-bit count operand are checked to compute the count.

The PSRAW instruction shifts each of the words in the destination operand to the
right by the number of bits specified in the count operand, and the PSRAD instruction
shifts each of the doublewords in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to

access additional registers (XMM8-XMM15).

Operation

PSRAW instruction with 64-bit operand:
IF (COUNT > 15)
THEN COUNT « 16;
FI;
DEST[15:0] « SignExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] «— SigneExtend(DEST[63:48] >> COUNT);

PSRAD instruction with 64-bit operand:
IF (COUNT > 31)
THEN COUNT « 32;
Fl;
DEST[31:0] « SignExtend(DEST[31:0] >> COUNT);
DEST[63:32] « SignExtend(DEST[63:32] >> COUNT);

PSRAW instruction with 128-bit operand:
COUNT <« COUNT_SOURCE[63:0];

4-176 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

IF (COUNT > 15)
THEN COUNT < 16;

Fl;

DEST[15:0] <« SignExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] « SignExtend(DEST[127:112] >> COUNT);

PSRAD instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN COUNT « 32;

Fl;

DEST[31:0] <« SignExtend(DEST[31:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] «— SignExtend(DEST[127:96] >>COUNT);

Intel C/C++ Compiler Intrinsic Equivalents

PSRAW __m64 _mm_srai_pi16 (__m64 m, int count)

PSRAW __m64 _mm_sraw_pi16 (__m64 m, __m64 count)
PSRAD __m64 _mm_srai_pi32 (__m64 m, int count)

PSRAD __m64 _mm_sra_pi32 (__m64 m, __m64 count)
PSRAW __m128i _mm_srai_epi16(_m128i m, int count)
PSRAW __m128i _mm_sra_epi16(_m128i m, __m128i count))
PSRAD __m128i _mm_srai_epi32 (_m128im, int count)
PSRAD __m128i _mm_sra_epi32 (__m128im, _m128i count)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

Vol.2B 4-177

INSTRUCTION SET REFERENCE, N-Z

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

4-178 Vol. 2B

#UD

#NM

H#HMF
#PF(fault-code)
#AC(0)

INSTRUCTION SET REFERENCE, N-Z

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-179

INSTRUCTION SET REFERENCE, N-Z

PSRLDQ—Shift Double Quadword Right Logical

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
66 OF 73/3ib PSRLDQ Valid Valid Shift xmm1 right by imm8 while
xmm1, imm8 shifting in Os.
Description

Shifts the destination operand (first operand) to the right by the number of bytes
specified in the count operand (second operand). The empty high-order bytes are
cleared (set to all 0s). If the value specified by the count operand is greater than 15,
the destination operand is set to all Os. The destination operand is an XMM register.
The count operand is an 8-bit immediate.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

TEMP « COUNT;
IF (TEMP > 15) THEN TEMP « 16; FI;
DEST « DEST >> (temp * 8);

Intel C/C++ Compiler Intrinsic Equivalents
PSRLDQ __m128i _mm_srli_si128 (_m128i a, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.

Real-Address Mode Exceptions

Same exceptions as in Protected Mode.

4-180 Vol.2B

Virtual-8086 Mode Exceptions

Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.

Numeric Exceptions

None.

INSTRUCTION SET REFERENCE, N-Z

Vol.2B 4-181

INSTRUCTION SET REFERENCE, N-Z

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

Compat/
64-Bit Leg
Opcode Instruction Mode Mode Description
OFD1/r PSRLW mm, Valid Valid Shift words in mm right by amount
mm/m64 specified in mm/m64 while shifting in
Os.
66 OFD1/r PSRWW xmm1, Valid Valid Shift words in xmm1 right by amount
xmmZ2/m128 specified in xmmZ2/m128 while
shifting in Os.
OF71/2ib PSRLW mm, Valid Valid Shift words in mm right by imm8
imm8 while shifting in Os.
66 0F71/2 PSRWW xmm1, Valid Valid Shift words in xmm1 right by imm8
ib imm8 while shifting in Os.
OFD2/r PSRLD mm, Valid Valid Shift doublewords in mm right by
mm/m64 amount specified in mm/m64 while
shifting in Os.
66 OF D2 /r PSRLD xmm1, Valid Valid Shift doublewords in xmm1 right by
xmmZ2/m128 amount specified in xmmZ2 /m128
while shifting in Os.
OF72/2ib PSRLD mm, Valid Valid Shift doublewords in mm right by
imm8 imm8 while shifting in Os.
66 OF 72/2 PSRLD xmm1, Valid Valid Shift doublewords in xmm1 right by
ib imm8 imm8 while shifting in Os.
OFD3/r PSRLQ mm, Valid Valid Shift mm right by amount specified in
mm/m64 mm/m64 while shifting in Os.
66 OF D3 /r PSRLQ xmm1, Valid Valid Shift quadwords in xmm1 right by
xmmZ2/m128 amount specified in xmm2/m128
while shifting in Os.
OF73/2ib PSRLQ mm, Valid Valid Shift mm right by imm8 while
imm8 shifting in Os.
66 OF 73/2 PSRLQ xmm1, Valid Valid Shift quadwords in xmm1 right by
ib imm8 imm8 while shifting in Os.
Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in
the destination operand (first operand) to the right by the number of bits specified in
the count operand (second operand). As the bits in the data elements are shifted
right, the empty high-order bits are cleared (set to 0). If the value specified by the
count operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a
quadword), then the destination operand is set to all Os. Figure 4-10 gives an
example of shifting words in a 64-bit operand.

4-182 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

The destination operand may be an MMX technology register or an XMM register; the
count operand can be either an MMX technology register or an 64-bit memory loca-
tion, an XMM register or a 128-bit memory location, or an 8-bit immediate. Note that
only the first 64-bits of a 128-bit count operand are checked to compute the count.

Pre-Shift
DEST X3 X2 X1 X0

Shift Right L [
with Zero
Extension
y Y | /
POSLSAIT | X3 >> COUNT | X2 >> COUNT | X1 >> COUNT | X0 >> COUNT

Figure 4-10. PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit Operand

The PSRLW instruction shifts each of the words in the destination operand to the right
by the number of bits specified in the count operand; the PSRLD instruction shifts
each of the doublewords in the destination operand; and the PSRLQ instruction shifts
the quadword (or quadwords) in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSRLW instruction with 64-bit operand:
IF (COUNT > 15)
THEN
DEST[64:0] <~ 0000000000000000H
ELSE
DEST[15:0] < Zero€Extend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] « ZeroExtend(DEST[63:48] >> COUNT);
Fl;

PSRLD instruction with 64-bit operand:

IF (COUNT > 31)

THEN
DEST[64:0] < 0000000000000000H

ELSE
DEST[31:0] «— ZeroExtend(DEST[31:0] >> COUNT);
DEST[63:32] «— ZeroExtend(DEST[63:32] >> COUNT);

Fl;

PSRLQ instruction with 64-bit operand:
IF (COUNT > 63)

Vol.2B 4-183

INSTRUCTION SET REFERENCE, N-Z

THEN

DEST[64:0] «~ 0000000000000000H
ELSE

DEST « ZeroExtend(DEST >> COUNT);
Fl;

PSRLW instruction with 128-bit operand:
COUNT <« COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN
DEST[128:0] «~ 00000000000000000000000000000000H
ELSE
DEST[15:0] « ZeroExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] « ZeroExtend(DEST[127:112] >> COUNT);
FI;

PSRLD instruction with 128-bit operand:
COUNT <« COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN
DEST[128:0] «+- 00000000000000000000000000000000H
ELSE
DEST[31:0] <« ZeroExtend(DEST[31:0]>> COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] « ZeroExtend(DEST[127:96] >> COUNT);
Fl;

PSRLQ instruction with 128-bit operand:

COUNT « COUNT_SOURCE[63:0];

IF (COUNT > 15)

THEN
DEST[128:0] «~ 00000000000000000000000000000000H

ELSE
DEST[63:0] <« ZeroExtend(DEST[63:0] >> COUNT);
DEST[127:64] < ZeroExtend(DEST[127:64] >> COUNT);

Fl;

Intel C/C++ Compiler Intrinsic Equivalents

PSRLW __m64 _mm_srli_pi16(_m64 m, int count)

PSRLW __m64 _mm_srl_pi16 (__m64 m, __m64 count)
PSRLW _ m128i _mm_srli_epi16 (__m128i m, int count)
PSRLW __m128i _mm_srl_epi16 (_m128i m, __m128i count)

4-184 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

PSRLD __m64 _mm_srli_pi32 (__m64 m, int count)

PSRLD __m64 _mm_srl_pi32 (__m64 m, _m64 count)
PSRLD __m128i _mm_srli_epi32 (__m128im, int count)
PSRLD __m128i _mm_srl_epi32 (__m128im, __m128i count)
PSRLQ __m64 _mm_srli_si64 (__m64 m, int count)

PSRLQ __m64 _mm_srl_si64 (__m64 m, __m64 count)
PSRLQ __m128i _mm_srli_epi64 (__m128im, int count)
PSRLQ __m128i _mm_srl_epi64 (__m128i m, __m128i count)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0)

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

Vol.2B 4-185

INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-186 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

PSUBB/PSUBW/PSUBD—Subtract Packed Integers

Compat/
64-Bit Leg
Opcode Instruction Mode Mode Description
OF F8/r PSUBB mm, Valid Valid Subtract packed byte integers in
mm/m64 mm/m64 from packed byte integers
in mm.
66 OFF8/r PSUBB xmm1, Valid Valid Subtract packed byte integers in
xmm2/m128 xmmZ2/m128 from packed byte
integers in xmm71.
OFF9 /r PSUBW mm, Valid Valid Subtract packed word integers in
mm/m64 mm/m64 from packed word integers
in mm.
66 0FF9/r PSUBW xmm1, Valid Valid Subtract packed word integers in
xmmZ2/m128 xmmZ2/m128 from packed word
integers in xmm1.
OF FA /r PSUBD mm, Valid Valid Subtract packed doubleword integers
mm/m64 in mm/m64 from packed doubleword
integers in mm.
66 OF FA/r PSUBD xmmT, Valid Valid Subtract packed doubleword integers
xmm2/m128 in xmmZ2/mem128 from packed

doubleword integers in xmm1.

Description

Performs a SIMD subtract of the packed integers of the source operand (second
operand) from the packed integers of the destination operand (first operand), and
stores the packed integer results in the destination operand. See Figure 9-4 in the
Intel® 64 and I1A-32 Architectures Software Developer’s Manual, Volume 1, for an
illustration of a SIMD operation. Overflow is handled with wraparound, as described
in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PSUBB instruction subtracts packed byte integers. When an individual result is
too large or too small to be represented in a byte, the result is wrapped around and
the low 8 bits are written to the destination element.

The PSUBW instruction subtracts packed word integers. When an individual result is
too large or too small to be represented in a word, the result is wrapped around and
the low 16 bits are written to the destination element.

Vol.2B 4-187

INSTRUCTION SET REFERENCE, N-Z

The PSUBD instruction subtracts packed doubleword integers. When an individual
result is too large or too small to be represented in a doubleword, the result is
wrapped around and the low 32 bits are written to the destination element.

Note that the PSUBB, PSUBW, and PSUBD instructions can operate on either
unsigned or signed (two's complement notation) packed integers; however, it does
not set bits in the EFLAGS register to indicate overflow and/or a carry. To prevent
undetected overflow conditions, software must control the ranges of values upon
which it operates.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSUBB instruction with 64-bit operands:
DEST[7:0] < DEST[7:0] — SRC[7:0];
(* Repeat subtract operation for 2nd through 7th byte *)
DEST[63:56] «— DEST[63:56] — SRC[63:56];

PSUBB instruction with 128-bit operands:
DEST[7:0] «— DEST[7:0] — SRC[7:0];
(* Repeat subtract operation for 2nd through 14th byte *)
DEST[127:120] «- DEST[111:120] — SRC[127:120];

PSUBW instruction with 64-bit operands:
DEST[15:0] «— DEST[15:0] — SRC[15:0];
(* Repeat subtract operation for 2nd and 3rd word *)
DEST[63:48] «— DEST[63:48] — SRC[63:48];

PSUBW instruction with 128-bit operands:
DEST[15:0] « DEST[15:0] — SRC[15:0];
(* Repeat subtract operation for 2nd through 7th word *)
DEST[127:112] <~ DEST[127:112] — SRC[127:112];

PSUBD instruction with 64-bit operands:
DEST[31:0] <~ DEST[31:0] — SRC[31:0];
DEST[63:32] «— DEST[63:32] — SR([63:32];

PSUBD instruction with 128-bit operands:
DEST[31:0] « DEST[31:0] — SRC[31:0];
(* Repeat subtract operation for 2nd and 3rd doubleword *)
DEST[127:96] < DEST[127:96] — SRC[127:96];

4-188 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalents

PSUBB __m64 _mm_sub_pi8(_m64 m1, _m64 m2)
PSUBW _ m64 _mm_sub_pi16(_m64 m1, __m64 m2)
PSUBD __m64 _mm_sub_pi32(_m64 m1, _m64 m2)

PSUBB __m128i _mm_sub_epi8 (_m128ia, __m128ib)
PSUBW _ m128i _mm_sub_epi16 (_m128ia,_m128ib)
PSUBD __m128i _mm_sub_epi32 (_m128ia, __m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

Vol.2B 4-189

INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-190 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

PSUBQ—Subtract Packed Quadword Integers

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

OF FB /r PSUBQ mm1, mm2/m64 Valid Valid Subtract quadword
integer in mm1 from mmZ2
/mé64.

66 OF FB/r PSUBQ xmm1, Valid Valid Subtract packed quadword

xmm2/m128 integers in xmm1 from
xmmZ2 /m128.
Description

Subtracts the second operand (source operand) from the first operand (destination
operand) and stores the result in the destination operand. The source operand can be
a quadword integer stored in an MMX technology register or a 64-bit memory loca-
tion, or it can be two packed quadword integers stored in an XMM register or an
128-bit memory location. The destination operand can be a quadword integer stored
in an MMX technology register or two packed quadword integers stored in an XMM
register. When packed quadword operands are used, a SIMD subtract is performed.
When a quadword result is too large to be represented in 64 bits (overflow), the
result is wrapped around and the low 64 bits are written to the destination element
(that is, the carry is ignored).

Note that the PSUBQ instruction can operate on either unsigned or signed (two’s
complement notation) integers; however, it does not set bits in the EFLAGS register
to indicate overflow and/or a carry. To prevent undetected overflow conditions, soft-
ware must control the ranges of the values upon which it operates.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSUBQ instruction with 64-Bit operands:
DEST[63:0] «— DEST[63:0] — SRC[63:0];

PSUBQ instruction with 128-Bit operands:
DEST[63:0] «— DEST[63:0] — SRC[63:0];
DEST[127:64] «<— DEST[127:64] — SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalents

PSUBQ __m64 _mm_sub_si64(__m64 m1, __m64 m2)
PSUBQ __m128i _mm_sub_epi64(_m128im1,_m128i m2)

Vol.2B 4-191

INSTRUCTION SET REFERENCE, N-Z

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

H#NM

HMF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = O.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
H#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

4-192 Vol. 2B

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#HMF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = O.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-193

INSTRUCTION SET REFERENCE, N-Z

PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed
Saturation

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OFE8/r PSUBSB mm, Valid Valid Subtract signed packed bytes in
mm/m64 mm/m64 from signed packed
bytes in mm and saturate results.
66 OF E8 PSUBSB xmm1, Valid Valid Subtract packed signed byte
Ir xmmZ2/m128 integers in xmmZ2/m128 from

packed signed byte integers in
xmm1 and saturate results.

OFE9/r PSUBSW mm, Valid Valid Subtract signed packed words in
mm/m64 mm/m64 from signed packed
words in mm and saturate results.
66 OF E9 PSUBSW xmm1, Valid Valid Subtract packed signed word
Ir xmmZ2/m128 integers in xmmZ2/m128 from

packed signed word integers in
xmm1 and saturate results.

Description

Performs a SIMD subtract of the packed signed integers of the source operand
(second operand) from the packed signed integers of the destination operand (first
operand), and stores the packed integer results in the destination operand. See
Figure 9-4 in the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 1, for an illustration of a SIMD operation. Overflow is handled with signed
saturation, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PSUBSB instruction subtracts packed signed byte integers. When an individual
byte result is beyond the range of a signed byte integer (that is, greater than 7FH or
less than 80H), the saturated value of 7FH or 80H, respectively, is written to the
destination operand.

The PSUBSW instruction subtracts packed signed word integers. When an individual
word result is beyond the range of a signed word integer (that is, greater than 7FFFH
or less than 8000H), the saturated value of 7FFFH or 8000H, respectively, is written
to the destination operand.

4-194 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSUBSB instruction with 64-bit operands:
DEST[7:0] « SaturateToSignedByte (DEST[7:0] — SRC (7:0]);
(* Repeat subtract operation for 2nd through 7th bytes *)
DEST[63:56] « SaturateToSignedByte (DEST[63:56] — SRC[63:56]);

PSUBSB instruction with 128-bit operands:
DEST[7:0] « SaturateToSignedByte (DEST[7:0] — SRC[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] «— SaturateToSignedByte (DEST[111:120] — SRC[127:120]));

PSUBSW instruction with 64-bit operands
DEST[15:0] «— SaturateToSignedWord (DEST[15:0] — SRC[15:0]);
(* Repeat subtract operation for 2nd and 7th words *)
DEST[63:48] « SaturateToSignedWord (DEST[63:48] — SRC[63:48]);

PSUBSW instruction with 128-bit operands
DEST[15:0] « SaturateToSignedword (DEST[15:0] — SRC[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] < SaturateToSignedword (DEST[127:112] — SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PSUBSB __m64 _mm_subs_pi8(_m64 m1, __m64 m2)
PSUBSB _ m128i _mm_subs_epi8(_m128im1, __m128im2)
PSUBSW __m64 _mm_subs_pi16(_m64 m1, __m64 m2)
PSUBSW _ m128i _mm_subs_epi16(_m128im1, __m128im2)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

Vol.2B 4-195

INSTRUCTION SET REFERENCE, N-Z

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

4-196 Vol.2B

#UD

#NM

H#HMF
#PF(fault-code)
#AC(0)

INSTRUCTION SET REFERENCE, N-Z

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-197

INSTRUCTION SET REFERENCE, N-Z

PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with
Unsigned Saturation

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OFD8/r PSUBUSB mm, Valid Valid Subtract unsigned packed bytes in
mm/m64 mm/m64 from unsigned packed
bytes in mm and saturate result.
66 OF D8 /r PSUBUSB xmm1, Valid Valid Subtract packed unsigned byte
xmmZ2/m128 integers in xmmZ2/m128 from

packed unsigned byte integers in
xmm1 and saturate result.

OFDS/r PSUBUSW mm, Valid Valid Subtract unsigned packed words in
mm/m64 mm/m64 from unsigned packed
words in mm and saturate result.
66 OF D9 /r PSUBUSW xmm1, Valid Valid Subtract packed unsigned word
xmm2/m128 integers in xmmZ2/m128 from

packed unsigned word integers in
xmm71 and saturate result.

Description

Performs a SIMD subtract of the packed unsigned integers of the source operand
(second operand) from the packed unsigned integers of the destination operand (first
operand), and stores the packed unsigned integer results in the destination operand.
See Figure 9-4 in the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 1, for an illustration of a SIMD operation. Overflow is handled with
unsigned saturation, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PSUBUSB instruction subtracts packed unsigned byte integers. When an indi-
vidual byte result is less than zero, the saturated value of O0OH is written to the desti-
nation operand.

The PSUBUSW instruction subtracts packed unsigned word integers. When an indi-
vidual word result is less than zero, the saturated value of OO0O0H is written to the
destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

4-198 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Operation

PSUBUSB instruction with 64-bit operands:
DEST[7:0] « SaturateToUnsignedByte (DEST[7:0] — SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] «— SaturateToUnsignedByte (DEST[63:56] — SRC[63:56];

PSUBUSB instruction with 128-bit operands:
DEST[7:0] «— SaturateToUnsignedByte (DEST[7:0] — SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] < SaturateToUnSignedByte (DEST[127:120] — SRC[127:120]);

PSUBUSW instruction with 64-bit operands:
DEST[15:0] «— SaturateToUnsignedWord (DEST[15:0] — SRC[15:0]);
(* Repeat add operation for 2nd and 3rd words *)
DEST[63:48] < SaturateToUnsignedWord (DEST[63:48] — SRC[63:48]);

PSUBUSW instruction with 128-bit operands:
DEST[15:0] « SaturateToUnsignedWord (DEST[15:0] — SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] < SaturateToUnSignedWord (DEST[127:112] — SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PSUBUSB __m64 _mm_subs_pu8(_m64 m1, __m64 m2)
PSUBUSB __m128i _mm_subs_epu8(_m128im1,_m128im2)
PSUBUSW __m64 _mm_subs_pul16(_m64 m1, __m64 m2)
PSUBUSW __m128i _mm_subs_epul16(_m128im1,_m128im2)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

Vol.2B 4-199

INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

4-200 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-201

INSTRUCTION SET REFERENCE, N-Z

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack
High Data

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF68/r PUNPCKHBW mm, Valid Valid Unpack and interleave high-
mm/m64 order bytes from mm and
mm/m64 into mm.
66 OF 68 PUNPCKHBW xmm1, Valid Valid Unpack and interleave high-
Ir xmmZ2/m128 order bytes from xmm1 and
xmmZ2/m128into xmm1.
OF69/r PUNPCKHWD mm, Valid Valid Unpack and interleave high-
mm/m64 order words from mm and
mm/m64 into mm.
66 OF 69 PUNPCKHWD xmm1, Valid Valid Unpack and interleave high-
Ir xmmZ2/m128 order words from xmm1 and
xmmZ2/m128into xmm]1.
OF6A/r PUNPCKHDQ mm, Valid Valid Unpack and interleave high-
mm/m64 order doublewords from mm
and mm/m64 into mm.
66 OF 6A PUNPCKHDQ xmm1, Valid Valid Unpack and interleave high-
Ir xmmZ2/m128 order doublewords from xmm1
and xmmZ2/m128into xmm]1.
66 OF6D PUNPCKHQDQ xmm1, Valid Valid Unpack and interleave high-
Ir xmm2/m128 order quadwords from xmm1

and xmmZ2/m128into xmm1.

Description

Unpacks and interleaves the high-order data elements (bytes, words, doublewords,
or quadwords) of the destination operand (first operand) and source operand
(second operand) into the destination operand. Figure 4-11 shows the unpack oper-
ation for bytes in 64-bit operands. The low-order data elements are ignored.

SRC| Y7 |Y6 | Y5|Y4|Y3|Y2|Y1l|YO X7 X6 | X5] X4 | X3 |[X2 | X1|X0 |DEST

DEST| Y7 | X7 | Y6 | X6 |Y5 | X5 |Y4 | X4

Figure 4-11. PUNPCKHBW Instruction Operation Using 64-bit Operands

4-202 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

The source operand can be an MMX technology register or a 64-bit memory location,
or it can be an XMM register or a 128-bit memory location. The destination operand
can be an MMX technology register or an XMM register. When the source data comes
from a 64-bit memory operand, the full 64-bit operand is accessed from memory, but
the instruction uses only the high-order 32 bits. When the source data comes from a
128-bit memory operand, an implementation may fetch only the appropriate 64 bits;
however, alignment to a 16-byte boundary and normal segment checking will still be
enforced.

The PUNPCKHBW instruction interleaves the high-order bytes of the source and
destination operands, the PUNPCKHWD instruction interleaves the high-order words
of the source and destination operands, the PUNPCKHDQ instruction interleaves the
high-order doubleword (or doublewords) of the source and destination operands,
and the PUNPCKHQDQ instruction interleaves the high-order quadwords of the
source and destination operands.

These instructions can be used to convert bytes to words, words to doublewords,
doublewords to quadwords, and quadwords to double quadwords, respectively, by
placing all Os in the source operand. Here, if the source operand contains all Os, the
result (stored in the destination operand) contains zero extensions of the high-order
data elements from the original value in the destination operand. For example, with
the PUNPCKHBW instruction the high-order bytes are zero extended (that is,
unpacked into unsigned word integers), and with the PUNPCKHWD instruction, the
high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PUNPCKHBW instruction with 64-bit operands:
DEST[7:0] « DEST[39:32];
DEST[15:8] < SR(C[39:32];
DEST[23:16] < DEST[47:40];
DEST[31:24] « SRC[47:40];
DEST[39:32] «— DEST[55:48];
DEST[47:40] < SRC[55:48];
DEST[55:48] «<— DEST[63:56];
DEST[63:56] < SRC[63:56];

PUNPCKHW instruction with 64-bit operands:
DEST[15:0] «— DEST[47:32];
DEST[31:16] « SRC[47:32];
DEST[47:32] < DEST[63:48];
DEST[63:48] « SRC[63:48];

Vol.2B 4-203

INSTRUCTION SET REFERENCE, N-Z

PUNPCKHDQ instruction with 64-bit operands:
DEST[31:0] «- DEST[63:32];
DEST[63:32] «- SRC[63:32];

PUNPCKHBW instruction with 128-bit operands:

DEST[7:0] <« DEST[71:64];
DEST[15:8] « SRC[71:64];
DEST[23:16] «- DEST[79:72];
DEST[31:24] « SRC[79:72];
DEST[39:32] «- DEST[87:80];
DEST[47:40] « SRC[87:80];
DEST[55:48] «— DEST[95:88];
DEST[63:56] «- SRC[95:88];
DEST[71:64] «- DEST[103:96];
DEST[79:72] «- SRC[103:96];
DEST[87:80] «- DEST[111:104];
DEST[95:88] «- SRC[111:104];
DEST[103:96] « DEST[119:112];
DEST[111:104] «- SRC[119:112];
DEST[119:112] «— DEST[127:120];
DEST[127:120] «- SRC[127:120];

PUNPCKHWD instruction with 128-bit operands:
DEST[15:0] « DEST[79:64];
DEST[31:16] «- SRC[79:64];
DEST[47:32] < DEST[95:80];
DEST[63:48] «- SRC[95:80];
DEST[79:64] «- DEST[111:96];
DEST[95:80] «- SRC[111:96];
DEST[111:96] « DEST[127:112];
DEST[127:112] «- SRC[127:112];

PUNPCKHDQ instruction with 128-bit operands:
DEST[31:0] «— DEST[95:64];
DEST[63:32] « SRC[95:64];
DEST[95:64] « DEST[127:96];
DEST[127:96] « SRC[127:96];

PUNPCKHQDQ instruction:
DEST[63:0] < DEST[127:64];
DEST[127:64] « SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalents

PUNPCKHBW __m64 _mm_unpackhi_pi8(_m64 m1, __m64 m2)
PUNPCKHBW __m128i _mm_unpackhi_epi8(_m128im1,_m128i m2)

4-204 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

PUNPCKHWD __m64 _mm_unpackhi_pi16(_m64 m1,_m64 m2)
PUNPCKHWD __m128i _mm_unpackhi_epi16(_m128i m1,_m128i m2)
PUNPCKHDQ __m64 _mm_unpackhi_pi32(__m64 m1, __m64 m2)
PUNPCKHDQ __m128i _mm_unpackhi_epi32(_m128im1, _m128i m2)

PUNPCKHQDQ __m128i _mm_unpackhi_epi64 (_m128ia, __m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = O.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
H#MF

If any part of the operand lies outside of the effective address
space from O to FFFFH.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Vol. 2B 4-205

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-206 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit version only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—
Unpack Low Data

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF60/r PUNPCKLBW mm, Valid Valid Interleave low-order bytes from
mm/m32 mm and mm/m32 into mm.
66 OF 60 PUNPCKLBW xmm1, Valid Valid Interleave low-order bytes from
Ir xmm2/m128 xmm1 and xmm2/m128into
xmm1.
OF61/r PUNPCKLWD mm, Valid Valid Interleave low-order words from
mm/m32 mm and mm/m32 into mm.
66 OF 61 PUNPCKLWD xmm1, Valid Valid Interleave low-order words from
Ir xmm2/m128 xmm1 and xmmZ2/m128into
xmm1.
OF62/r PUNPCKLDQ mm, Valid Valid Interleave low-order doublewords
mm/m32 from mm and mm/m32 into mm.
66 OF 62 PUNPCKLDQ xmm1, Valid Valid Interleave low-order doublewords
Ir xmm2/m128 from xmm71and xmmZ2/m128into
xmm1.
66 OF 6C PUNPCKLQDQ Valid Valid Interleave low-order quadword
Ir xmm1, xmmZ2/m128 from xmm1and xmmZ2/m128into

xmm1 register.

Description

Unpacks and interleaves the low-order data elements (bytes, words, doublewords,
and quadwords) of the destination operand (first operand) and source operand
(second operand) into the destination operand. (Figure 4-12 shows the unpack oper-
ation for bytes in 64-bit operands.). The high-order data elements are ignored.

3|Y2|Y1l]|YO X7 | X6 | X5|X4| X3 |[X2 | X1|X0
Y3 | X3[Y2|X2|Y1l|X1|YO |X0

DEST

SRC|Y7|Y6 |Y5|Y4|Y DEST

Figure 4-12. PUNPCKLBW Instruction Operation Using 64-bit Operands

Vol.2B 4-207

INSTRUCTION SET REFERENCE, N-Z

The source operand can be an MMX technology register or a 32-bit memory location,
or it can be an XMM register or a 128-bit memory location. The destination operand
can be an MMX technology register or an XMM register. When the source data comes
from a 128-bit memory operand, an implementation may fetch only the appropriate
64 bits; however, alignment to a 16-byte boundary and normal segment checking
will still be enforced.

The PUNPCKLBW instruction interleaves the low-order bytes of the source and desti-
nation operands, the PUNPCKLWD instruction interleaves the low-order words of the
source and destination operands, the PUNPCKLDQ instruction interleaves the low-
order doubleword (or doublewords) of the source and destination operands, and the
PUNPCKLQDQ instruction interleaves the low-order quadwords of the source and
destination operands.

These instructions can be used to convert bytes to words, words to doublewords,
doublewords to quadwords, and quadwords to double quadwords, respectively, by
placing all Os in the source operand. Here, if the source operand contains all Os, the
result (stored in the destination operand) contains zero extensions of the high-order
data elements from the original value in the destination operand. For example, with
the PUNPCKLBW instruction the high-order bytes are zero extended (that is,
unpacked into unsigned word integers), and with the PUNPCKLWD instruction, the
high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PUNPCKLBW instruction with 64-bit operands:
DEST[63:56] «- SRC[31:24];
DEST[55:48] < DEST[31:24];
DEST[47:40] < SRC[23:16];
DEST[39:32] « DEST[23:16];
DEST[31:24] < SRC[15:8];
DEST[23:16] «- DEST[15:8];
DEST[15:8] « SRC[7:0];
DEST[7:0] «— DEST[7:0];

PUNPCKLWD instruction with 64-bit operands:
DEST[63:48] «- SRC[31:16];
DEST[47:32] «- DEST[31:16];
DEST[31:16] «- SRC[15:0];
DEST[15:0] «— DEST[15:0];

PUNPCKLDQ instruction with 64-bit operands:
DEST[63:32] <~ SRC[31:0];
DEST[31:0] «— DEST[31:0];

4-208 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

PUNPCKLBW instruction with 128-bit operands:

DEST[7:0] « DEST[7:0];
DEST[15:8] « SRC[7:0];
DEST[23:16] «— DEST[15:8];
DEST[31:24] < SRC[15:8];
DEST[39:32] < DEST[23:16];
DEST[47:40] < SRC[23:16];
DEST[55:48] «— DEST[31:24];
DEST[63:56] «— SRC[31:24];
DEST[71:64] < DEST[39:32];
DEST[79:72] < SRC[39:32];
DEST[87:80] «— DEST[47:40];
DEST[95:88] <« SRC[47:40];
DEST[103:96] <« DEST[55:48];
DEST[111:104] « SRC[55:48];
DEST[119:112] « DEST[63:56];
DEST[127:120] «— SRC[63:56];

PUNPCKLWD instruction with 128-bit operands:

DEST[15:0] <« DEST[15:0];
DEST[31:16] <« SRC[15:0];
DEST[47:32] < DEST[31:16];
DEST[63:48] < SRC[31:16];
DEST[79:64] < DEST[47:32];
DEST[95:80] <« SRC[47:32];
DEST[111:96] <« DEST[63:48];
DEST[127:112] « SRC[63:48]:

PUNPCKLDAQ instruction with 128-bit operands:

DEST[31:0] « DEST[31:0];
DEST[63:32] « SRC[31:0];
DEST[95:64] « DEST[63:32];
DEST[127:96] « SRC[63:32];

PUNPCKLQDQ

DEST[63:0] « DEST[63:0];
DEST[127:64] « SRC[63:0];

Intel C/C++ Compiler Intrinsic Equivalents

PUNPCKLBW __m64 _mm_unpacklo_pi8 (_m64 m1, __m64 m2)
PUNPCKLBW __m128i _mm_unpacklo_epi8 (_m128im1, __m128im2)
PUNPCKLWD __m64 _mm_unpacklo_pi16 (__m64 m1, __m64 m2)

PUNPCKLWD

__m128i _mm_unpacklo_epi16 (__m128im1, _m128i m2)

Vol.2B 4-209

INSTRUCTION SET REFERENCE, N-Z

PUNPCKLDQ __m64 _mm_unpacklo_pi32 (__m64 m1, _m64 m2)
PUNPCKLDQ __m128i _mm_unpacklo_epi32 (__m128im1, __m128i m2)
PUNPCKLQDQ __m128i _mm_unpacklo_epi64 (__m128im1, __m128i m2)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = O.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

4-210 Vol.2B

If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

#HMF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit version only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-211

INSTRUCTION SET REFERENCE, N-Z

PUSH—Push Word, Doubleword or Quadword Onto the Stack

64-Bit Compat/

Opcode* Instruction Mode Leg Mode Description

FF /6 PUSH r/m16 Valid Valid Push r/m16.

FF /6 PUSH r/m32 N.E. Valid Push r/m32.

FF /6 PUSH r/m64 Valid N.E. Push r/m64. Default operand size
64-bits.

50+rw PUSH r16 Valid Valid Push r16.

50+rd PUSH r32 N.E. Valid Push r32.

50+rd PUSH r64 Valid N.E. Push r64. Default operand size
64-bits.

6A PUSH imm8 Valid Valid Push sign-extended imm8. Stack
pointer is incremented by the size
of stack pointer.

68 PUSH imm16 Valid Valid Push sign-extended imm16. Stack
pointer is incremented by the size
of stack pointer.

68 PUSH imm32 Valid Valid Push sign-extended imm32. Stack
pointer is incremented by the size
of stack pointer.

0€ PUSH CS Invalid Valid Push CS.

16 PUSH SS Invalid Valid Push SS.

1€ PUSH DS Invalid Valid Push DS.

06 PUSH ES Invalid Valid Push ES.

OF AO PUSH FS Valid Valid Push FS and decrement stack
pointer by 16 bits.

OF AO PUSH FS N.E. Valid Push FS and decrement stack
pointer by 32 bits.

OF AO PUSH FS Valid N.E. Push FS. Default operand size

64-bits. (66H override causes 16-
bit operation).

OF A8 PUSH GS Valid Valid Push GS and decrement stack
pointer by 16 bits.

OF A8 PUSH GS N.E. Valid Push GS and decrement stack
pointer by 32 bits.

OF A8 PUSH GS Valid N.E. Push GS, default operand size

64-bits. (66H override causes 16-
bit operation).

NOTES:
* See IA-32 Architecture Compatibility section below.

4-212 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Description

Decrements the stack pointer and then stores the source operand on the top of the
stack. The address-size attribute of the stack segment determines the stack pointer
size (16, 32 or 64 bits). The operand-size attribute of the current code segment
determines the amount the stack pointer is decremented (2, 4 or 8 bytes).

In non-64-bit modes: if the address-size and operand-size attributes are 32, the
32-bit ESP register (stack pointer) is decremented by 4. If both attributes are 16, the
16-bit SP register (stack pointer) is decremented by 2.

If the source operand is an immediate and its size is less than the address size of the
stack, a sign-extended value is pushed on the stack. If the source operand is the FS
or GS and its size is less than the address size of the stack, the zero-extended value
is pushed on the stack.

The B flag in the stack segment’s segment descriptor determines the stack’s address-
size attribute. The D flag in the current code segment’s segment descriptor (with
prefixes), determines the operand-size attribute and the address-size attribute of the
source operand. Pushing a 16-bit operand when the stack address-size attribute is 32
can result in a misaligned stack pointer (a stack pointer that is not be aligned on a
doubleword boundary).

The PUSH ESP instruction pushes the value of the ESP register as it existed before
the instruction was executed. Thus if a PUSH instruction uses a memory operand in
which the ESP register is used for computing the operand address, the address of the
operand is computed before the ESP register is decremented.

In the real-address mode, if the ESP or SP register is 1 when the PUSH instruction is
executed, an #SS exception is generated but not delivered (the stack error reported
prevents #SS delivery). Next, the processor generates a #DF exception and enters a
shutdown state as described in the #DF discussion in Chapter 5 of the Intel® 64 and
IA-32 Architectures Software Developer’'s Manual, Volume 3A.

In 64-bit mode, the instruction’s default operation size is 64 bits. In a push, the
64-bit RSP register (stack pointer) is decremented by 8. A 66H override causes
16-bit operation. Note that pushing a 16-bit operand can result in the stack pointer
misaligned to 8-byte boundary.

IA-32 Architecture Compatibility

For 1A-32 processors from the Intel 286 on, the PUSH ESP instruction pushes the
value of the ESP register as it existed before the instruction was executed. (This is
also true for Intel 64 architecture, real-address and virtual-8086 modes of 1A-32
architecture.) For the Intel® 8086 processor, the PUSH SP instruction pushes the new
value of the SP register (that is the value after it has been decremented by 2).

Vol.2B 4-213

INSTRUCTION SET REFERENCE, N-Z

Operation

IF StackAddrSize = 64
THEN
IF OperandSize = 64
THEN
RSP « (RSP —8);
IF (SRC is FS or GS)
THEN
TEMP = ZeroExtend64(SRC);
ELSE IF (SRC is IMMEDIATE)
TEMP = SignExtend64(SRC); FI;
ELSE
TEMP = SRC;
Fl
RSP «— TEMP; (* Push quadword *)
ELSE (* OperandSize = 16; 66H used *)
RSP « (RSP —2);
RSP « SRC; (* Push word *)
Fl;
ELSE IF StackAddrSize = 32
THEN
IF OperandSize = 32
THEN
ESP « (ESP - 4);
IF (SRC is FS or GS)
THEN
TEMP = ZeroExtend32(SRC);
ELSE IF (SRC is IMMEDIATE)
TEMP = SignExtend32(SRC); Fl;
ELSE
TEMP = SRC;
Fl;
SS:ESP « TEMP; (* Push doubleword *)
ELSE (* OperandSize = 16%)
ESP « (ESP - 2);
SS:ESP « SRC; (* Push word *)
Fl;
ELSE StackAddrSize = 16
IF OperandSize = 16
THEN
SP « (SP — 2);
SS:SP « SRC; (* Push word *)
ELSE (* OperandSize = 32 *)

4-214 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

SP « (SP — 4);
SS:SP <« SRC; (* Push doubleword *)

Fl;
Fl;
Fl;

Flags Affected

None.

Protected Mode Exceptions

#GP(0)

#S5(0)

#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP

#SS

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If the new value of the SP or ESP register is outside the stack
segment limit.

Virtual-8086 Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

Vol.2B 4-215

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#GP(0)
#SS(U)
#PF(fault-code)
#AC(0)

4-216 Vol. 2B

If the memory address is in a non-canonical form.
If the stack address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

INSTRUCTION SET REFERENCE, N-Z

PUSHA/PUSHAD—Push All General-Purpose Registers

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

60 PUSHA Invalid Valid Push AX, CX, DX, BX, original SP, BP, SI,
and DI.

60 PUSHAD Invalid Valid Push EAX, ECX, EDX, EBX, original ESP,

EBP, €SI, and EDI.

Description

Pushes the contents of the general-purpose registers onto the stack. The registers
are stored on the stack in the following order: EAX, ECX, EDX, EBX, ESP (original
value), EBP, ESI, and EDI (if the current operand-size attribute is 32) and AX, CX, DX,
BX, SP (original value), BP, Sl, and DI (if the operand-size attribute is 16). These
instructions perform the reverse operation of the POPA/POPAD instructions. The
value pushed for the ESP or SP register is its value before prior to pushing the first
register (see the “Operation” section below).

The PUSHA (push all) and PUSHAD (push all double) mnemonics reference the same
opcode. The PUSHA instruction is intended for use when the operand-size attribute is
16 and the PUSHAD instruction for when the operand-size attribute is 32. Some
assemblers may force the operand size to 16 when PUSHA is used and to 32 when
PUSHAD is used. Others may treat these mnemonics as synonyms (PUSHA/PUSHAD)
and use the current setting of the operand-size attribute to determine the size of
values to be pushed from the stack, regardless of the mnemonic used.

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when PUSHA/PUSHAD
executes: an #SS exception is generated but not delivered (the stack error reported
prevents #SS delivery). Next, the processor generates a #DF exception and enters a
shutdown state as described in the #DF discussion in Chapter 5 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

This instruction executes as described in compatibility mode and legacy mode. Itis
not valid in 64-bit mode.

Operation
IF 64-bit Mode
THEN #UD
Fl;
IF OperandSize = 32 (* PUSHAD instruction *)
THEN
Temp « (ESP);
Push(EAX);

Vol.2B 4-217

INSTRUCTION SET REFERENCE, N-Z

Push(ECX);
Push(EDX);
Push(EBX);
Push(Temp);
Push(EBP);
Push(ESI);
Push(EDI);
ELSE (* OperandSize = 16, PUSHA instruction *)
Temp « (SP);
Push(AX);

Fl;

Flags Affected

None.

Protected Mode Exceptions

#SS(0) If the starting or ending stack address is outside the stack
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current

privilege level is 3 and alignment checking is enabled.

Real-Address Mode Exceptions
#GP If the ESP or SP register contains 7, 9, 11, 13, or 15.

Virtual-8086 Mode Exceptions

#GP(0) If the ESP or SP register contains 7, 9, 11, 13, or 15.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment

checking is enabled.

4-218 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

Vol.2B 4-219

INSTRUCTION SET REFERENCE, N-Z

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
9C PUSHF Valid Valid Push lower 16 bits of EFLAGS.
9C PUSHFD N.E. Valid Push EFLAGS.
9C PUSHFQ Valid N.E. Push RFLAGS.
Description

Decrements the stack pointer by 4 (if the current operand-size attribute is 32) and
pushes the entire contents of the EFLAGS register onto the stack, or decrements the
stack pointer by 2 (if the operand-size attribute is 16) and pushes the lower 16 bits
of the EFLAGS register (that is, the FLAGS register) onto the stack. These instruc-
tions reverse the operation of the POPF/POPFD instructions.

When copying the entire EFLAGS register to the stack, the VM and RF flags (bits 16
and 17) are not copied; instead, the values for these flags are cleared in the EFLAGS
image stored on the stack. See Chapter 3 of the Intel® 64 and 1A-32 Architectures
Software Developer’s Manual, Volume 1, for more information about the EFLAGS
register.

The PUSHF (push flags) and PUSHFD (push flags double) mnemonics reference the
same opcode. The PUSHF instruction is intended for use when the operand-size
attribute is 16 and the PUSHFD instruction for when the operand-size attribute is 32.
Some assemblers may force the operand size to 16 when PUSHF is used and to 32
when PUSHFD is used. Others may treat these mnemonics as synonyms
(PUSHF/PUSHFD) and use the current setting of the operand-size attribute to deter-
mine the size of values to be pushed from the stack, regardless of the mnemonic
used.

In 64-bit mode, the instruction’s default operation is to decrement the stack pointer
(RSP) by 8 and pushs RFLAGS on the stack. 16-bit operation is supported using the
operand size override prefix 66H. 32-bit operand size cannot be encoded in this
mode. When copying RFLAGS to the stack, the VM and RF flags (bits 16 and 17) are
not copied; instead, values for these flags are cleared in the RFLAGS image stored on
the stack.

When in virtual-8086 mode and the 1/0 privilege level (IOPL) is less than 3, the
PUSHF/PUSHFD instruction causes a general protection exception (#GP).

In the real-address mode, if the ESP or SP register is 1 when PUSHF/PUSHFD instruc-
tion executes: an #SS exception is generated but not delivered (the stack error
reported prevents #SS delivery). Next, the processor generates a #DF exception and
enters a shutdown state as described in the #DF discussion in Chapter 5 of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

4-220 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Operation

IF(PE=0)or (PE=1and (VM =0)or (VM= 1 and IOPL = 3)))
(* Real-Address Mode, Protected mode, or Virtual-8086 mode with IOPL equal to 3 *)
THEN
IF OperandSize = 32
THEN
push (EFLAGS AND OOFCFFFFH);
(* VM and RF EFLAG bits are cleared in image stored on the stack *)
ELSE
push (EFLAGS); (* Lower 16 bits only *)
Fl;

ELSE IF 64-bit MODE (* In 64-bit Mode *)
IF OperandSize = 64
THEN
push (RFLAGS AND 00000000_00FCFFFFH);
(* VM and RF RFLAG bits are cleared in image stored on the stack; *)
ELSE
push (EFLAGS); (* Lower 16 bits only *)
Fl;

ELSE (* In Virtual-8086 Mode with IOPL less than 3 *)
#GP(0); (* Trap to virtual-8086 monitor *)
Fl;

Flags Affected

None.

Protected Mode Exceptions

#SS(0) If the new value of the ESP register is outside the stack segment
boundary.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current

privilege level is 3 and alignment checking is enabled.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions
#GP(0) If the 1/0 privilege level is less than 3.
#PF(fault-code) If a page fault occurs.

Vol.2B 4-221

INSTRUCTION SET REFERENCE, N-Z

#AC(0) If an unaligned memory reference is made while alignment
checking is enabled.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

#SS(U) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current

privilege level is 3 and alignment checking is enabled.

4-222 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

PXOR—Logical Exclusive OR

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF EF /1 PXOR mm, mm/m64 Valid Valid Bitwise XOR of
mm/m64 and mm.
66 OF EF PXOR xmm1, xmm2/m128 Valid Valid Bitwise XOR of
Ir xmm2/m128 and
xmm1.
Description

Performs a bitwise logical exclusive-OR (XOR) operation on the source operand
(second operand) and the destination operand (first operand) and stores the resultin
the destination operand. The source operand can be an MMX technology register or a
64-bit memory location or it can be an XMM register or a 128-bit memory location.
The destination operand can be an MMX technology register or an XMM register. Each
bit of the result is 1 if the corresponding bits of the two operands are different; each
bit is O if the corresponding bits of the operands are the same.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST « DEST XOR SRC;

Intel C/C++ Compiler Intrinsic Equivalent

PXOR __m64 _mm_xor_si64 (__m64 m1, __m64 m2)
PXOR __m128i _mm_xor_si128 (_m128ia, __m128ib)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

Vol.2B 4-223

INSTRUCTION SET REFERENCE, N-Z

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

UD If CRO.EM[bit 2] = 1.

4-224 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-225

INSTRUCTION SET REFERENCE, N-Z

RCL/RCR/ROL/ROR-—Rotate

Opcode**
DO /2

REX + D0 /2
D2 /2

REX +D2 /2
Cco/2ib
REX+CO /2 ib
D1/2

D3/2

C1/2ib

D1/2

REXW +D1/2
D3/2
REXW + D3 /2
C1/2ib
REXW +C1/2
ib

D0 /3

REX + DO /3
D2 /3

REX +D2 /3

Instruction
RCL /m8, 1
RCL r/m8* 1
RCL r/m8, CL

RCL /m8%, CL

RCL r/m8,
imm8

RCL r/m8%*
imm8

RCL r/m16, 1

RCL r/m16, CL

RCL r/m16,
imm8
RCL /m32, 1

RCL r/m64, 1

RCL r/m32, CL

RCL r/m64, CL

RCL r/m32,
imm8

RCL r/m64,
imm8

RCR r/m8, 1
RCR r/m8%* 1
RCR r/m8, CL

RCR r/m8%, CL

64-Bit
Mode
Valid
Valid
Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid
Valid
Valid

Valid

Compat/
Leg
Mode

Valid
N.E.
Valid

N.E.
Valid
N.E.
Valid
Valid
Valid
Valid
N.E.
Valid
N.E.
Valid
N.E.

Valid
N.E.
Valid

N.E.

Description

Rotate 9 bits (CF, /m8) left once.
Rotate 9 bits (CF, r/m8) left once.
Rotate 9 bits (CF, /m8) left CL
times.

Rotate 9 bits (CF, r/m8) left CL
times.

Rotate 9 bits (CF, r/m8) left imm8
times.

Rotate 9 bits (CF, r/m8) left imm8
times.

Rotate 17 bits (CF, r/m16) left
once.

Rotate 17 bits (CF, /m16) left CL
times.

Rotate 17 bits (CF, /m16) left
imm8 times.

Rotate 33 bits (CF, /m32) left
once.

Rotate 65 bits (CF, /m64) left
once. Uses a 6 bit count.

Rotate 33 bits (CF, /m32) left CL
times.

Rotate 65 bits (CF, r/m64) left CL
times. Uses a 6 bit count.

Rotate 33 bits (CF, r/m32) left
imm8 times.

Rotate 65 bits (CF, r/m64) left
imm8 times. Uses a 6 bit count.
Rotate 9 bits (CF, r/m8) right once.
Rotate 9 bits (CF, r/m8) right once.
Rotate 9 bits (CF, /m8) right CL
times.

Rotate 9 bits (CF, /m8) right CL
times.

4-226 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Opcode**
C0/3ib
REX+CO/3ib
D1/3

D3/3

C1/3ib

D1/3

REX.W +D1/3
D3/3

REX.W + D3 /3
C1/3ib
REXW +C1/3
ib

DO /0

REX + DO /0
D2 /0

REX+D2/0
C0/0ib

REX+CO/0ib

D1/0
D3/0

C1/0ib

D1/0
REX.W +D1/0

Instruction

RCR r/m8,
imm8

RCR r/m8%,
imm8
RCR r/m16, 1

RCR r/m16, CL

RCR r/m16,
imm8
RCR r/m32,1

RCR /m64, 1

RCR r/m32, CL

RCR r/m64, CL

RCR r/m32,
imm8

RCR r/m64,
imm8

ROL r/m8, 1
ROL r/m8* 1
ROL r/m8, CL
ROL r/m8%* CL
ROL r/m8,
imm8

ROL r/m8%*
imm8

ROL r/m16, 1
ROL r/m16, CL

ROL r/m16,
imm8

ROL /m32, 1
ROL r/m64, 1

64-Bit

Mode

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid
Valid
Valid
Valid
Valid

Valid

Valid
Valid

Valid

Valid
Valid

Compat/
Leg
Mode

Valid
N.E.

Valid
Valid
Valid

Valid

N.E.
Valid
N.E.
Valid
N.E.

Valid
N.E.
Valid
N.E.
Valid

N.E.

Valid
Valid

Valid

Valid
N.E.

Description

Rotate 9 bits (CF, /m8) right
imm8 times.

Rotate 9 bits (CF, /m8) right
imm8 times.

Rotate 17 bits (CF, r/m16) right
once.

Rotate 17 bits (CF, r/m16) right CL
times.

Rotate 17 bits (CF, r/m16) right
imm8 times.

Rotate 33 bits (CF, /m32) right
once. Uses a 6 bit count.

Rotate 65 bits (CF, /m64) right
once. Uses a 6 bit count.

Rotate 33 bits (CF, /m32) right CL
times.

Rotate 65 bits (CF, /m64) right CL
times. Uses a 6 bit count.

Rotate 33 bits (CF, /m32) right
imm8 times.

Rotate 65 bits (CF, /m64) right
imm8 times. Uses a 6 bit count.

Rotate 8 bits r/m8 left once.
Rotate 8 bits r/m8 left once
Rotate 8 bits /m8 left CL times.
Rotate 8 bits r/m8 left CL times.
Rotate 8 bits /m8 left imm8
times.

Rotate 8 bits /m8 left imm8
times.

Rotate 16 bits /m16 left once.
Rotate 16 bits /m16 left CL
times.

Rotate 16 bits /m16 left imm8
times.

Rotate 32 bits r/m32 left once.
Rotate 64 bits r/m64 left once.
Uses a 6 bit count.

Vol.2B 4-227

INSTRUCTION SET REFERENCE, N-Z

Compat/
64-Bit Leg
Opcode** Instruction Mode Mode Description
D3/0 ROL /m32,CL Valid Valid Rotate 32 bits r/m32 left CL
times.
REXW +D3/0 ROL r/m64,CL Valid N.E. Rotate 64 bits r/m64 left CL
times. Uses a 6 bit count.
C1/0ib ROL r/m32, Valid Valid Rotate 32 bits r/m32 left imm8
imm8 times.
C1/0ib ROL r/m64, Valid N.E. Rotate 64 bits r/m64 left imm8
imm8 times. Uses a 6 bit count.
DO/ ROR r/m8, 1 Valid Valid Rotate 8 bits r/m8 right once.
REX +D0 /1 ROR r/m8%* 1 Valid N.E. Rotate 8 bits r/m8 right once.
D2 /N ROR r/m8, CL Valid Valid Rotate 8 bits /m8right CL times.
REX +D2 /1 ROR r/m8* CL Valid N.E. Rotate 8 bits /m8right CL times.
Co/ib ROR r/m8, Valid Valid Rotate 8 bits r/m16 right imm8
imm8 times.
REX+CO/1ib ROR r/m8* Valid N.E. Rotate 8 bits r/m16 right imm8
imm8 times.
D1/ ROR r/m16, 1 Valid Valid Rotate 16 bits r/m16 right once.
D3 /1 ROR r/m16,CL Valid Valid Rotate 16 bits /m16 right CL
times.
Ci/1ib ROR r/m16, Valid Valid Rotate 16 bits r/m16 right imm8
imm8 times.
D1/ ROR r/m32, 1 Valid Valid Rotate 32 bits r/m32 right once.
REXW +D1/1 ROR r/m64, 1 Valid N.E. Rotate 64 bits r/m64 right once.
Uses a 6 bit count.
D3N ROR r/m32,CL Valid Valid Rotate 32 bits r/m32 right CL
times.
REXW +D3/1 ROR r/m64,CL Valid N.E. Rotate 64 bits r/m64 right CL
times. Uses a 6 bit count.
Ci/1ib ROR r/m32, Valid Valid Rotate 32 bits r/m32right imm8
imm8 times.
REXW+C1/1 ROR r/m64, Valid N.E. Rotate 64 bits r/m64 right imm8
ib imm8 times. Uses a 6 bit count.
NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix
is used: AH, BH, CH, DH.

** See |A-32 Architecture Compatibility section below.

4-228 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Description

Shifts (rotates) the bits of the first operand (destination operand) the number of bit
positions specified in the second operand (count operand) and stores the result in the
destination operand. The destination operand can be a register or a memory loca-
tion; the count operand is an unsigned integer that can be an immediate or a value in
the CL register. In legacy and compatibility mode, the processor restricts the count to
a number between 0 and 31 by masking all the bits in the count operand except the
5 least-significant bits.

The rotate left (ROL) and rotate through carry left (RCL) instructions shift all the bits
toward more-significant bit positions, except for the most-significant bit, which is
rotated to the least-significant bit location. The rotate right (ROR) and rotate
through carry right (RCR) instructions shift all the bits toward less significant bit
positions, except for the least-significant bit, which is rotated to the most-significant
bit location.

The RCL and RCR instructions include the CF flag in the rotation. The RCL instruction
shifts the CF flag into the least-significant bit and shifts the most-significant bit into
the CF flag. The RCR instruction shifts the CF flag into the most-significant bit and
shifts the least-significant bit into the CF flag. For the ROL and ROR instructions, the
original value of the CF flag is not a part of the result, but the CF flag receives a copy
of the bit that was shifted from one end to the other.

The OF flag is defined only for the 1-bit rotates; it is undefined in all other cases
(except that a zero-bit rotate does nothing, that is affects no flags). For left rotates,
the OF flag is set to the exclusive OR of the CF bit (after the rotate) and the most-
significant bit of the result. For right rotates, the OF flag is set to the exclusive OR of
the two most-significant bits of the result.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). Use of REX.W promotes the first operand to 64 bits and causes
the count operand to become a 6-bit counter.

IA-32 Architecture Compatibility

The 8086 does not mask the rotation count. However, all other 1A-32 processors
(starting with the Intel 286 processor) do mask the rotation count to 5 bits, resulting
in a maximum count of 31. This masking is done in all operating modes (including the
virtual-8086 mode) to reduce the maximum execution time of the instructions.

Operation

(* RCL and RCR instructions *)

SIZE « OperandSize;

CASE (determine count) OF
SIZE«8: tempCOUNT « (COUNT AND 1FH) MOD 9;
SIZE <~ 16: tempCOUNT <« (COUNT AND 1FH) MOD 17;
SIZE <+~ 32: tempCOUNT « COUNT AND 1FH;

Vol.2B 4-229

INSTRUCTION SET REFERENCE, N-Z

SIZE <+~ 64: tempCOUNT « COUNT AND 3FH;
ESAC,

(* RCL instruction operation *)
WHILE (tempCOUNT = 0)
DO
tempCF « MSB(DEST);
DEST « (DEST * 2) + CF;
CF « tempCF;
tempCOUNT « tempCOUNT - 1;
0D;
ELIHW;
IF COUNT =1
THEN OF «- MSB(DEST) XOR CF;
ELSE OF is undefined;
Fl;

(* RCR instruction operation *)
IF COUNT =1
THEN OF « MSB(DEST) XOR CF;
ELSE OF is undefined;
Fl;
WHILE (tempCOUNT = 0)
DO
tempCF « LSB(SRC);
DEST « (DEST / 2) + (CF * 25128y,
CF « tempCF;
tempCOUNT « tempCOUNT - 1;
0D;

(* ROL and ROR instructions *)
SIZE « OperandSize;
CASE (determine count) OF

SIZE « 8: tempCOUNT «

COUNT AND 1FH) MOD 8; (* Mask count before MOD *)

()
SIZE <~ 16: tempCOUNT « (COUNT AND 1FH) MOD 16;
SIZE «~ 32: tempCOUNT « (COUNT AND 1FH) MOD 32;
SIZE < 64: tempCOUNT « (COUNT AND 1FH) MOD 64;

ESAC

(* ROL instruction operation *)
IF (tempCOUNT > 0) (* Prevents updates to CF *)
WHILE (tempCOUNT = 0)
DO

4-230 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

tempCF « MSB(DEST);
DEST « (DEST * 2) + tempCF;
tempCOUNT « tempCOUNT - 1;
0D;
ELIHW;
CF <« LSB(DEST);
IF COUNT =1
THEN OF «- MSB(DEST) XOR CF;
ELSE OF is undefined;
Fl;
Fl;

(* ROR instruction operation *)
IF tempCOUNT > O) (* Prevent updates to CF *)
WHILE (tempCOUNT = 0)
DO
tempCF « LSB(SRC);
DEST « (DEST / 2) + (tempCF * 25128y,
tempCOUNT « tempCOUNT - 1;
OD;
ELIHW;
CF < MSB(DEST);
IF COUNT =1
THEN OF « MSB(DEST) XOR MSB — 1(DEST);
ELSE OF is undefined;
Fl;
FI;

Flags Affected

The CF flag contains the value of the bit shifted into it. The OF flag is affected only for
single-bit rotates (see “Description” above); it is undefined for multi-bit rotates. The
SF, ZF, AF, and PF flags are not affected.

Protected Mode Exceptions
#GP(0) If the source operand is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

Vol.2B 4-231

INSTRUCTION SET REFERENCE, N-Z

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the source operand is located in a nonwritable segment.
If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

4-232 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

RCPPS—Compute Reciprocals of Packed Single-Precision Floating-
Point Values

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF53/r RCPPS xmm1, Valid Valid Computes the approximate reciprocals
xmmZ2/m128 of the packed single-precision floating-

point values in xmmZ2/m128 and
stores the results in xmm1.

Description

Performs a SIMD computation of the approximate reciprocals of the four packed
single-precision floating-point values in the source operand (second operand) stores
the packed single-precision floating-point results in the destination operand. The
source operand can be an XMM register or a 128-bit memory location. The destina-
tion operand is an XMM register. See Figure 10-5 in the Intel® 64 and 1A-32 Architec-
tures Software Developer’s Manual, Volume 1, for an illustration of a SIMD single-
precision floating-point operation.

The relative error for this approximation is:

|Relative Error| < 1.5 * 2712

The RCPPS instruction is not affected by the rounding control bits in the MXCSR
register. When a source value is a 0.0, an « of the sign of the source value is
returned. A denormal source value is treated as a 0.0 (of the same sign). Tiny results
are always flushed to 0.0, with the sign of the operand. (Input values greater than or
equal to |1.11111111110100000000000B+212°| are guaranteed to not produce tiny
results; input values less than or equal to |1.00000000000110000000001B*2128|
are guaranteed to produce tiny results, which are in turn flushed to 0.0; and input
values in between this range may or may not produce tiny results, depending on the
implementation.) When a source value is an SNaN or QNaN, the SNaN is converted to
a QNaN or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] « APPROXIMATE(1.0/(SRC[31:0]));
DEST[63:32] «~ APPROXIMATE(1.0/(SRC[63:32]));
DEST[95:64] «~ APPROXIMATE(1.0/(SRC[95:64]));
DEST[127:96] «— APPROXIMATE(1.0/(SRC[127:96]));

Intel C/C++ Compiler Intrinsic Equivalent
RCCPS __m128 _mm_rcp_ps(_m128a)

Vol.2B 4-233

INSTRUCTION SET REFERENCE, N-Z

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = O.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = O.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

4-234 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

Vol.2B 4-235

INSTRUCTION SET REFERENCE, N-Z

RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point
Values

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
F3 OF RCPSS xmm1, Valid Valid Computes the approximate reciprocal of
53/r xmm2/m32 the scalar single-precision floating-point

value in xmmZ2/m32 and stores the
result in xmm1.

Description

Computes of an approximate reciprocal of the low single-precision floating-point
value in the source operand (second operand) and stores the single-precision
floating-point result in the destination operand. The source operand can be an XMM
register or a 32-bit memory location. The destination operand is an XMM register.
The three high-order doublewords of the destination operand remain unchanged.
See Figure 10-6 in the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 1, for an illustration of a scalar single-precision floating-point oper-
ation.

The relative error for this approximation is:

IRelative Error| < 1.5 % 2712

The RCPSS instruction is not affected by the rounding control bits in the MXCSR
register. When a source value is a 0.0, an « of the sign of the source value is
returned. A denormal source value is treated as a 0.0 (of the same sign). Tiny results
are always flushed to 0.0, with the sign of the operand. (Input values greater than or
equal to |1.11111111110100000000000B*212%| are guaranteed to not produce tiny
results; input values less than or equal to |1.00000000000110000000001B*2128|
are guaranteed to produce tiny results, which are in turn flushed to 0.0; and input
values in between this range may or may not produce tiny results, depending on the
implementation.) When a source value is an SNaN or QNaN, the SNaN is converted to
a QNaN or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] <~ APPROX (1.0/(SRC[31:00));
(* DEST[127:32] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
RCPSS __m128 _mm_rcp_ss(__m128 a)

4-236 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) For unaligned memory reference.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

Vol.2B 4-237

INSTRUCTION SET REFERENCE, N-Z

#UD

#AC(0)

4-238 Vol.2B

If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = O.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

INSTRUCTION SET REFERENCE, N-Z

RDMSR—Read from Model Specific Register

64-Bit Compat/

Opcode* Instruction Mode Leg Mode Description

OF 32 RDMSR Valid Valid Load MSR specified by ECX into
EDX:EAX.

REXW +0F32 RDMSR Valid N.E. Load MSR specified by RCX into
RDX:RAX.

NOTES:

* See IA-32 Architecture Compatibility section below.

Description

Loads the contents of a 64-bit model specific register (MSR) specified in an index
register into registers EDX:EAX. The input value loaded into the index register is the
address of the MSR to be read. The EDX register is loaded with the high-order 32 bits
of the MSR and the EAX register is loaded with the low-order 32 bits. If fewer than 64
bits are implemented in the MSR being read, the values returned to EDX:EAX in
unimplemented bit locations are undefined. In non-64-bit mode, the index register is
specified in ECX. In 64-bit mode, the index register is specified in RCX and the higher
32-bits of RDX and RAX are cleared.

This instruction must be executed at privilege level O or in real-address mode; other-
wise, a general protection exception #GP(0) will be generated. Specifying a reserved
or unimplemented MSR address in ECX will also cause a general protection excep-
tion.

The MSRs control functions for testability, execution tracing, performance-moni-
toring, and machine check errors. Appendix B, “Model-Specific Registers (MSRs),” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, lists
all the MSRs that can be read with this instruction and their addresses. Note that
each processor family has its own set of MSRs.

The CPUID instruction should be used to determine whether MSRs are supported
(EDX[5]=1) before using this instruction.

IA-32 Architecture Compatibility

The MSRs and the ability to read them with the RDMSR instruction were introduced
into the 1A-32 Architecture with the Pentium processor. Execution of this instruction
by an 1A-32 processor earlier than the Pentium processor results in an invalid opcode
exception #UD.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for
more information about the behavior of this instruction in VMX non-root operation.

Vol.2B 4-239

INSTRUCTION SET REFERENCE, N-Z

Operation

IF 64-Bit Mode and REX.W used
THEN
RAX[31:0] «~ MSR(RCX)[31:0];
RAX[63:32] « O];
RDX[31:0] «~ MSR(RCX)[63:32];
RDX[63:32] «- 0];
ELSE
(* Non-64-bit modes, 64-bit mode default *)
EDX-EAX «— MSRIECX];
Fl;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not O.

If the value in ECX specifies a reserved or unimplemented MSR
address.

Real-Address Mode Exceptions

#GP If the value in ECX specifies a reserved or unimplemented MSR
address.

Virtual-8086 Mode Exceptions
#GP(0) The RDMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not O.

If the value in ECX or RCX specifies a reserved or unimple-
mented MSR address.

4-240 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

RDPMC—Read Performance-Monitoring Counters

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 33 RDPMC Valid Valid Read performance-monitoring
counter specified by ECX into
EDX:EAX.
Description

Loads the 40-bit performance-monitoring counter specified in the ECX register into
registers EDX:EAX. The EDX register is loaded with the high-order 8 bits of the
counter and the EAX register is loaded with the low-order 32 bits. The counter to be
read is specified with an unsigned integer placed in the ECX register.

The indices used to specify performance counters are model-specific and may vary

by processor implementations. See Table 4-2 for valid indices for each processor

family.

Table 4-2. Valid Performance Counter Index Range for RDPMC

CPUID Family/Model/ Valid PMC
Processor Family Other Signatures Index Range 40-bit Counters
P6 Family O6H 0,1 0.1
Pentium® 4, Intel® Xeon Family OFH; Model OOH, | >0and<17 >0and<17
processors 01H, 02H
Pentium 4, Intel Xeon (Family OFH; Model >0and<17 >0and<17
processors 03H, 04H, 06H) and (L3
is absent)
Pentium M processors Family O6H, Model OSH, | 0,1 0,1
ODH
64-bit Intel Xeon processors (Family OFH; Model >0and<25 >0and< 17
with L3 03H, 04H) and (L3 is
present)
Intel® Core™ Solo and Intel Family 06H, Model OEH | 0,1 0,1
Core Duo processors
Intel® Core™2 Duo processor, Family O6H, Model OFH | O, 1 0,1
Intel Xeon processor 5100
Series - general-purpose PMC
Intel Core 2 Duo processor, Family O6H, Model OFH | 8000_0000H, | 0,1
Intel Xeon processor 5100 8000_0001H
Series - fixed-function PMC

Vol. 2B 4-241

INSTRUCTION SET REFERENCE, N-Z

The Pentium 4 and Intel Xeon processors also support “fast” (32-bit) and “slow”
(40-bit) reads on the first 18 performance counters. Selected this option using
ECX[bit 31]. If bit 31 is set, RDPMC reads only the low 32 bits of the selected perfor-
mance counter. If bit 31 is clear, all 40 bits are read. A 32-bit result is returned in EAX
and EDX is set to 0. A 32-bit read executes faster on Pentium 4 processors and Intel
Xeon processors than a full 40-bit read.

On 64-bit Intel Xeon processors with L3, performance counters with indices 18-25
are 32-bit counters. EDX is cleared after executing RDPMC for these counters.

When in protected or virtual 8086 mode, the performance-monitoring counters
enabled (PCE) flag in register CR4 restricts the use of the RDPMC instruction as
follows. When the PCE flag is set, the RDPMC instruction can be executed at any priv-
ilege level; when the flag is clear, the instruction can only be executed at privilege
level 0. (When in real-address mode, the RDPMC instruction is always enabled.)

The performance-monitoring counters can also be read with the RDMSR instruction,
when executing at privilege level 0.

The performance-monitoring counters are event counters that can be programmed
to count events such as the number of instructions decoded, number of interrupts
received, or number of cache loads. Appendix A, “Performance Monitoring Events,” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, lists
the events that can be counted for various processors in the Intel 64 and 1A-32
architecture families.

The RDPMC instruction is not a serializing instruction; that is, it does not imply that
all the events caused by the preceding instructions have been completed or that
events caused by subsequent instructions have not begun. If an exact event count is
desired, software must insert a serializing instruction (such as the CPUID instruction)
before and/or after the RDPCM instruction.

In the Pentium 4 and Intel Xeon processors, performing back-to-back fast reads are
not guaranteed to be monotonic. To guarantee monotonicity on back-to-back reads,
a serializing instruction must be placed between the tow RDPMC instructions.

The RDPMC instruction can execute in 16-bit addressing mode or virtual-8086 mode;
however, the full contents of the ECX register are used to select the counter, and the
event count is stored in the full EAX and EDX registers. The RDPMC instruction was
introduced into the 1A-32 Architecture in the Pentium Pro processor and the Pentium
processor with MMX technology. The earlier Pentium processors have performance-
monitoring counters, but they must be read with the RDMSR instruction.

In 64-bit mode, RDPMC behavior is unchanged from 32-bit mode. The upper 32 bits
of RAX and RDX are cleared.

Operation
(* Intel Core 2 Duo processor family and Intel Xeon processor 5100 series*)

IF (ECX = 0 or 1) and ((CR4.PCE = 1) or (CPL = 0) or (CRO.PE = 0))
THEN IF (ECX[31]=1)

4-242 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

EAX « IA32_FIXED_CTR(ECX)[30:0];
EDX « I1A32_FIXED_CTR(ECX)[39:32];

ELSE IF (ECX[30:0] in valid range)
EAX « PMC(ECX[30:0])[31:0];
EDX « PMC(ECX[30:0])[39:32];

ELSE (* ECX is not valid or CR4.PCEis 0 and CPLis 1, 2, or 3 and CRO.PEis 1 *)
#GP(0);

Fl;

(* P6 family processors and Pentium processor with MMX technology *)

IF (ECX=0or 1) and ((CR4.PCE = 1) or (CPL = 0) or (CRO.PE = 0))
THEN
EAX « PMC(ECX)[31:0];
EDX « PMC(ECX)[39:32];
ELSE (* ECXisnot O or 1 or CR4.PCEis 0 and CPLis 1, 2, or 3 and CRO.PEis 1 *)
#GP(0);
Fl;
(* Processors with CPUID family 15 *)
IF (CR4.PCE = 1) or (CPL = 0) or (CRO.PE = 0))
THEN IF (ECX[30:0] = 0:17)
THEN IF ECX[31]1=0
THEN IF 64-Bit Mode
THEN
RAX[31:0] <~ PMC(ECX[30:0])[31:0]; (* 40-bit read *)
RAX[63:32] «- O;
RDX[31:0] <~ PMC(ECX[30:0])[39:32];
RDX[63:32] < O;
ELSE
EAX « PMC(ECX[30:0])[31:0]; (* 40-bit read *)
EDX « PMC(ECX[30:0])[39:32];
Fl;
ELSE IF ECX[31]=1
THEN IF 64-Bit Mode
THEN
RAX[31:0] <~ PMC(ECX[30:0])[31:0]; (* 32-bit read *)
RAX[63:32] «- O;
RDX « O;
ELSE
EAX « PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX « 0;
Fl;
Fl;
ELSE IF (*64-bit Intel Xeon processor with L3 *)

Vol.2B 4-243

INSTRUCTION SET REFERENCE, N-Z

THEN IF (ECX[30:0] = 18:25
EAX « PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX « O;
Fl;
ELSE (* Invalid PMC index in ECX[30:0], see Table 4-4. *)
GP(0);
Fl;
ELSE (* CR4.PCE=0and (CPL =1, 2,or 3)and CRO.PE = 1 *)
#GP(0);
Fl;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4
register is clear.

If an invalid performance counter index is specified (see
Table 4-2).

(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0]
is not within the valid range.

Real-Address Mode Exceptions

#GP If an invalid performance counter index is specified (see
Table 4-2).

(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0]
is not within the valid range.

Virtual-8086 Mode Exceptions
#GP(0) If the PCE flag in the CR4 register is clear.

If an invalid performance counter index is specified (see
Table 4-2).

(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0]
is not within the valid range.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

4-244 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4
register is clear.

If an invalid performance counter index is specified in ECX[30:0]
(see Table 4-2).

Vol. 2B 4-245

INSTRUCTION SET REFERENCE, N-Z

RDTSC—Read Time-Stamp Counter

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF 31 RDTSC Valid Valid Read time-stamp counter into
EDX:EAX.
Description

In legacy, compatibility and default 64-bit mode; loads the current value of the
processor’s time-stamp counter into the EDX:EAX registers. The time-stamp counter
is contained in a 64-bit MSR. The high-order 32 bits of the MSR are loaded into the
EDX register, and the low-order 32 bits are loaded into the EAX register.

The processor monotonically increments the time-stamp counter MSR every clock
cycle and resets it to O whenever the processor is reset. See “Time Stamp Counter”
in Chapter 18 of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 3B, for specific details of the time stamp counter behavior.

When in protected or virtual 8086 mode, the time stamp disable (TSD) flag in
register CR4 restricts the use of the RDTSC instruction as follows. When the TSD flag
is clear, the RDTSC instruction can be executed at any privilege level; when the flag
is set, the instruction can only be executed at privilege level 0. (When in real-address
mode, the RDTSC instruction is always enabled.)

The time-stamp counter can also be read with the RDMSR instruction, when
executing at privilege level 0.

The RDTSC instruction is not a serializing instruction. Thus, it does not necessarily
wait until all previous instructions have been executed before reading the counter.
Similarly, subsequent instructions may begin execution before the read operation is
performed.

This instruction was introduced by the Pentium processor.

In 64-bit mode, RDTSC behavior is unchanged from 32-bit mode. The upper 32 bits
of RAX and RDX are cleared.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for
more information about the behavior of this instruction in VMX non-root operation.

Operation
IF (CR4.TSD = 0) or (CPL = 0) or (CRO.PE=0)
THEN
IF 64-Bit Mode
THEN
RAX[31:0] «— TimeStampCounter[31:0];
RAX[63:32] < O;

4-246 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

RDX[31:0] «- TimeStampCounter[63:32];
RDX[63:32] < O;
ELSE
EDX:EAX « TimeStampCounter;
Fl;
ELSE (* CR4A.TSD =1 and (CPL =1, 2, or 3) and CRO.PE = 1 *)
#GP(0);
Fl;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than
0.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.

Vol.2B 4-247

INSTRUCTION SET REFERENCE, N-Z

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

Opcode
F3 6C

F36C
F36D
F36D
F36D
F3 A4
F3 REXW A4
F3 A5
F3 A5
F3 REX.W A5
F3 6E
F3 REX.W 6E
F3 6F
F3 6F
F3 REXW 6F
F3 AC
F3 REXW AC
F3AD
F3AD

F3 REX.W AD

Instruction

REP INS m8, DX

REP INS m8, DX

REP INS m16, DX

REP INS m32, DX

REP INS r/m32, DX

REP MOVS m8, m8

REP MOVS m8, m8

REP MOVS m16,

mi16

REP MOVS m32,

m32

REP MOVS m64,

mé64

REP OUTS DX,
r/m8

REP OUTS DX,
r/m8*

REP OUTS DX,
r/mi16

REP OUTS DX,
r/m32

REP OUTS DX,
r/m32

REP LODS AL
REP LODS AL
REP LODS AX
REP LODS EAX

REP LODS RAX

64-Bit

Mode

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Compat/
Leg Mode
Valid
N.E.
Valid
Valid
N.E.
Valid
N.E.
Valid
Valid
N.E.
Valid
N.E.
Valid
Valid
N.E.
Valid
N.E.
Valid
Valid

N.E.

Description

Input (E)CX bytes from port
DX into ES:[(E)DI].

Input RCX bytes from port DX
into [RDI].

Input (E)CX words from port
DX into ES:[(E)DI.]

Input (E)CX doublewords from
port DX into ES:[(E)DI].

Input RCX default size from
port DX into [RDI].

Move (E)CX bytes from
DS:[(E)SI] to ES:[(E)DI].

Move RCX bytes from [RSI] to
[RDI].

Move (E)CX words from
DS:[(E)SI] to ES:[(E)DI].

Move (E)CX doublewords from
DS:[(E)SI] to ES:[(E)DI].

Move RCX quadwords from
[RSI] to [RDI].

Output (E)CX bytes from
DS:[(E)SI] to port DX.

Output RCX bytes from [RSI]
to port DX.

Output (E)CX words from
DS:[(E)SI] to port DX.

Output (E)CX doublewords
from DS:[(E)SI] to port DX.
Output RCX default size from
[RSI] to port DX.

Load (E)CX bytes from
DS:[(E)SI] to AL.

Load RCX bytes from [RSI] to
AL.

Load (E)CX words from
DS:[(E)SI] to AX.

Load (E)CX doublewords from
DS:[(E)SI] to EAX.

Load RCX quadwords from
[RSI] to RAX.

4-248 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Opcode
F3 AA

F3 REX.W AA
F3 AB

F3 AB
F3 REXW AB
F3 A6
F3 REXW A6
F3 A7

F3 A7

F3 REX.W A7
F3 AE
F3 REX.W AE
F3 AF
F3 AF
F3 REX.W AF
F2 A6
F2 REX.W A6
F2 A7
F2 A7

F2 REX.W A7

Instruction
REP STOS m8

REP STOS m8
REP STOS m16

REP STOS m32

REP STOS m64

REPE CMPS m8,
m8

REPE CMPS m8,
m8

REPE CMPS m16,
m16

REPE CMPS m32,
m32

REPE CMPS m64,
mé64

REPE SCAS m8

REPE SCAS m8

REPE SCAS m16

REPE SCAS m32

REPE SCAS m64

REPNE CMPS m8,
m8

REPNE CMPS m8,
m8

REPNE CMPS m16,
m16

REPNE CMPS m32,
m32

REPNE CMPS m64,
m64

64-Bit
Mode
Valid

Valid
Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Compat/
Leg Mode

Valid

N.E.
Valid

Valid
N.E.
Valid
N.E.
Valid

Valid

N.E.
Valid
N.E.
Valid
Valid
N.E.
Valid
N.E.
Valid
Valid

N.E.

Description

Fill (E)CX bytes at ES:[(E)DI]
with AL.

Fill RCX bytes at [RDI] with AL.
Fill (€)CX words at ES:[(E)DI]
with AX.

Fill (E)CX doublewords at
ES:[(E)DI] with EAX.

Fill RCX quadwords at [RDI]
with RAX.

Find nonmatching bytes in
ES:[(E)DI] and DS:[(E)SI].

Find non-matching bytes in
[RDI] and [RSI].

Find nonmatching words in
ES:[(E)DI] and DS:[(E)SI].

Find nonmatching
doublewords in ES:[(E)DI] and
DS:[(E)SI].

Find non-matching quadwords
in [RDI] and [RSI].

Find non-AL byte starting at
ES:[(E)DI].

Find non-AL byte starting at
[RDI].

Find non-AX word starting at
ES:[(E)DI].

Find non-EAX doubleword
starting at ES:[(E)DI].

Find non-RAX quadword
starting at [RDI].

Find matching bytes in
ES:[(E)DI] and DS:[(E)SI].

Find matching bytes in [RDI]
and [RSI].

Find matching words in
ES:[(E)DI] and DS:[(E)SI].

Find matching doublewords in
ES:[(E)DI] and DS:[(E)SI].

Find matching doublewords in
[RDI] and [RSI].

Vol.2B 4-249

INSTRUCTION SET REFERENCE, N-Z

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

F2 AE REPNE SCAS m8 Valid Valid Find AL, starting at ES:[(E)DI].
F2 REX.W AE REPNE SCAS m8 Valid N.E. Find AL, starting at [RDI].

F2 AF REPNE SCAS m16 Valid Valid Find AX, starting at ES:[(E)DI].
F2 AF REPNE SCAS m32 Valid Valid Find EAX, starting at ES:[(E)DI].
F2 REX.W AF REPNE SCAS m64 Valid N.E. Find RAX, starting at [RDI].
NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix
is used: AH, BH, CH, DH.

Description

Repeats a string instruction the number of times specified in the count register or
until the indicated condition of the ZF flag is no longer met. The REP (repeat), REPE
(repeat while equal), REPNE (repeat while not equal), REPZ (repeat while zero), and
REPNZ (repeat while not zero) mnemonics are prefixes that can be added to one of
the string instructions. The REP prefix can be added to the INS, OUTS, MOVS, LODS,
and STOS instructions, and the REPE, REPNE, REPZ, and REPNZ prefixes can be
added to the CMPS and SCAS instructions. (The REPZ and REPNZ prefixes are synon-
ymous forms of the REPE and REPNE prefixes, respectively.) The behavior of the REP
prefix is undefined when used with non-string instructions.

The REP prefixes apply only to one string instruction at a time. To repeat a block of
instructions, use the LOOP instruction or another looping construct. All of these
repeat prefixes cause the associated instruction to be repeated until the count in
register is decremented to 0. See Table 4-3.

Table 4-3. Repeat Prefixes

Repeat Prefix Termination Condition 1* Termination Condition 2
REP RCX or (E)CX=0 None

REPE/REPZ RCX or (E)CX=0 ZF=0

REPNE/REPNZ RCX or (E)CX=0 ZF=1

NOTES:

* Count register is CX, ECX or RCX by default, depending on attributes of the operating modes. In
64-bit mode, if default operation size is 32 bits, the count register becomes RCX when a REX.W
prefix is used.

The REPE, REPNE, REPZ, and REPNZ prefixes also check the state of the ZF flag after
each iteration and terminate the repeat loop if the ZF flag is not in the specified state.
When both termination conditions are tested, the cause of a repeat termination can

4-250 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

be determined either by testing the count register with a JECXZ instruction or by
testing the ZF flag (with a JZ, JNZ, or JNE instruction).

When the REPE/REPZ and REPNE/REPNZ prefixes are used, the ZF flag does not
require initialization because both the CMPS and SCAS instructions affect the ZF flag
according to the results of the comparisons they make.

A repeating string operation can be suspended by an exception or interrupt. When
this happens, the state of the registers is preserved to allow the string operation to
be resumed upon a return from the exception or interrupt handler. The source and
destination registers point to the next string elements to be operated on, the EIP
register points to the string instruction, and the ECX register has the value it held
following the last successful iteration of the instruction. This mechanism allows long
string operations to proceed without affecting the interrupt response time of the
system.

When a fault occurs during the execution of a CMPS or SCAS instruction that is
prefixed with REPE or REPNE, the EFLAGS value is restored to the state prior to the
execution of the instruction. Since the SCAS and CMPS instructions do not use
EFLAGS as an input, the processor can resume the instruction after the page fault
handler.

Use the REP INS and REP OUTS instructions with caution. Not all 1/0 ports can handle
the rate at which these instructions execute. Note that a REP STOS instruction is the
fastest way to initialize a large block of memory.

In 64-bit mode, default operation size is 32 bits. The default count register is RCX for
REP INS and REP OUTS; it is ECX for other instructions. REX.W does not promote
operation to 64-bit for REP INS and REP OUTS. However, using a REX prefix in the
form of REX.W does promote operation to 64-bit operands for other
REP/REPNE/REPZ/REPNZ instructions. See the summary chart at the beginning of
this section for encoding data and limits.

Operation
IF AddressSize =16
THEN
Use CX for CountReg;

ELSE IF AddressSize = 64 and REX.W used
THEN Use RCX for CountReg; FI;
ELSE
Use ECX for CountReg;
Fl;
WHILE CountReg = 0
DO
Service pending interrupts (if any);
Execute associated string instruction;
CountReg « (CountReg - 1);
IF CountReg =0

Vol. 2B 4-251

INSTRUCTION SET REFERENCE, N-Z

THEN exit WHILE loop; FI;
IF (Repeat prefix is REPZ or REPE) and (ZF = 0)
or (Repeat prefix is REPNZ or REPNE) and (ZF = 1)
THEN exit WHILE loop; FI;
OD;

Flags Affected

None; however, the CMPS and SCAS instructions do set the status flags in the
EFLAGS register.

Exceptions (All Operating Modes)

None; however, exceptions can be generated by the instruction a repeat prefix is
associated with.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

4-252 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

RET—Return from Procedure

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

C3 RET Valid Valid Near return to calling procedure.

(B RET Valid Valid Far return to calling procedure.

C2 iw RET imm16 Valid Valid Near return to calling procedure and
pop imm16 bytes from stack.

CA iw RET imm16 Valid Valid Far return to calling procedure and pop
imm16 bytes from stack.

Description

Transfers program control to a return address located on the top of the stack. The
address is usually placed on the stack by a CALL instruction, and the return is made
to the instruction that follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after
the return address is popped; the default is none. This operand can be used to
release parameters from the stack that were passed to the called procedure and are
no longer needed. It must be used when the CALL instruction used to switch to a new
procedure uses a call gate with a non-zero word count to access the new procedure.
Here, the source operand for the RET instruction must specify the same number of
bytes as is specified in the word count field of the call gate.

The RET instruction can be used to execute three different types of returns:

® Near return—A return to a calling procedure within the current code segment
(the segment currently pointed to by the CS register), sometimes referred to as
an intrasegment return.

® Far return—A return to a calling procedure located in a different segment than
the current code segment, sometimes referred to as an intersegment return.

® Inter-privilege-level far return—A far return to a different privilege level than that
of the currently executing program or procedure.

The inter-privilege-level return type can only be executed in protected mode. See the
section titled “Calling Procedures Using Call and RET” in Chapter 6 of the Intel® 64
and 1A-32 Architectures Software Developer’'s Manual, Volume 1, for detailed infor-
mation on near, far, and inter-privilege-level returns.

When executing a near return, the processor pops the return instruction pointer
(offset) from the top of the stack into the EIP register and begins program execution
at the new instruction pointer. The CS register is unchanged.

When executing a far return, the processor pops the return instruction pointer from
the top of the stack into the EIP register, then pops the segment selector from the top
of the stack into the CS register. The processor then begins program execution in the
new code segment at the new instruction pointer.

Vol.2B 4-253

INSTRUCTION SET REFERENCE, N-Z

The mechanics of an inter-privilege-level far return are similar to an intersegment
return, except that the processor examines the privilege levels and access rights of
the code and stack segments being returned to determine if the control transfer is
allowed to be made. The DS, ES, FS, and GS segment registers are cleared by the
RET instruction during an inter-privilege-level return if they refer to segments that
are not allowed to be accessed at the new privilege level. Since a stack switch also
occurs on an inter-privilege level return, the ESP and SS registers are loaded from
the stack.

If parameters are passed to the called procedure during an inter-privilege level call,
the optional source operand must be used with the RET instruction to release the
parameters on the return. Here, the parameters are released both from the called
procedure’s stack and the calling procedure’s stack (that is, the stack being returned
to).

In 64-bit mode, the default operation size of this instruction is the stack size, i.e. 64
bits.

Operation

(* Near return *)
IF instruction = Near return

THEN;
IF OperandSize = 32
THEN
IF top 4 bytes of stack not within stack limits
THEN #SS(0); FI;
EIP « Pop();
ELSE
IF OperandSize = 64
THEN
IF top 8 bytes of stack not within stack limits
THEN #SS(0); FI;
RIP « Pop();
ELSE (* OperandSize = 16 *)
IF top 2 bytes of stack not within stack limits
THEN #SS(0); FI;
tempEIP « Pop();
tempEIP « tempEIP AND O000FFFFH;
IF tempEIP not within code segment limits
THEN #GP(0); FI;
EIP « tempEIP;
Fl;
Fl;

4-254 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

IF instruction has immediate operand
THEN IF StackAddressSize = 32
THEN
ESP « ESP + SRC; (* Release parameters from stack *)
ELSE
IF StackAddressSize = 64
THEN
RSP « RSP + SRC; (* Release parameters from stack *)
ELSE (* StackAddressSize = 16 *)
SP « SP + SRC; (* Release parameters from stack *)
Fl;
Fl;
FI;
Fl;

(* Real-address mode or virtual-8086 mode *)
IF (PE=0)or (PE=1 AND VM = 1)) and instruction = far return
THEN
IF OperandSize = 32
THEN
IF top 12 bytes of stack not within stack limits
THEN #SS(0); FI;
EIP « Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded *)
ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack not within stack limits
THEN #SS(0); FI;
tempEIP « Pop();
tempElIP <« tempEIP AND O000FFFFH;
IF tempEIP not within code segment limits
THEN #GP(0); FI;
EIP « tempEIP;
CS « Pop(); (* 16-bit pop *)
FI;
IF instruction has immediate operand
THEN
SP « SP + (SRC AND FFFFH); (* Release parameters from stack *)
FI;
Fl;

(* Protected mode, not virtual-8086 mode *)
IF (PE=1and VM =0 and IA32_EFER.LMA = 0) and instruction = far RET
THEN

Vol. 2B 4-255

INSTRUCTION SET REFERENCE, N-Z

Fl;

IF OperandSize = 32
THEN
IF second doubleword on stack is not within stack limits
THEN #SS(0); FI;
ELSE (* OperandSize = 16 *)
IF second word on stack is not within stack limits
THEN #SS(0); FI;

FI;
IF return code segment selector is NULL

THEN #GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit

THEN #GP(selector); FI;
Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is non-conforming and return code
segment DPL # return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI:
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;

ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL;
FI;

RETURN-SAME-PRIVILEGE-LEVEL:

IF the return instruction pointer is not within ther return code segment limit
THEN #GP(0); FI;
IF OperandSize = 32
THEN
EIP « Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded *)
ESP « ESP + SRC; (* Release parameters from stack *)
ELSE (* OperandSize = 16 *)
EIP « Pop();
EIP < EIP AND O00OFFFFH;
CS « Pop(); (* 16-bit pop *)
ESP « ESP + SRC; (* Release parameters from stack *)

4-256 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Fl;

RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32)
or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)
THEN #SS(0); FI;
Read return segment selector;
IF stack segment selector is NULL
THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits
THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL = RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL # RPL of the return code segment selector
THEN #GP(selector); FI;
IF stack segment not present
THEN #SS(StackSegmentSelector); FI;
IF the return instruction pointer is not within the return code segment limit
THEN #GP(0); FI;
CPL «— ReturnCodeSegmentSelector(RPL);
IF OperandSize = 32
THEN
EIP < Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded; segment descriptor
information also loaded *)
CS(RPL) « CPL;
ESP « ESP + SRC; (* Release parameters from called procedure’s stack *)
tempESP « Pop();
tempSS « Pop(); (* 32-bit pop, high-order 16 bits discarded; segment
descriptor information also loaded *)
ESP « tempESP;
SS « tempSS;
ELSE (* OperandSize = 16 *)
EIP « Pop();
EIP < EIP AND O00OFFFFH;
CS « Pop(); (* 16-bit pop; segment descriptor information also loaded *)
CS(RPL) «— CPL;
ESP « ESP + SRC; (* Release parameters from called procedure’s stack *)
tempESP « Pop();
tempSS « Pop(); (* 16-bit pop; segment descriptor information also loaded *)
ESP « tempESP;
SS « tempSS;

Vol.2B 4-257

INSTRUCTION SET REFERENCE, N-Z

Fl;

FOR each of segment register (€S, FS, GS, and DS)
DO
IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL (* DPL in hidden part of segment register *)
THEN SegmentSelector «— O; (* Segment selector invalid *)
Fl;
OD;

For each of €S, FS, GS, and DS
DO
IF segment selector index is not within descriptor table limits
or segment descriptor indicates the segment is not a data or
readable code segment
or if the segment is a data or non-conforming code segment
and the segment descriptor's DPL < CPL or RPL of code segment’s
segment selector
THEN SegmentSelector «— O; (* Segment selector invalid *)
0D;
ESP « ESP + SRC; (* Release parameters from calling procedure’s stack *)

(* IA-32e Mode *)
IF (PE=1and VM =0 and IA32_EFER.LMA = 1) and instruction = far RET
THEN
IF OperandSize = 32
THEN
IF second doubleword on stack is not within stack limits
THEN #SS(0); FI;
IF first or second doubleword on stack is not in canonical space
THEN #SS(0); FI;
ELSE
IF OperandSize = 16
THEN
IF second word on stack is not within stack limits
THEN #SS(0); FI;
IF first or second word on stack is not in canonical space
THEN #SS(0); FI;
ELSE (* OperandSize = 64 *)
IF first or second quadword on stack is not in canonical space
THEN #SS(0); FI;
Fl
Fl;
IF return code segment selector is NULL

4-258 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

THEN GP(0); FI;

IF return code segment selector addresses descriptor beyond descriptor table limit

THEN GP(selector); Fl;
IF return code segment selector addresses descriptor in non-canonical space
THEN GP(selector); Fl;

Obtain descriptor to which return code segment selector points from descriptor table;

IF return code segment descriptor is not a code segment
THEN #GP(selector); FI;

IF return code segment descriptor has L-bit = 1 and D-bit = 1
THEN #GP(selector); FI;

IF return code segment selector RPL < CPL
THEN #GP(selector); FI;

IF return code segment descriptor is conforming

and return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;

IF return code segment descriptor is non-conforming

and return code segment DPL # return code segment selector RPL
THEN #GP(selector); FI;

IF return code segment descriptor is not present
THEN #NP(selector); FI:

IF return code segment selector RPL > CPL
THEN GOTO IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL;

FI;

FI;

IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within the return code segment limit
THEN #GP(0); FI;
IF the return instruction pointer is not within canonical address space
THEN #GP(0); FI;
IF OperandSize = 32
THEN
EIP « Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded *)
ESP « ESP + SRC; (* Release parameters from stack *)
ELSE
IF OperandSize = 16
THEN
EIP « Pop();
EIP < EIP AND OO0OFFFFH;
CS <« Pop(); (* 16-bit pop *)
ESP « ESP + SRC; (* Release parameters from stack *)

Vol.2B 4-259

INSTRUCTION SET REFERENCE, N-Z

ELSE (* OperandSize = 64 *)
RIP « Pop();
CS « Pop(); (* 64-bit pop, high-order 48 bits discarded *)
ESP « ESP + SRC; (* Release parameters from stack *)
Fl;
Fl;

IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32)
or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)
THEN #SS(0); FI;
IF top (16 + SRC) bytes of stack are not in canonical address space (OperandSize = 32)
or top (8 + SRC) bytes of stack are not in canonical address space (OperandSize = 16)
or top (32 + SRC) bytes of stack are not in canonical address space (OperandSize = 64)
THEN #SS(0); FI;
Read return stack segment selector;
IF stack segment selector is NULL
THEN
IF new CS descriptor L-bit = 0
THEN #GP(selector);
IF stack segment selector RPL = 3
THEN #GP(selector);
FI;
IF return stack segment descriptor is not within descriptor table limits
THEN #GP(selector); FI;
IF return stack segment descriptor is in non-canonical address space
THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL = RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL # RPL of the return code segment selector
THEN #GP(selector); FI;
IF stack segment not present
THEN #SS(StackSegmentSelector); FI;
IF the return instruction pointer is not within the return code segment limit
THEN #GP(0); FI:
IF the return instruction pointer is not within canonical address space
THEN #GP(0); FI;
CPL « ReturnCodeSegmentSelector(RPL);
IF OperandSize = 32
THEN
EIP « Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor

4-260 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

information also loaded *)
CS(RPL) « CPL;
ESP « ESP + SRC; (* Release parameters from called procedure’s stack *)
tempESP « Pop();
tempSS « Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor
information also loaded *)
ESP « tempESP;
SS « tempSS;
ELSE
IF OperandSize = 16
THEN
EIP « Pop();
EIP < EIP AND OO0OFFFFH;
CS « Pop(); (* 16-bit pop; segment descriptor information also loaded *)
CS(RPL) «— CPL;
ESP « ESP + SRC; (* release parameters from called
procedure’s stack *)
tempESP « Pop();
tempSS « Pop(); (* 16-bit pop; segment descriptor information loaded *)
ESP « tempESP;
SS « tempSS;
ELSE (* OperandSize = 64 *)
RIP «— Pop();
CS « Pop(); (* 64-bit pop; high-order 48 bits discarded; segment
descriptor information loaded *)
CS(RPL) «— CPL;
ESP « ESP + SRC; (* Release parameters from called procedure’s
stack *)
tempESP <« Pop();
tempSS « Pop(); (* 64-bit pop; high-order 48 bits discarded; segment
descriptor information also loaded *)
ESP <« tempESP;
SS « tempSS;
Fl;
Fl;

FOR each of segment register (€S, FS, GS, and DS)
DO
IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL; (* DPL in hidden part of segment register *)
THEN SegmentSelector «— O; (* SegmentSelector invalid *)
FI;
0D;

Vol.2B 4-261

INSTRUCTION SET REFERENCE, N-Z

For each of ES, FS, GS, and DS

DO

IF segment selector index is not within descriptor table limits

or segment descriptor indicates the segment is not a data or readable code segment

or if the segment is a data or non-conforming code segment

and the segment descriptor's DPL < CPL or RPL of code segment’'s segment selector
THEN SegmentSelector « O; (* SegmentSelector invalid *)

0D;

ESP ESP + SRC; (* Release parameters from calling procedure’s stack *)

Flags Affected

None.

Protected Mode Exceptions

#GP(0)

#GP(selector)

#SS(0)
#NP(selector)

#PF(fault-code)
#AC(0)

4-262 Vol. 2B

If the return code or stack segment selector NULL.

If the return instruction pointer is not within the return code
segment limit

If the RPL of the return code segment selector is less then the
CPL.

If the return code or stack segment selector index is not within
its descriptor table limits.

If the return code segment descriptor does not indicate a code
segment.

If the return code segment is non-conforming and the segment
selector’s DPL is not equal to the RPL of the code segment’s
segment selector

If the return code segment is conforming and the segment
selector’s DPL greater than the RPL of the code segment’s
segment selector

If the stack segment is not a writable data segment.

If the stack segment selector RPL is not equal to the RPL of the
return code segment selector.

If the stack segment descriptor DPL is not equal to the RPL of
the return code segment selector.

If the top bytes of stack are not within stack limits.
If the return stack segment is not present.

If the return code segment is not present.

If a page fault occurs.

If an unaligned memory access occurs when the CPL is 3 and
alignment checking is enabled.

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP

#SS

If the return instruction pointer is not within the return code
segment limit

If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If the return instruction pointer is not within the return code
segment limit

If the top bytes of stack are not within stack limits.
If a page fault occurs.

If an unaligned memory access occurs when alignment checking
is enabled.

Compatibility Mode Exceptions
Same as 64-bit mode exceptions.

64-Bit Mode Exceptions

#GP(0)

#GP(selector)

If the return instruction pointer is non-canonical.

If the return instruction pointer is not within the return code
segment limit.

If the stack segment selector is NULL going back to compatibility
mode.

If the stack segment selector is NULL going back to CPL3 64-bit
mode.

If a NULL stack segment selector RPL is not equal to CPL going
back to non-CPL3 64-bit mode.

If the return code segment selector is NULL.

If the proposed segment descriptor for a code segment does not
indicate it is a code segment.

If the proposed new code segment descriptor has both the D-bit
and L-bit set.

If the DPL for a nonconforming-code segment is not equal to the
RPL of the code segment selector.

If CPL is greater than the RPL of the code segment selector.

If the DPL of a conforming-code segment is greater than the
return code segment selector RPL.

If a segment selector index is outside its descriptor table limits.
If a segment descriptor memory address is non-canonical.
If the stack segment is not a writable data segment.

Vol.2B 4-263

INSTRUCTION SET REFERENCE, N-Z

#SS(0)

#NP(selector)
#PF(fault-code)
#AC(0)

4-264 Vol. 2B

If the stack segment descriptor DPL is not equal to the RPL of
the return code segment selector.

If the stack segment selector RPL is not equal to the RPL of the
return code segment selector.

If an attempt to pop a value off the stack violates the SS limit.

If an attempt to pop a value off the stack causes a non-canonical
address to be referenced.

If the return code or stack segment is not present.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

INSTRUCTION SET REFERENCE, N-Z

RSM—Resume from System Management Mode

Non-
SMM
Opcode Instruction Mode SMM Mode Description
OF AA RSM Invalid Valid Resume operation of interrupted

program.

Description

Returns program control from system management mode (SMM) to the application
program or operating-system procedure that was interrupted when the processor
received an SMM interrupt. The processor’s state is restored from the dump created
upon entering SMM. If the processor detects invalid state information during state
restoration, it enters the shutdown state. The following invalid information can cause
a shutdown:

® Any reserved bit of CR4 is set to 1.

® Any illegal combination of bits in CRO, such as (PG=1 and PE=0) or (NW=1 and
CD=0).

® (Intel Pentium and Intel486™ processors only.) The value stored in the state
dump base field is not a 32-KByte aligned address.

The contents of the model-specific registers are not affected by a return from SMM.

The SMM state map used by RSM supports resuming processor context for non-
64-bit modes and 64-bit mode.

See Chapter 24, “System Management,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B, for more information about SMM and the
behavior of the RSM instruction.

Operation

ReturnFromSMM;
IF (IA-32e mode supported)
THEN
ProcessorState «— Restore(SMMDump(IA-32e SMM STATE MAP));
Else
ProcessorState «— Restore(SMMDump(Non-32-Bit-Mode SMM STATE MAP));
Fl

Flags Affected
All.

Vol. 2B 4-265

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#UD If an attempt is made to execute this instruction when the
processor is not in SMM.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.

4-266 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-
Precision Floating-Point Values

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF52/r RSQRTPS xmm1, Valid Valid Computes the approximate
xmm2/m128 reciprocals of the square roots of

the packed single-precision floating-
point values in xmm2/m128 and
stores the results in xmm1.

Description

Performs a SIMD computation of the approximate reciprocals of the square roots of
the four packed single-precision floating-point values in the source operand (second
operand) and stores the packed single-precision floating-point results in the destina-
tion operand. The source operand can be an XMM register or a 128-bit memory loca-
tion. The destination operand is an XMM register. See Figure 10-5 in the Intel® 64
and 1A-32 Architectures Software Developer’'s Manual, Volume 1, for an illustration of
a SIMD single-precision floating-point operation.

The relative error for this approximation is:

|Relative Error] < 1.5 * 2712

The RSQRTPS instruction is not affected by the rounding control bits in the MXCSR
register. When a source value is a 0.0, an « of the sign of the source value is
returned. A denormal source value is treated as a 0.0 (of the same sign). When a
source value is a negative value (other than —-0.0), a floating-point indefinite is
returned. When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN
or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] « APPROXIMATE(1.0/SQRT(SRC[31:0]));
DEST[63:32] < APPROXIMATE(1.0/SQRT(SRC[63:32)));
DEST[95:64] < APPROXIMATE(1.0/SQRT(SRC[95:64]));
DEST[127:96] « APPROXIMATE(1.0/SQRT(SRC[127:96]));

Intel C/C++ Compiler Intrinsic Equivalent
RSQRTPS _m128 _mm_rsqrt_ps(__m128 a)

Vol.2B 4-267

INSTRUCTION SET REFERENCE, N-Z

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = O.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = O.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

4-268 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

Vol.2B 4-269

INSTRUCTION SET REFERENCE, N-Z

RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-
Precision Floating-Point Value

64-Bit Compat/

Opcode Instruction Mode LegMode Description
F3 OF 52 RSQRTSS xmm1, Valid Valid Computes the approximate reciprocal
Ir xmm2/m32 of the square root of the low single-

precision floating-point value in
xmmZ2/m32 and stores the results in
xmm1.

Description

Computes an approximate reciprocal of the square root of the low single-precision
floating-point value in the source operand (second operand) stores the single-preci-
sion floating-point result in the destination operand. The source operand can be an
XMM register or a 32-bit memory location. The destination operand is an XMM
register. The three high-order doublewords of the destination operand remain
unchanged. See Figure 10-6 in the Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volume 1, for an illustration of a scalar single-precision floating-
point operation.

The relative error for this approximation is:

IRelative Error| < 1.5 % 2712

The RSQRTSS instruction is not affected by the rounding control bits in the MXCSR
register. When a source value is a 0.0, an « of the sign of the source value is
returned. A denormal source value is treated as a 0.0 (of the same sign). When a
source value is a negative value (other than —-0.0), a floating-point indefinite is
returned. When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN
or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] < APPROXIMATE(1.0/SQRT(SRC[31:0]));
(* DEST[127:32] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
RSQRTSS _m128 _mm_rsqrt_ss(__m128a)

4-270 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

Vol.2B 4-271

INSTRUCTION SET REFERENCE, N-Z

#UD

#AC(0)

4-272 Vol. 2B

If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = O.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

INSTRUCTION SET REFERENCE, N-Z

SAHF—Store AH into Flags

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
9E SAHF Invalid* Valid Loads SF, ZF, AF, PF, and CF from AH
into EFLAGS register.
NOTE:

* Valid in specific steppings. See Description section.

Description

Loads the SF, ZF, AF, PF, and CF flags of the EFLAGS register with values from the
corresponding bits in the AH register (bits 7, 6, 4, 2, and 0, respectively). Bits 1, 3,
and 5 of register AH are ignored; the corresponding reserved bits (1, 3, and 5) in the
EFLAGS register remain as shown in the “Operation” section below.

This instruction executes as described above in compatibility mode and legacy mode.
It is valid in 64-bit mode only if CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1.

Operation

IF IA-64 Mode
THEN
IF CPUID.B0O000001.ECX[0] = 1;
THEN
RFLAGS(SF:.ZF:0:AF:0:PF:1:.CF) «— AH;
ELSE
#UD;
Fl
ELSE
EFLAGS(SF:ZF.0:AF.0:PF:1:.CF) < AH;
Fl;

Flags Affected

The SF, ZF, AF, PF, and CF flags are loaded with values from the AH register. Bits 1, 3,
and 5 of the EFLAGS register are unaffected, with the values remaining 1, 0, and O,
respectively.

Protected Mode Exceptions
None.

Real-Address Mode Exceptions
None.

Vol.2B 4-273

INSTRUCTION SET REFERENCE, N-Z
Virtual-8086 Mode Exceptions
None.

Compatibility Mode Exceptions
None.

64-Bit Mode Exceptions
#UD If CPUID.80000001.ECX[0] = O.

4-274 Vol. 2B

SAL/SAR/SHU/SHR—Shift

INSTRUCTION SET REFERENCE, N-Z

Opcode***
D0 /4

REX + DO /4
D2 /4

REX + D2 /4
C0/4ib

REX +CO /4 ib

D1/4
D3 /4

C1/4ib

D1/4
REXW +D1 /4
D3 /4

REXW + D3 /4
C1/4ib

REXW +C1/4 ib
DO /7

REX + DO /7

D2 /7

REX + D2 /7
Co0/7ib
REX+CO/7 ib

D1/7

Instruction

SAL r/m8, 1

SAL r/m8**, 1
SAL r/m8, CL
SAL r/m8** CL
SAL r/m8, imm8

SAL r/m8**, imm8

SAL r/m16, 1
SAL r/m16, CL

SAL r/m16, imm8

SAL r/m32, 1
SAL r/m64, 1
SAL r/m32, CL

SAL r/m64, CL
SAL r/m32, imm8
SAL r/m64, imm8
SAR r/m8, 1

SAR r/m8**, 1
SAR r/m8, CL
SAR r/m8**, CL
SAR r/m8, imm8
SAR r/m8**,

imm8
SAR r/m16,1

64-Bit
Mode
Valid
Valid
Valid
Valid
Valid

Valid

Valid
Valid

Valid

Valid
Valid
Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Compat/
Leg Mode

Valid
N.E.
Valid
N.E.
Valid

N.E.

Valid
Valid

Valid

Valid
N.E.
Valid

N.E.
Valid
N.E.
Valid
N.E.
Valid
N.E.
Valid
N.E.

Valid

Description

Multiply r/m8by 2, once.
Multiply r/m8 by 2, once.
Multiply r/m8 by 2, CL times.
Multiply r/m8 by 2, CL times.
Multiply /m8by 2, imm8
times.

Multiply /m8by 2, imm8
times.

Multiply /m16 by 2, once.
Multiply /m16 by 2, CL
times.

Multiply /m16 by 2, imm8
times.

Multiply r/m32 by 2, once.
Multiply r/m64 by 2, once.
Multiply /m32 by 2, CL
times.

Multiply r/m64 by 2, CL
times.

Multiply r/m32 by 2, imm8
times.

Multiply /m64 by 2, imm8
times.

Signed divide* r/m8by 2,
once.

Signed divide* r/m8by 2,
once.

Signed divide* r/m8by 2, CL
times.

Signed divide* r/m8by 2, CL
times.

Signed divide* r/m8by 2,
imm8 time.

Signed divide* r/m8by 2,
imm8 times.

Signed divide* r/m16 by 2,
once.

Vol.2B 4-275

INSTRUCTION SET REFERENCE, N-Z

Opcode
D3/7

C1/7ib

D177

REX.W + D1 /7
D377

REX.W + D3 /7
C1/7ib

REXW +C1 /7 ib

DO /4

REX + DO /4
D2 /4

REX + D2 /4
C0/4ib

REX +CO /4 ib

D1/4
D3/4

C1/4ib

D1/4
REX.W + D1 /4
D3 /4

REX.W + D3 /4
C1/4ib

REXW +C1 /4 ib

Instruction
SAR r/m16, CL

SAR r/m16, imm8

SAR r/m32,1

SAR r/m64, 1

SAR r/m32, CL

SAR r/m64, CL

SAR r/m32, imm8

SAR r/m64, imm8

SHL r/m8, 1

SHL r/m8**, 1
SHL r/m8, CL
SHL r/m8**, CL
SHL r/m8, imm8

SHL /m8**, imm8

SHL r/m16,1
SHL r/m16, CL

SHL r/m16, imm8

SHL r/m32,1
SHL r/m64,1
SHL r/m32, CL

SHL r/mé64, CL

SHL r/m32, imm8

SHL r/m64, imm8

64-Bit
Mode
Valid
Valid
Valid
Valid
Valid
Valid
Valid

Valid

Valid
Valid
Valid
Valid
Valid

Valid

Valid
Valid

Valid

Valid
Valid
Valid

Valid

Valid

Valid

Compat/
Leg Mode
Valid

Valid

Valid

N.E.

Valid

N.E.

Valid

N.E.

Valid
N.E.
Valid
N.E.
Valid

N.E.

Valid
Valid

Valid

Valid
N.E.
Valid

N.E.
Valid

N.E.

Description

Signed divide* r/m16 by 2,
CL times.

Signed divide* /m16 by 2,
imm8 times.

Signed divide* r/m32 by 2,
once.

Signed divide* r/m64 by 2,
once.

Signed divide* /m32by 2,
CL times.

Signed divide* r/m64 by 2,
CL times.

Signed divide* /m32by 2,
imm8 times.

Signed divide* r/m64 by 2,
imm8 times

Multiply /m8by 2, once.
Multiply r/m8by 2, once.
Multiply /m8by 2, CL times.
Multiply /m8by 2, CL times.
Multiply /m8by 2, imm8
times.

Multiply /m8by 2, imm8
times.

Multiply /m16 by 2, once.
Multiply /m16 by 2, CL
times.

Multiply /m16 by 2, imm8
times.

Multiply /m32 by 2, once.
Multiply /m64 by 2, once.
Multiply /m32 by 2, CL
times.

Multiply /m64 by 2, CL
times.

Multiply /m32 by 2, imm8
times.

Multiply /m64 by 2, imm8
times.

4-276 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Opcode
DO /5

REX +DO /5
D2 /5

REX +D2 /5
CO/5ib
REX+CO/5ib
D1/5

D3/5

C1/5ib

D1/5

REX.W + D1 /5
D3/5

REX.W + D3 /5
C1/5ib

REXW +C1/5ib

Instruction
SHR /m8,1

SHR r/m8** 1
SHR r/m8, CL
SHR r/m8**, CL
SHR r/m8, imm8
SHR r/m8**,
imm8

SHR r/m16, 1
SHR r/m16, CL
SHR r/m16, imm8
SHR r/m32,1
SHR r/m64, 1
SHR r/m32, CL
SHR r/m64, CL

SHR /m32, imm8

SHR r/m64, imm8

64-Bit

Mode

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Compat/
Leg Mode
Valid

N.E.

Valid

N.E.

Valid

N.E.

Valid
Valid
Valid
Valid

N.E.

Valid

N.E.

Valid

N.E.

Description

Unsigned divide /m8by 2,
once.

Unsigned divide /m8by 2,
once.

Unsigned divide /m8by 2,
CL times.

Unsigned divide /m8by 2,
CL times.

Unsigned divide /m8by 2,
imm8 times.

Unsigned divide /m8by 2,
imm8 times.

Unsigned divide r/m16 by 2,
once.

Unsigned divide r/m16 by 2,
CL times

Unsigned divide r/m16 by 2,
imm8 times.

Unsigned divide r/m32 by 2,
once.

Unsigned divide r/m64 by 2,
once.

Unsigned divide r/m32 by 2,
CL times.

Unsigned divide r/m64 by 2,
CL times.

Unsigned divide r/m32 by 2,
imm8 times.

Unsigned divide r/m64 by 2,
imm8 times.

NOTES:

* Not the same form of division as IDIV; rounding is toward negative infinity.

** |n 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix
is used: AH, BH, CH, DH.

***See |A-32 Architecture Compatibility section below.

Description

Shifts the bits in the first operand (destination operand) to the left or right by the
number of bits specified in the second operand (count operand). Bits shifted beyond
the destination operand boundary are first shifted into the CF flag, then discarded. At

Vol.2B 4-277

INSTRUCTION SET REFERENCE, N-Z

the end of the shift operation, the CF flag contains the last bit shifted out of the desti-
nation operand.

The destination operand can be a register or a memory location. The count operand
can be an immediate value or the CL register. The count is masked to 5 bits (or 6 bits
if in 64-bit mode and REX.W is used). The count range is limited to O to 31 (or 63 if
64-bit mode and REX.W is used). A special opcode encoding is provided for a count
of 1.

The shift arithmetic left (SAL) and shift logical left (SHL) instructions perform the
same operation; they shift the bits in the destination operand to the left (toward
more significant bit locations). For each shift count, the most significant bit of the
destination operand is shifted into the CF flag, and the least significant bit is cleared
(see Figure 7-7 in the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 1).

The shift arithmetic right (SAR) and shift logical right (SHR) instructions shift the bits
of the destination operand to the right (toward less significant bit locations). For each
shift count, the least significant bit of the destination operand is shifted into the CF
flag, and the most significant bit is either set or cleared depending on the instruction
type. The SHR instruction clears the most significant bit (see Figure 7-8 in the Intel®
64 and 1A-32 Architectures Software Developer’s Manual, Volume 1); the SAR
instruction sets or clears the most significant bit to correspond to the sign (most
significant bit) of the original value in the destination operand. In effect, the SAR
instruction fills the empty bit position’s shifted value with the sign of the unshifted
value (see Figure 7-9 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1).

The SAR and SHR instructions can be used to perform signed or unsigned division,
respectively, of the destination operand by powers of 2. For example, using the SAR
instruction to shift a signed integer 1 bit to the right divides the value by 2.

Using the SAR instruction to perform a division operation does not produce the same
result as the IDIV instruction. The quotient from the IDIV instruction is rounded
toward zero, whereas the “quotient” of the SAR instruction is rounded toward nega-
tive infinity. This difference is apparent only for negative numbers. For example,
when the IDIV instruction is used to divide -9 by 4, the result is -2 with a remainder
of -1. If the SAR instruction is used to shift -9 right by two bits, the result is -3 and
the “remainder” is +3; however, the SAR instruction stores only the most significant
bit of the remainder (in the CF flag).

The OF flag is affected only on 1-bit shifts. For left shifts, the OF flag is set to O if the
most-significant bit of the result is the same as the CF flag (that is, the top two bits
of the original operand were the same); otherwise, it is set to 1. For the SAR instruc-
tion, the OF flag is cleared for all 1-bit shifts. For the SHR instruction, the OF flag is
set to the most-significant bit of the original operand.

In 64-bit mode, the instruction’s default operation size is 32 bits and the mask width
for CL is 5 bits. Using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to

4-278 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

64-bits and sets the mask width for CL to 6 bits. See the summary chart at the begin-
ning of this section for encoding data and limits.

IA-32 Architecture Compatibility

The 8086 does not mask the shift count. However, all other 1A-32 processors
(starting with the Intel 286 processor) do mask the shift count to 5 bits, resulting in
a maximum count of 31. This masking is done in all operating modes (including the
virtual-8086 mode) to reduce the maximum execution time of the instructions.

Operation

IF 64-Bit Mode and using REX.W
THEN
countMASK « 3FH;
ELSE
countMASK « 1FH;
Fl

tempCOUNT <« (COUNT AND countMASK);
tempDEST « DEST;
WHILE (tempCOUNT = 0)
DO
IF instruction is SAL or SHL
THEN
CF « MSB(DEST);
ELSE (* Instruction is SAR or SHR *)
CF « LSB(DEST);
Fl;
IF instruction is SAL or SHL
THEN
DEST « DEST * 2;
ELSE
IF instruction is SAR
THEN
DEST « DEST / 2; (* Signed divide, rounding toward negative infinity *)
ELSE (* Instruction is SHR *)
DEST « DEST /2 ; (* Unsigned divide *)
Fl;
Fl;
tempCOUNT <« tempCOUNT - 1;
0oD;

(* Determine overflow for the various instructions *)
IF (COUNT and countMASK) = 1

Vol.2B 4-279

INSTRUCTION SET REFERENCE, N-Z

THEN
IF instruction is SAL or SHL
THEN
OF «- MSB(DEST) XOR CF;
ELSE
IF instruction is SAR
THEN
OF «0;
ELSE (* Instruction is SHR *)
OF « MSB(tempDEST);
FI;
FI;
ELSE IF (COUNT AND countMASK) =0
THEN

All flags unchanged;
ELSE (* COUNT not 1 or 0 *)
OF « undefined;
FI;
FI;

Flags Affected

The CF flag contains the value of the last bit shifted out of the destination operand; it
is undefined for SHL and SHR instructions where the count is greater than or equal to
the size (in bits) of the destination operand. The OF flag is affected only for 1-bit
shifts (see “Description” above); otherwise, it is undefined. The SF, ZF, and PF flags
are set according to the result. If the count is 0, the flags are not affected. For a non-
zero count, the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

4-280 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP

#SS

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

Virtual-8086 Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0)

#GP(0)
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Vol. 2B 4-281

INSTRUCTION SET REFERENCE, N-Z

SBB—Integer Subtraction with Borrow

Opcode
1Cib

1D iw
1D id

REXW + 1D id

80/3ib
REX+80/3ib
81 /3 iw
81/3id

REXW +81 /3 id

83/3ib

83/3ib

REXW +83 /3 ib

18/r
REX+18/r
19/r

19/r

Instruction
SBB AL, imm8

SBB AX, imm16

SBB EAX, imm32

SBB RAX, imm32

SBB r/m8, imm8
SBB r/m8*, imm8
SBB r/m16,

imm16

SBB r/m32,
imm32
SBB r/m64,
imm32

SBB r/m16, imm8

SBB r/m32, imm8

SBB r/m64, imm8

SBB r/m8, r8

SBB r/m8* r8

SBB r/m16, r16

SBB r/m32, r32

64-Bit
Mode
Valid
Valid
Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Compat/
Leg Mode

Valid
Valid
Valid

N.E.

Valid
N.E.

Valid
Valid

N.E.

Valid

Valid

N.E.

Valid
N.E.
Valid

Valid

Description

Subtract with borrow
imm8 from AL.

Subtract with borrow
imm16 from AX.

Subtract with borrow
imm32 from EAX.

Subtract with borrow sign-
extended imm.32 to
64-bits from RAX.

Subtract with borrow
imm8 from r/m8.

Subtract with borrow
imm8 from r/m8.

Subtract with borrow
imm16 from r/m16.

Subtract with borrow
imm32 from r/m32.

Subtract with borrow sign-
extended imm32 to
64-bits from r/m64.

Subtract with borrow sign-
extended imm8 from
r/m1e6.

Subtract with borrow sign-
extended imm8 from
r/m32.

Subtract with borrow sign-
extended imm8 from
r/mé64.

Subtract with borrow r8
from r/m8.

Subtract with borrow r8
from r/m8.

Subtract with borrow r16
from r/m16.

Subtract with borrow r32
from r/m32.

4-282 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

REXW +19/r SBB r/m64, r64 Valid N.E. Subtract with borrow r64
from r/m64.

1A/r SBB r8, r/m8 Valid Valid Subtract with borrow r/m8
from r8.

REX+1A/r SBB r8%* r/m8* Valid N.E. Subtract with borrow r/m8
from r8.

1B/r SBB r16, /mi16 Valid Valid Subtract with borrow

r/m16 from ri16.

1B/r SBB r32, r/m32 Valid Valid Subtract with borrow
r/m32 from r32.
REXW + 1B /r SBB r64, r/m64 Valid N.E. Subtract with borrow

r/m64 from r64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix
is used: AH, BH, CH, DH.

Description

Adds the source operand (second operand) and the carry (CF) flag, and subtracts the
result from the destination operand (first operand). The result of the subtraction is
stored in the destination operand. The destination operand can be a register or a
memory location; the source operand can be an immediate, a register, or a memory
location. (However, two memory operands cannot be used in one instruction.) The
state of the CF flag represents a borrow from a previous subtraction.

When an immediate value is used as an operand, it is sign-extended to the length of
the destination operand format.

The SBB instruction does not distinguish between signed or unsigned operands.
Instead, the processor evaluates the result for both data types and sets the OF and
CF flags to indicate a borrow in the signed or unsigned result, respectively. The SF
flag indicates the sign of the signed result.

The SBB instruction is usually executed as part of a multibyte or multiword subtrac-
tion in which a SUB instruction is followed by a SBB instruction.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Vol.2B 4-283

INSTRUCTION SET REFERENCE, N-Z

Operation

DEST « (DEST - (SRC + CF));

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

4-284 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.+

Vol. 2B 4-285

INSTRUCTION SET REFERENCE, N-Z

SCAS/SCASB/SCASW/SCASD—Scan String

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

AE SCAS m8 Valid Valid Compare AL with byte at ES;(E)DI or
RDI, then set status flags'.

AF SCAS m16 Valid Valid Compare AX with word at ES:(E)DI or
RDI, then set status flags.?

AF SCAS m32 Valid Valid Compare EAX with doubleword at
ES(E)DI or RDI then set status flags.2

REX.W + AF SCAS m64 Valid N.E. Compare RAX with quadword at RDI or
EDI then set status flags.

AE SCASB Valid Valid Compare AL with byte at ES:(E)DI or
RDI then set status flags.?

AF SCASW Valid Valid Compare AX with word at ES;(E)DI or
RDI then set status flags.?

AF SCASD Valid Valid Compare EAX with doubleword at
ES:(E)DI or RDI then set status flags.?

REXW + AF SCASQ Valid N.E. Compare RAX with quadword at RDI or

EDI then set status flags.

NOTES:
1. In 64-bit mode, only 64-bit (RDI) and 32-bit (EDI) address sizes are supported. In non-64-bit mode,
only 32-bit (EDI) and 16-bit (DI) address sizes are supported.

Description

In non-64-bit modes and in default 64-bit mode: this instruction compares a byte,
word, doubleword or quadword specified using a memory operand with the value in
AL, AX, or EAX. It then sets status flags in EFLAGS recording the results. The memory
operand address is read from ES:(E)DI register (depending on the address-size
attribute of the instruction and the current operational mode). Note that ES cannot
be overridden with a segment override prefix.

At the assembly-code level, two forms of this instruction are allowed. The explicit-
operand form and the no-operands form. The explicit-operand form (specified using
the SCAS mnemonic) allows a memory operand to be specified explicitly. The
memory operand must be a symbol that indicates the size and location of the
operand value. The register operand is then automatically selected to match the size
of the memory operand (AL register for byte comparisons, AX for word comparisons,
EAX for doubleword comparisons). The explicit-operand form is provided to allow
documentation. Note that the documentation provided by this form can be
misleading. That is, the memory operand symbol must specify the correct type (size)
of the operand (byte, word, or doubleword) but it does not have to specify the correct
location. The location is always specified by ES:(E)DI.

4-286 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

The no-operands form of the instruction uses a short form of SCAS. Again, ES:(E)DI
is assumed to be the memory operand and AL, AX, or EAX is assumed to be the
register operand. The size of operands is selected by the mnemonic: SCASB (byte
comparison), SCASW (word comparison), or SCASD (doubleword comparison).

After the comparison, the (E)DI register is incremented or decremented automati-
cally according to the setting of the DF flag in the EFLAGS register. If the DF flag is O,
the (E)DI register is incremented; if the DF flag is 1, the (E)DI register is decre-
mented. The register is incremented or decremented by 1 for byte operations, by 2
for word operations, and by 4 for doubleword operations.

SCAS, SCASB, SCASW, SCASD, and SCASQ can be preceded by the REP prefix for
block comparisons of ECX bytes, words, doublewords, or quadwords. Often, however,
these instructions will be used in a LOOP construct that takes some action based on
the setting of status flags. See “REP/REPE/REPZ/REPNE/REPNZ—Repeat String
Operation Prefix” in this chapter for a description of the REP prefix.

In 64-bit mode, the instruction’s default address size is 64-bits, 32-bit address size is
supported using the prefix 67H. Using a REX prefix in the form of REX.W promotes
operation on doubleword operand to 64 bits. The 64-bit no-operand mnemonic is
SCASQ. Address of the memory operand is specified in either RDI or EDI, and
AL/AX/EAX/RAX may be used as the register operand. After a comparison, the desti-
nation register is incremented or decremented by the current operand size
(depending on the value of the DF flag). See the summary chart at the beginning of
this section for encoding data and limits.

Operation
Non-64-bit Mode:

IF (Byte cmparison)

THEN
temp « AL — SRG;
SetStatusFlags(temp);

THENIFDF=0
THEN (E)DI « (E)DI + 1;
ELSE (E)DI «— (E)DI - 1; Fl;
ELSE IF (Word comparison)
THEN
temp <~ AX — SRC;
SetStatusFlags(temp);
IFDF=0
THEN (E)DI « (E)DI + 2;
ELSE (E)DI «— (E)DI - 2; FI;
Fl;
ELSE IF (Doubleword comparison)
THEN

Vol.2B 4-287

INSTRUCTION SET REFERENCE, N-Z

temp « EAX - SRC;
SetStatusFlags(temp);
IFDF=0
THEN (E)DI < (E)DI + 4;
ELSE (E)DI «— (E)DI - 4; FI;
Fl;
Fl;

64-bit Mode:

IF (Byte cmparison)
THEN
temp < AL - SRC;
SetStatusFlags(temp);
THENIFDF=0
THEN (RIE)DI «— (RIE)DI + 1;
ELSE (RIE)DI «— (RIE)DI - 1; FI;
ELSE IF (Word comparison)
THEN
temp <~ AX — SRC;
SetStatusFlags(temp);
IFDF=0
THEN (RIE)DI «— (RIE)DI + 2;
ELSE (RIE)DI «— (RIE)DI - 2; FI;
Fl;
ELSE IF (Doubleword comparison)
THEN
temp « EAX - SRC;
SetStatusFlags(temp);
IFDF=0
THEN (RIE)DI «— (RIE)DI + 4;
ELSE (RIE)DI «— (RIE)DI - 4; FI;
Fl;
ELSE IF (Quadword comparison using REX.W)
THEN
temp <~ RAX — SRC;
SetStatusFlags(temp);
IFDF=0
THEN (RIE)DI < (RIE)DI + 8;
ELSE (RIE)DI «— (RIE)DI - 8;
Fl;
Fl;

4-288 Vol. 2B

Flags Affected

INSTRUCTION SET REFERENCE, N-Z

The OF, SF, ZF, AF, PF, and CF flags are set according to the temporary result of the

comparison.

Protected Mode Exceptions

#GP(0)

#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the limit of the
ES segment.

If the ES register contains a NULL segment selector.

If an illegal memory operand effective address in the ES
segment is given.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP

#SS

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

Virtual-8086 Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)
#PF(fault-code)
#AC(0)

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Vol.2B 4-289

INSTRUCTION SET REFERENCE, N-Z

SETcc—Set Byte on Condition

Opcode
OF 97

REX + OF 97
OF 93
REX + OF 93

OF 92
REX + OF 92
OF 96

REX + OF 96

OF 92
REX + OF 92
OF 94
REX + OF 94
OF 9F

REX + OF SF
OF 9D
REX + OF 9D

OF 9C
REX + OF 9C
OF SE

REX + OF 9E
OF 96
REX + OF 96

OF 92

Instruction
SETA r/m8

SETA r/m8*

SETAE r/m8

SETAE r/m8*

SETB r/m8
SETB r/m8*
SETBE r/m8

SETBE /m8*

SETC r/m8
SETC r/m8*
SETE r/m8
SETE r/m8*
SETG r/m8

SETG r/m8*

SETGE /m8

SETGE r/m8*

SETL r/m8
SETL r/m8*
SETLE r/m8

SETLE r/m8*

SETNA r/m8

SETNA r/m8*

SETNAE r/m8

64-Bit
Mode
Valid
Valid
Valid
Valid

Valid
Valid
Valid

Valid

Valid
Valid
Valid
Valid
Valid

Valid

Valid

Valid

Valid
Valid
Valid

Valid

Valid

Valid

Valid

Compat/
Leg Mode
Valid

N.E.

Valid

N.E.

Valid
N.E.
Valid

N.E.

Valid
N.E.
Valid
N.E.
Valid

N.E.
Valid
N.E.

Valid
N.E.
Valid

N.E.
Valid
N.E.

Valid

Description

Set byte if above (CF=0 and
ZF=0).

Set byte if above (CF=0 and
ZF=0).

Set byte if above or equal
(CF=0).

Set byte if above or equal
(CF=0).

Set byte if below (CF=1).

Set byte if below (CF=1).

Set byte if below or equal (CF=1
or ZF=1).

Set byte if below or equal (CF=1
or ZF=1).

Set byte if carry (CF=1
Set byte if carry (CF=1
Set byte if equal (ZF=1
Set byte if equal (ZF=1).

Set byte if greater (ZF=0 and
SF=0F).

Set byte if greater (ZF=0 and
SF=0F).

Set byte if greater or equal
(SF=0F).

Set byte if greater or equal
(SF=0F).

Set byte if less (SF# OF).

Set byte if less (SF+# OF).

Set byteif less or equal (ZF=1 or
SF+# OF).

Set byteif less or equal (ZF=1 or
SF+# OF).

Set byte if not above (CF=1 or
ZF=1).

Set byte if not above (CF=1 or
ZF=1).

Set byte if not above or equal
(CF=1).

)
)
)

4-290 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Opcode
REX + OF 92

OF 93
REX + OF 93
OF 97

REX + OF 97

OF 93
REX + OF 93
OF 95
REX + OF 95
OF S€

REX + OF 9E
OF 9C
REX + OF 9C

OF 9D
REX + OF 9D
OF SF

REX + OF SF

OF 91
REX + OF 91
OF 9B
REX + OF 9B
0F 99
REX + OF 99
OF 95
REX + OF 95
OF 90
REX + OF 90
OF 9A
REX + OF 9A
OF 9A

Instruction
SETNAE r/m8*

SETNB r/m8
SETNB r/m8*
SETNBE r/m8

SETNBE r/m8*

SETNC r/m8
SETNC r/m8*
SETNE r/m8
SETNE r/m8*
SETNG r/m8

SETNG r/m8*

SETNGE /m8

SETNGE r/m8*

SETNL r/m8
SETNL r/m8*
SETNLE r/m8

SETNLE r/m8*

SETNO r/m8
SETNO r/m8*
SETNP r/m8
SETNP r/m8*
SETNS r/m8
SETNS r/m8*
SETNZ r/m8
SETNZ r/m8*
SETO r/m8
SETO r/m8*
SETP r/m8
SETP r/m8*
SETPE r/m8

64-Bit
Mode
Valid

Valid
Valid
Valid

Valid

Valid
Valid
Valid
Valid
Valid

Valid

Valid

Valid

Valid
Valid
Valid

Valid

Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid

Compat/
Leg Mode

N.E.

Valid
N.E.
Valid

N.E.

Valid
N.E.
Valid
N.E.
Valid

N.E.
Valid
N.E.

Valid
N.E.
Valid

N.E.

Valid
N.E.
Valid
N.E.
Valid
N.E.
Valid
N.E.
Valid
N.E.
Valid
N.E.
Valid

Description

Set byte if not above or equal
(CF=1).

Set byte if not below (CF=0).
Set byte if not below (CF=0).
Set byte if not below or equal
(CF=0 and ZF=0).

Set byte if not below or equal
(CF=0 and ZF=0).

Set byte if not carry (CF=0).
Set byte if not carry (CF=0).
Set byte if not equal (ZF=0).
Set byte if not equal (ZF=0).
Set byte if not greater (ZF=1 or
SF= OF)

Set byte if not greater (ZF=1 or
SF# OF).

Set byte if not greater or equal
(SF+ OF).

Set byte if not greater or equal
(SF+ OF).

Set byte if not less (SF=0F).
Set byte if not less (SF=0F).
Set byte if not less or equal
(2F=0 and SF=0F).

Set byte if not less or equal
(2F=0 and SF=0F).

Set byte if not overflow (OF=0).
Set byte if not overflow (OF=0).
Set byte if not parity (PF=0).
Set byte if not parity (PF=0).
Set byte if not sign (SF=0).

Set byte if not sign (SF=0).

Set byte if not zero (ZF=0).

Set byte if not zero (ZF=0).

Set byte if overflow (OF=1)

Set byte if overflow (OF=1).
Set byte if parity (PF=1).

Set byte if parity (PF=1).

Set byte if parity even (PF=1).

Vol.2B 4-291

INSTRUCTION SET REFERENCE, N-Z

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
REX + OF 9A SETPE r/m8* Valid N.E. Set byte if parity even (PF=1).
OF 9B SETPO r/m8 Valid Valid Set byte if parity odd (PF=0).
REX + OF 9B SETPO r/m8* Valid N.E. Set byte if parity odd (PF=0).
OF 98 SETS r/m8 Valid Valid Set byte if sign (SF=1).
REX + OF 98 SETS r/m8* Valid N.E. Set byte if sign (SF=1).
OF 94 SETZ r/m8 Valid Valid Set byte if zero (ZF=1).
REX + OF 94 SETZ r/m8* Valid N.E. Set byte if zero (ZF=1).
NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix
is used: AH, BH, CH, DH.

Description

Sets the destination operand to O or 1 depending on the settings of the status flags
(CF, SF, OF, ZF, and PF) in the EFLAGS register. The destination operand points to a
byte register or a byte in memory. The condition code suffix (cc) indicates the condi-
tion being tested for.

The terms “above” and “below” are associated with the CF flag and refer to the rela-
tionship between two unsigned integer values. The terms “greater” and “less” are
associated with the SF and OF flags and refer to the relationship between two signed
integer values.

Many of the SETcc instruction opcodes have alternate mnemonics. For example,
SETG (set byte if greater) and SETNLE (set if not less or equal) have the same
opcode and test for the same condition: ZF equals O and SF equals OF. These alter-
nate mnemonics are provided to make code more intelligible. Appendix B, “EFLAGS
Condition Codes,” in the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 1, shows the alternate mnemonics for various test conditions.

Some languages represent a logical one as an integer with all bits set. This represen-
tation can be obtained by choosing the logically opposite condition for the SETcc
instruction, then decrementing the result. For example, to test for overflow, use the
SETNO instruction, then decrement the result.

In 1A-64 mode, the operand size is fixed at 8 bits. Use of REX prefix enable uniform
addressing to additional byte registers. Otherwise, this instruction’s operation is the
same as in legacy mode and compatibility mode.

Operation

IF condition
THEN DEST « 1;
ELSE DEST « O;
Fl;

4-292 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

Vol.2B 4-293

INSTRUCTION SET REFERENCE, N-Z

SFENCE—Store Fence

64-Bit Compat

Opcode Instruction Mode /LegMode Description
OF AE/7 SFENCE Valid Valid Serializes store operations.
Description

Performs a serializing operation on all store-to-memory instructions that were issued
prior the SFENCE instruction. This serializing operation guarantees that every store
instruction that precedes in program order the SFENCE instruction is globally visible
before any store instruction that follows the SFENCE instruction is globally visible.
The SFENCE instruction is ordered with respect store instructions, other SFENCE
instructions, any MFENCE instructions, and any serializing instructions (such as the
CPUID instruction). It is not ordered with respect to load instructions or the LFENCE
instruction.

Weakly ordered memory types can be used to achieve higher processor performance
through such techniques as out-of-order issue, write-combining, and write-
collapsing. The degree to which a consumer of data recognizes or knows that the
data is weakly ordered varies among applications and may be unknown to the
producer of this data. The SFENCE instruction provides a performance-efficient way
of insuring store ordering between routines that produce weakly-ordered results and
routines that consume this data.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Wait_On_Following_Stores_Until(preceding_stores_globally_visible);

Intel C/C++ Compiler Intrinsic Equivalent

void_mm_sfence(void)

Exceptions (All Operating Modes)

None.

4-294 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

SGDT—Store Global Descriptor Table Register

Compat/
64-Bit Leg
Opcode* Instruction Mode Mode Description
0F01/0 SGDT m Valid Valid Store GDTR to m.

NOTES:
* See IA-32 Architecture Compatibility section below.

Description

Stores the content of the global descriptor table register (GDTR) in the destination
operand. The destination operand specifies a memory location.

In legacy or compatibility mode, the destination operand is a 6-byte memory loca-
tion. If the operand-size attribute is 16 bits, the limit is stored in the low 2 bytes and
the 24-bit base address is stored in bytes 3-5, and byte 6 is zero-filled. If the
operand-size attribute is 32 bits, the 16-bit limit field of the register is stored in the
low 2 bytes of the memory location and the 32-bit base address is stored in the high
4 bytes.

In 1A-32e mode, the operand size is fixed at 8+2 bytes. The instruction stores an 8-
byte base and a 2-byte limit.

SGDT is useful only by operating-system software. However, it can be used in appli-
cation programs without causing an exception to be generated. See
“LGDT/LIDT—Load Global/Interrupt Descriptor Table Register” in Chapter 3, Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, for information
on loading the GDTR and IDTR.

IA-32 Architecture Compatibility

The 16-bit form of the SGDT is compatible with the Intel 286 processor if the upper
8 bits are not referenced. The Intel 286 processor fills these bits with 1s; the
Pentium 4, Intel Xeon, P6 processor family, Pentium, Intel486, and Intel386™
processors fill these bits with Os.

Operation

IF instruction is SGDT
IF OperandSize = 16

THEN
DEST[0:15] < GDTR(Limit);
DEST[16:39] < GDTR(Base); (* 24 bits of base address stored *)
DEST[40:47] « O;

ELSE IF (32-bit Operand Size)
DEST[0:15] «— GDTR(Limit);

Vol. 2B 4-295

INSTRUCTION SET REFERENCE, N-Z

DEST[16:47] «— GDTR(Base); (* Full 32-bit base address stored *)

Fl;

ELSE (* 64-bit Operand Size *)
DEST[0:15] « GDTR(Limit);
DEST[16:79] «— GDTR(Base); (* Full 64-bit base address stored *)

FI;
Fl;

Flags Affected

None.

Protected Mode Exceptions

#UD
#GP(0)

#SS(0)

#PF(fault-code)
#AC(0)

If the destination operand is a register.
If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#UD
#GP

#SS

If the destination operand is a register.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

Virtual-8086 Mode Exceptions

#UD
#GP(0)

#SS(0)

#PF(fault-code)
#AC(0)

4-296 Vol.2B

If the destination operand is a register.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#UD If the destination operand is a register.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Vol.2B 4-297

INSTRUCTION SET REFERENCE, N-Z

SHLD—Double Precision Shift Left

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF A4 SHLD r/m16, r16, Valid Valid Shift /m16 to left imm8
imm8 places while shifting bits
from r16in from the right.
OF A5 SHLD r/m16, r16, Valid Valid Shift /m16 to left CL
CL places while shifting bits
from r16in from the right.
OF A4 SHLD r/m32, r32, Valid Valid Shift /m32 to left imm8
imm8 places while shifting bits
from r32in from the right.
REX.W + OF A4 SHLD r/m64, r64, Valid N.E. Shift r/m64 to left imm8
imm8 places while shifting bits
from r64 in from the right.
OF A5 SHLD r/m32, r32, Valid Valid Shift /m32 to left CL
CL places while shifting bits
from r32in from the right.
REX.W + OF A5 SHLD r/m64, ré64, Valid N.E. Shift r/m64 to left CL
CL places while shifting bits

from r64 in from the right.

Description
The SHLD instruction is used for multi-precision shifts of 64 bits or more.

The instruction shifts the first operand (destination operand) to the left the number
of bits specified by the third operand (count operand). The second operand (source
operand) provides bits to shift in from the right (starting with bit O of the destination
operand).

The destination operand can be a register or a memory location; the source operand
is a register. The count operand is an unsigned integer that can be stored in an imme-
diate byte or in the CL register. If the count operand is CL, the shift count is the
logical AND of CL and a count mask. In non-64-bit modes and default 64-bit mode;
only bits O through 4 of the count are used. This masks the count to a value between
0 and 31. If a count is greater than the operand size, the result is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand. For a 1-bit shift, the OF flag is set if a sign change occurred; other-
wise, it is cleared. If the count operand is O, flags are not affected.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits (upgrading the count mask
to 6 bits). See the summary chart at the beginning of this section for encoding data
and limits.

4-298 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Operation

IF (In 64-Bit Mode and REX.W = 1)
THEN COUNT <« COUNT MOD 64;
ELSE COUNT <« COUNT MOD 32;
Fl
SIZE <« OperandSize;
IFCOUNT =0
THEN
No operation;
ELSE
IF COUNT > SIZE
THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;
ELSE (* Perform the shift *)
CF « BIT[DEST, SIZE - COUNT];
(* Last bit shifted out on exit *)
FOR i < SIZE - 1 DOWN TO COUNT
DO
Bit(DEST, i) « Bit(DEST, i - COUNT);
0D;
FOR i <~ COUNT - 1 DOWN TO O
DO
BIT[DEST, i] <~ BIT[SRC, i - COUNT + SIZE];
0D;
Fl;
Fl;

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand and the SF, ZF, and PF flags are set according to the value of the
result. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is
cleared. For shifts greater than 1 bit, the OF flag is undefined. If a shift occurs, the AF
flag is undefined. If the count operand is O, the flags are not affected. If the count is
greater than the operand size, the flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

Vol.2B 4-299

INSTRUCTION SET REFERENCE, N-Z

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

4-300 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

SHRD—Double Precision Shift Right

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF AC SHRD r/m16, Valid Valid Shift r/m16 to right imm8
r16, imm8 places while shifting bits from
r16in from the left.
OF AD SHRD r/m16, Valid Valid Shift r/m16 to right CL places
ri16, CL while shifting bits from r76in
from the left.
OF AC SHRD r/m32, Valid Valid Shift r/m32 to right imm8
r32, mm8 places while shifting bits from
r32in from the left.
REXW +OF AC SHRD r/m64, Valid N.E. Shift r/m64 to right imm8
ré64, imm8 places while shifting bits from
ré64 in from the left.
OF AD SHRD r/m32, Valid Valid Shift r/m32 to right CL places
r32,CL while shifting bits from r32in
from the left.
REXW + OF AD SHRD r/m64, Valid N.E. Shift /m64 to right CL places
r64, CL while shifting bits from r64 in
from the left.

Description
The SHRD instruction is useful for multi-precision shifts of 64 bits or more.

The instruction shifts the first operand (destination operand) to the right the number
of bits specified by the third operand (count operand). The second operand (source
operand) provides bits to shift in from the left (starting with the most significant bit
of the destination operand).

The destination operand can be a register or a memory location; the source operand
is a register. The count operand is an unsigned integer that can be stored in an imme-
diate byte or the CL register. If the count operand is CL, the shift count is the logical
AND of CL and a count mask. In non-64-bit modes and default 64-bit mode, the
width of the count mask is 5 bits. Only bits O through 4 of the count register are used
(masking the count to a value between 0 and 31). If the count is greater than the
operand size, the result is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand. For a 1-bit shift, the OF flag is set if a sign change occurred; other-
wise, it is cleared. If the count operand is O, flags are not affected.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits (upgrading the count mask

Vol. 2B 4-301

INSTRUCTION SET REFERENCE, N-Z

to 6 bits). See the summary chart at the beginning of this section for encoding data
and limits.

Operation

IF (In 64-Bit Mode and REX.W = 1)
THEN COUNT <« COUNT MOQD 64;
ELSE COUNT « COUNT MOD 32;
Fl
SIZE « OperandSize;
IFCOUNT =0
THEN
No operation;
ELSE
IF COUNT > SIZE
THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;
ELSE (* Perform the shift *)
CF <« BIT[DEST, COUNT - 1]; (* Last bit shifted out on exit *)
FOR i« O TOSIZE -1 - COUNT
DO
BIT[DEST, i] < BIT[DEST, i + COUNT];
0D;
FOR i < SIZE - COUNT TO SIZE - 1
DO
BIT[DEST,i] «- BIT[SRC, i + COUNT - SIZE];
0D;
Fl;
Fl;

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand and the SF, ZF, and PF flags are set according to the value of the
result. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is
cleared. For shifts greater than 1 bit, the OF flag is undefined. If a shift occurs, the AF
flag is undefined. If the count operand is O, the flags are not affected. If the count is
greater than the operand size, the flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

4-302 Vol.2B

#S5(0)

#PF(fault-code)
#AC(0)

INSTRUCTION SET REFERENCE, N-Z

If the DS, ES, FS, or GS register contains a NULL segment
selector.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP

#SS

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

Virtual-8086 Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0)

#GP(0)
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Vol.2B 4-303

INSTRUCTION SET REFERENCE, N-Z

SHUFPD—Shuffle Packed Double-Precision Floating-Point Values

64-
Bit Compat/
Opcode Instruction Mode LegMode Description
66 0OFC6/r SHUFPD xmm1, Valid Valid Shuffle packed double-
ib xmm2/m128, imm8 precision floating-point values
selected by imm8 from xmm1
and xmmZ2/m128 to xmm]1.

Description

Moves either of the two packed double-precision floating-point values from destina-
tion operand (first operand) into the low quadword of the destination operand;
moves either of the two packed double-precision floating-point values from the
source operand into to the high quadword of the destination operand (see

Figure 4-13). The select operand (third operand) determines which values are
moved to the destination operand.

DEST X1 X0

SRC Y1 YO

DEST Y1orYO X1 or X0

Figure 4-13. SHUFPD Shuffle Operation

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The select operand is an 8-bit immediate: bit O
selects which value is moved from the destination operand to the result (where O
selects the low quadword and 1 selects the high quadword) and bit 1 selects which
value is moved from the source operand to the result. Bits 2 through 7 of the select
operand are reserved and must be set to O.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

4-304 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Operation

IF SELECT[0] =0
THEN DEST[63:0] « DEST[63:0];
ELSE DEST[63:0] < DEST[127:64]; FI;

IF SELECT[1]=0
THEN DEST[127:64] « SRC[63:0];
ELSE DEST[127:64] « SRC[127:64]; FI;

Intel C/C++ Compiler Intrinsic Equivalent
SHUFPD __m128d _mm_shuffle_pd(__m128d a, __m128d b, unsigned int imm8)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = O.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

Vol. 2B 4-305

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#PF(fault-code)
#NM
#UD

4-306 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If the memory address is in a non-canonical form.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = 0.

INSTRUCTION SET REFERENCE, N-Z

SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OFC6/rib SHUFPS xmmT, Valid Valid Shuffle packed single-precision

xmm2/m128, imm8 floating-point values selected by
imm8 from xmm1 and

xmm1/m128to xmm1.

Description

Moves two of the four packed single-precision floating-point values from the destina-
tion operand (first operand) into the low quadword of the destination operand;
moves two of the four packed single-precision floating-point values from the source
operand (second operand) into to the high quadword of the destination operand (see
Figure 4-14). The select operand (third operand) determines which values are
moved to the destination operand.

DEST X3 X2 X1 X0
SRC Y3 Y2 \Yl YO
DEST Y3..Y0 Y3..Y0 X3 ... X0 X3 ... X0

Figure 4-14. SHUFPS Shuffle Operation

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The select operand is an 8-bit immediate: bits O
and 1 select the value to be moved from the destination operand to the low double-
word of the result, bits 2 and 3 select the value to be moved from the destination
operand to the second doubleword of the result, bits 4 and 5 select the value to be
moved from the source operand to the third doubleword of the result, and bits 6 and
7 select the value to be moved from the source operand to the high doubleword of
the result.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Vol.2B 4-307

INSTRUCTION SET REFERENCE, N-Z

Operation

CASE (SELECT[1:0]) OF
0: DEST[31:0] « DEST[31:0];
1: DEST[31:0] « DEST[63:32];
2: DEST[31:0] « DEST[95:64];
3: DEST[31:0] « DEST[127:96];
ESAC;

CASE (SELECT[3:2]) OF
0: DEST[63:32] « DEST[31:0];
1: DEST[63:32] « DEST[63:32];
2: DEST[63:32] « DEST[95:64];
3: DEST[63:32] « DEST[127:96];
ESAC;

CASE (SELECT[5:4]) OF
0: DEST[95:64] <« SRC[31:0];
1: DEST[95:64] « SRC[63:32];
2. DEST[95:64] < SRC[95:64];
3: DEST[95:64] <« SRC[127:96];
ESAC;

CASE (SELECT[7:6]) OF
0: DEST[127:96] « SRC[31:0];
1: DEST[127:96] <« SRC[63:32];
2. DEST[127:96] « SRC[95:64];
3. DEST[127:96] « SRC[127:96];
ESAC;

Intel C/C++ Compiler Intrinsic Equivalent
SHUFPS __m128 _mm_shuffle_ps(_m128a, __m128 b, unsigned int imm8)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

4-308 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If memory operand is not aligned on a 16-byte boundary,

regardless of segment.

If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE[bit 25] = 0.

Vol.2B 4-309

INSTRUCTION SET REFERENCE, N-Z

SIDT—Store Interrupt Descriptor Table Register

Compat/
64-Bit Leg
Opcode Instruction Mode Mode Description
OF 01 /1 SIDT m Valid Valid Store IDTR to m.

Description

Stores the content the interrupt descriptor table register (IDTR) in the destination
operand. The destination operand specifies a 6-byte memory location.

In non-64-bit modes, if the operand-size attribute is 32 bits, the 16-bit limit field of
the register is stored in the low 2 bytes of the memory location and the 32-bit base
address is stored in the high 4 bytes. If the operand-size attribute is 16 bits, the limit
is stored in the low 2 bytes and the 24-bit base address is stored in the third, fourth,
and fifth byte, with the sixth byte filled with Os.

In 64-bit mode, the operand size fixed at 8+2 bytes. The instruction stores 8-byte
base and 2-byte limit values.

SIDT is only useful in operating-system software; however, it can be used in applica-
tion programs without causing an exception to be generated. See “LGDT/LIDT—Load
Global/Interrupt Descriptor Table Register” in Chapter 3, Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A, for information on loading the
GDTR and IDTR.

IA-32 Architecture Compatibility

The 16-bit form of SIDT is compatible with the Intel 286 processor if the upper 8 bits
are not referenced. The Intel 286 processor fills these bits with 1s; the Pentium 4,
Intel Xeon, P6 processor family, Pentium, Intel486, and Intel386 processors fill these
bits with Os.

Operation

IF instruction is SIDT
THEN
IF OperandSize = 16

THEN
DEST[0:15] «— IDTR(Limit);
DEST[16:39] « IDTR(Base); (* 24 bits of base address stored; *)
DEST[40:47] < O;

ELSE IF (32-bit Operand Size)
DEST[0:15] « IDTR(Limit);
DEST[16:47] < IDTR(Base); Fl; (* Full 32-bit base address stored *)

ELSE (* 64-bit Operand Size *)

4-310 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

DEST[0:15] « IDTR(Limit);
DEST[16:79] « IDTR(Base); (* Full 64-bit base address stored *)
Fl;
Fl;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

Vol.2B 4-311

INSTRUCTION SET REFERENCE, N-Z

#UD

#GP(0)
#PF(fault-code)
#AC(0)

4-312 Vol. 2B

If the destination operand is a register.
If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

INSTRUCTION SET REFERENCE, N-Z

SLDT—Store Local Descriptor Table Register

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF 00 /0 SLDT r/m16 Valid Valid Stores segment selector from LDTR
in r/m16.
REXW+0OF SLDT r64/m16 Valid Valid Stores segment selector from LDTR
00/0 in r64/m16.
Description

Stores the segment selector from the local descriptor table register (LDTR) in the
destination operand. The destination operand can be a general-purpose register or a
memory location. The segment selector stored with this instruction points to the
segment descriptor (located in the GDT) for the current LDT. This instruction can only
be executed in protected mode.

Outside 1A-32e mode, when the destination operand is a 32-bit register, the 16-bit
segment selector is copied into the low-order 16 bits of the register. The high-order
16 bits of the register are cleared for the Pentium 4, Intel Xeon, and P6 family proces-
sors. They are undefined for Pentium, Intel486, and Intel386 processors. When the
destination operand is a memory location, the segment selector is written to memory
as a 16-bit quantity, regardless of the operand size.

In compatibility mode, when the destination operand is a 32-bit register, the 16-bit
segment selector is copied into the low-order 16 bits of the register. The high-order
16 bits of the register are cleared. When the destination operand is a memory loca-
tion, the segment selector is written to memory as a 16-bit quantity, regardless of
the operand size.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). The behavior of SLDT with a 64-bit register is to zero-extend the
16-bit selector and store it in the register. If the destination is memory and operand
size is 64, SLDT will write the 16-bit selector to memory as a 16-bit quantity, regard-
less of the operand size

Operation

DEST « LDTR(SegmentSelector);

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

Vol.2B 4-313

INSTRUCTION SET REFERENCE, N-Z

#SS(0)

#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#UD

The SLDT instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD

The SLDT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0)

#GP(0)
#PF(fault-code)
#AC(0)

4-314 Vol. 2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

INSTRUCTION SET REFERENCE, N-Z

SMSW-—Store Machine Status Word

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF 01 /4 SMSW r/m16 Valid Valid Store machine status word to r/m176.
OF 01 /4 SMSW Valid Valid Store machine status word in low-order
r32/m16 16 bits of r32/m16; high-order 16 bits
of r32 are undefined.
REX.W + SMSW Valid Valid Store machine status word in low-order
OF 01 /4 r64/m16 16 bits of r64/m16; high-order 16 bits

of r32 are undefined.

Description

Stores the machine status word (bits O through 15 of control register CRO) into the
destination operand. The destination operand can be a general-purpose register or a
memory location.

In non-64-bit modes, when the destination operand is a 32-bit register, the low-order
16 bits of register CRO are copied into the low-order 16 bits of the register and the
high-order 16 bits are undefined. When the destination operand is a memory loca-
tion, the low-order 16 bits of register CRO are written to memory as a 16-bit quantity,
regardless of the operand size.

In 64-bit mode, the behavior of the SMSW instruction is defined by the following
examples:

® SMSW rl6 operand size 16, store CRO[15:0] in r16

® SMSW r32 operand size 32, zero-extend CRO[31:0], and store in r32
® SMSW r64 operand size 64, zero-extend CRO[63:0], and store in r64
® SMSW m16 operand size 16, store CRO[15:0] in m16

® SMSW m16 operand size 32, store CRO[15:0] in m16 (not m32)

® SMSW m16 operands size 64, store CRO[15:0] in m16 (not m64)

SMSW is only useful in operating-system software. However, it is not a privileged
instruction and can be used in application programs. The is provided for compatibility
with the Intel 286 processor. Programs and procedures intended to run on the
Pentium 4, Intel Xeon, P6 family, Pentium, Intel486, and Intel386 processors should
use the MOV (control registers) instruction to load the machine status word.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of
the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3B, for
more information about the behavior of this instruction in VMX non-root operation.

Vol.2B 4-315

INSTRUCTION SET REFERENCE, N-Z

Operation

DEST « CRO[15:0];

(* Machine status word *)

Flags Affected

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#AC(0)

If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP

#SS(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

Virtual-8086 Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

4-316 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Vol.2B 4-317

INSTRUCTION SET REFERENCE, N-Z

SQRTPD—Compute Square Roots of Packed Double-Precision Floating-
Point Values

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
66 OF 51 SQRTPD xmm1, Valid Valid Computes square roots of the
Ir xmm2/m128 packed double-precision floating-

point values in xmmZ2/m128 and
stores the results in xmm1.

Description

Performs a SIMD computation of the square roots of the two packed double-precision
floating-point values in the source operand (second operand) stores the packed
double-precision floating-point results in the destination operand. The source
operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. See Figure 11-3 in the Intel® 64 and 1A-32 Architectures
Software Developer’s Manual, Volume 1, for an illustration of a SIMD double-preci-
sion floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] «- SQRT(SRC[63:0]);
DEST[127:64] « SQRT(SRC[127:64]);

Intel C/C++ Compiler Intrinsic Equivalent
SQRTPD __m128d _mm_sqgrt_pd (m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

4-318 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.
#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.CR4.0SXMMEXCPT (bit 10) is 1.
If CPUID.01H:EDX.SSE2[bit 26] = O.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT([bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

Vol.2B 4-319

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

4-320 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

SQRTPS—Compute Square Roots of Packed Single-Precision Floating-
Point Values

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF 51 /r SQRTPS xmm1, Valid Valid Computes square roots of the packed
xmm2/m128 single-precision floating-point values
in xmmZ2/m128 and stores the results
in xmm1.
Description

Performs a SIMD computation of the square roots of the four packed single-precision
floating-point values in the source operand (second operand) stores the packed
single-precision floating-point results in the destination operand. The source operand
can be an XMM register or a 128-bit memory location. The destination operand is an
XMM register. See Figure 10-5 in the Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volume 1, for an illustration of a SIMD single-precision floating-
point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] « SQRT(SRC[31:0]);
DEST[63:32] < SQRT(SRC[63:32]);
DEST[95:64] « SQRT(SRC[95:64]);
DEST[127:96] < SQRT(SRC[127:96));

Intel C/C++ Compiler Intrinsic Equivalent
SQRTPS __m128 _mm_sqrt_ps(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

Vol. 2B 4-321

INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.

H#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

HXM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

HXM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

4-322 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

Vol.2B 4-323

INSTRUCTION SET REFERENCE, N-Z

SQRTSD—Compute Square Root of Scalar Double-Precision Floating-
Point Value

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
F2 OF 51 SQRTSD xmmT1, Valid Valid Computes square root of the
Ir xmmZ2/m64 low double-precision floating-

point value in xmmZ2/m64and
stores the results in xmm1.

Description

Computes the square root of the low double-precision floating-point value in the
source operand (second operand) and stores the double-precision floating-point
result in the destination operand. The source operand can be an XMM register or a
64-bit memory location. The destination operand is an XMM register. The high quad-
word of the destination operand remains unchanged. See Figure 11-4 in the Intel®
64 and I1A-32 Architectures Software Developer’s Manual, Volume 1, for an illustra-
tion of a scalar double-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] « SQRT(SRC[63:0]);
(* DEST[127:64] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
SQRTSD __m128d _mm_sqrt_sd (m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

HXM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPTI[bit 10] = 1.

4-324 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT([bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

Vol.2B 4-325

INSTRUCTION SET REFERENCE, N-Z

#UD

#AC(0)

4-326 Vol. 2B

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

INSTRUCTION SET REFERENCE, N-Z

SQRTSS—Compute Square Root of Scalar Single-Precision Floating-
Point Value

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
F3 OF 51 SQRTSS xmm1, Valid Valid Computes square root of the low
Ir xmm2/m32 single-precision floating-point

value in xmmZ/m32 and stores
the results in xmm1.

Description

Computes the square root of the low single-precision floating-point value in the
source operand (second operand) and stores the single-precision floating-point
result in the destination operand. The source operand can be an XMM register or a
32-bit memory location. The destination operand is an XMM register. The three high-
order doublewords of the destination operand remain unchanged. See Figure 10-6 in
the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 1, for an
illustration of a scalar single-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] «- SQRT (SRC[31:0]);
(* DEST[127:64] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
SQRTSS __m128 _mm_sqgrt_ss(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

Vol.2B 4-327

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

H#HXM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

H#HXM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

4-328 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Vol.2B 4-329

INSTRUCTION SET REFERENCE, N-Z

STC—Set Carry Flag

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
F9 STC Valid Valid Set CF flag.
Description

Sets the CF flag in the EFLAGS register.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CF«1;

Flags Affected
The CF flag is set. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

4-330 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

STD—Set Direction Flag

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
FD STD Valid Valid Set DF flag.

Description

Sets the DF flag in the EFLAGS register. When the DF flag is set to 1, string operations
decrement the index registers (ESI and/or EDI).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DF « 1;

Flags Affected
The DF flag is set. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

Vol.2B 4-331

INSTRUCTION SET REFERENCE, N-Z

STI—Set Interrupt Flag

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
FB STI Valid Valid Set interrupt flag; external, maskable
interrupts enabled at the end of the
next instruction.

Description

If protected-mode virtual interrupts are not enabled, STI sets the interrupt flag (IF)
in the EFLAGS register. After the IF flag is set, the processor begins responding to
external, maskable interrupts after the next instruction is executed. The delayed
effect of this instruction is provided to allow interrupts to be enabled just before
returning from a procedure (or subroutine). For instance, if an STI instruction is
followed by an RET instruction, the RET instruction is allowed to execute before
external interrupts are recognizedl. If the STI instruction is followed by a CLI instruc-
tion (which clears the IF flag), the effect of the STI instruction is negated.

The IF flag and the STI and CLI instructions do not prohibit the generation of excep-
tions and NMI interrupts. NMI interrupts (and SMIs) may be blocked for one macro-
instruction following an STI.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than
3; STl sets the VIF flag in the EFLAGS register, leaving IF unaffected.

Table 4-4 indicates the action of the STI instruction depending on the processor’s
mode of operation and the CPL/IOPL settings of the running program or procedure.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

1. The STlinstruction delays recognition of interrupts only if it is executed with EFLAGS.IF = 0.In a
sequence of STlinstructions, only the first instruction in the sequence is guaranteed to delay
interrupts.

In the following instruction sequence, interrupts may be recognized before RET executes:
STI

STI
RET

4-332 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Table 4-4. Decision Table for STI Results

PE VM 10PL CPL PVI VIP VME STI Result
0 X X X X X X IF=1

1 0 >CPL X X X IF=1

1 0 <CPL 1 0 X VIF=1
1 0 <CPL <3 X X X GP Fault
1 0 <CPL X 0 X X GP Fault
1 0 <CPL X X 1 X GP Fault
1 1 3 X X X X IF=1

1 1 <3 X X 0 1 VIF =1
1 1 <3 X X 1 X GP Fault
1 1 <3 X X X 0 GP Fault

NOTES:

X = This setting has no impact.

Operation

IF PE=0 (* Executing in real-address mode *)
THEN
IE < 1; (* Set Interrupt Flag *)
ELSE (* Executing in protected mode or virtual-8086 mode *)
IFVM =0 (* Executing in protected mode*)

THEN
IF IOPL > CPL
THEN
IE «<— 1; (* Set Interrupt Flag *)
ELSE
IF (IOPL < CPL) and (CPL = 3) and (VIP = 0)
THEN
VIF < 1; (* Set Virtual Interrupt Flag *)
ELSE
#GP(0);
Fl;
Fl;
ELSE (* Executing in Virtual-8086 mode *)
IFIOPL=3
THEN

IE «<— 1; (* Set Interrupt Flag *)

Vol.2B 4-333

INSTRUCTION SET REFERENCE, N-Z

ELSE
IF ((IOPL < 3) and (VIP = 0) and (VME = 1))
THEN
VIF < 1; (* Set Virtual Interrupt Flag *)
ELSE
#GP(0); (* Trap to virtual-8086 monitor *)
Fl;)
Fl;
Fl;
Fl;
Flags Affected

The IE flag is set to 1; or the VIF flag is set to 1.

Protected Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the I0OPL of the
current program or procedure.

Real-Address Mode Exceptions

None.
Virtual-8086 Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the 10PL of the
current program or procedure.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.

4-334 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

STMXCSR—Store MXCSR Register State

64-
Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF AE /3 STMXCSR m32 Valid Valid Store contents of MXCSR register to
m32.

Description

Stores the contents of the MXCSR control and status register to the destination
operand. The destination operand is a 32-bit memory location. The reserved bits in
the MXCSR register are stored as 0Os.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation

m32 « MXCSR;

Intel C/C++ Compiler Intrinsic Equivalent

mm_getcsr(void)

Exceptions

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#UD If CRO.EM[bit 2] = 1.

#NM If CRO.TS[bit 3] = 1.

#AC For unaligned memory reference. To enable #AC exceptions,

three conditions must be true: CRO.AM[bit 18] = 1,
EFLAGS.AC[bit 18] = 1, current CPL = 3.

#UD If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

Vol.2B 4-335

INSTRUCTION SET REFERENCE, N-Z

Real Address Mode Exceptions

GP(0)

#UD
#NM
#UD

If any part of the operand would lie outside of the effective
address space from O to OFFFFH.

If CRO.EM[bit 2] = 1.

If CRO.TS[bit 3] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = O.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode.

#PF(fault-code)
#AC

For a page fault.
For unaligned memory reference.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0)

#GP(0)
#PF(fault-code)
#UD

#NM

#AC

#UD
#UD

4-336 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
For a page fault.

If CRO.EM[bit 2] = 1.

If CRO.TS[bit 3] = 1.

For unaligned memory reference. To enable #AC exceptions,
three conditions must be true: CRO.AM[bit 18] =1,
EFLAGS.AC[bit 18] = 1, current CPL = 3

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = O.

INSTRUCTION SET REFERENCE, N-Z

STOS/STOSB/STOSW/STOSD/STOSQ—Store String

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

AA STOS m8 Valid Valid For legacy mode, store AL at address
ES:(E)DI; For 64-bit mode store AL at
address RDI or EDI.

AB STOS m16 Valid Valid For legacy mode, store AX at address
€S:(E)DI; For 64-bit mode store AX at
address RDI or EDI.

AB STOS m32 Valid Valid For legacy mode, store EAX at
address ES:(E)DI; For 64-bit mode
store EAX at address RDI or EDI.

REX.W + AB STOS m64 Valid N.E. Store RAX at address RDI or EDI.

AA STOSB Valid Valid For legacy mode, store AL at address
€S:(E)DI; For 64-bit mode store AL at
address RDI or EDI.

AB STOSW Valid Valid For legacy mode, store AX at address
E€S:(E)DI; For 64-bit mode store AX at
address RDI or EDI.

AB STOSD Valid Valid For legacy mode, store EAX at
address ES:(E)DI; For 64-bit mode
store EAX at address RDI or EDI.

REX.W + AB STOSQ Valid N.E. Store RAX at address RDI or EDI.

Description

In non-64-bit and default 64-bit mode; stores a byte, word, or doubleword from the
AL, AX, or EAX register (respectively) into the destination operand. The destination
operand is a memory location, the address of which is read from either the ES:EDI or
ES:DI register (depending on the address-size attribute of the instruction and the
mode of operation). The ES segment cannot be overridden with a segment override
prefix.

At the assembly-code level, two forms of the instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified
with the STOS mnemonic) allows the destination operand to be specified explicitly.
Here, the destination operand should be a symbol that indicates the size and location
of the destination value. The source operand is then automatically selected to match
the size of the destination operand (the AL register for byte operands, AX for word
operands, EAX for doubleword operands). The explicit-operands form is provided to
allow documentation; however, note that the documentation provided by this form
can be misleading. That is, the destination operand symbol must specify the correct
type (size) of the operand (byte, word, or doubleword), but it does not have to
specify the correct location. The location is always specified by the ES:(E)DI

Vol.2B 4-337

INSTRUCTION SET REFERENCE, N-Z

register. These must be loaded correctly before the store string instruction is
executed.

The no-operands form provides “short forms” of the byte, word, doubleword, and
quadword versions of the STOS instructions. Here also ES:(E)DI is assumed to be the
destination operand and AL, AX, or EAX is assumed to be the source operand. The
size of the destination and source operands is selected by the mnemonic: STOSB
(byte read from register AL), STOSW (word from AX), STOSD (doubleword from
EAX).

After the byte, word, or doubleword is transferred from the register to the memory
location, the (E)DI register is incremented or decremented according to the setting of
the DF flag in the EFLAGS register. If the DF flag is O, the register is incremented; if
the DF flag is 1, the register is decremented (the register is incremented or decre-
mented by 1 for byte operations, by 2 for word operations, by 4 for doubleword oper-
ations).

In 64-bit mode, the default address size is 64 bits, 32-bit address size is supported
using the prefix 67H. Using a REX prefix in the form of REX.W promotes operation on
doubleword operand to 64 bits. The promoted no-operand mnemonic is STOSQ.
STOSQ (and its explicit operands variant) store a quadword from the RAX register
into the destination addressed by RDI or EDI. See the summary chart at the begin-
ning of this section for encoding data and limits.

The STOS, STOSB, STOSW, STOSD, STOSQ instructions can be preceded by the REP
prefix for block loads of ECX bytes, words, or doublewords. More often, however,
these instructions are used within a LOOP construct because data needs to be moved
into the AL, AX, or EAX register before it can be stored. See
“REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix” in this chapter for
a description of the REP prefix.

Operation
Non-64-bit Mode:

IF (Byte store)
THEN
DEST « AL;
THENIFDF=0
THEN (E)DI «— (E)DI + 1;
ELSE (E)DI « (E)DI - 1;
Fl;
ELSE IF (Word store)
THEN
DEST « AX;
THENIFDF =0
THEN (E)DI « (E)DI + 2;
ELSE (E)DI « (E)DI - 2;

4-338 Vol.2B

Fl;
Fl;
ELSE IF (Doubleword store)
THEN
DEST « EAX;
THENIFDF=0
THEN (E)DI « (E)DI + 4;
ELSE (E)DI «— (E)DI - 4;
Fl;
Fl;
Fl;
64-bit Mode:
IF (Byte store)
THEN
DEST « AL;
THENIFDF=0
THEN (RIE)DI < (RIE)DI + 1;
ELSE (RIE)DI «— (RIE)DI - 1;
Fl;
ELSE IF (Word store)
THEN
DEST « AX;
THENIFDF=0
THEN (RIE)DI < (RIE)DI + 2;
ELSE (RIE)DI «— (RIE)DI - 2;
Fl;
Fl;
ELSE IF (Doubleword store)
THEN
DEST « EAX;
THENIFDF=0
THEN (RIE)DI < (RIE)DI + 4;
ELSE (RIE)DI «— (RIE)DI - 4;
Fl;
Fl;
ELSE IF (Quadword store using REX.W)
THEN
DEST « RAX;
THENIFDF=0
THEN (RIE)DI < (RIE)DI + 8;
ELSE (RIE)DI «— (RIE)DI - 8;
Fl;

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B

4-339

INSTRUCTION SET REFERENCE, N-Z

Fl;
Fl;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a hon-writable segment.

If a memory operand effective address is outside the limit of the
ES segment.

If the ES register contains a NULL segment selector.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the ES

segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the ES
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

4-340 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

STR—Store Task Register

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF00/ STR r/m16 Valid Valid Stores segment selector from TR
in r/m16.
Description

Stores the segment selector from the task register (TR) in the destination operand.
The destination operand can be a general-purpose register or a memory location.
The segment selector stored with this instruction points to the task state segment
(TSS) for the currently running task.

When the destination operand is a 32-bit register, the 16-bit segment selector is
copied into the lower 16 bits of the register and the upper 16 bits of the register are
cleared. When the destination operand is a memory location, the segment selector is
written to memory as a 16-bit quantity, regardless of operand size.

In 64-bit mode, operation is the same. The size of the memory operand is fixed at 16
bits. In register stores, the 2-byte TR is zero extended if stored to a 64-bit register.

The STR instruction is useful only in operating-system software. It can only be
executed in protected mode.

Operation

DEST « TR(SegmentSelector);

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination is a memory operand that is located in a non-
writable segment or if the effective address is outside the CS,
DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Vol. 2B 4-341

INSTRUCTION SET REFERENCE, N-Z
Real-Address Mode Exceptions
#UD The STR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The STR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

#SS(U) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

4-342 Vol. 2B

SUB—Subtract

INSTRUCTION SET REFERENCE, N-Z

Opcode Instruction
2Cib SUB AL, imm8
2D iw SUB AX,imm16
2D id SUB EAX, imm32

REXW + 2D id SUBRAX, imm32

80/5ib SUB r/m8, imm8

REX +80 /5 ib SUB r/m8%*, imm8

81/5iw SUB r/m16,
imm16

81/5id SUB r/m32,
imm32

REXW +81/5id SUB r/m64,
imm32

83/5ib SUB r/m16, imm8

83/5ib SUB r/m32, imm8

REXW +83/5ib SUB r/m64, imm8

28/r SUB r/m8, r8

REX + 28 /r SUB r/m8*, r8*
29/r SUB r/m16, r16
29/r SUB r/m32, r32
REXW +29/r SUB r/m64, r32
2AIr SUB r8, r/m8

REX +2A/r SUB r8* r/m8*
2B/r SUBr16, r/m16
2B/r SUB r32, r/m32

REXW + 2B /r SUB r64, r/m64

64-Bit
Mode
Valid
Valid
Valid
Valid

Valid
Valid
Valid

Valid

Valid

Valid

Valid

Valid

Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid

Compat/
Leg Mode

Valid
Valid
Valid
N.E.

Valid
N.E.
Valid

Valid

N.E.

Valid
Valid
N.E.

Valid
N.E.
Valid
Valid
N.E.
Valid
N.E.
Valid
Valid
N.E.

Description

Subtract imm8 from AL.
Subtract imm16 from AX.
Subtract imm32 from EAX.

Subtract imm32 sign-
extended to 64-bits from
RAX.

Subtract imm8 from r/m8.
Subtract imm8 from r/m8.

Subtract imm16 from
r/m16.

Subtract imm32 from
r/m32.

Subtract imm32 sign-
extended to 64-bits from
r/mé64.

Subtract sign-extended
imm8 from r/m16.

Subtract sign-extended
imm8 from r/m32.

Subtract sign-extended
imm8 from r/m64.

Subtract r8 from r/m8.
Subtract r8 from r/m8.
Subtract r16 from r/m16.
Subtract r32 from r/m32.
Subtract r64 from r/m64.
Subtract /m8 from r8.
Subtract r/m8 from r8.
Subtract /m16 from r16.
Subtract r/m32 from r32.
Subtract r/m64 from r64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix

is used: AH, BH, CH, DH.

Vol.2B 4-343

INSTRUCTION SET REFERENCE, N-Z

Description

Subtracts the second operand (source operand) from the first operand (destination
operand) and stores the result in the destination operand. The destination operand
can be a register or a memory location; the source operand can be an immediate,
register, or memory location. (However, two memory operands cannot be used in one
instruction.) When an immediate value is used as an operand, it is sign-extended to
the length of the destination operand format.

The SUB instruction performs integer subtraction. It evaluates the result for both
signed and unsigned integer operands and sets the OF and CF flags to indicate an
overflow in the signed or unsigned result, respectively. The SF flag indicates the sign
of the signed result.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

Operation

DEST « (DEST - SRC);

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

4-344 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0)

#GP(0)
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Vol. 2B 4-345

INSTRUCTION SET REFERENCE, N-Z

SUBPD—Subtract Packed Double-Precision Floating-Point Values

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
66 OF 5C SUBPD xmm1, Valid Valid Subtract packed double-precision
Ir xmm2/m128 floating-point values in

xmmZ2/m128 from xmm]1.

Description

Performs a SIMD subtract of the two packed double-precision floating-point values in
the source operand (second operand) from the two packed double-precision floating-
point values in the destination operand (first operand), and stores the packed
double-precision floating-point results in the destination operand. The source
operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. See Figure 11-3 in the Intel® 64 and 1A-32 Architectures
Software Developer’s Manual, Volume 1, for an illustration of a SIMD double-preci-
sion floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] < DEST[63:0] — SRC[63:0];
DEST[127:64] < DEST[127:64] — SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalent
SUBPD __m128d _mm_sub_pd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

HXM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

4-346 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 1.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT([bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

Vol.2B 4-347

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

4-348 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

SUBPS—Subtract Packed Single-Precision Floating-Point Values

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF 5C/r SUBPS xmm1 Valid Valid Subtract packed single-precision
xmm2/m128 floating-point values in xmmZ2/mem
from xmm1.
Description

Performs a SIMD subtract of the four packed single-precision floating-point values in
the source operand (second operand) from the four packed single-precision floating-
point values in the destination operand (first operand), and stores the packed single-
precision floating-point results in the destination operand. The source operand can
be an XMM register or a 128-bit memory location. The destination operand is an XMM
register. See Figure 10-5 in the Intel® 64 and 1A-32 Architectures Software Devel-
oper’s Manual, Volume 1, for an illustration of a SIMD double-precision floating-point
operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] < DEST[31:0] — SRC[31:0];
DEST[63:32] « DEST[63:32] — SRC[63:32];
DEST[95:64] <« DEST[95:64] — SRC[95:64];
DEST[127:96] <~ DEST[127:96] — SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalent
SUBPS __m128 _mm_sub_ps(__m1283a,__m128b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

Vol.2B 4-349

INSTRUCTION SET REFERENCE, N-Z

H#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.
#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

H#HXM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

H#HXM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

4-350 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

Vol. 2B 4-351

INSTRUCTION SET REFERENCE, N-Z

SUBSD—Subtract Scalar Double-Precision Floating-Point Values

64-Bit Compat/

Opcode Instruction Mode LegMode Description
F2 OF 5C SUBSD xmm1, Valid Valid Subtracts the low double-
Ir xmmZ2/m64 precision floating-point values in

xmmZ2/mem64 from xmm1.

Description

Subtracts the low double-precision floating-point value in the source operand
(second operand) from the low double-precision floating-point value in the destina-
tion operand (first operand), and stores the double-precision floating-point result in
the destination operand. The source operand can be an XMM register or a 64-bit
memory location. The destination operand is an XMM register. The high quadword of
the destination operand remains unchanged. See Figure 11-4 in the Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a
scalar double-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] «— DEST[63:0] — SRC[63:0];
(* DEST[127:64] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
SUBSD __m128d _mm_sub_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

HXM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

4-352 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT([bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

Vol.2B 4-353

INSTRUCTION SET REFERENCE, N-Z

#UD

#AC(0)

4-354 Vol.2B

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

INSTRUCTION SET REFERENCE, N-Z

SUBSS—Subtract Scalar Single-Precision Floating-Point Values

Compat/
64-Bit Leg
Opcode Instruction Mode Mode Description
F30F5C/r SUBSS xmml, Valid Valid Subtract the lower single-precision
xmm2/m32 floating-point values in
xmmZ2/m32 from xmm1.

Description

Subtracts the low single-precision floating-point value in the source operand (second
operand) from the low single-precision floating-point value in the destination
operand (first operand), and stores the single-precision floating-point result in the
destination operand. The source operand can be an XMM register or a 32-bit memory
location. The destination operand is an XMM register. The three high-order double-
words of the destination operand remain unchanged. See Figure 10-6 in the Intel®
64 and I1A-32 Architectures Software Developer’'s Manual, Volume 1, for an illustra-
tion of a scalar single-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] «— DEST[31:0] — SRC[31:0];
(* DEST[127:96] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
SUBSS __m128 _mm_sub_ss(__m128a,__m128b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

Vol.2B 4-355

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

H#HXM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

H#HXM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

4-356 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Vol.2B 4-357

INSTRUCTION SET REFERENCE, N-Z

SWAPGS—Swap GS Base Register

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF01/7 SWAPGS Valid Invalid Exchanges the current GS base
register value with the value
contained in MSR address
CO000102H.
Description

SWAPGS exchanges the current GS base register value with the value contained in
MSR address CO000102H (MSR_KERNELGSbase). KernelGSbase is guaranteed to be
canonical; so SWAPGS does not perform a canonical check. The SWAPGS instruction
is a privileged instruction intended for use by system software.

When using SYSCALL to implement system calls, there is no kernel stack at the OS
entry point. Neither is there a straightforward method to obtain a pointer to kernel

structures from which the kernel stack pointer could be read. Thus, the kernel can't
save general purpose registers or reference memory.

By design, SWAPGS does not require any general purpose registers or memory oper-
ands. No registers need to be saved before using the instruction. SWAPGS exchanges
the CPL O data pointer from the KernelGSbase MSR with the GS base register. The
kernel can then use the GS prefix on normal memory references to access kernel
data structures. Similarly, when the OS kernel is entered using an interrupt or excep-
tion (where the kernel stack is already set up), SWAPGS can be used to quickly get a
pointer to the kernel data structures.

The KernelGSbase MSR itself is only accessible using RDMSR/WRMSR instructions.
Those instructions are only accessible at privilege level 0. WRMSR will cause a
#GP(0) if the value to be written to KernelGSbase MSR is non-canonical.

See Table 4-5.

Table 4-5. SWAPGS Operation Parameters

Opcode ModR/M Byte Instruction
MOD REG R/M Not 64-bit 64-bit Mode
Mode
OF 01 MOD # 11 111 XXX INVLPG INVLPG
11 111 000 #UD SWPGS
11 111 # 000 #UD #UD

4-358 Vol.2B

Operation

IF CS.L# 1 (* Not in 64-Bit Mode *)
THEN
#UD; FI;

IFCPL#0
THEN #GP(0); FI;

tmp < GS(BASE);
GS(BASE) «— KERNELGSDbase;
KERNELGSbase <« tmp;

Flags Affected

None

Protected Mode Exceptions
#UD If Mode # 64-Bit

Real-Address Mode Exceptions

#UD Instruction not recognized.

Virtual-8086 Mode Exceptions

#UD Instruction not recognized.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If CPL #0.

INSTRUCTION SET REFERENCE, N-Z

Vol.2B 4-359

INSTRUCTION SET REFERENCE, N-Z

SYSCALL—Fast System Call

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 05 SYSCALL Valid Invalid Fast call to privilege level O

system procedures.

Description

SYSCALL saves the RIP of the instruction following SYSCALL to RCX and loads a new
RIP from the 1A32_LSTAR (64-bit mode). Upon return, SYSRET copies the value
saved in RCX to the RIP.

SYSCALL saves RFLAGS (lower 32 bit only) in R11. It then masks RFLAGS with an
OS-defined value using the 1A32_FMASK (MSR CO00_0084). The actual mask value
used by the OS is the complement of the value written to the 1A32_FMASK MSR.
None of the bits in RFLAGS are automatically cleared (except for RF). SYSRET
restores RFLAGS from R11 (the lower 32 bits only).

Software should not alter the CS or SS descriptors in a manner that violates the
following assumptions made by SYSCALL/SYSRET:

® The CS and SS base and limit remain the same for all processes, including the
operating system (the base is OH and the limit is OFFFFFFFFH).

® The CS of the SYSCALL target has a privilege level of 0.
® The CS of the SYSRET target has a privilege level of 3.
SYSCALL/SYSRET do not check for violations of these assumptions.

Operation

IF (CS.L=1)or (IA32_EFER.LMA # 1) or (IA32_EFERSCE # 1)

(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)
THEN #UD; FI;

RCX « RIP;

RIP < LSTAR_MSR;

R11 « EFLAGS;

EFLAGS <« (EFLAGS MASKED BY IA32_FMASK);

CPL « O;

CS(SEL) «— IA32_STAR_MSR[47:32];

CS(DPL) « 0;

CS(BASE) «- ;

CS(LIMIT) «— OXFFFFF;

CS(GRANULAR) « 1;

SS(SEL) «— IA32_STAR_MSR[47:32] + 8;

SS(DPL) « O;

4-360 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

SS(BASE) < 0;
SS(LIMIT) < OXFFFFF;
SS(GRANULAR) < 1;

Flags Affected
All.

Protected Mode Exceptions
#UD If Mode # 64-bit.

Real-Address Mode Exceptions
#UD Instruction is not recognized in this mode.

Virtual-8086 Mode Exceptions
#UD Instruction is not recognized in this mode.

Compatibility Mode Exceptions
#UD Instruction is not recognized in this mode.

64-Bit Mode Exceptions
#UD If IA32_EFER.SCE = 0.

Vol.2B 4-361

INSTRUCTION SET REFERENCE, N-Z

SYSENTER—Fast System Call

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF 34 SYSENTER Valid Valid Fast call to privilege level O system
procedures.
Description

Executes a fast call to a level 0 system procedure or routine. SYSENTER is a
companion instruction to SYSEXIT. The instruction is optimized to provide the
maximum performance for system calls from user code running at privilege level 3 to
operating system or executive procedures running at privilege level 0.

Prior to executing the SYSENTER instruction, software must specify the privilege
level O code segment and code entry point, and the privilege level O stack segment
and stack pointer by writing values to the following MSRs:

® |JA32_SYSENTER_CS — Contains a 32-bit value, of which the lower 16 bits are
the segment selector for the privilege level 0 code segment. This value is also
used to compute the segment selector of the privilege level O stack segment.

® |A32_SYSENTER_EIP — Contains the 32-bit offset into the privilege level 0 code
segment to the first instruction of the selected operating procedure or routine.

® 1A32_SYSENTER_ESP — Contains the 32-bit stack pointer for the privilege level
0 stack.

These MSRs can be read from and written to using RDMSR/WRMSR. Register
addresses are listed in Table 4-6. The addresses are defined to remain fixed for future
Intel 64 and 1A-32 processors.

Table 4-6. MSRs Used By the SYSENTER and SYSEXIT Instructions

MSR Address
IA32_SYSENTER_CS 174H
IA32_SYSENTER_ESP 175H
IA32_SYSENTER_EIP 176H

When SYSENTER is executed, the processor:

1. Loads the segment selector from the 1A32_SYSENTER_CS into the CS register.
Loads the instruction pointer from the 1A32_SYSENTER_EIP into the EIP register.
Adds 8 to the value in IA32_SYSENTER_CS and loads it into the SS register.
Loads the stack pointer from the 1A32_SYSENTER_ESP into the ESP register.

a M e N

Switches to privilege level 0.

4-362 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

6. Clears the VM flag in the EFLAGS register, if the flag is set.
7. Begins executing the selected system procedure.

The processor does not save a return IP or other state information for the calling
procedure.

The SYSENTER instruction always transfers program control to a protected-mode
code segment with a DPL of 0. The instruction requires that the following conditions
are met by the operating system:

® The segment descriptor for the selected system code segment selects a flat,
32-bit code segment of up to 4 GBytes, with execute, read, accessed, and non-
conforming permissions.

® The segment descriptor for selected system stack segment selects a flat 32-bit
stack segment of up to 4 GBytes, with read, write, accessed, and expand-up
permissions.

The SYSENTER can be invoked from all operating modes except real-address mode.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not
constitute a call/return pair. When executing a SYSENTER instruction, the processor
does not save state information for the user code, and neither the SYSENTER nor the
SYSEXIT instruction supports passing parameters on the stack.

To use the SYSENTER and SYSEXIT instructions as companion instructions for transi-
tions between privilege level 3 code and privilege level O operating system proce-
dures, the following conventions must be followed:

® The segment descriptors for the privilege level O code and stack segments and
for the privilege level 3 code and stack segments must be contiguous in the
global descriptor table. This convention allows the processor to compute the
segment selectors from the value entered in the SYSENTER_CS_MSR MSR.

® The fast system call “stub” routines executed by user code (typically in shared
libraries or DLLS) must save the required return IP and processor state
information if a return to the calling procedure is required. Likewise, the
operating system or executive procedures called with SYSENTER instructions
must have access to and use this saved return and state information when
returning to the user code.

The SYSENTER and SYSEXIT instructions were introduced into the 1A-32 architecture
in the Pentium Il processor. The availability of these instructions on a processor is
indicated with the SYSENTER/SYSEXIT present (SEP) feature flag returned to the
EDX register by the CPUID instruction. An operating system that qualifies the SEP
flag must also qualify the processor family and model to ensure that the
SYSENTER/SYSEXIT instructions are actually present. For example:

IF CPUID SEP bit is set
THEN IF (Family = 6) and (Model < 3) and (Stepping < 3)
THEN
SYSENTER/SYSEXIT_Not_Supported; Fl;
ELSE

Vol.2B 4-363

INSTRUCTION SET REFERENCE, N-Z

SYSENTER/SYSEXIT_Supported; Fl;
Fl;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the
processor returns a the SEP flag as set, but does not support the SYSENTER/SYSEXIT
instructions.

Operation

IF CRO.PE = O THEN #GP(O); FI;
IF SYSENTER_CS_MSR[15:2] = 0 THEN #GP(0); FI;

EFLAGS.VM « O; (* Insures protected mode execution *)
EFLAGS.IF < O; (* Mask interrupts *)
EFLAGS.RF « O;

CS.SEL «— SYSENTER_CS_MSR (* Operating system provides CS *)
(* Set rest of CS to a fixed value *)

CS.BASE « 0; (* Flat segment *)

CS.LIMIT « FFFFFH; (* 4-GByte limit *)

CS.ARbyte.G « 1; (* 4-KByte granularity *)
CS.ARbyteS « 1;

CS.ARbyte.TYPE <~ 1011B; (* Execute + Read, Accessed *)
CS.ARbyte.D « 1; (* 32-bit code segment*)
CS.ARbyte.DPL « O;

CS.SEL.RPL «- 0;

CS.ARbyte.P « 1;

CPL« O;

SS.SEL «— CS.SEL + 8;

(* Set rest of SS to a fixed value *)

SS.BASE « 0; (* Flat segment *)

SS.LIMIT « FFFFFH; (* 4-GByte limit *)

SS.ARbyte.G « 1; (* 4-KByte granularity *)
SS.ARbytesS «;

SS.ARbyte.TYPE < 0011B; (* Read/Write, Accessed *)
SS.ARbyte.D « 1; (* 32-bit stack segment*)
SS.ARbyte.DPL « O;

SS.SELRPL «- C;

SS.ARbyteP « 1;

ESP <« SYSENTER_ESP_MSR;
EIP < SYSENTER_EIP_MSR;

4-364 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

IA-32e Mode Operation

In 1A-32e mode, SYSENTER executes a fast system calls from user code running at
privilege level 3 (in compatibility mode or 64-bit mode) to 64-bit executive proce-
dures running at privilege level 0. This instruction is a companion instruction to the
SYSEXIT instruction.

In 1A-32e mode, the 1A32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs hold
64-bit addresses and must be in canonical form; 1A32_SYSENTER_CS must not
contain a NULL selector.

When SYSENTER transfers control, the following fields are generated and bits set:

Target code segment — Reads non-NULL selector from IA32_SYSENTER_CS.

New CS attributes — L-bit = 1 (go to 64-bit mode); CS base = 0, CS limit =
FFFFFFFFH.

Target instruction — Reads 64-bit canonical address from
IA32_SYSENTER_EIP.

Stack segment — Computed by adding 8 to the value from
IA32_SYSENTER_CS.

Stack pointer — Reads 64-bit canonical address from IA32_SYSENTER_ESP.
New SS attributes — SS base = 0, SS limit = FFFFFFFFH.

Flags Affected
VM, IF, RF (see Operation above)

Protected Mode Exceptions
#GP(0) If IA32_SYSENTER_CS[15:2] = 0.

Real-Address Mode Exceptions
#GP(0) If protected mode is not enabled.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.

Vol. 2B 4-365

INSTRUCTION SET REFERENCE, N-Z

SYSEXIT—Fast Return from Fast System Call

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF 35 SYSEXIT Valid Valid Fast return to privilege level 3 user code.
REX.W + SYSEXIT Valid Valid Fast return to 64-bit mode privilege level
OF 35 3 user code.

Description

Executes a fast return to privilege level 3 user code. SYSEXIT is a companion instruc-
tion to the SYSENTER instruction. The instruction is optimized to provide the
maximum performance for returns from system procedures executing at protections
levels O to user procedures executing at protection level 3. It must be executed from
code executing at privilege level 0.

Prior to executing SYSEXIT, software must specify the privilege level 3 code segment
and code entry point, and the privilege level 3 stack segment and stack pointer by
writing values into the following MSR and general-purpose registers:

® JA32_SYSENTER_CS — Contains a 32-bit value, of which the lower 16 bits are
the segment selector for the privilege level 0 code segment in which the
processor is currently executing. This value is used to compute the segment
selectors for the privilege level 3 code and stack segments.

® EDX — Contains the 32-bit offset into the privilege level 3 code segment to the
first instruction to be executed in the user code.

® ECX — Contains the 32-bit stack pointer for the privilege level 3 stack.

The IA32_SYSENTER_CS MSR can be read from and written to using
RDMSR/WRMSR. The register address is listed in Table 4-6. This address is defined to
remain fixed for future Intel 64 and 1A-32 processors.

When SYSEXIT is executed, the processor:

1. Adds 16 to the value in 1A32_SYSENTER_CS and loads the sum into the CS
selector register.

Loads the instruction pointer from the EDX register into the EIP register.

Adds 24 to the value in IA32_SYSENTER_CS and loads the sum into the SS
selector register.

4. Loads the stack pointer from the ECX register into the ESP register.
5. Switches to privilege level 3.
6. Begins executing the user code at the EIP address.

See “SWAPGS—Swap GS Base Register” in this chapter for information about using
the SYSENTER and SYSEXIT instructions as companion call and return instructions.

4-366 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

The SYSEXIT instruction always transfers program control to a protected-mode code
segment with a DPL of 3. The instruction requires that the following conditions are
met by the operating system:

® The segment descriptor for the selected user code segment selects a flat, 32-bit
code segment of up to 4 GBytes, with execute, read, accessed, and non-
conforming permissions.

® The segment descriptor for selected user stack segment selects a flat, 32-bit
stack segment of up to 4 GBytes, with expand-up, read, write, and accessed
permissions.

The SYSENTER can be invoked from all operating modes except real-address mode
and virtual 8086 mode.

The SYSENTER and SYSEXIT instructions were introduced into the 1A-32 architecture
in the Pentium Il processor. The availability of these instructions on a processor is
indicated with the SYSENTER/SYSEXIT present (SEP) feature flag returned to the
EDX register by the CPUID instruction. An operating system that qualifies the SEP
flag must also qualify the processor family and model to ensure that the
SYSENTER/SYSEXIT instructions are actually present. For example:

IF CPUID SEP bit is set
THEN IF (Family = 6) and (Model < 3) and (Stepping < 3)
THEN
SYSENTER/SYSEXIT_Not_Supported; Fl;
ELSE
SYSENTER/SYSEXIT_Supported; FI;
Fl;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the
processor returns a the SEP flag as set, but does not support the SYSENTER/SYSEXIT
instructions.

Operation

IF SYSENTER_CS_MSR[15:2] = 0 THEN #GP(0); FI;
IF CRO.PE = 0 THEN #GP(0); FI;
IF CPL % O THEN #GP(0); FI;

CS.SEL < (SYSENTER_CS_MSR + 16); (* Segment selector for return CS *)

(* Set rest of CS to a fixed value *)

CS.BASE «- O; (* Flat segment *)

CS.UMIT « FFFFFH; (* 4-GByte limit *)

CS.ARbyte.G « 1; (* 4-KByte granularity *)

CS.ARbyte.S « 1;

CS.ARbyte.TYPE «- 1011B; (* Execute, Read, Non-Conforming Code *)
CS.ARbyte.D « 1; (* 32-bit code segment*)

CS.ARbyte.DPL « 3;

Vol.2B 4-367

INSTRUCTION SET REFERENCE, N-Z

CS.SELRPL « 3;
CS.ARbyte.P « 1;
CPL « 3;

SS.SEL « (SYSENTER_CS_MSR + 24); (* Segment selector for return SS *)
(* Set rest of SS to a fixed value *);

SS.BASE « 0; (* Flat segment *)

SS.UIMIT « FFFFFH; (* 4-GByte limit *)

SS.ARbyte.G «-1; (* 4-KByte granularity *)
SS.ARbyte.S «;

SS.ARbyte.TYPE <~ 0011B; (* Expand Up, Read/Write, Data *)
SS.ARbyte.D « 1; (* 32-bit stack segment?*)
SS.ARbyte.DPL « 3;

SS.SELRPL « 3;

SS.ARbyte.P « 1;

ESP « ECX;
EIP « EDX;

IA-32e Mode Operation

In 1A-32e mode, SYSEXIT executes a fast system calls from a 64-bit executive proce-
dures running at privilege level O to user code running at privilege level 3 (in compat-
ibility mode or 64-bit mode). This instruction is a companion instruction to the
SYSENTER instruction.

In 1A-32e mode, the IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs hold
64-bit addresses and must be in canonical form; IA32_SYSENTER_CS must not
contain a NULL selector.

When the SYSEXIT instruction transfers control to 64-bit mode user code using
REX.W, the following fields are generated and bits set:

® Target code segment — Computed by adding 32 to the value in the
IA32_SYSENTER_CS.

® New CS attributes — L-bit = 1 (go to 64-bit mode).

® Target instruction — Reads 64-bit canonical address in RDX.

® Stack segment — Computed by adding 8 to the value of CS selector.
® Stack pointer — Update RSP using 64-bit canonical address in RCX.

When SYSEXIT transfers control to compatibility mode user code when the operand
size attribute is 32 bits, the following fields are generated and bits set:

® Target code segment — Computed by adding 16 to the value in
IA32_SYSENTER_CS.

® New CS attributes — L-bit = 0 (go to compatibility mode).
® Target instruction — Fetch the target instruction from 32-bit address in EDX.

4-368 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

® Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.
® Stack pointer — Update ESP from 32-bit address in ECX.

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If IA32_SYSENTER_CS[15:2] = O.
If CPL #0.

Real-Address Mode Exceptions
#GP(0) If protected mode is not enabled.

Virtual-8086 Mode Exceptions
#GP(0) Always

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If IA32_SYSENTER_CS = 0.
If CPL #0.
If ECX or EDX contains a non-canonical address.

Vol.2B 4-369

INSTRUCTION SET REFERENCE, N-Z

SYSRET—Return From Fast System Call

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 07 SYSRET Valid Invalid Return from fast system call

Description

SYSCALL saves the RIP of the instruction following the SYSCALL into RCX and loads
the new RIP from the LSTAR (64-bit mode only). Upon return, SYSRET copies the
value saved in RCX to the RIP.

In a return to 64-bit mode using Osize 64, SYSRET sets the CS selector value to MSR
IA32_STAR[63:48] +16. The SS is set to IA32_STAR[63:48] + 8.

SYSRET transfer control to compatibility mode using Osize 32. The CS selector value
is set to MSR 1A32_STAR[63:48]. The SS is set to IA32_STAR[63:48] + 8.

It is the responsibility of the OS to keep descriptors in the GDT/LDT that correspond
to selectors loaded by SYSCALL/SYSRET consistent with the base, limit and attribute
values forced by the these instructions.

Software should not alter the CS or SS descriptors in a manner that violates the
following assumptions made by SYSCALL/SYSRET:

® CS and SS base and limit remain the same for all processes, including the
operating system.

® CS of the SYSCALL target has a privilege level of O.
® CS of the SYSRET target has a privilege level of 3.
SYSCALL/SYSRET do not check for violations of these assumptions.

Operation

IF (CS.L#=1)or (IA32_EFER.LMA # 1) or (IA32_EFER.SCE # 1)
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)
THEN #UD; FI;
IF (CPL = 0)
THEN #GP(0); FI;
IF (RCX = CANONICAL_ADDRESS)
THEN #GP(0); FI;
IF (OPERAND_SIZE = 64)
THEN (* Return to 64-Bit Mode *)
EFLAGS <~ R11;
CPL « 0x3;
CS(SEL) «— IA32_STAR[63:48] + 16;
CS(PL) « 0x3;
SS(SEL) «— IA32_STAR[63:48] + 8;

4-370 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

SS(PL) « 0x3;
RIP «— RCX;

ELSE (* Return to Compatibility Mode *)
EFLAGS < R11;
CPL « 0x3;
CS(SEL) «— IA32_STAR[63:48] ;
CS(PL) « 0x3;
SS(SEL) «— IA32_STAR[63:48] + 8;
SS(PL) « 0x3;
EIP « ECX;

Fl;

Flags Affected
VM, IF, RF.

Protected Mode Exceptions
#UD If Mode # 64-Bit.

Real-Address Mode Exceptions
#UD Instruction not recognized in this mode.

Virtual-8086 Mode Exceptions
#UD Instruction not recognized in this mode.

Compatibility Mode Exceptions
#UD Instruction not recognized in this mode.

64-Bit Mode Exceptions
#UD If IA32_EFER.SCE bit = 0.
#GP(0) If CPL #0.
If ECX contains a non-canonical address.

Vol.2B 4-371

INSTRUCTION SET REFERENCE, N-Z

TEST—Logical Compare

Compat/
64-Bit Leg
Opcode Instruction Mode Mode Description
A8 ib TEST AL, imm8 Valid Valid AND imm8 with AL; set SF,
ZF, PF according to result.
A9 iw TEST AX, imm16 Valid Valid AND imm16 with AX; set SF,
ZF, PF according to result.
A9 id TEST EAX,imm32 Valid Valid AND imm32 with EAX; set
SF, ZF, PF according to
result.
REXW + A9 id TEST RAX,imm32 Valid N.E. AND imm32 sign-extended
to 64-bits with RAX; set SF,
ZF, PF according to result.
F6/0ib TEST r/m8, imm8 Valid Valid AND imm8with r/m8; set SF,
ZF, PF according to result.
REX +F6 /0 ib TEST r/m8* imm8 Valid N.E. AND imm8with r/m8; set SF,
ZF, PF according to result.
F7 /0 iw TEST r/m16, Valid Valid AND imm16 with r/m16; set
imm16 SF, ZF, PF according to
result.
F7 /0 id TEST r/m32, Valid Valid AND imm32 with r/m32; set
imm32 SF, ZF, PF according to
result.
REXW +F7/0id TEST r/m64, Valid N.E. AND imm32 sign-extended
imm32 to 64-bits with /m64; set
SF, ZF, PF according to
result.
84/r TEST r/m8, r8 Valid Valid AND r8with r/m8; set SF, ZF,
PF according to result.
REX +84 /r TEST r/m8%*, r8* Valid N.E. AND r8with r/m8; set SF, ZF,
PF according to result.
85/r TEST r/m16,r16 Valid Valid AND r16 with r/m16; set SF,
ZF, PF according to result.
85/r TEST r/m32, r32 Valid Valid AND r32 with r/m32; set SF,
ZF, PF according to result.
REXW + 85 /r TEST r/m64, r64 Valid N.E. AND r64 with r/m64; set SF,
ZF, PF according to result.
NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

4-372 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Description

Computes the bit-wise logical AND of first operand (source 1 operand) and the
second operand (source 2 operand) and sets the SF, ZF, and PF status flags according
to the result. The result is then discarded.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to
64 bits. See the summary chart at the beginning of this section for encoding data and
limits.

Operation

TEMP <~ SRC1 AND SRC2;
SF <~ MSB(TEMP);

IFTEMP =0
THEN ZF « 1;
ELSE ZF < O;

Fl:

PF « BitwiseXNOR(TEMP[O:7]);
CF «C;

OF < O;

(* AF is undefined *)

Flags Affected

The OF and CF flags are set to 0. The SF, ZF, and PF flags are set according to the
result (see the “Operation” section above). The state of the AF flag is undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Vol.2B 4-373

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#S