intel.

Intel® 64 and IA-32 Architectures
Software Developer's Manual

Volume 3A:
System Programming Guide, Part 1

NOTE: The Intef® 64 and IA-32 Architectures Software Developer’s Manual
consists of seven volumes: Basic Architecture, Order Number 253665;
Instruction Set Reference A-L, Order Number 253666; Instruction Set
Reference M-Z, Order Number 253667; Instruction Set Reference, Order
Number 326018; System Programming Guide, Part 1, Order Number
253668; System Programming Guide, Part 2, Order Number 2536689;
System Programming Guide, Part 3, Order Number 326019. Refer to all
seven volumes when evaluating your design needs.

Order Number: 253668-042US
March 2012

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUB-
CONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING
OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARIS-
ING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUB-
CONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR
ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or "unde-
fined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. The information here is subject to change without no-
tice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Intel® AES-NI requires a computer system with an AES-NI enabled processor, as well as non-Intel software
to execute the instructions in the correct sequence. AES-NI is available on select Intel® processors. For
availability, consult your reseller or system manufacturer. For more information, see http://software.in-
tel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/.

Intel® Hyper-Threading Technology (Intel® HT Technology) is available on select Intel® Core™ processors.
Requires an Intel® HT Technology-enabled system. Consult your PC manufacturer. Performance will vary
depending on the specific hardware and software used. For more information including details on which
processors support HT Technology, visit http://www.intel.com/info/hyperthreading.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, and
virtual machine monitor (VMM). Functionality, performance or other benefits will vary depending on hard-
ware and software configurations. Software applications may not be compatible with all operating systems.
Consult your PC manufacturer. For more information, visit http://www.intel.com/go/virtualization.

Intel® 64 architecture Requires a system with a 64-bit enabled processor, chipset, BIOS and software. Per-
formance will vary depending on the specific hardware and software you use. Consult your PC manufacturer
for more information. For more information, visit http://www.intel.com/info/em64t.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability
and a supporting operating system. Check with your PC manufacturer on whether your system delivers Ex-
ecute Disable Bit functionality.

Intel, the Intel logo, Pentium, Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core
2 Duo, Intel Core 2 Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are
trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel lit-
erature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Copyright © 1997-2012 Intel Corporation. All rights reserved.

i Vol.3A

http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://www.intel.com/info/hyperthreading
http://www.intel.com/go/virtualization
http://www.intel.com/go/virtualization
http://www.intel.com/go/virtualization
http://www.intel.com/info/em64t
http://www.intel.com/info/em64t
http://www.intel.com/info/em64t
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

CHAPTER 1

ABOUT THIS MANUAL

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL

1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE
13 NOTATIONAL CONVENTIONS ...ttt
1.3.1 Bitand Byte Order. ...
13.2 Reserved Bits and Software Compatibility.......................
133 Instruction Operands.ooviiiriiii e
134 Hexadecimal and Binary Numbers.cooooiiiiiin,
135 Segmented Addressing.ovvvvii i e
1.3.6 Syntax for CPUID, CR,and MSRValuescovvvvvvnennn.
137 EXCEPTIONS ittt i
14 RELATED LITERATUREttt
CHAPTER 2

SYSTEM ARCHITECTURE OVERVIEW

2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE.................
2.1.1 Global and Local Descriptor Tablescccovvvviiiivnanns.
2.1.1.1 Global and Local Descriptor Tables in IA-32e Mode............
2.1.2 System Segments, Segment Descriptors, and Gates..............
2.1.2.1 GatesinlA-32eModecovvvii i
213 Task-State Segments and Task Gates..........cocovvvvvnvnnennn.
2.1.31 Task-State SegmentsinlA-32eMode............coovvint,
214 Interrupt and ExceptionHandlingcocoiiiaal
2.1.4.1 Interrupt and Exception Handling IA-32e Mode
215 Memory Managementoovir i e e
2.1.5.1 Memory ManagementinlA-32eMode
2.16 SYStEM REGISTEIS . .ottt et e
2.1.6.1 System RegistersinlA-32eMode..............cooiiiiiit,
217 Other SyStem ReSOUMCES ...\ vv vttt ieiieenns
2.2 MODES OF OPERATION. ...ttt
2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER.
2.3.1 System Flags and Fields inIA-32eMode.................ccoeees
2.4 MEMORY-MANAGEMENT REGISTERS ...
241 Global Descriptor Table Register (GDTR).covvvvnvnnn.s.
24.2 Local Descriptor Table Register (LDTR).........cooovivvinvninnns
243 IDTR Interrupt Descriptor Table Register...................coovt.
244 Task Register (TR) ..o
2.5 CONTROL REGISTERS ..\ttt e
2.5.1 CPUID Qualification of Control Register Flags....................
2.6 EXTENDED CONTROL REGISTERS (INCLUDING XCRO)................
2.7 SYSTEM INSTRUCTION SUMMARY. ...ttt
2.7.1 Loading and Storing System Registersovvvvvninnn.
272 Verifying of Access Privileges ...,
273 Loading and Storing Debug Registerscovvvvnnt.
274 Invalidating Caches and TLBS ..o
2.7.5 Controlling the Processor.ovvvviiii i

CONTENTS

PAGE

Vol. 3A iii

CONTENTS

PAGE

276 Reading Performance-Monitoring and Time-Stamp Counters 2-32
2.76.1 Reading Counters in 64-BitModecovviiiiii i 2-33
2.7.7 Reading and Writing Model-Specific Registerscociiiiiiiiiiiiienann, 2-33
2.7.7.1 Reading and Writing Model-Specific Registers in 64-Bit Mode.................. 2-33
278 Enabling Processor Extended Statesvvvvviiii it 2-34
CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT
3.1 MEMORY MANAGEMENT OVERVIEW. ... vttt 3-1
3.2 USING SEGMENT S . et e e e 3-3
3.2.1 BaSiC FIRt MOAEL . ..t 3-3
3.2.2 Protected FIBt MOdEl.o e 3-4
3.2.3 Multi-Segment Model.ovir i 3-5
3.24 Segmentation inIA-32eModec.oiiiii e 3-6
3.25 Paging and Segmentation ... e 3-7
33 PHYSICAL ADDRESS SPACE . . .ttt et 3-7
3.3.1 Intel® 64 Processors and Physical Address Spaceoovvviiiiiiiiiiinnnnns 3-8
3.4 LOGICAL AND LINEAR ADDRESSES . . o\ttt ittt 3-8
3.4.1 Logical Address Translation in IA-32eModecovvii it 3-9
3.4.2 SegMENT SEIBCTOTS . . . ettt e e e 3-9
343 SEgMENT REGIS OIS, . o\ttt e i e i e 3-10
344 Segment Loading Instructions inIA-32eModeovv i 3-12
3.4.5 SegMENT DESCIIPTOrS . o\ttt 3-13
34.5.1 Code- and Data-Segment Descriptor TYPeS. ..o vvv ittt iiieaees 3-16
3.5 SYSTEM DESCRIPTOR TYPES ...t 3-18
3.5.1 Segment Descriptor Tables. ... v 3-20
3.5.2 Segment Descriptor TablesinlA-32eMode. ... 3-22
CHAPTER 4
PAGING
4.1 PAGING MODES AND CONTROLBITS ...ttt 4-1
4.1.1 Three Paging MOdesSoviiii it i i e et e e 4-2
41.2 Paging-Mode ENabling.coviririii i e 4-4
413 Paging-Mode Modifiersoo.vuir i 4-5
414 Enumeration of Paging Featuresby CPUIDcciiiiiiiiiiii i 4-6
4.2 HIERARCHICAL PAGING STRUCTURES: ANOVERVIEWov i 4-7
43 32-BIT PAGING. . .ttt e e 4-10
44 PAE PAGING « vttt 4-17
441 Ll S R T] =] 4-17
442 Linear-Address Translation with PAEPaging.cocviiiiii i 4-19
45 [A-32E PAGING. . oottt e e e e 4-26
46 ACCESS RIGHT S . ottt e e e e e 4-40
4.7 PAGE-FAULT EXCEPTIONS. ..\ttt e aees 4-41
48 ACCESSED AND DIRTY FLAGS . . .ottt ettt 4-43
49 PAGING AND MEMORY TYPING. ..ttt ettt 4-43
491 Paging and Memory Typing When the PAT is Not Supported (Pentium Pro and

Pentium [l ProCESSOrS). . .ottt 4-44
492 Paging and Memory Typing When the PAT is Supported (Pentium lll and More

Recent Processor Families)ovvrveiini i 4-44
493 Caching Paging-Related Information about Memory Typing..............coovvvent 4-45

iv Vol. 3A

CONTENTS

PAGE
4.10 CACHING TRANSLATION INFORMATION. . ..\ttt ettt 4-45
4.10.1 Process-Context Identifiers (PCIDS).ovvi i e 4-46
4.10.2 Translation Lookaside BUffers (TLBS).vvvvviiie it i 4-47
410.2.1 Page Numbers, Page Frames, and Page Offsets............ccovviiiiiinnns, 4-47
410.2.2 Caching Translations in TUBS.vvvi i e 4-48
4.10.2.3 Details Of TLB USE. . vttt sttt e 4-48
41024 GlODAl Pages . ..ottt e 4-49
4103 Paging-Structure Caches.o e 4-50
4.10.3.1 Caches for Paging STructuresc.ovvii i e 4-50
4103.2 Using the Paging-Structure Caches to Translate Linear Addresses 4-52
41033 Multiple Cached Entries for a Single Paging-Structure Entry.................... 4-53
4104 Invalidation of TLBs and Paging-Structure Caches..............cccoviiiiiiiiinnn, 4-54
41041 Operations that Invalidate TLBs and Paging-Structure Caches 4-54
4.104.2 Recommended Invalidation.oovuiiiii 4-57
41043 Optional Invalidation.o e 4-58
41044 Delayed Invalidationcovvrir i e 4-60
4105 Propagation of Paging-Structure Changes to Multiple Processors 4-61
411 INTERACTIONS WITH VIRTUAL-MACHINE EXTENSIONS (VMX)...\vvoviiiiiiienns 4-62
4.11.1 VMY TraNS I ONS. « v vt vttt ettt ettt e e 4-62
411.2 VMX Support for Address Translationvvviiiiiiiiiii i 4-63
412 USING PAGING FOR VIRTUALMEMORY ...\ttt it 4-64
413 MAPPING SEGMENTS TO PAGES oottt 4-64
CHAPTER 5
PROTECTION
5.1 ENABLING AND DISABLING SEGMENT AND PAGE PROTECTION........ovvvvvvvennnn 5-1
5.2 FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND PAGE-LEVEL PROTECTION........ 5-2
5.2.1 Code Segment Descriptorin 64-bitMode ... 5-5
53 LIMIT CHECKING . ottt 5-6
531 Limit Checkingin 64-bit Modeo e 5-7
54 TYPE CHECKING . . ettt e e e 5-7
5.4.1 Null Segment Selector Checking.........ovuiiii e 5-9
54.1.1 NULL Segment Checkingin 64-bitMode ... 5-9
55 PRIVILEGE LEVELS. . ..ttt e 59
56 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATASEGMENTSovvinnt 5-12
56.1 Accessing Datain Code Segmentsttt e 5-14
57 PRIVILEGE LEVEL CHECKING WHEN LOADING THE SSREGISTER.cvvvvvnnnt 5-14
5.8 PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING PROGRAM CONTROL BETWEEN
CODE SEGMENT S sttt ettt e e e e e e 5-14
5.8.1 Direct Calls or Jumps to Code SEgMENTS. .. vv vt 5-15
58.1.1 Accessing Nonconforming Code Segments...........oviiiiiiiiiiiiiineannns 5-16
58.1.2 Accessing Conforming Code Segments.ovvi it eeeaans 5-17
5.8.2 GatE DS P ONS vttt ettt 5-18
583 (0= N 7= 1= 5-19
5.83.1 IA-32e Mode Call Gates . .o v v e 5-20
584 Accessing a Code Segment Througha CallGate ..o 5-22
585 Stack SWItChING ..o 5-25
5.8.5.1 Stack Switchingin 64-bitMode.c.oiiii i 5-28
586 Returning from a Called Procedureovviiiiiii it 5-28
58.7 Performing Fast Calls to System Procedures with the SYSENTER and SYSEXIT
IS UCHIONS e e e e 5-30

Vol.3A v

CONTENTS

PAGE
58.7.1 SYSENTER and SYSEXIT Instructions inIA-32e Mode.covvvivinennnn, 5-31
588 Fast System Calls in 64-bit Mode. ... v e 5-32
5.9 PRIVILEGED INSTRUCTIONS ...ttt ettt ees 5-33
5.10 POINTER VALIDATION. . .ottt ettt e e e 5-34
5.10.1 Checking Access Rights (LAR INStruction)........coovviririiiiiiiiii i 5-35
5.10.2 Checking Read/Write Rights (VERR and VERW Instructions) 5-36
5103 Checking That the Pointer Offset Is Within Limits (LSU Instruction)................ 5-36
5.104 Checking Caller Access Privileges (ARPL Instruction)coovviviiiininnnn, 5-37
5.105 Checking AlIgNmEnt o e 5-39
511 PAGE-LEVEL PROTECTION. .\ttt ettt e ettt nees 5-39
5111 Page-Protection FIags. . ..o v v e 5-40
511.2 Restricting Addressable Domain ..ot 5-40
5113 PagE Ty P ettt e 5-40
5114 Combining Protection of Both Levels of Page Tables...............coovviiiininn 5-41
5115 Overrides to Page Protection....... ..ot e i 5-41
512 COMBINING PAGE AND SEGMENT PROTECTION v 5-41
513 PAGE-LEVEL PROTECTION AND EXECUTE-DISABLEBIT.covviiiiieiiieene 5-43
5131 Detecting and Enabling the Execute-Disable Capabilityc.ccovvvinnt 5-43
5.13.2 Execute-Disable Page Protectionccooiiiiiii i 5-44
5133 Reserved Bit ChecKing ... ovvvvrir e 5-45
5134 EXceptioN Handling. oot 5-47
CHAPTER 6
INTERRUPT AND EXCEPTION HANDLING
6.1 INTERRUPT AND EXCEPTION OVERVIEW \vv e 6-1
6.2 EXCEPTION AND INTERRUPT VECTORS ...ttt it e iaaeens 6-2
6.3 SOURCES OF INTERRUP TS, ..ottt e e 6-2
6.3.1 EXTErNal I I TUPES. ottt e e 6-2
6.3.2 Maskable Hardware INterrupts. ..ot 6-5
633 Software-Generated INtermUPTS.ot e 6-5
6.4 SOURCES OF EXCEPTIONSottt ettt 6-5
6.4.1 Program-Error EXCEPLIONS v ettt e 6-5
6.4.2 Software-Generated EXCEPLIONSorit i e 6-6
643 Machine-Check EXCEPTIONS. ...\ vv it e 6-6
6.5 EXCEPTION CLASSIFICATIONS L.ttt e 6-6
6.6 PROGRAM OR TASK REST AR T .ttt ittt e e 6-7
6.7 NONMASKABLE INTERRUPT (NMI) ..t 6-8
6.7.1 Handling Multiple NMIso e 6-9
6.8 ENABLING AND DISABLING INTERRUPTS . ..\ttt e eaees 6-9
6.8.1 Masking Maskable Hardware Interrupts ..o e 6-9
6.8.2 Masking Instruction Breakpointsoovvii i 6-10
6.8.3 Masking Exceptions and Interrupts When Switching Stacks....................... 6-11
6.9 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND INTERRUPTS.................. 6-11
6.10 INTERRUPT DESCRIPTOR TABLE (IDT). v vttt ettt e e 6-12
6.11 DT DESCRIPT O RS . ottt ettt e e e e 6-14
6.12 EXCEPTION AND INTERRUPT HANDLING ovveee et 6-15
6.12.1 Exception- or Interrupt-Handler Procedurescooovviiiiiiiiiiiiiinn, 6-16
6.12.1.1 Protection of Exception- and Interrupt-Handler Procedures 6-18
6.12.1.2 Flag Usage By Exception- or Interrupt-Handler Procedure..................... 6-19
6.12.2 INEErTUPT TaSKS .« .ot s 6-20
6.13 ERROR CODE ...ttt ettt et e et 6-21

vi Vol.3A

6.14 EXCEPTION AND INTERRUPT HANDLING IN 64-BIT MODE...........
6.14.1 B4-BitMode IDT. ...t
6.14.2 64-Bit Mode Stack Frame
6.14.3 IRETINIA-326MOde. ...\ i i
6.144 Stack SwitchinginlA-32eMode.........coovvviiiiiiiiiiinn
6.14.5 Interrupt Stack Table ...
6.15 EXCEPTION AND INTERRUPT REFERENCE.cvvvvvennnn.
Interrupt O—Divide Error Exception (#DE)......................
Interrupt 1—Debug Exception (HDB)...........ccovvvvvvninn.n.
Interrupt 2—NMlInterrupt
Interrupt 3—Breakpoint Exception (#BP)
Interrupt 4—Overflow Exception (HOF)...........ccovvvvvnnnn.
Interrupt 5—BOUND Range Exceeded Exception (#BR).........
Interrupt 6—Invalid Opcode Exception (#UD)...................
Interrupt 7—Device Not Available Exception (#NM).............
Interrupt 8—Double Fault Exception (#DF).....................
Interrupt 9—Coprocessor Segment Overrun....................
Interrupt 10—Invalid TSS Exception (#TS)ovvvvvvninnnn.
Interrupt 11—Segment Not Present (#NP).....................
Interrupt 12—Stack Fault Exception (#SS)............covvints
Interrupt 13—General Protection Exception (#GP)..............
Interrupt 14—Page-Fault Exception (#PF)t.
Interrupt 16—x87 FPU Floating-Point Error (#MF)..............
Interrupt 17—Alignment Check Exception (HAC)................
Interrupt 18—Machine-Check Exception (HMC).................
Interrupt 19—SIMD Floating-Point Exception (BXM)
Interrupts 32 to 255—User Defined Interrupts.................
CHAPTER 7
TASK MANAGEMENT
7.1 TASK MANAGEMENT OVERVIEW ..o
7.1.1 Task StrUCTUNE .o
7.1.2 TaSK State vttt
713 Executinga Task ...
7.2 TASK MANAGEMENT DATASTRUCTURES.covvivieiennes
7.2.1 Task-State Segment (TSS) ... vvvvii i
7.2.2 TSS DS CriPtOr « vttt e e e
7.23 TSS Descriptorin64-bitmode.oovviiiiii
724 Task Register
7.25 Task-Gate Descriplor ..o v e
73 TASK SWITCHING. ..ot
74 TASK LINKING . oot
741 Use of Busy Flag To Prevent Recursive Task Switching.........
74.2 Modifying Task Linkages.........ccovvviiiiiiii i
75 TASK ADDRESS SPACE. ... v vt
7.5.1 Mapping Tasks to the Linear and Physical Address Spaces
75.2 Task Logical Address SPacevvvvi i ennen,
7.6 16-BIT TASK-STATE SEGMENT (TSS) .. vvvviiiiiciiciii s
7.7 TASK MANAGEMENT IN64-BITMODEovvvviiieiininnns

CONTENTS

Vol. 3A Vi

CONTENTS

PAGE

CHAPTER 8
MULTIPLE-PROCESSOR MANAGEMENT
8.1 LOCKED ATOMIC OPERATIONS . . .ottt ettt e e e 8-2
8.1.1 Guaranteed Atomic Operationsc.vririr it e 8-3
8.1.2 BUS LOCKING. . ot cv et e e 8-4
8.1.2.1 AUtomMAtic LOCKING ..\ v ottt i e e e e 8-4
8.1.2.2 Software Controlled Bus Locking ..o 8-5
8.1.3 Handling Self- and Cross-ModifyingCodecoviiiiiiiici i 8-6
8.14 Effects of a LOCK Operation on Internal Processor Caches 8-7
8.2 MEMORY ORDERING. ...\ vve et eee e eeeieeneans I e 8-8
8.2.1 Memory Ordering in the Intel® Pentium® and Intel486 Processors............. 8-8
8.2.2 Memory Ordering in P6 and More Recent Processor Families 8-9
8.2.3 Examples lllustrating the Memory-Ordering Principles....................cooiit. 8-11
8.2.3.1 Assumptions, Terminology, and Notation...............ccocviiiiiiiiinn s, 8-12
8.2.3.2 Neither Loads Nor Stores Are Reordered with Like Operations 8-13
8.233 Stores Are Not Reordered With Earlier Loads.coovvviiiiiiniinnnnn, 8-13
8.234 Loads May Be Reordered with Earlier Stores to Different Locations 8-14
8.2.3.5 Intra-Processor Forwarding Is Allowedt 8-15
8.2.3.6 Stores Are Transitively Visible. ... 8-15
8.2.3.7 Stores Are Seen in a Consistent Order by Other Processors................... 8-16
8.238 Locked Instructions Have a Total Ordercoovviiiiiiii i 8-17
8.2.3.9 Loads and Stores Are Not Reordered with Locked Instructions 8-17
8.24 Fast-String Operation and Out-of-Order Stores ..o i 8-18
8.2.4.1 Memory-Ordering Model for String Operations on Write-Back (WB) Memory8-19
8.24.2 Examples lllustrating Memory-Ordering Principles for String Operations........ 8-19
8.2.5 Strengthening or Weakening the Memory-OrderingModel........................ 8-22
83 SERIALIZING INSTRUCTIONS . . o ettt ees 8-24
84 MULTIPLE-PROCESSOR (MP) INITIALIZATION ... 8-26
8.4.1 BSP @nd AP PrOCESSOrS. . vttt ettt e e 8-27
84.2 MP Initialization Protocol Requirements and Restrictions......................... 8-27
84.3 MP Initialization Protocol Algorithm for Intel Xeon Processors.................... 8-28
844 MP Initialization EXamPleo 8-30
8.4.4.1 Typical BSP Initialization Sequence. ...t e 8-30
844.2 Typical AP Initialization SEQUENCE.t 8-32
84.5 Ide@gifying Logical Processors in an MP System.... AT SLLLLIRRIRRIeT 8-33
85 INTEL™ HYPER-THREADING TECHNOLOGY AND INTEL™ MULTI-CORE TECHNOLOGY. 8-35
8.6 DETECTING HARDWARE MULTI-THREADING SUPPORT AND TOPOLOGY.............. 8-36
8.6.1 Initializing Processors Supporting Hyper-Threading Technology 8-37
86.2 Initializing MUHi-Core ProCESSOrS. ..t et e ettt e i aaaes 8-37
8.6.3 Executing Multiple Threads on an Intel® 64 or IA-32 Processor Supporting Hardware

MUR-TRFEAAING . . oo vttt e e 8-38
8.6.4 Handling Interrupts on an IA-32 Processor Supporting Hardware Multi-Threading . 8-38
8.7 INTEL™ HYPER-THREADING TECHNOLOGY ARCHITECTUREovviviinenen 8-39
8.7.1 State of the Logical ProCessorst 8-40
8.7.2 APIC FUNCHIONAITY ..ot e e 8-41
8.7.3 Memory Type Range Registers (MTRR).cvviiiiiiii i 8-41
874 Page Attribute Table (PAT)t s 8-42
8.75 Machine Check ArchiteCtUre v e 8-42
8.7.6 Debug Registers and EXtENSIONS. v 'ttt 8-42
8.7.7 Performance Monitoring CoOUNTErsSvvvi i 8-43
8.7.8 IA32_MISC_ENABLE MSR. ..\ttt e e 8-43

viii Vol. 3A

CONTENTS

PAGE
8.7.9 MemMOrY OrABIING. . ottt ettt e e e e 8-43
8.7.10 Serializing INStrUCTIONS. . ..o\t 8-43
8.7.11 Microcode Update RESOUMCES.\ v ittt et eees 8-44
8.7.12 Self Modifying Codevu i 8-44
87.13 Implementation-Specific Intel HT Technology Facilitiescovvint 8-44
8.7.13.1 Processor Cathes. . ..o e 8-44
8.7.13.2 Processor Translation Lookaside Buffers (TLBS).ovvvvvivniininnnnn. 8-45
8.7.133 Thermal MONITOr. ...t 8-45
8.7.134 External Signal Compatibility.........ccoiiii e 8-46
8.8 MULTI-CORE ARCHITECTURE\ttt 8-47
8.8.1 LOGiCal ProCESSOr SUPPOMT. vttt ettt e aas 8-47
8.8.2 Memory Type Range Registers (MTRR)cooiiiii e 8-47
8.8.3 Performance Monitoring CoUNTers.ovvviii i i e 8-48
884 IA32_MISC_ENABLE MSR ...ttt 8-48
8.8.5 Microcode Update RESOUMCES. ... ittt et ee s 8-48
89 PROGRAMMING CONSIDERATIONS FOR HARDWARE MULTI-THREADING CAPABLE
PROCESSORS. . . ittt e e 8-49
8.9.1 Hierarchical Mapping of Shared Resourcesooviviiii i iiiiieianns 8-49
8.9.2 Hierarchical Mapping of CPUID Extended Topology Leafc.t. 8-51
893 Hierarchical ID of Logical Processorsinan MP Systemcovvivivinininn 8-52
8.9.3.1 Hierarchical ID of Logical Processors with x2APICID.c.covovvinnn.. 8-54
894 Algorithm for Three-Level Mappings of APIC_ID...........ccviiiiiiiiiiii et 8-55
8.9.5 Identifying Topological Relationshipsina MP System.............c.covoviiiiiinn, 8-61
8.10 MANAGEMENT OF IDLE AND BLOCKED CONDITIONS\ vviii e 8-65
8.10.1 (I T oo 8-65
8.10.2 PAUSE INSTTUCTION . . oo et 8-66
8.10.3 Detecting Support MONITOR/MWAIT Instructionoviiiiiiiiiiiiiinnn., 8-66
8.10.4 MONITOR/MWAIT INSTTUCTION. « ot e ettt ie s 8-67
8.10.5 Monitor/Mwait Address Range Determination.............covviiiiivnnininininns 8-68
8.10.6 Required Operating System SUPPOrt. . ..o i e 8-69
8.10.6.1 Use the PAUSE Instruction in Spin-Wait Loops.covvviiiiiiiiiiiiannn 8-69
8.106.2 Potential Usage of MONITOR/MWAIT inCOIdle Loopscovvvvvvvninvnnnnn 8-70
8.10.6.3 Halt Idle Logical ProCeSSOrS ..o\ vttt et ettt i e 8-72
8.1064 Potential Usage of MONITOR/MWAIT inCT Idle Loopscvvvvvvvnennnn.. 8-72
8.10.6.5 Guidelines for Scheduling Threads on Logical Processors Sharing Execution
RESOUICES vttt e e 8-73
8.10.6.6 Eliminate Execution-Based Timing LOOPS. vvvvviiii it iiciieieennns 8-73
8.10.6.7 Place Locks and Semaphores in Aligned, 128-Byte Blocks of Memory........... 8-74
8.11 MP INITIALIZATION FOR P6 FAMILY PROCESSORSttt ieieei e 8-74
8.11.1 Overview of the MP Initialization Process For P6 Family Processors............... 8-74
8.11.2 MP Initialization Protocol Algorithm.o i 8-75
8.11.2.1 Error Detection and Handling During the MP Initialization Protocol 8-77
CHAPTER 9
PROCESSOR MANAGEMENT AND INITIALIZATION
9.1 INITIALIZATION OVERVIEW .. vt ittt 9-1
9.1.1 Processor State After RSBt ..o vr it 9-2
9.1.2 Processor Built-In Self-Test (BIST). .. .vvvvriii i 9-2
9.1.3 Model and Stepping INnformation. ..o 9-5
9.14 First InStruction EXECUTEd.ot 9-6
9.2 X87 FPU INITIALIZATION .ottt et e e e e 9-6

Vol. 3A ix

CONTENTS

X Vol. 3A

PAGE

Configuring the x87 FPU ENVIroNmMENtottt e i e 9-6
Setting the Processor for x87 FPU Software Emulation.........................es 9-7
CACHE ENABLING . ot e et e e e e e e 9-8
MODEL-SPECIFIC REGISTERS (MSRS) ...ttt et 9-9
MEMORY TYPE RANGE REGISTERS (MTRRS) ..\ v vt 9-9
INITIALIZING SSE/SSE2/SSE3/SSSE3 EXTENSIONS ... ov v 9-10
SOFTWARE INITIALIZATION FOR REAL-ADDRESS MODE OPERATION.v..s. 9-10
Real-Address Mode IDT.t e 9-11
NMlInterrupt Handlingo e e i 9-11
SOFTWARE INITIALIZATION FOR PROTECTED-MODE OPERATION.........covvvvnee 9-11
Protected-Mode System Data STrUCtUreS. ... vvvv v e 9-12
Initializing Protected-Mode Exceptions and Interrupts.cooviiiiiiinnn, 9-13
INitializZiNg Pagingovirir i e 9-13
Initializing MUltitaskingo i 9-14
Initializing [A-32 Mode ..ot e 9-14
IA-32e Mode System Data StruCturesoovvvvi i eaans 9-15
IA-32e Mode Interrupts and EXCEPLIONSo vt v 9-15
64-bit Mode and Compatibility Mode Operation................ccooviiiiinnt 9-16
Switching Out of IA-32e Mode Operation..........cc.ovviiiiiii i 9-16
MODE SWITCHINGottt e e e e e 9-17
Switching to Protected Mode . ..ot e 9-17
Switching Back to Real-Address Mode.ovv v it 9-18
INITIALIZATION AND MODE SWITCHING EXAMPLEovviiii i 9-19
ASSEMDIEr USaQE ..ottt e e e e 9-22
STARTUP.ASM LiSTiNG .« v v vttt ettt et et 9-23
MAIN.AASM SOUMCE COAE.o v ettt et 9-33
SUPPOTtING FIlES. . ottt e e e e 9-34
MICROCODE UPDATE FACILITIES . .ot e ettt 9-36
MICroCode UPdate. . v v vttt e 9-37
Optional Extended Signature Table ...t e 9-41
Processor Identificationvuiii e 9-41
Platform Identificationovuiii 9-42
Microcode Update Checksum ..o e 9-44
Microcode Update Loaderovvviiii ittt 9-45
Hard ResetsinUpdate Loadingcovviiiiiiiiiii i 9-46
Update in @ Multiprocessor SyStemv it 9-46
Update in a System Supporting Intel Hyper-Threading Technology 9-46
Update in a System Supporting Dual-Core Technologycooovvvinnnt, 9-46
Update Loader Enhancementst 9-47
Update Signature and Verification ... 9-47
Determining the Signature ..o et 9-48
Authenticatingthe Update ... e 9-48
Pentium 4, Intel Xeon, and P6 Family Processor Microcode Update Specifications. . 9-49
Responsibilities of the BIOS ... e 9-49
Responsibilities of the Calling Program.............cooiiiiiii i 9-52
Microcode Update FUNCHIONS.oviri e eae s 9-55

INT 15H-based Interfaceovuviii e 9-55
Function OOH—Presence Testovri i e 9-56
Function 0TH—Write Microcode Update Data.............cccovviiiiiininnnnnn, 9-57
Function 02H—Microcode Update Controlccovvviviiiiiiiiiinnnnns 9-62
Function 03H—Read Microcode UpdateData..............ovvivinninninnen, 9-63
RETUMN COdBS . vttt et e 9-64

CONTENTS

PAGE
CHAPTER 10
ADVANCED PROGRAMMABLE
INTERRUPT CONTROLLER (APIC)
10.1 LOCAL AND I/0 APIC OVERVIEW . . v e et e 10-1
10.2 SYSTEM BUS VS, APIC BUS . ..ot 10-5
103 THE INTEL™ 82489DX EXTERNAL APIC, THE APIC, THE XAPIC, AND THE X2APIC.... 10-5
104 LOC AL APIC ittt e e e e e 10-6
10.4.1 The Local APIC BIocK Diagram cv vt it e e 10-6
104.2 Presence of the Local APIC. e 10-10
1043 Enabling or Disabling the Local APICooii i 10-10
104.4 Local APIC Status and LoCation.ovveiii i eaeeas 10-11
10.4.5 Relocating the Local APIC REGISTErS ... vvvi i 10-12
104.6 LOCal APIC D . ettt 10-12
104.7 I Tors | (O - | (S 10-13
104.7.1 Local APIC State After Power-UporReset..........cocvviiiiiiiiiiiinnnn, 10-14
104.7.2 Local APIC State After It Has Been Software Disabled....................... 10-14
104.7.3 Local APIC State After an INIT Reset (“Wait-for-SIPI” State).................. 10-15
104.7.4 Local APIC State After It Receives an INIT-Deassert IPl...................... 10-15
10438 Local APIC Version Register.vu e 10-15
10.5 HANDLING LOCAL INTERRUPTS ..ttt 10-16
10.5.1 Local Vector Table.t 10-16
10.5.2 Valid INterrupt VECTOrSt 10-20
10.5.3 Error Handling. oo 10-20
10.5.4 (O I 1< 10-22
10.5.4.1 TSC-DEadlinE MOGE . .. vttt et 10-24
10.5.5 Local INtermUPT ACCEPTaNCE. .. ottt it e e e e 10-26
10.6 ISSUING INTERPROCESSOR INTERRUPTS ...\t 10-26
10.6.1 Interrupt Command Register (ICR)coviiii e 10-26
10.6.2 Determining IPI Destination ...t e e 10-32
10.6.2.1 Physical Destination Modevvi i 10-33
106.2.2 Logical Destination Modecovrieiii 10-33
10.6.23 Broadcast/Self Delivery Mode..........ccoiiii i e 10-35
10624 Lowest Priority Delivery Modeoovviiii i 10-36
106.3 IPI Delivery and ACCEPTaNCE. ... v vttt e 10-37
10.7 SYSTEM AND APIC BUS ARBITRATION . ..ottt e et et aeiaaaes 10-37
10.8 HANDLING INTERRUPTS ...t 10-38
10.8.1 Interrupt Handling with the Pentium 4 and Intel Xeon Processors............... 10-38
10.8.2 Interrupt Handling with the P6 Family and Pentium Processors 10-39
10.8.3 Interrupt, Task, and Processor Priority........ovvvuirinii i 10-40
10.8.3.1 Task and Processor Prioritieso.vuvrvrii e 10-41
1084 Interrupt Acceptance for Fixed INterrupts ..o 10-43
10.8.5 Signaling Interrupt Servicing Completion. ..ot 10-44
10.8.6 Task Priority iN1A-32eMode.ovii 10-45
10.8.6.1 Interaction of Task Priorities between CR8and APICcoovvivnt 10-46
109 SPURIOUS INTERRUPT . . ettt 10-46
10.10 APIC BUS MESSAGE PASSING MECHANISM AND PROTOCOL (P6 FAMILY, PENTIUM
PROCESSORS) v vttt ettt e e 10-47
10.10.1 BUS MESSAge FOrmMats .. v ittt e 10-49
10.1T MESSAGE SIGNALLED INTERRUPTS. ..ttt ittt 10-49
10.11.1 Message Address Register FOrmatoviri i 10-49
10.11.2 Message Data Register FOrmat.vvviiiiii i i 10-51

Vol. 3A Xi

CONTENTS

PAGE
10.12 EXTENDED XAPIC (X2APIC) . . ettt ettt 10-52
10.12.1 Detecting and Enabling X2APICModecovvviiiii it 10-53
10.12.1.1 Instructions to Access APIC RegiSters. . ..ottt 10-54
10.12.1.2 X2APIC Register Address SPaCte. ... ovvv vttt iiaiaaas 10-54
10.12.1.3 Reserved Bit Checkingvvvv i e 10-57
10.12.2 X2APIC Register Availability 10-58
10.12.3 MSR Access in X2APICMOEo vttt e 10-58
10.12.4 VM-Exit Controls for MSRs and x2APIC RegiStersoovvviiiiiiiininnnn. 10-59
10.12.5 X2APIC State TranSitionS. ..o v vttt 10-59
10.12.5.1 D A O =1 (=13 10-59
X2APIC AftEr RESET . .ottt 10-60
Xx2APIC Transitions From X2APICMode.ovvii i 10-61
Xx2APIC Transitions From Disabled Mode. ... 10-61
State Changes From xAPIC Mode to x2APICModeciviiiiiiiiiiinn, 10-62
10.12.6 Routing of Device Interrupts in X2APICMode..........cocoviiiiiiiiiiiiiiaenns 10-62
10.12.7 Initialization by System Softwareov it 10-62
10.128 CPUID Extensions And Topology Enumerationcooviiiiiiiiiininnnnts 10-63
10.12.8.1 Consistency of APICIDs and CPUID. ...t 10-63
10.12.9 ICR Operation in X2APIC MOde . ..o vv it e e 10-64
10.12.10 Determining IPI Destination in x2APICMode.coiiiiii i 10-64
10.12.10.1 Logical Destination Mode in X2APICMode ..o 10-64
10.12.10.2 Deriving Logical x2APIC ID from the Local X2APICIDccoovvvvvnnnnnn. 10-66
O 0 T Y = I8 e | T L = 10-67
10.13 APICBUS MESSAGE FORMATS ..ttt et 10-68
10.13.1 BUS MESSAge FOrmMatS . ..o vttt 10-68
10.13.2 [0 I =TS 7 T = 10-68
10.13.2.1 1) 0 =T T 10-69
10.13.2.2 Non-focused Lowest Priority Messagecoovvvvviiiiiiiiiiiiiieennns 10-70
10.13.23 APICBUS Status CYCleS. . ..o e e 10-72
CHAPTER 11
MEMORY CACHE CONTROL
11.1 INTERNAL CACHES, TLBS, ANDBUFFERS 11-1
11.2 CACHING TERMINOLOGY . .\ttt ettt e et e 11-7
11.3 METHODS OF CACHING AVAILABLEttt e 11-8
11.31 Buffering of Write Combining Memory Locations.cccoviviviiivinnnnn, 11-11
11.3.2 ChoosSiNg @ MemMOrY TYPE. ..ttt e 11-12
1133 Code Fetches in Uncacheable Memory. ..o v i e 11-13
114 CACHE CONTROL PROTOCOL ..+ttt ve e et e e e et e e e e e eaenns 11-13
115 CACHE CONTROL. .ot vttt vt ettt e e e et e e e e 11-14
11.5.1 Cache Control Registersand Bits.t e 11-15
1152 Precedence of Cache Controlso.vvrviii e 11-19
11.5.2.1 Selecting Memory Types for Pentium Pro and Pentium Il Processors. 11-20
115.2.2 Selecting Memory Types for Pentium lll and More Recent Processor Families..11-21
11523 Writing Values Across Pages with Different Memory Typescovvvvtn 11-23
1153 Preventing Cachingc.vvrir i 11-24
1154 Disabling and Enablingthe L3 Cache ... e 11-25
1155 Cache Management INSTrUCtioONSv v e 11-25
1156 L1 Data Cache ContexXt Modevvit i 11-26
11.5.6.1 AdaPtiVE MOdE. ..ot 11-26
11.56.2 SRArEd MOGE . vt eee 11-26

xii Vol. 3A

CONTENTS

PAGE
SELF-MODIFYING CODE ..ttt e ettt 11-27
IMPLICIT CACHING (PENTIUM 4, INTEL XEON,
AND P6 FAMILY PROCESSORS) . .ttt ettt et e 11-27
11.8 EXPLICIT CACHING. o ettt et 11-28
11.9 INVALIDATING THE TRANSLATION LOOKASIDE BUFFERS (TLBS)......vvvvvevnnn. 11-29
1110 STORE BUFFER. .. vttt 11-29
1111 MEMORY TYPE RANGE REGISTERS (MTRRS). ..ot ev e 11-30
11.111 MTRR Feature Identificationcovuiiiiiii e 11-32
11.11.2 Setting Memory Ranges WithMTRRSt e 11-33
11.11.21 IA32_MTRR_DEF_TYPEMSR. ...\ttt i 11-33
11.11.2.2 Fixed RANGE MTRRS .. .o\ttt e 11-34
11.11.23 Variable Range MTRRS.ot i e 11-34
11.11.24 System-Management Range Register Interfacecocovvenen. 11-37
11.11.3 Example Base and Mask Calculations ... 11-38
11.11.31 Base and Mask Calculations for Greater-Than 36-bit Physical Address Support11-40
11.114 Range Size and Alignment Requirement ...ttt 11-41
11.11.4.1 I S = Tor=Ta 1= ol = 11-41
11.11.5 MTRR INITialization. . ..o 11-41
11116 RemappPing MEMOTY TYPES .. vttt ettt ettt e aeaaaas 11-42
11.11.7 MTRR Maintenance Programming Interface.............oviiiiiiiiiiiiinnnnns 11-42
11.11.71 MemTypeGet() FUNCHION e 11-42
11.11.7.2 MemTypeSet() FUNCTION ...\ vv it 11-44
11.11.8 MTRR Considerations in MP SyStemsoviiiiii i 11-46
11.119 Large Page Size Considerationsccoviiiiiiii it 11-47
11.12 PAGE ATTRIBUTE TABLE (PAT). .ttt ettt ettt ieaas 11-48
11.12.1 Detecting Support for the PAT Feature.oviiiiiiiii i 11-48
11122 A3 P AT MO R ..ttt 11-49
11.12.3 Selecting a Memory Type fromthe PAT ... 11-50
11.124 Programming the PAT ... e 11-50
11125 PAT Compatibility with Earlier IA-32 Processors.o.vviiiiiiiiiiiiannnns 11-52
CHAPTER 12 _,
INTEL™ MMX TECHNOLOGY SYSTEM PROGRAMMING
12.1 EMULATION OF THE MMX INSTRUCTION SET. .. .ottt 12-1
12.2 THE MMX STATE AND MMX REGISTER ALIASINGo v 12-1
12.2.1 Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR Instructions on the x87 FPU Tag
O o 12-3
123 SAVING AND RESTORING THE MMX STATE AND REGISTERSovvviiininnn 12-4
124 SAVING MMX STATE ON TASK OR CONTEXT SWITCHEScovvieiiinienns 12-5
125 EXCEPTIONS THAT CAN OCCUR WHEN EXECUTING MMX INSTRUCTIONS 12-5
12.5.1 Effect of MMX Instructions on Pending x87 Floating-Point Exceptions............. 12-6
126 DEBUGGING MMX CODEottt et te e ettt 12-6
CHAPTER 13
SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
PROCESSOR EXTENDED STATES
13.1 PROVIDING OPERATING SYSTEM SUPPORT FOR SSE/SSE2/SSE3/SSSE3/SSE4
EXTENSIONS Lt e e 13-1
13.1.1 Adding Support to an Operating System for SSE/SSE2/SSE3/SSSE3/SSE4
LG =T o] 0 13-2

Vol. 3A xiii

CONTENTS

PAGE

13.1.2 Checking for SSE/SSE2/SSE3/SSSE3/SSE4 Extension Support.........oovvvenen. 13-2

13.1.3 Checking for Support for the FXSAVE and FXRSTOR Instructions................. 13-3

13.1.4 Initialization of the SSE/SSE2/SSE3/SSSE3/SSE4 EXtENSIONS ..o vvvvvvvvvvivnennns 13-3
13.1.5 Providing Non-Numeric Exception Handlers for Exceptions Generated by the

SSE/SSE2/SSE3/SSSE3/SSEA INSTrUCTIONS . v vv v 13-5

13.1.6 Providing an Handler for the SIMD Floating-Point Exception (BXM)................ 13-7

13.1.6.1 Numeric Error fllagand IGNNEH# e 13-7

13.2 EMULATION OF SSE/SSE2/SSE3/SSSE3/SSE4 EXTENSIONS. ... 13-8

133 SAVING AND RESTORING THE SSE/SSE2/SSE3/SSSE3/SSE4 STATE. ...ovvvvvvvnnnn 13-8

134 SAVING THE SSE/SSE2/SSE3/SSSE3/SSE4 STATE ON TASK OR CONTEXT SWITCHES . 13-9
135 DESIGNING OS FACILITIES FOR AUTOMATICALLY SAVING X87 FPU, MMX, AND

SSE/SSE2/SSE3/SSSE3/SSE4 STATE ON TASK OR CONTEXT SWITCHES. 13-9

13.5.1 Using the TS Flag to Control the Saving of the
x87 FPU, MMX, SSE, SSE2, SSE3 SSSE3 and SSE4 State......ovvvvvvvvviev 13-10

136 XSAVE/XRSTOR AND PROCESSOR EXTENDED STATE MANAGEMENT 13-12
13.6.1 XS AV E HEAET . o vttt ettt e e e 13-13
13.7 INTEROPERABILITY OF XSAVE/XRSTOR AND FXSAVE/FXRSTORc.vvnte 13-15
138 DETECTION, ENUMERATION, ENABLING PROCESSOR EXTENDED STATE SUPPORT.. 13-17
13.8.1 Application Programming Model and Processor Extended States................. 13-18
139 INTEL ADVANCED VECTOR EXTENSIONS (INTEL AVX) AND YMM STATE............ 13-19
1310 YMM STATE MANAGEMENT . ..ottt e s 13-20
13.10.1 Detection of YMM State SUPPOrt. ..ot 13-20
13.10.2 ENabliNg Of YMM STate ..o v it 13-20
13.103 Enabling of SIMD Floating-Exception Support............coiiiiiiiiiiiiieanns. 13-21
13.104 The Layout 0f XSAVE ArBa.v it et et 13-21
13.10.5 XSAVE/XRSTOR Interaction with YMM State and MXCSR.............cooovvnee. 13-23
13.10.6 Processor Extended State Save Optimization and XSAVEOPT 13-24
13.10.6.1 XSAVEOPT Usage GUIdEliNeSvvve ittt i e 13-25
CHAPTER 14
POWER AND THERMAL MANAGEMENT
14.1 ENHANCED INTEL SPEEDSTEP® TECHNOLOGY\ oeveeee e 14-1
14.1.1 Software Interface For Initiating Performance State Transitions 14-1
14.2 P-STATE HARDWARE COORDINATION. . ..ottt 14-2
143 SYSTEM SOFTWARE CONSIDERATIONS AND OPPORTUNISTIC PROCESSOR

PERFORMANCE OPERATION . .t ettt ettt et e e 14-4
14.3.1 Intel Dynamic ACClerationvvi i 14-4
14.3.2 System Software Interfaces for Opportunistic Processor Performance Operation . 14-4
14.3.2.1 Discover Hardware Support and Enabling of Opportunistic Processor Operation 14-5
143.2.2 0S Control of Opportunistic Processor Performance Operation................ 14-5
14323 Required Changes to OS Power Management P-state Policy................... 14-6
14324 Application Awareness of Opportunistic Processor Operation (Optional)........ 14-7
1433 Intel Turbo Boost TechNologyovvrii e 14-8
1434 Performance and Energy Bias Hint SUpPpOrt..........c.coovviiiiiiii e 14-8
144 MWAIT EXTENSIONS FOR ADVANCED POWER MANAGEMENTcovvvvvivninnns 14-9
145 THERMAL MONITORING AND PROTECTION . oottt 14-10
14.5.1 Catastrophic Shutdown Detectorovuiiiii e 14-12
14.5.2 Thermal MONitor e 14-12
14.5.2.1 Thermal Monitor 1 e 14-12
14.5.2.2 Thermal MOoNitor 2 ... vv et e 14-12
14523 Two Methods for Enabling TM2. e 14-13

Xiv Vol. 3A

CONTENTS

PAGE

14524 Performance State Transitions and Thermal Monitoring 14-14
14.5.2.5 Thermal Status Information. ... e 14-14
14.5.2.6 Adaptive Thermal Monitort e e 14-16
1453 Software Controlled Clock Modulation ... 14-16
14.5.3.1 Extension of Software Controlled Clock Modulationccoes 14-18
1454 Detection of Thermal Monitor and Software Controlled Clock Modulation

Lol 111 14-18
14.5.4.1 Detection of Software Controlled Clock Modulation Extension 14-19
1455 On Die Digital Thermal SeNSOors. ov vttt eeaes 14-19
14.5.5.1 Digital Thermal Sensor ENUMEration.vvviiiiiiii i iiiiieienen, 14-19
14.55.2 Reading the Digital SENSOr. .. .vvvr 14-19
14.5.6 Power Limit Notification...........coo i e 14-23
14.6 PACKAGE LEVEL THERMAL MANAGEMENT\ttt 14-23
14.6.1 Support for Passive and Active COOlINGvvvvi i 14-27
14.7 PLATFORM SPECIFIC POWER MANAGEMENT SUPPORTvvviiiiiii e 14-27
14.7.1 RAP L N I atES . vttt ettt et e e e 14-28
14.7.2 RAPL Domains and Platform Specificity.........coovviiiii i 14-29
14.7.3 Package RAPL DOMainvv ittt ittt e 14-30
14.7.4 PPO/PPT RAPL DOMAINS .+ .t vttt ee ettt e et et e e e e e ineieenennees 14-33
14.7.5 DRAM RAPL DOMaiN « v vttt vttt ettt et e 14-36
CHAPTER 15
MACHINE-CHECK ARCHITECTURE
15.1 MACHINE-CHECK ARCHITECTURE. .. .ottt e aas 15-1
15.2 COMPATIBILITY WITH PENTIUMPROCESSORot 15-1
153 MACHINE-CHECK MSRS ..ttt e e 15-2
15.3.1 Machine-Check Global ControlMSRS ... e e e 15-3
15.3.1.1 IA32_MCG_CAP MSR. ..t 15-3
15.3.1.2 IA32_MCG_STATUS MSR. ..ttt it e 15-4
153.1.3 IA32_MCG_CTLMSR . it e 15-5
15.3.2 Error-Reporting Register Banksovviiiiiiii i i 15-5
15.3.2.1 1N [O O Y 15-5
153.2.2 IA32 MU _STATUS MSRS ..ttt e 15-6
15.3.23 IA32_MUCi_ADDR MSRS. . . sttt 15-10
153.24 IA32_MGi_MISC MSRS ..ttt 15-11
15.3.25 L O O 0 Y 15-12
15.3.2.6 IA32_MCG Extended Machine Check State MSRScovviviviiiiinenns, 15-13
1533 Mapping of the Pentium Processor Machine-Check Errors to the Machine-Check

AN ECIUNE i 15-15
154 ENHANCED CACHE ERROR REPORTING .. .vitii i 15-16
15.5 CORRECTED MACHINE CHECK ERROR INTERRUPT ..o\t 15-16
15.5.1 CMCI Local APIC INterface . ..o vttt 15-17
15.5.2 System Software Recommendation for Managing CMCl and Machine Check

RS OUICES. v vttt ettt e et e 15-18
15.5.2.1 CMCIINItIAliZETION. . .o 15-18
15.5.2.2 CMCI Threshold Management.vv vt ens 15-19
15.5.23 CMClInterrupt Handleroei s 15-19
15.6 RECOVERY OF UNCORRECTED RECOVERABLE (UCR)ERRORSvvvvviivnnn, 15-20
15.6.1 Detection of Software Error Recovery SUpportcoovviiiiiiiinnnnnnnns 15-20
15.6.2 UCR Error Reporting and Logging. ..« ... vvvvvveeiiiiiii e eieieieeees 15-21
15.6.3 UCR Error Classification.coviii it 15-22

Vol. 3A Xv

CONTENTS

PAGE
156.4 UCR Error OVerwrite RUIES .. .ot e 15-23
15.7 MACHINE-CHECK AVAILABILITY . .ttt 15-24
15.8 MACHINE-CHECK INITIAUZATION L v ittt 15-24
159 INTERPRETING THEMCA ERROR CODES. ...\ttt ei it i 15-26
15.9.1 SIMPIE B0 COQBS . o vttt e 15-26
159.2 Compound Error COdeS ..ottt e e e e e 15-27
15.9.2.1 Correction Report Filtering (F) Bit.......covvviiii e 15-28
15.9.2.2 Transaction Type (TT)Sub-Field e 15-28
159.23 Level (LL) Sub-Fieldooe 15-28
15924 Request (RRRR) SUb-Field ..o 15-29
159.25 Bus and INterconNNeCt ErmorS vv vttt 15-29
159.26 Memory Controller ErmOrS. ..o v v e e i e e 15-30
15.9.3 Architecturally Defined UCR EITOrS.vvvvi it e i eeae e 15-30
15.9.3.1 Architecturally Defined SRAO EITOrS . ..o v vttt 15-31
1593.2 Architecturally Defined SRAR EITOrS . ..o vvi it iieieaes 15-32
15.94 MUIIPIE MCA BITOTS & vttt ettt ettt e e ettt e e 15-34
15.9.5 Machine-Check Error Codes Interpretation...........c.covviiiiiiiiiiiiiii e, 15-35
15.10 GUIDELINES FOR WRITING MACHINE-CHECK SOFTWARE.ovoviiiiiiiiannns 15-35
15.10.1 Machine-Check ExceptionHandler ... 15-35
15.10.2 Pentium Processor Machine-Check Exception Handling.......................... 15-37
15.103 Logging Correctable Machine-Check Errorsoovvviiiiiii it 15-37
15.104 Machine-Check Software Handler Guidelines for Error Recovery................. 15-39
15.10.4.1 Machine-Check Exception Handler for Error Recovery.............cooovvvvnnn. 15-39
15.104.2 Corrected Machine-Check Handler for Error Recovery...............coovvvn... 15-45

CHAPTER 16

INTERPRETING MACHINE-CHECK ERROR CODES
161 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY 06H MACHINE ERROR

CODES FOR MACHINE CHECK ..ttt et 16-1
16.2 INCREMENTAL DECODING INFORMATION: INTEL CORE 2 PROCESSOR FAMILY MACHINE
ERROR CODES FORMACHINE CHECKttt 16-5
16.2.1 Model-Specific Machine Check Error Codes for Intel Xeon Processor 7400 Series .. 16-9
16.2.1.1 Processor Machine Check Status Register Incremental MCA Error Code
D iNItiON. .. e e 16-9
16.2.2 Intel Xeon Processor 7400 Model Specific Error Code Field...................... 16-10
16.2.2.1 Processor Model Specific Error Code Field Type B: Bus and Interconnect Error 16-10
16.2.2.2 Processor Model Specific Error Code Field Type C: Cache Bus Controller Error.16-10

16.3 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH CPUID
DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_1AH, MACHINE ERROR CODES FOR

MACHINE CHECK .. vttt ittt e e ettt et et eas 16-11
16.3.1 Intel QPI Machine Check ErTOrS. ... vv vttt et eees 16-12
16.3.2 Internal Machine Check Brrors ... ovv vt e e i i i 16-13
16.3.3 Memory Controller ErTOrS. . ..o v vttt 16-14

16:4. INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH CPUID
DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_2DH, MACHINE ERROR CODES FOR

MACHINE CHECK .. vttt e e et et et neas 16-15
16.4.1 Internal Machine Check ErTOrS vv vt et eaes 16-16
164.2 Intel QPI Maching CheCK BrTOrS. vttt ittt i it aeens 16-18
16.4.3 Integrated Memory Controller Machine Check Errorsc.ovvvviivinnnns, 16-18
16.5 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY OFH MACHINE ERROR

CODES FOR MACHINE CHECK ..\ttt ittt 16-18

Xvi Vol. 3A

CONTENTS

PAGE
16.5.1 Model-Specific Machine Check Error Codes for Intel Xeon Processor MP 7100
Y= 1= 16-20
16.5.1.1 Processor Machine Check Status Register MCA Error Code Definition......... 16-21
16.5.2 Other_Info Field (all MCA ErTOr TYPES) ..ot vv vt eieee e 16-22
16.5.3 Processor Model Specific Error Code Field. ... 16-24
16.5.3.1 MCA Error TYpe A: L3 BrTOr. ottt et 16-24
16.5.3.2 Processor Model Specific Error Code Field Type B: Bus and Interconnect Error 16-24
16.53.3 Processor Model Specific Error Code Field Type C: Cache Bus Controller Error 16-26
CHAPTER 17
DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
171 OVERVIEW OF DEBUG SUPPORT FACILITIES. ..ot 17-1
17.2 DEBUG REGISTERS. ...ttt e 17-2
17.2.1 Debug Address Registers (DRO-DR3)oviiiiii e 17-4
17.2.2 DebugRegisters DR4 and DRS ...t e 17-4
17.2.3 Debug Status Register (DRB).vvvut i e 17-4
17.24 Debug Control Register (DR7) ovirii i 17-5
17.25 Breakpoint Field Recogniti@y .. 17-6
17.2.6 Debug Registers and Intel™ 64 ProCeSSOrS . .. vv vt vttt iii it iinineianas 17-8
17.3 DEBUG EXCEPTIONS .ttt e e e 17-9
17.3.1 Debug Exception (#DB)—Interrupt Vector 1........coviii s 17-9
17.3.1.1 Instruction-Breakpoint Exception Condition................cocoviiiiiiinns, 17-10
17.3.1.2 Data Memory and I/0 Breakpoint Exception Conditions 17-12
17313 General-Detect Exception Conditionoovivii i 17-12
17314 Single-Step Exception Condition.o 17-12
17315 Task-Switch Exception Condition...........covviiiiii s 17-13
17.3.2 Breakpoint Exception (#BP)—Interrupt Vector 3cooviviiiiiiinnnt 17-13
17.4 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING OVERVIEW 17-14
17.4.1 IA32_DEBUGCTL MSR. ..ttt e 17-14
17.4.2 Monitoring Branches, Exceptions, and Interruptscovviiiiiiiinane, 17-16
1743 Single-Stepping ON Branches 17-17
1744 Branch Trace MeSSages. . .. vv i 17-17
17.44.1 Branch Trace Message Visibilitycccoiiiiii i 17-17
17.4.5 Branch Trace Store (BTS) . v v s 17-18
17.4.6 CPL-Qualified Branch Trace Mechanism...........vvviiiiiiiiiiiiiiiiiienns 17-18
17.4.7 Freezing LBR and Performance CountersonPMI................ccoiiiiinnt 17-18
1748 LBR StaCK vttt et e 17-19
17.4.8.1 LBR Stack and INtel® B4 ProceSsors.vvvereeieiieeeeiieeneannnn, 17-20
17.48.2 LBR Stack and IA-32 Processors. .. .vv vt 17-21
17483 Last Exception Records and Intel 64 Architecture..............ccoovvivvennn 17-21
17.4.9 BTS ANd DS SaVe ArBa. ...ttt et e 17-21
17.49.1 DS Save Area and IA-32e Mode Operationoviii it 17-25
17.4.9.2 Setting Up the DS Save Area.vv vttt 17-28
17493 SettingUp the BTSBuffer........ooovii s 17-29
17.49.4 Setting Up CPL-Qualified BTS .. oo vv i 17-30
17495 Writing the DS Interrupt Service Routinecoooeienn. R 17-31
17.5 LAST BRA HJNTERRUFLANDEXCEPHONRECORWNGONTEGDCORE 2DU0
AND INTEL™ ATOM PROCESSOR FAMILY) .\t vviet et ie i 17-32
17.5.1 LBR StaCK vttt ettt e 17-33
17.6 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR PROCESSORS BASED
ON INTEL™ MICROARCHITECTURE CODE NAMENEHALEM........covvvviiiinennn 17-33

Vol. 3A xvii

CONTENTS

PAGE

17.6.1 LBR StaCK ottt 17-35
17.6.2 Filtering of Last Branch Recordsovvviiiii i 17-36
17.7 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR PROCESSORS BASED

ON INTEL™ MICROARCHITECTURE CODE NAME SANDY BRIDGE 17-37
178 LAST BRANCH, INLERRUPT, AND EXCEPTION RECORDING (PROCESSORS BASED ON

INTEL NETBURST ™ MICROARCHITECTURE) ..ot vvv e 17-37
17.8.1 MSR_DEBUGCTLA MSR . . .ottt e e ens 17-38
178.2 LBR Stack for Processors Based on Intel NetBurst® Microarchitecture 17-40
1783 Last Exception Recordsovviviiiiiiii i Fpe e 17-42
179 LAST BRAI\%H, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE SOLO

AND INTEL™ CORE DUO PROCESSORS) ..t viiiiiei i i 17-42
17.10 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PENTIUM M

PROCESSORS) ..ttt ettt e e e e 17-44
17.11 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (P6 FAMILY

PROCESSORS) .+ttt ettt ettt e e 17-46
17.11.1 DEBUGCTULMSR REGISTOI. vttt e ettt ittt e e 17-46
17.11.2 Last Branch and Last EXCeption MSRS.o v e 17-47
17113 Monitoring Branches, Exceptions, and Interrupts.coovii it 17-48
1712 TIME-STAMP COUNTER. . .ottt 17-49
17.12.1 INVAMENT TS Lttt e 17-50
17.12.2 IA32_TSC_AUX Register and RDTSCP Support.......cooiiiiiii i i 17-51
CHAPTER 18
PERFORMANCE MONITORING
18.1 PERFORMANCE MONITORING OVERVIEWo 18-1
18.2 ARCHITECTURAL PERFORMANCE MONITORING . ..o v e 18-2
18.2.1 Architectural Performance Monitoring Version 1............cccoiiiiiiiiiinnns 18-3
18.2.1.1 Architectural Performance Monitoring Version 1 Facilities. 18-4
18.2.2 Additional Architectural Performance Monitoring Extensions..................... 18-6
18.2.2.1 Architectural Performance Monitoring Version 2 Facilities..................... 18-7
18.2.2.2 Architectural Performance Monitoring Version 3 Facilities. 18-10
18.2.23 Full-width Writes to Performance Counter Registers..................c....... 18-13
18.2.3 Pre-defined Architectural Perforn&snce Eugptsntns ® U 18-14
183 PERFORMANCE MONITORING (INTEL™ CORE SOLO AND INTEL™ CORE DUO

PROCESSORS) .+ttt ittt e e 18-16
184 PERFORMANCE MONITORING (PROCESSORS BASED ON INTEL® CORE

MICROARCHITECTURE) . v vttt et e e e e e e e e 18-18
18.4.1 Fixed-function Performance COUNTErsS.ovvvvtiii it 18-19
184.2 Global Counter Control Facilitiescovrvii e 18-20
1843 At-Retirement EVENTS. ..ot 18-23
1844 Precise Event Based Sampling (PEBS) ..o 18-23
18.4.4.1 Settingup the PEBS Buffer...... ..o e 18-24
184.4.2 PEBS ReCOrd FOrmMatttt 18-24
18443 Writing a PEBS Interrupt Service Routine.oooviiiiiiii e, 18-25
184.4.4 Re-configuring PEBS Facilitiest iienn . e 18-26
185 PERFORMANCE MONITORING (PROCESSORS BASED ON INTEL® ATOM

MICROARCHITECTURE) .+ vttt ettt ettt e e e e e ettt e s 18-27
186 PERFORMANCE MONITORING FOR PROCESSORS BASED ON INTEL®

MICROARCHITECTURE CODE NAMENEHALEMo 18-27
18.6.1 Enhancements of Performance Monitoring in the Processor Core................ 18-29
18.6.1.1 Precise Event Based Sampling (PEBS) ... 18-29

Xviii Vol. 3A

CONTENTS

PAGE
Load Latency Performance Monitoring Facilityoooviiintt 18-34
Off-core Response Performance Monitoring in the Processor Core............ 18-36
Performance Monitoring Facility intheUncoreccoiiiiiiinnt 18-39
Uncore Performance Monitoring Management Facility 18-39
Uncore Performance Event Configuration Facilitycocoeute 18-42
U%ore A%Sress/Opcode MatchMSR. ... 18-44
Intel™ Xeon™ Processor 7500 Series Performance Monitorin%:acility 18-45
PERFORMANCE MONITORING FOR PROCESSORS BASED ON INTEL
MICROARCHITECTURE CODE NAMEWESTMEREot ittt 18-48
Intel™ Xeon™ Processor €7 Family Performance Monitoring F%ility 18-48
PERFORMANCE MONITORING FOR PROCESSORS BASED ON INTEL
MICROARCHITECTURE CODE NAME SANDY BRIDGEvvvvii i iiiieeenenn 18-49
Global Counter Control Facilities In Intel™ Microarchitecture Code Name Sandy
BrIAgE oottt e 18-50
CoUNter COAlBSCEANCE ..\ttt et 18-52
Full Width Writes to P&rformance COUNTEMS .ottt 18-53
PEBS Support in Intel™ Microarchitecture Code Name Sandy Bridge 18-53
PEBS Record FOrmMat. . ..ottt 18-54
Load Latency Performance Monitoring Facilitycoovviiintt 18-56
Precise STore Facilityo vv v 18-58
Precise Distribution of Instructions Retired (PDIR)............coovvvviiniinnns 18-59
Off-core Response Performance Monitoring M e - 8-59
Uncore PerfO@ance Monitoring Facilities In Intel® Core i7-2XXX, Intel® Core
i5-2xxx, Intel™= Core i3-2XXX Processor Seriescoviiirirnnnenennnns 18-63
U&core P%formance Monitoring Eventscvviiiii i 18-65
Intel’ > Xeon = Processor E5 Family Performance Monitoring Facility............ 18-65

Intel® Xeon® Processor E5 Family Uncore Performance Monitoring Facility 18-66

NEXT GENERATION INTEL CORE PROCESSOR PERFORMANCE MONITORING

L O L I 18-67
PERFORMANCE MONITORING (PROCESSORS BASED ON INTEL NETBURST®
MICROARCHITECTURE). . .t vttt ettt e e e 18-67
ESCR MO RS, . ittt et e 18-71
PerformanCe COUNTEIS. .\ttt ettt et et 18-73
0000 1 Y 18-74
Debug Store (DS) MeChanism. vv vttt e 18-76
Programming the Performance Counters for Non-Retirement Events............ 18-77
Selecting Events t0 CoUNt. ..ot it e 18-77
FIering BVENTS ..t e 18-79
Starting Event Countingccvv vt e 18-81
Reading a Performance Counter's Count...........coooviiiiiiiiiiiiennenns. 18-81
Halting Event CouNting ovvvvei e 18-82
0= o= Lo Yo 0T = 18-82
EXTENDED CASCADING . . .o v ettt e et e 18-83
Generating an Interrupton Overflowocoiii i 18-85
Counter Usage Guideline. ...t e 18-85
At-Retirement Countingvviriii i e 18-86
Using At-Retirement Countingcovvuvuiiiii i 18-87
Tagging Mechanism for Front_end_event.................ccooiiiiiiiinnn... 18-88
Tagging Mechanism For Execution_event...........ccoviviiiii i, 18-88
Tagging Mechanism for Replay_event ..o, 18-89
Precise Event-Based Sampling (PEBS)c.coviiiiiiiiiiii i 18-89
Detection of the Availability of the PEBS Facilities 18-90

Vol. 3A Xix

CONTENTS

PAGE

18.10.7.2 Setting Up the DS Save Areaov vt 18-90
18.10.7.3 Setting Up the PEBS Buffer ... e 18-90
18.10.7.4 Writing a PEBS Interrupt Service Routine. ... 18-90
18.10.7.5 Other DS Mechanism Implicationscooiiiii i 18-91
18.10.8 Operating System IMplications. ...t e 18-91
1811 PERFORMANCE MONITORING AND INTEL HYPER-THREADING TECHNOLOGY IN

PROCESSORS BASED ON INTEL NETBURST™ MICROARCHITECTURE............... 18-91
18.11.1 ESCR MRS ..ttt 18-92
1811.2 COOR MRS vttt ettt et e e 18-93
1811.3 [A32_PEBS_ENABLE MSR ...ttt e 18-95
18.11.4 Performance Monitoring EVENTScovi i 18-95
1812 COUNTING CLOCKS . .ttt ettt e et e e e e 18-97
18.12.1 Non-Halted ClOCKTICKS . ..o v v e ens 18-98
18.12.2 NON-SIEEP CIOCKTICKS .+ . v v v e et e 18-99
18.123 Incrementing the Time-Stamp Counter..........ccooiiiiiiii i i 18-100
18124 Non-Halted Reference Clocktickscoovviiiiiii e 18-100
18.12.5 Cycle Counting and Opportunistic Processor Operation.............covvvvvnns. 18-100
1813 PERFORMANCE MONITORING, BRANCH PROFILING AND SYSTEM EVENTS......... 18-101
1814 PERFORMANCE MONITORING AND DUAL-CORE TECHNOLOGYovvvvvvvnnnn 18-102
1815 PERFORMANCE MONITORING ON 64-BIT INTEL XEON PROCESSOR MP WITH UP TO

B-MBYTE L3 CACHE . .. ettt s 18-102
1816 PERFORMANCE MONITORING ON L3 AND CACHING BUS CONTROLLER SUB-

S ST B S L 18-107
18.16.1 Overview of Performance Monitoring with L3/Caching Bus Controller.......... 18-109
18.16.2 GBSQ Event INterface . ..ot 18-110
18.16.3 GSNPQ Event Interface. . . ovv v 18-112
18.16.4 FSB EVeNt INterface. ... vt 18-114
18.16.4.1 FSB Sub-Event Mask Interface.vovviviviiiii i 18-115
18.16.5 Common Event Control INterface.c.coovviiii i 18-116
1817 PERFORMANCE MONITORING (P6 FAMILY PROCESSOR) ... vvv i viieieiiiaaaes 18-116
18.17.1 PerfEvtSel0 and PerfEVtSElT MSRS 18-117
18.17.2 PerfCtrO and PerfCtrT MSRS.ovi e 18-119
18.17.3 Starting and Stopping the Performance-Monitoring Counters.................. 18-119
18.17.4 Event and Time-Stamp Monitoring Software.cocviiiiiiiinnnnns. 18-120
18.17.5 Monitoring Counter OVerflow.o e 18-120
1818 PERFORMANCE MONITORING (PENTIUM PROCESSORS). ..o vvv v 18-121
18.18.1 Control and Event Select Register (CESR)..........covvviiiiiiiiiiiiinaenn, 18-121
18.18.2 Use of the Performance-Monitoring Pins ... 18-123
18.18.3 EVENtS COUNTEA. ...t e 18-123
CHAPTER 19
PERFORMANCE-MONITORING EVENTS
19.1 ARCHITECTURAL PERFORMANCE-MONITORING EVENTS ..o evne e 19-1
19.2 PERFORMANCE MONITORING EVENTS FOR NEXT GENERATION INTEL® CORE

PROCESSORS .\ttt ettt e e 19-2

193 PERFORMANCE%ONITOB,,ING EVENTS FOR 2ND GENERATION INTEL® core
[7-2XXX, INTEL™ CORE 15-2XXX, INTEL CORE® 13-2X%X PROCESSOR SERIES. 19-13
194 PERFORMANCE MONLITORING EVENTS FOR INTEL™ CORE 17 PROCESSOR FAMILY

AND INTEL™ XEON™ PROCESSOR FAMILY.oovviiiiiiiiiiii i 19-35
195 PERFORMANCE MONITORING EVENTS FOR PROCESSORS BASED ON
INTEL™ MICROARCHITECTURE CODE NAME WESTMERE.cooiiiiiinn, 19-86

XX Vol. 3A

CONTENTS

PAGE
19.6 PERFORMANCE MONITORING EVENTS FOR INTEL® xeoN® PROCESSOR 5200,
5400 SERIES AND INTEL™ CORE 2 EXTREME PI@CESSO S QX 9000 SERIES ... 19-142
19.7 PERFORMANCE MONITORING EVENTS@OR INTEL™ XEON™ PROCESSOR 3000,
3200, 5100, 5300 SERIES AND INTEL™ CORE UOPRQELESSORS 19-142
19.8 PERFORMANCE MONITORING EVENTS FOR INTEL 3 ATOM,, PROCESSORS..., .. 19-186
19.9 PERFQRMANCE MONITORING EVENTS FOR INTEL® CORE " SOLO AND INTEL
CORE DUO PROCESSORS. ..\ttt tt ettt ettt 19-209
19.170 PENTIUM 4 AND INTEL XEON PROCESSOR PERFO%"IANCE-MO ITORING EVENTS. 19-218
19.11 PERFORMANCE MONITORING EVENTS FOR INTEL™ PENTIUM™ M PROCESSORS . 19-267
19.12 P6 FAMILY PROCESSOR PERFORMANCE-MONITORING EVENTScvues 19-270
19.13 PENTIUM PROCESSOR PERFORMANCE-MONITORING EVENTSoovvvvenes 19-288
CHAPTER 20
8086 EMULATION
20.1 REAL-ADDRESS MODE . ..ottt ettt et e e e et 20-1
20.1.1 Address Translation in Real-Address Mode.coovviiiiiii i 20-3
20.1.2 Registers Supported in Real-Address Modecoviiiiiiiiiiiiiiii s 20-4
20.1.3 Instructions Supported in Real-AddressMode ... 20-4
20.14 Interrupt and Exception Handling. ..o e 20-6
20.2 VIRTUAL-B08BE MODE. . . ottt ettt ettt et 20-8
20.2.1 Enabling Virtual-8086 Modecv i e 20-9
20.2.2 Structure of a Virtual-8086 Task.c.vviii i 20-9
20.2.3 Paging of Virtual-8086 Tasksc.vviriiiii e 20-10
2024 Protection within a Virtual-8086 Task ... 20-11
20.2.5 Entering Virtual-8086 Modeovvii i e 20-11
20.2.6 Leaving Virtual-8086 Mode oot 20-14
20.2.7 SeNSItiVE INSTIUCTIONS.ot e 20-15
20.2.8 Virtual-8086 Mode /0. . .o 20-15
20.2.8.1 1/0-Port-Mapped /0 . ..ot 20-15
20.2.8.2 Memory-Mapped /0o 20-16
20.28.3 Special /O BUFferS. ot 20-16
203 INTERRUPT AND EXCEPTION HANDLING IN VIRTUAL-8086 MODE. 20-16
20.3.1 Class 1—Hardware Interrupt and Exception Handling in Virtual-8086 Mode...... 20-18
20.3.1.1 Handling an Interrupt or Exception Through a Protected-Mode Trap or Interrupt
T | (P 20-18
20.3.1.2 Handling an Interrupt or Exception With an 8086 Program Interrupt or
Exception Handler.oouii 20-20
20.3.1.3 Handling an Interrupt or Exception Througha Task Gate 20-21
20.3.2 Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the
Virtual Interrupt Mechanism.ove e 20-22
2033 Class 3—Software Interrupt Handling in Virtual-8086 Mode 20-24
20.3.31 Method 1: Software Interrupt Handling. ...t 20-27
2033.2 Methods 2 and 3: Software Interrupt Handling...............ooveiionnt, 20-28
20333 Method 4: Software Interrupt Handling. ... 20-28
20334 Method 5: Software Interrupt Handling. ...t 20-28
20335 Method 6: Software Interrupt Handling. ... 20-29
204 PROTECTED-MODE VIRTUAL INTERRUPTSottt 20-30

Vol. 3A xxi

CONTENTS

PAGE
CHAPTER 21
MIXING 16-BIT AND 32-BIT CODE
21.1 DEFINING 16-BIT AND 32-BIT PROGRAMMODULES ..ot 21-2
21.2 MIXING 16-BIT AND 32-BIT OPERATIONS WITHIN A CODE SEGMENT 21-2
213 SHARING DATA AMONG MIXED-SIZE CODE SEGMENTSoviiiiii e 21-4
21.4 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE SEGMENTSovvvvvvvnnen 21-4
21.4.1 Code-Segment POINter Size.vvuii it 21-5
214.2 Stack Management for Control Transfer..........ccoiiiiiiii i 21-5
214.2.1 Controlling the Operand-Size Attribute ForaCalloovinut 21-7
21422 Passing Parameters WithaGate...........cociii it 21-8
2143 Interrupt Control Transfers. ... ou et e 21-8
2144 Parameter Translationot e 21-8
2145 Writing Interface Proceduresovv it 21-9
CHAPTER 22
ARCHITECTURE COMPATIBILITY
22.1 PROCESSOR FAMILIES AND CATEGORIES . ..\ v et 22-1
22.2 RESERVED BITS. ottt e e 22-2
22.3 ENABLING NEW FUNCTIONS AND MODES. ...ttt 22-2
224 DETECTING THE PRESENCE OF NEW FEATURES THROUGH SOFTWARE 22-3
22.5 INTEL MMX TECHNOLOGY ..ottt ettt e et 22-3
22.6 STREAMING SIMD EXTENSIONS (SSE). . v vt 22-3
22.7 STREAMING SIMD EXTENSIONS 2 (SSE2) ..o vt iii it 22-4
22.8 STREAMING SIMD EXTENSIONS 3 (SSE3) .t viiiiii et 22-4
22.9 ADDITIONAL STREAMING SIMD EXTENSIONSo 22-4
22.10 INTEL HYPER-THREADING TECHNOLOGY . ..o\ ivit it i aas 22-5
2217 MULTI-CORE TECHNOLOGY ..ttt ittt et e e 22-5
22.12 SPECIFIC FEATURES OF DUAL-COREPROCESSORvvvvii e 22-5
22.13 NEW INSTRUCTIONS IN THE PENTIUM AND LATER IA-32 PROCESSORS 22-5
22.13.1 Instructions Added Prior to the Pentium Processoroovvivviininnnannn. 22-6
22.14 OBSOLETEINSTRUCTIONS. ...\ttt e 22-7
22.15 UNDEFINED OPCODES . ..\ttt ettt et e e e e e 22-7
2216 NEW FLAGS IN THE EFLAGS REGISTER ..\ ivit e 22-7
22.16.1 Using EFLAGS Flags to Distinguish Between 32-Bit IA-32 Processors............. 22-8
2217 STACK OPERATIONS ...ttt ittt e e s 22-8
22.17.1 PUSH SP. .t 22-8
22.17.2 EFLAGS Pushedonthe Stackoviniii s 22-9
22,18 XBT7 FPU Lottt e 22-9
22.18.1 Control Register CROFIags .. .o vv v e 22-9
22.18.2 X87 FPU Status WOrdttt 22-10
22.18.2.1 Condition Code Flags (COthrough C3) ..o v 22-10
22.18.2.2 StaCk FAUIt FIag. .o vt 22-11
22.18.3 X87 FPU Control WOrdot 22-11
22.184 XB7 FPU Tag Word. ..o vv ittt 22-11
22.18.5 [1= = I 0= 22-12
22.185.1 NaN S . e 22-12
22.185.2 Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal Formats 22-12
22.18.6 Floating-Point EXCEPLIONS\ vii i e i e e e 22-13
22.18.6.1 Denormal Operand Exception (HD)c.vvvvviii i 22-13
22.186.2 Numeric Overflow Exception (HO). ..o 22-13

xXii Vol. 3A

CONTENTS

PAGE
22.186.3 Numeric Underflow Exception (HU)........oooviiiiiinii s 22-14
22.186.4 EXCEPLiON PreCedENCE . ..o\ttt 22-14
22.186.5 CSand EIP For FPU EXCEPLIONSot i e e 22-14
22.18.6.6 FPU Error Signals. ..o vttt e e e 22-14
22.186.7 Assertion of the FERREPIN......oooiiii i 22-15
22.186.8 Invalid Operation Exception On Denormals.t iin i 22-15
22.186.9 Alignment Check Exceptions (BAC)vvvi i 22-16
22.186.10 Segment Not Present Exception During FLDENV ..o, 22-16
22.186.11 Device Not Available Exception (HNM) e 22-16
22.186.12 Coprocessor Segment Overrun EXCeption.ovvvvvi i, 22-16
22.186.13 General Protection Exception (HGP)ocoviiii i e 22-16
22.186.14 Floating-Point Error Exception (BMF) ... e 22-16
22.18.7 Changes to Floating-Point Instructions.cociii i e 22-17
22.18.7.1 FDIV, FPREM, and FSQRT INStruCtionsovviiiiiiiii i 22-17
22.18.7.2 FSCALE INSTrUCTION .« .ot ettt 22-17
22.18.7.3 FPREMT INSTIUCTION .« vttt ettt 22-17
221874 FPREM INSTIUCTION. ..o vttt 22-17
22.18.7.5 FUCOM, FUCOMP, and FUCOMPP INStructionsoovvvuvinernennininnns 22-17
22.18.7.6 FPTAN INStrUCHION. ..ottt 22-18
22.18.7.7 StACK OVEITIOW. . v 22-18
22.18.78 FSIN, FCOS, and FSINCOS INSTrUCTIONS ... vvvvee v 22-18
22.18.79 FPATAN INSTIUCTION © vttt e e 22-18
22.18.7.10 F2XMT INSTrUCHION. ..ot 22-18
22.18.7.11 FLD INSTrUCHION. .o vt 22-18
22.18.7.12 FXTRACT INSTIUCTION .« . ettt et 22-19
22.18.7.13 Load Constant INSTrUCTiONS.o s 22-19
22.18.7.14 FSETPM INStrUCTION. . o\ttt e 22-19
22.18.7.15 FXAM INSTrUCTION. Lottt ettt 22-20
22.18.7.16 FSAVE and FSTENV INSTrUCtionsovvvirvi i 22-20
22.188 Transcendental INSTrUCtioNS.o v 22-20
22.189 Obs0lete INSTTUCTIONS . .. vttt et 22-20
221810 WAIT/FWAIT Prefix Differencescooovvviiiii e 22-21
22.18.11 Operands Split Across Segments and/orPages.............ccoviiiiiiiinn.s. 22-21
22.18.12 FPU Instruction Synchronization.c.cooiiiviii it 22-21
22.19 SERIALIZING INSTRUCTIONS ...ttt 22-21
2220 FPU AN%MATH COPROCESSOR INITIALIZATION. .. e e 22-22
22.20.1 Intel™ 387 and Intel= 287 Math Coprocessor Initialization. 22-22
22.20.2 Intel486 SX Processor and Intel 487 SX Math Coprocessor Initialization......... 22-22
2221 CONTROL REGISTERSttt e e e 22-24
22.22 MEMORY MANAGEMENT FACILITIES ..ot 22-25
22.22.1 New Memory Management Control FIagscooviiiiiiiiii i 22-25
22.22.1.1 Physical Memory Addressing EXtension.cooviiiiiiiiiii i 22-25
22.22.1.2 GIODal PagEs .. vttt 22-26
22.22.1.3 Larger Page Sizes .. v vttt 22-26
22.22.2 CD and NW Cache Control FIagscooviiiiiii e i 22-26
22.22.3 Descriptor Types and ContentsS.vuitiii i eeaaaas 22-26
22224 Changes in Segment Descriptor Loadsvvviiiiii i 22-27
2223 DEBUG FACILITIES .ttt e e e e 22-27
22.23.1 Differences in Debug Register DRG.cccviiiii i 22-27
22.23.2 Differences in Debug Register DR7vvii i it 22-27
22.233 Debug Registers DR4 and DR5ooviiii e 22-27
22.24 RECOGNITION OF BREAKPOINTS ..\ttt et nea s 22-28

Vol. 3A xxiii

CONTENTS

PAGE

22.25 EXCEPTIONS AND/OR EXCEPTION CONDITIONS\ vvitiei e 22-28
22.25.1 Machine-Check Architectureo e 22-30
22.25.2 Priority of EXCEPTIONS . ..o vt e 22-30
22.25.3 Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers ..22-30
22.26 INTERRUP TS, L.t e e 22-36
22.26.1 Interrupt Propagation Delaycovviiii i e 22-36
22.26.2 NME I U . oottt e e e e e e 22-36
22.26.3 10 22-37
22.27 ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC).....vvvvvviannnn 22-37
22.27.1 Software Visible Differences Between the Local APIC and the 82489DX......... 22-37
22.27.2 New Features Incorporated in the Local APIC for the P6 Family and Pentium

e 0121y 5P 22-38
22.27.3 New Features Incorporated in the Local APIC of the Pentium 4 and Intel Xeon

o 0 Tol 1Yo 22-38
22.28 TASK SWITCHING AND TSS ..ttt it e 22-38
22.28.1 P6 Family and Pentium Processor TSS ... 22-39
22.28.2 TSS SeleCtOr WIS . . v ettt 22-39
22.28.3 Order of Reads/Writes to the TSS. ... v e 22-39
22.284 Using A 16-Bit TSS with 32-Bit Constructsccovviiiviiiiiiiiiii e 22-39
22.28.5 Differences in /0 Map Base AddresSeS. . ..vvvvvvvii it eciei i 22-39
22.29 CACHE MANAGEMENT ...ttt e e 22-40
22.29.1 Self-Modifying Code with Cache Enabled ..., 22-41
22.29.2 Disabling the L3 Cacheo v 22-42
22.30 PAGING. .ottt 22-42
22.30.1 Large Pages it v v 22-42
22.30.2 PCD and PWT FIags ... ov it i 22-42
22.30.3 Enabling and Disabling Paging.t e 22-43
2231 STACK OPERATIONS ...ttt e e 22-43
22.31.1 Selector PUSheS and POPS ... vv i 22-43
2231.2 Error Code PUShES . ..o 22-44
22313 Fault Handling Effectsonthe Stack..........cooov i e 22-44
22314 Interlevel RET/IRET From a 16-Bit Interruptor CallGateoovvvvnnn 22-44
2232 MIXING 16- AND 32-BIT SEGMENTS ...\ iiii i e 22-45
2233 SEGMENT AND ADDRESS WRAPAROUNDotitiiiiii i 22-45
22.33.1 Segment WraparoUNdttt e 22-46
2234 STORE BUFFERS AND MEMORY ORDERING. \vvvieiiei i eiieieaieaens 22-46
2235 BUS LOCKING ..\ttt ittt e et et et e 22-48
2236 BUSHOLD ...ttt et e e 22-48
2237 MODEL-SPECIFIC EXTENSIONS TO THE IA-32. ..ot e 22-48
22.37.1 Model-Specific REGISTEIS ...\ttt e e 22-49
22.37.2 RDMSR and WRMSR INStrUCtioNS. . ..ot 22-49
22373 Memory Type Range Registers e 22-49
22374 Machine-Check Exception and Architecture............cccoviiiiiii i nnns, 22-50
22.37.5 Performance-Monitoring COUNTErSvvvv vt vttt 22-50
2238 TWO WAYS TO RUN INTEL 286 PROCESSOR TASKS. ...t vv i 22-51
CHAPTER 23
INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
23.1 OVERVIEW. . ettt e e e 23-1
23.2 VIRTUAL MACHINE ARCHITECTURE ...ttt et 23-1
233 INTRODUCTION TO VMX OPERATION. . . oottt et einaees 23-1

XXiv Vol. 3A

234 LIFECYCLEOF VMM SOFTWARE.t
235 VIRTUAL-MACHINE CONTROL STRUCTURE.ovvvivienens
236 DISCOVERING SUPPORT FOR VMX. . i\t cii i
23.7 ENABLING AND ENTERING VMX OPERATION
238 RESTRICTIONS ON VMX OPERATION.t iiv i
CHAPTER 24

VIRTUAL-MACHINE CONTROL STRUCTURES

24.1 OV BRVIEW i
24.2 FORMAT OF THEVMCSREGION ..ot
24.3 ORGANIZATION OF VMCS DAT A .o
244 GUEST-STATE AREA .. i s
244.1 Guest Register STateovv v
24.4.2 Guest Non-Register State.........covviiiiiiiiiiiici e
245 HOST-STATE AREA . . i
24.6 VM-EXECUTION CONTROL FIELDS .. .o
24.6.1 Pin-Based VM-Execution Controlsccovviiiiiiiinnns.
24.6.2 Processor-Based VM-Execution Controls.covvvvvnnnnnnn
24.6.3 EXCEPtioN BitmMap.o e
246.4 I/0-Bitmap AddresSes.o
24.6.5 Time-Stamp Counter Offset............cooiiiiiiiiiiiinnns.
24.6.6 Guest/Host Masks and Read Shadows for CROand CR4...........
24.6.7 CR3-Target Controls.ovvvrii e
24.6.8 Controls for APIC ACCESSES. ..\ ivi vt ittt ettt
2469 MSR-BIitmap Addressovviiiii e
24.6.10 Executive-VMCS PoiNter ..o e
246.11 Extended-Page-Table Pointer (EPTP).........covvviviiiiinnt,
246.12 Virtual-Processor Identifier (VPID).........coovviviiiiiinnnnnnn
246.13 Controls for PAUSE-Loop EXItingovvvvviiiii i
24.6.14 VM-Function Controls. vvv vt it
24.7 VM-EXIT CONTROL FIELDS . ..ottt
24.7.1 VM-EXit CONrolS oot i e
24.7.2 VM-Exit Controls for MSRS ... v i
24.8 VM-ENTRY CONTROL FIELDS\t i it
24.8.1 VM-Entry CONtrolS. ..o e
24.8.2 VM-Entry Controls for MSRS. ...
2483 VM-Entry Controls for Event Injectioncovvvvinne
249 VM-EXIT INFORMATION FIELDS. oo
24.9.1 Basic VM-Exit Information. ..o
24.9.2 Information for VM Exits Due to Vectored Events...............
2493 Information for VM Exits That Occur During Event Delivery
2494 Information for VM Exits Due to Instruction Execution...........
2495 VM-Instruction Error Field.coiii i
24.10 SOFTWARE USE OF THE VMCS AND RELATED STRUCTURES..........
24.10.1 Software Use of Virtual-Machine Control Structures.............
24.10.2 VMREAD, VMWRITE, and Encodings of VMCS Fields..............
24.10.3 Initializinga VMCS . ..o
24.104 Software Access to Related Structures............ocovvvivinnn
24.105 VMXON REGION . . vttt

CONTENTS

Vol. 3A XXV

CONTENTS

PAGE

CHAPTER 25
VMX NON-ROOT OPERATION
25.1 INSTRUCTIONS THAT CAUSE VM EXITS ot 25-1
25.1.1 Relative Priority of Faults and VM EXItSovviii i e 25-2
25.1.2 Instructions That Cause VM Exits Unconditionally..............coooiiiiiinnnen, 25-2
2513 Instructions That Cause VM Exits Conditionallycoiiiiiiiiiinn.. 25-3
25.2 APIC-ACCESS VM EXIT S, ettt et 25-7
25.2.1 Linear Accesses t0 the APIC-ACCeSS Page 25-8
25.2.1.1 Linear Accesses That Cause APIC-Access VM EXItS.ovvviviiiiiniinnnn 25-8
25.2.1.2 Priority of APIC-Access VM Exits Caused by Linear ACCESSESvvvvnvnnnnn 25-9
25213 Instructions That May Cause Page Faults or EPT Violations Without Accessing

1= 10 Y 25-10
25.2.2 Guest-Physical Accesses to the APIC-AccessPageo.ovvviviiiiiiinnnns. 25-11
25.2.2.1 Guest-Physical Accesses That Might Not Cause APIC-Access VM Exits 25-12
25.2.2.2 Priority of APIC-Access VM Exits Caused by Guest-Physical Accesses......... 25-12
25.2.3 Physical Accesses to the APIC-AccessPage...........covvviiiiiiiiiiiii s, 25-13
25.24 VTPR ACCESSES . vttt ettt ettt et e et ettt e 25-14
253 OTHER CAUSES OF VM EXITS . oottt et 25-14
25.4 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-ROOT OPERATION 25-17
25.5 APIC ACCESSES THAT DO NOT CAUSE VM EXITS ..o 25-23
25.5.1 Linear Accesses to the APIC-Access Page Using Large-Page Translations 25-23
25.5.2 Physical Accesses to the APIC-AccessPage..........c.covviiiiiiiiiiiiiiienanns, 25-23
2553 VTPR ACCESSES . vttt ettt ettt et e et et 25-23
25.5.3.1 Treatment of Individual VTPR ACCESSES ... vvvvvii et 25-24
2553.2 Operations with Multiple ACCESSES vt e 25-25
25533 TPR-Shadow Updatesovir ittt i 25-26
25.6 OTHER CHANGES IN VMX NON-ROOT OPERATION ... vv v ieeean 25-27
25.6.1 EVENt BIOCKING. ..o\ 25-27
25.6.2 Treatment of Task SWitches. s 25-27
25.7 FEATURES SPECIFIC TO VMX NON-ROOT OPERATION. ... vvvvivi i 25-28
25.7.1 VMX-Preemption Timervi et 25-29
257.2 MONItOr Trap FIag. ..o 25-29
25.73 Translation of Guest-Physical Addresses Using EPT.............coovviviiinnns. 25-31
2574 LV 1 T oo 25-31
25.7.4.1 ENabling VM FUNCLIONS ... e 25-31
25.74.2 General Operation of the VMFUNC Instruction...............cccoviiiinnnn... 25-31
25743 EPTP SWItChing . ..o e 25-32
25.8 UNRESTRICTED GUESTS. ..ttt 25-34
CHAPTER 26
VM ENTRIES
26.1 BASIC VM-ENTRY CHECKS . .ottt e 26-2
26.2 CHECKS ON VMX CONTROLS AND HOST-STATEAREA. . ..o 26-3
26.2.1 Checks 0N VMX Controls. ..o vvv e e 26-3
26.2.1.1 VM-Execution Control Fields. ... 26-3
26.2.1.2 VM-Exit Control Fields.o.vie s 26-6
26.2.1.3 VM-Entry Control Fieldso.oe e 26-7
26.2.2 Checks on Host Control Registersand MSRS ... 26-8
26.2.3 Checks on Host Segment and Descriptor-Table Registers......................... 26-9
26.24 Checks Related to Address-Space Sizeovvviiiiiiiii i 26-9

XXvi Vol. 3A

CONTENTS

PAGE
26.3 CHECKING AND LOADING GUEST STATE ..ttt e 26-10
26.3.1 Checks on the Guest STate ArBa.o. v it 26-10
26.3.1.1 Checks on Guest Control Registers, Debug Registers,and MSRs.............. 26-11
26.3.1.2 Checks on Guest Segment RegiSters.vviviii it iiieenens 26-12
26.3.1.3 Checks on Guest Descriptor-Table Registerscoooviviiiiiiiiinnnn, 26-16
26.3.1.4 Checks on Guest RIPand RFLAGScoiii e 26-16
26.3.1.5 Checks on Guest Non-Register Stateovvviiiiiiiiiiiiiiiiienen, 26-16
26.3.1.6 Checks on Guest Page-Directory-Pointer-Table Entries 26-19
26.3.2 Loading GUEST STateo e 26-20
26.3.2.1 Loading Guest Control Registers, Debug Registers,andMSRs................ 26-20
26.3.2.2 Loading Guest Segment Registers and Descriptor-Table Registers 26-22
26.3.2.3 Loading Guest RIP, RSP, and RFLAGSoiiii i 26-23
26.3.24 Loading Page-Directory-Pointer-Table Entries.cccovivvinints. 26-23
26.3.2.5 Updating Non-Register State.o.vviiiiiii i 26-23
2633 Clearing Address-Range Monitoring. i i 26-24
26.4 LOADING MRS . ittt e e 26-24
26.5 EVENT INJECTION. . ettt et e e 26-25
26.5.1 Vectored-Event INjection.ot e 26-25
26.5.1.1 Details of Vectored-Event Injection. ... 26-26
26.5.1.2 VM Exits During Event INjectionoovviii i 26-28
26.5.1.3 Event Injection for VM Entries to Real-Address Mode........................ 26-29
26.5.2 Injection of Pending MTF VM EXitS. . ..o.vviiiii e ieas 26-29
26.6 SPECIAL FEATURES OF VM ENTRY ..ottt 26-29
26.6.1 Interruptibility State.o 26-29
26.6.2 ACTIVITY STate ...ttt e 26-30
26.6.3 Delivery of Pending Debug Exceptions after VMENtry.............covvvvininn, 26-31
26.6.4 VMX-Preemption Timer.ot i e et 26-33
26.6.5 Interrupt-Window EXItiNgvvirti i e 26-33
26.6.6 NMI-WINAOW EXItiNG ..o vt e 26-33
26.6.7 VM Exits Induced by the TPRShadow ... e 26-34
26.6.8 Pending MTF VM EXITSttt e e 26-34
26.6.9 VM Entries and Advanced Debugging Features............coovvvviviiineninannn. 26-35
26.7 VM-ENTRY FAILURES DURING OR AFTER LOADING GUEST STATE........cvvvnen. 26-35
26.8 MACHINE-CHECK EVENTS DURING VM ENTRY .. oo 26-36
CHAPTER 27
VM EXITS
27.1 ARCHITECTURAL STATEBEFORE A VM EXIT ..\ vttt 27-1
27.2 RECORDING VM-EXIT INFORMATION AND UPDATING VM-ENTRY CONTROL FIELDS... 27-5
27.2.1 Basic VM-Exit Information.ot 27-5
27.2.2 Information for VM Exits Due to Vectored Events...........cocoviiniivininnnn 27-13
27.2.3 Information for VM Exits During Event Deliverycocoviiiiiinnnnn. 27-15
27.2.4 Information for VM Exits Due to Instruction Execution..................ovvvnes. 27-17
27.3 SAVING GUEST STATE ittt e e e 27-27
27.3.1 Saving Control Registers, Debug Registers,andMSRsovvnt 27-27
27.3.2 Saving Segment Registers and Descriptor-Table Registers...................... 27-28
2733 Saving RIP, RSP, and RFLAGS.ttt 27-29
2734 Saving Non-Register State. ... 27-31
27.4 SAVING MRS .o 27-33
27.5 LOADING HOST STATE. .ttt ettt et e 27-34
27.5.1 Loading Host Control Registers, Debug Registers, MSRs 27-34

Vol. 3A xxvii

CONTENTS

PAGE
27.5.2 Loading Host Segment and Descriptor-Table Registers..................o.ovts. 27-36
2753 Loading Host RIP, RSP, and RFLAGS i 27-38
2754 Checking and Loading Host Page-Directory-Pointer-Table Entries................ 27-38
2755 Updating Non-Register Stateoviiiii it e 27-38
27.5.6 Clearing Address-Range Monitoringvvvvvuvriii i 27-39
27.6 LOADING MRS ..ottt e e 27-39
27.7 M B OR T S . Lttt e e e 27-40
27.8 MACHINE-CHECK EVENTS DURING VM EXIT. .ot 27-41
CHAPTER 28
VMX SUPPORT FOR ADDRESS TRANSLATION
28.1 VIRTUAL PROCESSOR IDENTIFIERS (VPIDS). .. v v vt 28-1
28.2 THE EXTENDED PAGE TABLE MECHANISM (EPT) ..o 28-2
28.2.1 S IO V7= YT P 28-2
28.2.2 EPT Translation Mechanism e e 28-4
28.2.3 EPT-INAUCEd VM EXITS .ottt e e 28-9
28.2.3.1 EPT Misconfigurations. ..ot 28-10
28.2.3.2 EPT Vi0latioNS ..\ttt 28-12
28233 Prioritization of EPT-Induced VM EXitSoiviiiiiii i 28-12
28.24 EPT and Memory TYPING. . ..o vt ettt e e 28-14
28.24.1 Memory Type Used for Accessing EPT Paging Structures 28-14
28.24.2 Memory Type Used for Translated Guest-Physical Addresses 28-15
28.3 CACHING TRANSLATION INFORMATION ..ottt 28-16
28.3.1 Information ThatMayBeCached ...t 28-16
283.2 Creating and Using Cached Translation Information....................cooiuts 28-17
283.3 Invalidating Cached Translation Information.............c.coiiiiiiii e 28-19
28.3.3.1 Operations that Invalidate Cached Mappings.cccooviiii i iiinnnnns, 28-19
283.3.2 Operations that Need Not Invalidate Cached Mappings..............covvvvnen. 28-21
28333 Guidelines for Use of the INVVPID Instructioncoovvviiiiinninnnnnns. 28-21
28334 Guidelines for Use of the INVEPT Instruction...............ccoiiiiiiiin... 28-23
CHAPTER 29
VMX INSTRUCTION REFERENCE
29.1 OVERVIEW. . .ottt et e e e 29-1
29.2 CONVENTIONS . ettt e e e e e e 29-2
29.3 VMX INSTRUCTIONS ..ottt et et ees 29-3
INVEPT— Invalidate Translations Derived fromEPT............cvviiiiiiininnn, 29-4
INVVPID— Invalidate Translations Based on VPID.........coovvviviiiiiiiiiiinnnns 29-7
VMCALL—CAll 10 VM MONItOT. . o v e ettt et 29-11
VMCLEAR—Clear Virtual-Machine Control Structure............cooviiiiiinnns. 29-13
VMFUNC—Invoke VM fUNCLION oo i 29-16
VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine...................... 29-17
VMPTRLD—Load Pointer to Virtual-Machine Control Structure................... 29-20
VMPTRST—Store Pointer to Virtual-Machine Control Structure.................. 29-23
VMREAD—Read Field from Virtual-Machine Control Structure 29-25
VMRESUME—Resume Virtual Machine. ...t 29-27
VMWRITE—Write Field to Virtual-Machine Control Structure..................... 29-28
VMXOFF—Leave VMX Operation.ovvuieiiiiiiii i ieiieieeeaens 29-30
VMXON—ENter VMX Operationvuvririiinii it ieeeaens 29-32

Xxviii Vol. 3A

CONTENTS

PAGE
29.4 VM INSTRUCTION ERROR NUMBERSottt 29-35
CHAPTER 30
VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
30.1 VMX SYSTEM PROGRAMMING OVERVIEWo e 30-1
30.2 SUPPORTING PROCESSOR OPERATING MODES IN GUEST ENVIRONMENTS........... 30-1
30.2.1 Using Unrestricted GUESTMOAEoviiiiii i 30-2
303 MANAGING VMCS REGIONS AND POINTERS ..ot i 30-2
304 USING VMX INSTRUCTIONS ..ottt 30-4
30.5 VMM SETUP & TEARDOWN . .ottt 30-6
30.5.1 Algorithms for Determining VMX Capabilities.ccooovviiiiiiiiins, 30-7
30.6 PREPARATION AND LAUNCHING A VIRTUALMACHINE.ccoivii i 30-10
30.7 HANDLING OF VM EXITS Lottt e e 30-11
30.7.1 Handling VM Exits Due to EXCEPLIONSo vvi e 30-12
30.7.1.1 Reflecting Exceptions to Guest Software.............cocoviiiiiiiennnnnns. 30-12
30.7.1.2 Resuming Guest Software after Handling an Exception...................... 30-14
308 MULTI-PROCESSOR CONSIDERATIONS . ..ttt eeans 30-15
30.8.1 INItIAliZatiON . .. o 30-16
30.8.2 Moving @ VMCS BetWeEN PrOCESSOIS .. vvv vttt iei i enanes 30-16
3083 Paired Index-Data Registersoviiiiiii 30-17
30.8.4 External Data SIrUCTUMES. . ..ot e 30-17
30.85 CPUID EMUIALION. ..o ve et et 30-18
309 32-BIT AND 64-BIT GUEST ENVIRONMENTS . ..\ivii i 30-18
30.9.1 Operating Modes of Guest ENVIrONMENtScciiiiiiiii i 30-18
30.9.2 Handling Widths of VMCS Fieldsovvuviii i 30-19
30.9.2.1 Natural-Width VMCS Fields.o 30-19
30.9.2.2 B4-Bit VMCS Fields . ..ot 30-19
3093 IA-328 MO HOSTS . .ottt e 30-19
309.4 [A-328 MO GUESTS . . vttt ettt et e e 30-20
30.95 3Bt GUESTS ottt et 30-21
30.10 HANDLUING MODEL SPECIFICREGISTERS.ot 30-22
30.10.1 Using VM-Execution CoNtrols.vvriei i 30-22
30.10.2 Using VM-Exit Controls for MSRSot i 30-23
30.10.3 Using VM-Entry Controls for MSRS.t e 30-23
30.10.4 Handling Special-Case MSRs and Instructions.covviiiiiiiiiininiinnns 30-23
30.10.4.1 Handling IA32_EFER MSR vttt 30-23
30.104.2 Handling the SYSENTER and SYSEXIT Instructionscocvvvvvvnnnn, 30-24
30.104.3 Handling the SYSCALL and SYSRET Instructions..........covovvvviiiinennnnn, 30-24
30.104.4 Handling the SWAPGS Instruction ... i 30-24
30.104.5 Implementation Specific Behavior on Writing to CertainMSRs................ 30-25
30.10.5 Handling Accesses to Reserved MSR Addresses.vvvvviiiiiiivnnininnnns 30-25
30.117 HANDLING ACCESSES TO CONTROL REGISTERS ...\ iv i 30-25
30.12 PERFORMANCE CONSIDERATIONS . . .ottt 30-25
30.13 USE OF THE VMX-PREEMPTION TIMER.o\ttt i 30-26
CHAPTER 31
VIRTUALIZATION OF SYSTEM RESOURCES
31.1 OVERVIEW . .t 31-1
31.2 VIRTUALIZATION SUPPORT FOR DEBUGGING FACILITIES ..o 31-1
31.2.1 DEBUG EXCEPLIONS . ..ttt e 31-2

Vol. 3A xXix

CONTENTS

PAGE
313 MEMORY VIRTUALIZATION ..ottt 31-3
31.3.1 Processor Operating Modes & Memory Virtualizationcoovune. 31-3
31.3.2 Guest & Host Physical Address SPacesovvv v it ci i ieaaas 31-3
3133 Virtualizing Virtual Memory by Brute Force. ... 31-4
3134 Alternate Approach to Memory Virtualization...............ccooviiii i 31-4
3135 Details of Virtual TLB Operationccovuiiiiiiiii it iiieieanns 31-6
31.3.5.1 Initialization of Virtual TUBo 31-7
31.3.5.2 Response to Page Faultsouv v 31-8
31353 Response to Uses of INVLPG ...t 31-11
31354 Response t0 CR3 WIteS. v vttt 31-11
314 MICROCODE UPDATE FACILITY .ottt 31-11
31.4.1 Early Load of Microcode Updatesc.ovviiiiiiiii it ieiiieee 31-12
314.2 Late Load of Microcode Updates.covviniiiiii i 31-12
CHAPTER 32
HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
32.1 OV RV EW. . ittt e e e e e 32-1
32.2 INTERRUPT HANDLING IN VMX OPERATIONttt 32-1
323 EXTERNAL INTERRUPT VIRTUALIZATION ...t 32-3
32.3.1 Virtualization of Interrupt Vector Space..........cooovviiiiii i 32-4
32.3.2 Control of Platform INterruptsovii e e 32-5
32.3.2.1 PICVirtualizationovuviei e 32-6
32322 XAPIC Virtualization.ot 32-6
323.2.3 Local APIC Virtualization.cve e 32-6
32324 /0 APIC Virtualization.o vt 32-7
32325 Virtualization of Message Signaled Interrupts ..., 32-8
3233 Examples of Handling of External Interrupts. ..o 32-8
32.3.3.1 GUBST SBTUD ottt vttt e e 32-9
32332 Processor Treatment of External Interrupt. ..., 32-9
32333 Processing of External Interrupts by VMM. ... 32-9
32334 Generation of Virtual Interrupt Events by VMM, ..., 32-10
324 ERROR HANDLING BY VMMo e e 32-11
32.4.1 VM-EXIT FAIlUTES ..o e 32-11
324.2 Machine-Check Considerations.ovvveiiiii e 32-12
3243 MCA Error Handling Guidelines for VMM ... 32-13
324.3.1 VMM Error Handling Strategiesc.ovvviiiiii i 32-14
3243.2 Basic VMM MCA error recoveryhandlingcocoiiviiiiiiiiii i, 32-14
32433 Implementation Considerations for the BasicModel.......................... 32-14
32434 MCA VIrtUalizationo e 32-15
32435 Implementation Considerations for the MCA Virtualization Model 32-15
325 HANDLING ACTIVITY STATESBY VMM ..o 32-16
CHAPTER 33
SYSTEM MANAGEMENT MODE
331 SYSTEM MANAGEMENT MODE OVERVIEWo v it 33-1
33.1.1 System Management Mode and VMX Operationovvviiiiiiiivininennnns 33-2
33.2 SYSTEM MANAGEMENT INTERRUPT (SMI) ..ot 33-3
333 SWITCHING BETWEEN SMM AND THE OTHER PROCESSOR OPERATING MODES....... 33-3
33.3.1 ENtEriNg SMM. . o 33-3
3332 EXItING FrOm SMM. Lo 33-4

XXX Vol. 3A

CONTENTS

PAGE
334 SR AM e e 33-5
33.4.1 SMRAM STate SAVE MaD. . oottt 33-6
334.1.1 SMRAM State Save Map and Intel 64 Architecture. ...t 33-8
334.2 SMRAM CaCNING v+ v vttt ettt e 33-11
33.4.2.1 System Management Range Registers (SMRR)coooviiiiiiiinnnnen, 33-12
335 SMI HANDLER EXECUTION ENVIRONMENT .. .o vvi et ea e 33-12
336 EXCEPTIONS AND INTERRUPTS WITHINSMM ... 33-14
33.7 MANAGING SYNCHRONOUS AND ASYNCHRONOUS SYSTEM MANAGEMENT
INTERRUP TS Lttt e e e 33-15
33.7.1 1/0 State Implementationvuiiii i e 33-15
338 NMIHANDUNG WHILE IN SMM. ... 33-17
33.9 SMM REVISION IDENTIFIER . . . oottt 33-17
3310 AUTO HALT REST ART Lttt ettt ees 33-18
33.10.1 Executing the HLT Instruction in SMM e 33-19
33117 SMBASE RELOCATION L.ttt ettt et et 33-19
33.11.1 Relocating SMRAM to an Address Above TMByte...........covviviiinininn, 33-20
3312 I/OINSTRUCTION RESTART ..ttt ettt et et es 33-20
33.12.1 Back-to-Back SMI Interrupts When I/0 Instruction Restart Is Being Used.......... 33-22
33.13 SMM MULTIPLE-PROCESSOR CONSIDERATIONS ...\ 33-22
33.14 DEFAULT TREATMENT OF SMIS AND SMM WITH VMX OPERATION AND SMX
OPER ATION L .ottt e e e e 33-23
33.14.1 Default Treatment of SMIDElVErYovvii i i 33-23
33.14.2 Default Treatment of RSMo 33-24
33.14.3 Protection of CRAVMXEIN SMM.ot 33-26
33.144 VMXOFF and SMIUNDIOCKING . . .o v v v e e 33-26
33.15 DUAL-MONITOR TREATMENT OF SMISANDSMM ..ot 33-26
33.151 Dual-Monitor Treatment OVEIVIEWvvvviiee e anenenas 33-27
33.15.2 SMM VUM EXITS . vttt ettt e 33-27
33.15.2.1 Architectural State Beforea VM EXit ... 33-28
33.15.2.2 Updating the Current-VMCS and Executive-VMCS Pointers................... 33-28
33.15.2.3 Recording VM-Exit Information.ccoo i 33-28
33.15.24 SaAVING GUEST STaTE . ..ttt 33-29
33.15.25 Updating Non-Register State. ... e 33-30
33.15.3 Operation of the SMM-Transfer Monitorcoviviiiiiiii it 33-30
33.154 VM Entries that Return from SMM. 33-30
33.15.4.1 Checks on the Executive-VMCS Pointer Field., 33-31
33.154.2 Checks on VM-Execution Control Fieldscovvveiii i 33-31
33.154.3 Checks on VM-Entry Control Fields ..ot 33-32
33.15.4.4 Checks onthe Guest State Area. ..o v 33-32
33.154.5 Loading GUEST STat . ..o\ttt ettt e 33-32
33.15.4.6 VMX-Preemption Timer. .. ovvu e 33-33
33.15.4.7 Updating the Current-VMCS and SMM-Transfer VMCS Pointers............... 33-33
33.154.8 VM Exits Induced by VM ENTIY ..o e 33-33
33.154.9 SMIBIOCKING vttt 33-34
33.15.4.10 Failures of VM Entries That Return from SMM.oovii i 33-34
33.155 Enabling the Dual-Monitor Treatment. ... 33-34
33.15.6 Activating the Dual-Monitor Treatment...........covviiiiii i 33-36
33.15.6.1 NIt CNECKS . v vt e 33-37
33.156.2 MSEG CRECKING .+« vt v ettt e e e e 33-38
33.15.6.3 Updating the Current-VMCS and Executive-VMCS Pointers................... 33-38
33.156.4 Loading HOSt Stateot 33-38
33.156.5 LoadiNg MSRS ..ot 33-41

Vol. 3A XXXi

CONTENTS

PAGE
33.15.7 Deactivating the Dual-Monitor Treatment.............cccoviiiiiiiiiiiiienanns, 33-41
33.16 SMI AND PROCESSOR EXTENDED STATE MANAGEMENTcovvvvviinninns 33-41
CHAPTER 34
MODEL-SPECIFIC REGISTERS (MSRS)
34.1 ARCHITECTURAL MSRS...... o # et e e e e e e 34-2
34.2 MSRS IN THE INTEL X CORE ,,,2 PROCESSOR FAMILY......ovvviiiiiiiiiiis 34-46
34.3 MSRS IN THE INTEL® ATOM' PROCESSOR FAMILY . .+ oeeeeeeeeeei 34-67
34.4 MSRS IN THE INTEL® MICROA%HITEC URE CODE NAME NEHALEM............... 34-83
34.4.1 Additional MSRs in the Intel > Xeon > Processor 5500 and 3400 Series. 34-109
344.2 Additional MSRs in the In’[el® Xe0n® Processor 7500 Series................. 34-112
34.5 MSRS IN THE INTEL XEON PROCESSOR 5600 SERIES (INTEL® MICROARCHITECTURE
CODENAMEWESTMERE) ...ttt ettt 34-134
34.6 MSRS IN THE INTEL XEON PROCESSOR E7 FAMILY (INTEL® MICROARCHITECTURE
CODENAME WESTMERE) ...ttt ettt g et et e et 34-135
34.7 MSRS IN INTEL PROCESSORFAMKYUNTELC)MKROARCHHECTURECODENAME
SANDY BRIDGE) . ..ttt ettt et e et e e et e e 34-137
34.7.1 MSRs In Second Generation Intel® Core Processor Family (Intel®
Microarchitecture Code Name %mdy Bridge)................. @i 34-164
34.7.2 MSRs In Next Generation Intel™~ Xeon Processor Family (Intel™ Microarchitecture
Code Name Sandy Bridge)vvvvveii e 34-165
34.8 MSRS IN THE NEXT GENERATION INTEL CORE PROCESSOR (INTEL®
MKROARCHHECTURE%SDENAMEIVY RDGE%§ 34-169
34.9 MSRS IN THE PENTIUM™ 4 AND INTEL™ XEON™ PROCESSORS 34-169
34.9.1 MSRs Uniqu&to Inte] Xeon Processor MF&R)with L3facheooviviiinnn 34-209
3410 MSRSININTEL™ CORE SOLO AND INTEL™ CORE DUO PROCESSORS......... 34-212
3411 MSRSIN THE PENTIUMMPROCESSOR ...\ttt it 34-225
3412 MSRSIN THE P6 FAMILY PROCESSORSt 34-235
3413 MSRSINPENTIUMPROCESSORS ...\ttt ittt 34-247
APPENDIX A
VMX CAPABILITY REPORTING FACILITY
A BASIC VMX INFORMATION. . . .ottt ettt e ettt eans A-1
A2 RESERVED CONTROLS AND DEFAULT SETTINGS. ..ot A-2
A3 VM-EXECUTION CONTROLS . ..ttt ettt et e A-3
A3.1 Pin-Based VM-Execution CONrolS.vvu vt A-3
A3.2 Primary Processor-Based VM-Execution CONtrolsc.covviviivivininiinnnnn A-4
A33 Secondary Processor-Based VM-Execution Controls.ocvviiiiiiiinnns. A-5
A4 VM-EXIT CONTROLS. . vttt ettt et ettt eanes A-6
A5 VM-ENTRY CONTROLS ..ottt ettt A-7
A6 MISCELLANEOUS DAT A, ittt e e e A-8
A7 VMX-FIXED BITSIN CRO . ..ottt ettt et e et eans A-9
A8 VMX-FIXED BITS IN CRA . . et A-9
A9 VMCS ENUMERATION ottt ettt e e e e e e e A-S
A10 VPID AND EPT CAPABILITIES ..ottt e A-10
A1 VM FUNCTIONS .« e A-11

XXxii Vol. 3A

CONTENTS

PAGE
APPENDIX B

FIELD ENCODING IN VMCS

B.1 TO-BIT FIELDS . .ottt e e B-1
B.1.1 16-Bit Control Field.t e e s B-1
B.1.2 16-Bit GUest-State Fieldso ov v e e e B-1
B.1.3 T16-Bit HOSt-State Fields ..o v vt e et e it i e B-2
B.2 B4-BIT FIELDS . ..ttt it i e e s B-2
B.2.1 B4-Bit Control Fields. ..o\t e B-3
B.2.2 64-Bit Read-Only Data Field.o e B-4
B.2.3 64-Bit GUEST-State FieldS ...t B-4
B.2.4 B4-Bit HoSt-State Fields . ..ottt e e B-5
B.3 32 BIT FIELDS . . ittt e e B-6
B.3.1 32-Bit Control Fields. . ..ot B-6
B.3.2 32-Bit Read-Only Data Fields.oovi i i B-7
B.3.3 32-Bit GUEST-STate Fields . .ot i i i e B-8
B34 32-Bit Host-State Fieldo B-9
B4 NATURAL-WIDTH FIELDS ...ttt ittt et ieaes B-9
B.4.1 Natural-Width Control Fields ... e e e e B-9
B4.2 Natural-Width Read-Only Data Fieldsoviiiii e B-10
B4.3 Natural-Width Guest-State Fields. ... e B-10
B.4.4 Natural-Width Host-State Fields. .. .o e i i i i B-11
APPENDIX C

VMX BASIC EXIT REASONS

Vol. 3A xxxiii

CONTENTS

FIGURES

Figure 1-1.
Figure 1-2.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.
Figure 3-10.
Figure 3-11.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.
Figure 4-10.
Figure 4-11.
Figure 4-12.
Figure 4-13.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.

Figure 5-8.
Figure 5-9.
Figure 5-10.
Figure 5-11.
Figure 5-12.
Figure 5-13.
Figure 5-14.
Figure 5-15.
Figure 6-1.

XXXiv Vol. 3A

PAGE
Bit and Byte Order.t 1-8
Syntax for CPUID, CR, and MSR Data Presentation.............covvvvvvinnne, 1-10
IA-32 System-Level Registers and Data Structures ...t 2-3
System-Level Registers and Data Structures inIA-32e Mode................... 2-4
Transitions Among the Processor’'s OperatingModescoovvent 2-11
System Flags in the EFLAGS Register ..o vttt 2-13
Memory Management ReGISTErSvi it 2-16
CoNtrol REGISTENS . ..ttt 2-19
XORO. ottt 2-26
Segmentation aNd Pagingvvvviiii 3-2
FIRtMOAEL . .ot 3-4
Protected Flat Model.coiei 3-4
Multi-Segment Model.ooii 3-6
Logical Address to Linear Address Translation................ccovoiiiiiiiinn. 3-9
SegMENt SIEC O . . o\ttt e 3-10
SEgMENT RIS OIS, vttt 3-11
SegMENT DESCrIPTOr. . . ottt e 3-13
Segment Descriptor When Segment-Present FlagisClear..................... 3-15
Global and Local Descriptor Tablesvvvi i 3-20
Pseudo-Descriptor FOMMAtS.vvve e 3-22
Enabling and Changing PagingModes ...ttt 4-4
Linear-Address Translation to a 4-KByte Page using 32-Bit Paging 4-12
Linear-Address Translation to a 4-MByte Page using 32-Bit Paging............ 4-12
Formats of CR3 and Paging-Structure Entries with 32-Bit Paging.............. 4-13
Linear-Address Translation to a 4-KByte Page using PAE Paging 4-20
Linear-Address Translation to a 2-MByte Page using PAE Paging.............. 4-21
Formats of CR3 and Paging-Structure Entries with PAE Paging................ 4-24
Linear-Address Translation to a 4-KByte Page using IA-32e Paging............ 4-28
Linear-Address Translation to a 2-MByte Page using IA-32e Paging 4-29
Linear-Address Translation to a 1-GByte Page using IA-32e Paging............ 4-30
Formats of CR3 and Paging-Structure Entries with IA-32e Paging 4-39
Page-Fault Error Code.o e 4-42
Memory Management Convention That Assigns a Page Table to Each Segment 4-65
Descriptor Fields Used for Protectioncoviiiiiiiiiiiiiiii i 5-4
Descriptor Fields with FlagsusedinlA-32eMode. ..., 5-6
Protection RINGS . ..ot e 5-10
Privilege Check for Data ACCESS. ..\ttt et 5-12
Examples of Accessing Data Segments From Various Privilege Levels.......... 5-13
Privilege Check for Control Transfer Without UsingaGate 5-16
Examples of Accessing Conforming and Nonconforming Code Segments From
Various Privilege Levels. ..o 5-17
Call-Gate DeS i P O . . vttt ettt e 5-19
Call-Gate Descriptor in IA-32e Mode.o 5-21
Call-Gate MEChaniSm . .ot e e 5-22
Privilege Check for Control Transfer with Call Gate............................ 5-23
Example of Accessing Call Gates At Various Privilege Levels................... 5-25
Stack Switching During an Interprivilege-Level Call. ..., 5-27
MSRs Used by SYSCALL and SYSRET oo i 5-33
Use of RPL to Weaken Privilege Level of Called Procedure 5-38
Relationship of the IDTRANd IDT........coviii e 6-14

Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.
Figure 6-9.
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.
Figure 7-7.
Figure 7-8.
Figure 7-9.
Figure 7-10.
Figure 7-11.
Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 8-5.
Figure 8-6.
Figure 8-7.

Figure 8-1.
Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.

Figure 9-5.
Figure 9-6.
Figure 9-7.
Figure 9-8.
Figure 9-9.
Figure 10-1.
Figure 10-2.

Figure 10-3.

Figure 10-4.
Figure 10-5.
Figure 10-6.
Figure 10-7.
Figure 10-8.
Figure 10-9.
Figure 10-10.
Figure 10-11.
Figure 10-12.

CONTENTS

PAGE
IDT Gate DESCIIPTOrS. vttt ettt ettt e ettt 6-15
Interrupt Procedure Call 6-16
Stack Usage on Transfers to Interrupt and Exception-Handling Routines 6-18
Interrupt Task Switch.o 6-21
BITOr GO0 . ettt e 6-22
B64-Bit IDT Gate DeSCriPtOrS . .. v ittt e e i e 6-23
IA-32e Mode Stack Usage After Privilege Level Change........................ 6-26
Page-Fault Error Code ..o v ittt 6-55
Structure 0F @ TasK. ..ot 7-2
32-Bit Task-State Segment (TSS) .. vvvrii e 7-5
LIS Lol {51 (o 7-7
Format of TSS and LDT Descriptors in 64-bitMode.................covviiint, 7-9
TaSK REGIS O .« vttt e e e e 7-10
TasK-Gate DESCIIPTOr .« v vttt ettt et e e 7-11
Task Gates Referencingthe Same TasK. ..o 7-12
NeSted Tasks ...t 7-17
Overlapping Linear-to-Physical Mappingsooviiiiiiiiiiiiiicici e 7-20
T6-Bit TSS FOMmMat. ..ottt ittt e 7-22
B4-Bit TSS FOrmMat. oottt e 7-24
Example of Write Ordering in Multiple-Processor Systems 8-11
Interpretation of APIC ID in Early MP Systems............coiiiiiiiiiiinnnnns. 8-35
Local APICs and I/0 APIC in MP System Supporting Intel HT Technology 8-39
IA-32 Processor with Two Logical Processors Supporting Intel HT Technology. .8-40
Generalized Four level Interpretation of the APICID..............ccvvinntt. 8-50
Conceptual Five-level Topology and 32-bit APIC ID Composition................ 8-51
Topological Relationships between Hierarchical IDs in a Hypothetical MP
o =0 8-53
MP System With Multiple Pentium Il Processors.cccovviviiiiinennnn.. 8-76
Contents of CRO Register after Resetcovvviiiiiiiiiiiii i 9-5
Version Information in the EDX Register afterReset.................ooovvnat 9-5
Processor State After ReSet vvvv v 9-21
Constructing Temporary GDT and Switching to Protected Mode (Lines 162-172 of
LISt FIIE) vttt 9-31
Moving the GDT, IDT, and TSS from ROM to RAM (Lines 196-261 of List File)...9-32
Task Switching (Lines 282-296 of List File)ovviiiiiiiii i 9-33
Applying Microcode Updates ..ot e 9-37
Microcode Update Write Operation Flow [1].........coviiiiiiiiii i innns, 9-60
Microcode Update Write Operation Flow [2]...... oo 9-61
Relationship of Local APIC and I/0 APIC In Single-Processor Systems 10-3
Local APICs and I/0 APIC When Intel Xeon Processors Are Used in Multiple-
PrOCESSOr Sy S OIS L . vttt et 10-4
Local APICs and I/0 APIC When P6 Family Processors Are Used in Multiple-
PrOCESSOr SY S IS L ottt e e e e e 10-4
LOCal APIC STTUCTUNE. .« vttt e 10-7
IA32_APIC_BASE MSR (APIC_BASE_MSRinP6 Family).............covvvvnnns 10-12
LoCal APIC D REGISTEr .« v vttt ettt e 10-13
Local APIC Version REgISTEr. ... v vt 10-16
Local Vector Table (LVT) ... e 10-18
Error Status Register (ESR)vvvv e 10-21
Divide Configuration Registerovuiiirir it 10-23
Initial Count and Current Count Registers...........covviviiiiiinininnennes 10-23
Interrupt Command Register (ICR).......ovvvriiiii i 10-27

Vol. 3A XXXV

CONTENTS

Figure 10-13.
Figure 10-14.
Figure 10-15.
Figure 10-16.

Figure 10-17.

Figure 10-18.
Figure 10-19.
Figure 10-20.
Figure 10-21.
Figure 10-22.
Figure 10-23.
Figure 10-24.
Figure 10-25.
Figure 10-26.
Figure 10-27.
Figure 10-29.
Figure 10-28.
Figure 10-30.

Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.
Figure 11-5.
Figure 11-6.
Figure 11-7.

Figure 11-8.
Figure 11-9.
Figure 12-1.
Figure 12-2.
Figure 13-1.

Figure 13-2.

Figure 13-3.
Figure 13-4,

Figure 14-1.
Figure 14-2.
Figure 14-3.
Figure 14-4.
Figure 14-5.
Figure 14-6.

Figure 14-7.
Figure 14-8.
Figure 14-9.

Figure 14-10.
Figure 14-11.
Figure 14-12.

XXxvi Vol. 3A

PAGE
Logical Destination Register (LDR)vvuiriiii i 10-34
Destination Format Register (DFR).vvviiiiii it 10-34
Arbitration Priority Register (APR)cooiii e 10-36
Interrupt Acceptance Flow Chart for the Local APIC (Pentium 4 and Intel Xeon
PrOCES SO).+ v vttt ettt ettt e 10-38
Interrupt Acceptance Flow Chart for the Local APIC (P6 Family and Pentium
0 Tol Yo) 1R 10-40
Task-Priority Register (TPR)oviiii i e 10-41
Processor-Priority Register (PPR).ot 10-42
IRR, ISR and TMR REGISTEIS. ...\ttt e 10-43
O REGIST O . vttt et e e 10-44
CRB REGIS O .ottt et i i e 10-46
Spurious-Interrupt Vector Register (SVR)vovvviiiiiiiiiiiiiii i 10-48
Layout of the MSI Message Address Register...........cocvviviviiiniiinennn, 10-50
Layout of the MSI Message DataRegister..............cocoviviiiiiiienanns. 10-51
IA32_APIC_BASE MSR Supporting X2APIC.ovvi i 10-53
Local x2APIC State Transitions with IA32_APIC_BASE, INIT, and Reset 10-60
Logical Destination Register in x2APICModecooivi it 10-65
Interrupt Command Register (ICR) in x2APICMode............coovvvviinninnns 10-65
Y =L I I =T) (=] 10-67
Cache Structure of the Pentium 4 and Intel Xeon Processors.................. 11-1
Cache Structure of the Intel Core i7 Processors.vvvvvviiviiininnennn. 11-2
Cache-Control Registers and Bits Available in Intel 64 and IA-32 Processors...11-16
Mapping Physical Memory WithMTRRs. ... 11-31
IA32_MTRRCAP REGISTOI . . vttt ettt et 11-32
IA32_MTRR_DEF_TYPEMSR ...\t 11-33
IA32_MTRR_PHYSBASEnN and IA32_MTRR_PHYSMASKn Variable-Range
REGISTEr Paim. . .\ttt 11-36
IA32_SMRR_PHYSBASE and IA32_SMRR_PHYSMASK SMRR Pair 11-38
A3 P AT MR ottt e 11-49
Mapping of MMX Registers to Floating-Point Registers........................ 12-2
Mapping of MMX Registers to x87 FPU Data Register Stack................... 12-7
Example of Saving the x87 FPU, MMX, SSE, SSE2, SSE3, and SSSE3 State During
an Operating-System Controlled Task Switch.....................coooioa. 13-11
Future Layout of XSAVE/XRSTOR Area and XSTATE_BV with Five Sets of
Processor State EXTENSIONSvv v 13-14
0S Enabling of Processor Extended State Support..............cocovvvnn... 13-17
Application Detection of New Instruction Extensions and Processor Extended
1) = 1 (= 13-19
IA32_MPERF MSR and IA32_APERF MSR for P-state Coordination............. 14-2
IA32_PERF_CTL REGISTOr. « vttt e e 14-6
Periodic Query of Activity Ratio of Opportunistic Processor Operation......... 14-7
IA32_ENERGY_PERF_BIAS REGISTOM. .\ttt vttt 14-9
Processor Modulation Through Stop-Clock Mechanismcoceves. 14-11
MSR_THERMZ_CTL Register On Processors with CPUID Family/Model/Stepping
Signature Encoded as OX69N or OX6DNcvvi i 14-13
MSR_THERMZ2_CTL Register for Supporting TM2oovviiiiiiienen 14-14
IA32_THERM_STATUS MSR ...ttt e e 14-15
IA32_THERM_INTERRUPT MSR. ..\ttt 14-15
IA32_CLOCK_MODULATION MSR. . . ottt 14-17
IA32_CLOCK_MODULATION MSR with Clock Modulation Extension............ 14-18
IA32_THERM_STATUS REGISTON .\ttt ettt 14-20

Figure 14-13.
Figure 14-14.
Figure 14-15.
Figure 14-16.
Figure 14-17.
Figure 14-18.
Figure 14-19.
Figure 14-20.
Figure 14-21.
Figure 14-22.
Figure 14-23.
Figure 14-24.
Figure 14-25.
Figure 14-26.
Figure 14-27.
Figure 14-28.

Figure 15-1.
Figure 15-2.
Figure 15-3.
Figure 15-4.
Figure 15-5.
Figure 15-6.
Figure 15-7.
Figure 15-8.
Figure 15-9.
Figure 17-1.
Figure 17-2.
Figure 17-3.

Figure 17-4.
Figure 17-5.
Figure 17-6.
Figure 17-7.
Figure 17-8.
Figure 17-9.

Figure 17-10.
Figure 17-11.

Figure 17-12.
Figure 17-13.

Figure 17-14.
Figure 17-15.
Figure 17-16.

Figure 17-17.
Figure 17-18.

Figure 18-1.
Figure 18-2.
Figure 18-3.
Figure 18-4.

CONTENTS

PAGE
IA32_THERM_INTERRUPT REGISTEr ..\ttt ei i 14-22
IA32_PACKAGE_THERM_STATUS Registerovviviriiiiiiiiiiinannn, 14-24
IA32_PACKAGE_THERM_INTERRUPT Register...........cvvvviviinenannnn.. 14-26
MSR_RAPL_POWER_UNIT REGISTEI. ..\ttt vt i i 14-29
MSR_PKG_POWER _LIMIT ReGISter. ..\ttt ii i e 14-31
MSR_PKG_ENERGY_STATUS MSR ...ttt 14-32
MSR_PKG_POWER _INFO REGISTEr ..o\t ovieeeieeeiciei i e s 14-32
MSR_PKG_PERF_STATUS MSR ... ittt et et 14-33
MSR_PPQO_POWER_LIMIT/MSR_PP1_POWER_LIMIT Register................. 14-34
MSR_PPO_ENERGY_STATUS/MSR_PP1_ENERGY_STATUSMSR.............. 14-35
MSR_PPO_POLICY/MSR_PP1_POLICY Register........covvvvvivininiinennn. 14-35
MSR_PPO_PERF_STATUS MSR ... ittt e 14-36
MSR_DRAM_POWER_LIMIT Register.vvvviiiii it ieiciiieeens 14-36
MSR_DRAM_ENERGY_STATUS MSR\ttt 14-37
MSR_DRAM_POWER_INFO RegiSterovvviiiiiii it ieeiieieaenns 14-38
MSR_DRAM_PERF_STATUS MSRttt 14-38
Machine-CheCk MSRSttt e e e et 15-2
IA32_MCG_CAP RIS .\ttt ettt ettt 15-3
IA32_MCG_STATUS REGISTEI. . vttt ettt et ae e 15-4
IA32 MG _CT L REGISTEr . vt vttt e 15-6
IA32_MCi_STATUS REGISTEI. . o\ttt 15-7
IA32 MG _ADDR MSR . .\ttt i e e 15-10
UCR Supportin IA32_MCi_MISCREGISTEr. ..o\ vvv v i i 15-11
IA32_MCi_CTL2 REGISTET .\ttt ittt 15-12
CMCI BENAVIO .+ vttt et e e e e 15-17
DEDUG REGISTEIS. . vttt et 17-3
DR6/DR7 Layout on Processors Supporting Intel 64 Technology 17-9
IA32_DEBUGCTL MSR for Processors based
on Intel Core microarchitecture.t e 17-15
64-bit Address Layout of LBRMSR.ot 17-20
DS SAVE AT .ttt i e e 17-23
32-bit Branch Trace Record FOrmato.ovvviii ittt 17-24
PEBS RECOMd FOMmMat. ..o v vttt vttt it i ittt e 17-25
IA-32e M0dE DS SaVE AMBa ..ottt ittt s 17-26
64-bit Branch Trace Record Formatoovv ittt 17-27
64-bit PEBS Record FOrmat. ..ottt ittt i i e 17-27
IA32_DEBUGCTL MSR for Processors based
on Intel microarchitecture code name Nehalemcovcviivninns, 17-35
MSR_DEBUGCTLA MSR for Pentium 4 and Intel Xeon Processors............. 17-39
LBR MSR Branch Record Layout for the Pentium 4 and Intel Xeon Processor
MY L e 17-41
IA32_DEBUGCTL MSR for Intel Core Solo
and Intel Core DUO ProCESSOIS .. vvvvt ittt ittt it 17-43
LBR Branch Record Layout for the Intel Core Solo
aANd INtel COre DUO PrOCESSOr. vttt vt vttt it ittt it renns 17-44
MSR_DEBUGCTLB MSR for Pentium M Processors.......covvvvriiiieineninnns 17-45
LBR Branch Record Layout for the Pentium M Processor 17-46
DEBUGCTLMSR Register (P6 Family Processors).ovvveveivniiinennnnn. 17-47
Layout of IA32_PERFEVTSELX MSRS ...\ttt 18-5
Layout of IA32_FIXED_CTR_CTRLMSR......oviiiii i 18-7
Layout of IA32_PERF_GLOBAL_CTRLMSR.oviiiii i 18-8
Layout of IA32_PERF_GLOBAL_STATUSMSR. ...t 18-9

Vol. 3A XXXVii

CONTENTS

Figure 18-5.
Figure 18-6.

Figure 18-7.

Figure 18-8.

Figure 18-9.

Figure 18-10.
Figure 18-11.
Figure 18-12.
Figure 18-13.
Figure 18-14.
Figure 18-15.
Figure 18-16.
Figure 18-17.

Figure 18-18.
Figure 18-19.
Figure 18-20.
Figure 18-21.
Figure 18-22.
Figure 18-23.
Figure 18-24.
Figure 18-25.

Figure 18-26.
Figure 18-27.

Figure 18-28.
Figure 18-29.
Figure 18-30.
Figure 18-31.
Figure 18-32.
Figure 18-33.

Figure 18-34.
Figure 18-35.
Figure 18-36.
Figure 18-37.

Figure 18-38.
Figure 18-39.
Figure 18-40.
Figure 18-41.
Figure 18-42.
Figure 18-43.
Figure 18-44.
Figure 18-45.
Figure 18-46.
Figure 18-47.

xxxviii Vol. 3A

PAGE
Layout of IA32_PERF_GLOBAL_OVF_CTRLMSR......coviiiiiiiiiienne 18-10
Layout of IA32_PERFEVTSELx MSRs Supporting Architectural Performance
MONItOrING VerSion 3. .. i e e 18-11
Layout of IA32_FIXED_CTR_CTRL MSR Supporting Architectural Performance
MONITOrING VErSION 3. .. e 18-12
Layout of Global Performance Monitoring Control MSR....................... 18-13
Layout of MSR_PERF_FIXED_CTR_CTRLMSR.ovvviiii i 18-20
Layout of MSR_PERF_GLOBAL_CTRLMSR.oiviiiii i 18-21
Layout of MSR_PERF_GLOBAL_STATUSMSR. ..ot 18-22
Layout of MSR_PERF_GLOBAL_OVF_CTRLMSRcoviviiiiiiiii s 18-22
IA32_PERF_GLOBAL_STATUSMSR ...ttt 18-28
Layout of IA32_PEBS_ENABLEMSRot 18-30
PEBS Programming ENVIFONMENT.oii e 18-32
Layout of MSR_PEBS_LD_LAT MSR ...ttt 18-36
Layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 to Configure
Off-core RESPONSE EVENTS. ...\ttt et 18-37
Layout of MSR_UNCORE_PERF_GLOBAL_CTRLMSRcovviiiiiiiennes 18-40
Layout of MSR_UNCORE_PERF_GLOBAL_STATUSMSRcovvviviiininnns 18-41
Layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRLMSR...........ovvvvvnn 18-41
Layout of MSR_UNCORE_PERFEVTSELXMSRS.coviiii i 18-42
Layout of MSR_UNCORE_FIXED_CTR_CTRLMSRcvviiiiiiiiiis 18-43
Layout of MSR_UNCORE_ADDR_OPCODE_MATCHMSRovvvvvvninnn 18-44
Distributed Units of the Uncore of Intel® Xeon® Processor 7500 Series 18-46
IA32_PERF_GLOBAL_CTRL MSR in Intel® Microarchitecture Code Name Sandy
5 T 0T 18-50
IA32_PERF_GLOBAL_STATUS MSR in Intel® Microarchitecture Code Name Sandy
BrIdGE. ..o 18-51
IA32_PERF_GLOBAL_OVF_CTRL MSR in Intel microarchitecture code name Sandy
BrIAgE. . vt 18-52
Layout of IA32_PEBS_ENABLEMSRt 18-54
Request_Type Fields for MSR_OFFCORE_RSP_X........cccvviviviiiniinnanns. 18-60
Response_Supplier and Snoop Info Fields for MSR_OFFCORE_RSP_x 18-61
Layout of MSR_UNC_CBO_N_PERFEVTSELX MSR for C-Box N 18-64
Layout of MSR_UNC_PERF_GLOBAL_CTRLMSR forUncore 18-64
Event Selection Control Register (ESCR) for Pentium 4
and Intel Xeon Processors without Intel HT Technology Support 18-72
Performance Counter (Pentium 4 and Intel Xeon Processors)................. 18-74
Counter Configuration Control Register (CCCR)ovvvvviviviiiiiinann, 18-75
Effects of Edge Filtering. e 18-81

Event Selection Control Register (ESCR) for the Pentium 4 Processor, Intel Xeon
Processor and Intel Xeon Processor MP Supporting Hyper-Threading
1= 51 To (o0 1Y 18-92

Counter Configuration Control Register (CCCR)covvvvviviiiiiininnnn. 18-94
Layout of IA32_PERF_CAPABILITIESMSRcovii i 18-102
Block Diagram of 64-bit Intel Xeon Processor MP with 8-MByte L3 18-103
MSR_IFSB_IBUSQx, Addresses: 107CCHand 107CDH...........ovvvvennn 18-104
MSR_IFSB_ISNPQx, Addresses: T07CEHand 107CFH 18-105
MSR_EFSB_DRDYx, Addresses: 107DOHand 107DTHovvnes. 18-106

MSR_IFSB_CTL6, Address: 107D2H; MSR_IFSB_CNTR?, Address: 107D3H .. 18-107

Block Diagram of Intel Xeon Processor 7400 Series.ovvvvvvinenenns. 18-108
Block Diagram of Intel Xeon Processor 7100 Series.covvvvvvinvnennn. 18-109
MSR_EMON_L3_CTR_CTLO/1, Addresses: 107CCH/107CDH................ 18-111

Figure 18-48.
Figure 18-49.
Figure 18-50.
Figure 18-51.

Figure 20-1.
Figure 20-2.
Figure 20-3.
Figure 20-4.
Figure 20-5.
Figure 21-1.
Figure 22-1.
Figure 23-1.
Figure 24-1.
Figure 28-1.
Figure 29-1.
Figure 29-2.
Figure 30-1.
Figure 31-1.
Figure 32-1.
Figure 33-1.
Figure 33-2.
Figure 33-3.
Figure 33-4.
Figure 33-5.

CONTENTS

PAGE
MSR_EMON_L3_CTR_CTLZ2/3, Addresses: 107CEH/107CFH. 18-114
MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: 107DOH-107D3H............ 18-115
PerfEvtSel0 and PerfEvtSelT MSRS. ... v v 18-118
CESR MSR (Pentium Processor ONIY). .. .vvvvnv e eiiiniennenns 18-122
Real-Address Mode Address Translation. ..o, 20-4
Interrupt Vector Table in Real-AddressMode ...t 20-7
Entering and Leaving Virtual-8086 Modecccovvviviiiiiiiennn 20-13
Privilege Level O Stack After Interrupt or Exception in Virtual-8086 Mode. ... 20-19
Software Interrupt Redirection Bit Mapin TSS ..., 20-27
Stack after Far 16-and 32-Bit Callscoovviiii i 21-6
1/0 Map Base Address Differences.ovvvvviiiiii it 22-40
Interaction of a Virtual-Machine Monitor and Guests.covvvvvvnnen, 23-3
StatES OF VMCS X ottt 24-3
Formats of EPTP and EPT Paging-Structure Entriescoovvvvvenns. 28-11
LN AVl I =T ol) o 29-4
LN LAY o =Y 0] o 29-8
VMX Transitions and States of VMCS in a Logical Processor.................... 30-4
Virtual TLB SCheme. . .o e 31-7
Host External Interrupts and Guest Virtual Interruptscocovvntt 32-5
SMRAM USQE. .t ettt ettt 33-6
SMM Revision Identifier.ovv v 33-18
Auto HALT Restart Field.ovi i 33-19
SMBASE Relocation Field.ovvver 33-20
I/0 Instruction Restart Field.oovii e 33-21

Vol. 3A XXXix

CONTENTS

TABLES
Table 2-1.

Table 2-2.
Table 3-1.
Table 3-2.
Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table 4-7.
Table 4-8.
Table 4-9

Table 4-10.
Table 4-11.
Table 4-12.
Table 4-13.
Table 4-14.

Table 4-15.
Table 4-16.
Table 4-17.

Table 4-18.
Table 4-19.

Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 5-6.

Table 5-7.
Table 5-8.

Table 5-9.
Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.
Table 6-5.
Table 6-6.
Table 6-7.
Table 6-8.
Table 7-1.
Table 7-2.

x| Vol. 3A

PAGE
Action Taken By x87 FPU Instructions for Different Combinations of EM, MP,
AN TS L 2-21
Summary of System INStructions ... e 2-27
Code- and Data-Segment TYPESvvititi ittt i 3-17
System-Segment and Gate-Descriptor TYPeSvvvviviiiii e 3-19
Properties of Different PagingModes. ... 4-3
Paging Structures in the Different PagingModes.cccovvviviiiiinnn 4-9
Use of CR3 with 32-BitPaging.covviiii e 4-14
Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page........... 4-14
Format of a 32-Bit Page-Directory Entry that References a Page Table........ 4-15
Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page............... 4-16
Use of CR3 With PAE Paging. ..o vttt ae s 4-17
Format of a PAE Page-Directory-Pointer-Table Entry (PDPTE)................. 4-18
Format of a PAE Page-Directory Entry that Maps a 2-MByte Page............. 4-21
Format of a PAE Page-Directory Entry that References a Page Table.......... 4-22
Format of a PAE Page-Table Entry that Maps a 4-KByte Page................. 4-23
Use of CR3 with IA-32e Pagingand CRAPCIDE=0............ccovvvviinnennnn. 4-26
Use of CR3 with IA-32e Pagingand CR4PCIDE=1...........ccvviiiininnnn.. 4-27
Format of an IA-32e PML4 Entry (PML4E) that References a Page-Directory-
PoINter Table . .o 4-33
Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that Maps a
T-GBYEE Page. ottt e 4-34
Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that References
A PAgE DIrBCIOrY . ottt 4-35
Format of an IA-32e Page-Directory Entry that Maps a 2-MByte Page.......... 4-36
Format of an IA-32e Page-Directory Entry that References a Page Table....... 4-37
Format of an IA-32e Page-Table Entry that Maps a 4-KByte Page 4-38
Privilege Check Rules for Call Gateso.vvvii it 5-23
64-Bit-Mode Stack Layout After CALLF withCPLChange...................... 5-28
Combined Page-Directory and Page-Table Protection 5-42
Extended Feature Enable MSR (IA32_EFER)ccovvviviiiiiiiiiiiiannes 5-43

IA-32e Mode Page Level Protection Matrix with Execute-Disable Bit Capability. 5-44
Legacy PAE-Enabled 4-KByte Page Level Protection Matrix with Execute-Disable

Bit Capability .. .ovovvei e 5-45
Legacy PAE-Enabled 2-MByte Page Level Protection with Execute-Disable Bit

L06= 0= 1 01111 5-45
IA-32e Mode Page Level Protection Matrix with Execute-Disable Bit Capability
BNaDIEd ..ot 5-46
Reserved Bit Checking WIth Execute-Disable Bit Capability Not Enabled. 5-47
Protected-Mode Exceptions and INTErrUPtS ... 6-3
Priority Among Simultaneous Exceptions and Interrupts 6-11
Debug Exception Conditions and Corresponding Exception Classes............. 6-29
Interrupt and EXCeption Classesvvi i 6-38
Conditions for Generatinga Double Fault. ..., 6-39
Invalid TSS ConditionS.o e e 6-42
Alignment Requirements by Data Type. ..o vvvviii i 6-60
SIMD Floating-Point Exceptions Prioritycoooviiiii e 6-66
Exception Conditions Checked During a Task Switch 7-15
Effect of a Task Switch on Busy Flag, NT Flag, Previous Task Link Field, and TS

o 7-17

Table 8-1.
Table 8-2.
Table 8-3.

Table 8-4.
Table 9-1.
Table 9-2.
Table 9-3.
Table 9-4.
Table 9-5.
Table 9-6.
Table 9-7.
Table 9-8.
Table 9-9.
Table 9-10.
Table 9-11.
Table 9-12.
Table 9-13.
Table 9-14.
Table 9-15.
Table 9-17.
Table 9-16.
Table 9-18.
Table 10-1
Table 10-2.
Table 10-3

Table 10-4

Table 10-5.
Table 10-6.
Table 10-7.
Table 10-1.
Table 10-2.
Table 10-3.
Table 10-4.
Table 11-1.

Table 11-2.
Table 11-3.

Table 11-4.
Table 11-5.
Table 11-6.

Table 11-7.
Table 11-8.

Table 11-9.
Table 11-10.

CONTENTS

PAGE
Initial APIC IDs for the Logical Processors in a System that has Four Intel Xeon MP
Processors Supporting Intel Hyper-Threading Technology’ 8-53
Initial APIC IDs for the Logical Processors in a System that has Two Physical
Processors Supporting Dual-Core and Intel Hyper-Threading Technology 8-54
Example of Possible x2APIC ID Assignment in a System that has Two Physical
Processors Supporting x2APIC and Intel Hyper-Threading Technology 8-54
Boot Phase IPIMessage FOrmat.covuvriniii ittt iiiiei e 8-75
IA-32 Processor States Following Power-up, Reset, or INIT 9-2
Recommended Settings of EM and MP Flags on IA-32 Processors 9-7
Software Emulation Settings of EM, MP,and NEFlagse 9-8
Main Initialization Steps in STARTUP.ASM Source Listingc.ooovts. 9-21
Relationship Between BLD Item and ASM Source File. ...t 9-35
Microcode Update Field Definitionsc.ovviiiiiii i 9-38
Microcode Update FOrmMat. . .. ovvv e 9-40
Extended Processor Signature Table Header Structure.....................e 9-41
Processor Signature STrUCtUMe ov v e 9-41
ProCESSOr Flags .ottt e 9-43
Microcode Update Signaturet e 9-48
Microcode Update FUNCHIONSvi i 9-55
Parameters for the Presence Testovviiiiiiiiiiii e 9-56
Parameters for the Write Update Data Functionc.cocvenet. 9-57
Parameters for the Control Update Sub-function.............................. 9-62
Parameters for the Read Microcode Update Data Function 9-63
MNEmMONIC ValUBS. . . .ot 9-63
Return Code Definitionsvvviii e 9-65
Local APIC Register Address Map. .. .vvvvvrvriiri it eeaas 10-8
Local APIC Timer Modes.o 10-24
Valid Combinations for the Pentium 4 and Intel Xeon Processors’ Local XAPIC
Interrupt Command Register.vuiriii e 10-30
Valid Combinations for the P6 Family Processors’ Local APIC Interrupt Command
ST 3 (=] 10-31
x2APIC Operating Mode Configurations.coovviiiviiiiii i, 10-53
Local APIC Register Address Map Supported by x2APIC...................... 10-55
MSR/MMIO Interface of a Local x2APIC in Different Modes of Operation...... 10-58
EOIMessage (14 CyCles) .o v vttt e 10-68
Short Message (21 CYCIES) . ..o v et 10-69
Non-Focused Lowest Priority Message (34 Cycles)oovvviviiiiiininnns 10-70
APIC Bus Status Cycles Interpretationoovviiiiii i 10-72
Characteristics of the Caches, TLBs, Store Buffer, and Write Combining Buffer in
INtel 64 aNd IA-32 ProCESSOTS. .\ v\ttt ettt eens 11-2
Memory Types and Their Properties.ovvvviiiiiiiiii i 11-9
Methods of Caching Available in Intel Core 2 Duo, Intel Atom, Intel Core Duo,
Pentium M, Pentium 4, Intel Xeon, P6 Family, and Pentium Processors 11-10
MESI Cache Line States .. .o v vt 11-14
Cache Operating Modes. v e e e e 11-17
Effective Page-Level Memory Type for Pentium Pro and Pentium II
o 0 Tol =Y 11-20
Effective Page-Level Memory Types for Pentium Ill and More Recent Processor
FaMIlES. vttt e 11-22
Memory Types That Can Be Encoded inMTRRScovviiiiiiniiinnnnn, 11-30
Address Mapping for Fixed-Range MTRRS.ccoiiiiiiiiii 11-35
Memory Types That Can Be Encoded With PATooiiiiiiiintt 11-49

Vol. 3A Xli

CONTENTS

Table 11-11.
Table 11-12.
Table 12-1.

Table 12-2.
Table 12-3.

Table 13-1.

Table 13-2.
Table 13-3.
Table 13-4.
Table 13-5.
Table 13-6.
Table 13-7.
Table 13-8.
Table 13-9.
Table 13-10.
Table 13-11.
Table 13-12.
Table 13-13.
Table 14-1.
Table 14-2.
Table 15-1.

Table 15-2.
Table 15-3.
Table 15-4.

Table 15-5.

Table 15-6.
Table 15-7.
Table 15-8.
Table 15-9.
Table 15-10.
Table 15-11.
Table 15-12.
Table 15-13.
Table 15-14.
Table 15-15.
Table 15-16.
Table 15-17.
Table 15-18.
Table 15-19.
Table 15-20.
Table 16-1.
Table 16-2.

Table 16-3.
Table 16-4.

xlii Vol. 3A

PAGE
Selection of PAT Entries with PAT, PCD,and PWT Flags...................... 11-50
Memory Type Setting of PAT Entries Following a Power-up or Reset 11-50
Action Taken By MMX Instructions for Different Combinations of EM, MP and
S o 12-1
Effects of MMX Instructionson x87 FPUStatecooviiviiiiinn, 12-3
Effect of the MMX, x87 FPU, and FXSAVE/FXRSTOR Instructions on the
XB7 FPU Tag Word. . ..ottt 12-4
Action Taken for Combinations of OSFXSR, OSXMMEXCPT, SSE, SSE2, SSE3, EM,
MP, and TS T ot 13-4
Action Taken for Combinations of OSFXSR, SSSE3, SSE4, EM, and TS 13-5
XSAVE Header FOrmatovuee et 13-14
XRSTOR Action on MXCSR, x87 FPU, XMM Register............covviivnnnnns. 13-16
XSAVE Action on MXCSR, x87 FPU, XMM Register...........covvvvvuvennn.n. 13-16
XCRO and Processor State Componentsovvvviiiiriniiiiieienenan, 13-21
CR4 bits for AVX New Instructions technology support...................... 13-21
Layout of XSAVE Area For Processor Supporting YMM State 13-22
XSAVE Header FOrmatvvir e 13-22
XSAVE Save Area Layout for YMM State (Ext_Save_Area_2)................ 13-23
XRSTOR Action on MXCSR, XMM Registers, YMM Registers................... 13-23
Processor Supplied Init Values XRSTORMay Use........coovvviiiivinininnnns 13-24
XSAVE Action on MXCSR, XMM, YMM Register.ccoviiiiiiiiiinnnnnn. 13-24
On-Demand Clock Modulation Duty Cycle Field Encoding...................... 14-17
RAPL MSR Interfaces and RAPL DOMaiNS.vvvvvviiiii i 14-30
Bits 54:53 in IA32_MCi_STATUS MSRs when IA32_MCG_CAP[11] = 1 and
0 15-8
Overwrite Rules for Enabled Errorscovvvivi i 15-9
Address Mode in IA32_MGi_MISCIB:B]\ vvvviii i 15-11
Extended Machine Check State MSRs in Processors Without Support for Intel 64
ATCIECIUNE . e e 15-13
Extended Machine Check State MSRs In Processors With Support For Intel 64
o 3 1 =Ty (U =T 15-14
MC Error Classificationsvvi i 15-23
Overwrite Rules for UC, CE,and UCR EITOrS. ... v vvvvii i eiiieievienns 15-24
IA32_MCi_Status [15:0] Simple Error Code Encoding...........covvvvvvnnnn.. 15-26
IA32_MCi_Status [15:0] Compound Error Code Encoding.........covvvvvvnnnn. 15-27
Encoding for TT (Transaction Type) Sub-Fieldcoovviiiiiinnnn, 15-28
Level Encoding for LL (Memory Hierarchy Level) Sub-Field 15-28
Encoding of Request (RRRR) Sub-Fieldcccoviviiiiiiiiiiii, 15-29
Encodings of PP, T,and lISub-Fields ..., 15-29
€ncodings of MMM and CCCCSub-Fieldscoiiiiiiii i 15-30
MCA Compound Error Code Encoding for SRAO Errors........cvvvvvvivvvnnnn. 15-31
IA32_MCi_STATUS Values for SRAO EMTOrS. ... vvvvvre i eiiiiiieinns 15-31
IA32_MCG_STATUS Flag Indication for SRAOErrorsovvvvivvennnn.. 15-32
MCA Compound Error Code Encoding for SRAREFrOrs........covvvvvvnnnnnn. 15-32
IA32_MCi_STATUS Values for SRAR ETOrS. ... vvvvvre e einaiaannns 15-33
IA32_MCG_STATUS Flag Indication for SRAR Errors.cvvvivivnennn.. 15-33

CPUID DisplayFamily_DisplayModel Signatures for Processor Family O6H...... 16-1
Incremental Decoding Information: Processor Family 06H Machine Error Codes For

MaChing ChECK. ..ot e 16-2
CPUID DisplayFamily_DisplayModel Signatures for Processors Based on Intel Core
[Tal o= T) (= Ton (1 o= 16-5

Incremental Bus Error Codes of Machine Check for Processors Based on Intel Core

Table 16-5.
Table 16-6.
Table 16-7.
Table 16-8.

Table 16-9

Table 16-10.
Table 16-11.

Table 16-12.

Table 16-13.
Table 16-14.
Table 16-15.

Table 16-16.
Table 16-17.
Table 16-18.
Table 16-19.
Table 16-20.
Table 16-21.
Table 16-22.

Table 17-1.
Table 17-2.
Table 17-3.
Table 17-4.
Table 17-5.
Table 17-6.
Table 17-7.
Table 17-8.
Table 17-9

Table 17-10.
Table 17-11.

Table 18-1.

Table 18-2.
Table 18-3.
Table 18-4.
Table 18-5.
Table 18-6.
Table 18-7.
Table 18-8.

Table 18-9.

Table 18-10.
Table 18-11.
Table 18-12.
Table 18-13.
Table 18-14.
Table 18-15.

CONTENTS

PAGE
MICrOArCNITECIUNE .ttt e 16-6
Incremental MCA Error Code Types for Intel Xeon Processor 7400............. 16-9
Type B Bus and Interconnect Error Codes.ovvvvviiiii i 16-10
Type C Cache Bus Controller Error Codesovvviiiriiiiiiiiieennnan, 16-10
Intel QPI Machine Check Error Codes for IA32_MCO_STATUS and
JA32 MO ST ATUS Lt e 16-12
Intel QPI Machine Check Error Codes for IA32_MCO_MISC and IA32_MC1_MISC16-13
Machine Check Error Codes for IA32_MC7_STATUScooviviiiniinnts 16-13
Incremental Memory Controller Error Codes of Machine Check for
JA32 _MEB ST ATUS Lttt s 16-14
Incremental Memory Controller Error Codes of Machine Check for
JAB2 MO _MIS . .ttt e 16-15
Machine Check Error Codes for IA32_MC4_STATUSoooiiiviiiniinnns 16-16

Intel QPI MC Error Codes for IA32_MC6_STATUS and IA32_MC7_STATUS 16-18
Incremental Decoding Information; Processor Family OFH Machine Error Codes

For Machine Check. v e e s 16-19
MCi_STATUS Register Bit Definition..........ooviiiiiiiiiiiiii i 16-20
Incremental MCA Error Code for Intel Xeon Processor MP 7100.............. 16-22
Other Information Field Bit Definition.covviviiii s 16-23
Type Ai L3 Error COOeS .« v vvvvi ittt e 16-24
Type B Bus and Interconnect Error Codes.ooovvviiiiiii i 16-25
Type C Cache Bus Controller Error Codesovvvviriiiiiiiiiiiaennnnan, 16-26
Decoding Family OFH Machine Check Codes for Cache Hierarchy Errors....... 16-27
Breakpoint EXampPles e 17-7
Debug Exception CoNditions.ovv i e 17-10
LBR Stack Size and TOS Pointer Range. ..o i 17-19
IA32_DEBUGCTL FIag ENCOAINGSot v v e e 17-29
CPL-Qualified Branch Trace Store ENcodingsovovvvviiiiniieiinennns 17-30
IA32_LASTBRANCH_X_FROM_IP ...\ttt 17-35
IA32_LASTBRANCH_X_TO_IP ..\ttt i 17-35
LBR Stack Size and TOS PointerRangecooviiiiiiiiiiiiiiienen 17-36
MSR_LBR_SELECT for Intel microarchitecture code name Nehalem.......... 17-36

MSR_LBR_SELECT for Intel microarchitecture code name Sandy Bridge 17-37
LBR MSR Stack Size and TOS Pointer Range for the Pentium® 4 and the

Intel® Xeon® Processor Familyovvvinni i 17-40
UMask and Event Select Encodings for Pre-Defined Architectural Performance
Y= 1 18-14
Core Specificity Encoding within a Non-Architectural Umask 18-16
Agent Specificity Encoding within a Non-Architectural Umask................ 18-17
HW Prefetch Qualification Encoding within a Non-Architectural Umask 18-17
MESI Qualification Definitions within a Non-Architectural Umask 18-17
Bus Snoop Qualification Definitions within a Non-Architectural Umask........ 18-18
Snoop Type Qualification Definitions within @ Non-Architectural Umask 18-19
Association of Fixed-Function Performance Counters with Architectural
Performance BVeNTS. .. v et s 18-19
At-Retirement Performance Events for Intel Core Microarchitecture 18-23
PEBS Performance Events for Intel Core Microarchitecture 18-23
Requirements to Program PEBS e 18-25
PEBS Record Format for Intel Core i7 Processor Family...................... 18-30
Data Source Encoding for Load Latency Recordcoovvvviviinnnn. 18-35
Off-Core Response Event ENCOdiNg.vvvveiiiii i 18-37
MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition 18-37

Vol. 3A xliii

CONTENTS

Table 18-16.
Table 18-17.
Table 18-18.
Table 18-19.
Table 18-20.
Table 18-21.

Table 18-22.
Table 18-23.
Table 18-24.
Table 18-25.
Table 18-26.
Table 18-27.
Table 18-28.
Table 18-29.

Table 18-30.
Table 18-31.

Table 18-32.
Table 18-33.
Table 18-34.

Table 18-35.

Table 19-1.
Table 19-2.

Table 19-3.

Table 19-4.

Table 19-5.
Table 19-6.

Table 19-7.
Table 19-8.
Table 19-9.

Table 19-10.
Table 19-11.

Table 19-12.
Table 19-13.

xliv Vol. 3A

PAGE
Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCH............ 18-44
Uncore PMU MSR SUMMEMY. .o vv e i i nenae s 18-46
Uncore PMU MSR Summary for Intel® Xeon® Processor €7 Family............. 18-48
Core PMU COmMPariSOn. .. v ettt e ettt et e et eeaenens 18-49
PEBS Facility COMPariSON.vv ettt eens 18-53
PEBS Performance Events for Intel® Microarchitecture Code Name Sandy
BrIAGE. ..ottt e 18-55
Layout of Data Source Field of Load Latency Record...................vvues. 18-57
Layout of Precise Store Information INnPEBSRecord......................... 18-58
Off-Core Response Event ENCOdingovvviiiiii i 18-59
MSR_OFFCORE_RSP_x Request_Type Field Definition 18-60
MSR_OFFCORE_RSP_x Response Supplier Info Field Definition 18-62
MSR_OFFCORE_RSP_x Snoop Info Field Definition........................... 18-62
Uncore PMU MSR SUMMEMY. ..o vv et nee s 18-65
MSR_OFFCORE_RSP_x Supplier Info Field Definition for Next Generation Intel
G0 I 0ol =1 18-66
Uncore PMU MSR Summary for Intel® Xeon® Processor €5 Family............. 18-66
Performance Counter MSRs and Associated CCCR and ESCR MSRs (Pentium 4 and
INtEl XEON PrOCESSOTS) + vttt ettt ettt ettt et eas 18-68
EVENT EXAMPIE. . oo e 18-77
CCRNames and Bit POSItioNSvviii e 18-83
Effect of Logical Processor and CPL Qualification for Logical-Processor-Specific
[TS =11 18-96
Effect of Logical Processor and CPL Qualification for Non-logical-Processor-
SPECITIC (T1) EVENES . oottt ettt e 18-97
Architectural Performance EVENtSvvvii i 19-2
Non-Architectural Performance Events In the Processor Core of Next Generation
Intel Core i7, 15, I3 PrOCESSOMS .t vttt ettt e 19-2

Non-Architectural Performance Events In the Processor Core Common to 2nd
Generation Intel® Core™ i7-2xxX, Intel® Core™ i5-2xxX, Intel® Core™ i3-2xxx
Processor Series and Intel® Xeon® Processors €5 Family...................... 19-14
Non-Architectural Performance Events applicable only to the Processor core for
2nd Generation Intel® Core™ i7-2xxXx, Intel® Core™ i5-2xxX, Intel® Core™ i3-2xxx

0 Tol oS Yo Y= 1= 19-28
Non-Architectural Performance Events Applicable only to the Processor Core of
Intel® Xeon® Processor ES Family ... 19-32

Non-Architectural Performance Events In the Processor Uncore for 2nd
Generation Intel® Core™ i7-2xxXx, Intel® Core™ i5-2xxXx, Intel® Core™ i3-2xxx
0T ST Yo Y =T T 19-33

Processor and Intel® Xeon® Processor 5500 Series.ovvvvviviiiineenns, 19-36
Non-Architectural Performance Events In the Processor Uncore for Intel® Core™ i7
Processor and Intel® Xeon® Processor 5500 Series. ..o vviviviiiiniieinens, 19-65

on Intel® Microarchitecture Code Name Westmerecovvvviv it 19-87
Non-Architectural Performance Events In the Processor Uncore for Processors Based
on Intel® Microarchitecture Code Name Westmerecoovvvvinnnn. 19-115
Non-Architectural Performance Events for Processors Based on Enhanced Intel Core
[o o= ol (=Tt (0 = 19-142
Fixed-Function Performance Counter and Pre-defined Performance Events. 19-143
Non-Architectural Performance Events in Processors Based on Intel Core

[o o= ol (=Tt (0 = 19-144

Table 19-14.
Table 19-15.

Table 19-16.
Table 19-17.
Table 19-18.

Table 19-20.
Table 19-19.
Table 19-21.
Table 19-22.
Table 19-23.
Table 19-24.
Table 19-25.

Table 19-26.

Table 20-1.
Table 20-2.
Table 21-1.
Table 22-1.
Table 22-2.

Table 22-3.
Table 22-4.

Table 22-5.
Table 22-6.

Table 22-7.
Table 22-8.

Table 22-S.

Table 24-1.
Table 24-2.
Table 24-3.
Table 24-4.
Table 24-5.
Table 24-6.
Table 24-7.
Table 24-8.
Table 24-9.

Table 24-10.
Table 24-11.
Table 24-12.
Table 24-13.
Table 24-14.
Table 24-15.

CONTENTS

PAGE
Non-Architectural Performance Events for Intel Atom Processors. 19-187
Non-Architectural Performance Events in Intel Core Solo and Intel Core Duo
PrOCESSOMS . vttt e 19-209
Performance Monitoring Events Supported by Intel NetBurst Microarchitecture for
Non-Retirement Counting.ovvuvinir it 19-219
Performance Monitoring Events For Intel NetBurst Microarchitecture for At-
Retirement CouNtingo.vviritir i e 19-250
Intel NetBurst Microarchitecture Model-Specific Performance Monitoring Events
(For Model ENcoding 3,4 07 B). ..o v vv vt 19-257

List of Metrics Available for Execution Tagging (For Execution Event Only) .. 19-258
List of Metrics Available for Front_end Tagging (For Front_end Event Only) . 19-258

List of Metrics Available for Replay Tagging (For Replay Event Only) 19-259
Event Mask Qualification for Logical Processors...........covvvvvvinennn. 19-261
Performance Monitoring Events on Intel® Pentium® M Processors 19-267

Performance Monitoring Events Modified on Intel® Pentium® M Processors . 19-269
Events That Can Be Counted with the P6 Family Performance-Monitoring

001U) (= 19-271
Events That Can Be Counted with Pentium Processor Performance-Monitoring
00T (= Y 19-288
Real-Address Mode Exceptions and INterruptscoovvvviiiiiinennnnn, 20-8
Software Interrupt Handling Methods While in Virtual-8086 Mode 20-26
Characteristics of 16-Bit and 32-Bit Program Modules......................... 21-1
New Instruction in the Pentium Processor and Later IA-32 Processors 22-6
Recommended Values of the EM, MP, and NE Flags for Intel486 SX
Microprocessor/Intel 487 SX Math Coprocessor System 22-22
EMand MP Flag Interpretationcooviiii i e 22-23
Exception Conditions for Legacy SIMD/MMX Instructions with FP Exception and
16-Byte AlIGNMENT . ..o e 22-31
Exception Conditions for Legacy SIMD/MMX Instructions with XMM and FP

2 Col= 01113 1 22-32
Exception Conditions for Legacy SIMD/MMX Instructions with XMM and without

P EXCEPTION . L\ttt 22-33

Exception Conditions for SIMD/MMX Instructions with Memory Reference.... 22-34
Exception Conditions for Legacy SIMD/MMX Instructions without FP

(=T 01T 22-35
Exception Conditions for Legacy SIMD/MMX Instructions without Memory

RE B ENCE e 22-36
Format of the VMCS REGION. ... v vt 24-3
Format of AcCess Rights.......c.oiiiiii e 24-6
Format of Interruptibility State. ... 24-8
Format of Pending-Debug-EXceptionscvvviiiiiiiiiii i 24-9
Definitions of Pin-Based VM-Execution Controls.covvvvviinninnns 24-12
Definitions of Primary Processor-Based VM-Execution Controls.............. 24-13
Definitions of Secondary Processor-Based VM-Execution Controls 24-15
Format of Extended-Page-Table Pointer................cooiiiiiiiiinntt. 24-20
Definitions of VM-Function Controlsoovvvuiiiiii s 24-21
Definitions of VM-EXit CONtrols. ..o 24-22
Format of anMSR ENtIY . ..ot e 24-23
Definitions of VM-ENtry CoNtrolsoovvriiiii it ci e 24-24
Format of the VM-Entry Interruption-Information Field...................... 24-26
Format of EXItREASON. ..o\ttt e 24-27
Format of the VM-Exit Interruption-Information Field. 24-29

Vol. 3A xlv

CONTENTS

Table 24-16.
Table 24-17.
Table 27-1.
Table 27-2.
Table 27-3.
Table 27-4.
Table 27-5.
Table 27-6.

Table 27-7.
Table 27-8.

Table 27-9.
Table 27-10.
Table 27-11.

Table 27-12.
Table 27-13.

Table 27-14.

Table 28-1.
Table 28-2.

Table 28-3.

Table 28-4.
Table 28-5.

Table 28-6.
Table 29-1.
Table 30-1.
Table 33-1.
Table 33-2.
Table 33-3.
Table 33-4.
Table 33-5.
Table 33-6.
Table 33-7.
Table 33-8.
Table 33-9.

Table 33-10.
Table 34-1.
Table 34-2.
Table 34-3.
Table 34-4.
Table 34-5.
Table 34-6.
Table 34-7.

xlvi Vol. 3A

PAGE
Format of the IDT-Vectoring Information Field............................... 24-29
Structure of VMCS Component ENcodingvvvvvvviiiiiiii e 24-32
Exit Qualification for Debug EXCEPLIONSvvvvv v 27-6
Exit Qualification for Task Switch........ccoiiiiiii i s 27-7
Exit Qualification for Control-Register ACCESSES .. .vvvvvviiii it iiineianns 27-8
Exit Qualification Tor MOV DR.i i 27-9
Exit Qualification for I/0 INSTrUCTIONS. . ..ot vt vt 27-9
Exit Qualification for APIC-Access VM Exits from Linear Accesses and Guest-
PRYSICAl ACCESSES. o vttt ittt it e e 27-10
Exit Qualification for EPT Violations.covviiiii i 27-11
Format of the VM-Exit Instruction-Information Field as Used for INS and
0 11 27-18
Format of the VM-Exit Instruction-Information Field as Used for INVEPT, INVPCID,
ANA INVV P ID . .ot e e 27-19
Format of the VM-Exit Instruction-Information Field as Used for LIDT, LGDT, SIDT,
OF SO T ittt e e e 27-20
Format of the VM-Exit Instruction-Information Field as Used for LLDT, LTR, SLDT,
ANA ST R it 27-22

Format of the VM-Exit Instruction-Information Field as Used for VMCLEAR,

VMPTRLD, VMPTRST, and VMXONottt 27-24
Format of the VM-Exit Instruction-Information Field as Used for VMREAD and

MW RIT . e e e e 27-26
Format of an EPT PML4 Entry (PML4E). ..o 28-5
Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that Maps a

T-GBYEE Page. . ottt e 28-6
Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that References an
ol I Ta T =T on (o] Y 28-7

Format of an EPT Page-Directory Entry (PDE) that Maps a 2-MByte Page....... 28-8
Format of an EPT Page-Directory Entry (PDE) that References an EPT Page

TaDlE. .t e 28-9
Format of an EPT Page-Table ENtry.........covviiiiiii i 28-10
VM-Instruction Error NUMDErS ovi it 29-35
Operating Modes for Host and Guest Environments.............coovvvveen... 30-18
SMRAM STate SAVE MaD .. vttt 33-6
Processor Signatures and 64-bit SMRAM State Save Map Format............. 33-9
SMRAM State Save Map for Intel 64 Architecture...............ccovvviinnnt 33-9
Processor Register Initialization in SMM...........ocoii i 33-13
I/0 Instruction Information in the SMM State SaveMap 33-16
I/0 Instruction Type ENCOdINGS vvvvirerii et n e aans 33-16
Auto HALT Restart FIag Values. . ..o 33-19
I/0 Instruction Restart Field Values ... 33-21
Exit Qualification for SMIs That Arrive Immediately After the Retirement of an

/O INSITUCHION ottt 33-29
Format of MSEG Header.o e 33-35
CPUID Signature Values of DisplayFamily_DisplayModel....................... 34-1
IA-32 Architectural MSRS. ...\t e 34-3
MSRs in Processors Based on Intel Core Microarchitecture 34-46
MSRs in Intel Atom Processor Family. ..o 34-68
MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem. . ..34-83
Additional MSRs in Intel Xeon Processor 5500 and 3400 Series............ 34-110
Additional MSRs in Intel Xeon Processor 7500 Seriescovvvvnn.. 34-112

Table 34-8.
Table 34-9.

Table 34-10.
Table 34-11.
Table 34-12.

Table 34-13.
Table 34-14.

Table 34-15.
Table 34-16.

Table 34-17.
Table 34-18.
Table 34-19.

Table A-1.
Table B-1.
Table B-2.
Table B-3.
Table B-4.
Table B-5.
Table B-6.
Table B-7.
Table B-8.
Table B-9.
Table B-10.
Table B-11.
Table B-12.
Table B-13.
Table B-14.
Table B-15.
Table C-1.

CONTENTS

PAGE
Additional MSRs Supported by Intel Processors (Intel Microarchitecture Code Name
LT L= 11T =) 34-134
Additional MSRs Supported by Intel Xeon Processor €7 Family.............. 34-135
MSRs Supported by Intel Processors Based on Intel Microarchitecture Code Name
SaANAY Bridge. . oot 34-138
MSRs Supported by Second Generation Intel Core Processors (Intel
Microarchitecture Code Name Sandy Bridge)ccovvvvviiiiiininnn. 34-164
Selected MSRs Supported by Next Generation Intel Xeon Processors (Intel
Microarchitecture Code Name Sandy Bridge)coovviiivinennt 34-165
MSRs in the Pentium 4 and Intel Xeon Processors...........covvvvinennenn. 34-169
MSRs Unique to 64-bit Intel Xeon Processor MP with Up to an 8 MB L3
0 ol = 34-209
MSRs Unique to Intel Xeon Processor 7100 Seriesoovvvvivivinennnnn 34-211
MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel Xeon
PrOCESSOr LV . e e 34-212
MSRs in PENtiUM M ProCesSOrSo vvv et 34-226
MSRs in the P6 Family ProCessors.vvuvritiiii it iiiiinenanns 34-235
MSRs in the Pentium Processorovviiii e 34-247
Memory Types Used FOr VMCS ACCESS. ..t v vviririiii ittt ieieieieienanns A-2
Encoding for 16-Bit Control Fields (0000_00xx_xxxx_xxx0B).................. B-1
Encodings for 16-Bit Guest-State Fields (0000_10xXx_XxxX_xxx0B) B-1
Encodings for 16-Bit Host-State Fields (0000_T1XX_XXXX_XXX0B) B-2
Encodings for 64-Bit Control Fields (0010_00XX_XXXX_XXXAD)................. B-3
Encodings for 64-Bit Read-Only Data Field (0010_0TXX_XXXX_XXXAD).......... B-4
Encodings for 64-Bit Guest-State Fields (0010_10XX_XXXX_XXXAb) B-4
Encodings for 64-Bit Host-State Fields (0010_TTXX_XXXX_XXXADb) B-5
Encodings for 32-Bit Control Fields (0100_00XX_XXXX_XXXOB).........c.cvvuuus B-6
Encodings for 32-Bit Read-Only Data Fields (0100_01xx_xxxX_xxx0B)......... B-7
Encodings for 32-Bit Guest-State Fields (0100_10XX_XXXX_XXXO0B) B-8
Encoding for 32-Bit Host-State Field (0100_1TXxX_XXXX_XXX0B) B-9
Encodings for Natural-Width Control Fields (01 10_00xX_xxxX_xxx0B).......... B-9

Encodings for Natural-Width Read-Only Data Fields (0110_01xx_xxxx_xxx0B)B-10
Encodings for Natural-Width Guest-State Fields (0110_10xx_xxxx_xxx0B)....B-10
Encodings for Natural-Width Host-State Fields (0110_1Txx_xxxx_xxx0B)..... B-11
BasiC EXIt REESONS ..o v vttt ettt C-1

Vol. 3A xlvii

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A:
System Programming Guide, Part 1 (order number 253668), the Inte/l® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3B: System Programming
Guide, Part 2 (order number 253669) and the Inte/l® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3C: System Programming Guide, Part 3 (order
number 326019) are part of a set that describes the architecture and programming
environment of Intel 64 and IA-32 Architecture processors. The other volumes in this
set are:

* Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic
Architecture (order number 253665).

* Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B
& 2C: Instruction Set Reference (order numbers 253666, 253667 and 326018).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
describes the basic architecture and programming environment of Intel 64 and IA-32
processors. The Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 2A, 2B & 2C, describe the instruction set of the processor and the opcode
structure. These volumes apply to application programmers and to programmers
who write operating systems or executives. The Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volumes 3A, 3B & 3C, describe the operating-system
support environment of Intel 64 and IA-32 processors. These volumes target oper-
ating-system and BIOS designers. In addition, Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B, and Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3C address the programming environment for
classes of software that host operating systems.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN
THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64
and IA-32 processors, which include:

* Pentium® processors

® P6 family processors

* Pentium® 4 processors

* Pentium® M processors
* Intel® Xeon® processors
* Pentium® D processors

Vol.3A 1-1

ABOUT THIS MANUAL

* Ppentium® processor Extreme Editions

* 64-bit Intel® Xeon® processors

* Intel® Core™ Duo processor

* Intel® Core™ Solo processor

* Dual-Core Intel® Xeon® processor LV

* Intel® Core™2 Duo processor

* Intel® Core™2 Quad processor Q6000 series

* Intel® Xeon® processor 3000, 3200 series

* Intel® Xeon® processor 5000 series

* Intel® Xeon® processor 5100, 5300 series

* Intel® Core™2 Extreme processor X7000 and X6800 series
* Intel® Core™2 Extreme QX6000 series

* Intel® Xeon® processor 7100 series

* Intel® Pentium® Dual-Core processor

* Intel® Xeon® processor 7200, 7300 series

* Intel® Core™2 Extreme QX9000 series

* Intel® Xeon® processor 5200, 5400, 7400 series

* Intel® Core™2 Extreme processor QX9000 and X9000 series
* Intel® Core™2 Quad processor Q9000 series

* Intel® Core™2 Duo processor E8000, T9000 series

* Intel® Atom™ processor family

* Intel® Core™ i7 processor

* Intel® Core™ 5 processor

* Intel® Xeon® processor E7-8800/4800/2800 product families
* Intel® Xeon® processor E5 family

* Intel® Xeon® processor E3 family

* Intel® Core™ i7-3930K processor

* 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-
2XXX processor series

P6 family processors are IA-32 processors based on the P6 family microarchitecture.
This includes the Pentium® Pro, Pentium® 1I, Pentium® 111, and Pentium® 11l Xeon®
processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based
on the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are
based on the Intel NetBurst® microarchitecture. Intel Xeon processor 5000, 7100
series are based on the Intel NetBurst® microarchitecture.

1-2 Vol. 3A

ABOUT THIS MANUAL

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV
are based on an improved Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel®
Pentium® dual-core, Intel® Core™2 Duo, Intel® Core™2 Quad and Intel® Core™?2
Extreme processors are based on Intel® Core™ microarchitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor
Q9000 series, and Intel® Core™2 Extreme processors QX9000, X9000 series, Intel®
Core™?2 processor E8000 series are based on Enhanced Intel® Core™ microarchitec-
ture.

The Intel® Atom™ processor family is based on the Intel® Atom™ microarchitecture
and supports Intel 64 architecture.

The Intel® Core™i7 processor and the Intel® Core™i5 processor are based on the
Intel® microarchitecture code name Nehalem and support Intel 64 architecture.

Processors based on Intel® microarchitecture code name Westmere support Intel 64
architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core
Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon
processors support IA-32 architecture. The Intel® Atom™ processor Z5xx series
support IA-32 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3 family, Intel®
Core™ i7-3930K processor, 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-
2XXX, Intel® Core™ i3-2xxx processor series, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Xeon® processor 3000, 3200, 5000, 5100,
5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel® Core™2 Duo, Intel®
Core™2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors,
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon
processor family support Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment
for Intel's 32-bit microprocessors. Intel® 64 architecture is the instruction set archi-
tecture and programming environment which is a superset of and compatible with
IA-32 architecture.

1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE

A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all seven volumes of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual. It also describes
the notational conventions in these manuals and lists related Intel manuals and
documentation of interest to programmers and hardware designers.

Chapter 2 — System Architecture Overview. Describes the modes of operation
used by Intel 64 and IA-32 processors and the mechanisms provided by the architec-

Vol. 3A 1-3

ABOUT THIS MANUAL

tures to support operating systems and executives, including the system-oriented
registers and data structures and the system-oriented instructions. The steps neces-
sary for switching between real-address and protected modes are also identified.

Chapter 3 — Protected-Mode Memory Management. Describes the data struc-
tures, registers, and instructions that support segmentation and paging. The chapter
explains how they can be used to implement a “flat” (unsegmented) memory model
or a segmented memory model.

Chapter 4 — Paging. Describes the paging modes supported by Intel 64 and IA-32
processors.

Chapter 5 — Protection. Describes the support for page and segment protection
provided in the Intel 64 and IA-32 architectures. This chapter also explains the
implementation of privilege rules, stack switching, pointer validation, user and
supervisor modes.

Chapter 6 — Interrupt and Exception Handling. Describes the basic interrupt
mechanisms defined in the Intel 64 and IA-32 architectures, shows how interrupts
and exceptions relate to protection, and describes how the architecture handles each
exception type. Reference information for each exception is given in this chapter.
Includes programming the LINTO and LINT1 inputs and gives an example of how to
program the LINTO and LINT1 pins for specific interrupt vectors.

Chapter 7 — Task Management. Describes mechanisms the Intel 64 and IA-32
architectures provide to support multitasking and inter-task protection.

Chapter 8 — Multiple-Processor Management. Describes the instructions and
flags that support multiple processors with shared memory, memory ordering, and
Intel® Hyper-Threading Technology. Includes MP initialization for P6 family proces-
sors and gives an example of how to use of the MP protocol to boot P6 family proces-
sors in an MP system.

Chapter 9 — Processor Management and Initialization. Defines the state of an
Intel 64 or IA-32 processor after reset initialization. This chapter also explains how to
set up an Intel 64 or IA-32 processor for real-address mode operation and protected-
mode operation, and how to switch between modes.

Chapter 10 — Advanced Programmable Interrupt Controller (APIC).
Describes the programming interface to the local APIC and gives an overview of the
interface between the local APIC and the I/O APIC. Includes APIC bus message
formats and describes the message formats for messages transmitted on the APIC
bus for P6 family and Pentium processors.

Chapter 11 — Memory Cache Control. Describes the general concept of caching
and the caching mechanisms supported by the Intel 64 or IA-32 architectures. This
chapter also describes the memory type range registers (MTRRs) and how they can
be used to map memory types of physical memory. Information on using the new
cache control and memory streaming instructions introduced with the Pentium llI,
Pentium 4, and Intel Xeon processors is also given.

Chapter 12 — Intel® MMX™ Technology System Programming. Describes
those aspects of the Intel® MMX™ technology that must be handled and considered

1-4 Vol. 3A

ABOUT THIS MANUAL

at the system programming level, including: task switching, exception handling, and
compatibility with existing system environments.

Chapter 13 — System Programming For Instruction Set Extensions And
Processor Extended States. Describes the operating system requirements to
support SSE/SSE2/SSE3/SSSE3/SSE4 extensions, including task switching, excep-
tion handling, and compatibility with existing system environments. The latter part of
this chapter describes the extensible framework of operating system requirements to
support processor extended states. Processor extended state may be required by
instruction set extensions beyond those of SSE/SSE2/SSE3/SSSE3/SSE4 extensions.

Chapter 14 — Power and Thermal Management. Describes facilities of Intel 64
and IA-32 architecture used for power management and thermal monitoring.

Chapter 15 — Machine-Check Architecture. Describes the machine-check
architecture and machine-check exception mechanism found in the Pentium
4, Intel Xeon, and P6 family processors. Additionally, a signaling mechanism
for software to respond to hardware corrected machine check error is
covered.

Chapter 16 — Interpreting Machine-Check Error Codes. Gives an example of
how to interpret the error codes for a machine-check error that occurred on a P6
family processor.

Chapter 17 — Debugging, Branch Profiles and Time-Stamp Counter.
Describes the debugging registers and other debug mechanism provided in Intel 64
or IA-32 processors. This chapter also describes the time-stamp counter.

Chapter 18 — Performance Monitoring. Describes the Intel 64 and IA-32 archi-
tectures’ facilities for monitoring performance.

Chapter 19 — Performance-Monitoring Events. Lists architectural performance
events. Non-architectural performance events (i.e. model-specific events) are listed
for each generation of microarchitecture.

Chapter 20 — 8086 Emulation. Describes the real-address and virtual-8086
modes of the IA-32 architecture.

Chapter 21 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and
32-bit code modules within the same program or task.

Chapter 22 — IA-32 Architecture Compatibility. Describes architectural
compatibility among IA-32 processors.

Chapter 23 — Introduction to Virtual-Machine Extensions. Describes the basic
elements of virtual machine architecture and the virtual-machine extensions for
Intel 64 and IA-32 Architectures.

Chapter 24 — Virtual-Machine Control Structures. Describes components that
manage VMX operation. These include the working-VMCS pointer and the control-
ling-VMCS pointer.

Chapter 25 — VMX Non-Root Operation. Describes the operation of a VMX non-
root operation. Processor operation in VMX non-root mode can be restricted

Vol. 3A 1-5

ABOUT THIS MANUAL

programmatically such that certain operations, events or conditions can cause the
processor to transfer control from the guest (running in VMX non-root mode) to the
monitor software (running in VMX root mode).

Chapter 26 — VM Entries. Describes VM entries. VM entry transitions the processor
from the VMM running in VMX root-mode to a VM running in VMX non-root mode.
VM-Entry is performed by the execution of VMLAUNCH or VMRESUME instructions.

Chapter 27 — VM Exits. Describes VM exits. Certain events, operations or situa-
tions while the processor is in VMX non-root operation may cause VM-exit transitions.
In addition, VM exits can also occur on failed VM entries.

Chapter 28 — VMX Support for Address Translation. Describes virtual-machine
extensions that support address translation and the virtualization of physical
memory.

Chapter 29 — VMX Instruction Reference. Describes the virtual-machine exten-
sions (VMX). VMX is intended for a system executive to support virtualization of
processor hardware and a system software layer acting as a host to multiple guest
software environments.

Chapter 30 — Virtual-Machine Monitoring Programming Considerations.
Describes programming considerations for VMMs. VMMs manage virtual machines
(VMs).

Chapter 31 — Virtualization of System Resources. Describes the virtualization
of the system resources. These include: debugging facilities, address translation,
physical memory, and microcode update facilities.

Chapter 32 — Handling Boundary Conditions in a Virtual Machine Monitor.
Describes what a VMM must consider when handling exceptions, interrupts, error
conditions, and transitions between activity states.

Chapter 33 — System Management Mode. Describes Intel 64 and IA-32 architec-
tures’ system management mode (SMM) facilities.

Chapter 34 — Model-Specific Registers (MSRs). Lists the MSRs available in the
Pentium processors, the P6 family processors, the Pentium 4, Intel Xeon, Intel Core
Solo, Intel Core Duo processors, and Intel Core 2 processor family and describes
their functions.

Appendix A — VMX Capability Reporting Facility. Describes the VMX capability
MSRs. Support for specific VMX features is determined by reading capability MSRs.

Appendix B — Field Encoding in VMCS. Enumerates all fields in the VMCS and
their encodings. Fields are grouped by width (16-bit, 32-bit, etc.) and type (guest-
state, host-state, etc.).

Appendix C — VM Basic Exit Reasons. Describes the 32-bit fields that encode
reasons for a VM exit. Examples of exit reasons include, but are not limited to: soft-
ware interrupts, processor exceptions, software traps, NMIs, external interrupts, and
triple faults.

1-6 Vol. 3A

ABOUT THIS MANUAL

1.3 NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic represen-
tation of instructions, and for hexadecimal and binary humbers. A review of this
notation makes the manual easier to read.

1.3.1 Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the
bottom of the figure; addresses increase toward the top. Bit positions are numbered
from right to left. The numerical value of a set bit is equal to two raised to the power
of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this
means the bytes of a word are numbered starting from the least significant byte.
Figure 1-1 illustrates these conventions.

1.3.2 Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as
reserved. When bits are marked as reserved, it is essential for compatibility with
future processors that software treat these bits as having a future, though unknown,
effect. The behavior of reserved bits should be regarded as not only undefined, but
unpredictable. Software should follow these guidelines in dealing with reserved bits:

®* Do not depend on the states of any reserved bits when testing the values of
registers which contain such bits. Mask out the reserved bits before testing.

®* Do not depend on the states of any reserved bits when storing to memory or to a
register.

®* Do not depend on the ability to retain information written into any reserved bits.

®* When loading a register, always load the reserved bits with the values indicated
in the documentation, if any, or reload them with values previously read from the
same register.

NOTE

Avoid any software dependence upon the state of reserved bits in
Intel 64 and IA-32 registers. Depending upon the values of reserved
register bits will make software dependent upon the unspecified
manner in which the processor handles these bits. Programs that
depend upon reserved values risk incompatibility with future
processors.

Vol. 3A 1-7

ABOUT THIS MANUAL

. Data Structure

K'd'g:‘:ssst 31 24 23 16 15 8 7 0 <«— Bit offset
28

24

20

16

12

8

Lowest
Address

Byte 3 Byte 2 Byte 1 Byte0 | O

A

Byte Offset

Figure 1-1. Bit and Byte Order

1.3.3 Instruction Operands

When instructions are represented symbolically, a subset of assembly language is
used. In this subset, an instruction has the following format:
label: mnemonic argument1, argument2, argument3
where:
®* Alabel is an identifier which is followed by a colon.

* A mnemonic is a reserved name for a class of instruction opcodes which have
the same function.

The operands argumentl, argument2, and argument3 are optional. There
may be from zero to three operands, depending on the opcode. When present,
they take the form of either literals or identifiers for data items. Operand
identifiers are either reserved names of registers or are assumed to be assigned
to data items declared in another part of the program (which may not be shown
in the example).

When two operands are present in an arithmetic or logical instruction, the right
operand is the source and the left operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode,
EAX is the destination operand, and SUBTOTAL is the source operand. Some
assembly languages put the source and destination in reverse order.

1-8 Vol. 3A

ABOUT THIS MANUAL

1.3.4 Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits
followed by the character H (for example, F82EH). A hexadecimal digit is a character
from the following set: 0,1, 2, 3,4,5,6,7,8,9,A,B,C,D, E,and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes
followed by the character B (for example, 1010B). The "B” designation is only used in
situations where confusion as to the type of humber might arise.

1.3.5 Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed
as a sequence of bytes. Whether one or more bytes are being accessed, a byte
address is used to locate the byte or bytes memory. The range of memory that can
be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing
where a program may have many independent address spaces, called segments.
For example, a program can keep its code (instructions) and stack in separate
segments. Code addresses would always refer to the code space, and stack
addresses would always refer to the stack space. The following notation is used to
specify a byte address within a segment:

Segment-register:Byte-address
For example, the following segment address identifies the byte at address FF79H in
the segment pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment.
The CS register points to the code segment and the EIP register contains the address
of the instruction.

CSEIP

1.3.6 Syntax for CPUID, CR, and MSR Values

Obtain feature flags, status, and system information by using the CPUID instruction,
by checking control register bits, and by reading model-specific registers. We are
moving toward a single syntax to represent this type of information. See Figure 1-2.

Vol. 3A 1-9

ABOUT THIS MANUAL

Syntax Representation for CPUID Input and Output
CPUID.O1H : ECX.SSE [bit 25] = 1

v

Input value for EAX defines output

(NOTE: Some leaves require input values for
EAX and ECX. If only one value is present,
EAX is implied.)

Output register and feature flag or
field name with bit position(s)

Value (or range) of output

For Control Register Values
CR4.0SFXSR[bit 9] = 1

Example CR name i

Feature flag or field name
with bit position(s)

Value (or range) of output

For Model-Specific Register Values

IA32_MISC_ENABLES.ENABLEFOPCODE[bit 2] = 1

Example MSR name i
Feature flag or field name with bit position(s)

Value (or range) of output

OM17732

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation

1.3.7 Exceptions

An exception is an event that typically occurs when an instruction causes an error.
For example, an attempt to divide by zero generates an exception. However, some

exceptions, such as breakpoints, occur under other conditions. Some types of excep-
tions may provide error codes. An error code reports additional information about the
error. An example of the notation used to show an exception and error code is shown

below:

#PF(fault code)

1-10 Vol. 3A

ABOUT THIS MANUAL

This example refers to a page-fault exception under conditions where an error code
naming a type of fault is reported. Under some conditions, exceptions which produce
error codes may not be able to report an accurate code. In this case, the error code
is zero, as shown below for a general-protection exception:

#GP(0)

1.4 RELATED LITERATURE

Literature related to Intel 64 and IA-32 processors is listed on-line at:

http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html.html

Some of the documents listed at this web site can be viewed on-line; others can be
ordered. The literature available is listed by Intel processor and then by the following
literature types: applications notes, data sheets, manuals, papers, and specification
updates.

See also:
® The data sheet for a particular Intel 64 or IA-32 processor
®* The specification update for a particular Intel 64 or IA-32 processor

* Intel® C++ Compiler documentation and online help:
http://software.intel.com/en-us/articles/intel-compilers/

* Intel® Fortran Compiler documentation and online help:
http://software.intel.com/en-us/articles/intel-compilers/

* Intel® VTune™ Performance Analyzer documentation and online help:
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

* Intel® 64 and IA-32 Architectures Software Developer’s Manual (in three or five
volumes):
http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html.html

* Intel® 64 and IA-32 Architectures Optimization Reference Manual:
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-
32-architectures-optimization-manual.html

* Intel® Processor Identification with the CPUID Instruction, AP-485:
http://www.intel.com/Assets/PDF/appnote/241618.pdf

* Intel 64 Architecture x2APIC Specification:

http://www.intel.com/content/www/us/en/architecture-and-technology/64-
architecture-x2apic-specification.html

® Intel 64 Architecture Processor Topology Enumeration:
http://softwarecommunity.intel.com/articles/eng/3887.htm

* Intel® Trusted Execution Technology Measured Launched Environment
Programming Guide:

Vol. 3A 1-11

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://softwarecommunity.intel.com/articles/eng/3887.htm

ABOUT THIS MANUAL

http://www.intel.com/content/www/us/en/software-developers/intel-txt-
software-development-guide.html

* Intel® SSE4 Programming Reference:
http://edc.intel.com/Link.aspx?id=1630&wapkw=intel® sse4 programming
reference

®* Developing Multi-threaded Applications: A Platform Consistent Approach:
http://cache-
www.intel.com/cd/00/00/05/15/51534_developing_multithreaded_applications.
pdf

* Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
http://software.intel.com/en-us/articles/ap949-using-spin-loops-on-intel-
pentiumr-4-processor-and-intel-xeonr-processor/

®* Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

More relevant links are:

® Software network link:
http://softwarecommunity.intel.com/isn/home/

®* Developer centers:
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm

® Processor support general link:
http://www.intel.com/support/processors/

® Software products and packages:
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

* Intel 64 and IA-32 processor manuals (printed or PDF downloads):

http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html.html

* Intel® Multi-Core Technology:
http://software.intel.com/partner/multicore
* Intel® Hyper-Threading Technology (Intel® HT Technology):

http://www.intel.com/technology/platform-technology/hyper-
threading/index.htm

1-12 Vol.3A

http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
http://softwarecommunity.intel.com/isn/home/
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/support/processors/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/technology/hyperthread/

CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW

IA-32 architecture (beginning with the Intel386 processor family) provides extensive
support for operating-system and system-development software. This support offers
multiple modes of operation, which include:

®* Real mode, protected mode, virtual 8086 mode, and system management mode.
These are sometimes referred to as legacy modes.

Intel 64 architecture supports almost all the system programming facilities available
in IA-32 architecture and extends them to a new operating mode (IA-32e mode) that
supports a 64-bit programming environment. IA-32e mode allows software to
operate in one of two sub-modes:

® 64-bit mode supports 64-bit OS and 64-bit applications

®* Compatibility mode allows most legacy software to run; it co-exists with 64-bit
applications under a 64-bit OS.

The IA-32 system-level architecture and includes features to assist in the following
operations:

® Memory management

®* Protection of software modules

® Multitasking

® Exception and interrupt handling

® Multiprocessing

® Cache management

®* Hardware resource and power management
®* Debugging and performance monitoring

This chapter provides a description of each part of this architecture. It also describes
the system registers that are used to set up and control the processor at the system
level and gives a brief overview of the processor’s system-level (operating system)
instructions.

Many features of the system-level architectural are used only by system program-
mers. However, application programmers may need to read this chapter and the
following chapters in order to create a reliable and secure environment for applica-
tion programs.

This overview and most subsequent chapters of this book focus on protected-mode
operation of the IA-32 architecture. IA-32e mode operation of the Intel 64 architec-
ture, as it differs from protected mode operation, is also described.

All Intel 64 and IA-32 processors enter real-address mode following a power-up or
reset (see Chapter 9, “Processor Management and Initialization”). Software then

Vol. 3A 2-1

SYSTEM ARCHITECTURE OVERVIEW

initiates the switch from real-address mode to protected mode. If IA-32e mode oper-
ation is desired, software also initiates a switch from protected mode to IA-32e
mode.

2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE

System-level architecture consists of a set of registers, data structures, and instruc-
tions designed to support basic system-level operations such as memory manage-
ment, interrupt and exception handling, task management, and control of multiple
processors.

Figure 2-1 provides a summary of system registers and data structures that applies
to 32-bit modes. System registers and data structures that apply to IA-32e mode are
shown in Figure 2-2.

2-2 Vol.3A

SYSTEM ARCHITECTURE OVERVIEW

Physical Address

Y

EFLAGS Register ~ FNysICz > Code, Data or
- Linear Address Stack Segment
Control Registers —_— Task-State
CR4 Segment Selector Segment (TSS)
CR2 o
R Register) =Data
- CRO Global Descriptor Stack
Task Register Table (GDT)
[Segment Sel. | - » Seg. Desc. |— Irleirrupt Handler
Current- — 'Code |
Interrupt TSS Seg. Sel.} - »| TSS Desc. TSS | | Stack
Vector Seq D
- - - - > Seg. Desc.
Interrupt Descriptor | 9 Task-State
Table (IDT) | . _ > 7SS Desc. Segment _(T_S§)) Task
[F——n Code
Interrupt Gate| ~ ~ | LDT Desc. |— T " " P Data
| - - |: >
Task Gate | - - - - - Stack
5 GDTR
| TrapGate [- -~
‘ Local Descriptor Exception Handler
! Table (LDT) Current. . xcode |
| TSS Stack
IDTR Call-Gate B = Seg Desc. L
Segment Selector
| | - > Call Gate N Protected Procedure
______ Code
XCRO (XFEM) LDTR |«——— _Ic_ggent' - > Stack

Linear Address Space

P

Linear Address

Table

Offset |

Linear Addr.

L

Page Directory

Page Table

Page

Physical Addr.

Pg. Dir. Entry

Pg. Tbl. Entry

- >

In

=

0

*Physical Address

This page mapping example is for 4-KByte pages
and the normal 32-bit physical address size.

Figure 2-1. IA-32 System-Level Registers and Data Structures

Vol.3A 2-3

SYSTEM ARCHITECTURE OVERVIEW

RFLAGS

Interrupt Gate | - - -

i —>
F’WS_'C? Ii\ddress Code, Data or Stack

Control Register Linear Address Segment (Base =0)

CR8 Task-State

CR4 Segment Selector Segment (TSS)

CR3 il >

CR2]

CR1

CRO .

Global D t
Task Register (')Faile ?ég.'lp) or
[Segment Sel. | - »| Seg. Desc. |— Irielrrupt Handler
NULL - - »S0de]
Interrupt TR f - »| TSS Desc. Stack
Vector
. - - - - » Seg. Desc.
Interrupt Descriptor |
Table (IDT) - — — »| Seg.Desc. | Interr. Handler
r . . m
h Code
Interrupt Gate | — — | LDT Desc. — Current TSS
‘ Stack

Linear Address Space

> Trap Gate |- -~)
: Local Descriptor Exception Handler
. Table (LDT) >
T NULL - — >C°§tzc|k
IDTR Call-Gate - »| Seg. Desc.
Segment Selector
| - > CallGate | |- N Protected Procedure
XCRO (XFEM) |;l:‘ NULL - — _Code
LDTR = Stack

Linear Address

*Physical Address

J—H PML4 [Dir. Pointer | Directory | Table [Offset |
Linear Addr.
! PML4 Pg. Dir. Ptr.| Page Dir. | Page Table Page
Physical
PMLA4. Pg. Dir. Page Tbl Addr.
Entry Entry Entry
>
0 This page mapping example is for 4-KByte pages
and 40-bit physical address size.

Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode

2-4 Vol.3A

SYSTEM ARCHITECTURE OVERVIEW

2.1.1 Global and Local Descriptor Tables

When operating in protected mode, all memory accesses pass through either the
global descriptor table (GDT) or an optional local descriptor table (LDT) as shown in
Figure 2-1. These tables contain entries called segment descriptors. Segment
descriptors provide the base address of segments well as access rights, type, and
usage information.

Each segment descriptor has an associated segment selector. A segment selector
provides the software that uses it with an index into the GDT or LDT (the offset of its
associated segment descriptor), a global/local flag (determines whether the selector
points to the GDT or the LDT), and access rights information.

To access a byte in a segment, a segment selector and an offset must be supplied.
The segment selector provides access to the segment descriptor for the segment (in
the GDT or LDT). From the segment descriptor, the processor obtains the base
address of the segment in the linear address space. The offset then provides the
location of the byte relative to the base address. This mechanism can be used to
access any valid code, data, or stack segment, provided the segment is accessible
from the current privilege level (CPL) at which the processor is operating. The CPL is
defined as the protection level of the currently executing code segment.

See Figure 2-1. The solid arrows in the figure indicate a linear address, dashed lines
indicate a segment selector, and the dotted arrows indicate a physical address. For
simplicity, many of the segment selectors are shown as direct pointers to a segment.
However, the actual path from a segment selector to its associated segment is always
through a GDT or LDT.

The linear address of the base of the GDT is contained in the GDT register (GDTR);
the linear address of the LDT is contained in the LDT register (LDTR).

2.1.1.1 Global and Local Descriptor Tables in IA-32e Mode

GDTR and LDTR registers are expanded to 64-bits wide in both IA-32e sub-modes
(64-bit mode and compatibility mode). For more information: see Section 3.5.2,
“Segment Descriptor Tables in IA-32e Mode.”

Global and local descriptor tables are expanded in 64-bit mode to support 64-bit base
addresses, (16-byte LDT descriptors hold a 64-bit base address and various
attributes). In compatibility mode, descriptors are not expanded.

2.1.2 System Segments, Segment Descriptors, and Gates

Besides code, data, and stack segments that make up the execution environment of
a program or procedure, the architecture defines two system segments: the task-
state segment (TSS) and the LDT. The GDT is not considered a segment because it is
not accessed by means of a segment selector and segment descriptor. TSSs and LDTs
have segment descriptors defined for them.

Vol.3A 2-5

SYSTEM ARCHITECTURE OVERVIEW

The architecture also defines a set of special descriptors called gates (call gates,
interrupt gates, trap gates, and task gates). These provide protected gateways to
system procedures and handlers that may operate at a different privilege level than
application programs and most procedures. For example, a CALL to a call gate can
provide access to a procedure in a code segment that is at the same or a numerically
lower privilege level (more privileged) than the current code segment. To access a
procedure through a call gate, the calling procedure! supplies the selector for the call
gate. The processor then performs an access rights check on the call gate, comparing
the CPL with the privilege level of the call gate and the destination code segment
pointed to by the call gate.

If access to the destination code segment is allowed, the processor gets the segment
selector for the destination code segment and an offset into that code segment from
the call gate. If the call requires a change in privilege level, the processor also
switches to the stack for the targeted privilege level. The segment selector for the
new stack is obtained from the TSS for the currently running task. Gates also facili-
tate transitions between 16-bit and 32-bit code segments, and vice versa.

2.1.2.1 Gates in IA-32e Mode

In IA-32e mode, the following descriptors are 16-byte descriptors (expanded to allow
a 64-bit base): LDT descriptors, 64-bit TSSs, call gates, interrupt gates, and trap
gates.

Call gates facilitate transitions between 64-bit mode and compatibility mode. Task
gates are not supported in IA-32e mode. On privilege level changes, stack segment
selectors are not read from the TSS. Instead, they are set to NULL.

2.1.3 Task-State Segments and Task Gates

The TSS (see Figure 2-1) defines the state of the execution environment for a task.
It includes the state of general-purpose registers, segment registers, the EFLAGS
register, the EIP register, and segment selectors with stack pointers for three stack
segments (one stack for each privilege level). The TSS also includes the segment
selector for the LDT associated with the task and the base address of the paging-
structure hierarchy.

All program execution in protected mode happens within the context of a task (called
the current task). The segment selector for the TSS for the current task is stored in
the task register. The simplest method for switching to a task is to make a call or
jump to the new task. Here, the segment selector for the TSS of the new task is given
in the CALL or JMP instruction. In switching tasks, the processor performs the
following actions:

1. Stores the state of the current task in the current TSS.

1. The word “procedure” is commonly used in this document as a general term for a logical unit or
block of code (such as a program, procedure, function, or routine).

2-6 Vol.3A

SYSTEM ARCHITECTURE OVERVIEW

Loads the task register with the segment selector for the new task.
Accesses the new TSS through a segment descriptor in the GDT.

Loads the state of the new task from the new TSS into the general-purpose
registers, the segment registers, the LDTR, control register CR3 (base address of
the paging-structure hierarchy), the EFLAGS register, and the EIP register.

5. Begins execution of the new task.

A task can also be accessed through a task gate. A task gate is similar to a call gate,
except that it provides access (through a segment selector) to a TSS rather than a
code segment.

2.1.3.1 Task-State Segments in IA-32e Mode

Hardware task switches are not supported in IA-32e mode. However, TSSs continue
to exist. The base address of a TSS is specified by its descriptor.

A 64-bit TSS holds the following information that is important to 64-bit operation:
® Stack pointer addresses for each privilege level

® Pointer addresses for the interrupt stack table

®* Offset address of the I0-permission bitmap (from the TSS base)

The task register is expanded to hold 64-bit base addresses in IA-32e mode. See
also: Section 7.7, “Task Management in 64-bit Mode.”

2.1.4 Interrupt and Exception Handling

External interrupts, software interrupts and exceptions are handled through the
interrupt descriptor table (IDT). The IDT stores a collection of gate descriptors that
provide access to interrupt and exception handlers. Like the GDT, the IDT is not a
segment. The linear address for the base of the IDT is contained in the IDT register
(IDTR).

Gate descriptors in the IDT can be interrupt, trap, or task gate descriptors. To access
an interrupt or exception handler, the processor first receives an interrupt vector
(interrupt number) from internal hardware, an external interrupt controller, or from
software by means of an INT, INTO, INT 3, or BOUND instruction. The interrupt
vector provides an index into the IDT. If the selected gate descriptor is an interrupt
gate or a trap gate, the associated handler procedure is accessed in a manner similar
to calling a procedure through a call gate. If the descriptor is a task gate, the handler
is accessed through a task switch.

2.1.4.1 Interrupt and Exception Handling IA-32e Mode

In IA-32e mode, interrupt descriptors are expanded to 16 bytes to support 64-bit
base addresses. This is true for 64-bit mode and compatibility mode.

Vol.3A 2-7

SYSTEM ARCHITECTURE OVERVIEW

The IDTR register is expanded to hold a 64-bit base address. Task gates are not
supported.

2.1.5 Memory Management

System architecture supports either direct physical addressing of memory or virtual
memory (through paging). When physical addressing is used, a linear address is
treated as a physical address. When paging is used: all code, data, stack, and system
segments (including the GDT and IDT) can be paged with only the most recently
accessed pages being held in physical memory.

The location of pages (sometimes called page frames) in physical memory is
contained in the paging structures. These structures reside in physical memory (see
Figure 2-1 for the case of 32-bit paging).

The base physical address of the paging-structure hierarchy is contained in control
register CR3. The entries in the paging structures determine the physical address of
the base of a page frame, access rights and memory management information.

To use this paging mechanism, a linear address is broken into parts. The parts
provide separate offsets into the paging structures and the page frame. A system can
have a single hierarchy of paging structures or several. For example, each task can
have its own hierarchy.

2.1.5.1 Memory Management in IA-32e Mode

In IA-32e mode, physical memory pages are managed by a set of system data struc-
tures. In compatibility mode and 64-bit mode, four levels of system data structures
are used. These include:

®* The page map level 4 (PML4) — An entry in a PML4 table contains the physical
address of the base of a page directory pointer table, access rights, and memory
management information. The base physical address of the PML4 is stored in
CR3.

* A set of page directory pointer tables — An entry in a page directory pointer
table contains the physical address of the base of a page directory table, access
rights, and memory management information.

®* Sets of page directories — An entry in a page directory table contains the
physical address of the base of a page table, access rights, and memory
management information.

®* Sets of page tables — An entry in a page table contains the physical address of
a page frame, access rights, and memory management information.

2-8 Vol.3A

SYSTEM ARCHITECTURE OVERVIEW

2.1.6 System Registers

To assist in initializing the processor and controlling system operations, the system
architecture provides system flags in the EFLAGS register and several system
registers:

®* The system flags and IOPL field in the EFLAGS register control task and mode
switching, interrupt handling, instruction tracing, and access rights. See also:
Section 2.3, “System Flags and Fields in the EFLAGS Register.”

®* The control registers (CR0O, CR2, CR3, and CR4) contain a variety of flags and
data fields for controlling system-level operations. Other flags in these registers
are used to indicate support for specific processor capabilities within the
operating system or executive. See also: Section 2.5, “"Control Registers.”

®* The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for
use in debugging programs and systems software. See also: Chapter 17,
“Debugging, Branch Profiling, and Time-Stamp Counter.”

® The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes
(limits) of their respective tables. See also: Section 2.4, "Memory-Management
Registers.”

® The task register contains the linear address and size of the TSS for the current
task. See also: Section 2.4, "Memory-Management Registers.”

®* Model-specific registers (not shown in Figure 2-1).

The model-specific registers (MSRs) are a group of registers available primarily to
operating-system or executive procedures (that is, code running at privilege level 0).
These registers control items such as the debug extensions, the performance-moni-
toring counters, the machine- check architecture, and the memory type ranges
(MTRRS).

The number and function of these registers varies among different members of the
Intel 64 and IA-32 processor families. See also: Section 9.4, "Model-Specific Regis-
ters (MSRs),” and Chapter 34, “"Model-Specific Registers (MSRs).”

Most systems restrict access to system registers (other than the EFLAGS register) by
application programs. Systems can be designed, however, where all programs and
procedures run at the most privileged level (privilege level 0). In such a case, appli-
cation programs would be allowed to modify the system registers.

2.1.6.1 System Registers in IA-32e Mode

In IA-32e mode, the four system-descriptor-table registers (GDTR, IDTR, LDTR, and
TR) are expanded in hardware to hold 64-bit base addresses. EFLAGS becomes the
64-bit RFLAGS register. CRO-CR4 are expanded to 64 bits. CR8 becomes available.

CR8 provides read-write access to the task priority register (TPR) so that the oper-

ating system can control the priority classes of external interrupts.

In 64-bit mode, debug registers DRO-DR7 are 64 bits. In compatibility mode,
address-matching in DRO-DR3 is also done at 64-bit granularity.

Vol.3A 2-9

SYSTEM ARCHITECTURE OVERVIEW

On systems that support IA-32e mode, the extended feature enable register
(IA32_EFER) is available. This model-specific register controls activation of IA-32e
mode and other IA-32e mode operations. In addition, there are several model-
specific registers that govern IA-32e mode instructions:

* IA32_ KernelGSbase — Used by SWAPGS instruction.

® IA32_LSTAR — Used by SYSCALL instruction.

® IA32_SYSCALL_FLAG_MASK — Used by SYSCALL instruction.
® IA32_STAR_CS — Used by SYSCALL and SYSRET instruction.

2.1.7 Other System Resources

Besides the system registers and data structures described in the previous sections,
system architecture provides the following additional resources:

® Operating system instructions (see also: Section 2.7, “System Instruction
Summary”).

® Performance-monitoring counters (not shown in Figure 2-1).
* Internal caches and buffers (not shown in Figure 2-1).

Performance-monitoring counters are event counters that can be programmed to
count processor events such as the number of instructions decoded, the nhumber of
interrupts received, or the number of cache loads. See also: Chapter 23, “Introduc-
tion to Virtual-Machine Extensions.”

The processor provides several internal caches and buffers. The caches are used to
store both data and instructions. The buffers are used to store things like decoded
addresses to system and application segments and write operations waiting to be
performed. See also: Chapter 11, "Memory Cache Control.”

2.2 MODES OF OPERATION

The IA-32 supports three operating modes and one quasi-operating mode:

* Protected mode — This is the native operating mode of the processor. It
provides a rich set of architectural features, flexibility, high performance and
backward compatibility to existing software base.

* Real-address mode — This operating mode provides the programming
environment of the Intel 8086 processor, with a few extensions (such as the
ability to switch to protected or system management mode).

* System management mode (SMM) — SMM is a standard architectural feature
in all IA-32 processors, beginning with the Intel386 SL processor. This mode
provides an operating system or executive with a transparent mechanism for
implementing power management and OEM differentiation features. SMM is
entered through activation of an external system interrupt pin (SMI#), which
generates a system management interrupt (SMI). In SMM, the processor
switches to a separate address space while saving the context of the currently

2-10 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

running program or task. SMM-specific code may then be executed transparently.
Upon returning from SMM, the processor is placed back into its state prior to the
SMI.

Virtual-8086 mode — In protected mode, the processor supports a quasi-
operating mode known as virtual-8086 mode. This mode allows the processor
execute 8086 software in a protected, multitasking environment.

Intel 64 architecture supports all operating modes of IA-32 architecture and IA-32e
modes:

IA-32e mode — In IA-32e mode, the processor supports two sub-modes:
compatibility mode and 64-bit mode. 64-bit mode provides 64-bit linear
addressing and support for physical address space larger than 64 GBytes.
Compatibility mode allows most legacy protected-mode applications to run
unchanged.

Figure 2-3 shows how the processor moves between operating modes.

SMI#

Real-Address

—
Mode
Reset
or
Reset or RSM
PE=0
SMI#
Reset
Protected Mode RSM System

Management

LME=1, CRO.PG=1* g4 Mode

**\ e
See -
RSM
VM=1
* See Section 9.8.5
SMI# ** See Section 9.8.5.4

Virtual-8086
Mode

Figure 2-3. Transitions Among the Processor's Operating Modes

The processor is placed in real-address mode following power-up or a reset. The PE
flag in control register CRO then controls whether the processor is operating in real-

address or protected mode. See also: Section 9.9, "Mode Switching.” and Section
4.1.2, “Paging-Mode Enabling.”

Vol.3A 2-11

SYSTEM ARCHITECTURE OVERVIEW

The VM flag in the EFLAGS register determines whether the processor is operating in
protected mode or virtual-8086 mode. Transitions between protected mode and
virtual-8086 mode are generally carried out as part of a task switch or a return from
an interrupt or exception handler. See also: Section 20.2.5, “Entering Virtual-8086
Mode.”

The LMA bit (IA32_EFER.LMA[bit 10]) determines whether the processor is operating
in IA-32e mode. When running in IA-32e mode, 64-bit or compatibility sub-mode
operation is determined by CS.L bit of the code segment. The processor enters into
IA-32e mode from protected mode by enabling paging and setting the LME bit
(IA32_EFER.LME[bit 8]). See also: Chapter 9, “Processor Management and Initializa-
tion.”

The processor switches to SMM whenever it receives an SMI while the processoris in
real-address, protected, virtual-8086, or IA-32e modes. Upon execution of the RSM
instruction, the processor always returns to the mode it was in when the SMI
occurred.

2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS
REGISTER

The system flags and IOPL field of the EFLAGS register control I/O, maskable hard-
ware interrupts, debugging, task switching, and the virtual-8086 mode (see

Figure 2-4). Only privileged code (typically operating system or executive code)
should be allowed to modify these bits.

The system flags and IOPL are:

TF Trap (bit 8) — Set to enable single-step mode for debugging; clear to
disable single-step mode. In single-step mode, the processor generates a
debug exception after each instruction. This allows the execution state of a
program to be inspected after each instruction. If an application program
sets the TF flag using a POPF, POPFD, or IRET instruction, a debug exception
is generated after the instruction that follows the POPF, POPFD, or IRET.

2-12 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

TF — Trap Flag

31 222120191817161514 131211109 8 7 6 54 3 2 1 0

Y YIalv]R] In| 0 lololi]T]s|z| [l |6l |c

Reserved (set to 0) D;;(:MFOTP ElrlelelElRIOIRIO|E |1 F
L

ID — Identification Flag Q

VIP — Virtual Interrupt Pending
VIF — Virtual Interrupt Flag
AC — Alignment Check
VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag
IOPL— 1/O Privilege Level
IF — Interrupt Enable Flag

I:I Reserved

IF

IOPL

NT

Figure 2-4. System Flags in the EFLAGS Register

Interrupt enable (bit 9) — Controls the response of the processor to
maskable hardware interrupt requests (see also: Section 6.3.2, “"Maskable
Hardware Interrupts”). The flag is set to respond to maskable hardware
interrupts; cleared to inhibit maskable hardware interrupts. The IF flag does
not affect the generation of exceptions or nonmaskable interrupts (NMI
interrupts). The CPL, IOPL, and the state of the VME flag in control register
CR4 determine whether the IF flag can be modified by the CLI, STI, POPF,
POPFD, and IRET.

I/0 privilege level field (bits 12 and 13) — Indicates the I/0 privilege
level (IOPL) of the currently running program or task. The CPL of the
currently running program or task must be less than or equal to the IOPL to
access the I/0 address space. This field can only be modified by the POPF
and IRET instructions when operating at a CPL of 0.

The IOPL is also one of the mechanisms that controls the modification of the
IF flag and the handling of interrupts in virtual-8086 mode when virtual
mode extensions are in effect (when CR4.VME = 1). See also: Chapter 13,
“Input/Output,” in the Intel/® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1.

Nested task (bit 14) — Controls the chaining of interrupted and called
tasks. The processor sets this flag on calls to a task initiated with a CALL
instruction, an interrupt, or an exception. It examines and modifies this flag
on returns from a task initiated with the IRET instruction. The flag can be
explicitly set or cleared with the POPF/POPFD instructions; however,

Vol.3A 2-13

SYSTEM ARCHITECTURE OVERVIEW

RF

VM

AC

VIF

changing to the state of this flag can generate unexpected exceptions in
application programs.

See also: Section 7.4, “Task Linking.”

Resume (bit 16) — Controls the processor’s response to instruction-break-
point conditions. When set, this flag temporarily disables debug exceptions
(#DB) from being generated for instruction breakpoints (although other
exception conditions can cause an exception to be generated). When clear,
instruction breakpoints will generate debug exceptions.

The primary function of the RF flag is to allow the restarting of an instruction
following a debug exception that was caused by an instruction breakpoint
condition. Here, debug software must set this flag in the EFLAGS image on
the stack just prior to returning to the interrupted program with IRETD (to
prevent the instruction breakpoint from causing another debug exception).
The processor then automatically clears this flag after the instruction
returned to has been successfully executed, enabling instruction breakpoint
faults again.

See also: Section 17.3.1.1, “Instruction-Breakpoint Exception Condition.”

Virtual-8086 mode (bit 17) — Set to enable virtual-8086 mode; clear to
return to protected mode.

See also: Section 20.2.1, “Enabling Virtual-8086 Mode.”

Alignment check (bit 18) — Set this flag and the AM flag in control register
CRO to enable alignment checking of memory references; clear the AC flag
and/or the AM flag to disable alignment checking. An alignment-check
exception is generated when reference is made to an unaligned operand,
such as a word at an odd byte address or a doubleword at an address which
is not an integral multiple of four. Alignment-check exceptions are generated
only in user mode (privilege level 3). Memory references that default to priv-
ilege level 0, such as segment descriptor loads, do not generate this excep-
tion even when caused by instructions executed in user-mode.

The alignment-check exception can be used to check alignment of data. This
is useful when exchanging data with processors which require all data to be
aligned. The alignment-check exception can also be used by interpreters to
flag some pointers as special by misaligning the pointer. This eliminates
overhead of checking each pointer and only handles the special pointer when
used.

Virtual Interrupt (bit 19) — Contains a virtual image of the IF flag. This
flag is used in conjunction with the VIP flag. The processor only recognizes
the VIF flag when either the VME flag or the PVI flag in control register CR4 is
set and the IOPL is less than 3. (The VME flag enables the virtual-8086 mode
extensions; the PVI flag enables the protected-mode virtual interrupts.)

See also: Section 20.3.3.5, "Method 6: Software Interrupt Handling,” and
Section 20.4, “Protected-Mode Virtual Interrupts.”

2-14 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

VIP Virtual interrupt pending (bit 20) — Set by software to indicate that an
interrupt is pending; cleared to indicate that no interrupt is pending. This flag
is used in conjunction with the VIF flag. The processor reads this flag but
never modifies it. The processor only recognizes the VIP flag when either the
VME flag or the PVI flag in control register CR4 is set and the IOPL is less than
3. The VME flag enables the virtual-8086 mode extensions; the PVI flag
enables the protected-mode virtual interrupts.

See Section 20.3.3.5, "Method 6: Software Interrupt Handling,” and Section
20.4, “Protected-Mode Virtual Interrupts.”

ID Identification (bit 21). — The ability of a program or procedure to set or
clear this flag indicates support for the CPUID instruction.

2.3.1 System Flags and Fields in IA-32e Mode

In 64-bit mode, the RFLAGS register expands to 64 bits with the upper 32 bits
reserved. System flags in RFLAGS (64-bit mode) or EFLAGS (compatibility mode)
are shown in Figure 2-4.

In IA-32e mode, the processor does not allow the VM bit to be set because virtual-
8086 mode is not supported (attempts to set the bit are ignored). Also, the processor
will not set the NT bit. The processor does, however, allow software to set the NT bit
(note that an IRET causes a general protection fault in IA-32e mode if the NT bit is
set).

In IA-32e mode, the SYSCALL/SYSRET instructions have a programmable method of
specifying which bits are cleared in RFLAGS/EFLAGS. These instructions save/restore
EFLAGS/RFLAGS.

2.4 MEMORY-MANAGEMENT REGISTERS

The processor provides four memory-management registers (GDTR, LDTR, IDTR,
and TR) that specify the locations of the data structures which control segmented
memory management (see Figure 2-5). Special instructions are provided for loading
and storing these registers.

Vol.3A 2-15

SYSTEM ARCHITECTURE OVERVIEW

System Table Registers

47(79) 16 15 0
GDTR 32(64)-bit Linear Base Address 16-Bit Table Limit
IDTR 32(64)-bit Linear Base Address 16-Bit Table Limit
System Segment Segment Descriptor Registers (Automatically Loaded)
Registers
0 Attributes
Task [seg. sel 32(64)-bit Linear Base Add s t Limit
Register eg. Sel. (64)-bit Linear Base ress egment Limi
LDTR Seg. Sel. 32(64)-bit Linear Base Address Segment Limit

Figure 2-5. Memory Management Registers

2.4.1 Global Descriptor Table Register (GDTR)

The GDTR register holds the base address (32 bits in protected mode; 64 bits in
IA-32e mode) and the 16-bit table limit for the GDT. The base address specifies the
linear address of byte 0 of the GDT; the table limit specifies the number of bytes in
the table.

The LGDT and SGDT instructions load and store the GDTR register, respectively. On
power up or reset of the processor, the base address is set to the default value of 0
and the limit is set to OFFFFH. A new base address must be loaded into the GDTR as
part of the processor initialization process for protected-mode operation.

See also: Section 3.5.1, "Segment Descriptor Tables.”

2.4.2 Local Descriptor Table Register (LDTR)

The LDTR register holds the 16-bit segment selector, base address (32 bits in
protected mode; 64 bits in IA-32e mode), segment limit, and descriptor attributes
for the LDT. The base address specifies the linear address of byte 0 of the LDT
segment; the segment limit specifies the humber of bytes in the segment. See also:
Section 3.5.1, "Segment Descriptor Tables.”

The LLDT and SLDT instructions load and store the segment selector part of the LDTR
register, respectively. The segment that contains the LDT must have a segment
descriptor in the GDT. When the LLDT instruction loads a segment selector in the
LDTR: the base address, limit, and descriptor attributes from the LDT descriptor are
automatically loaded in the LDTR.

When a task switch occurs, the LDTR is automatically loaded with the segment
selector and descriptor for the LDT for the new task. The contents of the LDTR are not
automatically saved prior to writing the new LDT information into the register.

On power up or reset of the processor, the segment selector and base address are set
to the default value of 0 and the limit is set to OFFFFH.

2-16 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

243 IDTR Interrupt Descriptor Table Register

The IDTR register holds the base address (32 bits in protected mode; 64 bits in
IA-32e mode) and 16-bit table limit for the IDT. The base address specifies the linear
address of byte 0 of the IDT; the table limit specifies the number of bytes in the table.
The LIDT and SIDT instructions load and store the IDTR register, respectively. On
power up or reset of the processor, the base address is set to the default value of 0
and the limit is set to OFFFFH. The base address and limit in the register can then be
changed as part of the processor initialization process.

See also: Section 6.10, “Interrupt Descriptor Table (IDT).”

24.4 Task Register (TR)

The task register holds the 16-bit segment selector, base address (32 bits in
protected mode; 64 bits in IA-32e mode), segment limit, and descriptor attributes
for the TSS of the current task. The selector references the TSS descriptor in the GDT.
The base address specifies the linear address of byte 0 of the TSS; the segment limit
specifies the number of bytes in the TSS. See also: Section 7.2.4, “Task Register.”

The LTR and STR instructions load and store the segment selector part of the task
register, respectively. When the LTR instruction loads a segment selector in the task
register, the base address, limit, and descriptor attributes from the TSS descriptor
are automatically loaded into the task register. On power up or reset of the processor,
the base address is set to the default value of 0 and the limit is set to OFFFFH.

When a task switch occurs, the task register is automatically loaded with the
segment selector and descriptor for the TSS for the new task. The contents of the
task register are not automatically saved prior to writing the new TSS information
into the register.

2.5 CONTROL REGISTERS

Control registers (CR0O, CR1, CR2, CR3, and CR4; see Figure 2-6) determine oper-
ating mode of the processor and the characteristics of the currently executing task.
These registers are 32 bits in all 32-bit modes and compatibility mode.

In 64-bit mode, control registers are expanded to 64 bits. The MOV CRn instructions
are used to manipulate the register bits. Operand-size prefixes for these instructions
are ignored. The following is also true:

®* Bits 63:32 of CRO and CR4 are reserved and must be written with zeros. Writing
a nonzero value to any of the upper 32 bits results in a general-protection
exception, #GP(0).

® All 64 bits of CR2 are writable by software.
® Bits 51:40 of CR3 are reserved and must be 0.

Vol.3A 2-17

SYSTEM ARCHITECTURE OVERVIEW

The MOV CRn instructions do not check that addresses written to CR2 and CR3
are within the linear-address or physical-address limitations of the implemen-
tation.

Register CR8 is available in 64-bit mode only.

The control registers are summarized below, and each architecturally defined control
field in these control registers are described individually. In Figure 2-6, the width of
the register in 64-bit mode is indicated in parenthesis (except for CRO).

CRO — Contains system control flags that control operating mode and states of
the processor.

CR1 — Reserved.

CR2 — Contains the page-fault linear address (the linear address that caused a
page fault).

CR3 — Contains the physical address of the base of the paging-structure
hierarchy and two flags (PCD and PWT). Only the most-significant bits (less the
lower 12 bits) of the base address are specified; the lower 12 bits of the address
are assumed to be 0. The first paging structure must thus be aligned to a page
(4-KByte) boundary. The PCD and PWT flags control caching of that paging
structure in the processor’s internal data caches (they do not control TLB caching
of page-directory information).

When using the physical address extension, the CR3 register contains the base
address of the page-directory-pointer table In IA-32e mode, the CR3 register
contains the base address of the PML4 table.

See also: Chapter 4, “Paging.”

CR4 — Contains a group of flags that enable several architectural extensions,
and indicate operating system or executive support for specific processor capabil-
ities. The control registers can be read and loaded (or modified) using the move-
to-or-from-control-registers forms of the MOV instruction. In protected mode,
the MOV instructions allow the control registers to be read or loaded (at privilege
level 0 only). This restriction means that application programs or operating-
system procedures (running at privilege levels 1, 2, or 3) are prevented from
reading or loading the control registers.

CR8 — Provides read and write access to the Task Priority Register (TPR). It
specifies the priority threshold value that operating systems use to control the
priority class of external interrupts allowed to interrupt the processor. This
register is available only in 64-bit mode. However, interrupt filtering continues to
apply in compatibility mode.

2-18 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

31(63) 20 181716151413 121110 9 8 7 6 5 4 3 2 1 0
s s|v
P[P|M|P|P|,|T|P|V
Reserved 'I‘E" M)"é' CGCASQSVM CR4
P X e|le|E|E|E|E|D|1|E
E|E
J |—FSGSBASE LI—OSFXSR
OSXSAVE — PCIDE OSXMMEXCPT
31(63) 121 54 32
P|P
. CR3
- clw
Page-Directory Base olT (PDBR)
31(63) 0
Page-Fault Linear Address CR2
31(63) 0
CR1
31302928 19 18 17 16 15 6543210
P[C|N Al |w N[E|T|E|M[P
G|D|W M| [P E|T|s|m|p|e| CRO
D Reserved

Figure 2-6. Control Registers

When loading a control register, reserved bits should always be set to the values
previously read. The flags in control registers are:

PG

CD

Paging (bit 31 of CR0O) — Enables paging when set; disables paging when
clear. When paging is disabled, all linear addresses are treated as physical
addresses. The PG flag has no effect if the PE flag (bit O of register CRO) is
not also set; setting the PG flag when the PE flag is clear causes a general-
protection exception (#GP). See also: Chapter 4, “Paging.”

On Intel 64 processors, enabling and disabling IA-32e mode operation also
requires modifying CRO.PG.

Cache Disable (bit 30 of CRO) — When the CD and NW flags are clear,
caching of memory locations for the whole of physical memory in the
processor’s internal (and external) caches is enabled. When the CD flag is
set, caching is restricted as described in Table 11-5. To prevent the processor
from accessing and updating its caches, the CD flag must be set and the
caches must be invalidated so that no cache hits can occur.

Vol.3A 2-19

SYSTEM ARCHITECTURE OVERVIEW

NW

AM

WP

NE

ET

TS

See also: Section 11.5.3, “Preventing Caching,” and Section 11.5, “Cache
Control.”

Not Write-through (bit 29 of CR0) — When the NW and CD flags are
clear, write-back (for Pentium 4, Intel Xeon, P6 family, and Pentium proces-
sors) or write-through (for Intel486 processors) is enabled for writes that hit
the cache and invalidation cycles are enabled. See Table 11-5 for detailed
information about the affect of the NW flag on caching for other settings of
the CD and NW flags.

Alignment Mask (bit 18 of CR0) — Enables automatic alignment checking
when set; disables alignment checking when clear. Alignment checking is
performed only when the AM flag is set, the AC flag in the EFLAGS register is
set, CPL is 3, and the processor is operating in either protected or virtual-
8086 mode.

Write Protect (bit 16 of CRO) — When set, inhibits supervisor-level proce-
dures from writing into read-only pages; when clear, allows supervisor-level
procedures to write into read-only pages (regardless of the U/S bit setting;
see Section 4.1.3 and Section 4.6). This flag facilitates implementation of the
copy-on-write method of creating a new process (forking) used by operating
systems such as UNIX.

Numeric Error (bit 5 of CR0) — Enables the native (internal) mechanism
for reporting x87 FPU errors when set; enables the PC-style x87 FPU error
reporting mechanism when clear. When the NE flag is clear and the IGNNE#
input is asserted, x87 FPU errors are ignored. When the NE flag is clear and
the IGNNE# input is deasserted, an unmasked x87 FPU error causes the
processor to assert the FERR# pin to generate an external interrupt and to
stop instruction execution immediately before executing the next waiting
floating-point instruction or WAIT/FWAIT instruction.

The FERR# pin is intended to drive an input to an external interrupt
controller (the FERR# pin emulates the ERROR# pin of the Intel 287 and
Intel 387 DX math coprocessors). The NE flag, IGNNE# pin, and FERR# pin
are used with external logic to implement PC-style error reporting. Using
FERR# and IGNNE# to handle floating-point exceptions is deprecated by
modern operating systems; this non-native approach also limits newer
processors to operate with one logical processor active.

See also: “Software Exception Handling” in Chapter 8, "Programming with
the x87 FPU,” and Appendix A, "EFLAGS Cross-Reference,” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1.

Extension Type (bit 4 of CR0) — Reserved in the Pentium 4, Intel Xeon, P6
family, and Pentium processors. In the Pentium 4, Intel Xeon, and P6 family
processors, this flag is hardcoded to 1. In the Intel386 and Intel486 proces-
sors, this flag indicates support of Intel 387 DX math coprocessor instruc-
tions when set.

Task Switched (bit 3 of CR0O) — Allows the saving of the x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 context on a task switch to be

2-20 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

delayed until an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction is
actually executed by the new task. The processor sets this flag on every task
switch and tests it when executing x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

e Ifthe TS flag is set and the EM flag (bit 2 of CRO) is clear, a device-not-
available exception (#NM) is raised prior to the execution of any x87
FPU/MMX/SSE/ SSE2/SSE3/SSSE3/SSE4 instruction; with the exception
of PAUSE, PREFETCHA, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH,
CRC32, and POPCNT. See the paragraph below for the special case of the
WAIT/FWAIT instructions.

e IftheTS flagis set and the MP flag (bit 1 of CRO) and EM flag are clear, an
#NM exception is not raised prior to the execution of an x87 FPU
WAIT/FWAIT instruction.

* If the EM flag is set, the setting of the TS flag has no affect on the
execution of x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

Table 2-1 shows the actions taken when the processor encounters an x87
FPU instruction based on the settings of the TS, EM, and MP flags. Table 12-1
and 13-1 show the actions taken when the processor encounters an
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction.

The processor does not automatically save the context of the x87 FPU, XMM,
and MXCSR registers on a task switch. Instead, it sets the TS flag, which
causes the processor to raise an #NM exception whenever it encounters an
x87 FPU/MMX/SSE /SSE2/SSE3/SSSE3/SSE4 instruction in the instruction
stream for the new task (with the exception of the instructions listed above).

The fault handler for the #NM exception can then be used to clear the TS flag (with
the CLTS instruction) and save the context of the x87 FPU, XMM, and MXCSR regis-
ters. If the task never encounters an x87 FPU/MMX/SSE/SSE2/SSE3//SSSE3/SSE4
instruction; the x87 FPU/MMX/SSE/SSE2/ SSE3/SSSE3/SSE4 context is never saved.

Table 2-1. Action Taken By x87 FPU Instructions for Different
Combinations of EM, MP, and TS

CRO Flags x87 FPU Instruction Type

EM MP TS Floating-Point WAIT/FWAIT
0 0 0 Execute Execute.

0 0 1 #NM Exception Execute.

0 1 0 Execute Execute.

0 1 1 #NM Exception #NM exception.

1 0 0 #NM Exception Execute.

1 0 1 #NM Exception Execute.

1 1 0 #NM Exception Execute.

Vol. 3A 2-21

SYSTEM ARCHITECTURE OVERVIEW

Table 2-1. Action Taken By x87 FPU Instructions for Different
Combinations of EM, MP, and TS

CRO Flags x87 FPU Instruction Type

1

‘ 1 ‘ 1 #NM Exception #NM exception.

EM

MP

PE

PCD

Emulation (bit 2 of CR0O) — Indicates that the processor does not have an
internal or external x87 FPU when set; indicates an x87 FPU is present when
clear. This flag also affects the execution of
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

When the EM flag is set, execution of an x87 FPU instruction generates a
device-not-available exception (#NM). This flag must be set when the
processor does not have an internal x87 FPU or is not connected to an
external math coprocessor. Setting this flag forces all floating-point instruc-
tions to be handled by software emulation. Table 9-2 shows the recom-
mended setting of this flag, depending on the IA-32 processor and x87 FPU
or math coprocessor present in the system. Table 2-1 shows the interaction
of the EM, MP, and TS flags.

Also, when the EM flag is set, execution of an MMX instruction causes an
invalid-opcode exception (#UD) to be generated (see Table 12-1). Thus, if an
IA-32 or Intel 64 processor incorporates MMX technology, the EM flag must
be set to 0 to enable execution of MMX instructions.

Similarly for SSE/SSE2/SSE3/SSSE3/SSE4 extensions, when the EM flag is
set, execution of most SSE/SSE2/SSE3/SSSE3/SSE4 instructions causes an
invalid opcode exception (#UD) to be generated (see Table 13-1). If an IA-32
or Intel 64 processor incorporates the SSE/SSE2/SSE3/SSSE3/SSE4 exten-
sions, the EM flag must be set to 0 to enable execution of these extensions.
SSE/SSE2/SSE3/SSSE3/SSE4 instructions not affected by the EM flag
include: PAUSE, PREFETCHhA, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH,
CRC32, and POPCNT.

Monitor Coprocessor (bit 1 of CR0). — Controls the interaction of the
WAIT (or FWAIT) instruction with the TS flag (bit 3 of CRO0). If the MP flag is
set, a WAIT instruction generates a device-not-available exception (#NM) if
the TS flag is also set. If the MP flag is clear, the WAIT instruction ignores the
setting of the TS flag. Table 9-2 shows the recommended setting of this flag,
depending on the IA-32 processor and x87 FPU or math coprocessor present
in the system. Table 2-1 shows the interaction of the MP, EM, and TS flags.

Protection Enable (bit 0 of CRO) — Enables protected mode when set;
enables real-address mode when clear. This flag does not enable paging
directly. It only enables segment-level protection. To enable paging, both the
PE and PG flags must be set.

See also: Section 9.9, "Mode Switching.”

Page-level Cache Disable (bit 4 of CR3) — Controls the memory type
used to access the first paging structure of the current paging-structure hier-

2-22 Vol. 3A

PWT

VME

PVI

TSD

DE

PSE

PAE

MCE

SYSTEM ARCHITECTURE OVERVIEW

archy. See Section 4.9, “Paging and Memory Typing”. This bit is not used if
paging is disabled, with PAE paging, or with IA-32e paging if CR4.PCIDE=1.

Page-level Write-Through (bit 3 of CR3) — Controls the memory type
used to access the first paging structure of the current paging-structure hier-
archy. See Section 4.9, “Paging and Memory Typing”. This bit is not used if
paging is disabled, with PAE paging, or with IA-32e paging if CR4.PCIDE=1.

Virtual-8086 Mode Extensions (bit 0 of CR4) — Enables interrupt- and
exception-handling extensions in virtual-8086 mode when set; disables the
extensions when clear. Use of the virtual mode extensions can improve the
performance of virtual-8086 applications by eliminating the overhead of
calling the virtual-8086 monitor to handle interrupts and exceptions that
occur while executing an 8086 program and, instead, redirecting the inter-
rupts and exceptions back to the 8086 program’s handlers. It also provides
hardware support for a virtual interrupt flag (VIF) to improve reliability of
running 8086 programs in multitasking and multiple-processor environ-
ments.

See also: Section 20.3, “Interrupt and Exception Handling in Virtual-8086
Mode.”

Protected-Mode Virtual Interrupts (bit 1 of CR4) — Enables hardware
support for a virtual interrupt flag (VIF) in protected mode when set; disables
the VIF flag in protected mode when clear.

See also: Section 20.4, “Protected-Mode Virtual Interrupts.”

Time Stamp Disable (bit 2 of CR4) — Restricts the execution of the
RDTSC instruction to procedures running at privilege level 0 when set; allows
RDTSC instruction to be executed at any privilege level when clear. This bit
also applies to the RDTSCP instruction if supported (if
CPUID.80000001H:EDX[27] = 1).

Debugging Extensions (bit 3 of CR4) — References to debug registers
DR4 and DR5 cause an undefined opcode (#UD) exception to be generated
when set; when clear, processor aliases references to registers DR4 and DR5
for compatibility with software written to run on earlier IA-32 processors.

See also: Section 17.2.2, “"Debug Registers DR4 and DR5.”

Page Size Extensions (bit 4 of CR4) — Enables 4-MByte pages with 32-bit
paging when set; restricts 32-bit paging to pages to 4 KBytes when clear.

See also: Section 4.3, “32-Bit Paging.”

Physical Address Extension (bit 5 of CR4) — When set, enables paging
to produce physical addresses with more than 32 bits. When clear, restricts
physical addresses to 32 bits. PAE must be set before entering IA-32e mode.

See also: Chapter 4, “Paging.”

Machine-Check Enable (bit 6 of CR4) — Enables the machine-check
exception when set; disables the machine-check exception when clear.

Vol. 3A 2-23

SYSTEM ARCHITECTURE OVERVIEW

PGE

PCE

See also: Chapter 15, “Machine-Check Architecture.”

Page Global Enable (bit 7 of CR4) — (Introduced in the P6 family proces-
sors.) Enables the global page feature when set; disables the global page

feature when clear. The global page feature allows frequently used or shared
pages to be marked as global to all users (done with the global flag, bit 8, in
a page-directory or page-table entry). Global pages are not flushed from the
translation-lookaside buffer (TLB) on a task switch or a write to register CR3.

When enabling the global page feature, paging must be enabled (by setting
the PG flag in control register CRO) before the PGE flag is set. Reversing this
sequence may affect program correctness, and processor performance will
be impacted.

See also: Section 4.10, “Caching Translation Information.”

Performance-Monitoring Counter Enable (bit 8 of CR4) — Enables
execution of the RDPMC instruction for programs or procedures running at
any protection level when set; RDPMC instruction can be executed only at
protection level 0 when clear.

OSFXSR

Operating System Support for FXSAVE and FXRSTOR instructions
(bit 9 of CR4) — When set, this flag: (1) indicates to software that the oper-
ating system supports the use of the FXSAVE and FXRSTOR instructions, (2)
enables the FXSAVE and FXRSTOR instructions to save and restore the
contents of the XMM and MXCSR registers along with the contents of the x87
FPU and MMX registers, and (3) enables the processor to execute
SSE/SSE2/SSE3/SSSE3/SSE4 instructions, with the exception of the PAUSE,
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and
POPCNT.

If this flag is clear, the FXSAVE and FXRSTOR instructions will save and
restore the contents of the x87 FPU and MMX instructions, but they may not
save and restore the contents of the XMM and MXCSR registers. Also, the
processor will generate an invalid opcode exception (#UD) if it attempts to
execute any SSE/SSE2/SSE3 instruction, with the exception of PAUSE,
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and
POPCNT. The operating system or executive must explicitly set this flag.

NOTE

CPUID feature flags FXSR indicates availability of the
FXSAVE/FXRSTOR instructions. The OSFXSR bit provides operating
system software with a means of enabling FXSAVE/FXRSTOR to
save/restore the contents of the X87 FPU, XMM and MXCSR registers.
Consequently OSFXSR bit indicates that the operating system
provides context switch support for SSE/SSE2/SSE3/SSSE3/SSE4.

2-24 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

OSXMMEXCPT

VMXE

SMXE

Operating System Support for Unmasked SIMD Floating-Point Excep-
tions (bit 10 of CR4) — When set, indicates that the operating system
supports the handling of unmasked SIMD floating-point exceptions through
an exception handler that is invoked when a SIMD floating-point exception
(#XF) is generated. SIMD floating-point exceptions are only generated by
SSE/SSE2/SSE3/SSE4.1 SIMD floating-point instructions.

The operating system or executive must explicitly set this flag. If this flag is
not set, the processor will generate an invalid opcode exception (#UD)
whenever it detects an unmasked SIMD floating-point exception.

VMX-Enable Bit (bit 13 of CR4) — Enables VMX operation when set. See
Chapter 23, “Introduction to Virtual-Machine Extensions.”

SMX-Enable Bit (bit 14 of CR4) — Enables SMX operation when set. See
Chapter 29, “VMX Instruction Reference” of Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3C.

FSGSBASE

PCIDE

FSGSBASE-Enable Bit (bit 16 of CR4) — Enables the instructions
RDFSBASE, RDGSBASE, WRFSBASE, and WRGSBASE.

PCID-Enable Bit (bit 17 of CR4) — Enables process-context identifiers
(PCIDs) when set. See Section 4.10.1, “Process-Context Identifiers
(PCIDs)". Can be set only in IA-32e mode (if IA32_EFER.LMA = 1).

OSXSAVE

SMEP

TPL

XSAVE and Processor Extended States-Enable Bit (bit 18 of CR4) —
When set, this flag: (1) indicates (via CPUID.01H:ECX.OSXSAVE[bit 271)
that the operating system supports the use of the XGETBV, XSAVE and
XRSTOR instructions by general software; (2) enables the XSAVE and
XRSTOR instructions to save and restore the x87 FPU state (including MMX
registers), the SSE state (XMM registers and MXCSR), along with other
processor extended states enabled in XCRO; (3) enables the processor to
execute XGETBV and XSETBV instructions in order to read and write XCRO.
See Section 2.6 and Chapter 13, “"System Programming for Instruction Set
Extensions and Processor Extended States”.

SMEP-Enable Bit (bit 20 of CR4) — Enables supervisor-mode execution
prevention (SMEP) when set. See Section 4.6, “"Access Rights”.

Task Priority Level (bit 3:0 of CR8) — This sets the threshold value corre-
sponding to the highest-priority interrupt to be blocked. A value of 0 means
all interrupts are enabled. This field is available in 64-bit mode. A value of 15
means all interrupts will be disabled.

Vol.3A 2-25

SYSTEM ARCHITECTURE OVERVIEW

2.5.1 CPUID Qualification of Control Register Flags

Not all flags in control register CR4 are implemented on all processors. With the
exception of the PCE flag, they can be qualified with the CPUID instruction to deter-
mine if they are implemented on the processor before they are used.

The CR8 register is available on processors that support Intel 64 architecture.

2.6 EXTENDED CONTROL REGISTERS (INCLUDING XCRO)

If CPUID.01H:ECX.XSAVE[bit 26] is 1, the processor supports one or more
extended control registers (XCRs). Currently, the only such register defined is
XCRO. This register specifies the set of processor states that the operating system
enables on that processor, e.g. x87 FPU state, SSE state, AVX state, and other
processor extended states that Intel 64 architecture may introduce in the future. The
0OS programs XCRO to reflect the features it supports.

63 210

Reserved for XCRO bit vector expansion

Reserved / Future processor extended states
AVX state
SSE state
x87 FPU/MMX state (must be 1)

|:| Reserved (must be 0)

Figure 2-7. XCRO

Software can access XCRO only if CR4.0SXSAVE[bit 18] = 1. (This bit is also readable
as CPUID.01H:ECX.0OSXSAVE[bit 27].) The layout of XCRO is architected to allow
software to use CPUID leaf function ODH to enumerate the set of bits that the
processor supports in XCRO (see CPUID instruction in Inte/® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A). Each processor state (X87 FPU
state, SSE state, AVX state, or a future processor extended state) is represented by
a bit in XCRO. The OS can enable future processor extended states in a forward
manner by specifying the appropriate bit mask value using the XSETBV instruction
according to the results of the CPUID leaf ODH.

With the exception of bit 63, each bit in XCRO corresponds to a subset of the
processor states. XCRO thus provides space for up to 63 sets of processor state
extensions. Bit 63 of XCRO is reserved for future expansion and will not represent a
processor extended state.

2-26 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

Currently, XCRO has three processor states defined, with up to 61 bits reserved for
future processor extended states:

® XCRO0.X87 (bit 0): This bit 0 must be 1. An attempt to write 0 to this bit causes a
#GP exception.

® XCRO.SSE (bit 1): If 1, XSAVE, XSAVEOPT, and XRSTOR can be used to manage
MXCSR and XMM registers (XMM0-XMM15 in 64-bit mode; otherwise XMMO-
XMM?7).

® XCRO.AVX (bit 2): If 1, AVX instructions can be executed and XSAVE, XSAVEOPT,
and XRSTOR can be used to manage the upper halves of the YMM registers
(YMMO-YMM15 in 64-bit mode; otherwise YMM0O-YMM7).

Any attempt to set a reserved bit (as determined by the contents of EAX and EDX
after executing CPUID with EAX=0DH, ECX= 0H) in XCRO for a given processor will
result in a #GP exception. An attempt to write 0 to XCR0.x87 (bit 0) will resultin a
#GP exception. An attempt to write 0 to XCR0.SSE (bit 1) and 1 to XCRO0.AVX (bit 2)
also results in a #GP exception.

If a bit in XCRO is 1, software can use the XSAVE instruction to save the corre-
sponding processor state to memory (see XSAVE instruction in Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2B).

After reset, all bits (except bit 0) in XCRO are cleared to zero, XCRO[0] is set to 1.

2.7 SYSTEM INSTRUCTION SUMMARY

System instructions handle system-level functions such as loading system registers,
managing the cache, managing interrupts, or setting up the debug registers. Many of
these instructions can be executed only by operating-system or executive proce-
dures (that is, procedures running at privilege level 0). Others can be executed at
any privilege level and are thus available to application programs.

Table 2-2 lists the system instructions and indicates whether they are available and
useful for application programs. These instructions are described in the Inte/® 64 and
IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B & 2C.

Table 2-2. Summary of System Instructions

Useful to Protected from
Instruction Description Application? Application?
LLDT Load LDT Register No Yes
SLDT Store LDT Register No No
LGDT Load GDT Register No Yes
SGDT Store GDT Register No No
LTR Load Task Register No Yes
STR Store Task Register No No

Vol. 3A 2-27

SYSTEM ARCHITECTURE OVERVIEW

Table 2-2. Summary of System Instructions (Contd.)

Useful to Protected from
Instruction Description Application? Application?
LIDT Load IDT Register No Yes
SIDT Store IDT Register No No
MOV CRn Load and store control registers No Yes
SMSW Store MSW Yes No
LMSW Load MSW No Yes
CLTS Clear TS flag in CRO No Yes
ARPL Adjust RPL Yes'-> No
LAR Load Access Rights Yes No
LSL Load Segment Limit Yes No
VERR Verify for Reading Yes No
VERW Verify for Writing Yes No
MOV DRn Load and store debug registers No Yes
INVD Invalidate cache, no writeback No Yes
WBINVD Invalidate cache, with writeback No Yes
INVLPG Invalidate TLB entry No Yes
HLT Halt Processor No Yes
LOCK (Prefix) Bus Lock Yes No
RSM Return from system management No Yes
mode
RDMSR3 Read Model-Specific Registers No Yes
WRMSR3 Write Model-Specific Registers No Yes
RDPMC* Read Performance-Monitoring Yes Yes?
Counter
RDTSC3 Read Time-Stamp Counter Yes Yes?
RDTSCP’/ Read Serialized Time-Stamp Counter Yes Yes?
XGETBV Return the state of XCRO Yes No
XSETBV Enable one or more processor No® Yes

extended states

2-28 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

Table 2-2. Summary of System Instructions (Contd.)

Useful to Protected from
Instruction Description Application? Application?

NOTES:
1. Useful to application programs running at a CPL of 1 or 2.

2. The TSD and PCE flags in control register CR4 control access to these instructions by application
programs running at a CPL of 3.

3. These instructions were introduced into the IA-32 Architecture with the Pentium processor.

4. This instruction was introduced into the IA-32 Architecture with the Pentium Pro processor and
the Pentium processor with MMX technology.

5. This instruction is not supported in 64-bit mode.

6. Application uses XGETBV to query which set of processor extended states are enabled.

7.RDTSCP is introduced in Intel Core i7 processor.

2.7.1 Loading and Storing System Registers

The GDTR, LDTR, IDTR, and TR registers each have a load and store instruction for
loading data into and storing data from the register:

®* LGDT (Load GDTR Register) — Loads the GDT base address and limit from
memory into the GDTR register.

® SGDT (Store GDTR Register) — Stores the GDT base address and limit from
the GDTR register into memory.

®* LIDT (Load IDTR Register) — Loads the IDT base address and limit from
memory into the IDTR register.

®* SIDT (Load IDTR Register — Stores the IDT base address and limit from the
IDTR register into memory.

® LLDT (Load LDT Register) — Loads the LDT segment selector and segment
descriptor from memory into the LDTR. (The segment selector operand can also
be located in a general-purpose register.)

® SLDT (Store LDT Register) — Stores the LDT segment selector from the LDTR
register into memory or a general-purpose register.

®* LTR (Load Task Register) — Loads segment selector and segment descriptor
for a TSS from memory into the task register. (The segment selector operand can
also be located in a general-purpose register.)

®* STR (Store Task Register) — Stores the segment selector for the current task
TSS from the task register into memory or a general-purpose register.

The LMSW (load machine status word) and SMSW (store machine status word)
instructions operate on bits 0 through 15 of control register CRO. These instructions
are provided for compatibility with the 16-bit Intel 286 processor. Programs written
to run on 32-bit IA-32 processors should not use these instructions. Instead, they
should access the control register CR0O using the MOV instruction.

Vol.3A 2-29

SYSTEM ARCHITECTURE OVERVIEW

The CLTS (clear TS flag in CRO) instruction is provided for use in handling a device-
not-available exception (#NM) that occurs when the processor attempts to execute a
floating-point instruction when the TS flag is set. This instruction allows the TS flag to
be cleared after the x87 FPU context has been saved, preventing further #NM excep-
tions. See Section 2.5, “Control Registers,” for more information on the TS flag.

The control registers (CRO, CR1, CR2, CR3, CR4, and CR8) are loaded using the MOV
instruction. The instruction loads a control register from a general-purpose register
or stores the content of a control register in a general-purpose register.

2.7.2 Verifying of Access Privileges

The processor provides several instructions for examining segment selectors and
segment descriptors to determine if access to their associated segments is allowed.
These instructions duplicate some of the automatic access rights and type checking
done by the processor, thus allowing operating-system or executive software to
prevent exceptions from being generated.

The ARPL (adjust RPL) instruction adjusts the RPL (requestor privilege level) of a
segment selector to match that of the program or procedure that supplied the
segment selector. See Section 5.10.4, “Checking Caller Access Privileges (ARPL
Instruction),” for a detailed explanation of the function and use of this instruction.
Note that ARPL is not supported in 64-bit mode.

The LAR (load access rights) instruction verifies the accessibility of a specified
segment and loads access rights information from the segment’s segment descriptor
into a general-purpose register. Software can then examine the access rights to
determine if the segment type is compatible with its intended use. See Section
5.10.1, “Checking Access Rights (LAR Instruction),” for a detailed explanation of the
function and use of this instruction.

The LSL (load segment limit) instruction verifies the accessibility of a specified
segment and loads the segment limit from the segment’s segment descriptor into a
general-purpose register. Software can then compare the segment limit with an
offset into the segment to determine whether the offset lies within the segment. See
Section 5.10.3, “"Checking That the Pointer Offset Is Within Limits (LSL Instruction),”
for a detailed explanation of the function and use of this instruction.

The VERR (verify for reading) and VERW (verify for writing) instructions verify if a
selected segment is readable or writable, respectively, at a given CPL. See Section
5.10.2, “Checking Read/Write Rights (VERR and VERW Instructions),” for a detailed
explanation of the function and use of this instruction.

2.7.3 Loading and Storing Debug Registers

Internal debugging facilities in the processor are controlled by a set of 8 debug regis-
ters (DR0O-DR7). The MOV instruction allows setup data to be loaded to and stored
from these registers.

2-30 Vol.3A

SYSTEM ARCHITECTURE OVERVIEW

On processors that support Intel 64 architecture, debug registers DRO-DR7 are 64
bits. In 32-bit modes and compatibility mode, writes to a debug register fill the upper
32 bits with zeros. Reads return the lower 32 bits. In 64-bit mode, the upper 32 bits
of DR6-DR7 are reserved and must be written with zeros. Writing one to any of the
upper 32 bits causes an exception, #GP(0).

In 64-bit mode, MOV DRn instructions read or write all 64 bits of a debug register
(operand-size prefixes are ignored). All 64 bits of DRO-DR3 are writable by software.
However, MOV DRn instructions do not check that addresses written to DRO-DR3 are
in the limits of the implementation. Address matching is supported only on valid
addresses generated by the processor implementation.

2.74 Invalidating Caches and TLBs

The processor provides several instructions for use in explicitly invalidating its caches
and TLB entries. The INVD (invalidate cache with no writeback) instruction invali-
dates all data and instruction entries in the internal caches and sends a signal to the
external caches indicating that they should be also be invalidated.

The WBINVD (invalidate cache with writeback) instruction performs the same func-
tion as the INVD instruction, except that it writes back modified lines in its internal
caches to memory before it invalidates the caches. After invalidating the internal
caches, WBINVD signals external caches to write back modified data and invalidate
their contents.

The INVLPG (invalidate TLB entry) instruction invalidates (flushes) the TLB entry for
a specified page.

2.7.5 Controlling the Processor

The HLT (halt processor) instruction stops the processor until an enabled interrupt
(such as NMI or SMI, which are normally enabled), a debug exception, the BINIT#
signal, the INIT# signal, or the RESET# signal is received. The processor generates a
special bus cycle to indicate that the halt mode has been entered.

Hardware may respond to this signal in a number of ways. An indicator light on the
front panel may be turned on. An NMI interrupt for recording diagnostic information
may be generated. Reset initialization may be invoked (note that the BINIT# pin was
introduced with the Pentium Pro processor). If any non-wake events are pending
during shutdown, they will be handled after the wake event from shutdown is
processed (for example, A20M# interrupts).

The LOCK prefix invokes a locked (atomic) read-modify-write operation when modi-
fying a memory operand. This mechanism is used to allow reliable communications
between processors in multiprocessor systems, as described below:

Vol. 3A 2-31

SYSTEM ARCHITECTURE OVERVIEW

® In the Pentium processor and earlier IA-32 processors, the LOCK prefix causes
the processor to assert the LOCK# signal during the instruction. This always
causes an explicit bus lock to occur.

® Inthe Pentium 4, Intel Xeon, and P6 family processors, the locking operation is
handled with either a cache lock or bus lock. If a memory access is cacheable and
affects only a single cache line, a cache lock is invoked and the system bus and
the actual memory location in system memory are not locked during the
operation. Here, other Pentium 4, Intel Xeon, or P6 family processors on the bus
write-back any modified data and invalidate their caches as necessary to
maintain system memory coherency. If the memory access is not cacheable
and/or it crosses a cache line boundary, the processor’s LOCK# signal is asserted
and the processor does not respond to requests for bus control during the locked
operation.

The RSM (return from SMM) instruction restores the processor (from a context
dump) to the state it was in prior to an system management mode (SMM) interrupt.

2.7.6 Reading Performance-Monitoring and Time-Stamp Counters

The RDPMC (read performance-monitoring counter) and RDTSC (read time-stamp
counter) instructions allow application programs to read the processor’s perfor-
mance-monitoring and time-stamp counters, respectively. Processors based on Intel
NetBurst® microarchitecture have eighteen 40-bit performance-monitoring
counters; P6 family processors have two 40-bit counters. Intel® Atom™ processors
and most of the processors based on the Intel Core microarchitecture support two
types of performance monitoring counters: two programmable performance
counters similar to those available in the P6 family, and three fixed-function perfor-
mance monitoring counters.

The programmable performance counters can support counting either the occurrence
or duration of events. Events that can be monitored on programmable counters
generally are model specific (except for architectural performance events enumer-
ated by CPUID leaf 0AH); they may include the number of instructions decoded,
interrupts received, or the number of cache loads. Individual counters can be set up
to monitor different events. Use the system instruction WRMSR to set up values in
IA32_PERFEVTSELO/1 (for Intel Atom, Intel Core 2, Intel Core Duo, and Intel
Pentium M processors), in one of the 45 ESCRs and one of the 18 CCCR MSRs (for
Pentium 4 and Intel Xeon processors); or in the PerfEvtSelO or the PerfEvtSell MSR
(for the P6 family processors). The RDPMC instruction loads the current count from
the selected counter into the EDX:EAX registers.

Fixed-function performance counters record only specific events that are defined in
Chapter 23, “Introduction to Virtual-Machine Extensions”, and the width/number of
fixed-function counters are enumerated by CPUID leaf OAH.

The time-stamp counter is a model-specific 64-bit counter that is reset to zero each
time the processor is reset. If not reset, the counter will increment ~9.5 x 1016
times per year when the processor is operating at a clock rate of 3GHz. At this

2-32 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

clock frequency, it would take over 190 years for the counter to wrap around. The
RDTSC instruction loads the current count of the time-stamp counter into the
EDX:EAX registers.

See Section 18.1, “Performance Monitoring Overview,” and Section 17.12, “Time-
Stamp Counter,” for more information about the performance monitoring and time-
stamp counters.

The RDTSC instruction was introduced into the IA-32 architecture with the Pentium
processor. The RDPMC instruction was introduced into the IA-32 architecture with the
Pentium Pro processor and the Pentium processor with MMX technology. Earlier
Pentium processors have two performance-monitoring counters, but they can be
read only with the RDMSR instruction, and only at privilege level 0.

2.7.6.1 Reading Counters in 64-Bit Mode

In 64-bit mode, RDTSC operates the same as in protected mode. The count in the
time-stamp counter is stored in EDX:EAX (or RDX[31:0]:RAX[31:0] with
RDX[63:32]:RAX[63:32] cleared).

RDPMC requires an index to specify the offset of the performance-monitoring
counter. In 64-bit mode for Pentium 4 or Intel Xeon processor families, the index is
specified in ECX[30:0]. The current count of the performance-monitoring counter is
stored in EDX:EAX (or RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32]
cleared).

2.7.7 Reading and Writing Model-Specific Registers

The RDMSR (read model-specific register) and WRMSR (write model-specific
register) instructions allow a processor’s 64-bit model-specific registers (MSRs) to be
read and written, respectively. The MSR to be read or written is specified by the value
in the ECX register.

RDMSR reads the value from the specified MSR to the EDX:EAX registers; WRMSR
writes the value in the EDX:EAX registers to the specified MSR. RDMSR and WRMSR
were introduced into the IA-32 architecture with the Pentium processor.

See Section 9.4, “"Model-Specific Registers (MSRs),” for more information.

2.7.7.1 Reading and Writing Model-Specific Registers in 64-Bit Mode

RDMSR and WRMSR require an index to specify the address of an MSR. In 64-bit
mode, the index is 32 bits; it is specified using ECX.

Vol.3A 2-33

SYSTEM ARCHITECTURE OVERVIEW

2.7.8 Enabling Processor Extended States

The XSETBYV instruction is required to enable OS support of individual processor
extended states in XCRO (see Section 2.6).

2-34 Vol.3A

CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT

This chapter describes the Intel 64 and IA-32 architecture’s protected-mode memory
management facilities, including the physical memory requirements, segmentation
mechanism, and paging mechanism.

See also: Chapter 5, “Protection” (for a description of the processor’s protection
mechanism) and Chapter 20, "8086 Emulation” (for a description of memory
addressing protection in real-address and virtual-8086 modes).

3.1 MEMORY MANAGEMENT OVERVIEW

The memory management facilities of the IA-32 architecture are divided into two
parts: segmentation and paging. Segmentation provides a mechanism of isolating
individual code, data, and stack modules so that multiple programs (or tasks) can
run on the same processor without interfering with one another. Paging provides a
mechanism for implementing a conventional demand-paged, virtual-memory system
where sections of a program’s execution environment are mapped into physical
memory as needed. Paging can also be used to provide isolation between multiple
tasks. When operating in protected mode, some form of segmentation must be used.
There is no mode bit to disable segmentation. The use of paging, however, is
optional.

These two mechanisms (segmentation and paging) can be configured to support
simple single-program (or single-task) systems, multitasking systems, or multiple-
processor systems that used shared memory.

As shown in Figure 3-1, segmentation provides a mechanism for dividing the
processor’s addressable memory space (called the linear address space) into
smaller protected address spaces called segments. Segments can be used to hold
the code, data, and stack for a program or to hold system data structures (such as a
TSS or LDT). If more than one program (or task) is running on a processor, each
program can be assigned its own set of segments. The processor then enforces the
boundaries between these segments and insures that one program does not interfere
with the execution of another program by writing into the other program’s segments.
The segmentation mechanism also allows typing of segments so that the operations
that may be performed on a particular type of segment can be restricted.

All the segments in a system are contained in the processor’s linear address space.

To locate a byte in a particular segment, a logical address (also called a far pointer)
must be provided. A logical address consists of a segment selector and an offset. The
segment selector is a unique identifier for a segment. Among other things it provides
an offset into a descriptor table (such as the global descriptor table, GDT) to a data

structure called a segment descriptor. Each segment has a segment descriptor, which
specifies the size of the segment, the access rights and privilege level for the

Vol. 3A 3-1

PROTECTED-MODE MEMORY MANAGEMENT

segment, the segment type, and the location of the first byte of the segment in the
linear address space (called the base address of the segment). The offset part of the
logical address is added to the base address for the segment to locate a byte within
the segment. The base address plus the offset thus forms a linear address in the
processor’s linear address space.

Logical Address
(or Far Pointer)

Segment l

Selector Offset Linear Address
| | | | Space
. Linear Address
Global Descriptor - .
Table (GDT) Dir | Table [Offset | igyé?g;:sl
Space
Segment
Segment Page Table Page
Descrptor(—/ | | | (| || || """
Bl I I I R il Page Directory Phy. Addr.
ﬂ|—> Lin. Addr. Entry S
* Entry >

SegmentJ g

Base Address

|~ Page

}7 Segmentation I Paging I

Figure 3-1. Segmentation and Paging

If paging is not used, the linear address space of the processor is mapped directly
into the physical address space of processor. The physical address space is defined as
the range of addresses that the processor can generate on its address bus.

Because multitasking computing systems commonly define a linear address space
much larger than it is economically feasible to contain all at once in physical memory,
some method of “virtualizing” the linear address space is needed. This virtualization
of the linear address space is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space
is simulated with a small amount of physical memory (RAM and ROM) and some disk

3-2 Vol.3A

PROTECTED-MODE MEMORY MANAGEMENT

storage. When using paging, each segment is divided into pages (typically 4 KBytes
each in size), which are stored either in physical memory or on the disk. The oper-
ating system or executive maintains a page directory and a set of page tables to keep
track of the pages. When a program (or task) attempts to access an address location
in the linear address space, the processor uses the page directory and page tables to
translate the linear address into a physical address and then performs the requested
operation (read or write) on the memory location.

If the page being accessed is not currently in physical memory, the processor inter-
rupts execution of the program (by generating a page-fault exception). The oper-
ating system or executive then reads the page into physical memory from the disk
and continues executing the program.

When paging is implemented properly in the operating-system or executive, the
swapping of pages between physical memory and the disk is transparent to the
correct execution of a program. Even programs written for 16-bit IA-32 processors
can be paged (transparently) when they are run in virtual-8086 mode.

3.2 USING SEGMENTS

The segmentation mechanism supported by the IA-32 architecture can be used to
implement a wide variety of system designs. These designs range from flat models
that make only minimal use of segmentation to protect programs to multi-
segmented models that employ segmentation to create a robust operating environ-
ment in which multiple programs and tasks can be executed reliably.

The following sections give several examples of how segmentation can be employed
in a system to improve memory management performance and reliability.

3.2.1 Basic Flat Model

The simplest memory model for a system is the basic “flat model,” in which the oper-
ating system and application programs have access to a continuous, unsegmented
address space. To the greatest extent possible, this basic flat model hides the
segmentation mechanism of the architecture from both the system designer and the
application programmer.

To implement a basic flat memory model with the IA-32 architecture, at least two
segment descriptors must be created, one for referencing a code segment and one
for referencing a data segment (see Figure 3-2). Both of these segments, however,
are mapped to the entire linear address space: that is, both segment descriptors
have the same base address value of 0 and the same segment limit of 4 GBytes. By
setting the segment limit to 4 GBytes, the segmentation mechanism is kept from
generating exceptions for out of limit memory references, even if no physical
memory resides at a particular address. ROM (EPROM) is generally located at the top
of the physical address space, because the processor begins execution at

Vol.3A 3-3

PROTECTED-MODE MEMORY MANAGEMENT

FFFF_FFFOH. RAM (DRAM) is placed at the bottom of the address space because the
initial base address for the DS data segment after reset initialization is 0.

3.2.2 Protected Flat Model

The protected flat model is similar to the basic flat model, except the segment limits
are set to include only the range of addresses for which physical memory actually
exists (see Figure 3-3). A general-protection exception (#GP) is then generated on
any attempt to access nonexistent memory. This model provides a minimum level of
hardware protection against some kinds of program bugs.

Linear Address Space
(or Physical Memory)
Segment FFFFFFFFH

Registers

Code

Code- and Data-Segment

Descriptors
SS Not Present

I I
Access Limit o Data and
ES Base Address u - Stack 0

DS

FS

»
\

GS

Figure 3-2. Flat Model

Segment Linear Address Space
Descriptors (or Physical Memory)
Segment imit ——>
Registers Access Limit Code FFFFFFFFH
Base Address E—
Not Present
>
Memory 1/O
Access | Limit -
Base Address
Data and
Stack
> 0

3-4 Vol. 3A

Figure 3-3. Protected Flat Model

PROTECTED-MODE MEMORY MANAGEMENT

More complexity can be added to this protected flat model to provide more protec-
tion. For example, for the paging mechanism to provide isolation between user and
supervisor code and data, four segments need to be defined: code and data
segments at privilege level 3 for the user, and code and data segments at privilege
level O for the supervisor. Usually these segments all overlay each other and start at
address 0 in the linear address space. This flat segmentation model along with a
simple paging structure can protect the operating system from applications, and by
adding a separate paging structure for each task or process, it can also protect appli-
cations from each other. Similar designs are used by several popular multitasking
operating systems.

3.23 Multi-Segment Model

A multi-segment model (such as the one shown in Figure 3-4) uses the full capabili-
ties of the segmentation mechanism to provided hardware enforced protection of
code, data structures, and programs and tasks. Here, each program (or task) is given
its own table of segment descriptors and its own segments. The segments can be
completely private to their assigned programs or shared among programs. Access to
all segments and to the execution environments of individual programs running on
the system is controlled by hardware.

Vol.3A 3-5

PROTECTED-MODE MEMORY MANAGEMENT

Segment Segment Linear Address Space
Registers Descriptors (or Physical Memory)
IE > Ac;essA\ Limit
ase Address Stack
[ss | » Access | Limit
Base Address
[os | » Access | Limit
Base Address Code
E > Access \ Limit
Base Address
Data
IE > Access \ Limit
Base Address
Data
- | Access \ Limit -
II g Base Address N -
— . Data
Access \ Limit
Base Address A
Access \ Limit
Base Address
— Data
Access \ Limit
Base Address
Access | Limit A
Base Address ST

Figure 3-4. Multi-Segment Model

Access checks can be used to protect not only against referencing an address outside
the limit of a segment, but also against performing disallowed operations in certain
segments. For example, since code segments are designated as read-only segments,
hardware can be used to prevent writes into code segments. The access rights infor-
mation created for segments can also be used to set up protection rings or levels.
Protection levels can be used to protect operating-system procedures from unautho-
rized access by application programs.

3.24 Segmentation in IA-32e Mode

In IA-32e mode of Intel 64 architecture, the effects of segmentation depend on
whether the processor is running in compatibility mode or 64-bit mode. In compati-
bility mode, segmentation functions just as it does using legacy 16-bit or 32-bit
protected mode semantics.

3-6 Vol.3A

PROTECTED-MODE MEMORY MANAGEMENT

In 64-bit mode, segmentation is generally (but not completely) disabled, creating a
flat 64-bit linear-address space. The processor treats the segment base of CS, DS,
ES, SS as zero, creating a linear address that is equal to the effective address. The FS
and GS segments are exceptions. These segment registers (which hold the segment
base) can be used as an additional base registers in linear address calculations. They
facilitate addressing local data and certain operating system data structures.

Note that the processor does not perform segment limit checks at runtime in 64-bit
mode.

3.25 Paging and Segmentation

Paging can be used with any of the segmentation models described in Figures 3-2,
3-3, and 3-4. The processor’s paging mechanism divides the linear address space
(into which segments are mapped) into pages (as shown in Figure 3-1). These linear-
address-space pages are then mapped to pages in the physical address space. The
paging mechanism offers several page-level protection facilities that can be used
with or instead of the segment-protection facilities. For example, it lets read-write
protection be enforced on a page-by-page basis. The paging mechanism also
provides two-level user-supervisor protection that can also be specified on a page-
by-page basis.

3.3 PHYSICAL ADDRESS SPACE

In protected mode, the IA-32 architecture provides a normal physical address space
of 4 GBytes (232bytes). This is the address space that the processor can address on
its address bus. This address space is flat (unsegmented), with addresses ranging
continuously from 0 to FFFFFFFFH. This physical address space can be mapped to
read-write memory, read-only memory, and memory mapped I/0. The memory
mapping facilities described in this chapter can be used to divide this physical
memory up into segments and/or pages.

Starting with the Pentium Pro processor, the IA-32 architecture also supports an
extension of the physical address space to 236 bytes (64 GBytes); with a maximum
physical address of FFFFFFFFFH. This extension is invoked in either of two ways:

® Using the physical address extension (PAE) flag, located in bit 5 of control
register CR4.

® Using the 36-bit page size extension (PSE-36) feature (introduced in the Pentium
Ill processors).

Physical address support has since been extended beyond 36 bits. See Chapter 4,
“Paging” for more information about 36-bit physical addressing.

Vol.3A 3-7

PROTECTED-MODE MEMORY MANAGEMENT

3.3.1 Intel® 64 Processors and Physical Address Space

On processors that support Intel 64 architecture (CPUID.80000001:EDX[29] = 1),
the size of the physical address range is implementation-specific and indicated by
CPUID.80000008H:EAX[bits 7-01].

For the format of information returned in EAX, see "CPUID—CPU Identification” in
Chapter 3 of the Inte/® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A. See also: Chapter 4, “Paging.”

3.4 LOGICAL AND LINEAR ADDRESSES

At the system-architecture level in protected mode, the processor uses two stages of
address translation to arrive at a physical address: logical-address translation and
linear address space paging.

Even with the minimum use of segments, every byte in the processor’s address
space is accessed with a logical address. A logical address consists of a 16-bit
segment selector and a 32-bit offset (see Figure 3-5). The segment selector identi-
fies the segment the byte is located in and the offset specifies the location of the byte
in the segment relative to the base address of the segment.

The processor translates every logical address into a linear address. A linear address
is a 32-bit address in the processor’s linear address space. Like the physical address
space, the linear address space is a flat (unsegmented), 232-byte address space,
with addresses ranging from 0 to FFFFFFFFH. The linear address space contains all
the segments and system tables defined for a system.

To translate a logical address into a linear address, the processor does the following:

1. Uses the offset in the segment selector to locate the segment descriptor for the
segment in the GDT or LDT and reads it into the processor. (This step is needed
only when a new segment selector is loaded into a segment register.)

2. Examines the segment descriptor to check the access rights and range of the
segment to insure that the segment is accessible and that the offset is within the
limits of the segment.

3. Adds the base address of the segment from the segment descriptor to the offset
to form a linear address.

3-8 Vol.3A

PROTECTED-MODE MEMORY MANAGEMENT

15 0 31(63) 0
Seg. Selector | Offset (Effective Address) |

Logical
Address

Descriptor Table

Segment

Base Address
M > +
Descriptor .

31(63) 0
| Linear Address |

Figure 3-5. Logical Address to Linear Address Translation

If paging is not used, the processor maps the linear address directly to a physical
address (that is, the linear address goes out on the processor’s address bus). If the
linear address space is paged, a second level of address translation is used to trans-
late the linear address into a physical address.

See also: Chapter 4, “Paging.”

3.4.1 Logical Address Translation in IA-32e Mode

In IA-32e mode, an Intel 64 processor uses the steps described above to translate a
logical address to a linear address. In 64-bit mode, the offset and base address of the
segment are 64-bits instead of 32 bits. The linear address format is also 64 bits wide
and is subject to the canonical form requirement.

Each code segment descriptor provides an L bit. This bit allows a code segment to
execute 64-bit code or legacy 32-bit code by code segment.

3.4.2 Segment Selectors

A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not
point directly to the segment, but instead points to the segment descriptor that
defines the segment. A segment selector contains the following items:

Index (Bits 3 through 15) — Selects one of 8192 descriptors in the GDT or
LDT. The processor multiplies the index value by 8 (the number of
bytes in a segment descriptor) and adds the result to the base address
of the GDT or LDT (from the GDTR or LDTR register, respectively).

Vol.3A 3-9

PROTECTED-MODE MEMORY MANAGEMENT

TI (table indicator) flag
(Bit 2) — Specifies the descriptor table to use: clearing this flag
selects the GDT; setting this flag selects the current LDT.

15 3210
Index mRPL‘

Table Indicator
0=GDT
1=LDT

Requested Privilege Level (RPL)

Figure 3-6. Segment Selector

Requested Privilege Level (RPL)
(Bits 0 and 1) — Specifies the privilege level of the selector. The priv-
ilege level can range from 0 to 3, with 0 being the most privileged
level. See Section 5.5, “Privilege Levels”, for a description of the rela-
tionship of the RPL to the CPL of the executing program (or task) and
the descriptor privilege level (DPL) of the descriptor the segment
selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points
to this entry of the GDT (that is, a segment selector with an index of 0 and the TI flag
set to 0) is used as a “null segment selector.” The processor does not generate an
exception when a segment register (other than the CS or SS registers) is loaded with
a null selector. It does, however, generate an exception when a segment register
holding a null selector is used to access memory. A null selector can be used to
initialize unused segment registers. Loading the CS or SS register with a null
segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable,
but the values of selectors are usually assigned or modified by link editors or linking
loaders, not application programs.

343 Segment Registers

To reduce address translation time and coding complexity, the processor provides
registers for holding up to 6 segment selectors (see Figure 3-7). Each of these
segment registers support a specific kind of memory reference (code, stack, or
data). For virtually any kind of program execution to take place, at least the code-
segment (CS), data-segment (DS), and stack-segment (SS) registers must be
loaded with valid segment selectors. The processor also provides three additional
data-segment registers (ES, FS, and GS), which can be used to make additional data
segments available to the currently executing program (or task).

3-10 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

For a program to access a segment, the segment selector for the segment must have
been loaded in one of the segment registers. So, although a system can define thou-
sands of segments, only 6 can be available for immediate use. Other segments can
be made available by loading their segment selectors into these registers during
program execution.

Visible Part Hidden Part
Segment Selector Base Address, Limit, Access Information | CS
SS
DS
ES
FS
GS

Figure 3-7. Segment Registers

Every segment register has a “visible” part and a “hidden” part. (The hidden part is
sometimes referred to as a “descriptor cache” or a “shadow register.”) When a
segment selector is loaded into the visible part of a segment register, the processor
also loads the hidden part of the segment register with the base address, segment
limit, and access control information from the segment descriptor pointed to by the
segment selector. The information cached in the segment register (visible and
hidden) allows the processor to translate addresses without taking extra bus cycles
to read the base address and limit from the segment descriptor. In systems in which
multiple processors have access to the same descriptor tables, it is the responsibility
of software to reload the segment registers when the descriptor tables are modified.
If this is not done, an old segment descriptor cached in a segment register might be
used after its memory-resident version has been modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS
instructions. These instructions explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL, JMP, and
RET instructions, the SYSENTER and SYSEXIT instructions, and the IRET, INTh,
INTO and INT3 instructions. These instructions change the contents of the CS
register (and sometimes other segment registers) as an incidental part of their
operation.

The MOV instruction can also be used to store visible part of a segment register in a
general-purpose register.

Vol. 3A 3-11

PROTECTED-MODE MEMORY MANAGEMENT

344 Segment Loading Instructions in IA-32e Mode

Because ES, DS, and SS segment registers are not used in 64-bit mode, their fields
(base, limit, and attribute) in segment descriptor registers are ignored. Some forms
of segment load instructions are also invalid (for example, LDS, POP ES). Address
calculations that reference the ES, DS, or SS segments are treated as if the segment
base is zero.

The processor checks that all linear-address references are in canonical form instead
of performing limit checks. Mode switching does not change the contents of the

segment registers or the associated descriptor registers. These registers are also not
changed during 64-bit mode execution, unless explicit segment loads are performed.

In order to set up compatibility mode for an application, segment-load instructions
(MOV to Sreg, POP Sreg) work normally in 64-bit mode. An entry is read from the
system descriptor table (GDT or LDT) and is loaded in the hidden portion of the
segment descriptor register. The descriptor-register base, limit, and attribute fields
are all loaded. However, the contents of the data and stack segment selector and the
descriptor registers are ignored.

When FS and GS segment overrides are used in 64-bit mode, their respective base
addresses are used in the linear address calculation: (FS or GS).base + index +
displacement. FS.base and GS.base are then expanded to the full linear-address size
supported by the implementation. The resulting effective address calculation can
wrap across positive and negative addresses; the resulting linear address must be
canonical.

In 64-bit mode, memory accesses using FS-segment and GS-segment overrides are
not checked for a runtime limit nor subjected to attribute-checking. Normal segment
loads (MOV to Sreg and POP Sreg) into FS and GS load a standard 32-bit base value
in the hidden portion of the segment descriptor register. The base address bits above
the standard 32 bits are cleared to O to allow consistency for implementations that
use less than 64 bits.

The hidden descriptor register fields for FS.base and GS.base are physically mapped
to MSRs in order to load all address bits supported by a 64-bit implementation. Soft-
ware with CPL = 0 (privileged software) can load all supported linear-address bits
into FS.base or GS.base using WRMSR. Addresses written into the 64-bit FS.base and
GS.base registers must be in canonical form. A WRMSR instruction that attempts to
write a non-canonical address to those registers causes a #GP fault.

When in compatibility mode, FS and GS overrides operate as defined by 32-bit mode
behavior regardless of the value loaded into the upper 32 linear-address bits of the
hidden descriptor register base field. Compatibility mode ignores the upper 32 bits
when calculating an effective address.

A new 64-bit mode instruction, SWAPGS, can be used to load GS base. SWAPGS
exchanges the kernel data structure pointer from the IA32_KernelGSbase MSR with
the GS base register. The kernel can then use the GS prefix on normal memory refer-
ences to access the kernel data structures. An attempt to write a non-canonical value
(using WRMSR) to the IA32_KernelGSBase MSR causes a #GP fault.

3-12 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

3.4.5 Segment Descriptors

A segment descriptor is a data structure in a GDT or LDT that provides the processor
with the size and location of a segment, as well as access control and status informa-
tion. Segment descriptors are typically created by compilers, linkers, loaders, or the
operating system or executive, but not application programs. Figure 3-8 illustrates
the general descriptor format for all types of segment descriptors.

31 242322212019 1615 14 13 12 11 8 7 0
D| |A| Seg. D
Base 31:24 G|/|L|v| Limit |P| p [S| Type Base 23:16 4
B L| 19:16 L
31 1615 0
Base Address 15:00 Segment Limit 15:00 0
L — 64-bit code segment (IA-32e mode only)
AVL — Available for use by system software

BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

DPL — Descriptor privilege level

G — Granularity

LIMIT — Segment Limit

P — Segment present

S — Descriptor type (0 = system; 1 = code or data)

TYPE — Segment type

Figure 3-8. Segment Descriptor

The flags and fields in a segment descriptor are as follows:

Segment limit field
Specifies the size of the segment. The processor puts together the
two segment limit fields to form a 20-bit value. The processor inter-
prets the segment limit in one of two ways, depending on the setting
of the G (granularity) flag:

e If the granularity flag is clear, the segment size can range from
1 byte to 1 MByte, in byte increments.

e If the granularity flag is set, the segment size can range from
4 KBytes to 4 GBytes, in 4-KByte increments.

The processor uses the segment limit in two different ways,
depending on whether the segment is an expand-up or an expand-
down segment. See Section 3.4.5.1, “"Code- and Data-Segment
Descriptor Types”, for more information about segment types. For
expand-up segments, the offset in a logical address can range from 0

Vol.3A 3-13

PROTECTED-MODE MEMORY MANAGEMENT

to the segment limit. Offsets greater than the segment limit generate
general-protection exceptions (#GP, for all sesgment other than SS) or
stack-fault exceptions (#SS for the SS segment). For expand-down
segments, the segment limit has the reverse function; the offset can
range from the segment limit plus 1 to FFFFFFFFH or FFFFH,
depending on the setting of the B flag. Offsets less than or equal to
the segment limit generate general-protection exceptions or stack-
fault exceptions. Decreasing the value in the segment limit field for an
expand-down segment allocates new memory at the bottom of the
segment's address space, rather than at the top. IA-32 architecture
stacks always grow downwards, making this mechanism convenient
for expandable stacks.

Base address fields

Type field

Defines the location of byte 0 of the segment within the 4-GByte
linear address space. The processor puts together the three base
address fields to form a single 32-bit value. Segment base addresses
should be aligned to 16-byte boundaries. Although 16-byte alignment
is not required, this alignment allows programs to maximize perfor-
mance by aligning code and data on 16-byte boundaries.

Indicates the segment or gate type and specifies the kinds of access
that can be made to the segment and the direction of growth. The
interpretation of this field depends on whether the descriptor type flag
specifies an application (code or data) descriptor or a system
descriptor. The encoding of the type field is different for code, data,
and system descriptors (see Figure 5-1). See Section 3.4.5.1, “Code-
and Data-Segment Descriptor Types”, for a description of how this
field is used to specify code and data-segment types.

S (descriptor type) flag

Specifies whether the segment descriptor is for a system segment
(S flag is clear) or a code or data segment (S flag is set).

DPL (descriptor privilege level) field

Specifies the privilege level of the segment. The privilege level can
range from 0 to 3, with 0 being the most privileged level. The DPL is
used to control access to the segment. See Section 5.5, “Privilege
Levels”, for a description of the relationship of the DPL to the CPL of
the executing code segment and the RPL of a segment selector.

P (segment-present) flag

3-14 Vol. 3A

Indicates whether the segment is present in memory (set) or not
present (clear). If this flag is clear, the processor generates a
segment-not-present exception (#NP) when a segment selector that
points to the segment descriptor is loaded into a segment register.
Memory management software can use this flag to control which
segments are actually loaded into physical memory at a given time. It
offers a control in addition to paging for managing virtual memory.

PROTECTED-MODE MEMORY MANAGEMENT

Figure 3-9 shows the format of a segment descriptor when the
segment-present flag is clear. When this flag is clear, the operating
system or executive is free to use the locations marked “Available” to
store its own data, such as information regarding the whereabouts of
the missing segment.

D/B (default operation size/default stack pointer size and/or upper bound)

flag

Performs different functions depending on whether the segment
descriptor is an executable code segment, an expand-down data
segment, or a stack segment. (This flag should always be set to 1 for
32-bit code and data segments and to 0 for 16-bit code and data
segments.)

o Executable code segment. The flag is called the D flag and it
indicates the default length for effective addresses and operands
referenced by instructions in the segment. If the flag is set, 32-bit
addresses and 32-bit or 8-bit operands are assumed; if it is clear,
16-bit addresses and 16-bit or 8-bit operands are assumed.

The instruction prefix 66H can be used to select an operand size
other than the default, and the prefix 67H can be used select an
address size other than the default.

¢ Stack segment (data segment pointed to by the SS
register). The flag is called the B (big) flag and it specifies the
size of the stack pointer used for implicit stack operations (such as
pushes, pops, and calls). If the flag is set, a 32-bit stack pointer is
used, which is stored in the 32-bit ESP register; if the flag is clear,
a 16-bit stack pointer is used, which is stored in the 16-bit SP
register. If the stack segment is set up to be an expand-down data
segment (described in the next paragraph), the B flag also
specifies the upper bound of the stack segment.

o Expand-down data segment. The flag is called the B flag and it
specifies the upper bound of the segment. If the flag is set, the
upper bound is FFFFFFFFH (4 GBytes); if the flag is clear, the
upper bound is FFFFH (64 KBytes).

161514 1312 11 87 0
Available o P [S| Type Available 4
L
0
Available 0

Figure 3-9. Segment Descriptor When Segment-Present Flag Is Clear

Vol.3A 3-15

PROTECTED-MODE MEMORY MANAGEMENT

G (granularity) flag
Determines the scaling of the segment limit field. When the granu-
larity flag is clear, the segment limit is interpreted in byte units; when
flag is set, the segment limit is interpreted in 4-KByte units. (This flag
does not affect the granularity of the base address; it is always byte
granular.) When the granularity flag is set, the twelve least significant
bits of an offset are not tested when checking the offset against the
segment limit. For example, when the granularity flag is set, a limit of
0 results in valid offsets from 0 to 4095.

L (64-bit code segment) flag
In IA-32e mode, bit 21 of the second doubleword of the segment
descriptor indicates whether a code segment contains native 64-bit
code. A value of 1 indicates instructions in this code segment are
executed in 64-bit mode. A value of 0 indicates the instructions in this
code segment are executed in compatibility mode. If L-bit is set, then
D-bit must be cleared. When not in IA-32e mode or for non-code
segments, bit 21 is reserved and should always be set to 0.

Available and reserved bits
Bit 20 of the second doubleword of the segment descriptor is available
for use by system software.

3.4.5.1 Code- and Data-Segment Descriptor Types

When the S (descriptor type) flag in a segment descriptor is set, the descriptor is for
either a code or a data segment. The highest order bit of the type field (bit 11 of the
second double word of the segment descriptor) then determines whether the
descriptor is for a data segment (clear) or a code segment (set).

For data segments, the three low-order bits of the type field (bits 8, 9, and 10) are
interpreted as accessed (A), write-enable (W), and expansion-direction (E). See
Table 3-1 for a description of the encoding of the bits in the type field for code and
data segments. Data segments can be read-only or read/write segments, depending
on the setting of the write-enable bit.

3-16 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

Table 3-1. Code- and Data-Segment Types

Type Field Descriptor Description
Decimal | 11 | 10| 9 | 8 Type
€ W A
0 0 0 0 0 Data Read-Only
1 0 0 0 1 Data Read-Only, accessed
2 0 0 1 0 Data Read/Write
3 0 0 1 1 Data Read/Write, accessed
4 0 1 0 0 Data Read-Only, expand-down
5 0 1 0 1 Data Read-Only, expand-down, accessed
6 0 1 1 0 Data Read/Write, expand-down
7 0 1 1 1 Data Read/Write, expand-down, accessed
C R A
8 1 0 0 0 Code Execute-Only
1 0 0 1 Code Execute-Only, accessed

10 1 0 1 0 Code Execute/Read
11 1 0 1 1 Code Execute/Read, accessed
12 1 1 0 0 Code Execute-Only, conforming
13 1 1 0 1 Code Execute-Only, conforming, accessed
14 1 1 1 0 Code Execute/Read, conforming
15 1 1 1 1 Code Execute/Read, conforming, accessed

Stack segments are data segments which must be read/write segments. Loading the
SS register with a segment selector for a nonwritable data segment generates a
general-protection exception (#GP). If the size of a stack segment needs to be
changed dynamically, the stack segment can be an expand-down data segment
(expansion-direction flag set). Here, dynamically changing the segment limit causes
stack space to be added to the bottom of the stack. If the size of a stack segment is
intended to remain static, the stack segment may be either an expand-up or expand-
down type.

The accessed bit indicates whether the segment has been accessed since the last
time the operating-system or executive cleared the bit. The processor sets this bit
whenever it loads a segment selector for the segment into a segment register,
assuming that the type of memory that contains the segment descriptor supports
processor writes. The bit remains set until explicitly cleared. This bit can be used both
for virtual memory management and for debugging.

Vol.3A 3-17

PROTECTED-MODE MEMORY MANAGEMENT

For code segments, the three low-order bits of the type field are interpreted as
accessed (A), read enable (R), and conforming (C). Code segments can be execute-
only or execute/read, depending on the setting of the read-enable bit. An
execute/read segment might be used when constants or other static data have been
placed with instruction code in a ROM. Here, data can be read from the code segment
either by using an instruction with a CS override prefix or by loading a segment
selector for the code segment in a data-segment register (the DS, ES, FS, or GS
registers). In protected mode, code segments are not writable.

Code segments can be either conforming or nonconforming. A transfer of execution
into a more-privileged conforming segment allows execution to continue at the
current privilege level. A transfer into a nonconforming segment at a different privi-
lege level results in a general-protection exception (#GP), unless a call gate or task
gate is used (see Section 5.8.1, “"Direct Calls or Jumps to Code Segments”, for more
information on conforming and nonconforming code segments). System utilities that
do not access protected facilities and handlers for some types of exceptions (such as,
divide error or overflow) may be loaded in conforming code segments. Utilities that
need to be protected from less privileged programs and procedures should be placed
in nonconforming code segments.

NOTE

Execution cannot be transferred by a call or a jump to a less-
privileged (numerically higher privilege level) code segment,
regardless of whether the target segment is a conforming or noncon-
forming code segment. Attempting such an execution transfer will
result in a general-protection exception.

All data segments are nonconforming, meaning that they cannot be accessed by less
privileged programs or procedures (code executing at numerically high privilege
levels). Unlike code segments, however, data segments can be accessed by more
privileged programs or procedures (code executing at numerically lower privilege
levels) without using a special access gate.

If the segment descriptors in the GDT or an LDT are placed in ROM, the processor can
enter an indefinite loop if software or the processor attempts to update (write to) the
ROM-based segment descriptors. To prevent this problem, set the accessed bits for
all segment descriptors placed in a ROM. Also, remove operating-system or executive
code that attempts to modify segment descriptors located in ROM.

3.5 SYSTEM DESCRIPTOR TYPES

When the S (descriptor type) flag in a segment descriptor is clear, the descriptor type
is a system descriptor. The processor recognizes the following types of system
descriptors:

® Local descriptor-table (LDT) segment descriptor.

3-18 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

®* Task-state segment (TSS) descriptor.

® (Call-gate descriptor.
® Interrupt-gate descriptor.
®* Trap-gate descriptor.
®* Task-gate descriptor.

These descriptor types fall into two categories: system-segment descriptors and gate
descriptors. System-segment descriptors point to system segments (LDT and TSS
segments). Gate descriptors are in themselves “gates,” which hold pointers to proce-
dure entry points in code segments (call, interrupt, and trap gates) or which hold
segment selectors for TSS’s (task gates).

Table 3-2 shows the encoding of the type field for system-segment descriptors and
gate descriptors. Note that system descriptors in IA-32e mode are 16 bytes instead

of 8 bytes.
Table 3-2. System-Segment and Gate-Descriptor Types
Type Field Description
Decimal 11 |10 | 9 32-Bit Mode IA-32e Mode
0 0 0 0 0 | Reserved Upper 8 byte of an 16-
byte descriptor

1 0 0 0 1 | 16-bit TSS (Available) Reserved

2 0 0 1 0 |LDT LDT

3 0 0 1 1 | 16-bit TSS (Busy) Reserved

4 0 1 0 0 | 16-bit Call Gate Reserved

5 0 1 0 1 | Task Gate Reserved

6 0 1 1 0 | 16-bit Interrupt Gate Reserved

7 0 1 1 1 16-bit Trap Gate Reserved

8 1 0 0 0 | Reserved Reserved

9 1 0 0 1 | 32-bit TSS (Available) 64-bit TSS (Available)
10 1 0 1 0 | Reserved Reserved
11 1 0 1 1 | 32-bit TSS (Busy) 64-bit TSS (Busy)
12 1 1 0 0 | 32-bit Call Gate 64-bit Call Gate
13 1 1 0 1 | Reserved Reserved
14 1 1 1 0 | 32-bit Interrupt Gate 64-bit Interrupt Gate
15 1 1 1 1 | 32-bit Trap Gate 64-bit Trap Gate

Vol.3A 3-19

PROTECTED-MODE MEMORY MANAGEMENT

See also: Section 3.5.1, "Segment Descriptor Tables”, and Section 7.2.2, “TSS
Descriptor” (for more information on the system-segment descriptors); see Section
5.8.3, “Call Gates”, Section 6.11, “"IDT Descriptors”, and Section 7.2.5, “Task-Gate
Descriptor” (for more information on the gate descriptors).

3.5.1 Segment Descriptor Tables

A segment descriptor table is an array of segment descriptors (see Figure 3-10). A
descriptor table is variable in length and can contain up to 8192 (213) 8-byte descrip-
tors. There are two kinds of descriptor tables:

® The global descriptor table (GDT)
® The local descriptor tables (LDT)

GDTR Register

LDTR Register

Limit | Limit
Base Address Base Address

Seg. Sel.

Global Local
Descriptor Descriptor
Table (GDT) Table (LDT)
N ¢ ¢
I TI=0 TI=1
Segment
Selector
56 56
48 48
40 40
32 32
24 24
16 16
8 8
First Descriptor in
GDT is Not Used 0 0

Figure 3-10. Global and Local Descriptor Tables

3-20 Vol.3A

PROTECTED-MODE MEMORY MANAGEMENT

Each system must have one GDT defined, which may be used for all programs and
tasks in the system. Optionally, one or more LDTs can be defined. For example, an
LDT can be defined for each separate task being run, or some or all tasks can share
the same LDT.

The GDT is not a segment itself; instead, it is a data structure in linear address space.
The base linear address and limit of the GDT must be loaded into the GDTR register
(see Section 2.4, "Memory-Management Registers”). The base addresses of the GDT
should be aligned on an eight-byte boundary to yield the best processor perfor-
mance. The limit value for the GDT is expressed in bytes. As with segments, the limit
value is added to the base address to get the address of the last valid byte. A limit
value of 0 results in exactly one valid byte. Because segment descriptors are always
8 bytes long, the GDT limit should always be one less than an integral multiple of
eight (thatis, 8N - 1).

The first descriptor in the GDT is not used by the processor. A segment selector to
this “null descriptor” does not generate an exception when loaded into a data-
segment register (DS, ES, FS, or GS), but it always generates a general-protection
exception (#GP) when an attempt is made to access memory using the descriptor. By
initializing the segment registers with this segment selector, accidental reference to
unused segment registers can be guaranteed to generate an exception.

The LDT is located in a system segment of the LDT type. The GDT must contain a
segment descriptor for the LDT segment. If the system supports multiple LDTs, each
must have a separate segment selector and segment descriptor in the GDT. The
segment descriptor for an LDT can be located anywhere in the GDT. See Section 3.5,
“System Descriptor Types”, information on the LDT segment-descriptor type.

An LDT is accessed with its segment selector. To eliminate address translations when
accessing the LDT, the segment selector, base linear address, limit, and access rights
of the LDT are stored in the LDTR register (see Section 2.4, "Memory-Management
Registers”).

When the GDTR register is stored (using the SGDT instruction), a 48-bit “pseudo-
descriptor” is stored in memory (see top diagram in Figure 3-11). To avoid alignment
check faults in user mode (privilege level 3), the pseudo-descriptor should be located
at an odd word address (that is, address MOD 4 is equal to 2). This causes the
processor to store an aligned word, followed by an aligned doubleword. User-mode
programs normally do not store pseudo-descriptors, but the possibility of generating
an alignment check fault can be avoided by aligning pseudo-descriptors in this way.
The same alignment should be used when storing the IDTR register using the SIDT
instruction. When storing the LDTR or task register (using the SLDT or STR instruc-
tion, respectively), the pseudo-descriptor should be located at a doubleword address
(that is, address MOD 4 is equal to 0).

Vol. 3A 3-21

PROTECTED-MODE MEMORY MANAGEMENT

47 16 15 0
| 32-bitBase Address | Limit |

79 16 15 0
| 64-bitBase Address | Limit |

Figure 3-11. Pseudo-Descriptor Formats

3.5.2 Segment Descriptor Tables in IA-32e Mode

In IA-32e mode, a segment descriptor table can contain up to 8192 (213) 8-byte
descriptors. An entry in the segment descriptor table can be 8 bytes. System descrip-
tors are expanded to 16 bytes (occupying the space of two entries).

GDTR and LDTR registers are expanded to hold 64-bit base address. The corre-
sponding pseudo-descriptor is 80 bits. (see the bottom diagram in Figure 3-11).

The following system descriptors expand to 16 bytes:
— Call gate descriptors (see Section 5.8.3.1, “IA-32e Mode Call Gates”)
— IDT gate descriptors (see Section 6.14.1, “64-Bit Mode IDT")

— LDT and TSS descriptors (see Section 7.2.3, “TSS Descriptor in 64-bit
mode”).

3-22 Vol.3A

CHAPTER 4
PAGING

Chapter 3 explains how segmentation converts logical addresses to linear addresses.
Paging (or linear-address translation) is the process of translating linear addresses
so that they can be used to access memory or I/O devices. Paging translates each
linear address to a physical address and determines, for each translation, what
accesses to the linear address are allowed (the address’s access rights) and the
type of caching used for such accesses (the address’s memory type).

Intel-64 processors support three different paging modes. These modes are identi-
fied and defined in Section 4.1. Section 4.2 gives an overview of the translation
mechanism that is used in all modes. Section 4.3, Section 4.4, and Section 4.5
discuss the three paging modes in detail.

Section 4.6 details how paging determines and uses access rights. Section 4.7
discusses exceptions that may be generated by paging (page-fault exceptions).
Section 4.8 considers data which the processor writes in response to linear-address
accesses (accessed and dirty flags).

Section 4.9 describes how paging determines the memory types used for accesses to
linear addresses. Section 4.10 provides details of how a processor may cache infor-
mation about linear-address translation. Section 4.11 outlines interactions between
paging and certain VMX features. Section 4.12 gives an overview of how paging can
be used to implement virtual memory.

4.1 PAGING MODES AND CONTROL BITS

Paging behavior is controlled by the following control bits:
®* The WP and PG flags in control register CRO (bit 16 and bit 31, respectively).

®* The PSE, PAE, PGE, PCIDE, and SMEP flags in control register CR4 (bit 4, bit 5,
bit 7, bit 17, and bit 20 respectively).

®* The LME and NXE flags in the IA32_EFER MSR (bit 8 and bit 11, respectively).

Software enables paging by using the MOV to CRO instruction to set CRO.PG. Before
doing so, software should ensure that control register CR3 contains the physical
address of the first paging structure that the processor will use for linear-address
translation (see Section 4.2) and that structure is initialized as desired. See

Table 4-3, Table 4-7, and Table 4-12 for the use of CR3 in the different paging
modes.

Section 4.1.1 describes how the values of CR0.PG, CR4.PAE, and IA32_EFER.LME
determine whether paging is in use and, if so, which of three paging modes is in use.
Section 4.1.2 explains how to manage these bits to establish or make changes in

Vol. 3A 4-1

PAGING

paging modes. Section 4.1.3 discusses how CR0.WP, CR4.PSE, CR4.PGE, CR4.PCIDE,
CR4.SMEP, and IA32_EFER.NXE modify the operation of the different paging modes.

4.1.1 Three Paging Modes

If CRO.PG = 0, paging is not used. The logical processor treats all linear addresses as
if they were physical addresses. CR4.PAE and IA32_EFER.LME are ignored by the
processor, as are CR0.WP, CR4.PSE, CR4.PGE, CR4.SMEP, and IA32_EFER.NXE.

Paging is enabled if CRO.PG = 1. Paging can be enabled only if protection is enabled
(CRO.PE = 1). If paging is enabled, one of three paging modes is used. The values of
CR4.PAE and IA32_EFER.LME determine which paging mode is used:

®* IfCRO.PG =1 and CR4.PAE = 0, 32-bit paging is used. 32-bit paging is detailed
in Section 4.3. 32-bit paging uses CRO.WP, CR4.PSE, CR4.PGE, and CR4.SMEP as
described in Section 4.1.3.

® IfCRO.PG =1, CR4.PAE =1, and IA32_EFER.LME = 0, PAE paging is used. PAE
paging is detailed in Section 4.4. PAE paging uses CR0.WP, CR4.PGE, CR4.SMEP,
and IA32_EFER.NXE as described in Section 4.1.3.

* IfCRO.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 1, IA-32e paging is used.!
IA-32e paging is detailed in Section 4.5. IA-32e paging uses CR0.WP, CR4.PGE,
CR4.PCIDE, CR4.SMEP, and IA32_EFER.NXE as described in Section 4.1.3.
IA-32e paging is available only on processors that support the Intel 64 archi-
tecture.

The three paging modes differ with regard to the following details:
®* Linear-address width. The size of the linear addresses that can be translated.
® Physical-address width. The size of the physical addresses produced by paging.

® Page size. The granularity at which linear addresses are translated. Linear
addresses on the same page are translated to corresponding physical addresses
on the same page.

®* Support for execute-disable access rights. In some paging modes, software can
be prevented from fetching instructions from pages that are otherwise readable.

® Support for PCIDs. In some paging modes, software can enable a facility by
which a logical processor caches information for multiple linear-address spaces.

1. The LMA flagin the IA32_EFER MSR (bit 10) is a status bit that indicates whether the logical pro-
cessor is in IA-32e mode (and thus using IA-32e paging). The processor always sets
IA32_EFER.LMA to CRO.PG & IA32_EFER.LME. Software cannot directly modify IA32_EFER.LMA;
an execution of WRMSR to the IA32_EFER MSR ignores bit 10 of its source operand.

4-2 Vol. 3A

PAGING

The processor may retain cached information when software switches between
different linear-address spaces.

Table 4-1 illustrates the key differences between the three paging modes.

Table 4-1. Properties of Different Paging Modes

Paging || PGin | PAEin | LMEin ,%\Igdr :2{; Page Z;‘g?:{;s Supports
Mode | CRO | CR4 IA32_EFER | \iaet | width! | 528 | pisable? | PCIDS?
None || O N/A N/A 32 32 N/A No No
i 2 Up to 4 KB
32-bit || 1 0 0 32 403 amgt | No No
Up to 4 KB 5
PAE 1 1 0 32 c5 Smg | Yes No
Ub to 4KB
IA-32e || 1 1 2 48 P 2MB | Yes® Yes’
22 1GB®

NOTES:

1. The physical-address width is always bounded by MAXPHYADDR; see Section 4.1.4.

2. The processor ensures that IA32_EFER.LME must be 0 if CRO.PG = 1 and CR4.PAE = 0.

3. 32-bit paging supports physical-address widths of more than 32 bits only for 4-MByte pages and
only if the PSE-36 mechanism is supported; see Section 4.1.4 and Section 4.3.

4. 4-MByte pages are used with 32-bit paging only if CR4.PSE = 1; see Section 4.3.

5. Execute-disable access rights are applied only if IA32_EFER.NXE = 1; see Section 4.6.

6. Not all processors that support IA-32e paging support 1-GByte pages; see Section 4.1.4.

7.PCIDs are used only if CR4.PCIDE = 1; see Section 4.10.1.

Because they are used only if IA32_EFER.LME = 0, 32-bit paging and PAE paging is
used only in legacy protected mode. Because legacy protected mode cannot produce
linear addresses larger than 32 bits, 32-bit paging and PAE paging translate 32-bit
linear addresses.

Because it is used only if IA32_EFER.LME = 1, IA-32e paging is used only in IA-32e
mode. (In fact, it is the use of IA-32e paging that defines IA-32e mode.) IA-32e
mode has two sub-modes:

®* Compatibility mode. This mode uses only 32-bit linear addresses. IA-32e paging
treats bits 47:32 of such an address as all 0.

® 64-bit mode. While this mode produces 64-bit linear addresses, the processor
ensures that bits 63:47 of such an address are identical.! IA-32e paging does not
use bits 63:48 of such addresses.

Vol.3A 4-3

PAGING

4.1.2 Paging-Mode Enabling

If CRO.PG = 1, a logical processor is in one of three paging modes, depending on the
values of CR4.PAE and IA32_EFER.LME. Figure 4-1 illustrates how software can
enable these modes and make transitions between them. The following items identify
certain limitations and other details:

#GP 4GP

Set LMAl Set LVE ‘

No Pagin SetPG bit Pagi Set PAE
ging 32-bit Paging e PAE Paging
PG=0 PG=1 PG=1
PAE=0 PAE =0 ot
Clear PG LME=0 Clear PAE LME=0
w
€ ° #GP
= 8
= Clear PAE ‘
m ar Set PG
Set PAE Clear PG Clear PAE :
™ Nopegng | ™ Nopegng | IA-32¢ Paging
| PG=0 | | PG=0 | PG=1
PRS0 PEsT PAE =1
L _Ll\£= 1_ N L LME=0 N LME =1
| _HEsT
% Set PG | o
sarel = | § 8
v Clear PAE i Clear PG m
o Set PAE v
#GP
!— No %ing_ —!
| PG=0 [
OPAEST
l_ _LME =1 J

Figure 4-1. Enabling and Changing Paging Modes

1. Such an address is called canonical. Use of a non-canonical linear address in 64-bit mode pro-
duces a general-protection exception (#GP(0)); the processor does not attempt to translate non-
canonical linear addresses using IA-32e paging.

4-4 Vol. 3A

PAGING

®* IA32_EFER.LME cannot be modified while paging is enabled (CR0.PG = 1).
Attempts to do so using WRMSR cause a general-protection exception (#GP(0)).

® Paging cannot be enabled (by setting CRO.PG to 1) while CR4.PAE = 0 and
IA32_EFER.LME = 1. Attempts to do so using MOV to CRO cause a general-
protection exception (#GP(0)).

® CRA4.PAE cannot be cleared while IA-32e paging is active (CR0.PG = 1 and
IA32_EFER.LME = 1). Attempts to do so using MOV to CR4 cause a general-
protection exception (#GP(0)).

®* Regardless of the current paging mode, software can disable paging by clearing
CRO.PG with MOV to CRO.!

®* Software can make transitions between 32-bit paging and PAE paging by
changing the value of CR4.PAE with MOV to CR4.

®* Software cannot make transitions directly between IA-32e paging and either of
the other two paging modes. It must first disable paging (by clearing CRO.PG with
MOV to CRO0), then set CR4.PAE and IA32_EFER.LME to the desired values (with
MOV to CR4 and WRMSR), and then re-enable paging (by setting CRO.PG with
MOV to CRO0). As noted earlier, an attempt to clear either CR4.PAE or
IA32_EFER.LME cause a general-protection exception (#GP(0)).

®* VMX transitions allow transitions between paging modes that are not possible
using MOV to CR or WRMSR. This is because VMX transitions can load CRO, CR4,
and IA32_EFER in one operation. See Section 4.11.1.

4.1.3 Paging-Mode Modifiers

Details of how each paging mode operates are determined by the following control
bits:

®* The WP flag in CRO (bit 16).

®* The PSE, PGE, PCIDE, and SMEP flags in CR4 (bit 4, bit 7, bit 17, and bit 20,
respectively).

®* The NXE flag in the IA32_EFER MSR (bit 11).

CRO.WP allows pages to be protected from supervisor-mode writes. If CRO.WP = 0,
software operating with CPL < 3 (supervisor mode) can write to linear addresses
with read-only access rights; if CRO.WP = 1, it cannot. (Software operating with
CPL = 3 — user mode — cannot write to linear addresses with read-only access
rights, regardless of the value of CRO.WP.) Section 4.6 explains how access rights are
determined.

CR4.PSE enables 4-MByte pages for 32-bit paging. If CR4.PSE = 0, 32-bit paging can
use only 4-KByte pages; if CR4.PSE = 1, 32-bit paging can use both 4-KByte pages

1. If CR4.PCIDE = 1, an attempt to clear CRO.PG causes a general-protection exception (#GP); soft-
ware should clear CR4.PCIDE before attempting to disable paging.

Vol.3A 4-5

PAGING

and 4-MByte pages. See Section 4.3 for more information. (PAE paging and IA-32e
paging can use multiple page sizes regardless of the value of CR4.PSE.)

CR4.PGE enables global pages. If CR4.PGE = 0, no translations are shared across
address spaces; if CR4.PGE = 1, specified translations may be shared across address
spaces. See Section 4.10.2.4 for more information.

CR4.PCIDE enables process-context identifiers (PCIDs) for IA-32e paging
(CR4.PCIDE can be 1 only when IA-32e paging is in use). PCIDs allow a logical
processor to cache information for multiple linear-address spaces. See Section
4.10.1 for more information.

CR4.SMEP allows pages to be protected from supervisor-mode instruction fetches. If
CR4.SMEP = 1, software operating with CPL < 3 (supervisor mode) cannot fetch
instructions from linear addresses that are accessible in user mode (CPL = 3).
Section 4.6 explains how access rights are determined.

IA32_EFER.NXE enables execute-disable access rights for PAE paging and IA-32e
paging. If IA32_EFER.NXE = 1, instructions fetches can be prevented from specified
linear addresses (even if data reads from the addresses are allowed). Section 4.6
explains how access rights are determined. (IA32_EFER.NXE has no effect with 32-
bit paging. Software that wants to use this feature to limit instruction fetches from
readable pages must use either PAE paging or IA-32e paging.)

4.1.4 Enumeration of Paging Features by CPUID

Software can discover support for different paging features using the CPUID instruc-
tion:

® PSE: page-size extensions for 32-bit paging.
If CPUID.01H:EDX.PSE [bit 3] = 1, CR4.PSE may be set to 1, enabling support
for 4-MByte pages with 32-bit paging (see Section 4.3).

® PAE: physical-address extension.
If CPUID.01H:EDX.PAE [bit 6] = 1, CR4.PAE may be set to 1, enabling PAE
paging (this setting is also required for IA-32e paging).

®* PGE: global-page support.
If CPUID.01H:EDX.PGE [bit 13] = 1, CR4.PGE may be set to 1, enabling the
global-page feature (see Section 4.10.2.4).

® PAT: page-attribute table.
If CPUID.01H:EDX.PAT [bit 16] = 1, the 8-entry page-attribute table (PAT) is
supported. When the PAT is supported, three bits in certain paging-structure
entries select a memory type (used to determine type of caching used) from the
PAT (see Section 4.9.2).

® PSE-36: page-size extensions with 40-bit physical-address extension.
If CPUID.01H:EDX.PSE-36 [bit 17] = 1, the PSE-36 mechanism is supported,
indicating that translations using 4-MByte pages with 32-bit paging may produce
physical addresses with up to 40 bits (see Section 4.3).

4-6 Vol. 3A

PAGING

® PCID: process-context identifiers.
If CPUID.01H:ECX.PCID [bit 17] = 1, CR4.PCIDE may be set to 1, enabling
process-context identifiers (see Section 4.10.1).

® SMEP: supervisor-mode execution prevention.
If CPUID.(EAX=07H,ECX=0H):EBX.SMEP [bit 7] = 1, CR4.SMEP may be setto 1,
enabling supervisor-mode execution prevention (see Section 4.6).

®* NX: execute disable.
If CPUID.80000001H:EDX.NX [bit 20] = 1, IA32_EFER.NXE may be set to 1,
allowing PAE paging and IA-32e paging to disable execute access to selected
pages (see Section 4.6). (Processors that do not support CPUID function
80000001H do not allow IA32_EFER.NXE to be set to 1.)

®* PagelGB: 1-GByte pages.
If CPUID.80000001H:EDX.PagelGB [bit 26] = 1, 1-GByte pages are supported
with IA-32e paging (see Section 4.5).

®* LM: IA-32e mode support.
If CPUID.80000001H:EDX.LM [bit 29] = 1, IA32_EFER.LME may be setto 1,
enabling IA-32e paging. (Processors that do not support CPUID function
80000001H do not allow IA32_EFER.LME to be setto 1.)

® CPUID.80000008H:EAX[7:0] reports the physical-address width supported by
the processor. (For processors that do not support CPUID function 80000008H,
the width is generally 36 if CPUID.01H:EDX.PAE [bit 6] = 1 and 32 otherwise.)
This width is referred to as MAXPHYADDR. MAXPHYADDR is at most 52.

®* CPUID.80000008H:EAX[15:8] reports the linear-address width supported by the
processor. Generally, this value is 48 if CPUID.80000001H:EDX.LM [bit 29] = 1
and 32 otherwise. (Processors that do not support CPUID function 80000008H,
support a linear-address width of 32.)

4.2 HIERARCHICAL PAGING STRUCTURES: AN OVERVIEW

All three paging modes translate linear addresses use hierarchical paging struc-
tures. This section provides an overview of their operation. Section 4.3, Section 4.4,
and Section 4.5 provide details for the three paging modes.

Every paging structure is 4096 Bytes in size and comprises a number of individual
entries. With 32-bit paging, each entry is 32 bits (4 bytes); there are thus 1024
entries in each structure. With PAE paging and IA-32e paging, each entry is 64 bits
(8 bytes); there are thus 512 entries in each structure. (PAE paging includes one
exception, a paging structure that is 32 bytes in size, containing 4 64-bit entries.)

The processor uses the upper portion of a linear address to identify a series of
paging-structure entries. The last of these entries identifies the physical address of
the region to which the linear address translates (called the page frame). The lower
portion of the linear address (called the page offset) identifies the specific address
within that region to which the linear address translates.

Vol.3A 4-7

PAGING

Each paging-structure entry contains a physical address, which is either the address
of another paging structure or the address of a page frame. In the first case, the
entry is said to reference the other paging structure; in the latter, the entry is said
to map a page.

The first paging structure used for any translation is located at the physical address
in CR3. A linear address is translated using the following iterative procedure. A
portion of the linear address (initially the uppermost bits) select an entry in a paging
structure (initially the one located using CR3). If that entry references another
paging structure, the process continues with that paging structure and with the
portion of the linear address immediately below that just used. If instead the entry
maps a page, the process completes: the physical address in the entry is that of the
page frame and the remaining lower portion of the linear address is the page offset.

The following items give an example for each of the three paging modes (each
example locates a 4-KByte page frame):

* With 32-bit paging, each paging structure comprises 1024 = 210 entries. For this
reason, the translation process uses 10 bits at a time from a 32-bit linear
address. Bits 31:22 identify the first paging-structure entry and bits 21:12
identify a second. The latter identifies the page frame. Bits 11:0 of the linear
address are the page offset within the 4-KByte page frame. (See Figure 4-2 for
an illustration.)

* With PAE paging, the first paging structure comprises only 4 = 22 entries.
Translation thus begins by using bits 31:30 from a 32-bit linear address to
identify the first paging-structure entry. Other paging structures comprise
512 =29 entries, so the process continues by using 9 bits at a time. Bits 29:21
identify a second paging-structure entry and bits 20:12 identify a third. This last
identifies the page frame. (See Figure 4-5 for an illustration.)

* With IA-32e paging, each paging structure comprises 512 = 2° entries and
translation uses 9 bits at a time from a 48-bit linear address. Bits 47:39 identify
the first paging-structure entry, bits 38:30 identify a second, bits 29:21 a third,
and bits 20:12 identify a fourth. Again, the last identifies the page frame. (See
Figure 4-8 for an illustration.)

The translation process in each of the examples above completes by identifying a
page frame. However, the paging structures may be configured so that translation
terminates before doing so. This occurs if process encounters a paging-structure
entry that is marked “not present” (because its P flag — bit 0 — is clear) or in which
a reserved bit is set. In this case, there is no translation for the linear address; an
access to that address causes a page-fault exception (see Section 4.7).

In the examples above, a paging-structure entry maps a page with 4-KByte page
frame when only 12 bits remain in the linear address; entries identified earlier always
reference other paging structures. That may not apply in other cases. The following
items identify when an entry maps a page and when it references another paging
structure:

4-8 Vol. 3A

PAGING

® If more than 12 bits remain in the linear address, bit 7 (PS — page size) of the
current paging-structure entry is consulted. If the bit is 0, the entry references
another paging structure; if the bit is 1, the entry maps a page.

® Ifonly 12 bits remain in the linear address, the current paging-structure entry
always maps a page (bit 7 is used for other purposes).

If a paging-structure entry maps a page when more than 12 bits remain in the linear
address, the entry identifies a page frame larger than 4 KBytes. For example, 32-bit
paging uses the upper 10 bits of a linear address to locate the first paging-structure
entry; 22 bits remain. If that entry maps a page, the page frame is 222 Bytes = 4
MBytes. 32-bit paging supports 4-MByte pages if CR4.PSE = 1. PAE paging and
IA-32e paging support 2-MByte pages (regardless of the value of CR4.PSE). IA-32e
paging may support 1-GByte pages (see Section 4.1.4).

Paging structures are given different names based their uses in the translation
process. Table 4-2 gives the names of the different paging structures. It also
provides, for each structure, the source of the physical address used to locate it (CR3
or a different paging-structure entry); the bits in the linear address used to select an
entry from the structure; and details of about whether and how such an entry can
map a page.

Table 4-2. Paging Structures in the Different Paging Modes

. Physical Bits
Paging Entry Paqi . .
ging Mode | Address of | Selecting | Page Mapping
Structure Name Structure Entry
32-bit, PAE N/A
PML4 table PML4E
IA-32e CR3 47:39 N/A (PS must be 0)
32-bit N/A
Page-directory- | ppore | pag CR3 31:30 N/A (PS must be 0)
pointer table
I1A-32e PML4E 38:30 1-GByte page if PS=1'
32-bit CR3 31:22 4-MByte page if PS=12
Page directory PDE
PAE, IA-32e PDPTE 29:21 2-MByte page if PS=1
32-bit 21:12 4-KByte page
Page table PTE PDE
PAE, IA-32e 20:12 4-KByte page

NOTES:

1. Not all processors allow the PS flag to be 1 in PDPTEs; see Section 4.1.4 for how to determine
whether 1-GByte pages are supported.

Vol. 3A 4-9

PAGING

2. 32-bit paging ignores the PS flag in a PDE (and uses the entry to reference a page table) unless
CR4.PSE = 1. Not all processors allow CR4.PSE to be 1; see Section 4.1.4 for how to determine
whether 4-MByte pages are supported with 32-bit paging.

4.3 32-BIT PAGING

A logical processor uses 32-bit paging if CRO.PG = 1 and CR4.PAE = 0. 32-bit paging
translates 32-bit linear addresses to 40-bit physical addresses.! Although 40 bits
corresponds to 1 TByte, linear addresses are limited to 32 bits; at most 4 GBytes of
linear-address space may be accessed at any given time.

32-bit paging uses a hierarchy of paging structures to produce a translation for a
linear address. CR3 is used to locate the first paging-structure, the page directory.
Table 4-3 illustrates how CR3 is used with 32-bit paging.

32-bit paging may map linear addresses to either 4-KByte pages or 4-MByte pages.
Figure 4-2 illustrates the translation process when it uses a 4-KByte page; Figure 4-3
covers the case of a 4-MByte page. The following items describe the 32-bit paging
process in more detail as well has how the page size is determined:

®* A 4-KByte naturally aligned page directory is located at the physical address
specified in bits 31:12 of CR3 (see Table 4-3). A page directory comprises 1024
32-bit entries (PDEs). A PDE is selected using the physical address defined as
follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from CR3.

— Bits 11:2 are bits 31:22 of the linear address.
— Bits 1:0 are 0.

Because a PDE is identified using bits 31:22 of the linear address, it controls access
to a 4-Mbyte region of the linear-address space. Use of the PDE depends on CR.PSE
and the PDE's PS flag (bit 7):

® If CR4.PSE = 1 and the PDE's PS flag is 1, the PDE maps a 4-MByte page (see
Table 4-4). The final physical address is computed as follows:

— Bits 39:32 are bits 20:13 of the PDE.

1. Bitsin the range 39:32 are 0 in any physical address used by 32-bit paging except those used to
map 4-MByte pages. If the processor does not support the PSE-36 mechanism, this is true also
for physical addresses used to map 4-MByte pages. If the processor does support the PSE-36
mechanism and MAXPHYADDR < 40, bits in the range 39:MAXPHYADDR are 0 in any physical
address used to map a 4-MByte page. (The corresponding bits are reserved in PDEs.) See Section
4.1.4 for how to determine MAXPHYADDR and whether the PSE-36 mechanism is supported.

4-10 Vol. 3A

PAGING

— Bits 31:22 are bits 31:22 of the PDE.!
— Bits 21:0 are from the original linear address.

If CR4.PSE = 0 or the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is
located at the physical address specified in bits 31:12 of the PDE (see Table 4-5).
A page table comprises 1024 32-bit entries (PTEs). A PTE is selected using the
physical address defined as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PDE.

— Bits 11:2 are bits 21:12 of the linear address.
— Bits 1:0 are 0.

Because a PTE is identified using bits 31:12 of the linear address, every PTE
maps a 4-KByte page (see Table 4-6). The final physical address is computed as
follows:

— Bits 39:32 are all 0.
— Bits 31:12 are from the PTE.
— Bits 11:0 are from the original linear address.

If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the
entry is used neither to reference another paging-structure entry nor to map a page.
A reference using a linear address whose translation would use such a paging-struc-
ture entry causes a page-fault exception (see Section 4.7).

With 32-bit paging, there are reserved bits only if CR4.PSE = 1:

If the P flag and the PS flag (bit 7) of a PDE are both 1, the bits reserved depend
on MAXPHYADDR whether the PSE-36 mechanism is supported:2

— If the PSE-36 mechanism is not supported, bits 21:13 are reserved.

— If the PSE-36 mechanism is supported, bits 21:(M-19) are reserved, where
M is the minimum of 40 and MAXPHYADDR.

If the PAT is not supported:3
— Ifthe Pflag of a PTE is 1, bit 7 is reserved.
— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

(If CR4.PSE = 0, no bits are reserved with 32-bit paging.)

. The upper bits in the final physical address do not all come from corresponding positions in the

PDE; the physical-address bits in the PDE are not all contiguous.

See Section 4.1.4 for how to determine MAXPHYADDR and whether the PSE-36 mechanism is
supported.

See Section 4.1.4 for how to determine whether the PAT is supported.

Vol. 3A 4-11

PAGING

A reference using a linear address that is successfully translated to a physical
address is performed only if allowed by the access rights of the translation; see

Section 4.6.

Linear Address
31 22 21 12 11 0
Directory Table Offset

12 4-KByte Page

10 10 Page Table Physical Address

Page Directory

\

PTE

20

Y

PDE with PS=0

20

My oy

3

CR3

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

Linear Address
31 22 21 0
| Directory ‘ Offset

J 22 4-MByte Page

10 Page Directory

Physical Address

Y

PDE with PS=1

18

>
>
>
2

3

CR3

Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

4-12 Vol. 3A

PAGING

Figure 4-4 gives a summary of the formats of CR3 and the paging-structure entries
with 32-bit paging. For the paging structure entries, it identifies separately the
format of entries that map pages, those that reference other paging structures, and
those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are
highlighted because they determine how such an entry is used.

31[3012912827126]25[24123122/21]20[19[18[1 716/151413[12]11110[9]8 7 6 5 2[1]0

Address of page directory’ Ignored Ignored| CR3

Bits 39:32|P
of A|lgnored| G
address? | T

PDE:
4MB

page

Bits 31:22 of address Reserved
of 2MB page frame (must be 0)

|—

PDE:

page
table

|—

Address of page table Ignored |0(g|A

4= 70| 40| A= O|w

n<Cc| n-C

|—

(w}

>
OMNnT| OMT] OO T|H
ES~3| =~=

PDE:
Ignored Q] not
present

PTE:
4KB

page

Address of 4KB page frame Ignored| G

—>7T
o
>

[wfale]

—H= T

wn-<C

S~
|_n

PTE:
Ignored Q] not
present

Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging

NOTES:

1. CR3 has 64 bits on processors supporting the Intel-64 architecture. These bits are ignored with
32-bit paging.

2. This example illustrates a processor in which MAXPHYADDR is 36. If this value is larger or smaller,
the number of bits reserved in positions 20:13 of a PDE mapping a 4-MByte will change.

Vol.3A 4-13

PAGING

Table 4-3. Use of CR3 with 32-Bit Paging

Bit Contents

Position(s)

2.0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page directory during linear-address translation (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page directory during linear-address translation (see Section 4.9)

115 Ignored

31:12 Physical address of the 4-KByte aligned page directory used for linear-address
translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)

Table 4-4. Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 4-MByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 4-MByte page referenced by
this entry (depends on CPL and CRO.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-MByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-MByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-MByte page referenced by this entry (see Section 4.9)

5(A) Accessed; indicates whether software has accessed the 4-MByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-MByte page referenced by
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-5)

4-14 Vol. 3A

PAGING

Table 4-4. Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page

Bit Contents

Position(s)

8(Q) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the
4-MByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0)'

(M-20):13 Bits (M-1):32 of physical address of the 4-MByte page referenced by this entry?

21:(M-19) Reserved (must be 0)

31:22 Bits 31:22 of physical address of the 4-MByte page referenced by this entry

NOTES:

1. See Section 4.1.4 for how to determine whether the PAT is supported.

2. If the PSE-36 mechanism is not supported, M is 32, and this row does not apply. If the PSE-36
mechanism is supported, M is the minimum of 40 and MAXPHYADDR (this row does not apply if
MAXPHYADDR = 32). See Section 4.1.4 for how to determine MAXPHYADDR and whether the
PSE-36 mechanism is supported.

Table 4-5. Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if O, writes may not be allowed to the 4-MByte region controlled by
this entry (depends on CPL and CRO.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-MByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

5(A) Accessed; indicates whether this entry has been used for linear-address

translation (see Section 4.8)

Vol. 3A 4-15

PAGING

Table 4-5. Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit Contents

Position(s)

6 Ignored

7 (PS) If CR4.PSE = 1, must be O (otherwise, this entry maps a 4-MByte page; see
Table 4-4); otherwise, ignored

11:8 Ignored

31:12 Physical address of 4-KByte aligned page table referenced by this entry

Table 4-6. Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page

Bit Contents

Position(s)

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 4-KByte page referenced by
this entry (depends on CPL and CRO.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

5(A) Accessed; indicates whether software has accessed the 4-KByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by
this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the
4-KByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0)’

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

31:12 Physical address of the 4-KByte page referenced by this entry

4-16 Vol. 3A

PAGING

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

4.4 PAE PAGING

A logical processor uses PAE paging if CRO.PG = 1, CR4.PAE = 1, and
IA32_EFER.LME = 0. PAE paging translates 32-bit linear addresses to 52-bit physical
addresses.! Although 52 bits corresponds to 4 PBytes, linear addresses are limited to
32 bits; at most 4 GBytes of linear-address space may be accessed at any given
time.

With PAE paging, a logical processor maintains a set of four (4) PDPTE registers,
which are loaded from an address in CR3. Linear address are translated using 4 hier-
archies of in-memory paging structures, each located using one of the PDPTE regis-
ters. (This is different from the other paging modes, in which there is one hierarchy
referenced by CR3.)

Section 4.4.1 discusses the PDPTE registers. Section 4.4.2 describes linear-address
translation with PAE paging.

4.4.1 PDPTE Registers

When PAE paging is used, CR3 references the base of a 32-Byte page-directory-
pointer table. Table 4-7 illustrates how CR3 is used with PAE paging.

Table 4-7. Use of CR3 with PAE Paging

Bit Contents

Position(s)

4.0 Ignored

31:5 Physical address of the 32-Byte aligned page-directory-pointer table used for

linear-address translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)

The page-directory-pointer-table comprises four (4) 64-bit entries called PDPTEs.
Each PDPTE controls access to a 1-GByte region of the linear-address space. Corre-
sponding to the PDPTEs, the logical processor maintains a set of four (4) internal,
non-architectural PDPTE registers, called PDPTEO, PDPTE1, PDPTE2, and PDPTE3.

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used
by PAE paging. (The corresponding bits are reserved in the paging-structure entries.) See Section
4.1.4 for how to determine MAXPHYADDR.

Vol. 3A 4-17

PAGING

The logical processor loads these registers from the PDPTEs in memory as part of
certain operations:

* If PAE paging would be in use following an execution of MOV to CRO or MOV to
CR4 (see Section 4.1.1) and the instruction is modifying any of CR0.CD, CRO.NW,
CRO.PG, CR4.PAE, CR4.PGE, CR4.PSE, or CR4.SMEP; then the PDPTEs are loaded
from the address in CR3.

* If MOV to CR3 is executed while the logical processor is using PAE paging, the
PDPTEs are loaded from the address being loaded into CR3.

® If PAE paging is in use and a task switch changes the value of CR3, the PDPTEs
are loaded from the address in the new CR3 value.

® Certain VMX transitions load the PDPTE registers. See Section 4.11.1.

Table 4-8 gives the format of a PDPTE. If any of the PDPTEs sets both the P flag

(bit 0) and any reserved bit, the MOV to CR instruction causes a general-protection
exception (#GP(0)) and the PDPTEs are not loaded.! As shown in Table 4-8, bits 2:1,
8:5, and 63:MAXPHYADDR are reserved in the PDPTEs.

Table 4-8. Format of a PAE Page-Directory-Pointer-Table Entry (PDPTE)

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a page directory

2:1 Reserved (must be 0)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page directory referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page directory referenced by this entry (see Section 4.9)

8.5 Reserved (must be 0)

11:9 Ignored

(M-1)12 Physical address of 4-KByte aligned page directory referenced by this entry’

63:M Reserved (must be 0)

NOTES:
1. Mis an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

1. On some processors, reserved bits are checked even in PDPTEs in which the P flag (bit 0) is O.

4-18 Vol. 3A

PAGING

44.2 Linear-Address Translation with PAE Paging

PAE paging may map linear addresses to either 4-KByte pages or 2-MByte pages.
Figure 4-5 illustrates the translation process when it produces a 4-KByte page;
Figure 4-6 covers the case of a 2-MByte page. The following items describe the PAE
paging process in more detail as well has how the page size is determined:

® Bits 31:30 of the linear address select a PDPTE register (see Section 4.4.1); this
is PDPTE/, where i is the value of bits 31:30.1 Because a PDPTE register is
identified using bits 31:30 of the linear address, it controls access to a 1-GByte
region of the linear-address space. If the P flag (bit 0) of PDPTE/ is O, the
processor ignores bits 63:1, and there is no mapping for the 1-GByte region
controlled by PDPTE/. A reference using a linear address in this region causes a
page-fault exception (see Section 4.7).

* Ifthe P flag of PDPTE/ is 1, 4-KByte naturally aligned page directory is located at
the physical address specified in bits 51:12 of PDPTE/ (see Table 4-8 in Section
4.4.1) A page directory comprises 512 64-bit entries (PDEs). A PDE is selected
using the physical address defined as follows:

— Bits 51:12 are from PDPTEI.
— Bits 11:3 are bits 29:21 of the linear address.
— Bits 2:0 are 0.

Because a PDE is identified using bits 31:21 of the linear address, it controls access
to a 2-Mbyte region of the linear-address space. Use of the PDE depends on its PS
flag (bit 7):

® Ifthe PDE's PS flag is 1, the PDE maps a 2-MByte page (see Table 4-9). The final
physical address is computed as follows:

— Bits 51:21 are from the PDE.
— Bits 20:0 are from the original linear address.

* Ifthe PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the
physical address specified in bits 51:12 of the PDE (see Table 4-10). A page
directory comprises 512 64-bit entries (PTEs). A PTE is selected using the
physical address defined as follows:

— Bits 51:12 are from the PDE.
— Bits 11:3 are bits 20:12 of the linear address.
— Bits 2:0 are 0.

® Because a PTE is identified using bits 31:12 of the linear address, every PTE maps
a 4-KByte page (see Table 4-11). The final physical address is computed as
follows:

1. With PAE paging, the processor does not use CR3 when translating a linear address (as it does
the other paging modes). It does not access the PDPTEs in the page-directory-pointer table dur-
ing linear-address translation.

Vol.3A 4-19

PAGING

— Bits 51:12 are from the PTE.
— Bits 11:0 are from the original linear address.

If the P flag (bit 0) of a PDE or a PTE is O or if a PDE or a PTE sets any reserved bit,
the entry is used neither to reference another paging-structure entry nor to map a
page. A reference using a linear address whose translation would use such a paging-
structure entry causes a page-fault exception (see Section 4.7).

The following bits are reserved with PAE paging:
* Ifthe P flag (bit 0) of a PDE or a PTE is 1, bits 62:MAXPHYADDR are reserved.
* If the P flag and the PS flag (bit 7) of a PDE are both 1, bits 20:13 are reserved.

®* IfIA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63)
is reserved.

* If the PAT is not supported:!
— Ifthe Pflag of a PTE is 1, bit 7 is reserved.
— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

A reference using a linear address that is successfully translated to a physical
address is performed only if allowed by the access rights of the translation; see
Section 4.6.

Linear Address
3130 29 21 20 12 11 0

Directory Pointer —>| ‘ Directory Table Offset

‘ 12 4-KByte Page

Page Table Physical Address

Page Directory 9
PTE 74
9 40

»| PDE with PS=0

Y

PDPTE Registers

40

— > |PDPTE value

Figure 4-5. Linear-Address Translation to a 4-KByte Page using PAE Paging

1. See Section 4.1.4 for how to determine whether the PAT is supported.

4-20 Vol.3A

PAGING

Directory

Linear Address
3130 29 21 20 0
—>| ‘ Directory Offset

Pointer

21 2-MByte Page

Page Directory Physical Address

PDPTE Registers

—>»| PDE with PS=1

\

31

»| PDPTE value >

40

Figure 4-6. Linear-Address Translation to a 2-MByte Page using PAE Paging

Table 4-9. Format of a PAE Page-Directory Entry that Maps a 2-MByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 2-MByte page referenced by
this entry (depends on CPL and CRO.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 2-MByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 2-MByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 2-MByte page referenced by this entry (see Section 4.9)

5(A) Accessed; indicates whether software has accessed the 2-MByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see

Table 4-10)

Vol. 3A 4-21

PAGING

Table 4-9. Format of a PAE Page-Directory Entry that Maps a 2-MByte Page (Contd.)

Bit Contents

Position(s)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the
2-MByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0)

20:13 Reserved (must be 0)

(M-1):21 Physical address of the 2-MByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 2-MByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

Table 4-10. Format of a PAE Page-Directory Entry that References a Page Table

Bit Contents

Position(s)

0P Present; must be 1 to reference a page table

1 (R/W) Read/write; if O, writes may not be allowed to the 2-MByte region controlled by

this entry (depends on CPL and CRO.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 2-MByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

5(A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

4-22 Vol.3A

PAGING

Table 4-10. Format of a PAE Page-Directory Entry that References a Page Table

Bit Contents

Position(s)

6 Ignored

7 (PS) Page size; must be O (otherwise, this entry maps a 2-MByte page; see Table 4-9)
11:8 Ignored

M-1)12 Physical address of 4-KByte aligned page table referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed

from the 2-MByte region controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

Table 4-11. Format of a PAE Page-Table Entry that Maps a 4-KByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 4-KByte page referenced by
this entry (depends on CPL and CRO.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

5(A) Accessed; indicates whether software has accessed the 4-KByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by
this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the

4-KByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0)1

Vol. 3A 4-23

PAGING

Table 4-11. Format of a PAE Page-Table Entry that Maps a 4-KByte Page (Contd.)

Bit Contents
Position(s)
8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section

4.10); ignored otherwise

11:9 Ignored

(M-1)12 Physical address of the 4-KByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 4-KByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

Figure 4-7 gives a summary of the formats of CR3 and the paging-structure entries
with PAE paging. For the paging structure entries, it identifies separately the format
of entries that map pages, those that reference other paging structures, and those
that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are high-
lighted because they determine how a paging-structure entry is used.

6/6/6(6(5|5(5/5|5|5|5|5|5 M M-1 3(3(3|12|2|2|2|2|2|2(2(2(2|1|1]|1|1|1|1|{1{1{1[1
32(1/0|9/8/7/6/5/4/3|2|1 2/1|0/9/8|7|6/5/4(3|2/1/0(9/8|7/6|5/4/3|2(1|0|9/8|7|6/5/4/3|2{1|0
Ignored? Address of page-directory-pointer table Ignored| CR3
3 i PP Rs| | PDPTE:
Reserved Address of page directory Ign. | Rsvd. B _/I_\I vd 1 present
PDTPE:
Ignored 0] not
present
X P PPIUR| | PDE:
D Reserved ppddress ot Reserved |A| Ign. [G{1/plalchi/|/|1| 2MmB
4 pag T D[T|SM| page
% 1| [PIPJUR[| PDE:
Reserved Address of page table Ign. [O[g|AICW|/|/|1] page
D n| [D[T{sm| | table

Figure 4-7. Formats of CR3 and Paging-Structure Entries with PAE Paging

4-24 Vol.3A

PAGING

6/6/66(5(5(5|5|5|5|5|5|5 M! [M-1 3(3(3|12|2/2|2|2|2[2(2[2|2|1|1]|1{1|1{1{1{1{1|1

3(2(1|0|9|8|7|6|5/4(3|2|1 2|1|0(9(8|7|6|5|4|3|2|1|0|9(8|7|6|5|4|3|2|1|0(9(8|7|6|5|4|3|2|1|0
PDE:
Ignored 0] not
present
X P PIP|UIR PTE:
D Reserved Address of 4KB page frame Ign. |GIADIA[ICMWI/{/|1] 4KB
T| | ID|T|S page
PTE:
Ignored 0] not
present

Figure 4-7. Formats of CR3 and Paging-Structure Entries with PAE Paging (Contd.)

NOTES:

1. Mis an abbreviation for MAXPHYADDR.

2. CR3 has 64 bits only on processors supporting the Intel-64 architecture. These bits are ignored with
PAE paging.

3. Reserved fields must be 0.

4., If IA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63) is reserved.

Vol. 3A 4-25

PAGING

4.5 IA-32E PAGING

A logical processor uses IA-32e paging if CRO.PG = 1, CR4.PAE = 1, and
IA32_EFER.LME = 1. With IA-32e paging, linear address are translated using a hier-
archy of in-memory paging structures located using the contents of CR3. IA-32e
paging translates 48-bit linear addresses to 52-bit physical addresses.! Although 52
bits corresponds to 4 PBytes, linear addresses are limited to 48 bits; at most 256
TBytes of linear-address space may be accessed at any given time.

IA-32e paging uses a hierarchy of paging structures to produce a translation for a
linear address. CR3 is used to locate the first paging-structure, the PML4 table. Use
of CR3 with IA-32e paging depends on whether process-context identifiers (PCIDs)
have been enabled by setting CR4.PCIDE:

® Table 4-12 illustrates how CR3 is used with IA-32e paging if CR4.PCIDE = 0.

Table 4-12. Use of CR3 with IA-32e Paging and CR4.PCIDE = 0

Bit Contents

Position(s)

2.0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access

the PML4 table during linear-address translation (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the PML4 table during linear-address translation (see Section 4.9.2)

11:5 Ignored
M-1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address
translation’
63:M Reserved (must be 0)
NOTES:

1. Mis an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be O in any physical address used
by IA-32e paging. (The corresponding bits are reserved in the paging-structure entries.) See Sec-
tion 4.1.4 for how to determine MAXPHYADDR.

4-26 Vol.3A

PAGING

®* Table 4-13 illustrates how CR3 is used with IA-32e paging if CR4.PCIDE = 1.

Table 4-13. Use of CR3 with IA-32e Paging and CR4.PCIDE = 1

Bit Contents
Position(s)
11:.0 PCID (see Section 4.10.1)
M-1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address
translation?
63:M Reserved (must be 0)3
NOTES:

1. Section 4.9.2 explains how the processor determines the memory type used to access the PML4
table during linear-address translation with CR4.PCIDE = 1.

2. Mis an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.
3. See Section 4.10.4.1 for use of bit 63 of the source operand of the MOV to CR3 instruction.

After software modifies the value of CR4.PCIDE, the logical processor immediately
begins using CR3 as specified for the new value. For example, if software changes
CR4.PCIDE from 1 to 0, the current PCID immediately changes from CR3[11:0] to
0OOH (see also Section 4.10.4.1). In addition, the logical processor subsequently
determines the memory type used to access the PML4 table using CR3.PWT and
CR3.PCD, which had been bits 4:3 of the PCID.

IA-32e paging may map linear addresses to 4-KByte pages, 2-MByte pages, or 1-
GByte pages.! Figure 4-8 illustrates the translation process when it produces a 4-
KByte page; Figure 4-9 covers the case of a 2-MByte page, and Figure 4-10 the case
of a 1-GByte page.

1. Not all processors support 1-GByte pages; see Section 4.1.4.

Vol. 3A 4-27

PAGING

Linear Address

47 39 38 30 29 2120 12 11 0
| PML4 | Directory Ptr Directory Table Offset
] | ° .
9 12_4-KByte Page
Physical Addr
PTE >
Page-Directory- PDE with PS=0 > 40
Pointer Table 40 Page Table
Page-Directory
> PDPTE 40
9
40
> PML4E
40
CR3

Figure 4-8. Linear-Address Translation to a 4-KByte Page using IA-32e Paging

4-28 Vol.3A

PAGING

Linear Address

47 39 38 3029 2120 0
| PML4 ’ Directory Ptr Directory Offset
‘ 9 21
9
2-MByte Page
Physical Addr
Page-Directory- PDE with PS=1 >
Pointer Table 31

—>» PDPTE

40

-
<

»| PML4AE

40

CR3

T Page-Directory

40

Figure 4-9. Linear-Address Translation to a 2-MByte Page using IA-32e Paging

Vol. 3A 4-29

PAGING

Linear Address
47 39 38 30 29 0

| PML4 ‘Directory Ptr Offset

% ‘ 30

9

1-GByte Page

Page-Directory-
Pointer Table

+ Physical Addr

> PDPTE with PS=1 >
22

A

40

»| PML4E

40

CR3

Figure 4-10. Linear-Address Translation to a 1-GByte Page using IA-32e Paging

The following items describe the IA-32e paging process in more detail as well has
how the page size is determined.

A 4-KByte naturally aligned PML4 table is located at the physical address
specified in bits 51:12 of CR3 (see Table 4-12). A PML4 table comprises 512 64-
bit entries (PML4Es). A PML4E is selected using the physical address defined as
follows:

— Bits 51:12 are from CR3.
— Bits 11:3 are bits 47:39 of the linear address.
— Bits 2:0 are all 0.

Because a PMLA4E is identified using bits 47:39 of the linear address, it controls
access to a 512-GByte region of the linear-address space.

A 4-KByte naturally aligned page-directory-pointer table is located at the
physical address specified in bits 51:12 of the PML4E (see Table 4-14). A page-
directory-pointer table comprises 512 64-bit entries (PDPTEs). A PDPTE is
selected using the physical address defined as follows:

— Bits 51:12 are from the PML4E.

4-30 Vol.3A

PAGING

— Bits 11:3 are bits 38:30 of the linear address.
— Bits 2:0 are all 0.

Because a PDPTE is identified using bits 47:30 of the linear address, it controls
access to a 1-GByte region of the linear-address space. Use of the PDPTE depends on
its PS flag (bit 7):1

* Ifthe PDPTE's PSflagis 1, the PDPTE maps a 1-GByte page (see Table 4-15). The
final physical address is computed as follows:

— Bits 51:30 are from the PDPTE.
— Bits 29:0 are from the original linear address.

* Ifthe PDE’s PS flag is 0, a 4-KByte naturally aligned page directory is located at
the physical address specified in bits 51:12 of the PDPTE (see Table 4-16). A
page directory comprises 512 64-bit entries (PDEs). A PDE is selected using the
physical address defined as follows:

— Bits 51:12 are from the PDPTE.
— Bits 11:3 are bits 29:21 of the linear address.
— Bits 2:0 are all 0.

Because a PDE is identified using bits 47:21 of the linear address, it controls access
to a 2-MByte region of the linear-address space. Use of the PDE depends on its PS
flag:

* Ifthe PDE’s PSflagis 1, the PDE maps a 2-MByte page. The final physical address
is computed as shown in Table 4-17.

— Bits 51:21 are from the PDE.
— Bits 20:0 are from the original linear address.

* Ifthe PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the
physical address specified in bits 51:12 of the PDE (see Table 4-18). A page table
comprises 512 64-bit entries (PTEs). A PTE is selected using the physical address
defined as follows:

— Bits 51:12 are from the PDE.
— Bits 11:3 are bits 20:12 of the linear address.
— Bits 2:0 are all 0.

®* Because a PTE is identified using bits 47:12 of the linear address, every PTE
maps a 4-KByte page (see Table 4-19). The final physical address is computed as
follows:

— Bits 51:12 are from the PTE.
— Bits 11:0 are from the original linear address.

1. The PS flag of a PDPTE is reserved and must be O (if the P flag is 1) if 1-GByte pages are not sup-
ported. See Section 4.1.4 for how to determine whether 1-GByte pages are supported.

Vol. 3A 4-31

PAGING

If a paging-structure entry’s P flag (bit 0) is O or if the entry sets any reserved bit, the
entry is used neither to reference another paging-structure entry nor to map a page.
A reference using a linear address whose translation would use such a paging-struc-
ture entry causes a page-fault exception (see Section 4.7).

The following bits are reserved with IA-32e paging:
* If the P flag of a paging-structure entry is 1, bits 51:MAXPHYADDR are reserved.
* Ifthe Pflag of a PML4E is 1, the PS flag is reserved.

* If 1-GByte pages are not supported and the P flag of a PDPTE is 1, the PS flag is
reserved.!

* If the P flag and the PS flag of a PDPTE are both 1, bits 29:13 are reserved.
* Ifthe P flag and the PS flag of a PDE are both 1, bits 20:13 are reserved.

* IfIA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1, the XD flag
(bit 63) is reserved.

A reference using a linear address that is successfully translated to a physical
address is performed only if allowed by the access rights of the translation; see
Section 4.6.

Figure 4-11 gives a summary of the formats of CR3 and the IA-32e paging-structure
entries. For the paging structure entries, it identifies separately the format of entries
that map pages, those that reference other paging structures, and those that do
neither because they are “not present”; bit 0 (P) and bit 7 (PS) are highlighted
because they determine how a paging-structure entry is used.

1. See Section 4.1.4 for how to determine whether 1-GByte pages are supported.

4-32 Vol. 3A

PAGING

Table 4-14. Format of an IA-32e PML4 Entry (PML4E) that References a Page-

Directory-Pointer Table

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a page-directory-pointer table

1 (R/W) Read/write; if O, writes may not be allowed to the 512-GByte region controlled by
this entry (depends on CPL and CRO.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 512-GByte
region controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page-directory-pointer table referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page-directory-pointer table referenced by this entry (see Section 4.9.2)

5(A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

6 Ignored

7 (PS) Reserved (must be 0)

11:8 Ignored

M-1:12 Physical address of 4-KByte aligned page-directory-pointer table referenced by
this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed

from the 512-GByte region controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

Vol. 3A 4-33

PAGING

Table 4-15. Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that

Maps a 1-GByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 1-GByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 1-GByte page referenced by
this entry (depends on CPL and CRO.WP; see Section 4.6)

2 (U/S) User/supervisor; if O, accesses with CPL=3 are not allowed to the 1-GByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 1-GByte page referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 1-GByte page referenced by this entry (see Section 4.9.2)

5(A) Accessed; indicates whether software has accessed the 1-GByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 1-GByte page referenced by
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page directory; see
Table 4-16)

8(Q) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

12 (PAT) Indirectly determines the memory type used to access the 1-GByte page
referenced by this entry (see Section 4.9.2)!

29:13 Reserved (must be 0)

(M-1):30 Physical address of the 1-GByte page referenced by this entry

51M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed

from the 1-GByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

4-34 Vol.3A

NOTES:

PAGING

1. The PAT is supported on all processors that support IA-32e paging.

Table 4-16. Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that

References a Page Directory

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a page directory

1 (R/W) Read/write; if O, writes may not be allowed to the 1-GByte region controlled by
this entry (depends on CPL and CRO.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 1-GByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page directory referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page directory referenced by this entry (see Section 4.9.2)

5(A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be O (otherwise, this entry maps a 1-GByte page; see Table 4-15)

11:8 Ignored

M-1)12 Physical address of 4-KByte aligned page directory referenced by this entry

51M Reserved (must be Q)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed

from the 1-GByte region controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

Vol. 3A 4-35

PAGING

Table 4-17. Format of an IA-32e Page-Directory Entry that Maps a 2-MByte Page

Bit Contents

Position(s)

0 (P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 2-MByte page referenced by
this entry (depends on CPL and CRO.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 2-MByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 2-MByte page referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 2-MByte page referenced by this entry (see Section 4.9.2)

5(A) Accessed; indicates whether software has accessed the 2-MByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see
Table 4-18)

8(Q) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

119 Ignored

12 (PAT) Indirectly determines the memory type used to access the 2-MByte page
referenced by this entry (see Section 4.9.2)

20:13 Reserved (must be 0)

(M-1).21 Physical address of the 2-MByte page referenced by this entry

51M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed

from the 2-MByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

4-36 Vol. 3A

PAGING

Table 4-18. Format of an IA-32e Page-Directory Entry that References a Page Table

Bit Contents

Position(s)

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if O, writes may not be allowed to the 2-MByte region controlled by
this entry (depends on CPL and CRO.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 2-MByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9.2)

5(A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be O (otherwise, this entry maps a 2-MByte page; see Table 4-17)

11:8 Ignored

M-1)12 Physical address of 4-KByte aligned page table referenced by this entry

51M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed

from the 2-MByte region controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

Vol. 3A 4-37

PAGING

Table 4-19. Format of an IA-32e Page-Table Entry that Maps a 4-KByte Page

Bit Contents

Position(s)

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 4-KByte page referenced by
this entry (depends on CPL and CRO.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9.2)

5(A) Accessed; indicates whether software has accessed the 4-KByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by
this entry (see Section 4.8)

7 (PAT) Indirectly determines the memory type used to access the 4-KByte page
referenced by this entry (see Section 4.9.2)

8(Q) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

119 Ignored

M-1)12 Physical address of the 4-KByte page referenced by this entry

51M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed

from the 4-KByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

4-38 Vol. 3A

PAGING

6(6/6|6(5(5/|5|5|5/5|5(5(5 M! M-1 3|3|3(2(2|2|2[2(2|2|2[2|2|1{1{1|1|1{1|1]|1|1[1
3/2|1/0(9|8|7|6/5|4/3|2|1 2/1/0/9/8(7|6|5/4/3|2|1|0|9/8|7|6|5/4/3|2|1|0|9|8|7|6|5/4/3|2|1|0
PP
Reserved? Address of PML4 table Ignored l(5_1_\/ Ign CR3
X S|1] [PPUR! | oy ag:
D Ignored Rsvd. Address of page-directory-pointer table Ign. vlo AlCW/|/]1] .
3 Yin [piTls present
PML4E:
Ignored 0] not
present
X Address of P PPUR| | PDPTE:
Ignored Rsvd. 1GB page Reserved Al Ign. [G[1|DJA|ICW|/|/|1] 1GB
D frame T D|T|S page
X I{ |PIP|URR| | PDPTE:
b Ignored Rsvd. Address of page directory Ign. [0|g|A|ICWI/|/|1] page
n| [D|T|SW| |directory
PDTPE:
Ignored 0] not
present
P PIP|UR PDE:
N Ignored Rsvd. pddress ot Reserved |A| Ign. |Gl1[olalcMi7|/|1] 2MB
D pag T DITISW | page
X I| |PIPUR PDE:
b Ignored Rsvd. Address of page table Ign. [0|g|A|ICWI/|/|1] page
n| D|T|ISW table
PDE:
Ignored 0] not
present
X P| | |P|P|UR PTE
b Ignored Rsvd. Address of 4KB page frame Ign. |GIADIA[CW|/{/|1] 4KB
T D|T|S page
PTE:
Ignored 0] not
present

Figure 4-11. Formats of CR3 and Paging-Structure Entries with IA-32e Paging

NOTES:

1. Mis an abbreviation for MAXPHYADDR.

2. Reserved fields must be 0.

3. If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1, the XD flag (bit 63) is reserved.

Vol. 3A 4-39

PAGING

4.6 ACCESS RIGHTS

There is a translation for a linear address if the processes described in Section 4.3,
Section 4.4.2, and Section 4.5 (depending upon the paging mode) completes and
produces a physical address. The accesses permitted by a translation is determined
by the access rights specified by the paging-structure entries controlling the transla-
tion.! The following items detail how paging determines access rights:

® For accesses in supervisor mode (CPL < 3):

— Data reads.
Data may be read from any linear address with a valid translation.

— Data writes.

* If CRO.WP = 0, data may be written to any linear address with a valid
translation.

e If CRO.WP = 1, data may be written to any linear address with a valid
translation for which the R/W flag (bit 1) is 1 in every paging-structure
entry controlling the translation.

— Instruction fetches.

* For 32-bit paging or if IA32_EFER.NXE = 0, access rights depend on the
value of CR4.SMEP:

— If CR4.SMEP = 0, instructions may be fetched from any linear
address with a valid translation.

— If CR4.SMEP = 1, instructions may be fetched from any linear
address with a valid translation for which the U/S flag (bit 2) is 0 in at
least one of the paging-structure entries controlling the translation.

* For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, access rights
depend on the value of CR4.SMEP:

— If CR4.SMEP = 0, instructions may be fetched from any linear
address with a valid translation for which the XD flag (bit 63) is 0 in
every paging-structure entry controlling the translation.

— If CR4.SMEP = 1, instructions may be fetched from any linear
address with a valid translation for which (1) the U/S flag is 0 in at
least one of the paging-structure entries controlling the translation;
and (2) the XD flag is 0 in every paging-structure entry controlling
the translation.

® For accesses in user mode (CPL = 3):

— Data reads.
Data may be read from any linear address with a valid translation for which
the U/S flag (bit 2) is 1 in every paging-structure entry controlling the trans-
lation.

1. With PAE paging, the PDPTEs do not determine access rights.

4-40 Vol.3A

PAGING

— Data writes.
Data may be written to any linear address with a valid translation for which
both the R/W flag and the U/S flag are 1 in every paging-structure entry
controlling the translation.

— Instruction fetches.

* For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched
from any linear address with a valid translation for which the U/S flag is 1
in every paging-structure entry controlling the translation.

* For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, instructions
may be fetched from any linear address with a valid translation for which
the U/S flag is 1 and the XD flag is 0 in every paging-structure entry
controlling the translation.

A processor may cache information from the paging-structure entries in TLBs and
paging-structure caches (see Section 4.10). These structures may include informa-
tion about access rights. The processor may enforce access rights based on the TLBs
and paging-structure caches instead of on the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change access
rights, the processor might not use that change for a subsequent access to an
affected linear address (see Section 4.10.4.3). See Section 4.10.4.2 for how soft-
ware can ensure that the processor uses the modified access rights.

4.7 PAGE-FAULT EXCEPTIONS

Accesses using linear addresses may cause page-fault exceptions (#PF; exception
14). An access to a linear address may cause page-fault exception for either of two
reasons: (1) there is no valid translation for the linear address; or (2) there is a valid
translation for the linear address, but its access rights do not permit the access.

As noted in Section 4.3, Section 4.4.2, and Section 4.5, there is no valid translation
for a linear address if the translation process for that address would use a paging-
structure entry in which the P flag (bit 0) is 0 or one that sets a reserved bit. If there
is a valid translation for a linear address, its access rights are determined as specified
in Section 4.6.

Figure 4-12 illustrates the error code that the processor provides on delivery of a
page-fault exception. The following items explain how the bits in the error code
describe the nature of the page-fault exception:

* P flag (bit 0).
This flag is 0 if there is no valid translation for the linear address because the P
flag was 0 in one of the paging-structure entries used to translate that address.
* W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1;
otherwise, it is 0. This flag describes the access causing the page-fault exception,
not the access rights specified by paging.

Vol. 3A 4-41

PAGING

31

an| ~
AASY| w
Sin| ™~
HIM| =
d o

Reserved

P 0 The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

N

W/R 0 The access causing the fault was a read.
The access causing the fault was a write.

-

u/s 0 The access causing the fault originated when the processor
was executing in supervisor mode (CPL < 3).

The access causing the fault originated when the processor
was executing in user mode (CPL = 3).

RSVD 0 The fault was not caused by reserved bit violation.
1 The fault was caused by a reserved bit set to 1 in some
paging-structure entry.

N

I/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.

Figure 4-12. Page-Fault Error Code

* U/S (bit 2).
If a user-mode (CPL= 3) access caused the page-fault exception, this flagis 1; it
is 0 if a supervisor-mode (CPL < 3) access did so. This flag describes the access
causing the page-fault exception, not the access rights specified by paging.

®* RSVD flag (bit 3).
This flag is 1 if there is no valid translation for the linear address because a
reserved bit was set in one of the paging-structure entries used to translate that
address. (Because reserved bits are not checked in a paging-structure entry
whose P flag is 0, bit 3 of the error code can be set only if bit 0 is also set.)

Bits reserved in the paging-structure entries are reserved for future functionality.
Software developers should be aware that such bits may be used in the future
and that a paging-structure entry that causes a page-fault exception on one
processor might not do so in the future.

* 1/D flag (bit 4).
This flag is 1 if (1) the access causing the page-fault exception was an instruction
fetch; and (2) either (a) CR4.SMEP = 1; or (b) both (i) CR4.PAE = 1 (either PAE
paging or IA-32e paging is in use); and (ii) IA32_EFER.NXE = 1. Otherwise, the
flag is 0. This flag describes the access causing the page-fault exception, not the
access rights specified by paging.

Page-fault exceptions occur only due to an attempt to use a linear address. Failures
to load the PDPTE registers with PAE paging (see Section 4.4.1) cause general-
protection exceptions (#GP(0)) and not page-fault exceptions.

4-42 Vol. 3A

PAGING

4.8 ACCESSED AND DIRTY FLAGS

For any paging-structure entry that is used during linear-address translation, bit 5 is
the accessed flag.! For paging-structure entries that map a page (as opposed to
referencing another paging structure), bit 6 is the dirty flag. These flags are
provided for use by memory-management software to manage the transfer of pages
and paging structures into and out of physical memory.

Whenever the processor uses a paging-structure entry as part of linear-address
translation, it sets the accessed flag in that entry (if it is not already set).

Whenever there is a write to a linear address, the processor sets the dirty flag (if it is
not already set) in the paging-structure entry that identifies the final physical
address for the linear address (either a PTE or a paging-structure entry in which the
PS flag is 1).

Memory-management software may clear these flags when a page or a paging struc-
ture is initially loaded into physical memory. These flags are “sticky,” meaning that,
once set, the processor does not clear them; only software can clear them.

A processor may cache information from the paging-structure entries in TLBs and
paging-structure caches (see Section 4.10). This fact implies that, if software
changes an accessed flag or a dirty flag from 1 to 0, the processor might not set the
corresponding bit in memory on a subsequent access using an affected linear
address (see Section 4.10.4.3). See Section 4.10.4.2 for how software can ensure
that these bits are updated as desired.

NOTE

The accesses used by the processor to set these flags may or may not
be exposed to the processor’s self-modifying code detection logic. If
the processor is executing code from the same memory area that is
being used for the paging structures, the setting of these flags may
or may not result in an immediate change to the executing code
stream.

4.9 PAGING AND MEMORY TYPING

The memory type of a memory access refers to the type of caching used for that
access. Chapter 11, "Memory Cache Control” provides many details regarding
memory typing in the Intel-64 and IA-32 architectures. This section describes how
paging contributes to the determination of memory typing.

The way in which paging contributes to memory typing depends on whether the
processor supports the Page Attribute Table (PAT; see Section 11.12).2 Section

1. With PAE paging, the PDPTEs are not used during linear-address translation but only to load the
PDPTE registers for some executions of the MOV CR instruction (see Section 4.4.1). For this rea-
son, the PDPTEs do not contain accessed flags with PAE paging.

Vol. 3A 4-43

PAGING

4.9.1 and Section 4.9.2 explain how paging contributes to memory typing depending
on whether the PAT is supported.

4.9.1 Paging and Memory Typing When the PAT is Not Supported
(Pentium Pro and Pentium Il Processors)

NOTE

The PAT is supported on all processors that support IA-32e paging.
Thus, this section applies only to 32-bit paging and PAE paging.

If the PAT is not supported, paging contributes to memory typing in conjunction with
the memory-type range registers (MTRRs) as specified in Table 11-6 in Section
11.5.2.1.

For any access to a physical address, the table combines the memory type specified
for that physical address by the MTRRs with a PCD value and a PWT value. The latter
two values are determined as follows:

® For an access to a PDE with 32-bit paging, the PCD and PWT values come from
CR3.

® For an access to a PDE with PAE paging, the PCD and PWT values come from the
relevant PDPTE register.

® For an access to a PTE, the PCD and PWT values come from the relevant PDE.

®* For an access to the physical address that is the translation of a linear address,
the PCD and PWT values come from the relevant PTE (if the translation uses a 4-
KByte page) or the relevant PDE (otherwise).

® With PAE paging, the UC memory type is used when loading the PDPTEs (see
Section 4.4.1).

4.9.2 Paging and Memory Typing When the PAT is Supported
(Pentium Il and More Recent Processor Families)
If the PAT is supported, paging contributes to memory typing in conjunction with the

PAT and the memory-type range registers (MTRRs) as specified in Table 11-7 in
Section 11.5.2.2.

The PAT is a 64-bit MSR (IA32_PAT; MSR index 277H) comprising eight (8) 8-bit
entries (entry /i comprises bits 8i+7:8/ of the MSR).

For any access to a physical address, the table combines the memory type specified
for that physical address by the MTRRs with a memory type selected from the PAT.

2. The PAT is supported on Pentium Il and more recent processor families. See Section 4.1.4 for
how to determine whether the PAT is supported.

4-44 \ol. 3A

PAGING

Table 11-11 in Section 11.12.3 specifies how a memory type is selected from the PAT.
Specifically, it comes from entry i of the PAT, where i is defined as follows:

®* Foran access to an entry in a paging structure whose address is in CR3 (e.g., the
PML4 table with IA-32e paging):

— For IA-32e paging with CR4.PCIDE =1,/ = 0.
— Otherwise, i = 2*PCD+PWT, where the PCD and PWT values come from CR3.

®* For an access to a PDE with PAE paging, i = 2*PCD+PWT, where the PCD and
PWT values come from the relevant PDPTE register.

®* For an access to a paging-structure entry X whose address is in another paging-
structure entry Y, i = 2*PCD+PWT, where the PCD and PWT values come from Y.

® For an access to the physical address that is the translation of a linear address,
i = 4*PAT+2*PCD+PWT, where the PAT, PCD, and PWT values come from the
relevant PTE (if the translation uses a 4-KByte page), the relevant PDE (if the
translation uses a 2-MByte page or a 4-MByte page), or the relevant PDPTE (if
the translation uses a 1-GByte page).

®* With PAE paging, the WB memory type is used when loading the PDPTEs (see
Section 4.4.1).1

49.3 Caching Paging-Related Information about Memory Typing

A processor may cache information from the paging-structure entries in TLBs and
paging-structure caches (see Section 4.10). These structures may include informa-
tion about memory typing. The processor may use memory-typing information from
the TLBs and paging-structure caches instead of from the paging structures in
memory.

This fact implies that, if software modifies a paging-structure entry to change the
memory-typing bits, the processor might not use that change for a subsequent
translation using that entry or for access to an affected linear address. See Section
4.10.4.2 for how software can ensure that the processor uses the modified memory

typing.

410 CACHING TRANSLATION INFORMATION

The Intel-64 and IA-32 architectures may accelerate the address-translation process
by caching data from the paging structures on the processor. Because the processor
does not ensure that the data that it caches are always consistent with the structures
in memory, it is important for software developers to understand how and when the

1. Some older IA-32 processors used the UC memory type when loading the PDPTEs. Some proces-
sors may use the UC memory type if CRO.CD = 1 or if the MTRRs are disabled. These behaviors
are model-specific and not architectural.

Vol. 3A 4-45

PAGING

processor may cache such data. They should also understand what actions software
can take to remove cached data that may be inconsistent and when it should do so.
This section provides software developers information about the relevant processor
operation.

Section 4.10.1 introduces process-context identifiers (PCIDs), which a logical
processor may use to distinguish information cached for different linear-address
spaces. Section 4.10.2 and Section 4.10.3 describe how the processor may cache
information in translation lookaside buffers (TLBs) and paging-structure caches,
respectively. Section 4.10.4 explains how software can remove inconsistent cached
information by invalidating portions of the TLBs and paging-structure caches. Section
4.10.5 describes special considerations for multiprocessor systems.

4.10.1 Process-Context Identifiers (PCIDs)

Process-context identifiers (PCIDs) are a facility by which a logical processor may
cache information for multiple linear-address spaces. The processor may retain
cached information when software switches to a different linear-address space with a
different PCID (e.g., by loading CR3; see Section 4.10.4.1 for details).

A PCID is a 12-bit identifier. Non-zero PCIDs are enabled by setting the PCIDE flag
(bit 17) of CR4. If CR4.PCIDE = 0, the current PCID is always 000H; otherwise, the
current PCID is the value of bits 11:0 of CR3. Not all processors allow CR4.PCIDE to
be set to 1; see Section 4.1.4 for how to determine whether this is allowed.

The processor ensures that CR4.PCIDE can be 1 only in IA-32e mode (thus, 32-bit
paging and PAE paging use only PCID 000H). In addition, software can change
CR4.PCIDE from 0 to 1 only if CR3[11:0] = 000H. These requirements are enforced
by the following limitations on the MOV CR instruction:

® MOV to CR4 causes a general-protection exception (#GP) if it would change
CR4.PCIDE from 0 to 1 and either IA32_EFER.LMA = 0 or CR3[11:0] = 000H.

® MOV to CRO causes a general-protection exception if it would clear CRO.PG to 0
while CR4.PCIDE = 1.

When a logical processor creates entries in the TLBs (Section 4.10.2) and paging-
structure caches (Section 4.10.3), it associates those entries with the current PCID.
When using entries in the TLBs and paging-structure caches to translate a linear
address, a logical processor uses only those entries associated with the current PCID
(see Section 4.10.2.4 for an exception).

If CR4.PCIDE = 0, a logical processor does not cache information for any PCID other
than O00H. This is because (1) if CR4.PCIDE = 0, the logical processor will associate
any newly cached information with the current PCID, 000H; and (2) if MOV to CR4
clears CR4.PCIDE, all cached information is invalidated (see Section 4.10.4.1).

NOTE

In revisions of this manual that were produced when no processors
allowed CR4.PCIDE to be set to 1, Section 4.10 discussed the caching

4-46 Vol. 3A

PAGING

of translation information without any reference to PCIDs. While the
section now refers to PCIDs in its specification of this caching, this
documentation change is not intended to imply any change to the
behavior of processors that do not allow CR4.PCIDE to be set to 1.

4.10.2 Translation Lookaside Buffers (TLBs)

A processor may cache information about the translation of linear addresses in trans-
lation lookaside buffers (TLBs). In general, TLBs contain entries that map page
numbers to page frames; these terms are defined in Section 4.10.2.1. Section
4.10.2.2 describes how information may be cached in TLBs, and Section 4.10.2.3
gives details of TLB usage. Section 4.10.2.4 explains the global-page feature, which
allows software to indicate that certain translations should receive special treatment
when cached in the TLBs.

4.10.2.1 Page Numbers, Page Frames, and Page Offsets

Section 4.3, Section 4.4.2, and Section 4.5 give details of how the different paging
modes translate linear addresses to physical addresses. Specifically, the upper bits of
a linear address (called the page number) determine the upper bits of the physical
address (called the page frame); the lower bits of the linear address (called the
page offset) determine the lower bits of the physical address. The boundary
between the page number and the page offset is determined by the page size.
Specifically:

® 32-bit paging:

— If the translation does not use a PTE (because CR4.PSE = 1 and the PS flag is
1in the PDE used), the page size is 4 MBytes and the page number comprises
bits 31:22 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page
number comprises bits 31:12 of the linear address.

¢ PAE paging:
— If the translation does not use a PTE (because the PS flag is 1 in the PDE

used), the page size is 2 MBytes and the page number comprises bits 31:21
of the linear address.

— If the translation does uses a PTE, the page size is 4 KBytes and the page
number comprises bits 31:12 of the linear address.

® IA-32e paging:

— If the translation does not use a PDE (because the PS flag is 1 in the PDPTE
used), the page size is 1 GBytes and the page number comprises bits 47:30
of the linear address.

Vol. 3A 4-47

PAGING

— Ifthe translation does use a PDE but does not uses a PTE (because the PS flag
is 1 in the PDE used), the page size is 2 MBytes and the page number
comprises bits 47:21 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page
number comprises bits 47:12 of the linear address.

4.10.2.2 Caching Translations in TLBs

The processor may accelerate the paging process by caching individual translations
in translation lookaside buffers (TLBs). Each entry in a TLB is an individual trans-
lation. Each translation is referenced by a page number. It contains the following
information from the paging-structure entries used to translate linear addresses with
the page number:

® The physical address corresponding to the page number (the page frame).

® The access rights from the paging-structure entries used to translate linear
addresses with the page number (see Section 4.6):

— The logical-AND of the R/W flags.
— The logical-AND of the U/S flags.
— The logical-OR of the XD flags (necessary only if IA32_EFER.NXE = 1).

® Attributes from a paging-structure entry that identifies the final page frame for
the page number (either a PTE or a paging-structure entry in which the PS flag is
1):

— The dirty flag (see Section 4.8).
— The memory type (see Section 4.9).

(TLB entries may contain other information as well. A processor may implement
multiple TLBs, and some of these may be for special purposes, e.g., only for instruc-
tion fetches. Such special-purpose TLBs may not contain some of this information if
it is not necessary. For example, a TLB used only for instruction fetches need not
contain information about the R/W and dirty flags.)

As noted in Section 4.10.1, any TLB entries created by a logical processor are associ-
ated with the current PCID.

Processors need not implement any TLBs. Processors that do implement TLBs may
invalidate any TLB entry at any time. Software should not rely on the existence of
TLBs or on the retention of TLB entries.

4.10.2.3 Details of TLB Use

Because the TLBs cache only valid translations, there can be a TLB entry for a page

number only if the P flag is 1 and the reserved bits are 0 in each of the paging-struc-
ture entries used to translate that page number. In addition, the processor does not
cache a translation for a page number unless the accessed flag is 1 in each of the

4-48 Vol. 3A

PAGING

paging-structure entries used during translation; before caching a translation, the
processor sets any of these accessed flags that is not already 1.

The processor may cache translations required for prefetches and for accesses that
are a result of speculative execution that would never actually occur in the executed
code path.

If the page number of a linear address corresponds to a TLB entry associated with the
current PCID, the processor may use that TLB entry to determine the page frame,
access rights, and other attributes for accesses to that linear address. In this case,
the processor may not actually consult the paging structures in memory. The
processor may retain a TLB entry unmodified even if software subsequently modifies
the relevant paging-structure entries in memory. See Section 4.10.4.2 for how soft-
ware can ensure that the processor uses the modified paging-structure entries.

If the paging structures specify a translation using a page larger than 4 KBytes, some
processors may choose to cache multiple smaller-page TLB entries for that transla-
tion. Each such TLB entry would be associated with a page number corresponding to
the smaller page size (e.g., bits 47:12 of a linear address with IA-32e paging), even
though part of that page number (e.g., bits 20:12) are part of the offset with respect
to the page specified by the paging structures. The upper bits of the physical address
in such a TLB entry are derived from the physical address in the PDE used to create
the translation, while the lower bits come from the linear address of the access for
which the translation is created. There is no way for software to be aware that
multiple translations for smaller pages have been used for a large page.

If software modifies the paging structures so that the page size used for a 4-KByte
range of linear addresses changes, the TLBs may subsequently contain multiple
translations for the address range (one for each page size). A reference to a linear
address in the address range may use any of these translations. Which translation is
used may vary from one execution to another, and the choice may be implementa-
tion-specific.

4.10.2.4 Global Pages

The Intel-64 and IA-32 architectures also allow for global pages when the PGE flag
(bit 7) is 1 in CR4. If the G flag (bit 8) is 1 in a paging-structure entry that maps a
page (either a PTE or a paging-structure entry in which the PS flag is 1), any TLB
entry cached for a linear address using that paging-structure entry is considered to
be global. Because the G flag is used only in paging-structure entries that map a
page, and because information from such entries are not cached in the paging-struc-
ture caches, the global-page feature does not affect the behavior of the paging-
structure caches.

A logical processor may use a global TLB entry to translate a linear address, even if
the TLB entry is associated with a PCID different from the current PCID.

Vol. 3A 4-49

PAGING

4.10.3 Paging-Structure Caches

In addition to the TLBs, a processor may cache other information about the paging
structures in memory.

4.10.3.1 Caches for Paging Structures

A processor may support any or of all the following paging-structure caches:

® PML4 cache (IA-32e paging only). Each PML4-cache entry is referenced by a 9-
bit value and is used for linear addresses for which bits 47:39 have that value.
The entry contains information from the PML4E used to translate such linear
addresses:

— The physical address from the PML4E (the address of the page-directory-
pointer table).

— The value of the R/W flag of the PML4E.

— The value of the U/S flag of the PML4E.

— The value of the XD flag of the PML4E.

— The values of the PCD and PWT flags of the PMLA4E.

The following items detail how a processor may use the PML4 cache:

— If the processor has a PML4-cache entry for a linear address, it may use that
entry when translating the linear address (instead of the PML4E in memory).

— The processor does not create a PML4-cache entry unless the P flag is 1 and
all reserved bits are 0 in the PML4E in memory.

— The processor does not create a PML4-cache entry unless the accessed flag is
1 in the PML4E in memory; before caching a translation, the processor sets
the accessed flag if it is not already 1.

— The processor may create a PML4-cache entry even if there are no transla-
tions for any linear address that might use that entry (e.g., because the P
flags are 0 in all entries in the referenced page-directory-pointer table).

— If the processor creates a PML4-cache entry, the processor may retain it
unmodified even if software subsequently modifies the corresponding PML4E
in memory.

* PDPTE cache (IA-32e paging only).! Each PDPTE-cache entry is referenced by
an 18-bit value and is used for linear addresses for which bits 47:30 have that
value. The entry contains information from the PML4E and PDPTE used to
translate such linear addresses:

— The physical address from the PDPTE (the address of the page directory). (No
PDPTE-cache entry is created for a PDPTE that maps a 1-GByte page.)

1. With PAE paging, the PDPTEs are stored in internal, non-architectural registers. The operation of
these registers is described in Section 4.4.1 and differs from that described here.

4-50 Vol.3A

PAGING

The logical-AND of the R/W flags in the PML4E and the PDPTE.
The logical-AND of the U/S flags in the PML4E and the PDPTE.
The logical-OR of the XD flags in the PML4E and the PDPTE.
The values of the PCD and PWT flags of the PDPTE.

The following items detail how a processor may use the PDPTE cache:

If the processor has a PDPTE-cache entry for a linear address, it may use that
entry when translating the linear address (instead of the PML4E and the
PDPTE in memory).

The processor does not create a PDPTE-cache entry unless the P flag is 1, the
PS flag is 0, and the reserved bits are 0 in the PML4E and the PDPTE in
memory.

The processor does not create a PDPTE-cache entry unless the accessed flags
are 1 in the PML4E and the PDPTE in memory; before caching a translation,
the processor sets any accessed flags that are not already 1.

The processor may create a PDPTE-cache entry even if there are no transla-
tions for any linear address that might use that entry.

If the processor creates a PDPTE-cache entry, the processor may retain it
unmodified even if software subsequently modifies the corresponding PML4E
or PDPTE in memory.

PDE cache. The use of the PDE cache depends on the paging mode:

For 32-bit paging, each PDE-cache entry is referenced by a 10-bit value and
is used for linear addresses for which bits 31:22 have that value.

For PAE paging, each PDE-cache entry is referenced by an 11-bit value and is
used for linear addresses for which bits 31:21 have that value.

For IA-32e paging, each PDE-cache entry is referenced by a 27-bit value and
is used for linear addresses for which bits 47:21 have that value.

A PDE-cache entry contains information from the PML4E, PDPTE, and PDE used to
translate the relevant linear addresses (for 32-bit paging and PAE paging, only
the PDE applies):

The physical address from the PDE (the address of the page table). (No PDE-
cache entry is created for a PDE that maps a page.)

The logical-AND of the R/W flags in the PML4E, PDPTE, and PDE.
The logical-AND of the U/S flags in the PML4E, PDPTE, and PDE.
The logical-OR of the XD flags in the PML4E, PDPTE, and PDE.
The values of the PCD and PWT flags of the PDE.

The following items detail how a processor may use the PDE cache (references
below to PML4Es and PDPTEs apply on to IA-32e paging):

Vol. 3A 4-51

PAGING

— If the processor has a PDE-cache entry for a linear address, it may use that
entry when translating the linear address (instead of the PML4E, the PDPTE,
and the PDE in memory).

— The processor does not create a PDE-cache entry unless the P flag is 1, the PS
flag is 0, and the reserved bits are 0 in the PML4E, the PDPTE, and the PDE in
memory.

— The processor does not create a PDE-cache entry unless the accessed flag is
1 in the PML4E, the PDPTE, and the PDE in memory; before caching a trans-
lation, the processor sets any accessed flags that are not already 1.

— The processor may create a PDE-cache entry even if there are no translations
for any linear address that might use that entry.

— If the processor creates a PDE-cache entry, the processor may retain it
unmodified even if software subsequently modifies the corresponding PML4E,
the PDPTE, or the PDE in memory.

Information from a paging-structure entry can be included in entries in the paging-
structure caches for other paging-structure entries referenced by the original entry.
For example, if the R/W flag is 0 in a PML4E, then the R/W flag will be 0 in any PDPTE-
cache entry for a PDPTE from the page-directory-pointer table referenced by that
PML4E. This is because the R/W flag of each such PDPTE-cache entry is the logical-
AND of the R/W flags in the appropriate PML4E and PDPTE.

The paging-structure caches contain information only from paging-structure entries
that reference other paging structures (and not those that map pages). Because the
G flag is not used in such paging-structure entries, the global-page feature does not
affect the behavior of the paging-structure caches.

The processor may create entries in paging-structure caches for translations
required for prefetches and for accesses that are a result of speculative execution
that would never actually occur in the executed code path.

As noted in Section 4.10.1, any entries created in paging-structure caches by a
logical processor are associated with the current PCID.

A processor may or may not implement any of the paging-structure caches. Software
should rely on neither their presence nor their absence. The processor may invalidate
entries in these caches at any time. Because the processor may create the cache
entries at the time of translation and not update them following subsequent modifi-
cations to the paging structures in memory, software should take care to invalidate
the cache entries appropriately when causing such modifications. The invalidation of
TLBs and the paging-structure caches is described in Section 4.10.4.

4.10.3.2 Using the Paging-Structure Caches to Translate Linear Addresses

When a linear address is accessed, the processor uses a procedure such as the
following to determine the physical address to which it translates and whether the
access should be allowed:

4-52 Vol. 3A

PAGING

If the processor finds a TLB entry that is for the page number of the linear
address and that is associated with the current PCID (or which is global), it may
use the physical address, access rights, and other attributes from that entry.

If the processor does not find a relevant TLB entry, it may use the upper bits of
the linear address to select an entry from the PDE cache that is associated with
the current PCID (Section 4.10.3.1 indicates which bits are used in each paging
mode). It can then use that entry to complete the translation process (locating a
PTE, etc.) as if it had traversed the PDE (and, for IA-32e paging, the PDPTE and
PML4) corresponding to the PDE-cache entry.

The following items apply when IA-32e paging is used:

— If the processor does not find a relevant TLB entry or a relevant PDE-cache
entry, it may use bits 47:30 of the linear address to select an entry from the
PDPTE cache that is associated with the current PCID. It can then use that
entry to complete the translation process (locating a PDE, etc.) as if it had
traversed the PDPTE and the PML4 corresponding to the PDPTE-cache entry.

— If the processor does not find a relevant TLB entry, a relevant PDE-cache
entry, or a relevant PDPTE-cache entry, it may use bits 47:39 of the linear
address to select an entry from the PML4 cache that is associated with the
current PCID. It can then use that entry to complete the translation process
(locating a PDPTE, etc.) as if it had traversed the corresponding PML4.

(Any of the above steps would be skipped if the processor does not support the cache
in question.)

If the processor does not find a TLB or paging-structure-cache entry for the linear
address, it uses the linear address to traverse the entire paging-structure hierarchy,
as described in Section 4.3, Section 4.4.2, and Section 4.5.

4.10.3.3 Multiple Cached Entries for a Single Paging-Structure Entry

The paging-structure caches and TLBs and paging-structure caches may contain
multiple entries associated with a single PCID and with information derived from a
single paging-structure entry. The following items give some examples for IA-32e

paging:

Suppose that two PML4Es contain the same physical address and thus reference
the same page-directory-pointer table. Any PDPTE in that table may result in two
PDPTE-cache entries, each associated with a different set of linear addresses.
Specifically, suppose that the n;® and n,™ entries in the PML4 table contain the
same physical address. This implies that the physical address in the mth PDPTE in
the page-directory-pointer table would appear in the PDPTE-cache entries
associated with both p; and p,, where (p; » 9) = ny, (p2 » 9) = ny, and (p; &
1FFH) = (p> & 1FFH) = m. This is because both PDPTE-cache entries use the
same PDPTE, one resulting from a reference from the nlth PML4E and one from
the n,™" PML4E.

Vol. 3A 4-53

PAGING

® Suppose that the first PML4E (i.e., the one in position 0) contains the physical
address X in CR3 (the physical address of the PML4 table). This implies the
following:

— Any PML4-cache entry associated with linear addresses with 0 in bits 47:39
contains address X.

— Any PDPTE-cache entry associated with linear addresses with 0 in bits 47:30
contains address X. This is because the translation for a linear address for
which the value of bits 47:30 is 0 uses the value of bits 47:39 (0) to locate a
page-directory-pointer table at address X (the address of the PML4 table). It
then uses the value of bits 38:30 (also 0) to find address X again and to store
that address in the PDPTE-cache entry.

— Any PDE-cache entry associated with linear addresses with 0 in bits 47:21
contains address X for similar reasons.

— Any TLB entry for page number 0 (associated with linear addresses with 0 in
bits 47:12) translates to page frame X » 12 for similar reasons.

The same PML4E contributes its address X to all these cache entries because the
self-referencing nature of the entry causes it to be used as a PML4E, a PDPTE, a
PDE, and a PTE.

4.10.4 Invalidation of TLBs and Paging-Structure Caches

As noted in Section 4.10.2 and Section 4.10.3, the processor may create entries in
the TLBs and the paging-structure caches when linear addresses are translated, and
it may retain these entries even after the paging structures used to create them have
been modified. To ensure that linear-address translation uses the modified paging
structures, software should take action to invalidate any cached entries that may
contain information that has since been modified.

4.10.4.1 Operations that Invalidate TLBs and Paging-Structure Caches

The following instructions invalidate entries in the TLBs and the paging-structure
caches:

®* INVLPG. This instruction takes a single operand, which is a linear address. The
instruction invalidates any TLB entries that are for a page humber corresponding
to the linear address and that are associated with the current PCID. It also
invalidates any global TLB entries with that page number, regardless of PCID
(see Section 4.10.2.4).1 INVLPG also invalidates all entries in all paging-structure
caches associated with the current PCID, regardless of the linear addresses to
which they correspond.

1. If the paging structures map the linear address using a page larger than 4 KBytes and there are
multiple TLB entries for that page (see Section 4.10.2.3), the instruction invalidates all of them.

4-54 Vol. 3A

PAGING

INVPCID. The operation of this instruction is based on instruction operands,
called the INVPCID type and the INVPCID descriptor. Four INVPCID types are
currently defined:

Individual-address. If the INVPCID type is 0, the logical processor invalidates
mappings—except global translations—associated with the PCID specified in
the INVPCID descriptor and that would be used to translate the linear address
specified in the INVPCID descriptor. (The instruction may also invalidate
global translations, as well as mappings associated with other PCIDs and for
other linear addresses.)

Single-context. If the INVPCID type is 1, the logical processor invalidates all
mappings—except global translations—associated with the PCID specified in
the INVPCID descriptor. (The instruction may also invalidate global transla-

tions, as well as mappings associated with other PCIDs.)

All-context, including globals. If the INVPCID type is 2, the logical processor
invalidates mappings—including global translations—associated with all
PCIDs.

All-context. If the INVPCID type is 3, the logical processor invalidates
mappings—except global translations—associated with all PCIDs. (The
instruction may also invalidate global translations.)

See Chapter 3 of the Intel 64 and IA-32 Architecture Software Developer’s
Manual, Volume 2A for details of the INVPCID instruction.

MOV to CRO. The instruction invalidates all TLB entries (including global entries)
and all entries in all paging-structure caches (for all PCIDs) if it changes the
value of CRO.PG from 1 to 0.

MOV to CR3. The behavior of the instruction depends on the value of CR4.PCIDE:

If CR4.PCIDE = 0, the instruction invalidates all TLB entries associated with
PCID 000H except those for global pages. It also invalidates all entries in all
paging-structure caches associated with PCID 000H.

If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 0, the
instruction invalidates all TLB entries associated with the PCID specified in
bits 11:0 of the instruction’s source operand except those for global pages. It
also invalidates all entries in all paging-structure caches associated with that
PCID. It is not required to invalidate entries in the TLBs and paging-structure
caches that are associated with other PCIDs.

If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 1, the
instruction is not required to invalidate any TLB entries or entries in paging-
structure caches.

MOV to CR4. The behavior of the instruction depends on the bits being modified:

The instruction invalidates all TLB entries (including global entries) and all
entries in all paging-structure caches (for all PCIDs) if (1) it changes the
value of CR4.PGE;! or (2) it changes the value of the CR4.PCIDE from 1 to 0.

Vol. 3A 4-55

PAGING

— The instruction invalidates all TLB entries and all entries in all paging-
structure caches for the current PCID if (1) it changes the value of CR4.PAE;
or (2) it changes the value of CR4.SMEP from 0 to 1.

®* Task switch. If a task switch changes the value of CR3, it invalidates all TLB
entries associated with PCID 000H except those for global pages. It also
invalidlates all entries in all paging-structure caches for associated with PCID
0O0OH.

® VMKX transitions. See Section 4.11.1.

The processor is always free to invalidate additional entries in the TLBs and paging-
structure caches. The following are some examples:

®* INVLPG may invalidate TLB entries for pages other than the one corresponding to
its linear-address operand. It may invalidate TLB entries and paging-structure-
cache entries associated with PCIDs other than the current PCID.

* INVPCID may invalidate TLB entries for pages other than the one corresponding
to the specified linear address. It may invalidate TLB entries and paging-
structure-cache entries associated with PCIDs other than the specified PCID.

® MOV to CRO may invalidate TLB entries even if CRO.PG is not changing. For
example, this may occur if either CR0.CD or CR0.NW is modified.

®* MOV to CR3 may invalidate TLB entries for global pages. If CR4.PCIDE = 1 and
bit 63 of the instruction’s source operand is 0, it may invalidate TLB entries and
entries in the paging-structure caches associated with PCIDs other than the
current PCID. It may invalidate entries if CR4.PCIDE = 1 and bit 63 of the
instruction’s source operand is 1.

®* MOV to CR4 may invalidate TLB entries when changing CR4.PSE or when
changing CR4.SMEP from 1 to O.

® On a processor supporting Hyper-Threading Technology, invalidations performed
on one logical processor may invalidate entries in the TLBs and paging-structure
caches used by other logical processors.

(Other instructions and operations may invalidate entries in the TLBs and the paging-
structure caches, but the instructions identified above are recommended.)

In addition to the instructions identified above, page faults invalidate entries in the
TLBs and paging-structure caches. In particular, a page-fault exception resulting
from an attempt to use a linear address will invalidate any TLB entries that are for a
page number corresponding to that linear address and that are associated with the
current PCID. it also invalidates all entries in the paging-structure caches that would
be used for that linear address and that are associated with the current PCID.2 These
invalidations ensure that the page-fault exception will not recur (if the faulting

1. If CR4.PGE is changing from O to 1, there were no global TLB entries before the execution; if
CR4.PGE is changing from 1 to O, there will be no global TLB entries after the execution.

1. Task switches do not occur in IA-32e mode and thus cannot occur with I1A-32e paging. Since
CR4.PCIDE can be set only with IA-32e paging, task switches occur only with CR4.PCIDE = O.

4-56 Vol.3A

PAGING

instruction is re-executed) if it would not be caused by the contents of the paging
structures in memory (and if, therefore, it resulted from cached entries that were not
invalidated after the paging structures were modified in memory).

As noted in Section 4.10.2, some processors may choose to cache multiple smaller-
page TLB entries for a translation specified by the paging structures to use a page
larger than 4 KBytes. There is no way for software to be aware that multiple transla-
tions for smaller pages have been used for a large page. The INVLPG instruction and
page faults provide the same assurances that they provide when a single TLB entry
is used: they invalidate all TLB entries corresponding to the translation specified by
the paging structures.

4.10.4.2 Recommended Invalidation

The following items provide some recommendations regarding when software should
perform invalidations:

* If software modifies a paging-structure entry that identifies the final page frame
for a page number (either a PTE or a paging-structure entry in which the PS flag
is 1), it should execute INVLPG for any linear address with a page number whose
translation uses that PTE.!

(If the paging-structure entry may be used in the translation of different page
numbers — see Section 4.10.3.3 — software should execute INVLPG for linear
addresses with each of those page numbers; alternatively, it could use MOV to
CR3 or MOV to CR4.)

* If software modifies a paging-structure entry that references another paging
structure, it may use one of the following approaches depending upon the types
and number of translations controlled by the modified entry:

— Execute INVLPG for linear addresses with each of the page numbers with
translations that would use the entry. However, if no page numbers that
would use the entry have translations (e.g., because the P flags are 0 in all
entries in the paging structure referenced by the modified entry), it remains
necessary to execute INVLPG at least once.

— Execute MOV to CR3 if the modified entry controls no global pages.
— Execute MOV to CR4 to modify CR4.PGE.

* If CR4.PCIDE = 1 and software modifies a paging-structure entry that does not
map a page or in which the G flag (bit 8) is 0, additional steps are required if the
entry may be used for PCIDs other than the current one. Any one of the following
suffices:

2. Unlike INVLPG, page faults need not invalidate all entries in the paging-structure caches, only
those that would be used to translate the faulting linear address.

1. One execution of INVLPG is sufficient even for a page with size greater than 4 KBytes.

Vol. 3A 4-57

PAGING

— Execute MOV to CR4 to modify CR4.PGE, either immediately or before again
using any of the affected PCIDs. For example, software could use different
(previously unused) PCIDs for the processes that used the affected PCIDs.

— For each affected PCID, execute MOV to CR3 to make that PCID current (and
to load the address of the appropriate PML4 table). If the modified entry
controls no global pages and bit 63 of the source operand to MOV to CR3 was
0, no further steps are required. Otherwise, execute INVLPG for linear
addresses with each of the page numbers with translations that would use
the entry; if no page numbers that would use the entry have translations,
execute INVLPG at least once.

If software using PAE paging modifies a PDPTE, it should reload CR3 with the
register’s current value to ensure that the modified PDPTE is loaded into the
corresponding PDPTE register (see Section 4.4.1).

If the nature of the paging structures is such that a single entry may be used for
multiple purposes (see Section 4.10.3.3), software should perform invalidations
for all of these purposes. For example, if a single entry might serve as both a PDE
and PTE, it may be necessary to execute INVLPG with two (or more) linear
addresses, one that uses the entry as a PDE and one that uses it as a PTE. (Alter-
natively, software could use MOV to CR3 or MOV to CR4.)

As noted in Section 4.10.2, the TLBs may subsequently contain multiple transla-
tions for the address range if software modifies the paging structures so that the
page size used for a 4-KByte range of linear addresses changes. A reference to a
linear address in the address range may use any of these translations.

Software wishing to prevent this uncertainty should not write to a paging-
structure entry in a way that would change, for any linear address, both the page
size and either the page frame, access rights, or other attributes. It can instead
use the following algorithm: first clear the P flag in the relevant paging-structure
entry (e.g., PDE); then invalidate any translations for the affected linear
addresses (see above); and then modify the relevant paging-structure entry to
set the P flag and establish modified translation(s) for the new page size.

Software should clear bit 63 of the source operand to a MOV to CR3 instruction
that establishes a PCID that had been used earlier for a different linear-address
space (e.g., with a different value in bits 51:12 of CR3). This ensures invalidation
of any information that may have been cached for the previous linear-address
space.

This assumes that both linear-address spaces use the same global pages and
that it is thus not necessary to invalidate any global TLB entries. If that is not the
case, software should invalidate those entries by executing MOV to CR4 to modify
CR4.PGE.

4.10.4.3 Optional Invalidation

The following items describe cases in which software may choose not to invalidate
and the potential consequences of that choice:

4-58 Vol.3A

PAGING

If a paging-structure entry is modified to change the P flag from 0 to 1, no inval-
idation is necessary. This is because no TLB entry or paging-structure cache
entry is clreated with information from a paging-structure entry in which the P
flag is 0.

If a paging-structure entry is modified to change the accessed flag from 0 to 1,
no invalidation is necessary (assuming that an invalidation was performed the
last time the accessed flag was changed from 1 to 0). This is because no TLB
entry or paging-structure cache entry is created with information from a paging-
structure entry in which the accessed flag is 0.

If a paging-structure entry is modified to change the R/W flag from 0 to 1, failure
to perform an invalidation may result in a “spurious” page-fault exception (e.g.,
in response to an attempted write access) but no other adverse behavior. Such
an exception will occur at most once for each affected linear address (see Section
4.10.4.1).

If CR4.SMEP = 0 and a paging-structure entry is modified to change the U/S flag
from O to 1, failure to perform an invalidation may result in a “spurious” page-
fault exception (e.g., in response to an attempted user-mode access) but no
other adverse behavior. Such an exception will occur at most once for each
affected linear address (see Section 4.10.4.1).

If a paging-structure entry is modified to change the XD flag from 1 to 0, failure
to perform an invalidation may result in a “spurious” page-fault exception (e.g.,
in response to an attempted instruction fetch) but no other adverse behavior.
Such an exception will occur at most once for each affected linear address (see
Section 4.10.4.1).

If a paging-structure entry is modified to change the accessed flag from 1 to 0,
failure to perform an invalidation may result in the processor not setting that bit
in response to a subsequent access to a linear address whose translation uses the
entry. Software cannot interpret the bit being clear as an indication that such an
access has not occurred.

If software modifies a paging-structure entry that identifies the final physical
address for a linear address (either a PTE or a paging-structure entry in which the
PS flag is 1) to change the dirty flag from 1 to 0, failure to perform an invalidation
may result in the processor not setting that bit in response to a subsequent write
to a linear address whose translation uses the entry. Software cannot interpret
the bit being clear as an indication that such a write has not occurred.

The read of a paging-structure entry in translating an address being used to fetch
an instruction may appear to execute before an earlier write to that paging-
structure entry if there is no serializing instruction between the write and the
instruction fetch. Note that the invalidating instructions identified in Section
4.10.4.1 are all serializing instructions.

If it is also the case that no invalidation was performed the last time the P flag was changed
from 1 to O, the processor may use a TLB entry or paging-structure cache entry that was cre-
ated when the P flag had earlier been 1.

Vol. 3A 4-59

PAGING

® Section 4.10.3.3 describes situations in which a single paging-structure entry
may contain information cached in multiple entries in the paging-structure
caches. Because all entries in these caches are invalidated by any execution of
INVLPG, it is not necessary to follow the modification of such a paging-structure
entry by executing INVLPG multiple times solely for the purpose of invalidating
these multiple cached entries. (It may be necessary to do so to invalidate
multiple TLB entries.)

4.10.4.4 Delayed Invalidation

Required invalidations may be delayed under some circumstances. Software devel-
opers should understand that, between the modification of a paging-structure entry
and execution of the invalidation instruction recommended in Section 4.10.4.2, the
processor may use translations based on either the old value or the new value of the
paging-structure entry. The following items describe some of the potential conse-
guences of delayed invalidation:

* If a paging-structure entry is modified to change from 1 to 0 the P flag from 1 to
0, an access to a linear address whose translation is controlled by this entry may
or may not cause a page-fault exception.

® If a paging-structure entry is modified to change the R/W flag from 0 to 1, write
accesses to linear addresses whose translation is controlled by this entry may or
may not cause a page-fault exception.

* If a paging-structure entry is modified to change the U/S flag from 0 to 1, user-
mode accesses to linear addresses whose translation is controlled by this entry
may or may not cause a page-fault exception.

* If a paging-structure entry is modified to change the XD flag from 1 to O,
instruction fetches from linear addresses whose translation is controlled by this
entry may or may not cause a page-fault exception.

As noted in Section 8.1.1, an x87 instruction or an SSE instruction that accesses data
larger than a quadword may be implemented using multiple memory accesses. If
such an instruction stores to memory and invalidation has been delayed, some of the
accesses may complete (writing to memory) while another causes a page-fault
exception.! In this case, the effects of the completed accesses may be visible to soft-
ware even though the overall instruction caused a fault.

In some cases, the consequences of delayed invalidation may not affect software
adversely. For example, when freeing a portion of the linear-address space (by
marking paging-structure entries “not present”), invalidation using INVLPG may be
delayed if software does not re-allocate that portion of the linear-address space or
the memory that had been associated with it. However, because of speculative
execution (or errant software), there may be accesses to the freed portion of the
linear-address space before the invalidations occur. In this case, the following can
happen:

1. If the accesses are to different pages, this may occur even if invalidation has not been delayed.

4-60 Vol.3A

PAGING

® Reads can occur to the freed portion of the linear-address space. Therefore,
invalidation should not be delayed for an address range that has read side
effects.

® The processor may retain entries in the TLBs and paging-structure caches for an
extended period of time. Software should not assume that the processor will not
use entries associated with a linear address simply because time has passed.

®* As noted in Section 4.10.3.1, the processor may create an entry in a paging-
structure cache even if there are no translations for any linear address that might
use that entry. Thus, if software has marked “not present” all entries in page
table, the processor may subsequently create a PDE-cache entry for the PDE that
references that page table (assuming that the PDE itself is marked “present”).

* If software attempts to write to the freed portion of the linear-address space, the
processor might not generate a page fault. (Such an attempt would likely be the
result of a software error.) For that reason, the page frames previously
associated with the freed portion of the linear-address space should not be
reallocated for another purpose until the appropriate invalidations have been
performed.

4.10.5 Propagation of Paging-Structure Changes to Multiple
Processors

As noted in Section 4.10.4, software that modifies a paging-structure entry may
need to invalidate entries in the TLBs and paging-structure caches that were derived
from the modified entry before it was modified. In a system containing more than
one logical processor, software must account for the fact that there may be entries in
the TLBs and paging-structure caches of logical processors other than the one used
to modify the paging-structure entry. The process of propagating the changes to a
paging-structure entry is commonly referred to as “TLB shootdown.”

TLB shootdown can be done using memory-based semaphores and/or interprocessor
interrupts (IPI). The following items describe a simple but inefficient example of a
TLB shootdown algorithm for processors supporting the Intel-64 and IA-32 architec-
tures:

1. Begin barrier: Stop all but one logical processor; that is, cause all but one to
execute the HLT instruction or to enter a spin loop.

2. Allow the active logical processor to change the necessary paging-structure
entries.

3. Allow all logical processors to perform invalidations appropriate to the modifica-
tions to the paging-structure entries.

4. Allow all logical processors to resume normal operation.

Alternative, performance-optimized, TLB shootdown algorithms may be developed;
however, software developers must take care to ensure that the following conditions
are met:

Vol. 3A 4-61

PAGING

* All logical processors that are using the paging structures that are being modified
must participate and perform appropriate invalidations after the modifications
are made.

* If the modifications to the paging-structure entries are made before the barrier
or if there is no barrier, the operating system must ensure one of the following:
(1) that the affected linear-address range is not used between the time of modifi-
cation and the time of invalidation; or (2) that it is prepared to deal with the
consequences of the affected linear-address range being used during that period.
For example, if the operating system does not allow pages being freed to be
reallocated for another purpose until after the required invalidations, writes to
those pages by errant software will not unexpectedly modify memory that is in
use.

® Software must be prepared to deal with reads, instruction fetches, and prefetch
requests to the affected linear-address range that are a result of speculative
execution that would never actually occur in the executed code path.

When multiple logical processors are using the same linear-address space at the
same time, they must coordinate before any request to modify the paging-structure
entries that control that linear-address space. In these cases, the barrier in the TLB
shootdown routine may not be required. For example, when freeing a range of linear
addresses, some other mechanism can assure no logical processor is using that
range before the request to free it is made. In this case, a logical processor freeing
the range can clear the P flags in the PTEs associated with the range, free the phys-
ical page frames associated with the range, and then signal the other logical proces-
sors using that linear-address space to perform the necessary invalidations. All the
affected logical processors must complete their invalidations before the linear-
address range and the physical page frames previously associated with that range
can be reallocated.

4.11 INTERACTIONS WITH VIRTUAL-MACHINE
EXTENSIONS (VMX)

The architecture for virtual-machine extensions (VMX) includes features that interact
with paging. Section 4.11.1 discusses ways in which VMX-specific control transfers,
called VMX transitions specially affect paging. Section 4.11.2 gives an overview of
VMX features specifically designed to support address translation.

4.11.1 VMX Transitions

The VMX architecture defines two control transfers called VM entries and VM exits;
collectively, these are called VMX transitions. VM entries and VM exits are
described in detail in Chapter 26 and Chapter 27, respectively, in the Inte/l® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3C. The following items
identify paging-related details:

4-62 Vol.3A

PAGING

® VMX transitions modify the CRO and CR4 registers and the IA32_EFER MSR
concurrently. For this reason, they allow transitions between paging modes that
would not otherwise be possible:

— VM entries allow transitions from IA-32e paging directly to either 32-bit
paging or PAE paging.

— VM exits allow transitions from either 32-bit paging or PAE paging directly to
IA-32e paging.

®* VMX transitions that result in PAE paging load the PDPTE registers (see Section
4.4.1) as follows:

— VM entries load the PDPTE registers either from the physical address being
loaded into CR3 or from the virtual-machine control structure (VMCS); see
Section 26.3.2.4.

— VM exits load the PDPTE registers from the physical address being loaded into
CR3; see Section 27.5.4.

®* VMXtransitions invalidate the TLBs and paging-structure caches based on certain
control settings. See Section 26.3.2.5 and Section 27.5.5 in the Inte/l® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3C.

4.11.2 VMX Support for Address Translation

Chapter 28, "VMX Support for Address Translation,” in the Inte/l® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C describe two features of the
virtual-machine extensions (VMX) that interact directly with paging. These are
virtual-processor identifiers (VPIDs) and the extended page table mechanism
(EPT).

VPIDs provide a way for software to identify to the processor the address spaces for
different “virtual processors.” The processor may use this identification to maintain

concurrently information for multiple address spaces in its TLBs and paging-structure
caches, even when non-zero PCIDs are not being used. See Section 28.1 for details.

When EPT is in use, the addresses in the paging-structures are not used as physical
addresses to access memory and memory-mapped I/0. Instead, they are treated as
guest-physical addresses and are translated through a set of EPT paging structures
to produce physical addresses. EPT can also specify its own access rights and
memory typing; these are used on conjunction with those specified in this chapter.
See Section 28.2 for more information.

Both VPIDs and EPT may change the way that a processor maintains information in
TLBs and paging structure caches and the ways in which software can manage that
information. Some of the behaviors documented in Section 4.10 may change. See
Section 28.3 for details.

Vol. 3A 4-63

PAGING

412 USING PAGING FOR VIRTUAL MEMORY

With paging, portions of the linear-address space need not be mapped to the phys-
ical-address space; data for the unmapped addresses can be stored externally (e.g.,
on disk). This method of mapping the linear-address space is referred to as virtual
memory or demand-paged virtual memory.

Paging divides the linear address space into fixed-size pages that can be mapped into
the physical-address space and/or external storage. When a program (or task) refer-
ences a linear address, the processor uses paging to translate the linear address into
a corresponding physical address if such an address is defined.

If the page containing the linear address is not currently mapped into the physical-
address space, the processor generates a page-fault exception as described in
Section 4.7. The handler for page-fault exceptions typically directs the operating
system or executive to load data for the unmapped page from external storage into
physical memory (perhaps writing a different page from physical memory out to
external storage in the process) and to map it using paging (by updating the paging
structures). When the page has been loaded into physical memory, a return from the
exception handler causes the instruction that generated the exception to be
restarted.

Paging differs from segmentation through its use of fixed-size pages. Unlike
segments, which usually are the same size as the code or data structures they hold,
pages have a fixed size. If segmentation is the only form of address translation used,
a data structure present in physical memory will have all of its parts in memory. If
paging is used, a data structure can be partly in memory and partly in disk storage.

413 MAPPING SEGMENTS TO PAGES

The segmentation and paging mechanisms provide in the support a wide variety of
approaches to memory management. When segmentation and paging are combined,
segments can be mapped to pages in several ways. To implement a flat (unseg-
mented) addressing environment, for example, all the code, data, and stack modules
can be mapped to one or more large segments (up to 4-GBytes) that share same
range of linear addresses (see Figure 3-2 in Section 3.2.2). Here, segments are
essentially invisible to applications and the operating-system or executive. If paging
is used, the paging mechanism can map a single linear-address space (contained in
a single segment) into virtual memory. Alternatively, each program (or task) can
have its own large linear-address space (contained in its own segment), which is
mapped into virtual memory through its own paging structures.

Segments can be smaller than the size of a page. If one of these segments is placed
in a page which is not shared with another segment, the extra memory is wasted. For
example, a small data structure, such as a 1-Byte semaphore, occupies 4 KBytes if it
is placed in a page by itself. If many semaphores are used, it is more efficient to pack
them into a single page.

4-64 Vol. 3A

PAGING

The Intel-64 and IA-32 architectures do not enforce correspondence between the
boundaries of pages and segments. A page can contain the end of one segment and
the beginning of another. Similarly, a segment can contain the end of one page and
the beginning of another.

Memory-management software may be simpler and more efficient if it enforces some
alignment between page and segment boundaries. For example, if a segment which
can fit in one page is placed in two pages, there may be twice as much paging over-
head to support access to that segment.

One approach to combining paging and segmentation that simplifies memory-
management software is to give each segment its own page table, as shown in
Figure 4-13. This convention gives the segment a single entry in the page directory,
and this entry provides the access control information for paging the entire segment.

Page Frames

LDT Page Directory Page Tables
PTE —
PTE >
,—> PTE M
Seg. Descript.—> PDE
Seg. Descript. —> PDE >

PTE

PTE L

I

Figure 4-13. Memory Management Convention That Assigns a Page Table
to Each Segment

Vol. 3A 4-65

CHAPTER 5
PROTECTION

In protected mode, the Intel 64 and IA-32 architectures provide a protection mecha-
nism that operates at both the segment level and the page level. This protection
mechanism provides the ability to limit access to certain segments or pages based on
privilege levels (four privilege levels for segments and two privilege levels for pages).
For example, critical operating-system code and data can be protected by placing
them in more privileged segments than those that contain applications code. The
processor’s protection mechanism will then prevent application code from accessing
the operating-system code and data in any but a controlled, defined manner.

Segment and page protection can be used at all stages of software development to
assist in localizing and detecting design problems and bugs. It can also be incorpo-
rated into end-products to offer added robustness to operating systems, utilities soft-
ware, and applications software.

When the protection mechanism is used, each memory reference is checked to verify
that it satisfies various protection checks. All checks are made before the memory
cycle is started; any violation results in an exception. Because checks are performed
in parallel with address translation, there is no performance penalty. The protection
checks that are performed fall into the following categories:

® Limit checks.

®* Type checks.

®* Privilege level checks.

® Restriction of addressable domain.

® Restriction of procedure entry-points.
® Restriction of instruction set.

All protection violation results in an exception being generated. See Chapter 6,
“Interrupt and Exception Handling,” for an explanation of the exception mechanism.
This chapter describes the protection mechanism and the violations which lead to
exceptions.

The following sections describe the protection mechanism available in protected
mode. See Chapter 20, “"8086 Emulation,” for information on protection in real-
address and virtual-8086 mode.

5.1 ENABLING AND DISABLING SEGMENT AND PAGE
PROTECTION

Setting the PE flag in register CRO causes the processor to switch to protected mode,
which in turn enables the segment-protection mechanism. Once in protected mode,

Vol. 3A 5-1

PROTECTION

there is no control bit for turning the protection mechanism on or off. The part of the
segment-protection mechanism that is based on privilege levels can essentially be
disabled while still in protected mode by assigning a privilege level of 0 (most privi-
leged) to all segment selectors and segment descriptors. This action disables the
privilege level protection barriers between segments, but other protection checks
such as limit checking and type checking are still carried out.

Page-level protection is automatically enabled when paging is enabled (by setting the
PG flag in register CR0O). Here again there is no mode bit for turning off page-level
protection once paging is enabled. However, page-level protection can be disabled by
performing the following operations:

® (Clear the WP flag in control register CRO.

® Setthe read/write (R/W) and user/supervisor (U/S) flags for each page-directory
and page-table entry.

This action makes each page a writable, user page, which in effect disables page-
level protection.

5.2 FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND
PAGE-LEVEL PROTECTION

The processor’s protection mechanism uses the following fields and flags in the
system data structures to control access to segments and pages:

®* Descriptor type (S) flag — (Bit 12 in the second doubleword of a segment
descriptor.) Determines if the segment descriptor is for a system segment or a
code or data segment.

* Type field — (Bits 8 through 11 in the second doubleword of a segment
descriptor.) Determines the type of code, data, or system segment.

®* Limit field — (Bits 0 through 15 of the first doubleword and bits 16 through 19
of the second doubleword of a segment descriptor.) Determines the size of the
segment, along with the G flag and E flag (for data segments).

* G flag — (Bit 23 in the second doubleword of a segment descriptor.) Determines
the size of the segment, along with the limit field and E flag (for data segments).

®* E flag — (Bit 10 in the second doubleword of a data-segment descriptor.)
Determines the size of the segment, along with the limit field and G flag.

®* Descriptor privilege level (DPL) field — (Bits 13 and 14 in the second
doubleword of a segment descriptor.) Determines the privilege level of the
segment.

* Requested privilege level (RPL) field — (Bits 0 and 1 of any segment
selector.) Specifies the requested privilege level of a segment selector.

® Current privilege level (CPL) field — (Bits 0 and 1 of the CS segment
register.) Indicates the privilege level of the currently executing program or

5-2 Vol.3A

PROTECTION

procedure. The term current privilege level (CPL) refers to the setting of this
field.

®* User/supervisor (U/S) flag — (Bit 2 of paging-structure entries.) Determines
the type of page: user or supervisor.

* Read/write (R/W) flag — (Bit 1 of paging-structure entries.) Determines the
type of access allowed to a page: read-only or read/write.

* Execute-disable (XD) flag — (Bit 63 of certain paging-structure entries.)
Determines the type of access allowed to a page: executable or not-executable.

Figure 5-1 shows the location of the various fields and flags in the data, code, and
system- segment descriptors; Figure 3-6 shows the location of the RPL (or CPL) field
in a segment selector (or the CS register); and Chapter 4 identifies the locations of
the U/S, R/W, and XD flags in the paging-structure entries.

Vol.3A 5-3

PROTECTION

Data-Segment Descriptor

31 242322 212019 16 15 14 13 12 11 8 7 0
A imi D Type
Base3124 |G[Blo|v| HmL |p| p i Base 23:16 4
L : 100 ‘ E ‘W‘ A
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0

Code-Segment Descriptor

31 242322 212019 1615 14 13 12 11 8 7 0
A i D Type
Base31:24 |G|plo|v| LML |p| p P Base23:16 |4
L : 101 ‘C‘R‘ A
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0

System-Segment Descriptor

31 242322 212019 16 15 14 13 12 11 8 7 0
i D
Base 31:24 G 0 L|m|t Pl P |0| Type Base 23:16 4
19:16 L
31 1615 0
Base Address 15:00 Segment Limit 15:00 0
A Accessed E Expansion Direction
AVL Available to Sys. Programmer’s G Granularity
B Big R Readable
Cc Conforming LIMIT Segment Limit
D Default w Writable
DPL Descriptor Privilege Level P Present

I:l Reserved

Figure 5-1. Descriptor Fields Used for Protection

Many different styles of protection schemes can be implemented with these fields
and flags. When the operating system creates a descriptor, it places values in these
fields and flags in keeping with the particular protection style chosen for an operating
system or executive. Application program do not generally access or modify these
fields and flags.

5-4 Vol. 3A

PROTECTION

The following sections describe how the processor uses these fields and flags to
perform the various categories of checks described in the introduction to this chapter.

5.2.1 Code Segment Descriptor in 64-bit Mode

Code segments continue to exist in 64-bit mode even though, for address calcula-
tions, the segment base is treated as zero. Some code-segment (CS) descriptor
content (the base address and limit fields) is ignored; the remaining fields function
normally (except for the readable bit in the type field).

Code segment descriptors and selectors are needed in IA-32e mode to establish the
processor’s operating mode and execution privilege-level. The usage is as follows:

®* IA-32e mode uses a previously unused bit in the CS descriptor. Bit 53 is defined
as the 64-bit (L) flag and is used to select between 64-bit mode and compatibility
mode when IA-32e mode is active (IA32_EFER.LMA = 1). See Figure 5-2.

— If CS.L = 0 and IA-32e mode is active, the processor is running in compati-
bility mode. In this case, CS.D selects the default size for data and addresses.
If CS.D = 0, the default data and address size is 16 bits. If CS.D = 1, the
default data and address size is 32 bits.

— IfCS.L =1 and IA-32e mode is active, the only valid setting is CS.D = 0. This
setting indicates a default operand size of 32 bits and a default address size
of 64 bits. The CS.L = 1 and CS.D = 1 bit combination is reserved for future
use and a #GP fault will be generated on an attempt to use a code segment
with these bits set in IA-32e mode.

®* InIA-32e mode, the CS descriptor’s DPL is used for execution privilege checks
(as in legacy 32-bit mode).

Vol.3A 5-5

PROTECTION

Code-Segment Descriptor

31 242322212019 161514 1312 11 8 7 0

A D Type
G|D|L|V Pl P P 4
L

L 1‘C‘R‘A

-

31 0

A Accessed

AVL Available to Sys. Programmer’'s G Granularity
C Conforming R Readable
D Default P Present
DPL Descriptor Privilege Level

L 64-Bit Flag

Figure 5-2. Descriptor Fields with Flags used in IA-32e Mode

5.3 LIMIT CHECKING

The limit field of a segment descriptor prevents programs or procedures from
addressing memory locations outside the segment. The effective value of the limit
depends on the setting of the G (granularity) flag (see Figure 5-1). For data
segments, the limit also depends on the E (expansion direction) flag and the B
(default stack pointer size and/or upper bound) flag. The E flag is one of the bits in
the type field when the segment descriptor is for a data-segment type.

When the G flag is clear (byte granularity), the effective limit is the value of the
20-bit limit field in the segment descriptor. Here, the limit ranges from 0 to FFFFFH
(1 MByte). When the G flag is set (4-KByte page granularity), the processor scales
the value in the limit field by a factor of 212 (4 KBytes). In this case, the effective
limit ranges from FFFH (4 KBytes) to FFFFFFFFH (4 GBytes). Note that when scaling
is used (G flag is set), the lower 12 bits of a segment offset (address) are not checked
against the limit; for example, note that if the segment limit is 0, offsets 0 through
FFFH are still valid.

For all types of segments except expand-down data segments, the effective limit is
the last address that is allowed to be accessed in the segment, which is one less than
the size, in bytes, of the segment. The processor causes a general-protection excep-
tion (or, if the segment is SS, a stack-fault exception) any time an attempt is made to
access the following addresses in a segment:

®* A byte at an offset greater than the effective limit
®* A word at an offset greater than the (effective-limit - 1)

5-6 Vol.3A

PROTECTION

®* A doubleword at an offset greater than the (effective-limit - 3)
®* A quadword at an offset greater than the (effective-limit - 7)
®* A double quadword at an offset greater than the (effective limit - 15)

When the effective limit is FFFFFFFFH (4 GBytes), these accesses may or may not
cause the indicated exceptions. Behavior is implementation-specific and may vary
from one execution to another.

For expand-down data segments, the segment limit has the same function but is
interpreted differently. Here, the effective limit specifies the last address that is not
allowed to be accessed within the segment; the range of valid offsets is from (effec-
tive-limit + 1) to FFFFFFFFH if the B flag is set and from (effective-limit + 1) to FFFFH
if the B flag is clear. An expand-down segment has maximum size when the segment
limit is 0.

Limit checking catches programming errors such as runaway code, runaway
subscripts, and invalid pointer calculations. These errors are detected when they
occur, so identification of the cause is easier. Without limit checking, these errors
could overwrite code or data in another segment.

In addition to checking segment limits, the processor also checks descriptor table
limits. The GDTR and IDTR registers contain 16-bit limit values that the processor
uses to prevent programs from selecting a segment descriptors outside the respec-
tive descriptor tables. The LDTR and task registers contain 32-bit segment limit value
(read from the segment descriptors for the current LDT and TSS, respectively). The
processor uses these segment limits to prevent accesses beyond the bounds of the
current LDT and TSS. See Section 3.5.1, "Segment Descriptor Tables,” for more infor-
mation on the GDT and LDT limit fields; see Section 6.10, “Interrupt Descriptor Table
(IDT),” for more information on the IDT limit field; and see Section 7.2.4, “Task
Register,” for more information on the TSS segment limit field.

5.3.1 Limit Checking in 64-bit Mode

In 64-bit mode, the processor does not perform runtime limit checking on code or
data segments. However, the processor does check descriptor-table limits.

54 TYPE CHECKING

Segment descriptors contain type information in two places:
®* The S (descriptor type) flag.
®* The type field.

The processor uses this information to detect programming errors that result in an
attempt to use a segment or gate in an incorrect or unintended manner.

The S flag indicates whether a descriptor is a system type or a code or data type. The
type field provides 4 additional bits for use in defining various types of code, data,

Vol.3A 5-7

PROTECTION

and system descriptors. Table 3-1 shows the encoding of the type field for code and
data descriptors; Table 3-2 shows the encoding of the field for system descriptors.

The processor examines type information at various times while operating on
segment selectors and segment descriptors. The following list gives examples of
typical operations where type checking is performed (this list is not exhaustive):

®* When a segment selector is loaded into a segment register — Certain
segment registers can contain only certain descriptor types, for example:

— The CS register only can be loaded with a selector for a code segment.

— Segment selectors for code segments that are not readable or for system
segments cannot be loaded into data-segment registers (DS, ES, FS, and
GS).

— Only segment selectors of writable data segments can be loaded into the SS
register.

®* When a segment selector is loaded into the LDTR or task register — For example:
— The LDTR can only be loaded with a selector for an LDT.
— The task register can only be loaded with a segment selector for a TSS.

®* When instructions access segments whose descriptors are already
loaded into segment registers — Certain segments can be used by instruc-
tions only in certain predefined ways, for example:

— No instruction may write into an executable segment.
— No instruction may write into a data segment if it is not writable.

— No instruction may read an executable segment unless the readable flag is
set.

®* When an instruction operand contains a segment selector — Certain
instructions can access segments or gates of only a particular type, for example:

— A far CALL or far JMP instruction can only access a segment descriptor for a
conforming code segment, nonconforming code segment, call gate, task
gate, or TSS.

— The LLDT instruction must reference a segment descriptor for an LDT.
— The LTR instruction must reference a segment descriptor for a TSS.

— The LAR instruction must reference a segment or gate descriptor for an LDT,
TSS, call gate, task gate, code segment, or data segment.

— The LSL instruction must reference a segment descriptor for a LDT, TSS, code
segment, or data segment.

— IDT entries must be interrupt, trap, or task gates.
®* During certain internal operations — For example:

— On afar call or far jump (executed with a far CALL or far JMP instruction), the
processor determines the type of control transfer to be carried out (call or

5-8 Vol.3A

PROTECTION

jump to another code segment, a call or jump through a gate, or a task
switch) by checking the type field in the segment (or gate) descriptor pointed
to by the segment (or gate) selector given as an operand in the CALL or JMP
instruction. If the descriptor type is for a code segment or call gate, a call or
jump to another code segment is indicated; if the descriptor type is for a TSS
or task gate, a task switch is indicated.

— On acall or jump through a call gate (or on an interrupt- or exception-handler
call through a trap or interrupt gate), the processor automatically checks that
the segment descriptor being pointed to by the gate is for a code segment.

— On a call or jump to a new task through a task gate (or on an interrupt- or
exception-handler call to a new task through a task gate), the processor
automatically checks that the segment descriptor being pointed to by the
task gate is for a TSS.

— On a call or jump to a new task by a direct reference to a TSS, the processor
automatically checks that the segment descriptor being pointed to by the
CALL or JMP instruction is for a TSS.

— On return from a nested task (initiated by an IRET instruction), the processor
checks that the previous task link field in the current TSS points to a TSS.

5.4.1 Null Segment Selector Checking

Attempting to load a null segment selector (see Section 3.4.2, “"Segment Selectors”)
into the CS or SS segment register generates a general-protection exception (#GP).
A null segment selector can be loaded into the DS, ES, FS, or GS register, but any
attempt to access a segment through one of these registers when it is loaded with a
null segment selector results in a #GP exception being generated. Loading unused
data-segment registers with a null segment selector is a useful method of detecting
accesses to unused segment registers and/or preventing unwanted accesses to data
segments.

54.1.1 NULL Segment Checking in 64-bit Mode

In 64-bit mode, the processor does not perform runtime checking on NULL segment
selectors. The processor does not cause a #GP fault when an attempt is made to
access memory where the referenced segment register has a NULL segment selector.

5.5 PRIVILEGE LEVELS

The processor’s segment-protection mechanism recognizes 4 privilege levels,
numbered from 0 to 3. The greater numbers mean lesser privileges. Figure 5-3
shows how these levels of privilege can be interpreted as rings of protection.

Vol. 3A 5-9

PROTECTION

The center (reserved for the most privileged code, data, and stacks) is used for the
segments containing the critical software, usually the kernel of an operating system.
Outer rings are used for less critical software. (Systems that use only 2 of the 4
possible privilege levels should use levels 0 and 3.)

Protection Rings

Operating

System

Kernel

Operating System
“

Services

Applications

Figure 5-3. Protection Rings

The processor uses privilege levels to prevent a program or task operating at a lesser
privilege level from accessing a segment with a greater privilege, except under
controlled situations. When the processor detects a privilege level violation, it gener-
ates a general-protection exception (#GP).

To carry out privilege-level checks between code segments and data segments, the
processor recognizes the following three types of privilege levels:

® Current privilege level (CPL) — The CPL is the privilege level of the currently
executing program or task. It is stored in bits 0 and 1 of the CS and SS segment
registers. Normally, the CPL is equal to the privilege level of the code segment
from which instructions are being fetched. The processor changes the CPL when
program control is transferred to a code segment with a different privilege level.
The CPL is treated slightly differently when accessing conforming code segments.
Conforming code segments can be accessed from any privilege level that is equal
to or numerically greater (less privileged) than the DPL of the conforming code
segment. Also, the CPL is not changed when the processor accesses a conforming
code segment that has a different privilege level than the CPL.

* Descriptor privilege level (DPL) — The DPL is the privilege level of a segment
or gate. It is stored in the DPL field of the segment or gate descriptor for the
segment or gate. When the currently executing code segment attempts to access
a segment or gate, the DPL of the segment or gate is compared to the CPL and
RPL of the segment or gate selector (as described later in this section). The DPL

5-10 Vol.3A

PROTECTION

is interpreted differently, depending on the type of segment or gate being
accessed:

— Data segment — The DPL indicates the numerically highest privilege level
that a program or task can have to be allowed to access the segment. For
example, if the DPL of a data segmentis 1, only programs running at a CPL of
0 or 1 can access the segment.

— Nonconforming code segment (without using a call gate) — The DPL
indicates the privilege level that a program or task must be at to access the
segment. For example, if the DPL of a nonconforming code segment is 0, only
programs running at a CPL of 0 can access the segment.

— Call gate — The DPL indicates the numerically highest privilege level that the
currently executing program or task can be at and still be able to access the
call gate. (This is the same access rule as for a data segment.)

— Conforming code segment and nonconforming code segment
accessed through a call gate — The DPL indicates the numerically lowest
privilege level that a program or task can have to be allowed to access the
segment. For example, if the DPL of a conforming code segment is 2,
programs running at a CPL of 0 or 1 cannot access the segment.

— TSS — The DPL indicates the numerically highest privilege level that the
currently executing program or task can be at and still be able to access the
TSS. (This is the same access rule as for a data segment.)

Requested privilege level (RPL) — The RPL is an override privilege level that
is assigned to segment selectors. It is stored in bits 0 and 1 of the segment
selector. The processor checks the RPL along with the CPL to determine if access
to a segment is allowed. Even if the program or task requesting access to a
segment has sufficient privilege to access the segment, access is denied if the
RPL is not of sufficient privilege level. That is, if the RPL of a segment selector is
numerically greater than the CPL, the RPL overrides the CPL, and vice versa. The
RPL can be used to insure that privileged code does not access a segment on
behalf of an application program unless the program itself has access privileges
for that segment. See Section 5.10.4, “"Checking Caller Access Privileges (ARPL
Instruction),” for a detailed description of the purpose and typical use of the RPL.

Privilege levels are checked when the segment selector of a segment descriptor is
loaded into a segment register. The checks used for data access differ from those
used for transfers of program control among code segments; therefore, the two
kinds of accesses are considered separately in the following sections.

5.6 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA

SEGMENTS

To access operands in a data segment, the segment selector for the data segment
must be loaded into the data-segment registers (DS, ES, FS, or GS) or into the stack-

Vol.3A 5-11

PROTECTION

segment register (SS). (Segment registers can be loaded with the MOV, POP, LDS,
LES, LFS, LGS, and LSS instructions.) Before the processor loads a segment selector
into a segment register, it performs a privilege check (see Figure 5-4) by comparing
the privilege levels of the currently running program or task (the CPL), the RPL of the
segment selector, and the DPL of the segment’s segment descriptor. The processor
loads the segment selector into the segment register if the DPL is numerically greater
than or equal to both the CPL and the RPL. Otherwise, a general-protection fault is
generated and the segment register is not loaded.

CS Register
CPL

Segment Selector
For Data Segment

RPL

Y

Privilege

Data-Segment Descriptor
Check

DPL

Yy

Figure 5-4. Privilege Check for Data Access

Figure 5-5 shows four procedures (located in codes segments A, B, C, and D), each
running at different privilege levels and each attempting to access the same data
segment.

1.

The procedure in code segment A is able to access data segment E using segment
selector E1, because the CPL of code segment A and the RPL of segment selector
E1l are equal to the DPL of data segment E.

The procedure in code segment B is able to access data segment E using segment
selector E2, because the CPL of code segment B and the RPL of segment selector
E2 are both numerically lower than (more privileged) than the DPL of data
segment E. A code segment B procedure can also access data segment E using
segment selector E1.

The procedure in code segment C is not able to access data segment E using
segment selector E3 (dotted line), because the CPL of code segment C and the
RPL of segment selector E3 are both numerically greater than (less privileged)
than the DPL of data segment E. Even if a code segment C procedure were to use
segment selector E1 or E2, such that the RPL would be acceptable, it still could
not access data segment E because its CPL is not privileged enough.

The procedure in code segment D should be able to access data segment E
because code segment D’s CPL is numerically less than the DPL of data segment

5-12 Vol. 3A

PROTECTION

E. However, the RPL of segment selector E3 (which the code segment D
procedure is using to access data segment E) is numerically greater than the DPL
of data segment E, so access is not allowed. If the code segment D procedure
were to use segment selector E1 or E2 to access the data segment, access would
be allowed.

Segmont G| [Segment Sel.E3 |
egmentC| | SegmentSel.E3 [_ _ _ _ . |
CPL=3 RPL=3 | [
.. | |
Lowest Privilege “ |
I
Code I
S t Sel. E1 > Data
Segment A =€9men eRp|_=2’ ~| Segment E :
CPL=2 =—|DPL=2 |
I
I
Code I
Segment B|—| Segment Sel. E2 |
RPL=1
CPL=1 I
I
I
Code
Segment D
CPL=0

m Highest Privilege

Figure 5-5. Examples of Accessing Data Segments From Various Privilege Levels

As demonstrated in the previous examples, the addressable domain of a program or
task varies as its CPL changes. When the CPL is 0, data segments at all privilege
levels are accessible; when the CPL is 1, only data segments at privilege levels 1
through 3 are accessible; when the CPL is 3, only data segments at privilege level 3
are accessible.

The RPL of a segment selector can always override the addressable domain of a
program or task. When properly used, RPLs can prevent problems caused by acci-
dental (or intensional) use of segment selectors for privileged data segments by less
privileged programs or procedures.

It is important to note that the RPL of a segment selector for a data segment is under
software control. For example, an application program running at a CPL of 3 can set
the RPL for a data- segment selector to 0. With the RPL set to 0, only the CPL checks,
not the RPL checks, will provide protection against deliberate, direct attempts to
violate privilege-level security for the data segment. To prevent these types of privi-
lege-level-check violations, a program or procedure can check access privileges
whenever it receives a data-segment selector from another procedure (see Section
5.10.4, “Checking Caller Access Privileges (ARPL Instruction)”).

Vol.3A 5-13

PROTECTION

5.6.1 Accessing Data in Code Segments

In some instances it may be desirable to access data structures that are contained in
a code segment. The following methods of accessing data in code segments are
possible:

®* Load a data-segment register with a segment selector for a nonconforming,
readable, code segment.

®* Load a data-segment register with a segment selector for a conforming,
readable, code segment.

® Use a code-segment override prefix (CS) to read a readable, code segment
whose selector is already loaded in the CS register.

The same rules for accessing data segments apply to method 1. Method 2 is always
valid because the privilege level of a conforming code segment is effectively the
same as the CPL, regardless of its DPL. Method 3 is always valid because the DPL of
the code segment selected by the CS register is the same as the CPL.

5.7 PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS
REGISTER

Privilege level checking also occurs when the SS register is loaded with the segment
selector for a stack segment. Here all privilege levels related to the stack segment
must match the CPL; that is, the CPL, the RPL of the stack-segment selector, and the
DPL of the stack-segment descriptor must be the same. If the RPL and DPL are not
equal to the CPL, a general-protection exception (#GP) is generated.

5.8 PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING
PROGRAM CONTROL BETWEEN CODE SEGMENTS

To transfer program control from one code segment to another, the segment selector
for the destination code segment must be loaded into the code-segment register
(CS). As part of this loading process, the processor examines the segment descriptor
for the destination code segment and performs various limit, type, and privilege
checks. If these checks are successful, the CS register is loaded, program control is
transferred to the new code segment, and program execution begins at the instruc-
tion pointed to by the EIP register.

Program control transfers are carried out with the JMP, CALL, RET, SYSENTER,
SYSEXIT, INT n, and IRET instructions, as well as by the exception and interrupt
mechanisms. Exceptions, interrupts, and the IRET instruction are special cases
discussed in Chapter 6, “Interrupt and Exception Handling.” This chapter discusses
only the JMP, CALL, RET, SYSENTER, and SYSEXIT instructions.

A JMP or CALL instruction can reference another code segment in any of four ways:

5-14 Vol. 3A

PROTECTION

®* The target operand contains the segment selector for the target code segment.

®* The target operand points to a call-gate descriptor, which contains the segment
selector for the target code segment.

®* The target operand points to a TSS, which contains the segment selector for the
target code segment.

®* The target operand points to a task gate, which points to a TSS, which in turn
contains the segment selector for the target code segment.

The following sections describe first two types of references. See Section 7.3, “Task
Switching,” for information on transferring program control through a task gate
and/or TSS.

The SYSENTER and SYSEXIT instructions are special instructions for making fast calls
to and returns from operating system or executive procedures. These instructions
are discussed briefly in Section 5.8.7, “Performing Fast Calls to System Procedures
with the SYSENTER and SYSEXIT Instructions.”

5.8.1 Direct Calls or Jumps to Code Segments

The near forms of the JMP, CALL, and RET instructions transfer program control
within the current code segment, so privilege-level checks are not performed. The far
forms of the JMP, CALL, and RET instructions transfer control to other code segments,
so the processor does perform privilege-level checks.

When transferring program control to another code segment without going through a

call gate, the processor examines four kinds of privilege level and type information

(see Figure 5-6):

® The CPL. (Here, the CPL is the privilege level of the calling code segment; that is,
the code segment that contains the procedure that is making the call or jump.)

CS Register

CPL

Segment Selector
For Code Segment

RPL

Destination Code
Segment Descriptor

DPL| |C

Privilege
Check

YYYVYY

Figure 5-6. Privilege Check for Control Transfer Without Using a Gate

Vol.3A 5-15

PROTECTION

The DPL of the segment descriptor for the destination code segment that
contains the called procedure.

The RPL of the segment selector of the destination code segment.

The conforming (C) flag in the segment descriptor for the destination code
segment, which determines whether the segment is a conforming (C flag is set)
or nonconforming (C flag is clear) code segment. See Section 3.4.5.1, “Code-
and Data-Segment Descriptor Types,” for more information about this flag.

The rules that the processor uses to check the CPL, RPL, and DPL depends on the
setting of the C flag, as described in the following sections.

5.8.1.1 Accessing Nonconforming Code Segments

When accessing nonconforming code segments, the CPL of the calling procedure
must be equal to the DPL of the destination code segment; otherwise, the processor
generates a general-protection exception (#GP). For example in Figure 5-7:

Code segment C is a nonconforming code segment. A procedure in code segment
A can call a procedure in code segment C (using segment selector C1) because
they are at the same privilege level (CPL of code segment A is equal to the DPL of
code segment C).

A procedure in code segment B cannot call a procedure in code segment C (using
segment selector C2 or C1) because the two code segments are at different
privilege levels.

5-16 Vol. 3A

PROTECTION

Code Segment Sel. D2
Segment B RPL=3
- || SegmentSel.C2 |- - - - - A
CPL=3 RPL=3

Lowest Privilege

Segment Sel. C1 —>»{ Code
Code [RPL=2 Segment C

Segment A
CPL=2] || Segment Sel. D1 DPL=2

[RPL=2 Nonconforming

Code Segment
Y
Code
Segment D
DPL=1
Conforming
Code Segment

m Highest Privilege

Figure 5-7. Examples of Accessing Conforming and Nonconforming Code Segments
From Various Privilege Levels

The RPL of the segment selector that points to a nonconforming code segment has a
limited effect on the privilege check. The RPL must be numerically less than or equal
to the CPL of the calling procedure for a successful control transfer to occur. So, in the
example in Figure 5-7, the RPLs of segment selectors C1 and C2 could legally be set
to 0, 1, or 2, but not to 3.

When the segment selector of a nonconforming code segment is loaded into the CS
register, the privilege level field is not changed; that is, it remains at the CPL (which
is the privilege level of the calling procedure). This is true, even if the RPL of the
segment selector is different from the CPL.

5.8.1.2 Accessing Conforming Code Segments

When accessing conforming code segments, the CPL of the calling procedure may be
numerically equal to or greater than (less privileged) the DPL of the destination code
segment; the processor generates a general-protection exception (#GP) only if the

CPL is less than the DPL. (The segment selector RPL for the destination code segment
is not checked if the segment is a conforming code segment.)

Vol.3A 5-17

PROTECTION

In the example in Figure 5-7, code segment D is a conforming code segment. There-
fore, calling procedures in both code segment A and B can access code segment D
(using either segment selector D1 or D2, respectively), because they both have CPLs
that are greater than or equal to the DPL of the conforming code segment. For
conforming code segments, the DPL represents the numerically lowest priv-
ilege level that a calling procedure may be at to successfully make a call to
the code segment.

(Note that segments selectors D1 and D2 are identical except for their respective
RPLs. But since RPLs are not checked when accessing conforming code segments,
the two segment selectors are essentially interchangeable.)

When program control is transferred to a conforming code segment, the CPL does not
change, even if the DPL of the destination code segment is less than the CPL. This
situation is the only one where the CPL may be different from the DPL of the current
code segment. Also, since the CPL does not change, no stack switch occurs.

Conforming segments are used for code modules such as math libraries and excep-
tion handlers, which support applications but do not require access to protected
system facilities. These modules are part of the operating system or executive soft-
ware, but they can be executed at numerically higher privilege levels (less privileged
levels). Keeping the CPL at the level of a calling code segment when switching to a
conforming code segment prevents an application program from accessing noncon-
forming code segments while at the privilege level (DPL) of a conforming code
segment and thus prevents it from accessing more privileged data.

Most code segments are nonconforming. For these segments, program control can
be transferred only to code segments at the same level of privilege, unless the
transfer is carried out through a call gate, as described in the following sections.

5.8.2 Gate Descriptors

To provide controlled access to code segments with different privilege levels, the
processor provides special set of descriptors called gate descriptors. There are four
kinds of gate descriptors:

® (Call gates
¢ Trap gates
® Interrupt gates
®* Task gates

Task gates are used for task switching and are discussed in Chapter 7, “Task Manage-
ment”. Trap and interrupt gates are special kinds of call gates used for calling excep-
tion and interrupt handlers. The are described in Chapter 6, “Interrupt and Exception
Handling.” This chapter is concerned only with call gates.

5-18 Vol.3A

PROTECTION

5.8.3 Call Gates

Call gates facilitate controlled transfers of program control between different privi-

lege levels. They are typically used only in operating systems or executives that use
the privilege-level protection mechanism. Call gates are also useful for transferring
program control between 16-bit and 32-bit code segments, as described in Section

21.4, “Transferring Control Among Mixed-Size Code Segments.”

Figure 5-8 shows the format of a call-gate descriptor. A call-gate descriptor may
reside in the GDT or in an LDT, but not in the interrupt descriptor table (IDT). It
performs six functions:

* It specifies the code segment to be accessed.
* It defines an entry point for a procedure in the specified code segment.
® It specifies the privilege level required for a caller trying to access the procedure.

31 1615 14 13 12 11 87 6 54 0
D Type
Offset in Segment 31:16 P| P P 000 F(’:%rl?:?. 4
L (o1 |1 ‘0 | 0
31 16 15 0
Segment Selector Offset in Segment 15:00 0

DPL Descriptor Privilege Level
P Gate Valid

Figure 5-8. Call-Gate Descriptor

® If a stack switch occurs, it specifies the number of optional parameters to be
copied between stacks.

* Itdefines the size of values to be pushed onto the target stack: 16-bit gates force
16-bit pushes and 32-bit gates force 32-bit pushes.

® It specifies whether the call-gate descriptor is valid.

The segment selector field in a call gate specifies the code segment to be accessed.
The offset field specifies the entry point in the code segment. This entry point is
generally to the first instruction of a specific procedure. The DPL field indicates the
privilege level of the call gate, which in turn is the privilege level required to access
the selected procedure through the gate. The P flag indicates whether the call-gate
descriptor is valid. (The presence of the code segment to which the gate points is
indicated by the P flag in the code segment’s descriptor.) The parameter count field
indicates the number of parameters to copy from the calling procedures stack to the
new stack if a stack switch occurs (see Section 5.8.5, “Stack Switching”). The param-
eter count specifies the number of words for 16-bit call gates and doublewords for
32-bit call gates.

Vol.3A 5-19

PROTECTION

Note that the P flag in a gate descriptor is normally always set to 1. Ifitis setto 0, a
not present (#NP) exception is generated when a program attempts to access the
descriptor. The operating system can use the P flag for special purposes. For
example, it could be used to track the number of times the gate is used. Here, the P
flag is initially set to O causing a trap to the not-present exception handler. The
exception handler then increments a counter and sets the P flag to 1, so that on
returning from the handler, the gate descriptor will be valid.

5.8.3.1 IA-32e Mode Call Gates

Call-gate descriptors in 32-bit mode provide a 32-bit offset for the instruction pointer
(EIP); 64-bit extensions double the size of 32-bit mode call gates in order to store
64-bit instruction pointers (RIP). See Figure 5-9:

®* The first eight bytes (bytes 7:0) of a 64-bit mode call gate are similar but not
identical to legacy 32-bit mode call gates. The parameter-copy-count field has
been removed.

®* Bytes 11:8 hold the upper 32 bits of the target-segment offset in canonical form.
A general-protection exception (#GP) is generated if software attempts to use a
call gate with a target offset that is not in canonical form.

® 16-byte descriptors may reside in the same descriptor table with 16-bit and
32-bit descriptors. A type field, used for consistency checking, is defined in bits
12:8 of the 64-bit descriptor’s highest dword (cleared to zero). A general-
protection exception (#GP) results if an attempt is made to access the upper half
of a 64-bit mode descriptor as a 32-bit mode descriptor.

5-20 Vol.3A

PROTECTION

31 131211109 8 7 0
Type
Reserved Reserved 16
0 ‘ 0’ 0‘ 0 ‘ 0
31 0
Offset in Segment 63:31 8
31 161514 13 12 11 87 0
D Type
Offset in Segment 31:16 Pl P i 0 4
L o1 ‘ 1 ‘o ‘ 0
31 1615 0
Segment Selector Offset in Segment 15:00 0
DPL Descriptor Privilege Level
P Gate Valid

Figure 5-9. Call-Gate Descriptor in IA-32e Mode

®* Target code segments referenced by a 64-bit call gate must be 64-bit code
segments (CS.L = 1, CS.D = 0). If not, the reference generates a general-
protection exception, #GP (CS selector).

®* Only 64-bit mode call gates can be referenced in IA-32e mode (64-bit mode and
compatibility mode). The legacy 32-bit mode call gate type (OCH) is redefined in
IA-32e mode as a 64-bit call-gate type; no 32-bit call-gate type exists in IA-32e
mode.

® If a far call references a 16-bit call gate type (04H) in IA-32e mode, a general-
protection exception (#GP) is generated.

When a call references a 64-bit mode call gate, actions taken are identical to those
taken in 32-bit mode, with the following exceptions:

® Stack pushes are made in eight-byte increments.
® A 64-bit RIP is pushed onto the stack.
® Parameter copying is not performed.

Use a matching far-return instruction size for correct operation (returns from 64-bit
calls must be performed with a 64-bit operand-size return to process the stack
correctly).

Vol. 3A 5-21

PROTECTION

5.84 Accessing a Code Segment Through a Call Gate

To access a call gate, a far pointer to the gate is provided as a target operand in a
CALL or JMP instruction. The segment selector from this pointer identifies the call
gate (see Figure 5-10); the offset from the pointer is required, but not used or
checked by the processor. (The offset can be set to any value.)

When the processor has accessed the call gate, it uses the segment selector from the
call gate to locate the segment descriptor for the destination code segment. (This
segment descriptor can be in the GDT or the LDT.) It then combines the base address
from the code-segment descriptor with the offset from the call gate to form the linear
address of the procedure entry point in the code segment.

As shown in Figure 5-11, four different privilege levels are used to check the validity
of a program control transfer through a call gate:

® The CPL (current privilege level).

®* The RPL (requestor's privilege level) of the call gate’s selector.

®* The DPL (descriptor privilege level) of the call gate descriptor.

® The DPL of the segment descriptor of the destination code segment.

The C flag (conforming) in the segment descriptor for the destination code segment
is also checked.

Far Pointer to Call Gate

Segment Selector | | Offset

Required but not used by processor

Descriptor Table

. Offset CaII-G_ate
Segment Selector Offset Descriptor
>| Base Base | Code-Segment
+)< Base Descriptor

Procedure
Entry Point

Figure 5-10. Call-Gate Mechanism

5-22 Vol.3A

PROTECTION

CS Register

CPL

Call-Gate Selector

RPL

Yy

Call Gate (Descriptor)

Privilege
Check

DPL

Yy

Destination Code-
Segment Descriptor

DPL

Figure 5-11. Privilege Check for Control Transfer with Call Gate

The privilege checking rules are different depending on whether the control transfer
was initiated with a CALL or a JMP instruction, as shown in Table 5-1.

Table 5-1. Privilege Check Rules for Call Gates

Instruction

Privilege Check Rules

CALL

CPL < call gate DPL; RPL < call gate DPL
Destination conforming code segment DPL < CPL

Destination nonconforming code segment DPL < CPL

IMP

CPL < call gate DPL; RPL < call gate DPL

Destination conforming code segment DPL < CPL

Destination nonconforming code segment DPL = CPL

The DPL field of the call-gate descriptor specifies the numerically highest privilege

level from which a calling procedure can access the call gate; that is, to access a call
gate, the CPL of a calling procedure must be equal to or less than the DPL of the call
gate. For example, in Figure 5-15, call gate A has a DPL of 3. So calling procedures at

all CPLs (0

through 3) can access this call gate, which includes calling procedures in

code segments A, B, and C. Call gate B has a DPL of 2, so only calling procedures at

aCPLor 0,

1, or 2 can access call gate B, which includes calling procedures in code

Vol. 3A 5-23

PROTECTION

segments B and C. The dotted line shows that a calling procedure in code segment A
cannot access call gate B.

The RPL of the segment selector to a call gate must satisfy the same test as the CPL
of the calling procedure; that is, the RPL must be less than or equal to the DPL of the
call gate. In the example in Figure 5-15, a calling procedure in code segment C can
access call gate B using gate selector B2 or B1, but it could not use gate selector B3
to access call gate B.

If the privilege checks between the calling procedure and call gate are successful, the
processor then checks the DPL of the code-segment descriptor against the CPL of the
calling procedure. Here, the privilege check rules vary between CALL and JMP
instructions. Only CALL instructions can use call gates to transfer program control to
more privileged (numerically lower privilege level) nonconforming code segments;
that is, to nonconforming code segments with a DPL less than the CPL. A JMP instruc-
tion can use a call gate only to transfer program control to a nonconforming code
segment with a DPL equal to the CPL. CALL and JMP instruction can both transfer
program control to a more privileged conforming code segment; that is, to a
conforming code segment with a DPL less than or equal to the CPL.

If a call is made to a more privileged (numerically lower privilege level) noncon-
forming destination code segment, the CPL is lowered to the DPL of the destination
code segment and a stack switch occurs (see Section 5.8.5, “Stack Switching”). If a
call or jump is made to a more privileged conforming destination code segment, the
CPL is not changed and no stack switch occurs.

5-24 Vol. 3A

PROTECTION

Code || Gate Selector A > cCall
Segment A RPL=3 Gate A
CPL=3 — Gate SelectorB3 | — — — — L DPL=3
RPL=3 I
Lowest Privilege C
Code Call
Segment B Gate Selector B1 a
[=€9 [RPL=g—>| GCate B
CPL=2 »|DPL=2
Code
Segment C—| Gate Selector B2
RPL=1
CPL=1
No Stack Stack Switch
Switch Occurs Occurs
Y Y
Code Code
Segment D Segment E
DPL=0 DPL=0
Conforming Nonconforming
m Highest Privilege Code Segment Code Segment

Figure 5-12. Example of Accessing Call Gates At Various Privilege Levels

Call gates allow a single code segment to have procedures that can be accessed at
different privilege levels. For example, an operating system located in a code
segment may have some services which are intended to be used by both the oper-
ating system and application software (such as procedures for handling character
I/0). Call gates for these procedures can be set up that allow access at all privilege
levels (0 through 3). More privileged call gates (with DPLs of 0 or 1) can then be set
up for other operating system services that are intended to be used only by the oper-
ating system (such as procedures that initialize device drivers).

5.8.5 Stack Switching

Whenever a call gate is used to transfer program control to a more privileged
nonconforming code segment (that is, when the DPL of the nonconforming destina-
tion code segment is less than the CPL), the processor automatically switches to the
stack for the destination code segment’s privilege level. This stack switching is
carried out to prevent more privileged procedures from crashing due to insufficient
stack space. It also prevents less privileged procedures from interfering (by accident
or intent) with more privileged procedures through a shared stack.

Vol.3A 5-25

PROTECTION

Each task must define up to 4 stacks: one for applications code (running at privilege
level 3) and one for each of the privilege levels 2, 1, and 0 that are used. (If only two
privilege levels are used [3 and 0], then only two stacks must be defined.) Each of
these stacks is located in a separate segment and is identified with a segment
selector and an offset into the stack segment (a stack pointer).

The segment selector and stack pointer for the privilege level 3 stack is located in the
SS and ESP registers, respectively, when privilege-level-3 code is being executed and
is automatically stored on the called procedure’s stack when a stack switch occurs.

Pointers to the privilege level 0, 1, and 2 stacks are stored in the TSS for the currently
running task (see Figure 7-2). Each of these pointers consists of a segment selector
and a stack pointer (loaded into the ESP register). These initial pointers are strictly
read-only values. The processor does