intel)

Intel® 64 and IA-32 Architectures
Software Developer's Manual

VVolume 2B:
Instruction Set Reference, N-Z

NOTE: The Intel 64 and IA-32 Architectures Software Developer’s Manual
consists of five volumes: Basic Architecture, Order Number 253665;
Instruction Set Reference A-M, Order Number 253666; Instruction Set
Reference N-Z, Order Number 253667; System Programming Guide,
Part 1, Order Number 253668; System Programming Guide, Part 2,
Order Number 2536689. Refer to all five volumes when evaluating your
design needs.

Order Number: 253667-028US
September 2008

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED
FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Developers must not rely on the absence or characteristics of any features or instructions marked “reserved”
or “undefined.” Improper use of reserved or undefined features or instructions may cause unpredictable be-
havior or failure in developer's software code when running on an Intel processor. Intel reserves these fea-
tures or instructions for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from their unauthorized use.

The Intel® 64 architecture processors may contain design defects or errors known as errata. Current char-
acterized errata are available on request.

Hyper-Threading Technology requires a computer system with an Intel® processor supporting Hyper-
Threading Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will
vary depending on the specific hardware and software you use. For more information, see http://www.in-
tel.com/technology/hyperthread/index.htm; including details on which processors support HT Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will_vary depending on hardware and software configurations. Intel® Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, oper-
ating system, device drivers and applications enabled for Intel™ 64 architecture. Processors will not operate
(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary de-
pending on your hardware and software configurations. Consult with your system vendor for more infor-
mation.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability
and a supporting operating system. Check with your PC manufacturer on whether your system delivers Ex-
ecute Disable Bit functionality.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2
Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are trademarks or reg-
istered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

or call 1-800-548-4725
or visit Intel’s website at http://www.intel.com

Copyright © 1997-2008 Intel Corporation

i Vol.2B

CHAPTER 4
INSTRUCTION SET REFERENCE, N-Z

4.1 INSTRUCTIONS (N-2)

Chapter 4 continues an alphabetical discussion of Intel® 64 and 1A-32 instructions
(N-Z). See also: Chapter 3, “Instruction Set Reference, A-M,” in the Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 2A.

Vol.2B 4-1

INSTRUCTION SET REFERENCE, N-Z

NEG—Two’s Complement Negation

Opcode Instruction 64-Bit Mode Compat/ Description
Leg Mode

F6 /3 NEG r/m8 Valid Valid Two's complement negate r/m8.

REX + F6 /3 NEG r/m8* Valid N.E. Two's complement negate r/m8.

F7 /3 NEG r/m16 Valid Valid Two's complement negate
r/m16.

F7 /3 NEG r/m32 Valid Valid Two's complement negate
r/m32.

REXW +F7 /3 NEG r/m64 Valid N.E. Two's complement negate
r/mé4.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Description

Replaces the value of operand (the destination operand) with its two's complement.
(This operation is equivalent to subtracting the operand from 0.) The destination
operand is located in a general-purpose register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

IFDEST=0
THEN CF « 0O;
ELSECF « 1;
Fl;
DEST « [- (DEST)]

Flags Affected

The CF flag set to O if the source operand is O; otherwise it is set to 1. The OF, SF, ZF,
AF, and PF flags are set according to the result.

4-2 Vol.2B NEG—Two's Complement Negation

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#AC(0)

#UD

If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP

#SS

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)
#PF(fault-code)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
For a page fault.

NEG—Two’'s Complement Negation Vol.2B 4-3

INSTRUCTION SET REFERENCE, N-Z

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used but the destination is not a memory
operand.

#AC(0)

#UD

4-4 \ol.2B NEG—Two's Complement Negation

INSTRUCTION SET REFERENCE, N-Z

NOP—No Operation

Opcode Instruction 64-Bit Mode Compat/ Description

Leg Mode
90 NOP Valid Valid One byte no-operation instruction.
OF 1F /0 NOP r/m16 Valid Valid Multi-byte no-operation instruction.
OF 1F /0 NOP r/m32 Valid Valid Multi-byte no-operation instruction.
Description

This instruction performs no operation. It is a one-byte or multi-byte NOP that takes
up space in the instruction stream but does not impact machine context, except for
the EIP register.

The multi-byte form of NOP is available on processors with model encoding:
® CPUID.0O1H.EAX[Bytes 11:8] = 0110B or 1111B

The multi-byte NOP instruction does not alter the content of a register and will not
issue a memory operation. The instruction’s operation is the same in non-64-bit
modes and 64-bit mode.

Operation

The one-byte NOP instruction is an alias mnemonic for the XCHG (E)AX, (E)AX
instruction.

The multi-byte NOP instruction performs no operation on supported processors and
generates undefined opcode exception on processors that do not support the multi-
byte NOP instruction.

The memory operand form of the instruction allows software to create a byte
sequence of “no operation” as one instruction. For situations where multiple-byte
NOPs are needed, the recommended operations (32-bit mode and 64-bit mode) are:

Table 4-1. Recommended Multi-Byte Sequence of NOP Instruction

Length Assembly Byte Sequence

2 bytes 66 NOP 66 90H

3 bytes NOP DWORD ptr [EAX] OF 1F OCOH

4 bytes NOP DWORD ptr [EAX + O0H] OF 1F 40 OOH

5 bytes NOP DWORD ptr [EAX + EAX*T + 00H] OF 1F 44 00 O0OH

6 bytes 66 NOP DWORD ptr [EAX + EAX*1 + O0H] 66 OF 1F 44 00 O0H

7 bytes NOP DWORD ptr [EAX + 00000000H] OF 1F 80 00 00 00 OOH

NOP—No Operation Vol.2B 4-5

INSTRUCTION SET REFERENCE, N-Z

Table 4-1. Recommended Multi-Byte Sequence of NOP Instruction (Contd.)

Length Assembly Byte Sequence
8 bytes NOP DWORD ptr [EAX + EAX*1 + 00000000H] OF 1F 84 00 00 00 00 O0H
9 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 66 OF 1F 84 00 00 00 00
00000000H] OOH
Flags Affected
None.

Exceptions (All Operating Modes)

#UD

4-6 Vol.2B

If the LOCK prefix is used.

NOP—No Operation

INSTRUCTION SET REFERENCE, N-Z

NOT—One's Complement Negation

Opcode Instruction 64-Bit Compat/ Description

Mode Leg Mode
F6 /2 NOT /m8 Valid Valid Reverse each bit of r/m8.
REX +F6 /2 NOT r/m8* Valid N.E. Reverse each bit of r/m8.
F7 /2 NOT r/m16 Valid Valid Reverse each bit of r/m16.
F7 172 NOT r/m32 Valid Valid Reverse each bit of /m32.
REXW +F7 /2 NOT r/m64 Valid N.E. Reverse each bit of r/m64.
NOTES:

* |In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Description

Performs a bitwise NOT operation (each 1 is set to O, and each O is set to 1) on the
destination operand and stores the result in the destination operand location. The
destination operand can be a register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

DEST « NOT DEST;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

NOT—One’s Complement Negation Vol.2B 4-7

INSTRUCTION SET REFERENCE, N-Z

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a hon-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

4-8 Vol.2B NOT—One's Complement Negation

OR—Logical Inclusive OR

INSTRUCTION SET REFERENCE, N-Z

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

0Cib OR AL, imm8 Valid Valid AL OR imm8.

0D iw OR AX,imm16 Valid Valid AX OR imm16.

oD id OR EAX, imm32 Valid Valid EAX OR imm32.

REX.W + 0D id ORRAX,imm32 Valid N.E. RAX OR imm32 (sign-
extended).

80/1ib OR r/m8, imm8 Valid Valid r/m8 OR imm8.

REX +80/1 ib OR r/m8*, imm8 Valid N.E. r/m8 OR imm8.

81/1 iw OR r/m16,imm16 Valid Valid r/m16 OR imm16.

81/1id OR r/m32, imm32 Valid Valid r/m32 OR imm32.

REXW +81/1id ORr/m64,imm32 Valid N.E. r/m64 OR imm32 (sign-
extended).

83/1ib OR r/m16, imm8 Valid Valid r/m16 OR imm8 (sign-
extended).

83/1ib OR r/m32, imm8 Valid Valid r/m32 OR imm8 (sign-
extended).

REXW +83/1ib OR r/m64, imm8 Valid N.E. r/m64 OR imm8 (sign-
extended).

08/r OR r/m8, r8 Valid Valid /m80R r8.

REX +08/r OR r/m8*, r8* Valid N.E. /m80R r8.

09/r OR r/m16,r16 Valid Valid /m16 OR r16.

09/r OR r/m32, r32 Valid Valid /m320R r32.

REXW + 09 /r OR r/m64, r64 Valid N.E. r/m64 OR r64.

OA/r OR r8, r/m8 Valid Valid r8 OR r/m8.

REX+O0A/r OR r8% r/m8* Valid N.E. r8 OR r/m8.

0B/r ORr16, r/mi16 Valid Valid r16 OR r/m16.

0B/r OR r32, r/m32 Valid Valid r32 OR r/m32.

REXW + OB /r OR r64, r/m64 Valid N.E. r64 OR r/m64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

OR—Logical Inclusive OR

Vol.2B 4-9

INSTRUCTION SET REFERENCE, N-Z

Description

Performs a bitwise inclusive OR operation between the destination (first) and source
(second) operands and stores the result in the destination operand location. The
source operand can be an immediate, a register, or a memory location; the destina-
tion operand can be a register or a memory location. (However, two memory oper-
ands cannot be used in one instruction.) Each bit of the result of the OR instruction is
set to O if both corresponding bits of the first and second operands are 0; otherwise,
each bitis set to 1.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

DEST « DEST OR SRC

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the
result. The state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

4-10 Vol.2B OR—Logical Inclusive OR

#UD

INSTRUCTION SET REFERENCE, N-Z

If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)
#GP(0)
#PF(fault-code)
#AC(0)

#UD

OR—Logical Inclusive OR

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used but the destination is not a memory
operand.

Vol.2B 4-11

INSTRUCTION SET REFERENCE, N-Z

ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 56 /r ORPD xmm1, xmmZ2/m128 Valid Valid Bitwise OR of xmmZ2/m128
and xmm1.
Description

Performs a bitwise logical OR of the two packed double-precision floating-point
values from the source operand (second operand) and the destination operand (first
operand), and stores the result in the destination operand. The source operand can
be an XMM register or a 128-bit memory location. The destination operand is an XMM
register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[127:0] « DEST[127:0] BitwiseOR SRC[127:0];

Intel® C/C++ Compiler Intrinsic Equivalent
ORPD __m128d _mm_or_pd(__m128da, __m128dDb)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

4-12 Vol.2B ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values Vol.2B 4-13

INSTRUCTION SET REFERENCE, N-Z

ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 56 /r ORPS xmm1, xmm2/m128 Valid Valid Bitwise OR of
xmm2/m128 and
xmm1.
Description

Performs a bitwise logical OR of the four packed single-precision floating-point values
from the source operand (second operand) and the destination operand (first
operand), and stores the result in the destination operand. The source operand can
be an XMM register or a 128-bit memory location. The destination operand is an XMM
register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[127:0] « DEST[127:0] BitwiseOR SRC[127:0];

Intel C/C++ Compiler Intrinsic Equivalent
ORPS __m128 _mm_or_ps(__m128a,__m128Db)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

4-14 Vol.2B ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values Vol.2B 4-15

INSTRUCTION SET REFERENCE, N-Z

OUT—Output to Port

Opcode* Instruction 64-Bit Compat/ Description
Mode Leg Mode

€6 ib OUT imm8, AL Valid Valid Output byte in AL to I/0 port
address imm8.

€7 ib OUT imm8, AX Valid Valid Output word in AX to I/0 port
address imm8.

€7 ib OUT imm8, EAX Valid Valid Output doubleword in EAX to 1/0
port address imm8.

EE OUT DX, AL Valid Valid Output byte in AL to I/0 port
address in DX.

EF OUT DX, AX Valid Valid Output word in AX to I/0 port
address in DX.

EF OUT DX, EAX Valid Valid Output doubleword in EAX to I/0
port address in DX.

NOTES:
* See IA-32 Architecture Compatibility section below.

Description

Copies the value from the second operand (source operand) to the 1/0 port specified
with the destination operand (first operand). The source operand can be register AL,
AX, or EAX, depending on the size of the port being accessed (8, 16, or 32 bits,
respectively); the destination operand can be a byte-immediate or the DX register.
Using a byte immediate allows 1/0 port addresses O to 255 to be accessed; using the
DX register as a source operand allows 1/0 ports from O to 65,535 to be accessed.

The size of the 1/0 port being accessed is determined by the opcode for an 8-bit I/0
port or by the operand-size attribute of the instruction for a 16- or 32-bit 1/0 port.

At the machine code level, 1/0 instructions are shorter when accessing 8-bit 1/0
ports. Here, the upper eight bits of the port address will be O.

This instruction is only useful for accessing 1/0 ports located in the processor’s 1/0
address space. See Chapter 13, “Input/Output,” in the Intel® 64 and 1A-32 Architec-
tures Software Developer’s Manual, Volume 1, for more information on accessing 1/0
ports in the 1/0 address space.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

After executing an OUT instruction, the Pentium® processor insures that the EWBE#
pin has been sampled active before it begins to execute the next instruction. (Note
that the instruction can be prefetched if EWBE# is not active, but it will not be

4-16 Vol.2B OUT—Output to Port

INSTRUCTION SET REFERENCE, N-Z

executed until the EWBE# pin is sampled active.) Only the Pentium processor family
has the EWBE# pin.

Operation

IF (PE=1)and ((CPL > IOPL) or (VM =1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)
IF (Any I/0 Permission Bit for I/0 port being accessed = 1)
THEN (* 1/0 operation is not allowed *)
#GP(0);
ELSE (* I/0 operation is allowed *)
DEST « SRC; (* Writes to selected I/0 port *)
Fl;
ELSE (Real Mode or Protected Mode with CPL < IOPL *)
DEST « SRC; (* Writes to selected I/0 port *)
Fl;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the 1/0 privilege
level (IOPL) and any of the corresponding 1I/0 permission bits in
TSS for the 1/0 port being accessed is 1.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If any of the 1/0 permission bits in the TSS for the 1/0 port being
accessed is 1.

#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as protected mode exceptions.

64-Bit Mode Exceptions
Same as protected mode exceptions.

OUT—Output to Port Vol.2B 4-17

INSTRUCTION SET REFERENCE, N-Z

OUTS/0OUTSB/OUTSW/0OUTSD—Output String to Port

Opcode* Instruction 64-Bit Mode Compat/ Description
Leg Mode
6€E OUTS DX, m8 Valid Valid Output byte from memory

location specified in DS:(E)SI or
RSI to I/0 port specified in DX**,

6F QUTSDX, m16 Valid Valid Output word from memory
location specified in DS:(E)SI or
RSI to I/0 port specified in DX**,

6F QUTS DX, m32 Valid Valid Output doubleword from
memory location specified in
DS:(E)SI or RSI to 1/0 port
specified in DX**,

6E OUTSB Valid Valid Output byte from memory

location specified in DS:(E)SI or
RSI to 1/0 port specified in DX**.

6F ouUTSW Valid Valid Output word from memory
location specified in DS:(E)SI or
RSI to I/0 port specified in DX**,

6F OUTSD Valid Valid Output doubleword from
memory location specified in
DS:(E)SI or RSI to I/0 port
specified in DX**.

NOTES:
* See |A-32 Architecture Compatibility section below.

** In 64-bit mode, only 64-bit (RSI) and 32-bit (ESI) address sizes are supported. In non-64-bit
mode, only 32-bit (ESI) and 16-bit (SI) address sizes are supported.

Description

Copies data from the source operand (second operand) to the 1/0 port specified with
the destination operand (first operand). The source operand is a memory location,
the address of which is read from either the DS:Sl, DS:ESI or the RSI registers
(depending on the address-size attribute of the instruction, 16, 32 or 64, respec-
tively). (The DS segment may be overridden with a segment override prefix.) The
destination operand is an 1/0 port address (from O to 65,535) that is read from the
DX register. The size of the 1/0 port being accessed (that is, the size of the source
and destination operands) is determined by the opcode for an 8-bit 1/0 port or by the
operand-size attribute of the instruction for a 16- or 32-bit 1/0 port.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified
with the OUTS mnemonic) allows the source and destination operands to be specified
explicitly. Here, the source operand should be a symbol that indicates the size of the

4-18 Vol.2B OUTS/0UTSB/OUTSW/OUTSD—0utput String to Port

INSTRUCTION SET REFERENCE, N-Z

1/0 port and the source address, and the destination operand must be DX. This
explicit-operands form is provided to allow documentation; however, note that the
documentation provided by this form can be misleading. That is, the source operand
symbol must specify the correct type (size) of the operand (byte, word, or double-
word), but it does not have to specify the correct location. The location is always
specified by the DS:(E)SI or RSI registers, which must be loaded correctly before the
OUTS instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword
versions of the OUTS instructions. Here also DS:(E)SI is assumed to be the source
operand and DX is assumed to be the destination operand. The size of the 1/0 port is
specified with the choice of mnemonic: OUTSB (byte), OUTSW (word), or OUTSD
(doubleword).

After the byte, word, or doubleword is transferred from the memory location to the
1/0 port, the SI/ESI/RSI register is incremented or decremented automatically
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is O, the
(E)SI register is incremented; if the DF flag is 1, the SI/ESI/RSI register is decre-
mented.) The SI/ESI/RSI register is incremented or decremented by 1 for byte oper-
ations, by 2 for word operations, and by 4 for doubleword operations.

The OUTS, OUTSB, OUTSW, and OUTSD instructions can be preceded by the REP
prefix for block input of ECX bytes, words, or doublewords. See “REP/REPE/REPZ
/REPNE/REPNZ—Repeat String Operation Prefix” in this chapter for a description of
the REP prefix. This instruction is only useful for accessing 1/0 ports located in the
processor’s I/0 address space. See Chapter 13, “Input/Output,” in the Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 1, for more information on
accessing 1/0 ports in the 1/0 address space.

In 64-bit mode, the default operand size is 32 bits; operand size is not promoted by
the use of REX.W. In 64-bit mode, the default address size is 64 bits, and 64-bit
address is specified using RSI by default. 32-bit address using ESI is support using
the prefix 67H, but 16-bit address is not supported in 64-bit mode.

IA-32 Architecture Compatibility

After executing an OUTS, OUTSB, OUTSW, or OUTSD instruction, the Pentium
processor insures that the EWBE# pin has been sampled active before it begins to
execute the next instruction. (Note that the instruction can be prefetched if EWBE#
is not active, but it will not be executed until the EWBE# pin is sampled active.) Only
the Pentium processor family has the EWBE# pin.

For the Pentium 4, Intel® Xeon®, and P6 processor family, upon execution of an
OUTS, OUTSB, OUTSW, or OUTSD instruction, the processor will not execute the next
instruction until the data phase of the transaction is complete.

Operation

IF (PE= 1) and ((CPL > IOPL) or (VM =1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)

OUTS/0OUTSB/OUTSW/OUTSD—Output String to Port Vol.2B 4-19

INSTRUCTION SET REFERENCE, N-Z

IF (Any I/0 Permission Bit for I/0 port being accessed = 1)
THEN (* I/0 operation is not allowed *)
#GP(0);
ELSE (* I/0 operation is allowed *)
DEST « SRC; (* Writes to I/0 port *)
Fl;
ELSE (Real Mode or Protected Mode or 64-Bit Mode with CPL < IOPL *)
DEST « SRC; (* Writes to I/0 port *)
Fl;

Byte transfer:

IF 64-bit mode
Then
IF 64-Bit Address Size
THEN
IFDF=0
THEN RSI <~ RSIRSI + 1;
ELSERSI « RSlor-1;
Fl;
ELSE (* 32-Bit Address Size *)
IFDF=0
THEN ESI « ESI+ 1;
ELSE €Sl « ESI - 1;
Fl;
Fl;
ELSE
IFDF=0

THEN (E)SI « (E)SI + 1;
ELSE (E)SI « (E)SI - 1;

Fl;
Fl;
Word transfer:
IF 64-bit mode
Then
IF 64-Bit Address Size
THEN
IFDF=0
THEN RSI «~ RSIRSI + 2;
ELSERSI « RSl or - 2;
Fl;
ELSE (* 32-Bit Address Size *)
IFDF=0

THEN ESI« ESI+2;

4-20 Vol.2B OUTS/0UTSB/OUTSW/OUTSD—0utput String to Port

ELSE ESI« ESI-2;

Fl;
Fl;
ELSE
IFDF=0
THEN (E)SI « (E)SI + 2;
ELSE (E)SI « (E)SI - 2;
Fl;
Fl;
Doubleword transfer:
IF 64-bit mode
Then
IF 64-Bit Address Size
THEN
IFDF=0
THEN RSI < RSIRSI + 4;
ELSE RSl « RSl or - 4;
Fl;
ELSE (* 32-Bit Address Size *)
IFDF=0
THEN ESI « ESI+4;
ELSE €Sl « ESI - 4;
Fl;
Fl;
ELSE
IFDF=0
THEN (E)SI « (E)SI + 4;
ELSE (E)SI « (E)SI - 4;
Fl;
Fl;
Flags Affected
None.

Protected Mode Exceptions

INSTRUCTION SET REFERENCE, N-Z

#GP(0) If the CPL is greater than (has less privilege) the 1/0 privilege
level (IOPL) and any of the corresponding 1/0 permission bits in
TSS for the 1/0 port being accessed is 1.

If a memory operand effective address is outside the limit of the

CS, DS, ES, FS, or GS segment.

If the segment register contains a NULL segment selector.

#PF(fault-code) If a page fault occurs.

OUTS/0OUTSB/OUTSW/OUTSD—Output String to Port

Vol.2B 4-21

INSTRUCTION SET REFERENCE, N-Z

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If any of the 1/0 permission bits in the TSS for the 1/0 port being
accessed is 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the CPL is greater than (has less privilege) the 1/0 privilege
level (IOPL) and any of the corresponding 1/0 permission bits in
TSS for the 1/0 port being accessed is 1.

If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

4-22 Vol.2B OUTS/0UTSB/OUTSW/OUTSD—0utput String to Port

INSTRUCTION SET REFERENCE, N-Z

PABSB/PABSW/PABSD — Packed Absolute Value

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF381C/r PABSB mm1, Valid Valid Compute the absolute value of
mm2/m64 bytes in mm2/m64 and store
UNSIGNED result in mm1.
66 OF 38 1C/r PABSB xmm1, Valid Valid Compute the absolute value of
xmm2/m128 bytes in xmm2/m128 and store
UNSIGNED result in xmm1.
OF381D/r PABSW mmT1, Valid Valid Compute the absolute value of 16-
mm2/m64 bit integers in mm2/m64 and store
UNSIGNED result in mm1.
66 0F 38 1D /r PABSW xmm1, Valid Valid Compute the absolute value of 16-
xmm2/m128 bit integers in xmm2/m128 and
store UNSIGNED result in xmm1.
OF 38 1E/r PABSD mm1, Valid Valid Compute the absolute value of 32-
mm2/m64 bit integers in mm2/m64 and store
UNSIGNED result in mm1.
66 OF 38 1E/r PABSD xmm1, Valid Valid Compute the absolute value of 32-
xmm2/m128 bit integers in xmm2/m128 and
store UNSIGNED result in xmm1.

Description

PABSB/W/D computes the absolute value of each data element of the source operand
(the second operand) and stores the UNSIGNED results in the destination operand
(the first operand). PABSB operates on signed bytes, PABSW operates on 16-bit
words, and PABSD operates on signed 32-bit integers. The source operand can be an
MMX register or a 64-bit memory location, or it can be an XMM register or a 128-bit
memory location. The destination operand can be an MMX or an XMM register. Both
operands can be MMX register or XMM registers. When the source operand is a
128-bit memory operand, the operand must be aligned on a 16byte boundary or a
general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.
Operation
PABSB with 64 bit operands

Unsigned DEST[7:0] « ABS(SRC[7:0])
Repeat operation for 2nd through 7th bytes
Unsigned DEST[63:56] < ABS(SRC[63:56])

PABSB/PABSW/PABSD — Packed Absolute Value Vol.2B 4-23

INSTRUCTION SET REFERENCE, N-Z

PABSB with 128 bit operands:

Unsigned DEST[7:0] « ABS(SRC[7:.0])
Repeat operation for 2nd through 15th bytes
Unsigned DEST[127:120] <~ ABS(SRC[127:120])

PABSW with 64 bit operands:

Unsigned DEST[15:0] < ABS(SRC[15:0])
Repeat operation for 2nd through 3rd 16-bit words
Unsigned DEST[63:48] < ABS(SRC[63:48])

PABSW with 128 bit operands:

Unsigned DEST[15:0] < ABS(SRC[15:0])
Repeat operation for 2nd through 7th 16-bit words
Unsigned DEST[127:112] <~ ABS(SRC[127:112])

PABSD with 64 bit operands:

Unsigned DEST[31:0] «— ABS(SRC[31:0])
Unsigned DEST[63:32] «— ABS(SRC[63:32])

PABSD with 128 bit operands:

Unsigned DEST[31:0] « ABS(SRC[31:0])
Repeat operation for 2nd through 3rd 32-bit double words
Unsigned DEST[127:96] «— ABS(SRC[127:96])

Intel C/C++ Compiler Intrinsic Equivalents

PABSB __m64 _mm_abs_pi8 (__m64 a)
PABSB __m128i _mm_abs_epi8 (__m128i a)
PABSW __m64 _mm_abs_pi16 (__m64 a)
PABSW __m128i _mm_abs_epi16 (__m128ia)
PABSD __m64 _mm_abs_pi32 (__m64 a)
PABSD __m128i _mm_abs_epi32 (__m128ia)

Protected Mode Exceptions

#GP(0): If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-hit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

4-24 \Vol.2B PABSB/PABSW/PABSD — Packed Absolute Value

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.

#NM If TS bit in CRO is set.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0): If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD: If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.
#NM If TS bit in CRO is set.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.

PABSB/PABSW/PABSD — Packed Absolute Value Vol.2B 4-25

INSTRUCTION SET REFERENCE, N-Z

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSSE3[bit 9] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-26 Vol.2B PABSB/PABSW/PABSD — Packed Absolute Value

INSTRUCTION SET REFERENCE, N-Z

PACKSSWB/PACKSSDW—Pack with Signed Saturation

Opcode Instruction

OF63/r PACKSSWB mm1,

mmZ2/m64

66 0F 63 /r
xmm2/m128

OF6B/r PACKSSDW mm1,

mmZ2/m64

66 OF 6B /r
xmm2/m128

PACKSSWB xmm1,

PACKSSDW xmm1,

64-Bit
Mode

Valid

Valid

Valid

Valid

Compat/
Leg Mode

Valid

Valid

Valid

Valid

Description

Converts 4 packed signed word
integers from mm71 and from
mmZ2/m64 into 8 packed signed
byte integers in mm7 using signed
saturation.

Converts 8 packed signed word
integers from xmm1 and from
xxmZ2/m128into 16 packed signed
byte integers in xxm1 using signed
saturation.

Converts 2 packed signed
doubleword integers from mm1 and
from mm2/m64 into 4 packed
signed word integers in mm1 using
signed saturation.

Converts 4 packed signed
doubleword integers from xmm?1
and from xxm2/m128into 8 packed
signed word integers in xxm1 using
signed saturation.

Description

Converts packed signed word integers into packed signed byte integers (PACKSSWB)
or converts packed signed doubleword integers into packed signed word integers

(PACKSSDW), using saturation to handle overflow conditions. See Figure 4-1 for an
example of the packing operation.

64-Bit SRC

D

C

64-Bit DEST

I

B

64-Bit DEST

s

Figure 4-1. Operation of the PACKSSDW Instruction Using 64-bit Operands

The PACKSSWB instruction converts 4 or 8 signed word integers from the destination
operand (first operand) and 4 or 8 signed word integers from the source operand

PACKSSWB/PACKSSDW—Pack with Signed Saturation

Vol.2B 4-27

INSTRUCTION SET REFERENCE, N-Z

(second operand) into 8 or 16 signed byte integers and stores the result in the desti-
nation operand. If a signed word integer value is beyond the range of a signed byte
integer (that is, greater than 7FH for a positive integer or greater than 80H for a
negative integer), the saturated signed byte integer value of 7FH or 80H, respec-
tively, is stored in the destination.

The PACKSSDW instruction packs 2 or 4 signed doublewords from the destination
operand (first operand) and 2 or 4 signed doublewords from the source operand
(second operand) into 4 or 8 signed words in the destination operand (see

Figure 4-1). If a signed doubleword integer value is beyond the range of a signed
word (that is, greater than 7FFFH for a positive integer or greater than 8000H for a
negative integer), the saturated signed word integer value of 7FFFH or 8000H,
respectively, is stored into the destination.

The PACKSSWB and PACKSSDW instructions operate on either 64-bit or 128-bit
operands. When operating on 64-bit operands, the destination operand must be an
MMX technology register and the source operand can be either an MMX technology
register or a 64-bit memory location. When operating on 128-bit operands, the desti-
nation operand must be an XMM register and the source operand can be either an
XMM register or a 128-bit memory location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PACKSSWB instruction with 64-bit operands:
DEST[7:0] « SaturateSignedWordToSignedByte DEST[15:0];
DEST[15:8] « SaturateSignedWordToSignedByte DEST[31:16];
DEST[23:16] « SaturateSignedWordToSignedByte DEST[47:32];
DEST[31:24] « SaturateSignedWordToSignedByte DEST[63:48];
DEST[39:32] « SaturateSignedWordToSignedByte SRC[15:0];
DEST[47:40] « SaturateSignedWordToSignedByte SRC[31:16];
DEST[55:48] « SaturateSignedWordToSignedByte SRC[47:32];
DEST[63:56] « SaturateSignedWordToSignedByte SRC[63:48];

PACKSSDW instruction with 64-bit operands:
DEST[15:0] « SaturateSignedDoublewordToSignedWord DEST[31:0];
DEST[31:16] « SaturateSignedDoublewordToSignedwWord DEST[63:32];
DEST[47:32] « SaturateSignedDoublewordToSignedwWord SRC[31:0];
DEST[63:48] « SaturateSignedDoublewordToSignedWord SRC[63:32];

PACKSSWB instruction with 128-bit operands:
DEST[7:0]« SaturateSignedWordToSignedByte (DEST[15:0]);
DEST[15:8] « SaturateSignedwWordToSignedByte (DEST[31:16]);
DEST[23:16] « SaturateSignedWordToSignedByte (DEST[47:32]);
DEST[31:24] « SaturateSignedWordToSignedByte (DEST[63:48]);
DEST[39:32] « SaturateSignedWordToSignedByte (DEST[79:64]);

4-28 Vol.2B PACKSSWB/PACKSSDW—Pack with Signed Saturation

INSTRUCTION SET REFERENCE, N-Z

DEST[47:40] « SaturateSignedWordToSignedByte (DEST[95:80]);
DEST[55:48] « SaturateSignedWordToSignedByte (DEST[111:96]);
DEST[63:56] «— SaturateSignedWordToSignedByte (DEST[127:112]);

DEST[79:72] « SaturateSignedWordToSignedByte (SRC[31:16]);

(

(

(
DEST[71:64] « SaturateSignedWordToSignedByte (SRC[15:0]);

(

(

DEST[87:80] « SaturateSignedWordToSignedByte (SRC[47:32]);
DEST[95:88] «— SaturateSignedWordToSignedByte (SRC[63:48]);
DEST[103:96] « SaturateSignedwWordToSignedByte (SRC[79:64]);
DEST[111:104] « SaturateSignedWordToSignedByte (SRC[95:80]);
DEST[119:112] « SaturateSignedWordToSignedByte (SRC[111:96]);
DEST[127:120] « SaturateSignedWordToSignedByte (SRC[127:112]);

PACKSSDW instruction with 128-bit operands:
DEST[15:0] « SaturateSignedDwordToSignedWord (DEST[31:0]);

DEST[31:16] « SaturateSignedDwordToSignedword
DEST[47:32] « SaturateSignedDwordToSignedWord
DEST[63:48] « SaturateSignedDwordToSignedword
DEST[79:64] « SaturateSignedDwordToSignedWord

DEST[63:32));
DEST[95:64]);
DEST[127:96]);
SRC[31:0]);

—_ o~ —~ —~

DEST[95:80] « SaturateSignedDwordToSignedWord (SRC[63:32]);
DEST[111:96] « SaturateSignedDwordToSignedWord (SRC[95:64]);
DEST[127:112] « SaturateSignedDwordToSignedWord (SRC[127:96]);

Intel C/C++ Compiler Intrinsic Equivalents

PACKSSWB
PACKSSWB
PACKSSDW
PACKSSDW

Flags Affected

None.

__m64 _mm_packs_pi16(_m64 m1,_m64 m2)
__m128i _mm_packs_epi16(_m128im1, _m128im2)
m64 m2)
m128i m2)

__m64 _mm_packs_pi32 (__m64 m1,

__m128i _mm_packs_epi32(_m128im1,

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one

PACKSSWB/PACKSSDW—Pack with Signed Saturation Vol.2B 4-29

INSTRUCTION SET REFERENCE, N-Z

that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.

4-30 Vol.2B PACKSSWB/PACKSSDW—Pack with Signed Saturation

INSTRUCTION SET REFERENCE, N-Z

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PACKSSWB/PACKSSDW—Pack with Signed Saturation Vol.2B 4-31

INSTRUCTION SET REFERENCE, N-Z

PACKUSDW — Pack with Unsigned Saturation

Opcode Instruction 64-bit Compat/ Description

Mode LegMode
66 OF PACKUSDW xmm1, Valid Valid Convert 4 packed signed doubleword integers
382B/r xmmZ2/m128 from xmm1 and 4 packed signed doubleword

integers from xmmZ2/m128 into 8 packed
unsigned word integers in xmm1 using
unsigned saturation.

Description

Converts packed signed doubleword integers into packed unsigned word integers
using unsigned saturation to handle overflow conditions. If the signed doubleword
value is beyond the range of an unsigned word (that is, greater than FFFFH or less
than O000H), the saturated unsigned word integer value of FFFFH or OOO0H, respec-
tively, is stored in the destination.

Operation

TMP[15:0] < (DEST[31:0] < 0)? 0 : DEST[15:0];

DEST[15:0] < (DEST[31:0] > FFFFH) ? FFFFH : TMP[15:0] ;
TMP[31:16] < (DEST[63:32] < 0)? 0: DEST[47:32];
DEST[31:16] < (DEST[63:32] > FFFFH) ? FFFFH : TMP[31:16] ;
TMP[47:32] < (DEST[95:64] < 0)? 0: DEST[79:64];
DEST[47:32] < (DEST[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;
TMP[63:48] < (DEST[127:96] < 0)? 0 : DEST[111:96];
DEST[63:48] < (DEST[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[63:48] < (DEST[127:96] < 0)? 0 : DEST[111:96];
DEST[63:48] < (DEST[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[79:64] < (SRC[31:0] < 0)? 0: SRC[15:0];

DEST[63:48] < (SRC[31:0] > FFFFH) ? FFFFH : TMP[79:64] ;
TMP[95:80] < (SRC[63:32] < 0)? 0 : SRC[47:32];

DEST[95:80] < (SRC[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;
TMP[111:96] < (SRC[95:64] < 0) ? 0 : SRC[79:64];
DEST[111:96] < (SRC[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;
TMP[127:112] € (SRC[127:96] < 0)? 0: SRC[111:96];
DEST[128:112] € (SRC[127:96] > FFFFH) ? FFFFH : TMP[127:112];

Intel C/C++ Compiler Intrinsic Equivalent
PACKUSDW __m128i _mm_packus_epi32(_m128i ml, __ m128i m2);

4-32 Vol.2B PACKUSDW — Pack with Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0): For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.SSE4_1(ECX bit 19) = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.SSE4_1(ECX bit 19) = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

PACKUSDW — Pack with Unsigned Saturation Vol.2B 4-33

INSTRUCTION SET REFERENCE, N-Z

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

4-34 Vol.2B PACKUSDW — Pack with Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z

PACKUSWB—Pack with Unsigned Saturation

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF67/r PACKUSWB mm, Valid Valid Converts 4 signed word integers
mm/m64 from mm and 4 signed word

integers from mm/m64 into 8
unsigned byte integers in mmusing
unsigned saturation.

66 OF 67 /r PACKUSWB xmm1, Valid Valid Converts 8 signed word integers
xmm2/m128 from xmm1 and 8 signed word
integers from xmm2/m128into 16
unsigned byte integers in xmm1
using unsigned saturation.

Description

Converts 4 or 8 signed word integers from the destination operand (first operand)
and 4 or 8 signed word integers from the source operand (second operand) into 8 or
16 unsigned byte integers and stores the result in the destination operand. (See
Figure 4-1 for an example of the packing operation.) If a signed word integer value is
beyond the range of an unsigned byte integer (that is, greater than FFH or less than
O0H), the saturated unsigned byte integer value of FFH or OOH, respectively, is stored
in the destination.

The PACKUSWB instruction operates on either 64-bit or 128-bit operands. When
operating on 64-bit operands, the destination operand must be an MMX technology
register and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PACKUSWB instruction with 64-bit operands:
DEST[7:0] « SaturateSignedWordToUnsignedByte DEST[15:0];
DEST[15:8] « SaturateSignedwWordToUnsignedByte DEST[31:16];
DEST[23:16] « SaturateSignedWordToUnsignedByte DEST[47:32];
DEST[31:24] « SaturateSignedWordToUnsignedByte DEST[63:48];
DEST[39:32] « SaturateSignedWordToUnsignedByte SRC[15:0];
DEST[47:40] « SaturateSignedWordToUnsignedByte SRC[31:16];
DEST[55:48] « SaturateSignedwWordToUnsignedByte SRC[47:32];
DEST[63:56] « SaturateSignedWordToUnsignedByte SRC[63:48];

PACKUSWB—Pack with Unsigned Saturation Vol.2B 4-35

INSTRUCTION SET REFERENCE, N-Z

PACKUSWB instruction with 128-bit operands:
DEST[7:0]« SaturateSignedWordToUnsignedByte (DEST[15:0]);
DEST[15:8] « SaturateSignedWordToUnsignedByte (DEST[31:16]);
DEST[23:16] « SaturateSignedWordToUnsignedByte (DEST[47:32]
DEST[31:24] « SaturateSignedWordToUnsignedByte
DEST[39:32] « SaturateSignedwWordToUnsignedByte
DEST[47:40] « SaturateSignedWordToUnsignedByte
DEST[55:48] « SaturateSignedWordToUnsignedByte
DEST[63:56] « SaturateSignedWordToUnsignedByte
DEST[71:64] « SaturateSignedwWordToUnsignedByte
DEST[79:72] < SaturateSignedWordToUnsignedByte (SRC[31:16]);
DEST[87:80] « SaturateSignedWordToUnsignedByte (SRC[47:32]);
DEST[95:88] « SaturateSignedWordToUnsignedByte (SRC[63:48]);
DEST[103:96] « SaturateSignedwWordToUnsignedByte (SRC[79:64]);
DEST[111:104] « SaturateSignedWordToUnsignedByte (SRC[95:80]);
DEST[119:112] « SaturateSignedWordToUnsignedByte (SRC[111:96]);
DEST[127:120] « SaturateSignedWordToUnsignedByte (SRC[127:112]);

)
DEST[63:48]);
DEST[79:64]);
DEST[95:80]);
DEST[111:96]);
DEST[127:112]);

SRC[15:0]);

P

Intel C/C++ Compiler Intrinsic Equivalent

PACKUSWB __m64 _mm_packs_pul6(_m64 m1, __m64 m2)
PACKUSWB __m128i _mm_packs_epul6(_m128i m1, _m128i m2)
Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

4-36 Vol.2B PACKUSWB—Pack with Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

PACKUSWB—Pack with Unsigned Saturation Vol.2B 4-37

INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-38 Vol.2B PACKUSWB—Pack with Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z

PADDB/PADDW/PADDD—Add Packed Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

OFFC/r PADDB mm, Valid Valid Add packed byte integers from
mm/m64 mm/m64 and mm.

66 OF FC/r PADDB xmm1, Valid Valid Add packed byte integers from
xmm2/m128 xmmZ2/m128and xmm]1.

OFFD/r PADDW mm, Valid Valid Add packed word integers from
mm/m64 mm/m64 and mm.

66 OF FD /r PADDW xmm1, Valid Valid Add packed word integers from
xmm2/m128 xmm2/m128and xmm1.

OF FE/r PADDD mm, Valid Valid Add packed doubleword integers from
mm/m64 mm/m64 and mm.

66 OF FE/r PADDD xmm1, Valid Valid Add packed doubleword integers from
xmmZ2/m128 xmmZ2/m128and xmm]1.

Description

Performs a SIMD add of the packed integers from the source operand (second

operand) and the destination operand (first operand), and stores the packed integer
results in the destination operand. See Figure 9-4 in the Intel® 64 and 1A-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD opera-
tion. Overflow is handled with wraparound, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PADDB instruction adds packed byte integers. When an individual result is too
large to be represented in 8 bits (overflow), the result is wrapped around and the low
8 bits are written to the destination operand (that is, the carry is ignored).

The PADDW instruction adds packed word integers. When an individual result is too
large to be represented in 16 bits (overflow), the result is wrapped around and the
low 16 bits are written to the destination operand.

The PADDD instruction adds packed doubleword integers. When an individual result
is too large to be represented in 32 bits (overflow), the result is wrapped around and
the low 32 bits are written to the destination operand.

Note that the PADDB, PADDW, and PADDD instructions can operate on either
unsigned or signed (two's complement notation) packed integers; however, it does
not set bits in the EFLAGS register to indicate overflow and/or a carry. To prevent

PADDB/PADDW/PADDD—Add Packed Integers Vol.2B 4-39

INSTRUCTION SET REFERENCE, N-Z

undetected overflow conditions, software must control the ranges of values operated
on.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PADDB instruction with 64-bit operands:
DEST[7:0] « DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 7th byte *)
DEST[63:56] «— DEST[63:56] + SRC[63:56];

PADDB instruction with 128-bit operands:
DEST[7:0] « DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 14th byte *)
DEST[127:120] < DEST[111:120] + SRC[127:120];

PADDW instruction with 64-bit operands:
DEST[15:0] « DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd and 3th word *)
DEST[63:48] « DEST[63:48] + SRC[63:48];

PADDW instruction with 128-bit operands:
DEST[15:0] « DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd through 7th word *)
DEST[127:112] « DEST[127:112] + SRC[127:112];

PADDD instruction with 64-bit operands:
DEST[31:0] « DEST[31:0] + SRC[31:0];
DEST[63:32] « DEST[63:32] + SRC[63:32];

PADDD instruction with 128-bit operands:
DEST[31:0] «- DEST[31:0] + SRC[31:0];
(* Repeat add operation for 2nd and 3th doubleword *)
DEST[127:96] «<— DEST[127:96] + SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalents

PADDB __m64 _mm_add_pi8(_m64 m1, __m64 m2)
PADDB _ m128i _mm_add_epi8 (__m128ia,__m128ib)
PADDW __m64 _mm_add_pi16(_m64 m1, __m64 m2)
PADDW _ m128i _mm_add_epi16 (_m128ia,__m128ib)
PADDD __m64 _mm_add_pi32(_m64 m1, __m64 m2)
PADDD __m128i _mm_add_epi32 (_m128ia,_m128ib)

4-40 Vol.2B PADDB/PADDW/PADDD—Add Packed Integers

INSTRUCTION SET REFERENCE, N-Z

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

PADDB/PADDW/PADDD—Add Packed Integers Vol.2B 4-41

INSTRUCTION SET REFERENCE, N-Z

#AC(0)

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-42 \Vol.2B

If a memory address referencing the SS segment is in a hon-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PADDB/PADDW/PADDD—Add Packed Integers

INSTRUCTION SET REFERENCE, N-Z

PADDQ—Add Packed Quadword Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFD4/r PADDQ mm1, Valid Valid Add quadword integer
mm2/mé64 mmZ2/m64 to mm1.
66 OF D4 /r PADDQ xmm1, Valid Valid Add packed quadword integers
xmm2/m128 xmmZ2/m128 to xmm]1.
Description

Adds the first operand (destination operand) to the second operand (source operand)
and stores the result in the destination operand. The source operand can be a quad-
word integer stored in an MMX technology register or a 64-bit memory location, or it
can be two packed quadword integers stored in an XMM register or an 128-bit
memory location. The destination operand can be a quadword integer stored in an
MMX technology register or two packed quadword integers stored in an XMM register.
When packed quadword operands are used, a SIMD add is performed. When a quad-
word result is too large to be represented in 64 bits (overflow), the result is wrapped
around and the low 64 bits are written to the destination element (that is, the carry
is ignored).

Note that the PADDQ instruction can operate on either unsigned or signed (two’s
complement notation) integers; however, it does not set bits in the EFLAGS register
to indicate overflow and/or a carry. To prevent undetected overflow conditions, soft-
ware must control the ranges of the values operated on.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PADDQ instruction with 64-Bit operands:
DEST[63:0] «— DEST[63:0] + SRC[63:0];

PADDQ instruction with 128-Bit operands:
DEST[63:0] «— DEST[63:0] + SRC[63:0];
DEST[127:64] « DEST[127:64] + SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalents

PADDQ __m64 _mm_add_si64 (__m64 a, __m64 b)
PADDQ __m128i _mm_add_epi64 (_m128ia, _m128ib)

Flags Affected

None.

PADDQ—Add Packed Quadword Integers Vol.2B 4-43

INSTRUCTION SET REFERENCE, N-Z

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

4-44 \ol.2B

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

PADDQ—Add Packed Quadword Integers

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PADDQ—Add Packed Quadword Integers Vol. 2B 4-45

INSTRUCTION SET REFERENCE, N-Z

PADDSB/PADDSW—Add Packed Signed Integers with Signed
Saturation

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFEC/r PADDSB mm, Valid Valid Add packed signed byte integers
mm/m64 from mm/m64 and mm and
saturate the results.
66 OF EC/r PADDSB xmm1, Valid Valid Add packed signed byte integers
xmm2/m128 from xmm2/m128 and xmm1
saturate the results.
OFED/r PADDSW mm, Valid Valid Add packed signed word integers
mm/m64 from mm/m64 and mm and
saturate the results.
66 OFED /r PADDSW xmm1, Valid Valid Add packed signed word integers
xmm2/m128 from xmm2/m128 and xmm1
and saturate the results.

Description

Performs a SIMD add of the packed signed integers from the source operand (second
operand) and the destination operand (first operand), and stores the packed integer
results in the destination operand. See Figure 9-4 in the Intel® 64 and 1A-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD opera-
tion. Overflow is handled with signed saturation, as described in the following
paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PADDSB instruction adds packed signed byte integers. When an individual byte

result is beyond the range of a signed byte integer (that is, greater than 7FH or less
than 80H), the saturated value of 7FH or 80H, respectively, is written to the destina-
tion operand.

The PADDSW instruction adds packed signed word integers. When an individual word
result is beyond the range of a signed word integer (that is, greater than 7FFFH or
less than 8000H), the saturated value of 7FFFH or 8000H, respectively, is written to
the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

4-46 Vol.2B PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation

INSTRUCTION SET REFERENCE, N-Z

Operation

PADDSB instruction with 64-bit operands:
DEST[7:0] « SaturateToSignedByte(DEST[7:0] + SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] « SaturateToSignedByte(DEST[63:56] + SRC[63:56]);

PADDSB instruction with 128-bit operands:
DEST[7:0] «SaturateToSignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] « SaturateToSignedByte (DEST[111:120] + SRC[127:120]);

PADDSW instruction with 64-bit operands
DEST[15:0] « SaturateToSignedWord(DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd and 7th words *)
DEST[63:48] «— SaturateToSignedWord(DEST[63:48] + SRC[63:48]);

PADDSW instruction with 128-bit operands
DEST[15:0] « SaturateToSignedwWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] « SaturateToSignedword (DEST[127:112] + SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PADDSB __m64 _mm_adds_pi8(__m64 m1, __m64 m2)
PADDSB __ m128i _mm_adds_epi8 (_m128ia,__m128ib)
PADDSW _ m64 _mm_adds_pi16(_m64 m1, __m64 m2)
PADDSW __m128i _mm_adds_epi16 (_m128ia, __m128ib)

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation Vol.2B 4-47

INSTRUCTION SET REFERENCE, N-Z

#NM

H#MF
#PF(fault-code)
#AC(0)

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

#NM
H#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.
If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)

#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

4-48 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

INSTRUCTION SET REFERENCE, N-Z

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation Vol. 2B 4-49

INSTRUCTION SET REFERENCE, N-Z

PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned
Saturation

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF DC/r PADDUSB mm, Valid Valid Add packed unsigned byte integers
mm/mé64 from mm/m64 and mm and
saturate the results.
66 OF DC/r PADDUSB xmm1, Valid Valid Add packed unsigned byte integers
xmm2/m128 from xmm2/m128 and xmm1
saturate the results.
OFDD/r PADDUSW mm, Valid Valid Add packed unsigned word
mm/mé64 integers from mm/m64 and mm
and saturate the results.
66 OFDD /r PADDUSW xmm1, Valid Valid Add packed unsigned word
xmm2/m128 integers from xmm2/m128to
xmm1 and saturate the results.

Description

Performs a SIMD add of the packed unsigned integers from the source operand
(second operand) and the destination operand (first operand), and stores the packed
integer results in the destination operand. See Figure 9-4 in the Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD
operation. Overflow is handled with unsigned saturation, as described in the
following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PADDUSB instruction adds packed unsigned byte integers. When an individual
byte result is beyond the range of an unsigned byte integer (that is, greater than
FFH), the saturated value of FFH is written to the destination operand.

The PADDUSW instruction adds packed unsigned word integers. When an individual
word result is beyond the range of an unsigned word integer (that is, greater than
FFFFH), the saturated value of FFFFH is written to the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

4-50 Vol.2B PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z

Operation

PADDUSB instruction with 64-bit operands:
DEST[7:0] «— SaturateToUnsignedByte(DEST[7:0] + SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] «— SaturateToUnsignedByte(DEST[63:56] + SRC[63:56]

PADDUSB instruction with 128-bit operands:
DEST[7:0] « SaturateToUnsignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] « SaturateToUnSignedByte (DEST[127:120] + SRC[127:120]);

PADDUSW instruction with 64-bit operands:
DEST[15:0] « SaturateToUnsignedWord(DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd and 3rd words *)
DEST[63:48] < SaturateToUnsignedWord(DEST[63:48] + SRC[63:48]);

PADDUSW instruction with 128-bit operands:
DEST[15:0] « SaturateToUnsignedWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] « SaturateToUnSignedWord (DEST[127:112]+ SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PADDUSB __m64 _mm_adds_pu8(_m64 m1, __m64 m2)
PADDUSW __m64 _mm_adds_pul16(_m64 m1,__m64 m2)
PADDUSB __m128i _mm_adds_epu8 (_m128ia, _m128ib)
PADDUSW __m128i _mm_adds_epul6 (_m128ia, __m128ib)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation Vol.2B 4-51

INSTRUCTION SET REFERENCE, N-Z

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

4-52 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

INSTRUCTION SET REFERENCE, N-Z

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation Vol.2B 4-53

INSTRUCTION SET REFERENCE, N-Z

PALIGNR — Packed Align Right

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 3AOF PALIGNR mm1, Valid Valid Concatenate destination and source
mm2/m64, imm8 operands, extract byte-aligned

result shifted to the right by
constant value in imm8 into mm1.

66 OF 3A OF PALIGNR xmmT1, Valid Valid Concatenate destination and source
xmm2/m128, operands, extract byte-aligned
imm8 result shifted to the right by

constant value in imm8 into xmm1

Description

PALIGNR concatenates the destination operand (the first operand) and the source
operand (the second operand) into an intermediate composite, shifts the composite
at byte granularity to the right by a constant immediate, and extracts the right-
aligned result into the destination. The first and the second operands can be an MMX
or an XMM register. The immediate value is considered unsigned. Immediate shift
counts larger than the 2L (i.e. 32 for 128-bit operands, or 16 for 64-bit operands)
produce a zero result. Both operands can be MMX register or XMM registers. When
the source operand is a 128-bit memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation
PALIGNR with 64-bit operands:

temp1[127:0] = CONCATENATE(DEST,SRC)>>(imm8*8)
DEST[63:0] = temp1[63:0]

PALIGNR with 128-bit operands:

temp1[255:0] = CONCATENATE(DEST,SRC)>>(imm8*8)
DEST[127:0] = temp1[127:0]

Intel C/C++ Compiler Intrinsic Equivalents

PALIGNR __m64 _mm_alignr_pi8 (__m64 a, __m64 b, int n)
PALIGNR __m128i _mm_alignr_epi8 (_m128ia, __m128ib,intn)

4-54 Vol.2B PALIGNR — Packed Align Right

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.

#NM If TS bit in CRO is set.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-hit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.
#NM If TS bit in CRO is set.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

PALIGNR — Packed Align Right Vol.2B 4-55

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

#HMF
#PF(fault-code)
#AC(0)

4-56 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PALIGNR — Packed Align Right

INSTRUCTION SET REFERENCE, N-Z

PAND—Logical AND

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFDB/r PAND mm, mm/m64 Valid Valid Bitwise AND mm/m64 and
mm.
66 0OFDB/r PAND xmm1, xmmZ2/m128 Valid Valid Bitwise AND of
xmmZ2/m128 and xmm1.

Description

Performs a bitwise logical AND operation on the source operand (second operand)
and the destination operand (first operand) and stores the result in the destination
operand. The source operand can be an MMX technology register or a 64-bit memory
location or it can be an XMM register or a 128-bit memory location. The destination
operand can be an MMX technology register or an XMM register. Each bit of the result
is set to 1 if the corresponding bits of the first and second operands are 1; otherwise,
itis set to O.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST « (DEST AND SRC);

Intel C/C++ Compiler Intrinsic Equivalent

PAND __m64 _mm_and_si64 (__m64 m1, __m64 m2)
PAND __m128i _mm_and_si128 (_m128ia, __m128ib)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

PAND—Logical AND Vol.2B 4-57

INSTRUCTION SET REFERENCE, N-Z

#SS(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

4-58 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

PAND—Logical AND

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

PAND—Logical AND

INSTRUCTION SET REFERENCE, N-Z

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-59

INSTRUCTION SET REFERENCE, N-Z

PANDN—Logical AND NOT

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF DF /r PANDN mm, mm/m64 Valid Valid Bitwise AND NOT of
mm/m64 and mm.
66 OF DF /r PANDN xmm1, xmm2/m128 Valid Valid Bitwise AND NOT of
xmmZ2/m128and
xmmT.
Description

Performs a bitwise logical NOT of the destination operand (first operand), then
performs a bitwise logical AND of the source operand (second operand) and the
inverted destination operand. The result is stored in the destination operand. The
source operand can be an MMX technology register or a 64-bit memory location or it
can be an XMM register or a 128-bit memory location. The destination operand can
be an MMX technology register or an XMM register. Each bit of the result is set to 1 if
the corresponding bit in the first operand is O and the corresponding bit in the second
operand is 1; otherwise, it is set to O.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST « ((NOT DEST) AND SRC);

Intel C/C++ Compiler Intrinsic Equivalent

PANDN __m64 _mm_andnot_si64 (__m64 m1, __m64 m2)
PANDN _m128i _mm_andnot_si128 (__m128ia,__m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

4-60 Vol.2B PANDN—Logical AND NOT

INSTRUCTION SET REFERENCE, N-Z

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

PANDN—Logical AND NOT Vol.2B 4-61

INSTRUCTION SET REFERENCE, N-Z

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-62 Vol.2B

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PANDN—Logical AND NOT

INSTRUCTION SET REFERENCE, N-Z

PAUSE—Spin Loop Hint
Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

F390 PAUSE Valid Valid Gives hint to processor that improves
performance of spin-wait loops.

Description

Improves the performance of spin-wait loops. When executing a “spin-wait loop,” a
Pentium 4 or Intel Xeon processor suffers a severe performance penalty when exiting
the loop because it detects a possible memory order violation. The PAUSE instruction
provides a hint to the processor that the code sequence is a spin-wait loop. The
processor uses this hint to avoid the memory order violation in most situations,
which greatly improves processor performance. For this reason, it is recommended
that a PAUSE instruction be placed in all spin-wait loops.

An additional function of the PAUSE instruction is to reduce the power consumed by
a Pentium 4 processor while executing a spin loop. The Pentium 4 processor can
execute a spin-wait loop extremely quickly, causing the processor to consume a lot of
power while it waits for the resource it is spinning on to become available. Inserting
a pause instruction in a spin-wait loop greatly reduces the processor’s power
consumption.

This instruction was introduced in the Pentium 4 processors, but is backward compat-
ible with all 1A-32 processors. In earlier 1A-32 processors, the PAUSE instruction
operates like a NOP instruction. The Pentium 4 and Intel Xeon processors implement
the PAUSE instruction as a pre-defined delay. The delay is finite and can be zero for
some processors. This instruction does not change the architectural state of the
processor (that is, it performs essentially a delaying no-op operation).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Execute_Next_Instruction(DELAY);

Numeric Exceptions

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

PAUSE—Spin Loop Hint Vol. 2B 4-63

INSTRUCTION SET REFERENCE, N-Z

PAVGB/PAVGW—Average Packed Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFEO/r PAVGB mm1, Valid Valid Average packed unsigned byte
mmZ2/m64 integers from mm2/m64 and mm1
with rounding.
66 OF €O, /r PAVGB xmm1, Valid Valid Average packed unsigned byte
xmm2/m128 integers from xmmZ2/m128 and xmm1
with rounding.
OF E3/r PAVGW mm1, Valid Valid Average packed unsigned word
mm2/m64 integers from mm2/m64 and mm1
with rounding.
66 OFE3/r PAVGW xmm1, Valid Valid Average packed unsigned word
xmmZ2/m128 integers from xmmZ2/m128 and xmm1

with rounding.

Description

Performs a SIMD average of the packed unsigned integers from the source operand
(second operand) and the destination operand (first operand), and stores the results
in the destination operand. For each corresponding pair of data elements in the first
and second operands, the elements are added together, a 1 is added to the tempo-
rary sum, and that result is shifted right one bit position. The source operand can be
an MMX technology register or a 64-bit memory location or it can be an XMM register
or a 128-bit memory location. The destination operand can be an MMX technology
register or an XMM register.

The PAVGB instruction operates on packed unsigned bytes and the PAVGW instruc-
tion operates on packed unsigned words.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PAVGB instruction with 64-bit operands:
DEST[7:0] « (SRC[7:0] + DEST[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 6 *)
DEST[63:56] « (SRC[63:56] + DEST[63:56] + 1) >> 1;

PAVGW instruction with 64-bit operands:
DEST[15:0] « (SRC[15:0] + DEST[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 and 3 *)
DEST[63:48] « (SRC[63:48] + DEST[63:48] + 1) >> 1;

4-64 Vol.2B PAVGB/PAVGW—Average Packed Integers

INSTRUCTION SET REFERENCE, N-Z

PAVGB instruction with 128-bit operands:
DEST[7:0] « (SRC[7:0] + DEST[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 14 *)
DEST[127:120] « (SRC[127:120] + DEST[127:120] + 1) >> 1;

PAVGW instruction with 128-bit operands:
DEST[15:0] «— (SRC[15:0] + DEST[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 through 6 *)
DEST[127:112] « (SRC[127:112] + DEST[127:112] + 1) >> 1;

Intel C/C++ Compiler Intrinsic Equivalent

PAVGB __m64 _mm_avg_pu8(_m64 a, __m64 b)
PAVGW __m64 _mm_avg_pul6(_m64 3, __m64b)
PAVGB _ m128i_mm_avg_epu8 (_m128ia,__m128ib)

PAVGW _ m128i _mm_avg_epul6 (_m128ia, __m128ib)
Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

PAVGB/PAVGW—Average Packed Integers Vol. 2B 4-65

INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

4-66 Vol.2B PAVGB/PAVGW—Average Packed Integers

INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PAVGB/PAVGW—Average Packed Integers Vol.2B 4-67

INSTRUCTION SET REFERENCE, N-Z

PBLENDVB — Variable Blend Packed Bytes

Opcode Instruction 64-bit Compat/ Description
Mode LegMode
66 OF 38 10 PBLENDVB xmm1, Valid Valid Select byte values from xmm1 and
Ir xmm2/m128, xmmZ2/m128 from mask specified in
<XMMO> the high bit of each byte in XMMO
and store the values into xmm1.
Description

Conditionally copies byte elements from the source operand (second operand) to the
destination operand (first operand) depending on mask bits defined in the implicit
third register argument, XMMO. The mask bits are the most significant bit in each

byte element of the XMMO register.

If a mask bit is “1", then the corresponding byte element in the source operand is
copied to the destination, else the byte element in the destination operand is left

unchanged.

The register assignment of the implicit third operand is defined to be the architectural

register XMMO.
Operation

MASK < XMMO;
IF (MASK[7] == 1)
THEN DEST[7:0] € SRC[7:0];
ELSE DEST[7:0] < DEST[7:0]; FI;
IF (MASK[15] == 1)
THEN DEST[15:8] < SRC[15:8];
ELSE DEST[15:8] < DEST[15:8]; FI;
IF (MASK[23] == 1)
THEN DEST[23:16] < SRC[23:16]
ELSE DEST[23:16] < DEST[23:16]; FI;
IF (MASK[31] == 1)
THEN DEST[31:24] < SRC[31:24]
ELSE DEST[31:24] < DEST[31:24]; FI;
IF (MASK[39] == 1)
THEN DEST[39:32] < SRC[39:32]
ELSE DEST[39:32] < DEST[39:32]; FI;
IF (MASK[47] == 1)
THEN DEST[47:40] & SRC[47:40]
ELSE DEST[47:40] < DEST[47:40]; F;

4-68 Vol.2B

PBLENDVB — Variable Blend Packed Bytes

INSTRUCTION SET REFERENCE, N-Z

IF (MASK[55] == 1)
THEN DEST[55:48] < SRC[55:48]
ELSE DEST[55:48] < DEST[55:48]; FI;
IF (MASK[63] == 1)
THEN DEST[63:56] < SRC[63:56]
ELSE DEST[63:56] < DEST[63:56]; FI;
IF (MASK[71] == 1)
THEN DEST[71:64] < SRC[71:64]
ELSE DEST[71:64] < DEST[71:64]; FI;
IF (MASK[79] == 1)
THEN DEST[79:72] € SRC[79:72]
ELSE DEST[79:72] < DEST[79:72]; FI;
IF (MASK[87] == 1)
THEN DEST[87:80] < SRC[87:80]
ELSE DEST[87:80] < DEST[87:80]; FI;
IF (MASK[95] == 1)
THEN DEST[95:88] < SRC[95:88]
ELSE DEST[95:88] < DEST[95:88]; FI;
IF (MASK[103] == 1)
THEN DEST[103:96] < SRC[103:96]
ELSE DEST[103:96] < DEST[103:96]; FI;
IF (MASK[111] == 1)
THEN DEST[111:104] €< SRC[111:104]
ELSE DEST[111:104] < DEST[111:104]; FI;
IF (MASK[119] == 1)
THEN DEST[119:112] € SRC[119:112]
ELSE DEST[119:112] < DEST[119:112]; FI;
IF (MASK[127] == 1)
THEN DEST[127:120] & SRC[127:120]
ELSE DEST[127:120] < DEST[127:120]); FI;

Intel C/C++ Compiler Intrinsic Equivalent

PBLENDVB __m128i _mm_blendv_epi8 (__m128iv1, _m128iv2, __m128i mask);

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

PBLENDVB — Variable Blend Packed Bytes Vol. 2B 4-69

INSTRUCTION SET REFERENCE, N-Z

#SS(0)
#PF(fault-code)
#NM

#UD

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If not aligned on 16-byte boundary, regardless of segment
If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

4-70 Vol.2B

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is O.

PBLENDVB — Variable Blend Packed Bytes

INSTRUCTION SET REFERENCE, N-Z

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

PBLENDVB — Variable Blend Packed Bytes Vol.2B 4-71

INSTRUCTION SET REFERENCE, N-Z

PBLENDW — Blend Packed Words

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 3A PBLENDW xmm1, Valid Valid Select words from xmm1 and
OE /rib xmm2/m128, imm8 xmmZ2/m128 from mask specified in
imm8 and store the values into
xmm1.
Description

Conditionally copies word elements from the source operand (second operand) to the
destination operand (first operand) depending on the immediate byte (third
operand). Each bit of Imm8 correspond to a word element.

If a bit is “1", then the corresponding word element in the source operand is copied
to the destination, else the word element in the destination operand is left
unchanged.

Operation

IF (imm8[0] == 1)

THEN DEST[15:0] < SRC[15:0];

ELSE DEST[15:0] < DEST[15:0]; FI;
IF (imm8[1]==1)

THEN DEST[31:16] €« SRC[31:16];

ELSE DEST[31:16] < DEST[31:16]); FI;
IF (imm8[2] == 1)

THEN DEST[47:32] < SRC[47:32];

ELSE DEST[47:32] € DEST[47:32]; FI;
IF (imm8[3] == 1)

THEN DEST[63:48] < SR(C[63:48];

ELSE DEST[63:48] < DEST[63:48]; FI;
IF (imm8[4] == 1)

THEN DEST[79:64] < SRC[79:64];

ELSE DEST[79:64] < DEST[79:64]; FI;
IF (imm8[5] == 1)

THEN DEST[95:80] < SRC[95:80];

ELSE DEST[95:80] < DEST[95:80]; FI;
IF (imm8[6] == 1)

THEN DEST[111:96] €« SRC[111:96];

ELSE DEST[111:96] < DEST[111:96]; FI;
IF (imm8[7]==1)

4-72 Vol.2B PBLENDW — Blend Packed Words

INSTRUCTION SET REFERENCE, N-Z

THEN DEST[127:112] € SRC[127:112];
ELSE DEST[127:112] < DEST[127:112]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PBLENDW __m128i _mm_blend_epi16 (_m128iv1,_m128iv2, const int mask);

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

H#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

PBLENDW — Blend Packed Words Vol.2B 4-73

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is O.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

4-74 \Vol.2B PBLENDW — Blend Packed Words

INSTRUCTION SET REFERENCE, N-Z

PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF74/r PCMPEQB mm, Valid Valid Compare packed bytes in
mm/mé64 mm/m64 and mm for equality.
66 OF 74 /r PCMPEQB xmm1, Valid Valid Compare packed bytes in
xmmZ2/m128 xmm2/m128 and xmm1 for
equality.
OF75/r PCMPEQW mm, Valid Valid Compare packed words in
mm/m64 mm/m64 and mm for equality.
66 OF 75 /r PCMPEQW xmm1, Valid Valid Compare packed words in
xmmZ2/m128 xmm2/m128 and xmm1 for
equality.
OF76/r PCMPEQD mm, Valid Valid Compare packed doublewords in
mm/mé64 mm/m64 and mm for equality.
66 OF 76 /r PCMPEQD xmm1, Valid Valid Compare packed doublewords in
xmm2/m128 xmmZ2/m128 and xmm1 for
equality.
Description

Performs a SIMD compare for equality of the packed bytes, words, or doublewords in
the destination operand (first operand) and the source operand (second operand). If
a pair of data elements is equal, the corresponding data element in the destination
operand is set to all 1s; otherwise, it is set to all Os. The source operand can be an
MMX technology register or a 64-bit memory location, or it can be an XMM register or
a 128-bit memory location. The destination operand can be an MMX technology
register or an XMM register.

The PCMPEQB instruction compares the corresponding bytes in the destination and
source operands; the PCMPEQW instruction compares the corresponding words in
the destination and source operands; and the PCMPEQD instruction compares the
corresponding doublewords in the destination and source operands.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PCMPEQB instruction with 64-bit operands:
IF DEST[7:0] = SRC[7:0]
THEN DEST[7:0) « FFH;
ELSE DEST[7:0] «- O; FI;
(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)

PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal Vol.2B 4-75

INSTRUCTION SET REFERENCE, N-Z

IF DEST[63:56] = SRC[63:56]
THEN DEST[63:56] « FFH;
ELSE DEST[63:56] <« O; FI;

PCMPEQB instruction with 128-bit operands:
IF DEST[7:0] = SRC[7:0]
THEN DEST[7:0) « FFH;
ELSE DEST[7:0] «— O; FI;
(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)
IF DEST[127:120] = SRC[127:120]
THEN DEST[127:120] « FFH;
ELSE DEST[127:120] « O; FI;

PCMPEQW instruction with 64-bit operands:
IF DEST[15:0] = SRC[15:0]
THEN DEST[15:0] «— FFFFH;
ELSE DEST[15:0] « O; FI;
(* Continue comparison of 2nd and 3rd words in DEST and SRC *)
IF DEST[63:48] = SR([63:48]
THEN DEST[63:48] « FFFFH;
ELSE DEST[63:48] « O; FI;

PCMPEQW instruction with 128-bit operands:
IF DEST[15:0] = SRC[15:0]
THEN DEST[15:0] « FFFFH;
ELSE DEST[15:0] « O; FI;
(* Continue comparison of 2nd through 7th words in DEST and SRC *)
IF DEST[127:112] = SRC[127:112]
THEN DEST[127:112] « FFFFH;
ELSE DEST[127:112] « O; FI;

PCMPEQD instruction with 64-bit operands:
IF DEST[31:0] = SRC[31:0]
THEN DEST[31:0] « FFFFFFFFH;
ELSE DEST[31:0] «— O; FI;
IF DEST[63:32] = SRC[63:32]
THEN DEST[63:32] « FFFFFFFFH;
ELSE DEST[63:32] « O; FI;

PCMPEQD instruction with 128-bit operands:
IF DEST[31:0] = SRC[31:0]
THEN DEST[31:0] «— FFFFFFFFH;
ELSE DEST[31:0] « O; FI;
(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)
IF DEST[127:96] = SRC[127:96]

4-76 Vol.2B PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

INSTRUCTION SET REFERENCE, N-Z

THEN DEST[127:96] « FFFFFFFFH;
ELSE DEST[127:96] « O; FI;

Intel C/C++ Compiler Intrinsic Equivalents

PCMPEQB __m64 _mm_cmpeq_pi8 (__m64 m1, __m64 m2)
PCMPEQW __m64 _mm_cmpeq_pi16 (__m64 m1, _m64 m2)
PCMPEQD __m64 _mm_cmpeq_pi32 (__m64 m1, __m64 m2)
PCMPEQB __m128i _mm_cmpeq_epi8 (__m128ia, __m128ib)
PCMPEQW __m128i _mm_cmpeq_epi16 (_m128ia,__m128ib)
PCMPEQD __m128i _mm_cmpeq_epi32 (_m128ia,_m128ib)

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal Vol.2B 4-77

INSTRUCTION SET REFERENCE, N-Z

#UD

#NM
H#MF

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-78 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

INSTRUCTION SET REFERENCE, N-Z

PCMPEQQ — Compare Packed Qword Data for Equal

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 38 PCMPEQQ xmm1, Valid Valid Compare packed qwords in
29/r xmmZ2/m128 xmmZ2/m128and xmm1 for
equality.
Description

Performs an SIMD compare for equality of the packed quadwords in the destination
operand (first operand) and the source operand (second operand). If a pair of data
elements is equal, the corresponding data element in the destination is set to all 1s;
otherwise, it is set to Os.

Operation

IF (DEST[63:0] = SRC[63:0])
THEN DEST[63:0] ¢ FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] < O; FI;

IF (DEST[127:64] = SRC[127:64])
THEN DEST[127:64] € FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] € O; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PCMPEQQ __ m128i_mm_cmpeq_epi64(_m128ia,__m128ib);

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

PCMPEQQ — Compare Packed Qword Data for Equal Vol. 2B 4-79

INSTRUCTION SET REFERENCE, N-Z

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

4-80 Vol.2B PCMPEQQ — Compare Packed Qword Data for Equal

INSTRUCTION SET REFERENCE, N-Z

PCMPESTRI — Packed Compare Explicit Length Strings, Return Index

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 3A 61 PCMPESTRI Valid Valid Perform a packed comparison of
/r imm8 xmm1, string data with explicit lengths,
xmm2/m128, generating an index, and storing the
imm8 result in ECX.
Description

The instruction compares and processes data from two string fragments based on the
encoded value in the Imm8 Control Byte (see Section 3.1.2, “Imm8 Control Byte
Operation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”), and generates
an index stored to ECX.

Each string fragment is represented by two values. The first value is an xmm (or
possibly m128 for the second operand) which contains the data elements of the
string (byte or word data). The second value is stored in EAX (for xmm1) or EDX (for
xmm2/m128) and represents the number of bytes/words which are valid for the
respective xmm/m128 data.

The length of each input is interpreted as being the absolute-value of the value in
EAX (EDX). The absolute-value computation saturates to 16 (for bytes) and 8 (for
words), based on the value of imm8[bit3] when the value in EAX (EDX) is greater
than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 3.1.2). The index of the first (or last, according
to imm8[6]) set bit of IntRes2 (see Section 3.1.2.4) is returned in ECX. If no bits are
set in IntRes2, ECX is set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag - Reset if IntRes2 is equal to zero, set otherwise

ZFlag - Set if absolute-value of EDX is < 16 (8), reset otherwise
SFlag - Set if absolute-value of EAX is < 16 (8), reset otherwise
OFlag - IntRes2[0]

AFlag - Reset

PFlag - Reset

PCMPESTRI — Packed Compare Explicit Length Strings, Return Index Vol. 2B 4-81

INSTRUCTION SET REFERENCE, N-Z

Effective Operand Size

Operating Operand 1 Operand 2 Length 1 Length 2 Result
mode/size

16 bit Xmm xmm/m128 EAX EDX ECX
32 bit Xmm xmm/m128 EAX EDX ECcX
64 bit Xmm xmm/m128 EAX EDX ECX
64 bit + REX.W Xmm xmm/m128 RAX RDX RCX

Intel C/C++ Compiler Intrinsic Equivalent For Returning Index

int _mm_cmpestri(__m128i a, int la, __m128i b, int Ib, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpestra (__m128ia, intla, __m128ib, int Ib, const int mode);
int _mm_cmpestrc (__m128i 3, int la, __m128i b, int Ib, const int mode);
int _mm_cmpestro (__m128ia, intla, __m128ib, int Ib, const int mode);
int _mm_cmpestrs (__m128i a, int I3, _m128ib, int Ib, const int mode);
int _mm_cmpestrz (__m128i g, intla, __m128ib, int Ib, const int mode);

SIMD Floating-Point Exceptions
N/A.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.
#SS(0) For an illegal address in the SS segment
#UD If EM in CRO is set.

If OSFXSR in CR4 is O.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real-Address Mode Exceptions

#GP Interrupt 13 If any part of the operand lies outside the effective
address space from O to FFFFH.

4-82 Vol.2B PCMPESTRI — Packed Compare Explicit Length Strings, Return Index

INSTRUCTION SET REFERENCE, N-Z

#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID.01H:ECX.SSE4_2 [Bit 20] is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID.O1H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

PCMPESTRI — Packed Compare Explicit Length Strings, Return Index Vol.2B 4-83

INSTRUCTION SET REFERENCE, N-Z

PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

Opcode Instruction 64-Bit Compat/ Description
Mode Leg
Mode
660F3A60 PCMPESTRM Valid Valid Perform a packed comparison of
/rimm8 xmm1, string data with explicit lengths,
xmm2/m128, generating a mask, and storing the
imm8 result in XMMO
Description

The instruction compares data from two string fragments based on the encoded
value in the imm8 contol byte (see Section 3.1.2, “Imm8 Control Byte Operation for
PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”), and generates a mask
stored to XMMO.

Each string fragment is represented by two values. The first value is an xmm (or
possibly m128 for the second operand) which contains the data elements of the
string (byte or word data). The second value is stored in EAX (for xmmZ1) or EDX (for
xmm2/m128) and represents the number of bytes/words which are valid for the
respective xmm/m128 data.

The length of each input is interpreted as being the absolute-value of the value in
EAX (EDX). The absolute-value computation saturates to 16 (for bytes) and 8 (for
words), based on the value of imm8[bit3] when the value in EAX (EDX) is greater
than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 3.1.2). As defined by imm8[6], IntRes2 is then
either stored to the least significant bits of XMMO (zero extended to 128 bits) or
expanded into a byte/word-mask and then stored to XMMO.

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag - Reset if IntRes?2 is equal to zero, set otherwise

ZFlag - Set if absolute-value of EDX is < 16 (8), reset otherwise
SFlag - Set if absolute-value of EAX is < 16 (8), reset otherwise
OFlag -IntRes2[0]

AFlag - Reset

PFlag - Reset

4-84 Vol.2B PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

Effective Operand Size

INSTRUCTION SET REFERENCE, N-Z

Operating Operand1 Operand2 Length1 Length2 Result
mode/size

16 bit Xmm xmm/m128 EAX EDX XMMO
32 bit Xmm xmm/m128 EAX EDX XMMO
64 bit Xmm xmm/m128 EAX EDX XMMO
64 bit + REXW | xmm xmm/m128 RAX RDX XMMO

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128i _mm_cmpestrm (__m128i a, int la, __m128i b, int Ib, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpestra (_m128ia, intla, __m128ib, int Ib, const int mode);
int _mm_cmpestrc (__m128ia, int la, __m128ib, int Ib, const int mode);
int _mm_cmpestro (__m128ia, intla, __m128ib, int Ib, const int mode);

int _mm_cmpestrs (__m128i 3, int la, __m128ib, int Ib, const int mode);
int _mm_cmpestrz (__m128i 3, intla, _m128ib, int Ib, const int mode);

SIMD Floating-Point Exceptions

N/A.

Protected Mode Exceptions

#GP(0)

#PF(fault-code)
#NM

#SS(0)

#UD

Real-Address Mode Exceptions

#GP

#NM

i

For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

For a page fault.

If TS in CRO is set.
For an illegal address in the SS segment
If EM in CRO is set.

If OSFXSR in CR4 is O.

If CPUID.0O1H:ECX.SSE4_2 [Bit 20] is O.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Interrupt 13 If any part of the operand lies outside the effective
address space from O to FFFFH.

If TS in CRO is set.

PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

Vol.2B 4-85

INSTRUCTION SET REFERENCE, N-Z

#UD If EM in CRO is set.
If OSFXSR in CR4 is O.
If CPUID.01H:ECX.SSE4_2 [Bit 20] is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is O.
If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

4-86 Vol.2B PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

INSTRUCTION SET REFERENCE, N-Z

PCMPISTRI — Packed Compare Implicit Length Strings, Return Index

Opcode Instruction

imm8

66 OF 3A PCMPISTRI xmm1,
63 /rimm8 xmm2/m128,

64-Bit Compat/

Mode
Valid

Leg Mode
Valid

Description

Perform a packed comparison of
string data with implicit lengths,
generating an index, and storing
the result in ECX.

Description

The instruction compares data from two strings based on the encoded value in the
Imma8 Control Byte (see Section 3.1.2, “Imma8 Control Byte Operation for PCMPESTRI
/ PCMPESTRM / PCMPISTRI / PCMPISTRM”), and generates an index stored to ECX.

Each string is represented by a single value. The value is an xmm (or possibly m128
for the second operand) which contains the data elements of the string (byte or word
data). Each input byte/word is augmented with a valid/invalid tag. A byte/word is

considered valid only if it has a lower index than the least significant null byte/word.
(The least significant null byte/word is also considered invalid.)

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 3.1.2). The index of the first (or last, according
to imm8[6]) set bit of IntRes2 is returned in ECX. If no bits are set in IntRes2, ECX

is set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag - Reset if IntRes2 is equal to zero, set otherwise
ZFlag - Set if any byte/word of xmm2/mem128 is null, reset otherwise
SFlag - Set if any byte/word of xmm1 is null, reset otherwise

OFlag -IntRes2[0]
AFlag - Reset
PFlag - Reset

Effective Operand Size

Operating mode/size | Operand1 Operand2 Result
16 bit xmm xmm/m128 ECX
32 bit Xmm xmm/m128 ECX
64 bit Xmm xmm/m128 ECX
64 bit + REX.W xmm xmm/m128 RCX

PCMPISTRI — Packed Compare Implicit Length Strings, Return Index

Vol.2B 4-87

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent For Returning Index

int _mm_cmpistri(__m128i a, __m128i b, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpistra (__m128ia, __m128ib, const int mode);
int _mm_cmpistrc (__m128i a, __m128i b, const int mode);
int _mm_cmpistro (__m128ia, __m128ib, const int mode);
int _mm_cmpistrs (__m128ia, __m128i b, const int mode);
int _mm_cmpistrz (_m128ia, __m128ib, const int mode)

i

SIMD Floating-Point Exceptions
N/A.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.
#SS(0) For an illegal address in the SS segment.
#UD If EM in CRO is set.

If OSFXSR in CR4 is O.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real-Address Mode Exceptions

#GP Interrupt 13 If any part of the operand lies outside the effective
address space from O to FFFFH.

#NM If TS in CRO is set.

#UD If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID.0O1H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

4-88 Vol.2B PCMPISTRI — Packed Compare Implicit Length Strings, Return Index

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is O.
If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

PCMPISTRI — Packed Compare Implicit Length Strings, Return Index Vol. 2B 4-89

INSTRUCTION SET REFERENCE, N-Z

PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 3A PCMPISTRM xmm1, Valid Valid Perform a packed comparison of
62 /rimm8 xmm2/m128, imm8 string data with implicit lengths,
generating a mask, and storing
the result in XMMO.

Description

The instruction compares data from two strings based on the encoded value in the
imma8 byte (see Section 3.1.2, “Imm8 Control Byte Operation for PCMPESTRI /
PCMPESTRM / PCMPISTRI / PCMPISTRM”) generating a mask stored to XMMO.

Each string is represented by a single value. The The value is an xmm (or possibly
m128 for the second operand) which contains the data elements of the string (byte
or word data). Each input byte/word is augmented with a valid/invalid tag. A
byte/word is considered valid only if it has a lower index than the least significant null
byte/word. (The least significant null byte/word is also considered invalid.)

The comparison and aggregation operation are performed according to the encoded
value of Imm8 bit fields (see Section 3.1.2). As defined by imm8[6], IntRes2 is then
either stored to the least significant bits of XMMO (zero extended to 128 bits) or
expanded into a byte/word-mask and then stored to XMMO.

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag - Reset if IntRes?2 is equal to zero, set otherwise

ZFlag - Set if any byte/word of xmm2/mem128is null, reset otherwise
SFlag - Set if any byte/word of xmm1 is null, reset otherwise

OFlag - IntRes2[0]

AFlag - Reset

PFlag - Reset

Effective Operand Size

Operating mode/size Operand1 Operand2 Result
16 bit Xmm xmm/m128 XMMO
32 bit Xmm xmm/m128 XMMO
64 bit Xmm xmm/m128 XMMO
64 bit + REX.W Xmm xmm/m128 XMMO

4-90 Vol.2B PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128i _mm_cmpistrm (__m128ia, __m128i b, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpistra (__m128ia, __m128ib, const int mode)
int _mm_cmpistrc (__m128ia, __m128i b, const int mode);
int _mm_cmpistro (__m128ia, __m128ib, const int mode);
int _mm_cmpistrs (__m128ia, __m128i b, const int mode);
int _mm_cmpistrz (_m128ia, __m128ib, constint mode)

’

"

SIMD Floating-Point Exceptions
N/A.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.
#SS(0) For an illegal address in the SS segment
#UD If EM in CRO is set.

If OSFXSR in CR4 is O.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real-Address Mode Exceptions

#GP Interrupt 13 If any part of the operand lies outside the effective
address space from O to FFFFH.

#NM If TS in CRO is set.

#UD If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask Vol.2B 4-91

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a hon-
canonical form.

#PF (fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is O.
If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

4-92 Vol.2B PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

INSTRUCTION SET REFERENCE, N-Z

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for
Greater Than

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF64/r PCMPGTB mm, Valid Valid Compare packed signed byte
mm/mé64 integers in mm and mm/m64 for
greater than.
66 OF 64 /r PCMPGTB xmm1, Valid Valid Compare packed signed byte
xmm2/m128 integers in xmm1 and
xmmZ2/m1.28 for greater than.
OF65/r PCMPGTW mm, Valid Valid Compare packed signed word
mm/m64 integers in mm and mm/m64 for
greater than.
66 0F65/r PCMPGTW xmm1, Valid Valid Compare packed signed word
xmm2/m128 integers in xmm1 and
xmmZ2/m1.28 for greater than.
OF 66 /r PCMPGTD mm, Valid Valid Compare packed signed
mm/m64 doubleword integers in mm and
mm/mé64 for greater than.
66 OF 66 /1 PCMPGTD xmm1, Valid Valid Compare packed signed
xmm2/m128 doubleword integers in xmm1
and xmmZ2/m1.28 for greater
than.
Description

Performs a SIMD signhed compare for the greater value of the packed byte, word, or
doubleword integers in the destination operand (first operand) and the source
operand (second operand). If a data element in the destination operand is greater
than the corresponding date element in the source operand, the corresponding data
element in the destination operand is set to all 1s; otherwise, it is set to all 0s. The
source operand can be an MMX technology register or a 64-bit memory location, or it
can be an XMM register or a 128-bit memory location. The destination operand can
be an MMX technology register or an XMM register.

The PCMPGTB instruction compares the corresponding signed byte integers in the
destination and source operands; the PCMPGTW instruction compares the corre-
sponding signed word integers in the destination and source operands; and the
PCMPGTD instruction compares the corresponding signed doubleword integers in the
destination and source operands.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than Vol.2B 4-93

INSTRUCTION SET REFERENCE, N-Z

Operation

PCMPGTB instruction with 64-bit operands:
IF DEST[7:0] > SRC[7:0]
THEN DEST[7:0) « FFH;
ELSE DEST[7:0] «— O; FI;
(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)
IF DEST[63:56] > SRC[63:56]
THEN DEST[63:56] « FFH;
ELSE DEST[63:56] « O; FI;

PCMPGTB instruction with 128-bit operands:
IF DEST[7:0] > SRC[7:0]
THEN DEST[7:0) « FFH;
ELSE DEST[7:0] « O; FI;
(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)
IF DEST[127:120] > SRC[127:120]
THEN DEST[127:120] «— FFH;
ELSE DEST[127:120] « O; FI;

PCMPGTW instruction with 64-bit operands:
IF DEST[15:0] > SRC[15:0]
THEN DEST[15:0] « FFFFH;
ELSE DEST[15:0] « O; FI;
(* Continue comparison of 2nd and 3rd words in DEST and SRC *)
IF DEST[63:48] > SRC[63:48]
THEN DEST[63:48] « FFFFH;
ELSE DEST[63:48] « O; FI;

PCMPGTW instruction with 128-bit operands:
IF DEST[15:0] > SRC[15:0]
THEN DEST[15:0] «— FFFFH;
ELSE DEST[15:0] «— O; FI;
(* Continue comparison of 2nd through 7th words in DEST and SRC *)
IF DEST[63:48] > SRC[127:112]
THEN DEST[127:112] «— FFFFH;
ELSE DEST[127:112] « O; FI;

PCMPGTD instruction with 64-bit operands:
IF DEST[31:0] > SRC[31:0]
THEN DEST[31:0] « FFFFFFFFH;
ELSE DEST[31:0] «— O; FI;
IF DEST[63:32] > SRC[63:32]
THEN DEST[63:32] «— FFFFFFFFH;
ELSE DEST[63:32] « O; FI;

4-94 Vol.2B PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than

INSTRUCTION SET REFERENCE, N-Z

PCMPGTD instruction with 128-bit operands:
IF DEST[31:0] > SRC[31:0]
THEN DEST[31:0] «— FFFFFFFFH;
ELSE DEST[31:0] « O; FI;
(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)
IF DEST[127:96] > SRC[127:96]
THEN DEST[127:96] « FFFFFFFFH;
ELSE DEST[127:96] « O; FI;

Intel C/C++ Compiler Intrinsic Equivalents

PCMPGTB __m64 _mm_cmpgt_pi8 (__m64 m1, __m64 m2)
PCMPGTW __m64 _mm_pcmpgt_pi16 (__m64 m1, __m64 m2)
DCMPGTD __m64 _mm_pcmpgt_pi32 (__m64 m1, __m64 m2)
PCMPGTB __m128i _mm_cmpgt_epi8 (_m128ia, __m128ib)
PCMPGTW __m128i _mm_cmpgt_epil16 (_m128ia,__m128ib)
DCMPGTD __m128i _mm_cmpgt_epi32 (_m128ia,__m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than Vol. 2B 4-95

INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

4-96 Vol.2B PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than

INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than Vol.2B 4-97

INSTRUCTION SET REFERENCE, N-Z

PCMPGTQ — Compare Packed Data for Greater Than

Opcode Instruction 64- Compat/ Description
Bit Leg
Mode Mode
66 OF 38 PCMPGTQ Valid Valid Compare packed qwords in
37 /r xmm1,xmmZ2/m1 xmmZ2/m128 and xmm1 for greater
28 than.
Description

Performs an SIMD compare for the packed quadwords in the destination operand
(first operand) and the source operand (second operand). If the data element in the
first (destination) operand is greater than the corresponding element in the second
(source) operand, the corresponding data element in the destination is set to all 1s;
otherwise, it is set to Os.

Operation

IF (DEST[63-0] > SRC[63-0])
THEN DEST[63-0] ¢ FFFFFFFFFFFFFFFFH;
ELSE DEST[63-0] € O; I

IF (DEST[127-64] > SRC[127-64])
THEN DEST[127-64] € FFFFFFFFFFFFFFFFH;
ELSE DEST[127-64] < O; Fl

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

PCMPGTQ _m128i _mm_cmpgt_epi64(_m128ia, __m128ib)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

If not aligned on 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF (fault-code) For a page fault.
#UD If CRO.EM = 1.
If CR4.0SFXSR(bit 9) = 0.
If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

4-98 Vol.2B PCMPGTQ — Compare Packed Data for Greater Than

INSTRUCTION SET REFERENCE, N-Z

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.
#NM If TS bit in CRO is set.

Real Mode Exceptions

#GP If any part of the operand lies outside of the effective address
space from O to OFFFFH.

If not aligned on 16-byte boundary, regardless of segment.
#UD If CRO.EM = 1.

If CR4.0SFXSR(bit 9) = 0.

If CPUID.0O1H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.
#NM If TS bit in CRO is set.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF (fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
If not aligned on 16-byte boundary, regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.
#UD If CRO.EM = 1.

If CR4.0SFXSR(bit 9) = 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.
H#NM If TS bit in CRO is set.

PCMPGTQ — Compare Packed Data for Greater Than Vol. 2B 4-99

INSTRUCTION SET REFERENCE, N-Z

PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword

Opcode Instruction 64-bit Compat/ Description

Mode Leg Mode
66 OF 3A 14 PEXTRB reg/m8, Valid Valid Extract a byte integer value from
Irib xmmZ2, imm8 xmmZ2 at the source byte offset

specified by imm8into rreg or
m8. The upper bits of r32 or r64

are zeroed.
66 0OF 3A 16 PEXTRD r/m32, Valid Valid Extract a dword integer value
Irib xmmZ2, imm8 from xmmZ2 at the source dword
offset specified by imm8 into
r/m32.
66 REXW OF PEXTRQ r/m64, Valid N. E. Extract a qword integer value
3A 16 xmmZ2, imm8 from xmmZ2 at the source dword
Irib offset specified by imm8 into
r/m64.

Description

Copies a data element (byte, dword, quadword) in the source operand (second
operand) specified by the count operand (third operand) to the destination operand
(first operand). The source operand is an XMM register. The destination operand can
be a general-purpose register or a memory address. The count operand is an 8-bit
immediate. When specifying a quadword [dword, byte] element, the [2, 4] least-
significant bit(s) of the count operand specify the location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15). PEXTRQ requires REX.W. If the
destination operand is a general-purpose register, the default operand size of
PEXTRB is 64 bits.

Operation
CASE of
PEXTRB: SEL < COUNT[3:0];
TEMP & (Src >> SEL*8) AND FFH;
IF (DEST = Mem8)
THEN
Mem8 <« TEMP[7:0];
ELSE IF (64-Bit Mode and 64-bit register selected)
THEN
R64[7:0] € TEMP[7:0];
ré64[63:8] « ZERO_FILL; };
ELSE

4-100 Vol.2B PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword

INSTRUCTION SET REFERENCE, N-Z

R32[7:0] € TEMP[7:0];
r32[31:8] «- ZERO_FILL; };
Fl;
PEXTRD:SEL < COUNT[1:0];
TEMP & (Src >> SEL*32) AND FFFF_FFFFH;
DEST « TEMP;
PEXTRQ: SEL < COUNTIO];
TEMP & (Src >> SEL*64);
DEST €« TEMP;
EASC:

Intel C/C++ Compiler Intrinsic Equivalent
PEXTRB int _mm_extract_epi8 (__m128i src, const int ndx);

PEXTRD int _mm_extract_epi32 (__m128i src, const int ndx);

PEXTRQ __int64 _mm_extract_epi64 (__m128i src, const int ndx);
Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) (Dword and gword references) If alignment checking is enabled
and an unaligned memory reference is made while the current
privilege level is 3.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.
#UD If CRO.EM[bit 2] = 1.

PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword Vol.2B 4-101

INSTRUCTION SET REFERENCE, N-Z

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.
#NM If CRO.TS[bit 3] = 1.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

#AC(0) (Dword and gword references) If alignment checking is enabled
and an unaligned memory reference is made while the current
privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) (Dword and gword references) If alignment checking is enabled
and an unaligned memory reference is made while the current
privilege level is 3.

4-102 Vol.2B PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword

INSTRUCTION SET REFERENCE, N-Z

PEXTRW—Extract Word

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFC5/rib PEXTRW reg, mm, Valid Valid Extract the word specified by
imm8 imm8 from mm and move it to

reg, bits 15-0. The upper bits of
r32 or r64 is zeroed.

66 OF C5 /rib PEXTRW reg, Valid Valid Extract the word specified by
xmm, imm8 imm8 from xmm and move it to
reg, bits 15-0. The upper bits of
r32 or r64 is zeroed.

66 OF 3A 15 PEXTRW Valid Valid Extract the word specified by
Irib reg/m16, xmm, imm8 from xmm and copy it to
imm8 lowest 16 bits of reg or m16.

Zero-extend the result in the
destination, r32 or r64.

Description

Copies the word in the source operand (second operand) specified by the count
operand (third operand) to the destination operand (first operand). The source
operand can be an MMX technology register or an XMM register. The destination
operand can be the low word of a general-purpose register or a 16-bit memory
address. The count operand is an 8-bit immediate. When specifying a word location
in an MMX technology register, the 2 least-significant bits of the count operand
specify the location; for an XMM register, the 3 least-significant bits specify the loca-
tion. The content of the destination register above bit 16 is cleared (set to all 0s).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15). If the destination operand is a
general-purpose register, the default operand size is 64-bits in 64-bit mode.

Operation

IF (DEST = Mem16)
THEN

SEL € COUNT[2:0];

TEMP & (Src >> SEL*16) AND FFFFH;

Mem16 < TEMP[15:0];
ELSE IF (64-Bit Mode and destination is a general-purpose register)

THEN

FOR (PEXTRW instruction with 64-bit source operand)
{ SEL « COUNT[1:0];
TEMP « (SRC >> (SEL * 16)) AND FFFFH;

PEXTRW—Extract Word Vol. 2B 4-103

INSTRUCTION SET REFERENCE, N-Z

r64[15:0] « TEMP[15:0];
r64[63:16] « ZERO_FILL; };
FOR (PEXTRW instruction with 128-bit source operand)
{ SEL « COUNT[2:0];
TEMP « (SRC >> (SEL * 16)) AND FFFFH;
r64[15:0] « TEMP[15:0];
r64[63:16] « ZERO_FILL; }
ELSE
FOR (PEXTRW instruction with 64-bit source operand)
{ SEL « COUNT[1:0];
TEMP « (SRC >> (SEL * 16)) AND FFFFH;
r32[15:0] « TEMP[15:0;
r32[31:16] « ZERO_FILL; };
FOR (PEXTRW instruction with 128-bit source operand)
{ SEL « COUNT[2:0];
TEMP « (SRC >> (SEL * 16)) AND FFFFH;
r32[15:0] « TEMP[15:0];
r32[31:16] « ZERO_FILL; };
Fl;
Fl;

Intel C/C++ Compiler Intrinsic Equivalent

PEXTRW int _mm_extract_pi16 (__m64 a, int n)
PEXTRW int _mm_extract_epi16 (_m128i a, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) (3 byte opcode only) If a memory operand effective address is
outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) (3 byte opcode only) If a memory operand effective address is
outside the SS segment limit.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(3 byte opcode only) If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

4-104 Vol.2B PEXTRW—Extract Word

INSTRUCTION SET REFERENCE, N-Z

(3 byte opcode only) Either the prefix REP (F3h) or REPN (F2H)

is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) (3 byte opcode only) If a page fault occurs.

#AC(0) (3 byte opcode only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (3 byte opcode only) If any part of the operand lies outside of
the effective address space from O to FFFFH.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(3 byte opcode only) If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

(3 byte opcode only) Either the prefix REP (F3h) or REPN (F2H)

is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) (3 byte opcode only) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#GP(0) (3 byte opcode only) If the memory address is in a non-canon-
ical form.
#SS(0) (3 byte opcode only) If a memory address referencing the SS

segment is in a non-canonical form.
#PF(fault-code) (3 byte opcode only) For a page fault.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

PEXTRW—Extract Word Vol. 2B 4-105

INSTRUCTION SET REFERENCE, N-Z

(3 byte opcode only) If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

(3 byte opcode only) Either the prefix REP (F3h) or REPN (F2H)

is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (3 byte opcode only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-106 Vol.2B PEXTRW—Extract Word

INSTRUCTION SET REFERENCE, N-Z

PHADDW/PHADDD — Packed Horizontal Add

64-Bit Compat/ Description
Opcode Instruction Mode Leg Mode
OF 3801 /r PHADDW mmT1, Valid Valid Add 16-bit signed integers
mm2/m64 horizontally, pack to MM1.
66 OF 3801 /r PHADDW xmm1, Valid Valid Add 16-bit signed integers
xmm2/m128 horizontally, pack to XMMT.
0F3802/r PHADDD mm1, Valid Valid Add 32-bit signed integers
mm2/m64 horizontally, pack to MM1.
66 OF 3802 /r PHADDD xmm1, Valid Valid Add 32-bit signed integers
xmm2/m128 horizontally, pack to XMM1.
Description

PHADDW adds two adjacent 16-bit signed integers horizontally from the source and
destination operands and packs the 16-bit signed results to the destination operand
(first operand). PHADDD adds two adjacent 32-bit signed integers horizontally from
the source and destination operands and packs the 32-bit signed results to the desti-
nation operand (first operand). Both operands can be MMX or XMM registers. When

the source operand is a 128-bit memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation
PHADDW with 64-bit operands:

mm1[15-0] =mm1[31-16] + mm1[15-0];
mm1[31-16] = mm1[63-48] + mm1[47-32];
mm1[47-32] = mm2/m64[31-16] + mm2/m64[15-0];
mm1[63-48] = mm2/m64[63-48] + mm2/m64[47-32];

PHADDW with 128-bit operands :

xmm1[15-0] = xmm1[31-16] + xmm1[15-0];

xmm1[31-16] = xmm1[63-48] + xmm1[47-32];

xmm1[47-32] = xmm1[95-80] + xmm1[79-64];

xmm1[63-48] = xmm1[127-112] + xmm1[111-96];

xmm1[79-64] = xmm2/m128[31-16] + xmm2/m128[15-0];
xmm1[95-80] = xmm2/m128[63-48] + xmm2/m128[47-32];
xmm1[111-96] = xmm2/m128[95-80] + xmm2/m128[79-64];
xmm1[127-112] = xmm2/m128[127-112] + xmm2/m128[111-96];

PHADDW/PHADDD — Packed Horizontal Add Vol. 2B 4-107

INSTRUCTION SET REFERENCE, N-Z

PHADDD with 64-bit operands :

mm1[31-0] = mm1[63-32] + mm1[31-0];
mm1[63-32] = mm2/m64[63-32] + mm2/m64[31-0];

PHADDD with 128-bit operands:

xmm1[31-0] = xmm1[63-32] + xmm1[31-0];

xmm1[63-32] = xmm1[127-96] + xmm1[95-64];

xmm1[95-64] = xmm2/m128[63-32] + xmm2/m128[31-0];
xmm1[127-96] = xmm2/m128[127-96] + xmm2/m128[95-64];

Intel C/C++ Compiler Intrinsic Equivalents

PHADDW __m64 _mm_hadd_pi16 (__m64 a, __m64 b)
PHADDW __m128i _mm_hadd_epi16 (__m128ia, __m128ib)
PHADDD _ m64 _mm_hadd_pi32 (__m64 a, __m64 b)
PHADDD __m128i _mm_hadd_epi32 (_m128ia, __m128ib)

Protected Mode Exceptions

#GP(0):

#SS(0)

#PF(fault-code)
#UD

#NM
#MF
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-hit operations only) If not aligned on 16-byte boundary,
regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If CRO.EM(bit 2)= 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

If TS bit in CRO is set.

(64-bit operations only) If there is a pending x87 FPU exception.

(64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0)

4-108 Vol.2B

If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

PHADDW/PHADDD — Packed Horizontal Add

#UD

#NM
#MF

INSTRUCTION SET REFERENCE, N-Z

If CRO.EM = 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

If TS bit in CRO is set.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

If a page fault occurs.

(64-bit operations only). If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

#HMF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PHADDW/PHADDD — Packed Horizontal Add Vol. 2B 4-109

INSTRUCTION SET REFERENCE, N-Z

PHADDSW — Packed Horizontal Add and Saturate

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 3803 /r PHADDSW mm1, Valid Valid Add 16-bit signed integers
mm2/m64 horizontally, pack saturated integers
to MM1.
66 OF 3803 /r PHADDSW xmm1, Valid Valid Add 16-bit signed integers
xmm2/m128 horizontally, pack saturated integers
to XMMT.
Description

PHADDSW adds two adjacent signed 16-bit integers horizontally from the source and
destination operands and saturates the signed results; packs the signed, saturated
16-bit results to the destination operand (first operand) Both operands can be MMX
or XMM registers. When the source operand is a 128-bit memory operand, the
operand must be aligned on a 16-byte boundary or a general-protection exception
(#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation
PHADDSW with 64-bit operands:

mm1[15-0] = SaturateToSignedWord((mm1[31-16] + mm1[15-0]);
mm1[31-16] = SaturateToSignedWord(mm1[63-48] + mm1[47-32]);
mm1[47-32] = SaturateToSignedWord(mm2/m64[31-16] + mm2/m64[15-0]);
mm1[63-48] = SaturateToSignedWord(mm2/m64[63-48] + mm2/m64[47-32]);

PHADDSW with 128-bit operands :

xmm1[15-0]= SaturateToSignedWord(xmm1[31-16] + xmm1[15-0]);

xmm1[31-16] = SaturateToSignedWord(xmm1[63-48] + xmm1[47-32]);

xmm1[47-32] = SaturateToSignedWord(xmm1[95-80] + xmm1[79-64]);

xmm1[63-48] = SaturateToSignedWord(xmm1[127-112] + xmm1[111-96]);

xmm1[79-64] = SaturateToSignedWord(xmm2/m128[31-16] + xmm2/m128[15-0]);
xmm1[95-80] = SaturateToSignedWord(xmm2/m128[63-48] + xmm2/m128[47-32]);
xmm1[111-96] = SaturateToSignedWord(xmm2/m128[95-80] + xmm2/m128[79-64]);
xmm1[127-112] = SaturateToSignedWord(xmm2/m128[127-112] + xmm2/m128[111-96]);

Intel C/C++ Compiler Intrinsic Equivalent

PHADDSW __m64 _mm_hadds_pi16 (__m64 a, __m64 b)
PHADDSW __m128i _mm_hadds_epi16 (__m128ia, __m128ib)

4-110 Vol.2B PHADDSW — Packed Horizontal Add and Saturate

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.

#NM If TS bit in CRO is set.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0): (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-hit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.
#NM If TS bit in CRO is set.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

PHADDSW — Packed Horizontal Add and Saturate Vol.2B 4-111

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

#HMF
#PF(fault-code)
#AC(0)

4-112 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PHADDSW — Packed Horizontal Add and Saturate

INSTRUCTION SET REFERENCE, N-Z

PHMINPOSUW — Packed Horizontal Word Minimum

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 38 PHMINPOSUW xmm1, Valid Valid Find the minimum unsigned word in
41 /r xmm2/m128 xmmZ2/m128 and place its value in the
low word of xmm1 and its index in the
second-lowest word of xmm1.

Description

Determine the minimum unsigned word value in the source operand (second
operand) and place the unsigned word in the low word (bits 0-15) of the destination
operand (first operand). The word index of the minimum value is stored in bits 16-
18 of the destination operand. The remaining upper bits of the destination are set to
zero.

Operation

INDEX < O;
MIN <« SRC[15:0]
IF (SRC[31:16] < MIN)
THEN INDEX <« 1; MIN & SRC[31:16]; FI;
IF (SRC[47:32] < MIN)
THEN INDEX < 2; MIN & SRC[47:32]; FI;
* Repeat operation for words 3 through 6
IF (SRC[127:112] < MIN)
THEN INDEX €« 7; MIN <« SRC[127:112]; FI;
DEST[15:0] € MIN;
DEST[18:16] < INDEX;
DEST[127:19] €< 0000000000000000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent

PHMINPOSUW __m128i _mm_minpos_epul16(__m128i packed_words);

Flags Affected

None
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

PHMINPOSUW — Packed Horizontal Word Minimum Vol.2B 4-113

INSTRUCTION SET REFERENCE, N-Z

#SS(0)
#PF(fault-code)
#NM

#UD

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

4-114 Vol.2B

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

PHMINPOSUW — Packed Horizontal Word Minimum

INSTRUCTION SET REFERENCE, N-Z

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

PHMINPOSUW — Packed Horizontal Word Minimum Vol.2B 4-115

INSTRUCTION SET REFERENCE, N-Z

PHSUBW/PHSUBD — Packed Horizontal Subtract
64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF 3805 /r PHSUBW mm1, Valid Valid Subtract 16-bit signed
mm2/m64 integers horizontally, pack
to MM1.
66 0F 3805 /r PHSUBW xmm1, Valid Valid Subtract 16-bit signed
xmm2/m128 integers horizontally, pack
to XMMT.
OF 3806 /r PHSUBD mm1, Valid Valid Subtract 32-bit signed
mm2/m64 integers horizontally, pack
to MM1.
66 0F 3806 /r PHSUBD xmm1, Valid Valid Subtract 32-bit signed
xmm2/m128 integers horizontally, pack
to XMMT.
Description

PHSUBW performs horizontal subtraction on each adjacent pair of 16-bit signed inte-
gers by subtracting the most significant word from the least significant word of each
pair in the source and destination operands, and packs the signed 16-bit results to
the destination operand (first operand). PHSUBD performs horizontal subtraction on
each adjacent pair of 32-bit signed integers by subtracting the most significant
doubleword from the least significant doubleword of each pair, and packs the signed
32-bit result to the destination operand. Both operands can be MMX or XMM regis-
ters. When the source operand is a 128-bit memory operand, the operand must be
aligned on a 16-byte boundary or a general-protection exception (#GP) will be
generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation
PHSUBW with 64-bit operands:

mm1[15-0] = mm1[15-0] - mm1[31-16];
mm1[31-16] = mm1[47-32] - mm1[63-48];
mm1[47-32] = mm2/m64[15-0] - mm2/m64[31-16];
mm1[63-48] = mm2/m64[47-32] - mm2/m64[63-48];

PHSUBW with 128-bit operands:

xmm1[15-0] = xmm1[15-0] - xmm1[31-16];
xmm1[31-16] = xmm1[47-32] - xmm1[63-48];
xmm1[47-32] = xmm1[79-64] - xmm1[95-80];

4-116 Vol.2B PHSUBW/PHSUBD — Packed Horizontal Subtract

INSTRUCTION SET REFERENCE, N-Z

xmm1[63-48] = xmm1[111-96] - xmm1[127-112];

xmm1[79-64] = xmm2/m128[15-0] - xmm2/m128[31-16];
xmm1[95-80] = xmm2/m128[47-32] - xmm2/m128[63-48];
xmm1[111-96] = xmm2/m128[79-64] - xmm2/m128[95-80];
xmm1[127-112] = xmm2/m128[111-96] - xmm2/m128[127-112];

PHSUBD with 64-bit operands:

mm1[31-0] = mm1[31-0] - mm1[63-32];
mm1[63-32] = mm2/m64[31-0] - mm2/m64[63-32];

PHSUBD with 128-bit operands:

xmm1[31-0] = xmm1[31-0] - xmm1[63-32];

xmm1[63-32] = xmm1[95-64] - xmm1[127-96];

xmm1[95-64] = xmm2/m128[31-0] - xmm2/m128[63-32];
xmm1[127-96] = xmm2/m128[95-64] - xmm2/m128[127-96];

Intel C/C++ Compiler Intrinsic Equivalents

PHSUBW __ m64 _mm_hsub_pi16 (__m64 a, __m64 b)
PHSUBW __m128i _mm_hsub_epi16 (__m128ia, __m128ib)
PHSUBD _ m64 _mm_hsub_pi32 (__m64 a3, __m64 b)
PHSUBD _ m128i _mm_hsub_epi32 (__m128ia, __m128iDb)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.
(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.

#NM If TS bit in CRO is set.

H#MF If there is a pending x87 FPU exception (64-bit operations only).

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

PHSUBW/PHSUBD — Packed Horizontal Subtract Vol.2B 4-117

INSTRUCTION SET REFERENCE, N-Z

Real Mode Exceptions

#GP(0): If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD: If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.
#NM If TS bit in CRO is set.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSSE3[bit 9] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-118 Vol.2B PHSUBW/PHSUBD — Packed Horizontal Subtract

INSTRUCTION SET REFERENCE, N-Z

PHSUBSW — Packed Horizontal Subtract and Saturate

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 3807 /r PHSUBSW mm1, Valid Valid Subtract 16-bit signed
mm2/m64 integer horizontally, pack
saturated integers to MM1.
66 OF 38 07 /r PHSUBSW Valid Valid Subtract 16-bit signed
xmm1, integer horizontally, pack
xmm2/m128 saturated integers to
XMM1
Description

PHSUBSW performs horizontal subtraction on each adjacent pair of 16-bit signed
integers by subtracting the most significant word from the least significant word of
each pair in the source and destination operands. The signed, saturated 16-bit
results are packed to the destination operand (first operand). Both operands can be
MMX or XMM register. When the source operand is a 128-bit memory operand, the
operand must be aligned on a 16-byte boundary or a general-protection exception
(#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation
PHSUBSW with 64-bit operands:

mm1[15-0] = SaturateToSignedwWord(mm1[15-0] - mm1[31-16]);

mm1[31-16] = SaturateToSignedWord(mm1[47-32] - mm1[63-48]);
mm1[47-32] = SaturateToSignedWord(mm2/m64[15-0] - mm2/m64[31-16]);
mm1[63-48] = SaturateToSignedWord(mm2/m64[47-32] - mm2/m64[63-48]);

PHSUBSW with 128-bit operands:

xmm1[15-0] = SaturateToSignedWord(xmm1[15-0] - xmm1[31-16]);

xmm1[31-16] = SaturateToSignedWord(xmm1[47-32] - xmm1[63-48]);

xmm1[47-32] = SaturateToSignedWord(xmm1[79-64] - xmm1[95-80]);

xmm1[63-48] = SaturateToSignedWord(xmm1[111-96] - xmm1[127-112]);

xmm1[79-64] = SaturateToSignedWord(xmm2/m128[15-0] - xmm2/m128[31-16]);
xmm1[95-80] =SaturateToSignedWord(xmm2/m128[47-32] - xmm2/m128[63-48]));
xmm1[111-96] =SaturateToSignedWord(xmm2/m128[79-64] - xmm2/m128[95-80]);
xmm1[127-112]= SaturateToSignedWord(xmm2/m128[111-96] - xmm2/m128[127-112]);

PHSUBSW — Packed Horizontal Subtract and Saturate Vol.2B 4-119

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent

PHSUBSW __m64 _mm_hsubs_pi16 (__m64 a, __m64 b)
PHSUBSW __m128i _mm_hsubs_epi16 (_m128ia, __m128ib)

Protected Mode Exceptions

#GP(0) if a memory operand effective address is outside the CS, DS, ES,
FS or GS segments.

If not aligned on 16-byte boundary, regardless of segment
(128-bit operations only).

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.
If CR4.0SFXSR(bit 9) = 0 (128-bit operations only).
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.

#NM If TS bit in CRO is set.

H#MF If there is a pending x87 FPU exception (64-bit operations only).

#AC(0) If alignment checking is enabled and unaligned memory refer-
ence is made while the current privilege level is 3 (64-bit opera-
tions only).

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

If not aligned on 16-byte boundary, regardless of segment
(128-bit operations only).

#UD If CRO.EM = 1.
If CR4.0SFXSR(bit 9) = 0 (128-bit operations only).
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.
#NM If TS bit in CRO is set.
H#MF If there is a pending x87 FPU exception (64-bit operations only).

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and unaligned memory refer-
ence is made (64-bit operations only).

4-120 Vol.2B PHSUBSW — Packed Horizontal Subtract and Saturate

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PHSUBSW — Packed Horizontal Subtract and Saturate Vol. 2B 4-121

INSTRUCTION SET REFERENCE, N-Z

PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword

Opcode Instruction Compat/ 64-bit Description
Leg Mode Mode
66 OF 3A PINSRB xmm1, Valid Valid Insert a byte integer value from r32/m8
20 /rib r32/m8, imm8 into xmm1 at the destination element in
xmm1 specified by imm8.
66 OF 3A PINSRD xmm1, Valid Valid Insert a dword integer value from r/m32
22 Irib r/m32, imm8 into the xmm1 at the destination
elements specified by imm8.
66 REXW PINSRQ xmm1, N.E Valid Insert a qword integer value from r/m32
OF 3A 22 /r r/m64, imm8 into the xmm1 at the destination
ib elements specified by imm8.
Description

Copies a byte/dword/qword from the source operand (second operand) and inserts it
in the destination operand (first operand) at the location specified with the count
operand (third operand). (The other elements in the destination register are left
untouched.) The source operand can be a general-purpose register or a memory
location. (When the source operand is a general-purpose register, PINSRB copies the
low byte of the register.) The destination operand is an XMM register. The count
operand is an 8-bit immediate. When specifying a qword[dword, byte] location in an
an XMM register, the [2, 4] least-significant bit(s) of the count operand specify the
location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15). Use of REX.W permits the use of
64 bit general purpose registers.

Operation
CASE OF
PINSRB: SEL < COUNT[3:0];
MASK € (OFFH << (SEL * 8));
TEMP & (((SRC[7:0] << (SEL *8)) AND MASK);
PINSRD: SEL <« COUNTI[1:0];
MASK < (OFFFFFFFFH << (SEL * 32));
TEMP < (((SRC << (SEL *32)) AND MASK) ;
PINSRQ: SEL < COUNTIO]
MASK ¢« (OFFFFFFFFFFFFFFFFH << (SEL * 64));
TEMP & (((SRC << (SEL *32)) AND MASK) ;
ESAC
DEST < ((DEST AND NOT MASK) OR TEMP);

4-122 Vol. 2B PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent
PINSRB __m128i _mm_insert_epi8 (__m128i s1, int s2, const int ndx);

PINSRD __m128i _mm_insert_epi32 (__m128is2, int s, const int ndx);
PINSRQ _m128i _mm_insert_epi64(__m128is2, __int64 s, const int ndx);

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) (Dword and gword references) If alignment checking is enabled
and an unaligned memory reference is made while the current
privilege level is 3.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword Vol.2B 4-123

INSTRUCTION SET REFERENCE, N-Z

#AC(0)

(Dword and gword references) If alignment checking is enabled
and an unaligned memory reference is made while the current
privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#NM
#UD

#AC(0)

4-124 Vol.2B

If the memory address is in a non-canonical form.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is O.

If CPUID feature flag ECX.SSE4_1 is O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

(Dword and gword references) If alignment checking is enabled
and an unaligned memory reference is made while the current
privilege level is 3.

PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword

INSTRUCTION SET REFERENCE, N-Z

PINSRW—Insert Word

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFC4/rib PINSRW mm, Valid Valid Insert the low word from
r32/m16, imm8 r32 or from m16into mm

at the word position
specified by imm8

66 OF C4 /rib PINSRW xmm, Valid Valid Move the low word of r32
r32/m16, imm8 or from m16 into xmm at
the word position specified
by imm8.
Description

Copies a word from the source operand (second operand) and inserts it in the desti-
nation operand (first operand) at the location specified with the count operand (third
operand). (The other words in the destination register are left untouched.) The
source operand can be a general-purpose register or a 16-bit memory location.
(When the source operand is a general-purpose register, the low word of the register
is copied.) The destination operand can be an MMX technology register or an XMM
register. The count operand is an 8-bit immediate. When specifying a word location in
an MMX technology register, the 2 least-significant bits of the count operand specify
the location; for an XMM register, the 3 least-significant bits specify the location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15).

Operation

PINSRW instruction with 64-bit source operand:
SEL < COUNT AND 3H;
CASE (Determine word position) OF

SEL « O: MASK « 000000000000FFFFH;
SEL « 1: MASK « 00000000FFFFO000H;
SEL « 2: MASK « 0000FFFFO0000000H;
SEL « 3: MASK « FFFFOO0000000000H;

DEST « (DEST AND NOT MASK) OR (((SRC << (SEL * 16)) AND MASK);

PINSRW instruction with 128-bit source operand:
SEL <« COUNT AND 7H;
CASE (Determine word position) OF
SEL « O: MASK « 0000000000000000000000000000FFFFH;
SEL « 1: MASK « 000000000000000000000000FFFFO00O0H;
SEL « 2: MASK « 00000000000000000000FFFFO0000000H;
SEL « 3: MASK « 0000000000000000FFFFO00000000000H;

PINSRW—Insert Word Vol.2B 4-125

INSTRUCTION SET REFERENCE, N-Z

SEL« 4: MASK « 000000000000FFFFO000000000000000H;

SEL« 5 MASK « 00000000FFFFO0000000000000000000H;

SEL« 6 MASK « 0000FFFFO00000000000000000000000H;

SEL« 7: MASK « FFFF0000000000000000000000000000H;
DEST « (DEST AND NOT MASK) OR (((SRC << (SEL * 16)) AND MASK);

Intel C/C++ Compiler Intrinsic Equivalent

PINSRW _ m64 _mm_insert_pi16 (__m64 3, int d, int n)
PINSRW _ m128i _mm_insert_epi16 (_m128i a, int b, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address
space from O to FFFFH.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one

4-126 Vol.2B PINSRW—Insert Word

#NM
#MF

INSTRUCTION SET REFERENCE, N-Z

that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)

#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

64-Bit Mode Exceptions

#SS(0)

#GP(0)
#UD

#NM

HMF
#PF(fault-code)
#AC(0)

PINSRW—Insert Word

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Vol.2B 4-127

INSTRUCTION SET REFERENCE, N-Z

PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes
64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF 3804 /r PMADDUBSW Valid Valid Multiply signed and
mm1, mm2/m64 unsigned bytes, add

horizontal pair of signed
words, pack saturated
signed-words to MM1.

66 OF 38 04 /r PMADDUBSW Valid Valid Multiply signed and
xmm1, unsigned bytes, add
xmm2/m128 horizontal pair of signed

words, pack saturated
signed-words to XMM1.

Description

PMADDUBSW multiplies vertically each unsigned byte of the destination operand
(first operand) with the corresponding signed byte of the source operand (second
operand), producing intermediate signed 16-bit integers. Each adjacent pair of
signed words is added and the saturated result is packed to the destination operand.
For example, the lowest-order bytes (bits 7-0) in the source and destination oper-
ands are multiplied and the intermediate signed word result is added with the corre-
sponding intermediate result from the 2nd lowest-order bytes (bits 15-8) of the
operands; the sign-saturated result is stored in the lowest word of the destination
register (15-0). The same operation is performed on the other pairs of adjacent
bytes. Both operands can be MMX register or XMM registers. When the source
operand is a 128-bit memory operand, the operand must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation
PMADDUBSW with 64 bit operands:

DEST[15-0] = SaturateToSignedWord(SRC[15-8]*DEST[15-8]+SRC[7-0]*DEST[7-01);

DEST[31-16] = SaturateToSignedWord(SRC[31-24]*DEST[31-24]+SRC[23-16]*DEST[23-16]);
DEST[47-32] = SaturateToSignedWord(SRC[47-40]1*DEST[47-40]+SRC[39-321*DEST[39-32]);
DEST[63-48] = SaturateToSignedWord(SRC[63-56]*DEST[63-56]+SRC[55-481*DEST[55-48));

PMADDUBSW with 128 bit operands:

DEST[15-0] = SaturateToSignedWord(SRC[15-8]* DEST[15-8]+SRC[7-0]*DEST[7-0]);
// Repeat operation for 2nd through 7th word

4-128 Vol.2B PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes

INSTRUCTION SET REFERENCE, N-Z

SRC1/DEST[127-112] = SaturateToSignedword(SRC[127-120]*DEST[127-120]+ SRC[119-
112]* DEST[119-112]);

Intel C/C++ Compiler Intrinsic Equivalents

PMADDUBSW __m64 _mm_maddubs_pi16 (__m64 a, __m64 b)
PMADDUBSW __m128i _mm_maddubs_epi16 (_m128ia, __m128ib)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-hit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.
If CR4.0SFXSR(bit 9) = 0 (128-bit operations only)
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.

#NM If TS bit in CRO is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.
#NM If TS bit in CRO is set.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.

PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes Vol.2B 4-129

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code)
#AC(0)

If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-130 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes

INSTRUCTION SET REFERENCE, N-Z

PMADDWD—Multiply and Add Packed Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFF5/r PMADDWD mm, Valid Valid Multiply the packed words in mm
mm/m64 by the packed words in mm/m64,

add adjacent doubleword results,
and store in mm.

66 OF F5 /1 PMADDWD xmm1, Valid Valid Multiply the packed word integers
xmmZ2/m128 in xmm1 by the packed word
integers in xmm2/m128, add
adjacent doubleword results, and
store in xmm1.

Description

Multiplies the individual signed words of the destination operand (first operand) by
the corresponding signed words of the source operand (second operand), producing
temporary signed, doubleword results. The adjacent doubleword results are then
summed and stored in the destination operand. For example, the corresponding low-
order words (15-0) and (31-16) in the source and destination operands are multi-
plied by one another and the doubleword results are added together and stored in
the low doubleword of the destination register (31-0). The same operation is
performed on the other pairs of adjacent words. (Figure 4-2 shows this operation
when using 64-bit operands.) The source operand can be an MMX technology register
or a 64-bit memory location, or it can be an XMM register or a 128-bit memory loca-
tion. The destination operand can be an MMX technology register or an XMM register.

The PMADDWD instruction wraps around only in one situation: when the 2 pairs of
words being operated on in a group are all 8000H. In this case, the result wraps
around to 80000000H.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

PMADDWD—Multiply and Add Packed Integers Vol.2B 4-131

INSTRUCTION SET REFERENCE, N-Z

SRC X3 X2 X1 X0
DEST Y3 Y2 Y1 YO

TEMP X3 # Y3 X2 # Y2 X1 % Y1 X0 * YO
DEST (X3%Y3) + (X2+Y2)| (X1¥Y1) + (X0*Y0)

Figure 4-2. PMADDWD Execution Model Using 64-bit Operands

Operation

PMADDWD instruction with 64-bit operands:
DEST[31:0] « (DEST[15:0] * SRC[15:0]) + (DEST[31:16] * SRC[31:16]);
DEST[63:32] « (DEST[47:32] * SRC[47:32]) + (DEST[63:48] * SRC[63:48]);

PMADDWD instruction with 128-bit operands:
DEST[31:0] « (DEST[15:0] * SRC[15:0]) + (DEST[31:16] * SRC[31:16]);
DEST[63:32] « (DEST[47:32] * SRC[47:32]) + (DEST[63:48] * SRC[63:48]);
DEST[95:64] « (DEST[79:64] * SRC[79:64]) + (DEST[95:80] * SRC[95:80]);
DEST[127:96] « (DEST[111:96] * SRC[111:96]) + (DEST[127:112] * SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalent

PMADDWD __m64 _mm_madd_pi16(_m64 m1, __m64 m2)
PMADDWD __m128i _mm_madd_epi16 (_m128ia, _m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bhit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

4-132 Vol.2B PMADDWD—Multiply and Add Packed Integers

INSTRUCTION SET REFERENCE, N-Z

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

PMADDWD—Multiply and Add Packed Integers Vol.2B 4-133

INSTRUCTION SET REFERENCE, N-Z

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-134 Vol.2B

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PMADDWD—Multiply and Add Packed Integers

INSTRUCTION SET REFERENCE, N-Z

PMAXSB — Maximum of Packed Signed Byte Integers

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 38 PMAXSB xmm1, Valid Valid Compare packed signed byte integers
3C/r xmm2/m128 in xmm1 and xmmZ2/m128 and store
packed maximum values in xmm1.

Description

Compares packed signed byte integers in the destination operand (first operand) and
the source operand (second operand), and returns the maximum for each packed
value in the destination operand.

Operation

IF (DEST[7:0] > SRC[7:0])
THEN DEST[7:0] < DEST[7:0];
ELSE DEST[7:0] < SRC[7:0]; FI;
IF (DEST[15:8] > SRC[15:8])
THEN DEST[15:8] < DEST[15:8];
ELSE DEST[15:8] < SRC[15:8]; FI;
IF (DEST[23:16] > SRC[23:16])
THEN DEST[23:16] < DEST[23:16];
ELSE DEST[23:16] < SRC[23:16]; FI;
IF (DEST[31:24] > SRC[31:24])
THEN DEST[31:24] < DEST[31:24];
ELSE DEST[31:24] € SRC[31:24]; FI;
IF (DEST[39:32] > SRC[39:32])
THEN DEST[39:32] < DEST[39:32];
ELSE DEST[39:32] < SRC[39:32]; FI;
IF (DEST[47:40] > SRC[47:40])
THEN DEST[47:40] < DEST[47:40];
ELSE DEST[47:40] < SRC[47:40]; FI;
IF (DEST[55:48] > SRC[55:48])
THEN DEST[55:48] < DEST[55:48];
ELSE DEST[55:48] < SRC[55:48]; FI;
IF (DEST[63:56] > SRC[63:56])
THEN DEST[63:56] < DEST[63:56];
ELSE DEST[63:56] < SRC[63:56]; FI;
IF (DEST[71:64] > SRC[71:64])
THEN DEST[71:64] < DEST[71:64];

PMAXSB — Maximum of Packed Signed Byte Integers Vol.2B 4-135

INSTRUCTION SET REFERENCE, N-Z

ELSE DEST[71:64] €< SRC[71:64]; FI;
IF (DEST[79:72] > SRC[79:72])
THEN DEST[79:72] < DEST[79:72];
ELSE DEST[79:72] € SRC[79:72]; FI;
IF (DEST[87:80] > SRC[87:80])
THEN DEST[87:80] < DEST[87:80];
ELSE DEST[87:80] < SRC[87:80]; FI;
IF (DEST[95:88] > SRC[95:88])
THEN DEST[95:88] < DEST[95:88];
ELSE DEST[95:88] < SRC[95:88]; FI;
IF (DEST[103:96] > SRC[103:96])
THEN DEST[103:96] < DEST[103:96];
ELSE DEST[103:96] < SRC[103:96]; FI;
IF (DEST[111:104] > SRC[111:104])
THEN DEST[111:104] < DEST[111:104];
ELSE DEST[111:104] < SRC[111:104]; FI;
IF (DEST[119:112] > SRC[119:112])
THEN DEST[119:112] < DEST[119:112];
ELSE DEST[119:112] € SRC[119:112]; FI;
IF (DEST[127:120] > SRC[127:120])
THEN DEST[127:120] < DEST[127:120];
ELSE DEST[127:120] < SRC[127:120]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSB __m128i _mm_max_epi8 (_m128ia,__m128ib);

Flags Affected
None

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

4-136 Vol.2B

For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = O.
If LOCK prefix is used.

PMAXSB — Maximum of Packed Signed Byte Integers

INSTRUCTION SET REFERENCE, N-Z

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

PMAXSB — Maximum of Packed Signed Byte Integers Vol.2B 4-137

INSTRUCTION SET REFERENCE, N-Z

PMAXSD — Maximum of Packed Signed Dword Integers

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 38 PMAXSD xmm1, Valid Valid Compare packed signed dword integers in
3D/r xmmZ2/m128 xmm1 and xmmZ2/m128 and store
packed maximum values in xmm1.

Description

Compares packed signhed dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the maximum for each
packed value in the destination operand.

Operation

IF (DEST[31:0] > SRC[31:0])
THEN DEST[31:0] < DEST[31:0];
ELSE DEST[31:0] < SRC[31:0]; FI;

IF (DEST[63:32] > SRC[63:32])
THEN DEST[63:32] < DEST[63:32];
ELSE DEST[63:32] < SRC[63:32]; FI;

IF (DEST[95:64] > SRC[95:64])
THEN DEST[95:64] < DEST[95:64];
ELSE DEST[95:64] < SRC[95:64]; FI;

IF (DEST[127:96] > SRC[127:96])
THEN DEST[127:96] < DEST[127:96];
ELSE DEST[127:96] < SRC[127:96]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSD __m128i _mm_max_epi32 (_m128ia, __m128ib);

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

4-138 Vol.2B PMAXSD — Maximum of Packed Signed Dword Integers

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.

#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

PMAXSD — Maximum of Packed Signed Dword Integers Vol.2B 4-139

INSTRUCTION SET REFERENCE, N-Z

Either the prefix REP (F3h) or REPN (F2H) is used.

4-140 Vol.2B PMAXSD — Maximum of Packed Signed Dword Integers

INSTRUCTION SET REFERENCE, N-Z

PMAXSW—Maximum of Packed Signed Word Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF EE/r PMAXSW mm1, Valid Valid Compare signed word integers in
mmZ2/m64 mmZ2/m64 and mm1 and return
maximum values.
66 OF EE/r PMAXSW xmm1, Valid Valid Compare signed word integers in
xmm2/m128 xmm2/m128 and xmm1 and return
maximum values.

Description

Performs a SIMD compare of the packed signed word integers in the destination
operand (first operand) and the source operand (second operand), and returns the
maximum value for each pair of word integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMAXSW instruction for 64-bit operands:
IF DEST[15:0] > SRC[15:0]) THEN
DEST[15:0] « DEST[15:0];
ELSE
DEST[15:0] « SRC[15:0]; FI;
(* Repeat operation for 2nd and 3rd words in source and destination operands *)
IF DEST[63:48] > SRC[63:48]) THEN
DEST[63:48] < DEST[63:48];
ELSE
DEST[63:48] «— SRC[63:48]; FI;

PMAXSW instruction for 128-bit operands:
IF DEST[15:0] > SRC[15:0]) THEN
DEST[15:0] < DEST[15:0];
ELSE
DEST[15:0] « SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] > SRC[127:112]) THEN
DEST[127:112] < DEST[127:112];
ELSE

PMAXSW—Maximum of Packed Signed Word Integers Vol. 2B 4-141

INSTRUCTION SET REFERENCE, N-Z

DEST[127:112] « SRC[127:112]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSW __m64 _mm_max_pi16(_m64 a, __m64 b)
PMAXSW __m128i _mm_max_epi16 (_m128ia, __m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

4-142 Vol.2B

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

PMAXSW—Maximum of Packed Signed Word Integers

#UD

#NM
H#MF

INSTRUCTION SET REFERENCE, N-Z

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PMAXSW—Maximum of Packed Signed Word Integers Vol.2B 4-143

INSTRUCTION SET REFERENCE, N-Z

PMAXUB—Maximum of Packed Unsigned Byte Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF DE/r PMAXUB mm1, Valid Valid Compare unsigned byte integers
mmZ2/m64 in mm2/m64 and mm1 and
returns maximum values.
66 OF DE/r PMAXUB xmm1, Valid Valid Compare unsigned byte integers
xmm2/m128 in xmmZ2/m128 and xmm1 and
returns maximum values.

Description

Performs a SIMD compare of the packed unsigned byte integers in the destination
operand (first operand) and the source operand (second operand), and returns the
maximum value for each pair of byte integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMAXUB instruction for 64-bit operands:
IF DEST[7:0] > SRC[17:0]) THEN
DEST[7:0] « DEST[7:0];
ELSE
DEST[7:0] « SRC[7:0]; FI;
(* Repeat operation for 2nd through 7th bytes in source and destination operands *)
IF DEST[63:56] > SRC[63:56]) THEN
DEST[63:56] « DEST[63:56];
ELSE
DEST[63:56] « SRC[63:56]; FI;

PMAXUB instruction for 128-bit operands:
IF DEST[7:0] > SRC[17:0]) THEN
DEST[7:0] « DEST[7:0];
ELSE
DEST[7:0] « SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120]1 > SRC[127:120]) THEN
DEST[127:120] «— DEST[127:120];

4-144 \Vol.2B PMAXUB—Maximum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, N-Z

ELSE
DEST[127:120] « SRC[127:120]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUB __m64 _mm_max_pu8(_m64a, __m64 b)
PMAXUB _ m128i _mm_max_epu8 (__m128ia,__m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

PMAXUB—Maximum of Packed Unsigned Byte Integers Vol.2B 4-145

INSTRUCTION SET REFERENCE, N-Z

#UD

#NM
H#MF

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-146 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PMAXUB—Maximum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, N-Z

PMAXUD — Maximum of Packed Unsigned Dword Integers

Opcode Instruction 64-bit Mode Compat/ Description
Leg Mode
66 OF 38 PMAXUD xmm1, Valid Valid Compare packed unsigned
3F/r xmm2/m128 dword integers in xmm1 and
xmm2/m128 and store packed
maximum values in xmm1T.

Description

Compares packed unsigned dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the maximum for each
packed value in the destination operand.

Operation

IF (DEST[31:0] > SRC[31:0])
THEN DEST[31:0] < DEST[31:0];
ELSE DEST[31:0] < SRC[31:0]; FI;

IF (DEST[63:32] > SRC[63:32])
THEN DEST[63:32] < DEST[63:32];
ELSE DEST[63:32] < SRC[63:32]; FI;

IF (DEST[95:64] > SRC[95:64])
THEN DEST[95:64] < DEST[95:64];
ELSE DEST[95:64] €< SRC[95:64]; FI;

IF (DEST[127:96] > SRC[127:96])
THEN DEST[127:96] < DEST[127:96];
ELSE DEST[127:96] < SRC[127:96]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUD _ m128i_mm_max_epu32 (__m128ia,__m128ib)

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

PMAXUD — Maximum of Packed Unsigned Dword Integers Vol.2B 4-147

INSTRUCTION SET REFERENCE, N-Z

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal address in the SS segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM

#UD

4-148 Vol.2B

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.
If TS in CRO is set.

If EM in CRO is set.
If OSFXSR in CR4 is O.

PMAXUD — Maximum of Packed Unsigned Dword Integers

INSTRUCTION SET REFERENCE, N-Z

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

PMAXUD — Maximum of Packed Unsigned Dword Integers Vol. 2B 4-149

INSTRUCTION SET REFERENCE, N-Z

PMAXUW — Maximum of Packed Word Integers

Opcode Instruction Compat/ 64-bit Description
Leg Mode Mode
66 OF 38 PMAXUW xmm]T, Valid Valid Compare packed unsigned word
3E/r xmm2/m128 integers in xmm1 and xmmZ2/m128
and store packed maximum values in
xmm1.
Description

Compares packed unsigned word integers in the destination operand (first operand)
and the source operand (second operand), and returns the maximum for each
packed value in the destination operand.

Operation

IF (DEST[15:0] > SRC[15:0])
THEN DEST[15:0] < DEST[15:0];
ELSE DEST[15:0] & SRC[15:0]; FI;

IF (DEST[31:16] > SRC[31:16])
THEN DEST[31:16] < DEST[31:16];
ELSE DEST[31:16] < SRC[31:16]; FI;

IF (DEST[47:32] > SRC[47:32])
THEN DEST[47:32] < DEST[47:32];
ELSE DEST[47:32] € SRC[47:32]; FI;

IF (DEST[63:48] > SRC[63:48])
THEN DEST[63:48] < DEST[63:48];
ELSE DEST[63:48] < SRC[63:48]; FI;

IF (DEST[79:64] > SRC[79:64])
THEN DEST[79:64] < DEST[79:64];
ELSE DEST[79:64] €< SRC[79:64]; FI;

IF (DEST[95:80] > SRC[95:80])
THEN DEST[95:80] < DEST[95:80];
ELSE DEST[95:80] < SRC[95:80]; FI;

IF (DEST[111:96] > SRC[111:96])
THEN DEST[111:96] < DEST[111:96];
ELSE DEST[111:96] < SRC[111:96]; FI;

IF (DEST[127:112] > SRC[127:112])
THEN DEST[127:112] € DEST[127:112];
ELSE DEST[127:112] € SRC[127:112]; FI;

4-150 Vol.2B PMAXUW — Maximum of Packed Word Integers

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUW__m128i _mm_max_epul6 (_m128ia, __m128ib);

Flags Affected

None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

PMAXUW — Maximum of Packed Word Integers Vol.2B 4-151

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is O.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

4-152 Vol.2B PMAXUW — Maximum of Packed Word Integers

INSTRUCTION SET REFERENCE, N-Z

PMINSB — Minimum of Packed Signed Byte Integers

Ir xmmZ2/m128

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode

66 0F 3838 PMINSB xmm1, Valid Valid

Compare packed signed byte integers in
xmm1 and xmmZ2/m128 and store packed
minimum values in xmm71.

Description

Compares packed signed byte integers in the destination operand (first operand) and
the source operand (second operand), and returns the minimum for each packed

value in the destination operand.

Operation

IF (DEST[7:0] < SRC[7:0])
THEN DEST[7:0] < DEST[7:0];
ELSE DEST[7:0] < SRC[7:0]; FI;
IF (DEST[15:8] < SRC[15:8])
THEN DEST[15:8] < DEST[15:8];
ELSE DEST[15:8] < SRC[15:8]; FI;
IF (DEST[23:16] < SRC[23:16])
THEN DEST[23:16] < DEST[23:16];
ELSE DEST[23:16] < SRC[23:16]; FI;
IF (DEST[31:24] < SRC[31:24])
THEN DEST[31:24] < DEST[31:24];
ELSE DEST[31:24] € SRC[31:24]; FI;
IF (DEST[39:32] < SRC[39:32])
THEN DEST[39:32] < DEST[39:32];
ELSE DEST[39:32] < SRC[39:32]; FI;
IF (DEST[47:40] < SRC[47:40])
THEN DEST[47:40] < DEST[47:40];
ELSE DEST[47:40] < SRC[47:40]; FI;
IF (DEST[55:48] < SRC[55:48])
THEN DEST[55:48] < DEST[55:48];
ELSE DEST[55:48] < SRC[55:48]; FI;
IF (DEST[63:56] < SRC[63:56])
THEN DEST[63:56] < DEST[63:56];
ELSE DEST[63:56] < SRC[63:56]; FI;
IF (DEST[71:64] < SRC[71:64])
THEN DEST[71:64] < DEST[71:64];

PMINSB — Minimum of Packed Signed Byte Integers

Vol.2B 4-153

INSTRUCTION SET REFERENCE, N-Z

ELSE DEST[71:64] €< SRC[71:64]; FI;
IF (DEST[79:72] < SRC[79:72])
THEN DEST[79:72] < DEST[79:72];
ELSE DEST[79:72] € SRC[79:72]; FI;
IF (DEST[87:80] < SRC[87:80])
THEN DEST[87:80] < DEST[87:80];
ELSE DEST[87:80] < SRC[87:80]; FI;
IF (DEST[95:88] < SRC[95:88])
THEN DEST[95:88] < DEST[95:88];
ELSE DEST[95:88] < SRC[95:88]; FI;
IF (DEST[103:96] < SRC[103:96])
THEN DEST[103:96] < DEST[103:96];
ELSE DEST[103:96] < SRC[103:96]; FI;
IF (DEST[111:104] < SRC[111:104])
THEN DEST[111:104] < DEST[111:104];
ELSE DEST[111:104] < SRC[111:104]; FI;
IF (DEST[119:112] < SRC[119:112])
THEN DEST[119:112] < DEST[119:112];
ELSE DEST[119:112] € SRC[119:112]; FI;
IF (DEST[127:120] < SRC[127:120])
THEN DEST[127:120] < DEST[127:120];
ELSE DEST[127:120] < SRC[127:120]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMINSB __m128i _mm_min_epi8 (_m128ia,__m128ib);
Flags Affected
None

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

4-154 Vol.2B

For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = O.
If LOCK prefix is used.

PMINSB — Minimum of Packed Signed Byte Integers

INSTRUCTION SET REFERENCE, N-Z

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

PMINSB — Minimum of Packed Signed Byte Integers Vol.2B 4-155

INSTRUCTION SET REFERENCE, N-Z

PMINSD — Minimum of Packed Dword Integers

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
660F38 PMINSD xmm1, Valid Valid Compare packed signed dword integers in
39/r xmm2/m128 xmm1 and xmmZ2/m128 and store packed
minimum values in xmm71.

Description

Compares packed signhed dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the minimum for each packed
value in the destination operand.

Operation

IF (DEST[31:0] < SRC[31:0])
THEN DEST[31:0] < DEST[31:0];
ELSE DEST[31:0] < SRC[31:0]; FI;

IF (DEST[63:32] < SRC[63:32])
THEN DEST[63:32] < DEST[63:32];
ELSE DEST[63:32] < SRC[63:32]; FI;

IF (DEST[95:64] < SRC[95:64])
THEN DEST[95:64] < DEST[95:64];
ELSE DEST[95:64] < SRC[95:64]; FI;

IF (DEST[127:96] < SRC[127:96])
THEN DEST[127:96] < DEST[127:96];
ELSE DEST[127:96] < SRC[127:96]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMINSD __m128i _mm_min_epi32 (__m128ia, __m128ib);
Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

4-156 Vol.2B PMINSD — Minimum of Packed Dword Integers

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.

#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

PMINSD — Minimum of Packed Dword Integers Vol.2B 4-157

INSTRUCTION SET REFERENCE, N-Z

Either the prefix REP (F3h) or REPN (F2H) is used.

4-158 Vol.2B PMINSD — Minimum of Packed Dword Integers

INSTRUCTION SET REFERENCE, N-Z

PMINSW—Minimum of Packed Signed Word Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFEA/r PMINSW mm1, Valid Valid Compare signed word integers in
mmZ2/mé64 mmZ2/m64 and mm1 and return
minimum values.
66 OF EA/r PMINSW xmmT, Valid Valid Compare signed word integers in
xmmZ2/m128 xmmZ2/m128and xmm1 and return
minimum values.

Description

Performs a SIMD compare of the packed signed word integers in the destination
operand (first operand) and the source operand (second operand), and returns the
minimum value for each pair of word integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMINSW instruction for 64-bit operands:
IF DEST[15:0] < SRC[15:0] THEN
DEST[15:0] « DEST[15:0];
ELSE
DEST[15:0] « SRC[15:0]; FI;
(* Repeat operation for 2nd and 3rd words in source and destination operands *)
IF DEST[63:48] < SRC[63:48] THEN
DEST[63:48] < DEST[63:48];
ELSE
DEST[63:48] «— SRC[63:48]; FI;

PMINSW instruction for 128-bit operands:
IF DEST[15:0] < SRC[15:0] THEN
DEST[15:0] «— DEST[15:0];
ELSE
DEST[15:0] « SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] < SRC/m64[127:112] THEN
DEST[127:112] < DEST[127:112];

PMINSW—Minimum of Packed Signed Word Integers Vol. 2B 4-159

INSTRUCTION SET REFERENCE, N-Z

ELSE

DEST[127:112] « SRC[127:112]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMINSW __m64 _mm_min_pi16 (__m64 a, __m64 b)
PMINSW __m128i _mm_min_epi16 (_m128ia, __m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

4-160 Vol.2B

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

PMINSW—Minimum of Packed Signed Word Integers

#NM
#MF

INSTRUCTION SET REFERENCE, N-Z

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PMINSW—Minimum of Packed Signed Word Integers Vol.2B 4-161

INSTRUCTION SET REFERENCE, N-Z

PMINUB—Minimum of Packed Unsigned Byte Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFDA/r PMINUB mm1, Valid Valid Compare unsigned byte integers in
mmZ2/m64 mmZ2/m64 and mm1 and returns
minimum values.
66 OF DA /r PMINUB xmm1, Valid Valid Compare unsigned byte integers in
xmm2/m128 xmmZ2/m128and xmm1 and
returns minimum values.

Description

Performs a SIMD compare of the packed unsigned byte integers in the destination
operand (first operand) and the source operand (second operand), and returns the
minimum value for each pair of byte integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMINUB instruction for 64-bit operands:
IF DEST[7:0] < SRC[17:0] THEN
DEST[7:0] « DEST[7:0];
ELSE
DEST[7:0] « SRC[7:0]; FI;
(* Repeat operation for 2nd through 7th bytes in source and destination operands *)
IF DEST[63:56] < SRC[63:56] THEN
DEST[63:56] «— DEST[63:56];
ELSE
DEST[63:56] « SRC[63:56]; FI;

PMINUB instruction for 128-bit operands:
IF DEST[7:0] < SRC[17:0] THEN
DEST[7:0] « DEST[7:0];
ELSE
DEST[7:0] « SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] < SRC[127:120] THEN
DEST[127:120] «- DEST[127:120];

4-162 Vol.2B PMINUB—Minimum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, N-Z

ELSE
DEST[127:120] « SRC[127:120]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMINUB __m64 _m_min_pu8 (__m64 a, __m64 b)
PMINUB _ m128i _mm_min_epu8 (_m128ia, __m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

PMINUB—Minimum of Packed Unsigned Byte Integers Vol.2B 4-163

INSTRUCTION SET REFERENCE, N-Z

#UD

#NM
H#MF

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-164 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PMINUB—Minimum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, N-Z

PMINUD — Minimum of Packed Dword Integers

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 38 PMINUD xmm1, Valid Valid Compare packed unsigned dword
3B/r xmm2/m128 integers in xmm1 and xmmZ2/m128
and store packed minimum values in
xmm1.
Description

Compares packed unsigned dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the minimum for each packed

value in the destination operand.
Operation

IF (DEST[31:0] < SRC[31:0])
THEN DEST[31:0] < DEST[31:0];
ELSE DEST[31:0] < SRC[31:0]; FI;

IF (DEST[63:32] < SRC[63:32])

THEN DEST[63:32] < DEST[63:32];
ELSE DEST[63:32] < SRC[63:32]; FI;

IF (DEST[95:64] < SRC[95:64])

THEN DEST[95:64] < DEST[95:64];
ELSE DEST[95:64] €< SRC[95:64]; FI;
IF (DEST[127:96] < SRC[127:96])

THEN DEST[127:96] < DEST[127:96];
ELSE DEST[127:96] < SRC[127:96]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMINUD __m128i _mm_min_epu32 (__m128ia, __m128ib);

Flags Affected
None

Protected Mode Exceptions
#GP(0)

ES, FS, or GS segments.

For an illegal memory operand effective address in the CS, DS,

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

PMINUD — Minimum of Packed Dword Integers

Vol. 2B 4-165

INSTRUCTION SET REFERENCE, N-Z

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal address in the SS segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

4-166 Vol.2B

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.

PMINUD — Minimum of Packed Dword Integers

INSTRUCTION SET REFERENCE, N-Z

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

PMINUD — Minimum of Packed Dword Integers Vol.2B 4-167

INSTRUCTION SET REFERENCE, N-Z

PMINUW — Minimum of Packed Word Integers

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 38 3A PMINUW xmm1, Valid Valid Compare packed unsigned word
Ir xmm2/m128 integers in xmm1 and xmmZ2/m128
and store packed minimum values in
xmmT.
Description

Compares packed unsigned word integers in the destination operand (first operand)
and the source operand (second operand), and returns the minimum for each packed
value in the destination operand.

Operation

IF (DEST[15:0] < SRC[15:0])
THEN DEST[15:0] < DEST[15:0];
ELSE DEST[15:0] & SRC[15:0]; FI;

IF (DEST[31:16] < SRC[31:16])
THEN DEST[31:16] < DEST[31:16];
ELSE DEST[31:16] < SRC[31:16]; FI;

IF (DEST[47:32] < SRC[47:32])
THEN DEST[47:32] < DEST[47:32];
ELSE DEST[47:32] € SRC[47:32]; FI;

IF (DEST[63:48] < SRC[63:48])
THEN DEST[63:48] < DEST[63:48];
ELSE DEST[63:48] < SRC[63:48]; FI;

IF (DEST[79:64] < SRC[79:64])
THEN DEST[79:64] < DEST[79:64];
ELSE DEST[79:64] €< SRC[79:64]; FI;

IF (DEST[95:80] < SRC[95:80])
THEN DEST[95:80] < DEST[95:80];
ELSE DEST[95:80] < SRC[95:80]; FI;

IF (DEST[111:96] < SRC[111:96])
THEN DEST[111:96] < DEST[111:96];
ELSE DEST[111:96] < SRC[111:96]; FI;

IF (DEST[127:112] < SRC[127:112])
THEN DEST[127:112] € DEST[127:112];
ELSE DEST[127:112] € SRC[127:112]; FI;

4-168 Vol.2B PMINUW — Minimum of Packed Word Integers

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent

PMINUW _ m128i _mm_min_epul6 (_m128ia,__m128ib);
Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

PMINUW — Minimum of Packed Word Integers Vol.2B 4-169

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is O.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

4-170 Vol.2B PMINUW — Minimum of Packed Word Integers

INSTRUCTION SET REFERENCE, N-Z

PMOVMSKB—Move Byte Mask

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFD7/r PMOVMSKB Valid Valid Move a byte mask of mm to
r32, mm r3z.
REX.W + OF D7 /r PMOVMSKB Valid N.E. Move a byte mask of mm to
r64, mm the lower 32-bits of r64 and
zero-fill the upper 32-bits.
66 OF D7 /r PMOVMSKB reg, Valid Valid Move a byte mask of xmm
xmm to reg. The upper bits of r32
or r64 are zeroed

Description

Creates a mask made up of the most significant bit of each byte of the source
operand (second operand) and stores the result in the low byte or word of the desti-
nation operand (first operand). The source operand is an MMX technology register or
an XMM register; the destination operand is a general-purpose register. When oper-
ating on 64-bit operands, the byte mask is 8 bits; when operating on 128-bit oper-
ands, the byte mask is 16-bits.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15). The default operand size is 64-bit
in 64-bit mode.

Operation

PMOVMSKB instruction with 64-bit source operand and r32:
r32[0] « SRC[7];
r32[1] < SRC[15];
(* Repeat operation for bytes 2 through 6 *)
r32[7] < SRC[63];
r32[31:8] « ZERO_FILL;

PMOVMSKB instruction with 128-bit source operand and r32:
r32[0] « SRC[7];
r32[1] « SRC[15];
(* Repeat operation for bytes 2 through 14 *)
r32[15] « SRC[127];
r32[31:16] « ZERO_FILL;

PMOVMSKB instruction with 64-bit source operand and r64:
r64[0] « SRC[7];
ré64[1] « SRC[15];

PMOVMSKB—Move Byte Mask Vol.2B 4-171

INSTRUCTION SET REFERENCE, N-Z

(* Repeat operation for bytes 2 through 6 *)
ré4[7] « SRC[63];
r64[63:8] < ZERO_FILL;

PMOVMSKB instruction with 128-bit source operand and r64:
r64[0] « SRC[7];
r64{1] « SRC[15];
(* Repeat operation for bytes 2 through 14 *)
r64{15] « SRC[127];
r64[63:16] « ZERO_FILL;

Intel C/C++ Compiler Intrinsic Equivalent

PMOVMSKB int _mm_movemask_pi8(__m64 a)
PMOVMSKB int _mm_movemask_epi8 (_m128i a)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

4-172 Vol.2B PMOVMSKB—Move Byte Mask

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

Same exceptions as in protected mode.

PMOVMSKB—Move Byte Mask Vol.2B 4-173

INSTRUCTION SET REFERENCE, N-Z

PMOVSX — Packed Move with Sign Extend

Opcode Instruction 64-bit Compat/ Description

Mode Leg Mode
66 Of 38 PMOVSXBW xmm1, Valid Valid Sign extend 8 packed signed 8-bit
20 /r xmmZ2/m64 integers in the low 8 bytes of

xmmZ2/m64 to 8 packed signed 16-
bit integers in xmm1.

66 Of 38 PMOVSXBD xmm1, Valid Valid Sign extend 4 packed signed 8-bit

211/r xmm2/m32 integers in the low 4 bytes of
xmmZ2/m32 to 4 packed signed 32-
bit integers in xmm71.

66 Of 38 PMOVSXBQ xmm1, Valid Valid Sign extend 2 packed signed 8-bit

22 1Ir xmm2/m16 integers in the low 2 bytes of
xmmZ2/m16 to 2 packed signed 64-
bit integers in xmm1.

66 Of 38 PMOVSXWD xmm1, Valid Valid Sign extend 4 packed signed 16-bit

231/r xmm2/m64 integers in the low 8 bytes of
xmmZ2/m64 to 4 packed signed 32-
bit integers in xmm1.

66 Of 38 PMOVSXWQ xmm1, Valid Valid Sign extend 2 packed signed 16-bit

24 Ir xmm2/m32 integers in the low 4 bytes of
xmmZ2/m32 to 2 packed signed 64-
bit integers in xmm1.

66 Of 38 PMOVSXDQ xmm1, Valid Valid Sign extend 2 packed signed 32-bit

25/r xmmZ2/m64 integers in the low 8 bytes of
xmmZ2/m64 to 2 packed signed 64-
bit integers in xmm1.

Description

Sign-extend the low byte/word/dword values in each word/dword/gword element of
the source operand (second operand) to word/dword/qword integers and stored as
packed data in the destination operand (first operand).

Operation

PMOVSXBW
DEST[15:0] < SignExtend(SRC[7:0]);
DEST[31:16] <« SignExtend(SRC[15:8]);
DEST[47:32] €< SignExtend(SRC[23:16]);
DEST[63:48] < SignExtend(SRC[31:24]);
DEST[79:64] < SignExtend(SRC[39:32]);

4-174 Vol.2B PMOVSX — Packed Move with Sign Extend

INSTRUCTION SET REFERENCE, N-Z

DEST[95:80] € SignExtend(SRC[47:40]);
DEST[111:96] < SignExtend(SRC[55:48]);
DEST[127:112] € SignExtend(SRC[63:56]);

PMOVSXBD
DEST[31:0] €« SignExtend(SRC[7:0]);
DEST[63:32] € SignExtend(SRC[15:8));
DEST[95:64] < SignExtend(SRC[23:16]);
DEST[127:96] < SignExtend(SRC[31:24]);

PMOVSXBQ
DEST[63:0] < SignExtend(SRC[7:0]);
DEST[127:64] < SignExtend(SRC[15:8]);

PMOVSXWD
DEST[31:0] < SignExtend(SRC[15:0]);
DEST[63:32] < SignExtend(SRC[31:16]);
DEST[95:64] € SignExtend(SRC[47:32]);
DEST[127:96] < SignExtend(SRC[63:48]);

PMOVSXWQ
DEST[63:0] €« SignExtend(SRC[15:0]);
DEST[127:64] €< Signextend(SRC[31:16]);

PMOVSXDQ
DEST[63:0] < SignExtend(SRC[31:0]);
DEST[127:64] < SignExtend(SRC[63:32]);

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

PMOVSXBW __m128i _mm_ cvtepi8_epi16 (_m128i a);
PMOVSXBD __m128i _mm_ cvtepi8_epi32 (_m128i a);
PMOVSXBQ __m128i _mm_ cvtepi8_epi64 (_m128i a);
PMOVSXWD __m128i _mm_ cvtepi16_epi32 (_m128i a);
PMOVSXWQ __m128i _mm_ cvtepi16_epi6b4 (_m128i a);
PMOVSXDQ __m128i _mm_ cvtepi32_epib4 (_m128i a);

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.
#SS(0) For an illegal address in the SS segment.

PMOVSX — Packed Move with Sign Extend Vol.2B 4-175

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Mode Exceptions

#GP if any part of the operand lies outside of the effective address
space from O to OFFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.

#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

4-176 Vol.2B PMOVSX — Packed Move with Sign Extend

INSTRUCTION SET REFERENCE, N-Z

Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

PMOVSX — Packed Move with Sign Extend Vol.2B 4-177

INSTRUCTION SET REFERENCE, N-Z

PMOVZX — Packed Move with Zero Extend

Opcode Instruction 64-bit Compat/ Description
Mode LegMode

66 0f 38 PMOVZXBW xmm1, Valid Valid Zero extend 8 packed 8-bit integers in the

30/r xmm2/m64 low 8 bytes of xmmZ2/m64 to 8 packed
16-bit integers in xmm71.

66 0f 38 PMOVZXBD xmm1, Valid Valid Zero extend 4 packed 8-bit integers in the

31/r xmmZ2/m32 low 4 bytes of xmmZ2/m32 to 4 packed
32-bit integers in xmm1.

66 0f 38 PMOVZXBQ xmm1, Valid Valid Zero extend 2 packed 8-bit integers in the

321/ xmm2/m16 low 2 bytes of xmm2/m16 to 2 packed
64-bit integers in xmm1.

66 0f 38 PMOVZXWD xmm1, Valid Valid Zero extend 4 packed 16-bit integers in

33/r xmm2/m64 the low 8 bytes of xmm2/m64 to 4
packed 32-bit integers in xmm71.

66 0f 38 PMOVZXWQ xmm1, Valid Valid Zero extend 2 packed 16-bit integers in

34 /r xmmZ2/m32 the low 4 bytes of xmm2/m32 to 2
packed 64-bit integers in xmm]1.

66 0f 38 PMOVZXDQ xmm1, Valid Valid Zero extend 2 packed 32-bit integers in

35/r xmm2/m64 the low 8 bytes of xmm2/m64 to 2
packed 64-bit integers in xmm1.

Description

Zero-extend the low byte/word/dword values in each word/dword/qword element of
the source operand (second operand) to word/dword/qword integers and stored as
packed data in the destination operand (first operand).

Operation

PMOVZXBW
DEST[15:0] €« ZeroExtend(SRC[7:0]);

DEST[31:16] < ZeroExtend(SRC[15:8]);
DEST[47:32] € ZeroExtend(SRC[23:16]);
DEST[63:48] < ZeroExtend(SRC[31:24]);
DEST[79:64] € ZeroExtend(SRC[39:32]);
DEST[95:80] < ZeroExtend(SRC[47:40]);
DEST[111:96] & ZeroExtend(SRC[55:48]);
DEST[127:112] € ZeroExtend(SRC[63:56]);

r

PMOVZXBD

4-178 Vol.2B

DEST[31:0] €« ZeroExtend(SRC[7:0]);

PMOVZX — Packed Move with Zero Extend

INSTRUCTION SET REFERENCE, N-Z

DEST[63:32] < ZeroExtend(SRC[15:8]);
DEST[95:64] < ZeroExtend(SRC[23:16]);
DEST[127:96] € ZeroExtend(SRC[31:24]);

PMOVZXQB
DEST[63:0] €« ZeroExtend(SRC[7:0]);
DEST[127:64] €« ZeroExtend(SRC[15:8]);

PMOVZXWD
DEST[31:0] € ZeroExtend(SRC[15:0]);
DEST[63:32] € ZeroExtend(SRC[31:16]);
DEST[95:64] < ZeroExtend(SRC[47:32]);
DEST[127:96] & ZeroExtend(SRC[63:48]);

PMOVZXWQ
DEST[63:0] < ZeroExtend(SRC[15:0]);
DEST[127:64] < ZeroExtend(SRC[31:16]);

PMOVZXDQ
DEST[63:0] € ZeroExtend(SRC[31:0]);
DEST[127:64] € ZeroExtend(SRC[63:32]);

Flags Affected
None

Intel C/C++ Compiler Intrinsic Equivalent

PMOVZXBW __m128i _mm_ cvtepuB_epil16 (_m128i a);
PMOVZXBD __m128i _mm_ cvtepuB_epi32 (_m128i a);
PMOVZXBQ __m128i _mm_ cvtepuB_epi64 (_m128i a);
PMOVZXWD __m128i _mm_ cvtepu16_epi32 (_m128i a);
PMOVZXWQ __m128i _mm_ cvtepu16_epi64 (_m128i a);
PMOVZXDQ __m128i _mm_ cvtepu32_epi64 (_m128i a);
Flags Affected

None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.
#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

PMOVZX — Packed Move with Zero Extend Vol.2B 4-179

INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Mode Exceptions

#GP if any part of the operand lies outside of the effective address
space from O to OFFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is O.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

4-180 Vol.2B PMOVZX — Packed Move with Zero Extend

INSTRUCTION SET REFERENCE, N-Z

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

PMOVZX — Packed Move with Zero Extend Vol. 2B 4-181

INSTRUCTION SET REFERENCE, N-Z

PMULDQ — Multiply Packed Signed Dword Integers

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 38 PMULDQ xmm1, Valid Valid Multiply the packed signed dword
281/r xmm2/m128 integers in xmm1 and xmmZ2/m128 and
store the quadword product in xmm71.

Description

Performs two signed multiplications from two pairs of signed dword integers and
stores two 64-bit products in the destination operand (first operand). The 64-bit
product from the first/third dword element in the destination operand and the
first/third dword element of the source operand (second operand) is stored to the
low/high qword element of the destination.

If the source is a memory operand then all 128 bits will be fetched from memory but
the second and fourth dwords will not be used in the computation.

Operation

DEST[63:0] = DEST[31:0] * SRC[31:0];
DEST[127:64] = DEST[95:64] * SRC[95:64];

Intel C/C++ Compiler Intrinsic Equivalent

PMULDQ __ m128i_mm_mul_epi32(__m128ia, __m128ib);

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = O.

4-182 Vol.2B PMULDQ — Multiply Packed Signed Dword Integers

INSTRUCTION SET REFERENCE, N-Z

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is O.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

PMULDQ — Multiply Packed Signed Dword Integers Vol.2B 4-183

INSTRUCTION SET REFERENCE, N-Z

PMULHRSW — Packed Multiply High with Round and Scale

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 380B /r PMULHRSW Valid Valid Multiply 16-bit signed
mm1, mm2/m64 words, scale and round

signed doublewords, pack
high 16 bits to MMT.

66 OF 38 0B /r PMULHRSW Valid Valid Multiply 16-bit signed
xmm1, words, scale and round
xmm2/m128 signed doublewords, pack

high 16 bits to XMMT.

Description

PMULHRSW multiplies vertically each signed 16-bit integer from the destination
operand (first operand) with the corresponding signed 16-bit integer of the source
operand (second operand), producing intermediate, signed 32-bit integers. Each
intermediate 32-bit integer is truncated to the 18 most significant bits. Rounding is
always performed by adding 1 to the least significant bit of the 18-bit intermediate
result. The final result is obtained by selecting the 16 bits immediately to the right of
the most significant bit of each 18-bit intermediate result and packed to the destina-
tion operand. Both operands can be MMX register or XMM registers.

When the source operand is a 128-bit memory operand, the operand must be aligned
on a 16-byte boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation
PMULHRSW with 64-bit operands:

temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;
temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1;
temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >> 14) + 1;
temp3[31:0] = INT32 ((DEST[63:48] * SRc[63:48]) >> 14) + 1;
DEST[15:0] = tempO[16:1];

DEST[31:16] = temp1[16:1];

DEST[47:32] = temp2[16:1];

DEST[63:48] = temp3[16:1];

PMULHRSW with 128-bit operand:

tempO[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;
temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1;
temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >>14) + 1;

4-184 Vol.2B PMULHRSW — Packed Multiply High with Round and Scale

INSTRUCTION SET REFERENCE, N-Z

temp3[31:0] = INT32 ((DEST[63:48] * SRC[63:48]) >>14) + 1;
temp4[31:0] = INT32 ((DEST[79:64] * SRC[79:64]) >>14) + 1;
temp5[31:0] = INT32 ((DEST[95:80] * SRC[95:80]) >>14) + 1;
temp6[31:0] = INT32 ((DEST[111:96] * SRC[111:96]) >>14) + 1;
temp7[31:0] = INT32 ((DEST[127:112] * SRC[127:112) >>14) + 1;
DEST[15:0] = tempO[16:1];

DEST[31:16] = temp1[16:1];

DEST[47:32] = temp2[16:1];

DEST[63:48] = temp3[16:1];

DEST[79:64] = temp4[16:1];

DEST[95:80] = temp5[16:1];

DEST[111:96] = temp6[16:1];

DEST[127:112] = temp7[16:1];

Intel C/C++ Compiler Intrinsic Equivalents

PMULHRSW __m64 _mm_mulhrs_pi16 (__m64 a3, __m64 b)
PMULHRSW __m128i _mm_mulhrs_epi16 (__m128ia, __m128ib)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.

#NM If TS bit in CRO is set.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-hit operations only) If not aligned on 16-byte boundary,
regardless of segment.

PMULHRSW — Packed Multiply High with Round and Scale Vol.2B 4-185

INSTRUCTION SET REFERENCE, N-Z

#UD

#NM
#MF

If CRO.EM = 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

If TS bit in CRO is set.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-186 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PMULHRSW — Packed Multiply High with Round and Scale

INSTRUCTION SET REFERENCE, N-Z

PMULHUW—Multiply Packed Unsigned Integers and Store High Result

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFE4/r PMULHUW mmT, Valid Valid Multiply the packed unsigned
mmZ2/m64 word integers in mm1 register

and mmZ2/m64, and store the
high 16 bits of the results in

mm1.
66 OF E4 /r PMULHUW xmm1, Valid Valid Multiply the packed unsigned
xmmZ2/m128 word integers in xmm1 and

xmm2/m128, and store the high
16 bits of the results in xmm1.

Description

Performs a SIMD unsigned multiply of the packed unsigned word integers in the
destination operand (first operand) and the source operand (second operand), and
stores the high 16 bits of each 32-bit intermediate results in the destination operand.
(Figure 4-3 shows this operation when using 64-bit operands.) The source operand
can be an MMX technology register or a 64-bit memory location, or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX tech-
nology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

SRC X3 X2 X1 X0
DEST Y3 Y2 Y1 YO

TEMP| Z3=X3#Y3 Z2=X2% Y2 Z1=X1#Y1 Z0=X0 * YO
DEST 73[31:16] | z2[31:16] | Z1[31:16] | Z0[31:16]

Figure 4-3. PMULHUW and PMULHW Instruction Operation Using 64-bit Operands

Operation

PMULHUW instruction with 64-bit operands:
TEMPO[31:0] « DEST[15:0] * SRC[15:0]; (* Unsigned multiplication *)
TEMP1[31:0] « DEST[31:16] * SRC[31:16];
TEMP2[31:0] « DEST[47:32] * SRC[47:32];

PMULHUW—Multiply Packed Unsigned Integers and Store High Result Vol.2B 4-187

TEMP3[31:0] «
DEST[15:0] «

DEST[31:16]
DEST[47:32]
DEST[63:48] «

TEMPO[31:0] <
TEMP1[31:0] —
TEMP2[31:0]
TEMP3[31:0] —
TEMP4[31:0]
TEMP5[31:0]
TEMP6[31:0] <
TEMP7[31:0]
DEST[15:0] «
DEST[31:16]
DEST[47:32] «
DEST[63:48]
DEST[79:64] «
DEST[95:80] «
DEST[111:96] «

INSTRUCTION SET REFERENCE, N-Z

DEST[63:48] * SRC[63:48];
TEMPO[31:16];
TEMP1[31:16];
TEMP2[31:16];
TEMP3[31:16];

PMULHUW instruction with 128-bit operands:

DEST[15:0] * SRC[15:0]; (* Unsigned multiplication *)
DEST[31:16] * SRC[31:16];
DEST[47:32] = SRC[47:32];
DEST[63:48] * SRC[63:48];
DEST[79:64] * SRC[79:64];
DEST[95:80] * SRC[95:80];
DEST[111:96] * SRC[111:96];
DEST[127:112] * SRC[127:112];
TEMPO[31:16];

TEMP1[31:16];

TEMP2[31:16];

TEMP3[31:16];

TEMP4[31:16];

TEMP5[31:16];

TEMP6[31:16];

DEST[127:112] «— TEMP7[31:16];

Intel C/C++ Compiler Intrinsic Equivalent

PMULHUW __m64 _mm_mulhi_pu16(__m64 a, __m64 b)
PMULHUW __m128i _mm_mulhi_epu16 (_m128ia, __m128ib)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

#SS(0)

4-188 Vol.2B PMULHUW—Multiply Packed Unsigned Integers and Store High Result

INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

PMULHUW—Multiply Packed Unsigned Integers and Store High Result Vol.2B 4-189

INSTRUCTION SET REFERENCE, N-Z

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-190 Vol.2B

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PMULHUW—Multiply Packed Unsigned Integers and Store High Result

INSTRUCTION SET REFERENCE, N-Z

PMULHW—Multiply Packed Signed Integers and Store High Result

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFES5/r PMULHW mm, Valid Valid Multiply the packed signed word
mm/m64 integers in mm1 register and
mmZ2/m64, and store the high 16
bits of the results in mm1.
66 0OFE5 /r PMULHW xmm1, Valid Valid Multiply the packed signed word
xmm2/m128 integers in xmm1 and
xmmZ2/m128, and store the high 16
bits of the results in xmm1.
Description

Performs a SIMD signed multiply of the packed signed word integers in the destina-
tion operand (first operand) and the source operand (second operand), and stores
the high 16 bits of each intermediate 32-bit result in the destination operand.
(Figure 4-3 shows this operation when using 64-bit operands.) The source operand
can be an MMX technology register or a 64-bit memory location, or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX tech-
nology register or an XMM register.

n 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMULHW instruction with 64-bit operands:

TEMPO[31:0] <
TEMP1[31:0] «
TEMP2[31:0] «
TEMP3[31:0] «
DEST[15:0] «

DEST[31:16] «
DEST[47:32] «
DEST[63:48]

TEMPO[31:0] «
TEMP1[31:0]
TEMP2[31:0] «
TEMP3[31:0]
TEMP4[31:0] «
TEMP5[31:0] «

DEST[15:0] * SRC[15:0]; (* Signed multiplication *)
DEST[31:16] * SRC[31:16];

DEST[47:32] * SRC[47:32];

DEST[63:48] + SRC[63:48];

TEMPO[31:16];

TEMP1[31:16];

TEMP2[31:16];

TEMP3[31:16];

PMULHW instruction with 128-bit operands:

DEST[15:0] * SRC[15:0]; (* Signed multiplication *)
DEST[31:16] * SRC[31:16];
DEST[47:32] * SRC[47:32];
DEST[63:48] * SRC[63:48];
DEST[79:64] * SRC[79:64];
DEST[95:80] * SRC[95:80];

PMULHW—Multiply Packed Signed Integers and Store High Result

Vol.2B 4-191

INSTRUCTION SET REFERENCE, N-Z

TEMP6[31:0] «
TEMP7[31:0] «
DEST[15:0] «
DEST[31:16]
DEST[47:32] «
DEST[63:48] «
DEST[79:64] «
DEST[95:80] «
DEST[111:96] «

DEST[111:96] * SRC[111:96];
DEST[127:112] * SRC[127:112];
TEMPO[31:16];

TEMP1[31:16];

TEMP2[31:16];

TEMP3[31:16];

TEMP4[31:16];

TEMP5[31:16];

TEMP6[31:16];

DEST[127:112] < TEMP7[31:16];

Intel C/C++ Compiler Intrinsic Equivalent

PMULHW __m64 _mm_mulhi_pi16 (__m64 m1, __m64 m2)
PMULHW __m128i _mm_mulhi_epi16 (_m128ia, __m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

4-192 Vol.2B

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PMULHW—Multiply Packed Signed Integers and Store High Result

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PMULHW—Multiply Packed Signed Integers and Store High Result Vol.2B 4-193

INSTRUCTION SET REFERENCE, N-Z

PMULLD — Multiply Packed Signed Dword Integers and Store Low
Result

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 3840 /r PMULLD xmm1, Valid Valid Multiply the packed dword signed
xmmZ2/m128 integers in xmm1 and xmmZ2/m128
and store the low 32 bits of each
product in xmm1.

Description

Performs four signed multiplications from four pairs of signed dword integers and
stores the lower 32 bits of the four 64-bit products in the destination operand (first
operand). Each dword element in the destination operand is multiplied with the
corresponding dword element of the source operand (second operand) to obtain a
64-bit intermediate product.

Operation

Temp0[63:0] < DEST[31:0] * SRC[31:0];
Temp1[63:0] < DEST[63:32] * SRC[63:32];
Temp2[63:0] < DEST[95:64] * SRC[95:64];
Temp3[63:0] < DEST[127:96] * SRC[127:96];
DEST[31:0] < TempO[31:0];

DEST[63:32] < Temp1[31:0];

DEST[95:64] < Temp2[31:0];

DEST[127:96] < Temp3[31:0];

Intel C/C++ Compiler Intrinsic Equivalent

PMULLUD _ m128i _mm_mullo_epi32(_m128i3a, __m128ib);

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

4-194 Vol.2B PMULLD — Multiply Packed Signed Dword Integers and Store Low Result

INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
H#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is O.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

PMULLD — Multiply Packed Signed Dword Integers and Store Low Result Vol.2B 4-195

INSTRUCTION SET REFERENCE, N-Z

PMULLW—Multiply Packed Signed Integers and Store Low Result

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFD5/r PMULLW mm, Valid Valid Multiply the packed signed word
mm/m64 integers in mm1 register and

mmZ2/m64, and store the low 16
bits of the results in mm1.

66 OFD5/r PMULLW xmm1, Valid Valid Multiply the packed signed word
xmmz2/m128 integers in xmm1and xmm2/m128,
and store the low 16 bits of the
results in xmm1.

Description

Performs a SIMD signed multiply of the packed signed word integers in the destina-
tion operand (first operand) and the source operand (second operand), and stores
the low 16 bits of each intermediate 32-bit result in the destination operand.

(Figure 4-3 shows this operation when using 64-bit operands.) The source operand
can be an MMX technology register or a 64-bit memory location, or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX tech-
nology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

SRC X3 X2 X1 X0
DEST Y3 Y2 Y1 YO

TEMP | Z3=X3#Y3 Z2=X2%Y2 Z1=X1%Y1 Z0=X0 * Y0
DEST Z3[15:0] | z2[15:0] | Z1[15:0] | ZO[15:0]

Figure 4-4. PMULLU Instruction Operation Using 64-bit Operands

Operation

PMULLW instruction with 64-bit operands:
TEMPO[31:0] « DEST[15:0] * SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] « DEST[31:16] * SRC[31:16];
TEMP2[31:0] « DEST[47:32] * SRC[47:32];
TEMP3[31:0] « DEST[63:48] * SRC[63:48];

4-196 Vol.2B PMULLW—Multiply Packed Signed Integers and Store Low Result

DEST[15:0] «
DEST[31:16]
DEST[47:32] «
DEST[63:48]

TEMPO[31:0] «
TEMP1[31:0] «
TEMP2[31:0] «
TEMP3[31:0] «
TEMP4[31:0] «
TEMP5[31:0] «
TEMP6[31:0] «
TEMP7[31:0] «
DEST[15:0] «
DEST[31:16] «
DEST[47:32] —
DEST[63:48] «
DEST[79:64]
DEST[95:80] «
DEST[111:96]

INSTRUCTION SET REFERENCE, N-Z

TEMPO[15:0];
TEMP1[15:0];
TEMP2[15:0];
TEMP3[15:0];

PMULLW instruction with 128-bit operands:

DEST[15:0] * SRC[15:0]; (* Signed multiplication *)
DEST[31:16] * SRC[31:16];
DEST[47:32] * SRC[47:32];
DEST[63:48] * SRC[63:48];
DEST[79:64] * SRC[79:64];
DEST[95:80] * SRC[95:80];
DEST[111:96] * SRC[111:96];
DEST[127:112] * SRC[127:112];
TEMPO[15:0];

TEMP1[15:0];

TEMP2[15:0];

TEMP3[15:0];

TEMPA[15:0];

TEMP5[15:0];

TEMP6[15:0];

DEST[127:112] «— TEMP7[15:0];

Intel C/C++ Compiler Intrinsic Equivalent

PMULLW __m64 _mm_mullo_pi16(_m64 m1, __m64 m2)
PMULLW __m128i _mm_mullo_epi16 (_m128ia, __m128ib)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS

segment limit.

PMULLW—Multiply Packed Signed Integers and Store Low Result Vol.2B 4-197

INSTRUCTION SET REFERENCE, N-Z

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

4-198 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

PMULLW—Multiply Packed Signed Integers and Store Low Result

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

INSTRUCTION SET REFERENCE, N-Z

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PMULLW—Multiply Packed Signed Integers and Store Low Result Vol.2B 4-199

INSTRUCTION SET REFERENCE, N-Z

PMULUDQ—Multiply Packed Unsigned Doubleword Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFF4/r PMULUDQ mm1, Valid Valid Multiply unsigned doubleword
mm2/m64 integer in mm1 by unsigned

doubleword integer in mm2/mé64,
and store the quadword result in

mm1.
66 OF F4 /r PMULUDQ xmm1, Valid Valid Multiply packed unsigned
xmm2/m128 doubleword integers in xmm1 by

packed unsigned doubleword
integers in xmmZ2/m128, and store
the quadword results in xmm1.

Description

Multiplies the first operand (destination operand) by the second operand (source
operand) and stores the result in the destination operand. The source operand can be
an unsigned doubleword integer stored in the low doubleword of an MMX technology
register or a 64-bit memory location, or it can be two packed unsigned doubleword
integers stored in the first (low) and third doublewords of an XMM register or an
128-bit memory location. The destination operand can be an unsigned doubleword
integer stored in the low doubleword an MMX technology register or two packed
doubleword integers stored in the first and third doublewords of an XMM register. The
result is an unsigned quadword integer stored in the destination an MMX technology
register or two packed unsigned quadword integers stored in an XMM register. When
a quadword result is too large to be represented in 64 bits (overflow), the result is
wrapped around and the low 64 bits are written to the destination element (that is,
the carry is ignored).

For 64-bit memory operands, 64 bits are fetched from memory, but only the low
doubleword is used in the computation; for 128-bit memory operands, 128 bits are
fetched from memory, but only the first and third doublewords are used in the
computation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMULUDQ instruction with 64-Bit operands:
DEST[63:0] «- DEST[31:0] * SRC[31:0;

PMULUDQ instruction with 128-Bit operands:
DEST[63:0] « DEST[31:0] * SRC[31:0];
DEST[127:64] « DEST[95:64] * SRC[95:64];

4-200 Vol.2B PMULUDQ—Multiply Packed Unsigned Doubleword Integers

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent

PMULUDQ __m64 _mm_mul_su32 (__m64 a, __m64 b)
PMULUDQ __m128i _mm_mul_epu32 (_m128ia, _m128ib)
Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

PMULUDQ—Multiply Packed Unsigned Doubleword Integers Vol.2B 4-201

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-202 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PMULUDQ—Muiltiply Packed Unsigned Doubleword Integers

INSTRUCTION SET REFERENCE, N-Z

POP—Pop a Value from the Stack

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

8F /0 POPr/m16 Valid Valid Pop top of stack into m16; increment stack
pointer.

8F /0 POPr/m32 NE. Valid Pop top of stack into m32; increment stack
pointer.

8F /0 POP r/m64 Valid N.E. Pop top of stack into m64; increment stack
pointer. Cannot encode 32-bit operand size.

58+ rw POP r16 Valid Valid Pop top of stack into r16; increment stack
pointer.

58+ rd POP r32 N.E. Valid Pop top of stack into r32; increment stack
pointer.

58+ rd POP r64 Valid N.E. Pop top of stack into r64; increment stack
pointer. Cannot encode 32-bit operand size.

1F POP DS Invalid Valid Pop top of stack into DS; increment stack
pointer.

07 POP ES Invalid Valid Pop top of stack into ES; increment stack
pointer.

17 POP SS Invalid Valid Pop top of stack into SS; increment stack
pointer.

OF A1 POP FS Valid Valid Pop top of stack into FS; increment stack
pointer by 16 bits.

OF A1 POP FS N.E. Valid Pop top of stack into FS; increment stack
pointer by 32 bits.

OF A1 POP FS Valid N.E. Pop top of stack into FS; increment stack
pointer by 64 bits.

OF A9 POP GS Valid Valid Pop top of stack into GS; increment stack
pointer by 16 bits.

OF A9 POP GS N.E. Valid Pop top of stack into GS; increment stack
pointer by 32 bits.

OF A9 POP GS Valid N.E. Pop top of stack into GS; increment stack
pointer by 64 bits.

Description

Loads the value from the top of the stack to the location specified with the destina-
tion operand (or explicit opcode) and then increments the stack pointer. The destina-
tion operand can be a general-purpose register, memory location, or segment
register.

POP—Pop a Value from the Stack Vol.2B 4-203

INSTRUCTION SET REFERENCE, N-Z

The address-size attribute of the stack segment determines the stack pointer size
(16, 32, 64 bits) and the operand-size attribute of the current code segment deter-
mines the amount the stack pointer is incremented (2, 4, 8 bytes).

For example, if the address- and operand-size attributes are 32, the 32-bit ESP
register (stack pointer) is incremented by 4; if they are 16, the 16-bit SP register is
incremented by 2. (The B flag in the stack segment’s segment descriptor determines
the stack’s address-size attribute, and the D flag in the current code segment’s
segment descriptor, along with prefixes, determines the operand-size attribute and
also the address-size attribute of the destination operand.)

If the destination operand is one of the segment registers DS, ES, FS, GS, or SS, the
value loaded into the register must be a valid segment selector. In protected mode,
popping a segment selector into a segment register automatically causes the
descriptor information associated with that segment selector to be loaded into the
hidden (shadow) part of the segment register and causes the selector and the
descriptor information to be validated (see the “Operation” section below).

A NULL value (0000-0003) may be popped into the DS, ES, FS, or GS register without
causing a general protection fault. However, any subsequent attempt to reference a
segment whose corresponding segment register is loaded with a NULL value causes
a general protection exception (#GP). In this situation, no memory reference occurs
and the saved value of the segment register is NULL.

The POP instruction cannot pop a value into the CS register. To load the CS register
from the stack, use the RET instruction.

If the ESP register is used as a base register for addressing a destination operand in
memory, the POP instruction computes the effective address of the operand after it
increments the ESP register. For the case of a 16-bit stack where ESP wraps to OH as
a result of the POP instruction, the resulting location of the memory write is
processor-family-specific.

The POP ESP instruction increments the stack pointer (ESP) before data at the old top
of stack is written into the destination.

A POP SS instruction inhibits all interrupts, including the NMI interrupt, until after
execution of the next instruction. This action allows sequential execution of POP SS
and MOV ESP, EBP instructions without the danger of having an invalid stack during
an interrupt!. However, use of the LSS instruction is the preferred method of loading
the SS and ESP registers.

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after
a POP SS instruction, the breakpoint may not be triggered. However, in a sequence of instruc-
tions that POP the SS register, only the first instruction in the sequence is guaranteed to delay
an interrupt.

In the following sequence, interrupts may be recognized before POP ESP executes:

POP SS
POP SS
POP ESP

4-204 Vol.2B POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, N-Z

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). When in 64-bit mode, POPs using 32-bit operands are not encod-
able and POPs to DS, ES, SS are not valid. See the summary chart at the beginning

of this section for encoding data and limits.

Operation

IF StackAddrSize = 32
THEN
IF OperandSize = 32
THEN
DEST « SS:ESP; (* Copy a doubleword *)
ESP « ESP + 4;
ELSE (* OperandSize = 16*)
DEST « SS:ESP; (* Copy a word *)
ESP « ESP + 2;
Fl;
ELSE IF StackAddrSize = 64
THEN
IF OperandSize = 64
THEN
DEST « SS:RSP; (* Copy quadword *)
RSP « RSP +8;
ELSE (* OperandSize = 16%)
DEST « SS:RSP; (* Copy a word *)
RSP « RSP + 2;
Fl;
Fl;
ELSE StackAddrSize = 16
THEN
IF OperandSize = 16
THEN
DEST « SS:SP; (* Copy a word *)
SP «SP +2;
ELSE (* OperandSize =32 *)
DEST « SS:SP; (* Copy a doubleword *)
SP « SP +4;
Fl;

Fl;

Loading a segment register while in protected mode results in special actions, as
described in the following listing. These checks are performed on the segment
selector and the segment descriptor it points to.

POP—Pop a Value from the Stack Vol. 2B 4-205

INSTRUCTION SET REFERENCE, N-Z

64-BIT_MODE
IF FS, or GS is loaded with non-NULL selector;
THEN
IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)
AND (both RPL and CPL > DPL))
THEN #GP(selector);
IF segment not marked present
THEN #NP(selector);
ELSE
SegmentRegister « segment selector;
SegmentRegister < segment descriptor;

Fl;
Fl;
IF FS, or GS is loaded with a NULL selector;
THEN
SegmentRegister « segment selector;
SegmentRegister < segment descriptor;
Fl;

PREOTECTED MODE OR COMPATIBILITY MODE;

IF SS is loaded;
THEN
IF segment selector is NULL
THEN #GP(0);
Fl;
IF segment selector index is outside descriptor table limits
or segment selector's RPL # CPL
or segment is not a writable data segment
or DPL # CPL
THEN #GP(selector);
Fl;
IF segment not marked present
THEN #SS(selector);
ELSE
SS « segment selector;
SS « segment descriptor;
Fl;
Fl;

4-206 Vol.2B

POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, N-Z

IF DS, ES, FS, or GS is loaded with non-NULL selector;
THEN
IF segment selector index is outside descriptor table limits
or segment is not a data or readable code segment
or ((segment is a data or nonconforming code segment)
and (both RPL and CPL > DPL))
THEN #GP(selector);
Fl;
IF segment not marked present
THEN #NP(selector);
ELSE
SegmentRegister < segment selector;
SegmentRegister < segment descriptor;
Fl;
Fl;

IF DS, ES, FS, or GS is loaded with a NULL selector
THEN
SegmentRegister < segment selector;
SegmentRegister « segment descriptor;
Fl;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If attempt is made to load SS register with NULL segment
selector.

If the destination operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.

If the SS register is being loaded and the segment selector's RPL
and the segment descriptor’s DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a
non-writable data segment.

If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is not a data or readable code segment.

POP—Pop a Value from the Stack Vol.2B 4-207

INSTRUCTION SET REFERENCE, N-Z

#SS(0)

#SS(selector)
#NP

#PF(fault-code)
#AC(0)

#UD

If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is a data or nonconforming code segment,
but both the RPL and the CPL are greater than the DPL.

If the current top of stack is not within the stack segment.

If a memory operand effective address is outside the SS
segment limit.

If the SS register is being loaded and the segment pointed to is
marked not present.

If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is marked not present.

If a page fault occurs.

If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a page fault occurs.

If an unaligned memory reference is made while alignment
checking is enabled.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#GP(0)
#SS(V)
#GP(selector)

4-208 Vol.2B

If the memory address is in a non-canonical form.
If the stack address is in a non-canonical form.
If the descriptor is outside the descriptor table limit.

If the FS or GS register is being loaded and the segment pointed
to is not a data or readable code segment.

If the FS or GS register is being loaded and the segment pointed
to is a data or nonconforming code segment, but both the RPL
and the CPL are greater than the DPL.

POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, N-Z

#AC(0) If an unaligned memory reference is made while alignment
checking is enabled.
#PF(fault-code) If a page fault occurs.
#NP If the FS or GS register is being loaded and the segment pointed
to is marked not present.
#UD If the LOCK prefix is used.
Vol. 2B 4-209

POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, N-Z

POPA/POPAD—Pop All General-Purpose Registers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
61 POPA Invalid Valid Pop DI, SI, BP, BX, DX, CX, and AX.
61 POPAD Invalid Valid Pop EDI, ESI, EBP, EBX, EDX, ECX, and
EAX.
Description

Pops doublewords (POPAD) or words (POPA) from the stack into the general-purpose
registers. The registers are loaded in the following order: EDI, ESI, EBP, EBX, EDX,
ECX, and EAX (if the operand-size attribute is 32) and DI, Sl, BP, BX, DX, CX, and AX
(if the operand-size attribute is 16). (These instructions reverse the operation of the
PUSHA/PUSHAD instructions.) The value on the stack for the ESP or SP register is
ignored. Instead, the ESP or SP register is incremented after each register is loaded.

The POPA (pop all) and POPAD (pop all double) mnemonics reference the same
opcode. The POPA instruction is intended for use when the operand-size attribute is
16 and the POPAD instruction for when the operand-size attribute is 32. Some
assemblers may force the operand size to 16 when POPA is used and to 32 when
POPAD is used (using the operand-size override prefix [66H] if necessary). Others
may treat these mnemonics as synonyms (POPA/POPAD) and use the current setting
of the operand-size attribute to determine the size of values to be popped from the
stack, regardless of the mnemonic used. (The D flag in the current code segment’s
segment descriptor determines the operand-size attribute.)

This instruction executes as described in non-64-bit modes. It is not valid in 64-bit
mode.

Operation
IF 64-Bit Mode
THEN
#UD;
ELSE
IF OperandSize = 32 (* Instruction = POPAD *)
THEN
EDI < Pop();
€SI « Pop();
EBP « Pop();
Increment ESP by 4; (* Skip next 4 bytes of stack *)
EBX « Pop();
EDX « Pop();
ECX « Pop();
EAX « Pop();

4-210 Vol.2B POPA/POPAD—Pop All General-Purpose Registers

INSTRUCTION SET REFERENCE, N-Z

ELSE (* OperandSize = 16, instruction = POPA *)
DI « Pop();
Sl « Pop();
BP « Pop();
Increment ESP by 2; (* Skip next 2 bytes of stack *)
BX « Pop();
DX « Pop();
CX « Pop();
AX « Pop();

Fl;

Fl;

Flags Affected

None.

Protected Mode Exceptions

#SS(0) If the starting or ending stack address is not within the stack
segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#SS If the starting or ending stack address is not within the stack
segment.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#SS(0) If the starting or ending stack address is not within the stack
segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment
checking is enabled.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

POPA/POPAD—Pop All General-Purpose Registers Vol.2B 4-211

INSTRUCTION SET REFERENCE, N-Z

POPCNT — Return the Count of Number of Bits Set to 1

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F3 OFB8/r POPCNT r16, r/m16 Valid Valid POPCNT on r/m16
F3 OF B8 /r POPCNT r32, r/m32 Valid Valid POPCNT on r/m32
F3 REXW OF B8 /r POPCNT r64, r/m64 Valid N.E. POPCNT on r/m64
Description

This instruction calculates of number of bits set to 1 in the second operand (source)
and returns the count in the first operand (a destination register).

Operation

Count = 0;

For (i=0; i < OperandSize; i++)

{ IF (SRC[i]= 1) // i"th bit
THEN Count++; Fl;

}
DEST < Count;

Flags Affected
OF, SF, ZF, AF, CF, PF are all cleared. ZF is set if SRC == 0, otherwise ZF is cleared

Intel C/C++ Compiler Intrinsic Equivalent
POPCNT int _mm_popcnt_u32(unsigned int a);
POPCNT int64_t _mm_popcnt_u64(unsigned __int64 a);

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF (fault-code) For a page fault.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

4-212 Vol.2B POPCNT — Return the Count of Number of Bits Set to 1

INSTRUCTION SET REFERENCE, N-Z

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CPUID.0O1H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF (fault-code) For a page fault.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.
#UD If CPUID.O1H:ECX.POPCNT [Bit 23] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

POPCNT — Return the Count of Number of Bits Set to 1 Vol.2B 4-213

INSTRUCTION SET REFERENCE, N-Z

POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
aD POPF Valid Valid Pop top of stack into lower 16 bits of
EFLAGS.
aD POPFD N.E. Valid Pop top of stack into EFLAGS.
REXW+9D POPFQ Valid N.E. Pop top of stack and zero-extend into
RFLAGS.
Description

Pops a doubleword (POPFD) from the top of the stack (if the current operand-size
attribute is 32) and stores the value in the EFLAGS register, or pops a word from the
top of the stack (if the operand-size attribute is 16) and stores it in the lower 16 bits
of the EFLAGS register (that is, the FLAGS register). These instructions reverse the
operation of the PUSHF/PUSHFD instructions.

The POPF (pop flags) and POPFD (pop flags double) mnemonics reference the same
opcode. The POPF instruction is intended for use when the operand-size attribute is
16; the POPFD instruction is intended for use when the operand-size attribute is 32.
Some assemblers may force the operand size to 16 for POPF and to 32 for POPFD.
Others may treat the mnemonics as synonyms (POPF/POPFD) and use the setting of
the operand-size attribute to determine the size of values to pop from the stack.

The effect of POPF/POPFD on the EFLAGS register changes, depending on the mode
of operation. When the processor is operating in protected mode at privilege level O
(or in real-address mode, the equivalent to privilege level 0), all non-reserved flags
in the EFLAGS register except RFL, VIP, VIF, and VM may be modified. VIP, VIF and
VM remain unaffected.

When operating in protected mode with a privilege level greater than 0, but less than
or equal to IOPL, all flags can be modified except the IOPL field and VIP, VIF, and VM.
Here, the IOPL flags are unaffected, the VIP and VIF flags are cleared, and the VM
flag is unaffected. The interrupt flag (IF) is altered only when executing at a level at
least as privileged as the IOPL. If a POPF/POPFD instruction is executed with insuffi-
cient privilege, an exception does not occur but privileged bits do not change.

When operating in virtual-8086 mode, the IOPL must be equal to 3 to use
POPF/POPFD instructions; VM, RF, IOPL, VIP, and VIF are unaffected. If the IOPL is
less than 3, POPF/POPFD causes a general-protection exception (#GP).

In 64-bit mode, use REX.W to pop the top of stack to RFLAGS. The mnemonic
assigned is POPFQ (note that the 32-bit operand is not encodable). POPFQ pops 64

1. RFis always zero after the execution of POPF. This is because POPF, like all instructions, clears
RF as it begins to execute.

4-214 Vol.2B POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

INSTRUCTION SET REFERENCE, N-Z

bits from the stack, loads the lower 32 bits into RFLAGS, and zero extends the upper
bits of RFLAGS.

See Chapter 3 of the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 1, for more information about the EFLAGS registers.

Operation

IF VM =0 (* Not in Virtual-8086 Mode *)
THENIFCPL=0
THEN
IF OperandSize = 32;
THEN
EFLAGS « Pop(); (* 32-bit pop *)
(* All non-reserved flags except RF, VIP, VIF, and VM can be modified;
VIP and VIF are cleared; RF, VM, and all reserved bits are unaffected. *)
ELSE IF (Operandsize = 64)
RFLAGS = Pop(); (* 64-bit pop *)
(* All non-reserved flags except RF, VIP, VIF, and VM can be modified; VIP
and VIF are cleared; RF, VM, and all reserved bits are unaffected.*)
ELSE (* OperandSize =16 *)
EFLAGS[15:0] « Pop(); (* 16-bit pop *)
(* All non-reserved flags can be modified. *)
FI;
ELSE(*CPL>0%)
IF OperandSize = 32
THEN
IF CPL > IOPL
THEN
EFLAGS « Pop(); (* 32-bit pop *)
(* All non-reserved bits except IF, IOPL, RF, VIP, and
VIF can be modified; IF, IOPL, RF, VM, and all reserved
bits are unaffected; VIP and VIF are cleared. *)
ELSE
EFLAGS « Pop(); (* 32-bit pop *)
(* All non-reserved bits except IOPL, RF, VIP, and VIF can be
modified; IOPL, RF, VM, and all reserved bits are
unaffected; VIP and VIF are cleared. *)
Fl;
ELSE IF (Operandsize = 64)
IF CPL > IOPL
THEN
RFLAGS « Pop(); (* 64-bit pop *)
(* All non-reserved bits except IF, IOPL, RF, VIP, and

POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register Vol.2B 4-215

INSTRUCTION SET REFERENCE, N-Z

VIF can be modified; IF, IOPL, RF, VM, and all reserved
bits are unaffected; VIP and VIF are cleared. *)
ELSE
RFLAGS « Pop(); (* 64-bit pop *)
(* All non-reserved bits except IOPL, RF, VIP, and VIF can be
modified; IOPL, RF, VM, and all reserved bits are
unaffected; VIP and VIF are cleared. *)
Fl;
ELSE (* OperandSize = 16 *)
EFLAGS[15:0] « Pop(); (* 16-bit pop *)
(* All non-reserved bits except IOPL can be modified; IOPL and all
reserved bits are unaffected. *)
Fl;
Fl;
ELSE (* In Virtual-8086 Mode *)
IFIOPL=3
THEN IF OperandSize = 32
THEN
EFLAGS « Pop();
(* All non-reserved bits except VM, RF, IOPL, VIP, and VIF can be
modified; VM, RF, IOPL, VIP, VIF, and all reserved bits are unaffected. *)
ELSE
EFLAGS[15:0] « Pop(); FI;
(* All non-reserved bits except IOPL can be modified;
IOPL and all reserved bits are unaffected. *)
ELSE (* IOPL < 3 %)
#GP(0); (* Trap to virtual-8086 monitor. *)
Fl;
Fl;
Fl;

Flags Affected

All flags may be affected; see the Operation section for details.

Protected Mode Exceptions

#SS(0) If the top of stack is not within the stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

#UD If the LOCK prefix is used.

4-216 Vol.2B POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions
#SS If the top of stack is not within the stack segment.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the 1/0 privilege level is less than 3.

If an attempt is made to execute the POPF/POPFD instruction
with an operand-size override prefix.

#SS(0) If the top of stack is not within the stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment
checking is enabled.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

#SS(0) If the stack address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register Vol.2B 4-217

INSTRUCTION SET REFERENCE, N-Z

POR—Bitwise Logical OR

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF EB/r POR mm, mm/m64 Valid Valid Bitwise OR of mm/m64 and mm.
66 OFEB/r POR xmmT, Valid Valid Bitwise OR of xmmZ2/m128 and
xmmz2/m128 xmm1.
Description

Performs a bitwise logical OR operation on the source operand (second operand) and
the destination operand (first operand) and stores the result in the destination
operand. The source operand can be an MMX technology register or a 64-bit memory
location or it can be an XMM register or a 128-bit memory location. The destination
operand can be an MMX technology register or an XMM register. Each bit of the result
is set to 1 if either or both of the corresponding bits of the first and second operands
are 1; otherwise, it is set to O.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST « DEST OR SRC,

Intel C/C++ Compiler Intrinsic Equivalent

POR __m64 _mm_or_si64(__m64 m1, __m64 m2)

POR __m128i _mm_or_si128(_m128i m1,_m128i m2)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

4-218 Vol.2B POR—Bitwise Logical OR

INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

POR—Bitwise Logical OR Vol.2B 4-219

INSTRUCTION SET REFERENCE, N-Z

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-220 Vol.2B

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

POR—Bitwise Logical OR

INSTRUCTION SET REFERENCE, N-Z

PREFETCHh—Prefetch Data Into Caches

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
0F18/1 PREFETCHTO m8 Valid Valid Move data from m8 closer to the
processor using TO hint.
0F18/2 PREFETCHT1 m8 Valid Valid Move data from m8 closer to the
processor using T1 hint.
0F18/3 PREFETCHT2 m8 Valid Valid Move data from m8 closer to the
processor using T2 hint.
OF18/0 PREFETCHNTA m8 Valid Valid Move data from m8 closer to the
processor using NTA hint.

Description

Fetches the line of data from memory that contains the byte specified with the source
operand to a location in the cache hierarchy specified by a locality hint:

® TO (temporal data)—prefetch data into all levels of the cache hierarchy.
— Pentium lll processor—1st- or 2nd-level cache.
— Pentium 4 and Intel Xeon processors—2nd-level cache.

® T1 (temporal data with respect to first level cache)—prefetch data into level 2
cache and higher.

— Pentium Il processor—2nd-level cache.
— Pentium 4 and Intel Xeon processors—2nd-level cache.

® T2 (temporal data with respect to second level cache)—prefetch data into level 2
cache and higher.

— Pentium lll processor—2nd-level cache.
— Pentium 4 and Intel Xeon processors—2nd-level cache.

® NTA (non-temporal data with respect to all cache levels)—prefetch data into non-
temporal cache structure and into a location close to the processor, minimizing
cache pollution.

— Pentium IIl processor—1st-level cache
— Pentium 4 and Intel Xeon processors—2nd-level cache

The source operand is a byte memory location. (The locality hints are encoded into
the machine level instruction using bits 3 through 5 of the ModR/M byte. Use of any
ModR/M value other than the specified ones will lead to unpredictable behavior.)

If the line selected is already present in the cache hierarchy at a level closer to the
processor, no data movement occurs. Prefetches from uncacheable or WC memory
are ignored.

PREFETCHh—Prefetch Data Into Caches Vol. 2B 4-221

INSTRUCTION SET REFERENCE, N-Z

The PREFETCHh instruction is merely a hint and does not affect program behavior. If
executed, this instruction moves data closer to the processor in anticipation of future
use.

The implementation of prefetch locality hints is implementation-dependent, and can
be overloaded or ignored by a processor implementation. The amount of data
prefetched is also processor implementation-dependent. It will, however, be a
minimum of 32 bytes.

It should be noted that processors are free to speculatively fetch and cache data from
system memory regions that are assigned a memory-type that permits speculative
reads (that is, the WB, WC, and WT memory types). A PREFETCHh instruction is
considered a hint to this speculative behavior. Because this speculative fetching can
occur at any time and is not tied to instruction execution, a PREFETCHh instruction is
not ordered with respect to the fence instructions (MFENCE, SFENCE, and LFENCE) or
locked memory references. A PREFETCHh instruction is also unordered with respect
to CLFLUSH instructions, other PREFETCHh instructions, or any other general instruc-
tion. It is ordered with respect to serializing instructions such as CPUID, WRMSR,
OUT, and MOV CR.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FETCH (m8);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch(char *p, int i)

The argument “*p” gives the address of the byte (and corresponding cache line) to
be prefetched. The value “i” gives a constant (_ MM_HINT_TO, _MM_HINT_T1,
_MM_HINT_T2, or _MM_HINT_NTA) that specifies the type of prefetch operation to
be performed.

Numeric Exceptions

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

4-222 \Vol.2B PREFETCHh—Prefetch Data Into Caches

INSTRUCTION SET REFERENCE, N-Z

PSADBW—Compute Sum of Absolute Differences

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFF6 /r PSADBW mm1, Valid Valid Computes the absolute differences of
mmZ2/m64 the packed unsigned byte integers

from mmZ2 /m64 and mm T, differences
are then summed to produce an
unsigned word integer result.

66 0FF6/r PSADBW xmm1, Valid Valid Computes the absolute differences of
xmmZ2/m128 the packed unsigned byte integers
from xmmZ2 /m128and xmm71; the 8
low differences and 8 high differences
are then summed separately to
produce two unsigned word integer
results.

Description

Computes the absolute value of the difference of 8 unsigned byte integers from the
source operand (second operand) and from the destination operand (first operand).
These 8 differences are then summed to produce an unsigned word integer result
that is stored in the destination operand. The source operand can be an MMX tech-
nology register or a 64-bit memory location or it can be an XMM register or a 128-bit
memory location. The destination operand can be an MMX technology register or an
XMM register. Figure 4-5 shows the operation of the PSADBW instruction when using
64-bit operands.

When operating on 64-bit operands, the word integer result is stored in the low word
of the destination operand, and the remaining bytes in the destination operand are
cleared to all Os.

When operating on 128-bit operands, two packed results are computed. Here, the 8
low-order bytes of the source and destination operands are operated on to produce a
word result that is stored in the low word of the destination operand, and the 8 high-
order bytes are operated on to produce a word result that is stored in bits 64 through
79 of the destination operand. The remaining bytes of the destination operand are
cleared.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

PSADBW—Compute Sum of Absolute Differences Vol.2B 4-223

INSTRUCTION SET REFERENCE, N-Z

SRC| X7 X6 X5 X4 X3 X2 X1 X0
DEST| v7 Y6 Y5 Y4 Y3 Y2 Y1 YO
TEMP | ABS(X7:Y7)| ABS(X6:Y6)| ABS(X5:Y5) | ABS(X4:Y4) [ABS(X3:Y3) | ABS(X2:Y2) | ABS(X1:Y1) [ABS(X0:Y0)
DEST| ooH O0H O0H OO0H O0H O0OH | SUM(TEMP?...TEMPO)

Figure 4-5. PSADBW Instruction Operation Using 64-bit Operands

Operation

PSADBW instructions when using 64-bit operands:
TEMPO « ABS(DEST[7:0]— SRC[7:0]);
(* Repeat operation for bytes 2 through 6 *)
TEMP7 « ABS(DEST[63:56] — SRC[63:56]);
DEST[15:0] « SUM(TEMPO:TEMP7);
DEST[63:16] «~ 000000000000H;

PSADBW instructions when using 128-bit operands:
TEMPO « ABS(DEST[7:0] — SRC[7:0]);
(* Repeat operation for bytes 2 through 14 *)
TEMP15 « ABS(DEST[127:120] — SRC[127:120]);
DEST[15:0] « SUM(TEMPO:TEMP7?);
DEST[63:16] < 000000000000H;
DEST[79:64] « SUM(TEMP8:TEMP15);
DEST[127:80] < 000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent

PSADBW _ m64 _mm_sad_pu8(_m64 a,__m64 b)
PSADBW __m128i _mm_sad_epu8(_m128ia, __m128ib)
Flags Affected

None.

Numeric Exceptions

None.

4-224 \ol.2B PSADBW—Compute Sum of Absolute Differences

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

PSADBW—Compute Sum of Absolute Differences Vol.2B 4-225

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

4-226 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PSADBW—Compute Sum of Absolute Differences

INSTRUCTION SET REFERENCE, N-Z

PSHUFB — Packed Shuffle Bytes

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 3800 /r PSHUFB mm1, Valid Valid Shuffle bytes in mm1
mmZ2/m64 according to contents of
mmZ2/m64.
66 OF 38 00 /r PSHUFB xmm1, Valid Valid Shuffle bytes in xmm1
xmm2/m128 according to contents of
xmm2/m128.
Description

PSHUFB performs in-place shuffles of bytes in the destination operand (the first
operand) according to the shuffle control mask in the source operand (the second
operand). The instruction permutes the data in the destination operand, leaving the
shuffle mask unaffected. If the most significant bit (bit[7]) of each byte of the shuffle
control mask is set, then constant zero is written in the result byte. Each byte in the
shuffle control mask forms an index to permute the corresponding byte in the desti-
nation operand. The value of each index is the least significant 4 bits (128-bit opera-
tion) or 3 bits (64-bit operation) of the shuffle control byte. Both operands can be
MMX register or XMM registers. When the source operand is a 128-bit memory
operand, the operand must be aligned on a 16-byte boundary or a general-protection
exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation
PSHUFB with 64 bit operands:

fori=0to7{
if (SRC[(i * 8)+7] == 1) then
DEST[(i*8)+7..(i*8)+0] « O;
else
index[2..0] « SRC[(i*8)+2 .. (i*8)+0];
DEST[(i*8)+7...(i*8)+0] «<— DEST[(index*8+7).(index*8+0)];
endif;

}
PSHUFB with 128 bit operands:

fori=0to15¢
if (SRC[(i * 8)+7] == 1) then
DEST[(i*8)+7.(i*8)+0] « O;

PSHUFB — Packed Shuffle Bytes Vol.2B 4-227

INSTRUCTION SET REFERENCE, N-Z

else
index[3..0] « SRC[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7..(i*8)+0] «— DEST[(index*8+7)..(index*8+0)];

endif
}
MM2
07H 07H FFH 80H 01H 00H 00H 00H
MM1
04H | O1H O7H 03H 02H 02H FFH 01H
R - /
04H 04H 00H 00H FFH 01H 01H 01H

Figure 4-6. PSHUB with 64-Bit Operands

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFB __ m64 _mm_shuffle_pi8 (_m64 a, __m64 b)
PSHUFB __m128i _mm_shuffle_epi8 (__m128ia, _m128ib)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.

#NM If TS bit in CRO is set.

4-228 Vol.2B PSHUFB — Packed Shuffle Bytes

INSTRUCTION SET REFERENCE, N-Z

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.
#NM If TS bit in CRO is set.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSSE3[bit 9] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

PSHUFB — Packed Shuffle Bytes Vol.2B 4-229

INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-230 Vol.2B PSHUFB — Packed Shuffle Bytes

INSTRUCTION SET REFERENCE, N-Z

PSHUFD—Shuffle Packed Doublewords

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 70 /rib PSHUFD xmm1, Valid Valid Shuffle the doublewords in
xmmZ2/m128, imm8 xmmZ2/m128 based on the

encoding in imm8and store
the result in xmm1.

Description

Copies doublewords from source operand (second operand) and inserts them in the
destination operand (first operand) at the locations selected with the order operand
(third operand). Figure 4-7 shows the operation of the PSHUFD instruction and the
encoding of the order operand. Each 2-bit field in the order operand selects the
contents of one doubleword location in the destination operand. For example, bits O
and 1 of the order operand select the contents of doubleword O of the destination
operand. The encoding of bits O and 1 of the order operand (see the field encoding in
Figure 4-7) determines which doubleword from the source operand will be copied to
doubleword 0O of the destination operand.

SRC X3 X2 X1 X0
DEST Y3 Y2 Y1 YO
\ \ / /'Encoding 00B - X0
ORDER of Fieldsin 01B - X1
ORDER 10B - X2
76543210
Operand 11B - X3

Figure 4-7. PSHUFD Instruction Operation

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The order operand is an 8-bit immediate. Note
that this instruction permits a doubleword in the source operand to be copied to more
than one doubleword location in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

PSHUFD—Shuffle Packed Doublewords Vol. 2B 4-231

INSTRUCTION SET REFERENCE, N-Z

Operation

DEST[31:0] « (SRC >> (ORDER[1:0] * 32))[31:0];
DEST[63:32] « (SRC >> (ORDER[3:2] * 32))[31:0];
DEST[95:64] « (SRC >> (ORDER[5:4] * 32))[31:0];
DEST[127:96] « (SRC >> (ORDER[7:6] * 32))[31:0];

Intel C/C++ Compiler Intrinsic Equivalent
PSHUFD __m128i _mm_shuffle_epi32(_m128i 3, int n)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM
#PF(fault-code)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

If a page fault occurs.

Real-Address Mode Exceptions

#GP

#UD

#NM

4-232 Vol.2B

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

PSHUFD—Shuffle Packed Doublewords

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.

PSHUFD—Shuffle Packed Doublewords Vol. 2B 4-233

INSTRUCTION SET REFERENCE, N-Z

PSHUFHW—Shuffle Packed High Words

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F30F 70 /rib PSHUFHW xmm1, xmmZ2/ Valid Valid Shuffle the high words in
m128, imm8 xmmZ2/m128based on the

encoding in imm8and store
the result in xmm71.

Description

Copies words from the high quadword of the source operand (second operand) and
inserts them in the high quadword of the destination operand (first operand) at word
locations selected with the order operand (third operand). This operation is similar to
the operation used by the PSHUFD instruction, which is illustrated in Figure 4-7. For
the PSHUFHW instruction, each 2-bit field in the order operand selects the contents
of one word location in the high quadword of the destination operand. The binary
encodings of the order operand fields select words (O, 1, 2 or 3, 4) from the high
quadword of the source operand to be copied to the destination operand. The low
quadword of the source operand is copied to the low quadword of the destination
operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The order operand is an 8-bit immediate. Note
that this instruction permits a word in the high quadword of the source operand to be
copied to more than one word location in the high quadword of the destination
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] «— SRC[63:0];

DEST[79:64] « (SRC >> (ORDER[1:0] * 16))[79:64];
DEST[95:80] « (SRC >> (ORDER[3:2] * 16))[79:64];
DEST[111:96] « (SRC >> (ORDER[5:4] * 16))[79:64];
DEST[127:112] « (SRC >> (ORDER[7:6] * 16))[79:64];

Intel C/C++ Compiler Intrinsic Equivalent
PSHUFHW __m128i _mm_shufflehi_epi16(_m128i a, int n)

Flags Affected

None.

4-234 Vol.2B PSHUFHW—Shuffle Packed High Words

INSTRUCTION SET REFERENCE, N-Z

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

PSHUFHW—Shuffle Packed High Words Vol. 2B 4-235

INSTRUCTION SET REFERENCE, N-Z

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.

4-236 Vol.2B PSHUFHW—Shuffle Packed High Words

INSTRUCTION SET REFERENCE, N-Z

PSHUFLW—Shuffle Packed Low Words

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F20F 70 /rib PSHUFLW xmm1, Valid Valid Shuffle the low words in
xmmZ2/m128, inm8 xmmZ2/m128 based on the

encoding in imm8 and store the
resultin xmm1.

Description

Copies words from the low quadword of the source operand (second operand) and
inserts them in the low quadword of the destination operand (first operand) at word
locations selected with the order operand (third operand). This operation is similar to
the operation used by the PSHUFD instruction, which is illustrated in Figure 4-7. For
the PSHUFLW instruction, each 2-bit field in the order operand selects the contents of
one word location in the low quadword of the destination operand. The binary encod-
ings of the order operand fields select words (0, 1, 2, or 3) from the low quadword of
the source operand to be copied to the destination operand. The high quadword of
the source operand is copied to the high quadword of the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The order operand is an 8-bit immediate. Note
that this instruction permits a word in the low quadword of the source operand to be
copied to more than one word location in the low quadword of the destination
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[15:0] < (SRC >> (ORDER[1:0] * 16))[15:0];
DEST[31:16] « (SRC >> (ORDER[3:2] * 16))[15:0];
DEST[47:32] « (SRC >> (ORDER[5:4] * 16))[15:0];
DEST[63:48] « (SRC >> (ORDER[7:6] * 16))[15:0];
DEST[127:64] « SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalent
PSHUFLW __m128i _mm_shufflelo_epi16(_m128ia, int n)

Flags Affected

None.

PSHUFLW—Shuffle Packed Low Words Vol. 2B 4-237

INSTRUCTION SET REFERENCE, N-Z

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

4-238 Vol.2B PSHUFLW—Shuffle Packed Low Words

INSTRUCTION SET REFERENCE, N-Z

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.

PSHUFLW—Shuffle Packed Low Words Vol. 2B 4-239

INSTRUCTION SET REFERENCE, N-Z

PSHUFW—Shuffle Packed Words

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 70 /rib PSHUFW mm1, Valid Valid Shuffle the words in mm2/m64
mmZ2/m64, imm8 based on the encoding in imm8 and
store the result in mm1.

Description

Copies words from the source operand (second operand) and inserts them in the
destination operand (first operand) at word locations selected with the order operand
(third operand). This operation is similar to the operation used by the PSHUFD
instruction, which is illustrated in Figure 4-7. For the PSHUFW instruction, each 2-bit
field in the order operand selects the contents of one word location in the destination
operand. The encodings of the order operand fields select words from the source
operand to be copied to the destination operand.

The source operand can be an MMX technology register or a 64-bit memory location.
The destination operand is an MMX technology register. The order operand is an 8-bit
immediate. Note that this instruction permits a word in the source operand to be
copied to more than one word location in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[15:0] « (SRC >> (ORDER[1:0] * 16))[15:0];
DEST[31:16] « (SRC >> (ORDER[3:2] * 16))[15:0];
DEST[47:32] « (SRC >> (ORDER[5:4] * 16))[15:0];
DEST[63:48] « (SRC >> (ORDER[7:6] * 16))[15:0];
Intel C/C++ Compiler Intrinsic Equivalent
PSHUFW __m64 _mm_shuffle_pi16(_m64 a, int n)

Flags Affected

None.

Numeric Exceptions

None.

4-240 Vol.2B PSHUFW—Shuffle Packed Words

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CRO.EM[bit 2] = 1.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#UD If CRO.EM[bit 2] = 1.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

PSHUFW—Shuffle Packed Words Vol. 2B 4-241

INSTRUCTION SET REFERENCE, N-Z

PSIGNB/PSIGNW/PSIGND — Packed SIGN
64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF 3808 /r PSIGNB mm1, Valid Valid Negate/zero/preserve packed byte
mm2/m64 integers in mm1 depending on the
corresponding sign in mm2/m64
66 OF 38 08 /r PSIGNB xmm1, Valid Valid Negate/zero/preserve packed byte
xmm2/m128 integers in xmm1 depending on the
corresponding sign in xmm2/m128.
OF 3809 /r PSIGNW mm1, Valid Valid Negate/zero/preserve packed word
mm2/m64 integers in mm1 depending on the
corresponding sign in mm2/m128.
66 0F 3809 /r PSIGNW xmm1, Valid Valid Negate/zero/preserve packed word
xmm2/m128 integers in xmm1 depending on the
corresponding sign in xmm2/m128.
OF 380A /r PSIGND mm1, Valid Valid Negate/zero/preserve packed
mm2/m64 doubleword integers in mm1
depending on the corresponding sign
in mm2/m128.
66 OF 38 OA /r PSIGND xmm1, Valid Valid Negate/zero/preserve packed
xmm2/m128 doubleword integers in xmm’1

depending on the corresponding sign
in xmm2/m128.

Description

PSIGNB/PSIGNW/PSIGND negates each data element of the destination operand
(the first operand) if the signed integer value of the corresponding data element in
the source operand (the second operand) is less than zero. If the signed integer
value of a data element in the source operand is positive, the corresponding data
element in the destination operand is unchanged. If a data element in the source
operand is zero, the corresponding data element in the destination operand is set to
zero.

PSIGNB operates on signed bytes. PSIGNW operates on 16-bit signed words.
PSIGND operates on signed 32-bit integers. Both operands can be MMX register or
XMM registers. When the source operand is a 128bit memory operand, the operand
must be aligned on a 16-byte boundary or a general-protection exception (#GP) will
be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation

PSIGNB with 64 bit operands:

4-242 Vol.2B PSIGNB/PSIGNW/PSIGND — Packed SIGN

IF (SRC[7:0] < 0)
DEST[7:0] < Neg(DEST[7:0])

ELSEIF (SRC[7:0] == 0)
DEST[7:0] < 0

ELSEIF (SRC[7:0] > 0)
DEST[7:0] « DEST[7:0]

Repeat operation for 2nd through 7th bytes

IF (SRC[63:56]< 0)
DEST[63:56] < Neg(DEST[63:56])

ELSEIF (SRC[63:56] == 0)
DEST[63:56] < 0

ELSEIF (SRC[63:56] > 0)
DEST[63:56] < DEST[63:56]

PSIGNB with 128 bit operands:

IF (SRC[7:0] < 0)
DEST[7:0] < Neg(DEST[7:0])

ELSEIF (SRC[7:0] == 0)
DEST[7:0] - O

ELSEIF (SRC[7:0] > 0)
DEST[7:0] < DEST[7:0]

Repeat operation for 2nd through 15th bytes

IF (SRC[127:120] < 0)

DEST[127:120] « Neg(DEST[127:120])

ELSEIF (SRC[127:120] == 0)
DEST[127:120] < 0

ELSEIF (SRC[127:120] > 0)
DEST[127:120] « DEST[127:120]

PSIGNW with 64 bit operands:

IF (SRC[15:0] < Q)
DEST[15:0] « Neg(DEST[15:0])
ELSEIF (SRC[15:0]==0)
DEST[15:0] « O
ELSEIF (SRC[15:0] > 0)
DEST[15:0] «— DEST[15:0]
Repeat operation for 2nd through 3rd words
IF (SRC[63:48]<0)
DEST[63:48] <« Neg(DEST[63:48])
ELSEIF (SRC[63:48]==0)
DEST[63:48] « 0O
ELSEIF (SRC[63:48] > 0)

PSIGNB/PSIGNW/PSIGND — Packed SIGN

INSTRUCTION SET REFERENCE, N-Z

Vol.2B 4-243

INSTRUCTION SET REFERENCE, N-Z

DEST[63:48] «— DEST[63:48]
PSIGNW with 128 bit operands:

IF (SRC[15:0]<0)
DEST[15:0] < Neg(DEST[15:0])
ELSEIF (SRC[15:0]1==0)
DEST[15:0] <~ O
ELSEIF (SRC[15:0] > 0)
DEST[15:0] <« DEST[15:0]
Repeat operation for 2nd through 7th words
IF (SRC[127:112]<0)
DEST[127:112] « Neg(DEST[127:112])
ELSEIF (SRC[127:112]==0)
DEST[127:112] « O
ELSEIF (SRC[127:112]>0)
DEST[127:112] « DEST[127:112]

PSIGND with 64 bit operands:

IF (SRC[31:0] < 0)
DEST[31:0] « Neg(DEST[31:0])
ELSEIF (SRC[31:0] == 0)
DEST[31:0] « O
ELSEIF (SRC[31:0] > 0)
DEST[31:0] « DEST[31:0]
IF (SRC[63:32] < 0)
DEST[63:32] «— Neg(DEST[63:32])
ELSEIF (SRC[63:32] == 0)
DEST[63:32] O
ELSEIF (SRC[63:32] > 0)
DEST[63:32] « DEST[63:32]

PSIGND with 128 bit operands:

IF (SRC[31:0]<0)
DEST[31:0] « Neg(DEST[31:0])
ELSEIF (SRC[31:0]1==0)
DEST[31:0] « O
ELSEIF (SRC[31:0]1>0)
DEST[31:0] « DEST[31:0]
Repeat operation for 2nd through 3rd double words
IF (SRC[127:96]<0)
DEST[127:96] « Neg(DEST[127:96])
ELSEIF (SRC[127:96]1==0)

4-244 Vol.2B PSIGNB/PSIGNW/PSIGND — Packed SIGN

INSTRUCTION SET REFERENCE, N-Z

DEST[127:96] « O
ELSEIF (SRC[127:96] > 0)
DEST[127:96] < DEST[127:96]

Intel C/C++ Compiler Intrinsic Equivalent

PSIGNB __m64 _mm_sign_pi8 (__m64 a, __m64 b)

PSIGNB __m128i _mm_sign_epi8 (__m128ia, __m128ib)
PSIGNW __m64 _mm_sign_pi16 (__m64 a, __m64 b)
PSIGNW __m128i _mm_sign_epi16 (_m128ia, __m128ib)
PSIGND __m64 _mm_sign_pi32 (__m64 a, __m64 b)
PSIGND __m128i _mm_sign_epi32 (_m128ia, __m128ib)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-hit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.

#NM If TS bit in CRO is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD (128-bit operations only) If CRO.EM = 1.
If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.

PSIGNB/PSIGNW/PSIGND — Packed SIGN Vol. 2B 4-245

INSTRUCTION SET REFERENCE, N-Z

#NM If TS bit in CRO is set.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSSE3[bit 9] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-246 Vol.2B PSIGNB/PSIGNW/PSIGND — Packed SIGN

INSTRUCTION SET REFERENCE, N-Z

PSLLDQ—Shift Double Quadword Left Logical

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 73/7ib PSLLDQ xmm1, Valid Valid Shift xmm1 left by imm8bytes
imm8 while shifting in Os.
Description

Shifts the destination operand (first operand) to the left by the number of bytes spec-
ified in the count operand (second operand). The empty low-order bytes are cleared
(set to all 0s). If the value specified by the count operand is greater than 15, the
destination operand is set to all Os. The destination operand is an XMM register. The
count operand is an 8-bit immediate.

Operation

TEMP « COUNT;
IF (TEMP > 15) THEN TEMP « 16; FI;
DEST « DEST << (TEMP * 8);

Intel C/C++ Compiler Intrinsic Equivalent
PSLLDQ _ m128i _mm_slli_si128 (_m128i a, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

PSLLDQ—Shift Double Quadword Left Logical Vol. 2B 4-247

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.

4-248 Vol.2B

PSLLDQ—Shift Double Quadword Left Logical

INSTRUCTION SET REFERENCE, N-Z

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFF1/r PSLLW mm, mm/m64 Valid Valid Shift words in mm left mm/m64
while shifting in Os.
66 OF F1 /r PSLLW xmm1, Valid Valid Shift words in xmm1 left by
xmm2/m128 xmmZ2/m128 while shifting in Os.
OF71/6ib PSLLW xmm1, imm8 Valid Valid Shift words in mm left by imm8
while shifting in Os.
660F71/6ib PSLLW xmm1, imm8 Valid Valid Shift words in xmm1 left by
imm8 while shifting in Os.
OFF2/r PSLLD mm, mm/m64 Valid Valid Shift doublewords in mm left by
mm/m64 while shifting in Os.
66 OF F2 /1 PSLLD xmmT, Valid Valid Shift doublewords in xmm1 left
xmmZ2/m128 by xmm2/m128 while shifting in
Os.
OF72/6ib PSLLD mm, imm8 Valid Valid Shift doublewords in mm left by
imm8 while shifting in Os.
66 0F72/6ib PSLLD xmm1, imm8 Valid Valid Shift doublewords in xmm1 left
by imm8 while shifting in Os.
OFF3/r PSLLQ mm, mm/m64 Valid Valid Shift quadword in mm left by
mm/m64 while shifting in Os.
66 OF F3 /1 PSLLQ xmm], Valid Valid Shift quadwords in xmm1 left by
xmm2/m128 xmm2/m128 while shifting in Os.
OF73/6ib PSLLQ mm, imm8 Valid Valid Shift quadword in mm left by
imm8 while shifting in Os.
66 OF 73/6ib PSLLQ xmm1, imm8 Valid Valid Shift quadwords in xmm1 left by
imm8 while shifting in Os.
Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in
the destination operand (first operand) to the left by the number of bits specified in
the count operand (second operand). As the bits in the data elements are shifted left,
the empty low-order bits are cleared (set to 0). If the value specified by the count
operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a quad-
word), then the destination operand is set to all Os. Figure 4-8 gives an example of

shifting words in a 64-bit operand.

The destination operand may be an MMX technology register or an XMM register; the
count operand can be either an MMX technology register or an 64-bit memory loca-

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

Vol. 2B 4-249

INSTRUCTION SET REFERENCE, N-Z

tion, an XMM register or a 128-bit memory location, or an 8-bit immediate. Note that
only the first 64-bits of a 128-bit count operand are checked to compute the count.

Pre-Shift
DEST X3 X2 X X0
Shift Left
with Zero
Extension
Y \ Y Y
POSE?E@}— X3 << COUNT | X2 << COUNT | X1 << COUNT | X0 << COUNT

Figure 4-8. PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit Operand

The PSLLW instruction shifts each of the words in the destination operand to the left
by the number of bits specified in the count operand; the PSLLD instruction shifts
each of the doublewords in the destination operand; and the PSLLQ instruction shifts
the quadword (or quadwords) in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSLLW instruction with 64-bit operand:
IF (COUNT > 15)
THEN
DEST[64:0] « 0000000000000000H;
ELSE
DEST[15:0] « ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] « ZeroExtend(DEST[63:48] << COUNT);
Fl;

PSLLD instruction with 64-bit operand:

IF (COUNT > 31)

THEN
DEST[64:0] « 0000000000000000H;

ELSE
DEST[31:0] « ZeroExtend(DEST[31:0] << COUNT);
DEST[63:32] «— ZeroExtend(DEST[63:32] << COUNT);

Fl;

PSLLQ instruction with 64-bit operand:
IF (COUNT > 63)
THEN

4-250 Vol.2B PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, N-Z

DEST[64:0] «— 0000000000000000H;
ELSE

DEST « ZeroExtend(DEST << COUNT);
Fl;

PSLLW instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN
DEST[128:0] «~ 00000000000000000000000000000000H;
ELSE
DEST[15:0] « ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] « ZeroExtend(DEST[127:112] << COUNT);
Fl;

PSLLD instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN
DEST[128:0] « 00000000000000000000000000000000H;
ELSE
DEST[31:0] « ZeroExtend(DEST[31:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] « ZeroExtend(DEST[127:96] << COUNT);
Fl;

PSLLQ instruction with 128-bit operand:

COUNT « COUNT_SOURCE[63:0];

IF (COUNT > 63)

THEN
DEST[128:0] <+ 00000000000000000000000000000000H;

ELSE
DEST[63:0] « ZeroExtend(DEST[63:0] << COUNT);
DEST[127:64] «— ZeroExtend(DEST[127:64] << COUNT);

Fl;

Intel C/C++ Compiler Intrinsic Equivalents

PSLLW __m64 _mm_slli_pi16 (__m64 m, int count)

PSLLW __m64 _mm_sll_pi16(_m64 m, __m64 count)
PSLLW __m128i _mm_slli_pi16(_m64 m, int count)

PSLLW __m128i _mm_slli_pi16(_m128i m, __m128i count)
PSLLD __m64 _mm_slli_pi32(_m64 m, int count)

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical Vol.2B 4-251

INSTRUCTION SET REFERENCE, N-Z

PSLLD __m64 _mm_sll_pi32(_m64 m, __m64 count)
PSLLD __m128i _mm_slli_epi32(_m128i m, int count)
PSLLD __m128i _mm_sll_epi32(_m128i m, __m128i count)
PSLLQ __m64 _mm_slli_si64(_m64 m, int count)

PSLLQ __m64 _mm_sll_si64(_m64 m, __m64 count)
PSLLQ __m128i _mm_slli_epi64(_m128im, int count)
PSLLQ __m128i _mm_sll_epi64(_m128i m, __m128i count)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

4-252 Vol.2B

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

#UD

#NM
H#MF

INSTRUCTION SET REFERENCE, N-Z

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical Vol.2B 4-253

INSTRUCTION SET REFERENCE, N-Z

PSRAW/PSRAD—Shift Packed Data Right Arithmetic

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFE1 /r PSRAW mm, Valid Valid Shift words in mm right by
mm/m64 mm/m64 while shifting in sign
bits.
66 OF E1 /r PSRAW xmm1, Valid Valid Shift words in xmm1 right by
xmm2/m128 xmm2/m128 while shiftingin sign
bits.
OF 71 /4ib PSRAW mm, imm8 Valid Valid Shift words in mm right by imm8
while shifting in sign bits
66 0OF 71 /4 ib PSRAW xmm1, Valid Valid Shift words in xmm1 right by
imm8 imm8 while shifting in sign bits
OFE2/r PSRAD mm, Valid Valid Shift doublewords in mm right by
mm/m64 mm/m64 while shifting in sign
bits.
66 OF E2 /T PSRAD xmm1, Valid Valid Shift doubleword in xmm1 right
xmmZ2/m128 by xmmZ2 /m128 while shifting in
sign bits.
OF 72 /4 ib PSRAD mm, imm8 Valid Valid Shift doublewords in mm right by
imma8 while shifting in sign bits.
66 0F72/4ib PSRAD xmm1, Valid Valid Shift doublewords in xmm1 right
imm8 by imm8 while shifting in sign bits.
Description

Shifts the bits in the individual data elements (words or doublewords) in the destina-
tion operand (first operand) to the right by the number of bits specified in the count
operand (second operand). As the bits in the data elements are shifted right, the
empty high-order bits are filled with the initial value of the sign bit of the data
element. If the value specified by the count operand is greater than 15 (for words) or
31 (for doublewords), each destination data element is filled with the initial value of
the sign bit of the element. (Figure 4-9 gives an example of shifting words in a 64-bit
operand.)

4-254 Vol.2B PSRAW/PSRAD—Shift Packed Data Right Arithmetic

INSTRUCTION SET REFERENCE, N-Z

Pre-Shift
DEST X3 X2 X1 X0

Shift Right |7 li L Ii

with Sign
Extension

1] / Y
POSB%@} X3 >> COUNT | X2 >> COUNT | X1 >> COUNT | X0 >> COUNT

Figure 4-9. PSRAW and PSRAD Instruction Operation Using a 64-bit Operand

The destination operand may be an MMX technology register or an XMM register; the
count operand can be either an MMX technology register or an 64-bit memory loca-
tion, an XMM register or a 128-bit memory location, or an 8-bit immediate. Note that
only the first 64-bits of a 128-bit count operand are checked to compute the count.

The PSRAW instruction shifts each of the words in the destination operand to the
right by the number of bits specified in the count operand, and the PSRAD instruction
shifts each of the doublewords in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSRAW instruction with 64-bit operand:
IF (COUNT > 15)
THEN COUNT « 16;
Fl;
DEST[15:0] « SignExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] « SignExtend(DEST[63:48] >> COUNT);

PSRAD instruction with 64-bit operand:
IF (COUNT > 31)
THEN COUNT « 32;
Fl;
DEST[31:0] « SignExtend(DEST[31:0] >> COUNT);
DEST[63:32] « SignkExtend(DEST[63:32] >> COUNT);

PSRAW instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];

PSRAW/PSRAD—Shift Packed Data Right Arithmetic Vol.2B 4-255

INSTRUCTION SET REFERENCE, N-Z

IF (COUNT > 15)
THEN COUNT « 16;
Fl;
DEST[15:0] « SignExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] « SignExtend(DEST[127:112] >> COUNT);

PSRAD instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN COUNT « 32;
Fl;
DEST[31:0] « SignExtend(DEST[31:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] « SignExtend(DEST[127:96] >>COUNT);

Intel C/C++ Compiler Intrinsic Equivalents

PSRAW __m64 _mm_srai_pi16 (__m64 m, int count)

PSRAW __m64 _mm_sra_pi16 (__m64 m, __m64 count)
PSRAD __m64 _mm_srai_pi32 (__m64 m, int count)

PSRAD __m64 _mm_sra_pi32 (__m64 m, __m64 count)
PSRAW __m128i _mm_srai_epi16(_m128im, int count)
PSRAW _ m128i _mm_sra_epi16(_m128i m, __m128i count))

PSRAD __m128i _mm_srai_epi32 (__m128im, int count)
PSRAD __m128i _mm_sra_epi32 (__m128i m, __m128i count)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

4-256 Vol.2B PSRAW/PSRAD—Shift Packed Data Right Arithmetic

INSTRUCTION SET REFERENCE, N-Z

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

PSRAW/PSRAD—Shift Packed Data Right Arithmetic Vol.2B 4-257

INSTRUCTION SET REFERENCE, N-Z

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-258 Vol.2B

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PSRAW/PSRAD—Shift Packed Data Right Arithmetic

INSTRUCTION SET REFERENCE, N-Z

PSRLDQ—Shift Double Quadword Right Logical

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 73/3ib PSRLDQ xmm1, Valid Valid Shift xmm1 right by imm8 while
imm8 shifting in Os.
Description

Shifts the destination operand (first operand) to the right by the number of bytes
specified in the count operand (second operand). The empty high-order bytes are
cleared (set to all 0s). If the value specified by the count operand is greater than 15,
the destination operand is set to all Os. The destination operand is an XMM register.
The count operand is an 8-bit immediate.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

TEMP « COUNT;
IF (TEMP > 15) THEN TEMP « 16; FI;
DEST « DEST >> (temp * 8);

Intel C/C++ Compiler Intrinsic Equivalents
PSRLDQ _ m128i _mm_srli_si128 (_m128i 3, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

PSRLDQ—Shift Double Quadword Right Logical Vol.2B 4-259

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Numeric Exceptions

None.

4-260 Vol.2B PSRLDQ—Shift Double Quadword Right Logical

INSTRUCTION SET REFERENCE, N-Z

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFD1/r PSRLW mm, Valid Valid Shift words in mm right by amount
mm/m64 specified in mm/m64 while shifting in
Os.
66 0FD1/r PSRLW xmm1, Valid Valid Shift words in xmm1 right by amount
xmmZ2/m128 specified in xmmZ2/m128 while
shifting in Os.
OF 71 /2ib PSRLW mm, Valid Valid Shift words in mm right by imm8 while
imm8 shifting in Os.
66 0F 71 /2ib PSRWW xmm1, Valid Valid Shift words in xmm1 right by imm8
imm8 while shifting in Os.
OFD2/r PSRLD mm, Valid Valid Shift doublewords in mm right by
mm/m64 amount specified in mm/m64 while
shifting in Os.
66 0FD2/r PSRLD xmm1, Valid Valid Shift doublewords in xmm1 right by
xmmZ2/m128 amount specified in xmmZ2 /m128
while shifting in Os.
OF72/2ib PSRLD mm, Valid Valid Shift doublewords in mm right by
imm8 imm8 while shifting in Os.
66 OF 72 /2ib PSRLD xmm1, Valid Valid Shift doublewords in xmm1 right by
imm8 imm8 while shifting in Os.
OFD3/r PSRLQ mm, Valid Valid Shift mm right by amount specified in
mm/m64 mm/m64 while shifting in Os.
66 OF D3 /r PSRLQ xmm1, Valid Valid Shift quadwords in xmm1 right by
xmm2/m128 amount specified in xmm2/m128
while shifting in Os.
OF73/2ib PSRLQ mm, Valid Valid Shift mm right by imm8 while shifting
imm8 in Os.
66 OF 73 /2ib PSRLQ xmm1, Valid Valid Shift quadwords in xmm1 right by
imm8 imm8 while shifting in Os.
Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in
the destination operand (first operand) to the right by the number of bits specified in
the count operand (second operand). As the bits in the data elements are shifted
right, the empty high-order bits are cleared (set to 0). If the value specified by the
count operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

Vol. 2B 4-261

INSTRUCTION SET REFERENCE, N-Z

quadword), then the destination operand is set to all Os. Figure 4-10 gives an
example of shifting words in a 64-bit operand.

The destination operand may be an MMX technology register or an XMM register; the
count operand can be either an MMX technology register or an 64-bit memory loca-
tion, an XMM register or a 128-bit memory location, or an 8-bit immediate. Note that
only the first 64-bits of a 128-bit count operand are checked to compute the count.

Pre-Shift
DEST X3 X2 X1 X0

Shift Right _ I—
with Zero
Extension
Y Y Y
POSE?E@}- X3 >> COUNT | X2>> COUNT | X1 >> COUNT | X0 >> COUNT

Figure 4-10. PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit Operand

The PSRLW instruction shifts each of the words in the destination operand to the right
by the number of bits specified in the count operand; the PSRLD instruction shifts
each of the doublewords in the destination operand; and the PSRLQ instruction shifts
the quadword (or quadwords) in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSRLW instruction with 64-bit operand:
IF (COUNT > 15)
THEN
DEST[64:0] « 0000000000000000H
ELSE
DEST[15:0] « ZeroExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] « ZeroExtend(DEST[63:48] >> COUNT);
Fl;

PSRLD instruction with 64-bit operand:

IF (COUNT > 31)

THEN
DEST[64:0] «+ 0000000000000000H

ELSE
DEST[31:0] « ZeroExtend(DEST[31:0] >> COUNT);
DEST[63:32] « ZeroExtend(DEST[63:32] >> COUNT);

Fl;

4-262 Vol.2B PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, N-Z

PSRLQ instruction with 64-bit operand:
IF (COUNT > 63)
THEN
DEST[64:0] « 0000000000000000H
ELSE
DEST « ZeroExtend(DEST >> COUNT);
Fl;

PSRLW instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN
DEST[128:0] «+ 00000000000000000000000000000000H
ELSE
DEST[15:0] « ZeroExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] « ZeroExtend(DEST[127:112] >> COUNT);
Fl;

PSRLD instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN
DEST[128:0] «+~ 00000000000000000000000000000000H
ELSE
DEST[31:0] « ZeroExtend(DEST[31:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] « ZeroExtend(DEST[127:96] >> COUNT);
Fl;

PSRLQ instruction with 128-bit operand:

COUNT « COUNT_SOURCE[63:0];

IF (COUNT > 15)

THEN
DEST[128:0] « 00000000000000000000000000000000H

ELSE
DEST[63:0] « ZeroExtend(DEST[63:0] >> COUNT);
DEST[127:64] « ZeroExtend(DEST[127:64] >> COUNT);

Fl;

Intel C/C++ Compiler Intrinsic Equivalents

PSRLW __m64 _mm_srli_pi16(_m64 m, int count)
PSRLW __m64 _mm_srl_pi16 (__m64 m, _m64 count)

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical Vol.2B 4-263

INSTRUCTION SET REFERENCE, N-Z

PSRLW __m128i _mm_srli_epi16 (__m128i m, int count)
PSRLW __m128i _mm_srl_epi16 (_m128i m, __m128i count)

PSRLD __m64 _mm_srli_pi32 (__m64 m, int count)

PSRLD __m64 _mm_srl_pi32 (__m64 m, __m64 count)
PSRLD __m128i _mm_srli_epi32 (__m128im, int count)
PSRLD __m128i _mm_srl_epi32 (__m128im, _m128i count)
PSRLQ __m64 _mm_srli_si64 (_m64 m, int count)

PSRLQ __m64 _mm_srl_si64 (__m64 m, __m64 count)
PSRLQ __m128i _mm_srli_epi64 (__m128im, int count)
PSRLQ __m128i _mm_srl_epi64 (__m128im, _m128i count)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-264 Vol.2B

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical Vol.2B 4-265

INSTRUCTION SET REFERENCE, N-Z

PSUBB/PSUBW/PSUBD—Subtract Packed Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF F8/r PSUBB mm, Valid Valid Subtract packed byte integers in
mm/m64 mm/m64 from packed byte integers in
mm.
66 OF F8/r PSUBB xmm1, Valid Valid Subtract packed byte integers in
xmm2/m128 xmmZ2/m128 from packed byte
integers in xmm71.
OFF9 /r PSUBW mm, Valid Valid Subtract packed word integers in
mm/m64 mm/m64 from packed word integers in
mm.
66 OF F9/r PSUBW xmm1, Valid Valid Subtract packed word integers in
xmm2/m128 xmmZ2/m128 from packed word
integers in xmm1.
OF FA/r PSUBD mm, Valid Valid Subtract packed doubleword integers
mm/mé64 in mm/m64 from packed doubleword
integers in mm.
66 OF FA/r PSUBD xmm1, Valid Valid Subtract packed doubleword integers
xmmZ2/m128 in xmmZ2/mem128 from packed
doubleword integers in xmm1.

Description

Performs a SIMD subtract of the packed integers of the source operand (second
operand) from the packed integers of the destination operand (first operand), and
stores the packed integer results in the destination operand. See Figure 9-4 in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an
illustration of a SIMD operation. Overflow is handled with wraparound, as described
in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PSUBB instruction subtracts packed byte integers. When an individual result is
too large or too small to be represented in a byte, the result is wrapped around and
the low 8 bits are written to the destination element.

The PSUBW instruction subtracts packed word integers. When an individual result is
too large or too small to be represented in a word, the result is wrapped around and
the low 16 bits are written to the destination element.

4-266 Vol.2B PSUBB/PSUBW/PSUBD—Subtract Packed Integers

INSTRUCTION SET REFERENCE, N-Z

The PSUBD instruction subtracts packed doubleword integers. When an individual
result is too large or too small to be represented in a doubleword, the result is
wrapped around and the low 32 bits are written to the destination element.

Note that the PSUBB, PSUBW, and PSUBD instructions can operate on either
unsigned or signed (two's complement notation) packed integers; however, it does
not set bits in the EFLAGS register to indicate overflow and/or a carry. To prevent
undetected overflow conditions, software must control the ranges of values upon
which it operates.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSUBB instruction with 64-bit operands:
DEST[7:0] «— DEST[7:0] — SRC[7:0];
(* Repeat subtract operation for 2nd through 7th byte *)
DEST[63:56] « DEST[63:56] — SRC[63:56];

PSUBB instruction with 128-bit operands:
DEST[7:0] < DEST[7:0] — SRC[7:0];
(* Repeat subtract operation for 2nd through 14th byte *)
DEST[127:120] « DEST[111:120] — SRC[127:120];

PSUBW instruction with 64-bit operands:
DEST[15:0] «— DEST[15:0] — SRC[15:0];
(* Repeat subtract operation for 2nd and 3rd word *)
DEST[63:48] « DEST[63:48] — SRC[63:48];

PSUBW instruction with 128-bit operands:
DEST[15:0] « DEST[15:0]— SRC[15:0];
(* Repeat subtract operation for 2nd through 7th word *)
DEST[127:112] « DEST[127:112] - SRC[127:112];

PSUBD instruction with 64-bit operands:
DEST[31:0] « DEST[31:0] — SRC[31:0];
DEST[63:32] « DEST[63:32] — SRC[63:32];

PSUBD instruction with 128-bit operands:
DEST[31:0] « DEST[31:0]— SRC[31:0];
(* Repeat subtract operation for 2nd and 3rd doubleword *)
DEST[127:96] < DEST[127:96] — SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalents
PSUBB __m64 _mm_sub_pi8(__m64 m1, __m64 m2)

PSUBB/PSUBW/PSUBD—Subtract Packed Integers Vol. 2B 4-267

INSTRUCTION SET REFERENCE, N-Z

PSUBW __m64 _mm_sub_pi16(_m64 m1, __m64 m2)

PSUBD __m64 _mm_sub_pi32(_m64 m1,_m64 m2)
PSUBB __m128i _mm_sub_epi8 (_m128ia, __m128ib)
PSUBW __m128i _mm_sub_epi16 (__m128ia,__m128ib)
PSUBD __m128i _mm_sub_epi32 (_m128ia,__m128ib)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

4-268 Vol.2B

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one

PSUBB/PSUBW/PSUBD—Subtract Packed Integers

#NM
#MF

INSTRUCTION SET REFERENCE, N-Z

that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PSUBB/PSUBW/PSUBD—Subtract Packed Integers Vol.2B 4-269

INSTRUCTION SET REFERENCE, N-Z

PSUBQ—Subtract Packed Quadword Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFFB/r PSUBQ mm1, mm2/m64 Valid Valid Subtract quadword integer
in mm1 from mmZ2 /m64.
66 OF FB/r PSUBQ xmm1, xmm2/m128 Valid Valid Subtract packed quadword
integers in xmm1 from
xmmZ2 /m128.
Description

Subtracts the second operand (source operand) from the first operand (destination
operand) and stores the result in the destination operand. The source operand can be
a quadword integer stored in an MMX technology register or a 64-bit memory loca-
tion, or it can be two packed quadword integers stored in an XMM register or an
128-bit memory location. The destination operand can be a quadword integer stored
in an MMX technology register or two packed quadword integers stored in an XMM
register. When packed quadword operands are used, a SIMD subtract is performed.
When a quadword result is too large to be represented in 64 bits (overflow), the
result is wrapped around and the low 64 bits are written to the destination element
(that is, the carry is ignored).

Note that the PSUBQ instruction can operate on either unsigned or signed (two’s
complement notation) integers; however, it does not set bits in the EFLAGS register
to indicate overflow and/or a carry. To prevent undetected overflow conditions, soft-
ware must control the ranges of the values upon which it operates.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSUBQ instruction with 64-Bit operands:
DEST[63:0] « DEST[63:0] — SRC[63:0];

PSUBQ instruction with 128-Bit operands:
DEST[63:0] «— DEST[63:0] — SRC[63:0];
DEST[127:64] «— DEST[127:64] — SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalents

PSUBQ __m64 _mm_sub_si64(_m64 m1, _m64 m2)
PSUBQ __m128i _mm_sub_epi64(_m128i m1, _m128i m2)

4-270 Vol.2B PSUBQ—Subtract Packed Quadword Integers

INSTRUCTION SET REFERENCE, N-Z

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

PSUBQ—Subtract Packed Quadword Integers Vol.2B 4-271

INSTRUCTION SET REFERENCE, N-Z

#AC(0)

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-272 Vol.2B

If a memory address referencing the SS segment is in a hon-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PSUBQ—Subtract Packed Quadword Integers

INSTRUCTION SET REFERENCE, N-Z

PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed
Saturation

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFE8/r PSUBSB mm, Valid Valid Subtract signed packed bytes in
mm/m64 mm/m64 from signed packed bytes
in mm and saturate results.
66 OF E8 /r PSUBSB xmm]1, Valid Valid Subtract packed signed byte
xmmZ2/m128 integers in xmmZ2/m128 from

packed signed byte integers in
xmm1 and saturate results.

OFEQ/r PSUBSW mm, Valid Valid Subtract signed packed words in
mm/m64 mm/m64 from signed packed words
in mm and saturate results.
66 OF E9 /r PSUBSW xmm1, Valid Valid Subtract packed signed word
xmm2/m128 integers in xmmZ2/m128 from

packed signed word integers in
xmm1 and saturate results.

Description

Performs a SIMD subtract of the packed signed integers of the source operand
(second operand) from the packed signed integers of the destination operand (first
operand), and stores the packed integer results in the destination operand. See
Figure 9-4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, for an illustration of a SIMD operation. Overflow is handled with signed
saturation, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PSUBSB instruction subtracts packed signhed byte integers. When an individual
byte result is beyond the range of a signed byte integer (that is, greater than 7FH or
less than 80H), the saturated value of 7FH or 80H, respectively, is written to the
destination operand.

The PSUBSW instruction subtracts packed signed word integers. When an individual
word result is beyond the range of a signed word integer (that is, greater than 7FFFH
or less than 8000H), the saturated value of 7FFFH or 8000H, respectively, is written
to the destination operand.

PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation Vol.2B 4-273

INSTRUCTION SET REFERENCE, N-Z

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSUBSB instruction with 64-bit operands:
DEST[7:0] « SaturateToSignedByte (DEST[7:0] — SRC (7:0));
(* Repeat subtract operation for 2nd through 7th bytes *)
DEST[63:56] « SaturateToSignedByte (DEST[63:56] — SRC[63:56]);

PSUBSB instruction with 128-bit operands:
DEST[7:0] « SaturateToSignedByte (DEST[7:0] — SRC[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] « SaturateToSignedByte (DEST[111:120] — SRC[127:120]);

PSUBSW instruction with 64-bit operands
DEST[15:0] « SaturateToSignedWord (DEST[15:0] — SRC[15:0]);
(* Repeat subtract operation for 2nd and 7th words *)
DEST[63:48] « SaturateToSignedWord (DEST[63:48] — SRC[63:48]);

PSUBSW instruction with 128-bit operands
DEST[15:0] « SaturateToSignedword (DEST[15:0] — SRC[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] « SaturateToSignedWord (DEST[127:112] — SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PSUBSB __m64 _mm_subs_pi8(_m64 m1, __m64 m2)
PSUBSB __m128i _mm_subs_epi8(_m128im1, _m128i m2)
PSUBSW __m64 _mm_subs_pi16(_m64 m1, __m64 m2)

PSUBSW __m128i _mm_subs_epi16(_m128im1, _m128im2)
Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

4-274 \Vol.2B PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation

INSTRUCTION SET REFERENCE, N-Z

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation Vol.2B 4-275

INSTRUCTION SET REFERENCE, N-Z

#SS(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-276 Vol.2B

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation

INSTRUCTION SET REFERENCE, N-Z

PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with
Unsigned Saturation

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFD8/r PSUBUSB mm, Valid Valid Subtract unsigned packed bytes in
mm/m64 mm/m64 from unsigned packed
bytes in mm and saturate result.
66 0OFD8/r PSUBUSB xmm1, Valid Valid Subtract packed unsigned byte
xmm2/m128 integers in xmmZ2/m128 from packed

unsigned byte integers in xmm1 and
saturate result.

OFD9/r PSUBUSW mm, Valid Valid Subtract unsigned packed words in
mm/mé64 mm/m64 from unsigned packed
words in mm and saturate result.
66 OFD9 /r PSUBUSW xmm1, Valid Valid Subtract packed unsigned word
xmm2/m128 integers in xmmZ2/m128 from packed

unsigned word integers in xmm1 and
saturate result.

Description

Performs a SIMD subtract of the packed unsigned integers of the source operand
(second operand) from the packed unsigned integers of the destination operand (first
operand), and stores the packed unsigned integer results in the destination operand.
See Figure 9-4 in the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 1, for an illustration of a SIMD operation. Overflow is handled with
unsigned saturation, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PSUBUSB instruction subtracts packed unsigned byte integers. When an indi-
vidual byte result is less than zero, the saturated value of OOH is written to the desti-
nation operand.

The PSUBUSW instruction subtracts packed unsigned word integers. When an indi-
vidual word result is less than zero, the saturated value of O0O0O0H is written to the
destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned Saturation Vol.2B 4-277

INSTRUCTION SET REFERENCE, N-Z

Operation

PSUBUSB instruction with 64-bit operands:
DEST[7:0] « SaturateToUnsignedByte (DEST[7:0] — SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] « SaturateToUnsignedByte (DEST[63:56] — SRC[63:56];

PSUBUSB instruction with 128-bit operands:
DEST[7:0] « SaturateToUnsignedByte (DEST[7:0] — SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] « SaturateToUnSignedByte (DEST[127:120] — SRC[127:120]);

PSUBUSW instruction with 64-bit operands:
DEST[15:0] « SaturateToUnsignedWord (DEST[15:0] — SRC[15:0]);
(* Repeat add operation for 2nd and 3rd words *)
DEST[63:48] « SaturateToUnsignedWord (DEST[63:48] — SRC[63:48]);

PSUBUSW instruction with 128-bit operands:
DEST[15:0] « SaturateToUnsignedWord (DEST[15:0] — SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] « SaturateToUnSignedWord (DEST[127:112] — SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PSUBUSB __m64 _mm_subs_pu8(__m64 m1, __m64 m2)
PSUBUSB __m128i _mm_subs_epu8(_m128im1,_m128im2)
PSUBUSW __m64 _mm_subs_pu16(_m64 m1, __m64 m2)
PSUBUSW __m128i _mm_subs_epul16(_m128im1,_m128i m2)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

4-278 Vol.2B PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned Saturation Vol.2B 4-279

INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-280 Vol.2B PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z

PTEST- Logical Compare

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 38 17 /r PTEST xmm]1, Valid Valid Set ZF if xmmZ2/m128 AND xmm1
xmm2/m128 resultis all Os. Set CF if xmm2/m128
AND NOT xmm1 result is all Os.

Description

Performs a bitwise AND of the destination operand (first operand) and the source
operand (second operand), then sets the ZF flag only if all bits in the result are O.
PTEST sets the CF flag if all bits in the result are O of the bitwise AND of the source
operand (second operand) and the bitwise logical NOT of the destination operand.

Operation

IF (SRC[127:0] bitwiseAND DEST[127:0] = 0)
THEN ZF & 1;
ELSE ZF € O; FI;

IF (SRC[127:0] bitwiseAND (bitwiseNOT DEST[127:0]) = 0)
THEN CF € 1;
ELSE CF < O; FI;

DEST[127:0] Unmodified;

AF = OF = PF = SF < O;

Intel C/C++ Compiler Intrinsic Equivalent

PTEST int_mm_testz_si128 (_m128is1, _m128is2);
int _mm_testc_si128 (__m128is1, __m128is2);
int _mm_testnzc_si128 (_m128is1, __m128is2);

Flags Affected

The OF, AF, PF, SF flags are cleared and the ZF, CF flags are set according to the oper-
ation

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

PTEST- Logical Compare Vol. 2B 4-281

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code)
#NM
#UD

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

4-282 Vol.2B

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

PTEST- Logical Compare

INSTRUCTION SET REFERENCE, N-Z

Either the prefix REP (F3h) or REPN (F2H) is used.

PTEST- Logical Compare Vol.2B 4-283

INSTRUCTION SET REFERENCE, N-Z

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack

High Data
Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 68 /r PUNPCKHBW mm, Valid Valid Unpack and interleave high-order
mm/m64 bytes from mm and mm/m64
into mm.
66 OF 68 /r PUNPCKHBW xmm1, Valid Valid Unpack and interleave high-order
xmm2/m128 bytes from xmm1 and
xmmZ2/m128into xmm1.
OF69/r PUNPCKHWD mm, Valid Valid Unpack and interleave high-order
mm/mé64 words from mm and mm/m64
into mm.
66 OF 69 /r PUNPCKHWD xmm1T, Valid Valid Unpack and interleave high-order
xmmZ2/m128 words from xmm71 and
xmmZ2/m128into xmm1.
OF6A/r PUNPCKHDQ mm, Valid Valid Unpack and interleave high-order
mm/mé64 doublewords from mm and
mm/m64 into mm.
66 OF 6A /r PUNPCKHDQ xmm1, Valid Valid Unpack and interleave high-order
xmmZ2/m128 doublewords from xmm1 and
xmmZ2/m128into xmm1.
66 OF 6D /r PUNPCKHQDQ xmm1, Valid Valid Unpack and interleave high-order
xmm2/m128 quadwords from xmm71 and
xmm2/m128into xmm1.
Description

Unpacks and interleaves the high-order data elements (bytes, words, doublewords,
or quadwords) of the destination operand (first operand) and source operand
(second operand) into the destination operand. Figure 4-11 shows the unpack oper-
ation for bytes in 64-bit operands. The low-order data elements are ignored.

4-284 Vol.2B

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data

INSTRUCTION SET REFERENCE, N-Z

SRC|{Y7|Y6 | Y5|Y4|Y3]|Y2|Y1l]|YO X7 | X6 | X5| X4 | X3 |X2 | X1 |X0 [DEST

DEST| Y7 | X7 | Y6 | X6 |Y5 | X5 |Y4 | X4

Figure 4-11. PUNPCKHBW Instruction Operation Using 64-bit Operands

The source operand can be an MMX technology register or a 64-bit memory location,
or it can be an XMM register or a 128-bit memory location. The destination operand
can be an MMX technology register or an XMM register. When the source data comes
from a 64-bit memory operand, the full 64-bit operand is accessed from memory, but
the instruction uses only the high-order 32 bits. When the source data comes from a
128-bit memory operand, an implementation may fetch only the appropriate 64 bits;
however, alignment to a 16-byte boundary and normal segment checking will still be
enforced.

The PUNPCKHBW instruction interleaves the high-order bytes of the source and
destination operands, the PUNPCKHWD instruction interleaves the high-order words
of the source and destination operands, the PUNPCKHDQ instruction interleaves the
high-order doubleword (or doublewords) of the source and destination operands,
and the PUNPCKHQDQ instruction interleaves the high-order quadwords of the
source and destination operands.

These instructions can be used to convert bytes to words, words to doublewords,
doublewords to quadwords, and quadwords to double quadwords, respectively, by
placing all Os in the source operand. Here, if the source operand contains all Os, the
result (stored in the destination operand) contains zero extensions of the high-order
data elements from the original value in the destination operand. For example, with
the PUNPCKHBW instruction the high-order bytes are zero extended (that is,
unpacked into unsigned word integers), and with the PUNPCKHWD instruction, the
high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PUNPCKHBW instruction with 64-bit operands:
DEST[7:0] < DEST[39:32];
DEST[15:8] « SRC[39:32];
DEST[23:16] «<— DEST[47:40];
DEST[31:24] « SR(C[47:40];

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data Vol. 2B 4-285

INSTRUCTION SET REFERENCE, N-Z

DEST[39:32] « DEST[55:48];
DEST[47:40] « SRC[55:48];
DEST[55:48] « DEST[63:56];
DEST[63:56] « SRC[63:56];

PUNPCKHW instruction with 64-bit operands:
DEST[15:0] « DEST[47:32];
DEST[31:16] « SRC[47:32];
DEST[47:32] « DEST[63:48];
DEST[63:48] «— SR(C[63:48];

PUNPCKHDQ instruction with 64-bit operands:
DEST[31:0] «— DEST[63:32];
DEST[63:32] « SRC[63:32];

PUNPCKHBW instruction with 128-bit operands:
DEST[7:0]«— DEST[71:64];
DEST[15:8] « SRC[71:64];
DEST[23:16] « DEST[79:72];
DEST[31:24] « SR(C[79:72];
DEST[39:32] « DEST[87:80];
DEST[47:40] « SRC[87:80];
DEST[55:48] « DEST[95:88];
DEST[63:56] « SRC[95:88];
DEST[71:64] « DEST[103:96];
DEST[79:72] « SRC[103:96];
DEST[87:80] «— DEST[111:104];
DEST[95:88] «— SRC[111:104];
DEST[103:96] « DEST[119:112];
DEST[111:104] « SRC[119:112];
DEST[119:112] «~ DEST[127:120];
DEST[127:120] « SRC[127:120];

PUNPCKHWD instruction with 128-bit operands:
DEST[15:0] « DEST[79:64];
DEST[31:16] « SRC[79:64];
DEST[47:32] « DEST[95:80];
DEST[63:48] « SR(C[95:80];
DEST[79:64] « DEST[111:96];
DEST[95:80] « SRC[111:96];
DEST[111:96] « DEST[127:112];
DEST[127:112] « SRC[127:112];

PUNPCKHDQ instruction with 128-bit operands:
DEST[31:0] « DEST[95:64];
DEST[63:32] « SRC[95:64];

4-286 Vol.2B PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data

INSTRUCTION SET REFERENCE, N-Z

DEST[95:64] « DEST[127:96];
DEST[127:96] « SRC[127:96];

PUNPCKHQDAQ instruction:
DEST[63:0] «— DEST[127:64];
DEST[127:64] « SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalents

PUNPCKHBW __m64 _mm_unpackhi_pi8(__m64 m1, __m64 m2)
PUNPCKHBW __m128i _mm_unpackhi_epi8(_m128im1, _m128i m2)
PUNPCKHWD __m64 _mm_unpackhi_pi16(_m64 m1,__m64 m2)
PUNPCKHWD __m128i _mm_unpackhi_epi16(_m128i m1,__m128i m2)
PUNPCKHDQ __m64 _mm_unpackhi_pi32(_m64 m1, _m64 m2)
PUNPCKHDQ __m128i _mm_unpackhi_epi32(_m128i m1, _m128i m2)

PUNPCKHQDQ __m128i_mm_unpackhi_epi64 (_m128ia, __m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions (except PUNPCKHQDQ) on a non-SSE2
capable processor (one that is MMX technology capable) will
result in the instruction operating on the mm registers, not #UD.
(PUNPCKHQDQ only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data Vol. 2B 4-287

INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address
space from O to FFFFH.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0OSFXSR[bit 9] = 0. Execution
of 128-bit instructions (except PUNPCKHQDQ) on a non-SSE2
capable processor (one that is MMX technology capable) will
result in the instruction operating on the mm registers, not #UD.

(PUNPCKHQDQ only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit version only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

4-288 Vol.2B PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data Vol. 2B 4-289

INSTRUCTION SET REFERENCE, N-Z

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—
Unpack Low Data

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF60/r PUNPCKLBW mm, Valid Valid Interleave low-order bytes from
mm/m32 mm and mm/m32 into mm.
66 OF 60 /r PUNPCKLBW xmm1, Valid Valid Interleave low-order bytes from
xmmZ2/m128 xmm1 and xmmZ2/m128 into
xmmT.
OF 61 /r PUNPCKLWD mm, Valid Valid Interleave low-order words from
mm/m32 mm and mm/m32 into mm.
66 OF 61 /r PUNPCKLWD xmm1, Valid Valid Interleave low-order words from
xmm2/m128 xmm1 and xmmZ2/m128into
xmm1.
OF 62 /r PUNPCKLDQ mm, Valid Valid Interleave low-order doublewords
mm/m32 from mm and mm/m32 into mm.
66 OF 62 /r PUNPCKLDQ xmm1, Valid Valid Interleave low-order doublewords
xmmZ2/m128 from xmm1 and xmmZ2/m128into
xmmT.
66 OF 6C/r PUNPCKLQDQ xmm1, Valid Valid Interleave low-order quadword
xmm2/m128 from xmm1 and xmmZ2/m128 into
xmm1 register.
Description

Unpacks and interleaves the low-order data elements (bytes, words, doublewords,
and quadwords) of the destination operand (first operand) and source operand
(second operand) into the destination operand. (Figure 4-12 shows the unpack oper-
ation for bytes in 64-bit operands.). The high-order data elements are ignored.

SRC| Y7

Y6 [Y5|Y4 |Y

DEST

DEST

3|1Y2|Y1|YO X7 X6 | X5[X4 | X3 [X2 | X1|X0
Y3 [X3|Y2|X2[Y1l|X1|YO |X0

Figure 4-12. PUNPCKLBW Instruction Operation Using 64-bit Operands

4-290 Vol.2B

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data

INSTRUCTION SET REFERENCE, N-Z

The source operand can be an MMX technology register or a 32-bit memory location,
or it can be an XMM register or a 128-bit memory location. The destination operand
can be an MMX technology register or an XMM register. When the source data comes
from a 128-bit memory operand, an implementation may fetch only the appropriate
64 bits; however, alignment to a 16-byte boundary and normal segment checking
will still be enforced.

The PUNPCKLBW instruction interleaves the low-order bytes of the source and desti-
nation operands, the PUNPCKLWD instruction interleaves the low-order words of the
source and destination operands, the PUNPCKLDQ instruction interleaves the low-
order doubleword (or doublewords) of the source and destination operands, and the
PUNPCKLQDQ instruction interleaves the low-order quadwords of the source and
destination operands.

These instructions can be used to convert bytes to words, words to doublewords,
doublewords to quadwords, and quadwords to double quadwords, respectively, by
placing all Os in the source operand. Here, if the source operand contains all Os, the
result (stored in the destination operand) contains zero extensions of the high-order
data elements from the original value in the destination operand. For example, with
the PUNPCKLBW instruction the high-order bytes are zero extended (that is,
unpacked into unsigned word integers), and with the PUNPCKLWD instruction, the
high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PUNPCKLBW instruction with 64-bit operands:
DEST[63:56] « SRC[31:24];
DEST[55:48] «— DEST[31:24];
DEST[47:40] « SRC[23:16];
DEST[39:32] «— DEST[23:16];
DEST[31:24] « SRC[15:8];
DEST[23:16] « DEST[15:8];
DEST[15:8] «- SRC[7:0];
DEST[7:0] « DEST[7:0];

PUNPCKLWD instruction with 64-bit operands:
DEST[63:48] « SR(C[31:16];
DEST[47:32] « DEST[31:16];
DEST[31:16] « SRC[15:0];
DEST[15:0] «— DEST[15:0];

PUNPCKLDQ instruction with 64-bit operands:
DEST[63:32] «— SRC[31:0];
DEST[31:0] « DEST[31:0];

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data Vol.2B 4-291

INSTRUCTION SET REFERENCE, N-Z

PUNPCKLBW instruction with 128-bit operands:
DEST[7:0]« DEST[7:0];
DEST[15:8] « SRC[7:0];
DEST[23:16] « DEST[15:8];
DEST[31:24] « SR([15:8];
DEST[39:32] « DEST[23:16];
DEST[47:40] « SRC[23:16];
DEST[55:48] « DEST[31:24];
DEST[63:56] « SRC[31:24];
DEST[71:64] « DEST[39:32];
DEST[79:72] « SRC[39:32];
DEST[87:80] « DEST[47:40];
DEST[95:88] « SR(C[47:40];
DEST[103:96] « DEST[55:48];
DEST[111:104] « SRC[55:48];
DEST[119:112] «— DEST[63:56];
DEST[127:120] « SRC[63:56];

PUNPCKLWD instruction with 128-bit operands:
DEST[15:0] « DEST[15:0];
DEST[31:16] « SRC[15:0];
DEST[47:32] <« DEST[31:16];
DEST[63:48] « SRC[31:16];
DEST[79:64] < DEST[47:32];
DEST[95:80] « SR([47:32];
DEST[111:96] « DEST[63:48];
DEST[127:112] « SRC[63:48];

PUNPCKLDQ instruction with 128-bit operands:
DEST[31:0] « DEST[31:0];
DEST[63:32] « SRC[31:0];
DEST[95:64] « DEST[63:32];
DEST[127:96] «— SRC[63:32];

PUNPCKLQDQ
DEST[63:0] < DEST[63:0];
DEST[127:64] « SRC[63:0];

Intel C/C++ Compiler Intrinsic Equivalents

PUNPCKLBW __m64 _mm_unpacklo_pi8 (_m64 m1, __m64 m2)
PUNPCKLBW __m128i _mm_unpacklo_epi8 (__m128i m1, __m128i m2)
PUNPCKLWD __m64 _mm_unpacklo_pi16 (__m64 m1, __m64 m2)
PUNPCKLWD __m128i _mm_unpacklo_epi16 (__m128im1, __m128im2)

4-292 Vol.2B PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data

INSTRUCTION SET REFERENCE, N-Z

PUNPCKLDQ __m64 _mm_unpacklo_pi32 (__m64 m1, __m64 m2)
PUNPCKLDQ __m128i _mm_unpacklo_epi32 (__m128im1, _m128i m2)
PUNPCKLQDQ __m128i _mm_unpacklo_epi64 (__m128im1, _m128i m2)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions (PUNPCKLQDQ) on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

(PUNPCKLQDQ only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions (except PUNPCKLQDQ) on a non-SSE2

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data Vol. 2B 4-293

INSTRUCTION SET REFERENCE, N-Z

#NM
#MF

capable processor (one that is MMX technology capable) will
result in the instruction operating on the mm registers, not #UD.

(PUNPCKLQDQ only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-294 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit version only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data

INSTRUCTION SET REFERENCE, N-Z

PUSH—Push Word, Doubleword or Quadword Onto the Stack

Opcode*

FF /6
FF /6
FF /6

50+rw
50+rd
50+rd

6A

68

68

0€
16
1€
06
OF AO

OF AO

OF AO

OF A8

OF A8

Instruction

PUSH r/m16
PUSH r/m32
PUSH r/m64

PUSH r16
PUSH r32
PUSH r64

PUSH imm8

PUSH imm16

PUSH imm32

PUSH CS
PUSH SS
PUSH DS
PUSH ES
PUSH FS

PUSH FS

PUSH FS

PUSH GS

PUSH GS

64-Bit
Mode

Valid
N.E.
Valid

Valid
N.E.
Valid

Valid

Valid

Valid

Invalid
Invalid
Invalid
Invalid
Valid

N.E.

Valid

Valid

N.E.

Compat/
Leg Mode

Valid
Valid
N.E.

Valid
Valid
N.E.

Valid

Valid

Valid

Valid
Valid
Valid
Valid
Valid

Valid

N.E.

Valid

Valid

Description

Push r/m16.
Push r/m32.

Push r/m64. Default operand size 64-
bits.

Push r16.
Push r32.

Push r64. Default operand size
64-bits.

Push sign-extended imm8. Stack
pointer is incremented by the size of
stack pointer.

Push sign-extended imm16. Stack
pointer is incremented by the size of
stack pointer.

Push sign-extended imm32. Stack
pointer is incremented by the size of
stack pointer.

Push CS.
Push SS.
Push DS.
Push ES.

Push FS and decrement stack pointer
by 16 bits.

Push FS and decrement stack pointer
by 32 bits.

Push FS. Default operand size 64-bits.
(66H override causes 16-bit
operation).

Push GS and decrement stack pointer
by 16 bits.

Push GS and decrement stack pointer
by 32 bits.

PUSH—Push Word, Doubleword or Quadword Onto the Stack

Vol. 2B 4-295

INSTRUCTION SET REFERENCE, N-Z

Opcode* Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF A8 PUSH GS Valid N.E. Push GS, default operand size 64-bits.
(66H override causes 16-bit
operation).
NOTES:

* See |A-32 Architecture Compatibility section below.

Description

Decrements the stack pointer and then stores the source operand on the top of the
stack. The address-size attribute of the stack segment determines the stack pointer
size (16, 32 or 64 bits). The operand-size attribute of the current code segment
determines the amount the stack pointer is decremented (2, 4 or 8 bytes).

In non-64-bit modes: if the address-size and operand-size attributes are 32, the
32-bit ESP register (stack pointer) is decremented by 4. If both attributes are 16, the
16-bit SP register (stack pointer) is decremented by 2.

If the source operand is an immediate and its size is less than the address size of the
stack, a signh-extended value is pushed on the stack. If the source operand is the FS
or GS and its size is less than the address size of the stack, the zero-extended value
is pushed on the stack.

The B flag in the stack segment’s segment descriptor determines the stack’s address-
size attribute. The D flag in the current code segment’s segment descriptor (with
prefixes), determines the operand-size attribute and the address-size attribute of the
source operand. Pushing a 16-bit operand when the stack address-size attribute is 32
can result in a misaligned stack pointer (a stack pointer that is not be aligned on a
doubleword boundary).

The PUSH ESP instruction pushes the value of the ESP register as it existed before
the instruction was executed. Thus if a PUSH instruction uses a memory operand in
which the ESP register is used for computing the operand address, the address of the
operand is computed before the ESP register is decremented.

In the real-address mode, if the ESP or SP register is 1 when the PUSH instruction is
executed, an #SS exception is generated but not delivered (the stack error reported
prevents #SS delivery). Next, the processor generates a #DF exception and enters a
shutdown state as described in the #DF discussion in Chapter 5 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

In 64-bit mode, the instruction’s default operation size is 64 bits. In a push, the
64-bit RSP register (stack pointer) is decremented by 8. A 66H override causes
16-bit operation. Note that pushing a 16-bit operand can result in the stack pointer
misaligned to 8-byte boundary.

4-296 Vol.2B PUSH—Push Word, Doubleword or Quadword Onto the Stack

INSTRUCTION SET REFERENCE, N-Z

IA-32 Architecture Compatibility

For 1A-32 processors from the Intel 286 on, the PUSH ESP instruction pushes the
value of the ESP register as it existed before the instruction was executed. (This is
also true for Intel 64 architecture, real-address and virtual-8086 modes of 1A-32
architecture.) For the Intel® 8086 processor, the PUSH SP instruction pushes the new
value of the SP register (that is the value after it has been decremented by 2).

Operation
IF StackAddrSize = 64
THEN
IF OperandSize = 64
THEN
RSP « (RSP — 8);
IF (SRCis FS or GS)
THEN
TEMP = ZeroExtend64(SRC);
ELSE IF (SRC is IMMEDIATE)
TEMP = Signextend64(SRC); FI;
ELSE
TEMP = SRC;
FI
RSP « TEMP; (* Push quadword *)
ELSE (* OperandSize = 16; 66H used *)
RSP « (RSP - 2);
RSP « SRC; (* Push word *)
Fl;
ELSE IF StackAddrSize = 32
THEN
IF OperandSize = 32

THEN
ESP « (ESP —4);
IF (SRCis FS or GS)
THEN
TEMP = ZeroExtend32(SRC);
ELSE IF (SRC is IMMEDIATE)
TEMP = Signextend32(SRC); FI;
ELSE
TEMP = SRC;
Fl;
SS:ESP « TEMP; (* Push doubleword *)
ELSE (* OperandSize = 16%)
ESP « (ESP - 2);
SS:ESP « SRC; (* Push word *)

PUSH—Push Word, Doubleword or Quadword Onto the Stack Vol. 2B 4-297

INSTRUCTION SET REFERENCE, N-Z

Fl;

ELSE StackAddrSize = 16
IF OperandSize = 16

THEN

SP « (SP - 2);
SS:SP « SRC; (* Push word *)
ELSE (* OperandSize = 32 *)
SP « (SP — 4);
SS:SP « SRC; (* Push doubleword *)

Fl;
Fl;
Fl;

Flags Affected

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP

#SS

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If the new value of the SP or ESP register is outside the stack
segment limit.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)

4-298 Vol.2B

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

PUSH—Push Word, Doubleword or Quadword Onto the Stack

INSTRUCTION SET REFERENCE, N-Z

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

#SS(U) If the stack address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

PUSH—Push Word, Doubleword or Quadword Onto the Stack Vol. 2B 4-299

INSTRUCTION SET REFERENCE, N-Z

PUSHA/PUSHAD—Push All General-Purpose Registers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
60 PUSHA Invalid Valid Push AX, CX, DX, BX, original SP, BP, SI, and
DI.
60 PUSHAD Invalid Valid Push EAX, ECX, EDX, EBX, original ESP, EBP,
ESI, and EDI.
Description

Pushes the contents of the general-purpose registers onto the stack. The registers
are stored on the stack in the following order: EAX, ECX, EDX, EBX, ESP (original
value), EBP, ESI, and EDI (if the current operand-size attribute is 32) and AX, CX, DX,
BX, SP (original value), BP, SI, and DI (if the operand-size attribute is 16). These
instructions perform the reverse operation of the POPA/POPAD instructions. The
value pushed for the ESP or SP register is its value before prior to pushing the first
register (see the “Operation” section below).

The PUSHA (push all) and PUSHAD (push all double) mnemonics reference the same
opcode. The PUSHA instruction is intended for use when the operand-size attribute is
16 and the PUSHAD instruction for when the operand-size attribute is 32. Some
assemblers may force the operand size to 16 when PUSHA is used and to 32 when
PUSHAD is used. Others may treat these mnemonics as synonyms (PUSHA/PUSHAD)
and use the current setting of the operand-size attribute to determine the size of
values to be pushed from the stack, regardless of the mnemonic used.

In the real-address mode, if the ESP or SP registeris 1, 3, or 5 when PUSHA/PUSHAD
executes: an #SS exception is generated but not delivered (the stack error reported
prevents #SS delivery). Next, the processor generates a #DF exception and enters a
shutdown state as described in the #DF discussion in Chapter 5 of the Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 3A.

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation
IF 64-bit Mode
THEN #UD
Fl;
IF OperandSize = 32 (* PUSHAD instruction *)
THEN
Temp « (ESP);
Push(EAX);

4-300 Vol.2B PUSHA/PUSHAD—Push All General-Purpose Registers

INSTRUCTION SET REFERENCE, N-Z

Push(ECX);
Push(EDX);
Push(EBX);
Push(Temp);
Push(EBP);
Push(ESl);

Push(EDI);
ELSE (* OperandSize = 16, PUSHA instruction *)

Temp « (SP);

Push(AX);

Push(CX);

Push(DX);

Push(BX);

Push(Temp);

Push(BP);

Push(Sl);

Push(DI);
Fl;

Flags Affected

None.

Protected Mode Exceptions

#SS(0) If the starting or ending stack address is outside the stack
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the ESP or SP register contains 7, 9, 11, 13, or 15.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If the ESP or SP register contains 7, 9, 11, 13, or 15.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment
checking is enabled.

#UD If the LOCK prefix is used.

PUSHA/PUSHAD—Push All General-Purpose Registers Vol. 2B 4-301

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

4-302 Vol.2B

PUSHA/PUSHAD—Push All General-Purpose Registers

INSTRUCTION SET REFERENCE, N-Z

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
9C PUSHF Valid Valid Push lower 16 bits of EFLAGS.
9C PUSHFD N.E. Valid Push EFLAGS.
9C PUSHFQ Valid N.E. Push RFLAGS.
Description

Decrements the stack pointer by 4 (if the current operand-size attribute is 32) and
pushes the entire contents of the EFLAGS register onto the stack, or decrements the
stack pointer by 2 (if the operand-size attribute is 16) and pushes the lower 16 bits
of the EFLAGS register (that is, the FLAGS register) onto the stack. These instruc-
tions reverse the operation of the POPF/POPFD instructions.

When copying the entire EFLAGS register to the stack, the VM and RF flags (bits 16
and 17) are not copied; instead, the values for these flags are cleared in the EFLAGS
image stored on the stack. See Chapter 3 of the Intel® 64 and 1A-32 Architectures
Software Developer’s Manual, Volume 1, for more information about the EFLAGS
register.

The PUSHF (push flags) and PUSHFD (push flags double) mnemonics reference the
same opcode. The PUSHF instruction is intended for use when the operand-size
attribute is 16 and the PUSHFD instruction for when the operand-size attribute is 32.
Some assemblers may force the operand size to 16 when PUSHF is used and to 32
when PUSHFD is used. Others may treat these mnemonics as synonyms
(PUSHF/PUSHFD) and use the current setting of the operand-size attribute to deter-
mine the size of values to be pushed from the stack, regardless of the mnemonic
used.

In 64-bit mode, the instruction’s default operation is to decrement the stack pointer
(RSP) by 8 and pushes RFLAGS on the stack. 16-bit operation is supported using the
operand size override prefix 66H. 32-bit operand size cannot be encoded in this
mode. When copying RFLAGS to the stack, the VM and RF flags (bits 16 and 17) are
not copied; instead, values for these flags are cleared in the RFLAGS image stored on
the stack.

When in virtual-8086 mode and the 1/0 privilege level (IOPL) is less than 3, the
PUSHF/PUSHFD instruction causes a general protection exception (#GP).

In the real-address mode, if the ESP or SP register is 1 when PUSHF/PUSHFD instruc-
tion executes: an #SS exception is generated but not delivered (the stack error
reported prevents #SS delivery). Next, the processor generates a #DF exception and
enters a shutdown state as described in the #DF discussion in Chapter 5 of the
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A.

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack Vol.2B 4-303

INSTRUCTION SET REFERENCE, N-Z

Operation

IF (PE=0)or (PE=1and (VM =0)or (VM= 1 and IOPL = 3)))
(* Real-Address Mode, Protected mode, or Virtual-8086 mode with IOPL equal to 3 *)
THEN
IF OperandSize = 32
THEN
push (EFLAGS AND OOFCFFFFH);
(* VM and RF EFLAG bits are cleared in image stored on the stack *)
ELSE
push (EFLAGS); (* Lower 16 bits only *)
Fl;

ELSE IF 64-bit MODE (* In 64-bit Mode *)
IF OperandSize = 64
THEN
push (RFLAGS AND 00000000_0OO0FCFFFFH);
(* VM and RF RFLAG bits are cleared in image stored on the stack; *)
ELSE
push (EFLAGS); (* Lower 16 bits only *)
Fl;

ELSE (* In Virtual-8086 Mode with IOPL less than 3 *)
#GP(0); (* Trap to virtual-8086 monitor *)
Fl;

Flags Affected

None.

Protected Mode Exceptions

#SS(0) If the new value of the ESP register is outside the stack segment
boundary.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the 1/0 privilege level is less than 3.

4-304 Vol.2B PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment
checking is enabled.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

#SS(0) If the stack address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

#UD If the LOCK prefix is used.

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack Vol.2B 4-305

INSTRUCTION SET REFERENCE, N-Z

PXOR—Logical Exclusive OR

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

OF EF /It PXOR mm, mm/m64 Valid Valid Bitwise XOR of
mm/m64 and mm.

66 OF EF /r PXOR xmm1, xmmZ2/m128 Valid Valid Bitwise XOR of
xmm2/m128 and
xmm1.

Description

Performs a bitwise logical exclusive-OR (XOR) operation on the source operand
(second operand) and the destination operand (first operand) and stores the resultin
the destination operand. The source operand can be an MMX technology register or a
64-bit memory location or it can be an XMM register or a 128-bit memory location.
The destination operand can be an MMX technology register or an XMM register. Each
bit of the result is 1 if the corresponding bits of the two operands are different; each
bit is O if the corresponding bits of the operands are the same.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST « DEST XOR SRC,

Intel C/C++ Compiler Intrinsic Equivalent

PXOR __m64 _mm_xor_si64 (__m64 m1, __m64 m2)
PXOR __m128i _mm_xor_si128 (_m128ia, __m128ib)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

4-306 Vol.2B PXOR—Logical Exclusive OR

INSTRUCTION SET REFERENCE, N-Z

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

PXOR—Logical Exclusive OR Vol.2B 4-307

INSTRUCTION SET REFERENCE, N-Z

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-308 Vol.2B

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PXOR—Logical Exclusive OR

RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, N-Z

Opcode**

DO /2

REX +D0 /2
D2 /2

REX +D2 /2
co/2ib

REX+CO/2ib

D1/2
D3 /2

C1/2ib

D17/2
REX.W + D1 /2

D3 /2

REX.W + D3 /2
C1/2ib
REX.W +C1 /2
ib

D0 /3

REX +D0 /3
D2 /3

REX +D2 /3

Instruction

RCL r/m8, 1
RCL r/m8* 1
RCL r/m8, CL
RCL r/m8%*, CL

RCL r/m8,
imm8

RCL r/m8*,
imm8

RCL r/m16,1
RCL r/m16, CL

RCL r/m16,
imm8

RCL r/m32,1
RCL r/m64, 1

RCL r/m32, CL

RCL r/m64, CL

RCL r/m32,
imm8

RCL r/m64,
imm8

RCR r/m8, 1
RCR r/m8%* 1
RCR r/m8, CL

RCR r/m8% CL

64-Bit
Mode

Valid
Valid
Valid
Valid
Valid

Valid

Valid
Valid

Valid

Valid
Valid

Valid

Valid

Valid

Valid

Valid
Valid
Valid

Valid

Compat/
Leg Mode

Valid
N.E.
Valid
N.E.
Valid

N.E.

Valid
Valid

Valid

Valid
N.E.

Valid

N.E.

Valid

N.E.

Valid
N.E.
Valid

N.E.

Description

Rotate 9 bits (CF, r/m8) left once.
Rotate 9 bits (CF, r/m8) left once.
Rotate 9 bits (CF, /m8) left CL times.
Rotate 9 bits (CF, r/m8) left CL times.

Rotate 9 bits (CF, r/m8) left imm8
times.

Rotate 9 bits (CF, r/m8) left imm8
times.

Rotate 17 bits (CF, /m16) left once.

Rotate 17 bits (CF, /m16) left CL
times.

Rotate 17 bits (CF, /m16) left imm8
times.

Rotate 33 bits (CF, /m32) left once.

Rotate 65 bits (CF, /m64) left once.
Uses a 6 bit count.

Rotate 33 bits (CF, /m32) left CL
times.

Rotate 65 bits (CF, /m64) left CL
times. Uses a 6 bit count.

Rotate 33 bits (CF, /m32) left imm8
times.

Rotate 65 bits (CF, /m64) left imm8
times. Uses a 6 bit count.

Rotate 9 bits (CF, r/m8) right once.
Rotate 9 bits (CF, r/m8) right once.

Rotate 9 bits (CF, r/m8) right CL
times.

Rotate 9 bits (CF, r/m8) right CL
times.

(
(

RCL/RCR/ROL/ROR-—Rotate

Vol. 2B 4-309

INSTRUCTION SET REFERENCE, N-Z

Opcode**
C0/3ib
REX +CO/3ib

D1/3
D3/3

C1/3ib

D1/3

REX.W +D1/3
D3/3

REXW + D3 /3
C1/3ib
REX.W +C1 /3
ib

DO /0

REX + DO /0
D2 /0

REX + D2 /0
CoO/0ib

REX+CO/0ib

D1/0
D3/0
C1/0ib

D1/0

Instruction

RCR r/m8,
imm8

RCR r/m8*,
imm8

RCR r/m16, 1
RCR r/m16, CL

RCR r/m16,
imm8

RCR r/m32, 1

RCR r/m64, 1

RCR r/m32, CL

RCR r/m64, CL

RCR r/m32,
imm8

RCR r/m64,
imm8

ROL r/m8, 1
ROL r/m8* 1
ROL r/m8, CL
ROL r/m8%* CL
ROL r/m8,
imm8

ROL r/m8*
imm8

ROL r/m16,1
ROL r/m16, CL
ROL r/m16,
imm8

ROL r/m32,1

64-Bit
Mode
Valid
Valid

Valid
Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid
Valid
Valid
Valid
Valid

Valid

Valid
Valid
Valid

Valid

Compat/
Leg Mode
Valid

N.E.

Valid
Valid

Valid
Valid
N.E.
Valid
N.E.
Valid
N.E.

Valid
N.E.
Valid
N.E.
Valid

N.E.

Valid
Valid
Valid

Valid

Description

Rotate 9 bits (CF, r/m8) right imm8
times.

Rotate 9 bits (CF, r/m8) right imm8
times.

Rotate 17 bits (CF, r/m16) right once.

Rotate 17 bits (CF, r/m16) right CL
times.

Rotate 17 bits (CF, /m16) right imm8
times.

Rotate 33 bits (CF, /m32) right once.
Uses a 6 bit count.

Rotate 65 bits (CF, /m64) right once.
Uses a 6 bit count.

Rotate 33 bits (CF, r/m32) right CL
times.

Rotate 65 bits (CF, r/m64) right CL
times. Uses a 6 bit count.

Rotate 33 bits (CF, /m32) right imm8
times.

Rotate 65 bits (CF, /m64) right imm8
times. Uses a 6 bit count.

Rotate 8 bits /m8 left once.
Rotate 8 bits r/m8 left once

Rotate 8 bits /m8 left CL times.
Rotate 8 bits r/m8 left CL times.
Rotate 8 bits /m8 left imm8 times.

Rotate 8 bits r/m8 left imm8 times.

Rotate 16 bits r/m16 left once.
Rotate 16 bits /m16 left CL times.

Rotate 16 bits r/m16 left imm8
times.

Rotate 32 bits r/m32 left once.

4-310 Vol.2B

RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, N-Z

Opcode** Instruction 64-Bit Compat/ Description
Mode Leg Mode
REXW +D1/0 ROL r/m64, 1 Valid N.E. Rotate 64 bits r/m64 left once. Uses
a 6 bit count.
D3/0 ROL r/m32,CL Valid Valid Rotate 32 bits r/m32 left CL times.
REXW +D3/0 ROL /m64,CL Valid N.E. Rotate 64 bits r/m64 left CL times.
Uses a 6 bit count.
C1/0ib ROL r/m32, Valid Valid Rotate 32 bits r/m32 left imm8
imm8 times.
C1/0ib ROL r/m64, Valid N.E. Rotate 64 bits r/m64 left imm8
imm8 times. Uses a 6 bit count.
DO ROR r/m8, 1 Valid Valid Rotate 8 bits r/m8 right once.
REX +D0 /1 ROR r/m8%* 1 Valid N.E. Rotate 8 bits r/m8right once.
D2 N ROR r/m8,CL Valid Valid Rotate 8 bits r/m8right CL times.
REX +D2 /1 ROR r/m8* CL Valid N.E. Rotate 8 bits r/m8right CL times.
Co/ib ROR r/m8, Valid Valid Rotate 8 bits r/m 16 right imm8
imm8 times.
REX+CO/1ib ROR r/m8%* Valid N.E. Rotate 8 bits /m 16 right imm8
imm8 times.
D1/ ROR r/m16,1 Valid Valid Rotate 16 bits r/m16 right once.
D3/ ROR r/m16,CL Valid Valid Rotate 16 bits /m16 right CL times.
C1/1ib ROR r/m16, Valid Valid Rotate 16 bits /m16 right imm8
imm8 times.
D11 ROR r/m32,1 Valid Valid Rotate 32 bits r/m32 right once.
REXW +D1/1 ROR r/m64,1 Valid N.E. Rotate 64 bits r/m64right once. Uses
a 6 bit count.
D3 /1 ROR r/m32,CL Valid Valid Rotate 32 bits r/m32 right CL times.
REXW +D3 /1 ROR r/m64,CL Valid N.E. Rotate 64 bits r/m64 right CL times.
Uses a 6 bit count.
C1/1ib ROR r/m32, Valid Valid Rotate 32 bits r/m32 right imm8
imm8 times.
REX.W +C1/1 ROR r/m64, Valid N.E. Rotate 64 bits r/m64 right imm8
ib imm8 times. Uses a 6 bit count.
NOTES:

* |n 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

**See IA-32 Architecture Compatibility section below.

RCL/RCR/ROL/ROR-—Rotate

Vol.2B 4-311

INSTRUCTION SET REFERENCE, N-Z

Description

Shifts (rotates) the bits of the first operand (destination operand) the number of bit
positions specified in the second operand (count operand) and stores the result in the
destination operand. The destination operand can be a register or a memory loca-
tion; the count operand is an unsigned integer that can be an immediate or a value in
the CL register. In legacy and compatibility mode, the processor restricts the count to
a number between 0 and 31 by masking all the bits in the count operand except the
5 least-significant bits.

The rotate left (ROL) and rotate through carry left (RCL) instructions shift all the bits
toward more-significant bit positions, except for the most-significant bit, which is
rotated to the least-significant bit location. The rotate right (ROR) and rotate through
carry right (RCR) instructions shift all the bits toward less significant bit positions,
except for the least-significant bit, which is rotated to the most-significant bit loca-
tion.

The RCL and RCR instructions include the CF flag in the rotation. The RCL instruction
shifts the CF flag into the least-significant bit and shifts the most-significant bit into
the CF flag. The RCR instruction shifts the CF flag into the most-significant bit and
shifts the least-significant bit into the CF flag. For the ROL and ROR instructions, the
original value of the CF flag is not a part of the result, but the CF flag receives a copy
of the bit that was shifted from one end to the other.

The OF flag is defined only for the 1-bit rotates; it is undefined in all other cases
(except that a zero-bit rotate does nothing, that is affects no flags). For left rotates,
the OF flag is set to the exclusive OR of the CF bit (after the rotate) and the most-
significant bit of the result. For right rotates, the OF flag is set to the exclusive OR of
the two most-significant bits of the result.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). Use of REX.W promotes the first operand to 64 bits and causes
the count operand to become a 6-bit counter.

IA-32 Architecture Compatibility

The 8086 does not mask the rotation count. However, all other 1A-32 processors
(starting with the Intel 286 processor) do mask the rotation count to 5 bits, resulting
in a maximum count of 31. This masking is done in all operating modes (including the
virtual-8086 mode) to reduce the maximum execution time of the instructions.

Operation

(* RCL and RCR instructions *)

SIZE « OperandSize;

CASE (determine count) OF
SIZE < 8: tempCOUNT « (COUNT AND 1FH)MOD 9;
SIZE < 16: tempCOUNT « (COUNT AND 1FH) MOD 17;
SIZE « 32: tempCOUNT <« COUNT AND 1FH;

4-312 Vol.2B RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, N-Z

SIZE < 64: tempCOUNT « COUNT AND 3FH;
ESAC;

(* RCL instruction operation *)
WHILE (tempCOUNT = 0)
DO
tempCF « MSB(DEST);
DEST « (DEST * 2) + CF;
CF « tempCF;
tempCOUNT « tempCOUNT - 1;
0D;
ELIHW;
IFCOUNT =1
THEN OF « MSB(DEST) XOR CF;
ELSE OF is undefined;
Fl;

(* RCR instruction operation *)
IF COUNT =1
THEN OF « MSB(DEST) XOR CF;
ELSE OF is undefined;
Fl;
WHILE (tempCOUNT = 0)
DO
tempCF « LSB(SRC);
DEST « (DEST / 2) + (CF * 2528y,
CF « tempCF;
tempCOUNT « tempCOUNT - 1;
0D;

(* ROL and ROR instructions *)
SIZE « OperandSize;
CASE (determine count) OF

SIZE « 8: tempCOUNT «

COUNT AND 1FH) MOD 8; (* Mask count before MOD *)

()
SIZE < 16: tempCOUNT « (COUNT AND 1FH) MOD 16;
SIZE « 32: tempCOUNT « (COUNT AND 1FH) MOD 32;
SIZE < 64: tempCOUNT « (COUNT AND 1FH) MOD 64;

ESAC;

(* ROL instruction operation *)
IF (tempCOUNT > 0) (* Prevents updates to CF *)
WHILE (tempCOUNT # 0)
DO

RCL/RCR/ROL/ROR-—Rotate Vol.2B 4-313

INSTRUCTION SET REFERENCE, N-Z

tempCF « MSB(DEST);
DEST « (DEST * 2) + tempCF;
tempCOUNT « tempCOUNT - 1;
(0]D}
ELIHW;
CF « LSB(DEST);
IF COUNT =1
THEN OF « MSB(DEST) XOR CF;
ELSE OF is undefined;
Fl;
Fl;

(* ROR instruction operation *)
IF tempCOUNT > 0) (* Prevent updates to CF *)
WHILE (tempCOUNT # 0)
DO
tempCF « LSB(SRC);
DEST « (DEST / 2) + (tempCF = 25126y,
tempCOUNT « tempCOUNT - 1;
0D;
ELIHW;
CF < MSB(DEST);
IF COUNT =1
THEN OF « MSB(DEST) XOR MSB - 1(DEST);
ELSE OF is undefined;
Fl;
Fl;

Flags Affected

The CF flag contains the value of the bit shifted into it. The OF flag is affected only for
single-bit rotates (see “Description” above); it is undefined for multi-bit rotates. The
SF, ZF, AF, and PF flags are not affected.

Protected Mode Exceptions
#GP(0) If the source operand is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

4-314 Vol.2B RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, N-Z

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the source operand is located in a nonwritable segment.
If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

RCL/RCR/ROL/ROR-—Rotate Vol.2B 4-315

INSTRUCTION SET REFERENCE, N-Z

RCPPS—Compute Reciprocals of Packed Single-Precision Floating-
Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF53/r RCPPS xmm1, Valid Valid Computes the approximate reciprocals
xmm2/m128 of the packed single-precision floating-
point values in xmmZ2/m128 and stores
the results in xmm1.

Description

Performs a SIMD computation of the approximate reciprocals of the four packed
single-precision floating-point values in the source operand (second operand) stores
the packed single-precision floating-point results in the destination operand. The
source operand can be an XMM register or a 128-bit memory location. The destina-
tion operand is an XMM register. See Figure 10-5 in the Intel® 64 and I1A-32 Architec-
tures Software Developer’s Manual, Volume 1, for an illustration of a SIMD single-
precision floating-point operation.

The relative error for this approximation is:

[Relative Error| < 1.5 % 2712

The RCPPS instruction is not affected by the rounding control bits in the MXCSR
register. When a source value is a 0.0, an « of the sign of the source value is
returned. A denormal source value is treated as a 0.0 (of the same sign). Tiny results
are always flushed to 0.0, with the sign of the operand. (Input values greater than or
equal to |1.11111111110100000000000B+212°| are guaranteed to not produce tiny
results; input values less than or equal to |1.00000000000110000000001B*2128|
are guaranteed to produce tiny results, which are in turn flushed to 0.0; and input
values in between this range may or may not produce tiny results, depending on the
implementation.) When a source value is an SNaN or QNaN, the SNaN is converted to
a QNaN or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] «— APPROXIMATE(1.0/(SRC[31:0]));
DEST[63:32] « APPROXIMATE(1.0/(SRC[63:32]));
DEST[95:64] « APPROXIMATE(1.0/(SRC[95:64]));
DEST[127:96] - APPROXIMATE(1.0/(SRC[127:96]));

Intel C/C++ Compiler Intrinsic Equivalent
RCCPS __m128 _mm_rcp_ps(__m128 a)

4-316 Vol.2B RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values Vol.2B 4-317

INSTRUCTION SET REFERENCE, N-Z

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

4-318 Vol.2B RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point
Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F3 OF 53 RCPSS xmm1, Valid Valid Computes the approximate reciprocal of
Ir xmm2/m32 the scalar single-precision floating-point
value in xmmZ2/m32 and stores the result
in xmm1.
Description

Computes of an approximate reciprocal of the low single-precision floating-point
value in the source operand (second operand) and stores the single-precision
floating-point result in the destination operand. The source operand can be an XMM
register or a 32-bit memory location. The destination operand is an XMM register.
The three high-order doublewords of the destination operand remain unchanged.
See Figure 10-6 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for an illustration of a scalar single-precision floating-point oper-
ation.

The relative error for this approximation is:

[Relative Error| < 1.5 % 2712

The RCPSS instruction is not affected by the rounding control bits in the MXCSR
register. When a source value is a 0.0, an « of the sign of the source value is
returned. A denormal source value is treated as a 0.0 (of the same sign). Tiny results
are always flushed to 0.0, with the sign of the operand. (Input values greater than or
equal to [1.11111111110100000000000B%212%| are guaranteed to not produce tiny
results; input values less than or equal to |1.00000000000110000000001B*2126|
are guaranteed to produce tiny results, which are in turn flushed to 0.0; and input
values in between this range may or may not produce tiny results, depending on the
implementation.) When a source value is an SNaN or QNaN, the SNaN is converted to
a QNaN or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] « APPROX (1.0/(SRC[31:0]));
(* DEST[127:32] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
RCPSS __m128 _mm_rcp_ss(_m128a)

RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point Values Vol.2B 4-319

INSTRUCTION SET REFERENCE, N-Z

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) For unaligned memory reference.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

4-320 Vol.2B RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point Values Vol.2B 4-321

INSTRUCTION SET REFERENCE, N-Z

RDMSR—Read from Model Specific Register

Opcode* Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 32 RDMSR Valid Valid Read MSR specified by ECX into
EDX:EAX.
NOTES:

* See IA-32 Architecture Compatibility section below.

Description

Reads the contents of a 64-bit model specific register (MSR) specified in the ECX
register into registers EDX:EAX. (On processors that support the Intel 64 architec-
ture, the high-order 32 bits of RCX are ignored.) The EDX register is loaded with the
high-order 32 bits of the MSR and the EAX register is loaded with the low-order 32
bits. (On processors that support the Intel 64 architecture, the high-order 32 bits of
each of RAX and RDX are cleared.) If fewer than 64 bits are implemented in the MSR
being read, the values returned to EDX:EAX in unimplemented bit locations are
undefined.

This instruction must be executed at privilege level O or in real-address mode; other-
wise, a general protection exception #GP(0) will be generated. Specifying a reserved
or unimplemented MSR address in ECX will also cause a general protection excep-
tion.

The MSRs control functions for testability, execution tracing, performance-moni-
toring, and machine check errors. Appendix B, “Model-Specific Registers (MSRs),” in
the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3B, lists
all the MSRs that can be read with this instruction and their addresses. Note that
each processor family has its own set of MSRs.

The CPUID instruction should be used to determine whether MSRs are supported
(CPUID.01H:EDX[5] =1) before using this instruction.

IA-32 Architecture Compatibility

The MSRs and the ability to read them with the RDMSR instruction were introduced
into the 1A-32 Architecture with the Pentium processor. Execution of this instruction
by an I1A-32 processor earlier than the Pentium processor results in an invalid opcode
exception #UD.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of
the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3B, for
more information about the behavior of this instruction in VMX non-root operation.

Operation

EDX:EAX « MSRIECX];

4-322 Vol.2B RDMSR—Read from Model Specific Register

INSTRUCTION SET REFERENCE, N-Z

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not O.
If the value in ECX specifies a reserved or unimplemented MSR
address.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If the value in ECX specifies a reserved or unimplemented MSR
address.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The RDMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not O.

If the value in ECX or RCX specifies a reserved or unimple-
mented MSR address.

#UD If the LOCK prefix is used.

RDMSR—Read from Model Specific Register Vol.2B 4-323

INSTRUCTION SET REFERENCE, N-Z

RDPMC—Read Performance-Monitoring Counters

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 33 RDPMC Valid Valid Read performance-monitoring
counter specified by ECX into
EDX:EAX.
Description

Loads the performance-monitoring counter specified in the ECX register into regis-
ters EDX:EAX. (On processors that support the Intel 64 architecture, the high-order
32 bits of RCX are ignored.) The EDX register is loaded with the high-order 8 bits of
the counter and the EAX register is loaded with the low-order 32 bits. (On processors
that support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX
are cleared.) See below for the treatment of the EDX register for “fast” reads.

The ECX register selects one of two type of performance counters, specifies the index
relative to the base of each counter type, and selects “fast” read mode if supported.
The two counter types are :

® General-purpose or special-purpose performance counters: The number of
general-purpose counters is model specific if the processor does not support
architectural performance monitoring, see Chapter 18 of Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 3B. Special-purpose
counters are available only in selected processor members, see Section 18.19,
18.20 of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B. This counter type is selected if ECX[30] is clear.

® Fixed-function performance counter. The number fixed-function performance
counters is enumerated by CPUID OAH leaf. See Chapter 18 of Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3B. This counter type
is selected if ECX[30] is set.

ECX[29:0] specifies the index. The width of general-purpose performance counters
are 40-bits for processors that do not support architectural performance monitoring
counters.The width of special-purpose performance counters are implementation
specific. The width of fixed-function performance counters and general-purpose
performance counters on processor supporting architectural performance monitoring
are reported by CPUID OAH leaf.

Table 4-2 lists valid indices of the general-purpose and special-purpose performance
counters according to the derived displayed_family/displayed_model values of
CPUID encoding for each processor family.

4-324 \Vol.2B RDPMC—Read Performance-Monitoring Counters

INSTRUCTION SET REFERENCE, N-Z

Table 4-2. Valid General and Special Purpose Performance Counter Index Range for

RDPMC
Processor Family Displayed_Family_Dis | Valid PMC General-
played_Model/ Other Index Range purpose
Signatures Counters
P6 06H_O1H, 06H_O03H, 0,1 0,1
06H_O5H, 06H_06H,
06H_07H, 06H_08H,
06H_OAH, 06H_0BH
Pentium® 4, Intel® Xeon OFH_OOH, OFH_O1H, >0and<17 >0and<17
processors OFH_02H
Pentium 4, Intel Xeon processors | (OFH_O3H, OFH_04H, >0and<17 >0and<17
OFH_O6H) and (L3 is
absent)
Pentium M processors 06H_09H, 06H_0DH 0,1 0,1
64-bit Intel Xeon processors OFH_O3H, OFH_04H) >0and<25 >0and<17
with L3 and (L3 is present)
Intel® Core™ Solo and Intel® 06H_OEH 0,1 0,1
Core™ Duo processors, Dual-core
Intel® Xeon® processor LV
Intel® Core™2 Duo processor, 06H_OFH 0,1 0,1
Intel Xeon processor 3000,
5100, 5300, 7300 Series -
general-purpose PMC
Intel Xeon processors 7100 (OFH_O06H) and (L3 is >0and<25 >0and<17
series with L3 present)
Intel® Core™2 Duo processor 06H_17H 0,1 0,1
family, Intel Xeon processor
family - general-purpose PMC
Intel® Atom™ processor family 06H_OCH 0,1 0,1

The Pentium 4 and Intel Xeon processors also support “fast” (32-bit) and “slow”
(40-bit) reads on the first 18 performance counters. Selected this option using
ECX[31]. If bit 31 is set, RDPMC reads only the low 32 bits of the selected perfor-
mance counter. If bit 31 is clear, all 40 bits are read. A 32-bit result is returned in EAX
and EDX is set to 0. A 32-bit read executes faster on Pentium 4 processors and Intel
Xeon processors than a full 40-bit read.

On 64-bit Intel Xeon processors with L3, performance counters with indices 18-25
are 32-bit counters. EDX is cleared after executing RDPMC for these counters. On
Intel Xeon processor 7100 series with L3, performance counters with indices 18-25

are also 32-bit counters.

RDPMC—Read Performance-Monitoring Counters

Vol. 2B 4-325

INSTRUCTION SET REFERENCE, N-Z

In Intel Core 2 processor family, Intel Xeon processor 3000, 5100, and 5300 series,
the fixed-function performance counters are 40-bits wide; they can be accessed by
RDMPC with ECX between from 4000_0000H and 4000_0002H.

When in protected or virtual 8086 mode, the performance-monitoring counters
enabled (PCE) flag in register CR4 restricts the use of the RDPMC instruction as
follows. When the PCE flag is set, the RDPMC instruction can be executed at any priv-
ilege level; when the flag is clear, the instruction can only be executed at privilege
level 0. (When in real-address mode, the RDPMC instruction is always enabled.)

The performance-monitoring counters can also be read with the RDMSR instruction,
when executing at privilege level 0.

The performance-monitoring counters are event counters that can be programmed
to count events such as the number of instructions decoded, number of interrupts
received, or number of cache loads. Appendix A, “Performance Monitoring Events,” in
the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3B, lists
the events that can be counted for various processors in the Intel 64 and 1A-32
architecture families.

The RDPMC instruction is not a serializing instruction; that is, it does not imply that
all the events caused by the preceding instructions have been completed or that
events caused by subsequent instructions have not begun. If an exact event count is
desired, software must insert a serializing instruction (such as the CPUID instruction)
before and/or after the RDPCM instruction.

In the Pentium 4 and Intel Xeon processors, performing back-to-back fast reads are
not guaranteed to be monotonic. To guarantee monotonicity on back-to-back reads,
a serializing instruction must be placed between the two RDPMC instructions.

The RDPMC instruction can execute in 16-bit addressing mode or virtual-8086 mode;
however, the full contents of the ECX register are used to select the counter, and the
event count is stored in the full EAX and EDX registers. The RDPMC instruction was

introduced into the 1A-32 Architecture in the Pentium Pro processor and the Pentium
processor with MMX technology. The earlier Pentium processors have performance-
monitoring counters, but they must be read with the RDMSR instruction.

Operation
(* Intel Core 2 Duo processor family and Intel Xeon processor 3000, 5100, 5300 series*)
Most significant counter bit (MSCB) = 39

IF (ECX =0 or 1) and ((CR4.PCE = 1) or (CPL = 0) or (CRO.PE = 0))
THEN IF (ECX[30] =1 and ECX[29:0] in valid fixed-counter range)
EAX « IA32_FIXED_CTR(ECX)[30:0];
EDX « IA32_FIXED_CTR(ECX)[MSCB:32];
ELSE IF (ECX[30] = Oand ECX[29:0] in valid general-purpose counter range)
EAX « PMC(ECX[30:0])[31:0];
EDX « PMC(ECX[30:0])[MSCB:32];

4-326 Vol.2B RDPMC—Read Performance-Monitoring Counters

INSTRUCTION SET REFERENCE, N-Z

ELSE (* ECX is not valid or CR4.PCEis 0 and CPLis 1, 2, or 3 and CRO.PEis 1 *)
#GP(0);
Fl;

(* P6 family processors and Pentium processor with MMX technology *)

IF (ECX=0or 1) and ((CR4.PCE = 1) or (CPL = 0) or (CRO.PE =0))
THEN
EAX « PMC(ECX)[31:0];
EDX « PMC(ECX)[39:32];
ELSE (* ECXisnot O or 1 or CR4.PCEis 0 and CPLis 1, 2, or 3 and CRO.PEis 1 *)
#GP(0);
Fl;
(* Processors with CPUID family 15 *)
IF (CR4.PCE = 1) or (CPL = 0) or (CRO.PE = 0))
THEN IF (ECX[30:0] = 0:17)
THEN IF ECX[31]1=0
THEN
EAX « PMC(ECX[30:0])[31:0]; (* 40-bit read *)
EDX « PMC(ECX[30:0])[39:32];
ELSE (* ECX[31]1=1%)
THEN
EAX « PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX « O;
Fl;
ELSE IF (*64-bit Intel Xeon processor with L3 *)
THEN IF (ECX[30:0] =18:25)
EAX « PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX « O;
Fl;
ELSE IF (*Intel Xeon processor 7100 series with L3 *)
THEN IF (ECX[30:0]=18:25)
EAX « PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX « O;
Fl;
ELSE (* Invalid PMC index in ECX[30:0], see Table 4-5. *)
GP(0);
Fl;
ELSE (* CR4.PCE=0and(CPL=1,2,0r 3)and CRO.PE =1 %)
#GP(0);
Fl;

Flags Affected

None.

RDPMC—Read Performance-Monitoring Counters Vol.2B 4-327

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4
register is clear.

If an invalid performance counter index is specified (see
Table 4-2).

(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0]
is not within the valid range.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If an invalid performance counter index is specified (see
Table 4-2).

(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0]
is not within the valid range.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the PCE flag in the CR4 register is clear.

If an invalid performance counter index is specified (see
Table 4-2).

(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0]
is not within the valid range.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the current privilege level is not O and the PCE flag in the CR4
register is clear.

If an invalid performance counter index is specified in ECX[30:0]
(see Table 4-2).

#UD If the LOCK prefix is used.

4-328 Vol.2B RDPMC—Read Performance-Monitoring Counters

INSTRUCTION SET REFERENCE, N-Z

RDTSC—Read Time-Stamp Counter

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 31 RDTSC Valid Valid Read time-stamp counter into
EDX:EAX.
Description

Loads the current value of the processor’s time-stamp counter (a 64-bit MSR) into
the EDX:EAX registers. The EDX register is loaded with the high-order 32 bits of the
MSR and the EAX register is loaded with the low-order 32 bits. (On processors that
support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are
cleared.)

The processor monotonically increments the time-stamp counter MSR every clock
cycle and resets it to O whenever the processor is reset. See “Time Stamp Counter”
in Chapter 18 of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 3B, for specific details of the time stamp counter behavior.

When in protected or virtual 8086 mode, the time stamp disable (TSD) flag in
register CR4 restricts the use of the RDTSC instruction as follows. When the TSD flag
is clear, the RDTSC instruction can be executed at any privilege level; when the flag
is set, the instruction can only be executed at privilege level 0. (When in real-address
mode, the RDTSC instruction is always enabled.)

The time-stamp counter can also be read with the RDMSR instruction, when
executing at privilege level 0.

The RDTSC instruction is not a serializing instruction. Thus, it does not necessarily
wait until all previous instructions have been executed before reading the counter.
Similarly, subsequent instructions may begin execution before the read operation is
performed.

This instruction was introduced by the Pentium processor.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of
the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3B, for
more information about the behavior of this instruction in VMX non-root operation.

Operation

IF (CR4.TSD = 0) or (CPL = 0) or (CRO.PE = 0)
THEN EDX:EAX « TimeStampCounter;
ELSE (* CR4.TSD=1and (CPL =1, 2, or 3) and CRO.PE =1 *)
#GP(0);
Fl;

RDTSC—Read Time-Stamp Counter Vol.2B 4-329

INSTRUCTION SET REFERENCE, N-Z

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than
0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If the TSD flag in register CR4 is set.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

4-330 Vol.2B

RDTSC—Read Time-Stamp Counter

INSTRUCTION SET REFERENCE, N-Z

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

Opcode
F3 6C

F3 6C

F3 6D

F3 6D

F3 6D

F3 A4

F3 REX.W A4

F3 A5

F3 A5

F3 REX.W A5

F3 6E

F3 REX.W 6E

F3 6F

F3 6F

F3 REX.W 6F

F3 AC

F3 REX.W AC

F3 AD

Instruction

REP INS m8, DX

REP INS m8, DX

REP INS m16, DX

REP INS m32, DX

REP INS r/m32, DX

REP MOVS m8, m8

REP MOVS m8, m8

REP MOVS m16,
ml16

REP MOVS m32,
m32

REP MOVS m64,
m64

REP OUTS DX, r/m8

REP OUTS DX,
r/m8*

REP OUTS DX,
r/m16

REP OUTS DX,
r/m32

REP OUTS DX,
r/m32

REP LODS AL
REP LODS AL

REP LODS AX

64-Bit

Mode

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Compat/
Leg Mode

Valid
N.E.
Valid
Valid
N.E.
Valid
N.E.
Valid
Valid
N.E.
Valid
N.E.
Valid
Valid
N.E.
Valid
N.E.

Valid

Description

Input (E)CX bytes from port DX
into ES:[(E)DI].

Input RCX bytes from port DX
into [RDI].

Input (E)CX words from port DX
into ES:[(E)DL]

Input (E)CX doublewords from
port DX into ES:[(E)DI].

Input RCX default size from port
DX into [RDI].

Move (E)CX bytes from
DS:[(E)SI] to ES:[(E)DI].

Move RCX bytes from [RSI] to
[RDI].

Move (E)CX words from
DS:[(E)SI] to ES:[(E)DI].

Move (E)CX doublewords from
DS:[(E)SI] to ES:[(E)DI].

Move RCX quadwords from [RSI]
to [RDI].

Output (E)CX bytes from
DS:[(E)SI] to port DX.

Output RCX bytes from [RSI] to
port DX.

Output (E)CX words from
DS:[(E)SI] to port DX.

Output (E)CX doublewords from
DS:[(E)SI] to port DX.

Output RCX default size from
[RSI] to port DX.

Load (E)CX bytes from DS:[(E)SI]
to AL.

Load RCX bytes from [RSI] to
AL.

Load (E)CX words from DS:[(E)SI]
to AX.

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

Vol.2B 4-331

INSTRUCTION SET REFERENCE, N-Z

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F3 AD REP LODS EAX Valid Valid Load (E)CX doublewords from
DS:[(E)SI] to EAX.
F3 REX.W AD REP LODS RAX Valid N.E. Load RCX quadwords from [RSI]
to RAX.
F3 AA REP STOS m8 Valid Valid Fill (E)CX bytes at ES:[(E)DI] with
AL
F3 REX.W AA REP STOS m8 Valid N.E. Fill RCX bytes at [RDI] with AL.
F3 AB REP STOS m16 Valid Valid Fill (E)CX words at ES:[(E)DI]
with AX.
F3 AB REP STOS m32 Valid Valid Fill (E)CX doublewords at
ES:[(E)DI] with EAX.
F3 REX.W AB REP STOS m64 Valid N.E. Fill RCX quadwords at [RDI] with
RAX.
F3 A6 REPE CMPS m8, m8 Valid Valid Find nonmatching bytes in
ES:[(E)DI] and DS:[(E)SI.
F3 REX.W A6 REPE CMPS m8 m8 Valid N.E. Find non-matching bytes in
[RDI] and [RSI].
F3 A7 REPE CMPS m16, Valid Valid Find nonmatching words in
m16 ES:[(€)DI] and DS:[(E)SI].
F3 A7 REPE CMPS m32, Valid Valid Find nonmatching doublewords
m32 in ES:[(€)DI] and DS:[(E)SI].
F3 REXW A7 REPE CMPS m64, Valid N.E. Find non-matching quadwords
mé64 in [RDI] and [RSI].
F3 AE REPE SCAS m8 Valid Valid Find non-AL byte starting at
ES:[(E)DI].
F3 REX.W AE REPE SCAS m8 Valid N.E. Find non-AL byte starting at
[RDI].
F3 AF REPE SCAS m16 Valid Valid Find non-AX word starting at
ES:[(E)DI].
F3 AF REPE SCAS m32 Valid Valid Find non-EAX doubleword
starting at ES:[(E)DI].
F3 REX.W AF REPE SCAS m64 Valid N.E. Find non-RAX quadword
starting at [RDI].
F2 A6 REPNE CMPS m8, Valid Valid Find matching bytes in ES:[(E)DI]
m8 and DS:[(E)SI].
F2 REX.W A6 REPNE CMPS m8, Valid N.E. Find matching bytes in [RDI] and
m8 [RSI].
4-332 Vol.2B REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

INSTRUCTION SET REFERENCE, N-Z

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F2 A7 REPNE CMPS m16, Valid Valid Find matching words in
m16 ES:[(E)DI] and DS:[(E)SI].
F2 A7 REPNE CMPS m32, Valid Valid Find matching doublewords in
m32 ES:[(E)DI] and DS:[(E)SI].
F2 REX.W A7 REPNE CMPS m64, Valid N.E. Find matching doublewords in
m64 [RDI] and [RSI].
F2 AE REPNE SCAS m8 Valid Valid Find AL, starting at ES:[(E)DI].
F2 REX.W AE REPNE SCAS m8 Valid N.E. Find AL, starting at [RDI].
F2 AF REPNE SCAS m16 Valid Valid Find AX, starting at ES:[(E)DI].
F2 AF REPNE SCAS m32 Valid Valid Find EAX, starting at ES:[(E)DI].
F2 REX.W AF REPNE SCAS m64 Valid N.E. Find RAX, starting at [RDI].
NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Description

Repeats a string instruction the number of times specified in the count register or
until the indicated condition of the ZF flag is no longer met. The REP (repeat), REPE
(repeat while equal), REPNE (repeat while not equal), REPZ (repeat while zero), and
REPNZ (repeat while not zero) mnemonics are prefixes that can be added to one of
the string instructions. The REP prefix can be added to the INS, OUTS, MOVS, LODS,
and STOS instructions, and the REPE, REPNE, REPZ, and REPNZ prefixes can be
added to the CMPS and SCAS instructions. (The REPZ and REPNZ prefixes are synon-
ymous forms of the REPE and REPNE prefixes, respectively.) The behavior of the REP
prefix is undefined when used with non-string instructions.

The REP prefixes apply only to one string instruction at a time. To repeat a block of
instructions, use the LOOP instruction or another looping construct. All of these
repeat prefixes cause the associated instruction to be repeated until the count in
register is decremented to 0. See Table 4-3.

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix Vol. 2B 4-333

INSTRUCTION SET REFERENCE, N-Z

Table 4-3. Repeat Prefixes

Repeat Prefix Termination Condition 1* Termination Condition 2
REP RCX or (E)CX =0 None

REPE/REPZ RCX or (E)CX=0 ZF=0

REPNE/REPNZ RCX or (E)CX=0 ZF=1

NOTES:

* Count register is CX, ECX or RCX by default, depending on attributes of the operating modes. In
64-bit mode, if default operation size is 32 bits, the count register becomes RCX when a REX.W
prefix is used.

The REPE, REPNE, REPZ, and REPNZ prefixes also check the state of the ZF flag after
each iteration and terminate the repeat loop if the ZF flag is not in the specified state.
When both termination conditions are tested, the cause of a repeat termination can
be determined either by testing the count register with a JECXZ instruction or by
testing the ZF flag (with a JZ, JNZ, or JNE instruction).

When the REPE/REPZ and REPNE/REPNZ prefixes are used, the ZF flag does not
require initialization because both the CMPS and SCAS instructions affect the ZF flag
according to the results of the comparisons they make.

A repeating string operation can be suspended by an exception or interrupt. When
this happens, the state of the registers is preserved to allow the string operation to
be resumed upon a return from the exception or interrupt handler. The source and
destination registers point to the next string elements to be operated on, the EIP
register points to the string instruction, and the ECX register has the value it held
following the last successful iteration of the instruction. This mechanism allows long
string operations to proceed without affecting the interrupt response time of the
system.

When a fault occurs during the execution of a CMPS or SCAS instruction that is
prefixed with REPE or REPNE, the EFLAGS value is restored to the state prior to the
execution of the instruction. Since the SCAS and CMPS instructions do not use
EFLAGS as an input, the processor can resume the instruction after the page fault
handler.

If a debug exception occurs, non-enabled debug breakpoints matched on previous
iterations of the REP operation may or may not be reported in the DR6 register.

Use the REP INS and REP OUTS instructions with caution. Not all 170 ports can handle
the rate at which these instructions execute. Note that a REP STOS instruction is the
fastest way to initialize a large block of memory.

In 64-bit mode, default operation size is 32 bits. The default count register is RCX for
REP INS and REP OUTS; it is ECX for other instructions. REX.W does not promote
operation to 64-bit for REP INS and REP OUTS. However, using a REX prefix in the
form of REX.W does promote operation to 64-bit operands for other

4-334 Vol.2B REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

INSTRUCTION SET REFERENCE, N-Z

REP/REPNE/REPZ/REPNZ instructions. See the summary chart at the beginning of
this section for encoding data and limits.

Operation

IF AddressSize = 16
THEN
Use CX for CountReg;
ELSE IF AddressSize = 64 and REX.W used
THEN Use RCX for CountReg; Fl;
ELSE
Use ECX for CountReg;
Fl;
WHILE CountReg # 0
DO
Service pending interrupts (if any);
Execute associated string instruction;
CountReg « (CountReg - 1);
IF CountReg=0
THEN exit WHILE loop; FI;
IF (Repeat prefix is REPZ or REPE) and (ZF = 0)
or (Repeat prefix is REPNZ or REPNE) and (ZF = 1)
THEN exit WHILE loop; FI;
oD;

Flags Affected

None; however, the CMPS and SCAS instructions do set the status flags in the
EFLAGS register.

Exceptions (All Operating Modes)

Exceptions may be generated by an instruction associated with the prefix.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix Vol.2B 4-335

INSTRUCTION SET REFERENCE, N-Z

RET—Return from Procedure

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
c3 RET Valid Valid Near return to calling procedure.
(B RET Valid Valid Far return to calling procedure.
C2 iw RET imm16 Valid Valid Near return to calling procedure and pop

imm16 bytes from stack.

CA iw RET imm16 Valid Valid Far return to calling procedure and pop
imm16 bytes from stack.

Description

Transfers program control to a return address located on the top of the stack. The
address is usually placed on the stack by a CALL instruction, and the return is made
to the instruction that follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after
the return address is popped; the default is none. This operand can be used to
release parameters from the stack that were passed to the called procedure and are
no longer needed. It must be used when the CALL instruction used to switch to a new
procedure uses a call gate with a non-zero word count to access the new procedure.
Here, the source operand for the RET instruction must specify the same number of
bytes as is specified in the word count field of the call gate.

The RET instruction can be used to execute three different types of returns:

® Near return — A return to a calling procedure within the current code segment
(the segment currently pointed to by the CS register), sometimes referred to as
an intrasegment return.

® Far return — A return to a calling procedure located in a different segment than
the current code segment, sometimes referred to as an intersegment return.

® Inter-privilege-level far return — A far return to a different privilege level
than that of the currently executing program or procedure.

The inter-privilege-level return type can only be executed in protected mode. See the
section titled “Calling Procedures Using Call and RET” in Chapter 6 of the Intel® 64
and 1A-32 Architectures Software Developer’s Manual, Volume 1, for detailed infor-
mation on near, far, and inter-privilege-level returns.

When executing a near return, the processor pops the return instruction pointer
(offset) from the top of the stack into the EIP register and begins program execution
at the new instruction pointer. The CS register is unchanged.

When executing a far return, the processor pops the return instruction pointer from
the top of the stack into the EIP register, then pops the segment selector from the top
of the stack into the CS register. The processor then begins program execution in the
new code segment at the new instruction pointer.

4-336 Vol.2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z

The mechanics of an inter-privilege-level far return are similar to an intersegment
return, except that the processor examines the privilege levels and access rights of
the code and stack segments being returned to determine if the control transfer is
allowed to be made. The DS, ES, FS, and GS segment registers are cleared by the
RET instruction during an inter-privilege-level return if they refer to segments that
are not allowed to be accessed at the new privilege level. Since a stack switch also
occurs on an inter-privilege level return, the ESP and SS registers are loaded from
the stack.

If parameters are passed to the called procedure during an inter-privilege level call,
the optional source operand must be used with the RET instruction to release the
parameters on the return. Here, the parameters are released both from the called
procedure’s stack and the calling procedure’s stack (that is, the stack being returned
to).

In 64-bit mode, the default operation size of this instruction is the stack size, i.e. 64
bits.

Operation

(* Near return *)
IF instruction = Near return

THEN;
IF OperandSize = 32
THEN
IF top 4 bytes of stack not within stack limits
THEN #SS(0); FI;
EIP « Pop();
ELSE
IF OperandSize = 64
THEN
IF top 8 bytes of stack not within stack limits
THEN #SS(0); FI;
RIP « Pop();
ELSE (* OperandSize = 16 *)
IF top 2 bytes of stack not within stack limits
THEN #SS(0); FI;
tempEIP « Pop();
tempElP « tempEIP AND O000FFFFH;
IF tempEIP not within code segment limits
THEN #GP(0); FI;
EIP « tempEIP;
Fl;
Fl;

RET—Return from Procedure Vol. 2B 4-337

INSTRUCTION SET REFERENCE, N-Z

IF instruction has immediate operand
THEN IF StackAddressSize = 32
THEN
ESP « ESP + SRC; (* Release parameters from stack *)
ELSE
IF StackAddressSize = 64
THEN
RSP « RSP + SRC; (* Release parameters from stack *)
ELSE (* StackAddressSize = 16 *)
SP « SP + SRC; (* Release parameters from stack *)
Fl;
Fl;
Fl;
Fl;

(* Real-address mode or virtual-8086 mode *)
IF (PE=0)or (PE=1 AND VM = 1)) and instruction = far return
THEN
IF OperandSize = 32
THEN
IF top 12 bytes of stack not within stack limits
THEN #SS(0); FI;
EIP « Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded *)
ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack not within stack limits
THEN #SS(0); FI;
tempEIP « Pop();
tempEIP « tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits
THEN #GP(0); FI;
EIP « tempéElP;
CS « Pop(); (* 16-bit pop *)
Fl;
IF instruction has immediate operand
THEN
SP « SP + (SRC AND FFFFH); (* Release parameters from stack *)
Fl;
Fl;

(* Protected mode, not virtual-8086 mode *)

IF (PE=1and VM =0 and IA32_EFER.LMA = 0) and instruction = far RET
THEN

4-338 Vol.2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z

IF OperandSize = 32
THEN
IF second doubleword on stack is not within stack limits
THEN #SS(0); FI;
ELSE (* OperandSize = 16 *)
IF second word on stack is not within stack limits
THEN #SS(0); FI;

Fl;
IF return code segment selector is NULL

THEN #GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit

THEN #GP(selector); Fl;
Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment

THEN #GP(selector); Fl;
IF return code segment selector RPL < CPL

THEN #GP(selector); Fl;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); Fl;
IF return code segment descriptor is non-conforming and return code
segment DPL # return code segment selector RPL

THEN #GP(selector); Fl;
IF return code segment descriptor is not present

THEN #NP(selector); FI:
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;

ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL;
Fl;

Fl;

RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within the return code segment limit
THEN #GP(0); FI;
IF OperandSize = 32
THEN
EIP « Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded *)
ESP « ESP + SRC; (* Release parameters from stack *)
ELSE (* OperandSize = 16 *)
EIP « Pop();
EIP « EIP AND OOOOQFFFFH;
CS « Pop(); (* 16-bit pop *)
ESP « ESP + SRC; (* Release parameters from stack *)

RET—Return from Procedure Vol. 2B 4-339

INSTRUCTION SET REFERENCE, N-Z

Fl;

RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32)
or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)
THEN #SS(0); FI;
Read return segment selector;
IF stack segment selector is NULL
THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits
THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL # RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL # RPL of the return code segment selector
THEN #GP(selector); FI;
IF stack segment not present
THEN #SS(StackSegmentSelector); Fl;
IF the return instruction pointer is not within the return code segment limit
THEN #GP(0); FI;
CPL « ReturnCodeSegmentSelector(RPL);
IF OperandSize = 32
THEN
EIP < Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded; segment descriptor
information also loaded *)
CS(RPL) « CPL;
ESP « ESP + SRC; (* Release parameters from called procedure’s stack *)
tempESP « Pop();
tempSS « Pop(); (* 32-bit pop, high-order 16 bits discarded; segment
descriptor information also loaded *)
ESP « tempESP;
SS « tempSS;
ELSE (* OperandSize = 16 *)
EIP « Pop();
EIP « EIP AND OO0OFFFFH;
CS « Pop(); (* 16-bit pop; segment descriptor information also loaded *)
CS(RPL) « CPL;
ESP « ESP + SRC; (* Release parameters from called procedure’s stack *)
tempESP « Pop();
tempSS « Pop(); (* 16-bit pop; segment descriptor information also loaded *)
ESP « tempESP;
SS « tempSS;

4-340 Vol.2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z

Fl;

FOR each of segment register (€S, FS, GS, and DS)
DO
IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL (* DPL in hidden part of segment register *)
THEN SegmentSelector « O; (* Segment selector invalid *)
Fl;
0D;

For each of ES, FS, GS, and DS
DO
IF segment selector index is not within descriptor table limits
or segment descriptor indicates the segment is not a data or
readable code segment
or if the segment is a data or non-conforming code segment
and the segment descriptor’'s DPL < CPL or RPL of code segment'’s
segment selector
THEN SegmentSelector « O; (* Segment selector invalid *)
0D;
ESP « ESP + SRC; (* Release parameters from calling procedure’s stack *)

(* IA-32e Mode *)
IF (PE=1and VM =0 and IA32_EFER.LMA = 1) and instruction = far RET

THEN
IF OperandSize = 32
THEN
IF second doubleword on stack is not within stack limits
THEN #SS(0); FI;
IF first or second doubleword on stack is not in canonical space
THEN #SS(0); FI;
ELSE
IF OperandSize = 16
THEN
IF second word on stack is not within stack limits
THEN #SS(0); FI;
IF first or second word on stack is not in canonical space
THEN #SS(0); FI;
ELSE (* OperandSize = 64 *)
IF first or second quadword on stack is not in canonical space
THEN #SS(0); FI;
F
Fl;

IF return code segment selector is NULL

RET—Return from Procedure Vol. 2B 4-341

INSTRUCTION SET REFERENCE, N-Z

THEN GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit
THEN GP(selector); Fl;
IF return code segment selector addresses descriptor in non-canonical space
THEN GP(selector); Fl;
Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment
THEN #GP(selector); FI;
IF return code segment descriptor has L-bit = 1 and D-bit = 1
THEN #GP(selector); FI;
IF return code segment selector RPL < CPL
THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;
IF return code segment descriptor is non-conforming
and return code segment DPL # return code segment selector RPL
THEN #GP(selector); FI;
IF return code segment descriptor is not present
THEN #NP(selector); FI:
IF return code segment selector RPL > CPL
THEN GOTO IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL;
Fl;
Fl;

IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within the return code segment limit
THEN #GP(0); FI;
IF the return instruction pointer is not within canonical address space
THEN #GP(0); FI;
IF OperandSize = 32
THEN
EIP « Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded *)
ESP « ESP + SRC; (* Release parameters from stack *)

ELSE
IF OperandSize = 16
THEN
EIP « Pop();

EIP « EIP AND O000FFFFH;
CS « Pop(); (* 16-bit pop *)
ESP « ESP + SRC; (* Release parameters from stack *)

4-342 \ol.2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z

ELSE (* OperandSize = 64 *)
RIP « Pop();
CS « Pop(); (* 64-bit pop, high-order 48 bits discarded *)
ESP « ESP + SRC; (* Release parameters from stack *)
Fl;
Fl;

IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32)
or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)
THEN #SS(0); FI;
IF top (16 + SRC) bytes of stack are not in canonical address space (OperandSize = 32)
or top (8 + SRC) bytes of stack are not in canonical address space (OperandSize = 16)
or top (32 + SRC) bytes of stack are not in canonical address space (OperandSize = 64)
THEN #SS(0); FI;
Read return stack segment selector;
IF stack segment selector is NULL
THEN
IF new CS descriptor L-bit = 0
THEN #GP(selector);
IF stack segment selector RPL =3
THEN #GP(selector);
Fl;
IF return stack segment descriptor is not within descriptor table limits
THEN #GP(selector); Fl;
IF return stack segment descriptor is in non-canonical address space
THEN #GP(selector); Fl;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL # RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL # RPL of the return code segment selector
THEN #GP(selector); FI;
IF stack segment not present
THEN #SS(StackSegmentSelector); Fl;
IF the return instruction pointer is not within the return code segment limit
THEN #GP(0); FI:
IF the return instruction pointer is not within canonical address space
THEN #GP(0); FI;
CPL < ReturnCodeSegmentSelector(RPL);
IF OperandSize = 32
THEN
EIP « Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor

RET—Return from Procedure Vol. 2B 4-343

INSTRUCTION SET REFERENCE, N-Z

Fl;

information also loaded *)

CS(RPL) «— CPL;

ESP « ESP + SRC; (* Release parameters from called procedure’s stack *)
tempESP « Pop();

tempSS « Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor
information also loaded *)

ESP « tempESP;

SS « tempSS;

ELSE

IF OperandSize = 16

Fl;

THEN

EIP « Pop();

EIP « EIP AND OO0OFFFFH;

CS « Pop(); (* 16-bit pop; segment descriptor information also loaded *)
CS(RPL) « CPL;

ESP « ESP + SRC; (* release parameters from called

procedure’s stack *)

tempESP « Pop();

tempSS « Pop(); (* 16-bit pop; segment descriptor information loaded *)
ESP « tempESP;

SS « tempSS;

ELSE (* OperandSize = 64 *)

RIP « Pop();

CS « Pop(); (* 64-bit pop; high-order 48 bits discarded; segment
descriptor information loaded *)

CS(RPL) « CPL;

ESP « ESP + SRC; (* Release parameters from called procedure’s
stack *)

tempESP « Pop();

tempSS « Pop(); (* 64-bit pop; high-order 48 bits discarded; segment
descriptor information also loaded *)

ESP « tempESP;

SS « tempSS;

FOR each of segment register (€S, FS, GS, and DS)

4-344 Vol.2B

DO

IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL; (* DPL in hidden part of segment register *)

Fl;
0D;

THEN SegmentSelector « O; (* SegmentSelector invalid *)

RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z

For each of €S, FS, GS, and DS

DO
IF segment selector index is not within descriptor table limits
or segment descriptor indicates the segment is not a data or readable code segment
or if the segment is a data or non-conforming code segment
and the segment descriptor’'s DPL < CPL or RPL of code segment’s segment selector

THEN SegmentSelector « O; (* SegmentSelector invalid *)
0D;

ESP ESP + SRC; (* Release parameters from calling procedure’s stack *)

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector NULL.

If the return instruction pointer is not within the return code
segment limit

#GP(selector) If the RPL of the return code segment selector is less then the
CPL.

If the return code or stack segment selector index is not within
its descriptor table limits.

If the return code segment descriptor does not indicate a code
segment.

If the return code segment is non-conforming and the segment
selector’s DPL is not equal to the RPL of the code segment’s
segment selector

If the return code segment is conforming and the segment
selector’s DPL greater than the RPL of the code segment’s
segment selector

If the stack segment is not a writable data segment.

If the stack segment selector RPL is not equal to the RPL of the
return code segment selector.

If the stack segment descriptor DPL is not equal to the RPL of
the return code segment selector.

#SS(0) If the top bytes of stack are not within stack limits.
If the return stack segment is not present.

#NP(selector) If the return code segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory access occurs when the CPL is 3 and

alignment checking is enabled.

RET—Return from Procedure Vol. 2B 4-345

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP

#SS

If the return instruction pointer is not within the return code
segment limit

If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If the return instruction pointer is not within the return code
segment limit

If the top bytes of stack are not within stack limits.
If a page fault occurs.

If an unalighed memory access occurs when alignment checking
is enabled.

Compatibility Mode Exceptions
Same as 64-bit mode exceptions.

64-Bit Mode Exceptions

#GP(0)

#GP(selector)

4-346 Vol.2B

If the return instruction pointer is non-canonical.

If the return instruction pointer is not within the return code
segment limit.

If the stack segment selector is NULL going back to compatibility
mode.

If the stack segment selector is NULL going back to CPL3 64-bit
mode.

If a NULL stack segment selector RPL is not equal to CPL going
back to non-CPL3 64-bit mode.

If the return code segment selector is NULL.

If the proposed segment descriptor for a code segment does not
indicate it is a code segment.

If the proposed new code segment descriptor has both the D-bit
and L-bit set.

If the DPL for a nonconforming-code segment is not equal to the
RPL of the code segment selector.

If CPL is greater than the RPL of the code segment selector.

If the DPL of a conforming-code segment is greater than the
return code segment selector RPL.

If a segment selector index is outside its descriptor table limits.
If a segment descriptor memory address is non-canonical.
If the stack segment is not a writable data segment.

RET—Return from Procedure

#SS(0)

#NP(selector)
#PF(fault-code)
#AC(0)

INSTRUCTION SET REFERENCE, N-Z

If the stack segment descriptor DPL is not equal to the RPL of
the return code segment selector.

If the stack segment selector RPL is not equal to the RPL of the
return code segment selector.

If an attempt to pop a value off the stack violates the SS limit.

If an attempt to pop a value off the stack causes a non-canonical
address to be referenced.

If the return code or stack segment is not present.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

RET—Return from Procedure Vol. 2B 4-347

INSTRUCTION SET REFERENCE, N-Z

ROUNDPD — Round Packed Double Precision Floating-Point Values

Opcode Instruction 64-bit Compat/ Description

Mode LegMode
66 OF 3A ROUNDPD xmm1, Valid Valid Round packed double precision
09/rib xmm2/m128, imm8 floating-point values in

xmm2/m128 and place the result in
xmm1. The rounding mode is
determined by imm8.

Description

Round the 2 double-precision floating-point values in the source operand (second
operand) using the rounding mode specified in the immediate operand (third
operand) and place the results in the destination operand (first operand). The
rounding process rounds each input floating-point value to an integer value and
returns the integer result as a single-precision floating-point value.

The immediate operand specifies control fields for the rounding operation, three bit
fields are defined and shown in Figure 4-13. Bit 3 of the immediate byte controls
processor behavior for a precision exception, bit 2 selects the source of rounding
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-4 lists the
encoded values for rounding-mode field).

The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

8 3210

Reserved

P — Precision Mask; 0: normal, 1: inexact
RS — Rounding select; 1: MXCSR.RC, 0: Inm8.RC
RC — Rounding mode

Figure 4-13. Bit Control Fields of Immediate Byte for ROUNDxx Instruction

4-348 Vol.2B ROUNDPD — Round Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

Table 4-4. Rounding Modes and Encoding of Rounding Control (RC) Field

Rounding RC Field | Description
Mode Setting
Round to 00B Rounded result is the closest to the infinitely precise result. If two
nearest (even) values are equally close, the result is the even value (i.e., the integer
value with the least-significant bit of zero).

Round down 01B Rounded result is closest to but no greater than the infinitely precise
(toward —) result.
Round up 10B Rounded result is closest to but no less than the infinitely precise
(toward +<o) result.
Round toward | 11B Rounded result is closest to but no greater in absolute value than the
zero (Truncate) infinitely precise result.

Operation

IF (imm[2] =="1)

THEN // rounding mode is determined by MXCSR.RC
DEST[63:0] €« ConvertDPFPTolnteger_M(SRC[63:0]);
DEST[127:64] <« ConvertDPFPTolnteger_M(SR(C[127:64));

ELSE /1 rounding mode is determined by IMM8.RC
DEST[63:0] €« ConvertDPFPTolnteger_Imm(SRC[63:0]);
DEST[127:64] < ConvertDPFPTolnteger_Imm(SRC[127:64]);

F

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDPD __m128 mm_round_pd(__m128d s1, int iRoundMode);
__m128 mm_floor_pd(__m128d s1);
__m128 mm_ceil_pd(__m128ds1);

SIMD Floating-Point Exceptions
Invalid (signaled only if SRC = SNaN)

Precision (signaled only if imm[3] == ‘0; if imm[3] == ‘1, then the Precision Mask in
the MXSCSR is ignored and precision exception is not signaled.)

Note that Denormal is not signaled by ROUNDPD.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

ROUNDPD — Round Packed Double Precision Floating-Point Values Vol.2B 4-349

INSTRUCTION SET REFERENCE, N-Z

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal address in the SS segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

4-350 Vol.2B

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.

ROUNDPD — Round Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

ROUNDPD — Round Packed Double Precision Floating-Point Values Vol.2B 4-351

INSTRUCTION SET REFERENCE, N-Z

ROUNDPS — Round Packed Single Precision Floating-Point Values

Opcode Instruction 64-bit Compat/ Description

Mode Leg Mode
66 OF 3A 08 ROUNDPS xmm1, Valid Valid Round packed single precision
Irib xmm2/m128, imm8 floating-point values in

xmmZ2/m128 and place the result
in xmm1. The rounding mode is
determined by imm8.

Description

Round the 4 single-precision floating-point values in the source operand (second
operand) using the rounding mode specified in the immediate operand (third
operand) and place the results in the destination operand (first operand). The
rounding process rounds each input floating-point value to an integer value and
returns the integer result as a single-precision floating-point value.

The immediate operand specifies control fields for the rounding operation, three bit
fields are defined and shown in Figure 4-13. Bit 3 of the immediate byte controls
processor behavior for a precision exception, bit 2 selects the source of rounding
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-4 lists the
encoded values for rounding-mode field).

The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

Operation

IF (imm[2] =="1)

THEN // rounding mode is determined by MXCSR.RC
DEST[31:0] €« ConvertSPFPTolnteger_M(SRC[31:0]);
DEST[63:32] < ConvertSPFPTolnteger_M(SRC[63:32]);
DEST[95:64] < ConvertSPFPTolnteger_M(SRC[95:64]);
DEST[127:96] <« ConvertSPFPTolnteger_M(SRC[127:96]);

ELSE // rounding mode is determined by IMM8.RC
DEST[31:0] €« ConvertSPFPTolnteger_Imm(SRC[31:0]);
DEST[63:32] <« ConvertSPFPTolnteger_Imm(SRC[63:32]);
DEST[95:64] < ConvertSPFPTolnteger_Imm(SRC[95:64]);
DEST[127:96] < ConvertSPFPTolnteger_Imm(SRC[127:96]);

Fl;

4-352 Vol.2B ROUNDPS — Round Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDPS __m128 mm_round_ps(__m128 s1, int iRoundMode);
__m128 mm_floor_ps(__m128s1);
__m128 mm_ceil_ps(__m128s1);

SIMD Floating-Point Exceptions
Invalid (signaled only if SRC = SNaN)

Precision (signaled only if imm[3] == ‘0; if imm[3] == ‘1, then the Precision Mask in
the MXSCSR is ignored and precision exception is not signaled.)

Note that Denormal is not signaled by ROUNDPS.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

ROUNDPS — Round Packed Single Precision Floating-Point Values Vol.2B 4-353

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

4-354 Vol.2B ROUNDPS — Round Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

ROUNDSD — Round Scalar Double Precision Floating-Point Values

Opcode Instruction 64-bit Compat/ Description

Mode Leg Mode
66 OF 3A0B ROUNDSD xmm1, Valid Valid Round the low packed double
/rib xmm2/m64, imm8 precision floating-point value in

xmm2/m64 and place the result in
xmm1. The rounding mode is
determined by imm8.

Description

Round the DP FP value in the lower qword of the source operand (second operand)
using the rounding mode specified in the immediate operand (third operand) and
place the result in the destination operand (first operand). The rounding process
rounds a double-precision floating-point input to an integer value and returns the
integer result as a double precision floating-point value in the lowest position. The
upper double precision floating-point value in the destination is retained.

The immediate operand specifies control fields for the rounding operation, three bit
fields are defined and shown in Figure 4-13. Bit 3 of the immediate byte controls
processor behavior for a precision exception, bit 2 selects the source of rounding
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-4 lists the
encoded values for rounding-mode field).

The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

Operation

IF (imm[2] =="1)
THEN // rounding mode is determined by MXCSR.RC
DEST[63:0] €« ConvertDPFPTolnteger_M(SRC[63:0]);
ELSE /1 rounding mode is determined by IMM8.RC
DEST[63:0] €« ConvertDPFPTolnteger_Imm(SRC[63:0]);
Fl;
DEST[127:63] remains unchanged ;

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDSD __m128d mm_round_sd(__m128ddst,__m128d s1, int iRoundMode);
__m128d mm_floor_sd(__m128d dst, __m128ds1);
__m128d mm_ceil_sd(__m128ddst,__m128ds1);

ROUNDSD — Round Scalar Double Precision Floating-Point Values Vol.2B 4-355

INSTRUCTION SET REFERENCE, N-Z

SIMD Floating-Point Exceptions
Invalid (signaled only if SRC = SNaN)

Precision (signaled only if imm[3] == ‘O; if imm[3] == ‘1, then the Precision Mask in
the MXSCSR is ignored and precision exception is not signaled.)

Note that Denormal is not signaled by ROUNDSD.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

4-356 Vol.2B ROUNDSD — Round Scalar Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is O.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

ROUNDSD — Round Scalar Double Precision Floating-Point Values Vol.2B 4-357

INSTRUCTION SET REFERENCE, N-Z

ROUNDSS — Round Scalar Single Precision Floating-Point Values

Opcode Instruction 64-bit Compat/ Description

Mode Leg Mode
66 OF 3A0A/r ROUNDSS xmm1, Valid Valid Round the low packed single
ib xmmz2/m32, imm8 precision floating-point value

in xmmZ2/m32 and place the
resultin xmm1. The rounding
mode is determined by imm8.

Description

Round the single-precision floating-point value in the lowest dword of the source
operand (second operand) using the rounding mode specified in the immediate
operand (third operand) and place the result in the destination operand (first
operand). The rounding process rounds a single-precision floating-point input to an
integer value and returns the result as a single-precision floating-point value in the
lowest position. The upper three single-precision floating-point values in the destina-
tion are retained.

The immediate operand specifies control fields for the rounding operation, three bit
fields are defined and shown in Figure 4-13. Bit 3 of the immediate byte controls
processor behavior for a precision exception, bit 2 selects the source of rounding
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-4 lists the
encoded values for rounding-mode field).

The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

Operation

IF (imm[2] == 1)
THEN // rounding mode is determined by MXCSR.RC
DEST[31:0] €« ConvertSPFPTolnteger_M(SRC[31:0]);
ELSE // rounding mode is determined by IMM8.RC
DEST[31:0] €« ConvertSPFPTolnteger_Imm(SRC[31:0]);
Fl;
DEST[127:32] remains unchanged ;

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDSS __m128 mm_round_ss(__m128 dst,__m128 s1, int iRoundMode);
__m128 mm_floor_ss(__m128dst,__ m128s1);
__m128 mm_ceil_ss(__m128 dst,__m128s1);

4-358 Vol.2B ROUNDSS — Round Scalar Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

SIMD Floating-Point Exceptions
Invalid (signaled only if SRC = SNaN)

Precision (signaled only if imm[3] == ‘O; if imm[3] == ‘1, then the Precision Mask in
the MXSCSR is ignored and precision exception is not signaled.)

Note that Denormal is not signaled by ROUNDSS.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault:code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Mode Exceptions

#GP if any part of the operand lies outside of the effective address
space from O to OFFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

ROUNDSS — Round Scalar Single Precision Floating-Point Values Vol.2B 4-359

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is O.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4-360 Vol.2B ROUNDSS — Round Scalar Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

RSM—Resume from System Management Mode

Opcode Instruction Non- SMM Mode Description
SMM
Mode
OF AA RSM Invalid Valid Resume operation of interrupted
program.
Description

Returns program control from system management mode (SMM) to the application
program or operating-system procedure that was interrupted when the processor
received an SMM interrupt. The processor’s state is restored from the dump created
upon entering SMM. If the processor detects invalid state information during state
restoration, it enters the shutdown state. The following invalid information can cause
a shutdown:

® Any reserved bit of CR4 is set to 1.

® Any illegal combination of bits in CRO, such as (PG=1 and PE=0) or (NW=1 and
CD=0).

® (Intel Pentium and Intel486™ processors only.) The value stored in the state
dump base field is not a 32-KByte aligned address.

The contents of the model-specific registers are not affected by a return from SMM.

The SMM state map used by RSM supports resuming processor context for non-
64-bit modes and 64-bit mode.

See Chapter 26, “System Management,” in the Intel® 64 and 1A-32 Architectures
Software Developer’s Manual, Volume 3B, for more information about SMM and the
behavior of the RSM instruction.

Operation

ReturnFromSMM;
IF (IA-32e mode supported) or (CPUID_DisplayFamily_DisplayModleSignature = 06H_OCH)
THEN
ProcessorState < Restore(SMMDump(lA-32e SMM STATE MAP));
Else
ProcessorState < Restore(SMMDump(Non-32-Bit-Mode SMM STATE MAP));
Fl

Flags Affected
All.

RSM—Resume from System Management Mode Vol.2B 4-361

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#UD If an attempt is made to execute this instruction when the
processor is not in SMM.

If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

4-362 Vol. 2B RSM—Resume from System Management Mode

INSTRUCTION SET REFERENCE, N-Z

RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-
Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF52/r RSQRTPS xmm1, Valid Valid Computes the approximate reciprocals
xmm2/m128 of the square roots of the packed

single-precision floating-point values
in xmmZ2/m128and stores the results
in xmm1.

Description

Performs a SIMD computation of the approximate reciprocals of the square roots of
the four packed single-precision floating-point values in the source operand (second
operand) and stores the packed single-precision floating-point results in the destina-
tion operand. The source operand can be an XMM register or a 128-bit memory loca-
tion. The destination operand is an XMM register. See Figure 10-5 in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of
a SIMD single-precision floating-point operation.

The relative error for this approximation is:

[Relative Error| < 1.5 * 2712

The RSQRTPS instruction is not affected by the rounding control bits in the MXCSR
register. When a source value is a 0.0, an « of the sign of the source value is
returned. A denormal source value is treated as a 0.0 (of the same sign). When a
source value is a negative value (other than —-0.0), a floating-point indefinite is
returned. When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN
or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] « APPROXIMATE(1.0/SQRT(SRC[31:0]));
DEST[63:32] « APPROXIMATE(1.0/SQRT(SRC[63:32]));
DEST[95:64] «— APPROXIMATE(1.0/SQRT(SRC[95:64]));
DEST[127:96] « APPROXIMATE(1.0/SQRT(SRC[127:96]));

Intel C/C++ Compiler Intrinsic Equivalent
RSQRTPS _m128 _mm_rsqrt_ps(__m128 a)

RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-Precision Floating- Vol.2B 4-363
Point Values

INSTRUCTION SET REFERENCE, N-Z

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

H#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

4-364 Vol.2B RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-Precision Floating-
Point Values

#GP(0)

#PF(fault-code)
#NM

INSTRUCTION SET REFERENCE, N-Z

If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For a page fault.
If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-Precision Floating- Vol.2B 4-365

Point Values

INSTRUCTION SET REFERENCE, N-Z

RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-
Precision Floating-Point Value

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F3 OF 52 /r RSQRTSS xmm1, Valid Valid Computes the approximate reciprocal of
xmm2/m32 the square root of the low single-

precision floating-point value in
xmmZ2/m32 and stores the results in
xmm1.

Description

Computes an approximate reciprocal of the square root of the low single-precision
floating-point value in the source operand (second operand) stores the single-preci-
sion floating-point result in the destination operand. The source operand can be an
XMM register or a 32-bit memory location. The destination operand is an XMM
register. The three high-order doublewords of the destination operand remain
unchanged. See Figure 10-6 in the Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volume 1, for an illustration of a scalar single-precision floating-
point operation.

The relative error for this approximation is:

[Relative Error| < 1.5 % 2712

The RSQRTSS instruction is not affected by the rounding control bits in the MXCSR
register. When a source value is a 0.0, an « of the sign of the source value is
returned. A denormal source value is treated as a 0.0 (of the same sign). When a
source value is a negative value (other than —0.0), a floating-point indefinite is
returned. When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN
or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] - APPROXIMATE(1.0/SQRT(SRC[31:0]));
(* DEST[127:32] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
RSQRTSS __m128 _mm_rsqrt_ss(__m128 a)

SIMD Floating-Point Exceptions

None.

4-366 Vol.2B RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-Precision Floating-Point
Value

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-Precision Floating-Point Vol.2B 4-367

Value

INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4-368 Vol.2B RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-Precision Floating-Point
Value

INSTRUCTION SET REFERENCE, N-Z

SAHF—Store AH into Flags

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
9€ SAHF Invalid* Valid Loads SF, ZF, AF, PF, and CF from AH
into EFLAGS register.
NOTES:

* \alid in specific steppings. See Description section.

Description

Loads the SF, ZF, AF, PF, and CF flags of the EFLAGS register with values from the
corresponding bits in the AH register (bits 7, 6, 4, 2, and 0, respectively). Bits 1, 3,
and 5 of register AH are ignored; the corresponding reserved bits (1, 3, and 5) in the
EFLAGS register remain as shown in the “Operation” section below.

This instruction executes as described above in compatibility mode and legacy mode.
It is valid in 64-bit mode only if CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1.

Operation

IF IA-64 Mode
THEN
IF CPUID.B0000001.ECX[0] = 1;
THEN
RFLAGS(SF:ZF:0:AF:0:PF:1:CF) « AH;
ELSE
#UD;
FI
ELSE
EFLAGS(SF:ZF:0:AF:0:PF:1:CF) « AH;
Fl;

Flags Affected

The SF, ZF, AF, PF, and CF flags are loaded with values from the AH register. Bits 1, 3,
and 5 of the EFLAGS register are unaffected, with the values remaining 1, 0, and O,
respectively.

Protected Mode Exceptions
None.

Real-Address Mode Exceptions
None.

SAHF—Store AH into Flags Vol.2B 4-369

INSTRUCTION SET REFERENCE, N-Z
Virtual-8086 Mode Exceptions
None.

Compatibility Mode Exceptions
None.

64-Bit Mode Exceptions
#UD If CPUID.80000001.ECX[0O] = 0.
If the LOCK prefix is used.

4-370 Vol.2B SAHF—Store AH into Flags

INSTRUCTION SET REFERENCE, N-Z

SAL/SAR/SHL/SHR-Shift

Opcode*** Instruction 64-Bit Compat/ Description
Mode Leg Mode

DO /4 SAL r/m8, 1 Valid Valid Multiply r/m8 by 2, once.

REX + D0 /4 SAL r/m8** 1 Valid N.E. Multiply r/m8 by 2, once.

D2 /4 SAL r/m8, CL Valid Valid Multiply /m8 by 2, CL times.

REX +D2 /4 SAL r/m8** CL Valid N.E. Multiply /m8 by 2, CL times.

CO/4ib SAL r/m8, imm8 Valid Valid Multiply /m8 by 2, imm8
times.

REX +CO /4 ib SAL r/m8** imm8 Valid N.E. Multiply /m8by 2, imm8
times.

D1/4 SAL r/m16, 1 Valid Valid Multiply r/m16 by 2, once.

D3/4 SAL r/m16, CL Valid Valid Multiply /m16 by 2, CL times.

C1/4ib SAL r/m16, imm8 Valid Valid Multiply /m16 by 2, imm8
times.

D1/4 SAL r/m32, 1 Valid Valid Multiply /m32 by 2, once.

REX.W + D1 /4 SAL r/m64, 1 Valid N.E. Multiply r/m64 by 2, once.

D3/4 SAL r/m32, CL Valid Valid Multiply r/m32 by 2, CL times.

REX.W + D3 /4 SAL r/m64, CL Valid N.E. Multiply r/m64 by 2, CL times.

C1/4ib SAL r/m32, imm8 Valid Valid Multiply r/m32 by 2, imm8
times.

REXW +C1 /4 ib SAL r/m64, imm8 Valid N.E. Multiply r/m64 by 2, imm8
times.

DO /7 SAR r/m8, 1 Valid Valid Signed divide* r/m8by 2,
once.

REX + D0 /7 SAR r/m8** 1 Valid N.E. Signed divide* r/m8by 2,
once.

D2 /7 SAR r/m8, CL Valid Valid Signed divide* /m8by 2, CL
times.

REX +D2 /7 SAR r/m8** CL Valid N.E. Signed divide* r/m8by 2, CL
times.

CO/7 ib SAR r/m8, imm8 Valid Valid Signed divide* r/m8by 2,
imm8 time.

REX+CO/7 ib SAR r/m8** imm8 Valid N.E. Signed divide* r/m8by 2,
imm8 times.

D1/7 SAR r/m16,1 Valid Valid Signed divide* /m16 by 2,
once.

SAL/SAR/SHL/SHR—Shift Vol.2B 4-371

INSTRUCTION SET REFERENCE, N-Z

Opcode

D3 /7

C1/7ib

D1/7

REXW + D1 /7
D3 /7

REX.W + D3 /7
C1/7ib

REXW +C1 /7 ib

DO /4

REX + DO /4
D2 /4

REX + D2 /4
Co/4ib

REX +CO /4 ib

D1/4
D3/4
C1/4ib

D1/4

REX.W + D1 /4
D3/4

REX.W + D3 /4
C1/4ib

REX.W +C1 /4 ib

Instruction

SAR r/m16, CL

SAR r/m16, imm8

SAR r/m32, 1

SAR r/m64, 1

SAR r/m32, CL

SAR r/m64, CL

SAR r/m32, imm8

SAR r/m64, imm8

SHL /m8, 1

SHL r/m8**, 1
SHL r/m8, CL
SHL /m8**, CL
SHL r/m8, imm8

SHL r/m8**, imm8

SHL /m16,1
SHL r/m16, CL
SHL r/m16, imm8

SHL /m32,1

SHL r/m64,1

SHL r/m32, CL
SHL r/m64, CL
SHL r/m32, imm8

SHL r/m64, imm8

64-Bit

Mode

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid
Valid
Valid
Valid
Valid

Valid

Valid
Valid
Valid

Valid
Valid
Valid
Valid
Valid

Valid

Compat/
Leg Mode
Valid

Valid

Valid

N.E.

Valid

N.E.

Valid

N.E.

Valid
N.E.
Valid
N.E.
Valid

N.E.

Valid
Valid
Valid

Valid
N.E.
Valid
N.E.
Valid

N.E.

Description

Signed divide* r/m16 by 2, CL
times.

Signed divide* r/m16 by 2,
imm8 times.

Signed divide* r/m32by 2,
once.

Signed divide* r/m64 by 2,
once.

Signed divide* /m32 by 2, CL
times.

Signed divide* /m64 by 2, CL
times.

Signed divide* /m32 by 2,
imm8 times.

Signed divide* /m64 by 2,
imm8 times

Multiply /m8by 2, once.
Multiply /m8by 2, once.
Multiply /m8by 2, CL times.
Multiply /m8by 2, CL times.

Multiply /m8by 2, imm8
times.

Multiply /m8by 2, imm8
times.

Multiply /m16 by 2, once.
Multiply /m16 by 2, CL times.

Multiply /m16 by 2, imm8
times.

Multiply /m32 by 2, once.
Multiply /m64 by 2, once.
Multiply r/m32 by 2, CL times.
Multiply r/m64 by 2, CL times.

Multiply /m32 by 2, imm8
times.

Multiply /m64 by 2, imm8
times.

4-372 Vol.2B

SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, N-Z

Opcode

DO /5

REX + DO /5
D2 /5

REX + D2 /5
C0/5ib

REX +CO /5 ib
D1/5

D3/5

C1/5ib

D1/5

REX.W + D1 /5
D3 /5

REX.W + D3 /5

C1/5ib

REXW +C1/5ib

Instruction

SHR /m8,1

SHR /m8**,1

SHR r/m8, CL

SHR r/m8** CL

SHR r/m8, imm8

SHR r/m8** imm8

SHR r/m16, 1

SHR r/m16, CL

SHR r/m16, imm8

SHR r/m32,1

SHR r/m64, 1

SHR r/m32, CL

SHR r/m64, CL

SHR r/m32, imm8

64-Bit

Mode

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

SHR r/m64, imim8 Valid

Compat/
Leg Mode
Valid

N.E.

Valid

N.E.

Valid

N.E.

Valid
Valid
Valid
Valid

N.E.

Valid

N.E.

Valid

N.E.

Description

Unsigned divide /m8by 2,
once.

Unsigned divide /m8by 2,
once.

Unsigned divide /m8by 2, CL
times.

Unsigned divide /m8by 2, CL
times.

Unsigned divide /m8by 2,
imm8 times.

Unsigned divide /m8by 2,
imm8 times.

Unsigned divide /m16 by 2,
once.

Unsigned divide /m16 by 2,
CL times

Unsigned divide /m16 by 2,
imm8 times.

Unsigned divide r/m32 by 2,
once.

Unsigned divide r/m64 by 2,
once.

Unsigned divide r/m32 by 2,
CL times.

Unsigned divide r/m64 by 2,
CL times.

Unsigned divide r/m32 by 2,
imm8 times.

Unsigned divide /m64 by 2,
imm8 times.

NOTES:

* Not the same form of division as IDIV; rounding is toward negative infinity.

** |n 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

***See |A-32 Architecture Compatibility section below.

SAL/SAR/SHL/SHR—Shift

Vol.2B 4-373

INSTRUCTION SET REFERENCE, N-Z

Description

Shifts the bits in the first operand (destination operand) to the left or right by the
number of bits specified in the second operand (count operand). Bits shifted beyond
the destination operand boundary are first shifted into the CF flag, then discarded. At
the end of the shift operation, the CF flag contains the last bit shifted out of the desti-
nation operand.

The destination operand can be a register or a memory location. The count operand
can be an immediate value or the CL register. The count is masked to 5 bits (or 6 bits
if in 64-bit mode and REX.W is used). The count range is limited to O to 31 (or 63 if
64-bit mode and REX.W is used). A special opcode encoding is provided for a count
of 1.

The shift arithmetic left (SAL) and shift logical left (SHL) instructions perform the
same operation; they shift the bits in the destination operand to the left (toward
more significant bit locations). For each shift count, the most significant bit of the
destination operand is shifted into the CF flag, and the least significant bit is cleared
(see Figure 7-7 in the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 1).

The shift arithmetic right (SAR) and shift logical right (SHR) instructions shift the bits
of the destination operand to the right (toward less significant bit locations). For each
shift count, the least significant bit of the destination operand is shifted into the CF
flag, and the most significant bit is either set or cleared depending on the instruction
type. The SHR instruction clears the most significant bit (see Figure 7-8 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1); the SAR
instruction sets or clears the most significant bit to correspond to the sign (most
significant bit) of the original value in the destination operand. In effect, the SAR
instruction fills the empty bit position’s shifted value with the sign of the unshifted
value (see Figure 7-9 in the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 1).

The SAR and SHR instructions can be used to perform signed or unsigned division,
respectively, of the destination operand by powers of 2. For example, using the SAR
instruction to shift a signed integer 1 bit to the right divides the value by 2.

Using the SAR instruction to perform a division operation does not produce the same
result as the IDIV instruction. The quotient from the IDIV instruction is rounded
toward zero, whereas the “quotient” of the SAR instruction is rounded toward nega-
tive infinity. This difference is apparent only for negative numbers. For example,
when the IDIV instruction is used to divide -9 by 4, the result is -2 with a remainder
of -1. If the SAR instruction is used to shift -9 right by two bits, the result is -3 and
the “remainder” is +3; however, the SAR instruction stores only the most significant
bit of the remainder (in the CF flag).

The OF flag is affected only on 1-bit shifts. For left shifts, the OF flag is set to O if the
most-significant bit of the result is the same as the CF flag (that is, the top two bits
of the original operand were the same); otherwise, it is set to 1. For the SAR instruc-
tion, the OF flag is cleared for all 1-bit shifts. For the SHR instruction, the OF flag is
set to the most-significant bit of the original operand.

4-374 Vol.2B SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, N-Z

In 64-bit mode, the instruction’s default operation size is 32 bits and the mask width
for CL is 5 bits. Using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to
64-bits and sets the mask width for CL to 6 bits. See the summary chart at the begin-
ning of this section for encoding data and limits.

IA-32 Architecture Compatibility

The 8086 does not mask the shift count. However, all other 1A-32 processors
(starting with the Intel 286 processor) do mask the shift count to 5 bits, resulting in
a maximum count of 31. This masking is done in all operating modes (including the
virtual-8086 mode) to reduce the maximum execution time of the instructions.

Operation

IF 64-Bit Mode and using REX.W
THEN
countMASK « 3FH;
ELSE
countMASK « 1FH;
Fl

tempCOUNT « (COUNT AND countMASK);
tempDEST « DEST;
WHILE (tempCOUNT # 0)
DO
IF instruction is SAL or SHL
THEN
CF « MSB(DEST);
ELSE (* Instruction is SAR or SHR *)
CF « LSB(DEST);
Fl;
IF instruction is SAL or SHL
THEN
DEST « DEST * 2;
ELSE
IF instruction is SAR
THEN
DEST « DEST/ 2; (* Signed divide, rounding toward negative infinity *)
ELSE (* Instruction is SHR *)
DEST « DEST /2 ; (* Unsigned divide *)
Fl;
Fl;
tempCOUNT « tempCOUNT - 1;
0D;

SAL/SAR/SHL/SHR—Shift Vol. 2B 4-375

INSTRUCTION SET REFERENCE, N-Z

(* Determine overflow for the various instructions *)
IF (COUNT and countMASK) =1

THEN
IF instruction is SAL or SHL
THEN
OF < MSB(DEST) XOR CF;
ELSE
IF instruction is SAR
THEN
OF «0;
ELSE (* Instruction is SHR *)
OF < MSB(tempDEST);
Fl;
Fl;
ELSE IF (COUNT AND countMASK) =0
THEN

All flags unchanged;
ELSE (* COUNT not 1 or 0 *)
OF « undefined;
Fl;
Fl;

Flags Affected

The CF flag contains the value of the last bit shifted out of the destination operand; it
is undefined for SHL and SHR instructions where the count is greater than or equal to
the size (in bits) of the destination operand. The OF flag is affected only for 1-bit
shifts (see “Description” above); otherwise, it is undefined. The SF, ZF, and PF flags
are set according to the result. If the count is 0, the flags are not affected. For a non-
zero count, the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a nhon-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

4-376 Vol.2B SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, N-Z

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

SAL/SAR/SHL/SHR—Shift Vol.2B 4-377

INSTRUCTION SET REFERENCE, N-Z

SBB—Integer Subtraction with Borrow

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

1Cib SBB AL, imm8 Valid Valid Subtract with borrow imm8
from AL.

1D iw SBB AX, imm16 Valid Valid Subtract with borrow imm16
from AX.

1D id SBB EAX, imm32 Valid Valid Subtract with borrow imm32
from EAX.

REXW + 1D id SBB RAX, imm32 Valid N.E. Subtract with borrow sign-
extended imm.32 to 64-bits
from RAX.

80/3ib SBB r/m8, imm8 Valid Valid Subtract with borrow imm8
from r/m8.

REX+80/3 ib SBB /m8%, imm8 Valid N.E. Subtract with borrow imm8
from r/m8.

81 /3 iw SBB r/m16, imm16 Valid Valid Subtract with borrow imm16
from r/m16.

81/3id SBB r/m32, imm32 Valid Valid Subtract with borrow imm32
from r/m32.

REXW +81/3id SBBr/m64, imm32 Valid N.E. Subtract with borrow sign-
extended imm32 to 64-bits
from r/m64.

83/3ib SBB r/m16, imm8 Valid Valid Subtract with borrow sign-
extended imm8 from r/m16.

83/3ib SBB r/m32, imm8 Valid Valid Subtract with borrow sign-
extended imm8 from r/m32.

REXW +83/3ib SBBr/m64, imm8 Valid N.E. Subtract with borrow sign-
extended imm8 from r/m64.

18/r SBB r/m8, r8 Valid Valid Subtract with borrow r8
from r/m8.

REX+18/r SBB r/m8%*, r8 Valid N.E. Subtract with borrow r8
from r/m8.

19/r SBB r/m16, r16 Valid Valid Subtract with borrow r16
from r/m16.

19/r SBB /m32, r32 Valid Valid Subtract with borrow r32
from r/m32.

REXW +19/r SBB r/m64, r64 Valid N.E. Subtract with borrow r64
from r/m64.

4-378 Vol.2B SBB—Integer Subtraction with Borrow

INSTRUCTION SET REFERENCE, N-Z

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

1A /r SBB r8, r/m8 Valid Valid Subtract with borrow r/m8
from r8.

REX+ 1A /r SBB r8% r/m8* Valid N.E. Subtract with borrow /m8
from r8.

1B/r SBB r16, r/m16 Valid Valid Subtract with borrow r/m16
from ri16.

1B/r SBB r32, r/m32 Valid Valid Subtract with borrow r/m32
from r32.

REXW + 1B /r SBB r64, r/m64 Valid N.E. Subtract with borrow r/m64
from r64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Description

Adds the source operand (second operand) and the carry (CF) flag, and subtracts the
result from the destination operand (first operand). The result of the subtraction is
stored in the destination operand. The destination operand can be a register or a
memory location; the source operand can be an immediate, a register, or a memory
location. (However, two memory operands cannot be used in one instruction.) The
state of the CF flag represents a borrow from a previous subtraction.

When an immediate value is used as an operand, it is sign-extended to the length of
the destination operand format.

The SBB instruction does not distinguish between signed or unsigned operands.
Instead, the processor evaluates the result for both data types and sets the OF and
CF flags to indicate a borrow in the signed or unsigned result, respectively. The SF
flag indicates the sign of the signed result.

The SBB instruction is usually executed as part of a multibyte or multiword subtrac-
tion in which a SUB instruction is followed by a SBB instruction.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

SBB—Integer Subtraction with Borrow Vol.2B 4-379

INSTRUCTION SET REFERENCE, N-Z

Operation

DEST « (DEST - (SRC + CF));

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a nhon-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

4-380 Vol.2B SBB—Integer Subtraction with Borrow

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

SBB—Integer Subtraction with Borrow Vol. 2B 4-381

INSTRUCTION SET REFERENCE, N-Z

SCAS/SCASB/SCASW/SCASD—Scan String

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

AE SCAS m8 Valid Valid Compare AL with byte at ES:(E)DI or RDI,
then set status flags.*

AF SCAS m16 Valid Valid Compare AX with word at ES;(E)DI or
RDI, then set status flags.*

AF SCAS m32 Valid Valid Compare EAX with doubleword at
ES(E)DI or RDI then set status flags.*

REX.W + AF SCAS m64 Valid N.E. Compare RAX with quadword at RDI or
EDI then set status flags.

AE SCASB Valid Valid Compare AL with byte at ES:(E)DI or RDI
then set status flags.*

AF SCASW Valid Valid Compare AX with word at ES;(E)DI or RDI
then set status flags.*

AF SCASD Valid Valid Compare EAX with doubleword at
ES:(E)DI or RDI then set status flags.*

REX.W + AF SCASQ Valid N.E. Compare RAX with quadword at RDI or

EDI then set status flags.

NOTES:

* In 64-bit mode, only 64-bit (RDI) and 32-bit (EDI) address sizes are supported. In non-64-bit mode,
only 32-bit (EDI) and 16-bit (DI) address sizes are supported.

Description

In non-64-bit modes and in default 64-bit mode: this instruction compares a byte,
word, doubleword or quadword specified using a memory operand with the value in
AL, AX, or EAX. It then sets status flags in EFLAGS recording the results. The memory
operand address is read from ES:(E)DI register (depending on the address-size
attribute of the instruction and the current operational mode). Note that ES cannot
be overridden with a segment override prefix.

At the assembly-code level, two forms of this instruction are allowed. The explicit-
operand form and the no-operands form. The explicit-operand form (specified using
the SCAS mnemonic) allows a memory operand to be specified explicitly. The
memory operand must be a symbol that indicates the size and location of the
operand value. The register operand is then automatically selected to match the size
of the memory operand (AL register for byte comparisons, AX for word comparisons,
EAX for doubleword comparisons). The explicit-operand form is provided to allow
documentation. Note that the documentation provided by this form can be
misleading. That is, the memory operand symbol must specify the correct type (size)
of the operand (byte, word, or doubleword) but it does not have to specify the correct
location. The location is always specified by ES:(E)DI.

4-382 Vol.2B SCAS/SCASB/SCASW/SCASD—Scan String

INSTRUCTION SET REFERENCE, N-Z

The no-operands form of the instruction uses a short form of SCAS. Again, ES:(E)DI
is assumed to be the memory operand and AL, AX, or EAX is assumed to be the
register operand. The size of operands is selected by the mnemonic: SCASB (byte
comparison), SCASW (word comparison), or SCASD (doubleword comparison).

After the comparison, the (E)DI register is incremented or decremented automati-
cally according to the setting of the DF flag in the EFLAGS register. If the DF flag is O,
the (E)DI register is incremented; if the DF flag is 1, the (E)DI register is decre-
mented. The register is incremented or decremented by 1 for byte operations, by 2
for word operations, and by 4 for doubleword operations.

SCAS, SCASB, SCASW, SCASD, and SCASQ can be preceded by the REP prefix for
block comparisons of ECX bytes, words, doublewords, or quadwords. Often, however,
these instructions will be used in a LOOP construct that takes some action based on
the setting of status flags. See “REP/REPE/REPZ/REPNE/REPNZ—Repeat String
Operation Prefix” in this chapter for a description of the REP prefix.

In 64-bit mode, the instruction’s default address size is 64-bits, 32-bit address size is
supported using the prefix 67H. Using a REX prefix in the form of REX.W promotes
operation on doubleword operand to 64 bits. The 64-bit no-operand mnemonic is
SCASQ. Address of the memory operand is specified in either RDI or EDI, and
AL/AX/EAX/RAX may be used as the register operand. After a comparison, the desti-
nation register is incremented or decremented by the current operand size
(depending on the value of the DF flag). See the summary chart at the beginning of
this section for encoding data and limits.

Operation
Non-64-bit Mode:

IF (Byte cmparison)

THEN
temp « AL - SRG;
SetStatusFlags(temp);

THENIFDF=0
THEN (E)DI « (E)DI + 1;
ELSE (E)DI « (E)DI - 1; FI;
ELSE IF (Word comparison)
THEN
temp < AX — SRC;
SetStatusFlags(temp);
IFDF=0
THEN (E)DI « (E)DI + 2;
ELSE (E)DI « (E)DI - 2; FI;
Fl;
ELSE IF (Doubleword comparison)
THEN

SCAS/SCASB/SCASW/SCASD—Scan String Vol.2B 4-383

INSTRUCTION SET REFERENCE, N-Z

temp « EAX - SRC;
SetStatusFlags(temp);
IFDF=0
THEN (E)DI « (E)DI + 4;
ELSE (E)DI « (E)DI - 4; FI;
Fl;
Fl;

64-bit Mode:

IF (Byte cmparison)
THEN
temp < AL - SRC;
SetStatusFlags(temp);
THENIFDF=0
THEN (RIE)DI « (RIE)DI + 1;
ELSE (RIE)DI « (RIE)DI - 1; FI;
ELSE IF (Word comparison)
THEN
temp « AX —SR(;
SetStatusFlags(temp);
IFDF=0
THEN (RIE)DI < (RIE)DI + 2;
ELSE (RIE)DI « (RIE)DI - 2; FI;
Fl;
ELSE IF (Doubleword comparison)
THEN
temp « EAX - SRG
SetStatusFlags(temp);
IFDF=0
THEN (RIE)DI < (RIE)DI + 4;
ELSE (RIE)DI « (RIE)DI - 4; FI;
Fl;
ELSE IF (Quadword comparison using REX.W)
THEN
temp « RAX —SRC;
SetStatusFlags(temp);
IFDF=0
THEN (RIE)DI < (RI|E)DI + 8;
ELSE (RIE)DI « (RIE)DI - 8;
Fl;
FI;

4-384 Vol.2B

SCAS/SCASB/SCASW/SCASD—Scan String

INSTRUCTION SET REFERENCE, N-Z

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the temporary result of the
comparison.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the limit of the
ES segment.

If the ES register contains a NULL segment selector.

If an illegal memory operand effective address in the ES
segment is given.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.

SCAS/SCASB/SCASW/SCASD—Scan String Vol. 2B 4-385

INSTRUCTION SET REFERENCE, N-Z

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

4-386 Vol.2B SCAS/SCASB/SCASW/SCASD—Scan String

SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, N-Z

Opcode

OF 97

REX + OF 97

OF 93
REX + OF 93
OF 92
REX + OF 92
OF 96

REX + OF 96

OF 92
REX + OF 92
OF 94
REX + OF 94
OF 9F

REX + OF 9F

OF 9D

REX +0F 9D

OF 9C
REX + OF 9C
OF 9€

REX + OF 9E

OF 96

REX + OF 96

Instruction

SETA r/m8

SETA r/m8*

SETAE r/m8
SETAE r/m8*
SETB r/m8
SETB r/m8*
SETBE /m8

SETBE /m8*

SETC r/m8
SETC r/m8*
SETE r/m8
SETE r/m8*
SETG r/m8

SETG r/m8*

SETGE r/m8

SETGE r/m8*

SETL /m8
SETL r/m8*
SETLE r/m8

SETLE r/m8*

SETNA r/m8

SETNA r/m8*

64-Bit
Mode

Valid

Valid

Valid
Valid
Valid
Valid
Valid

Valid

Valid
Valid
Valid
Valid
Valid

Valid

Valid

Valid

Valid
Valid
Valid

Valid

Valid

Valid

Compat/
Leg Mode

Valid

N.E.

Valid
N.E.
Valid
N.E.
Valid

N.E.

Valid
N.E.
Valid
N.E.
Valid

N.E.

Valid

N.E.

Valid
N.E.
Valid

N.E.

Valid

N.E.

Description

Set byte if above (CF=0 and
ZF=0).

Set byte if above (CF=0 and
ZF=0).

Set byte if above or equal (CF=0).
Set byte if above or equal (CF=0).
Set byte if below (CF=1).
Set byte if below (CF=1).

Set byte if below or equal (CF=1
or ZF=1).

Set byte if below or equal (CF=1
or ZF=1).

Set byte if carry (CF=1).
Set byte if carry (CF=1).
Set byte if equal (ZF=1).
Set byte if equal (ZF=1).

Set byte if greater (ZF=0 and
SF=0F).

Set byte if greater (ZF=0 and
SF=0F).

Set byte if greater or equal
(SF=0F).

Set byte if greater or equal
(SF=0F).

Set byte if less (SF# OF).
Set byte if less (SF# OF).

Set byte if less or equal (ZF=1 or
SF# OF).

Set byte if less or equal (ZF=1 or
SF# OF).

Set byte if not above (CF=1 or
ZF=1).

Set byte if not above (CF=1 or
ZF=1).

SETcc—Set Byte on Condition

Vol. 2B 4-387

INSTRUCTION SET REFERENCE, N-Z

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 92 SETNAE r/m8 Valid Valid Set byte if not above or equal
(CF=1).
REX + OF 92 SETNAE r/m8* Valid N.E. Set byte if not above or equal
(CF=1).
OF 93 SETNB r/m8 Valid Valid Set byte if not below (CF=0).
REX + OF 93 SETNB /m8* Valid N.E. Set byte if not below (CF=0).
OF 97 SETNBE /m8 Valid Valid Set byte if not below or equal
(CF=0 and ZF=0).
REX + OF 97 SETNBE r/m8* Valid N.E. Set byte if not below or equal
(CF=0 and ZF=0).
OF 93 SETNC r/m8 Valid Valid Set byte if not carry (CF=0).
REX + OF 93 SETNC r/m8* Valid N.E. Set byte if not carry (CF=0).
OF 95 SETNE r/m8 Valid Valid Set byte if not equal (ZF=0).
REX + OF 95 SETNE r/m8* Valid N.E. Set byte if not equal (ZF=0).
OF S€E SETNG r/m8 Valid Valid Set byte if not greater (ZF=1 or
SF# OF)
REX + OF 9€ SETNG r/m8* Valid N.E. Set byte if not greater (ZF=1 or
SF+ OF).
OF 9C SETNGE r/m8 Valid Valid Set byte if not greater or equal
(SF+ OF).
REX + OF 9C SETNGE /m8* Valid N.E. Set byte if not greater or equal
(SF+ OF).
OF 9D SETNL r/m8 Valid Valid Set byte if not less (SF=0F).
REX + OF 9D SETNL r/m8* Valid N.E. Set byte if not less (SF=0F).
OF 9F SETNLE /m8 Valid Valid Set byte if not less or equal (ZF=0
and SF=0F).
REX + OF SF SETNLE r/m8* Valid N.E. Set byte if not less or equal (ZF=0
and SF=0F).
OF 91 SETNO r/m8 Valid Valid Set byte if not overflow (OF=0).
REX + OF 91 SETNO r/m8* Valid N.E. Set byte if not overflow (OF=0).
OF 9B SETNP r/m8 Valid Valid Set byte if not parity (PF=0).
REX + OF 9B SETNP r/m8* Valid N.E. Set byte if not parity (PF=0).
OF 99 SETNS r/m8 Valid Valid Set byte if not sign (SF=0).
REX + OF 99 SETNS r/m8* Valid N.E. Set byte if not sign (SF=0).
OF 95 SETNZ r/m8 Valid Valid Set byte if not zero (ZF=0).
4-388 Vol. 2B SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, N-Z

Opcode Instruction 64-Bit Compat/ Description

Mode Leg Mode
REX + OF 95 SETNZ r/m8* Valid N.E. Set byte if not zero (ZF=0).
OF 90 SETO r/m8 Valid Valid Set byte if overflow (OF=1)
REX + 0F 90 SETO r/m8* Valid N.E. Set byte if overflow (OF=1).
OF 9A SETP r/m8 Valid Valid Set byte if parity (PF=1).
REX + OF 9A SETP r/m8* Valid N.E. Set byte if parity (PF=1).
OF 9A SETPE r/m8 Valid Valid Set byte if parity even (PF=1).
REX + OF 9A SETPE r/m8* Valid N.E. Set byte if parity even (PF=1).
OF 9B SETPO r/m8 Valid Valid Set byte if parity odd (PF=0).
REX + OF 9B SETPO r/m8* Valid N.E. Set byte if parity odd (PF=0).
OF 98 SETS r/m8 Valid Valid Set byte if sign (SF=1).
REX + OF 98 SETS r/m8* Valid N.E. Set byte if sign (SF=1).
OF 94 SETZ r/m8 Valid Valid Set byte if zero (ZF=1).
REX + OF 94 SETZ r/m8* Valid N.E. Set byte if zero (ZF=1).
NOTES:

* |In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Description

Sets the destination operand to O or 1 depending on the settings of the status flags
(CF, SF, OF, ZF, and PF) in the EFLAGS register. The destination operand points to a
byte register or a byte in memory. The condition code suffix (cc) indicates the condi-
tion being tested for.

The terms “above” and “below” are associated with the CF flag and refer to the rela-
tionship between two unsigned integer values. The terms “greater” and “less” are
associated with the SF and OF flags and refer to the relationship between two signed
integer values.

Many of the SETcc instruction opcodes have alternate mnemonics. For example,
SETG (set byte if greater) and SETNLE (set if not less or equal) have the same
opcode and test for the same condition: ZF equals O and SF equals OF. These alter-
nate mnemonics are provided to make code more intelligible. Appendix B, “EFLAGS
Condition Codes,” in the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 1, shows the alternate mnemonics for various test conditions.

Some languages represent a logical one as an integer with all bits set. This represen-
tation can be obtained by choosing the logically opposite condition for the SETcc
instruction, then decrementing the result. For example, to test for overflow, use the
SETNO instruction, then decrement the result.

SETcc—Set Byte on Condition Vol. 2B 4-389

INSTRUCTION SET REFERENCE, N-Z

In 1A-64 mode, the operand size is fixed at 8 bits. Use of REX prefix enable uniform
addressing to additional byte registers. Otherwise, this instruction’s operation is the
same as in legacy mode and compatibility mode.

Operation

IF condition
THEN DEST « 1;
ELSE DEST « O;
Fl;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If the LOCK prefix is used.

4-390 Vol.2B SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

SETcc—Set Byte on Condition Vol. 2B 4-391

INSTRUCTION SET REFERENCE, N-Z

SFENCE—Store Fence

Opcode Instruction 64-Bit Compat Description

Mode /Leg Mode
OF AE/7 SFENCE Valid Valid Serializes store operations.
Description

Performs a serializing operation on all store-to-memory instructions that were issued
prior the SFENCE instruction. This serializing operation guarantees that every store
instruction that precedes in program order the SFENCE instruction is globally visible
before any store instruction that follows the SFENCE instruction is globally visible.
The SFENCE instruction is ordered with respect store instructions, other SFENCE
instructions, any MFENCE instructions, and any serializing instructions (such as the
CPUID instruction). It is not ordered with respect to load instructions or the LFENCE
instruction.

Weakly ordered memory types can be used to achieve higher processor performance
through such techniques as out-of-order issue, write-combining, and write-
collapsing. The degree to which a consumer of data recognizes or knows that the
data is weakly ordered varies among applications and may be unknown to the
producer of this data. The SFENCE instruction provides a performance-efficient way
of insuring store ordering between routines that produce weakly-ordered results and
routines that consume this data.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Wait_On_Following_Stores_Until(preceding_stores_globally_visible);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_sfence(void)

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

4-392 Vol.2B SFENCE—Store Fence

INSTRUCTION SET REFERENCE, N-Z

SGDT—Store Global Descriptor Table Register

Opcode* Instruction 64-Bit Compat/ Description
Mode Leg Mode

OF01/0 SGDT m Valid Valid Store GDTR to m.

NOTES:

* See IA-32 Architecture Compatibility section below.

Description

Stores the content of the global descriptor table register (GDTR) in the destination
operand. The destination operand specifies a memory location.

In legacy or compatibility mode, the destination operand is a 6-byte memory loca-
tion. If the operand-size attribute is 16 bits, the limit is stored in the low 2 bytes and
the 24-bit base address is stored in bytes 3-5, and byte 6 is zero-filled. If the
operand-size attribute is 32 bits, the 16-bit limit field of the register is stored in the
low 2 bytes of the memory location and the 32-bit base address is stored in the high
4 bytes.

In 1A-32e mode, the operand size is fixed at 8+2 bytes. The instruction stores an 8-
byte base and a 2-byte limit.

SGDT is useful only by operating-system software. However, it can be used in appli-
cation programs without causing an exception to be generated. See
“LGDT/LIDT—Load Global/Interrupt Descriptor Table Register” in Chapter 3, Intel®
64 and I1A-32 Architectures Software Developer’s Manual, Volume 2A, for information
on loading the GDTR and IDTR.

IA-32 Architecture Compatibility

The 16-bit form of the SGDT is compatible with the Intel 286 processor if the upper 8
bits are not referenced. The Intel 286 processor fills these bits with 1s; the Pentium
4, Intel Xeon, P6 processor family, Pentium, Intel486, and Intel386™ processors fill
these bits with Os.

Operation

IF instruction is SGDT
IF OperandSize = 16

THEN
DEST[0:15] « GDTR(Limit);
DEST[16:39] «— GDTR(Base); (* 24 bits of base address stored *)
DEST[40:47] « O;

ELSE IF (32-bit Operand Size)
DEST[0:15] « GDTR(Limit);
DEST[16:47] « GDTR(Base); (* Full 32-bit base address stored *)

SGDT—Store Global Descriptor Table Register Vol.2B 4-393

INSTRUCTION SET REFERENCE, N-Z

Fl;

ELSE (* 64-bit Operand Size *)
DEST[0:15] « GDTR(Limit);
DEST[16:79] « GDTR(Base); (* Full 64-bit base address stored *)

Fl;
Fl;

Flags Affected

None.

Protected Mode Exceptions

#UD

#GP(0)

#SS(0)

#PF(fault-code)
#AC(0)

If the destination operand is a register.
If the LOCK prefix is used.
If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#UD

#GP

#SS

If the destination operand is a register.

If the LOCK prefix is used.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

Virtual-8086 Mode Exceptions

#UD

#GP(0)
#SS(0)

#PF(fault-code)

4-394 Vol.2B

If the destination operand is a register.
If the LOCK prefix is used.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

SGDT—Store Global Descriptor Table Register

INSTRUCTION SET REFERENCE, N-Z

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#UD If the destination operand is a register.
If the LOCK prefix is used.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

SGDT—Store Global Descriptor Table Register Vol.2B 4-395

INSTRUCTION SET REFERENCE, N-Z

SHLD—Double Precision Shift Left

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF A4 SHLD r/m16, r16, Valid Valid Shift /m16 to left imm8
imm8 places while shifting bits
from r76in from the right.

OF A5 SHLD r/m16, r16, CL Valid Valid Shift r/m16 to left CL places
while shifting bits from r16
in from the right.

OF A4 SHLD r/m32, r32, Valid Valid Shift /m32 to left imm8

imm8 places while shifting bits
from r32in from the right.

REX.W + OF A4 SHLD r/m64, r64, Valid N.E. Shift r/m64 to left imm8

imm8 places while shifting bits
from r64 in from the right.

OF A5 SHLD r/m32, r32, CL Valid Valid Shift r/m32 to left CL places
while shifting bits from r32
in from the right.

REX.W + OF A5 SHLD r/m64, r64, CL Valid N.E. Shift r/m64 to left CL places
while shifting bits from r64
in from the right.

Description

The SHLD instruction is used for multi-precision shifts of 64 bits or more.

The instruction shifts the first operand (destination operand) to the left the number
of bits specified by the third operand (count operand). The second operand (source
operand) provides bits to shift in from the right (starting with bit O of the destination
operand).

The destination operand can be a register or a memory location; the source operand
is a register. The count operand is an unsigned integer that can be stored in an imme-
diate byte or in the CL register. If the count operand is CL, the shift count is the
logical AND of CL and a count mask. In non-64-bit modes and default 64-bit mode;
only bits O through 4 of the count are used. This masks the count to a value between
0 and 31. If a count is greater than the operand size, the result is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand. For a 1-bit shift, the OF flag is set if a sign change occurred; other-
wise, it is cleared. If the count operand is O, flags are not affected.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits (upgrading the count mask

4-396 Vol.2B SHLD—Double Precision Shift Left

INSTRUCTION SET REFERENCE, N-Z

to 6 bits). See the summary chart at the beginning of this section for encoding data
and limits.

Operation
IF (In 64-Bit Mode and REX.W = 1)
THEN COUNT « COUNT MOD 64;
ELSE COUNT <« COUNT MOD 32;
F
SIZE « OperandSize;
IFCOUNT =0
THEN
No operation;
ELSE
IF COUNT > SIZE
THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;
ELSE (* Perform the shift *)
CF « BIT[DEST, SIZE - COUNT];
(* Last bit shifted out on exit *)
FOR i < SIZE - 1 DOWN TO COUNT
DO
Bit(DEST, i) < Bit(DEST, i - COUNT);
0D;
FOR i <~ COUNT - 1 DOWN TO O
DO
BIT[DEST, i] < BIT[SRC, i - COUNT + SIZE];
0D;
Fl;
Fl;
Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand and the SF, ZF, and PF flags are set according to the value of the
result. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is
cleared. For shifts greater than 1 bit, the OF flag is undefined. If a shift occurs, the AF
flag is undefined. If the count operand is O, the flags are not affected. If the count is
greater than the operand size, the flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

SHLD—Double Precision Shift Left Vol. 2B 4-397

INSTRUCTION SET REFERENCE, N-Z

#SS(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP

#SS

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0)
#GP(0)
#PF(fault-code)
#AC(0)

#UD

4-398 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used.

SHLD—Double Precision Shift Left

INSTRUCTION SET REFERENCE, N-Z

SHRD—Double Precision Shift Right

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF AC SHRD r/m16, Valid Valid Shift /m16 to right imm8 places
r16, imm8 while shifting bits from r76in
from the left.
OF AD SHRD r/m16, Valid Valid Shift r/m16 to right CL places
r16, CL while shifting bits from r16in
from the left.
OF AC SHRD r/m32, Valid Valid Shift /m32 to right imm8 places
r32, imm8 while shifting bits from r32in
from the left.
REXW + OF AC SHRD r/m64, Valid N.E. Shift r/m64 to right imm8 places
r64, imm8 while shifting bits from r64in
from the left.
OF AD SHRD r/m32, Valid Valid Shift r/m32 to right CL places
r3z2,CL while shifting bits from r32in
from the left.
REXW + OF AD SHRD r/m64, Valid N.E. Shift r/m64 to right CL places
ré64, CL while shifting bits from r64in
from the left.

Description
The SHRD instruction is useful for multi-precision shifts of 64 bits or more.

The instruction shifts the first operand (destination operand) to the right the number
of bits specified by the third operand (count operand). The second operand (source
operand) provides bits to shift in from the left (starting with the most significant bit
of the destination operand).

The destination operand can be a register or a memory location; the source operand
is a register. The count operand is an unsigned integer that can be stored in an imme-
diate byte or the CL register. If the count operand is CL, the shift count is the logical
AND of CL and a count mask. In non-64-bit modes and default 64-bit mode, the
width of the count mask is 5 bits. Only bits O through 4 of the count register are used
(masking the count to a value between 0 and 31). If the count is greater than the
operand size, the result is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand. For a 1-bit shift, the OF flag is set if a sign change occurred; other-
wise, it is cleared. If the count operand is 0, flags are not affected.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits (upgrading the count mask

SHRD—Double Precision Shift Right Vol. 2B 4-399

INSTRUCTION SET REFERENCE, N-Z

to 6 bits). See the summary chart at the beginning of this section for encoding data
and limits.

Operation
IF (In 64-Bit Mode and REX.W = 1)
THEN COUNT « COUNT MOD 64;
ELSE COUNT « COUNT MOD 32;
FI
SIZE « OperandSize;
IFCOUNT =0
THEN
No operation;
ELSE
IF COUNT > SIZE
THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;
ELSE (* Perform the shift *)
CF « BIT[DEST, COUNT - 1]; (* Last bit shifted out on exit *)
FOR i« O TOSIZE- 1 - COUNT
DO
BIT[DEST, i] < BIT[DEST, i + COUNT];
0D;
FOR i «<— SIZE - COUNT TO SIZE - 1
DO
BIT[DEST,i] « BIT[SRC, i + COUNT - SIZE];
0D;
Fl;
Fl;
Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand and the SF, ZF, and PF flags are set according to the value of the
result. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is
cleared. For shifts greater than 1 bit, the OF flag is undefined. If a shift occurs, the AF
flag is undefined. If the count operand is O, the flags are not affected. If the count is
greater than the operand size, the flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

4-400 Vol.2B SHRD—Double Precision Shift Right

INSTRUCTION SET REFERENCE, N-Z

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

SHRD—Double Precision Shift Right Vol. 2B 4-401

INSTRUCTION SET REFERENCE, N-Z

SHUFPD—Shuffle Packed Double-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF C6 /rib SHUFPD xmm1, Valid Valid Shuffle packed double-precision
xmm2/m128, imm8 floating-point values selected by
imm8 from xmm1 and
xmm2/m128to xmm1.

Description

Moves either of the two packed double-precision floating-point values from destina-
tion operand (first operand) into the low quadword of the destination operand;
moves either of the two packed double-precision floating-point values from the
source operand into to the high quadword of the destination operand (see

Figure 4-14). The select operand (third operand) determines which values are
moved to the destination operand.

DEST X1 X0

SRC Y1 YO

DEST Y1lorYO X1 or X0

Figure 4-14. SHUFPD Shuffle Operation

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The select operand is an 8-bit immediate: bit O
selects which value is moved from the destination operand to the result (where O
selects the low quadword and 1 selects the high quadword) and bit 1 selects which
value is moved from the source operand to the result. Bits 2 through 7 of the select
operand are reserved and must be set to O.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

4-402 Vol.2B SHUFPD—Shuffle Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

Operation

IF SELECT[0] = 0
THEN DEST[63:0] « DEST[63:0];
ELSE DEST[63:0] « DEST[127:64]; FI;

IF SELECT[1]=0
THEN DEST[127:64] « SRC[63:0];
ELSE DEST[127:64] « SRC[127:64]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

SHUFPD __m128d _mm_shuffle_pd(__m128da, __m128d b, unsigned int imm8)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

SHUFPD—Shuffle Packed Double-Precision Floating-Point Values Vol.2B 4-403

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If memory operand is not aligned on a 16-byte boundary,

regardless of segment.

If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

4-404 Vol.2B SHUFPD—Shuffle Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFC6/rib SHUFPS xmm]1, Valid Valid Shuffle packed single-precision

xmm2/m128, imm8 floating-point values selected by
imm8 from xmm1 and

xmm1/m128to xmm1.

Description

Moves two of the four packed single-precision floating-point values from the destina-
tion operand (first operand) into the low quadword of the destination operand;

moves two of the four packed single-precision floating-point values from the source
operand (second operand) into to the high quadword of the destination operand (see

Figure 4-15). The select operand (third operand) determines which values are
moved to the destination operand.

DEST X3 X2 X1 X0
SRC Y3 Y2 Y1l YO
DEST Y3..Y0 Y3..Y0 X3 ... X0 X3 ... X0

Figure 4-15. SHUFPS Shuffle Operation

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The select operand is an 8-bit immediate: bits O
and 1 select the value to be moved from the destination operand to the low double-
word of the result, bits 2 and 3 select the value to be moved from the destination
operand to the second doubleword of the result, bits 4 and 5 select the value to be
moved from the source operand to the third doubleword of the result, and bits 6 and
7 select the value to be moved from the source operand to the high doubleword of
the result.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

SHUFPS—Shuffle Packed Single-Precision Floating-Point Values Vol. 2B 4-405

INSTRUCTION SET REFERENCE, N-Z

Operation

CASE (SELECT[1:0]) OF
0. DEST[31:0] « DEST[31:0];
1: DEST[31:0] « DEST[63:32];
2. DEST[31:0] « DEST[95:64];
3: DEST[31:0] « DEST[127:96];
ESAC;

CASE (SELECT[3:2]) OF
0: DEST[63:32] « DEST[31:0];
1: DEST[63:32] « DEST[63:32];
2. DEST[63:32] « DEST[95:64];
3: DEST[63:32] « DEST[127:96];
ESAC;

CASE (SELECT[5:4]) OF
0: DEST[95:64] « SRC[31:0];
1: DEST[95:64] « SRC[63:32];
2. DEST[95:64] « SRC[95:64];
3: DEST[95:64] « SRC[127:96];
ESAC;

CASE (SELECT[7:6]) OF
0. DEST[127:96] « SRC[31:0];
1: DEST[127:96] « SRC[63:32];
2. DEST[127:96] « SRC[95:64];
3; DEST[127:96] « SRC[127:96];
ESAC;

Intel C/C++ Compiler Intrinsic Equivalent
SHUFPS __m128 _mm_shuffle_ps(__m128a, __m128 b, unsigned int imm8)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

4-406 Vol.2B SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

SHUFPS—Shuffle Packed Single-Precision Floating-Point Values Vol.2B 4-407

INSTRUCTION SET REFERENCE, N-Z

SIDT—Store Interrupt Descriptor Table Register

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

OF 01 /1 SIDT m Valid Valid Store IDTR to m.

Description

Stores the content the interrupt descriptor table register (IDTR) in the destination
operand. The destination operand specifies a 6-byte memory location.

In non-64-bit modes, if the operand-size attribute is 32 bits, the 16-bit limit field of
the register is stored in the low 2 bytes of the memory location and the 32-bit base
address is stored in the high 4 bytes. If the operand-size attribute is 16 bits, the limit
is stored in the low 2 bytes and the 24-bit base address is stored in the third, fourth,
and fifth byte, with the sixth byte filled with Os.

In 64-bit mode, the operand size fixed at 8+2 bytes. The instruction stores 8-byte
base and 2-byte limit values.

SIDT is only useful in operating-system software; however, it can be used in applica-
tion programs without causing an exception to be generated. See “LGDT/LIDT—Load
Global/Interrupt Descriptor Table Register” in Chapter 3, Intel® 64 and 1A-32 Archi-
tectures Software Developer’s Manual, Volume 2A, for information on loading the
GDTR and IDTR.

IA-32 Architecture Compatibility

The 16-bit form of SIDT is compatible with the Intel 286 processor if the upper 8 bits
are not referenced. The Intel 286 processor fills these bits with 1s; the Pentium 4,
Intel Xeon, P6 processor family, Pentium, Intel486, and Intel386 processors fill these
bits with Os.

Operation

IF instruction is SIDT
THEN
IF OperandSize = 16

THEN
DEST[0:15] « IDTR(Limit);
DEST[16:39] « IDTR(Base); (* 24 bits of base address stored; *)
DEST[40:47] « O;

ELSE IF (32-bit Operand Size)
DEST[0:15] « IDTR(Limit);
DEST[16:47] « IDTR(Base); FI; (* Full 32-bit base address stored *)

ELSE (* 64-bit Operand Size *)
DEST[0:15] « IDTR(Limit);

4-408 Vol.2B SIDT—Store Interrupt Descriptor Table Register

INSTRUCTION SET REFERENCE, N-Z

DEST[16:79] « IDTR(Base); (* Full 64-bit base address stored *)
Fl;
Fl;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

SIDT—Store Interrupt Descriptor Table Register Vol. 2B 4-409

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#UD If the destination operand is a register.
If the LOCK prefix is used.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

4-410 Vol.2B SIDT—Store Interrupt Descriptor Table Register

INSTRUCTION SET REFERENCE, N-Z

SLDT—Store Local Descriptor Table Register

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF00/0 SLDT r/m16 Valid Valid Stores segment selector from LDTR
in r/m16.
REX.W + OF SLDT r64/m16 Valid Valid Stores segment selector from LDTR
00/0 in r64/m16.
Description

Stores the segment selector from the local descriptor table register (LDTR) in the
destination operand. The destination operand can be a general-purpose register or a
memory location. The segment selector stored with this instruction points to the
segment descriptor (located in the GDT) for the current LDT. This instruction can only
be executed in protected mode.

Outside 1A-32e mode, when the destination operand is a 32-bit register, the 16-bit
segment selector is copied into the low-order 16 bits of the register. The high-order
16 bits of the register are cleared for the Pentium 4, Intel Xeon, and P6 family proces-
sors. They are undefined for Pentium, Intel486, and Intel386 processors. When the
destination operand is a memory location, the segment selector is written to memory
as a 16-bit quantity, regardless of the operand size.

In compatibility mode, when the destination operand is a 32-bit register, the 16-bit
segment selector is copied into the low-order 16 bits of the register. The high-order
16 bits of the register are cleared. When the destination operand is a memory loca-
tion, the segment selector is written to memory as a 16-bit quantity, regardless of
the operand size.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). The behavior of SLDT with a 64-bit register is to zero-extend the
16-bit selector and store it in the register. If the destination is memory and operand
size is 64, SLDT will write the 16-bit selector to memory as a 16-bit quantity, regard-
less of the operand size

Operation

DEST « LDTR(SegmentSelector);

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

SLDT—Store Local Descriptor Table Register Vol.2B 4-411

INSTRUCTION SET REFERENCE, N-Z

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The SLDT instruction is not recognized in real-address mode.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD The SLDT instruction is not recognized in virtual-8086 mode.
If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

4-412 Vol.2B SLDT—Store Local Descriptor Table Register

INSTRUCTION SET REFERENCE, N-Z

SMSW-—Store Machine Status Word

Opcode Instruction 64-Bit Compat/ Description

Mode Leg Mode
OF 01 /4 SMSW r/m16 Valid Valid Store machine status word to r/m176.
OF 01 /4 SMSW r32/m16 Valid Valid Store machine status word in low-order

16 bits of r32/m16; high-order 16 bits
of r32 are undefined.

REXW + OF SMSW r64/m16 Valid Valid Store machine status word in low-order
01/4 16 bits of r64/m16; high-order 16 bits
of r32 are undefined.

Description

Stores the machine status word (bits O through 15 of control register CRO) into the
destination operand. The destination operand can be a general-purpose register or a
memory location.

In non-64-bit modes, when the destination operand is a 32-bit register, the low-order
16 bits of register CRO are copied into the low-order 16 bits of the register and the
high-order 16 bits are undefined. When the destination operand is a memory loca-
tion, the low-order 16 bits of register CRO are written to memory as a 16-bit quantity,
regardless of the operand size.

In 64-bit mode, the behavior of the SMSW instruction is defined by the following
examples:

® SMSW rl16 operand size 16, store CRO[15:0] in r16

® SMSW r32 operand size 32, zero-extend CRO[31:0], and store in r32
® SMSW r64 operand size 64, zero-extend CRO[63:0], and store in r64
® SMSW m16 operand size 16, store CRO[15:0] in m16

® SMSW m16 operand size 32, store CRO[15:0] in m16 (not m32)

® SMSW m16 operands size 64, store CRO[15:0] in m16 (not m64)

SMSW is only useful in operating-system software. However, it is not a privileged
instruction and can be used in application programs. The is provided for compatibility
with the Intel 286 processor. Programs and procedures intended to run on the
Pentium 4, Intel Xeon, P6 family, Pentium, Intel486, and Intel386 processors should
use the MOV (control registers) instruction to load the machine status word.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of
the Intel® 64 and I1A-32 Architectures Software Developer’s Manual, Volume 3B, for
more information about the behavior of this instruction in VMX non-root operation.

SMSW—Store Machine Status Word Vol.2B 4-413

INSTRUCTION SET REFERENCE, N-Z

Operation

DEST « CRO[15:0];

(* Machine status word *)

Flags Affected

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#AC(0)

#UD

If the destination is located in a hon-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP
#SS(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

4-414 Vol.2B

SMSW—Store Machine Status Word

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

SMSW—Store Machine Status Word Vol. 2B 4-415

INSTRUCTION SET REFERENCE, N-Z

SQRTPD—Compute Square Roots of Packed Double-Precision Floating-
Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 51 /r SQRTPD xmm1, Valid Valid Computes square roots of the
xmm2/m128 packed double-precision floating-
point values in xmm2/m128 and
stores the results in xmm71.

Description

Performs a SIMD computation of the square roots of the two packed double-precision
floating-point values in the source operand (second operand) stores the packed
double-precision floating-point results in the destination operand. The source
operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. See Figure 11-3 in the Intel® 64 and I1A-32 Architectures
Software Developer’s Manual, Volume 1, for an illustration of a SIMD double-preci-
sion floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] < SQRT(SRC[63:0]);
DEST[127:64] « SQRT(SRC[127:64]);

Intel C/C++ Compiler Intrinsic Equivalent
SQRTPD __m128d _mm_sqrt_pd (m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

4-416 Vol.2B SMSW—Store Machine Status Word

INSTRUCTION SET REFERENCE, N-Z

HXM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.
#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.CR4.0SXMMEXCPT(bit 10) is 1.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

SMSW—Store Machine Status Word Vol. 2B 4-417

INSTRUCTION SET REFERENCE, N-Z

HXM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.
#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

4-418 Vol.2B SMSW—Store Machine Status Word

INSTRUCTION SET REFERENCE, N-Z

SQRTPS—Compute Square Roots of Packed Single-Precision Floating-
Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF51/r SQRTPS xmm1, Valid Valid Computes square roots of the packed
xmm2/m128 single-precision floating-point values in
xmmZ2/m128 and stores the results in
xmm1.
Description

Performs a SIMD computation of the square roots of the four packed single-precision
floating-point values in the source operand (second operand) stores the packed
single-precision floating-point results in the destination operand. The source operand
can be an XMM register or a 128-bit memory location. The destination operand is an
XMM register. See Figure 10-5 in the Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volume 1, for an illustration of a SIMD single-precision floating-
point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] « SQRT(SRC[31:0]);
DEST[63:32] « SQRT(SRC[63:32]);
DEST[95:64] « SQRT(SRC[95:64]);
DEST[127:96] « SQRT(SRC[127:96));

Intel C/C++ Compiler Intrinsic Equivalent
SQRTPS _m128 _mm_sqgrt_ps(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

SQRTPS—Compute Square Roots of Packed Single-Precision Floating-Point Values Vol.2B 4-419

INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.

H#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

H#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

4-420 Vol.2B SQRTPS—Compute Square Roots of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.

H#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

SQRTPS—Compute Square Roots of Packed Single-Precision Floating-Point Values Vol.2B 4-421

INSTRUCTION SET REFERENCE, N-Z

SQRTSD—Compute Square Root of Scalar Double-Precision Floating-
Point Value

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F2 OF 51 /r SQRTSD xmm1, Valid Valid Computes square root of the
xmmZ2/m64 low double-precision floating-
point value in xmmZ2/m64 and
stores the results in xmm1.

Description

Computes the square root of the low double-precision floating-point value in the
source operand (second operand) and stores the double-precision floating-point
result in the destination operand. The source operand can be an XMM register or a
64-bit memory location. The destination operand is an XMM register. The high quad-
word of the destination operand remains unchanged. See Figure 11-4 in the Intel®
64 and IA-32 Architectures Software Developer’'s Manual, Volume 1, for an illustra-
tion of a scalar double-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] «— SQRT(SRC[63:0]);
(* DEST[127:64] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
SQRTSD __m128d _mm_sqrt_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

H#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

4-422 \ol.2B SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

H#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value Vol.2B 4-423

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4-424 \ol.2B SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, N-Z

SQRTSS—Compute Square Root of Scalar Single-Precision Floating-
Point Value

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F3 OF 51 /r SQRTSS xmm], Valid Valid Computes square root of the low
xmmZ/m32 single-precision floating-point value
in xmmZ2/m32 and stores the
results in xmm71.

Description

Computes the square root of the low single-precision floating-point value in the
source operand (second operand) and stores the single-precision floating-point
result in the destination operand. The source operand can be an XMM register or a
32-bit memory location. The destination operand is an XMM register. The three high-
order doublewords of the destination operand remain unchanged. See Figure 10-6 in
the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 1, for
an illustration of a scalar single-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] « SQRT (SRC[31:0]);
(* DEST[127:64] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
SQRTSS _m128 _mm_sqgrt_ss(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

H#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

SQRTSS—Compute Square Root of Scalar Single-Precision Floating-Point Value Vol.2B 4-425

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

H#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

4-426 Vol.2B SQRTSS—Compute Square Root of Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

SQRTSS—Compute Square Root of Scalar Single-Precision Floating-Point Value Vol.2B 4-427

INSTRUCTION SET REFERENCE, N-Z

STC—Set Carry Flag

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

F9 STC Valid Valid Set CF flag.

Description

Sets the CF flag in the EFLAGS register.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CF«1;

Flags Affected
The CF flag is set. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

4-428 Vol. 2B STC—Set Carry Flag

INSTRUCTION SET REFERENCE, N-Z

STD—Set Direction Flag

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

FD STD Valid Valid Set DF flag.

Description

Sets the DF flag in the EFLAGS register. When the DF flag is set to 1, string operations
decrement the index registers (ESI and/or EDI).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DF « 1;

Flags Affected
The DF flag is set. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

STD—Set Direction Flag Vol. 2B 4-429

INSTRUCTION SET REFERENCE, N-Z

STI—Set Interrupt Flag

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
FB STI Valid Valid Set interrupt flag; external, maskable

interrupts enabled at the end of the
next instruction.

Description

If protected-mode virtual interrupts are not enabled, STI sets the interrupt flag (IF)
in the EFLAGS register. After the IF flag is set, the processor begins responding to
external, maskable interrupts after the next instruction is executed. The delayed
effect of this instruction is provided to allow interrupts to be enabled just before
returning from a procedure (or subroutine). For instance, if an STI instruction is
followed by an RET instruction, the RET instruction is allowed to execute before
external interrupts are recognized?. If the STI instruction is followed by a CLI instruc-
tion (which clears the IF flag), the effect of the STI instruction is negated.

The IF flag and the STI and CLI instructions do not prohibit the generation of excep-
tions and NMI interrupts. NMI interrupts (and SMIs) may be blocked for one macro-
instruction following an STI.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than
3; STI sets the VIF flag in the EFLAGS register, leaving IF unaffected.

Table 4-5 indicates the action of the STI instruction depending on the processor’s
mode of operation and the CPL/IOPL settings of the running program or procedure.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Table 4-5. Decision Table for STI Results

PE VM I0PL CPL PVI VIP VME STI Result
0 X X X X X X IF=1

1 0 >CPL X X X X IF=1

1 0 <CPL 3 1 0 X VIF=1

1 0 <CPL <3 X X X GP Fault

1. The STlinstruction delays recognition of interrupts only if it is executed with EFLAGS.IF = 0.1n a
sequence of STl instructions, only the first instruction in the sequence is guaranteed to delay
interrupts.

In the following instruction sequence, interrupts may be recognized before RET executes:
STI

STI

RET

4-430 Vol.2B STI—Set Interrupt Flag

INSTRUCTION SET REFERENCE, N-Z

Table 4-5. Decision Table for STI Results

PE VM IOPL CPL PVI VIP VME STI Result
1 0 <CPL X 0 X X GP Fault
1 0 <CPL X X 1 X GP Fault
1 1 3 X X X X IF=1
1 1 <3 X X 0 1 VIF=1
1 1 <3 X X 1 X GP Fault
1 1 <3 X X X 0 GP Fault
NOTES:

X = This setting has no impact.

Operation

IF PE= 0 (* Executing in real-address mode *)
THEN
IF < 1; (* Set Interrupt Flag *)
ELSE (* Executing in protected mode or virtual-8086 mode *)
IFVM=0 (* Executing in protected mode*)

THEN
IF IOPL > CPL
THEN
IE < 1; (* Set Interrupt Flag *)
ELSE
IF (IOPL < CPL) and (CPL = 3) and (VIP = 0)
THEN
VIF « 1; (* Set Virtual Interrupt Flag *)
ELSE
#GP(0);
Fl;
Fl;
ELSE (* Executing in Virtual-8086 mode *)
IFIOPL=3
THEN
IE < 1; (* Set Interrupt Flag *)
ELSE
IF ((IOPL < 3) and (VIP = 0) and (VME = 1))
THEN
VIF « 1; (* Set Virtual Interrupt Flag *)
ELSE
#GP(0); (* Trap to virtual-8086 monitor *)
FI)
Fl;

STI—Set Interrupt Flag Vol.2B 4-431

INSTRUCTION SET REFERENCE, N-Z

Fl;
Fl;

Flags Affected
The IE flag is set to 1; or the VIF flag is set to 1.

Protected Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the
current program or procedure.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

4-432 Vol.2B STI—Set Interrupt Flag

INSTRUCTION SET REFERENCE, N-Z

STMXCSR—Store MXCSR Register State

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF AE /3 STMXCSR m32 Valid Valid Store contents of MXCSR register to
m32.
Description

Stores the contents of the MXCSR control and status register to the destination
operand. The destination operand is a 32-bit memory location. The reserved bits in
the MXCSR register are stored as 0s.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

m32 « MXCSR;

Intel C/C++ Compiler Intrinsic Equivalent

_mm_getcsr(void)

Exceptions

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#UD If CRO.EM[bit 2] = 1.

#NM If CRO.TS[bit 3] = 1.

#AC For unaligned memory reference. To enable #AC exceptions,

three conditions must be true: CRO.AM[bit 18] = 1,
EFLAGS.AC[bit 18] = 1, current CPL = 3.

#UD If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

STMXCSR—Store MXCSR Register State Vol.2B 4-433

INSTRUCTION SET REFERENCE, N-Z

Real Address Mode Exceptions

GP(0) If any part of the operand would lie outside of the effective
address space from O to OFFFFH.

#UD If CRO.EM[bit 2] = 1.

#NM If CRO.TS[bit 3] = 1.

#UD If CR4.0OSFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual 8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.
#AC For unaligned memory reference.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#AC For unaligned memory reference. To enable #AC exceptions,

three conditions must be true: CRO.AM[bit 18] = 1,
EFLAGS.AC[bit 18] = 1, current CPL = 3

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

4-434 \ol.2B STMXCSR—Store MXCSR Register State

INSTRUCTION SET REFERENCE, N-Z

STOS/STOSB/STOSW/STOSD/STOSQ—Store String

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
AA STOS m8 Valid Valid For legacy mode, store AL at address

€S:(E)DI; For 64-bit mode store AL at
address RDI or EDI.

AB STOS m16 Valid Valid For legacy mode, store AX at address
E€S:(E)DI; For 64-bit mode store AX at
address RDI or EDI.

AB STOS m32 Valid Valid For legacy mode, store EAX at address
ES:(E)DI; For 64-bit mode store EAX at
address RDI or EDI.

REX.W + AB STOS m64 Valid N.E. Store RAX at address RDI or EDI.

AA STOSB Valid Valid For legacy mode, store AL at address
€S:(E)DI; For 64-bit mode store AL at
address RDI or EDL.

AB STOSW Valid Valid For legacy mode, store AX at address
E€S:(E)DI; For 64-bit mode store AX at
address RDI or EDI.

AB STOSD Valid Valid For legacy mode, store EAX at address
ES:(E)DI; For 64-bit mode store EAX at
address RDI or EDI.

REX.W + AB STOSQ Valid N.E. Store RAX at address RDI or EDI.

Description

In non-64-bit and default 64-bit mode; stores a byte, word, or doubleword from the
AL, AX, or EAX register (respectively) into the destination operand. The destination
operand is a memory location, the address of which is read from either the ES:EDI or
ES:DI register (depending on the address-size attribute of the instruction and the
mode of operation). The ES segment cannot be overridden with a segment override
prefix.

At the assembly-code level, two forms of the instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified
with the STOS mnemonic) allows the destination operand to be specified explicitly.
Here, the destination operand should be a symbol that indicates the size and location
of the destination value. The source operand is then automatically selected to match
the size of the destination operand (the AL register for byte operands, AX for word
operands, EAX for doubleword operands). The explicit-operands form is provided to
allow documentation; however, note that the documentation provided by this form
can be misleading. That is, the destination operand symbol must specify the correct
type (size) of the operand (byte, word, or doubleword), but it does not have to
specify the correct location. The location is always specified by the ES:(E)DI

STOS/STOSB/STOSW/STOSD/STOSQ—Store String Vol. 2B 4-435

INSTRUCTION SET REFERENCE, N-Z

register. These must be loaded correctly before the store string instruction is
executed.

The no-operands form provides “short forms” of the byte, word, doubleword, and
quadword versions of the STOS instructions. Here also ES:(E)DI is assumed to be the
destination operand and AL, AX, or EAX is assumed to be the source operand. The
size of the destination and source operands is selected by the mnemonic: STOSB
(byte read from register AL), STOSW (word from AX), STOSD (doubleword from
EAX).

After the byte, word, or doubleword is transferred from the register to the memory
location, the (E)DI register is incremented or decremented according to the setting of
the DF flag in the EFLAGS register. If the DF flag is O, the register is incremented; if
the DF flag is 1, the register is decremented (the register is incremented or decre-
mented by 1 for byte operations, by 2 for word operations, by 4 for doubleword oper-
ations).

In 64-bit mode, the default address size is 64 bits, 32-bit address size is supported
using the prefix 67H. Using a REX prefix in the form of REX.W promotes operation on
doubleword operand to 64 bits. The promoted no-operand mnemonic is STOSQ.
STOSQ (and its explicit operands variant) store a quadword from the RAX register
into the destination addressed by RDI or EDI. See the summary chart at the begin-
ning of this section for encoding data and limits.

The STOS, STOSB, STOSW, STOSD, STOSQ instructions can be preceded by the REP
prefix for block loads of ECX bytes, words, or doublewords. More often, however,
these instructions are used within a LOOP construct because data needs to be moved
into the AL, AX, or EAX register before it can be stored. See
“REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix” in this chapter for
a description of the REP prefix.

Operation
Non-64-bit Mode:

IF (Byte store)
THEN
DEST « AL;
THENIFDF=0
THEN (E)DI « (E)DI + 1;
ELSE (E)DI « (E)DI-1;
Fl;
ELSE IF (Word store)
THEN
DEST « AX;
THENIFDF =0
THEN (E)DI « (E)DI + 2;
ELSE (E)DI « (E)DI - 2;

4-436 Vol.2B STOS/STOSB/STOSW/STOSD/STOSQ—Store String

Fl;
Fl;
ELSE IF (Doubleword store)
THEN
DEST « EAX;
THENIFDF=0
THEN (E)DI « (E)DI + 4;
ELSE (E)DI « (E)DI - 4;
Fl;
Fl;
Fl;
64-bit Mode:
IF (Byte store)
THEN
DEST « AL;
THENIFDF=0
THEN (RIE)DI < (RIE)DI + 1;
ELSE (R|E)DI « (RIE)DI - 1;
Fl;
ELSE IF (Word store)
THEN
DEST « AX;
THENIFDF=0
THEN (R|E)DI « (RIE)DI + 2;
ELSE (R|E)DI « (RIE)DI - 2;
Fl;
Fl;
ELSE IF (Doubleword store)
THEN
DEST « EAX;
THENIFDF=0
THEN (R|E)DI « (RIE)DI + 4;
ELSE (RIE)DI « (RIE)DI - 4;
Fl;
Fl;
ELSE IF (Quadword store using REX.W)
THEN
DEST « RAX;
THENIFDF=0
THEN (R|E)DI « (RIE)DI + 8;
ELSE (R|E)DI « (RIE)DI - 8;
Fl;

STOS/STOSB/STOSW/STOSD/STOSQ—Store String

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-437

INSTRUCTION SET REFERENCE, N-Z

Fl;
Fl;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the limit of the
ES segment.

If the ES register contains a NULL segment selector.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the ES
segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the ES
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

4-438 Vol.2B STOS/STOSB/STOSW/STOSD/STOSQ—Store String

INSTRUCTION SET REFERENCE, N-Z

STR—Store Task Register

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 00 /1 STRr/m16 Valid Valid Stores segment selector from TR in
r/m16.
Description

Stores the segment selector from the task register (TR) in the destination operand.
The destination operand can be a general-purpose register or a memory location.
The segment selector stored with this instruction points to the task state segment
(TSS) for the currently running task.

When the destination operand is a 32-bit register, the 16-bit segment selector is
copied into the lower 16 bits of the register and the upper 16 bits of the register are
cleared. When the destination operand is a memory location, the segment selector is
written to memory as a 16-bit quantity, regardless of operand size.

In 64-bit mode, operation is the same. The size of the memory operand is fixed at 16
bits. In register stores, the 2-byte TR is zero extended if stored to a 64-bit register.

The STR instruction is useful only in operating-system software. It can only be
executed in protected mode.

Operation

DEST « TR(SegmentSelector);

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination is a memory operand that is located in a non-
writable segment or if the effective address is outside the CS,
DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

STR—Store Task Register Vol.2B 4-439

INSTRUCTION SET REFERENCE, N-Z
Real-Address Mode Exceptions
#UD The STR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The STR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

#SS(U) If the stack address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

4-440 Vol.2B STR—Store Task Register

SUB—Subtract

INSTRUCTION SET REFERENCE, N-Z

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

2Cib SUB AL, imm8 Valid Valid Subtract imm8 from AL.

2D iw SUB AX,imm16 Valid Valid Subtract imm16 from AX.

2D id SUB EAX, imm32 Valid Valid Subtract imm32 from EAX.

REX.W + 2D id SUBRAX,imm32 Valid N.E. Subtract imm32 sign-
extended to 64-bits from
RAX.

80/5ib SUB r/m8, imm8 Valid Valid Subtract imm8 from r/m8.

REX+80/5 ib SUB r/m8* imm8 Valid N.E. Subtract imm8 from r/m8.

81/5iw SUB r/m16, imm16 Valid Valid Subtract imm16 from r/m16.

81/5id SUB r/m32, imm3Z2 Valid Valid Subtract imm32 from r/m32.

REXW +81/5id SUB r/m64, imm32 Valid N.E. Subtract imm32 sign-
extended to 64-bits from
r/mé64.

83/5ib SUB r/m16, imm8 Valid Valid Subtract sign-extended imm8
from r/m16.

83/5ib SUB r/m32, imm8 Valid Valid Subtract sign-extended imm8
from r/m32.

REXW +83/5ib SUB r/m64, imm8 Valid N.E. Subtract sign-extended imm8
from r/m64.

28/r SUB r/m8, r8 Valid Valid Subtract r8 from r/m8.

REX +28/r SUB r/m8%* r8* Valid N.E. Subtract r8 from r/m8.

29/r SUB r/m16, r16 Valid Valid Subtract r16 from r/m16.

29/r SUB r/m32, r32 Valid Valid Subtract r32 from r/m32.

REXW +29/r SUB r/m64, r32 Valid N.E. Subtract r64 from r/mé64.

2AIr SUB r8, r/m8 Valid Valid Subtract r/m8 from r8.

REX +2A/r SUB r8% r/m8* Valid N.E. Subtract r/m8 from r8.

2B/r SUB r16, r/m16 Valid Valid Subtract /m16 from ri16.

2B/r SUB r32, r/m32 Valid Valid Subtract /m32 from r32.

REXW + 2B /r SUB r64, r/m64 Valid N.E. Subtract r/m64 from r64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

SUB—Subtract

Vol.2B 4-441

INSTRUCTION SET REFERENCE, N-Z

Description

Subtracts the second operand (source operand) from the first operand (destination
operand) and stores the result in the destination operand. The destination operand
can be a register or a memory location; the source operand can be an immediate,
register, or memory location. (However, two memory operands cannot be used in one
instruction.) When an immediate value is used as an operand, it is sign-extended to
the length of the destination operand format.

The SUB instruction performs integer subtraction. It evaluates the result for both
signed and unsigned integer operands and sets the OF and CF flags to indicate an
overflow in the signed or unsigned result, respectively. The SF flag indicates the sign
of the signed result.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

Operation

DEST « (DEST - SRC);

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

4-442 Vol.2B SUB—Subtract

#SS

#UD

INSTRUCTION SET REFERENCE, N-Z

If a memory operand effective address is outside the SS
segment limit.

If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0)
#GP(0)
#PF(fault-code)
#AC(0)

#UD

SUB—Subtract

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used but the destination is not a memory
operand.

Vol. 2B 4-443

INSTRUCTION SET REFERENCE, N-Z

SUBPD—Subtract Packed Double-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 5C/r SUBPD xmm1, Valid Valid Subtract packed double-precision
xmm2/m128 floating-point values in
xmmZ2/m128 from xmm1.

Description

Performs a SIMD subtract of the two packed double-precision floating-point values in
the source operand (second operand) from the two packed double-precision floating-
point values in the destination operand (first operand), and stores the packed
double-precision floating-point results in the destination operand. The source
operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. See Figure 11-3 in the Intel® 64 and I1A-32 Architectures
Software Developer’s Manual, Volume 1, for an illustration of a SIMD double-preci-
sion floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] « DEST[63:0] — SRC[63:0];
DEST[127:64] < DEST[127:64] — SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalent
SUBPD __m128d _mm_sub_pd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

HXM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

4-444 \ol. 2B SUBPD—Subtract Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 1.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

H#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

SUBPD—Subtract Packed Double-Precision Floating-Point Values Vol. 2B 4-445

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

4-446 \Vol.2B SUBPD—Subtract Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

SUBPS—Subtract Packed Single-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF5C/r SUBPS xmm1 Valid Valid Subtract packed single-precision
xmm2/m128 floating-point values in xmmZ2/mem
from xmm1.
Description

Performs a SIMD subtract of the four packed single-precision floating-point values in
the source operand (second operand) from the four packed single-precision floating-
point values in the destination operand (first operand), and stores the packed single-
precision floating-point results in the destination operand. The source operand can
be an XMM register or a 128-bit memory location. The destination operand is an XMM
register. See Figure 10-5 in the Intel® 64 and 1A-32 Architectures Software Devel-
oper’s Manual, Volume 1, for an illustration of a SIMD double-precision floating-point
operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] < DEST[31:0] — SRC[31:0];
DEST[63:32] « DEST[63:32] — SRC[63:32];
DEST[95:64] «— DEST[95:64] — SRC[95:64];
DEST[127:96] < DEST[127:96] — SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalent

SUBPS __m128 _mm_sub_ps(__m1284a,__m128b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

SUBPS—Subtract Packed Single-Precision Floating-Point Values Vol.2B 4-447

INSTRUCTION SET REFERENCE, N-Z

HXM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.
#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

4-448 \Vol.2B SUBPS—Subtract Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

HXM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.
#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

SUBPS—Subtract Packed Single-Precision Floating-Point Values Vol. 2B 4-449

INSTRUCTION SET REFERENCE, N-Z

SUBSD—Subtract Scalar Double-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F2 OF 5C/r SUBSD xmmT, Valid Valid Subtracts the low double-
xmmZ2/m64 precision floating-point values in
xmmZ2/mem64 from xmm1.

Description

Subtracts the low double-precision floating-point value in the source operand
(second operand) from the low double-precision floating-point value in the destina-
tion operand (first operand), and stores the double-precision floating-point result in
the destination operand. The source operand can be an XMM register or a 64-bit
memory location. The destination operand is an XMM register. The high quadword of
the destination operand remains unchanged. See Figure 11-4 in the Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a
scalar double-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] «— DEST[63:0] — SRC[63:0];
(* DEST[127:64] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
SUBSD __m128d _mm_sub_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

HXM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

4-450 Vol.2B SUBSD—Subtract Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

SUBSD—Subtract Scalar Double-Precision Floating-Point Values Vol.2B 4-451

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4-452 \Vol.2B SUBSD—Subtract Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

SUBSS—Subtract Scalar Single-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F30F5C/r SUBSS xmm1, Valid Valid Subtract the lower single-precision
xmm2/m32 floating-point values in xmm2/m32
from xmm1.
Description

Subtracts the low single-precision floating-point value in the source operand (second
operand) from the low single-precision floating-point value in the destination
operand (first operand), and stores the single-precision floating-point result in the
destination operand. The source operand can be an XMM register or a 32-bit memory
location. The destination operand is an XMM register. The three high-order double-
words of the destination operand remain unchanged. See Figure 10-6 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustra-
tion of a scalar single-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] « DEST[31:0] — SRC[31:0];
(* DEST[127:96] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
SUBSS __m128 _mm_sub_ss(__m1283a,__m128b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

HXM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

SUBSS—Subtract Scalar Single-Precision Floating-Point Values Vol.2B 4-453

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

H#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

4-454 \ol. 2B SUBSS—Subtract Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

SUBSS—Subtract Scalar Single-Precision Floating-Point Values Vol. 2B 4-455

INSTRUCTION SET REFERENCE, N-Z

SWAPGS—Swap GS Base Register

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 01 /7 SWAPGS Valid Invalid Exchanges the current GS base register
value with the value contained in MSR
address CO000102H.
Description

SWAPGS exchanges the current GS base register value with the value contained in
MSR address CO000102H (MSR_KERNELGSbase). KernelGSbase is guaranteed to be
canonical; so SWAPGS does not perform a canonical check. The SWAPGS instruction
is a privileged instruction intended for use by system software.

When using SYSCALL to implement system calls, there is no kernel stack at the OS
entry point. Neither is there a straightforward method to obtain a pointer to kernel

structures from which the kernel stack pointer could be read. Thus, the kernel can't
save general purpose registers or reference memory.

By design, SWAPGS does not require any general purpose registers or memory oper-
ands. No registers need to be saved before using the instruction. SWAPGS exchanges
the CPL O data pointer from the KernelGSbase MSR with the GS base register. The
kernel can then use the GS prefix on normal memory references to access kernel
data structures. Similarly, when the OS kernel is entered using an interrupt or excep-
tion (where the kernel stack is already set up), SWAPGS can be used to quickly get a
pointer to the kernel data structures.

The KernelGSbase MSR itself is only accessible using RDMSR/WRMSR instructions.
Those instructions are only accessible at privilege level 0. WRMSR will cause a
#GP(0) if the value to be written to KernelGSbase MSR is non-canonical.

See Table 4-6.

Table 4-6. SWAPGS Operation Parameters

Opcode ModR/M Byte Instruction
MOD REG R/M Not 64-bit 64-bit Mode
Mode
OF 01 MOD # 11 111 XXX INVLPG INVLPG
11 111 000 #UD SWPGS
11 111 # 000 #UD #UD

4-456 Vol.2B SWAPGS—Swap GS Base Register

Operation

IF CS.L# 1 (* Not in 64-Bit Mode *)
THEN
#UD; FI;

IF CPL#0
THEN #GP(O); FI;

tmp « GS(BASE);
GS(BASE) « KERNELGSbase;
KERNELGSbase « tmp;

Flags Affected

None

Protected Mode Exceptions

#UD If Mode # 64-Bit.

Real-Address Mode Exceptions

#UD If Mode # 64-Bit.

Virtual-8086 Mode Exceptions

#UD If Mode # 64-Bit.

Compatibility Mode Exceptions

#UD If Mode # 64-Bit.

64-Bit Mode Exceptions
#GP(0) If CPL #0.

If the LOCK prefix is used.

SWAPGS—Swap GS Base Register

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-457

INSTRUCTION SET REFERENCE, N-Z

SYSCALL—Fast System Call

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 05 SYSCALL Valid Invalid Fast call to privilege level O

system procedures.

Description

SYSCALL saves the RIP of the instruction following SYSCALL to RCX and loads a new
RIP from the 1A32_LSTAR (64-bit mode). Upon return, SYSRET copies the value
saved in RCX to the RIP.

SYSCALL saves RFLAGS (lower 32 bit only) in R11. It then masks RFLAGS with an
OS-defined value using the 1A32_FMASK (MSR CO00_0084). The actual mask value
used by the OS is the complement of the value written to the 1A32_FMASK MSR.
None of the bits in RFLAGS are automatically cleared (except for RF). SYSRET
restores RFLAGS from R11 (the lower 32 bits only).

Software should not alter the CS or SS descriptors in a manner that violates the
following assumptions made by SYSCALL/SYSRET:

® The CS and SS base and limit remain the same for all processes, including the
operating system (the base is OH and the limit is OFFFFFFFFH).

® The CS of the SYSCALL target has a privilege level of 0.
® The CS of the SYSRET target has a privilege level of 3.
SYSCALL/SYSRET do not check for violations of these assumptions.

Operation

IF (CS.L# 1) or (IA32_EFER.LMA # 1) or (IA32_EFERSCE # 1)

(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)
THEN #UD; FI;

RCX « RIP;

RIP <~ LSTAR_MSR;

R11 < EFLAGS;

EFLAGS < (EFLAGS MASKED BY 1A32_FMASK);

CPL « O;

CS(SEL) « IA32_STAR_MSR[47:32];

CS(DPL) « 0;

CS(BASE) < O;

CS(LIMIT) < OXFFFFF;

CS(GRANULAR) < 1;

SS(SEL) « IA32_STAR_MSR[47:32] + 8;

SS(DPL) < O;

4-458 Vol. 2B SYSCALL—Fast System Call

SS(BASE) « 0;
SS(LIMIT) « OxFFFFF;
SS(GRANULAR) « 1;

Flags Affected
All.

Protected Mode Exceptions
#UD If Mode # 64-bit.

Real-Address Mode Exceptions
#UD If Mode # 64-bit.

Virtual-8086 Mode Exceptions
#UD If Mode # 64-bit.

Compatibility Mode Exceptions
#UD If Mode # 64-bit.

64-Bit Mode Exceptions
#UD If IA32_EFER.SCE = 0.

If the LOCK prefix is used.

SYSCALL—Fast System Call

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-459

INSTRUCTION SET REFERENCE, N-Z

SYSENTER—Fast System Call

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 34 SYSENTER Valid Valid Fast call to privilege level O system
procedures.
Description

Executes a fast call to a level O system procedure or routine. SYSENTER is a
companion instruction to SYSEXIT. The instruction is optimized to provide the
maximum performance for system calls from user code running at privilege level 3 to
operating system or executive procedures running at privilege level 0.

Prior to executing the SYSENTER instruction, software must specify the privilege
level O code segment and code entry point, and the privilege level O stack segment
and stack pointer by writing values to the following MSRs:

® |JA32_SYSENTER_CS — Contains a 32-bit value, of which the lower 16 bits are
the segment selector for the privilege level 0 code segment. This value is also
used to compute the segment selector of the privilege level O stack segment.

® 1A32_SYSENTER_EIP — Contains the 32-bit offset into the privilege level O code
segment to the first instruction of the selected operating procedure or routine.

® |JA32_SYSENTER_ESP — Contains the 32-bit stack pointer for the privilege level
O stack.

These MSRs can be read from and written to using RDMSR/WRMSR. Register
addresses are listed in Table 4-7. The addresses are defined to remain fixed for future
Intel 64 and I1A-32 processors.

Table 4-7. MSRs Used By the SYSENTER and SYSEXIT Instructions

MSR Address
IA32_SYSENTER_CS 174H
IA32_SYSENTER_ESP 175H
IA32_SYSENTER_EIP 176H

When SYSENTER is executed, the processor:

Loads the segment selector from the 1A32_SYSENTER_CS into the CS register.
Loads the instruction pointer from the IA32_SYSENTER_EIP into the EIP register.
Adds 8 to the value in IA32_SYSENTER_CS and loads it into the SS register.
Loads the stack pointer from the 1A32_SYSENTER_ESP into the ESP register.
Switches to privilege level 0.

Clears the VM flag in the EFLAGS register, if the flag is set.

U e

4-460 Vol.2B SYSENTER—Fast System Call

INSTRUCTION SET REFERENCE, N-Z

7. Begins executing the selected system procedure.

The processor does not save a return IP or other state information for the calling
procedure.

The SYSENTER instruction always transfers program control to a protected-mode
code segment with a DPL of 0. The instruction requires that the following conditions
are met by the operating system:

® The segment descriptor for the selected system code segment selects a flat,
32-bit code segment of up to 4 GBytes, with execute, read, accessed, and non-
conforming permissions.

® The segment descriptor for selected system stack segment selects a flat 32-bit
stack segment of up to 4 GBytes, with read, write, accessed, and expand-up
permissions.

The SYSENTER can be invoked from all operating modes except real-address mode.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not
constitute a call/return pair. When executing a SYSENTER instruction, the processor
does not save state information for the user code, and neither the SYSENTER nor the
SYSEXIT instruction supports passing parameters on the stack.

To use the SYSENTER and SYSEXIT instructions as companion instructions for transi-
tions between privilege level 3 code and privilege level O operating system proce-
dures, the following conventions must be followed:

® The segment descriptors for the privilege level 0 code and stack segments and
for the privilege level 3 code and stack segments must be contiguous in the
global descriptor table. This convention allows the processor to compute the
segment selectors from the value entered in the SYSENTER_CS_MSR MSR.

® The fast system call “stub” routines executed by user code (typically in shared
libraries or DLLs) must save the required return IP and processor state
information if a return to the calling procedure is required. Likewise, the
operating system or executive procedures called with SYSENTER instructions
must have access to and use this saved return and state information when
returning to the user code.

The SYSENTER and SYSEXIT instructions were introduced into the 1A-32 architecture
in the Pentium Il processor. The availability of these instructions on a processor is
indicated with the SYSENTER/SYSEXIT present (SEP) feature flag returned to the
EDX register by the CPUID instruction. An operating system that qualifies the SEP
flag must also qualify the processor family and model to ensure that the
SYSENTER/SYSEXIT instructions are actually present. For example:

IF CPUID SEP bit is set
THEN IF (Family = 6) and (Model < 3) and (Stepping < 3)
THEN
SYSENTER/SYSEXIT_Not_Supported; Fl;
ELSE
SYSENTER/SYSEXIT_Supported; Fl;

SYSENTER—Fast System Call Vol. 2B 4-461

INSTRUCTION SET REFERENCE, N-Z

Fl;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the
processor returns a the SEP flag as set, but does not support the SYSENTER/SYSEXIT
instructions.

Operation

IF CRO.PE = 0 THEN #GP(0); FI;
IF SYSENTER_CS_MSR[15:2] = 0 THEN #GP(O); FI;

EFLAGS.VM « 0O; (* Insures protected mode execution *)
EFLAGS.IF « O; (* Mask interrupts *)
EFLAGS.RF « O;

CS.SEL < SYSENTER_CS_MSR (* Operating system provides CS *)
(* Set rest of CS to a fixed value *)

CS.BASE « 0; (* Flat segment *)

CS.UMIT « FFFFFH; (* 4-GByte limit *)

CS.ARbyte.G « 1; (* 4-KByte granularity *)
CS.ARbyteS « 1;

CS.ARbyte.TYPE < 1011B; (* Execute + Read, Accessed *)
CS.ARbyteD « 1; (* 32-bit code segment?*)
CS.ARbyte.DPL « O;

CS.SELRPL « 0;

CS.ARbyte.P « 1;

CPL «O;

SS.SEL «— CS.SEL + 8;

(* Set rest of SS to a fixed value *)

SS.BASE « O; (* Flat segment *)

SS.LIMIT « FFFFFH; (* 4-GByte limit *)

SS.ARbyte.G « 1; (* 4-KByte granularity *)
SS.ARbyte.S «;

SS.ARbyte.TYPE < 0011B; (* Read/Write, Accessed *)
SS.ARbyte.D « 1; (* 32-bit stack segment*)
SS.ARbyte.DPL « O;

SS.SELRPL « O;
SS.ARbyte.P « 1;

ESP « SYSENTER_ESP_MSR;
EIP « SYSENTER_EIP_MSR;

IA-32e Mode Operation

In 1A-32e mode, SYSENTER executes a fast system calls from user code running at
privilege level 3 (in compatibility mode or 64-bit mode) to 64-bit executive proce-

4-462 Vol.2B SYSENTER—Fast System Call

INSTRUCTION SET REFERENCE, N-Z

dures running at privilege level 0. This instruction is a companion instruction to the
SYSEXIT instruction.

In 1A-32e mode, the 1A32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs hold
64-bit addresses and must be in canonical form; I1A32_SYSENTER_CS must not
contain a NULL selector.

When SYSENTER transfers control, the following fields are generated and bits set:
® Target code segment — Reads non-NULL selector from IA32_SYSENTER_CS.

® New CS attributes — L-bit = 1 (go to 64-bit mode); CS base = 0, CS limit =
FFFFFFFFH.

® Target instruction — Reads 64-bit canonical address from
IA32_SYSENTER_EIP.

® Stack segment — Computed by adding 8 to the value from
IA32_SYSENTER_CS.

® Stack pointer — Reads 64-bit canonical address from IA32_SYSENTER_ESP.
® New SS attributes — SS base = 0, SS limit = FFFFFFFFH.

Flags Affected
VM, IF, RF (see Operation above)

Protected Mode Exceptions
#GP(0) If IA32_SYSENTER_CS[15:2] = 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If protected mode is not enabled.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

SYSENTER—Fast System Call Vol.2B 4-463

INSTRUCTION SET REFERENCE, N-Z

SYSEXIT—Fast Return from Fast System Call

Opcode Instruction 64-Bit Compat/ Description

Mode Leg Mode
OF 35 SYSEXIT Valid Valid Fast return to privilege level 3 user code.
REX.W +0F SYSEXIT Valid Valid Fast return to 64-bit mode privilege level 3
35 user code.
Description

Executes a fast return to privilege level 3 user code. SYSEXIT is a companion instruc-
tion to the SYSENTER instruction. The instruction is optimized to provide the
maximum performance for returns from system procedures executing at protections
levels O to user procedures executing at protection level 3. It must be executed from
code executing at privilege level 0.

Prior to executing SYSEXIT, software must specify the privilege level 3 code segment
and code entry point, and the privilege level 3 stack segment and stack pointer by
writing values into the following MSR and general-purpose registers:

® |1A32_SYSENTER_CS — Contains a 32-bit value, of which the lower 16 bits are
the segment selector for the privilege level O code segment in which the
processor is currently executing. This value is used to compute the segment
selectors for the privilege level 3 code and stack segments.

¢ EDX — Contains the 32-bit offset into the privilege level 3 code segment to the
first instruction to be executed in the user code.

® ECX — Contains the 32-bit stack pointer for the privilege level 3 stack.

The 1A32_SYSENTER_CS MSR can be read from and written to using
RDMSR/WRMSR. The register address is listed in Table 4-7. This address is defined to
remain fixed for future Intel 64 and 1A-32 processors.

When SYSEXIT is executed, the processor:

1. Adds 16 to the value in IA32_SYSENTER_CS and loads the sum into the CS
selector register.

Loads the instruction pointer from the EDX register into the EIP register.

Adds 24 to the value in IA32_SYSENTER_CS and loads the sum into the SS
selector register.

4. Loads the stack pointer from the ECX register into the ESP register.
5. Switches to privilege level 3.
6. Begins executing the user code at the EIP address.

See “SWAPGS—Swap GS Base Register” in this chapter for information about using
the SYSENTER and SYSEXIT instructions as companion call and return instructions.

4-464 Vol. 2B SYSEXIT—Fast Return from Fast System Call

INSTRUCTION SET REFERENCE, N-Z

The SYSEXIT instruction always transfers program control to a protected-mode code
segment with a DPL of 3. The instruction requires that the following conditions are
met by the operating system:

® The segment descriptor for the selected user code segment selects a flat, 32-bit
code segment of up to 4 GBytes, with execute, read, accessed, and non-
conforming permissions.

® The segment descriptor for selected user stack segment selects a flat, 32-bit
stack segment of up to 4 GBytes, with expand-up, read, write, and accessed
permissions.

The SYSENTER can be invoked from all operating modes except real-address mode
and virtual 8086 mode.

The SYSENTER and SYSEXIT instructions were introduced into the 1A-32 architecture
in the Pentium Il processor. The availability of these instructions on a processor is
indicated with the SYSENTER/SYSEXIT present (SEP) feature flag returned to the
EDX register by the CPUID instruction. An operating system that qualifies the SEP
flag must also qualify the processor family and model to ensure that the
SYSENTER/SYSEXIT instructions are actually present. For example:

IF CPUID SEP bit is set
THEN IF (Family = 6) and (Model < 3) and (Stepping < 3)
THEN
SYSENTER/SYSEXIT_Not_Supported; Fl;
ELSE
SYSENTER/SYSEXIT_Supported; FI;
Fl;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the
processor returns a the SEP flag as set, but does not support the SYSENTER/SYSEXIT
instructions.

Operation

IF SYSENTER_CS_MSR[15:2] = O THEN #GP(0); FI;
IF CRO.PE = 0 THEN #GP(0); FI;
IF CPL # O THEN #GP(0); FI;

CS.SEL « (SYSENTER_CS_MSR + 16); (* Segment selector for return CS *)

(* Set rest of CS to a fixed value *)

CS.BASE « O; (* Flat segment *)

CS.LIMIT « FFFFFH; (* 4-GByte limit *)

CS.ARbyte.G « 1; (* 4-KByte granularity *)

CS.ARbyteS « 1;

CS.ARbyte.TYPE « 1011B; (* Execute, Read, Non-Conforming Code *)
CS.ARbyte.D « 1; (* 32-bit code segment*)

CS.ARbyte.DPL « 3;

SYSEXIT—Fast Return from Fast System Call Vol. 2B 4-465

INSTRUCTION SET REFERENCE, N-Z

CS.SEL.RPL « 3;

CS.ARbyte.P « 1;

CPL« 3;

SS.SEL « (SYSENTER_CS_MSR + 24); (* Segment selector for return SS *)
(* Setrest of SS to a fixed value *);

SS.BASE « 0; (* Flat segment *)

SS.LIMIT « FFFFFH; (* 4-GByte limit *)

SS.ARbyte.G «1; (* 4-KByte granularity *)
SS.ARbyte.S «;

SS.ARbyte.TYPE < 0011B; (* Expand Up, Read/Write, Data *)
SS.ARbyte.D « 1; (* 32-bit stack segment*)

SS.ARbyte.DPL « 3;
SSSELRPL « 3;
SS.ARbyte.P « 1;

ESP « ECX;
EIP « EDX;

IA-32e Mode Operation

In 1A-32e mode, SYSEXIT executes a fast system calls from a 64-bit executive proce-
dures running at privilege level O to user code running at privilege level 3 (in compat-
ibility mode or 64-bit mode). This instruction is a companion instruction to the
SYSENTER instruction.

In 1A-32e mode, the IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs hold
64-bit addresses and must be in canonical form; IA32_SYSENTER_CS must not
contain a NULL selector.

When the SYSEXIT instruction transfers control to 64-bit mode user code using
REX.W, the following fields are generated and bits set:

® Target code segment — Computed by adding 32 to the value in the
IA32_SYSENTER_CS.

® New CS attributes — L-bit = 1 (go to 64-bit mode).

® Target instruction — Reads 64-bit canonical address in RDX.

® Stack segment — Computed by adding 8 to the value of CS selector.
® Stack pointer — Update RSP using 64-bit canonical address in RCX.

When SYSEXIT transfers control to compatibility mode user code when the operand
size attribute is 32 bits, the following fields are generated and bits set:

® Target code segment — Computed by adding 16 to the value in
IA32_SYSENTER_CS.

® New CS attributes — L-bit = 0 (go to compatibility mode).
® Target instruction — Fetch the target instruction from 32-bit address in EDX.

4-466 Vol.2B SYSEXIT—Fast Return from Fast System Call

INSTRUCTION SET REFERENCE, N-Z
® Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.
® Stack pointer — Update ESP from 32-bit address in ECX.

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If IA32_SYSENTER_CS[15:2] = 0.
If CPL #0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If protected mode is not enabled.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) Always.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If IA32_SYSENTER_CS = 0.

If CPL #0.

If ECX or EDX contains a non-canonical address.
#UD If the LOCK prefix is used.

SYSEXIT—Fast Return from Fast System Call Vol.2B 4-467

INSTRUCTION SET REFERENCE, N-Z

SYSRET—Return From Fast System Call

Opcode Instruction 64-Bit Compat/ Description

Mode Leg Mode
OF 07 SYSRET Valid Invalid Return from fast system call
Description

SYSCALL saves the RIP of the instruction following the SYSCALL into RCX and loads
the new RIP from the LSTAR (64-bit mode only). Upon return, SYSRET copies the
value saved in RCX to the RIP.

In a return to 64-bit mode using Osize 64, SYSRET sets the CS selector value to MSR
IA32_STAR[63:48] +16. The SS is set to I1A32_STAR[63:48] + 8.

SYSRET transfer control to compatibility mode using Osize 32. The CS selector value
is set to MSR 1A32_STAR[63:48]. The SS is set to IA32_STAR[63:48] + 8.

It is the responsibility of the OS to keep descriptors in the GDT/LDT that correspond
to selectors loaded by SYSCALL/SYSRET consistent with the base, limit and attribute
values forced by the these instructions.

Software should not alter the CS or SS descriptors in a manner that violates the
following assumptions made by SYSCALL/SYSRET:

® CS and SS base and limit remain the same for all processes, including the
operating system.

® CS of the SYSCALL target has a privilege level of 0.
® CS of the SYSRET target has a privilege level of 3.
SYSCALL/SYSRET do not check for violations of these assumptions.

Operation

IF(CS.L#1)or (IA32_EFERLMA # 1) or (IA32_EFER.SCE # 1)
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)
THEN #UD; FI;
IF (CPL # 0)
THEN #GP(0); FI;
IF (RCX # CANONICAL_ADDRESS)
THEN #GP(0); FI;
IF (OPERAND_SIZE = 64)
THEN (* Return to 64-Bit Mode *)
EFLAGS « R11;
CPL « 0x3;
CS(SEL) «— IA32_STAR[63:48] + 16;
CS(PL) « 0x3;
SS(SEL) «— IA32_STAR[63:48] + 8;

4-468 Vol. 2B SYSRET—Return From Fast System Call

SS(PL) «— 0x3;
RIP « RCX;

ELSE (* Return to Compatibility Mode *)
EFLAGS « R1T;
CPL « 0x3;
CS(SEL) «— IA32_STAR[63:48] ;
CS(PL) «<— Ox3;
SS(SEL) «— IA32_STAR[63:48] + 8;
SS(PL) «— 0x3;
EIP « ECX;

Fl;

Flags Affected
VM, IF, RF.

Protected Mode Exceptions

#UD If Mode # 64-Bit.

Real-Address Mode Exceptions

#UD If Mode # 64-Bit.

Virtual-8086 Mode Exceptions

#UD If Mode # 64-Bit.

Compatibility Mode Exceptions

#UD If Mode # 64-Bit.

64-Bit Mode Exceptions

#UD If IA32_EFER.SCE bit = 0.
If the LOCK prefix is used.

#GP(0) If CPL #0.

INSTRUCTION SET REFERENCE, N-Z

If ECX contains a non-canonical address.

SYSRET—Return From Fast System Call

Vol. 2B 4-469

INSTRUCTION SET REFERENCE, N-Z

TEST—Logical Compare

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
A8 ib TEST AL, imm8 Valid Valid AND imm8 with AL; set SF, ZF,
PF according to result.
A9 iw TEST AX, imm16 Valid Valid AND imm16 with AX; set SF,
ZF, PF according to result.
A9 id TEST EAX,imm32 Valid Valid AND imm32 with EAX; set SF,
ZF, PF according to result.
REX.W + A9 id TEST RAX, imm32 Valid N.E. AND imm32 sign-extended to
64-bits with RAX; set SF, ZF,
PF according to result.
F6/0ib TEST r/m8, imm8 Valid Valid AND imm8 with r/m8; set SF,
ZF, PF according to result.
REX +F6 /0 ib TEST r/m8* imm8 Valid N.E. AND imm8 with r/m8; set SF,
ZF, PF according to result.
F7 /0 iw TEST r/m16, Valid Valid AND imm16 with r/m16; set
imm16 SF, ZF, PF according to result.
F7 /0 id TEST r/m32, Valid Valid AND imm32 with r/m32; set
imm32 SF, ZF, PF according to result.
REXW +F7/0id TEST r/mé64, Valid N.E. AND imm32 sign-extended to
imm32 64-bits with r/m64; set SF, ZF,
PF according to result.
84/r TEST r/m8, r8 Valid Valid AND r8 with r/m8; set SF, ZF,
PF according to result.
REX +84 /r TEST r/m8* r8* Valid N.E. AND r8 with r/m8; set SF, ZF,
PF according to result.
85/r TEST /m16, 116 Valid Valid AND r16 with r/m16; set SF,
ZF, PF according to result.
85/r TEST r/m32, r32 Valid Valid AND r32 with r/m32; set SF,
ZF, PF according to result.
REXW + 85 /r TEST r/m64, r64 Valid N.E. AND r64 with r/m64; set SF,
ZF, PF according to result.
NOTES:

* |n 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

4-470 Vol.2B

TEST—Logical Compare

INSTRUCTION SET REFERENCE, N-Z

Description

Computes the bit-wise logical AND of first operand (source 1 operand) and the
second operand (source 2 operand) and sets the SF, ZF, and PF status flags according
to the result. The result is then discarded.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to
64 bits. See the summary chart at the beginning of this section for encoding data and
limits.

Operation

TEMP « SRC1 AND SRC2;
SF < MSB(TEMP);

IFTEMP=0
THEN ZF « 1;
ELSE ZF « O;

Fl;

PF « BitwiseXNOR(TEMP[O:7]);
CF«Q;

OF « 0;

(* AF is undefined *)

Flags Affected

The OF and CF flags are set to 0. The SF, ZF, and PF flags are set according to the
result (see the “Operation” section above). The state of the AF flag is undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

TEST—Logical Compare Vol.2B 4-471

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP

#SS

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0)
#GP(0)
#PF(fault-code)
#AC(0)

#UD

4-472 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used.

TEST—Logical Compare

INSTRUCTION SET REFERENCE, N-Z

UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point
Values and Set EFLAGS

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 2€ /r UCOMISD xmm1, Valid Valid Compares (unordered) the low double-
xmm2/m64 precision floating-point values in
xmm1 and xmmZ2/m64 and set the
EFLAGS accordingly.
Description

Performs and unordered compare of the double-precision floating-point values in the
low quadwords of source operand 1 (first operand) and source operand 2 (second
operand), and sets the ZF, PF, and CF flags in the EFLAGS register according to the
result (unordered, greater than, less than, or equal). The OF, SF and AF flags in the
EFLAGS register are set to 0. The unordered result is returned if either source
operand is a NaN (QNaN or SNaN).

Source operand 1 is an XMM register; source operand 2 can be an XMM register or a
64 bit memory location.

The UCOMISD instruction differs from the COMISD instruction in that it signals a
SIMD floating-point invalid operation exception (#1) only when a source operand is
an SNaN. The COMISD instruction signals an invalid operation exception if a source
operand is either a QNaN or an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is
generated.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

RESULT « UnorderedCompare(SRC1[63:0] < > SRC2[63:0]) {

(* Set EFLAGS *)
CASE (RESULT) OF
UNORDERED: ZF,PF,CF < 111;
GREATER_THAN: ZF, PF, CF « 000;
LESS_THAN: ZF, PF, CF < 001;
EQUAL: ZF, PF,CF < 100;
ESAC;
OF, AF, SF < O;
UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point Values and Set Vol.2B 4-473

EFLAGS

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent
int _mm_ucomieq_sd(__m128d a, __m128d b)
int _mm_ucomilt_sd(__m128da, __m128db)
int _mm_ucomile_sd(__m128d a, __m128d b)
int _mm_ucomigt_sd(__m128d a, __m128d b)
int _mm_ucomige_sd(__m128d a, __m128d b)

int _mm_ucomineq_sd(__m128d a,

m128d b)

SIMD Floating-Point Exceptions

Invalid (if SNaN operands), Denormal.

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

For an illegal address in the SS segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-

If an unmasked SIMD floating-point exception and CR4.0SXM-

#HXM
MEXCPT[bit 10] = 1.
#UD
MEXCPT[bit 10] = O.
If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

If any part of the operand lies outside the effective address

If an unmasked SIMD floating-point exception and CR4.0SXM-

If an unmasked SIMD floating-point exception and CR4.0SXM-

GP

space from O to FFFFH.
#NM If CRO.TS[bit 3] = 1.
H#XM

MEXCPT[bit 10] = 1.
#UD

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.
4-474 \ol. 2B

UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point Values and Set
EFLAGS

INSTRUCTION SET REFERENCE, N-Z

If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point Values and Set Vol.2B 4-475
EFLAGS

INSTRUCTION SET REFERENCE, N-Z

UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point
Values and Set EFLAGS

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 2€E /1 UCOMISS xmm1, Valid Valid Compare lower single-precision floating-
xmm2/m32 point value in xmm1 register with lower

single-precision floating-point value in
xmmZ2/mem and set the status flags
accordingly.

Description

Performs and unordered compare of the single-precision floating-point values in the
low doublewords of the source operand 1 (first operand) and the source operand 2
(second operand), and sets the ZF, PF, and CF flags in the EFLAGS register according
to the result (unordered, greater than, less than, or equal). In The OF, SF and AF
flags in the EFLAGS register are set to 0. The unordered result is returned if either
source operand is a NaN (QNaN or SNaN).

Source operand 1 is an XMM register; source operand 2 can be an XMM register or a
32 bit memory location.

The UCOMISS instruction differs from the COMISS instruction in that it signals a
SIMD floating-point invalid operation exception (#1) only when a source operand is
an SNaN. The COMISS instruction signals an invalid operation exception if a source
operand is either a QNaN or an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is
generated.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation
RESULT « UnorderedCompare(SRC1[31:0] <> SRC2[31:0]) {
(* Set EFLAGS *)
CASE (RESULT) OF
UNORDERED: ZFPFCF«111;
GREATER_THAN: ZF,PF,CF « 000;
LESS_THAN: ZF,PF,CF < 001;
EQUAL: ZF,PF,CF « 100;
ESAC
OF,AF,SF « 0O;
4-476 Vol.2B UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point Values and Set

EFLAGS

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent
int _mm_ucomieq_ss(__m128a,__m128Db)

int _mm_ucomilt_ss(__m1283,__m128b)

int _mm_ucomile_ss(__m128a,__m128b)

int _mm_ucomigt_ss(__m1283a,_m128b)

int _mm_ucomige_ss(__m128a,__m128Db)

int _mm_ucomineq_ss(__m1283a,__m128b)

SIMD Floating-Point Exceptions

Invalid (if SNaN operands), Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

HXM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

H#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.
If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.

UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point Values and Set Vol.2B 4-477
EFLAGS

INSTRUCTION SET REFERENCE, N-Z

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = O.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4-478 Vol.2B UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point Values and Set
EFLAGS

INSTRUCTION SET REFERENCE, N-Z

UD2—Undefined Instruction

Opcode Instruction 64-Bit Mode Compat/ Description

Leg Mode
OF OB ub2 Valid Valid Raise invalid opcode exception.
Description

Generates an invalid opcode. This instruction is provided for software testing to
explicitly generate an invalid opcode. The opcode for this instruction is reserved for
this purpose.

Other than raising the invalid opcode exception, this instruction is the same as the
NOP instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

#UD (* Generates invalid opcode exception *);

Flags Affected

None.

Exceptions (All Operating Modes)
#UD Raises an invalid opcode exception in all operating modes.

UD2—Undefined Instruction Vol. 2B 4-479

INSTRUCTION SET REFERENCE, N-Z

UNPCKHPD—Unpack and Interleave High Packed Double-Precision
Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 15/r UNPCKHPD xmm1, Valid Valid Unpacks and Interleaves double-
xmm2/m128 precision floating-point values
from high quadwords of xmm1
and xmmZ2/m128.
Description

Performs an interleaved unpack of the high double-precision floating-point values
from the source operand (second operand) and the destination operand (first
operand). See Figure 4-16. The source operand can be an XMM register or a 128-bit
memory location; the destination operand is an XMM register.

DEST X1 X0
SRC Y1 YO
DEST Y1 X1

Figure 4-16. UNPCKHPD Instruction High Unpack and Interleave Operation

When unpacking from a memory operand, an implementation may fetch only the
appropriate 64 bits; however, alignment to 16-byte boundary and normal segment
checking will still be enforced.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] < DEST[127:64];
DEST[127:64] « SRC[127:64];

4-480 Vol.2B UNPCKHPD—Unpack and Interleave High Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent
UNPCKHPD__m128d _mm_unpackhi_pd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

UNPCKHPD—Unpack and Interleave High Packed Double-Precision Floating-Point Values Vol. 2B 4-481

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

4-482 Vol.2B UNPCKHPD—Unpack and Interleave High Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

UNPCKHPS—Unpack and Interleave High Packed Single-Precision
Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF15/r UNPCKHPS xmm1, Valid Valid Unpacks and Interleaves single-
xmm2/m128 precision floating-point values
from high quadwords of xmm1
and xmmZ/mem into xmm71.
Description

Performs an interleaved unpack of the high-order single-precision floating-point
values from the source operand (second operand) and the destination operand (first
operand). See Figure 4-17. The source operand can be an XMM register or a 128-bit
memory location; the destination operand is an XMM register.

DEST X3 X2 X1 X0
SRC Y3 Y2 Y1 YO
Y
DEST Y3 X3 Y2 X2

Figure 4-17. UNPCKHPS Instruction High Unpack and Interleave Operation

When unpacking from a memory operand, an implementation may fetch only the
appropriate 64 bits; however, alignment to 16-byte boundary and normal segment
checking will still be enforced.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] < DEST[95:64];
DEST[63:32] « SRC[95:64];
DEST[95:64] «— DEST[127:96];
DEST[127:96] « SRC[127:96];

UNPCKHPS—Unpack and Interleave High Packed Single-Precision Floating-Point Values Vol.2B 4-483

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent
UNPCKHPS __m128 _mm_unpackhi_ps(_m128a, __m128b)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

4-484 \ol.2B UNPCKHPS—Unpack and Interleave High Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

UNPCKHPS—Unpack and Interleave High Packed Single-Precision Floating-Point Values Vol. 2B 4-485

INSTRUCTION SET REFERENCE, N-Z

UNPCKLPD—Unpack and Interleave Low Packed Double-Precision
Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 14 /r UNPCKLPD xmm1, Valid Valid Unpacks and Interleaves double-
xmm2/m128 precision floating-point values from
low quadwords of xmm1 and
xmmZ2/m128.
Description

Performs an interleaved unpack of the low double-precision floating-point values
from the source operand (second operand) and the destination operand (first
operand). See Figure 4-18. The source operand can be an XMM register or a 128-bit
memory location; the destination operand is an XMM register.

DEST X1 X0
SRC Y1 YO /
DEST YO X0

Figure 4-18. UNPCKLPD Instruction Low Unpack and Interleave Operation

When unpacking from a memory operand, an implementation may fetch only the
appropriate 64 bits; however, alignment to 16-byte boundary and normal segment
checking will still be enforced.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] < DEST[63:0];
DEST[127:64] « SRC[63:0];

4-486 Vol.2B UNPCKLPD—Unpack and Interleave Low Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent
UNPCKHPD__m128d _mm_unpacklo_pd(__m128da, __m128db)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

UNPCKLPD—Unpack and Interleave Low Packed Double-Precision Floating-Point Values Vol.2B 4-487

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

4-488 Vol.2B UNPCKLPD—Unpack and Interleave Low Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

UNPCKLPS—Unpack and Interleave Low Packed Single-Precision
Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 14 /r UNPCKLPS xmm1, Valid Valid Unpacks and Interleaves single-
xmm2/m128 precision floating-point values from
low quadwords of xmm1 and
xmmZ2/mem into xmm71.

Description

Performs an interleaved unpack of the low-order single-precision floating-point
values from the source operand (second operand) and the destination operand (first
operand). See Figure 4-19. The source operand can be an XMM register or a 128-bit
memory location; the destination operand is an XMM register.

0

DEST X3 X2 X1 X0
SRC Y3 Y2 Y1 Y
Y1 X1 0

Figure 4-19. UNPCKLPS Instruction Low Unpack and Interleave Operation

DEST Y X0

When unpacking from a memory operand, an implementation may fetch only the
appropriate 64 bits; however, alignment to 16-byte boundary and normal segment
checking will still be enforced.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] < DEST[31:0];
DEST[63:32] « SRC[31:0];
DEST[95:64] « DEST[63:32];

UNPCKLPS—Unpack and Interleave Low Packed Single-Precision Floating-Point Values Vol. 2B 4-489

INSTRUCTION SET REFERENCE, N-Z

DEST[127:96] « SRC[63:32];

Intel C/C++ Compiler Intrinsic Equivalent
UNPCKLPS __m128 _mm_unpacklo_ps(__m1283a,__m128b)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

4-490 Vol.2B UNPCKLPS—Unpack and Interleave Low Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

UNPCKLPS—Unpack and Interleave Low Packed Single-Precision Floating-Point Values Vol.2B 4-491

INSTRUCTION SET REFERENCE, N-Z

VERR/VERW—Verify a Segment for Reading or Writing

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 00 /4 VERR r/m16 Valid Valid Set ZF=1 if segment specified with
r/m16 can be read.
OF 00 /5 VERW r/m16 Valid Valid Set ZF=1 if segment specified with
r/m16 can be written.

Description

Verifies whether the code or data segment specified with the source operand is read-
able (VERR) or writable (VERW) from the current privilege level (CPL). The source
operand is a 16-bit register or a memory location that contains the segment selector
for the segment to be verified. If the segment is accessible and readable (VERR) or
writable (VERW), the ZF flag is set; otherwise, the ZF flag is cleared. Code segments
are never verified as writable. This check cannot be performed on system segments.

To set the ZF flag, the following conditions must be met:
® The segment selector is not NULL.

® The selector must denote a descriptor within the bounds of the descriptor table
(GDT or LDT).

® The selector must denote the descriptor of a code or data segment (not that of a
system segment or gate).

® For the VERR instruction, the segment must be readable.
® For the VERW instruction, the segment must be a writable data segment.

® If the segment is not a conforming code segment, the segment’s DPL must be
greater than or equal to (have less or the same privilege as) both the CPL and the
segment selector's RPL.

The validation performed is the same as is performed when a segment selector is
loaded into the DS, ES, FS, or GS register, and the indicated access (read or write) is
performed. The segment selector's value cannot result in a protection exception,
enabling the software to anticipate possible segment access problems.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode. The
operand size is fixed at 16 bits.

Operation

IF SRC(Offset) > (GDTR(Limit) or (LDTR(Limit))
THEN ZF « O; FI;

Read segment descriptor;

IF SegmentDescriptor(DescriptorType) = 0 (* System segment *)

4-492 \Vol.2B VERR/VERW—Verify a Segment for Reading or Writing

INSTRUCTION SET REFERENCE, N-Z

or (SegmentDescriptor(Type) # conforming code segment)
and (CPL > DPL) or (RPL > DPL)
THEN
ZF < O;
ELSE
IF ((Instruction = VERR) and (Segment readable))
or ((Instruction = VERW) and (Segment writable))
THEN
IF < 1;
Fl;
Fl;

Flags Affected

The ZF flag is set to 1 if the segment is accessible and readable (VERR) or writable
(VERW); otherwise, it is set to O.

Protected Mode Exceptions
The only exceptions generated for these instructions are those related to illegal
addressing of the source operand.

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD The VERR and VERW instructions are not recognized in real-
address mode.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#UD The VERR and VERW instructions are not recognized in virtual-
8086 mode.

If the LOCK prefix is used.

VERR/VERW—Verify a Segment for Reading or Writing Vol.2B 4-493

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

4-494 \ol. 2B VERR/VERW—Verify a Segment for Reading or Writing

INSTRUCTION SET REFERENCE, N-Z

WAIT/FWAIT—Wait

Opcode Instruction 64-Bit Mode Compat/ Description
Leg Mode
9B WAIT Valid Valid Check pending unmasked floating-
point exceptions.
9B FWAIT Valid Valid Check pending unmasked floating-
point exceptions.

Description

Causes the processor to check for and handle pending, unmasked, floating-point
exceptions before proceeding. (FWAIT is an alternate mnemonic for WAIT.)

This instruction is useful for synchronizing exceptions in critical sections of code.
Coding a WAIT instruction after a floating-point instruction insures that any
unmasked floating-point exceptions the instruction may raise are handled before the
processor can modify the instruction’s results. See the section titled “Floating-Point
Exception Synchronization” in Chapter 8 of the Intel® 64 and 1A-32 Architectures
Software Developer’s Manual, Volume 1, for more information on using the
WAIT/FWAIT instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CheckForPendingUnmaskedFloatingPointExceptions;

FPU Flags Affected
The CO, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM If CRO.MP[bit 1] = 1 and CRO.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

WAIT/FWAIT—Wait Vol. 2B 4-495

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.

4-496 Vol.2B

WAIT/FWAIT—Wait

INSTRUCTION SET REFERENCE, N-Z

WBINVD—Write Back and Invalidate Cache

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 09 WBINVD Valid Valid Write back and flush Internal caches;

initiate writing-back and flushing of
external caches.

Description

Writes back all modified cache lines in the processor’s internal cache to main memory
and invalidates (flushes) the internal caches. The instruction then issues a special-
function bus cycle that directs external caches to also write back modified data and
another bus cycle to indicate that the external caches should be invalidated.

After executing this instruction, the processor does not wait for the external caches

to complete their write-back and flushing operations before proceeding with instruc-
tion execution. It is the responsibility of hardware to respond to the cache write-back
and flush signals.

The WBINVD instruction is a privileged instruction. When the processor is running in
protected mode, the CPL of a program or procedure must be O to execute this
instruction. This instruction is also a serializing instruction (see “Serializing Instruc-
tions” in Chapter 9 of the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 3A).

In situations where cache coherency with main memory is not a concern, software
can use the INVD instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The WBINVD instruction is implementation dependent, and its function may be
implemented differently on future Intel 64 and 1A-32 processors. The instruction is
not supported on IA-32 processors earlier than the Intel486 processor.

Operation

WriteBack(InternalCaches);
Flush(InternalCaches);
SignalwWriteBack(ExternalCaches);
SignalFlush(ExternalCaches);
Continue; (* Continue execution *)

Flags Affected

None.

WBINVD—Write Back and Invalidate Cache Vol. 2B 4-497

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions
#GP(0) If the current privilege level is not O.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) WBINVD cannot be executed at the virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

4-498 \ol.2B WBINVD—Write Back and Invalidate Cache

INSTRUCTION SET REFERENCE, N-Z

WRMSR—Write to Model Specific Register

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 30 WRMSR Valid Valid Write the value in EDX:EAX to MSR
specified by ECX.
Description

Writes the contents of registers EDX:EAX into the 64-bit model specific register
(MSR) specified in the ECX register. (On processors that support the Intel 64 archi-
tecture, the high-order 32 bits of RCX are ignored.) The contents of the EDX register
are copied to high-order 32 bits of the selected MSR and the contents of the EAX
register are copied to low-order 32 bits of the MSR. (On processors that support the
Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are ignored.)
Undefined or reserved bits in an MSR should be set to values previously read.

This instruction must be executed at privilege level O or in real-address mode; other-
wise, a general protection exception #GP(0) is generated. Specifying a reserved or
unimplemented MSR address in ECX will also cause a general protection exception.
The processor will also generate a general protection exception if software attempts
to write to bits in a reserved MSR.

When the WRMSR instruction is used to write to an MTRR, the TLBs are invalidated.
This includes global entries (see “Translation Lookaside Buffers (TLBs)” in Chapter 3
of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A).

MSRs control functions for testability, execution tracing, performance-monitoring
and machine check errors. Appendix B, “Model-Specific Registers (MSRs)”, in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, lists all
MSRs that can be read with this instruction and their addresses. Note that each
processor family has its own set of MSRs.

The WRMSR instruction is a serializing instruction (see “Serializing Instructions” in
Chapter 7 of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 3A).

The CPUID instruction should be used to determine whether MSRs are supported
(CPUID.01H:EDX[5] =1) before using this instruction.

IA-32 Architecture Compatibility

The MSRs and the ability to read them with the WRMSR instruction were introduced
into the 1A-32 architecture with the Pentium processor. Execution of this instruction
by an IA-32 processor earlier than the Pentium processor results in an invalid opcode
exception #UD.

WRMSR—Write to Model Specific Register Vol. 2B 4-499

INSTRUCTION SET REFERENCE, N-Z

Operation

MSR[ECX] « EDX:EAX;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not O.

If the value in ECX specifies a reserved or unimplemented MSR
address.

If the value in EDX:EAX sets bits that are reserved in the MSR
specified by ECX.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If the value in ECX specifies a reserved or unimplemented MSR
address.

If the value in EDX:EAX sets bits that are reserved in the MSR
specified by ECX.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The WRMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

4-500 Vol.2B WRMSR—Write to Model Specific Register

INSTRUCTION SET REFERENCE, N-Z

XADD—Exchange and Add

Opcode Instruction 64-Bit Mode Compat/ Description
Leg Mode
OFCO/r XADD r/m8, r8 Valid Valid Exchange r8 and r/m8; load
sum into r/m8.
REX+O0FCO/r XADD r/m8%* r8* Valid N.E. Exchange r8 and r/m8; load
sum into r/m8.
OFC1/r XADD r/m16,r16 Valid Valid Exchange r16 and r/m16;
load sum into r/m16.
OFC1/r XADD r/m32, r32 Valid Valid Exchange r32 and r/m32;
load sum into r/m32.
REXW +0OF C1/r XADD r/m64, r64 Valid N.E. Exchange r64 and r/m64;
load sum into r/m64.

NOTES:

* |In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Description

Exchanges the first operand (destination operand) with the second operand (source
operand), then loads the sum of the two values into the destination operand. The
destination operand can be a register or a memory location; the source operand is a
register.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

IA-32 Architecture Compatibility

IA-32 processors earlier than the Intel486 processor do not recognize this instruc-
tion. If this instruction is used, you should provide an equivalent code sequence that
runs on earlier processors.

Operation

TEMP « SRC + DEST;
SRC « DEST;
DEST « TEMP;

XADD—Exchange and Add Vol.2B 4-501

INSTRUCTION SET REFERENCE, N-Z

Flags Affected

The CF, PF, AF, SF, ZF, and OF flags are set according to the result of the addition,
which is stored in the destination operand.

Protected Mode Exceptions
#GP(0) If the destination is located in a hon-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

4-502 Vol.2B XADD—Exchange and Add

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

XADD—Exchange and Add Vol.2B 4-503

INSTRUCTION SET REFERENCE, N-Z

XCHG—Exchange Register/Memory with Register

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

90+rw XCHG AX, r16 Valid Valid Exchange r16 with AX.

90+rw XCHG r16, AX Valid Valid Exchange AX with r16.

90+rd XCHG EAX, r32 Valid Valid Exchange r32 with EAX.

REXW +90+rd XCHG RAX, r64 Valid N.E. Exchange r64 with RAX.

90+rd XCHG r32, EAX Valid Valid Exchange EAX with r32.

REXW +90+rd XCHG r64, RAX Valid N.E. Exchange RAX with r64.

86/r XCHG r/m8, r8 Valid Valid Exchange r8 (byte register) with
byte from r/m8.

REX +86 /r XCHG r/m8%, r8* Valid N.E. Exchange r8 (byte register) with
byte from r/m8.

86/r XCHG r8, r/m8 Valid Valid Exchange byte from r/m8 with
r8 (byte register).

REX+86/r XCHG r8% r/m8* Valid N.E. Exchange byte from r/m8 with
r8 (byte register).

87 1/r XCHG r/m16, r16 Valid Valid Exchange r16 with word from
r/m16.

87 1/r XCHG r16, /m16 Valid Valid Exchange word from r/m16 with
r1é.

871/r XCHG r/m32, r32 Valid Valid Exchange r32 with doubleword
from r/m32.

REXW + 87 /r XCHG r/m64, r64 Valid N.E. Exchange r64 with quadword
from r/m64.

87 Ir XCHG r32, /m32 Valid Valid Exchange doubleword from
r/m32 with r32.

REXW +87 /r XCHG r64, r/m64 Valid N.E. Exchange quadword from r/m64
with r64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Description

Exchanges the contents of the destination (first) and source (second) operands. The
operands can be two general-purpose registers or a register and a memory location.
If a memory operand is referenced, the processor’s locking protocol is automatically
implemented for the duration of the exchange operation, regardless of the presence

4-504 Vol.2B

XCHG—Exchange Register/Memory with Register

INSTRUCTION SET REFERENCE, N-Z

or absence of the LOCK prefix or of the value of the IOPL. (See the LOCK prefix
description in this chapter for more information on the locking protocol.)

This instruction is useful for implementing semaphores or similar data structures for
process synchronization. (See “Bus Locking” in Chapter 7 of the Intel® 64 and 1A-32
Architectures Software Developer’'s Manual, Volume 3A, for more information on bus
locking.)

The XCHG instruction can also be used instead of the BSWAP instruction for 16-bit
operands.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

TEMP « DEST;
DEST « SRC;
SRC « TEMP;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If either operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

XCHG—Exchange Register/Memory with Register Vol. 2B 4-505

INSTRUCTION SET REFERENCE, N-Z

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

4-506 Vol.2B XCHG—Exchange Register/Memory with Register

INSTRUCTION SET REFERENCE, N-Z

XGETBV—Get Value of Extended Control Register

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
O0F 01 DO XGETBV Valid Valid Reads an XCR specified by ECX
into EDX:EAX.
Description

Reads the contents of the extended control register (XCR) specified in the ECX
register into registers EDX:EAX. (On processors that support the Intel 64 architec-
ture, the high-order 32 bits of RCX are ignored.) The EDX register is loaded with the
high-order 32 bits of the XCR and the EAX register is loaded with the low-order 32
bits. (On processors that support the Intel 64 architecture, the high-order 32 bits of
each of RAX and RDX are cleared.) If fewer than 64 bits are implemented in the XCR
being read, the values returned to EDX:EAX in unimplemented bit locations are
undefined.

Specifying a reserved or unimplemented XCR in ECX causes a general protection
exception.

Currently, only XCRO (the XFEATURE_ENABLED_MASK register) is supported. Thus,
all other values of ECX are reserved and will cause a #GP(0).

Operation

EDX:EAX « XCRIECX];

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If an invalid XCR is specified in ECX.
#UD If CPUID.O1H:ECX.XSAVE[bit 26] = 0.
If CR4.0SXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Real-Address Mode Exceptions
#GP If an invalid XCR is specified in ECX.
#UD If CPUID.O1H:ECX.XSAVE[bit 26] = 0.
If CR4.0SXSAVE[bit 18] = 0.
If the LOCK prefix is used.

XGETBV—Get Value of Extended Control Register Vol.2B 4-507

INSTRUCTION SET REFERENCE, N-Z

If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

4-508 Vol.2B XGETBV—Get Value of Extended Control Register

INSTRUCTION SET REFERENCE, N-Z

XLAT/XLATB—Table Look-up Translation

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

D7 XLAT m8 Valid Valid Set AL to memory byte DS:[(E)BX +
unsigned AL].

D7 XLATB Valid Valid Set AL to memory byte DS:[(E)BX +
unsigned AL].

REX.W + D7 XLATB Valid N.E. Set AL to memory byte [RBX +
unsigned AL].

Description

Locates a byte entry in a table in memory, using the contents of the AL register as a
table index, then copies the contents of the table entry back into the AL register. The
index in the AL register is treated as an unsigned integer. The XLAT and XLATB
instructions get the base address of the table in memory from either the DS:EBX or
the DS:BX registers (depending on the address-size attribute of the instruction, 32 or
16, respectively). (The DS segment may be overridden with a segment override
prefix.)

At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operand” form and the “no-operand” form. The explicit-operand form (specified with
the XLAT mnemonic) allows the base address of the table to be specified explicitly
with a symbol. This explicit-operands form is provided to allow documentation;
however, note that the documentation provided by this form can be misleading. That
is, the symbol does not have to specify the correct base address. The base address is
always specified by the DS:(E)BX registers, which must be loaded correctly before
the XLAT instruction is executed.

The no-operands form (XLATB) provides a “short form” of the XLAT instructions. Here
also the processor assumes that the DS:(E)BX registers contain the base address of
the table.

In 64-bit mode, operation is similar to that in legacy or compatibility mode. AL is
used to specify the table index (the operand size is fixed at 8 bits). RBX, however, is
used to specify the table’s base address. See the summary chart at the beginning of
this section for encoding data and limits.

Operation

IF AddressSize =16
THEN
AL « (DS:BX + ZeroExtend(AL));
ELSE IF (AddressSize = 32)
AL « (DS:EBX + ZeroExtend(AL)); Fl;
ELSE (AddressSize = 64)

XLAT/XLATB—Table Look-up Translation Vol. 2B 4-509

INSTRUCTION SET REFERENCE, N-Z

AL « (RBX + ZeroExtend(AL));

Fl;

Flags Affected

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP

#SS

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.
If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0)

#GP(0)
#PF(fault-code)
#UD

4-510 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
If a page fault occurs.
If the LOCK prefix is used.

XLAT/XLATB—Table Look-up Translation

XOR—Logical Exclusive OR

INSTRUCTION SET REFERENCE, N-Z

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

34 b XOR AL, imm8 Valid Valid AL XOR imm8.

35 iw XOR AX, imm16 Valid Valid AX XOR imm16.

35id XOR EAX, imm32 Valid Valid EAX XOR imm32.

REXW + 35 id XOR RAX, imm32 Valid N.E. RAX XOR imm32 (sign-
extended).

80/6ib XOR r/m8, imm8 Valid Valid r/m8 XOR imm8.

REX +80/6 ib XOR r/m8*, imm8 Valid N.E. r/m8 XOR imm8.

81/6 iw XOR r/m16, imm16 Valid Valid r/m16 XOR imm16.

81/6id XOR r/m32, imm32 Valid Valid r/m32 XOR imm32.

REXW +81/6id XOR r/m64, imm32 Valid N.E. r/m64 XOR imm32 (sign-
extended).

83/6ib XOR r/m16, imm8 Valid Valid r/m16 XOR imm8 (sign-
extended).

83/6ib XOR r/m32, imm8 Valid Valid r/m32 XOR imm8 (sign-
extended).

REXW +83/6ib XOR r/m64, imm8 Valid N.E. r/m64 XOR imm8 (sign-
extended).

30/r XOR r/m8, r8 Valid Valid r/m8 XOR r8.

REX +30/r XOR r/m8*, r8* Valid N.E. r/m8 XOR r8.

31/r XOR r/m16, r16 Valid Valid r/m16 XOR r16.

31/r XOR r/m32, r32 Valid Valid r/m32 XOR r32.

REXW +31/r XOR r/m64, r64 Valid N.E. r/m64 XOR r64.

32/r XOR r8, r/m8 Valid Valid r8 XOR r/m8.

REX+32/r XOR r8% r/m8* Valid N.E. r8 XOR r/m8.

33/r XOR r16, /m16 Valid Valid r16 XOR r/m16.

33/r XOR r32, r/m32 Valid Valid r32 XOR r/m32.

REXW +33/r XOR r64, r/m64 Valid N.E. r64 XOR r/m64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

XOR—Logical Exclusive OR

Vol.2B 4-511

INSTRUCTION SET REFERENCE, N-Z

Description

Performs a bitwise exclusive OR (XOR) operation on the destination (first) and source
(second) operands and stores the result in the destination operand location. The
source operand can be an immediate, a register, or a memory location; the destina-
tion operand can be a register or a memory location. (However, two memory oper-
ands cannot be used in one instruction.) Each bit of the result is 1 if the
corresponding bits of the operands are different; each bit is O if the corresponding
bits are the same.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to

64 bits. See the summary chart at the beginning of this section for encoding data and
limits.

Operation

DEST « DEST XOR SRC,

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the
result. The state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

4-512 Vol.2B XOR—Logical Exclusive OR

#UD

INSTRUCTION SET REFERENCE, N-Z

If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0)
#GP(0)
#PF(fault-code)
#AC(0)

#UD

XOR—Logical Exclusive OR

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used but the destination is not a memory
operand.

Vol.2B 4-513

INSTRUCTION SET REFERENCE, N-Z

XORPD—Bitwise Logical XOR for Double-Precision Floating-Point
Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 57 /r XORPD xmm1, xmm2/m128 Valid Valid Bitwise exclusive-OR of
xmmZ2/m128and xmm]1.

Description

Performs a bitwise logical exclusive-OR of the two packed double-precision floating-
point values from the source operand (second operand) and the destination operand
(first operand), and stores the result in the destination operand. The source operand
can be an XMM register or a 128-bit memory location. The destination operand is an
XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[127:0] « DEST[127:0] BitwiseXOR SRC[127:0];

Intel C/C++ Compiler Intrinsic Equivalent
XORPD __m128d_mm_xor_pd(__m128d3a,__m128dDb)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

4-514 Vol.2B XORPD—Bitwise Logical XOR for Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

XORPD—Bitwise Logical XOR for Double-Precision Floating-Point Values Vol.2B 4-515

INSTRUCTION SET REFERENCE, N-Z

XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values
64-Bit Compat/
Opcode Instruction Mode Leg Mode Description

OF 57 /r XORPS xmm1, xmm2/m128 Valid Valid Bitwise exclusive-OR of
xmmZ2/m128and xmm1.

Description

Performs a bitwise logical exclusive-OR of the four packed single-precision floating-
point values from the source operand (second operand) and the destination operand
(first operand), and stores the result in the destination operand. The source operand
can be an XMM register or a 128-bit memory location. The destination operand is an
XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[127:0] < DEST[127:0] BitwiseXOR SRC[127:0];

Intel C/C++ Compiler Intrinsic Equivalent
XORPS __m128 _mm_xor_ps(__m128a,__m128Db)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

4-516 Vol.2B XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values Vol.2B 4-517

INSTRUCTION SET REFERENCE, N-Z

XRSTOR—Restore Processor Extended States

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF AE /5 XRSTOR mem Valid Valid Restore processor extended

states from memory. The
states are specified by
EDX:EAX

Description

Performs a full or partial restore of the enabled processor states using the state infor-
mation stored in the memory address specified by the source operand. The implicit
EDX:EAX register pair specifies a 64-bit restore mask.

The format of the XSAVE/XRSTOR area is shown in Table 4-8. The memory layout of
the XSAVE/XRSTOR area may have holes between save areas written by the
processor as a result of the processor not supporting certain processor extended
states or system software not supporting certain processor extended states.

Table 4-8. General Layout of XSAVE/XRSTOR Save Area

Save Areas Offset (Byte) Size (Bytes)
FPU/SSE SaveArea |0 512
Header 512 64
Reserved CPUID.(EAX=0DH, ECX=2):EBX CPUID.(EAX=0DH, ECX=2):EAX

(Ext_Save_Area_2)
Reserved(Ext_Save_A | CPUID.(EAX=0DH, ECX=3).EBX CPUID.(EAX=0DH, ECX=3):EAX
rea_3)

Reserved(Ext_Save_A | CPUID.(EAX=0DH, ECX=4).EBX CPUID.(EAX=0DH, ECX=4).EAX
rea_4)

Reserved(...)

XRSTOR operates on each subset of the processor state or a processor extended
state in one of three ways (depending on the corresponding bit in the
XFEATURE_ENABLED_MASK register (XCRO), the restore mask EDX:EAX, and the
save mask XSAVE.HEADER.XSTATE_BV in memory):

® Updates the processor state component using the state information stored in the
respective save area (see Table 4-8) of the source operand, if the corresponding
bit in XCRO, EDX:EAX, and XSAVE.HEADER.XSTATE_BV are all 1.

® Writes certain registers in the processor state component using processor-
supplied values (see Table 4-10) without using state information stored in
respective save area of the memory region, if the corresponding bit in XCRO and

4-518 Vol.2B XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, N-Z

EDX:EAX are both 1, but the corresponding bit in XSAVE.HEADER.XSTATE_BYV is
0.

® The processor state component is unchanged, if the corresponding bit in XCRO or
EDX:EAX is O.

The format of the header section (XSAVE.HEADER) of the XSAVE/XRSTOR area is
shown in Table 4-9.

Table 4-9. XSAVE.HEADER Layout

15 8 7 0 Byte Offset Byte Offset from
from Header XSAVE/XRSTOR Area
Rsrvd (Must be 0) XSTATE_BV 0 512
Reserved Rsrvd (Must be 0) 16 528
Reserved Reserved 32 544
Reserved Reserved 48 560

If a processor state component is not enabled in XCRO but the corresponding save
mask bit in XSAVE.HEADER.XSTATE_BYV is 1, an attempt to execute XRSTOR will
cause a #GP(0) exception. Software may specify all 1’s in the implicit restore mask
EDX:EAX, so that all the enabled processors states in XCRO are restored from state
information stored in memory or from processor supplied values.

An attempt to restore processor states with writing 1s to reserved bits in certain
registers (see Table 4-11) will cause a #GP(0) exception.

Because bit 63 of the XFEATURE_ENABLED_MASK register is reserved for future bit
vector expansion, it will not be used for any future processor state feature, and
XRSTOR will ignore bit 63 of EDX:EAX (EDX[31].

Table 4-10. Processor Supplied Init Values XRSTOR May Use

Processor State Component Processor Supplied Register Values
x87 FPU State FCW <« 037FH; FTW « OFFFFH; FSW « OH; FPU CS « OH;
FPU DS « OH; FPU IP « OH; FPU DP « 0; STO-ST7 « O;
SSE State' If 64-bit Mode: XMM0O-XMM15 « OH;
Else XMMO-XMM7 « OH

NOTES:
1. MXCSR state is not updated by processor supplied values. MXCSR state can only be updated by
XRSTOR from state information stored in XSAVE/XRSTOR area.

XRSTOR—Restore Processor Extended States Vol.2B 4-519

INSTRUCTION SET REFERENCE, N-Z

Table 4-11. Reserved Bit Checking and XRSTOR

Processor State Component Reserved Bit Checking
X87 FPU State None
SSE State Reserved bits of MXCSR

A source operand not aligned to 64-byte boundary (for 64-bit and 32-bit modes) will
result in a general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of
RDX and RAX are ignored.

Operation
/* The alignment of the x87 and SSE fields in the XSAVE area is the same as in FXSAVE area*/

RS_TMP_MASK[62:0] « (EDX[30:0] << 32) OR EAX[31:0];
ST_TMP_MASK[62:0] «~ SRCMEM.HEADER.XSTATE_BV[62:0];
IF (((XCRO[62:0] XOR 7FFFFFFF_FFFFFFFFH) AND ST_TMP_MASK[62:0]))
THEN
#GP(0)
ELSE
FORi=0,62STEP 1
IF (RS_TMP_MASK]i] and XCRO[i])
THEN
IF (ST_TMP_MASK]i])
CASE (i) OF
0: Processor state[x87 FPU] «— SRCMEM. FPUSSESave_Area[FPU];
1. Processor state[SSE] «<— SRCMEM. FPUSSESave_Area[SSE];
// MXCSR is loaded as part of the SSE state
DEFAULT: // i corresponds to a valid sub-leaf index of CPUID leaf ODH
Processor state[i] < SRCMEM. Ext_Save_Area[i];
ESAC;
ELSE
Processor extended state[i] < Processor supplied values; (see Table 4-10)
CASE (i) OF
1: MXCSR < SRCMEM. FPUSSESave_Area[SSE];
ESAC;
Fl;
Fl;
NEXT;
Fl;

4-520 Vol.2B XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, N-Z

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary,
regardless of segment.

If a bit in XCRO is 0 and the corresponding bit in
HEADER.XSTATE_BYV field of the source operand is 1.

If bytes 23:8 of HEADER is not zero.
If attempting to write any reserved bits of the MXCSR register

with 1.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#NM If CRO.TS[bit 3] = 1.

#UD If CPUID.O1H:ECX.XSAVE[bit 26] = 0.

If CR4.0SXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 64-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

If a bit in XCRO is O and the corresponding bit in
HEADER.XSTATE_BYV field of the source operand is 1.

If bytes 23:8 of HEADER is not zero.
If attempting to write any reserved bits of the MXCSR register

with 1.
#NM If CRO.TS[bit 3] = 1.
#UD If CPUID.O1H:ECX.XSAVE[bit 26] = 0.

If CR4.0SXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

XRSTOR—Restore Processor Extended States Vol. 2B 4-521

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary,
regardless of segment.

If a bit in XCRO is 0 and the corresponding bit in
XSAVE.HEADER.XSTATE_BV is 1.

If bytes 23:8 of HEADER is not zero.
If attempting to write any reserved bits of the MXCSR register

with 1.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) If a page fault occurs.

#NM If CRO.TS[bit 3] = 1.

#UD If CPUID.O1H:ECX.XSAVE[bit 26] = 0.

If CR4.0SXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

4-522 \Vol.2B XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, N-Z

XSAVE—Save Processor Extended States

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF AE /4 XSAVE mem Valid Valid Save processor extended

states to memory. The states
are specified by EDX:EAX

Description

Performs a full or partial save of the enabled processor state components to a
memory address specified in the destination operand. A full or partial save of the
processor states is specified by an implicit mask operand via the register pair,
EDX:EAX. The destination operand is a memory location that must be 64-byte
aligned.

The implicit 64-bit mask operand in EDX:EAX specifies the subset of enabled
processor state components to save into the XSAVE/XRSTOR save area. The
XSAVE/XRSTOR save area comprises of individual save area for each processor state
components and a header section, see Table 4-8. Each component save area is
written if both the corresponding bits in the save mask operand and in the
XFEATURE_ENABLED_MASK (XCRO) register are 1. A processor state component
save area is not updated if either one of the corresponding bits in the mask operand
or the XFEATURE_ENABLED_MASK register is 0. If the mask operand (EDX:EAX)
contains all 1's, all enabled processor state components in
XFEATURE_ENABLED_MASK is written to the respective component save area.

The bit assignment used for the EDX:EAX register pair matches the
XFEATURE_ENABLED_MASK register (see chapter 2 of Vol. 3B). For the XSAVE
instruction, software can specify "1" in any bit position of EDX:EAX, irrespective of
whether the corresponding bit position in XFEATURE_ENABLED_MASK is valid for the
processor. The bit vector in EDX:EAX is "anded" with the XFEATURE_ENABLED__MASK
to determine which save area will be written.

The content layout of the XSAVE/XRSTOR save area is architecturally defined to be
extendable and enumerated via the sub-leaves of CPUID.ODH leaf. The extendable
framework of the XSAVE/XRSTOR layout is depicted by Table 4-8. The layout of the
XSAVE/XRSTOR save area is fixed and may contain non-contiguous individual save
areas. The XSAVE/XRSTOR save area is not compacted if some features are not
saved or are not supported by the processor and/or by system software.

The layout of the register fields of first 512 bytes of the XSAVE/XRSTOR is the same
as the FXSAVE/FXRSTOR area. But XSAVE/XRSTOR organizes the 512 byte area as
x87 FPU states (including FPU operation states, x87/MMX data registers), MXCSR
(including MXCSR_MASK), and XMM registers (see Table 4-12). For details of indi-
vidual FPU register layout, refer to the FXSAVE instruction.

XSAVE—Save Processor Extended States Vol. 2B 4-523

INSTRUCTION SET REFERENCE, N-Z

Table 4-12. XSAVE Save Area Layout for x87 FPU and SSE State

31 28|27 24[23 20|19 16[15 12|11 8|7 4|3 o0

MXCSR and MASK x87 FPU operation states (see FXSAVE instruction) 0
x87/MMX data registers (see FXSAVE instruction) 32

x87/MMX data registers (see FXSAVE instruction) 64

x87/MMX data registers (see FXSAVE instruction) 96

x87/MMX data registers (see FXSAVE instruction) 128

XMM1 XMMO 160

XMM3 XMM2 192

XMM5 XMM4 224

XMM7 XMM6 256

XMM9 XMM8 288

XMM11 XMM10 320

XMM13 XMM12 352

XMM15 XMM14 384

Reserved Reserved 416

Reserved Reserved 448

Reserved Reserved 480

The processor writes 1 or O to each.HEADER.XSTATE_BV[i] bit field of an enabled
processor state component in a manner that is consistent to XRSTOR's interaction
with HEADER.XSTATE_BV (see the operation section of XRSTOR instruction). If a
processor implementation discern that a processor state component is in its initial-
ized state (according to Table 4-10) it may modify the corresponding bit in the
HEADER.XSTATE_BV as ‘0.

A destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit
modes) will result in a general-protection (#GP) exception being generated. In 64-bit
mode, the upper 32 bits of RDX and RAX are ignored.

Operation

TMP_MASK[62:0] «— ((EDX[30:0] << 32) OR EAX[31:0]) AND XFEATURE_ENABLE_MASK[62:0];
FORi=0,62STEP 1
IF (TMP_MASK[i] = 1) THEN
THEN
CASE (i) of
0: DEST.FPUSSESAVE_Area[x87 FPU] « processor state[x87 FPU];

4-524 \/ol.2B XSAVE—Save Processor Extended States

INSTRUCTION SET REFERENCE, N-Z

1: DEST.FPUSSESAVE_Area[SSE] « processor state[SSE];
/1 SSE state include MXCSR

DEFAULT: // i corresponds to a valid sub-leaf index of CPUID leaf ODH
DEST.Ext_Save_Area[i] « processor state[i];

ESAC:
DEST.HEADER.XSTATE_BVI[i] « INIT_FUNCTIONIiJ;
Fl;
NEXT;
Flags Affected
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#NM If CRO.TS[bit 3] = 1.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.0SXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 64-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.
If CR4.0SXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

XSAVE—Save Processor Extended States Vol. 2B 4-525

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary,
regardless of segment.

#PF(fault-code) If a page fault occurs.
#NM If CRO.TS[bit 3] = 1.
#UD If CPUID.O1H:ECX.XSAVE[bit 26] = 0.

If CR4.0SXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

4-526 Vol.2B XSAVE—Save Processor Extended States

INSTRUCTION SET REFERENCE, N-Z

XSETBV—Set Extended Control Register

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 01 D1 XSETBV Valid Valid Write the value in EDX:EAX to
the XCR specified by ECX.

Description

Writes the contents of registers EDX:EAX into the 64-bit extended control register
(XCR) specified in the ECX register. (On processors that support the Intel 64 archi-
tecture, the high-order 32 bits of RCX are ignored.) The contents of the EDX register
are copied to high-order 32 bits of the selected XCR and the contents of the EAX
register are copied to low-order 32 bits of the XCR. (On processors that support the
Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are ignored.)
Undefined or reserved bits in an XCR should be set to values previously read.

This instruction must be executed at privilege level O or in real-address mode; other-
wise, a general protection exception #GP(0) is generated. Specifying a reserved or
unimplemented XCR in ECX will also cause a general protection exception. The
processor will also generate a general protection exception if software attempts to
write to reserved bits in an XCR.

Currently, only XCRO (the XFEATURE_ENABLED_MASK register) is supported. Thus,
all other values of ECX are reserved and will cause a #GP(0). Note that bit O of
XFEATURE_ENABLED_MASK (corresponding to x87 state) must be set to 1; the
instruction will cause a #GP(0) if an attempt is made to clear this bit.

Operation

XCR[ECX] « EDX:EAX;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not O.
If an invalid XCR is specified in ECX.

If the value in EDX:EAX sets bits that are reserved in the XCR
specified by ECX.

If an attempt is made to clear bit O of
XFEATURE_ENABLED_MASK.

#UD If CPUID.0O1H:ECX.XSAVE[bit 26] = 0.
If CR4.0SXSAVE[bit 18] = 0.

XSETBV—Set Extended Control Register Vol.2B 4-527

INSTRUCTION SET REFERENCE, N-Z

If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Real-Address Mode Exceptions
#GP If an invalid XCR is specified in ECX.

If the value in EDX:EAX sets bits that are reserved in the XCR
specified by ECX.

If an attempt is made to clear bit O of
XFEATURE_ENABLED _MASK.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = O.
If CR4.0SXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The XSETBV instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

4-528 Vol.2B XSETBV—Set Extended Control Register

CHAPTER 5
VMX INSTRUCTION REFERENCE

5.1 OVERVIEW

This chapter describes the virtual-machine extensions (VMX) for the Intel 64 and
1A-32 architectures. VMX is intended to support virtualization of processor hardware
and a system software layer acting as a host to multiple guest software environ-
ments. The virtual-machine extensions (VMX) includes five instructions that manage
the virtual-machine control structure (VMCS) and five instruction that manage VMX
operation. Additional details of VMX are described in 1A-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 3B.

The behavior of the VMCS-maintenance instructions is summarized below:

® VMPTRLD — This instruction takes a single 64-bit source operand that is in
memory. It makes the referenced VMCS active and current, loading the current-
VMCS pointer with this operand and establishes the current VMCS based on the
contents of VMCS-data area in the referenced VMCS region. Because this makes
the referenced VMCS active, a logical processor may start maintaining on the
processor some of the VMCS data for the VMCS.

® VMPTRST — This instruction takes a single 64-bit destination operand that is in
memory. The current-VMCS pointer is stored into the destination operand.

® VMCLEAR — This instruction takes a single 64-bit operand that is in memory.
The instruction sets the launch state of the VMCS referenced by the operand to
“clear”, renders that VMCS inactive, and ensures that data for the VMCS have
been written to the VMCS-data area in the referenced VMCS region. If the
operand is the same as the current-VMCS pointer, that pointer is made invalid.

® VMREAD — This instruction reads a component from the VMCS (the encoding of
that field is given in a register operand) and stores it into a destination operand
that may be a register or in memory.

® VMWRITE — This instruction writes a component to the VMCS (the encoding of
that field is given in a register operand) from a source operand that may be a
register or in memory.

The behavior of the VMX management instructions is summarized below:

® VMCALL — This instruction allows a guest in VMX non-root operation to call the
VMM for service. A VM exit occurs, transferring control to the VMM.

® VMLAUNCH — This instruction launches a virtual machine managed by the
VMCS. A VM entry occurs, transferring control to the VM.

® VMRESUME — This instruction resumes a virtual machine managed by the
VMCS. A VM entry occurs, transferring control to the VM.

® VMXOFF — This instruction causes the processor to leave VMX operation.

Vol.2B 5-1

VMX INSTRUCTION REFERENCE

® VMXON — This instruction takes a single 64-bit source operand that is in
memory. It causes a logical processor to enter VMX root operation and to use the
memory referenced by the operand to support VMX operation.

Only VMCALL can be executed in compatibility mode (causing a VM exit). The other
VMX instructions generate invalid-opcode exceptions if executed in compatibility
mode.

The behavior of the VMX-specific TLB-management instructions is summarized

below:

® INVEPT — This instruction invalidates entries in the TLBs and paging-structure
caches that were derived from Extended Page Tables (EPT).

® INVVPID — This instruction invalidates entries in the TLBs and paging-structure
caches based on a Virtual-Processor ldentifier (VPID).

5.2 CONVENTIONS

The operation sections for the VMX instructions in Section 5.3 use the pseudo-func-
tion VMexit, which indicates that the logical processor performs a VM exit.

The operation sections also use the pseudo-functions VMsucceed, VMfail,
VMfaillnvalid, and VMfailValid. These pseudo-functions signal instruction success or
failure by setting or clearing bits in RFLAGS and, in some cases, by writing the
VM-instruction error field. The following pseudocode fragments detail these func-
tions:

VVMsucceed:
CF«0;
PF < 0O;
AF « 0O;
ZF < 0;
SF «0;
OF < 0;

V/Mfail(ErrorNumber):
IF VMCS pointer is valid
THEN VMfailValid(ErrorNumber);
ELSE VMfaillnvalid;
Fl;

VMfaillnvalid:
CFeT1;
PF O;
AF «0;
ZF < 0;
SFO;

5-2 Vol.2B

VMX INSTRUCTION REFERENCE

OF < 0O;

VMfailValid(ErrorNumber):// executed only if there is a current VMCS
CF «0;
PF < 0;
AF « O;
ZF < 1;
SF « 0;
OF « 0;
Set the VM-instruction error field to ErrorNumber;

The different VM-instruction error numbers are enumerated in Section 5.4, “VM
Instruction Error Numbers”.

53 VMX INSTRUCTIONS

This section provides detailed descriptions of the VMX instructions.

Vol.2B 5-3

VMX INSTRUCTION REFERENCE

INVEPT— Invalidate Translations Derived from EPT

Opcode Instruction Description

66 OF 38 80 INVEPT r64, m128 Invalidates EPT-derived entries in the TLBs and
paging-structure caches (in 64-bit mode)

66 OF 38 80 INVEPT r32, m128 Invalidates EPT-derived entries in the TLBs and
paging-structure caches (outside 64-bit mode)

Description

Invalidates entries in the translation lookaside buffers (TLBs) and paging-structure
caches that were derived from extended page tables (EPT). (See Chapter
“Extended Page Tables” in 1A-32 Intel Architecture Software Developer’s Manual,
Volume 3B.) Invalidation is based on the INVEPT type specified in the register
operand and the INVEPT descriptor specified in the memory operand.

Outside 1A-32e mode, the register operand is always 32 bits, regardless of the value
of CS.D. In 64-bit mode, the register operand has 64 bits; however, if bits 63:32 of
the register operand are not zero, INVEPT will fail due to an attempt to use an unsup-
ported INVEPT type (see below).

The INVEPT types supported by a logical processors are reported in the
1A32_VMX_EPT_VPID_CAP MSR (see Appendix “VMX Capability Reporting Facility” in
1A-32 Intel Architecture Software Developer’'s Manual, Volume 3B). There are two
INVEPT types currently defined:

® Single-context invalidation. If the INVEPT type is 1, the logical processor
invalidates all translations derived from the EPT context specified in the INVEPT
descriptor. In some cases, it may invalidate translations from other EPT contexts
as well.

® Global invalidation: If the INVEPT type is 2, the logical processor invalidates all
translations derived from any EPT context.

If an unsupported INVEPT type is specified, the instruction fails.

The INVEPT descriptor comprises 128 bits and contains a 64-bit EPT pointer value in
bits 63:0 (see Figure 5-1). The 64-bit EPT pointer value defines an EPT context.

SR =rr rorer e coney
127

64 63 0

Figure 5-1. INVEPT Descriptor

5-4 Vol. 2B INVEPT— Invalidate Translations Derived from EPT

VMX INSTRUCTION REFERENCE

Operation

IF (not in VMX operation) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;
ELSIF in VMX non-root operation
THEN VM exit;
ELSIFCPL> O
THEN #GP(0);
ELSE
INVEPT_TYPE « value of register operand;
IFIA32_VMX_EPT_VPID_CAP MSR indicates that processor does not support INVEPT_TYPE
THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE // INVEPT_TYPE must be 1 or 2
INVEPT_DESC « value of memory operand;
EPTP_CTX « INVEPT_DESC[63:0];
CASE INVEPT_TYPE OF
1: // single-context invalidation
IF VM entry with the “enable EPT” VM execution control set to 1
would fail due to the EPTP field containing the value EPTP_CTX
THEN VMfail(Invalid operand to INVEPT/INVVPID);

ELSE
Invalidate translations derived from EPT for EPTP_CTX;
VVMsucceed;
Fl;
BREAK;
2. // global invalidation
Invalidate translations derived from EPT for all EPT contexts;
VMsucceed;
BREAK;
ESAC;
Fl;
Fl;
Flags Affected

See the operation section and Section 5.2.

Use of Prefixes

LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Segment overrides Treated normally

Operand size Ignored

Address size Treated normally

INVEPT— Invalidate Translations Derived from EPT Vol.2B 5-5

VMX INSTRUCTION REFERENCE

REX Register extensions treated normally; operand-size overrides
ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not O.

If the memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code

segment.
#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS

segment limit.
If the SS register contains an unusable segment.
#UD If not in VMX operation.

If the logical processor does not support EPT
(1IA32_VMX_PROCBASED_CTLS2[33]=0).

If the logical processor supports EPT
(IA32_VMX_PROCBASED_CTLS2[33]=1) but does not support
the INVEPT instruction (1A32_VMX_EPT_VPID_CAP[20]=0).

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX
operation and the INVEPT instruction is not recognized outside
VMX operation.

Virtual-8086 Mode Exceptions
#UD The INVEPT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The INVEPT instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not O.

If the memory operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.

#SS(0) If the memory operand is in the SS segment and the memory
address is in a non-canonical form.

#UD If not in VMX operation.

5-6 Vol.2B INVEPT— Invalidate Translations Derived from EPT

VMX INSTRUCTION REFERENCE

If the logical processor does not support EPT
(IA32_VMX_PROCBASED_CTLS2[33]=0).

If the logical processor supports EPT
(IA32_VMX_PROCBASED_CTLS2[33]=1) but does not support
the INVEPT instruction (IA32_VMX_EPT_VPID_CAP[20]=0).

INVEPT— Invalidate Translations Derived from EPT Vol.2B 5-7

VMX INSTRUCTION REFERENCE

INVVPID— Invalidate Translations Based on VPID

Opcode Instruction Description

66 OF 38 81 INVVPID r64, m128 Invalidates entries in the TLBs and paging-structure
caches based on VPID (in 64-bit mode)

66 OF 38 81 INVVPID r32, m128 Invalidates entries in the TLBs and paging-structure
caches based on VPID (outside 64-bit mode)

Description

Invalidates entries in the translation lookaside buffers (TLBs) and paging-structure
caches based on virtual-processor identifier (VPID). (See Chapter “Virtual-
Processor Identifiers” in 1A-32 Intel Architecture Software Developer’'s Manual,
Volume 3B.) Invalidation is based on the INVVPID type specified in the register
operand and the INVVPID descriptor specified in the memory operand.

Outside 1A-32e mode, the register operand is always 32 bits, regardless of the value
of CS.D. In 64-bit mode, the register operand has 64 bits; however, if bits 63:32 of
the register operand are not zero, INVVPID will fail due to an attempt to use an
unsupported INVVPID type (see below).

The INVVPID types supported by a logical processors are reported in the
1A32_VMX_EPT_VPID_CAP MSR (see Appendix “VMX Capability Reporting Facility” in
1A-32 Intel Architecture Software Developer’'s Manual, Volume 3B). There are four
INVVPID types currently defined:

® Individual-address invalidation: If the INVVPID type is O, the logical processor
invalidates translations associated with a single linear address and with the VPID
specified in the INVVPID descriptor. In some cases, it may invalidate translations
for other linear addresses (or with other VPIDs) as well.

® Single-context invalidation: If the INVVPID type is 1, the logical processor
invalidates all translations associated with the VPID specified in the INVVPID
descriptor. In some cases, it may invalidate translations with other VPIDs as well.

® All-contexts invalidation: If the INVVPID type is 2, the logical processor
invalidates all translations with all VPIDs except VPID 0. In some cases, it may
invalidate translations with VPID 0O as well.

® Single-context invalidation, retaining global mappings: If the INVVPID type is 3,
the logical processor invalidates all non-global translations associated with the
VPID specified in the INVVPID descriptor. In some cases, it may invalidate global
translations (and those with other VPIDs) as well.

If an unsupported INVVPID type is specified, the instruction fails.

The INVVPID descriptor comprises 128 bits and consists of a VPID and a linear
address as shown in Figure 5-2.

5-8 Vol.2B INVVPID— Invalidate Translations Based on VPID

VMX INSTRUCTION REFERENCE

Linear address i R R

127 64 63 1615 0

Figure 5-2. INVVPID Descriptor

Operation

IF (not in VMX operation) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;
ELSIF in VMX non-root operation
THEN VM exit;
ELSIFCPL> O
THEN #GP(0);
ELSE
INVVPID_TYPE « value of register operand;
IF 1A32_VMX_EPT_VPID_CAP MSR indicates that processor does not support

INVVPID_TYPE
THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE // INVVPID_TYPE must be in the range 0-3

INVVPID_DESC « value of memory operand;
IF INVVPID_DESC[63:16] = O
THEN VMfail(Invalid operand to INVEPT/INVVPID);

ELSE
CASE INVVPID_TYPE OF
(03 // individual-address invalidation
VPID_CTX « INVVPID_DESC[15:0];
IFVPID_CTX=0
THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

GL_ADDR « INVVPID_DESC[127:64];
IF (GL_ADDR is not in a canonical form)
THEN
VMfail(Invalid operand to INVEPT/INVVPID);
ELSE
Invalidate translations for GL_ADDR
in VPID_CTX;
VMsucceed;
Fl;
Fl;

INVVPID— Invalidate Translations Based on VPID Vol.2B 5-9

VMX INSTRUCTION REFERENCE

BREAK;
1: // single-context invalidation
VPID_CTX « INVVPID_DESC[15:0];
IFVPID_CTX =0
THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE
Invalidate all translations in VPID_CTX;
VVMsucceed;
Fl;
BREAK;
2: // all-context invalidation
Invalidate all translations of all non-zero VPID contexts;
VMsucceed;
BREAK;
3: // single-context invalidation retaining globals
VPID_CTX « INVVPID_DESC[15:0];
IFVPID_CTX =0
THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE
Invalidate all non-global translations in VPID_CTX;
VMsucceed;
Fl;
BREAK;
ESAC;
Fl;
Fl;
Fl;

Flags Affected

See the operation section and Section 5.2.

Use of Prefixes

LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Segment overrides Treated normally

Operand size Ignored

Address size Treated normally

REX Register extensions treated normally; operand-size overrides
ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not O.

5-10 Vol.2B INVVPID— Invalidate Translations Based on VPID

VMX INSTRUCTION REFERENCE

If the memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code

segment.
#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS

segment limit.
If the SS register contains an unusable segment.
#UD If not in VMX operation.

If the logical processor does not support VPIDs
(IA32_VMX_PROCBASED_CTLS2[37]=0).

If the logical processor supports VPIDs
(IA32_VMX_PROCBASED_CTLS2[37]=1) but does not support
the INVVPID instruction (IA32_VMX_EPT_VPID_CAP[32]=0).

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX
operation and the INVVPID instruction is not recognized outside
VMX operation.

Virtual-8086 Mode Exceptions
#UD The INVVPID instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The INVVPID instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not O.

If the memory operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory destination operand is in the SS segment and the
memory address is in a non-canonical form.

#UD If not in VMX operation.

If the logical processor does not support VPIDs
(1IA32_VMX_PROCBASED_CTLS2[37]=0).

If the logical processor supports VPIDs
(IA32_VMX_PROCBASED_CTLS2[37]=1) but does not support
the INVVPID instruction (IA32_VMX_EPT_VPID_CAP[32]=0).

INVVPID— Invalidate Translations Based on VPID Vol.2B 5-11

VMX INSTRUCTION REFERENCE

VMCALL—Call to VM Monitor

Opcode Instruction Description
OF 01 C1 VMCALL Call to VM monitor by causing VM exit.
Description

This instruction allows guest software can make a call for service into an underlying
VM monitor. The details of the programming interface for such calls are VMM-specific;
this instruction does nothing more than cause a VM exit, registering the appropriate
exit reason.

Use of this instruction in VMX root operation invokes an SMM monitor (see Section
24.16.2 in 1A-32 Intel Architecture Software Developer’s Manual, Volume 3B). This
invocation will activate the dual-monitor treatment of system-management interrupts
(SMIs) and system-management mode (SMM) if it is not already active (see Section
24.16.6 in 1A-32 Intel Architecture Software Developer’s Manual, Volume 3B).

Operation

IF not in VMX operation
THEN #UD;
ELSIF in VMX non-root operation
THEN VM exit;
ELSIF (RFLAGS.VM = 1) OR (IA32_EFER.LMA =1 and CS.L = 0)
THEN #UD;
ELSIFCPL> 0
THEN #GP(0);
ELSIF in SMM or the logical processor does not support the dual-monitor treatment of SMis and
SMM or the valid bit in the IA32_SMM_MONITOR_CTL MSR is clear
THEN VMfail (VMCALL executed in VMX root operation);
ELSIF dual-monitor treatment of SMIs and SMM is active
THEN perform an SMM VM exit (see Section 24.16.2
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B);
ELSIF current-VMCS pointer is not valid
THEN VMfaillnvalid;
ELSIF launch state of current VMCS is not clear
THEN VMfailValid(VMCALL with non-clear VMCS);
ELSIF VM-exit control fields are not valid (see Section 24.16.6.1 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3B)
THEN VMfailValid (VMCALL with invalid VM-exit control fields);
ELSE
enter SMM;
read revision identifier in MSEG;

5-12 Vol.2B VMCALL—Call to VM Monitor

VMX INSTRUCTION REFERENCE

IF revision identifier does not match that supported by processor
THEN
leave SMM;
VMfailValid(VMCALL with incorrect MSEG revision identifier);
ELSE
read SMM-monitor features field in MSEG (see Section 24.16.6.2,
in the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3B);
IF features field is invalid
THEN
leave SMM;
VMfailValid(VMCALL with invalid SMM-monitor features);
ELSE activate dual-monitor treatment of SMIs and SMM (see Section 24.16.6
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, olume
3B);
FI;
Fl;
Fl;

Flags Affected
See the operation section and Section 5.2.

Use of Prefixes

LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Segment overrides Ignored

Operand size Causes #UD

Address size Ignored

REX Ignored

Protected Mode Exceptions

#GP(0) If the current privilege level is not O and the logical processor is
in VMX root operation.

#UD If executed outside VMX operation.

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX
operation and the VMCALL instruction is not recognized outside
VMX operation.

VMCALL—Call to VM Monitor Vol.2B 5-13

VMX INSTRUCTION REFERENCE

Virtual-8086 Mode Exceptions
#UD If executed outside VMX non-root operation.

Compatibility Mode Exceptions
#UD If executed outside VMX non-root operation.

64-Bit Mode Exceptions
#UD If executed outside VMX non-root operation.

5-14 Vol.2B VMCALL—Call to VM Monitor

VMX INSTRUCTION REFERENCE

VMCLEAR—Clear Virtual-Machine Control Structure

Opcode Instruction Description
66 OF C7 /6 VMCLEAR m64 Copy VMCS data to VMCS region in memory.
Description

This instruction applies to the VMCS whose VMCS region resides at the physical
address contained in the instruction operand. The instruction ensures that VMCS
data for that VMCS (some of these data may be currently maintained on the
processor) are copied to the VMCS region in memory. It also initializes parts of the
VMCS region (for example, it sets the launch state of that VMCS to clear). See
Chapter 20, “Virtual-Machine Control Structures,” in the Intel® 64 and 1A-32 Archi-
tectures Software Developer’s Manual, Volume 3B.

The operand of this instruction is always 64 bits and is always in memory. If the
operand is the current-VMCS pointer, then that pointer is made invalid (set to
FFFFFFFF_FFFFFFFFH).

Note that the VMCLEAR instruction might not explicitly write any VMCS data to
memory; the data may be already resident in memory before the VMCLEAR is
executed.

Operation

IF (register operand) or (not in VMX operation) or (RFLAGS.VM = 1) or
(IA32_EFERLMA =1 and CS.L = 0)
THEN #UD;
ELSIF in VMX non-root operation
THEN VM exit;
ELSIFCPL> O
THEN #GP(0);
ELSE
addr « contents of 64-bit in-memory operand;
IF addr is not 4KB-aligned OR
(processor supports Intel 64 architecture and
addr sets any bits beyond the physical-address width) OR
(processor does not support Intel 64 architecture, addr sets any bits in the range 63:32)
THEN VMfail(VMCLEAR with invalid physical address);
ELSIF addr = VMXON pointer
THEN VMfail(VMCLEAR with VMXON pointer);
ELSE
ensure that data for VMCS referenced by the operand is in memory;
initialize implementation-specific data in VMCS region;
launch state of VMCS referenced by the operand « “clear”

VMCLEAR—Clear Virtual-Machine Control Structure Vol.2B 5-15

VMX INSTRUCTION REFERENCE

IF operand addr = current-VMCS pointer
THEN current-VMCS pointer « FFFFFFFF_FFFFFFFFH;
Fl;
VMsucceed;
Fl;
Fl;

Flags Affected
See the operation section and Section 5.2.

Use of Prefixes
LOCK Causes #UD.

REP* Reserved and may cause unpredictable behavior (applies to
both REPNE/REPNZ and REP/REPE/REPZ).

Segment overrides Treated normally

Operand size Ignored

Address size Treated normally

REX Register extensions treated normally; operand-size overrides
ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not O.

If the memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.
If the operand is located in an execute-only code segment.
#PF(fault-code) If a page fault occurs in accessing the memory operand.

#SS(0) If the memory operand effective address is outside the SS
segment limit.

If the SS register contains an unusable segment.
#UD If operand is a register.
If not in VMX operation.

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX
operation and the VMCLEAR instruction is not recognized outside
VMX operation.

5-16 Vol. 2B VMCLEAR—Clear Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE

Virtual-8086 Mode Exceptions

#UD The VMCLEAR instruction is not recognized in virtual-8086
mode.

Compatibility Mode Exceptions

#UD The VMCLEAR instruction is not recognized in compatibility
mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not O.

If the source operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.

#SS(0) If the source operand is in the SS segment and the memory
address is in a nhon-canonical form.

#UD If operand is a register.

If not in VMX operation.

VMCLEAR—Clear Virtual-Machine Control Structure Vol.2B 5-17

VMX INSTRUCTION REFERENCE

VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

Opcode Instruction Description

OF 01 C2 VMLAUNCH Launch virtual machine managed by current VMCS.
OF 01 C3 VMRESUME Resume virtual machine managed by current VMCS.
Description

Effects a VM entry managed by the current VMCS.

® VMLAUNCH fails if the launch state of current VMCS is not “clear”. If the
instruction is successful, it sets the launch state to “launched.”

® VMRESUME fails if the launch state of the current VMCS is not “launched.”

If VM entry is attempted, the logical processor performs a series of consistency
checks as detailed in Chapter 22, “VM Entries,” in the Intel® 64 and 1A-32 Architec-
tures Software Developer’'s Manual, Volume 3B. Failure to pass checks on the VMX
controls or on the host-state area passes control to the instruction following the
VMLAUNCH or VMRESUME instruction. If these pass but checks on the guest-state
area fail, the logical processor loads state from the host-state area of the VMCS,
passing control to the instruction referenced by the RIP field in the host-state area.

VM entry is not allowed when events are blocked by MOV SS or POP SS. Neither
VMLAUNCH nor VMRESUME should be used immediately after either MOV to SS or
POP to SS.

Operation

IF (not in VMX operation) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;
ELSIF in VMX non-root operation
THEN VMexit;
ELSIFCPL >0
THEN #GP(0);
ELSIF current-VMCS pointer is not valid
THEN VMfaillnvalid;
ELSIF events are being blocked by MOV SS
THEN VMfailValid(VM entry with events blocked by MOV SS);
ELSIF (VMLAUNCH and launch state of current VMCS is not “clear”)
THEN VMfailValid(VMLAUNCH with non-clear VMCS);
ELSIF (VMRESUME and launch state of current VMCS is not “launched"”)
THEN VMfailValid(VMRESUME with non-launched VMCS);
ELSE
Check settings of VMX controls and host-state area;
IF invalid settings

5-18 Vol.2B VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

VMX INSTRUCTION REFERENCE

THEN VMfailValid(VM entry with invalid VMX-control field(s)) or
VMfailValid(VM entry with invalid host-state field(s)) or
VMfailValid(VM entry with invalid executive-VMCS pointer)) or
VMfailValid(VM entry with non-launched executive VMCS) or
VMfailValid(VM entry with executive-VMCS pointer not VMXON pointer) or
VMfailValid(VM entry with invalid VM-execution control fields in executive
VMCS)
as appropriate;

P

ELSE
Attempt to load guest state and PDPTRs as appropriate;
clear address-range monitoring;
IF failure in checking guest state or PDPTRs
THEN VM entry fails (see Section 22.7, in the
Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3B);
ELSE
Attempt to load MSRs from VM-entry MSR-load areg;
IF failure
THEN VM entry fails (see Section 22.7, in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3B);
ELSE
IF VMLAUNCH
THEN launch state of VMCS « “launched”;
Fl;
IF in SMM and “entry to SMM" VM-entry control is O
THEN
IF “deactivate dual-monitor treatment” VM-entry
control is O
THEN SMM-transfer VMCS pointer «
current-VMCS pointer;
Fl;
IF executive-VMCS pointer is VMX pointer
THEN current-VMCS pointer «
VMCS-link pointer;
ELSE current-VMCS pointer «
executive-VMCS pointer;
Fl;
leave SMM;
Fl;
VM entry succeeds;
Fl;
Fl;
Fl;
Fl;

VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine Vol.2B 5-19

VMX INSTRUCTION REFERENCE

Further details of the operation of the VM-entry appear in Chapter 22 of 1A-32 Intel
Architecture Software Developer’s Manual, Volume 3B.

Flags Affected

See the operation section and Section 5.2.

Use of Prefixes

LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Segment overrides Ignored

Operand size Causes #UD

Address size Ignored

REX Ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not O.
#UD If executed outside VMX operation.

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX
operation and the VMLAUNCH and VMRESUME instructions are
not recognized outside VMX operation.

Virtual-8086 Mode Exceptions

#UD The VMLAUNCH and VMRESUME instructions are not recognized
in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The VMLAUNCH and VMRESUME instructions are not recognized
in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not O.
#UD If executed outside VMX operation.

5-20 Vol.2B VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

VMX INSTRUCTION REFERENCE

VMPTRLD—Load Pointer to Virtual-Machine Control Structure

Opcode Instruction Description
OFC7 /6 VMPTRLD m64 Loads the current VMCS pointer from memory.
Description

Marks the current-VMCS pointer valid and loads it with the physical address in the
instruction operand. The instruction fails if its operand is not properly aligned, sets
unsupported physical-address bits, or is equal to the VMXON pointer. In addition, the
instruction fails if the 32 bits in memory referenced by the operand do not match the
VMCS revision identifier supported by this processor.t

The operand of this instruction is always 64 bits and is always in memory.

Operation

IF (register operand) or (not in VMX operation) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA =1 and CS.L = 0)
THEN #UD;
ELSIF in VMX non-root operation
THEN VMexit;
ELSIFCPL> 0O
THEN #GP(0);
ELSE
addr « contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned OR
(processor supports Intel 64 architecture and
addr sets any bits beyond the processor's physical-address width) OR
processor does not support Intel 64 architecture and addr sets any bits in the range 63:32
THEN VMfail(VMPTRLD with invalid physical address);
ELSIF addr = VMXON pointer
THEN VMfail(VMPTRLD with VMXON pointer);
ELSE
rev < 32 bits located at physical address addr;
IF rev = VMCS revision identifier supported by processor
THEN VMfail(VMPTRLD with incorrect VMCS revision identifier);
ELSE
current-VMCS pointer « addr;
VMsucceed;

1. Software should consult the VMX capability MSR VMX_BASIC to discover the VMCS revision iden-
tifier supported by this processor (see Appendix G, “VMX Capability Reporting Facility,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B).

VMPTRLD—Load Pointer to Virtual-Machine Control Structure Vol.2B 5-21

VMX INSTRUCTION REFERENCE

Fl;
Fl;
Fl;

Flags Affected

See the operation section and Section 5.2.

Use of Prefixes
LOCK
REPNE/REPNZ
REP/REPE/REPZ

Segment overrides
Operand size

Address size
REX

Causes #UD

Causes #UD

Changes encoding to that of VMXON; see “VMXON—Enter VMX
Operation” for operation and interactions with other prefixes.
Treated normally

Changes encoding to that of VMCLEAR; see “VMCLEAR—Clear
Virtual-Machine Control Structure” for operation and interac-
tions with other prefixes.

Treated normally

Register extensions treated normally; operand-size overrides
ignored

Protected Mode Exceptions

#GP(0)

#PF(fault-code)
#SS(0)

#UD

If the current privilege level is not O.

If the memory source operand effective address is outside the
CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the source operand is located in an execute-only code
segment.

If a page fault occurs in accessing the memory source operand.

If the memory source operand effective address is outside the
SS segment limit.

If the SS register contains an unusable segment.
If operand is a register.
If not in VMX operation.

Real-Address Mode Exceptions

#UD

5-22 Vol.2B

A logical processor cannot be in real-address mode while in VMX
operation and the VMPTRLD instruction is not recognized
outside VMX operation.

VMPTRLD—Load Pointer to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE

Virtual-8086 Mode Exceptions

#UD The VMPTRLD instruction is not recognized in virtual-8086
mode.

Compatibility Mode Exceptions

#UD The VMPTRLD instruction is not recognized in compatibility
mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not O.

If the source operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.

#SS(0) If the source operand is in the SS segment and the memory
address is in a nhon-canonical form.

#UD If operand is a register.

If not in VMX operation.

VMPTRLD—Load Pointer to Virtual-Machine Control Structure Vol.2B 5-23

VMX INSTRUCTION REFERENCE

VMPTRST—Store Pointer to Virtual-Machine Control Structure

Opcode Instruction Description
OF C7 /7 VMPTRST m64 Stores the current VMCS pointer into memory.
Description

Stores the current-VMCS pointer into a specified memory address. The operand of
this instruction is always 64 bits and is always in memory.

Operation

IF (register operand) or (not in VMX operation) or (RFLAGS.VM = 1) or
(IA32_EFERLMA =1 and CS.L = 0)
THEN #UD;
ELSIF in VMX non-root operation
THEN VMexit;
ELSIFCPL >0
THEN #GP(0);
ELSE
64-bit in-memory destination operand « current-VMCS pointer;
VMsucceed;
Fl;

Flags Affected
See the operation section and Section 5.2.

Use of Prefixes

LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Segment overrides Treated normally

Operand size Causes #UD

Address size Treated normally

REX Register extensions treated normally; operand-size overrides
ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not O.

If the memory destination operand effective address is outside
the CS, DS, ES, FS, or GS segment limit.

5-24 Vol.2B VMPTRST—Store Pointer to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE

If the DS, ES, FS, or GS register contains an unusable segment.

If the destination operand is located in a read-only data
segment or any code segment.

#PF(fault-code) If a page fault occurs in accessing the memory destination
operand.
#SS(0) If the memory destination operand effective address is outside

the SS segment limit.

If the SS register contains an unusable segment.
#UD If operand is a register.

If not in VMX operation.

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX
operation and the VMPTRST instruction is not recognized outside
VMX operation.

Virtual-8086 Mode Exceptions

#UD The VMPTRST instruction is not recognized in virtual-8086
mode.

Compatibility Mode Exceptions

#UD The VMPTRST instruction is not recognized in compatibility
mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not O.

If the destination operand is in the CS, DS, ES, FS, or GS
segments and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory destination
operand.

#SS(0) If the destination operand is in the SS segment and the memory
address is in a nhon-canonical form.

#UD If operand is a register.

If not in VMX operation.

VMPTRST—Store Pointer to Virtual-Machine Control Structure Vol.2B 5-25

VMX INSTRUCTION REFERENCE

VMREAD—Read Field from Virtual-Machine Control Structure

Opcode Instruction Description

OF 78 VMREAD r/m64, r64 Reads a specified VMCS field (in 64-bit mode).

OF 78 VMREAD r/m32,r32 Reads a specified VMCS field (outside 64-bit mode).
Description

Reads a specified field from the VMCS and stores it into a specified destination
operand (register or memory).

The specific VMCS field is identified by the VMCS-field encoding contained in the
register source operand. Outside 1A-32e mode, the source operand has 32 bits,
regardless of the value of CS.D. In 64-bit mode, the source operand has 64 bits;
however, if bits 63:32 of the source operand are not zero, VMREAD will fail due to an
attempt to access an unsupported VMCS component (see operation section).

The effective size of the destination operand, which may be a register or in memory,
is always 32 bits outside 1A-32e mode (the setting of CS.D is ignored with respect to
operand size) and 64 bits in 64-bit mode. If the VMCS field specified by the source
operand is shorter than this effective operand size, the high bits of the destination
operand are cleared to 0. If the VMCS field is longer, then the high bits of the field are
not read.

Note that any faults resulting from accessing a memory destination operand can
occur only after determining, in the operation section below, that the VMCS pointer is
valid and that the specified VMCS field is supported.

Operation

IF (not in VMX operation) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;
ELSIF in VMX non-root operation
THEN VMexit;
ELSIFCPL >0
THEN #GP(0);
ELSIF current-VMCS pointer is not valid
THEN VMfaillnvalid;
ELSIF register source operand does not correspond to any VMCS field
THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);
ELSE
DEST « contents of VMCS field indexed by register source operand;
VMsucceed;
Fl;

5-26 Vol.2B VMREAD—Read Field from Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE

Flags Affected

See the operation section and Section 5.2.

Use of Prefixes

LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Segment overrides Treated normally

Operand size Causes #UD

Address size Treated normally

REX Register extensions treated normally; operand-size overrides
ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not O.

If a memory destination operand effective address is outside the
CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the destination operand is located in a read-only data
segment or any code segment.

#PF(fault-code) If a page fault occurs in accessing a memory destination
operand.
#SS(0) If a memory destination operand effective address is outside the

SS segment limit.
If the SS register contains an unusable segment.
#UD If not in VMX operation.

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX
operation and the VMREAD instruction is not recognized outside
VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMREAD instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMREAD instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not O.

VMREAD—Read Field from Virtual-Machine Control Structure Vol.2B 5-27

VMX INSTRUCTION REFERENCE

If the memory destination operand is in the CS, DS, ES, FS, or
GS segments and the memory address is in a non-canonical

form.

#PF(fault-code) If a page fault occurs in accessing a memory destination
operand.

#SS(0) If the memory destination operand is in the SS segment and the
memory address is in a non-canonical form.

#UD If not in VMX operation.

5-28 Vol.2B VMREAD—Read Field from Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE

VMRESUME—Resume Virtual Machine

See VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine.

VMRESUME—Resume Virtual Machine Vol.2B 5-29

VMX INSTRUCTION REFERENCE

VMWRITE—Write Field to Virtual-Machine Control Structure

Opcode Instruction Description

OF 79 VMWRITE r64, r/m64 Writes a specified VMCS field (in 64-bit mode)

OF 79 VMWRITE r32, r/m32 Writes a specified VMCS field (outside 64-bit mode)
Description

Writes to a specified field in the VMCS specified by a secondary source operand
(register only) using the contents of a primary source operand (register or memory).

The VMCS field is identified by the VMCS-field encoding contained in the register
secondary source operand. Outside 1A-32e mode, the secondary source operand is
always 32 bits, regardless of the value of CS.D. In 64-bit mode, the secondary source
operand has 64 bits; however, if bits 63:32 of the secondary source operand are not
zero, VMWRITE will fail due to an attempt to access an unsupported VMCS compo-
nent (see operation section).

The effective size of the primary source operand, which may be a register or in
memory, is always 32 bits outside 1A-32e mode (the setting of CS.D is ignored with
respect to operand size) and 64 bits in 64-bit mode. If the VMCS field specified by the
secondary source operand is shorter than this effective operand size, the high bits of
the primary source operand are ignored. If the VMCS field is longer, then the high bits
of the field are cleared to O.

Note that any faults resulting from accessing a memory source operand occur after
determining, in the operation section below, that the VMCS pointer is valid but before
determining if the destination VMCS field is supported.

Operation

IF (not in VMX operation) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;
ELSIF in VMX non-root operation
THEN VMexit;
ELSIFCPL >0
THEN #GP(0);
ELSIF current-VMCS pointer is not valid
THEN VMfaillnvalid;
ELSIF register destination operand does not correspond to any VMCS field
THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);
ELSIF VMCS field indexed by register destination operand is read-only)
THEN VMfailValid(VMWRITE to read-only VMCS component);
ELSE
VVMCS field indexed by register destination operand « SRC;
VMsucceed;

5-30 Vol.2B VMWRITE—Write Field to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE

Fl;

Flags Affected
See the operation section and Section 5.2.

Use of Prefixes

LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Segment overrides Treated normally

Operand size Causes #UD

Address size Treated normally

REX Register extensions treated normally; operand-size overrides
ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not O.

If a memory source operand effective address is outside the CS,
DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code

segment.
#PF(fault-code) If a page fault occurs in accessing a memory source operand.
#SS(0) If a memory source operand effective address is outside the SS

segment limit.
If the SS register contains an unusable segment.
#UD If not in VMX operation.

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX
operation and the VMWRITE instruction is not recognized
outside VMX operation.

Virtual-8086 Mode Exceptions

#UD The VMWRITE instruction is not recognized in virtual-8086
mode.

Compatibility Mode Exceptions

#UD The VMWRITE instruction is not recognized in compatibility
mode.

VMWRITE—Write Field to Virtual-Machine Control Structure Vol.2B 5-31

VMX INSTRUCTION REFERENCE

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not O.

If the memory source operand is in the CS, DS, ES, FS, or GS
segments and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing a memory source operand.

#SS(0) If the memory source operand is in the SS segment and the
memory address is in a hon-canonical form.

#UD If not in VMX operation.

5-32 Vol.2B VMWRITE—Write Field to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE

VMXOFF—Leave VMX Operation

Opcode Instruction Description
OF 01 C4 VMXOFF Leaves VMX operation.
Description

Takes the logical processor out of VMX operation, unblocks INIT signals, conditionally
re-enables A20M, and clears any address-range monitoring.*

Operation

IF (not in VMX operation) or (RFLAGS.VM = 1) or (IA32_EFER.LMA =1 and CS.L = 0)
THEN #UD;
ELSIF in VMX non-root operation
THEN VMexit;
ELSIFCPL> 0
THEN #GP(0);
ELSIF dual-monitor treatment of SMis and SMM is active
THEN VMfail(VMXOFF under dual-monitor treatment of SMIs and SMM);
ELSE
leave VMX operation;
unblock INIT;
IF outside SMX operation2
THEN unblock and enable A20M;
clear address-range monitoring;

VVMsucceed;
Fl;

Fl;

Flags Affected

See the operation section and Section 5.2.

Use of Prefixes
LOCK Causes #UD
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

1. See the information on MONITOR/MWAIT in Chapter 7, “Multiple-Processor Management,” of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

2. Alogical processor is outside SMX operation if GETSEC[SENTER] has not been executed or if
GETSEC[SEXIT] was executed after the last execution of GETSEC[SENTER]. See Chapter 6, “Safer
Mode Extensions Reference.”

VMXOFF—Leave VMX Operation Vol.2B 5-33

VMX INSTRUCTION REFERENCE

Segment overrides Ignored

Operand size Causes #UD
Address size Ignored
REX Ignored

Protected Mode Exceptions
#GP(0) If executed in VMX root operation with CPL > 0.
#UD If executed outside VMX operation.

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX
operation and the VMXOFF instruction is not recognized outside
VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMXOFF instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMXOFF instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If executed in VMX root operation with CPL > 0.
#UD If executed outside VMX operation.

5-34 Vol. 2B VMXOFF—Leave VMX Operation

VMX INSTRUCTION REFERENCE

VMXON—Enter VMX Operation

Opcode Instruction Description
F30FC7/6 VMXON m64 Enter VMX root operation.
Description

Puts the logical processor in VMX operation with no current VMCS, blocks INIT
signals, disables A20M, and clears any address-range monitoring established by the
MONITOR instruction.®

The operand of this instruction is a 4KB-aligned physical address (the VMXON
pointer) that references the VMXON region, which the logical processor may use to
support VMX operation. This operand is always 64 bits and is always in memory.

Operation

IF (register operand) or (CR4.VMXE = 0) or (CRO.PE = 0) or (RFLAGS.VM = 1) or
(IA32_EFERLMA =1 and CS.L =0)
THEN #UD;
ELSIF not in VMX operation
THEN
IF (CPL > 0) or (in A20M mode) or
(the values of CRO and CR4 are not supported in VMX operationz) or
(bit O (lock bit) of IA32_FEATURE_CONTROL MSR is clear) or
(in SMX operation? and bit 1 of IA32_FEATURE_CONTROL MSR is clear) or
(outside SMX operation and bit 2 of IA32_FEATURE_CONTROL MSR is clear)
THEN #GP(0);
ELSE
addr « contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned or
(processor supports Intel 64 architecture and
addr sets any bits beyond the VMX physical-address width) or
(processor does not support Intel 64 architecture and
addr sets any bits in the range 63:32)

1. See the information on MONITOR/MWAIT in Chapter 7, “Multiple-Processor Management,” of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

2. See Section 19.8 of the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume
3B.

3. Alogical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER]
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference.”

VMXON—Enter VMX Operation Vol.2B 5-35

VMX INSTRUCTION REFERENCE

THEN VMfaillnvalid;
ELSE
rev « 32 bits located at physical address addr;
IF rev = VMCS revision identifier supported by processor
THEN VMfaillnvalid;
ELSE
current-VMCS pointer « FFFFFFFF_FFFFFFFFH;
enter VMX operation;
block INIT signals;

block and disable A20M;
clear address-range monitoring;
VMsucceed;
Fl;
Fl;
Fl;
ELSIF in VMX non-root operation
THEN VMexit;
ELSIFCPL> 0
THEN #GP(0);
ELSE VMfail("VMXON executed in VMX root operation”);
Fl;
Flags Affected

See the operation section and Section 5.2.

Use of Prefixes

LOCK Causes #UD

REP* Ignored (includes REPNE/REPNZ and REP/REPE/REPZ)

Segment overrides Treated normally

Operand size Ignored

Address size Treated normally

REX Register extensions treated normally; operand-size overrides
ignored

Protected Mode Exceptions

#GP(0) If executed outside VMX operation with CPL>0 or with invalid
CRO or CR4 fixed bits.

If executed in A20M mode.

If the memory source operand effective address is outside the
CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

5-36 Vol.2B VMXON—Enter VMX Operation

VMX INSTRUCTION REFERENCE

If the source operand is located in an execute-only code

segment.
#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the memory source operand effective address is outside the

SS segment limit.

If the SS register contains an unusable segment.
#UD If operand is a register.

If executed with CR4.VMXE = 0.

Real-Address Mode Exceptions
#UD The VMXON instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The VMXON instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMXON instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions

#GP(0) If executed outside VMX operation with CPL > 0 or with invalid
CRO or CR4 fixed bits.

If executed in A20M mode.

If the source operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.

#SS(0) If the source operand is in the SS segment and the memory
address is in a non-canonical form.

#UD If operand is a register.

If executed with CR4.VMXE = 0.

VMXON—Enter VMX Operation Vol.2B 5-37

VMX INSTRUCTION REFERENCE

5.4 VM INSTRUCTION ERROR NUMBERS

For certain error conditions, the VM-instruction error field is loaded with an error
number to indicate the source of the error.

5.4.1 Error Numbers

Table 5-1 lists VM-instruction error numbers.

Table 5-1. VM-Instruction Error Numbers
Error Number | Description

VMCALL executed in VMX root operation

VMCLEAR with invalid physical address

VMCLEAR with VMXON pointer

VMLAUNCH with non-clear VMCS

VMRESUME with a corrupted VMCS (indicates corruption of the current VMCS)

VM entry with invalid control field(s)'*

2
3
4
5 VMRESUME with non-launched VMCS
6
7
8

VM entry with invalid host-state field(s)'

9 VMPTRLD with invalid physical address

10 VMPTRLD with VMXON pointer

11 VMPTRLD with incorrect VMCS revision identifier

12 VMREAD/VMWRITE from/to unsupported VMCS component

13 VMWRITE to read-only VMCS component

15 VMXON executed in VMX root operation

16 VM entry with invalid executive-VMCS pointer!

17 VM entry with non-launched executive VMCS!

18 VM entry with executive-VMCS pointer not VMXON pointer (when attempting to
deactivate the dual-monitor treatment of SMis and SMM)1

19 VMCALL with non-clear VMCS (when attempting to activate the dual-monitor
treatment of SMIs and SMM)

20 VMCALL with invalid VM-exit control fields

22 VMCALL with incorrect MSEG revision identifier (when attempting to activate the
dual-monitor treatment of SMis and SMM)

23 VMXOFF under dual-monitor treatment of SMIs and SMM

24 VMCALL with invalid SMM-monitor features (when attempting to activate the dual-

monitor treatment of SMIs and SMM)

5-38 Vol.2B VMXON—Enter VMX Operation

VMX INSTRUCTION REFERENCE

Table 5-1. VM-Instruction Error Numbers (Contd.)

Error Number |Description

25 VM entry with invalid VM-execution control fields in executive VMCS (when
attempting to return from SMM)'-2

26 VM entry with events blocked by MOV SS.

28 Invalid operand to INVEPT/INVVPID.

NOTES:

1. VM-entry checks on control fields and host-state fields may be performed in any order. Thus, an
indication by error number of one cause does not imply that there are not also other errors. Differ-
ent processors may give different error numbers for the same VMCS.

2. Error number 7 is not used for VM entries that return from SMM that fail due to invalid
VM-execution control fields in the executive VMCS. Error number 25 is used for these cases.

VMXON—Enter VMX Operation Vol.2B 5-39

VMX INSTRUCTION REFERENCE

5-40 Vol.2B VMXON—Enter VMX Operation

CHAPTER 6
SAFER MODE EXTENSIONS REFERENCE

6.1 OVERVIEW

This chapter describes the Safer Mode Extensions (SMX) for the Intel 64 and 1A-32
architectures. Safer Mode Extensions (SMX) provide a programming interface for
system software to establish a measured environment within the platform to support
trust decisions by end users. The measured environment includes:

® Measured launch of a system executive, referred to as a Measured Launched
Environment (MLE)L. The system executive may be based on a Virtual Machine
Monitor (VMM), a measured VMM is referred to as MVMM?Z.

® Mechanisms to ensure the above measurement is protected and stored in a
secure location in the platform.

® Protection mechanisms that allow the VMM to control attempts to modify the
VMM

The measurement and protection mechanisms used by a measured environment are
supported by the capabilities of an Intel® Trusted Execution Technology (Intel®
TXT) platform:

® The SMX are the processor’s programming interface in an Intel TXT platform;

® The chipset in an Intel TXT platform provides enforcement of the protection
mechanisms;

® Trusted Platform Module (TPM) 1.2 in the platform provides platform configu-
ration registers (PCRs) to store software measurement values.

6.2 SMX FUNCTIONALITY

SMX functionality is provided in an Intel 64 processor through the GETSEC instruc-
tion via leaf functions. The GETSEC instruction supports multiple leaf functions. Leaf
functions are selected by the value in EAX at the time GETSEC is executed. Each
GETSEC leaf function is documented separately in the reference pages with a unique
mnemonic (even though these mnemonics share the same opcode, OF 37).

1. See Intel® Trusted Execution Technology Measured Launched Environment Programming Guide.

2. An MVMM is sometimes referred to as a measured launched environment (MLE). See Intel®
Trusted Execution Technology Measured Launched Environment Programming Guide

Vol.2B 6-1

SAFER MODE EXTENSIONS REFERENCE

6.2.1 Detecting and Enabling SMX

Software can detect support for SMX operation using the CPUID instruction. If soft-
ware executes CPUID with 1 in EAX, a value of 1 in bit 6 of ECX indicates support for
SMX operation (GETSEC is available), see CPUID instruction for the layout of feature
flags of reported by CPUID.01H:ECX.

System software enables SMX operation by setting CR4.SMXE[Bit 14] = 1 before
attempting to execute GETSEC. Otherwise, execution of GETSEC results in the
processor signaling an invalid opcode exception (#UD).

If the CPUID SMX feature flag is clear (CPUID.01H.ECX[Bit 6] = 0), attempting to set
CR4.SMXE[Bit 14] results in a general protection exception.

The IA32_FEATURE_CONTROL MSR (at address 03AH) provides feature control bits
that configure operation of VMX and SMX. These bits are documented in Table 6-1.

Table 6-1. Layout of IA32_FEATURE_CONTROL

Bit Position Description

0 Lock bit (O = unlocked, 1 = locked). When set to ‘1" further writes to this MSR
are blocked.

1 Enable VMX in SMX operation

2 Enable VMX outside SMX operation

7:3 Reserved

14:8 SENTER Local Function Enables: When set, each bit in the field represents an
enable control for a corresponding SENTER function.

15 SENTER Global Enable: Must be set to ‘1’ to enable operation of
GETSEC[SENTER]

63:16 Reserved

® BitOis alock bit. If the lock bit is clear, an attempt to execute VMXON will cause
a general-protection exception. Attempting to execute GETSEC[SENTER] when
the lock bit is clear will also cause a general-protection exception. If the lock bit
is set, WRMSR to the IA32_FEATURE_CONTROL MSR will cause a general-
protection exception. Once the lock bit is set, the MSR cannot be modified until a
power-on reset. System BIOS can use this bit to provide a setup option for BIOS
to disable support for VMX, SMX or both VMX and SMX.

® Bit 1 enables VMX in SMX operation (between executing the SENTER and SEXIT
leaves of GETSEC). If this bit is clear, an attempt to execute VMXON in SMX will
cause a general-protection exception if executed in SMX operation. Attempts to
set this bit on logical processors that do not support both VMX operation (Chapter
6, “Safer Mode Extensions Reference”) and SMX operation cause general-
protection exceptions.

6-2 Vol.2B

SAFER MODE EXTENSIONS REFERENCE

® Bit 2 enables VMX outside SMX operation. If this bit is clear, an attempt to
execute VMXON will cause a general-protection exception if executed outside
SMX operation. Attempts to set this bit on logical processors that do not support
VMX operation cause general-protection exceptions.

® Bits 8 through 14 specify enabled functionality of the SENTER leaf function. Each
bit in the field represents an enable control for a corresponding SENTER function.
Only enabled SENTER leaf functionality can be used when executing SENTER.

® Bits 15 specify global enable of all SENTER functionalities.

6.2.2 SMX Instruction Summary

System software must first query for available GETSEC leaf functions by executing
GETSEC[CAPABILITIES]. The CAPABILITIES leaf function returns a bit map of avail-
able GETSEC leaves. An attempt to execute an unsupported leaf index results in an
undefined opcode (#UD) exception.

6.2.2.1 GETSEC[CAPABILITIES]

The SMX functionality provides an architectural interface for newer processor gener-
ations to extend SMX capabilities. Specifically, the GETSEC instruction provides a
capability leaf function for system software to discover the available GETSEC leaf
functions that are supported in a processor. Table 6-2 lists the currently available
GETSEC leaf functions.

Table 6-2. GETSEC Leaf Functions

Index (EAX) | Leaf function Description

0 CAPABILITIES Returns the available leaf functions of the GETSEC
instruction

1 Undefined Reserved

2 ENTERACCS Enter

3 EXITAC Exit

4 SENTER Launch an MLE

5 SEXIT Exit the MLE

6 PARAMETERS Return SMX related parameter information

7 SMCTRL SMX mode control

8 WAKEUP Wake up sleeping processors in safer mode

9-(4G-1) Undefined Reserved

Vol.2B 6-3

SAFER MODE EXTENSIONS REFERENCE

6.2.2.2 GETSEC[ENTERACCS]

The GETSEC[ENTERACCS] leaf enables authenticated code execution mode. The
ENTERACCS leaf function performs an authenticated code module load using the
chipset public key as the signature verification. ENTERACCS requires the existence of
an Intel® Trusted Execution Technology capable chipset since it unlocks the chipset
private configuration register space after successful authentication of the loaded
module. The physical base address and size of the authenticated code module are
specified as input register values in EBX and ECX, respectively.

While in the authenticated code execution mode, certain processor state properties
change. For this reason, the time in which the processor operates in authenticated
code execution mode should be limited to minimize impact on external system
events.

Upon entry into , the previous paging context is disabled (since the authenticated
code module image is specified with physical addresses and can no longer rely upon
external memory-based page-table structures).

Prior to executing the GETSEC[ENTERACCS] leaf, system software must ensure the
logical processor issuing GETSEC[ENTERACCS] is the boot-strap processor (BSP), as
indicated by 1A32_APIC_BASE.BSP = 1. System software must ensure other logical
processors are in a suitable idle state and not marked as BSP.

The GETSEC[ENTERACCS] leaf may be used by different agents to load different
authenticated code modules to perform functions related to different aspects of a
measured environment, for example system software and Intel® TXT enabled BIOS
may use more than one authenticated code modules.

6.2.2.3 GETSEC[EXITAC]

GETSEC[EXITAC] takes the processor out of . When this instruction leaf is executed,
the contents of the authenticated code execution area are scrubbed and control is
transferred to the non-authenticated context defined by a near pointer passed with
the GETSEC[EXITAC] instruction.

The authenticated code execution area is no longer accessible after completion of
GETSEC[EXITAC]. RBX (or EBX) holds the address of the near absolute indirect
target to be taken.

6.2.2.4 GETSEC[SENTER]

The GETSEC[SENTER] leaf function is used by the initiating logical processor (ILP) to
launch an MLE. GETSEC[SENTER] can be considered a superset of the ENTERACCS
leaf, because it enters as part of the measured environment launch.

Measured environment startup consists of the following steps:

® the ILP rendezvous the responding logical processors (RLPs) in the platform into
a controlled state (At the completion of this handshake, all the RLPs except for

6-4 Vol.2B

SAFER MODE EXTENSIONS REFERENCE

the ILP initiating the measured environment launch are placed in a newly defined
SENTER sleep state).

® Load and authenticate the authenticated code module required by the measured
environment, and enter authenticated code execution mode.

® Verify and lock certain system configuration parameters.
® Measure the dynamic root of trust and store into the PCRs in TPM.
® Transfer control to the MLE with interrupts disabled.

Prior to executing the GETSEC[SENTER] leaf, system software must ensure the plat-
form’s TPM is ready for access and the ILP is the boot-strap processor (BSP), as indi-
cated by IA32_APIC_BASE.BSP. System software must ensure other logical
processors (RLPs) are in a suitable idle state and not marked as BSP.

System software launching a measurement environment is responsible for providing
a proper authenticate code module address when executing GETSEC[SENTER]. The
AC module responsible for the launch of a measured environment and loaded by
GETSEC[SENTER] is referred to as SINIT. See Intel® Trusted Execution Technology
Measured Launched Environment Programming Guide for additional information on
system software requirements prior to executing GETSEC[SENTER].

6.2.2.5 GETSEC[SEXIT]

System software exits the measured environment by executing the instruction
GETSEC[SEXIT] on the ILP. This instruction rendezvous the responding logical
processors in the platform for exiting from the measured environment. External
events (if left masked) are unmasked and Intel® TXT-capable chipset’s private
configuration space is re-locked.

6.2.2.6 GETSEC[PARAMETERS]

The GETSEC[PARAMETERS] leaf function is used to report attributes, options and
limitations of SMX operation. Software uses this leaf to identify operating limits or
additional options.

The information reported by GETSEC[PARAMETERS] may require executing the leaf
multiple times using EBX as an index. If the GETSEC[PARAMETERS] instruction leaf
or if a specific parameter field is not available, then SMX operation should be inter-
preted to use the default limits of respective GETSEC leaves or parameter fields
defined in the GETSEC[PARAMETERS] leaf.

6.2.2.7 GETSEC[SMCTRL]

The GETSEC[SMCTRL] leaf function is used for providing additional control over
specific conditions associated with the SMX architecture. An input register is
supported for selecting the control operation to be performed. See the specific leaf
description for details on the type of control provided.

Vol.2B 6-5

SAFER MODE EXTENSIONS REFERENCE

6.2.2.8 GETSEC[WAKEUP]

Responding logical processors (RLPs) are placed in the SENTER sleep state after the
initiating logical processor executes GETSEC[SENTER]. The ILP can wake up RLPs to
join the measured environment by using GETSEC[WAKEUP].When the RLPs in
SENTER sleep state wake up, these logical processors begin execution at the entry
point defined in a data structure held in system memory (pointed to by an chipset
register LT.MLE.JOIN) in TXT configuration space.

6.2.3 Measured Environment and SMX

This section gives a simplified view of a representative life cycle of a measured envi-
ronment that is launched by a system executive using SMX leaf functions. Intel®
Trusted Execution Technology Measured Launched Environment Programming Guide
provides more detailed examples of using SMX and chipset resources (including
chipset registers, Trusted Platform Module) to launch an MVMM.

The life cycle starts with the system executive (an OS, an OS loader, and so forth)
loading the MLE and SINIT AC module into available system memory. The system
executive must validate and parpare the platform for the measured launch. When the
platform is properly configured, the system executive executes GETSEC[SENTER] on
the initiating logical processor (ILP) to rendezvous the responding logical processors
into an SENTER sleep state, the ILP then enters into using the SINIT AC module. In
a multi-threaded or multi-processing environment, the system executive must
ensure that other logical processors are already in an idle loop, or asleep (such as
after executing HLT) before executing GETSEC[SENTER].

After the GETSEC[SENTER] rendezvous handshake is performed between all logical
processors in the platform, the ILP loads the chipset authenticated code module
(SINIT) and performs an authentication check. If the check passes, the processor
hashes the SINIT AC module and stores the result into TPM PCR 17. It then switches
execution context to the SINIT AC module. The SINIT AC module will perform a
number of platfom operations, including: verifying the system configuration,
protecting the system memory used by the MLE from 1/0 devices capable of DMA,
producing a hash of the MLE, storing the hash value in TPM PCR 18, and various other
operations. When SINIT completes execution, it executes the GETSEC[EXITAC]
instruction and transfers control the MLE at the designated entry point.

Upon receiving control from the SINIT AC module, the MLE must establish its protec-
tion and isolation controls before enabling DMA and interrupts and transferring
control to other software modules. It must also wakeup the RLPs from their SENTER
sleep state using the GETSEC[WAKEUP] instruction and bring them into its protection
and isolation environment.

While executing in a measured environment, the MVMM can access the Trusted Plat-
form Module (TPM) in locality 2. The MVMM has complete access to all TPM
commands and may use the TPM to report current measurement values or use the
measurement values to protect information such that only when the platform config-

6-6 Vol.2B

SAFER MODE EXTENSIONS REFERENCE

uration registers (PCRs) contain the same value is the information released from the
TPM. This protection mechanism is known as sealing.

A measured environment shutdown is ultimately completed by executing
GETSEC[SEXIT]. Prior to this step system software is responsible for scrubbing
sensitive information left in the processor caches, system memory.

6.3 GETSEC LEAF FUNCTIONS

This section provides detailed descriptions of each leaf function of the GETSEC
instruction. GETSEC is available only if CPUID.01H:ECX[Bit 6] = 1. This indicates the
availability of SMX and the GETSEC instruction. Before GETSEC can be executed,
SMX must be enabled by setting CR4.SMXE[Bit 14] = 1.

A GETSEC leaf can only be used if it is shown to be available as reported by the
GETSEC[CAPABILITIES] function. Attempts to access a GETSEC leaf index not
supported by the processor, or if CR4.SMXE is O, results in the signaling of an unde-
fined opcode exception.

All GETSEC leaf functions are available in protected mode, including the compatibility
sub-mode of 1A-32e mode and the 64-bit sub-mode of 1A-32e mode. Unless other-
wise noted, the behavior of all GETSEC functions and interactions related to the
measured environment are independent of 1A-32e mode. This also applies to the
interpretation of register widths® passed as input parameters to GETSEC functions
and to register results returned as output parameters.

The GETSEC functions ENTERACCS, SENTER, SEXIT, and WAKEUP require a Intel®
TXT capable-chipset to be present in the platform. The GETSEC[CAPABILITIES]
returned bit vector in position O indicates an Intel® TXT-capable chipset has been
sampled present2 by the processor.

The processor's operating mode also affects the execution of the following GETSEC
leaf functions: SMCTRL, ENTERACCS, EXITAC, SENTER, SEXIT, and WAKEUP. These
functions are only allowed in protected mode at CPL = 0. They are not allowed while
in SMM in order to prevent potential intra-mode conflicts. Further execution qualifica-
tions exist to prevent potential architectural conflicts (for example: nesting of the
measured environment or authenticated code execution mode). See the definitions
of the GETSEC leaf functions for specific requirements.

1. This chapter uses the 64-bit notation RAX, RIP, RSP, RFLAGS, etc. for processor registers
because processors that support SMX also support Intel 64 Architecture. The MVMM can be
launched in IA-32e mode or outside IA-32e mode. The 64-bit notation of processor registers also
refer to its 32-bit forms if SMX is used in 32-bit environment. In some places, notation such as
EAX is used to refer specifically to lower 32 bits of the indicated register

2. Sampled present means that the processor sent a message to the chipset and the chipset
responded that it (a) knows about the message and (b) is capable of executing SENTER. This
means that the chipset CAN support Intel® TXT, and is configured and WILLING to support it.

Vol.2B 6-7

SAFER MODE EXTENSIONS REFERENCE

For the purpose of performance monitor counting, the execution of GETSEC functions
is counted as a single instruction with respect to retired instructions. The response by
a responding logical processor (RLP) to messages associated with GETSEC[SENTER]
or GTSEC[SEXIT] is transparent to the retired instruction count on the ILP.

6-8 Vol.2B

SAFER MODE EXTENSIONS REFERENCE

GETSEC[CAPABILITIES] - Report the SMX Capabilities

Opcode Instruction Description

OF 37 GETSEC[CAPA Report the SMX capabilities.

(EAX =0) BILITIES] The capabilities index is input in EBX with the result returned in
EAX.

Description

The GETSEC[CAPABILITIES] function returns a bit vector of supported GETSEC leaf
functions. The CAPABILITIES leaf of GETSEC is selected with EAX set to O at entry.
EBX is used as the selector for returning the bit vector field in EAX. GETSEC[CAPABIL-
ITIES] may be executed at all privilege levels, but the CR4.SMXE bit must be set or an
undefined opcode exception (#UD) is returned.

With EBX = 0 upon execution of GETSEC[CAPABILITIES], EAX returns the a bit vector
representing status on the presence of a Intel® TXT-capable chipset and the first 30
available GETSEC leaf functions. The format of the returned bit vector is provided in

Table 6-3.

If bit O is set to 1, then an Intel® TXT-capable chipset has been sampled present by
the processor. If bits in the range of 1-30 are set, then the corresponding GETSEC leaf
function is available. If the bit value at a given bit index is 0, then the GETSEC leaf
function corresponding to that index is unsupported and attempted execution results
in a #UD.

Bit 31 of EAX indicates if further leaf indexes are supported. If the Extended Leafs bit
31 is set, then additional leaf functions are accessed by repeating GETSEC[CAPABILI-
TIES] with EBX incremented by one. When the most significant bit of EAX is not set,
then additional GETSEC leaf functions are not supported; indexing EBX to a higher
value results in EAX returning zero.

Table 6-3. Getsec Capability Result Encoding (EBX = 0)

Field Bit position Description

Chipset Present 0 Intel® TXT-capable chipset is present
Undefined 1 Reserved

ENTERACCS 2 GETSEC[ENTERACCS] is available
EXITAC 3 GETSEC[EXITAC] is available

SE