intel.

Intel® 64 and IA-32
Architectures
Software Developer’'s Manual

VVolume 2B:
Instruction Set Reference, N-Z

NOTE: The Intel 64 and I|A-32 Architectures Software
Developer’s Manual consists of five volumes: Basic Architecture,
Order Number 253665; Instruction Set Reference A-M, Order
Number 253666; Instruction Set Reference N-Z, Order Number
253667; System Programming Guide, Part 1, Order Number
253668; System Programming Guide, Part 2, Order Number
253669. Refer to all five volumes when evaluating your design
needs.

Order Number: 253667-034US
March 2010

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR IN-
TENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUA-
TION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or "unde-
fined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. The information here is subject to change without no-
tice. Do not finalize a design with this information.

The Intel® 64 architecture processors may contain design defects or errors known as errata. Current char-
acterized errata are available on request.

Intel® Hyper-Threading Technology re%uires a computer system with an Intel® processor supporting Hyper-
Threading Technology and an Intel~ HT Technology enabled chipset, BIOS and operating system.
Performance will vary depending on the specific hardware and software you use. For more information, see
http://www.intel.com/technology/hyperthread/index.ntm; including details on which processors support Intel HT
Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will_vary depending on hardware and software configurations. Intel® Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, oper-
ating system, device drivers and applications enabled for Intel™ 64 architecture. Processors will not operate
(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary de-
pending on your hardware and software configurations. Consult with your system vendor for more infor-
mation.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability
and a supporting operating system. Check with your PC manufacturer on whether your system delivers Ex-
ecute Disable Bit functionality.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo,
Intel Core 2 Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are trade-
marks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other coun-
tries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725, or by visiting Intel’s website at http://www.intel.com

Copyright © 1997-2010 Intel Corporation

i Vol.3B

CHAPTER 4
INSTRUCTION SET REFERENCE, N-Z

4.1 IMM8 CONTROL BYTE OPERATION FOR PCMPESTRI /
PCMPESTRM / PCMPISTRI / PCMPISTRM

The notations introduced in this section are referenced in the reference pages of
PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM. The operation of the immediate
control byte is common to these four string text processing instructions of SSE4.2.
This section describes the common operations.

4.1.1 General Description

The operation of PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM is defined by
the combination of the respective opcode and the interpretation of an immediate
control byte that is part of the instruction encoding.

The opcode controls the relationship of input bytes/words to each other (determines
whether the inputs terminated strings or whether lengths are expressed explicitly) as
well as the desired output (index or mask).

The Imma8 Control Byte for PCMPESTRM/PCMPESTRI/PCMPISTRM/PCMPISTRI
encodes a significant amount of programmable control over the functionality of those
instructions. Some functionality is unique to each instruction while some is common
across some or all of the four instructions. This section describes functionality which
is common across the four instructions.

The arithmetic flags (ZF, CF, SF, OF, AF, PF) are set as a result of these instructions.

However, the meanings of the flags have been overloaded from their typical mean-

ings in order to provide additional information regarding the relationships of the two
inputs.

PCMPxSTRXx instructions perform arithmetic comparisons between all possible pairs
of bytes or words, one from each packed input source operand. The boolean results
of those comparisons are then aggregated in order to produce meaningful results.
The Imm8 Control Byte is used to affect the interpretation of individual input
elements as well as control the arithmetic comparisons used and the specific aggre-
gation scheme.

Specifically, the Imm8 Control Byte consists of bit fields that control the following
attributes:

® Source data format — Byte/word data element granularity, signed or unsigned
elements

Vol.2B 4-1

INSTRUCTION SET REFERENCE, N-Z

® Aggregation operation — Encodes the mode of per-element comparison
operation and the aggregation of per-element comparisons into an intermediate
result

® Polarity — Specifies intermediate processing to be performed on the interme-
diate result

® Output selection — Specifies final operation to produce the output (depending
on index or mask) from the intermediate result

4.1.2 Source Data Format
Table 4-1. Source Data Format

Imm38[1:

0] Meaning Description

00b Unsigned bytes | Both 128-bit sources are treated as packed, unsigned
bytes.

01b Unsigned words | Both 128-bit sources are treated as packed, unsigned
words.

10b Signed bytes Both 128-bit sources are treated as packed, signed bytes.

11b Signed words Both 128-bit sources are treated as packed, signed words.

If the Imm8 Control Byte has bit[0] cleared, each source contains 16 packed bytes.
If the bit is set each source contains 8 packed words. If the Imm8 Control Byte has
bit[1] cleared, each input contains unsigned data. If the bit is set each source
contains signed data.

4-2 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

4.1.3 Aggregation Operation
Table 4-2. Aggregation Operation

Imm8[3:2

1 Mode Comparison

00b Equal any The arithmetic comparison is “equal.”

01b Ranges Arithmetic comparison is “greater than or equal” between
even indexed bytes/words of reg and each byte/word of
reg/mem.
Arithmetic comparison is “less than or equal” between odd
indexed bytes/words of reg and each byte/word of reg/mem.
(reg/mem[m] >= reg[n] for n = even, reg/mem[m] <= reg[n]
for n = odd)

10b Equal each The arithmetic comparison is “equal.”

11b Equal ordered | The arithmetic comparison is “equal.”

All 256 (64) possible comparisons are always performed. The individual Boolean
results of those comparisons are referred by “BoolRes[Reg/Mem element index, Reg
element index].” Comparisons evaluating to “True” are represented with a 1, False
with a O (positive logic). The initial results are then aggregated into a 16-bit (8-bit)
intermediate result (IntRes1) using one of the modes described in the table below, as
determined by Imm8 Control Byte bit[3:2].

See Section 4.1.6 for a description of the overridelfDatalnvalid() function used in
Table 4-3.

Table 4-3. Aggregation Operation

Mode Pseudocode
Equal any UpperBound =imm8[0]? 7: 15;
(find characters from a set) IntRes1 = 0;

For j = 0 to UpperBound, j++
For i = 0 to UpperBound, i++
IntRes1[j] OR= overridelfDatalnvalid(BoolRes][j,i])

Vol.2B 4-3

INSTRUCTION SET REFERENCE, N-Z

Table 4-3. Aggregation Operation (Contd.)

Ranges UpperBound =imm8[0]? 7:15;
(find characters from ranges) IntRes1 = 0;

For j = 0 to UpperBound, j++
For i =0 to UpperBound, i+=2

IntRes1[j] OR= (overridelfDatalnvalid(BoolRes[j,i]) AND
overridelfDatalnvalid(BoolRes[j,i+1]))

Equal each UpperBound =imm8[0]7 7: 15;

(string compare) IntRes1 = 0;

For i = 0 to UpperBound, i++

IntRes1[i] = overridelfDatalnvalid(BoolRes[i,i])

Equal ordered UpperBound =imm8[0]? 7 :15;

(substring search) IntRes1 =imm8[0] ? OxFF : OXFFFF

For j = 0 to UpperBound, j++

For i = 0 to UpperBound-j, k=j to UpperBound, k++, i++
IntRes1[j] AND= overridelfDatalnvalid(BoolRes[k,i])

4.1.4 Polarity

IntRes1 may then be further modified by performing a 1's compliment, according to
the value of the Imm8 Control Byte bit[4]. Optionally, a mask may be used such that
only those IntRes1 bits which correspond to “valid” reg/mem input elements are
complimented (note that the definition of a valid input element is dependant on the
specific opcode and is defined in each opcode’s description). The result of the
possible negation is referred to as IntRes2.

Table 4-4. Polarity

Imm8[5:4] Operation Description

00b Positive Polarity (+) IntRes2 = IntRes1

01b Negative Polarity (-) IntRes2 = -1 XOR IntRes1

10b Masked (+) IntRes2 = IntRes1

11b Masked (-) IntRes2[i] = IntRes1[i] if reg/mem[i] invalid, else =
~IntRes1[i]

4-4 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

4.1.5 Output Selection
Table 4-5. Ouput Selection

Imm8[6 | Operation Description

1

Ob Least significant index | The index returned to ECX is of the least significant set bit in
IntRes2.

1b Most significant index | The index returned to ECX is of the most significant set bit in
IntRes2.

For PCMPESTRI/PCMPISTRI, the Imm8 Control Byte bit[6] is used to determine if the
index is of the least significant or most significant bit of IntRes2.

Table 4-6. Output Selection

Imm8[6] | Operation Description

Ob Bit mask IntRes2 is returned as the mask to the least significant bits of
XMMO with zero extension to 128 bits.

1b Byte/word mask IntRes?2 is expanded into a byte/word mask (based on imm8[1])
and placed in XMMO. The expansion is performed by replicating
each bit into all of the bits of the byte/word of the same index.

Specifically for PCMPESTRM/PCMPISTRM, the Imm8 Control Byte bit[6] is used to
determine if the mask is a 16 (8) bit mask or a 128 bit byte/word mask.

4.1.6 Valid/Invalid Override of Comparisons

PCMPxSTRXx instructions allow for the possibility that an end-of-string (EOS) situation
may occur within the 128-bit packed data value (see the instruction descriptions
below for details). Any data elements on either source that are determined to be past
the EOS are considered to be invalid, and the treatment of invalid data within a
comparison pair varies depending on the aggregation function being performed.

In general, the individual comparison result for each element pair BoolRes[i.j] can be
forced true or false if one or more elements in the pair are invalid. See Table 4-7.

Table 4-7. Comparison Result for Each Element Pair BoolRes[i.j]

xmm2/ Imm8[3:2] = | Imm8[3:2]= | Imm8[3:2] =
xmm1 m128 00b 01b 10b Imm8[3:2]=11b
byte/ word | byte/word (equal any) (ranges) (equal each) (equal ordered)
Invalid Invalid Force false Force false | Force true Force true

Vol.2B 4-5

INSTRUCTION SET REFERENCE, N-Z

Table 4-7. Comparison Result for Each Element Pair BoolRes[i.j]

Invalid Valid Force false Force false | Force false Force true
Valid Invalid Force false Force false | Force false Force false
Valid Valid Do not force | Do not force | Do not force Do not force
4.1.7 Summary of Im8 Control byte
Table 4-8. Summary of Inm8 Control Byte
Imm8 Description
------- Ob 128-bit sources treated as 16 packed bytes.
------- 1b 128-bit sources treated as 8 packed words.
------ 0-b Packed bytes/words are unsigned.
------ 1-b Packed bytes/words are signed.
----00--b Mode is equal any.
----01--b Mode is ranges.
----10--b Mode is equal each.
---11--b Mode is equal ordered.
---0----b IntRes1 is unmodified.
--1----b IntRes1 is negated (1's compliment).
--0-----b Negation of IntRes1 is for all 16 (8) bits.
------- b Negation of IntRes1 is masked by reg/mem validity.
-0------ b Index of the least significant, set, bit is used (regardless of corresponding
input element validity).
IntRes2 is returned in least significant bits of XMMO.
S b Index of the most significant, set, bit is used (regardless of corresponding
input element validity).
Each bit of IntRes2 is expanded to byte/word.
0------- b This bit currently has no defined effect, should be 0.
1-memen b This bit currently has no defined effect, should be 0.

4-6 Vol.2B

4.1.8

INSTRUCTION SET REFERENCE, N-Z

Diagram Comparison and Aggregation Process

String A (xmm1)

String B (xmm2/mem)

I=TTTTTTTT Y

|

: EAX/RAX Detx_ermine end -of-
] ! string and mark
|

|

[}

EDXRDX - invalid elements
1

PCMPESTR* only

A J

negation

Aggregation function

Optional boolean

A
imm8g[1:0] =
Compare all pairs of 00B: unsigned byte compares
. 01B: unsigned word compares
(A By 10B: signed byte compares
11B: signed word compares
BoolRes]i,j]
immg[3:2] =
00B: Equal any
01B: Ranges

10B: Equal each
11B: Equal ordered

IntRes1

immg[6:5] =

elements in String

x0B: don't negate IntResl

01B: negate all bits of IntReslL

11B: negate only bits of IntResl
corresponding to valid

B

0: index encodes least signifi
canttrue bit of IntRes 2

1: index encodes most signifi
canttrue bit of IntRes 2

Generate index

ECX(RCX)

Generate mask

imma|[6] =

0: Return zero-extended IntRes2

1: expand IntRe<2 to byte (word)
mask

PCMP*STRI only

PCMP*STRM only

Figure 4-1. Operation of PCMPSTRx and PCMPESTRX

4.2 INSTRUCTIONS (N-2)

Chapter 4 continues an alphabetical discussion of Intel® 64 and 1A-32 instructions
(N-Z). See also: Chapter 3, “Instruction Set Reference, A-M,” in the Intel® 64 and
I1A-32 Architectures Software Developer’s Manual, Volume 2A.

Vol.2B 4-7

INSTRUCTION SET REFERENCE, N-Z

NEG—Two’s Complement Negation

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode

F6/3 NEG /m8 A Valid Valid Two's complement negate
r/m8.

REX +F6 /3 NEG r/m8* A Valid N.E. Two's complement negate
r/m8.

F7 /3 NEG r/m16 A Valid Valid Two's complement negate
r/m16.

F7 /3 NEG r/m32 A Valid Valid Two's complement negate
r/m32.

REXW +F7 /3 NEG r/m64 A Valid N.E. Two's complement negate
r/mé64.

NOTES:

* |n 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:r/m (r, w) NA NA NA
Description

Replaces the value of operand (the destination operand) with its two's complement.
(This operation is equivalent to subtracting the operand from 0.) The destination
operand is located in a general-purpose register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

IFDEST=0
THEN CF «- O;
ELSE CF «1;
Fl;
DEST « [- (DEST)]

4-8 Vol.2B

Flags Affected

INSTRUCTION SET REFERENCE, N-Z

The CF flag set to O if the source operand is O; otherwise it is set to 1. The OF, SF, ZF,
AF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#AC(0)

#UD

If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP

#SS

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

Vol.2B 4-9

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

4-10 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

NOP—No Operation

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode

90 NOP A Valid Valid One byte no-operation
instruction.

OF 1F /0 NOP r/m16 B Valid Valid Multi-byte no-operation
instruction.

OF 1F /0 NOP r/m32 B Valid Valid Multi-byte no-operation
instruction.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A NA NA NA NA
B ModRM:r/m (r) NA NA NA
Description

This instruction performs no operation. It is a one-byte or multi-byte NOP that takes
up space in the instruction stream but does not impact machine context, except for
the EIP register.

The multi-byte form of NOP is available on processors with model encoding:
¢ CPUID.0O1H.EAX[Bytes 11:8] = 0110B or 1111B

The multi-byte NOP instruction does not alter the content of a register and will not
issue a memory operation. The instruction’s operation is the same in non-64-bit
modes and 64-bit mode.

Operation

The one-byte NOP instruction is an alias mnemonic for the XCHG (E)AX, (E)AX
instruction.

The multi-byte NOP instruction performs no operation on supported processors and
generates undefined opcode exception on processors that do not support the multi-
byte NOP instruction.

The memory operand form of the instruction allows software to create a byte
sequence of “no operation” as one instruction. For situations where multiple-byte
NOPs are needed, the recommended operations (32-bit mode and 64-bit mode) are:

Vol.2B 4-11

INSTRUCTION SET REFERENCE, N-Z

Table 4-9. Recommended Multi-Byte Sequence of NOP Instruction

Length Assembly Byte Sequence
2 bytes 66 NOP 66 90H
3 bytes NOP DWORD ptr [EAX] OF 1F OOH
4 bytes NOP DWORD ptr [EAX + O0H] OF 1F 40 OOH
5 bytes NOP DWORD ptr [EAX + EAX*1 + 00H] OF 1F 44 00 OOH
6 bytes 66 NOP DWORD ptr [EAX + EAX*1 + O0H] 66 OF 1F 44 00 OOH
7 bytes NOP DWORD ptr [EAX + 00000000H] OF 1F 80 00 00 00 OOH
8 bytes NOP DWORD ptr [EAX + EAX*1 + 00000000H] OF 1F 84 00 00 00 00 OOH
9 bytes 66 NOP DWORD ptr [EAX + EAX*T + 66 OF 1F 84 00 00 00 00
00000000H] OOH
Flags Affected
None.

Exceptions (All Operating Modes)

#UD

4-12 Vol.2B

If the LOCK prefix is used.

INSTRUCTION SET REFERENCE, N-Z

NOT—One’s Complement Negation

Opcode Instruction Op/ 64-Bit Compat/ Description

En Mode Leg Mode
F6 /2 NOT r/m8 A Valid Valid Reverse each bit of /m8.
REX +F6 /2 NOT r/m8* A Valid N.E. Reverse each bit of /m8.
F7 /2 NOT /m16 A Valid Valid Reverse each bit of /m16.
F7 12 NOT r/m32 A Valid Valid Reverse each bit of /m32.
REXW +F7 /2 NOT r/m64 A Valid N.E. Reverse each bit of /m64.
NOTES:

* |In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:r/m (r, w) NA NA NA
Description

Performs a bitwise NOT operation (each 1 is set to 0, and each O is set to 1) on the
destination operand and stores the result in the destination operand location. The
destination operand can be a register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

DEST « NOT DEST;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

Vol.2B 4-13

INSTRUCTION SET REFERENCE, N-Z

#SS(0)

#PF(fault-code)
#AC(0)

#UD

If the DS, ES, FS, or GS register contains a NULL segment
selector.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP

#SS

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)
#PF(fault-code)
#AC(0)

#UD

4-14 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used but the destination is not a memory
operand.

INSTRUCTION SET REFERENCE, N-Z

OR—Logical Inclusive OR

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode

0Cib OR AL, imm8 A Valid Valid AL OR imm8.

0D iw OR AX,imm16 A Valid Valid AX OR imm16.

oD id OR EAX,imm32 A Valid Valid EAX OR imm32.

REXW+0Did ORRAX,imm32 A Valid N.E. RAX OR imm32 (sign-
extended).

80/1ib OR r/m8, imm8 B Valid Valid r/m8 OR imm8,

REX+80/1ib ORr/m8* imm8 B Valid N.E. r/m8 OR imm8.

81 /1 iw OR r/m16,imm16 B Valid Valid r/m16 OR imm16.

81/1id OR r/m32, imm32 B Valid Valid r/m32 OR imm32.

REXW +81/1 OR r/m64, imm32 B Valid N.E. r/m64 OR imm32 (sign-

id extended).

83/1ib OR r/m16,imm8 B Valid Valid r/m16 OR imm8 (sign-
extended).

83/1ib OR r/m32,imm8 B Valid Valid r/m32 OR imm8 (sign-
extended).

REXW +83/1 OR r/m64, imm8 B Valid N.E. r/m64 OR imm8 (sign-

ib extended).

08/r OR r/m8, r8 C Valid Valid r/m8OR r8.

REX +08/r OR r/m8*, r8* C Valid N.E. r/m8OR r8.

09/r OR r/m16,r16 C Valid Valid r/m16 OR r16.

09/r OR r/m32, r32 C Valid Valid /m32 OR r32.

REXW +09/r OR r/m64, r64 C Valid N.E. r/m64 OR r64.

OA/r OR 18, r/m8 D Valid Valid r8 OR r/m8.

REX+O0A/r OR r8* r/m8* D Valid N.E. r8 OR r/m8.

0B /r ORr16,r/m16 D Valid Valid r16 OR r/m16.

0B /r OR r32, r/m32 D Valid Valid r32 OR r/m32.

REXW +0B/r OR r64, /m64 D Valid N.E. r64 OR r/m64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Vol.2B 4-15

INSTRUCTION SET REFERENCE, N-Z

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A AL/AX/EAX/RAX imm8/16/32 NA NA
B ModRM:r/m (r, w) imm8/16/32 NA NA
C ModRM:r/m (r, w) ModRM:reg (r) NA NA
D ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a bitwise inclusive OR operation between the destination (first) and source
(second) operands and stores the result in the destination operand location. The
source operand can be an immediate, a register, or a memory location; the destina-
tion operand can be a register or a memory location. (However, two memory oper-
ands cannot be used in one instruction.) Each bit of the result of the OR instruction is
set to O if both corresponding bits of the first and second operands are 0; otherwise,
each bitis setto 1.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

DEST « DEST OR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the
result. The state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

4-16 Vol.2B

#AC(0)

#UD

INSTRUCTION SET REFERENCE, N-Z

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP

#SS

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)
#GP(0)
#PF(fault-code)
#AC(0)

#UD

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used but the destination is not a memory
operand.

Vol.2B 4-17

INSTRUCTION SET REFERENCE, N-Z

ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
66 0F 56 /r ORPD xmm1, A Valid Valid Bitwise OR of xmm2/m128
xmm2/m128 and xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a bitwise logical OR of the two packed double-precision floating-point
values from the source operand (second operand) and the destination operand (first
operand), and stores the result in the destination operand. The source operand can
be an XMM register or a 128-bit memory location. The destination operand is an XMM
register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[127:0] < DEST[127:0] BitwiseOR SRC[127:0];

Intel® C/C++ Compiler Intrinsic Equivalent

ORPD __m128d _mm_or_pd(__m128da, __m128dDb)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

4-18 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

If CPUID.O1H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP

#NM
#UD

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#PF(fault-code)

#NM
#UD

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

Vol.2B 4-19

INSTRUCTION SET REFERENCE, N-Z

ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF 56 /1 ORPS xmm]1, A Valid Valid Bitwise OR of xmm2/m128
xmmZ2/m128 and xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a bitwise logical OR of the four packed single-precision floating-point values
from the source operand (second operand) and the destination operand (first
operand), and stores the result in the destination operand. The source operand can
be an XMM register or a 128-bit memory location. The destination operand is an XMM
register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[127:0] < DEST[127:0] BitwiseOR SRC[127:0];

Intel C/C++ Compiler Intrinsic Equivalent
ORPS __m128 _mm_or_ps(__m128a,_m128Db)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

4-20 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

If CPUID.O1H:EDX.SSE[bit 25] = O.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP

#NM
#UD

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#PF(fault-code)

#NM
#UD

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Vol.2B 4-21

INSTRUCTION SET REFERENCE, N-Z

OUT—Output to Port

Opcode* Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode

€6 ib OUT imm8, AL A Valid Valid Output bytein AL to I/0 port
address imm8.

€7 ib OUT imm8, AX A Valid Valid Output word in AX to I/0
port address imm8.

€7 ib OUT imm8, EAX A Valid Valid Output doubleword in EAX
to I/0 port address imm8.

EE OUT DX, AL B Valid Valid Output bytein AL 1o I/0 port
address in DX.

EF OUT DX, AX B Valid Valid Output word in AX to I/0
port address in DX.

EF OUT DX, EAX B Valid Valid Output doubleword in EAX
to I/0 port address in DX.

NOTES:
* See IA-32 Architecture Compatibility section below.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A imm8 NA NA NA
B NA NA NA NA
Description

Copies the value from the second operand (source operand) to the 1/0 port specified
with the destination operand (first operand). The source operand can be register AL,
AX, or EAX, depending on the size of the port being accessed (8, 16, or 32 bits,
respectively); the destination operand can be a byte-immediate or the DX register.
Using a byte immediate allows 1/0 port addresses 0O to 255 to be accessed; using the
DX register as a source operand allows 1/0 ports from 0 to 65,535 to be accessed.

The size of the 1/0 port being accessed is determined by the opcode for an 8-bit 1/0
port or by the operand-size attribute of the instruction for a 16- or 32-bit 1/0 port.

At the machine code level, 1/0 instructions are shorter when accessing 8-bit 1/0
ports. Here, the upper eight bits of the port address will be 0.

This instruction is only useful for accessing 1/0 ports located in the processor’s 1/0
address space. See Chapter 13, “Input/Output,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1, for more information on accessing 1/0
ports in the 1/0 address space.

4-22 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

After executing an OUT instruction, the Pentium® processor ensures that the EWBE#
pin has been sampled active before it begins to execute the next instruction. (Note
that the instruction can be prefetched if EWBE# is not active, but it will not be
executed until the EWBE# pin is sampled active.) Only the Pentium processor family
has the EWBE# pin.

Operation

IF (PE= 1) and ((CPL > IOPL) or (VM =1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)
IF (Any I/0 Permission Bit for I/0 port being accessed = 1)
THEN (* I/0 operation is not allowed *)
#GP(0);
ELSE (* I/0 operation is allowed *)
DEST « SRC; (* Writes to selected I/0 port *)
Fl;
ELSE (Real Mode or Protected Mode with CPL < I0PL *)
DEST « SRC; (* Writes to selected I/0 port *)
Fl;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the 1/0 privilege
level (IOPL) and any of the corresponding 1/0 permission bits in
TSS for the 1/0 port being accessed is 1.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If any of the 1/0 permission bits in the TSS for the 1/0 port being
accessed is 1.

#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Vol.2B 4-23

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as protected mode exceptions.

64-Bit Mode Exceptions
Same as protected mode exceptions.

4-24 \Vol.2B

INSTRUCTION SET REFERENCE, N-Z

OUTS/0UTSB/OUTSW/0OUTSD—0utput String to Port

Opcode* Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
6€E OUTS DX, m8 A Valid Valid Output byte from memory

location specified in DS:(E)SI
or RSl to I/0 port specified in
DX**,

6F OUTS DX, m16 A Valid Valid Output word from memory
location specified in DS:(E)SI
or RSl to I/0 port specified in
DX**,

6F OUTS DX, m32 A Valid Valid Output doubleword from
memory location specified in
DS:(E)SI or RSI to I/0 port
specified in DX**,

6€E OUTSB A Valid Valid Output byte from memory
location specified in DS:(E)SI
or RSl to I/0 port specified in
DX**,

6F OouUTSW A Valid Valid Output word from memory
location specified in DS:(E)SI
or RSl to I/0 port specified in
DX**,

6F OUTSD A Valid Valid Output doubleword from
memory location specifiedin
DS:(E)SI or RSI to I/0 port
specified in DX**.

NOTES:
* See |A-32 Architecture Compatibility section below.

** In 64-bit mode, only 64-bit (RSI) and 32-bit (ESI) address sizes are supported. In non-64-bit
mode, only 32-bit (ESI) and 16-bit (SI) address sizes are supported.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A NA NA NA NA
Description

Copies data from the source operand (second operand) to the 1/0 port specified with
the destination operand (first operand). The source operand is a memory location,
the address of which is read from either the DS:Sl, DS:ESI or the RSI registers
(depending on the address-size attribute of the instruction, 16, 32 or 64, respec-

Vol.2B 4-25

INSTRUCTION SET REFERENCE, N-Z

tively). (The DS segment may be overridden with a segment override prefix.) The
destination operand is an 1/0 port address (from O to 65,535) that is read from the
DX register. The size of the 1/0 port being accessed (that is, the size of the source
and destination operands) is determined by the opcode for an 8-bit 1/0 port or by the
operand-size attribute of the instruction for a 16- or 32-bit 1/0 port.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified
with the OUTS mnemonic) allows the source and destination operands to be specified
explicitly. Here, the source operand should be a symbol that indicates the size of the
1/0 port and the source address, and the destination operand must be DX. This
explicit-operands form is provided to allow documentation; however, note that the
documentation provided by this form can be misleading. That is, the source operand
symbol must specify the correct type (size) of the operand (byte, word, or double-
word), but it does not have to specify the correct location. The location is always
specified by the DS:(E)SI or RSI registers, which must be loaded correctly before the
OUTS instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword
versions of the OUTS instructions. Here also DS:(E)SI is assumed to be the source
operand and DX is assumed to be the destination operand. The size of the 1/0 port is
specified with the choice of mnemonic: OUTSB (byte), OUTSW (word), or OUTSD
(doubleword).

After the byte, word, or doubleword is transferred from the memory location to the
1/0 port, the SI/ESI/RSI register is incremented or decremented automatically
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is O, the
(E)SI register is incremented; if the DF flag is 1, the SI/ESI/RSI register is decre-
mented.) The SI/ESI/RSI register is incremented or decremented by 1 for byte oper-
ations, by 2 for word operations, and by 4 for doubleword operations.

The OUTS, OUTSB, OUTSW, and OUTSD instructions can be preceded by the REP
prefix for block input of ECX bytes, words, or doublewords. See “REP/REPE/REPZ
/REPNE/REPNZ—Repeat String Operation Prefix” in this chapter for a description of
the REP prefix. This instruction is only useful for accessing 1/0 ports located in the
processor’s 1/0 address space. See Chapter 13, “Input/Output,” in the Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 1, for more information on
accessing 1/0 ports in the 1/0 address space.

In 64-bit mode, the default operand size is 32 bits; operand size is not promoted by
the use of REX.W. In 64-bit mode, the default address size is 64 bits, and 64-bit
address is specified using RSI by default. 32-bit address using ESI is support using
the prefix 67H, but 16-bit address is not supported in 64-bit mode.

IA-32 Architecture Compatibility

After executing an OUTS, OUTSB, OUTSW, or OUTSD instruction, the Pentium
processor ensures that the EWBE# pin has been sampled active before it begins to
execute the next instruction. (Note that the instruction can be prefetched if EWBE#

4-26 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

is not active, but it will not be executed until the EWBE# pin is sampled active.) Only

the Pentium processor family has the EWBE# pin.

For the Pentium 4, Intel® Xeon®, and P6 processor family, upon execution of an
OUTS, OUTSB, OUTSW, or OUTSD instruction, the processor will not execute the next

instruction until the data phase of the transaction is complete.

Operation

IF (PE = 1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)
IF (Any I/0 Permission Bit for I/0 port being accessed = 1)
THEN (* I/0 operation is not allowed *)
#GP(0);
ELSE (* I/0 operation is allowed *)
DEST « SRC; (* Writes to /0 port *)
Fl;
ELSE (Real Mode or Protected Mode or 64-Bit Mode with CPL < I0PL *)
DEST « SRC; (* Writes to I/0 port *)
Fl;

Byte transfer:

IF 64-bit mode
Then
IF 64-Bit Address Size
THEN
IFDF=0
THEN RSI «~ RSIRSI + 1;
ELSERSI «RSlor-1;
Fl;
ELSE (* 32-Bit Address Size *)
IFDF=0
THEN ESI« ESI+1;
ELSE ESI «— ESI - 1;
Fl;
Fl;
ELSE
IFDF=0

THEN (E)SI « (E)SI + 1;
ELSE (E)SI < (E)SI - 1;
Fl;
Fl;
Word transfer:
IF 64-bit mode
Then

Vol.2B 4-27

INSTRUCTION SET REFERENCE, N-Z

IF 64-Bit Address Size

THEN
IFDF=0
THEN RSI <~ RSIRSI + 2;
ELSE RSl «- RSl or - 2;
Fl;
ELSE (* 32-Bit Address Size *)
IFDF=0
THEN ESI« ESI+2;
ELSE €Sl «— ESI - 2;
Fl;
Fl;
ELSE
IFDF=0
THEN (E)SI « (E)SI+ 2;
ELSE (E)SI « (E)SI - 2;
Fl;
Fl;
Doubleword transfer:
IF 64-bit mode
Then
IF 64-Bit Address Size
THEN
IFDF=0
THEN RSI < RSIRSI + 4;
ELSE RSl «- RSl or - 4;
Fl;
ELSE (* 32-Bit Address Size *)
IFDF=0
THEN ESI <« ESI+4;
ELSE €Sl «— ESI - 4;
Fl;
Fl;
ELSE
IFDF=0
THEN (E)SI « (E)SI+ 4;
ELSE (E)SI « (E)SI - 4;
Fl;
Fl;
Flags Affected
None.

4-28 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#PF(fault-code)
#AC(0)

#UD

If the CPL is greater than (has less privilege) the 1/0 privilege
level (IOPL) and any of the corresponding 1/0 permission bits in
TSS for the 1/0 port being accessed is 1.

If a memory operand effective address is outside the limit of the
CS, DS, ES, FS, or GS segment.

If the segment register contains a NULL segment selector.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP

#SS

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)

#PF(fault-code)
#AC(0)

#UD

If any of the 1/0 permission bits in the TSS for the 1/0 port being
accessed is 1.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the CPL is greater than (has less privilege) the 1/0 privilege
level (IOPL) and any of the corresponding 1I/0 permission bits in
TSS for the 1/0 port being accessed is 1.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Vol.2B 4-29

INSTRUCTION SET REFERENCE, N-Z

#UD If the LOCK prefix is used.

4-30 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

PABSB/PABSW/PABSD — Packed Absolute Value

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF381C/r PABSB mm1, A Valid Valid Compute the absolute value
mm2/m64 of bytes in mm2/m64 and
store UNSIGNED result in
mm1.
66 0F381C/r PABSB xmm1, A Valid Valid Compute the absolute value
xmm2/m128 of bytes in xmm2/m128 and
store UNSIGNED result in
xmm1.
OF381D/r PABSW mm1, A Valid Valid Compute the absolute value
mm2/m64 of 16-bit integers in
mm2/m64 and store
UNSIGNED result in mm1.
66 0F381D/r PABSW xmmT, A Valid Valid Compute the absolute value
xmm2/m128 of 16-bit integers in
xmm2/m128 and store
UNSIGNED result in xmm1.
OF 38 1E/r PABSD mm1, A Valid Valid Compute the absolute value
mm2/m64 of 32-bit integers in
mm2/m64 and store
UNSIGNED result in mm1.
66 0F 38 1E/r PABSD xmm1, A Valid Valid Compute the absolute value
xmm2/m128 of 32-bit integers in
xmm2/m128 and store
UNSIGNED result in xmm1.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) NA NA

Description

PABSB/W/D computes the absolute value of each data element of the source operand
(the second operand) and stores the UNSIGNED results in the destination operand
(the first operand). PABSB operates on signed bytes, PABSW operates on 16-bit

words, and PABSD operates on signed 32-bit integers. The source operand can be an
MMX register or a 64-bit memory location, or it can be an XMM register or a 128-bit
memory location. The destination operand can be an MMX or an XMM register. Both
operands can be MMX register or XMM registers. When the source operand is a

Vol.2B 4-31

INSTRUCTION SET REFERENCE, N-Z

128-bit memory operand, the operand must be aligned on a 16byte boundary or a
general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation
PABSB with 64 bit operands

Unsigned DEST[7:0] <« ABS(SRC[7:0])
Repeat operation for 2nd through 7th bytes
Unsigned DEST[63:56] «— ABS(SRC[63:561])

PABSB with 128 bit operands:

Unsigned DEST[7:0] < ABS(SR([7:.0])
Repeat operation for 2nd through 15th bytes
Unsigned DEST[127:120] <~ ABS(SRC[127:120])

PABSW with 64 bit operands:

Unsigned DEST[15:0] <~ ABS(SRC[15:0])
Repeat operation for 2nd through 3rd 16-bit words
Unsigned DEST[63:48] < ABS(SRC[63:48])

PABSW with 128 bit operands:

Unsigned DEST[15:0] «— ABS(SRC[15:0])
Repeat operation for 2nd through 7th 16-bit words
Unsigned DEST[127:112] «- ABS(SRC[127:112])

PABSD with 64 bit operands:

Unsigned DEST[31:0] «— ABS(SRC[31:0])
Unsigned DEST[63:32] < ABS(SRC[63:32])

PABSD with 128 bit operands:
Unsigned DEST[31:0] <~ ABS(SRC[31:0])

Repeat operation for 2nd through 3rd 32-bit double words

Unsigned DEST[127:96] « ABS(SRC[127:96])

Intel C/C++ Compiler Intrinsic Equivalents
PABSB __m64 _mm_abs_pi8 (__m64 a)
PABSB __m128i _mm_abs_epi8 (__m128i a)
PABSW __m64 _mm_abs_pi16 (__m64 a)
PABSW __m128i _mm_abs_epi16 (__m128i a)

4-32 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

PABSD __m64 _mm_abs_pi32 (__m64 a)
PABSD __m128i _mm_abs_epi32 (__m128ia)

Protected Mode Exceptions

#GP(0):

#SS(0)

#PF(fault-code)
#UD

#NM
#MF
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If CRO.EM = 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

If TS bit in CRO is set.

(64-bit operations only) If there is a pending x87 FPU exception.

(64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0):

#UD:

#NM
H#MF

If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

If CRO.EM = 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

If TS bit in CRO is set.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Vol.2B 4-33

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

4-34 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PACKSSWB/PACKSSDW—Pack with Signed Saturation

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF63/r PACKSSWB mm1, A Valid Valid Converts 4 packed signed
mm2/m64 word integers from mm1

and from mm2/m64 into 8
packed signed byte integers
in mm1 using signed

saturation.
66 OF 63 /r PACKSSWB xmm1, A Valid Valid Converts 8 packed signed
xmmZ2/m128 word integers from xmm1
and from xxm2/m128 into
16 packed signed byte

integers in xxm1 using
signed saturation.

OF6B/r PACKSSDW mm1, A Valid Valid Converts 2 packed signed
mm2/m64 doubleword integers from
mm1 and from mmZ2/m64
into 4 packed signed word
integers in mm1 using
signed saturation.

66 OF 6B /r PACKSSDW xmm1, A Valid Valid Converts 4 packed signed
xmm2/m128 doubleword integers from
xmm1 and from
xxm2/m128into 8 packed
signed word integers in
xxm1 using signed

saturation.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA

Description

Converts packed signed word integers into packed signed byte integers (PACKSSWB)
or converts packed signed doubleword integers into packed signed word integers
(PACKSSDW), using saturation to handle overflow conditions. See Figure 4-2 for an
example of the packing operation.

Vol.2B 4-35

INSTRUCTION SET REFERENCE, N-Z

64-Bit SRC 64-Bit DEST
D C B A
D|C|B|A
64-Bit DEST

Figure 4-2. Operation of the PACKSSDW Instruction Using 64-bit Operands

The PACKSSWB instruction converts 4 or 8 signed word integers from the destination
operand (first operand) and 4 or 8 signed word integers from the source operand
(second operand) into 8 or 16 signed byte integers and stores the result in the desti-
nation operand. If a signed word integer value is beyond the range of a signed byte
integer (that is, greater than 7FH for a positive integer or greater than 80H for a
negative integer), the saturated signed byte integer value of 7FH or 80H, respec-
tively, is stored in the destination.

The PACKSSDW instruction packs 2 or 4 signed doublewords from the destination
operand (first operand) and 2 or 4 signed doublewords from the source operand
(second operand) into 4 or 8 signed words in the destination operand (see

Figure 4-2). If a signed doubleword integer value is beyond the range of a signed
word (that is, greater than 7FFFH for a positive integer or greater than 8000H for a
negative integer), the saturated signed word integer value of 7FFFH or 8000H,
respectively, is stored into the destination.

The PACKSSWB and PACKSSDW instructions operate on either 64-bit or 128-bit
operands. When operating on 64-bit operands, the destination operand must be an
MMX technology register and the source operand can be either an MMX technology
register or a 64-bit memory location. When operating on 128-bit operands, the desti-
nation operand must be an XMM register and the source operand can be either an
XMM register or a 128-bit memory location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PACKSSWB instruction with 64-bit operands:
DEST[7:0] « SaturateSignedWordToSignedByte DEST[15:0];
DEST[15:8] « SaturateSignedWordToSignedByte DEST[31:16];
DEST[23:16] « SaturateSignedWordToSignedByte DEST[47:32];
DEST[31:24] « SaturateSignedWordToSignedByte DEST[63:48];
DEST[39:32] « SaturateSignedWordToSignedByte SRC[15:0];
DEST[47:40] « SaturateSignedWordToSignedByte SRC[31:16];
DEST[55:48] « SaturateSignedWordToSignedByte SRC[47:32];

4-36 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

DEST[63:56] « SaturateSignedWordToSignedByte SRC[63:48];

PACKSSDW instruction with 64-bit operands:
DEST[15:0] « SaturateSignedDoublewordToSignedWord DEST[31:0];
DEST[31:16] « SaturateSignedDoublewordToSignedWord DEST[63:32];
DEST[47:32] « SaturateSignedDoublewordToSignedWord SRC[31:0];
DEST[63:48] « SaturateSignedDoublewordToSignedWord SRC[63:32];

PACKSSWB instruction with 128-bit operands:
DEST[7:0]« SaturateSignedWordToSignedByte (DEST[15:0]);
DEST[15:8] <« SaturateSignedWordToSignedByte (DEST[31:16]);
DEST[23:16] « SaturateSignedWordToSignedByte (DEST[47:32]);
DEST[31:24] « SaturateSignedWordToSignedByte (DEST[63:48));
DEST[39:32] « SaturateSignedWordToSignedByte (DEST[79:64));
DEST[47:40] « SaturateSignedWordToSignedByte (DEST[95:80]);
DEST[55:48] « SaturateSignedWordToSignedByte (DEST[111:96]));
DEST[63:56] « SaturateSignedWordToSignedByte (DEST[127:112]);
DEST[71:64] « SaturateSignedWordToSignedByte (SRC[15:0]);
DEST[79:72] « SaturateSignedWordToSignedByte (SRC[31:16]);
DEST[87:80] «— SaturateSignedWordToSignedByte (SRC[47:32]);
DEST[95:88] «— SaturateSignedWordToSignedByte (SRC[63:48]);
DEST[103:96] <« SaturateSignedwWordToSignedByte (SRC[79:64]);
DEST[111:104] «— SaturateSignedWordToSignedByte (SRC[95:80]);
DEST[119:112] <« SaturateSignedWordToSignedByte (SRC[111:96]));
DEST[127:120] «— SaturateSignedWordToSignedByte (SRC[127:112]);

P~~~ o~ o~ —~ —~ —

PACKSSDW instruction with 128-bit operands:
DEST[15:0] <« SaturateSignedDwordToSignedWord (DEST[31:0]);
DEST[31:16] « SaturateSignedDwordToSignedWord (DEST[63:32]);
DEST[47:32] < SaturateSignedDwordToSignedWord (DEST[95:64]);
DEST[63:48] <« SaturateSignedDwordToSignedWord (DEST[127:96]);
DEST[79:64] <« SaturateSignedDwordToSignedWord (SRC[31:0]);
DEST[95:80] <« SaturateSignedDwordToSignedWord (SRC[63:32]);
DEST[111:96] « SaturateSignedDwordToSignedWord (SRC[95:64]);
DEST[127:112] « SaturateSignedDwordToSignedword (SRC[127:96]);

Intel C/C++ Compiler Intrinsic Equivalents

PACKSSWB __m64 _mm_packs_pi16(_m64 m1, __m64 m2)
PACKSSWB __m128i _mm_packs_epi16(_m128im1,_m128i m2)
PACKSSDW __m64 _mm_packs_pi32 (__m64 m1, __mb64 m2)
PACKSSDW __m128i _mm_packs_epi32(_m128im1,_m128i m2)

Vol.2B 4-37

INSTRUCTION SET REFERENCE, N-Z

Flags Affected

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.
If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)

4-38 Vol.2B

For a page fault.

#AC(0)

INSTRUCTION SET REFERENCE, N-Z

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-39

INSTRUCTION SET REFERENCE, N-Z

PACKUSDW — Pack with Unsigned Saturation

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
66 OF 38 2B /r PACKUSDW xmm1, A Valid Valid Convert 4 packed signed
xmm2/m128 doubleword integers from

xmm1 and 4 packed signed
doubleword integers from
xmmZ2/m128 into 8 packed
unsigned word integers in
xmm71 using unsigned

saturation.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA

Description

Converts packed signed doubleword integers into packed unsigned word integers
using unsigned saturation to handle overflow conditions. If the signed doubleword
value is beyond the range of an unsigned word (that is, greater than FFFFH or less
than 0000H), the saturated unsigned word integer value of FFFFH or O0O00H, respec-
tively, is stored in the destination.

Operation

TMP[15:0] €< (DEST[31:0] < 0)? 0: DEST[15:0];

DEST[15:0] €« (DEST[31:0] > FFFFH) ? FFFFH : TMP[15:0] ;
TMP[31:16] < (DEST[63:32] < 0)? 0: DEST[47:32];
DEST[31:16] <« (DEST[63:32] > FFFFH) ? FFFFH : TMP[31:16] ;
TMP[47:32] < (DEST[95:64] < 0)? 0: DEST[79:64];
DEST[47:32] < (DEST[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;
TMP[63:48] < (DEST[127:96] < 0)? 0: DEST[111:96];
DEST[63:48] < (DEST[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[63:48] < (DEST[127:96] < 0)? 0: DEST[111:96];
DEST[63:48] < (DEST[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[79:64] < (SRC[31:0] < 0)? 0: SRC[15:0];

DEST[63:48] < (SRC[31:0] > FFFFH) ? FFFFH : TMP[79:64] ;
TMP[95:80] < (SRC[63:32] < 0)? 0: SRC[47:32];

DEST[95:80] < (SRC[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;
TMP[111:96] < (SRC[95:64] < 0)? 0: SRC[79:64];
DEST[111:96] €« (SRC[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;
TMP[127:112] €« (SRC[127:96] < 0)? 0: SRC[111:96];
DEST[128:112] €« (SRC[127:96] > FFFFH) ? FFFFH : TMP[127:112];

4-40 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent
PACKUSDW __m128i _mm_packus_epi32(__m128i m1, _ m128i m2);

Flags Affected

None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0): For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.SSE4_1(ECX bit 19) = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.SSE4_1(ECX bit 19) = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

Vol.2B 4-41

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

4-42 \Vol.2B

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is O.

If CPUID feature flag ECX.SSE4_1 is O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

INSTRUCTION SET REFERENCE, N-Z

PACKUSWB—Pack with Unsigned Saturation

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF67/r PACKUSWB mm, A Valid Valid Converts 4 signed word
mm/mé64 integers from mm and 4

signed word integers from
mm/m64 into 8 unsigned
byte integers in mm using
unsigned saturation.

66 OF67 /r PACKUSWB xmm1, A Valid Valid Converts 8 signed word
xmm2/m128 integers from xmm1 and 8
signed word integers from
xmmZ2/m128into 16
unsigned byte integers in
xmm1 using unsigned

saturation.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA

Description

Converts 4 or 8 signed word integers from the destination operand (first operand)
and 4 or 8 signed word integers from the source operand (second operand) into 8 or
16 unsigned byte integers and stores the result in the destination operand. (See
Figure 4-2 for an example of the packing operation.) If a signed word integer value is
beyond the range of an unsigned byte integer (that is, greater than FFH or less than
00H), the saturated unsigned byte integer value of FFH or OOH, respectively, is stored
in the destination.

The PACKUSWB instruction operates on either 64-bit or 128-bit operands. When
operating on 64-bit operands, the destination operand must be an MMX technology
register and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PACKUSWB instruction with 64-bit operands:
DEST[7:0] <« SaturateSignedWordToUnsignedByte DEST[15:0];

Vol.2B 4-43

INSTRUCTION SET REFERENCE, N-Z

DEST[15:8] « SaturateSignedWordToUnsignedByte DEST[31:16];
DEST[23:16] « SaturateSignedWordToUnsignedByte DEST[47:32];
DEST[31:24] « SaturateSignedWordToUnsignedByte DEST[63:48];
DEST[39:32] « SaturateSignedWordToUnsignedByte SRC[15:0];
DEST[47:40] « SaturateSignedWordToUnsignedByte SRC[31:16];
DEST[55:48] « SaturateSignedWordToUnsignedByte SRC[47:32];
DEST[63:56] « SaturateSignedWordToUnsignedByte SRC[63:48];

PACKUSWB instruction with 128-bit operands:
DEST[7:0]« SaturateSignedwWordToUnsignedByte (DEST[15:0]);
DEST[15:8] <« SaturateSignedwWordToUnsignedByte (DEST[31:16]);
DEST[23:16] « SaturateSignedWordToUnsignedByte (DEST[47:32]);
DEST[31:24] « SaturateSignedWordToUnsignedByte (DEST[63:48]);
DEST[39:32] « SaturateSignedWordToUnsignedByte (DEST[79:64]);
DEST[47:40] < SaturateSignedWordToUnsignedByte (DEST[95:80]);
DEST[55:48] « SaturateSignedWordToUnsignedByte (DEST[111:96]);
DEST[63:56] « SaturateSignedWordToUnsignedByte (DEST[127:112]);
DEST[71:64] « SaturateSignedWordToUnsignedByte (SRC[15:0]);
DEST[79:72] « SaturateSignedwWordToUnsignedByte (SRC[31:16]);
DEST[87:80] «— SaturateSignedWordToUnsignedByte (SRC[47:32]);
DEST[95:88] «— SaturateSignedWordToUnsignedByte (SRC[63:48));
DEST[103:96] « SaturateSignedWordToUnsignedByte (SRC[79:64]);
DEST[111:104] « SaturateSignedWordToUnsignedByte (SRC[95:80]);
DEST[119:112] « SaturateSignedWordToUnsignedByte (SRC[111:96]);
DEST[127:120] « SaturateSignedWordToUnsignedByte (SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalent

PACKUSWB __m64 _mm_packs_pul6(_m64 m1, __m64 m2)
PACKUSWB __m128i _mm_packs_epu16(_m128im1, _m128i m2)
Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

4-44 \ol.2B

INSTRUCTION SET REFERENCE, N-Z

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

Vol.2B 4-45

INSTRUCTION SET REFERENCE, N-Z

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

4-46 Vol.2B

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PADDB/PADDW/PADDD—Add Packed Integers

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OFFC/r PADDB mm, A Valid Valid Add packed byte integers
mm/mé64 from mm/m64 and mm.
66 OF FC/r PADDB xmm1, A Valid Valid Add packed byte integers
xmm2/m128 from xmm2/m128 and
xmm1.
OF FD /r PADDW mm, A Valid Valid Add packed word integers
mm/m64 from mm/m64 and mm.
66 0FFD/r PADDW xmm1, A Valid Valid Add packed word integers
xmmZ2/m128 from xmm2/m128 and
xmm1.
OF FE/r PADDD mm, A Valid Valid Add packed doubleword
mm/mé64 integers from mm/m64 and
mm.
66 OF FE/r PADDD xmm1, A Valid Valid Add packed doubleword
xmm2/m128 integers from xmm2/m128
and xmm1.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a SIMD add of the packed integers from the source operand (second

operand) and the destination operand (first operand), and stores the packed integer
results in the destination operand. See Figure 9-4 in the Intel® 64 and I1A-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD opera-
tion. Overflow is handled with wraparound, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PADDB instruction adds packed byte integers. When an individual result is too
large to be represented in 8 bits (overflow), the result is wrapped around and the low
8 bits are written to the destination operand (that is, the carry is ignored).

Vol.2B 4-47

INSTRUCTION SET REFERENCE, N-Z

The PADDW instruction adds packed word integers. When an individual result is too
large to be represented in 16 bits (overflow), the result is wrapped around and the
low 16 bits are written to the destination operand.

The PADDD instruction adds packed doubleword integers. When an individual result
is too large to be represented in 32 bits (overflow), the result is wrapped around and
the low 32 bits are written to the destination operand.

Note that the PADDB, PADDW, and PADDD instructions can operate on either
unsigned or signed (two's complement notation) packed integers; however, it does
not set bits in the EFLAGS register to indicate overflow and/or a carry. To prevent
undetected overflow conditions, software must control the ranges of values operated
on.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PADDB instruction with 64-bit operands:
DEST[7:0] <~ DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 7th byte *)
DEST[63:56] «<— DEST[63:56] + SRC[63:56];

PADDB instruction with 128-bit operands:
DEST[7:0] «<— DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 14th byte *)
DEST[127:120] <« DEST[111:120] + SRC[127:120];

PADDW instruction with 64-bit operands:
DEST[15:0] «— DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd and 3th word *)
DEST[63:48] «— DEST[63:48] + SRC[63:48];

PADDW instruction with 128-bit operands:
DEST[15:0] «— DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd through 7th word *)
DEST[127:112] «- DEST[127:112] + SRC[127:112];

PADDD instruction with 64-bit operands:
DEST[31:0] < DEST[31:0] + SRC[31:0];
DEST[63:32] «- DEST[63:32] + SRC[63:32];

PADDD instruction with 128-bit operands:
DEST[31:0] «- DEST[31:0] + SRC[31:0];
(* Repeat add operation for 2nd and 3th doubleword *)
DEST[127:96] < DEST[127:96] + SRC[127:96];

4-48 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalents

PADDB __m64 _mm_add_pi8(__m64 m1, __m64 m2)
PADDB __m128i _mm_add_epi8 (__m128ia,__m128ib)
PADDW __ m64 _mm_add_pi16(_m64 m1, __m64 m2)
PADDW __m128i _mm_add_epi16 (_m128ia, _m128ib)
PADDD _ m64 _mm_add_pi32(_m64 m1, __m64 m2)
PADDD __m128i _mm_add_epi32 (_m128ia, _m128ib)

Flags Affected

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

H#HMF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable

Vol.2B 4-49

INSTRUCTION SET REFERENCE, N-Z

#NM
H#MF

processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-50 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PADDQ—Add Packed Quadword Integers

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OFD4/r PADDQ mm1, A Valid Valid Add quadword integer
mm2/m64 mmZ2/m64 to mm]1.
66 OF D4 /r PADDQ xmm1, A Valid Valid Add packed quadword
xmmZ2/m128 integers xmmZ2/m128 to
xmm]1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Adds the first operand (destination operand) to the second operand (source operand)
and stores the result in the destination operand. The source operand can be a quad-
word integer stored in an MMX technology register or a 64-bit memory location, or it
can be two packed quadword integers stored in an XMM register or an 128-bit
memory location. The destination operand can be a quadword integer stored in an
MMX technology register or two packed quadword integers stored in an XMM register.
When packed quadword operands are used, a SIMD add is performed. When a quad-
word result is too large to be represented in 64 bits (overflow), the result is wrapped
around and the low 64 bits are written to the destination element (that is, the carry
is ignored).

Note that the PADDQ instruction can operate on either unsigned or signed (two’s
complement notation) integers; however, it does not set bits in the EFLAGS register
to indicate overflow and/or a carry. To prevent undetected overflow conditions, soft-
ware must control the ranges of the values operated on.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PADDQ instruction with 64-Bit operands:
DEST[63:0] <~ DEST[63:0] + SRC[63:0];

PADDQ instruction with 128-Bit operands:
DEST[63:0] «— DEST[63:0] + SRC[63:0];
DEST[127:64] < DEST[127:64] + SRC[127:64];

Vol.2B 4-51

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalents

PADDQ _ m64 _mm_add_si64 (__m64 a, __m64 b)
PADDQ __m128i _mm_add_epi64 (_m128ia,_m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

#NM
H#MF

4-52 Vol.2B

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

#HMF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = O.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-53

INSTRUCTION SET REFERENCE, N-Z

PADDSB/PADDSW—Add Packed Signed Integers with Signed
Saturation

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF EC/r PADDSB mm, A Valid Valid Add packed signed byte
mm/m64 integers from mm/m64 and
mm and saturate the
results.
66 OF EC/r PADDSB xmm]1, A Valid Valid Add packed signed byte
xmmZ2/m128 integers from xmmZ2/m128
and xmm1 saturate the
results.
OF ED /r PADDSW mm, A Valid Valid Add packed signed word
mm/m64 integers from mm/m64 and
mm and saturate the
results.
66 0FED/r PADDSW xmm1, A Valid Valid Add packed signed word
xmmZ2/m128 integers from xmmZ2/m128
and xmm1 and saturate the
results.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a SIMD add of the packed signed integers from the source operand (second
operand) and the destination operand (first operand), and stores the packed integer
results in the destination operand. See Figure 9-4 in the Intel® 64 and 1A-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD opera-
tion. Overflow is handled with signed saturation, as described in the following
paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PADDSB instruction adds packed signed byte integers. When an individual byte
result is beyond the range of a signed byte integer (that is, greater than 7FH or less

4-54 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

than 80H), the saturated value of 7FH or 80H, respectively, is written to the destina-
tion operand.

The PADDSW instruction adds packed signed word integers. When an individual word
result is beyond the range of a signed word integer (that is, greater than 7FFFH or
less than 8000H), the saturated value of 7FFFH or 8000H, respectively, is written to
the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PADDSB instruction with 64-bit operands:
DEST[7:0] « SaturateToSignedByte(DEST[7:0] + SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] « SaturateToSignedByte(DEST[63:56] + SRC[63:56]);

PADDSB instruction with 128-bit operands:
DEST[7:0] «SaturateToSignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] « SaturateToSignedByte (DEST[111:120] + SRC[127:120));

PADDSW instruction with 64-bit operands
DEST[15:0] « SaturateToSignedWord(DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd and 7th words *)
DEST[63:48] « SaturateToSignedWord(DEST[63:48] + SRC[63:48]);

PADDSW instruction with 128-bit operands
DEST[15:0] « SaturateToSignedWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] <« SaturateToSignedWord (DEST[127:112] + SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PADDSB __m64 _mm_adds_pi8(_m64 m1, __m64 m2)
PADDSB __m128i _mm_adds_epi8 (_m128ia, __m128ib)
PADDSW _ m64 _mm_adds_pi16(_m64 m1, __m64 m2)
PADDSW __m128i _mm_adds_epi16(__m128ia, __m128ib)

Flags Affected

None.

Vol.2B 4-55

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

4-56 Vol.2B

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-57

INSTRUCTION SET REFERENCE, N-Z

PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned
Saturation

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OFDC/r PADDUSB mm, A Valid Valid Add packed unsigned byte
mm/m64 integers from mm/m64 and
mm and saturate the
results.
66 OFDC/r PADDUSB xmm1, A Valid Valid Add packed unsigned byte
xmm2/m128 integers from xmmZ2/m128
and xmm1 saturate the
results.
OF DD /r PADDUSW mm, A Valid Valid Add packed unsigned word
mm/m64 integers from mm/m64 and
mm and saturate the
results.
66 OFDD /r PADDUSW xmm1, A Valid Valid Add packed unsigned word
xmm2/m128 integers from xmmZ2/m128
to xmm1 and saturate the
results.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a SIMD add of the packed unsigned integers from the source operand
(second operand) and the destination operand (first operand), and stores the packed
integer results in the destination operand. See Figure 9-4 in the Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD
operation. Overflow is handled with unsigned saturation, as described in the
following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PADDUSB instruction adds packed unsigned byte integers. When an individual
byte result is beyond the range of an unsigned byte integer (that is, greater than
FFH), the saturated value of FFH is written to the destination operand.

4-58 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

The PADDUSW instruction adds packed unsigned word integers. When an individual
word result is beyond the range of an unsigned word integer (that is, greater than
FFFFH), the saturated value of FFFFH is written to the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PADDUSB instruction with 64-bit operands:
DEST[7:0] «- SaturateToUnsignedByte(DEST[7:0] + SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] « SaturateToUnsignedByte(DEST[63:56] + SRC[63:56]

PADDUSB instruction with 128-bit operands:
DEST[7:0] « SaturateToUnsignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] < SaturateToUnSignedByte (DEST[127:120] + SRC[127:120]);

PADDUSW instruction with 64-bit operands:
DEST[15:0] « SaturateToUnsignedWord(DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd and 3rd words *)
DEST[63:48] « SaturateToUnsignedWord(DEST[63:48] + SRC[63:48]);

PADDUSW instruction with 128-bit operands:
DEST[15:0] « SaturateToUnsignedwWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] « SaturateToUnSignedWord (DEST[127:112] + SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PADDUSB __m64 _mm_adds_pu8(_m64 m1, __m64 m2)
PADDUSW __m64 _mm_adds_pu16(_m64 m1, __m64 m2)
PADDUSB __m128i _mm_adds_epu8 (_m128i3a, __m128ib)
PADDUSW __m128i _mm_adds_epu16 (_m128ia,__m128ib)
Flags Affected

None.

Numeric Exceptions

None.

Vol.2B 4-59

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

4-60 Vol.2B

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-61

INSTRUCTION SET REFERENCE, N-Z

PALIGNR — Packed Align Right

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF 3A OF PALIGNR mm1, A Valid Valid Concatenate destination and
mm2/m64, imm8 source operands, extract

byte-aligned result shifted
to the right by constant
value in imm8 into mm1.

66 OF 3A OF PALIGNR xmm1, A Valid Valid Concatenate destination and
xmm2/m128, source operands, extract
imm8 byte-aligned result shifted

to the right by constant
value in imm8 into xmm1

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) imm8 NA
Description

PALIGNR concatenates the destination operand (the first operand) and the source
operand (the second operand) into an intermediate composite, shifts the composite
at byte granularity to the right by a constant immediate, and extracts the right-
aligned result into the destination. The first and the second operands can be an MMX
or an XMM register. The immediate value is considered unsigned. Immediate shift
counts larger than the 2L (i.e. 32 for 128-bit operands, or 16 for 64-bit operands)
produce a zero result. Both operands can be MMX register or XMM registers. When
the source operand is a 128-bit memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation
PALIGNR with 64-bit operands:

temp1[127:0] = CONCATENATE(DEST,SRC)>>(imm8*8)
DEST[63:0] = temp1[63:0]

PALIGNR with 128-bit operands:

temp1[255:0] = CONCATENATE(DEST,SRC)>>(imm8*8)
DEST[127:0] = temp1[127:0]

4-62 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalents

PALIGNR __m64 _mm_alignr_pi8 (__m64 a, __m64 b, int n)
PALIGNR __m128i _mm_alignr_epi8 (_m128ia, __m128ib, int n)

Protected Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#UD

#NM
#MF
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If CRO.EM = 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

If TS bit in CRO is set.

(64-bit operations only) If there is a pending x87 FPU exception.

(64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0)

#UD

#NM
H#MF

If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

If CRO.EM = 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

If TS bit in CRO is set.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Vol.2B 4-63

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

4-64 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PAND—Logical AND

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OFDB/r PAND mm, A Valid Valid Bitwise AND mm/m64 and
mm/m64 mm.
66 OF DB /r PAND xmmT, A Valid Valid Bitwise AND of
xmm2/m128 xmm2/m128 and xmm]1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a bitwise logical AND operation on the source operand (second operand)
and the destination operand (first operand) and stores the result in the destination
operand. The source operand can be an MMX technology register or a 64-bit memory
location or it can be an XMM register or a 128-bit memory location. The destination
operand can be an MMX technology register or an XMM register. Each bit of the result
is set to 1 if the corresponding bits of the first and second operands are 1; otherwise,
it is set to O.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST « (DEST AND SRC);

Intel C/C++ Compiler Intrinsic Equivalent

PAND __m64 _mm_and_si64 (__m64 m1, _m64 m2)
PAND __m128i _mm_and_si128 (_m128ia, _m128ib)
Flags Affected

None.

Numeric Exceptions

None.

Vol.2B 4-65

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

4-66 Vol.2B

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-67

INSTRUCTION SET REFERENCE, N-Z

PANDN—Logical AND NOT

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF DF /r PANDN mm, A Valid Valid Bitwise AND NOT of
mm/m64 mm/m64 and mm.
66 OF DF /r PANDN xmmT, A Valid Valid Bitwise AND NOT of
xmm2/m128 xmm2/m128 and xmm]1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a bitwise logical NOT of the destination operand (first operand), then
performs a bitwise logical AND of the source operand (second operand) and the
inverted destination operand. The result is stored in the destination operand. The
source operand can be an MMX technology register or a 64-bit memory location or it
can be an XMM register or a 128-bit memory location. The destination operand can
be an MMX technology register or an XMM register. Each bit of the result is set to 1 if
the corresponding bit in the first operand is O and the corresponding bit in the second
operand is 1; otherwise, it is set to O.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST « ((NOT DEST) AND SRC);

Intel C/C++ Compiler Intrinsic Equivalent
PANDN __m64 _mm_andnot_si64 (__m64 m1, __m64 m2)

PANDN _m128i _mm_andnot_si128 (_m128ia, __m128ib)
Flags Affected
None.

Numeric Exceptions

None.

4-68 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Vol.2B 4-69

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

4-70 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PAUSE—Spin Loop Hint

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
F3 90 PAUSE A Valid Valid Gives hint to processor that

improves performance of
spin-wait loops.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A NA NA NA NA
Description

Improves the performance of spin-wait loops. When executing a “spin-wait loop,” a
Pentium 4 or Intel Xeon processor suffers a severe performance penalty when exiting
the loop because it detects a possible memory order violation. The PAUSE instruction
provides a hint to the processor that the code sequence is a spin-wait loop. The
processor uses this hint to avoid the memory order violation in most situations,
which greatly improves processor performance. For this reason, it is recommended
that a PAUSE instruction be placed in all spin-wait loops.

An additional function of the PAUSE instruction is to reduce the power consumed by
a Pentium 4 processor while executing a spin loop. The Pentium 4 processor can
execute a spin-wait loop extremely quickly, causing the processor to consume a lot of
power while it waits for the resource it is spinning on to become available. Inserting
a pause instruction in a spin-wait loop greatly reduces the processor’s power
consumption.

This instruction was introduced in the Pentium 4 processors, but is backward compat-
ible with all IA-32 processors. In earlier 1A-32 processors, the PAUSE instruction
operates like a NOP instruction. The Pentium 4 and Intel Xeon processors implement
the PAUSE instruction as a pre-defined delay. The delay is finite and can be zero for
some processors. This instruction does not change the architectural state of the
processor (that is, it performs essentially a delaying no-op operation).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Execute_Next_Instruction(DELAY);

Numeric Exceptions

None.

Vol.2B 4-71

INSTRUCTION SET REFERENCE, N-Z

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

4-72 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

PAVGB/PAVGW—Average Packed Integers

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OFEQ/r PAVGB mm1, A Valid Valid Average packed unsigned
mm2/m64 byte integers from
mm2/m64 and mm1 with
rounding.
66 OF €O, /1 PAVGB xmm1, A Valid Valid Average packed unsigned
xmmZ2/m128 byte integers from

xmmZ2/m128and xmm1
with rounding.

OFE3/r PAVGW mm1, A Valid Valid Average packed unsigned
mm2/m64 word integers from
mm2/m64 and mm1 with
rounding.
66 OF E3 /1 PAVGW xmmT1, A Valid Valid Average packed unsigned
xmmZ2/m128 word integers from

xmmZ2/m128and xmm1
with rounding.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a SIMD average of the packed unsigned integers from the source operand
(second operand) and the destination operand (first operand), and stores the results
in the destination operand. For each corresponding pair of data elements in the first
and second operands, the elements are added together, a 1 is added to the tempo-
rary sum, and that result is shifted right one bit position. The source operand can be
an MMX technology register or a 64-bit memory location or it can be an XMM register
or a 128-bit memory location. The destination operand can be an MMX technology
register or an XMM register.

The PAVGB instruction operates on packed unsigned bytes and the PAVGW instruc-
tion operates on packed unsigned words.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PAVGB instruction with 64-bit operands:

Vol.2B 4-73

INSTRUCTION SET REFERENCE, N-Z

DEST[7:0] < (SRC[7:0] + DEST[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 6 *)
DEST[63:56] «— (SRC[63:56] + DEST[63:56] + 1) >> 1;

PAVGW instruction with 64-bit operands:
DEST[15:0] < (SRC[15:0] + DEST[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 and 3 *)
DEST[63:48] «<— (SRC[63:48] + DEST[63:48] + 1) >> 1;

PAVGB instruction with 128-bit operands:
DEST[7:0] « (SRC[7:0] + DEST[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 14 *)
DEST[127:120] «— (SRC[127:120] + DEST[127:120] + 1) >> 1;

PAVGW instruction with 128-bit operands:
DEST[15:0] «— (SRC[15:0] + DEST[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 through 6 *)
DEST[127:112] «— (SRC[127:112] + DEST[127:112] + 1) >> 1;

Intel C/C++ Compiler Intrinsic Equivalent

PAVGB __m64 _mm_avg_pu8 (_m64a, __m64 b)
PAVGW __m64 _mm_avg_pul6 (_m64a, __m64b)
PAVGB _ m128i_mm_avg_epu8(__m128ia,__m128ib)

PAVGW _ m128i_mm_avg_epul6 (__m128ia, __m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one

4-74 \Vol.2B

INSTRUCTION SET REFERENCE, N-Z

that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.

Vol.2B 4-75

INSTRUCTION SET REFERENCE, N-Z

#NM

H#MF
#PF(fault-code)
#AC(0)

4-76 Vol.2B

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PBLENDVB — Variable Blend Packed Bytes

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
66 OF 38 10 /r PBLENDVB xmm1, A Valid Valid Select byte values from
xmmZ2/m128, xmm1and xmmZ2/m128
<XMMO> from mask specified in the

high bit of each byte in
XMMO and store the values

into xmm71.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) <XMMO> NA

Description

Conditionally copies byte elements from the source operand (second operand) to the
destination operand (first operand) depending on mask bits defined in the implicit
third register argument, XMMO. The mask bits are the most significant bit in each
byte element of the XMMO register.

If a mask bit is “1", then the corresponding byte element in the source operand is
copied to the destination, else the byte element in the destination operand is left
unchanged.

The register assignment of the implicit third operand is defined to be the architectural
register XMMO.

Operation

MASK < XMMO;
IF (MASK[7] == 1)
THEN DEST[7:0] < SRC[7:0];
ELSE DEST[7:0] < DEST[7:0]; FI;
IF (MASK[15] == 1)
THEN DEST[15:8] < SRC[15:8];
ELSE DEST[15:8] < DEST[15:8]; FI;
IF (MASK[23] == 1)
THEN DEST[23:16] < SRC[23:16]
ELSE DEST[23:16] < DEST[23:16]; FI;
IF (MASK[31] == 1)
THEN DEST[31:24] < SRC[31:24]
ELSE DEST[31:24] < DEST[31:24]; FI;
IF (MASK[39] == 1)

Vol.2B 4-77

INSTRUCTION SET REFERENCE, N-Z

THEN DEST[39:32] € SR([39:32]
ELSE DEST[39:32] < DEST[39:32]; FI;
IF (MASK[47] == 1)
THEN DEST[47:40] & SRC[47:40]
ELSE DEST[47:40] < DEST[47:40]; F;
IF (MASK[55] == 1)
THEN DEST[55:48] & SRC[55:48]
ELSE DEST[55:48] < DEST[55:48]; FI;
IF (MASK[63] == 1)
THEN DEST[63:56] < SRC[63:56]
ELSE DEST[63:56] < DEST[63:56]; FI;
IF (MASK[71] == 1)
THEN DEST[71:64] € SRC[71:64]
ELSE DEST[71:64] < DEST[71:64]; F;
IF (MASK[79] == 1)
THEN DEST[79:72] € SRC[79:72]
ELSE DEST[79:72] € DEST[79:72]; FI;
IF (MASK[87] == 1)
THEN DEST[87:80] < SRC[87:80]
ELSE DEST[87:80] < DEST[87:80]; FI;
IF (MASK[95] == 1)
THEN DEST[95:88] < SRC[95:88]
ELSE DEST[95:88] < DEST[95:88]; FI;
IF (MASK[103] == 1)
THEN DEST[103:96] & SRC[103:96]
ELSE DEST[103:96] < DEST[103:96]; F;
IF (MASK[111] == 1)
THEN DEST[111:104] € SRC[111:104]
ELSE DEST[111:104] €< DEST[111:104]; FI;
IF (MASK[119] == 1)
THEN DEST[119:112] € SRC[119:112]
ELSE DEST[119:112] €« DEST[119:112]; FI;
IF (MASK[127] == 1)
THEN DEST[127:120] € SRC[127:120]
ELSE DEST[127:120] €< DEST[127:120]); FI;

Intel C/C++ Compiler Intrinsic Equivalent

PBLENDVB __m128i _mm_blendv_epi8 (__m128iv1, __m128iv2, __m128i mask);

Flags Affected
None

4-78 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If not aligned on 16-byte boundary, regardless of segment
If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

Vol.2B 4-79

INSTRUCTION SET REFERENCE, N-Z

#NM
#UD

4-80 Vol.2B

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

INSTRUCTION SET REFERENCE, N-Z

PBLENDW — Blend Packed Words

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
66 OF 3BA0E/r PBLENDW xmm1, A Valid Valid Select words from xmm1
ib xmm2/m128, and xmmZ2/m128 from mask
imm8 specified in imm8 and store
the values into xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) imm8 NA
Description

Conditionally copies word elements from the source operand (second operand) to the
destination operand (first operand) depending on the immediate byte (third
operand). Each bit of Imm8 correspond to a word element.

If a bit is “1", then the corresponding word element in the source operand is copied
to the destination, else the word element in the destination operand is left
unchanged.

Operation

IF (imm8[0] == 1)
THEN DEST[15:0] < SRC[15:0];
ELSE DEST[15:0] € DEST[15:0]; FI;
IF (imm8[1] == 1)
THEN DEST[31:16] & SRC[31:16];
ELSE DEST[31:16] < DEST[31:16]); FI;
IF (imm8[2] == 1)
THEN DEST[47:32] € SRC[47:32];
ELSE DEST[47:32] < DEST[47:32]; FI;
IF (imm8[3] == 1)
THEN DEST[63:48] < SRC[63:48];
ELSE DEST[63:48] < DEST[63:48]; FI;
IF (imm8[4] == 1)
THEN DEST[79:64] < SRC[79:64];
ELSE DEST[79:64] < DEST[79:64]; FI;
IF (imm8[5] == 1)
THEN DEST[95:80] < SRC[95:80];
ELSE DEST[95:80] < DEST[95:80]; F;
IF (imm8[6] == 1)

Vol.2B 4-81

INSTRUCTION SET REFERENCE, N-Z

THEN DEST[111:96] < SRC[111:96];
ELSE DEST[111:96] < DEST[111:96]; FI;

IF (imm8[7] == 1)

THEN DEST[127:112] €« SRC[127:112];
ELSE DEST[127:112] < DEST[127:112]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PBLENDW __m128i _mm_blend_epi16 (__m128iv1, _m128iv2, const int mask);

Flags Affected
None

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

4-82 Vol.2B

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

INSTRUCTION SET REFERENCE, N-Z

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Vol.2B 4-83

INSTRUCTION SET REFERENCE, N-Z

PCLMULQDQ - Carry-Less Multiplication Quadword

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
66 OF 3A 44 /r PCLMULQDQ A Valid Valid Carry-less multiplication of
ib xmm1, one quadword of xmm1 by
xmm2/m128, one quadword of
imm8 xmm2/m128, stores the

128-bit result in xmm1. The
immediate is used to deter-
mine which quadwords of
xmm1 and xmm2/m128
should be used.

Instruction Operand Encoding

Op/En Operand 1 Operand2 Operand3 Operand4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a carry-less multiplication of two quadwords, selected from the first source
and second source operand according to the value of the immediate byte. Bits 4 and
0 are used to select which 64-bit half of each operand to use according to Table 4-10,
other bits of the immediate byte are ignored.

Table 4-10. PCLMULQDQ Quadword Selection of Immediate Byte

Imm[4] Imm[0] PCLMULQDQ Operation
0 0 CL_MUL(SRC2'[63:0], SRC1[63:0])
0 1 CL_MUL(SRC2[63:0], SRC1[127:64])
1 0 CL_MUL(SRC2[127:64], SRC1[63:0])
1 1 CL_MUL(SRC2[127:64], SRC1[127:64])
NOTES:

1. SRC2 denotes the second source operand, which can be a register or memory; SRC1
denotes the first source and destination operand.

The first source operand and the destination operand are the same and must be an
XMM register. The second source operand can be an XMM register or a 128-bit
memory location.

Compilers and assemblers may implement the following pseudo-op syntax to simply
programming and emit the required encoding for Imma8.

4-84 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Table 4-11. Pseudo-Op and PCLMULQDQ Implementation

Pseudo-Op Imm8 Encoding
PCLMULLQLADQ xmm1, xmm2 0000_0000B
PCLMULHQLQDQ xmm1, xmmZ2 0000_0001B
PCLMULLQHDQ xmm1, xmmZ2 0001_0000B
PCLMULHQHDQ xmm1, xmmZ2 0001_0001B

Operation
PCLMULQDQ
IF (Imm8[0]1=0)
THEN
TEMP1 < SRC1 [63:0];
ELSE
TEMP1 €« SRC1 [127:64];
Fl
IF Imm8[4]=0)
THEN
TEMP2 <« SRC2 [63:0];
ELSE
TEMP2 € SRC2 [127:64];
Fl
Fori=0to63{
TmpB[i] < (TEMP1[0]and TEMP2[i]);
Forj=T11toi{
TmpB[i] < TmpB[i]xor (TEMP1[j]and TEMP2[i-j])
}
DEST[i] < TmpB[i J;
}
Fori=6410126{
TmpB[i] € 0;
Forj=i-63t063{
TmpB[i] < TmpB[i]xor (TEMP1[j]and TEMP2[i-j])
}
DEST[i] < TmpB[i];
}
DEST[127] €« O;
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PCLMULQDQ _ m128i _mm_clmulepi64_si1l28 (__m128i, _ m128i, const int)

Vol.2B 4-85

INSTRUCTION SET REFERENCE, N-Z

SIMD Floating-Point Exceptions

None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.PCLMULQDQ[bit 1] = O.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.PCLMULQDQ[bit 1] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

4-86 Vol.2B

#PF(fault-code)
#NM
#UD

INSTRUCTION SET REFERENCE, N-Z

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.PCLMULQDQ[bit 1] = 0.
If the LOCK prefix is used.

Vol.2B 4-87

INSTRUCTION SET REFERENCE, N-Z

PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF 74 /r PCMPEQB mm, A Valid Valid Compare packed bytes in
mm/m64 mm/m64 and mm for
equality.
66 OF 74 /r PCMPEQB xmm1, A Valid Valid Compare packed bytes in
xmmZ2/m128 xmmZ2/m128and xmm1 for
equality.
OF 75/r PCMPEQW mm, A Valid Valid Compare packed words in
mm/m64 mm/m64 and mm for
equality.
66 0F75/r PCMPEQW xmm1, A Valid Valid Compare packed words in
xmmZ2/m128 xmmZ2/m128 and xmm1 for
equality.
OF 76 /r PCMPEQD mm, A Valid Valid Compare packed
mm/m64 doublewords in mm/m64
and mm for equality.
66 0F 76 /r PCMPEQD xmm1, A Valid Valid Compare packed
xmmZ2/m128 doublewords in
xmmZ2/m128 and xmm1 for
equality.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a SIMD compare for equality of the packed bytes, words, or doublewords in
the destination operand (first operand) and the source operand (second operand). If
a pair of data elements is equal, the corresponding data element in the destination
operand is set to all 1s; otherwise, it is set to all 0s. The source operand can be an
MMX technology register or a 64-bit memory location, or it can be an XMM register or
a 128-bit memory location. The destination operand can be an MMX technology
register or an XMM register.

The PCMPEQB instruction compares the corresponding bytes in the destination and
source operands; the PCMPEQW instruction compares the corresponding words in
the destination and source operands; and the PCMPEQD instruction compares the
corresponding doublewords in the destination and source operands.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

4-88 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Operation

PCMPEQB instruction with 64-bit operands:
IF DEST[7:0] = SRC[7:0]
THEN DEST[7:0) «— FFH;
ELSE DEST[7:0] « O; FI;
(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)
IF DEST[63:56] = SRC[63:56]
THEN DEST[63:56] « FFH;
ELSE DEST[63:56] «- O; FI;

PCMPEQB instruction with 128-bit operands:
IF DEST[7:0] = SRC[7:0]
THEN DEST[7:0) «— FFH;
ELSE DEST[7:0] « O; FI;
(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)
IF DEST[127:120] = SRC[127:120]
THEN DEST[127:120] «— FFH;
ELSE DEST[127:120] «- O; FI;

PCMPEQW instruction with 64-bit operands:
IF DEST[15:0] = SRC[15:0]
THEN DEST[15:0] «— FFFFH;
ELSE DEST[15:0] «- O; FI;
(* Continue comparison of 2nd and 3rd words in DEST and SRC *)
IF DEST[63:48] = SRC[63:48]
THEN DEST[63:48] « FFFFH;
ELSE DEST[63:48] «— O; FI;

PCMPEQW instruction with 128-bit operands:
IF DEST[15:0] = SRC[15:0]
THEN DEST[15:0] < FFFFH;
ELSE DEST[15:0] « O; FI;
(* Continue comparison of 2nd through 7th words in DEST and SRC *)
IF DEST[127:112]=SRC[127:112]
THEN DEST[127:112] < FFFFH;
ELSE DEST[127:112] <~ O; FI;

PCMPEQD instruction with 64-bit operands:
IF DEST[31:0] = SRC[31:0]
THEN DEST[31:0] «— FFFFFFFFH;
ELSE DEST[31:0] < O; FI;
IF DEST[63:32] = SRC[63:32]
THEN DEST[63:32] «— FFFFFFFFH;
ELSE DEST[63:32] <~ O; FI;

Vol.2B 4-89

INSTRUCTION SET REFERENCE, N-Z

PCMPEQD instruction with 128-bit operands:
IF DEST[31:0] = SRC[31:0]
THEN DEST[31:0] « FFFFFFFFH;
ELSE DEST[31:0] < O; FI;
(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)
IF DEST[127:96] = SRC[127:96]
THEN DEST[127:96] « FFFFFFFFH;
ELSE DEST[127:96] « O; FI;

Intel C/C++ Compiler Intrinsic Equivalents

PCMPEQB __m64 _mm_cmpeq_pi8 (__m64 m1,

m64 m2)

PCMPEQW __m64 _mm_cmpeq_pi16 (__m64 m1, _m64 m2)
PCMPEQD __m64 _mm_cmpeq_pi32 (__m64 m1, __m64 m2)
PCMPEQB __m128i _mm_cmpeq_epi8 (_m128ia, __m128ib)
PCMPEQW __m128i _mm_cmpeq_epi16 (_m128ia, __m128ib)
PCMPEQD __m128i _mm_cmpeq_epi32 (_m128ia, _m128ib)

Flags Affected

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

4-90 Vol.2B

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-91

INSTRUCTION SET REFERENCE, N-Z

PCMPEQQ — Compare Packed Qword Data for Equal

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
66 OF 38 29/r PCMPEQQ xmm1, A Valid Valid Compare packed qwords in
xmm2/m128 xmmZ2/m128and xmm1 for
equality.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs an SIMD compare for equality of the packed quadwords in the destination
operand (first operand) and the source operand (second operand). If a pair of data
elements is equal, the corresponding data element in the destination is set to all 1s;
otherwise, it is set to Os.

Operation

IF (DEST[63:0] = SRC[63:0])
THEN DEST[63:0] < FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] < O; FI;

IF (DEST[127:64] = SRC[127:64])

THEN DEST[127:64] < FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] < O; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PCMPEQQ __m128i _mm_cmpeq_epi64(_m128ia, __m128ib);

Flags Affected

None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

4-92 Vol.2B

#NM
#UD

INSTRUCTION SET REFERENCE, N-Z

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is O.

If CPUID feature flag ECX.SSE4_1 is O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Vol.2B 4-93

INSTRUCTION SET REFERENCE, N-Z

PCMPESTRI — Packed Compare Explicit Length Strings, Return Index

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
66 OF 3A61 /r PCMPESTRI A Valid Valid Perform a packed
imm8 xmm1, comparison of string data
xmm2/m128, with explicit lengths,
imm8 generating an index, and

storing the result in ECX.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r) ModRM:r/m (r) imm8 NA
Description

The instruction compares and processes data from two string fragments based on the
encoded value in the Imm8 Control Byte (see Section 4.1, “Imm8 Control Byte Oper-
ation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”), and generates an

index stored to ECX.

Each string fragment is represented by two values. The first value is an xmm (or
possibly m128 for the second operand) which contains the data elements of the
string (byte or word data). The second value is stored in EAX (for xmm1) or EDX (for
xmm2/m128) and represents the number of bytes/words which are valid for the
respective xmm/m128 data.

The length of each input is interpreted as being the absolute-value of the value in
EAX (EDX). The absolute-value computation saturates to 16 (for bytes) and 8 (for
words), based on the value of imm8[bit3] when the value in EAX (EDX) is greater
than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 4.1). The index of the first (or last, according to
imm8[6]) set bit of IntRes2 (see Section 4.1.4) is returned in ECX. If no bits are set
in IntRes2, ECX is set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag - Reset if IntRes2 is equal to zero, set otherwise

ZFlag - Set if absolute-value of EDX is < 16 (8), reset otherwise
SFlag - Set if absolute-value of EAX is < 16 (8), reset otherwise
OFlag - IntRes2[0]

AFlag - Reset

PFlag - Reset

4-94 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Effective Operand Size

Operating Operand 1 Operand 2 Length 1 Length 2 Result
mode/size

16 bit Xmm xmm/m128 EAX EDX ECX
32 bit Xmm xmm/m128 EAX EDX ECX
64 bit Xmm xmm/m128 EAX EDX ECX
64 bit + REX.W Xmm xmm/m128 RAX RDX RCX

Intel C/C++ Compiler Intrinsic Equivalent For Returning Index

int _mm_cmpestri(__m128ia, intla, __m128ib, int Ib, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpestra (__m128ia, intla, __m128ib, int Ib, const int mode);
int _mm_cmpestrc (__m128i a, intla, __m128i b, int Ib, const int mode);
int _mm_cmpestro (__m128ia, intla, __m128ib, int Ib, const int mode);
int _mm_cmpestrs (__m128i 3, intla, __m128ib, int Ib, const int mode);
int _mm_cmpestrz (__m128i 3, intla, __m128i b, int Ib, const int mode);

SIMD Floating-Point Exceptions
N/A.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.
#SS(0) For an illegal address in the SS segment
#UD If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID.0O1H:ECX.SSE4_2 [Bit 20] is O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside the effective address
space from O to FFFFH.

Vol.2B 4-95

INSTRUCTION SET REFERENCE, N-Z

#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID.0O1H:ECX.SSE4_2 [Bit 20] is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is O.
If CPUID.0O1H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

4-96 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
66 OF 3A60/r PCMPESTRM A Valid Valid Perform a packed
imm8 xmmT, comparison of string data
xmm2/m128, with explicit lengths,
imm8 generating a mask, and
storing the result in XMMO

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r) ModRM:r/m (r) imm8 NA
Description

The instruction compares data from two string fragments based on the encoded
value in the imm8 contol byte (see Section 4.1, “Imm8 Control Byte Operation for
PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”), and generates a mask
stored to XMMO.

Each string fragment is represented by two values. The first value is an xmm (or
possibly m128 for the second operand) which contains the data elements of the
string (byte or word data). The second value is stored in EAX (for xmm1) or EDX (for
xmm2/m128) and represents the number of bytes/words which are valid for the
respective xmm/m128 data.

The length of each input is interpreted as being the absolute-value of the value in
EAX (EDX). The absolute-value computation saturates to 16 (for bytes) and 8 (for
words), based on the value of imm8[bit3] when the value in EAX (EDX) is greater
than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 4.1). As defined by imm8[6], IntRes2 is then
either stored to the least significant bits of XMMO (zero extended to 128 bits) or
expanded into a byte/word-mask and then stored to XMMO.

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag - Reset if IntRes2 is equal to zero, set otherwise

ZFlag - Set if absolute-value of EDX is < 16 (8), reset otherwise
SFlag - Set if absolute-value of EAX is < 16 (8), reset otherwise
OFlag -IntRes2[0]

AFlag - Reset

PFlag - Reset

Vol.2B 4-97

INSTRUCTION SET REFERENCE, N-Z

Effective Operand Size

Operating Operand1 Operand 2 Length1 Length2 Result
mode/size

16 bit Xmm xmm/m128 EAX EDX XMMO
32 bit Xmm xmm/m128 EAX EDX XMMO
64 bit Xmm xmm/m128 EAX EDX XMMO
64 bit + REXW | xmm xmm/m128 RAX RDX XMMO

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128i _mm_cmpestrm (__m128i g, int la, __m128i b, int Ib, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpestra (__m128i a, int la, __m128i b, int Ib, const int mode);
int _mm_cmpestrc (__m128ia, int la, __m128i b, int Ib, const int mode);
int _mm_cmpestro (__m128i a, int la, __m128i b, int Ib, const int mode);
int _mm_cmpestrs (__m128i a, int la, __m128i b, int Ib, const int mode);
int _mm_cmpestrz (__m128ia, intla, __m128ib, int Ib, const int mode);

SIMD Floating-Point Exceptions
N/A.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.
#SS(0) For an illegal address in the SS segment
#UD If EM in CRO is set.

If OSFXSR in CR4 is O.

If CPUID.O1H:ECX.SSE4_2 [Bit 20] is O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside the effective address
space from O to FFFFH.
#NM If TS in CRO is set.

4-98 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

#UD If EM in CRO is set.
If OSFXSR in CR4 is O.
If CPUID.0O1H:ECX.SSE4_2 [Bit 20] is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is O.
If CPUID.0O1H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Vol.2B 4-99

INSTRUCTION SET REFERENCE, N-Z

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for
Greater Than

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF64/r PCMPGTB mm, A Valid Valid Compare packed signed byte
mm/m64 integers in mm and
mm/m64 for greater than.
66 OF 64 /r PCMPGTB xmm1, A Valid Valid Compare packed signed byte
xmm2/m128 integers in xmm1 and
xmmZ2/m128 for greater
than.
OF65/r PCMPGTW mm, A Valid Valid Compare packed signed
mm/m64 word integers in mm and
mm/m64 for greater than.
66 OF 65 /r PCMPGTW xmm1, A Valid Valid Compare packed signed
xmm2/m128 word integers in xmm1 and
xmmZ2/m128 for greater
than.
OF 66 /r PCMPGTD mm, A Valid Valid Compare packed signed
mm/m64 doubleword integers in mm
and mm/mé64 for greater
than.
66 OF 66 /1 PCMPGTD xmm1, A Valid Valid Compare packed signed
xmm2/m128 doubleword integers in

xmm1 and xmmZ2/m128 for
greater than.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a SIMD signed compare for the greater value of the packed byte, word, or
doubleword integers in the destination operand (first operand) and the source
operand (second operand). If a data element in the destination operand is greater
than the corresponding date element in the source operand, the corresponding data
element in the destination operand is set to all 1s; otherwise, it is set to all 0Os. The
source operand can be an MMX technology register or a 64-bit memory location, or it
can be an XMM register or a 128-bit memory location. The destination operand can
be an MMX technology register or an XMM register.

4-100 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

The PCMPGTB instruction compares the corresponding signed byte integers in the
destination and source operands; the PCMPGTW instruction compares the corre-
sponding signed word integers in the destination and source operands; and the
PCMPGTD instruction compares the corresponding signed doubleword integers in the
destination and source operands.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PCMPGTB instruction with 64-bit operands:
IF DEST[7:0] > SRC[7:0]
THEN DEST[7:0) «— FFH;
ELSE DEST[7:0] « O; FI;
(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)
IF DEST[63:56] > SRC[63:56]
THEN DEST[63:56] « FFH;
ELSE DEST[63:56] «- O; FI;

PCMPGTB instruction with 128-bit operands:
IF DEST[7:0] > SRC[7:0]
THEN DEST[7:0) «— FFH;
ELSE DEST[7:0] « O; FI;
(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)
IF DEST[127:120] > SRC[127:120]
THEN DEST[127:120] «— FFH;
ELSE DEST[127:120] «- O; FI;

PCMPGTW instruction with 64-bit operands:
IF DEST[15:0] > SRC[15:0]
THEN DEST[15:0] «— FFFFH;
ELSE DEST[15:0] «- O; FI;
(* Continue comparison of 2nd and 3rd words in DEST and SRC *)
IF DEST[63:48] > SRC[63:48]
THEN DEST[63:48] « FFFFH;
ELSE DEST[63:48] «— O; FI;

PCMPGTW instruction with 128-bit operands:
IF DEST[15:0] > SRC[15:0]
THEN DEST[15:0] «<— FFFFH;
ELSE DEST[15:0] «— O; FI;
(* Continue comparison of 2nd through 7th words in DEST and SRC *)
IF DEST[63:48] > SRC[127:112]
THEN DEST[127:112] «— FFFFH;
ELSE DEST[127:112] « O; FI;

Vol.2B 4-101

INSTRUCTION SET REFERENCE, N-Z

PCMPGTD instruction with 64-bit operands:
IF DEST[31:0] > SRC[31:0]
THEN DEST[31:0] «— FFFFFFFFH;
ELSE DEST[31:0] «- O; FI;
IF DEST[63:32] > SRC[63:32]
THEN DEST[63:32] «— FFFFFFFFH;
ELSE DEST[63:32] «- O; FI;

PCMPGTD instruction with 128-bit operands:
IF DEST[31:0] > SRC[31:0]
THEN DEST[31:0] «— FFFFFFFFH;
ELSE DEST[31:0] «- O; FI;
(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)
IF DEST[127:96] > SRC[127:96]
THEN DEST[127:96] «— FFFFFFFFH;
ELSE DEST[127:96] « O; FI;

Intel C/C++ Compiler Intrinsic Equivalents

PCMPGTB __m64 _mm_cmpgt_pi8 (_m64 m1, __m64 m2)
PCMPGTW __m64 _mm_pcmpgt_pi16 (__m64 m1, _m64 m2)
DCMPGTD __m64 _mm_pcmpgt_pi32 (__m64 m1, __m64 m2)
PCMPGTB __m128i _mm_cmpgt_epi8 (_m128ia, __m128ib)
PCMPGTW __m128i _mm_cmpgt_epi16 (_m128ia, __m128ib)
DCMPGTD __m128i _mm_cmpgt_epi32 (_m128ia, __m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

4-102 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

Vol.2B 4-103

INSTRUCTION SET REFERENCE, N-Z

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

4-104 Vol.2B

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PCMPGTQ — Compare Packed Data for Greater Than

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
66 OF 38 37 /r PCMPGTQ A Valid Valid Compare packed qwords in
xmm1,xmm2/m12 xmmZ2/m128and xmm?1 for
8 greater than.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs an SIMD compare for the packed quadwords in the destination operand
(first operand) and the source operand (second operand). If the data element in the
first (destination) operand is greater than the corresponding element in the second
(source) operand, the corresponding data element in the destination is set to all 1s;
otherwise, it is set to Os.

Operation

IF (DEST[63-0] > SRC[63-0))
THEN DEST[63-0] ¢ FFFFFFFFFFFFFFFFH;
ELSE DEST[63-0] < O; FI

IF (DEST[127-64] > SRC[127-64])

THEN DEST[127-64] € FFFFFFFFFFFFFFFFH;
ELSE DEST[127-64] € O; FI

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

PCMPGTQ _m128i _mm_cmpgt_epi64(_m128ia, __m128ib)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

If not aligned on 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

Vol.2B 4-105

INSTRUCTION SET REFERENCE, N-Z

#PF (fault-code)
#UD

#NM

For a page fault.

If CRO.EM = 1.

If CR4.0SFXSR(bit 9) = 0.

If CPUID.0O1H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.
If TS bit in CRO is set.

Real Mode Exceptions

#GP

#UD

#NM

If any part of the operand lies outside of the effective address
space from O to OFFFFH.

If not aligned on 16-byte boundary, regardless of segment.
If CRO.EM = 1.

If CR4.0SFXSR(bit 9) = 0.

If CPUID.0O1H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

If TS bit in CRO is set.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF (fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF (fault-code)
#UD

4-106 Vol.2B

If the memory address is in a nhon-canonical form.
If not aligned on 16-byte boundary, regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If CRO.EM = 1.

If CR4.0SFXSR(bit 9) = 0.

If CPUID.0O1H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

INSTRUCTION SET REFERENCE, N-Z

#NM If TS bit in CRO is set.

Vol.2B 4-107

INSTRUCTION SET REFERENCE, N-Z

PCMPISTRI — Packed Compare Implicit Length Strings, Return Index

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
66 OF 3A63 /r PCMPISTRI xmm1, A Valid Valid Perform a packed
imm8 xmm2/m128, comparison of string data
imm8 with implicit lengths,

generating an index, and
storing the result in ECX.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r) ModRM:r/m (r) imm8 NA
Description

The instruction compares data from two strings based on the encoded value in the
Imm8 Control Byte (see Section 4.1, “Imm8 Control Byte Operation for PCMPESTRI /
PCMPESTRM / PCMPISTRI / PCMPISTRM”), and generates an index stored to ECX.

Each string is represented by a single value. The value is an xmm (or possibly m128
for the second operand) which contains the data elements of the string (byte or word
data). Each input byte/word is augmented with a valid/invalid tag. A byte/word is

considered valid only if it has a lower index than the least significant null byte/word.
(The least significant null byte/word is also considered invalid.)

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 4.1). The index of the first (or last, according to
imm8[6]) set bit of IntRes2 is returned in ECX. If no bits are set in IntRes2, ECX is
set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag - Reset if IntRes2 is equal to zero, set otherwise

ZFlag - Set if any byte/word of xmm2/mem128 is null, reset otherwise
SFlag - Set if any byte/word of xmm1 is null, reset otherwise

OFlag -IntRes2[0]

AFlag - Reset

PFlag - Reset

4-108 Vol.2B

Effective Operand Size

INSTRUCTION SET REFERENCE, N-Z

Operating mode/size | Operand1 Operand 2 Result
16 bit Xmm xmm/m128 ECX
32 bit Xmm xmm/m128 ECX
64 bit Xmm xmm/m128 ECX
64 bit + REX.W Xmm xmm/m128 RCX

Intel C/C++ Compiler Intrinsic Equivalent For Returning Index

int _mm_cmpistri (__m128ia, __m128i b, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpistra (__m128ia, __m128ib, const int mode

int _mm_cmpistrc (__m128ia, __m128i b, const int mode
int _mm_cmpistro (__m128ia, __m128i b, const int mode);
int _mm_cmpistrs (__m128ia,
int _mm_cmpistrz (__m128ia, __m128i b, const int mode

SIMD Floating-Point Exceptions

N/A.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#PF(fault-code) For a page fault.

m128i b, const int mode);

)
)

r

4

a

#NM If TS in CRO is set.
#SS(0) For an illegal address in the SS segment.
#UD If EM in CRO is set.

If OSFXSR in CR4 is O.
If CPUID.0O1H:ECX.SSE4_2 [Bit 20] is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside the effective address
space from O to FFFFH.

Vol.2B 4-109

INSTRUCTION SET REFERENCE, N-Z

#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID.0O1H:ECX.SSE4_2 [Bit 20] is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is O.
If CPUID.O1H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

4-110 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
66 OF 3A62 /r PCMPISTRM A Valid Valid Perform a packed
imm8 xmmT, comparison of string data
xmm2/m128, with implicit lengths,
imm8 generating a mask, and

storing the result in XMMO.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r) ModRM:r/m (r) imm8 NA
Description

The instruction compares data from two strings based on the encoded value in the
imma8 byte (see Section 4.1, “Imm8 Control Byte Operation for PCMPESTRI /
PCMPESTRM / PCMPISTRI / PCMPISTRM”) generating a mask stored to XMMO.

Each string is represented by a single value. The value is an xmm (or possibly m128
for the second operand) which contains the data elements of the string (byte or word
data). Each input byte/word is augmented with a valid/invalid tag. A byte/word is

considered valid only if it has a lower index than the least significant null byte/word.
(The least significant null byte/word is also considered invalid.)

The comparison and aggregation operation are performed according to the encoded
value of Imm8 bit fields (see Section 4.1). As defined by imm8[6], IntRes2 is then
either stored to the least significant bits of XMMO (zero extended to 128 bits) or
expanded into a byte/word-mask and then stored to XMMO.

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag - Reset if IntRes2 is equal to zero, set otherwise

ZFlag - Set if any byte/word of xmm2/mem128is null, reset otherwise
SFlag - Set if any byte/word of xmm1 is null, reset otherwise

OFlag - IntRes2[0]

AFlag - Reset

PFlag - Reset

Vol.2B 4-111

INSTRUCTION SET REFERENCE, N-Z

Effective Operand Size

Operating mode/size Operand1 Operand 2 Result
16 bit Xmm xmm/m128 XMMO
32 bit Xmm xmm/m128 XMMO
64 bit Xmm xmm/m128 XMMO
64 bit + REX.W Xmm xmm/m128 XMMO

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128i _mm_cmpistrm (__m128ia, __m128i b, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpistra (__m128ia, __m128ib, const int mode);
int _mm_cmpistrc (__m128ia, __m128i b, const int mode);
int _mm_cmpistro (__m128ia, __m128i b, const int mode);
int _mm_cmpistrs (__m128ia, __m128i b, const int mode);
int _mm_cmpistrz (__m128ia, __m128i b, const int mode);

SIMD Floating-Point Exceptions
N/A.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.
#SS(0) For an illegal address in the SS segment
#UD If EM in CRO is set.

If OSFXSR in CR4 is O.

If CPUID.0O1H:ECX.SSE4_2 [Bit 20] is O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside the effective address
space from O to FFFFH.

#NM If TS in CRO is set.

#UD If EM in CRO is set.

4-112 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

If OSFXSR in CR4 is O.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is O.
If CPUID.0O1H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Vol.2B 4-113

INSTRUCTION SET REFERENCE, N-Z

PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword

Opcode Instruction Op/ 64-Bit Compat/ Description

En Mode Leg Mode
66 0F3A 14 PEXTRB reg/m8, A Valid Valid Extract a byte integer value
Irib xmmZ, imm8 from xmmZ at the source

byte offset specified by
imm8into rreg or m8. The
upper bits of r32 or r64 are

zeroed.
66 0F 3A 16 PEXTRD r/m32, A Valid Valid Extract a dword integer
/rib xmmZ2, imm8 value from xmmZ at the

source dword offset
specified by imm8 into

r/m32.

66 REX.W OF PEXTRQ r/mb64, A Valid N. E. Extract a qword integer

3A 16 XxmmZ, imm8 value from xmmZ at the

Irib source qword offset
specified by imm8 into
r/mé4.

Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:r/m (w) ModRM:reg (r) imm8 NA

Description

Copies a data element (byte, dword, quadword) in the source operand (second
operand) specified by the count operand (third operand) to the destination operand
(first operand). The source operand is an XMM register. The destination operand can
be a general-purpose register or a memory address. The count operand is an 8-bit
immediate. When specifying a quadword [dword, byte] element, the [2, 4] least-
significant bit(s) of the count operand specify the location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15). PEXTRQ requires REX.W. If the
destination operand is a general-purpose register, the default operand size of
PEXTRB/PEXTRW is 64 bits.

Operation
CASE of
PEXTRB: SEL ¢ COUNT[3:0];
TEMP < (Src >> SEL*8) AND FFH;
IF (DEST = Mem8)
THEN

4-114 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Mem8 < TEMP[7:0];
ELSE IF (64-Bit Mode and 64-bit register selected)
THEN
R64[7:0] < TEMP[7:0];
r64[63:8] «— ZERO_FILL; };
ELSE
R32[7:0] €< TEMP[7:0];
r32[31:8] < ZERO_FILL;
Fl;
PEXTRD:SEL < COUNT[1:0];
TEMP & (Src >> SEL*32) AND FFFF_FFFFH;
DEST <« TEMP;
PEXTRQ: SEL € COUNTI[O];
TEMP & (Src >> SEL*64);
DEST <« TEMP;
EASC:

Intel C/C++ Compiler Intrinsic Equivalent
PEXTRB int _mm_extract_epi8 (__m128i src, const int ndx);

PEXTRD int _mm_extract_epi32 (__m128i src, const int ndx);

PEXTRQ __int64 _mm_extract_epi64 (__m128i src, const int ndx);
Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Vol.2B 4-115

INSTRUCTION SET REFERENCE, N-Z

#AC(0) (Dword and qword references) If alignment checking is enabled
and an unaligned memory reference is made while the current
privilege level is 3.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.
#NM If CRO.TS[bit 3] = 1.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

#AC(0) (Dword and gword references) If alignment checking is enabled
and an unaligned memory reference is made while the current
privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) (Dword and qword references) If alignment checking is enabled
and an unaligned memory reference is made while the current
privilege level is 3.

4-116 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

PEXTRW—Extract Word

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OFC5/rib PEXTRW reg, mm, A Valid Valid Extract the word specified
imm8 by imm8from mmand move

it to reg, bits 15-0. The
upper bits of r32 or ré4 is

zeroed.
66 OFC5/rib PEXTRW reg, A Valid Valid Extract the word specified
Xmm, imm8 by imm8 from xmm and

move it to reg, bits 15-0.
The upper bits of r32 or ré4

is zeroed.
66 OF 3A 15 PEXTRW reg/m16, B Valid Valid Extract the word specified
/rib Xxmm, imm8 by imm8 from xmm and

copy it to lowest 16 bits of
reg or m16. Zero-extend
the result in the destination,

r32 or r64.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:reg (r) imm8 NA
B ModRM:r/m (w) ModRM:reg (r) imm8 NA

Description

Copies the word in the source operand (second operand) specified by the count
operand (third operand) to the destination operand (first operand). The source
operand can be an MMX technology register or an XMM register. The destination
operand can be the low word of a general-purpose register or a 16-bit memory
address. The count operand is an 8-bit immediate. When specifying a word location
in an MMX technology register, the 2 least-significant bits of the count operand
specify the location; for an XMM register, the 3 least-significant bits specify the loca-
tion. The content of the destination register above bit 16 is cleared (set to all 0s).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15). If the destination operand is a
general-purpose register, the default operand size is 64-bits in 64-bit mode.

Operation

IF (DEST = Mem16)

Vol.2B 4-117

INSTRUCTION SET REFERENCE, N-Z

THEN
SEL < COUNT[2:0];
TEMP & (Src >> SEL*16) AND FFFFH;
Mem16 < TEMP[15:0];
ELSE IF (64-Bit Mode and destination is a general-purpose register)
THEN
FOR (PEXTRW instruction with 64-bit source operand)
{ SEL «- COUNTI[1:0];
TEMP « (SRC >> (SEL * 16)) AND FFFFH;
r64[15:0] « TEMP[15:0];
r64[63:16] «<— ZERO_FILL; };
FOR (PEXTRW instruction with 128-bit source operand)
{ SEL «— COUNT[2:0];
TEMP « (SRC >> (SEL * 16)) AND FFFFH;
r64[15:0] « TEMP[15:0];
r64[63:16] «— ZERO_FILL; }
ELSE
FOR (PEXTRW instruction with 64-bit source operand)
{ SEL « COUNT[1:0];
TEMP « (SRC >> (SEL * 16)) AND FFFFH;
r32[15:0] « TEMP[15:0];
r32[31:16] «<— ZERO_FILL; };
FOR (PEXTRW instruction with 128-bit source operand)
{ SEL «- COUNT[2:0];
TEMP « (SRC >> (SEL * 16)) AND FFFFH;
r32[15:0] « TEMP[15:0];
r32[31:16] <~ ZERO_FILL; };
Fl;
Fl;

Intel C/C++ Compiler Intrinsic Equivalent

PEXTRW int _mm_extract_pi16 (_m64 3, int n)
PEXTRW int _mm_extract_epi16 (_m128i a, int imm)

Flags Affected

None.

Numeric Exceptions

None.

4-118 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0) (3 byte opcode only) If a memory operand effective address is
outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) (3 byte opcode only) If a memory operand effective address is
outside the SS segment limit.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(3 byte opcode only) If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

(3 byte opcode only) Either the prefix REP (F3h) or REPN (F2H)

is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) (3 byte opcode only) If a page fault occurs.

#AC(0) (3 byte opcode only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (3 byte opcode only) If any part of the operand lies outside of
the effective address space from 0 to FFFFH.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(3 byte opcode only) If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

(3 byte opcode only) Either the prefix REP (F3h) or REPN (F2H)

is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) (3 byte opcode only) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Vol.2B 4-119

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#UD

#NM
#MF
#AC(0)

4-120 Vol.2B

(3 byte opcode only) If the memory address is in a non-canon-
ical form.

(3 byte opcode only) If a memory address referencing the SS
segment is in a non-canonical form.

(3 byte opcode only) For a page fault.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(3 byte opcode only) If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

(3 byte opcode only) Either the prefix REP (F3h) or REPN (F2H)
is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

(3 byte opcode only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PHADDW/PHADDD — Packed Horizontal Add

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF 3801 /r PHADDW mm1, A Valid Valid Add 16-bit signed integers
mm2/m64 horizontally, pack to MM1.
66 OF 3801 /r PHADDW xmm1, A Valid Valid Add 16-bit signed integers
xmm2/m128 horizontally, pack to XMM1.
OF 3802 /r PHADDD mm1, A Valid Valid Add 32-bit signed integers
mm2/m64 horizontally, pack to MMT.
66 OF 3802 /r PHADDD xmm1, A Valid Valid Add 32-bit signed integers
xmm2/m128 horizontally, pack to XMMT.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

PHADDW adds two adjacent 16-bit signed integers horizontally from the source and
destination operands and packs the 16-bit signed results to the destination operand
(first operand). PHADDD adds two adjacent 32-bit signed integers horizontally from
the source and destination operands and packs the 32-bit signed results to the desti-
nation operand (first operand). Both operands can be MMX or XMM registers. When

the source operand is a 128-bit memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation
PHADDW with 64-bit operands:

mm1[15-0] = mm1[31-16]+ mm1[15-0];
mm1[31-16] = mm1[63-48] + mm1[47-32];
mm1[47-32] = mm2/m64[31-16] + mm2/m64[15-0];
mm1[63-48] = mm2/m64[63-48] + mm2/m64[47-32];

PHADDW with 128-bit operands :

xmm1[15-0] = xmm1[31-16] + xmm1[15-0];

xmm1[31-16] = xmm1[63-48] + xmm1[47-32];
xmm1[47-32] = xmm1[95-80] + xmm1[79-64];
xmm1[63-48] = xmm1[127-112] + xmm1[111-96];
xmm1[79-64] = xmm2/m128[31-16] + xmm2/m128[15-0];

Vol.2B 4-121

INSTRUCTION SET REFERENCE, N-Z

xmm1[95-80] = xmm2/m128[63-48] + xmm2/m128[47-32];
xmm1[111-96] = xmm2/m128[95-80] + xmm2/m128[79-64];
xmm1[127-112] = xmm2/m128[127-112] + xmm2/m128[111-96];

PHADDD with 64-bit operands :

mm1[31-0] = mm1[63-32] + mm1[31-0];
mm1[63-32] = mm2/m64[63-32] + mm2/m64[31-0];

PHADDD with 128-bit operands:

xmm1[31-0] = xmm1[63-32] + xmm1[31-0];

xmm1[63-32] = xmm1[127-96] + xmm1[95-64];

xmm1[95-64] = xmm2/m128[63-32] + xmm2/m128[31-0];
xmm1[127-96] = xmm2/m128[127-96] + xmm2/m128[95-64];

Intel C/C++ Compiler Intrinsic Equivalents

PHADDW _ m64 _mm_hadd_pi16 (__m64 a, __m64 b)
PHADDW __ m128i _mm_hadd_epi16 (_m128ia, __m128ib)
PHADDD _ m64 _mm_hadd_pi32 (__m64 a, __m64 b)
PHADDD _ m128i _mm_hadd_epi32 (_m128ia,__m128ib)

Protected Mode Exceptions

#GP(0): If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM(bit 2)= 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.

#NM If TS bit in CRO is set.

HMF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

4-122 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.
#NM If TS bit in CRO is set.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only). If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSSE3[bit 9] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-123

INSTRUCTION SET REFERENCE, N-Z

PHADDSW — Packed Horizontal Add and Saturate

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF3803/r PHADDSW mm1, A Valid Valid Add 16-bit signed integers
mm2/m64 horizontally, pack saturated
integers to MM1.
66 0F 3803 /r PHADDSW xmm1, A Valid Valid Add 16-bit signed integers
xmm2/m128 horizontally, pack saturated
integers to XMM1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

PHADDSW adds two adjacent signed 16-bit integers horizontally from the source and
destination operands and saturates the signed results; packs the signed, saturated
16-bit results to the destination operand (first operand) Both operands can be MMX
or XMM registers. When the source operand is a 128-bit memory operand, the
operand must be aligned on a 16-byte boundary or a general-protection exception
(#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation
PHADDSW with 64-bit operands:

mm1[15-0] = SaturateToSignedWord((mm1[31-16] + mm1[15-0]);
mm1[31-16] = SaturateToSignedWord(mm1[63-48] + mm1[47-32]);
mm1[47-32] = SaturateToSignedWord(mm2/m64[31-16] + mm2/m64[15-0]);
mm1[63-48] = SaturateToSignedWord(mm2/m64[63-48] + mm2/m64[47-32]);

PHADDSW with 128-bit operands :

xmm1[15-0]= SaturateToSignedWord(xmm1[31-16] + xmm1[15-0]);

xmm1[31-16] = SaturateToSignedWord(xmm1[63-48] + xmm1[47-32]);

xmm1[47-32] = SaturateToSignedWord(xmm1[95-80] + xmm1[79-64]);

xmm1[63-48] = SaturateToSignedWord(xmm1[127-112] + xmm1[111-96]);

xmm1[79-64] = SaturateToSignedWord(xmm2/m128[31-16] + xmm2/m128[15-0]);
xmm1[95-80] = SaturateToSignedWord(xmm2/m128[63-48] + xmm2/m128[47-32));
xmm1[111-96] = SaturateToSignedWord(xmm2/m128[95-80] + xmm2/m128[79-64));
xmm1[127-112] = SaturateToSignedWord(xmm2/m128[127-112] + xmm2/m128[111-96]);

4-124 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent

PHADDSW __m64 _mm_hadds_pi16 (__m64 a, __m64 b)
PHADDSW __m128i _mm_hadds_epi16 (__m128ia, __m128ib)

Protected Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#UD

#NM
H#MF
#AC(0):

If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If CRO.EM = 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

If TS bit in CRO is set.

(64-bit operations only) If there is a pending x87 FPU exception.

(64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0)

#UD

#NM
H#MF

If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

If CRO.EM = 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

If TS bit in CRO is set.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Vol.2B 4-125

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

4-126 Vol. 2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PHMINPOSUW — Packed Horizontal Word Minimum

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
66 OF 3841 /r PHMINPOSUW A Valid Valid Find the minimum unsigned
xmmT, word in xmm2/m128 and
xmm2/m128 place its value in the low

word of xmm1 and its index
in the second-lowest word

of xmm1.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) NA NA

Description

Determine the minimum unsigned word value in the source operand (second
operand) and place the unsigned word in the low word (bits 0-15) of the destination
operand (first operand). The word index of the minimum value is stored in bits 16-
18 of the destination operand. The remaining upper bits of the destination are set to
zero.

Operation

INDEX € O;
MIN < SR([15:0]
IF (SRC[31:16] < MIN)
THEN INDEX < 1; MIN €« SRC[31:16]; FI;
IF (SRC[47:32] < MIN)
THEN INDEX < 2; MIN €« SRC[47:32]; FI;
* Repeat operation for words 3 through 6
IF (SRC[127:112] < MIN)
THEN INDEX € 7; MIN € SRC[127:112]; FI;
DEST[15:0] € MIN;
DEST[18:16] < INDEX;
DEST[127:19] €< 0000000000000000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent

PHMINPOSUW __m128i _mm_minpos_epu16(__m128i packed_words);

Vol.2B 4-127

INSTRUCTION SET REFERENCE, N-Z

Flags Affected
None

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

4-128 Vol.2B

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

INSTRUCTION SET REFERENCE, N-Z

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is O.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Vol.2B 4-129

INSTRUCTION SET REFERENCE, N-Z

PHSUBW/PHSUBD — Packed Horizontal Subtract

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF 3805 /r PHSUBW mm1, A Valid Valid Subtract 16-bit signed
mm2/m64 integers horizontally, pack
to MM1.
66 0F 3805 /r PHSUBW xmm1, A Valid Valid Subtract 16-bit signed
xmm2/m128 integers horizontally, pack
to XMMT.
OF 3806 /r PHSUBD mm1, A Valid Valid Subtract 32-bit signed
mm2/m64 integers horizontally, pack
to MM1.
66 OF 3806 /r PHSUBD xmmT1, A Valid Valid Subtract 32-bit signed
xmm2/m128 integers horizontally, pack
to XMMT.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

PHSUBW performs horizontal subtraction on each adjacent pair of 16-bit signed inte-
gers by subtracting the most significant word from the least significant word of each
pair in the source and destination operands, and packs the signed 16-bit results to
the destination operand (first operand). PHSUBD performs horizontal subtraction on
each adjacent pair of 32-bit signed integers by subtracting the most significant
doubleword from the least significant doubleword of each pair, and packs the signed
32-bit result to the destination operand. Both operands can be MMX or XMM regis-
ters. When the source operand is a 128-bit memory operand, the operand must be
aligned on a 16-byte boundary or a general-protection exception (#GP) will be
generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation
PHSUBW with 64-bit operands:

mm1[15-0] = mm1[15-0] - mm1[31-16];

mm1[31-16] = mm1[47-32] - mm1[63-48];
mm1[47-32] = mm2/m64[15-0] - mm2/m64[31-16];
mm1[63-48] = mm2/m64[47-32] - mm2/m64[63-48];

4-130 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

PHSUBW with 128-bit operands:

xmm1[15-0] = xmm1[15-0] - xmm1[31-16];

xmm1[31-16] = xmm1[47-32] - xmm1[63-48];

xmm1[47-32] = xmm1[79-64] - xmm1[95-80];

xmm1[63-48] = xmm1[111-96] - xmm1[127-112];

xmm1[79-64] = xmm2/m128[15-0] - xmm2/m128[31-16];
xmm1[95-80] = xmm2/m128[47-32] - xmm2/m128[63-48];
xmm1[111-96] = xmm2/m128[79-64] - xmm2/m128[395-80];
xmm1[127-112] = xmm2/m128[111-96] - xmm2/m128[127-112];

PHSUBD with 64-bit operands:

mm1[31-0] = mm1[31-0] - mm1[63-32];
mm1[63-32] = mm2/m64[31-0] - mm2/m64[63-32];

PHSUBD with 128-bit operands:

xmm1[31-0] = xmm1[31-0] - xmm1[63-32];

xmm1[63-32] = xmm1[95-64] - xmm1[127-96];

xmm1[95-64] = xmm2/m128[31-0] - xmm2/m128[63-32];
xmm1[127-96] = xmm2/m128[95-64] - xmm2/m128[127-96];

Intel C/C++ Compiler Intrinsic Equivalents

PHSUBW
PHSUBW
PHSUBD
PHSUBD

__m64 _mm_hsub_pi16 (__m64 a, __m64 b)
__m128i _mm_hsub_epi16 (_m128ia, __m128ib)
__m64 _mm_hsub_pi32 (__m64 a, __m64 b)
__m128i _mm_hsub_epi32 (__m128ia,__m128ib)

Protected Mode Exceptions

#GP(0)

#SS(0)

If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD

#NM

If CRO.EM = 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

If TS bit in CRO is set.

Vol.2B 4-131

INSTRUCTION SET REFERENCE, N-Z

H#MF If there is a pending x87 FPU exception (64-bit operations only).

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0): If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD: If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.
#NM If TS bit in CRO is set.
HMF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.SSSE3[bit 9] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

4-132 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-133

INSTRUCTION SET REFERENCE, N-Z

PHSUBSW — Packed Horizontal Subtract and Saturate

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
0F 3807 /r PHSUBSW mm1, A Valid Valid Subtract 16-bit signed
mm2/m64 integer horizontally, pack
saturated integers to MM1.
66 0F 3807 /r PHSUBSW xmm1, A Valid Valid Subtract 16-bit signed
xmm2/m128 integer horizontally, pack

saturated integers to XMM1

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

PHSUBSW performs horizontal subtraction on each adjacent pair of 16-bit signed
integers by subtracting the most significant word from the least significant word of
each pair in the source and destination operands. The signed, saturated 16-bit
results are packed to the destination operand (first operand). Both operands can be
MMX or XMM register. When the source operand is a 128-bit memory operand, the
operand must be aligned on a 16-byte boundary or a general-protection exception
(#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation
PHSUBSW with 64-bit operands:

mm1[15-0] = SaturateToSignedWord(mm1[15-0] - mm1[31-16]);

mm1[31-16] = SaturateToSignedwWord(mm1[47-32] - mm1[63-48]);
mm1[47-32] = SaturateToSignedWord(mm2/m64[15-0] - mm2/m64[31-16]);
mm1[63-48] = SaturateToSignedWord(mm2/m64[47-32] - mm2/m64[63-48]);

PHSUBSW with 128-bit operands:

xmm1[15-0] = SaturateToSignedWord(xmm1[15-0] - xmm1[31-16]);

xmm1[31-16] = SaturateToSignedWord(xmm1[47-32] - xmm1[63-48));
xmm1[47-32] = SaturateToSignedWord(xmm1[79-64] - xmm1[95-80]);
xmm1[63-48] = SaturateToSignedWord(xmm1[111-96] - xmm1[127-112]);
xmm1[79-64] = SaturateToSignedWord(xmm2/m128[15-0] - xmm2/m128[31-16]);
xmm1[95-80] =SaturateToSignedWord(xmm2/m128[47-32] - xmm2/m128[63-48));
xmm1[111-96] =SaturateToSignedWord(xmm2/m128[79-64] - xmm2/m128[95-80]));

4-134 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

xmm1[127-112]= SaturateToSignedWord(xmm2/m128[111-96] - xmm2/m128[127-112]);

Intel C/C++ Compiler Intrinsic Equivalent

PHSUBSW __m64 _mm_hsubs_pi16 (__m64 a3, __m64 b)
PHSUBSW __m128i _mm_hsubs_epi16 (__m128ia, __m128iDb)

Protected Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#UD

#NM
#MF
#AC(0)

if a memory operand effective address is outside the CS, DS, ES,
FS or GS segments.

If not aligned on 16-byte boundary, regardless of segment
(128-bit operations only).

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If CRO.EM = 1.

If CR4.0SFXSR(bit 9) = 0 (128-bit operations only).

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

If TS bit in CRO is set.

If there is a pending x87 FPU exception (64-bit operations only).

If alignment checking is enabled and unaligned memory refer-
ence is made while the current privilege level is 3 (64-bit opera-
tions only).

Real Mode Exceptions

#GP(0)

#UD

#NM
#MF

If any part of the operand lies outside of the effective address
space from O to OFFFFH.

If not aligned on 16-byte boundary, regardless of segment
(128-bit operations only).

If CRO.EM = 1.

If CR4.0SFXSR(bit 9) = 0 (128-bit operations only).

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

If TS bit in CRO is set.

If there is a pending x87 FPU exception (64-bit operations only).

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code)

If a page fault occurs.

Vol.2B 4-135

INSTRUCTION SET REFERENCE, N-Z

#AC(0)

If alignment checking is enabled and unaligned memory refer-
ence is made (64-bit operations only).

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

4-136 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword

Opcode Instruction Op/ 64-Bit Compat/ Description

En Mode Leg Mode
66 OF 3A 20 /r PINSRB xmm1, A Valid Valid Insert a byte integer value
ib r32/m8, imm8 from r32/m8into xmm1 at

the destination element in
xmm1 specified by imm8.

66 OF 3A 22 /r PINSRD xmm1, A Valid Valid Insert a dword integer value

ib r/m32, inm8 from r/m32 into the xmm1
at the destination element
specified by imm8.

66 REX.W OF PINSRQ xmm1, A N. E. Valid Insert a qword integer value

3A22/rib r/m64, inm8 from r/m32 into the xmm1
at the destination element
specified by imm8.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) imm8 NA
Description

Copies a byte/dword/gword from the source operand (second operand) and inserts it
in the destination operand (first operand) at the location specified with the count
operand (third operand). (The other elements in the destination register are left
untouched.) The source operand can be a general-purpose register or a memory
location. (When the source operand is a general-purpose register, PINSRB copies the
low byte of the register.) The destination operand is an XMM register. The count
operand is an 8-bit immediate. When specifying a qword[dword, byte] location in an
an XMM register, the [2, 4] least-significant bit(s) of the count operand specify the
location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15). Use of REX.W permits the use of
64 bit general purpose registers.

Operation
CASE OF
PINSRB: SEL < COUNT[3:0];
MASK € (OFFH << (SEL * 8));
TEMP < (((SRC[7:0] << (SEL *8)) AND MASK);
PINSRD: SEL < COUNT[1:0];
MASK € (OFFFFFFFFH << (SEL * 32));

Vol.2B 4-137

INSTRUCTION SET REFERENCE, N-Z

TEMP € (((SRC << (SEL *32)) AND MASK) ;
PINSRQ: SEL < COUNTIO]
MASK € (OFFFFFFFFFFFFFFFFH << (SEL * 64));
TEMP € (((SRC << (SEL *32)) AND MASK) ;
ESAC;
DEST & ((DEST AND NOT MASK) OR TEMP);

Intel C/C++ Compiler Intrinsic Equivalent
PINSRB __m128i _mm_insert_epi8 (__m128is1, int s2, const int ndx);

PINSRD _m128i_mm_insert_epi32 (__m128is2, int s, const int ndx);
PINSRQ __m128i _mm_insert_epi64(__m128is2, __int64 s, const int ndx);

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) (Dword and qword references) If alignment checking is enabled
and an unaligned memory reference is made while the current
privilege level is 3.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

4-138 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)
#AC(0)

For a page fault.

(Dword and gqword references) If alignment checking is enabled
and an unaligned memory reference is made while the current
privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#NM
#UD

#AC(0)

If the memory address is in a non-canonical form.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

(Dword and gword references) If alignment checking is enabled
and an unaligned memory reference is made while the current
privilege level is 3.

Vol.2B 4-139

INSTRUCTION SET REFERENCE, N-Z

PINSRW—Insert Word

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF C4 /rib PINSRW mm, A Valid Valid Insert the low word from
r32/m16, imm8 r32or from m16into mm at
the word position specified
by imm8
66 0FC4/rib PINSRW xmm, A Valid Valid Move the low word of r32or
r32/m16,imm8 from m16 into xmm at the
word position specified by
imm8.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) imm8 NA
Description

Copies a word from the source operand (second operand) and inserts it in the desti-
nation operand (first operand) at the location specified with the count operand (third
operand). (The other words in the destination register are left untouched.) The
source operand can be a general-purpose register or a 16-bit memory location.
(When the source operand is a general-purpose register, the low word of the register
is copied.) The destination operand can be an MMX technology register or an XMM
register. The count operand is an 8-bit immediate. When specifying a word location in
an MMX technology register, the 2 least-significant bits of the count operand specify
the location; for an XMM register, the 3 least-significant bits specify the location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15).

Operation

PINSRW instruction with 64-bit source operand:
SEL <~ COUNT AND 3H;
CASE (Determine word position) OF

SEL « O: MASK <« 000000000000FFFFH;
SEL « T: MASK <« 00000000FFFFO000H;
SEL « 2: MASK <« 0000FFFFO0000000H;
SEL « 3 MASK « FFFFO00000000000H;

DEST « (DEST AND NOT MASK) OR (((SRC << (SEL * 16)) AND MASK);

PINSRW instruction with 128-bit source operand:
SEL <~ COUNT AND 7H;

4-140 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

CASE (Determine word position) OF
SEL « O MASK « 0000000000000000000000000000FFFFH;
SEL « 1: MASK « 000000000000000000000000FFFFO000H;
SEL « 2: MASK « 00000000000000000000FFFFO0000000H;
SEL « 3 MASK « 0000000000000000FFFFO00000000000H;
SEL « 4: MASK « 000000000000FFFFO000000000000000H;
SEL « 5: MASK « 00000000FFFFO0000000000000000000H;
SEL « 6: MASK « 0000FFFFO00000000000000000000000H;
SEL « 7: MASK « FFFFO000000000000000000000000000H;
DEST « (DEST AND NOT MASK) OR (((SRC << (SEL * 16)) AND MASK);

Intel C/C++ Compiler Intrinsic Equivalent

PINSRW _ m64 _mm_insert_pi16 (_m64 g, intd, int n)
PINSRW __m128i _mm_insert_epi16 (_m128i a, int b, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-141

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP

#UD

#NM
#MF

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

64-Bit Mode Exceptions

#SS(0)

#GP(0)
#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-142 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

INSTRUCTION SET REFERENCE, N-Z

PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF 3804 /r PMADDUBSW A Valid Valid Multiply signed and
mm1, mm2/m64 unsigned bytes, add

horizontal pair of signed
words, pack saturated
signed-words to MM1.

66 OF 3804 /r PMADDUBSW A Valid Valid Multiply signed and
xmm1, unsigned bytes, add
xmm2/m128 horizontal pair of signed

words, pack saturated
signed-words to XMM1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

PMADDUBSW multiplies vertically each unsigned byte of the destination operand
(first operand) with the corresponding signed byte of the source operand (second
operand), producing intermediate signed 16-bit integers. Each adjacent pair of
signed words is added and the saturated result is packed to the destination operand.
For example, the lowest-order bytes (bits 7-0) in the source and destination oper-
ands are multiplied and the intermediate signed word result is added with the corre-
sponding intermediate result from the 2nd lowest-order bytes (bits 15-8) of the
operands; the sign-saturated result is stored in the lowest word of the destination
register (15-0). The same operation is performed on the other pairs of adjacent
bytes. Both operands can be MMX register or XMM registers. When the source
operand is a 128-bit memory operand, the operand must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation
PMADDUBSW with 64 bit operands:

DEST[15-0] = SaturateToSignedWord(SRC[15-8]*DEST[15-8]+SRC[7-0]*DEST[7-0]);

DEST[31-16] = SaturateToSignedWord(SRC[31-24]*DEST[31-24]+SRC[23-16]*DEST[23-16]);
DEST[47-32] = SaturateToSignedWord(SRC[47-40]*DEST[47-40]+SRC[39-32]*DEST[39-32]);
DEST[63-48] = SaturateToSignedword(SRC[63-56]*DEST[63-56]+SRC[55-48]*DEST[55-48]);

PMADDUBSW with 128 bit operands:

Vol.2B 4-143

INSTRUCTION SET REFERENCE, N-Z

DEST[15-0] = SaturateToSignedWord(SRC[15-8]* DEST[15-8]+SRC[7-0]*DEST[7-0]);

// Repeat operation for 2nd through 7th word

SRC1/DEST[127-112] = SaturateToSignedWord(SRC[127-120]*DEST[127-120]+ SRC[119-
112]* DEST[119-112]);

Intel C/C++ Compiler Intrinsic Equivalents

PMADDUBSW __m64 _mm_maddubs_pi16 (__m64 a, __m64 b)
PMADDUBSW __m128i _mm_maddubs_epi16 (__m128ia, __m128iDb)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.
If CR4.0SFXSR(bit 9) = 0 (128-bit operations only)
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.

#NM If TS bit in CRO is set.

H#HMF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.
#NM If TS bit in CRO is set.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

4-144 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

#HMF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-145

INSTRUCTION SET REFERENCE, N-Z

PMADDWD—Multiply and Add Packed Integers

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OFF5/r PMADDWD mm, A Valid Valid Multiply the packed words in
mm/m64 mm by the packed words in

mm/m64, add adjacent
doubleword results, and

store in mm.
66 0OFF5/r PMADDWD xmm1, A Valid Valid Multiply the packed word
xmm2/m128 integers in xmm1 by the

packed word integers in
xmmZ2/m128, add adjacent
doubleword results, and
store in xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Multiplies the individual signed words of the destination operand (first operand) by
the corresponding signed words of the source operand (second operand), producing
temporary signed, doubleword results. The adjacent doubleword results are then
summed and stored in the destination operand. For example, the corresponding low-
order words (15-0) and (31-16) in the source and destination operands are multi-
plied by one another and the doubleword results are added together and stored in
the low doubleword of the destination register (31-0). The same operation is
performed on the other pairs of adjacent words. (Figure 4-3 shows this operation
when using 64-bit operands.) The source operand can be an MMX technology register
or a 64-bit memory location, or it can be an XMM register or a 128-bit memory loca-
tion. The destination operand can be an MMX technology register or an XMM register.

The PMADDWD instruction wraps around only in one situation: when the 2 pairs of
words being operated on in a group are all 8000H. In this case, the result wraps
around to 80000000H.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

4-146 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

SRC X3 X2 X1 X0
DEST Y3 Y2 Y1 YO

TEMP X3 * Y3 X2 % Y2 X1 % Y1 X0 * YO
DEST (X3+Y3) + (X2+Y2)| (X1¥Y1) + (XO*YO)

Figure 4-3. PMADDWD Execution Model Using 64-bit Operands

Operation

PMADDWD instruction with 64-bit operands:
DEST[31:0] «— (DEST[15:0] * SRC[15:0]) + (DEST[31:16] * SRC[31:16]);
DEST[63:32] « (DEST[47:32] * SRC[47:32]) + (DEST[63:48] * SRC[63:48));

PMADDWD instruction with 128-bit operands:
DEST[31:0] « (DEST[15:0] * SRC[15:0]) + (DEST[31:16] * SRC[31:16]);
DEST[63:32] « (DEST[47:32] * SRC[47:32]) + (DEST[63:48] * SRC[63:48));
DEST[95:64] «— (DEST[79:64] * SRC[79:64]) + (DEST[95:80] * SRC[95:80));
DEST[127:96] «— (DEST[111:96] * SRC[111:96]) + (DEST[127:112] * SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalent

PMADDWD __m64 _mm_madd_pi16(_m64 m1, __m64 m2)
PMADDWD __m128i _mm_madd_epil6 (_m128ia, __m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

Vol.2B 4-147

INSTRUCTION SET REFERENCE, N-Z

#SS(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

4-148 Vol. 2B

If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

INSTRUCTION SET REFERENCE, N-Z

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-149

INSTRUCTION SET REFERENCE, N-Z

PMAXSB — Maximum of Packed Signed Byte Integers

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
66 0F383C/r PMAXSB xmmi1, A Valid Valid Compare packed signed byte
xmm2/m128 integers in xmm1 and

xmmZ2/m128 and store
packed maximum values in

xmm]1.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA

Description

Compares packed signed byte integers in the destination operand (first operand) and
the source operand (second operand), and returns the maximum for each packed
value in the destination operand.

Operation

IF (DEST[7:0] > SRC[7:0])
THEN DEST[7:0] < DEST[7:0];
ELSE DEST[7:0] < SRC[7:0]; FI;
IF (DEST[15:8] > SRC[15:8])
THEN DEST[15:8] < DEST[15:8];
ELSE DEST[15:8] < SRC[15:8]; FI;
IF (DEST[23:16] > SRC[23:16])
THEN DEST[23:16] < DEST[23:16];
ELSE DEST[23:16] < SRC[23:16]; FI;
IF (DEST[31:24] > SRC[31:24])
THEN DEST[31:24] < DEST[31:24];
ELSE DEST[31:24] < SRC[31:24]; FI;
IF (DEST[39:32] > SRC[39:32])
THEN DEST[39:32] < DEST[39:32];
ELSE DEST[39:32] < SRC[39:32]; FI;
IF (DEST[47:40] > SRC[47:40])
THEN DEST[47:40] < DEST[47:40];
ELSE DEST[47:40] < SRC[47:40]; FI;
IF (DEST[55:48] > SRC[55:48])
THEN DEST[55:48] < DEST[55:48];
ELSE DEST[55:48] < SRC[55:48]; FI;

4-150 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

IF (DEST[63:56] > SRC[63:56])
THEN DEST[63:56] < DEST[63:56];
ELSE DEST[63:56] < SRC[63:56]; FI;
IF (DEST[71:64] > SRC[71:64])
THEN DEST[71:64] & DEST[71:64];
ELSE DEST[71:64] €< SRC[71:64]; FI;
IF (DEST[79:72] > SRC[79:72])
THEN DEST[79:72] & DEST[79:72];
ELSE DEST[79:72] € SRC[79:72]; FI;
IF (DEST[87:80] > SRC[87:80])
THEN DEST[87:80] < DEST[87:80];
ELSE DEST[87:80] < SRC[87:80]; FI;
IF (DEST[95:88] > SRC[95:88])
THEN DEST[95:88] < DEST[95:88];
ELSE DEST[95:88] < SRC[95:88]; FI;
IF (DEST[103:96] > SRC[103:96])
THEN DEST[103:96] < DEST[103:96];
ELSE DEST[103:96] < SRC[103:96]; FI;
IF (DEST[111:104] > SRC[111:104])
THEN DEST[111:104] < DEST[111:104];
ELSE DEST[111:104] €< SRC[111:104]; FI;
IF (DEST[119:112] > SRC[119:112])
THEN DEST[119:112] €< DEST[119:112];
ELSE DEST[119:112] € SRC[119:112]; FI;
IF (DEST[127:120] > SRC[127:120])
THEN DEST[127:120] < DEST[127:120];
ELSE DEST[127:120] €< SRC[127:120]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSB __m128i _mm_max_epi8 (_m128ia, __m128ib);

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

Vol.2B 4-151

INSTRUCTION SET REFERENCE, N-Z

#NM
#UD

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

If any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

4-152 Vol. 2B

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

INSTRUCTION SET REFERENCE, N-Z

PMAXSD — Maximum of Packed Signed Dword Integers

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
66 OF 383D /r PMAXSD xmm1, A Valid Valid Compare packed signed
xmmZ2/m128 dword integers in xmm1 and

xmmZ2/m128 and store
packed maximum values in

xmm1.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA

Description

Compares packed signed dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the maximum for each
packed value in the destination operand.

Operation

IF (DEST[31:0] > SRC[31:0])
THEN DEST[31:0] < DEST[31:0];
ELSE DEST[31:0] < SRC[31:0]; FI;

IF (DEST[63:32] > SRC[63:32])
THEN DEST[63:32] < DEST[63:32];
ELSE DEST[63:32] < SRC[63:32]; FI;

IF (DEST[95:64] > SRC[95:64])
THEN DEST[95:64] < DEST[95:64];
ELSE DEST[95:64] < SRC[95:64]; FI;

IF (DEST[127:96] > SRC[127:96])
THEN DEST[127:96] < DEST[127:96];
ELSE DEST[127:96] < SRC[127:96]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSD __m128i _mm_max_epi32 (__m128ia,__m128ib);

Flags Affected

None

Vol.2B 4-153

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

4-154 Vol. 2B

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is O.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Vol.2B 4-155

INSTRUCTION SET REFERENCE, N-Z

PMAXSW—Maximum of Packed Signed Word Integers

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF EE /1 PMAXSW mm1, A Valid Valid Compare signed word
mm2/m64 integers in mm2/m64 and
mm71 and return maximum
values.
66 OF EE/r PMAXSW xmm1, A Valid Valid Compare signed word
xmmZ2/m128 integers in xmmZ2/m128and
xmm1 and return maximum
values.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a SIMD compare of the packed signed word integers in the destination
operand (first operand) and the source operand (second operand), and returns the
maximum value for each pair of word integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMAXSW instruction for 64-bit operands:
IF DEST[15:0] > SRC[15:0]) THEN
DEST[15:0] <« DEST[15:0];
ELSE
DEST[15:0] < SRC[15:0]; FI;
(* Repeat operation for 2nd and 3rd words in source and destination operands *)
IF DEST[63:48] > SRC[63:48]) THEN
DEST[63:48] <~ DEST[63:48];
ELSE
DEST[63:48] «— SRC[63:48]; FI;

PMAXSW instruction for 128-bit operands:
IF DEST[15:0] > SRC[15:0]) THEN
DEST[15:0] «— DEST[15:0];

4-156 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

ELSE
DEST[15:0] «— SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] > SRC[127:112]) THEN
DEST[127:112] «— DEST[127:112];
ELSE
DEST[127:112] <~ SRC[127:112]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSW _ m64 _mm_max_pi16(_m64 a, __m64 b)
PMAXSW __m128i _mm_max_epi16 (_m128ia, __m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-157

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP

#UD

#NM
H#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

4-158 Vol. 2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PMAXUB—Maximum of Packed Unsigned Byte Integers

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF DE /1 PMAXUB mm1, A Valid Valid Compare unsigned byte
mm2/m64 integers in mm2/m64 and
mm1 and returns maximum
values.
66 OF DE /r PMAXUB xmm1, A Valid Valid Compare unsigned byte
xmm2/m128 integers in xmmZ2/m128and
xmm1 and returns
maximum values.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a SIMD compare of the packed unsigned byte integers in the destination
operand (first operand) and the source operand (second operand), and returns the
maximum value for each pair of byte integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMAXUB instruction for 64-bit operands:
IF DEST[7:0] > SRC[17:0]) THEN
DEST[7:0] « DEST[7:0];
ELSE
DEST[7:0] « SRC[7:0]; FI;
(* Repeat operation for 2nd through 7th bytes in source and destination operands *)
IF DEST[63:56] > SRC[63:56]) THEN
DEST[63:56] «— DEST[63:56];
ELSE
DEST[63:56] «— SRC[63:56]; FI;

PMAXUB instruction for 128-bit operands:
IF DEST[7:0] > SRC[17:0]) THEN
DEST[7:0] < DEST[7:0];

Vol.2B 4-159

INSTRUCTION SET REFERENCE, N-Z

ELSE
DEST[7:0] « SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] > SRC[127:120]) THEN
DEST[127:120] «— DEST[127:120];
ELSE
DEST[127:120] < SRC[127:120]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUB _ m64 _mm_max_pu8(_m64 a,__m64 b)
PMAXUB __m128i _mm_max_epu8 (__m128ia,__m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#HMF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-160 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-161

INSTRUCTION SET REFERENCE, N-Z

PMAXUD — Maximum of Packed Unsigned Dword Integers

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
66 OF 38 3F /r PMAXUD xmm1, A Valid Valid Compare packed unsigned
xmmZ2/m128 dword integersin xmm1 and

xmmZ2/m128 and store
packed maximum values in

xmm]1.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA

Description

Compares packed unsigned dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the maximum for each
packed value in the destination operand.

Operation

IF (DEST[31:0] > SRC[31:0])
THEN DEST[31:0] < DEST[31:0];
ELSE DEST[31:0] < SRC[31:0]; FI;

IF (DEST[63:32] > SRC[63:32])
THEN DEST[63:32] < DEST[63:32];
ELSE DEST[63:32] < SRC[63:32]; FI;

IF (DEST[95:64] > SRC[95:64])
THEN DEST[95:64] < DEST[95:64];
ELSE DEST[95:64] < SRC[95:64]; FI;

IF (DEST[127:96] > SRC[127:96])
THEN DEST[127:96] < DEST[127:96];
ELSE DEST[127:96] < SRC[127:96]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUD _ m128i_mm_max_epu32 (_m128ia,__m128ib);

Flags Affected

None

4-162 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

Vol.2B 4-163

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code)
#NM

#UD

4-164 Vol.2B

For a page fault.
If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is O.

If CPUID feature flag ECX.SSE4_1 is O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

INSTRUCTION SET REFERENCE, N-Z

PMAXUW — Maximum of Packed Word Integers

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
66 OF 38 3E/r PMAXUW xmm1, A Valid Valid Compare packed unsigned
xmmZ2/m128 word integers in xmm1 and

xmmZ2/m128 and store
packed maximum values in

xmm1.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA

Description

Compares packed unsigned word integers in the destination operand (first operand)
and the source operand (second operand), and returns the maximum for each
packed value in the destination operand.

Operation

IF (DEST[15:0] > SRC[15:0])
THEN DEST[15:0] < DEST[15:0];
ELSE DEST[15:0] < SRC[15:0]; FI;

IF (DEST[31:16] > SRC[31:16])

THEN DEST[31:16] < DEST[31:16];
ELSE DEST[31:16] € SRC[31:16]; FI;

IF (DEST[47:32] > SRC[47:32])

THEN DEST[47:32] < DEST[47:32];
ELSE DEST[47:32] < SRC[47:32]; FI;

IF (DEST[63:48] > SRC[63:48])

THEN DEST[63:48] < DEST[63:48];
ELSE DEST[63:48] < SRC[63:48]; FI;

IF (DEST[79:64] > SRC[79:64])

THEN DEST[79:64] < DEST[79:64];
ELSE DEST[79:64] < SRC[79:64]; FI;

IF (DEST[95:80] > SRC[95:80])

THEN DEST[95:80] < DEST[95:80];
ELSE DEST[95:80] < SRC[95:80]; FI;

IF (DEST[111:96] > SRC[111:96])

THEN DEST[111:96] < DEST[111:96];
ELSE DEST[111:96] < SRC[111:96]; FI;

Vol.2B 4-165

INSTRUCTION SET REFERENCE, N-Z

IF (DEST[127:112] > SRC[127:112])
THEN DEST[127:112] € DEST[127:112];
ELSE DEST[127:112] € SRC[127:112]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUW__m128i _mm_max_epul6 (_m128ia, __m128ib);

Flags Affected
None

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

4-166 Vol.2B

#PF(fault-code)

INSTRUCTION SET REFERENCE, N-Z

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is O.

If CPUID feature flag ECX.SSE4_1 is O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Vol.2B 4-167

INSTRUCTION SET REFERENCE, N-Z

PMINSB — Minimum of Packed Signed Byte Integers

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
66 0OF 3838 /r PMINSB xmm1, A Valid Valid Compare packed signed byte
xmm2/m128 integers in xmm1 and

xmm2/m128 and store
packed minimum values in

xmm]1.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA

Description

Compares packed signed byte integers in the destination operand (first operand) and
the source operand (second operand), and returns the minimum for each packed
value in the destination operand.

Operation

IF (DEST[7:0] < SRC[7:0])
THEN DEST[7:0] < DEST[7:0];
ELSE DEST[7:0] < SRC[7:0]; FI;
IF (DEST[15:8] < SRC[15:8])
THEN DEST[15:8] < DEST[15:8];
ELSE DEST[15:8] < SRC[15:8]; FI;
IF (DEST[23:16] < SRC[23:16])
THEN DEST[23:16] < DEST[23:16];
ELSE DEST[23:16] < SRC[23:16]; FI;
IF (DEST[31:24] < SRC[31:24])
THEN DEST[31:24] < DEST[31:24];
ELSE DEST[31:24] < SRC[31:24]; FI;
IF (DEST[39:32] < SRC[39:32])
THEN DEST[39:32] < DEST[39:32];
ELSE DEST[39:32] < SRC[39:32]; FI;
IF (DEST[47:40] < SRC[47:40])
THEN DEST[47:40] < DEST[47:40];
ELSE DEST[47:40] < SRC[47:40]; FI;
IF (DEST[55:48] < SRC[55:48])
THEN DEST[55:48] < DEST[55:48];
ELSE DEST[55:48] < SRC[55:48]; FI;

4-168 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

IF (DEST[63:56] < SRC[63:56])
THEN DEST[63:56] < DEST[63:56];
ELSE DEST[63:56] < SRC[63:56]; FI;
IF (DEST[71:64] < SRC[71:64])
THEN DEST[71:64] & DEST[71:64];
ELSE DEST[71:64] €< SRC[71:64]; FI;
IF (DEST[79:72] < SRC[79:72])
THEN DEST[79:72] & DEST[79:72];
ELSE DEST[79:72] € SRC[79:72]; FI;
IF (DEST[87:80] < SRC[87:80])
THEN DEST[87:80] < DEST[87:80];
ELSE DEST[87:80] < SRC[87:80]; FI;
IF (DEST[95:88] < SRC[95:88])
THEN DEST[95:88] < DEST[95:88];
ELSE DEST[95:88] < SRC[95:88]; FI;
IF (DEST[103:96] < SRC[103:96])
THEN DEST[103:96] < DEST[103:96];
ELSE DEST[103:96] < SRC[103:96]; FI;
IF (DEST[111:104] < SRC[111:104])
THEN DEST[111:104] < DEST[111:104];
ELSE DEST[111:104] €< SRC[111:104]; FI;
IF (DEST[119:112] < SRC[119:112])
THEN DEST[119:112] €< DEST[119:112];
ELSE DEST[119:112] € SRC[119:112]; FI;
IF (DEST[127:120] < SRC[127:120])
THEN DEST[127:120] < DEST[127:120];
ELSE DEST[127:120] €< SRC[127:120]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMINSB __m128i _mm_min_epi8 (_m128ia, __m128ib);
Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

Vol.2B 4-169

INSTRUCTION SET REFERENCE, N-Z

#NM
#UD

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

4-170 Vol.2B

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

INSTRUCTION SET REFERENCE, N-Z

PMINSD — Minimum of Packed Dword Integers

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
66 OF 3839 /r PMINSD xmm1, A Valid Valid Compare packed signed
xmmZ2/m128 dword integers in xmm1 and

xmmZ2/m128 and store
packed minimum values in

xmm1.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA

Description
Compares packed signed dword integers in the destination operand (first operand)

and the source operand (second operand), and returns the minimum for each packed
value in the destination operand.

Operation

IF (DEST[31:0] < SRC[31:0])
THEN DEST[31:0] < DEST[31:0];
ELSE DEST[31:0] < SRC[31:0]; FI;

IF (DEST[63:32] < SRC[63:32])
THEN DEST[63:32] < DEST[63:32];
ELSE DEST[63:32] < SRC[63:32]; FI;

IF (DEST[95:64] < SRC[95:64])
THEN DEST[95:64] < DEST[95:64];
ELSE DEST[95:64] < SRC[95:64]; FI;

IF (DEST[127:96] < SRC[127:96])
THEN DEST[127:96] < DEST[127:96];
ELSE DEST[127:96] < SRC[127:96]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMINSD __m128i _mm_min_epi32 (__m128ia, __m128ib);
Flags Affected
None

Vol.2B 4-171

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

4-172 Vol. 2B

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is O.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Vol.2B 4-173

INSTRUCTION SET REFERENCE, N-Z

PMINSW—Minimum of Packed Signed Word Integers

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OFEA/r PMINSW mm1, A Valid Valid Compare signed word
mm2/m64 integers in mm2/m64 and
mm71 and return minimum
values.
66 0FEA/r PMINSW xmm1, A Valid Valid Compare signed word
xmm2/m128 integers in xmmZ2/m128and
xmm1 and return minimum
values.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a SIMD compare of the packed signed word integers in the destination
operand (first operand) and the source operand (second operand), and returns the
minimum value for each pair of word integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMINSW instruction for 64-bit operands:
IF DEST[15:0] < SRC[15:0] THEN
DEST[15:0] <« DEST[15:0];
ELSE
DEST[15:0] < SRC[15:0]; FI;
(* Repeat operation for 2nd and 3rd words in source and destination operands *)
IF DEST[63:48] < SRC[63:48] THEN
DEST[63:48] <~ DEST[63:48];
ELSE
DEST[63:48] «— SRC[63:48]; FI;

PMINSW instruction for 128-bit operands:
IF DEST[15:0] < SRC[15:0] THEN
DEST[15:0] «— DEST[15:0];

4-174 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

ELSE
DEST[15:0] «— SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] < SRC/m64[127:112] THEN
DEST[127:112] «— DEST[127:112];
ELSE
DEST[127:112] <~ SRC[127:112]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMINSW _ m64 _mm_min_pi16 (__m64 a, __ m64 b)
PMINSW __m128i _mm_min_epi16 (_m128ia, __m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-175

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP

#UD

#NM
H#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-176 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PMINUB—Minimum of Packed Unsigned Byte Integers

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OFDA/r PMINUB mm1, A Valid Valid Compare unsigned byte
mm2/m64 integers in mm2/m64 and
mm1 and returns minimum
values.
66 OF DA /r PMINUB xmm1, A Valid Valid Compare unsigned byte
xmmZ2/m128 integers in xmmZ2/m128and
xmm1 and returns minimum
values.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a SIMD compare of the packed unsigned byte integers in the destination
operand (first operand) and the source operand (second operand), and returns the
minimum value for each pair of byte integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMINUB instruction for 64-bit operands:
IF DEST[7:0] < SRC[17:0] THEN
DEST[7:0] « DEST[7:0];
ELSE
DEST[7:0] « SRC[7:0]; FI;
(* Repeat operation for 2nd through 7th bytes in source and destination operands *)
IF DEST[63:56] < SRC[63:56] THEN
DEST[63:56] «— DEST[63:56];
ELSE
DEST[63:56] «— SRC[63:56]; FI;

PMINUB instruction for 128-bit operands:
IF DEST[7:0] < SRC[17:0] THEN
DEST[7:0] < DEST[7:0];

Vol.2B 4-177

INSTRUCTION SET REFERENCE, N-Z

ELSE
DEST[7:0] « SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] < SRC[127:120] THEN
DEST[127:120] «— DEST[127:120];
ELSE
DEST[127:120] < SRC[127:120]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMINUB _ m64 _m_min_pu8 (_m64 a, _ m64 b)
PMINUB _ m128i _mm_min_epu8 (__m128ia,__m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#HMF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-178 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-179

INSTRUCTION SET REFERENCE, N-Z

PMINUD — Minimum of Packed Dword Integers

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
66 OF 38 3B/r PMINUD xmm1, A Valid Valid Compare packed unsigned
xmm2/m128 dword integers in xmm1

and xmmZ2/m128 and store
packed minimum values in

xmm]1.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA

Description

Compares packed unsigned dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the minimum for each packed
value in the destination operand.

Operation

IF (DEST[31:0] < SRC[31:0])
THEN DEST[31:0] < DEST[31:0];
ELSE DEST[31:0] < SRC[31:0]; FI;

IF (DEST[63:32] < SRC[63:32])
THEN DEST[63:32] < DEST[63:32];
ELSE DEST[63:32] < SRC[63:32]; FI;

IF (DEST[95:64] < SRC[95:64])
THEN DEST[95:64] < DEST[95:64];
ELSE DEST[95:64] < SRC[95:64]; FI;

IF (DEST[127:96] < SRC[127:96])
THEN DEST[127:96] < DEST[127:96];
ELSE DEST[127:96] < SRC[127:96]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMINUD __m128i _mm_min_epu32 (_m128ia,__m128ib);

Flags Affected

None

4-180 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

Vol.2B 4-181

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code)
#NM
#UD

4-182 Vol. 2B

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

INSTRUCTION SET REFERENCE, N-Z

PMINUW — Minimum of Packed Word Integers

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
66 OF 38 3A/r PMINUW xmm1, A Valid Valid Compare packed unsigned
xmmZ2/m128 word integers in xmm1 and

xmmZ2/m128 and store
packed minimum values in

xmm1.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA

Description
Compares packed unsigned word integers in the destination operand (first operand)

and the source operand (second operand), and returns the minimum for each packed
value in the destination operand.

Operation

IF (DEST[15:0] < SRC[15:0])
THEN DEST[15:0] < DEST[15:0];
ELSE DEST[15:0] < SRC[15:0]; FI;
IF (DEST[31:16] < SRC[31:16])
THEN DEST[31:16] < DEST[31:16];
ELSE DEST[31:16] € SRC[31:16]; FI;
IF (DEST[47:32] < SRC[47:32])
THEN DEST[47:32] < DEST[47:32];
ELSE DEST[47:32] < SRC[47:32]; FI;
IF (DEST[63:48] < SRC[63:48])
THEN DEST[63:48] < DEST[63:48];
ELSE DEST[63:48] < SRC[63:48]; FI;
IF (DEST[79:64] < SRC[79:64])
THEN DEST[79:64] < DEST[79:64];
ELSE DEST[79:64] < SRC[79:64]; FI;
IF (DEST[95:80] < SRC[95:80])
THEN DEST[95:80] < DEST[95:80];
ELSE DEST[95:80] < SRC[95:80]; FI;
IF (DEST[111:96] < SRC[111:96])
THEN DEST[111:96] < DEST[111:96];
ELSE DEST[111:96] < SRC[111:96]; FI;

Vol.2B 4-183

INSTRUCTION SET REFERENCE, N-Z

IF (DEST[127:112] < SRC[127:112])
THEN DEST[127:112] € DEST[127:112];
ELSE DEST[127:112] € SRC[127:112]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMINUW __ m128i _mm_min_epul6 (_m128ia,__m128iDb)

Flags Affected
None

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

4-184 Vol. 2B

For a page fault.

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Vol.2B 4-185

INSTRUCTION SET REFERENCE, N-Z

PMOVMSKB—Move Byte Mask

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF D7 /It PMOVMSKB r32, A Valid Valid Move a byte mask of mm to
mm r3e.
REXW +0OF D7 PMOVMSKBr64, A Valid N.E. Move a byte mask of mm to
Ir mm the lower 32-bits of r64 and
zero-fill the upper 32-bits.
66 OF D7 /r PMOVMSKBreg, A Valid Valid Move a byte mask of xmm
xmm to reg. The upper bits of r32

or r64 are zeroed

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:reg (r) NA NA
Description

Creates a mask made up of the most significant bit of each byte of the source
operand (second operand) and stores the result in the low byte or word of the desti-
nation operand (first operand). The source operand is an MMX technology register or
an XMM register; the destination operand is a general-purpose register. When oper-
ating on 64-bit operands, the byte mask is 8 bits; when operating on 128-bit oper-
ands, the byte mask is 16-bits.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15). The default operand size is 64-bit
in 64-bit mode.

Operation

PMOVMSKB instruction with 64-bit source operand and r32:
r32[0] « SRC[7];
r32[1] « SRC[15];
(* Repeat operation for bytes 2 through 6 *)
r32[7] « SRC[63];
r32[31:8] « ZERO_FILL;

PMOVMSKB instruction with 128-bit source operand and r32:
r32[0] « SRC[7];
r32[1] < SRC[15];
(* Repeat operation for bytes 2 through 14 *)
r32[15] < SRC[127];

4-186 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

r32[31:16] «- ZERO_FILL;

PMOVMSKB instruction with 64-bit source operand and r64:
r64[0] < SRC[7];
r64[1] < SRC[15];
(* Repeat operation for bytes 2 through 6 *)
r64[7] < SRC[63];
r64[63:8] <~ ZERO_FILL;

PMOVMSKB instruction with 128-bit source operand and r64:
r64[0] «- SRC[7];
r64[1] < SRC[15];
(* Repeat operation for bytes 2 through 14 *)
r64[15] « SRC[127];
r64[63:16] «— ZERO_FILL;

Intel C/C++ Compiler Intrinsic Equivalent

PMOVMSKB int _mm_movemask_pi8(__m64 a)
PMOVMSKB int _mm_movemask_epi8 (_m128i a)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Vol.2B 4-187

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.

4-188 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

PMOVSX — Packed Move with Sign Extend

Opcode

66 0f 3820 /r

66 0f 3821 /r

66 0f 38 22 /r

66 0f 38 23 /r

66 0f 38 24 /r

66 0f 3825 /r

Instruction

PMOVSXBW
xmm1,
xmmZ2/m64

PMOVSXBD
xmm1,
xmmZ2/m32

PMOVSXBQ
xmm1,
xmm2/m16

PMOVSXWD
xmm1,
xmmZ2/m64

PMOVSXWQ
xmm1,
xmm2/m32

PMOVSXDQ
xmm1,
xmmZ2/m64

Op/ 64-bit
En Mode
A Valid
A Valid
A Valid
A Valid
A Valid
A Valid

Compat/
Leg Mode

Valid

Valid

Valid

Valid

Valid

Valid

Description

Sign extend 8 packed signed
8-bit integers in the low 8
bytes of xmm2/m64 to 8
packed signed 16-bit
integers in xmm71.

Sign extend 4 packed signed
8-bit integers in the low 4
bytes of xmm2/m32+to 4
packed signed 32-bit
integers in xmm71.

Sign extend 2 packed signed
8-bit integers in the low 2
bytes of xmm2/m16+to 2
packed signed 64-bit
integers in xmm1.

Sign extend 4 packed signed
16-bit integers in the low 8
bytes of xmm2/m64 to 4
packed signed 32-bit
integers in xmm1.

Sign extend 2 packed signed
16-bit integers in the low 4
bytes of xmm2/m32+to 2
packed signed 64-bit
integers in xmm1.

Sign extend 2 packed signed
32-bit integers in the low 8
bytes of xmm2/m64 to 2
packed signed 64-bit
integers in xmm1.

Instruction Operand Encoding

Op/En Operand 1
A ModRM:reg (w)

Operand 2
ModRM:r/m (r)

Operand 3 Operand 4
NA NA

Description

Sign-extend the low byte/word/dword values in each word/dword/qword element of
the source operand (second operand) to word/dword/gword integers and stored as
packed data in the destination operand (first operand).

Vol.2B 4-189

INSTRUCTION SET REFERENCE, N-Z

Operation

PMOVSXBW
DEST[15:0] < SignExtend(SRC[7:0]);
DEST[31:16] < SignExtend(SRC[15:8]);
DEST[47:32] < SignExtend(SRC[23:16]);
DEST[63:48] < SignExtend(SRC[31:24]);
DEST[79:64] < SignExtend(SRC[39:32])
DEST[95:80] < SignExtend(SRC[47:40]);
DEST[111:96] < SignExtend(SRC[55:48]);

a

DEST[127:112] € SignExtend(SRC[63:56]);

PMOVSXBD
DEST[31:0] < Signextend(SRC[7:0]);
DEST[63:32] <« SignExtend(SRC[15:8]);
DEST[95:64] < SignExtend(SRC[23:16]);
DEST[127:96] < SignExtend(SRC[31:24]);

PMOVSXBQ
DEST[63:0] < SignExtend(SRC[7:0]);
DEST[127:64] < SignExtend(SRC[15:8]);

PMOVSXWD
DEST[31:0] < SignExtend(SRC[15:0]);
DEST[63:32] < SignExtend(SRC[31:16]);
DEST[95:64] < SignExtend(SRC[47:32]);
DEST[127:96] < SignExtend(SRC[63:48]);

PMOVSXWQ
DEST[63:0] < SignExtend(SRC[15:0]);
DEST[127:64] < SignExtend(SRC[31:16]);

PMOVSXDQ
DEST[63:0] < SignExtend(SRC[31:0]);
DEST[127:64] < SignExtend(SRC[63:32]);

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

PMOVSXBW __m128i _mm_ cvtepi8_epi16 (_m128i a);
PMOVSXBD __m128i _mm_ cvtepi8_epi32 (_m128i a);
PMOVSXBQ __m128i _mm_ cvtepi8_epic4 (_m128i a);
PMOVSXWD __m128i _mm_ cvtepil16_epi32 (__m128ia);

4-190 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

PMOVSXWQ __m128i _mm_ cvtepi16_epi64 (__m128ia);
PMOVSXDQ __m128i _mm_ cvtepi32_epi64 (__m128ia);

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Mode Exceptions

#GP if any part of the operand lies outside of the effective address
space from O to OFFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

Vol.2B 4-191

INSTRUCTION SET REFERENCE, N-Z

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4-192 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

PMOVZX — Packed Move with Zero Extend

Opcode

66 0f 3830 /r

66 0f 3831 /r

66 0f 3832 /r

66 0f 3833 /r

66 0f 38 34 /r

66 0f 3835 /r

Instruction

PMOVZXBW
xmm1,
XxmmZ2/m64

PMOVZXBD
xmm1,
xmmZ2/m32

PMOVZXBQ
xmm1,
xmmZ2/m16

PMOVZXWD
xmm1,
XxmmZ2/m64

PMOVZXWQ
xmm1,
xmmZ2/m32

PMOVZXDQ
xmm1,
XmmZ2/m64

Op/ 64-bit
En Mode
A Valid
A Valid
A Valid
A Valid
A Valid
A Valid

Compat/
Leg Mode

Valid

Valid

Valid

Valid

Valid

Valid

Description

Zero extend 8 packed 8-bit
integers in the low 8 bytes
of xmm2/m64 to 8 packed
16-bit integers in xmm71.

Zero extend 4 packed 8-bit
integers in the low 4 bytes
of xmm2/m32 to 4 packed
32-bit integers in xmm1.

Zero extend 2 packed 8-bit
integers in the low 2 bytes
of xmm2/m16 to 2 packed
64-bit integers in xmm1.

Zero extend 4 packed 16-bit
integers in the low 8 bytes
of xmm2/m64 to 4 packed
32-bit integers in xmm1.

Zero extend 2 packed 16-bit
integers in the low 4 bytes
of xmm2/m32 to 2 packed
64-bit integers in xmm71.

Zero extend 2 packed 32-bit
integers in the low 8 bytes
of xmm2/m64 to 2 packed
64-bit integers in xmm1.

Instruction Operand Encoding

Op/En Operand 1
A ModRM:reg (w)

Operand 2
ModRM:r/m (r)

Operand 3 Operand 4

NA NA

Description

Zero-extend the low byte/word/dword values in each word/dword/qword element of
the source operand (second operand) to word/dword/gword integers and stored as
packed data in the destination operand (first operand).

Operation

PMOVZXBW

DEST[15:0] € ZeroExtend(SRC[7:0]);

Vol.2B 4-193

INSTRUCTION SET REFERENCE, N-Z

DEST[31:16] €« ZeroExtend
DEST[47:32] € ZeroExtend(SRC[23:16]);
DEST[63:48] < ZeroExtend(SRC[31:24]);
DEST[79:64] € ZeroExtend(SRC[39:32])
DEST[95:80] < ZeroExtend(SRC[47:40]);
DEST[111:96] < ZeroExtend(SRC[55:48]);
DEST[127:112] € ZeroExtend(SRC[63:56]);

SRC[15:8]);

—_—= ==

d

PMOVZXBD
DEST[31:0] €« ZeroExtend(SRC[7:0]);
DEST[63:32] € ZeroExtend(SRC[15:8]);
DEST[95:64] < ZeroExtend(SRC[23:16]);
DEST[127:96] € ZeroExtend(SRC[31:24]);

PMOVZXQB
DEST[63:0] €< ZeroExtend(SRC[7:0]);
DEST[127:64] € ZeroExtend(SRC[15:8]);

PMOVZXWD
DEST[31:0] €« ZeroExtend(SRC[15:01);
DEST[63:32] €« ZeroExtend(SRC[31:16]);
DEST[95:64] < ZeroExtend(SRC[47:32]);
DEST[127:96] < ZeroExtend(SRC[63:48]);

PMOVZXWQ
DEST[63:0] € ZeroExtend(SRC[15:0]);
DEST[127:64] € ZeroExtend(SRC[31:16]);

PMOVZXDQ
DEST[63:0] €« ZeroExtend(SRC[31:0));
DEST[127:64] € ZeroExtend(SRC[63:32]);

Flags Affected
None

Intel C/C++ Compiler Intrinsic Equivalent

PMOVZXBW __m128i _mm_ cvtepu8_epil16 (_m128ia);
PMOVZXBD __m128i _mm_ cvtepu8_epi32 (_m128ia);
PMOVZXBQ __m128i _mm_ cvtepuB_epi64 (_m128i a);
PMOVZXWD __m128i _mm_ cvtepu16_epi32 (_m128ia);
PMOVZXWQ __m128i _mm_ cvtepul6_epi64 (_m128ia);
PMOVZXDQ __m128i _mm_ cvtepu32_epi64 (_m128i a);

4-194 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Flags Affected

None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Mode Exceptions

#GP if any part of the operand lies outside of the effective address
space from O to OFFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

Vol.2B 4-195

INSTRUCTION SET REFERENCE, N-Z

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4-196 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

PMULDQ — Multiply Packed Signed Dword Integers

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
66 OF 3828 /r PMULDQ xmml1, A Valid Valid Multiply the packed signed
xmm2/m128 dword integers in xmm1 and
xmmZ2/m128 and store the
quadword product in xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs two signed multiplications from two pairs of signed dword integers and
stores two 64-bit products in the destination operand (first operand). The 64-bit
product from the first/third dword element in the destination operand and the
first/third dword element of the source operand (second operand) is stored to the
low/high qword element of the destination.

If the source is a memory operand then all 128 bits will be fetched from memory but
the second and fourth dwords will not be used in the computation.

Operation

DEST[63:0] = DEST[31:0] * SRC[31:0];
DEST[127:64] = DEST[95:64] * SRC[95:64];

Intel C/C++ Compiler Intrinsic Equivalent

PMULDQ __m128i _mm_mul_epi32(_m128ia, __m128ib);

Flags Affected

None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

Vol.2B 4-197

INSTRUCTION SET REFERENCE, N-Z

#NM
#UD

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

4-198 Vol.2B

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

INSTRUCTION SET REFERENCE, N-Z

PMULHRSW — Packed Multiply High with Round and Scale

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF 380B /r PMULHRSW mm1, A Valid Valid Multiply 16-bit signed
mm2/m64 words, scale and round

signed doublewords, pack
high 16 bits to MM1.

66 OF 380B/r PMULHRSW A Valid Valid Multiply 16-bit signed
xmm1, words, scale and round
xmm2/m128 signed doublewords, pack

high 16 bits to XMMT.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

PMULHRSW multiplies vertically each signed 16-bit integer from the destination
operand (first operand) with the corresponding signed 16-bit integer of the source
operand (second operand), producing intermediate, signed 32-bit integers. Each
intermediate 32-bit integer is truncated to the 18 most significant bits. Rounding is
always performed by adding 1 to the least significant bit of the 18-bit intermediate
result. The final result is obtained by selecting the 16 bits immediately to the right of
the most significant bit of each 18-bit intermediate result and packed to the destina-
tion operand. Both operands can be MMX register or XMM registers.

When the source operand is a 128-bit memory operand, the operand must be aligned
on a 16-byte boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation
PMULHRSW with 64-bit operands:

tempO[31:0] = INT32
temp1[31:0] = INT32

(DEST[15:0] * SRC[15:0]) >>14) + 1;
(DEST[31:16] * SRC[31:16]) >>14) + 1;
temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >> 14) + 1;
temp3[31:0] = INT32 ((DEST[63:48] * SRc[63:48]) >> 14) + 1;
DEST[15:0] = tempO[16:1];

DEST[31:16] = temp1[16:1];

DEST[47:32] = temp2[16:1];

DEST[63:48] = temp3[16:1];

—_ o~~~

Vol.2B 4-199

INSTRUCTION SET REFERENCE, N-Z

PMULHRSW with 128-bit operand:

tempO[31:0] = INT32
temp1[31:0] = INT32
temp2[31:0] = INT32
temp3[31:0] = INT32
temp4[31:0] = INT32
temp5[31:0] = INT32
temp6[31:0] = INT32
temp7[31:0] = INT32

(DEST[15:0] * SRC[15:0]) >>14) + 1;
(DEST[31:16] * SRC[31:16]) >>14) + 1;
(DEST[47:32] * SRC[47:32]) >>14
(DEST[63:48] * SRC[63:48]) >>14
(
(
(

+1;
+1;

== =

DEST[79:64] * SRC[79:64]) >>14) + 1;
DEST[95:80] * SRC[95:80]) >>14) + 1;
DEST[111:96] * SRC[111:96]) >>14) + 1;
(DEST[127:112] * SRC[127:112) >>14) + 1;

P

DEST[15:0] = tempO[16:1];
DEST[31:16] = temp1[16:1];
DEST[47:32] = temp2[16:1];
DEST[63:48] = temp3[16:1];
DEST[79:64] = temp4[16:1];
DEST[95:80] = temp5[16:1];
DEST[111:96] = temp6[16:1];
DEST[127:112] = temp7[16:1];

Intel C/C++ Compiler Intrinsic Equivalents

PMULHRSW
PMULHRSW

__m64 _mm_mulhrs_pi16 (__m64 a, __m64 b)
__m128i _mm_mulhrs_epi16 (__m128ia, __m128ib)

Protected Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#UD

#NM
#MF
#AC(0)

4-200 Vol.2B

If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If CRO.EM = 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

If TS bit in CRO is set.

(64-bit operations only) If there is a pending x87 FPU exception.

(64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.
#NM If TS bit in CRO is set.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSSE3[bit 9] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-201

INSTRUCTION SET REFERENCE, N-Z

PMULHUW—Multiply Packed Unsigned Integers and Store High Result

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OFE4/r PMULHUW mm1, A Valid Valid Multiply the packed
mm2/mb64 unsigned word integers in

mm1 register and
mmZ2/m64, and store the
high 16 bits of the results in

mm1.
66 OFE4 /r PMULHUW xmm1, A Valid Valid Multiply the packed
xmm2/m128 unsigned word integers in

xmm1 and xmmZ2/m128,
and store the high 16 bits of
the results in xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a SIMD unsigned multiply of the packed unsigned word integers in the
destination operand (first operand) and the source operand (second operand), and
stores the high 16 bits of each 32-bit intermediate results in the destination operand.
(Figure 4-4 shows this operation when using 64-bit operands.) The source operand
can be an MMX technology register or a 64-bit memory location, or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX tech-
nology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

SRC X3 X2 X1 X0
DEST Y3 Y2 Y1 YO

TEMP| Z3=X3+*Y3 72 =X2 % Y2 Z1=X1#*Y1 Z0 = X0 * YO
DEST 73[31:16] | Z2[31:16] | Z1[31:16] | ZO[31:16]

Figure 4-4. PMULHUW and PMULHW Instruction Operation Using 64-bit Operands

4-202 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Operation

PMULHUW instruction with 64-bit operands:

TEMPO[31:0]
TEMP1[31:0]
TEMP2[31:0]
TEMP3[31:0]
DEST[15:0] «

DEST[31:16] «
DEST[47:32] «
DEST[63:48] «

TEMPO[31:0] «
TEMP1[31:0] «
TEMP2[31:0] «
TEMP3[31:0] «
TEMP4[31:0] «
TEMP5[31:0] «
TEMP6[31:0] «
TEMP7[31:0] «
DEST[15:0] «
DEST[31:16] «
DEST[47:32] «
DEST[63:48] «
DEST[79:64] «
DEST[95:80] «
DEST[111:96] «

DEST[15:0] * SRC[15:0]; (* Unsigned multiplication *)
DEST[31:16] * SRC[31:16];

DEST[47:32] * SRC[47:32];

DEST[63:48] * SRC[63:48];

TEMPO[31:16];

TEMP1[31:16];

TEMP2[31:16];

TEMP3[31:16];

PMULHUW instruction with 128-bit operands:

DEST[15:0] * SRC[15:0]; (* Unsigned multiplication *)
DEST[31:16] * SRC[31:16];
DEST[47:32] * SRC[47:32];
DEST[63:48] * SRC[63:48];
DEST[79:64] * SRC[79:64];
DEST[95:80] * SRC[95:80];
DEST[111:96] = SRC[111:96];
DEST[127:112] * SRC[127:112];
TEMPO[31:16];

TEMP1[31:16];

TEMP2[31:16];

TEMP3[31:16];

TEMP4[31:16];

TEMP5[31:16];

TEMPG[31:16];

DEST[127:112] < TEMP7[31:16];

Intel C/C++ Compiler Intrinsic Equivalent

PMULHUW __m64 _mm_mulhi_pu16(_m64 a, __m64 b)
PMULHUW __m128i _mm_mulhi_epu16 (_m128ia, _m128ib)
Flags Affected

None.

Numeric Exceptions

None.

Vol.2B 4-203

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

4-204 Vol. 2B

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-205

INSTRUCTION SET REFERENCE, N-Z

PMULHW—Multiply Packed Signed Integers and Store High Result

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OFES/r PMULHW mm, A Valid Valid Multiply the packed signed
mm/m64 word integers in mm1

register and mm2/m64, and
store the high 16 bits of the
results in mm1.

66 OF E5 /1 PMULHW xmm1, A Valid Valid Multiply the packed signed
xmm2/m128 word integers in xmm1 and
xmmZ2/m128, and store the
high 16 bits of the results in

xmm]1.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA

Description

Performs a SIMD signed multiply of the packed signed word integers in the destina-
tion operand (first operand) and the source operand (second operand), and stores
the high 16 bits of each intermediate 32-bit result in the destination operand.
(Figure 4-4 shows this operation when using 64-bit operands.) The source operand
can be an MMX technology register or a 64-bit memory location, or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX tech-
nology register or an XMM register.

n 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMULHW instruction with 64-bit operands:

TEMPO[31:0] <~ DEST[15:0] * SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] « DEST[31:16] * SRC[31:16];

TEMP2[31:0] « DEST[47:32] * SRC[47:32];

TEMP3[31:0] « DEST[63:48] * SRC[63:48];

DEST[15:0] « TEMPO[31:16];

DEST[31:16] « TEMP1[31:16];

DEST[47:32] « TEMP2[31:16];

DEST[63:48] < TEMP3[31:16];

PMULHW instruction with 128-bit operands:

4-206 Vol.2B

TEMPO[31:0] «
TEMP1[31:0] <
TEMP2[31:0] <
TEMP3[31:0] «
TEMP4[31:0] <
TEMP5[31:0] <
TEMP6[31:0] «
TEMP7[31:0] <
DEST[15:0] <
DEST[31:16] «
DEST[47:32] «
DEST[63:48] «
DEST[79:64] «
DEST[95:80] «
DEST[111:96] «

INSTRUCTION SET REFERENCE, N-Z

DEST[15:0] * SRC[15:0]; (* Signed multiplication *)
DEST[31:16] * SRC[31:16];
DEST[47:32] * SRC[47:32];
DEST[63:48] * SRC[63:48];
DEST[79:64] * SRC[79:64];
DEST[95:80] * SRC[95:80];
DEST[111:96] * SRC[111:96];
DEST[127:112] * SRC[127:112];
TEMPO[31:16];

TEMP1[31:16];

TEMP2[31:16];

TEMP3[31:16];

TEMP4[31:16];

TEMP5[31:16];

TEMP6[31:16];

DEST[127:112] < TEMP7[31:16];

Intel C/C++ Compiler Intrinsic Equivalent

PMULHW _ m64 _mm_mulhi_pi16 (__m64 m1, __m64 m2)
PMULHW __m128i _mm_mulhi_epi16 (_m128ia, __m128ib)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.
#SS(0) If a memory operand effective address is outside the SS
segment limit.
If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.

#UD

#NM

Vol.2B 4-207

INSTRUCTION SET REFERENCE, N-Z

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#HMF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

4-208 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-209

INSTRUCTION SET REFERENCE, N-Z

PMULLD — Multiply Packed Signed Dword Integers and Store Low
Result

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
66 OF 3840 /r PMULLD xmm]1, A Valid Valid Multiply the packed dword
xmmZ2/m128 signed integers in xmm1

and xmmZ2/m128 and store
the low 32 bits of each
product in xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs four signed multiplications from four pairs of signed dword integers and
stores the lower 32 bits of the four 64-bit products in the destination operand (first
operand). Each dword element in the destination operand is multiplied with the
corresponding dword element of the source operand (second operand) to obtain a
64-bit intermediate product.

Operation

TempO[63:0] < DEST[31:0] * SRC[31:0];
Temp1[63:0] < DEST[63:32] * SRC[63:32];
Temp2[63:0] < DEST[95:64] * SRC[95:64];
Temp3[63:0] < DEST[127:96] * SRC[127:96];
DEST[31:0] €« TempO[31:0];

DEST[63:32] < Temp1[31:0];

DEST[95:64] < Temp2[31:0];

DEST[127:96] < Temp3[31:0];

Intel C/C++ Compiler Intrinsic Equivalent

PMULLUD _ m128i _mm_mullo_epi32(_m128ia, __m128ib);

Flags Affected

None
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

4-210 Vol.2B

#SS(0)
#PF(fault-code)
#NM

#UD

INSTRUCTION SET REFERENCE, N-Z

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.
If TS in CRO is set.
If EM in CRO is set.

Vol.2B 4-211

INSTRUCTION SET REFERENCE, N-Z

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

4-212 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

PMULLW—Multiply Packed Signed Integers and Store Low Result

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OFD5/r PMULLW mm, A Valid Valid Multiply the packed signed
mm/m64 word integers in mm1

register and mm2/mé64, and
store the low 16 bits of the
results in mm1.

66 OF D5 /r PMULLW xmm1, A Valid Valid Multiply the packed signed
xmm2/m128 word integers in xmm1 and
xmmZ2/m128, and store the
low 16 bits of the results in

xmm1.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA

Description

Performs a SIMD signed multiply of the packed signed word integers in the destina-
tion operand (first operand) and the source operand (second operand), and stores
the low 16 bits of each intermediate 32-bit result in the destination operand.

(Figure 4-4 shows this operation when using 64-bit operands.) The source operand
can be an MMX technology register or a 64-bit memory location, or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX tech-
nology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

SRC X3 X2 X1 X0
DEST Y3 Y2 Y1 YO

TEMP| Z3=X3+#Y3 72 =X2*Y2 Z1=X1#*Y1 Z0=X0* Y0
DEST Z3[15:0] | z2[15:0] | Z1[15:0] | ZO[15:0]

Figure 4-5. PMULLU Instruction Operation Using 64-bit Operands

Vol.2B 4-213

INSTRUCTION SET REFERENCE, N-Z

Operation

PMULLW instruction with 64-bit operands:

TEMPO[31:0] « DEST[15:0] * SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] « DEST[31:16] * SRC[31:16];

TEMP2[31:0] <~ DEST[47:32] * SRC[47:32];

TEMP3[31:0] « DEST[63:48] * SRC[63:48];

DEST[15:0] « TEMPO[15:0];

DEST[31:16] «~ TEMP1[15:0];

DEST[47:32] <~ TEMPZ2[15:0];

DEST[63:48] «— TEMP3[15:0];

PMULLW instruction with 128-bit operands:
TEMPO[31:0] <~ DEST[15:0] * SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] « DEST[31:16] * SRC[31:16];
TEMP2[31:0] < DEST[47:32] * SRC[47:32];
TEMP3[31:0] « DEST[63:48] * SRC[63:48];
TEMP4[31:0] « DEST[79:64] * SRC[79:64];
TEMP5[31:0] « DEST[95:80] * SRC[95:80];
TEMP6[31:0] < DEST[111:96] * SRC[111:96];
TEMP7[31:0]1 <« DEST[127:112] * SRC[127:112];
DEST[15:0] « TEMPO[15:0];

DEST[31:16] « TEMP1[15:0];
DEST[47:32] « TEMP2[15:0];
DEST[63:48] « TEMP3[15:0];
DEST[79:64] <~ TEMP4[15:0];
DEST[95:80] «~ TEMP5[15:0];
DEST[111:96] <~ TEMP6[15:0];
DEST[127:112] < TEMP7[15:0];

Intel C/C++ Compiler Intrinsic Equivalent

PMULLW __m64 _mm_mullo_pi16(_m64 m1, __m64 m2)
PMULLW __m128i _mm_mullo_epi16 (_m128ia, __m128ib)

Flags Affected

None.

Numeric Exceptions

None.

4-214 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Vol.2B 4-215

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

4-216 Vol. 2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PMULUDQ—Multiply Packed Unsigned Doubleword Integers

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OFF4/r PMULUDQ mm1, A Valid Valid Multiply unsigned
mm2/mé64 doubleword integer in mm1

by unsigned doubleword
integer in mmZ2/m64, and
store the quadword result in

mm1.
66 0OFF4 /r PMULUDQ xmm1, A Valid Valid Multiply packed unsigned
xmm2/m128 doubleword integers in

xmm1 by packed unsigned
doubleword integers in
xmmZ2/m128, and store the
quadword results in xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Multiplies the first operand (destination operand) by the second operand (source
operand) and stores the result in the destination operand. The source operand can be
an unsigned doubleword integer stored in the low doubleword of an MMX technology
register or a 64-bit memory location, or it can be two packed unsigned doubleword
integers stored in the first (low) and third doublewords of an XMM register or an
128-bit memory location. The destination operand can be an unsigned doubleword
integer stored in the low doubleword an MMX technology register or two packed
doubleword integers stored in the first and third doublewords of an XMM register. The
result is an unsigned quadword integer stored in the destination an MMX technology
register or two packed unsigned quadword integers stored in an XMM register. When
a quadword result is too large to be represented in 64 bits (overflow), the result is
wrapped around and the low 64 bits are written to the destination element (that is,
the carry is ignored).

For 64-bit memory operands, 64 bits are fetched from memory, but only the low
doubleword is used in the computation; for 128-bit memory operands, 128 bits are
fetched from memory, but only the first and third doublewords are used in the
computation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Vol.2B 4-217

INSTRUCTION SET REFERENCE, N-Z

Operation

PMULUDQ instruction with 64-Bit operands:
DEST[63:0] «— DEST[31:0] * SRC[31:0];

PMULUDQ instruction with 128-Bit operands:
DEST[63:0] «— DEST[31:0] * SRC[31:0];
DEST[127:64] < DEST[95:64] * SRC[95:64];

Intel C/C++ Compiler Intrinsic Equivalent

PMULUDQ
PMULUDQ

Flags Affected

None.

__m64 _mm_mul_su32 (__m64 a, __m64 b)
__m128i _mm_mul_epu32 (_m128ia,__m128ib)

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

4-218 Vol. 2B

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

#NM
H#MF

INSTRUCTION SET REFERENCE, N-Z

If CPUID.O1H:EDX.SSE2[bit 26] = O.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = O.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-219

INSTRUCTION SET REFERENCE, N-Z

POP—Pop a Value from the Stack

Opcode

8F /0

8F /0

8F /0

58+ rw
58+ rd

58+ rd

1F
07
17

OF A1

OF A1

OF A1

OF AS

OF AS

4-220 Vol. 2B

Instruction

POPr/m16

POP r/m32

POP r/m64

POP r16

POP r32

POP r64

POP DS

POP ES

POP SS

POP FS

POP FS

POP FS

POP GS

POP GS

Op/ 64-Bit
En Mode
A Valid
A N.E.

A Valid
B Valid
B N.E.

B Valid
C Invalid
C Invalid
C Invalid
C Valid
C N.E.

C Valid
C Valid
C N.E.

Compat/
Leg Mode

Valid

Valid

N.E.

Valid
Valid

N.E.

Valid
Valid
Valid

Valid

Valid

N.E.

Valid

Valid

Description

Pop top of stack into m16;
increment stack pointer.

Pop top of stack into m32,
increment stack pointer.

Pop top of stack into m64;
increment stack pointer.
Cannot encode 32-bit
operand size.

Pop top of stack into r16;
increment stack pointer.

Pop top of stack into r32;
increment stack pointer.

Pop top of stack into r64;
increment stack pointer.
Cannot encode 32-bit
operand size.

Pop top of stack into DS;
increment stack pointer.

Pop top of stack into ES;
increment stack pointer.

Pop top of stack into SS;
increment stack pointer.

Pop top of stack into FS;
increment stack pointer by
16 bits.

Pop top of stack into FS;
increment stack pointer by
32 bits.

Pop top of stack into FS;
increment stack pointer by
64 bits.

Pop top of stack into GS;
increment stack pointer by
16 bits.

Pop top of stack into GS;
increment stack pointer by
32 bits.

INSTRUCTION SET REFERENCE, N-Z

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF A9 POP GS C Valid N.E. Pop top of stack into GS;
increment stack pointer by
64 bits.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:r/m (w) NA NA NA
B reg (w) NA NA NA
C NA NA NA NA
Description

Loads the value from the top of the stack to the location specified with the destina-
tion operand (or explicit opcode) and then increments the stack pointer. The destina-
tion operand can be a general-purpose register, memory location, or segment
register.

The address-size attribute of the stack segment determines the stack pointer size
(16, 32, 64 bits) and the operand-size attribute of the current code segment deter-
mines the amount the stack pointer is incremented (2, 4, 8 bytes).

For example, if the address- and operand-size attributes are 32, the 32-bit ESP
register (stack pointer) is incremented by 4; if they are 16, the 16-bit SP register is
incremented by 2. (The B flag in the stack segment’s segment descriptor determines
the stack’s address-size attribute, and the D flag in the current code segment’s
segment descriptor, along with prefixes, determines the operand-size attribute and
also the address-size attribute of the destination operand.)

If the destination operand is one of the segment registers DS, ES, FS, GS, or SS, the
value loaded into the register must be a valid segment selector. In protected mode,
popping a segment selector into a segment register automatically causes the
descriptor information associated with that segment selector to be loaded into the
hidden (shadow) part of the segment register and causes the selector and the
descriptor information to be validated (see the “Operation” section below).

A NULL value (0000-0003) may be popped into the DS, ES, FS, or GS register without
causing a general protection fault. However, any subsequent attempt to reference a
segment whose corresponding segment register is loaded with a NULL value causes
a general protection exception (#GP). In this situation, no memory reference occurs
and the saved value of the segment register is NULL.

The POP instruction cannot pop a value into the CS register. To load the CS register
from the stack, use the RET instruction.

Vol.2B 4-221

INSTRUCTION SET REFERENCE, N-Z

If the ESP register is used as a base register for addressing a destination operand in
memory, the POP instruction computes the effective address of the operand after it
increments the ESP register. For the case of a 16-bit stack where ESP wraps to OH as
a result of the POP instruction, the resulting location of the memory write is
processor-family-specific.

The POP ESP instruction increments the stack pointer (ESP) before data at the old top
of stack is written into the destination.

A POP SS instruction inhibits all interrupts, including the NMI interrupt, until after
execution of the next instruction. This action allows sequential execution of POP SS
and MOV ESP, EBP instructions without the danger of having an invalid stack during
an interruptl. However, use of the LSS instruction is the preferred method of loading
the SS and ESP registers.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). When in 64-bit mode, POPs using 32-bit operands are not encod-
able and POPs to DS, ES, SS are not valid. See the summary chart at the beginning

of this section for encoding data and limits.

Operation
IF StackAddrSize = 32
THEN
IF OperandSize = 32
THEN
DEST « SS:ESP; (* Copy a doubleword *)
ESP « ESP + 4;
ELSE (* OperandSize = 16*)
DEST « SS:ESP; (* Copy a word *)
ESP « ESP + 2;
Fl;
ELSE IF StackAddrSize = 64
THEN
IF OperandSize = 64
THEN
DEST « SS:RSP; (* Copy quadword *)
RSP «- RSP + 8;

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after
a POP SS instruction, the breakpoint may not be triggered. However, in a sequence of instruc-
tions that POP the SS register, only the first instruction in the sequence is guaranteed to delay
an interrupt.

In the following sequence, interrupts may be recognized before POP ESP executes:

POP SS
POP SS
POP ESP

4-222 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

ELSE (* OperandSize = 16%*)
DEST <« SS:RSP; (* Copy a word *)

RSP «- RSP + 2;
Fl;
Fl;
ELSE StackAddrSize = 16
THEN
IF OperandSize = 16
THEN
DEST <« SS:SP; (* Copy a word *)
SP « SP +2;
ELSE (* OperandSize = 32 *)
DEST « SS:SP; (* Copy a doubleword *)
SP « SP + 4;
Fl;

Loading a segment register while in protected mode results in special actions, as
described in the following listing. These checks are performed on the segment
selector and the segment descriptor it points to.

64-BIT_MODE
IF FS, or GS is loaded with non-NULL selector;

THEN
IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)
AND (both RPL and CPL > DPL))
THEN #GP(selector);
IF segment not marked present
THEN #NP(selector);
ELSE
SegmentRegister « segment selector;
SegmentRegister « segment descriptor;
Fl;

IF FS, or GS is loaded with a NULL selector;

THEN
SegmentRegister « segment selector;
SegmentRegister « segment descriptor;

Vol.2B 4-223

INSTRUCTION SET REFERENCE, N-Z

PREOTECTED MODE OR COMPATIBILITY MODE;

IF SS is loaded;
THEN
IF segment selector is NULL
THEN #GP(0);
FI;
IF segment selector index is outside descriptor table limits
or segment selector's RPL = CPL
or segment is not a writable data segment
or DPL = CPL
THEN #GP(selector);
Fl;
IF segment not marked present
THEN #SS(selector);
ELSE
SS « segment selector;
SS « segment descriptor;
Fl;
Fl;

IF DS, ES, FS, or GS is loaded with non-NULL selector;
THEN
IF segment selector index is outside descriptor table limits
or segment is not a data or readable code segment
or ((segment is a data or nonconforming code segment)
and (both RPL and CPL > DPL))

THEN #GP(selector);
Fl;
IF segment not marked present
THEN #NP(selector);
ELSE
SegmentRegister «- segment selector;
SegmentRegister «— segment descriptor;
Fl;

Fl;

IF DS, ES, FS, or GS is loaded with a NULL selector
THEN
SegmentRegister < segment selector;
SegmentRegister «— segment descriptor;
Fl;

4-224 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If attempt is made to load SS register with NULL segment
selector.

If the destination operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.

If the SS register is being loaded and the segment selector's RPL
and the segment descriptor’s DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a
non-writable data segment.

If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is not a data or readable code segment.

If the DS, ES, FS, or GS register is being loaded and the

segment pointed to is a data or nonconforming code segment,

but both the RPL and the CPL are greater than the DPL.
#SS(0) If the current top of stack is not within the stack segment.

If a memory operand effective address is outside the SS
segment limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is
marked not present.

#NP If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

Vol.2B 4-225

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code)
#AC(0)

#UD

If a page fault occurs.

If an unaligned memory reference is made while alignment
checking is enabled.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#GP(0)
#SS(V)
#GP(selector)

#AC(0)

#PF(fault-code)
#NP

#UD

4-226 Vol. 2B

If the memory address is in a non-canonical form.
If the stack address is in a non-canonical form.
If the descriptor is outside the descriptor table limit.

If the FS or GS register is being loaded and the segment pointed
to is not a data or readable code segment.

If the FS or GS register is being loaded and the segment pointed
to is a data or nonconforming code segment, but both the RPL
and the CPL are greater than the DPL.

If an unaligned memory reference is made while alignment
checking is enabled.

If a page fault occurs.

If the FS or GS register is being loaded and the segment pointed
to is marked not present.

If the LOCK prefix is used.

INSTRUCTION SET REFERENCE, N-Z

POPA/POPAD—Pop All General-Purpose Registers

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
61 POPA A Invalid Valid Pop DI, SI, BP, BX, DX, CX,
and AX.
61 POPAD A Invalid Valid Pop EDI, ESI, EBP, EBX, EDX,
ECX, and EAX.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A NA NA NA NA
Description

Pops doublewords (POPAD) or words (POPA) from the stack into the general-purpose
registers. The registers are loaded in the following order: EDI, ESI, EBP, EBX, EDX,
ECX, and EAX (if the operand-size attribute is 32) and DI, Sl, BP, BX, DX, CX, and AX
(if the operand-size attribute is 16). (These instructions reverse the operation of the
PUSHA/PUSHAD instructions.) The value on the stack for the ESP or SP register is
ignored. Instead, the ESP or SP register is incremented after each register is loaded.

The POPA (pop all) and POPAD (pop all double) mnemonics reference the same
opcode. The POPA instruction is intended for use when the operand-size attribute is
16 and the POPAD instruction for when the operand-size attribute is 32. Some
assemblers may force the operand size to 16 when POPA is used and to 32 when
POPAD is used (using the operand-size override prefix [66H] if necessary). Others
may treat these mnemonics as synonyms (POPA/POPAD) and use the current setting
of the operand-size attribute to determine the size of values to be popped from the
stack, regardless of the mnemonic used. (The D flag in the current code segment’s
segment descriptor determines the operand-size attribute.)

This instruction executes as described in non-64-bit modes. It is not valid in 64-bit
mode.

Operation

IF 64-Bit Mode
THEN
#UD;
ELSE
IF OperandSize = 32 (* Instruction = POPAD *)
THEN
EDI « Pop();
€SI « Pop();
EBP « Pop();

Vol.2B 4-227

INSTRUCTION SET REFERENCE, N-Z

Increment ESP by 4; (* Skip next 4 bytes of stack *)

EBX < Pop();
EDX < Pop();
ECX « Pop();
EAX <« Pop();

ELSE (* OperandSize = 16, instruction = POPA *)

DI < Pop();
SI < Pop();
BP « Pop();

Increment ESP by 2; (* Skip next 2 bytes of stack *)

BX « Pop();
DX « Pop();
CX « Pop();
AX « Pop();
Fl;
Fl;

Flags Affected

None.

Protected Mode Exceptions

#SS(0)

#PF(fault-code)
#AC(0)

#UD

If the starting or ending stack address is not within the stack
segment.

If a page fault occurs.

If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#SS

#UD

If the starting or ending stack address is not within the stack
segment.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#SS(0)

#PF(fault-code)
#AC(0)

#UD

4-228 Vol. 2B

If the starting or ending stack address is not within the stack
segment.

If a page fault occurs.

If an unaligned memory reference is made while alignment
checking is enabled.

If the LOCK prefix is used.

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

Vol.2B 4-229

INSTRUCTION SET REFERENCE, N-Z

POPCNT — Return the Count of Number of Bits Set to 1

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
F3 OF B8 /r POPCNT r16, A Valid Valid POPCNT on r/m16
r/mi16
F3 OF B8 /r POPCNT r32, A Valid Valid POPCNT on r/m32
r/m32
F3 REX.W OFB8 POPCNT r64, A Valid N.E. POPCNT on r/m64
/r r/mé64

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) NA NA
Description

This instruction calculates of number of bits set to 1 in the second operand (source)
and returns the count in the first operand (a destination register).

Operation

Count =0;

For (i=0; i < OperandSize; i++)

{ IF (SRC[i]= 1) //i'th bit
THEN Count++; Fl;

}
DEST €« Count;

Flags Affected

OF, SF, ZF, AF, CF, PF are all cleared. ZF is set if SRC == 0, otherwise ZF is cleared
Intel C/C++ Compiler Intrinsic Equivalent

POPCNT int _mm_popcnt_u32(unsigned int a);

POPCNT int64_t _mm_popcnt_ub4(unsigned __int64 a);

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

4-230 Vol.2B

#SS(0)

#PF (fault-code)
#UD

INSTRUCTION SET REFERENCE, N-Z

If a memory operand effective address is outside the SS
segment limit.

For a page fault.

If CPUID.0O1H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0)
#SS(0)

#UD

If any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand effective address is outside the SS
segment limit.

If CPUID.0O1H:ECX.POPCNT [Bit 23] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions

#GP(0)
#SS(0)

#PF (fault-code)
#UD

If any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand effective address is outside the SS
segment limit.

For a page fault.

If CPUID.0O1H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)
#SS(0)

#PF (fault-code)
#UD

If the memory address is in a non-canonical form.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If CPUID.0O1H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Vol.2B 4-231

INSTRUCTION SET REFERENCE, N-Z

POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
9D POPF A Valid Valid Pop top of stack into lower
16 bits of EFLAGS.
aD POPFD A N.E. Valid Pop top of stack into
EFLAGS.
REX.W + 9D POPFQ A Valid N.E. Pop top of stack and zero-

extend into RFLAGS.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A NA NA NA NA
Description

Pops a doubleword (POPFD) from the top of the stack (if the current operand-size
attribute is 32) and stores the value in the EFLAGS register, or pops a word from the
top of the stack (if the operand-size attribute is 16) and stores it in the lower 16 bits
of the EFLAGS register (that is, the FLAGS register). These instructions reverse the
operation of the PUSHF/PUSHFD instructions.

The POPF (pop flags) and POPFD (pop flags double) mnemonics reference the same
opcode. The POPF instruction is intended for use when the operand-size attribute is
16; the POPFD instruction is intended for use when the operand-size attribute is 32.
Some assemblers may force the operand size to 16 for POPF and to 32 for POPFD.
Others may treat the mnemonics as synonyms (POPF/POPFD) and use the setting of
the operand-size attribute to determine the size of values to pop from the stack.

The effect of POPF/POPFD on the EFLAGS register changes, depending on the mode
of operation. When the processor is operating in protected mode at privilege level O
(or in real-address mode, the equivalent to privilege level 0), all non-reserved flags
in the EFLAGS register except RFl, VIP, VIF, and VM may be modified. VIP, VIF and
VM remain unaffected.

When operating in protected mode with a privilege level greater than 0, but less than
or equal to I0OPL, all flags can be modified except the IOPL field and VIP, VIF, and VM.
Here, the IOPL flags are unaffected, the VIP and VIF flags are cleared, and the VM
flag is unaffected. The interrupt flag (IF) is altered only when executing at a level at
least as privileged as the IOPL. If a POPF/POPFD instruction is executed with insuffi-
cient privilege, an exception does not occur but privileged bits do not change.

1. RFis always zero after the execution of POPF. This is because POPF, like all instructions, clears
RF as it begins to execute.

4-232 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

When operating in virtual-8086 mode, the IOPL must be equal to 3 to use
POPF/POPFD instructions; VM, RF, IOPL, VIP, and VIF are unaffected. If the IOPL is
less than 3, POPF/POPFD causes a general-protection exception (#GP).

In 64-bit mode, use REX.W to pop the top of stack to RFLAGS. The mnemonic
assigned is POPFQ (note that the 32-bit operand is not encodable). POPFQ pops 64
bits from the stack, loads the lower 32 bits into RFLAGS, and zero extends the upper
bits of RFLAGS.

See Chapter 3 of the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 1, for more information about the EFLAGS registers.

Operation

IF VM =0 (* Not in Virtual-8086 Mode *)
THENIFCPL=0
THEN
IF OperandSize = 32;

THEN
EFLAGS « Pop(); (* 32-bit pop *)
(* All non-reserved flags except RF, VIP, VIF, and VM can be modified;
VIP and VIF are cleared; RF, VM, and all reserved bits are unaffected. *)

ELSE IF (Operandsize = 64)
RFLAGS = Pop(); (* 64-bit pop *)
(* All non-reserved flags except RF, VIP, VIF, and VM can be modified; VIP
and VIF are cleared; RF, VM, and all reserved bits are unaffected.*)

ELSE (* OperandSize =16 *)
EFLAGS[15:0] « Pop(); (* 16-bit pop *)
(* All non-reserved flags can be modified. *)

Fl;
ELSE (*CPL>0%)
IF OperandSize = 32
THEN
IF CPL > IOPL
THEN
EFLAGS <« Pop(); (* 32-bit pop *)
(* All non-reserved bits except IF, IOPL, RF, VIP, and
VIF can be modified; IF, IOPL, RF, VM, and all reserved
bits are unaffected; VIP and VIF are cleared. *)
ELSE
EFLAGS <« Pop(); (* 32-bit pop *)
(* All non-reserved bits except IOPL, RF, VIP, and VIF can be
modified; IOPL, RF, VM, and all reserved bits are
unaffected; VIP and VIF are cleared. *)
Fl;

Vol.2B 4-233

INSTRUCTION SET REFERENCE, N-Z

ELSE IF (Operandsize = 64)
IF CPL > IOPL
THEN
RFLAGS « Pop(); (* 64-bit pop *)
(* All non-reserved bits except IF, IOPL, RF, VIP, and
VIF can be modified; IF, IOPL, RF, VM, and all reserved
bits are unaffected; VIP and VIF are cleared. *)
ELSE
RFLAGS « Pop(); (* 64-bit pop *)
(* All non-reserved bits except IOPL, RF, VIP, and VIF can be
modified; IOPL, RF, VM, and all reserved bits are
unaffected; VIP and VIF are cleared. *)
Fl;
ELSE (* OperandSize = 16 *)
EFLAGS[15:0] « Pop(); (* 16-bit pop *)
(* All non-reserved bits except IOPL can be modified; IOPL and all
reserved bits are unaffected. *)
Fl;
Fl;
ELSE (* In Virtual-8086 Mode *)
IFIOPL=3
THEN IF OperandSize = 32
THEN
EFLAGS « Pop();
(* All non-reserved bits except VM, RF, IOPL, VIP, and VIF can be
modified; VM, RF, IOPL, VIP, VIF, and all reserved bits are unaffected. *)
ELSE
EFLAGS[15:0] « Pop(); FI;
(* All non-reserved bits except IOPL can be modified;
IOPL and all reserved bits are unaffected. *)
ELSE (* IOPL < 3 %)
#GP(0); (* Trap to virtual-8086 monitor. *)
Fl;
Fl;
FI;

Flags Affected

All flags may be affected; see the Operation section for details.

Protected Mode Exceptions
#SS(0) If the top of stack is not within the stack segment.
#PF(fault-code) If a page fault occurs.

4-234 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

#AC(0) If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#SS If the top of stack is not within the stack segment.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the 1/0 privilege level is less than 3.

If an attempt is made to execute the POPF/POPFD instruction
with an operand-size override prefix.

#SS(0) If the top of stack is not within the stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment
checking is enabled.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

#SS(0) If the stack address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Vol.2B 4-235

INSTRUCTION SET REFERENCE, N-Z

POR—Bitwise Logical OR

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OFEB/r POR mm, mm/m64 A Valid Valid Bitwise OR of mm/m64 and
mm.
66 OFEB/r POR xmmT1, A Valid Valid Bitwise OR of xmm2/m128
xmm2/m128 and xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a bitwise logical OR operation on the source operand (second operand) and
the destination operand (first operand) and stores the result in the destination
operand. The source operand can be an MMX technology register or a 64-bit memory
location or it can be an XMM register or a 128-bit memory location. The destination
operand can be an MMX technology register or an XMM register. Each bit of the result
is set to 1 if either or both of the corresponding bits of the first and second operands
are 1; otherwise, it is set to O.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST « DEST OR SRC;

Intel C/C++ Compiler Intrinsic Equivalent

POR __m64 _mm_or_si64(__m64 m1, _m64 m2)

POR __m128i _mm_or_si128(_m128im1,_m128im2)
Flags Affected

None.

Numeric Exceptions

None.

4-236 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Vol.2B 4-237

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

4-238 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PREFETCHh—Prefetch Data Into Caches

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode

OF 1871 PREFETCHTOm8 A Valid Valid Move data from m8 closer
to the processor using TO
hint.

OF 18/2 PREFETCHT1 m8 A Valid Valid Move data from m8 closer
to the processor using T1
hint.

OF 18/3 PREFETCHTZ m8 A Valid Valid Move data from m8 closer
to the processor using T2
hint.

OF18/0 PREFETCHNTA m8 A Valid Valid Move data from m8 closer
to the processor using NTA
hint.

Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:r/m (r) NA NA NA

Description

Fetches the line of data from memory that contains the byte specified with the source
operand to a location in the cache hierarchy specified by a locality hint:

TO (temporal data)—prefetch data into all levels of the cache hierarchy.
— Pentium Il processor—1st- or 2nd-level cache.
— Pentium 4 and Intel Xeon processors—2nd-level cache.

T1 (temporal data with respect to first level cache)—prefetch data into level 2
cache and higher.

— Pentium Ill processor—2nd-level cache.
— Pentium 4 and Intel Xeon processors—2nd-level cache.

T2 (temporal data with respect to second level cache)—prefetch data into level 2
cache and higher.

— Pentium Il processor—2nd-level cache.
— Pentium 4 and Intel Xeon processors—2nd-level cache.

NTA (non-temporal data with respect to all cache levels)—prefetch data into non-
temporal cache structure and into a location close to the processor, minimizing
cache pollution.

— Pentium IIl processor—1st-level cache

Vol.2B 4-239

INSTRUCTION SET REFERENCE, N-Z

— Pentium 4 and Intel Xeon processors—2nd-level cache

The source operand is a byte memory location. (The locality hints are encoded into
the machine level instruction using bits 3 through 5 of the ModR/M byte. Use of any
ModR/M value other than the specified ones will lead to unpredictable behavior.)

If the line selected is already present in the cache hierarchy at a level closer to the
processor, no data movement occurs. Prefetches from uncacheable or WC memory
are ignored.

The PREFETCHbh instruction is merely a hint and does not affect program behavior. If
executed, this instruction moves data closer to the processor in anticipation of future
use.

The implementation of prefetch locality hints is implementation-dependent, and can
be overloaded or ignored by a processor implementation. The amount of data
prefetched is also processor implementation-dependent. It will, however, be a
minimum of 32 bytes.

It should be noted that processors are free to speculatively fetch and cache data from
system memory regions that are assigned a memory-type that permits speculative
reads (that is, the WB, WC, and WT memory types). A PREFETCHh instruction is
considered a hint to this speculative behavior. Because this speculative fetching can
occur at any time and is not tied to instruction execution, a PREFETCHh instruction is
not ordered with respect to the fence instructions (MFENCE, SFENCE, and LFENCE) or
locked memory references. A PREFETCHh instruction is also unordered with respect
to CLFLUSH instructions, other PREFETCHh instructions, or any other general instruc-
tion. It is ordered with respect to serializing instructions such as CPUID, WRMSR,
OUT, and MOV CR.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FETCH (m8);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch(char *p, int i)

The argument “*p” gives the address of the byte (and corresponding cache line) to
be prefetched. The value “i” gives a constant (_ MM_HINT_TO, _MM_HINT_T1,
_MM_HINT_T2, or _MM_HINT_NTA) that specifies the type of prefetch operation to
be performed.

Numeric Exceptions

None.

4-240 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Vol. 2B 4-241

INSTRUCTION SET REFERENCE, N-Z

PSADBW—Compute Sum of Absolute Differences

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OFF6/r PSADBW mmT, A Valid Valid Computes the absolute
mm2/m64 differences of the packed

unsigned byte integers from
mmZ /m64 and mm71;
differences are then
summed to produce an
unsigned word integer

result.
66 OF F6 /1 PSADBW xmm1, A Valid Valid Computes the absolute
xmmZ2/m128 differences of the packed

unsigned byte integers from
xmmZ2 /m128and xmm1;
the 8 low differences and 8
high differences are then
summed separately to
produce two unsigned word
integer results.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Computes the absolute value of the difference of 8 unsigned byte integers from the
source operand (second operand) and from the destination operand (first operand).
These 8 differences are then summed to produce an unsigned word integer result
that is stored in the destination operand. The source operand can be an MMX tech-
nology register or a 64-bit memory location or it can be an XMM register or a 128-bit
memory location. The destination operand can be an MMX technology register or an
XMM register. Figure 4-6 shows the operation of the PSADBW instruction when using
64-bit operands.

When operating on 64-bit operands, the word integer result is stored in the low word
of the destination operand, and the remaining bytes in the destination operand are
cleared to all Os.

When operating on 128-bit operands, two packed results are computed. Here, the 8
low-order bytes of the source and destination operands are operated on to produce a
word result that is stored in the low word of the destination operand, and the 8 high-
order bytes are operated on to produce a word result that is stored in bits 64 through

4-242 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

79 of the destination operand. The remaining bytes of the destination operand are
cleared.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

SRC X7 X6 X5 X4 X3 X2 X1 X0

DEST Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO

TEMP | ABS(X7:Y7)| ABS(X6:Y6)| ABS(X5:Y5) | ABS(X4:Y4)| ABS(X3:Y3) | ABS(X2:Y2) | ABS(X1:Y1) | ABS(X0:Y0)

DEST| ooH O0H 00H 00H O0H O00H | SUM(TEMP7..TEMPO)

Figure 4-6. PSADBW Instruction Operation Using 64-bit Operands

Operation

PSADBW instructions when using 64-bit operands:
TEMPO <« ABS(DEST[7:0] — SRC[7:0]);
(* Repeat operation for bytes 2 through 6 *)
TEMP7 « ABS(DEST[63:56] — SRC[63:56]);
DEST[15:0] <~ SUM(TEMPO:TEMP7);
DEST[63:16] <~ 000000000000H;

PSADBW instructions when using 128-bit operands:
TEMPO « ABS(DEST[7:0] — SRC[7:0]);
(* Repeat operation for bytes 2 through 14 *)
TEMP15 « ABS(DEST[127:120] — SRC[127:120]);
DEST[15:0] < SUM(TEMPO:TEMP7?);
DEST[63:16] «- 000000000000H;
DEST[79:64] « SUM(TEMP8.TEMP15);
DEST[127:80] <~ 000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent

PSADBW __m64 _mm_sad_pu8(_m64 a,__m64 b)
PSADBW _ m128i _mm_sad_epu8(_m128ia, __ m128ib)

Flags Affected

None.

Vol.2B 4-243

INSTRUCTION SET REFERENCE, N-Z

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.
If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)

4-244 Vol. 2B

For a page fault.

#AC(0)

INSTRUCTION SET REFERENCE, N-Z

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-245

INSTRUCTION SET REFERENCE, N-Z

PSHUFB — Packed Shuffle Bytes

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
0F 3800 /r PSHUFB mm1, A Valid Valid Shuffle bytes in mm1
mm2/m64 according to contents of
mm2/m64.
66 0F 3800 /r PSHUFB xmm1, A Valid Valid Shuffle bytes in xmm1
xmm2/m128 according to contents of
xmm2/m128.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA

Description

PSHUFB performs in-place shuffles of bytes in the destination operand (the first
operand) according to the shuffle control mask in the source operand (the second
operand). The instruction permutes the data in the destination operand, leaving the
shuffle mask unaffected. If the most significant bit (bit[7]) of each byte of the shuffle
control mask is set, then constant zero is written in the result byte. Each byte in the
shuffle control mask forms an index to permute the corresponding byte in the desti-
nation operand. The value of each index is the least significant 4 bits (128-bit opera-
tion) or 3 bits (64-bit operation) of the shuffle control byte. Both operands can be
MMX register or XMM registers. When the source operand is a 128-bit memory
operand, the operand must be aligned on a 16-byte boundary or a general-protection
exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation

PSHUFB with 64 bit operands:

fori=0to7{

if (SRC[(i * 8)+7] == 1) then
DESTI[(i*8)+7...(i*8)*+0] <« O;

else

index[2..0] < SRC[(i*8)+2 .. (i*8)+0];
DEST[(i*8)+7...(i*8)+0] < DEST[(index*8+7).(index*8+0)];

endif;
}

PSHUFB with 128 bit operands:

4-246 Vol. 2B

fori=0to15¢
if (SRC[(i * 8)+7]==1) then

INSTRUCTION SET REFERENCE, N-Z

DESTI[(i*8)+7.(i*8)+0] < O;

else
index[3..0] «— SRC[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7..(i*8)+0] <~ DEST[(index*8+7)..(index*8+0)];

endif
}
MM2
07H 07H FFH 80H 01H 00H 00H 00H
MM1
04H 01H 07H 03H 02H 02H FFH 01H
04H 04H 00H 00H FFH 01H 01H 01H

Figure 4-7. PSHUB with 64-Bit Operands

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFB
PSHUFB

__m64 _mm_shuffle_pi8 (__m64 a, __m64 b)
__m128i _mm_shuffle_epi8 (_m128ia,__m128ib)

Protected Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.
If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.

Vol.2B 4-247

INSTRUCTION SET REFERENCE, N-Z

If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.

#NM If TS bit in CRO is set.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = O.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.
#NM If TS bit in CRO is set.
HMF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.SSSE3[bit 9] = 0.
If the LOCK prefix is used.

4-248 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-249

INSTRUCTION SET REFERENCE, N-Z

PSHUFD—Shuffle Packed Doublewords

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
66 0F 70 /rib PSHUFD xmm1, A Valid Valid Shuffle the doublewords in
xmm2/m128, xmmZ2/m128based on the
imm8 encoding in imm8 and store
the result in xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) imm8 NA
Description

Copies doublewords from source operand (second operand) and inserts them in the
destination operand (first operand) at the locations selected with the order operand
(third operand). Figure 4-8 shows the operation of the PSHUFD instruction and the
encoding of the order operand. Each 2-bit field in the order operand selects the
contents of one doubleword location in the destination operand. For example, bits O
and 1 of the order operand select the contents of doubleword O of the destination
operand. The encoding of bits O and 1 of the order operand (see the field encoding in
Figure 4-8) determines which doubleword from the source operand will be copied to
doubleword 0 of the destination operand.

SRC X3 X2 X1 X0
DEST Y3 YO

Y2 Y1
\ \ / /Encoding 00B - X0
ORDER of Fieldsin 01B - X1
ORDER 10B - X2
76543210 Operand 11B - X3

Figure 4-8. PSHUFD Instruction Operation

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The order operand is an 8-bit immediate. Note
that this instruction permits a doubleword in the source operand to be copied to more
than one doubleword location in the destination operand.

4-250 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] < (SRC >> (ORDER[1:0] * 32))[31:0];
DEST[63:32] « (SRC >> (ORDER[3:2] * 32))[31:0];
DEST[95:64] « (SRC >> (ORDER[5:4] * 32))[31:0];
DEST[127:96] <« (SRC >> (ORDER[7:6] * 32))[31:0];

Intel C/C++ Compiler Intrinsic Equivalent
PSHUFD __m128i _mm_shuffle_epi32(_m128ia, int n)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

Vol. 2B 4-251

INSTRUCTION SET REFERENCE, N-Z

If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.

4-252 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

PSHUFHW—-Shuffle Packed High Words

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
F30F70/rib PSHUFHW xmm1, A Valid Valid Shuffle the high words in
xmmZ2/ m128, xmmZ2/m128based on the
imm8 encoding in imm8 and store
the result in xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) imm8 NA
Description

Copies words from the high quadword of the source operand (second operand) and
inserts them in the high quadword of the destination operand (first operand) at word
locations selected with the order operand (third operand). This operation is similar to
the operation used by the PSHUFD instruction, which is illustrated in Figure 4-8. For
the PSHUFHW instruction, each 2-bit field in the order operand selects the contents
of one word location in the high quadword of the destination operand. The binary
encodings of the order operand fields select words (0, 1, 2 or 3, 4) from the high
quadword of the source operand to be copied to the destination operand. The low
quadword of the source operand is copied to the low quadword of the destination
operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The order operand is an 8-bit immediate. Note
that this instruction permits a word in the high quadword of the source operand to be
copied to more than one word location in the high quadword of the destination
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] « SRC[63:0];

DEST[79:64] < (SRC >> (ORDER[1:0] * 16))[79:64];
DEST[95:80] < (SRC >> (ORDER[3:2] * 16))[79:64];
DEST[111:96] <« (SRC >> (ORDER[5:4] * 16))[79:64];
DEST[127:112] « (SRC >> (ORDER[7:6] * 16))[79:64];

Intel C/C++ Compiler Intrinsic Equivalent
PSHUFHW __m128i _mm_shufflehi_epi16(__m128i a, int n)

Vol.2B 4-253

INSTRUCTION SET REFERENCE, N-Z

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM
#PF(fault-code)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

If a page fault occurs.

Real-Address Mode Exceptions

#GP

#UD

#NM

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

4-254 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.

Vol.2B 4-255

INSTRUCTION SET REFERENCE, N-Z

PSHUFLW—Shuffle Packed Low Words

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
F20F70/rib PSHUFLW xmm1, A Valid Valid Shuffle the low words in
xmm2/m128, xmmZ2/m128based on the
imm8 encoding in imm8 and store
the result in xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) imm8 NA
Description

Copies words from the low quadword of the source operand (second operand) and
inserts them in the low quadword of the destination operand (first operand) at word
locations selected with the order operand (third operand). This operation is similar to
the operation used by the PSHUFD instruction, which is illustrated in Figure 4-8. For
the PSHUFLW instruction, each 2-bit field in the order operand selects the contents of
one word location in the low quadword of the destination operand. The binary encod-
ings of the order operand fields select words (O, 1, 2, or 3) from the low quadword of
the source operand to be copied to the destination operand. The high quadword of
the source operand is copied to the high quadword of the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The order operand is an 8-bit immediate. Note
that this instruction permits a word in the low quadword of the source operand to be
copied to more than one word location in the low quadword of the destination
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[15:0] « (SRC >> (ORDER[1:0] * 16))[15:0];
DEST[31:16] < (SRC >> (ORDER[3:2] * 16))[15:0];
DEST[47:32] < (SRC >> (ORDER[5:4] * 16))[15:0];
DEST[63:48] « (SRC >> (ORDER[7:6] * 16))[15:0];
DEST[127:64] « SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalent
PSHUFLW __m128i _mm_shufflelo_epi16(_m128i a, int n)

4-256 Vol.2B

Flags Affected

None.

Numeric Exceptions

None.

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM
#PF(fault-code)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

If a page fault occurs.

Real-Address Mode Exceptions

#GP

#UD

#NM

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

Vol.2B 4-257

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM
#PF(fault-code)

4-258 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

If a page fault occurs.

INSTRUCTION SET REFERENCE, N-Z

PSHUFW—Shuffle Packed Words

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF 70 /rib PSHUFW mm1, A Valid Valid Shuffle the words in
mmZ2/m64, imm8 mmZ2/m64 based on the

encoding in imm8 and store
the result in mm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) imm8 NA
Description

Copies words from the source operand (second operand) and inserts them in the
destination operand (first operand) at word locations selected with the order operand
(third operand). This operation is similar to the operation used by the PSHUFD
instruction, which is illustrated in Figure 4-8. For the PSHUFW instruction, each 2-bit
field in the order operand selects the contents of one word location in the destination
operand. The encodings of the order operand fields select words from the source
operand to be copied to the destination operand.

The source operand can be an MMX technology register or a 64-bit memory location.
The destination operand is an MMX technology register. The order operand is an 8-bit
immediate. Note that this instruction permits a word in the source operand to be
copied to more than one word location in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[15:0] < (SRC >> (ORDER[1:0] * 16))[15:0];
DEST[31:16] «— (SRC >> (ORDER[3:2] * 16))[15:0];
DEST[47:32] < (SRC >> (ORDER[5:4] * 16))[15:0];
DEST[63:48] «— (SRC >> (ORDER[7:6] * 16))[15:0];
Intel C/C++ Compiler Intrinsic Equivalent
PSHUFW __m64 _mm_shuffle_pi16(__m64 a, int n)

Flags Affected

None.

Vol.2B 4-259

INSTRUCTION SET REFERENCE, N-Z

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CRO.EM[bit 2] = 1.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

HMF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#UD If CRO.EM[bit 2] = 1.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

HMF If there is a pending x87 FPU exception.

4-260 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Vol.2B 4-261

INSTRUCTION SET REFERENCE, N-Z

PSIGNB/PSIGNW/PSIGND — Packed SIGN

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF 3808 /r PSIGNB mm1, A Valid Valid Negate/zero/preserve
mm2/m64 packed byte integers in
mm1 depending on the
corresponding sign in
mm2/m64
66 0F 3808 /r PSIGNB xmm1, A Valid Valid Negate/zero/preserve
xmm2/m128 packed byte integers in
xmm1 depending on the
corresponding sign in
xmm2/m128.
OF 3809 /r PSIGNW mm1, A Valid Valid Negate/zero/preserve
mm2/m64 packed word integers in
mm1 depending on the
corresponding sign in
mm2/m128.
66 0F 3809 /r PSIGNW xmmT, A Valid Valid Negate/zero/preserve
xmm2/m128 packed word integers in
xmm1 depending on the
corresponding sign in
xmm2/m128.
OF 380A /r PSIGND mm1, A Valid Valid Negate/zero/preserve
mm2/m64 packed doubleword integers
in mm1 depending on the
corresponding sign in
mm2/m128.
66 OF 38 0A /r PSIGND xmmT, A Valid Valid Negate/zero/preserve
xmm2/m128 packed doubleword integers
in xmm1 depending on the
corresponding sign in
xmm2/m128.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA

Description

PSIGNB/PSIGNW/PSIGND negates each data element of the destination operand
(the first operand) if the signed integer value of the corresponding data element in

4-262 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

the source operand (the second operand) is less than zero. If the signed integer
value of a data element in the source operand is positive, the corresponding data
element in the destination operand is unchanged. If a data element in the source
operand is zero, the corresponding data element in the destination operand is set to
zero.

PSIGNB operates on signed bytes. PSIGNW operates on 16-bit signed words.
PSIGND operates on signed 32-bit integers. Both operands can be MMX register or
XMM registers. When the source operand is a 128bit memory operand, the operand
must be aligned on a 16-byte boundary or a general-protection exception (#GP) will
be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation
PSIGNB with 64 bit operands:

IF (SRC[7:0]<0)
DEST[7:0] < Neg(DEST[7:0])
ELSEIF (SRC[7:0]1==0)
DEST[7:0]1« 0
ELSEIF (SRC[7:01>0)
DEST[7:0] < DEST[7:0]
Repeat operation for 2nd through 7th bytes

IF (SRC[63:56] < 0)
DEST[63:56] « Neg(DEST[63:56])
ELSEIF (SRC[63:56] == 0)
DEST[63:56] « 0
ELSEIF (SRC[63:56] > 0)
DEST[63:56] «— DEST[63:56]

PSIGNB with 128 bit operands:

IF (SRC[7:0]<0)
DEST[7:0] < Neg(DEST[7:0])
ELSEIF (SRC[7:0]1==0)
DEST[7:0]1« 0
ELSEIF (SRC[7:0]1>0)
DEST[7:0] < DEST[7:0]
Repeat operation for 2nd through 15th bytes
IF (SRC[127:120]1<0)
DEST[127:120] <~ Neg(DEST[127:120])
ELSEIF (SRC[127:120]1==0)
DEST[127:120]1«0
ELSEIF (SRC[127:120]1> 0)

Vol.2B 4-263

INSTRUCTION SET REFERENCE, N-Z

DEST[127:120] «- DEST[127:120]
PSIGNW with 64 bit operands:

IF (SRC[15:0]<0)

DEST[15:0] «— Neg(DEST[15:0])
ELSEIF (SRC[15:0]==0)

DEST[15:.0] «- O
ELSEIF (SRC[15:0] > 0)

DEST[15:0] «- DEST[15:0]

Repeat operation for 2nd through 3rd words

IF (SRC[63:48]<0)

DEST[63:48] «— Neg(DEST[63:48])
ELSEIF (SRC[63:48]==0)

DEST[63:48] « 0
ELSEIF (SRC[63:48] > 0)

DEST[63:48] «— DEST[63:48]

PSIGNW with 128 bit operands:

IF (SRC[15:0]<0)
DEST[15:0] < Neg(DEST[15:0])
ELSEIF (SRC[15:0]==0)
DEST[15:0] «- O
ELSEIF (SRC[15:0] > 0)
DEST[15:0] «— DEST[15:0]
Repeat operation for 2nd through 7th words
IF (SRC[127:112]1<0)
DEST[127:112] <~ Neg(DEST[127:112])
ELSEIF (SRC[127:112]==10)
DEST[127:112] <0
ELSEIF (SRC[127:112] > 0)
DEST[127:112] «<— DEST[127:112]

PSIGND with 64 bit operands:

IF (SRC[31:0] < 0)

DEST[31:0] < Neg(DEST[31:0])
ELSEIF (SRC[31:0] == 0)

DEST[31:0] < O
ELSEIF (SRC[31:0] > 0)

DEST[31:0] < DEST[31:0]
IF (SRC[63:32] < 0)

DEST[63:32] < Neg(DEST[63:32])
ELSEIF (SRC[63:32] == 0)

4-264 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

DEST[63:32] < 0
ELSEIF (SRC[63:32] > 0)
DEST[63:32] < DEST[63:32]

PSIGND with 128 bit operands:

IF (SRC[31:0]<0)
DEST[31:0] «— Neg(DEST[31:0])
ELSEIF (SRC[31:0]==0)
DEST[31:0] «- O
ELSEIF (SRC[31:0]1>0)
DEST[31:0] «— DEST[31:0]
Repeat operation for 2nd through 3rd double words
IF (SRC[127:96] < 0)
DEST[127:96] < Neg(DEST[127:96])
ELSEIF (SRC[127:96]1==0)
DEST[127:96] « O
ELSEIF (SRC[127:96]> 0)
DEST[127:96] < DEST[127:96]

Intel C/C++ Compiler Intrinsic Equivalent

PSIGNB __m64 _mm_sign_pi8 (__m64 a, __m64 b)

PSIGNB __m128i _mm_sign_epi8 (_m128ia,__m128ib)
PSIGNW __m64 _mm_sign_pi16 (__m64 a, __m64 b)
PSIGNW _ m128i _mm_sign_epi16 (_m128ia,__ m128ib)
PSIGND __m64 _mm_sign_pi32 (__m64 a, __m64 b)
PSIGND __m128i _mm_sign_epi32 (__m128ia,__m128ib)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.

#NM If TS bit in CRO is set.

Vol. 2B 4-265

INSTRUCTION SET REFERENCE, N-Z

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD (128-bit operations only) If CRO.EM = 1.
If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.
#NM If TS bit in CRO is set.
HMF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.SSSE3[bit 9] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

4-266 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-267

INSTRUCTION SET REFERENCE, N-Z

PSLLDQ—Shift Double Quadword Left Logical

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
66 OF 73 /7ib PSLLDQ xmm1, A Valid Valid Shift xmm1 left by imm8
imm8 bytes while shifting in Os.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:r/m (r, w) imm8 NA NA
Description

Shifts the destination operand (first operand) to the left by the number of bytes spec-
ified in the count operand (second operand). The empty low-order bytes are cleared
(set to all 0s). If the value specified by the count operand is greater than 15, the
destination operand is set to all Os. The destination operand is an XMM register. The
count operand is an 8-bit immediate.

Operation

TEMP « COUNT;
IF (TEMP > 15) THEN TEMP « 16; FI;
DEST « DEST << (TEMP = 8);

Intel C/C++ Compiler Intrinsic Equivalent
PSLLDQ __m128i _mm_slli_si128 (_m128i g, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

4-268 Vol.2B

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.

INSTRUCTION SET REFERENCE, N-Z

Vol.2B 4-269

INSTRUCTION SET REFERENCE, N-Z

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

Opcode

OFF1/r

66 OF F1/r

OF71/6ib
66 0F71/61ib

OFF2/r

66 OF F2 /r

OF72/6ib

66 0F72/61ib

OFF3/r

66 OF F3 /r

OF73/6ib

66 0F73/61ib

Instruction

PSLLW mm,
mm/m64

PSLLW xmm1,
xmm2/m128

PSLLW xmm]1,
imm8

PSLLW xmm]1,
imm8

PSLLD mm,
mm/m64

PSLLD xmm1,
xmmZ2/m128

PSLLD mm, imm8

PSLLD xmm1,
imm8

PSLLQ mm,
mm/m64

PSLLQ xmm1,
xmm2/m128

PSLLQ mm, imm8

PSLLQ xmmT,
imm8

Op/ 64-Bit
En Mode
A Valid
A Valid
B Valid
B Valid
A Valid
A Valid
B Valid
B Valid
A Valid
A Valid
B Valid
B Valid

Compat/
Leg Mode

Valid

Valid

Valid
Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Description

Shift words in mm left
mm/m64 while shifting in
Os.

Shift words in xmm1 left by
xmmZ2/m128 while shifting
in Os.

Shift words in mm left by
imm8 while shifting in Os.

Shift words in xmm1 left by
imm8 while shifting in Os.

Shift doublewords in mm
left by mm/m64 while
shifting in Os.

Shift doublewords in xmm1
left by xmm2/m128 while
shifting in Os.

Shift doublewords in mm
left by imm8 while shifting
in Os.

Shift doublewords in xmm1
left by imm8 while shifting
in Os.

Shift quadword in mm left
by mm/m64 while shifting
in Os.

Shift quadwords in xmm1
left by xmm2/m128 while
shifting in Os.

Shift quadword in mm left
by imm8 while shifting in Os.

Shift quadwords in xmm1
left by imm8 while shifting
in Os.

4-270 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:r/m (r, w) imm8 NA NA
Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in
the destination operand (first operand) to the left by the number of bits specified in
the count operand (second operand). As the bits in the data elements are shifted left,
the empty low-order bits are cleared (set to 0). If the value specified by the count
operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a quad-
word), then the destination operand is set to all Os. Figure 4-9 gives an example of
shifting words in a 64-bit operand.

The destination operand may be an MMX technology register or an XMM register; the
count operand can be either an MMX technology register or an 64-bit memory loca-
tion, an XMM register or a 128-bit memory location, or an 8-bit immediate. Note that
only the first 64-bits of a 128-bit count operand are checked to compute the count.

Pre-Shift
DEST X3 X2 X1 X0
Shift Left
with Zero J J J
Extension
Y y /
Post-Shift

DEST | X3 << COUNT | X2 << COUNT | X1 << COUNT | X0 << COUNT

Figure 4-9. PSULLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit Operand

The PSLLW instruction shifts each of the words in the destination operand to the left
by the number of bits specified in the count operand; the PSLLD instruction shifts
each of the doublewords in the destination operand; and the PSLLQ instruction shifts
the quadword (or quadwords) in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSLLW instruction with 64-bit operand:
IF (COUNT > 15)
THEN
DEST[64:0] «~ 0000000000000000H;
ELSE

Vol.2B 4-271

INSTRUCTION SET REFERENCE, N-Z

DEST[15:0] < ZeroExtend(DEST[15:0] << COUNT);

(* Repeat shift operation for 2nd and 3rd words *)

DEST[63:48] « ZeroExtend(DEST[63:48] << COUNT);
FI;

PSLLD instruction with 64-bit operand:

IF (COUNT > 31)

THEN
DEST[64:0] <~ 0000000000000000H;

ELSE
DEST[31:0] «— ZeroExtend(DEST[31:0] << COUNT);
DEST[63:32] «<— ZeroExtend(DEST[63:32] << COUNT);

Fl;

PSLLQ instruction with 64-bit operand:
IF (COUNT > 63)
THEN
DEST[64:0] «~ 0000000000000000H;
ELSE
DEST « ZeroExtend(DEST << COUNT);
Fl;

PSLLW instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN
DEST[128:0] «~ 00000000000000000000000000000000H;
ELSE
DEST[15:0] « ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] < ZerokExtend(DEST[127:112] << COUNT);
Fl;

PSLLD instruction with 128-bit operand:
COUNT <« COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN
DEST[128:0] «+- 00000000000000000000000000000000H;
ELSE
DEST[31:0] <« ZeroExtend(DEST[31:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] «— ZeroExtend(DEST[127:96] << COUNT);
Fl;

PSLLQ instruction with 128-bit operand:

4-272 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 63)
THEN
DEST[128:0] «~ 00000000000000000000000000000000H;
ELSE
DEST[63:0] « ZeroExtend(DEST[63:0] << COUNT);
DEST[127:64] « Zerokxtend(DEST[127:64] << COUNT);
Fl;

Intel C/C++ Compiler Intrinsic Equivalents

PSLLW __m64 _mm_slli_pi16 (__m64 m, int count)

PSLLW __m64 _mm_sll_pi16(_m64 m, __m64 count)
PSLLW __m128i _mm_slli_pi16(_m64 m, int count)

PSLLW __m128i _mm_slli_pi16(_m128i m, __m128i count)
PSLLD __m64 _mm_slli_pi32(_m64 m, int count)

PSLLD __m64 _mm_sll_pi32(_m64 m, __m64 count)

PSLLD __m128i _mm_slli_epi32(_m128im, int count)
PSLLD __m128i _mm_sll_epi32(_m128i m, __m128i count)
PSLLQ __m64 _mm_slli_si64(_m64 m, int count)

PSLLQ __m64 _mm_sll_si64(_m64 m, __m64 count)
PSLLQ __m128i _mm_slli_epi64(_m128im, int count)
PSLLQ __m128i _mm_sll_epi64(_m128i m, __m128i count)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one

Vol.2B 4-273

INSTRUCTION SET REFERENCE, N-Z

that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

HMF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a nhon-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.

4-274 Vol. 2B

#NM

H#MF
#PF(fault-code)
#AC(0)

INSTRUCTION SET REFERENCE, N-Z

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-275

INSTRUCTION SET REFERENCE, N-Z

PSRAW/PSRAD—Shift Packed Data Right Arithmetic

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF E1/r PSRAW mm, A Valid Valid Shift words in mm right by
mm/m64 mm/m64 while shifting in
sign bits.
66 OF E1 /r PSRAW xmm1, A Valid Valid Shift words in xmm1 right
xmm2/m128 by xmmZ2/m128 while
shifting in sign bits.

OF 71 /4ib PSRAW mm, imm8 B Valid Valid Shift words in mm right by
imm8 while shifting in sign
bits

660F71/4ib PSRAW xmm1, B Valid Valid Shift words in xmm1 right

imm8 by imm8 while shifting in
sign bits

OFE2/r PSRAD mm, A Valid Valid Shift doublewords in mm

mm/m64 right by mm/m64 while
shifting in sign bits.

66 OF E2 /1 PSRAD xmm1, A Valid Valid Shift doubleword in xmm1

xmm2/m128 right by xmmZ2 /m128 while
shifting in sign bits.

OF 72 /4 ib PSRAD mm, imm8 B Valid Valid Shift doublewords in mm
right by imm8 while shifting
in sign bits.

66 0F72/4ib PSRAD xmmT, B Valid Valid Shift doublewords in xmm1

imm8 right by imm8 while shifting
in sign bits.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:r/m (r, w) imm8 NA NA
Description

Shifts the bits in the individual data elements (words or doublewords) in the destina-
tion operand (first operand) to the right by the number of bits specified in the count
operand (second operand). As the bits in the data elements are shifted right, the
empty high-order bits are filled with the initial value of the sign bit of the data
element. If the value specified by the count operand is greater than 15 (for words) or
31 (for doublewords), each destination data element is filled with the initial value of

4-276 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

the sign bit of the element. (Figure 4-10 gives an example of shifting words in a 64-
bit operand.)

Pre-Shift

DEST X3 X2 X1 X0
Shift Right
with Sign
Extension
/ Y / /
Post-Shift

DEST | X3>> COUNT | X2 >> COUNT | X1>> COUNT | X0 >> COUNT

Figure 4-10. PSRAW and PSRAD Instruction Operation Using a 64-bit Operand

The destination operand may be an MMX technology register or an XMM register; the
count operand can be either an MMX technology register or an 64-bit memory loca-
tion, an XMM register or a 128-bit memory location, or an 8-bit immediate. Note that
only the first 64-bits of a 128-bit count operand are checked to compute the count.

The PSRAW instruction shifts each of the words in the destination operand to the
right by the number of bits specified in the count operand, and the PSRAD instruction
shifts each of the doublewords in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSRAW instruction with 64-bit operand:
IF (COUNT > 15)
THEN COUNT « 16;
Fl;
DEST[15:0] < SignExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] «— SignExtend(DEST[63:48] >> COUNT);

PSRAD instruction with 64-bit operand:
IF (COUNT > 31)
THEN COUNT « 32;
Fl;
DEST[31:0] « SignExtend(DEST[31:0] >> COUNT);
DEST[63:32] «— SignExtend(DEST[63:32] >> COUNT);

Vol.2B 4-277

INSTRUCTION SET REFERENCE, N-Z

PSRAW instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN COUNT « 16;
FI;
DEST[15:0] <« SignExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] « SignExtend(DEST[127:112] >> COUNT);

PSRAD instruction with 128-bit operand:
COUNT <« COUNT_SOURCE[63:01;
IF (COUNT > 31)
THEN COUNT « 32;
FI;
DEST[31:0] <« SignExtend(DEST[31:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] « SignExtend(DEST[127:96] >>COUNT);

Intel C/C++ Compiler Intrinsic Equivalents

PSRAW _ m64 _mm_srai_pi16 (__m64 m, int count)

PSRAW __m64 _mm_sra_pi16 (__m64 m, __m64 count)
PSRAD __m64 _mm_srai_pi32 (__m64 m, int count)

PSRAD __m64 _mm_sra_pi32 (__m64 m, __m64 count)
PSRAW __ m128i _mm_srai_epi16(_m128im, int count)
PSRAW __m128i _mm_sra_epi16(_m128i m, __m128i count))

PSRAD __m128i _mm_srai_epi32 (__m128im, int count)
PSRAD __m128i _mm_sra_epi32 (__m128i m, __m128i count)
Flags Affected

None.

Numeric Exceptions

None.
Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

4-278 Vol. 2B

#SS(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

INSTRUCTION SET REFERENCE, N-Z

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

Vol.2B 4-279

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-280 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PSRLDQ—Shift Double Quadword Right Logical

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
66 OF 73/3ib PSRLDQ xmmT, A Valid Valid Shift xmm1 right by imm8
imm8 while shifting in Os.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:r/m (r, w) imm8 NA NA
Description

Shifts the destination operand (first operand) to the right by the number of bytes
specified in the count operand (second operand). The empty high-order bytes are
cleared (set to all 0s). If the value specified by the count operand is greater than 15,
the destination operand is set to all 0Os. The destination operand is an XMM register.
The count operand is an 8-bit immediate.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

TEMP « COUNT;
IF (TEMP > 15) THEN TEMP « 16; FI;
DEST « DEST >> (temp * 8);

Intel C/C++ Compiler Intrinsic Equivalents
PSRLDQ _ m128i _mm_srli_si128 (_m128i a, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

Vol. 2B 4-281

INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Numeric Exceptions

None.

4-282 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

Opcode

OF D1 /r

66 OF D1 /r

OF71/21ib

66 0F 71 /2ib

OFD2/r

66 OF D2 /1

OF72/2ib

66 0F72/21ib

OFD3/r

66 OF D3 /r

OF 73 /21ib

66 OF 73 /2ib

Instruction
PSRLW mm,

mm/m64

PSRLW xmm1,
xmmZ2/m128

PSRLW mm, imm8

PSRLW xmm]1,
imm8

PSRLD mm,
mm/m64

PSRLD xmm1,
xmm2/m128

PSRLD mm, imm8

PSRLD xmm1,
imm8

PSRLQ mm,
mm/m64

PSRLQ xmm1,
xmmZ2/m128

PSRLQ mm, imm8

PSRLQ xmm1,
imm8

Op/ 64-Bit
En Mode
A Valid
A Valid
B Valid
B Valid
A Valid
A Valid
B Valid
B Valid
A Valid
A Valid
B Valid
B Valid

Compat/
Leg Mode

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Description

Shift words in mm right by
amount specified in
mm/m64 while shifting in
Os.

Shift words in xmm1 right
by amount specified in
xmmZ2/m128 while shifting
in Os.

Shift words in mm right by
imm8 while shifting in Os.

Shift words in xmm1 right
by imm8 while shifting in Os.

Shift doublewords in mm
right by amount specified in
mm/m64 while shifting in
Os.

Shift doublewords in xmm1
right by amount specified in
xmmZ /m128 while shifting
in Os.

Shift doublewords in mm
right by imm8 while shifting
in Os.

Shift doublewords in xmm1
right by imm8 while shifting
in Os.

Shift mm right by amount
specified in mm/m64 while
shifting in Os.

Shift quadwords in xmm1
right by amount specified in
xmmZ2/m128 while shifting
in Os.

Shift mm right by imm8
while shifting in Os.

Shift quadwords in xmm1
right by imm8 while shifting
in Os.

Vol.2B 4-283

INSTRUCTION SET REFERENCE, N-Z

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:r/m (r, w) imm8 NA NA
Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in
the destination operand (first operand) to the right by the number of bits specified in
the count operand (second operand). As the bits in the data elements are shifted
right, the empty high-order bits are cleared (set to 0). If the value specified by the
count operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a
quadword), then the destination operand is set to all Os. Figure 4-11 gives an
example of shifting words in a 64-bit operand.

The destination operand may be an MMX technology register or an XMM register; the
count operand can be either an MMX technology register or an 64-bit memory loca-
tion, an XMM register or a 128-bit memory location, or an 8-bit immediate. Note that
only the first 64-bits of a 128-bit count operand are checked to compute the count.

Pre-Shift
DEST X3 X2 X1 X0

Shift Right |
with Zero
Extension
. Y Y [Y
Post SR | X3>> COUNT | X2 >> COUNT | X1 >> COUNT | X0 >> COUNT

Figure 4-11. PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit Operand

The PSRLW instruction shifts each of the words in the destination operand to the right
by the number of bits specified in the count operand; the PSRLD instruction shifts
each of the doublewords in the destination operand; and the PSRLQ instruction shifts
the quadword (or quadwords) in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSRLW instruction with 64-bit operand:
IF (COUNT > 15)
THEN
DEST[64:0] <~ 0000000000000000H
ELSE

4-284 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

DEST[15:0] «<— ZeroExtend(DEST[15:0] >> COUNT);

(* Repeat shift operation for 2nd and 3rd words *)

DEST[63:48] «— ZeroExtend(DEST[63:48] >> COUNT);
Fl;

PSRLD instruction with 64-bit operand:

IF (COUNT > 31)

THEN
DEST[64:0] <~ 0000000000000000H

ELSE
DEST[31:0] < ZeroExtend(DEST[31:0] >> COUNT);
DEST[63:32] < ZeroExtend(DEST[63:32] >> COUNT);

Fl;

PSRLQ instruction with 64-bit operand:
IF (COUNT > 63)
THEN
DEST[64:0] <~ 0000000000000000H
ELSE
DEST « ZeroExtend(DEST >> COUNT);
Fl;

PSRLW instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN
DEST[128:0] «~ 00000000000000000000000000000000H
ELSE
DEST[15:0] « ZeroExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] «— ZeroExtend(DEST[127:112] >> COUNT);
Fl;

PSRLD instruction with 128-bit operand:
COUNT <« COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN
DEST[128:0] «+- 00000000000000000000000000000000H
ELSE
DEST[31:0] « ZeroExtend(DEST[31:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] <« ZeroExtend(DEST[127:96] >> COUNT);
Fl;

PSRLQ instruction with 128-bit operand:

Vol. 2B 4-285

INSTRUCTION SET REFERENCE, N-Z

COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN
DEST[128:0] «~ 00000000000000000000000000000000H
ELSE
DEST[63:0] <« ZeroExtend(DEST[63:0] >> COUNT);
DEST[127:64] « ZeroExtend(DEST[127:64] >> COUNT);
Fl;

Intel C/C++ Compiler Intrinsic Equivalents

PSRLW __ m64 _mm_srli_pi16(_m64 m, int count)

PSRLW __m64 _mm_srl_pi16 (__m64 m, __m64 count)
PSRLW _ m128i _mm_srli_epi16 (__m128i m, int count)
PSRLW __m128i _mm_srl_epi16 (_m128i m, __m128i count)

PSRLD __m64 _mm_srli_pi32 (__m64 m, int count)

PSRLD __m64 _mm_srl_pi32 (__m64 m, _m64 count)
PSRLD __m128i _mm_srli_epi32 (__m128im, int count)
PSRLD __m128i _mm_srl_epi32 (_m128i m, __m128i count)
PSRLQ __m64 _mm_srli_si64 (__m64 m, int count)

PSRLQ __m64 _mm_srl_si64 (__m64 m, __m64 count)
PSRLQ __m128i _mm_srli_epi64 (__m128im, int count)
PSRLQ __m128i _mm_srl_epi64 (__m128i m, _m128i count)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one

4-286 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.

Vol.2B 4-287

INSTRUCTION SET REFERENCE, N-Z

#NM

H#MF
#PF(fault-code)
#AC(0)

4-288 Vol. 2B

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PSUBB/PSUBW/PSUBD—Subtract Packed Integers

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OFF8/r PSUBB mm, A Valid Valid Subtract packed byte
mm/m64 integers in mm/m64 from
packed byte integers in mm.
66 OF F8 /1 PSUBB xmm1, A Valid Valid Subtract packed byte
xmm2/m128 integers in xmm2/m128
from packed byte integers
in xmm1.
OFF9/r PSUBW mm, A Valid Valid Subtract packed word
mm/m64 integers in mm/m64 from
packed word integers in mm.
66 OF F9 /r PSUBW xmm1, A Valid Valid Subtract packed word
xmmZ2/m128 integers in xmmZ2/m128
from packed word integers
in xmm1.
OFFA/r PSUBD mm, A Valid Valid Subtract packed doubleword
mm/m64 integers in mm/m64 from
packed doubleword integers
in mm.
66 OF FA /r PSUBD xmm1, A Valid Valid Subtract packed doubleword
xmmZ2/m128 integers in xmmZ/mem128
from packed doubleword
integers in xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a SIMD subtract of the packed integers of the source operand (second
operand) from the packed integers of the destination operand (first operand), and
stores the packed integer results in the destination operand. See Figure 9-4 in the
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 1, for an
illustration of a SIMD operation. Overflow is handled with wraparound, as described
in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand

Vol.2B 4-289

INSTRUCTION SET REFERENCE, N-Z

must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PSUBB instruction subtracts packed byte integers. When an individual result is
too large or too small to be represented in a byte, the result is wrapped around and
the low 8 bits are written to the destination element.

The PSUBW instruction subtracts packed word integers. When an individual result is
too large or too small to be represented in a word, the result is wrapped around and
the low 16 bits are written to the destination element.

The PSUBD instruction subtracts packed doubleword integers. When an individual
result is too large or too small to be represented in a doubleword, the result is
wrapped around and the low 32 bits are written to the destination element.

Note that the PSUBB, PSUBW, and PSUBD instructions can operate on either
unsigned or signed (two's complement notation) packed integers; however, it does
not set bits in the EFLAGS register to indicate overflow and/or a carry. To prevent
undetected overflow conditions, software must control the ranges of values upon
which it operates.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSUBB instruction with 64-bit operands:
DEST[7:0] < DEST[7:0] — SRC[7:0];
(* Repeat subtract operation for 2nd through 7th byte *)
DEST[63:56] «- DEST[63:56] — SRC[63:56];

PSUBB instruction with 128-bit operands:
DEST[7:0] «— DEST[7:0] — SRC[7:0];
(* Repeat subtract operation for 2nd through 14th byte *)
DEST[127:120] «- DEST[111:120] — SRC[127:120];

PSUBW instruction with 64-bit operands:
DEST[15:0] «— DEST[15:0] — SRC[15:0];
(* Repeat subtract operation for 2nd and 3rd word *)
DEST[63:48] «— DEST[63:48] — SRC[63:48];

PSUBW instruction with 128-bit operands:
DEST[15:0] <« DEST[15:0] — SRC[15:0;
(* Repeat subtract operation for 2nd through 7th word *)
DEST[127:112] «— DEST[127:112] — SRC[127:112];

PSUBD instruction with 64-bit operands:
DEST[31:0] «— DEST[31:0] — SRC[31:0];
DEST[63:32] «— DEST[63:32] — SR(C[63:32];

4-290 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

PSUBD instruction with 128-bit operands:
DEST[31:0] « DEST[31:0] — SRC[31:0];
(* Repeat subtract operation for 2nd and 3rd doubleword *)
DEST[127:96] «<— DEST[127:96] — SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalents

PSUBB __m64 _mm_sub_pi8(_m64 m1, __m64 m2)
PSUBW __ m64 _mm_sub_pi16(_m64 m1, __m64 m2)
PSUBD _ m64 _mm_sub_pi32(_m64 m1, _m64 m2)

PSUBB __m128i _mm_sub_epi8 (_m128ia, __m128ib)
PSUBW _ m128i _mm_sub_epi16 (__m128ia, __m128ib)
PSUBD __m128i _mm_sub_epi32 (_m128ia, __m128iDb)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-291

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP

#UD

#NM
H#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

4-292 Vol. 2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

INSTRUCTION SET REFERENCE, N-Z

PSUBQ—Subtract Packed Quadword Integers

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OFFB/r PSUBQ mm1, A Valid Valid Subtract quadword integer
mm2/m64 in mm1 from mmZ2 /m64.
66 OF FB /r PSUBQ xmm1, A Valid Valid Subtract packed quadword
xmm2/m128 integers in xmm71 from
xmmZ2 /m128.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Subtracts the second operand (source operand) from the first operand (destination
operand) and stores the result in the destination operand. The source operand can be
a quadword integer stored in an MMX technology register or a 64-bit memory loca-
tion, or it can be two packed quadword integers stored in an XMM register or an
128-bit memory location. The destination operand can be a quadword integer stored
in an MMX technology register or two packed quadword integers stored in an XMM
register. When packed quadword operands are used, a SIMD subtract is performed.
When a quadword result is too large to be represented in 64 bits (overflow), the
result is wrapped around and the low 64 bits are written to the destination element
(that is, the carry is ignored).

Note that the PSUBQ instruction can operate on either unsigned or signed (two’s
complement notation) integers; however, it does not set bits in the EFLAGS register
to indicate overflow and/or a carry. To prevent undetected overflow conditions, soft-
ware must control the ranges of the values upon which it operates.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSUBQ instruction with 64-Bit operands:
DEST[63:0] «— DEST[63:0] — SRC[63:0];

PSUBQ instruction with 128-Bit operands:
DEST[63:0] «— DEST[63:0] — SRC[63:0];
DEST[127:64] «— DEST[127:64] — SRC[127:64];

Vol.2B 4-293

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalents

PSUBQ __m64 _mm_sub_si64(__m64 m1,_m64 m2)
PSUBQ _ m128i_mm_sub_epi64(_m128im1, _m128im2)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

#NM
H#MF

4-294 Vol. 2B

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

H#HMF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:EDX.SSE2[bit 26] = O.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-295

INSTRUCTION SET REFERENCE, N-Z

PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed
Saturation

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF E8/r PSUBSB mm, A Valid Valid Subtract signed packed
mm/m64 bytes in mm/m64 from

signed packed bytes in mm
and saturate results.

66 OF EB /1 PSUBSB xmm1, A Valid Valid Subtract packed signed byte
xmmZ2/m128 integers in xmmZ2/m128
from packed signed byte

integers in xmm1 and
saturate results.

OFEQ /r PSUBSW mm, A Valid Valid Subtract signed packed
mm/m64 words in mm/m64 from
signed packed words in mm
and saturate results.

66 OF ES /r PSUBSW xmm1, A Valid Valid Subtract packed signed
xmmZ2/m128 word integers in
xmmZ2/m128 from packed
signed word integers in
xmm1 and saturate results.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a SIMD subtract of the packed signed integers of the source operand
(second operand) from the packed signed integers of the destination operand (first
operand), and stores the packed integer results in the destination operand. See
Figure 9-4 in the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 1, for an illustration of a SIMD operation. Overflow is handled with signed
saturation, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

4-296 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

The PSUBSB instruction subtracts packed signed byte integers. When an individual
byte result is beyond the range of a signed byte integer (that is, greater than 7FH or
less than 80H), the saturated value of 7FH or 80H, respectively, is written to the
destination operand.

The PSUBSW instruction subtracts packed signed word integers. When an individual
word result is beyond the range of a signed word integer (that is, greater than 7FFFH
or less than 8000H), the saturated value of 7FFFH or 8000H, respectively, is written
to the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSUBSB instruction with 64-bit operands:
DEST[7:0] «— SaturateToSignedByte (DEST[7:0] — SRC (7:0]);
(* Repeat subtract operation for 2nd through 7th bytes *)
DEST[63:56] «— SaturateToSignedByte (DEST[63:56] — SRC[63:56]);

PSUBSB instruction with 128-bit operands:
DEST[7:0] « SaturateToSignedByte (DEST[7:0] — SRC[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] < SaturateToSignedByte (DEST[111:120] — SRC[127:120]);

PSUBSW instruction with 64-bit operands
DEST[15:0] « SaturateToSignedword (DEST[15:0] — SRC[15:0]);
(* Repeat subtract operation for 2nd and 7th words *)
DEST[63:48] «— SaturateToSignedWord (DEST[63:48] — SRC[63:48]);

PSUBSW instruction with 128-bit operands
DEST[15:0] « SaturateToSignedWord (DEST[15:0] — SRC[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] <« SaturateToSignedwWord (DEST[127:112] — SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PSUBSB __m64 _mm_subs_pi8(__m64 m1, __m64 m2)
PSUBSB __m128i _mm_subs_epi8(__m128im1, _m128i m2)
PSUBSW __m64 _mm_subs_pi16(_m64 m1, __m64 m2)
PSUBSW __m128i _mm_subs_epi16(_m128im1, _m128i m2)

Flags Affected

None.

Vol.2B 4-297

INSTRUCTION SET REFERENCE, N-Z

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.
If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)

4-298 Vol.2B

For a page fault.

#AC(0)

INSTRUCTION SET REFERENCE, N-Z

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-299

INSTRUCTION SET REFERENCE, N-Z

PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with
Unsigned Saturation

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OFD8/r PSUBUSB mm, A Valid Valid Subtract unsigned packed
mm/m64 bytes in mm/m64 from

unsigned packed bytes in
mm and saturate result.

66 OF D8 /r PSUBUSB xmm1, A Valid Valid Subtract packed unsigned
xmmZ2/m128 byte integers in
xmmZ2/m128 from packed
unsigned byte integers in
xmm1 and saturate result.

OFD9/r PSUBUSW mm, A Valid Valid Subtract unsigned packed
mm/m64 words in mm/m64 from

unsigned packed words in
mm and saturate result.

66 0F D9 /r PSUBUSW xmm1, A Valid Valid Subtract packed unsigned
xmmZ2/m128 word integers in

xmmZ2/m128 from packed

unsigned word integers in

xmm1 and saturate result.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a SIMD subtract of the packed unsigned integers of the source operand
(second operand) from the packed unsigned integers of the destination operand (first
operand), and stores the packed unsigned integer results in the destination operand.
See Figure 9-4 in the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 1, for an illustration of a SIMD operation. Overflow is handled with
unsigned saturation, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

4-300 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

The PSUBUSB instruction subtracts packed unsigned byte integers. When an indi-
vidual byte result is less than zero, the saturated value of OOH is written to the desti-
nation operand.

The PSUBUSW instruction subtracts packed unsigned word integers. When an indi-
vidual word result is less than zero, the saturated value of O0O00H is written to the
destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSUBUSB instruction with 64-bit operands:
DEST[7:0] « SaturateToUnsignedByte (DEST[7:0] — SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] «— SaturateToUnsignedByte (DEST[63:56] — SRC[63:56];

PSUBUSB instruction with 128-bit operands:
DEST[7:0] « SaturateToUnsignedByte (DEST[7:0] — SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] « SaturateToUnSignedByte (DEST[127:120] — SRC[127:120]);

PSUBUSW instruction with 64-bit operands:
DEST[15:0] « SaturateToUnsignedWord (DEST[15:0] — SRC[15:0]);
(* Repeat add operation for 2nd and 3rd words *)
DEST[63:48] « SaturateToUnsignedWord (DEST[63:48] — SRC[63:48]);

PSUBUSW instruction with 128-bit operands:
DEST[15:0] « SaturateToUnsignedWord (DEST[15:0] — SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] <« SaturateToUnSignedwWord (DEST[127:112] — SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PSUBUSB __m64 _mm_subs_pu8(__m64 m1, __m64 m2)
PSUBUSB __m128i _mm_subs_epu8(_m128im1,_m128i m2)
PSUBUSW __m64 _mm_subs_pul16(_m64 m1,__m64 m2)
PSUBUSW __m128i _mm_subs_epul16(_m128im1, _m128i m2)

Flags Affected

None.

Numeric Exceptions

None.

Vol. 2B 4-301

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

H#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

4-302 Vol. 2B

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-303

INSTRUCTION SET REFERENCE, N-Z

PTEST- Logical Compare

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
66 0F 3817 /r PTEST xmm1, A Valid Valid Set ZF if xmm2/m128 AND
xmmZ2/m128 xmm1 result is all Os. Set CF
if xmm2/m128 AND NOT
xmm1 result is all Os.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r) ModRM:r/m (r) NA NA
Description

Performs a bitwise AND of the destination operand (first operand) and the source
operand (second operand), then sets the ZF flag only if all bits in the result are 0.
PTEST sets the CF flag if all bits in the result are O of the bitwise AND of the source
operand (second operand) and the bitwise logical NOT of the destination operand.

Operation

IF (SRC[127:0] bitwiseAND DEST[127:0] = 0)
THEN ZF < 1;
ELSE ZF < O; FI;
IF (SRC[127:0] bitwiseAND (bitwiseNOT DEST[127:0]) = 0)
THENCF <« 1;
ELSE CF < O; FI;
DEST[127:0] Unmodified;
AF=0F =PF=SF ¢« O;

Intel C/C++ Compiler Intrinsic Equivalent

PTEST int_mm_testz_si128(_m128is1, __m128is2);
int _mm_testc_si128 (_m128is1,__m128is2),
int _mm_testnzc_si128 (_m128is1, __m128is2);

Flags Affected

The OF, AF, PF, SF flags are cleared and the ZF, CF flags are set according to the oper-
ation

4-304 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

Vol. 2B 4-305

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code)
#NM
#UD

4-306 Vol.2B

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

INSTRUCTION SET REFERENCE, N-Z

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack

High Data
Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode

OF68/r PUNPCKHBW mm, A Valid Valid Unpack and interleave high-

mm/mé64 order bytes from mm and
mm/mé64 into mm.

66 OF 68 /r PUNPCKHBW A Valid Valid Unpack and interleave high-
xmmT, order bytes from xmm1 and
xmm2/m128 xmmZ2/m128into xmm1.

OF69/r PUNPCKHWD mm, A Valid Valid Unpack and interleave high-
mm/m64 order words from mm and

mm/m64 into mm.

66 OF 69 /r PUNPCKHWD A Valid Valid Unpack and interleave high-
xmm1, order words from xmm1 and
xmm2/m128 xmm2/m128into xmm1.

OFB6A/r PUNPCKHDQ mm, A Valid Valid Unpack and interleave high-
mm/mé64 order doublewords from mm

and mm/m64 into mm.

66 OF 6A /1 PUNPCKHDQ A Valid Valid Unpack and interleave high-
xmmT, order doublewords from
xmmZ2/m128 xmm1and xmmZ2/m128

into xmm71.

66 OF 6D /1 PUNPCKHQDQ A Valid Valid Unpack and interleave high-
xmmT, order quadwords from
xmmZ2/m128 xmm1 and xmmZ2/m128

into xmm1.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Unpacks and interleaves the high-order data elements (bytes, words, doublewords,
or quadwords) of the destination operand (first operand) and source operand
(second operand) into the destination operand. Figure 4-12 shows the unpack oper-
ation for bytes in 64-bit operands. The low-order data elements are ignored.

Vol.2B 4-307

INSTRUCTION SET REFERENCE, N-Z

SRC| Y7 |Y6 |Y5|Y4|Y3|Y2|Y1l|YO X7 X6 | X5| X4 | X3 | X2 | X1|X0 |DEST

DEST| Y7 | X7 |Y6 | X6 |Y5 | X5 |Y4 | X4

Figure 4-12. PUNPCKHBW Instruction Operation Using 64-bit Operands

The source operand can be an MMX technology register or a 64-bit memory location,
or it can be an XMM register or a 128-bit memory location. The destination operand
can be an MMX technology register or an XMM register. When the source data comes
from a 64-bit memory operand, the full 64-bit operand is accessed from memory, but
the instruction uses only the high-order 32 bits. When the source data comes from a
128-bit memory operand, an implementation may fetch only the appropriate 64 bits;
however, alignment to a 16-byte boundary and normal segment checking will still be
enforced.

The PUNPCKHBW instruction interleaves the high-order bytes of the source and
destination operands, the PUNPCKHWD instruction interleaves the high-order words
of the source and destination operands, the PUNPCKHDQ instruction interleaves the
high-order doubleword (or doublewords) of the source and destination operands,
and the PUNPCKHQDQ instruction interleaves the high-order quadwords of the
source and destination operands.

These instructions can be used to convert bytes to words, words to doublewords,
doublewords to quadwords, and quadwords to double quadwords, respectively, by
placing all Os in the source operand. Here, if the source operand contains all Os, the
result (stored in the destination operand) contains zero extensions of the high-order
data elements from the original value in the destination operand. For example, with
the PUNPCKHBW instruction the high-order bytes are zero extended (that is,
unpacked into unsigned word integers), and with the PUNPCKHWD instruction, the
high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PUNPCKHBW instruction with 64-bit operands:
DEST[7:0] «— DEST[39:32];
DEST[15:8] « SRC[39:32];
DEST[23:16] «— DEST[47:40];
DEST[31:24] « SRC[47:40];

4-308 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

DEST[39:32] « DEST[55:48;
DEST[47:40] < SRC[55:48];
DEST[55:48] < DEST[63:56];
DEST[63:56] <« SRC[63:56];

PUNPCKHW instruction with 64-bit operands:
DEST[15:0] < DEST[47:32];
DEST[31:16] «- SRC[47:32];
DEST[47:32] < DEST[63:48];
DEST[63:48] « SRC[63:48];

PUNPCKHDQ instruction with 64-bit operands:
DEST[31:0] «— DEST[63:32];
DEST[63:32] « SRC[63:32];

PUNPCKHBW instruction with 128-bit operands:
DEST[7:0]«— DEST[71:64];
DEST[15:8] « SRC[71:64];
DEST[23:16] « DEST[79:72];
DEST[31:24] «- SRC[79:72];
DEST[39:32] «— DEST[87:80];
DEST[47:40] < SRC[87:80];
DEST[55:48] «— DEST[95:88];
DEST[63:56] « SRC[95:88];
DEST[71:64] «— DEST[103:96];
DEST[79:72] «- SRC[103:96];
DEST[87:80] «— DEST[111:104];
DEST[95:88] «— SRC[111:104];
DEST[103:96] « DEST[119:112];
DEST[111:104] < SRC[119:112];
DEST[119:112] «— DEST[127:120];
DEST[127:120] «— SRC[127:120];

PUNPCKHWD instruction with 128-bit operands:
DEST[15:0] « DEST[79:64];
DEST[31:16] «- SRC[79:64];
DEST[47:32] «— DEST[95:80];
DEST[63:48] «- SRC[95:80];
DEST[79:64] «— DEST[111:96];
DEST[95:80] «- SRC[111:96];
DEST[111:96] « DEST[127:112];
DEST[127:112] < SRC[127:112];

PUNPCKHDQ instruction with 128-bit operands:
DEST[31:0] < DEST[95:64];
DEST[63:32] « SRC[95:64];

Vol.2B 4-309

INSTRUCTION SET REFERENCE, N-Z

DEST[95:64] « DEST[127:96];
DEST[127:96] <« SRC[127:96];

PUNPCKHQDQ instruction:
DEST[63:0] « DEST[127:64];
DEST[127:64] « SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalents

PUNPCKHBW __m64 _mm_unpackhi_pi8(_m64 m1, __m64 m2)
PUNPCKHBW __m128i _mm_unpackhi_epi8(_m128im1, _m128i m2)
PUNPCKHWD __m64 _mm_unpackhi_pi16(_m64 m1,__m64 m2)
PUNPCKHWD __m128i _mm_unpackhi_epi16(_m128im1,_m128i m2)
PUNPCKHDQ __m64 _mm_unpackhi_pi32(_m64 m1, __m64 m2)
PUNPCKHDQ __m128i _mm_unpackhi_epi32(_m128im1, __m128i m2)

PUNPCKHQDQ __m128i_mm_unpackhi_epi64 (_m128ia, __m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM
HMF
#PF(fault-code)

4-310 Vol.2B

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions (except PUNPCKHQDQ) on a non-SSE2
capable processor (one that is MMX technology capable) will
result in the instruction operating on the mm registers, not #UD.

(PUNPCKHQDQ only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address
space from O to FFFFH.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions (except PUNPCKHQDQ) on a non-SSE2
capable processor (one that is MMX technology capable) will
result in the instruction operating on the mm registers, not #UD.

(PUNPCKHQDQ only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit version only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Vol.2B 4-311

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-312 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—
Unpack Low Data

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode

OF60/r PUNPCKLBW mm, A Valid Valid Interleave low-order bytes

mm/m32 from mm and mm/m32 into
mm.

66 OF 60 /r PUNPCKLBW A Valid Valid Interleave low-order bytes
xmmT1, from xmm1 and
xmm2/m128 xmm2/m128into xmm1.

OF 61 /r PUNPCKLWD mm, A Valid Valid Interleave low-order words
mm/m32 from mm and mm/m32 into

mm.

66 OF 61 /r PUNPCKLWD A Valid Valid Interleave low-order words
xmmT1, from xmm1 and
xmm2/m128 xmmZ2/m128into xmm1.

OF62/r PUNPCKLDQ mm, A Valid Valid Interleave low-order
mm/m32 doublewords from mm and

mm/m32into mm.

66 OF 62 /r PUNPCKLDQ A Valid Valid Interleave low-order
xmmT, doublewords from xmm1
xmm2/m128 and xmmZ2/m1.28into

xmm1.

66 OF 6C /r PUNPCKLQDQ A Valid Valid Interleave low-order
xmmT, quadword from xmm1 and
xmm2/m128 xmmZ2/m128into xmm1

register.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA

Description

Unpacks and interleaves the low-order data elements (bytes, words, doublewords,
and quadwords) of the destination operand (first operand) and source operand
(second operand) into the destination operand. (Figure 4-13 shows the unpack oper-
ation for bytes in 64-bit operands.). The high-order data elements are ignored.

Vol.2B 4-313

INSTRUCTION SET REFERENCE, N-Z

3|Y2|Y1l]|YO X7 | X6 | X5(X4| X3 |[X2|X1|X
Y3 [X3|Y2|X2[Y1l|X1l|YO |X0

DEST

SRC|Y7|Y6 | Y5|Y4|Y 0 |DEST

Figure 4-13. PUNPCKLBW Instruction Operation Using 64-bit Operands

The source operand can be an MMX technology register or a 32-bit memory location,
or it can be an XMM register or a 128-bit memory location. The destination operand
can be an MMX technology register or an XMM register. When the source data comes
from a 128-bit memory operand, an implementation may fetch only the appropriate
64 bits; however, alignment to a 16-byte boundary and normal segment checking
will still be enforced.

The PUNPCKLBW instruction interleaves the low-order bytes of the source and desti-
nation operands, the PUNPCKLWD instruction interleaves the low-order words of the
source and destination operands, the PUNPCKLDQ instruction interleaves the low-
order doubleword (or doublewords) of the source and destination operands, and the
PUNPCKLQDQ instruction interleaves the low-order quadwords of the source and
destination operands.

These instructions can be used to convert bytes to words, words to doublewords,
doublewords to quadwords, and quadwords to double quadwords, respectively, by
placing all Os in the source operand. Here, if the source operand contains all Os, the
result (stored in the destination operand) contains zero extensions of the high-order
data elements from the original value in the destination operand. For example, with
the PUNPCKLBW instruction the high-order bytes are zero extended (that is,
unpacked into unsigned word integers), and with the PUNPCKLWD instruction, the
high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PUNPCKLBW instruction with 64-bit operands:
DEST[63:56] « SRC[31:24];
DEST[55:48] < DEST[31:24];
DEST[47:40] « SRC[23:16];
DEST[39:32] < DEST[23:16];
DEST[31:24] « SRC[15:8];
DEST[23:16] « DEST[15:8];

4-314 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

DEST[15:8] < SRC[7:0];
DEST[7:0] « DEST[7:0];

PUNPCKLWD instruction with 64-bit operands:
DEST[63:48] < SRC[31:16];
DEST[47:32] < DEST[31:16];
DEST[31:16] «- SRC[15:0];
DEST[15:0] < DEST[15:0];

PUNPCKLDAQ instruction with 64-bit operands:
DEST[63:32] «- SRC[31:0];
DEST[31:0] «— DEST[31:0];

PUNPCKLBW instruction with 128-bit operands:
DEST[7:0]«— DEST[7:0];
DEST[15:8] « SRC[7:0];
DEST[23:16] «- DEST[15:8];
DEST[31:24] «- SRC[15:8];
DEST[39:32] «- DEST[23:16];
DEST[47:40] < SR(C[23:16];
DEST[55:48] «- DEST[31:24];
DEST[63:56] «- SRC[31:24];
DEST[71:64] «- DEST[39:32];
DEST[79:72] < SRC[39:32];
DEST[87:80] «- DEST[47:40];
DEST[95:88] «- SRC[47:40];
DEST[103:96] « DEST[55:48];
DEST[111:104] « SRC[55:48];
DEST[119:112] «— DEST[63:56];
DEST[127:120] «— SRC[63:56];

PUNPCKLWD instruction with 128-bit operands:
DEST[15:0] « DEST[15:0];
DEST[31:16] « SRC[15:0];
DEST[47:32] < DEST[31:16];
DEST[63:48] < SRC[31:16];
DEST[79:64] «<— DEST[47:32];
DEST[95:80] «— SRC[47:32];
DEST[111:96] « DEST[63:48];
DEST[127:112] « SRC[63:48];

PUNPCKLDAQ instruction with 128-bit operands:
DEST[31:0] «— DEST[31:0];
DEST[63:32] « SRC[31:0];
DEST[95:64] « DEST[63:32];

Vol.2B 4-315

INSTRUCTION SET REFERENCE, N-Z

DEST[127:96] <« SRC[63:32];

PUNPCKLQDQ
DEST[63:0] < DEST[63:0];
DEST[127:64] < SRC[63:0];

Intel C/C++ Compiler Intrinsic Equivalents

PUNPCKLBW __m64 _mm_unpacklo_pi8 (_m64 m1, __m64 m2)
PUNPCKLBW __m128i _mm_unpacklo_epi8 (__m128i m1, _m128i m2)
PUNPCKLWD __m64 _mm_unpacklo_pi16 (_m64 m1, __m64 m2)
PUNPCKLWD __m128i _mm_unpacklo_epi16 (__m128i m1,_m128i m2)
PUNPCKLDQ __m64 _mm_unpacklo_pi32 (__m64 m1, __m64 m2)
PUNPCKLDQ __m128i _mm_unpacklo_epi32 (__m128im1, _m128i m2)

PUNPCKLQDQ __m128i _mm_unpacklo_epi64 (__m128i m1,_m128i m2)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions (PUNPCKLQDQ) on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.
(PUNPCKLQDQ only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

4-316 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions (except PUNPCKLQDQ) on a non-SSE2
capable processor (one that is MMX technology capable) will
result in the instruction operating on the mm registers, not #UD.

(PUNPCKLQDQ only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit version only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

H#MF (64-bit operations only) If there is a pending x87 FPU exception.

Vol.2B 4-317

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-318 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

PUSH—Push Word, Doubleword or Quadword Onto the Stack

Opcode*

FF /6
FF /6
FF /6

50+rw
50+rd
50+rd

6A

68

68

0€E
16
1€
06
OF AO

OF AO

OF AO

OF A8

OF A8

Instruction

PUSH r/m16
PUSH r/m32
PUSH r/m64

PUSH r16
PUSH r32
PUSH r64

PUSH imm8

PUSH imm16

PUSH imm32

PUSH CS
PUSH SS
PUSH DS
PUSH €S
PUSH FS

PUSH FS

PUSH FS

PUSH GS

PUSH GS

Op/ 64-Bit
En Mode
A Valid
A N.E.
A Valid
B Valid
B N.E.
Valid
C Valid
C Valid
C Valid
D Invalid
D Invalid
D Invalid
D Invalid
D Valid
D N.E.
D Valid
D Valid
D N.E.

Compat/
Leg Mode

Valid
Valid
N.E.

Valid
Valid
N.E.

Valid

Valid

Valid

Valid
Valid
Valid
Valid
Valid

Valid

N.E.

Valid

Valid

Description

Push r/m16.

Push r/m32.

Push r/m64. Default
operand size 64-bits.
Push r16.

Push r32.

Push r64. Default operand
size 64-bits.

Push sign-extended imm8.
Stack pointer is
decremented by the size of
stack pointer.

Push sign-extended imm16.
Stack pointer is
decremented by the size of
stack pointer.

Push sign-extended imm32.
Stack pointer is
decremented by the size of
stack pointer.

Push CS.
Push SS.
Push DS.
Push ES.

Push FS and decrement
stack pointer by 16 bits.

Push FS and decrement
stack pointer by 32 bits.

Push FS. Default operand
size 64-bits. (66H override
causes 16-bit operation).

Push GS and decrement
stack pointer by 16 bits.

Push GS and decrement
stack pointer by 32 bits.

Vol.2B 4-319

INSTRUCTION SET REFERENCE, N-Z

Opcode* Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF A8 PUSH GS D Valid N.E. Push GS, default operand

size 64-bits. (66H override
causes 16-bit operation).

NOTES:
* See IA-32 Architecture Compatibility section below.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:r/m (r) NA NA NA
B reg(r) NA NA NA
C imm8/16/32 NA NA NA
D NA NA NA NA
Description

Decrements the stack pointer and then stores the source operand on the top of the
stack. The address-size attribute of the stack segment determines the stack pointer
size (16, 32 or 64 bits). The operand-size attribute of the current code segment
determines the amount the stack pointer is decremented (2, 4 or 8 bytes).

In non-64-bit modes: if the address-size and operand-size attributes are 32, the
32-bit ESP register (stack pointer) is decremented by 4. If both attributes are 16, the
16-bit SP register (stack pointer) is decremented by 2.

If the source operand is an immediate and its size is less than the address size of the
stack, a sign-extended value is pushed on the stack. If the source operand is the FS
or GS and its size is less than the address size of the stack, the zero-extended value
is pushed on the stack.

The B flag in the stack segment’s segment descriptor determines the stack’s address-
size attribute. The D flag in the current code segment’s segment descriptor (with
prefixes), determines the operand-size attribute and the address-size attribute of the
source operand. Pushing a 16-bit operand when the stack address-size attribute is 32
can result in a misaligned stack pointer (a stack pointer that is not be aligned on a
doubleword boundary).

The PUSH ESP instruction pushes the value of the ESP register as it existed before
the instruction was executed. Thus if a PUSH instruction uses a memory operand in
which the ESP register is used for computing the operand address, the address of the
operand is computed before the ESP register is decremented.

In the real-address mode, if the ESP or SP register is 1 when the PUSH instruction is
executed, an #SS exception is generated but not delivered (the stack error reported
prevents #SS delivery). Next, the processor generates a #DF exception and enters a

4-320 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

shutdown state as described in the #DF discussion in Chapter 6 of the Intel® 64 and
I1A-32 Architectures Software Developer’'s Manual, Volume 3A.

In 64-bit mode, the instruction’s default operation size is 64 bits. In a push, the
64-bit RSP register (stack pointer) is decremented by 8. A 66H override causes
16-bit operation. Note that pushing a 16-bit operand can result in the stack pointer
misaligned to 8-byte boundary.

IA-32 Architecture Compatibility

For 1A-32 processors from the Intel 286 on, the PUSH ESP instruction pushes the
value of the ESP register as it existed before the instruction was executed. (This is
also true for Intel 64 architecture, real-address and virtual-8086 modes of 1A-32
architecture.) For the Intel® 8086 processor, the PUSH SP instruction pushes the new
value of the SP register (that is the value after it has been decremented by 2).

Operation

IF StackAddrSize = 64
THEN
IF OperandSize = 64
THEN
RSP « (RSP — 8);
IF (SRCis FS or GS)
THEN
TEMP = ZeroExtend64(SRC);
ELSE IF (SRC is IMMEDIATE)
TEMP = SignExtend64(SRC); FI;
ELSE
TEMP = SRC;
Fl
RSP «— TEMP; (* Push quadword *)
ELSE (* OperandSize = 16; 66H used *)
RSP « (RSP — 2);
RSP « SRC; (* Push word *)
Fl;
ELSE IF StackAddrSize = 32
THEN
IF OperandSize = 32
THEN
ESP « (ESP —4);
IF (SRCis FS or GS)
THEN
TEMP = ZeroExtend32(SRC);
ELSE IF (SRC is IMMEDIATE)

Vol. 2B 4-321

INSTRUCTION SET REFERENCE, N-Z

TEMP = SignExtend32(SRC); FI;
ELSE
TEMP = SRC
Fl;
SS:ESP < TEMP; (* Push doubleword *)
ELSE (* OperandSize = 16*)
ESP « (ESP - 2);
SS:ESP « SRC; (* Push word *)
Fl;
ELSE StackAddrSize = 16
IF OperandSize = 16
THEN
SP « (SP —2);
SS:SP « SRC; (* Push word *)
ELSE (* OperandSize = 32 *)
SP « (SP — 4);
SS:SP « SRC; (* Push doubleword *)
Fl;
Fl;
Fl;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

4-322 Vol. 2B

#UD

INSTRUCTION SET REFERENCE, N-Z

If the new value of the SP or ESP register is outside the stack
segment limit.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0)
#SS(V)
#PF(fault-code)
#AC(0)

#UD

If the memory address is in a non-canonical form.
If the stack address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used.

Vol.2B 4-323

INSTRUCTION SET REFERENCE, N-Z

PUSHA/PUSHAD—Push All General-Purpose Registers

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
60 PUSHA A Invalid Valid Push AX, CX, DX, BX, original
SP, BP, SI, and DI.
60 PUSHAD A Invalid Valid Push EAX, ECX, EDX, EBX,
original ESP, EBP, ESI, and
EDI.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A NA NA NA NA
Description

Pushes the contents of the general-purpose registers onto the stack. The registers
are stored on the stack in the following order: EAX, ECX, EDX, EBX, ESP (original
value), EBP, ESI, and EDI (if the current operand-size attribute is 32) and AX, CX, DX,
BX, SP (original value), BP, Sl, and DI (if the operand-size attribute is 16). These
instructions perform the reverse operation of the POPA/POPAD instructions. The
value pushed for the ESP or SP register is its value before prior to pushing the first
register (see the “Operation” section below).

The PUSHA (push all) and PUSHAD (push all double) mnemonics reference the same
opcode. The PUSHA instruction is intended for use when the operand-size attribute is
16 and the PUSHAD instruction for when the operand-size attribute is 32. Some
assemblers may force the operand size to 16 when PUSHA is used and to 32 when
PUSHAD is used. Others may treat these mnemonics as synonyms (PUSHA/PUSHAD)
and use the current setting of the operand-size attribute to determine the size of
values to be pushed from the stack, regardless of the mnemonic used.

In the real-address mode, if the ESP or SP registeris 1, 3, or 5 when PUSHA/PUSHAD
executes: an #SS exception is generated but not delivered (the stack error reported
prevents #SS delivery). Next, the processor generates a #DF exception and enters a
shutdown state as described in the #DF discussion in Chapter 6 of the Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 3A.

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation
IF 64-bit Mode
THEN #UD

4-324 Vol. 2B

Fl;

INSTRUCTION SET REFERENCE, N-Z

IF OperandSize = 32 (* PUSHAD instruction *)

THEN

Temp « (ESP);

Push(EAX);
Push(ECX);
Push(EDX);
Push(EBX);
Push(Temp);
Push(EBP);
Push(ESI);
Push(EDI);

ELSE (* OperandSize = 16, PUSHA instruction *)

Temp « (SP);
Push(AX);
Push(CX);
Push(DX);
Push(BX);
Push(Temp);
Push(BP);
Push(Sl);
Push(DI);

Fl;

Flags Affected

None.

Protected Mode Exceptions

#SS(0)

#PF(fault-code)
#AC(0)

#UD

If the starting or ending stack address is outside the stack
segment limit.

If a page fault occurs.

If an unalighed memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP
#UD

If the ESP or SP register contains 7, 9, 11, 13, or 15.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)

If the ESP or SP register contains 7, 9, 11, 13, or 15.

Vol.2B 4-325

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment
checking is enabled.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

4-326 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

Opcode* Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
9C PUSHF A Valid Valid Push lower 16 bits of
EFLAGS.
9C PUSHFD A N.E. Valid Push EFLAGS.
9C PUSHFQ A Valid N.E. Push RFLAGS.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A NA NA NA NA
Description

Decrements the stack pointer by 4 (if the current operand-size attribute is 32) and
pushes the entire contents of the EFLAGS register onto the stack, or decrements the
stack pointer by 2 (if the operand-size attribute is 16) and pushes the lower 16 bits
of the EFLAGS register (that is, the FLAGS register) onto the stack. These instruc-
tions reverse the operation of the POPF/POPFD instructions.

When copying the entire EFLAGS register to the stack, the VM and RF flags (bits 16
and 17) are not copied; instead, the values for these flags are cleared in the EFLAGS
image stored on the stack. See Chapter 3 of the Intel® 64 and 1A-32 Architectures
Software Developer’s Manual, Volume 1, for more information about the EFLAGS
register.

The PUSHF (push flags) and PUSHFD (push flags double) mnemonics reference the
same opcode. The PUSHF instruction is intended for use when the operand-size
attribute is 16 and the PUSHFD instruction for when the operand-size attribute is 32.
Some assemblers may force the operand size to 16 when PUSHF is used and to 32
when PUSHFD is used. Others may treat these mnemonics as synonyms
(PUSHF/PUSHFD) and use the current setting of the operand-size attribute to deter-
mine the size of values to be pushed from the stack, regardless of the mnemonic
used.

In 64-bit mode, the instruction’s default operation is to decrement the stack pointer
(RSP) by 8 and pushes RFLAGS on the stack. 16-bit operation is supported using the
operand size override prefix 66H. 32-bit operand size cannot be encoded in this
mode. When copying RFLAGS to the stack, the VM and RF flags (bits 16 and 17) are
not copied; instead, values for these flags are cleared in the RFLAGS image stored on
the stack.

When in virtual-8086 mode and the 1/0 privilege level (IOPL) is less than 3, the
PUSHF/PUSHFD instruction causes a general protection exception (#GP).

Vol.2B 4-327

INSTRUCTION SET REFERENCE, N-Z

In the real-address mode, if the ESP or SP register is 1 when PUSHF/PUSHFD instruc-
tion executes: an #SS exception is generated but not delivered (the stack error
reported prevents #SS delivery). Next, the processor generates a #DF exception and
enters a shutdown state as described in the #DF discussion in Chapter 6 of the
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A.

Operation

IF(PE=0)or (PE=1and ((VM=0)or (VM=1 and IOPL = 3)))
(* Real-Address Mode, Protected mode, or Virtual-8086 mode with IOPL equal to 3 *)
THEN
IF OperandSize = 32
THEN
push (EFLAGS AND OOFCFFFFH);
(* VM and RF EFLAG bits are cleared in image stored on the stack *)
ELSE
push (EFLAGS); (* Lower 16 bits only *)
Fl;

ELSE IF 64-bit MODE (* In 64-bit Mode *)
IF OperandSize = 64
THEN
push (RFLAGS AND 00000000_00FCFFFFH);
(* VM and RF RFLAG bits are cleared in image stored on the stack; *)
ELSE
push (EFLAGS); (* Lower 16 bits only *)
Fl;

ELSE (* In Virtual-8086 Mode with IOPL less than 3 *)
#GP(0); (* Trap to virtual-8086 monitor *)
Fl;

Flags Affected

None.

Protected Mode Exceptions

#SS(0) If the new value of the ESP register is outside the stack segment
boundary.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

#UD If the LOCK prefix is used.

4-328 Vol. 2B

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#UD

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)
#PF(fault-code)
#AC(0)

#UD

If the 1/0 privilege level is less than 3.
If a page fault occurs.

If an unaligned memory reference is made while alignment
checking is enabled.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0)
#SS(0)
#PF(fault-code)
#AC(0)

#UD

If the memory address is in a non-canonical form.
If the stack address is in a non-canonical form.
If a page fault occurs.

If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

If the LOCK prefix is used.

Vol.2B 4-329

INSTRUCTION SET REFERENCE, N-Z

PXOR—Logical Exclusive OR

Opcode* Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF EF /r PXOR mm, A Valid Valid Bitwise XOR of mm/m64
mm/m64 and mm.
66 OF EF /r PXOR xmmT1, A Valid Valid Bitwise XOR of
xmm2/m128 xmm2/m128 and xmm]1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs a bitwise logical exclusive-OR (XOR) operation on the source operand
(second operand) and the destination operand (first operand) and stores the result in
the destination operand. The source operand can be an MMX technology register or a
64-bit memory location or it can be an XMM register or a 128-bit memory location.
The destination operand can be an MMX technology register or an XMM register. Each
bit of the result is 1 if the corresponding bits of the two operands are different; each
bit is 0 if the corresponding bits of the operands are the same.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST « DEST XOR SRC;

Intel C/C++ Compiler Intrinsic Equivalent

PXOR __m64 _mm_xor_si64 (__m64 m1, _m64 m2)
PXOR __m128i _mm_xor_si128 (_m128ia, __m128ib)
Flags Affected

None.

Numeric Exceptions

None.

4-330 Vol.2B

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

#HMF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

#NM
H#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from O to FFFFH.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Vol.2B 4-331

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

HMF
#PF(fault-code)
#AC(0)

4-332 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = O.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, N-Z

Opcode**

DO /2

REX + D0 /2
D2 /2

REX +D2 /2
Cco/2ib
REX+CO/2 ib
D1/2

D3 /2

C1/2ib

D1/2

REXW + D1 /2
D3 /2

REXW +D3 /2

C1/2ib

REX.W +C1 /2
ib

DO /3

REX + DO /3

Instruction

RCL r/m8, 1

RCL /m8%* 1

RCL r/m8, CL

RCL /m8%* CL

RCL r/m8, imm8

RCL r/m8%* imm8

RCL /m16,1

RCL r/m16, CL

RCL r/m16, imm8

RCL /m32,1

RCL /m64, 1

RCL r/m32, CL

RCL r/m64, CL

RCL r/m32, imm8

RCL r/m64, imm8

RCR r/m§, 1

RCR r/m8%* 1

Op/ 64-Bit
En Mode
A Valid
A Valid
B Valid
B Valid
C Valid
C Valid
A Valid
B Valid
C Valid
A Valid
A Valid
B Valid
B Valid
C Valid
C Valid
A Valid
A Valid

Compat/
Leg Mode
Valid

N.E.

Valid

N.E.

Valid

N.E.

Valid
Valid
Valid
Valid

N.E.

Valid

N.E.

Valid

N.E.

Valid

N.E.

Description

Rotate 9 bits (CF, /m8) left
once.

Rotate 9 bits (CF, /m8) left
once.

Rotate 9 bits (CF, /m8) left
CL times.

Rotate 9 bits (CF, /m8) left
CL times.

Rotate 9 bits (CF, /m8) left
imm8 times.

Rotate 9 bits (CF, r/m8) left
imm8 times.

Rotate 17 bits (CF, r/m16)
left once.

Rotate 17 bits (CF, /m16)
left CL times.

Rotate 17 bits (CF, r/m16)
left imm8 times.

Rotate 33 bits (CF, /m32)
left once.

Rotate 65 bits (CF, /m64)
left once. Uses a 6 bit count.

Rotate 33 bits (CF, r/m32)
left CL times.

Rotate 65 bits (CF, r/m64)
left CL times. Uses a 6 bit
count.

Rotate 33 bits (CF, /m32)
left imm8 times.

Rotate 65 bits (CF, r/m64)
left imm8 times. Uses a 6 bit
count.

Rotate 9 bits (CF, r/m8) right
once.

Rotate 9 bits (CF, /m8) right
once.

Vol.2B 4-333

INSTRUCTION SET REFERENCE, N-Z

Opcode**

D2 /3
REX+D2/3
Co/3ib
REX+CO/3 ib
D17/3

D3/3

C1/3ib

D1/3

REX.W + D1 /3

D3/3

REXW +D3 /3

C1/3ib

REXW +C1 /3
ib

DO /0
REX+DO /0
D2 /0

REX+D2 /0

Co/0ib

4-334 Vol. 2B

Instruction

RCR r/m8, CL

RCR r/m8%, CL

RCR r/m8, imm8

RCR r/m8%* imm8

RCR /m16,1

RCR r/m16, CL

RCR r/m16, imm8

RCR /m32,1

RCR /m64, 1

RCR r/m32, CL

RCR r/m64, CL

RCR r/m32, imm8

RCR r/m64, imm8

ROL r/m8, 1
ROL r/m8* 1
ROL r/m8, CL

ROL r/m8* CL

ROL r/m8, imm8

Op/ 64-Bit
€En Mode
B Valid
B Valid
C Valid
C Valid
A Valid
B Valid
C Valid
A Valid
A Valid
B Valid
B Valid
C Valid
C Valid
A Valid
A Valid
B Valid
B Valid
C Valid

Compat/
Leg Mode
Valid

N.E.

Valid

N.E.

Valid

Valid

Valid

Valid

N.E.

Valid

N.E.

Valid
N.E.
Valid

N.E.
Valid

N.E.

Valid

Description

Rotate 9 bits (CF, /m8) right
CL times.

Rotate 9 bits (CF, /m8) right
CL times.

Rotate 9 bits (CF, /m8) right
imm8 times.

Rotate 9 bits (CF, /m8) right
imm8 times.

Rotate 17 bits (CF, /m16)
right once.

Rotate 17 bits (CF, /m16)
right CL times.

Rotate 17 bits (CF, /m16)
right imm8 times.

Rotate 33 bits (CF, /m32)
right once. Uses a 6 bit
count.

Rotate 65 bits (CF, r/m64)
right once. Uses a 6 bit
count.

Rotate 33 bits (CF, /m32)
right CL times.

Rotate 65 bits (CF, r/m64)
right CL times. Uses a 6 bit
count.

Rotate 33 bits (CF, /m32)
right imm8 times.

Rotate 65 bits (CF, /m64)
right imm8 times. Uses a 6
bit count.

Rotate 8 bits r/m8 left once.
Rotate 8 bits r/m8 left once

Rotate 8 bits r/m8left CL
times.

Rotate 8 bits r/m8 left CL
times.

Rotate 8 bits /m8left imm8
times.

INSTRUCTION SET REFERENCE, N-Z

Opcode**
REX+CO/0ib
D1/0

D3 /0

C1/0ib

D1/0

REX.W +D1/0
D3/0

REXW +D3/0
C1/0ib

C1/0ib

DO
REX + DO /1
D2 N
REX + D2 /1
co/ib
REX+CO/1ib
D1 N

D3N

Instruction

ROL /m8%* imm8

ROL /m16,1

ROL r/m16, CL

ROL r/m16, imm8

ROL /m32,1

ROL r/m64, 1

ROL r/m32, CL

ROL r/m64, CL

ROL r/m32, imm8

ROL r/m64, inm8

ROR r/m8, 1

ROR /m8* 1

ROR r/m8, CL

ROR r/m8%, CL

ROR r/m8, imm8

ROR r/m8%* imm8

ROR r/m16, 1

ROR r/m16, CL

Op/ 64-Bit
En Mode
C Valid
A Valid
B Valid
C Valid
A Valid
A Valid
B Valid
B Valid
C Valid
C Valid
A Valid
A Valid
B Valid
B Valid
C Valid
C Valid
A Valid
B Valid

Compat/
Leg Mode
N.E.

Valid

Valid

Valid

Valid

N.E.
Valid
N.E.
Valid