intel,

Intel® 64 and IA-32 Architectures
Software Developer's Manual

Volume 3A:
System Programming Guide, Part 1

NOTE: The Intef® 64 and IA-32 Architectures Software Developer’s Manual consists of seven volumes:
Basic Architecture, Order Number 253665; Instruction Set Reference A-L, Order Number 253666;
Instruction Set Reference M-Z, Order Number 253667; Instruction Set Reference, Order Number
326018; System Programming Guide, Part 1, Order Number 253668; System Programming Guide, Part
2, Order Number 253669; System Programming Guide, Part 3, Order Number 3260189. Refer to all seven
volumes when evaluating your design needs.

Order Number: 253668-044US
August 2012

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTIC-
ULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death.
SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL
AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST
ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF
PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT
INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or char-
acteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsi-
bility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice.
Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Intel® AES-NI requires a computer system with an AES-NI enabled processor, as well as non-Intel software to execute the instructions in the
correct sequence. AES-NI is available on select Intel® processors. For availability, consult your reseller or system manufacturer. For more in-
formation, see http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/.

Intel® Hyper-Threading Technology (Intel® HT Technology) is available on select Intel® Core™ processors. Requires an Intel® HT Technology-
enabled system. Consult your PC manufacturer. Performance will vary depending on the specific hardware and software used. For more infor-
mation including details on which processors support HT Technology, visit http://www.intel.com/info/hyperthreading.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, and virtual machine monitor (VMM). Func-
tionality, performance or other benefits will vary depending on hardware and software configurations. Software applications may not be com-
patible with all operating systems. Consult your PC manufacturer. For more information, visit http://www.intel.com/go/virtualization.

Intel® 64 architecture Requires a system with a 64-bit enabled processor, chipset, BIOS and software. Performance will vary depending on the
specific hardware and software you use. Consult your PC manufacturer for more information. For more information, visit http://www.in-
tel.com/info/em64t.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system.
Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.

Intel, the Intel logo, Pentium, Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2 Extreme, Intel
Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-
800-548-4725, or go to: http://www.intel.com/design/literature.htm

Copyright © 1997-2012 Intel Corporation. All rights reserved.

http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://www.intel.com/info/hyperthreading
http://www.intel.com/go/virtualization
http://www.intel.com/go/virtualization
http://www.intel.com/go/virtualization
http://www.intel.com/info/em64t
http://www.intel.com/info/em64t
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

CONTENTS

PAGE
CHAPTER 1
ABOUT THIS MANUAL
1.1 INTEL® 64 AND 1A-32 PROCESSORS COVERED IN THIS MANUAL ... oo et e, 1-1
1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDEottt et eaas 1-3
13 NOTATIONAL CONVENTIONS . Lottt et et e e e e e e e e e e e e ey 1-5
1.3.1 Bit AN BYTe Ol . ..ottt it e e e e e 1-5
13.2 Reserved Bits and Software Compatibilityooiuveiii i e e 1-5
133 INSTUCTION OPEIANGS.ttt ettt ettt et et et et et e et e e et e e 1-6
134 Hexadecimal and Binary NUMDE So i e e e i e 1-6
135 SEgMENTEA AArESSING vttt ettt e e e 1-6
136 Syntax for CPUID, CR, aNd MSR ValUBSottt e aaas 1-7
1.3.7 [Cal= 511103 1-8
14 RELATED LITERATURE . . .ottt ittt e et ettt et e e et et et e e et et e e et e e e n e e s 1-8
CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW
2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE. . ..ottt ettt et e e 2-1
2.1.1 Global and Local DeSCriPtOr Tables. ... v vttt e e e et e e et e 2-3
2.1.1.1 Global and Local Descriptor Tables in1A-328 MOGE. vt et e 2-4
2.1.2 System Segments, Segment Descriptors, and Gatest e e 2-4
2.1.2.1 GatES N IA-32E MOQE . . o vttt et e et e e e e e 2-4
213 Task-State Segments and Task Gates. .. . u ittt e e ettt 2-5
2.1.3.1 Task-State Segments iN JA-328 MOGE.ottt i et e e s 2-5
214 Interrupt and EXCeption Handling. oot e e e e 2-5
2.1.4.1 Interrupt and Exception HaNdliNg 1A-326 MOAE.o ittt e 2-5
215 [(=T LoV = T T T= T 1T 2-6
2.1.5.1 Memory Management in IA-328 MOiviiii e et e 2-6
2.1.6 I (=] T RS0 3 1= 2-6
2.16.1 System RegiStars INIA-328 MOGE.t i e e e e e 2-7
21.7 (01 L= Y VS (=T {0 o 3 2-7
2.2 MODES OF OPERATION. . .ottt ettt ettt ettt et e e et e e e et et e e e a e 2-7
2.2.1 Extended Feature ENable ReGIS Oottt it e et e e e 2-9
2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER. ...\ttt 2-9
2.3.1 System Flags and Fields iN 1A-328 MOGEviii e e 2-11
2.4 MEMORY-MANAGEMENT REGISTERS .. . ittt ettt e e s e e e e e e 2-11
2.4.1 Global Descriptor Table Register (GDTR) ... vttt ettt ettt e eees 2-12
24.2 Local Descriptor Table RegiSter (LDTR) ...\ uititi ittt e e e 2-12
243 IDTR Interrupt Descriptor Table REGISTOr. . ..ottt it e it i ittt eans 2-12
244 LS 2T [0= 1 S 2-13
2.5 CONTROL REGISTERS .. .ttt e e et et e e e et e e e et e e et et es 2-13
2.5.1 CPUID Qualification of Control ReGiSter FIags. . .. v v vttt ittt e eees 2-18
2.6 EXTENDED CONTROL REGISTERS (INCLUDING XCRO) ..t v e vttt ettt et et e e et e e e e e e e e e e ee e 2-19
2.7 SYSTEM INSTRUCTION SUMMARY ...ttt ittt ettt e e et et e e e e e en s 2-19
2.7.1 Loading and Storing SYSTeM ReGISTEISottt i e i e e 2-21
27.2 Verifying Of ACCESS PriVIlEgES . ..ottt e e e e 2-21
273 Loading and Storing DEbUG REGISTEIS . ..o\ttt ittt e e e e 2-22
274 Invalidating Caches and TUBSttt e et e e e e 2-22
275 CONTrOlliNg The PrOCES SO .\ ottt ettt e ettt e e e et 2-23
276 Reading Performance-Monitoring and Time-Stamp COUNTErSvuit ittt 2-23
2.76.1 Reading Counters in 64-Bit MOde.o 2-24
277 Reading and Writing Model-Specific REGISTEISt v vttt e e e e 2-24
2.7.7.1 Reading and Writing Model-Specific Registers in 64-Bit Modecooviiiiiiii i e 2-24
278 ENabling Processor EXteNded States.ttt e 2-24
CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT
3.1 MEMORY MANAGEMENT OVERVIEW ..ottt ettt et et e e e et et ettt n e et 3-1
3.2 USING SEGMEN T S, Lttt ettt ettt s e e et e e e et e e e et e e e et e e e 3-2

Vol. 3A i

CONTENTS

3.2.1 2=] ol = 1 o Y= 3-3
3.2.2 Protected FIat MOdEL. . ..ot e e e e e 3-3
323 MUIt-SEgMENT MOl ... et e e 3-4
324 SegmeENtation N JA-328 MOottt ettt e e 3-5
3.25 Paging and SEgMENTatiONo\ttt e 3-5
33 PHY SICAL ADDRESS SPACE. ..\ttt ettt et e e e e e e e e e 3-6
3.3.1 Intel® 64 Processors and Physical Address SPate vv vt ii et ettt ettt 3-6
34 LOGICAL AND LINEAR ADDRESSES . . .ttt ittt ettt e e e e e e e e e e 3-6
34.1 Logical Address Translation iN JA-328 MOottt e e e e e 3-7
34.2 Y= 11 =T A1 =T o (5 3-7
343 SBgMENE R OIS OIS vttt ettt e e e e e e e 3-8
344 Segment Loading INStructions iN [A-328 MOde.ottt e e i 3-9
345 Y= 0= Lol) (5 3-9
3.4.5.1 Code- and Data-Segment DS CripIOr Ty S, . vttt ittt sttt e e e 3-12
35 SY STEM DESCRIPTOR TY PES ..ttt ittt e e e e e et e e e e e e 3-13
3.5.1 Segment DeSCriPIOr TabIES. . ..\ttt e e e 3-14
3.5.2 Segment Descriptor Tables iN IA-326 MOvuiti i e 3-16
CHAPTER 4

PAGING

4.1 PAGING MODES AND CONTROL BITS .ttt ittt ettt et et e et e et e et e 4-1
411 TRrEE Paging MOOES . .. vttt ettt e e e e 4-1
41.2 Paging-Mode ENabling. o vt e e 4-3
413 Paging-Mode MOdifiers.o e e 4-4
414 Enumeration of Paging Features DY CPUIDttt et e e 4-4
4.2 HIERARCHICAL PAGING STRUCTURES: AN OVERVIEW . ..\ttt 4-5
43 32 BIT PAGING ..ttt ettt e e e e e e e e e 4-7
44 P PAGING . . ottt e e e e e e e e 4-13
441 o I Ty (= T 4-13
442 Linear-Address Translation With PAE Paging i e e et 4-14
45 JA-32E PAGING ..ttt et e e e e e e e e 4-19
46 ACCESS RIGHT S ottt ittt e e e e e e e e e e e 4-28
4.7 PAGE-FAULT EXCEPTIONS .ttt ettt e e e e e e e e e et e e e et 4-30
48 ACCESSED AND DIRTY FLAGS ..ttt ittt ettt e e et e et e e e e e e e en s 4-31
49 PAGING AND MEMORY TYPING &1\ttt ittt ettt e e e e e e e e e 4-31
491 Paging and Memory Typing When the PAT is Not Supported (Pentium Pro and Pentium Il Processors).............. 4-31
492 Paging and Memory Typing When the PAT is Supported (Pentium lll and More Recent Processor Families).......... 4-32
493 Caching Paging-Related Information about Memory TYPINGoveinirii e 4-32
4.10 CACHING TRANSLATION INFORMATION . . .o ittt ettt ettt et e e et e ettt e 4-33
4.10.1 Process-Context Identifiers (PCIDS)\ v ittt e e e e 4-33
4.10.2 Translation Lookaside BUFfers (TLBS)vure ittt aens 4-33
4.10.2.1 Page Numbers, Page Frames, and Page Offsetscouvu oottt ettt e et 4-34
410.2.2 Caching TransIations iN TUBS . ..o v ittt e e e e e 4-34
41023 DETAIlS OF TLB USB .\ttt ettt ettt e e e e e e e e e e e e 4-35
41024 GlODal PGS .\ttt e e 4-35
4103 PagiNg-StrUCTUNE CaCNES . . vttt e e e e e e e e 4-35
4.10.3.1 Caches TOr Paging STTUCTUIES. . . ottt ettt e e e e 4-35
4.103.2 Using the Paging-Structure Caches to Translate Linear Addresses.v vt iii ittt eens 4-37
41033 Multiple Cached Entries for a Single Paging-Structure ENTryvuvvii i i 4-38
4104 Invalidation of TLBs and Paging-Structure CaChesovuii i e 4-38
41041 Operations that Invalidate TLBs and Paging-Structure Caches. ...t e e 4-38
4.104.2 Recommended INValidation.oou e e 4-40
41043 OptioNal INVAlIAATIONot e e e e 4-41
41044 Delayed INValidationo e e e 4-42
4105 Propagation of Paging-Structure Changes to Multiple Processors.vvvv i 4-43
411 INTERACTIONS WITH VIRTUAL-MACHINE EXTENSIONS (VMX) . ottt ettt 4-44
4111 RV L= L3 1 0 4-44
411.2 VMX Support for Address Translation. e et e 4-44
412 USING PAGING FOR VIRTUAL MEMORY . . oottt et et e e e ettt s e e e e et e e e 4-44
413 MAPPING SEGMENTS TO PAGES . ..ottt ittt et et e e e et e e 4-45

iv Vol. 3A

CHAPTER 5

PROTECTION

5.1 ENABLING AND DISABLING SEGMENT AND PAGE PROTECTION . ..t v vttt e in e
5.2 FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND PAGE-LEVEL PROTECTIONovvvviieiii e
5.2.1 Code Segment Descriptor in 64-bit MOdeoiriii e
53 LIMIT CHECKING . vttt ettt et et e e e e e e e e e e et e e e e et e e e et n e e
5.3.1 Limit Checking in B4-Dit MOdeoo it e e
54 TYPE CHECKING . . ettt ettt e e e e e et e et e e e e e e e
54.1 Null Segment Selector ChecKiNgo v e e e e e et i e
54.1.1 NULL Segment Checking in 64-Dit Modet et
55 PRIVILEGE LEVELS. . ..ottt ettt e e et e e e et e e e et e e e et a e
56 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA SEGMENTS ...ttt
56.1 Accessing Data in Code SEgMEBNTSt u ittt ettt e e
57 PRIVILEGE LEVEL CHECKING WHEN LOADING THE SSREGISTER. v vt
58 PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING PROGRAM CONTROL BETWEEN CODE SEGMENTS

5.8.1 Direct Calls or Jumps t0 Code SEOMBNTS. ...t \ ittt ettt e ettt aeees
5.8.1.1 Accessing Nonconforming Code SegmentS vvi it
58.1.2 Accessing Conforming Code SEOMIENTS. . ..\ttt ittt ettt ettt eeaenens
5.8.2 L | (=3 BT o) (o
583 (0| -) (=
5.83.1 IA-328 MOde Call GateS . .ottt ettt et e e e e
584 Accessing a Code Segment Through a Call Gateovirir i e et
585 STACK SWITCNING .« .o e
5.8.5.1 Stack SWItching in B4-Dit MOde.ot e e e e
586 Returning from a Called ProCeAUIEovi it e e e
5.8.7 Performing Fast Calls to System Procedures with the SYSENTER and SYSEXIT Instructions
58.7.1 SYSENTER and SYSEXIT Instructions in 1A-32e Modeo it
5.8.8 Fast System Calls iN B4-Bit MOGE.ov ittt e et
59 PRIVILEGED INSTRUCTIONS . . .ottt ettt et et e e et e e et e e et e e e e
5.10 POINTER VAL D AT ON Lottt ettt et ettt e e e et
5.10.1 Checking Access Rights (LAR INSTTUCTION) . . v v vt v ettt e et eens
5.10.2 Checking Read/Write Rights (VERR and VERW INSTructions)..........coovviiviviiiiiiiiiiiiininnenns
5.10.3 Checking That the Pointer Offset Is Within Limits (LSL Instruction)............oovviiiiiiiiiiniininnn,
5.104 Checking Caller Access Privileges (ARPL INStIUCTION). ... vvvv v et
5.105 [0 =Tal S To 1Y 0 2T P
5.11 PAGE-LEVEL PROTECTION ..ttt ittt ettt e e et e e e e e e et e e e e e
511.1 Page-ProteCtion FIagsottt e e
511.2 Restricting Addressable DOmMain. v ettt
5113 o [0 T I 0
5114 Combining Protection of Both Levels of Page Tables ... e
5115 Overrides t0 Page ProteCtioN v .ttt e
5.12 COMBINING PAGE AND SEGMENT PROTECTION. .1\ttt it e e et e e et
5.13 PAGE-LEVEL PROTECTION AND EXECUTE-DISABLE BIT ..ttt et
5.13.1 Detecting and Enabling the Execute-Disable Capabilityot
513.2 Execute-Disable Page Protectionot i e e
5.133 Reserved Bit CheCKINGottt e e e e e e
5134 EXCEPLION HaNAliNg . .. oottt e
CHAPTER 6

INTERRUPT AND EXCEPTION HANDLING

6.1 INTERRUPT AND EXCEPTION OVERVIEW. . ..\ttt e et ettt et e e et in e
6.2 EXCEPTION AND INTERRUPT VECTORS . . .ottt ettt et e
6.3 SOURCES OF INTERRUP TS Lottt st e e e e e e e e e e e
6.3.1 Lo =L = N Y (= 0T 0] £
6.3.2 Maskable Hardware IMterTUPTS . ..ottt e e e e
6.3.3 Software-Generated INTEITUPTSt e
6.4 SOURCES OF EXCEPTIONS Lttt ettt ettt et e e e e e e
6.4.1 o[[) o o T o= 0 0
6.4.2 Software-Generated EXCEPLIONSttt e e
6.4.3 Machine-ChetK EXCE P IONS .. oottt ittt it et e et e i e s
6.5 EXCEPTION CLASSIFICATIONS . ettt ettt et et et e e e e a s
6.6 PROGRAM OR TASK RES T AR T . 1ttt ittt ettt et e et e e e e e e
6.7 NONMASKABLE INTERRUPT (NMI) . . .ottt

CONTENTS

PAGE

Vol.3A v

CONTENTS

6.7.1 Handling MUHIDIE NMIS e et ettt e ettt et ettt 6-6
6.8 ENABLING AND DISABLING INTERRUP T S . L ittt ettt ettt e e e e e 6-6
6.8.1 Masking Maskable Hardware InermUDTSo i e e e 6-6
6.8.2 Masking INStrUCTION BreaKDOintSottt ittt ettt e e e e e 6-7
6.8.3 Masking Exceptions and Interrupts When Switching Stackso e 6-7
6.9 PRIORITY AMONG SIMULTANEQUS EXCEPTIONS AND INTERRUPTS. . ..\ttt ittt e 6-7
6.10 INTERRUPT DESCRIPTOR TABLE (IDT) + vttt ittt ettt e e et e et e et e e e e e et et et et et n e e et 6-9
6.11 DT DESCRIP T O RS ..ttt ettt ettt et e e e e e e e e e 6-10
6.12 EXCEPTION AND INTERRUPT HANDUING . . o ettt ettt et et e e e et e e e e e et e r e e 6-10
6.12.1 Exception- or Interrupt-Handler ProCeaUIES.ottt et e et 6-11
6.12.1.1 Protection of Exception- and Interrupt-Handler Procedures.ovvuiiiiiii it 6-12
6.12.1.2 Flag Usage By Exception- or Interrupt-Handler Procedure.ot e et i e 6-13
6.12.2 I TUDT TaSKS . o ottt e e e e 6-13
6.13 ERROR CODE . ..ttt ettt et et e e e e e et e e e e e 6-14
6.14 EXCEPTION AND INTERRUPT HANDULING IN B4-BIT MODEttt ttte et e es 6-15
6.14.1 BBt MOME DT .ttt ittt ettt e e e e e e e 6-15
6.14.2 B4-Bit MO STaCK FramIe ..ottt e e 6-16
6.14.3 RET N IA-328 MO . . oottt ettt e e e et e e e e e e 6-17
6.144 Stack SWItChING IN JA-328 MOGE . ..ottt e e e 6-17
6.14.5 INEErTUPT STACK TaDIE .« vttt e e e e e e e e 6-18
6.15 EXCEPTION AND INTERRUPT REFERENCE.\ttt t ettt ettt et e et e et e e e 6-18
Interrupt O—Divide Error EXCEPLION (BDE). ... v vttt ettt e e 6-19
Interrupt 1—Debug EXCEPtioN (HDB) ot e e 6-20
INTErTUPT 2 NMI I O TUD T oottt et e e e e e et e e e 6-21
Interrupt 3—Breakpoint EXCEPLION (HBP). o. i e 6-22
Interrupt 4—0verflow EXCEPTION (HOF) ...\ttt e e e e 6-23
Interrupt 5—BOUND Range Exceeded Exception (HBR)cvoviriiii e 6-24
Interrupt 6—Invalid Opcode EXCEPTION (HEUD) . .o v vt vttt ettt et et e 6-25
Interrupt 7—Device Not Available EXception (HNM).ot e 6-26
Interrupt 8—Double Fault EXCEPTION (HDF)ttt e 6-27
Interrupt 9—Coprocessor SEGMENT OVEITUN. v ettt ettt et e et e et et et et e e et e e 6-29
Interrupt 10—Invalid TSS EXCOPTION (HTS) .ttt e e eenees 6-30
Interrupt 11—Segment Not Present (HNP) it 6-33
Interrupt 12—Stack Fault EXCEPLION (BSS) ...ttt e e e 6-35
Interrupt 13—General Protection EXCeption (HGP).ottt e e 6-36
Interrupt 14—Page-Fault EXCEPtiON (HPF).t e e 6-39
Interrupt 16—x87 FPU Floating-Point Error (BMF).o e 6-42
Interrupt 17—Alignment Check EXCEPLION (HAC). r ettt aeees 6-44
Interrupt 18—Machine-Check EXCeption (HMO)ov it e 6-46
Interrupt 19—SIMD Floating-Point EXCeption (HXM)ttt e e 6-47
Interrupts 32 10 255—User Defined I ermUPTS . ..o\ttt e e 6-49
CHAPTER 7
TASK MANAGEMENT
7.1 TASK MANAGEMENT OVERVIEW. . . .ottt ettt et e e e e e e e e 7-1
711 L 151 1ot (= 7-1
7.1.2 L5340 = (= 7-2
713 EXECUTING @ TaSK vttt e e e e e 7-2
7.2 TASK MANAGEMENT DATA STRUCTURES . ..ttt e e e e e e 7-3
7.2.1 TaSK-STaTE SEGMENT (TS) vttt ittt e e e et e e et e e e e e e 7-3
722 LIS 3= o (o 7-5
7.23 TSS Descriptor i B4-Dit MOAE.ot i i i e 7-6
724 B QR =T (= 7-7
7.25 LG T 1 (N L= o 0] o 7-8
73 TASK S T CHING L ottt et e e e e e e et et e e e e e e e e 7-9
74 TASK LINKING ot e sttt et e et e et e e et et e e et e e e et e e e 7-12
741 Use of Busy Flag To Prevent Recursive Task SWitChing.oouiiniiii e 7-13
74.2 [To T Y 0T = < o< 7-13
75 TASK ADDRESS SP A CEttt e e e 7-14
751 Mapping Tasks to the Linear and PhysSical Address SPACES ... vvvvvttttttt et et eiaees 7-14
75.2 Task LoGIiCal AdArESS SPaCE ...ttt it it e e e e e s 7-15
76 T6-BIT TASK-STATE SEGMENT (1SS). vttt ettt ettt et et et e et e 7-15

vi Vol. 3A

CONTENTS

PAGE

77 TASK MANAGEMENT IN B4-BIT MODE ...\ttt ittt sttt ettt e e e e e e et a e ey 7-16
CHAPTER 8

MULTIPLE-PROCESSOR MANAGEMENT

8.1 LOCKED ATOMIC OPERATIONS .ottt ittt ettt et ettt e ettt e e et e e e e 8-1
8.1.1 Guaranteed AtOmMIC DD atiONS . . .ttt ettt ettt et ettt et e e ettt e e e e e 8-2
8.1.2 BUS LOCKINMG L vttt e e e 8-3
8.1.2.1 AUTOMATIC LOCKING. .« .ottt et et ettt e e et e e e e 8-3
8.1.2.2 Software Controlled Bus LOCKINGottt e e et 8-3
8.1.3 Handling Self- and Cross-Modifying Code.vuiiiii i e e 8-4
814 Effects of a LOCK Operation on Internal Processor CaCheso.vv ittt 8-5
8.2 MEMORY ORDERING FOESTARTEE XRLIRRIRIATLS BRI+ * e 8-5
8.2.1 Memory Ordering in the Intel™ Pentium™— and INTel486 ProCESSOrSvvivvii ittt 8-6
8.2.2 Memory Ordering in P6 and More Recent Processor Families.ouviriiii e 8-6
823 Examples lllustrating the Memory-0rdering PrinCiples e i 8-7
8.2.3.1 Assumptions, Terminology, and NOTationo.iuiuiri e e e e 8-8
8.23.2 Neither Loads Nor Stores Are Reordered with Like Operations.ot 8-8
8.233 Stores Are Not Reordered With Earlier Loadsoooviii i e 8-9
8.234 Loads May Be Reordered with Earlier Stores to Different Locations...........covviiiiiiiiiiiiici s 8-9
8.235 Intra-Processor FOrwarding IS AIOWEd.t e 8-10
8.2.3.6 Stores Are Transitively VisibDle i e e 8-10
8.23.7 Stores Are Seen in a Consistent Order by Other ProCESSOrS. . ..o vvuitt et 8-11
8238 Locked Instructions Have @ Total Order. oo vt 8-11
8.239 Loads and Stores Are Not Reordered with Locked INSTructions. e 8-11
8.24 Fast-String Operation and Out-0f-0rder STOMES. ..\t v ittt e e e 8-12
8.24.1 Memory-Ordering Model for String Operations on Write-Back (WB) Memory.cooviiiiiiiiiiiiinne 8-12
8.24.2 Examples lllustrating Memory-Ordering Principles for String Operations.............coiiiiii it 8-13
8.2.5 Strengthening or Weakening the Memory-Ordering Model ... e 8-15
83 SERIALIZING INSTRUCTIONS . oottt ettt ettt et et e e et e e e e e e e 8-16
84 MULTIPLE-PROCESSOR (MP) INITIAL ZATION L o sttt ettt et e e st e et eaes 8-18
84.1 BSP @GN0 AP PrOCESSOTS & . ottt ettt ettt et et e e et et e e e e e e e e 8-18
84.2 MP Initialization Protocol Requirements and ResStrictionsovuiiiii i 8-18
843 MP Initialization Protocol Algorithm for Intel Xeon Processors.t e aes 8-19
844 MP INitialiZation EXAMIPIE. . oottt e e 8-20
8.4.4.1 Typical BSP INitialization SEQUENCE v .ttt e 8-20
84.4.2 Typical AP INitialization SEQUENCE . .. vttt i ittt e e e e e 8-22
84.5 Ide&tifying Logical Processors inan MP SYSTEM ...t ottt 8-22
85 INTEL™ HYPER-THREADING TECHNOLOGY AND INTEL™ MULTI-CORE TECHNOLOGYivviiiiiiii e 8-24
8.6 DETECTING HARDWARE MULTI-THREADING SUPPORT AND TOPOLOGY ..\ttt ettt e ie i eaaans 8-24
8.6.1 Initializing Processors Supporting Hyper-Threading Technology.........covvirivi i e 8-25
8.6.2 Initializing Multi-Core Processors (e T L 8-25
86.3 Executing Multiple Threads on an Intel™ 64 or IA-32 Processor Supporting Hardware Multi-Threading 8-25
864 Handling Interrupts on an IA-32 Processor Supporting Hardware Multi-Threading.............cocvviviiiiii e, 8-25
8.7 INTEL™ HYPER-THREADING TECHNOLOGY ARCHITECTURE. ...\ttt ettt e e 8-26
8.7.1 State 0f the LOGICal PrOCESSOrSttt ettt ettt ettt ettt neaes 8-27
8.7.2 o (O U o T 11 S P 8-28
873 Memory Type Range Registers (MTRR) u. ittt e e 8-28
874 Page AttriDUTE Table (P AT) .ttt e e e e e e 8-28
8.75 [ol TN O pT= S o (=T £ = P 8-28
8.76 Debug Registers and EXTENSIONSttt ettt et et et e et e e 8-29
877 Performance Monitoring COUNMTErS.ttt ettt ettt ettt et e e et ettt et e a et aaen 8-29
8.7.8 IA32_MISC_ENABLE MSR ..ottt e e et e et et e e e 8-29
879 LR L=T 000 Y@ < T 8-29
8.7.10 Y= =1 4 T 1oy 0T o 8-29
8.7.11 MICroCOdE UPdate RESOUMCES. . .ottt sttt ettt ettt e e e e e e e e 8-29
8.7.12 Y=Y oo 3 Y o e T [8-30
8.7.13 Implementation-Specific Intel HT Technology Facilities ... i 8-30
8.7.13.1 0 Tol Yo 0 ol =T 8-30
8.7.13.2 Processor Translation Lookaside BUFfers (TLBS).vvvueeiin e 8-30
8.7.133 B L= 0= o3 o 8-31
8.7.134 External Signal Compatibilityo e 8-31
88 MULTI-CORE ARCHITECTURE . . .ottt ittt ettt et e e e e e e e e e e e e eaes 8-31
8.8.1 [0 For= I o o ol =T o Y U 0] o] u 8-32
8.8.2 Memory Type RaNge REGISTErS (MTRR) vt ittt ettt ettt et e et et et e 8-32

Vol. 3A Vii

CONTENTS

8.8.3 Performance Monitoring COUNM IS v ittt ittt et e e e e ettt e e e 8-32
884 IA3 2 _MISC ENABLE MR, .\ttt ittt e s e e e e e e e e e e e 8-32
8.8.5 o oo [T a2 L (= R =TS0] ol = 8-32
89 PROGRAMMING CONSIDERATIONS FOR HARDWARE MULTI-THREADING CAPABLE PROCESSORSovvvvevnn 8-33
8.9.1 Hierarchical Mapping of Shared RESOUICES et ens 8-33
8.9.2 Hierarchical Mapping of CPUID Extended Topology Leaf.couiriiiiii e ee e 8-34
8.9.3 Hierarchical ID of Logical Processors inan MP SYSTeM ... ittt et ieae 8-35
8.9.3.1 Hierarchical ID of Logical Processors With X2APIC ID u et et 8-37
894 Algorithm for Three-Level Mappings 0f APIC D ... oot e et ienas 8-37
8.95 Identifying Topological Relationships in @ MP SYSTeMcii i e 8-42
8.10 MANAGEMENT OF IDLE AND BLOCKED CONDITIONS . ..ottt ettt eeens 8-46
8.10.1 {0 I 0 Y ot 1T 8-46
8.10.2 o A = 0y i 1 o o 8-46
8.10.3 Detecting Support MONITOR/MWAIT INSTrUCTION. .. vttt et e e e 8-46
8.10.4 MONITOR/MW AT IS U ON .« vttt e e ettt et et e et e e e e et et et et e e e e 8-47
8.10.5 Monitor/Mwait Address Range Determinationouu it e e 8-48
8.10.6 Required Operating Sy S oM SUP PO Tttt et e e e 8-48
8.10.6.1 Use the PAUSE Instruction in Spin-Wait LOOPS.ottt i e e e it aas 8-49
8.10.6.2 Potential Usage of MONITOR/MWAIT in COIdIE LOOPS. . . vt v ettt ettt ettt e e aeas 8-49
8.106.3 Halt 1dle LOGICal PrOCESSOMS v vttt ittt ettt e ettt e e e s et e e e et e s 8-50
8.10.6.4 Potential Usage of MONITOR/MWAIT in CT Idle LOOPS. . ..o v ittt e e ettt ettt e e aeas 8-51
8.10.6.5 Guidelines for Scheduling Threads on Logical Processors Sharing Execution Resources.............ovvvvivn. 8-51
8.10.6.6 Eliminate Execution-Based TimiNG LOOPS. vttt ettt s sttt ettt e 8-52
8.10.6.7 Place Locks and Semaphores in Aligned, 128-Byte Blocks of MeMOry.c.v it ciieieaens 8-52
8.11 MP INITIALIZATION FOR P6 FAMILY PROCESSORSttt ettt e e es 8-52
8.11.1 Overview of the MP Initialization Process For P6 Family Processorsovvvuiiiiiiiiiii i iiininianns 8-52
8.11.2 MP Initialization Protocol AlgOritnmo i e 8-53
8.11.2.1 Error Detection and Handling During the MP Initialization Protocol.............coii i e 8-54
CHAPTER 9

PROCESSOR MANAGEMENT AND INITIALIZATION

9.1 INITIALIZATION OV RV EW . . ottt et e e e e e e e e 9-1
9.1.1 PrOCESSOr STatE AT T ROt L\ttt ettt e e e e e e et e e e 9-2
9.1.2 Processor BUlt-IN SE-TeSt (BIST) ..t v ittt ittt e e e e e e e 9-2
9.1.3 Model and Stepping INfOrMatioNo et e e e e 9-4
914 LT 1 3 Tt T T =T ol =T P 9-5
9.2 XB7 FPU INITIALIZATION. . . ottt ettt ettt e e et e e e et e e et et e et e e e e 9-5
9.2.1 Configuring the X87 FPU BNVITONMENT e .ttt ettt et aanas 9-5
9.2.2 Setting the Processor for x87 FPU Software EMUIation.ooiiiiiii i e 9-6
93 CACHE ENABLING . . .ttt et et e e et e et et e et et et e e e e et et e e et e 9-6
9.4 MODEL-SPECIFIC REGISTERS (MRS) .. vttt ettt ettt ettt e e e et e e e e 9-7
95 MEMORY TYPE RANGE REGISTERS (MTRRS) . . vttt ettt et e ettt ettt e e e e e e a e 9-7
96 INITIAUIZING SSE/SSE2/SSEI/SSSES EXTENSIONSottt e e 9-7
9.7 SOFTWARE INITIALIZATION FOR REAL-ADDRESS MODE OPERATION ...ttt it 9-8
9.7.1 REAI-AATESS MOGE DT ..ttt ettt e e e et et e e e e e e e s 9-8
9.7.2 NMIEINtErTUPT Handlngot e e e e e e e e 9-8
9.8 SOFTWARE INITIALIZATION FOR PROTECTED-MODE OPERATION. . ..ottt ettt 9-8
9.8.1 Protected-Mode System Data StrUCTUMESttt e e et e i et 9-9
9.8.2 Initializing Protected-Mode EXceptions and INtermUPTSvit ittt s 9-9
9.8.3 INtIlIZING PagiNg . . . oottt e e 9-9
9.84 INitialiZINg MURITASKING. . . .o e e e 9-10
9.85 INITIAlIZING LA-328 MOGE . . oottt e e e e e e e e 9-10
9.8.5.1 IA-32e Mode System Data STTUCTUTES. ...t e e e 9-11
9.8.5.2 1A-32e Mode Interrupts and EXCOPTIONSottt i i i e e e 9-11
9.85.3 64-bit Mode and Compatibility Mode Operation.ovvuei i e s 9-11
9854 Switching Out of IA-32e Mode OPErationouiriii e 9-12
99 10 Y 9-12
9.9.1 SWItChiNg 10 Protected MOGe. . .. oottt e e e e 9-12
99.2 Switching Back 10 Real-AdAress MOAeo .t e e 9-13
9.10 INITIALIZATION AND MODE SWITCHING EXAMPLEttt e e 9-14
9.10.1 ASSEIMIDIET USB0 . ot ittt ettt ettt e e e e e 9-16
9.10.2 STARTUP. ASM LiSTiNg. « v v ettt vttt sttt et e e e et e e e et e e e et et e et e aes 9-16
9.10.3 MAINAASM SOUTCE COUB . vttt e e e e et e e e et 9-24
9.104 SUPPOMEING FIlBS vttt e e e e e e e e e 9-24

viii Vol. 3A

CONTENTS

PAGE

9.11 MICROCODE UPDATE FACILITIES. . ottt sttt et ettt et et e e et e et et e e et eens 9-26
9.11.1 [Tol ool e L= 0 a = = 9-27
9.11.2 Optional Extended Signature Table. .. . i i i e e e e 9-30
9.11.3 ProCeSSOr IdEN i iCaTiON. . .o\ttt et e e 9-31
9.114 Plat O dentifiCatioNo 9-31
9.11.5 Microcode Update CheCKSUM o i e e et e et i e 9-32
9.116 MICroCode UPdate LOader. .. oottt ettt ettt e e e e e e s 9-33
9.11.6.1 Hard Resets in Update Loading. vvvee ittt e e e e s 9-34
9.11.6.2 Update in @ MU DIOCESSOm Sy S M . . ittt et e e et e et e ettt et ans 9-34
9.11.6.3 Update in a System Supporting Intel Hyper-Threading Technologycoiiiiiii i 9-34
9.11.64 Update in a System Supporting Dual-Core TeChNologyovvt vt 9-34
9.11.6.5 Update Loader ENNanCementS « ..ottt e e e e e 9-34
9.11.7 Update Signature and VerifiCation.ttt i i e e s 9-35
9.11.7.1 DeterminiNg the SIGNMatUNE . .. vttt e e s e e e e e e 9-35
9.11.7.2 Authenticating the UpPdate. . ..o i i e e e s 9-36
9.11.8 Pentium 4, Intel Xeon, and P6 Family Processor

Microcode Update SPeCifiCationsvei ittt et e 9-36
9.11.8.1 Responsibilities 0f the BIOSo e e e 9-37
9.11.8.2 Responsibilities of the Calling Programcouiii e i 9-38
9.11.83 Microcode UPdate FUNCHIONS .« ... vttt ettt e e e e e e e e 9-41
9.11.84 N I Y B T T =T =T = Lol = P 9-41
9.11.85 FUNCTION OOH—PrESENCE TOST. . . ettt ittt ettt ettt e e et e et e n e e n e e 9-41
9.11.86 Function OTH—Write Microcode Update Datao.vuiuirii e 9-42
9.11.8.7 Function 02H—Microcode Update Control.ouvirii i i i e i et 9-45
9.11.88 Function 03H—Read Microcode Update Data.c.vviriiii ettt 9-46
9.11.89 RETUMN COdES ..ttt ettt e e e et e e e e e e e s 9-47
CHAPTER 10
ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
10.1 LOCAL AND 1/0 APIC OVERVIEW . . v ettt ettt et e e e e e e e e e et e e et e e et e ees 10-1
10.2 SYSTEM BUS VS, APIC BUS . ..ottt ettt e e e e e e e e et e 10-4
103 THE INTEL™ 82489DX EXTERNAL APIC, THE APIC, THE XAPIC, AND THE X2APIC. vt 10-4
104 O G AL APIC ettt et e e e e e e e e e e 10-4
10.4.1 The Local APIC BlOCK Diagram . v vttt ettt ettt e et ettt e e e e e e e e e 10-4
10.4.2 Presence Of The LOCal APlottt e e e e e e e 10-7
104.3 Enabling or Disabling the LoCal APIC i i e e e e i e 10-8
1044 LoCal APIC STatus @nd LOCaTION. . ..o v ettt ettt et ettt e e e e 10-8
104.5 Relocating the Local APIC REGISTETSttt ettt et ettt 10-9
104.6 [or 2 10-9
104.7 (ot [OO - | (= 10-10
10.4.7.1 Local APIC State After POWeEr-Up OF RESET. ... o i it e 10-10
104.7.2 Local APIC State After It Has Been Software Disabled. ... 10-11
104.7.3 Local APIC State After an INIT Reset (“Wait-for-SIPI” State)oov i i 10-11
104.7.4 Local APIC State After It Receives an INIT-Deassert Plvuvu i e 10-11
1048 (o Tur | Y o (O V=T o =T 3 (= 10-11
105 HANDLING LOCAL INTERRUP TS ..ttt ettt et e e e e e et eens 10-12
10.5.1 [Tor= MY LYot (o -] (= 10-12
10.5.2 RV 1 Ta N (= a0 V7= Ton (o] = 10-14
10.5.3 S = T | T 10-15
10.5.4 O 1= 10-16
10.5.4.1 TS C-DEAANNE MO . v vttt ettt ettt et e e e e e e e 10-17
10.5.5 [Tors I (=T o 0o ol =T o) = oS 10-18
10.6 ISSUING INTERPROCESSOR INTERRUP TS L. ittt ittt ettt e ettt e e e ey 10-19
10.6.1 Interrupt Command ReGiSTer (ICR)ttt e e e e e e e e e 10-19
10.6.2 Determining Pl DS tination . ..\ttt ettt et e e e 10-23
10.6.2.1 Physical Destination MOGE cv ittt et e e 10-23
10.6.2.2 Logical Destination MOdeot i i e e 10-23
10.6.2.3 Broadcast/Self Delivery MOQe.v. it e e e 10-25
106.2.4 Lowest Priority DelVEry MOde e 10-25
10.6.3 | WL V=T YA T e I Y alal =T 0] = o = 10-26
10.7 SYSTEM AND APIC BUS ARBITRATION . ..ttt ettt ettt et e e et e e e et e e e e et e e 10-26
10.8 HANDLUING INTERRUP TS Lottt ettt e et et e e et e e e e e e et e et ettt 10-26
10.8.1 Interrupt Handling with the Pentium 4 and Intel Xe0n Processors.vvi it e s 10-27
10.8.2 Interrupt Handling with the P6 Family and Pentium Processorscvvviitir ittt e i eeaen 10-27

Vol. 3A iX

CONTENTS

10.8.3 Interrupt, Task, and ProCeSSOr Priority . ..ottt e e e e e e e 10-28
10.8.3.1 TaSK AN PrOCES SO PO iES. vttt ettt e et et e e 10-29
1084 Interrupt Acceptance for FiXed IMtemmUDTS.o e it e e e e e 10-30
10.8.5 Signaling Interrupt Servicing ComPlETioNot e e e e et e 10-31
10.8.6 Task Priority iN TA-328 MOGE oottt e e 10-31
10.8.6.1 Interaction of Task Priorities between CRB and APICttt e 10-32
109 SPURIOUS INTERRUP T . . sttt sttt et et ettt et e e et et e e et e e e e e et n e e 10-32
10.10 APIC BUS MESSAGE PASSING MECHANISM AND PROTOCOL (P6 FAMILY, PENTIUM PROCESSORS)ovvvvvvennnn 10-33
10.10.1 BUS MBS0 FOMmMIaTS. . ot o ittt ittt ittt ettt e e e e e e e e 10-34
10.1T MESSAGE SIGNALLED INTERRUPTS . ..ttt ittt et ettt et et e et et et et e et et e eees 10-34
10.11.1 Message Address REgiSTEr FOMmMat. . ..o v .ttt ettt ettt 10-34
10.11.2 Message Data RegiSter FOMmMato ottt it e et e e et e e e e 10-35
1012 EXTENDED XAPIC (X2APIC). .t vttt ettt ettt et et e et et e e et et et et e et et e e s 10-36
10.12.1 Detecting and ENabling X2APIC MOQEo vttt e e 10-37
10.12.11 INSTrUCtiONS 10 ACCESS APIC REGIS OIS, . o\ttt ittt it it e e ittt a e 10-37
10.12.1.2 X2APIC ReGISTEr AUIESS SPACE . .ottt ittt ettt ettt ettt et e e e et et et e e 10-38
10.12.1.3 RESErVEd Bit CNECKING . v .ottt et e e e s e e e e e e e 10-40
10.12.2 X2APIC Registar AVailability . ..o e e 10-40
10123 MSR ACCESS IM X2APIC OB, v vttt ettt sttt e e e e et e et e 10-40
10124 VM-Exit Controls for MSRS and X2APIC REGISTEIS . . vttt ittt et ees 10-41
10.12.5 b Y (O = 1 (= I = 1 0 0 10-41
10.12.5.1 D L (O = | =13 10-41
D (O i (=T = = 10-42
XZ2APIC Transitions From X2APIC MO vvitt ittt e e 10-42
X2APIC Transitions From Disabled MOde e e e 10-43
State Changes From XAPIC Mode 10 X2APIC MO oottt i e e e 10-43
10.12.6 Routing of Device INterrupts in X2APIC MOGe. vv ittt e et et 10-43
10.12.7 INitialization Dy SYSTEM SO W aAIE. .. .ttt 10-43
10.128 CPUID Extensions And Topology ENUMErationttt e ettt e ettt n e eenes 10-43
10.12.8.1 Consistency of APICIDS @nd CPUIDttt ettt e e ettt e eas 10-44
10.12.9 ICR Operation iN X2APIC MOGE. ...ttt ettt e e e e e 10-44
10.12.10 Determining IPl Destination in X2APIC MOde. vttt i e e e e 10-45
10.12.10.1 Logical Destination Mode in X2APIC MO v ittt et e e 10-45
10.12.10.2 Deriving Logical x2APIC ID from the Local X2APIC ID. ... v i e 10-46
O T Y o I 1 =T 1 =Y 10-47
1013 APIC BUS MESSAGE FORM AT S . L ittt ettt et et e e e et e et et et et e et et e eens 10-47
10.13.1 3 U LT Tu S o 1 PP 10-47
10.13.2 o0 I TS 7 T = 10-47
10.13.2.1 1) 0 i A =T Y- T 10-48
10.13.2.2 NON-TfocUSEd LOWEST Priority MESSa0e . . .ottt ettt ettt e 10-49
10.13.23 APIC BUS Statls QY IS, v ottt e e et et e e e e e 10-50
CHAPTER 11
MEMORY CACHE CONTROL
11.1 INTERNAL CACHES, TUBS, AND BUFFERS. . . . ettt et ettt et ettt et 11-1
11.2 CACHING TERMINOLOGY ..ttt ettt et e e et e e e e e e e e e et et e e e e 11-5
11.3 METHODS OF CACHING AV AILABLEttt ettt et e e e e e e e e e 11-6
11.31 Buffering of Write Combining Memory LOCationsttt e 11-7
11.3.2 ChoOSING @ MmO Y Ty P vttt ettt et et e et et e et et et et 11-8
1133 Code Fetches in UNcacheable MemOry . ..ot i i i e e e ittt eans 11-9
1.4 CACHE CONTROL PROTOCOL . . v et v ettt et et e e e e e e et e e e e et e e et e e et et e e e e e e 11-9
115 CACHE CONT RO vttt ettt ettt e e et e e e et e e e et e e e e e e e e et e et et e 11-10
11.5.1 Cache Control Registers and Bilsiui it i i i e e e e et e 11-10
1152 Precedence 0f CaChe CONtrOlS vttt e ettt e e et e 11-13
11.5.2.1 Selecting Memory Types for Pentium Pro and Pentium Il Processors ..o 11-14
115.2.2 Selecting Memory Types for Pentium Il and More Recent Processor Familiesooovviiiiiinnnnn... 11-15
11523 Writing Values Across Pages with Different Memory TYPESttt e s 11-16
1153 Preventing CaChingo v e ettt et e e e e e 11-16
1154 Disabling and Enabling the L3 Cacheot e e e 11-17
1155 Cache Management INSTrUCTIONSottt et ettt e e et r e e e e e et 11-17
11.5.6 L7 Data Cache ConteXt MOGe. . .. v ettt ettt e ettt e et e e e e e 11-18
11.5.6.1 AQAPTIVE MOME . ottt e e e e 11-18
11.56.2 R = =0 o T L= 11-18

X Vol. 3A

CONTENTS

PAGE

116 SELF-MODIFYING CODE ..ottt ettt ettt et e et e e et e e e et e e et e e e et e e e 11-18
11.7 IMPLICIT CACHING (PENTIUM 4, INTEL XEON,

AND PBE FAMILY PROCESSORS) . vttt vttt ettt et e e e e et et e e e e e e e 11-19
11.8 o IO 7Y PP 11-19
119 INVALIDATING THE TRANSLATION LOOKASIDE BUFFERS (TLBS) . .ottt vttt ettt et i e eineiaaaans 11-19
1110 STORE BUFFER. ..ttt ettt et e et e et et e e e et e e e e 11-20
11117 MEMORY TYPE RANGE REGISTERS (MTRRS). ...ttt t ettt ettt et e e e e 11-20
11.11.1 MTRR Feature [dentifiCationve e e e e 11-21
11.11.2 Setting Memory Ranges With MT RRS i i i i e i e e e e i e enes 11-22
11.11.2.1 IA32 _MTRR _DEF _TYPE MR . .\ttt ettt et e et e e e e e e e 11-22
11.11.2.2 FIXEA RANGE M RRS ..ottt ittt e e e e e e e e e 11-23
11.11.23 Variable RANGE M R RS, . . ittt it e e e e e e 11-23
11.11.24 System-Management Range Register INterfacevuvuiii i e e 11-25
11.11.3 Example Base and Mask CalCUlationsoviuiuiiiir e e 11-26
11.11.31 Base and Mask Calculations for Greater-Than 36-bit Physical Address Support.coovviviiieieenn.s. 11-27
11.114 Range Size and Alignment REQUITEMENT ittt e e e 11-28
11.11.4.1 I ==Y 1= ol = 11-28
11115 MT RR MITIal ZatiON. . ot ettt et e e e e e e e e 11-29
11.116 REMADPING MEMOTY Ty DS . . ettt ettt ettt ettt ettt e e e ettt e e e e ettt e e e e 11-29
11.11.7 MTRR Maintenance Programming INterface v e 11-29
11.11.7.1 i T=T 0 0T IRV 0= 1= 1 ot o 11-29
11.11.7.2 MEMTYPESET() FUNCTION & .ttt ettt ettt et e e et e e e et e et e e e 11-31
11.11.8 MTRR Considerations iN MP Sy StemMIS ... v vttt e e e e e 11-32
11.119 Large Page Size ConSIderationSttt ettt e e 11-33
1112 PAGE ATTRIBUTE TABLE (P AT . .ttt ettt ettt ettt et e et et et e et e e e et 11-33
11.12.1 Detecting SUPPOrt Tor the PAT FEaTUME. .. .ot i ittt e e e e ens 11-34
11.12.2 L o I Y P 11-34
11.12.3 Selecting a Memory Type from the PAT ... e ettt 11-35
11.124 Programming the PAT .ot e i e e e 11-35
11.125 PAT Compatibility wWith Earlier IA-32 ProCeSSOrS. . .\ v vttt ittt ittt e ettt e e 11-36
CHAPTER 12 _
INTEL™ MMX TECHNOLOGY SYSTEM PROGRAMMING
12.1 EMULATION OF THE MMX INSTRUCTION SET. ...ttt ettt et e e e et eees 12-1
12.2 THE MMX STATE AND MMX REGISTER ALIASING . ..o i vttt ettt e e e 12-1
12.2.1 Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR

Instructions on the X87 FPU Tag Wordviii e e e 12-3

123 SAVING AND RESTORING THE MMX STATE AND REGISTERS . ..\ttt ittt 12-3
124 SAVING MMX STATE ON TASK OR CONTEXT SWITCHES ..\ttt e 12-4
125 EXCEPTIONS THAT CAN OCCUR WHEN EXECUTING MMX INSTRUCTIONSttt 12-4
12.5.1 Effect of MMX Instructions on Pending x87 Floating-Point EXCEPLIONS.cvvv i 12-5
12.6 DEBUGGING MMX CODE . . ittt et ettt ettt e e e e e e e e e et e e et e e et e e e e et e eaes 12-5
CHAPTER 13
SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR EXTENDED
STATES
13.1 PROVIDING OPERATING SYSTEM SUPPORT FOR

SSE/SSE2/SSE3/SSSES/SSES EXTENSIONS. L. ittt ittt e 13-1
13.1.1 Adding Support to an Operating System for SSE/SSE2/SSE3/SSSE3/SSE4 EXTeNsiONSvvvv e einenennns. 13-1
13.1.2 Checking for SSE/SSE2/SSE3/SSSE3/SSES EXTENSION SUPPOMT. v\ttt e ettt e 13-2
13.1.3 Checking for Support for the FXSAVE and FXRSTOR INSTIUCTIONS ..o\ vvvr it eeees 13-2
13.1.4 Initialization of the SSE/SSE2/SSE3/SSSEI/SSES EXTENSIONS. ..ottt tt ettt ettt 13-2
13.1.5 Providing Non-Numeric Exception Handlers for Exceptions Generated by the SSE/SSE2/SSE3/SSSE3/SSE4

Sy 0ot o L 13-4

13.1.6 Providing an Handler for the SIMD Floating-Point Exception (EXM)oovviii i i 13-5
13.1.6.1 Numeric Error flag and IGNNEHo e e e e 13-5
13.2 EMULATION OF SSE/SSE2/SSE3/SSSES/SSES EXTENSIONS ..ottt e 13-5
133 SAVING AND RESTORING THE SSE/SSE2/SSE3/SSSE3/SSES STATE vttt it 13-5
134 SAVING THE SSE/SSEZ2/SSE3/SSSE3/SSE4 STATE ON TASK OR CONTEXT SWITCHES. ..o 13-6
135 DESIGNING OS FACILITIES FOR AUTOMATICALLY SAVING X87 FPU, MMX, AND SSE/SSE2/SSE3/SSSE3/SSE4 STATE ON

TASK OR CONT EXT SWITCHES .ttt e e e e e e e 13-6
13.5.1 Using the TS Flag to Control the Saving of the x87 FPU, MMX, SSE, SSE2, SSE3 SSSE3 and SSE4 State. 13-7

CONTENTS

136 XSAVE/XRSTOR AND PROCESSOR EXTENDED STATE MANAGEMENT ..ottt 13-8
13.6.1 DY N Sl T2 T T 13-9
13.7 INTEROPERABILITY OF XSAVE/XRSTOR AND FXSAVE/FXRSTOR ..ottt 13-10
138 DETECTION, ENUMERATION, ENABLING PROCESSOR EXTENDED STATE SUPPORTvviiiiiii i ineiieannns 13-11
13.8.1 Application Programming Model and Processor Extended STatesvvviiiiii i 13-12
139 INTEL ADVANCED VECTOR EXTENSIONS (INTEL AVX) AND YMM STATE ..ottt i 13-13
1370 YMM STATE MANAGEMENT L.ttt et e et e et e e et et e et e e s 13-13
13.10.1 Detection 0f YMM STate SUPDOITt et 13-13
13.10.2 ENaDING OF YMM SHatottt i e e e e s 13-13
13.10.3 €nabling of SIMD Floating-EXCEPTION SUPPOIT. . ..\ttt et e e et 13-14
13.104 THE LAy OUT OF XS AV E AT . . .ottt ittt ettt e e e e e e e e e e e e 13-14
13.10.5 XSAVE/XRSTOR Interaction with YMM State and MXCSR . ..o v it 13-15
13.10.6 Processor Extended State Save Optimization and XSAVEOPTot e 13-16
13.10.6.1 XSAVEOPT USage GUIAEIINES . . .o vttt ettt et e ettt e e e e e e e e e 13-17
CHAPTER 14

POWER AND THERMAL MANAGEMENT

14.1 ENHANCED INTEL SPEEDSTEP® TECHNOLOGY. . . e+ e et e 14-1
14.1.1 Software Interface For Initiating Performance State Transitionsvvvrii i e 14-1
14.2 P-STATE HARDWARE COORDINATION. . .ottt ettt ettt ettt e e s e e e e e et e es 14-1
143 SYSTEM SOFTWARE CONSIDERATIONS AND OPPORTUNISTIC PROCESSOR PERFORMANCE OPERATION 14-3
14.3.1 INtel DYNAMIC ACCEIEIaTiON .« vttt et e e e e e e e 14-3
14.3.2 System Software Interfaces for Opportunistic Processor Performance Operation..............ovviviiiiiinnennen. 14-3
14.3.2.1 Discover Hardware Support and Enabling of Opportunistic Processor Operation................cccoviiiiinnn... 14-4
14.3.2.2 0S Control of Opportunistic Processor Performance Operation...........ovuiritiriiiiii it iiiiiinii i eanns 14-4
14323 Required Changes to OS Power Management P-state Policy. ..o 14-4
14324 Application Awareness of Opportunistic Processor Operation (Optional)c..ovviiiii i 14-5
1433 Intel TUrbo BoOSt TECRNOIOGY ..\ttt e e e e s 14-6
1434 Performance and Energy Bias HINt SUPPOTT. u ittt e eens 14-6
144 MWAIT EXTENSIONS FOR ADVANCED POWER MANAGEMENT ...\ttt et 14-7
145 THERMAL MONITORING AND PROTECTION . . ot ettt ettt ettt e et et e et e e e en s 14-7
14.5.1 Catastrophic SHUTAOWN DETECTOT ettt et e e e ettt aens 14-8
14.5.2 10 L= .= 31 (o 14-8
14.5.2.1 L= L o T 14-8
14.5.2.2 10 T= 00 T= T 0 (o 14-9
145.23 Two Methods for ENabling T2 ... oo e e et e ettt it 14-9
14524 Performance State Transitions and Thermal Monitoringovvuiii i e 14-10
14.5.2.5 Thermal Status INfOrmMatioNot e e e e 14-10
14.5.26 Adaptive ThEMmMal MOniTOottt e e e et e et e e e 14-11
1453 Software Controlled Clock MOdUIBLION.ottt e e e 14-11
14.5.3.1 Extension of Software Controlled Clock Modulation.vuvenii i e 14-12
1454 Detection of Thermal Monitor and Software Controlled Clock Modulation Facilitiesccovviviiiiiiinennns 14-13
14.5.4.1 Detection of Software Controlled Clock Modulation EXtENSION.vvuvieii e 14-13
1455 On Die Digital ThermMal SENSOTS\ttt ettt e et ettt et e e 14-13
14.5.5.1 Digital Thermal SENSOr ENUMEIa Ottt et e et ettt et ne e 14-13
14.55.2 Reading the Digital SEMS O . .\ttt sttt e e e e e et e e 14-13
14.5.6 Power Limit NOtifiCationo e e e e e 14-16
14.6 PACKAGE LEVEL THERMAL MANAGEMENT . ..ottt ittt et e 14-16
14.6.1 Support for Passive and ACTIVE COONING. . ..t v v vttt e e e e 14-19
14.7 PLATFORM SPECIFIC POWER MANAGEMENT SUPPORT ..ttt ittt 14-19
14.7.1 Ry I = o = 14-19
14.7.2 RAPL Domains and Platform SpeCifiCity v v e 14-20
14.7.3 Package RAPL DOMAIN . .. ettt ettt et ettt et et et et et e e e e e 14-21
14.7.4 PPO/PPT RAPL DOMI@INS .+ vttt et e te ettt et sttt e ettt et e et e e et et et e et et e e 14-23
14.7.5 DRAM RAPL DOMI@IN & . ettt ettt et et e et et e e et et et et et et et e e et et e et e e 14-25
CHAPTER 15

MACHINE-CHECK ARCHITECTURE

15.1 MACHINE-CHECK ARCHITECTURE . .. ittt ettt et e e e e e e e e e e e e e 15-1
15.2 COMPATIBILITY WITH PENTIUM PROCESSOR . . . ettt ettt e e e e e e e et et e e e n e e e 15-1
153 MACHINE-CHECK MRS, . .ttt e ettt et e e e et e e e et e e et et es 15-2
15.3.1 Machine-Check Global Control MSRS.ttt e e e e e e ee s 15-2

Xii Vol. 3A

CONTENTS

PAGE

15.3.1.1 JAB 2 MG LA MR, ittt ettt e e e e e e e e e e 15-2
15.3.1.2 A3 MO ST ATUS MO R, Lttt ettt e e e e e e e e 15-3
153.1.3 A3 MO LT MR ittt e e e e e e 15-4
15.3.2 Error-Reporting RegiSter BamnKsi ittt et e e e e s 15-4
15.3.2.1 2 [T O O Y 15-4
15.3.2.2 A3 MU ST ATUS MRS L.ttt it it e e e e 15-4
15.3.23 JAB 2 MU _ADD R MRS, . sttt ettt ettt ettt e e e e e 15-7
153.24 2 [T S O Y 15-7
15.3.25 N [T O 0 S 15-8
15.3.2.6 IA32_MCG Extended Machine Check State MSRS v vttt 15-9
1533 Mapping of the Pentium Processor Machine-Check Errors to the Machine-Check Architecture..................... 15-11
154 ENHANCED CACHE ERROR REPORTING ..ttt ettt ettt et e et e e e e et e e e e e et e e e e e e ey 15-11
15.5 CORRECTED MACHINE CHECK ERROR INTERRUPT . ..ottt et e ettt ettt e e ae e 15-11
15.5.1 [0 O O T Y o [(=Y =T 15-12
15.5.2 System Software Recommendation for Managing CMCI and Machine Check Resourcesc..coovvvvviinnnns 15-12
15.5.2.1 (01 O T3 = 4= Lo P 15-12
15.5.2.2 [0 V=T T B = T = T T=T 1= 15-13
15.5.23 CMOIINtErTUP T Hanaler .ot e e e e e e et i e 15-13
15.6 RECOVERY OF UNCORRECTED RECOVERABLE (UCR) ERRORS ...\ttt sttt e 15-14
15.6.1 Detection of SOftware Error RECOVEIY SUPPOMT ...ttt e e e eas 15-14
15.6.2 UCR Error Reporting and LOGging.o v vttt ettt ettt it et ettt e e e ettt e 15-14
15.6.3 UCR ErTOr ClasSifiCation . . v v vt e ettt et et et e et et e e et et et et et e et et e 15-15
15.6.4 UCR Ermor OVErWIITE RUIES . . ottt et e e et e et e ettt et e s 15-16
15.7 MACHINE-CHECK AV AL ABIL Y ettt ettt e e e e e e e e et e e et e e e ety 15-17
15.8 MACHINE-CHECK INITIALZATION . 1 ettt et et ettt e e e e et e a e 15-17
15.9 INTERPRETING THE MCA ERROR CODES . ..o\ttt ettt et e e e et e e e e e e e eenes 15-18
15.9.1 Y 10 S = o 0T [T 15-18
15.9.2 (000 T o TN T Ta I o o 0 Va1 15-19
15.9.2.1 Correction Report FIltering (F) Bitcvvv i e 15-19
15.9.2.2 Transaction Type (TT) SUD-FIeld. e 15-19
15.9.23 LeVel (LL) SUD-FIEld. . . .ottt e e e e e s 15-20
15.9.2.4 Request (RRRR) SUD-FIield. . ..o v et s e e 15-20
15.9.2.5 BUS aNd INTErCONMNECT EITOTS ..\ttt ettt e e e et e e e e ettt e e e ee e 15-20
15.9.2.6 [T=T 0 T VA O T o] =Tl = o 15-21
15.9.3 Architecturally Defin@d UCR BrTOrS ... vttt ittt ettt ettt e e e e iaas 15-21
15.9.3.1 Architecturally Defined SRAD EITOrS. . ..\ttt ittt ettt ettt ettt et ettt et ne e 15-21
15.93.2 Architecturally Defined SRAR B OIS, ...\ttt ittt ettt ettt et et e ettt e n e 15-22
15.94 MURIPIE MO A B TS, o vttt vttt ettt ettt et e e e et et e e e ettt e e e ettt e e e e 15-24
1595 Machine-Check Error Codes INterpretation vttt e e ettt e 15-24
15.10 GUIDELINES FOR WRITING MACHINE-CHECK SOFTWARE . ..\ttt ettt et 15-24
15.10.1 Machine-Check EXCePTioN HandIero e e e e 15-25
15.10.2 Pentium Processor Machine-Check Exception Handlingo i i 15-26
15.10.3 Logging Correctable Maching-ChetK ErmOrS u ettt e e e e ettt eaens 15-26
15.104 Machine-Check Software Handler Guidelines for Error RECOVETY . ..o e 15-28
15.104.1 Machine-Check Exception Handler for Error RECOVETYviiiiii ittt ieeees 15-28
15.104.2 Corrected Machine-Check Handler for Error RECOVETYiuiuiriiti ittt ettt ie e 15-32
CHAPTER 16

INTERPRETING MACHINE-CHECK ERROR CODES

16.1 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY 06H MACHINE ERROR CODES FOR MACHINE CHECK 16-1
16.2 INCREMENTAL DECODING INFORMATION: INTEL CORE 2 PROCESSOR FAMILY MACHINE ERROR CODES FOR MACHINE

0 16-3
16.2.1 Model-Specific Machine Check Error Codes for Intel Xeon Processor 7400 Series.ovvvvriiiiiniiiiianinen, 16-5
16.2.1.1 Processor Machine Check Status Register Incremental MCA Error Code Definition...................ooointt 16-6
16.2.2 Intel Xeon Processor 7400 Model Specific Error Code Fieldvv i e 16-6
16.2.2.1 Processor Model Specific Error Code Field Type B: Bus and Interconnect Efror............oovvviiiiiiininnes 16-6
16.2.2.2 Processor Model Specific Error Code Field Type C: Cache Bus Controller Errorcovvviiiiiiienannnnnn. 16-7
16.3 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH CPUID DISPLAYFAMILY_DISPLAYMODEL

SIGNATURE 06_1AH, MACHINE ERROR CODES FOR MACHINE CHECK\ttt aa s 16-7
16.3.1 INtel QPIMaching CheCK ErTOmS ..\ttt ettt ettt e e e et e e r e aenens 16-8
16.3.2 INternal Maching CRECK ErTOrS . . v\ttt et ettt ettt et e et et e e et et e et e e e e 16-9
16.3.3 =00 To) YA O] a Y] 1=T = o 16-9
164 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH CPUID DISPLAYFAMILY_DISPLAYMODEL

SIGNATURE 06_2DH, MACHINE ERROR CODES FOR MACHINE CHECK\ ottt 16-10

Vol. 3A Xiii

CONTENTS

16.4.1 INternal Maching CRECK ErTOrS . ..ottt ettt e e e et e e e et e e ee s 16-11
16.4.2 Intel QPI Maching CheCK ErTOmS ..o v ittt et et e e e e e e e e e e s 16-12
16.4.3 Integrated Memory Controller Maching Check BrmOrS. .. v vttt e e et i aaas 16-12
16.5 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY OFH MACHINE ERROR CODES FOR MACHINE CHECK .. 16-13
16.5.1 Model-Specific Machine Check Error Codes for Intel Xeon Processor MP 7100 Seriesvvvvvviiineniiniienanns 16-14
16.5.1.1 Processor Machine Check Status Register MCA Error Code Definition ... 16-15
16.5.2 Other_INfo Field (Al MCA EITOr TYPES) .« .ttt ettt e ettt ettt e e e e et e et et et e s 16-16
16.5.3 Processor Model Specific Error Code Field.o 16-17
16.5.3.1 O oo Y/ = VO TR !) 16-17
16.5.3.2 Processor Model Specific Error Code Field Type B: Bus and Interconnect Error...........cocovviiniiiennnns. 16-18
16.53.3 Processor Model Specific Error Code Field Type C: Cache Bus Controller Error.ovvvviiiiviniiinennnnn, 16-19
CHAPTER 17
DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
171 OVERVIEW OF DEBUG SUPPORT FACILITIES . . vttt e e e e e 17-1
17.2 DEBUG REGISTE RS . . ettt ittt ettt et et e e e et e et et e e e 17-2
17.2.1 Debug Address Registers (DRO-DR3).ttt 17-3
17.2.2 Debug Registers DR and DR it i i i e e 17-3
17.2.3 DEbUQg STatus REGISTEr (DRB) ...ttt ittt et e e e 17-4
17.24 Debug Control REGISTEr (DR7)ttt ettt et e et et ettt e 17-4
17.25 Breakpoint Field Recogniti@y ... 17-5
17.2.6 Debug Registers and INtel ™ B4 PrOCESSOIS v\ttt t ettt sttt ettt ettt e 17-6
17.3 DEBUG EXCEPTIONS oottt ettt et e e e e e e e e e et e e e e e 17-7
17.3.1 Debug Exception (HDB)—INterrupt VeCtor 1.t e 17-8
17.3.1.1 Instruction-Breakpoint EXception CONAitionvuvutti e e 17-8
17.3.1.2 Data Memory and I/0 Breakpoint Exception CONditionSoviriiii i 17-9
17313 General-Detect EXCeption CoNditionottt i et e e 17-9
17314 Single-Step EXCEPtioN CoNdition v 'ttt e e 17-10
17315 Task-Switch EXception CONAItioNu i e e 17-10
17.3.2 Breakpoint Exception (HBP)—INterrupt Vector 3.o e 17-10
17.4 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING OVERVIEW\ vvtiei i eeenes 17-10
17.4.1 N B2 1 O I Y 17-11
17.4.2 Monitoring Branches, EXceptions, and INtermUPTSottt i i e e e e 17-12
1743 Single-StepPing ON BranChes e 17-13
1744 BranNCh Trate MESSa0ES . . ottt ettt ettt ettt et et e e e e 17-13
17.44.1 Branch Trace Message VisiDilityououii i i i e e e e e 17-13
17.4.5 BranCh Trate STOME (BT S) + vttt ittt et et e e e e e e 17-13
17.4.6 CPL-Qualified Branch Trace MeChaniSm ... v vttt et e e e e e e ians 17-14
1747 Freezing LBR and Performance Counters On PMI ettt 17-14
1748 LI 2Y o 17-14
17.4.8.1 LBR Stack and INTEI® B4 PrOCESSOS. vve ettt ettt ettt et et e et et e ettt e et 17-15
17.48.2 LBR STaCK @Nd IA-32 PrOCES SO . . ettt ettt e e ettt e e e e et e e e e 17-16
17483 Last Exception Records and Intel 64 ArChiteCture vv i i e 17-16
17.4.9 BTS @GN0 DS SV AT . .ottt ettt ettt et e e e e e e e e 17-16
17.49.1 DS Save Area and IA-326 Mode Operationvuitt ittt it e e 17-18
17.4.9.2 SETHNG UP the DS SaVE AT 8 . . ittt ittt e e e e e e 17-20
17493 Setting Up the BTS BUTer e e 17-21
17.49.4 Setting Up CPL-QUAalified BT S. .. ittt ittt ettt e e e e 17-22
17.4.9.5 Writing the DS Interrupt Service Routine................. & i FEXITTIAE TN 17-22
17.5 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL™ CORE 2 DUO AND INTEL™ ATOM PROCESSOR
FAMILY) o ettt et e e e e e e 17-23
17.5.1 LBRStack® 17-23
17.6 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR PROCESSORS BASED ON INTEL™" MICROARCHITECTURE
CODE NAME NEHALEM . o ittt et e e e e et e e e e e e e e et e 17-24
17.6.1 L2 Y - o 17-25
176.2 FilteringofLastBranchRecords..@ 17-26
17.7 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR PROCESSORS BASED ON INTEL™" MICROARCHITECTURE
CODENAMESANDYBRIDGE...®. 17-26
17.8 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING FOR PROCESSORS BASED ON INTEL
MICROARCHITECTURE CODE NAME HASWELL .. .ottt ettt ettt s e e e e et 17-27
17.8.1 LBR Stack ENN@nCemMENT « .ottt ettt et ettt e e e FOCRLCITRERES 17-28
17.9 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PROCESSORS BASED ON INTEL NETBURST
MICRO AR CHITECTURE) . . . vttt ettt et e e et e e et e e et e et et e e a e 17-28
17.9.1 MS R DEBU G T LA MO R . . ittt ettt et et et e e e et e e et e e e 17-29

Xiv Vol. 3A

CONTENTS

PAGE

179.2 LBR Stack for Processors Based on Intel NetBurst® Microarchitecture. vv.oveeereeee e eieeieeen, 17-30
1793 LastExceptionRecords....................................@ T TEY @ P 17-31
17.10 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL™ CORE = SOLO AND INTEL™ CORE " DUO

PROCES SRS) .+ vttt ettt ettt et et e e e e e e e e e e e 17-31
17.11 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PENTIUMM PROCESSORS). ...t vv v iviei i 17-33
17.12 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (P6 FAMILY PROCESSORS)vvvvviivii e 17-34
17.12.1]S = O I Y S =T 3 =T 17-34
17122 Last Branch and Last EXCEPLION MSRSt e 17-35
17.12.3 Monitoring Branches, EXCeptions, and INtermUPTS . ..ottt i e e e e 17-35
17.13 TIME-STAMP COUNTER ..ottt ettt ettt et et e e et et e e et et e e et e e e et e e 17-36
17.13.1 101V 17-37
17.13.2 IA32_TSC_AUX Register and RDTSCP SUP PO T . ..ttt e e e e ettt et enes 17-37
17.13.3 Time-Stamp CoUNter A USTMIENT. ...ttt ettt e e e e e e 17-37
CHAPTER 18
PERFORMANCE MONITORING
18.1 PERFORMANCE MONITORING OVERVIEW . vttt et et aes 18-1
18.2 ARCHITECTURAL PERFORMANCE MONITORING ..\ttt ettt et et et et e e et e e aaas 18-2
18.2.1 Architectural Performance Monitoring Version T e 18-2
18.2.1.1 Architectural Performance Monitoring Version 1 Facilities 18-3
18.2.2 Additional Architectural Performance Monitoring EXteNSIONS.iu ittt et ie s 18-4
18.2.2.1 Architectural Performance Monitoring Version 2 Facilities ..ot e 18-5
18.2.2.2 Architectural Performance Monitoring Version 3 Facilities 18-7
18.2.2.3 Full-Width Writes to Performance Counter REgISTerSo.i ittt aeaeaes 18-9
1823 Pre-defined Architectural Perforn&gnce Evepts............... ITLIEy B 18-10
183 PERFORMANCE MONITORING (INTEL™ CORE = SOLO AND INTEL™ CORE ~ DUO PROCESSORS)vvvvvunns 18-11
184 PERFORMANCE MONITORING (PROCESSORS BASED ON INTEL™ CORE MICROARCHITECTURE)vvvvvvnvnnn 18-12
18.4.1 Fixed-function Performance CoUMTErS u ittt et e et eaes 18-13
18.4.2 Global Counter Control FaCilitieso .o ettt et e e e 18-14
184.3 At RETITEMENT BN .ottt ettt e et e e 18-16
184.4 Precise Event Based Sampling (PEBS). vviiiit i e 18-16
18.4.4.1 Setting Up the PEBS BUI el ...t e 18-17
18.4.4.2 PEBS RECOMA FOMmMIat. . .ottt ettt ettt e e e et e e e e e 18-17
184.4.3 Writing @ PEBS INterrupt ServiCe ROUTINE v ittt e 18-17
18444 Re-configuring PEBS Facilities........................ @ M * * % r e e e 18-18
18,5 PERFORMANCE MONITORING (PROCESSORS BASED ON INTEL OM MICROARCHITECTURE).......ovvvvvvvnnns 18-19
18.6 PERFORMANCE MONITORING FOR PROCESSORS BASED ON INTEL™" MICROARCHITECTURE CODE NAME NEHALEM.. 18-19
18.6.1 Enhancements of Performance Monitoring in the Processor Corevuiiiireiiiii i eiees 18-20
18.6.1.1 Precise Event Based Sampling (PEBS).ot e 18-20
18.6.1.2 Load Latency Performance Monitoring Facilityvvv oo 18-24
186.1.3 Off-core Response Performance Monitoring in the Processor Coreo.vvviiiiiiiiiiii i 18-26
18.6.2 Performance Monitoring Facility in the UNCOre i ettt ae s 18-27
18.6.2.1 Uncore Performance Monitoring Management Facilitycovvuiii i e 18-28
186.2.2 Uncore Performance Event Configuration Facilityo e 18-30
18.6.2.3 U%Sore Agrgress/Opcode MatCn MR . . e 18-31
18.6.3 Intel™ Xeon™ Processor 7500 Series Performance Monitoringacility ... 18-32
18.7 PERFORG%ANCE ONITORING FOR PROCESSORS BASED ON INTEL™" MICROARCHITECTURE CODE NAME WESTMERE 18-34
18.7.1 Intel™ Xeon™ Processor €7 Family Performance Monitoring F%Sility .. 18-34
18.8 PERFORMANCE MONITORING FOR PROCESSORS BASED ON INTEL™ MICROARCHITECTURE CODE NAME SANDY

BRIDGE ..\ttt ittt e e e e e e e e e e 18-35
18.8.1 Global Counter Control Facilities In Intel® Microarchitecture Code Name Sandy Bridge ...t 18-36
18.8.2 (000U =T 0o = =TS o =TTl 18-37
18.8.3 Full Width Writes to ngormance 00000 (= £ 18-37
1884 PEBS Support in Intel™ Microarchitecture Code Name Sandy Bridgecoiiiiiiiiii i e 18-38
18.8.4.1 PEBS RECOM FOMMIat. . ottt ettt et et et e e et e e e e e e e e 18-39
1884.2 Load Latency Performance Monitoring Facilityooeeinn 18-40
1884.3 PrECISE STOME FaCility ..\ o ottt i e e e e e 18-41
188.4.4 Precise Distribution of Instructions Retired (PDIR).vitrti e e 18-42
1885 Off-core Response Performance Monitoring @ e o e @ g 18-42
18.8.6 Uncore Performance Monitoring Facilities In Intel~ Core i7-2xxx, Intel™ Core i5-2xxx, Intel~ Core i3-2xxx

a0 Tol =S Yo Y= 1= 18-45

18.8.6.1 U&gore Peegormance MONITOMING BVENTS . ..ot e 18-47
18.8.7 Intel™— Xeon— Processor €5 Family Performance Monitoring Facility. ... 18-47
18.8.8 Intel® Xeon® Processor €5 Family Uncore Performance Monitoring Facility ..o, 18-48

Vol. 3A Xv

CONTENTS

189 3RD GENERATION INTEL®®CORE“1“§>ROCESSOR PERFORMANCE MONITORING FACILITY. ..o 18-48
1810 NEXT GENERATION INTEL™ CORE =~ PROCESSOR PERFORMANCE MONITORING FACILITY ..o 18-48
18.10.1 Precise Event Based Sampling (PEBS) FaCilityovurvriei e e 18-49
18.10.2 PEBS Data FOrmat . ..ottt ittt ettt e e e e e e e 18-50
18.10.3 PEBS Data Address Profiling.cv v 18-50
18.10.3.1 BVENTINGIP RECOTA . . it ittt e e e e 18-51
18.104 Off-core Response Performance I‘&gnitoring .. 18-52
18.10.5 Performance Monitoring and INtel TS K. ...t 18-52
18.10.5.1 Intel TSX and PEBS Support.............coooiiiiiinn, @ B e e e 18-53
18.10.6 Uncore Performance Monitoring Facilities in Next Generation Intel™ Care Processors............cc.ovvvvivninns 18-54
1811 PERFORMANCE MONITORING (PROCESSORS BASED ON INTEL NETBURST ™~ MICROARCHITECTURE) 18-55
18.11.1 ES R MO RS . vttt ettt e e e e e e e e 18-58
18.11.2 =T o T 1 = T (o I 0T =] 18-59
18113 L0003 1 3 18-60
18114 Debug STOre (DS) MECNaN S . . ettt et e et e et e e e e e e 18-62
18.11.5 Programming the Performance Counters for Non-Retirement EVeNtS.vviiii it ienieeaaas 18-62
18.11.5.1 SeleCting EVENTS 10 COUMT. ...ttt ittt ettt et ettt e e e e e e 18-62
18.11.5.2 I EMING BV NS, oo i i i et e e e e e e 18-64
18.11.5.3 STaArtiNg EVENT COUNTING. .. vttt et e e ettt e e e e e e 18-65
181154 Reading a Performance Counter's CoUNT ... vttt e e e as 18-65
18.11.55 HaltiNg EVENt COUNTING ..ottt e e et et e e et e 18-65
18.11.56 [0 T or= T Yo 00 10 (=T 18-66
18.11.5.7 EXTENDED CASCADING .. .ottt ettt et e et et e et e et et e e e 18-66
18.11.58 Generating an Interrupt on OVErflOW oo et e 18-67
18.11.5.9 Counter Usage GUIABIINEo ettt et e ettt e e e e e e e 18-68
18.11.6 At-RETITEMENT COUNMTING. « . vttt ettt e e e e s et e e e e et e 18-68
18.11.6.1 Using At-Retirement CoUNtiNg.o .ot i i i et e e e e 18-69
18.11.6.2 Tagging Mechanism for Front_ BN _BVENT.ot et e 18-69
18.11.6.3 Tagging Mechanism FOr EXECUTION _BVENTttt e e e 18-69
18.11.64 Tagging Mechanism for Replay_eVent ... i et e 18-70
18.11.7 Precise Event-Based Sampling (PEBS). v ittt ettt e e 18-70
18.11.7.1 Detection of the Availability of the PEBS FaCilities.ovvuini i e 18-71
18.11.7.2 SETHING UP the DS SaVE ATBa . . ottt ittt e e e et et et e et e 18-71
18.11.7.3 Setting Up the PEBS BUI @lttt e e et e e 18-71
18.11.7.4 Writing @ PEBS INTerrupt SErViCe ROUTINE ...\ i vttt e e e e eas 18-71
18.11.7.5 Other DS Mechanism ImPliCationS. e e it e e et i 18-71
18.11.8 Operating System IMPlCationS e et e 18-71
1812 PERFORMANCE MONITORING AND INTEL HYPER-THREADING TECHNOLOGY IN PROCESSORS BASED ON INTEL

NETBURST MICROARCHITECTURE . ..ttt ittt e et e e e e e e 18-72
18.12.1 S R MO RS . ittt ettt e e e e e e 18-72
18122 L0003 1 3 18-73
18123 IA32 _PEBS _ENABLE MR ..\ttt ittt et e e e 18-74
18124 Performance MonitomiNg EVENTSttt ettt e e e e e e 18-75
1813 COUNTING CLOCKS ..ttt ettt ettt et et e e et e e et et et et et et et e et et e e eens 18-76
18.13.1 [N Lo B = 1 0= O ol g <P 18-77
18.13.2 10 A L= o I o Tl g o o3 18-77
18.13.3 Incrementing the Time-StamP COUN Ottt e e e e e e 18-78
18134 Non-Halted Reference CIOCKTICKS v vttt ettt e e e et 18-78
18.13.5 Cycle Counting and Opportunistic Processor Operation.vuvr it irietr ittt ieianas 18-78
1814 PERFORMANCE MONITORING, BRANCH PROFILING AND SYSTEM EVENTS.o 18-78
1815 PERFORMANCE MONITORING AND DUAL-CORE TECHNOLOGY . ..ottt ettt et i ie e 18-79
1816 PERFORMANCE MONITORING ON 64-BIT INTEL XEON PROCESSOR MP WITH UP TO 8-MBYTE L3 CACHE............. 18-79
1817 PERFORMANCE MONITORING ON L3 AND CACHING BUS CONTROLLER SUB-SYSTEMSovviiiiiiiiieeeen 18-82
18.17.1 Overview of Performance Monitoring with L3/Caching Bus Controllercoviiiiiiiiiiiiiiiii e 18-84
18.17.2 (0 O Y= A (= o 18-85
18173 (O O 7T o =T = ol 18-86
1817.4 LY =B Y=Y o 0 =T = = 18-87
18.17.4.1 FSB SUD-EVENT Mask IMter ace. . . oo vttt e 18-87
18175 Common Event Control INTerfacec. vt e 18-88
1818 PERFORMANCE MONITORING (P6 FAMILY PROCESSOR) ...ttt tttttt ettt ittt e ettt aeaes 18-88
18.18.1 PerfEVESEl0 and PerfEUtSeIT MRS . ..ttt sttt e e e e e e e 18-89
18.18.2 PerfCtrO and PerfCtrT MSRS ...ttt et e e e e 18-90
18.18.3 Starting and Stopping the Performance-Monitoring CoUNtersovuiiiii i 18-90
18.184 Event and Time-Stamp Monitoring SOTIWare ov ittt e e e 18-90
18.18.5 MONItOrING COUNTEr OV IO . . vttt e e e e e e e e e 18-91

Xxvi Vol. 3A

CONTENTS

PAGE

18.19 PERFORMANCE MONITORING (PENTIUM PROCESSORS) . . vttt vttt et et et e e et et e et aee e 18-91
18.19.1 Control and Event Select Register (CESR) v e i e 18-92
18.19.2 Use of the Performance-Monitoring Pins.o.iu i e ettt et ee s 18-92
18.19.3 Y= £ 00 T =T P 18-93
CHAPTER 19
PERFORMANCE-MONITORING EVENTS
19.1 ARCHITECTURAL PERFORMANCE-MONITORING EVENTS............. @ B e e 19-1
19.2 PERFORMANCE MONITORING EVENTS FOR NEXT GENERATION INTEL = CORE, PROCESSORS....................... 19-2
19.3 PERFORMANCE MONITORING EVENTS FOR 3RD GENERATION INTEL ®CORE PROCESSORS . gy g 19-13
194 PERFORMANCE MONITORING EVENTS FOR 2ND GENERATION INTEL™ CORE 17-2XXX, INTEL™ CORE 15-2XXX,

INTEL™ CORE I13-2XXX PROCESSOR SERIES . .. OSITERE B ® @ 19-21
195 PERFORMANCE MONITORING EVENTS FOR INTEL™ CORE 17 PROCESSOR FAMILY AND INTEL™ XEON™ PROCESSOR

FAMILY oottt e e e e e e e e e 19-35
19.6 PERFORMANCE MONITORING EVENTS FOR PROCESSORS BASED ON INTEL® MICROARCHITECTURE CODE NAME

WESTMERE. ... ROTEITY (R T Tt @ e 19-64
19.7 PERFORMANCE MONITORING EVENTS FOR INTEL™" XEON™ PROCESSOR 5200, 5400 SERIES AND INTEL™ CORE 2

EXTREME PROCESSORS QX 9000 SERIES........ @ (B Lo L 19-96
19.8 PERFORMANCE MONITORING EVENTS FOR INTEL™ XEON™ PROCESSOR 3000, 3200, 5100, 5300 SERIES AND

INTEL™ CORE 2 DUO PROCESSORS............ RRTRRRRY R e 19-96
199 PERFORMANCE MONITORING EVENTS FOR INTEL® ATOM,, PROCESSORS... Bt 19-122
19.10 PERFORMANCE MONITORING EVENTS FOR INTEL™" CORE ~ SOLO AND INTEL™ CORE ~ DUO PROCESSORS....... 19-136
19.11 PENTIUM® 4 AND INTEL® XEON® PROCESSOR PERFORMANCE-MONITORING EVENTS ..o 19-141
19.12 PERFORMANCE MONITORING EVENTS FOR INTEL™ PENTIUM™ MPROCESSORScvviiiiiiiieiiiiininns 19-170
19.13 P6 FAMILY PROCESSOR PERFORMANCE-MONITORING EVENTS ..ottt 19-172
19.14 PENTIUM PROCESSOR PERFORMANCE-MONITORING EVENTS ..ottt et 19-181
CHAPTER 20
8086 EMULATION
20.1 REAL-ADDRESS MODE . . .ottt ittt et ettt e e et e et et et e e e e 20-1
20.1.1 Address Translation in Real-Address MOGE. vttt 20-2
20.1.2 Registers Supported in Real-Address MOGEovii i i e e e e 20-3
20.1.3 Instructions Supported in Real-Address MOGev it e e e e 20-3
20.14 Interrupt and EXception Handling. ov it e e 20-4
20.2 VIRTUAL-BO8E MODE. . . .ottt ettt ettt et et et et e et et et et e e e e e et aas 20-5
20.2.1 ENabling VIrtUal-B086 MOo\ttt ittt et e e 20-6
20.2.2 Structure of @ VIrtual-8086 Task.vuii et 20-7
20.2.3 Paging of Virtual-8086 Tasksuiii ittt ettt e et e e et s 20-7
20.2.4 Protection within @ VIrtual-8086 Task. v.vitiirit ettt e e 20-8
20.2.5 ENtering Virtual-8086 MOttt e e e 20-8
20.2.6 Leaving VirtUal-B080 MOot e et e e 20-9
20.2.7 Y= AR LAY [3 0 ox o 20-10
20.2.8 VirtUal-8086 MOAE /0. . .ottt e e e e 20-10
20.2.8.1 /0-POrt-MapPed /0 . ..ottt e e 20-11
20.2.8.2 MEmMOrY-MapPPea /0 . .ottt e e e e e 20-11
20.28.3 SPECIAl /O BUI S, ottt e e e 20-11
20.3 INTERRUPT AND EXCEPTION HANDLING IN VIRTUAL-8086 MODE.ottt ettt ine e 20-11
20.3.1 Class 1—Hardware Interrupt and Exception Handling in Virtual-8086 Mode.ccoviviii it 20-12
20.3.1.1 Handling an Interrupt or Exception Through a Protected-Mode Trap or InterruptGate..............covvvnnnn 20-12
20.3.1.2 Handling an Interrupt or Exception With an 8086 Program Interrupt or ExceptionHandler 20-14
203.1.3 Handling an Interrupt or Exception Through @ Task Gateoviviiiiii i 20-14
20.3.2 Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt Mechanism..... 20-15
2033 Class 3—Software Interrupt Handling in Virtual-8086 Modecc.iriiiiii et aeaas 20-16
20.3.3.1 Method 1: Software Interrupt Handlingoo e e e e 20-18
2033.2 Methods 2 and 3: Software Interrupt Handling. ... 20-18
20333 Method 4: Software Interrupt Handlingo oo e 20-19
20334 Method 5: Software Interrupt Handlingo.oo i e e 20-19
20335 Method 6: Software Interrupt Handlingovr e e 20-19
204 PROTECTED-MODE VIRTUAL INTERRUP TS .ottt ettt et ettt e et e e e ey 20-20

Vol. 3A Xvii

CONTENTS

PAGE
CHAPTER 21
MIXING 16-BIT AND 32-BIT CODE
21.1 DEFINING 16-BIT AND 32-BIT PROGRAM MODULESttt ettt e et es 21-1
21.2 MIXING 16-BIT AND 32-BIT OPERATIONS WITHIN A CODE SEGMENT ...ttt 21-2
213 SHARING DATA AMONG MIXED-SIZE CODE SEGMENT S . .ttt e 21-3
21.4 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE SEGMENTS. ..ottt 21-3
21.4.1 C0dE-SEOMENT POINM O SIZ8 . .\ttt e 21-4
214.2 Stack Management for Control TranS e .. . vt e e e 21-4
214.2.1 Controlling the Operand-Size Attribute Fora Callt e e i ens 21-5
21422 Passing Parameters With @ Gate.o.vu i e e e e 21-6
2143 a = 0o o o I = 3 =) T 21-6
2144 Parameter TranSIationot e e e 21-6
2145 {70 LT o =T = Yol I o Yol =T [N = 21-6
CHAPTER 22
ARCHITECTURE COMPATIBILITY
22.1 PROCESSOR FAMILIES AND CATEGORIES . . .ottt ittt ettt ettt e e e e e e 22-1
22.2 RESE RV ED BITS ittt ettt et e e e e e e e 22-1
22.3 ENABLING NEW FUNCTIONS AND MODES . ..\ttt et e e e e e e e e e e et es 22-2
224 DETECTING THE PRESENCE OF NEW FEATURES THROUGH SOFTWARE ...\ uit ittt 22-2
22.5 INTEL MMX TECHNOLOGY & . ittt ettt ettt et et e e e e e e e et e e e et et et e et eeee s 22-2
22.6 STREAMING SIMD EXTENSIONS (SSE) ..ottt ettt e e e e e 22-3
22.7 STREAMING SIMD EXTENSIONS 2 (SSE2) ..ttt ittt ittt et et e e e e 22-3
22.8 STREAMING SIMD EXTENSIONS 3 (SSE3) .ttt ittt ettt ettt e et e s 22-3
22.9 ADDITIONAL STREAMING SIMD EXTENSIONS . . .ottt e e e e s 22-3
22.10 INTEL HYPER-THREADING TECHNOLOGY . ..ottt ittt et ettt et e ettt e e et e e et e e e 22-3
2211 MULTI-CORE TECHNOLOGY & v ittt et ettt et et e e et e e e et e e et e e et et e e et 22-4
22.12 SPECIFIC FEATURES OF DUAL-CORE PROCESSOR ...ttt ittt ettt e e et et e e et e e 22-4
22.13 NEW INSTRUCTIONS IN THE PENTIUM AND LATER IA-32 PROCESSORS . ..\ ottt ittt 22-4
22.13.1 Instructions Added Prior 1o the Pentium ProCeSSOr v it e 22-4
2214 OBSOLETE INSTRUCTIONS ...ttt ittt et ettt et e e e et et e et et e et et e e a e 22-5
22.15 UNDEFINED OPCODES. . .\ ittt ettt ettt et et e et et e et e e e e et e et et e e 22-5
2216 NEW FLAGS IN THE EFLAGS REGISTER . .\ttt ittt ettt e e et e e e e e 22-5
22.16.1 Using EFLAGS Flags to Distinguish Between 32-Bit IA-32 PrOCESSOrS. .. v vttt ittt ineniaaans 22-6
2217 STACK OPERATIONS . . .ottt t ettt ettt e et et e e et e e e e et e e et et e 22-6
22.17.1 PUSH S .o e e e e e e e e 22-6
22.17.2 EFLAGS Pushed 0N the STacKo e 22-6
22,18 XB7 FPU ittt e e e e 22-6
22.18.1 Control Re@IiSTEr CRO FlagS . . ot ittt ittt e et e e et ettt e s 22-7
22.18.2 XB7 FPU Status WOrd . . .ottt ettt et e e et e e e e 22-7
22.18.2.1 Condition Code FIags (CO through C3) ou it 22-7
22.18.2.2 SHACK AU Flag ..ottt i e e e e e 22-8
22.18.3 XB87 FPU CoNTrol WOm . . .ttt et e e e e e e et et e 22-8
22.184 XB7 FPU Tag WO, oot et ottt ettt e et et e e e 22-8
22.18.5 D=1 = I/ =TS 22-8
22.18.5.1 NEN S, L ettt e e e e e e e e 22-8
22.185.2 Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal FOrmats..........vvviiiii i 22-9
22.18.6 Floating-PoiNt EXCEPIIONS . . o ottt ittt it e e 22-9
22.18.6.1 Denormal Operand EXCEPLION (HD)o vttt e e s 22-9
22.186.2 Numeric Overflow EXCEPLION (HO) ov ittt e e e 22-9
22.186.3 Numeric Underflow EXCEPTION (HU)vu it e e 22-10
22.186.4 (=T o o T T =Tl =T =T =P 22-10
22.186.5 CS aNd EIP FOr FPU EXCEPTIONSottt ettt et e et et e et e ettt e e e et 22-10
22.18.6.6 o U = T Y [0 = 22-10
22.18.6.7 Assertion of the FERRHE Pino 22-10
22.186.8 Invalid Operation EXception On DeNOMASot e ettt e en e 22-11
22.186.9 Alignment Check EXCEPTIONS (HAC) ... v ettt et e e e et 22-11
22.186.10 Segment Not Present Exception DUring FLDENVt e e s 22-11
22.186.11 Device Not Available Exception (HNM)o e 22-11
22.186.12 Coprocessor Segment OVerTUN EXCEP IOttt it e et ettt aeas 22-11
22.186.13 General Protection EXCePioN (HGP) ... vttt 22-11
22.186.14 Floating-Point Error EXCeption (HMF)o e 22-11
22.18.7 Changes 10 Floating-Point INStrUCTIONSt e it e i 22-12

Xxviii Vol. 3A

CONTENTS

PAGE
22.18.7.1 FDIV, FPREM, and FSQRT INSTIUCTIONS ..\ttt vttt ettt et et et e et et ee s 22-12
22.18.7.2 LY O VI [y 1 oo P 22-12
22.18.7.3 o = T Ty« oo P 22-12
22.187.4 FPREM INS UG ON. L ettt ettt e e e et e e e e e e e 22-12
22.18.7.5 FUCOM, FUCOMP, and FUCOMPP INSTIUCTIONS .+ .\ttt sttt et e e et ie e st e e e e e e e ea s 22-12
22.18.7.6 2 AV Ty T o 22-12
22.18.7.7 R) [0 0 7= 1 P 22-12
22.18.7.8 FSIN, FCOS, and FSINCOS INSTTUCTIONS .\ttt vt ettt et ettt e et et e et e et et ea s 22-13
22.18.79 FP AT AN IS UG ON © vttt ettt ettt et e e et e e e et e e et e e 22-13
22.18.7.10 oy I T T« ot T P 22-13
22.18.7.11 I Ty o oo 22-13
22.18.7.12 FX T RACT NS UCTION &« . vttt ettt et et e ettt et et e e et e e et e et e e 22-13
22.18.7.13 L0ad CoNSTaNt INSITUCTIONS. « . ottt ettt et ettt ettt et e et e e 22-13
22.18.7.14 (oY = I I T ot T 22-14
22.18.7.15 FXAM NS UG ON . . ettt ettt e e e e e e e e 22-14
22.18.7.16 FSAVE and FSTENV INSTIUCTIONS ..\t v sttt sttt et et e et et e e et et et et et e e 22-14
22.18.8 Transcendental INSTTUCTIONS.ttt e e et e et et 22-14
22.189 (0] 050 (= (=30 3 1 ot 3 P 22-14
221810 WAIT/FWAIT PrefiX DifferenCes . . oo vttt e e e e e e e e e 22-14
22.18.11 Operands Split ACross SEgMENTS ANA/Or PageS v vttt e 22-14
221812 FPU INStruction SYNCRmOnIiZation.ot e e et et e e e 22-15
22.19 SERIAUZING INSTRUCTIONS ..ottt ettt e e et e e et e e ettt et e e et e n e e 22-15
2220 FPU AN%MATH COPROCESSOR INITIALIZATION. . . ettt et e e e e eens 22-15
22.20.1 Intel™ 387 and Intel ™~ 287 Math Coprocessor Initialization. ... e e 22-15
22.20.2 Intel486 SX Processor and Intel 487 SX Math Coprocessor Initialization. ..., 22-15
22.21 CONTROL REGISTERSttt ittt e et e e e e et e e et e e et e et et e s 22-16
22.22 MEMORY MANAGEMENT FACILITIES ..ottt ittt et e s e e e et e e e e e e 22-18
22.22.1 New Memory Management CoNtrol FIagsovveiiiii i e et eas 22-18
22.22.1.1 Physical Memory Addressing EXTENSION.ttt e 22-18
22.22.1.2 L0100 = =T =T 22-18
22.22.1.3 I =Tl o T TSI 1 22-18
22.22.2 CD and NW Cache Control FIags vvivititt et e e e e e e 22-18
22.22.3 Descriptor TYPEs and ConMENES. . ..ottt i et et e e e e e 22-18
22224 Changes in Segment DesCriPTor LOadSttt et et e e 22-19
22.23 DEBUG FACILITIES . . oottt ettt e e e e e et e e e et e e e et e e et n e e 22-19
22.23.1 Differences in DEDUG REGISTEr DRttt i e e e e e et 22-19
22.23.2 Differences in DEDUG REGISTEI DR 7t ittt e e e e e e e e 22-19
22.23.3 Debug Registers DRA and DRttt e e e e 22-19
22.24 RECOGNITION OF BREAKPOINTS L.ttt ittt et e et e e e et e et e e et et e e e e e e s 22-19
22.25 EXCEPTIONS AND/OR EXCEPTION CONDITIONS ..\ttt ettt et et ees 22-20
22.25.1 Machine-Check ArCRITEC UNE. o .ttt e e e et 22-21
22.25.2 T T Vo) S Car=Y) o 0 22-21
22.25.3 Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers..........cccovvviviiiiiinnnnnnnnn. 22-21
22,26 INTERRUP TS L.ttt et ettt et e e e et e e e e e e 22-26
22.26.1 INterrUpt Propagation Delay.ot i e e e e 22-26
22.26.2 NV 1 =T o a1 3 22-26
22.26.3 08 3 22-26
22.27 ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC) .ttt ettt aeaas 22-26
22.27.1 Software Visible Differences Between the Local APIC and the 82489DXo vivii i 22-27
22.27.2 New Features Incorporated in the Local APIC for the P6 Family and Pentium Processors.............covvvvvunen. 22-27
22.27.3 New Features Incorporated in the Local APIC of the Pentium 4 and Intel Xeon Processors.............cccovven... 22-27
22.28 TASK SWITCHING AND T S, .ottt ettt ettt ettt e et e e e et e e e et et e et eens 22-27
22.28.1 P6 Family and Pentium ProCessor TS . ..ttt ittt e e e 22-28
22.28.2 LIS =1 L= Ton (o 3 T 22-28
22.28.3 Order 0f Reads/Writes 10 the TS ..ottt e e e 22-28
22.284 Using A 16-Bit TSS With 32-Bit CONStrUCTS. ...\ttt e ens 22-28
22.285 Differences in 1/0 Map Base AQAreSSeS v vttt ettt ettt e et ettt et e et et e 22-28
22.29 CACHE MANAGEMENT Lottt ittt et ettt e e et et e e e et e e et et et et et 22-29
22.29.1 Self-Modifying Code with Cache ENabled.ve i e s 22-29
22.29.2 DiSabliNng The L3 Cathe. . . oottt e e e e 22-30
22.30 PAGING .ottt e e e e e e e 22-30
22.30.1 LM PagES. o ittt e e e 22-30
22.30.2 OB 3T T =T P 22-30
22.30.3 Enabling and Disabling Pagingoviii i i e e 22-31
2231 STACK OPERATIONS . . ettt sttt et e et et e e e et e e e et e e et et et et a e 22-31

Vol. 3A Xix

CONTENTS

22.31.1 SelECTOr PUSNES @GN0 POPS . . . ottt e e e e 22-31
2231.2 ErTOT CO0E PUSRIES . . oottt e e e e et e e e e e e 22-31
22313 Fault Handling Effects on the Stack. i e e ettt 22-32
22314 Interlevel RET/IRET From a 16-Bit Interrupt or Call Gateoviriiie it it eeeaas 22-32
2232 MIXING 16- AND 32-BIT SEGMENT S ...ttt ittt e e e e e e e 22-32
2233 SEGMENT AND ADDRESS WRAPAROUNDt ttt ettt ettt e e et e e e et e e et et eaes 22-32
22.33.1 RT3 L= =T o= oo 1T 22-33
2234 STORE BUFFERS AND MEMORY ORDERING ...t ttttett ettt e ettt e et eaes 22-33
22.35 BUS LOCKING ..ttt e ettt et et et e e et et e e et e e e e et e e et e e e e 22-34
22.36 BUS HOLD ..ttt sttt et et e e et et e et e e e e e e e e e 22-34
2237 MODEL-SPECIFIC EXTENSIONS TO THE A-32 .ottt ettt e e e 22-34
22.37.1 MOdEl-SPECITIC REGISTEIS . .\ttt ittt et ettt e et e 22-35
22.37.2 RDMSR and WRMSR INSTTUCTIONS. . . o vttt ettt ettt et e e et et e et e e et et e et e s 22-35
22.37.3 MemOry TYPE RaANGE REGIS OIS .. .ttt ittt e e e e e e e e 22-35
22374 Machine-Check Exception and ArChiteCtUNE.ot e et i e e 22-35
22.37.5 Performance-MoNitOriNg COUMT OISo\ttt ettt ettt ettt e e ettt e e e e et aenenanas 22-36
2238 TWO WAYS TO RUN INTEL 286 PROCESSOR TASKS ...ttt et e 22-36
CHAPTER 23

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS

23.1 OV RV B ottt e e e et e e e e e e 23-1
23.2 VIRTUAL MACHINE ARCHITECTUREottt ettt et et et e et et e e e e et en s 23-1
233 INTRODUCTION TO VMX OPERATION .. vttt ittt ettt et e et e e e e et e e e e e e 23-1
234 LIFE CYCLE OF VMM SOF T W AR E . . ittt ettt e e e e e e e e et e e e e 23-2
235 VIRTUAL-MACHINE CONTROL STRUCTUREttt ettt et et e et et e n s 23-2
23.6 DISCOVERING SUPPORT FOR VMX .. ittt ittt et e e e e et e e e e e e e e e e 23-2
23.7 ENABLING AND ENTERING VMX OPERATION ..ottt t ettt ettt et e e e e e es 23-3
238 RESTRICTIONS ON VMX OPERATION . . . ettt ettt et ettt e e et e e et et es 23-3
CHAPTER 24

VIRTUAL-MACHINE CONTROL STRUCTURES

24.1 OV RV B ottt et e et et e e e e e e 24-1
24.2 FORMAT OF THE VMUES REGION. . . vttt et ettt e e e et e e e e e e e et e et et et e es 24-2
24.3 ORGANIZATION OF VMCS DA T A ittt et e et e e e e e e et e et et es 24-3
24.4 GUES T - ST AT E ARE A Lottt ittt e e e e e e e e e e et e e e 24-3
24.4.1 GUEST REGISTET STATB. . o\ttt ittt et et e e ettt e e e e e e 24-3
24.4.2 GUEST NON-R IS BT S AT . .. ot vttt vttt e e e e e e e e e e 24-5
24.5 HO ST oS T AT E AR A oottt ittt et e e e e et e e e e e e e e 24-7
24.6 VM-EXECUTION CONTROL FIELDS . . .ottt ettt et et et e e e e et et e e et e e e e e e 24-8
24.6.1 Pin-Based VM-EXeCUtioN CONTIOIS. v .ttt ettt et e et ettt et e 24-8
246.2 Processor-Based VM-EXeCUION CONTrOlS v vttt ettt ettt et ienaes 24-8
24.6.3 EXCEPTION BItmMaD . . ottt ittt e e e e e 24-10
2464 740 B> =T AV [0 =TS = PP 24-11
24.6.5 Time-Stamp CoUNTEr OffSBt . ..oitt eeeeetetetee ttt ee 24-11
24.6.6 Guest/Host Masks and Read Shadows for CRO AN CRA v ettt et 24-11
24.6.7 81 T I o= A 1 0] P 24-11
246.8 Controls fOr APIC VirtUaliZzation. vttt e et e e e et e e e 24-11
24.6.9 MR- BITMAD AQAIESS. . . v ettt ettt ittt ettt e e et et e e e e e e 24-13
24.6.10 EXECUTIVE-VMES P oI T .« vttt ettt et ettt et et et et e e e e 24-13
24.6.11 Extended-Page-Table PoInter (EPTP) vt et 24-13
24.6.12 Virtual-Processor Identifier (VPID)ttt e e e e e e e 24-14
246.13 Controls for PAUSE-LOOD EXITING ... vvtttit it ettt et e e e e e e 24-14
246.14 RV B 7Tt o o N)1 o 24-14
24.7 VM-EXIT CONTROL FIELDS . . .ottt ettt ettt et e et et e e e et e e et e e e e e e 24-14
24.7.1 RV B o3 A e 0 1 o] 24-15
24.7.2 VM-EXIt CONTrOlS TOr MRS ..ottt e e e e e e e e e e e 24-15
24.8 VM-ENTRY CONTROL FIELDS . . .ttt ettt ettt e e et et e e et e e e et e e e et e e 24-16
24.8.1 QY B Y O 0 o 24-16
24.8.2 VM-ENtry CoNtrols TOr MSRS. . ..o e e e 24-17
2483 VM-Entry Controls for EVent INjECtiON.ot ettt e e et e 24-17
24.9 VM-EXIT INFORMATION FIELDS. . .ottt ettt et et et ettt a e 24-18
24.9.1 Basic VM-EXIt INfOrmation. ..ot e 24-18

XX Vol. 3A

CONTENTS

PAGE

24.9.2 Information for VM Exits DUe 10 Vertored EVeNTS v ittt ettt 24-19
2493 Information for VM Exits That Occur During Event Deliveryovuiiiiii e 24-20
2494 Information for VM Exits Due 10 INStruction EXECUTION.\ v vt ittt 24-21
24.9.5 VM-INSTIUCHION BITOr FIEIA. . oottt e e e e e e e e e e e et et 24-21
2410 SOFTWARE USE OF THE VMCS AND RELATED STRUCTURES . ..ottt ittt e et 24-21
24.10.1 Software Use of Virtual-Machine Control StrUCTUNES. . ..o v vttt e e 24-21
24.10.2 VMREAD, VMWRITE, and ENcodings 0f VMCS Fieldso vvve ittt 24-22
24.10.3 INtIAliZING @ VMO e e e e e e e e 24-24
24.104 Software ACCESS 10 REIGTEA STTUCTUMES . ..ttt et et es 24-24
24.10.5 LY AV (=T o 24-24
CHAPTER 25

VMX NON-ROOT OPERATION

25.1 INSTRUCTIONS THAT CAUSE VM EXI TS . ottt ittt ettt e e e e e e e 25-1
25.1.1 Relative Priority of Faults and VM EXitS.ot e e s 25-1
25.1.2 Instructions That Cause VM Exits Unconditionallyouiriiiii i e 25-2
25.1.3 Instructions That Cause VM Exits Conditionally.ovuie i e 25-2
25.2 OTHER CAUSES OF VM EXITS ottt ittt e e e e e e e e e e e e e a s 25-4
253 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-ROOT OPERATIONottt 25-6
254 OTHER CHANGES IN VMX NON-ROOT OPERATION. .. ittt ittt et 25-9
25.4.1 BVENT BlOCKING ..ottt i e e e e 25-9
25.4.2 Treatment Of Task SWItCRES e e e 25-9
25.5 FEATURES SPECIFIC TO VMX NON-ROOT OPERATION ..\ttt ittt ettt e e et 25-10
25.5.1 RV D === 1T T T I 2T 25-10
255.2 [To T T (o T I =T o = T 25-11
2553 Translation of Guest-Physical Addresses USing EPT ... e 25-12
2554 L (O T (][4 1o P 25-12
25.5.5 RV 1 oo 0 25-12
25.5.5.1 EN@DIING VM FUNCHIONS. . . .ttt e e e e e e e e 25-12
25.55.2 General Operation of the VMFUNC INSTrUCTIONttt ettt a e e 25-12
25553 EP TP SWITCRING et e e e e 25-13
25.6 UNRES TRICTED GUES TS &t ittt ettt et e e et et et e e e et e e et et e e e et ey 25-14
CHAPTER 26

VM ENTRIES

26.1 BASIC VM-ENTRY CHECK S, . ittt ettt et et et e e ettt e et et et e e e 26-2
26.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREAottt ettt 26-2
26.2.1 Checks ON VMX CONTTOIS . ..ottt e e et e e et 26-2
26.2.1.1 VM-EXecUtion CONTrol FIEldS . ..ottt e e e e e e e e e e 26-2
26.2.1.2 VM-EXIt CONTrOl FIElAS . . oe ettt e 26-4
26.2.1.3 VM-ENtrY Control FIElaS. . oot i e i et e 26-5
26.2.2 Checks on Host Control Registers and MSRSiuititi i et e e 26-6
26.2.3 Checks on Host Segment and Descriptor-Table Registers vt e 26-6
26.24 Checks Related 10 AdAress-SPate Size. . ..ttt i i e et e e e e s 26-7
26.3 CHECKING AND LOADING GUEST STATE ittt ettt ettt e e et 26-7
26.3.1 Checks 0N the GUEST STatE ATBa. . .ttt ettt ettt e e e e e e e et et et 26-7
26.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRS. ...t e 26-7
26.3.1.2 Checks 0N GUEST SEOMENT REGISTEIS. . ..\ttt ettt ettt et e e ettt et a i eanns 26-8
26.3.1.3 Checks on Guest Descriptor-Table REGISTErS .. v vttt e 26-11
263.1.4 Checks on GUEST RIP @and RFLAGSttt e et e anees 26-11
26.3.1.5 Checks 0N GUEST NON-REGISTEI STate ...\ v 'ttt ettt e e e e e e 26-11
26.3.1.6 Checks on Guest Page-Directory-Pointer-Table ENtriesovvuiiii e e 26-13
26.3.2 L0adiNg GUEST STat . .ottt i i i e e e e 26-13
26.3.2.1 Loading Guest Control Registers, Debug Registers, and MSRScoviiiiiiiii i e 26-14
26.3.2.2 Loading Guest Segment Registers and Descriptor-Table Registersov i 26-15
26.3.2.3 Loading GUEST RIP, RSP, and RELAGS ottt it 26-15
26.3.24 Loading Page-Directory-Pointer-Table ENtries.ov it 26-16
26.3.2.5 Updating NON-REGISTEr STat. ..o\ttt e e e e 26-16
26.3.3 Clearing Address-Range MONITOMING.o vttt ettt ettt e et es 26-16
26.4 LOADING MRS . .ttt ettt et et e e e e e e e e e e 26-16
26.5 BV ENT INJECTION. ettt sttt et et e e et et et e et et e e et et et e e e et e e et e e 26-17
26.5.1 VeCtored-EVent INJECHION.t e e 26-17

Vol. 3A XxXi

CONTENTS

26.5.1.1 Details of Vectored-Event INjeCtion.o e e e e 26-17
26.5.1.2 VM EXits DUMNG BVENT INJECHIONttt e e 26-19
26.5.1.3 Event Injection for VM Entries to Real-Address Modeoviiiii i e 26-19
26.5.2 Injection of Pending MTF VM EXitS. ... ov ittt e ettt et 26-20
26.6 SPECIAL FEATURES OF VM ENTRY ..ttt ittt it e e e e e e e e e e 26-20
26.6.1 a0 oY) = (= 26-20
26.6.2 Y 11771 YA = (S 26-21
26.6.3 Delivery of Pending Debug Exceptions after VM ENtryo vi i 26-21
26.6.4 RV = == 4T 0 T 3 T I 2T 26-22
26.6.5 Interrupt-Window Exiting and Virtual-Interrupt DeliVEryooiiiii i e 26-22
26.6.6 NMI IO EXITING v ottt e e e e e e e e e e e e e 26-22
26.6.7 VM Exits Induced by the TPR Threshold.o e e e e e 26-23
26.6.8 PENAING M VM EXITS .\ ottt ittt ittt st e ettt e e e ettt et e e e 26-23
26.6.9 VM Entries and Advanced Debugging FEatUMES v vttt e e 26-23
26.7 VM-ENTRY FAILURES DURING OR AFTER LOADING GUEST STATE ..ottt ettt e 26-24
26.8 MACHINE-CHECK EVENTS DURING VM ENTRY ...ttt ettt et e e e et e s 26-25
CHAPTER 27

VM EXITS

27.1 ARCHITECTURAL STATE BEFORE A VM EXIT ottt ittt et e e e 27-1
27.2 RECORDING VM-EXIT INFORMATION AND UPDATING VM-ENTRY CONTROL FIELDSot 27-3
27.2.1 Basic VM-EXIt INfOrmation.o e 27-4
27.2.2 Information for VM Exits DUe 10 Vectored EVENTS ... uut it 27-10
27.2.3 Information for VM Exits During EVent DeliVeryouiuiiiiii i i e 27-11
27.24 Information for VM Exits Due 10 INStruction EXECULION. . ..o\ ettt 27-12
27.3 SAVING GUEST ST AT E oottt ittt ettt e e e e e e e e e e e e e e 27-20
27.3.1 Saving Control Registers, Debug Registers, and MSRS.ot e e e i e 27-20
27.3.2 Saving Segment Registers and Descriptor-Table RegiSTersvvi i e 27-21
2733 SaVING RIP, RSP, @nd RELAGS . . o ottt ettt ettt e e e e et e e e 27-21
2734 SaVING NON-REGISTEr S AT ..ottt i e it e e 27-23
27.4 SAVING MO RS i e e e e 27-24
27.5 LOADING HOST ST AT E ittt ittt ettt e e e e e e e e e e e e et e e e e e e 27-24
27.5.1 Loading Host Control Registers, Debug Registers, MSRSo et e 27-25
27.5.2 Loading Host Segment and Descriptor-Table REGISTErSvuit ittt et 27-26
2753 Loading HOSt RIP, RSP, @Nd RFLAGS.ottt et 27-27
2754 Checking and Loading Host Page-Directory-Pointer-Table Entries ...t e 27-27
27.5.5 Updating NON-ReGISTEr STatE . . vttt ittt et e e e e 27-28
2756 Clearing Address-Range MONItOMiNG. vttt ettt ettt 27-28
27.6 LOADING MRS . ittt ittt e e e e e e e e 27-28
27.7 LT 2 20 27-29
27.8 MACHINE-CHECK EVENTS DURING VM EXIT oottt ettt et e 27-29
CHAPTER 28

VMX SUPPORT FOR ADDRESS TRANSLATION

28.1 VIRTUAL PROCESSOR IDENTIFIERS (VPIDS) ..ttt tt et ettt et e e et et e e et e e et e en s 28-1
28.2 THE EXTENDED PAGE TABLE MECHANISM (EPT). . ettt e e e 28-1
28.2.1 o I 0= Y1 28-1
28.2.2 EPT Translation MeChanismttt et e e e e e e e 28-3
28.2.3 [I T N =T T £ 28-7
28.2.3.1 EPT MiSCONTIQUIATIONS .. .ottt et ettt et ettt e e e e e 28-8
28.2.3.2 o I Y10 = L 28-9
28233 Prioritization of EPT-INAUCEd VM EXITS\ vvrie i 28-9
28.24 Accessed and Dirty FIags for BP T i e e e e 28-10
28.2.5 [=T e =T o Vo TV LY/ T P 28-11
28.2.5.1 Memory Type Used for Accessing EPT Paging StruCTUNESo v it 28-11
28.25.2 Memory Type Used for Translated Guest-Physical Addressesvvvviiiiiiii i 28-11
283 CACHING TRANSLATION INFORMATION . . .ttt ettt et e e st e e e e et e e a e 28-12
28.3.1 Information That May Be Cached oo e e e e e e 28-12
28.3.2 Creating and Using Cached Translation INformation.ouiui i e 28-13
28.3.3 Invalidating Cached Translation INformation.o e e e 28-14
28.3.3.1 Operations that Invalidate Cached MapPingsovvit it e 28-14
28332 Operations that Need Not Invalidate Cached Mappings. v v vvei i 28-15

XXxii Vol. 3A

CONTENTS

PAGE
28.3.3.3 Guidelines for Use of the INVVPID INSTrUCTiON.o ittt e e et 28-16
28334 Guidelines for Use of the INVEPT INSTrUCTION. . ..o vttt e e e e 28-17
CHAPTER 29
APIC VIRTUALIZATION AND VIRTUAL INTERRUPTS
29.1 R TU AL AP ST AT E ettt ettt e e e e et e e e et e e e e e e et et e 29-1
29.1.1 VirtUAIZEA AP C REGISTEIS v it ittt ittt ettt e e e e et et e e e 29-1
29.1.2 TP R VITTUAI Zat 0N . ettt e e e 29-2
29.1.3 PP R VIMtUAl ZatiOn . .o e e e e 29-2
29.14 [0 IR T (0T[4 11 (o 29-3
29.1.5 Sl P VIrtUAlIZatiON .« .. oot e e e e 29-3
29.2 EVALUATION AND DELIVERY OF VIRTUAL INTERRUP TS ...\ttt ettt e aees 29-3
29.2.1 Evaluation of Pending Virtual INtermUDTS .. .o v ettt e 29-3
29.2.2 VirtUal-INTErTUPT DElIVEIY . . ottt e e e e e 29-4
29.3 VIRTUALIZING CR8-BASED TPR ACCESSES . . .ottt t ittt ittt ettt ety 29-4
29.4 VIRTUALIZING MEMORY-MAPPED APIC ACCESSESottt 29-5
29.4.1 Priority OF APIC-ACCESS VM EXITS . . v ittt e e e 29-6
29.4.2 Virtualizing Reads from the APIC-ACCESS Pageottt ettt 29-6
294.3 Virtualizing Writes t0 the APIC-ACCESS Page. .. v vttt e e e 29-7
29.4.3.1 Determining Whether a Write Accessis Virtualized.o e 29-7
29.4.3.2 AP LWt EMUIGTION . . .ttt it e e e 29-8
29433 APIC-TIEE VM EXIES oottt ittt et et e et et e et et e e 29-9
294.4 Instruction-Specific CoNSIAEIAtiONS o\ e e e e 29-9
29.4.5 Issues Pertaining to Page Size and TLB Management.ottt ettt e s 29-10
294.6 APIC Accesses Not Directly Resulting From Linear AddreSSES vvvv vt ittt it eiaaas 29-10
29.46.1 Guest-Physical Accesses 10 the APIC-ACCESS Page.ot ittt 29-11
29.4.6.2 Physical Accesses 10 the APIC-ACCESS Page v ittt i e e e i 29-11
29.5 VIRTUALIZING MSR-BASED APIC ACCESSES . .ottt e e e 29-12
29.6 POSTED-INTERRUPT PROCESSING. . . vttt ettt ettt et et e e e e ey 29-13
CHAPTER 30
VMX INSTRUCTION REFERENCE
30.1 OV RV B .ttt et et e e e e e e e e e e e e 30-1
30.2 CONV ENTIONS Lttt e ettt e et e et e e e e e 30-2
30.3 VM INS TRUCTION S . ottt ettt et et e et e et et e e et e e et e e e e aas 30-2
INVEPT— Invalidate Translations Derived from EPTot e i et 30-3
INVVPID— Invalidate Translations Based on VPIDiiiriiiii i e 30-6
LY [0 I = | (o TN I o T o P 30-9
VMCLEAR—Clear Virtual-Maching Control STrUCTUNE ... v vttt e e e 30-11
VMFUNC—INVOKE VM fUNCHION. L . oot e et e ettt e e e e ettt et et a e e 30-13
VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine ... e 30-14
VMPTRLD—Load Pointer to Virtual-Machine Control STruCtUrevviiiii i ie e 30-17
VMPTRST—Store Pointer to Virtual-Machine Control STructureo e 30-19
VMREAD—Read Field from Virtual-Machine Control Structure.o e 30-21
VMRESUME—ResSUME Virtual Machingttt e e e e e 30-23
VMWRITE—Write Field to Virtual-Machine Control StruCtUreo i e 30-24
VMXOFF—LaVe VMX OPBration . vttt ittt et ettt et et e et e ettt 30-26
VMXON—ENTEr VMX OPBIatiOoN. . o ottt ettt et et e et e e e e e e et e e e e ettt e e e r e n e eenes 30-28
30.4 VM INSTRUCTION ERROR NUMBERS ittt ettt et et e e e e e 30-30
CHAPTER 31
VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
31.1 VMX SYSTEM PROGRAMMING OVERVIEW . . . vttt e et 31-1
31.2 SUPPORTING PROCESSOR OPERATING MODES IN GUEST ENVIRONMENTSttt aeens 31-1
31.2.1 UsiNg UNrestricted GUEST MOGE v ittt et e e e 31-1
31.3 MANAGING VMCS REGIONS AND POINTERS .. ittt it e e e e 31-2
31.4 USING VMX INSTRUCTIONS ..ottt ettt et et ettt e e et e et et e et et e e eaees 31-2
315 VMM SETUP & TEAR DOWN . . oottt ettt ettt et e e e e e et st e et e e et e e 31-4
31.5.1 Algorithms for Determining VMX Capabilities.o e 31-5
316 PREPARATION AND LAUNCHING A VIRTUAL MACHINE. . . .ottt et ees 31-6

Vol. 3A XXiii

CONTENTS

31.7 HANDLUING OF VM EXITS ottt ettt et et e e et et et et et et et es 31-7
31.7.1 Handling VM EXits DU 10 EXCEPTIONSottt et et ens 31-8
31.7.1.1 Reflecting EXceptions 10 GUEST SOTWAIEt ittt e ittt ettt ee e eaeas 31-8
31.7.1.2 Resuming Guest Software after Handling an EXCEPLioN . ..o vttt 31-9
318 MULTI-PROCESSOR CONSIDERATIONS ..ttt ittt e ettt e e e e e et 31-10
31.8.1 LT 2 1o P 31-11
31.8.2 MoVING @ VMCS BeIWEEN PrOCESSOIS .« o\ttt ittt ettt ettt ettt e e e e et ettt e e e ettt nenenanas 31-11
31.83 Paired INdexX-Data RegiSterS.t e 31-11
3184 [=T T T = 1 T £ on (o= 31-11
31.85 L0 U131] = To 31-12
31.9 32-BIT AND 64-BIT GUEST ENVIRONMENT S, . ..ottt ittt et e e e e 31-12
31.9.1 Operating Modes of GUEST ENVITONMIENTS.ttt ettt e e e e ettt et et e e e ettt aenenanas 31-12
31.9.2 Handling Widths of VMCS Fleldso et ettt enaaas 31-12
31.9.2.1 Natural-Width VMCS Fieldso e e e 31-13
31.9.2.2 B4-Bit VMCS FIlaS . oottt e e e e 31-13
3193 JA-328 MOAE HOSTS .ttt t ettt ettt ettt et e e e e e e 31-13
31.94 JA-328 MOAE GUESTS . v ettt ettt ettt ettt et et et e et e e e e e 31-13
31.95 S = 1 TN =Ty 3 31-14
31.10 HANDUING MODEL SPECIFIC REGISTERSottt ettt et ettt ettt e s 31-14
31.10.1 USING VM-EXECUTION COMITOIS .« vttt ettt et e et e e e e et e et aas 31-14
31.10.2 Using VM-ExXit Controls FOr MO RSt e ettt ettt s 31-15
31.10.3 Using VM-ENtry Controls TOr MO RS ittt e e e et ettt e aaaas 31-15
31.104 Handling Special-Case MSRS and INStrUCTIONSo vttt e e iaas 31-15
31.104.1 HaNdlNg IA32_EFER MR ..ottt ittt et e e e e e e e 31-16
31.104.2 Handling the SYSENTER and SYSEXIT INStrUCTIONS.o vttt et i e e 31-16
31.104.3 Handling the SYSCALL and SYSRET INStrUCTIONS v vttt e i 31-16
31.104.4 Handling the SWAPGS INStrUCtON. . ..ot i e e e e i 31-16
31.104.5 Implementation Specific Behavior on Writing to Certain MSRSt i 31-16
31.10.5 Handling Accesses 10 RESErVEd MSR AddrESSES ...t v vttt ittt ettt i iaas 31-17
31117 HANDUING ACCESSES TO CONTROL REGISTERS ..ttt ettt e 31-17
31.12 PERFORMANCE CONSIDERATIONS .. ottt ettt ettt et e ettt e e et e e et e et e e 31-17
31.13 USE OF THE VMX-PREEMPTION TIMER.ottt et 31-17
CHAPTER 32

VIRTUALIZATION OF SYSTEM RESOURCES

32.1 OV RV B ottt e e et e e e e e e 32-1
32.2 VIRTUALIZATION SUPPORT FOR DEBUGGING FACILITIES. . . oottt ettt e e s 32-1
32.2.1 DEDUG EXCEPTIONS . . vttt ettt ettt e e e e 32-1
323 MEMORY VIRTUAL ZATION . ottt ettt et et e e e e e e e e e e e e e es 32-2
32.3.1 Processor Operating Modes & Memory Virtualizationoouiui i e 32-2
3232 Guest & HOST PhySiCal AdAress SPaCtes.ttt et et et e ens 32-2
3233 Virtualizing Virtual Memory DY Brute FOMCe ..ot e et e e i i aaaas 32-3
3234 Alternate Approach to Memory Virtualizationvuvriinir e e e 32-3
3235 Details of Virtual TLB Operation v.e ettt ettt ettt e et ettt eens 32-4
32.3.5.1 INitialization Of VirtUal TUB ...ttt e e s e e e e 32-5
323.5.2 RESPONSE 10 PagE FaUITS . . .ttt ittt e e e e e 32-5
32353 ReSpoNse tO USES OF INVLPGottt et e e e e 32-7
32354 RESPONSE 10 CR B Wit . ittt ittt i et et e et e et e 32-8
324 MICROCODE UPDATE FACIUITY ettt ettt et e e et e et et e e et et es 32-8
32.4.1 Early Load of Microcode UPAatesv ettt ettt e 32-8
324.2 Late Load of MICroCode UPdates. . ..o .ottt ittt ettt e e ettt 32-8
CHAPTER 33

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR

331 OV RV B .ottt e e e e e e e e e e e e 33-1
33.2 INTERRUPT HANDUING IN VMX OPERATION . . .ottt sttt ettt e et ettt et et e et e e 33-1
333 EXTERNAL INTERRUPT VIRTUALIZATION . . ottt ettt et et e e e e e et e e e et e e n et es 33-2
33.3.1 Virtualization of INtermUPT VeCtOr SPaCe. .. vttt e 33-3
3332 Control Of Platform INTerTUDTSot e e e 33-4
33.3.2.1 e (O AT (1= 2=« o 33-4
33322 XAPIC VIrtURlIZaTION. . . .ottt ettt e e e et e e e e e e 33-5
33.3.2.3 LOCal APIC VirtUaliZation . ..o vttt e e e e e e e e 33-5

XXiv Vol. 3A

CONTENTS

PAGE

33324 170 APIC ViIrtUaliZationo vttt ettt e et et e e e e e 33-6
33.3.25 Virtualization of Message Signaled INterruptSc. vt i 33-6
3333 Examples of Handling of EXternal INtermUPTSo et ettt 33-6
33.3.3.1 QU S U« ot vttt et e e e e e e e 33-6
33332 Processor Treatment of EXternal INTerrupto. oo s 33-6
33333 Processing of External INterrupts DY VMM ... i e e 33-7
33334 Generation of Virtual Interrupt EVeNts By VMM et 33-7
334 ERROR HANDLING BY VMM Lttt et e e e e et e e e e e 33-8
334.1 QY = 1 [= 33-8
33.4.2 Machine-Check CONSIAEIGTIONS\ttt ettt et et et e e et e e et e 33-8
3343 MCA Error Handling GUIdEliNES TOr VMM, ..ottt e e e 33-9
33.4.3.1 VMM Error Handling STrategies. . . oottt it e et e e e 33-10
334.3.2 Basic VMM MCA error recovery handlingooouiiii e ettt e 33-10
33433 Implementation Considerations for the Basic Modelcooviiiiiii i e 33-10
33434 (O T U 4= 1 1T 33-10
33435 Implementation Considerations for the MCA VirtualizationModel. ... 33-11
335 HANDLING ACTIVITY STATES BY UMM . ittt ettt e e e et 33-11
CHAPTER 34

SYSTEM MANAGEMENT MODE

34.1 SYSTEM MANAGEMENT MODE OVERVIEW. . .t e ettt ettt e e et 34-1
34.1.1 System Management Mode and VMX Operationuuuuteie e e 34-1
34.2 SYSTEM MANAGEMENT INTERRUPT (SMI). oottt ettt et e e e 34-2
343 SWITCHING BETWEEN SMM AND THE OTHER PROCESSOR OPERATING MODES. ii e aaan 34-2
34.3.1 ENEEMiNG SMM i e 34-2
34.3.2 EXITING FIOM SMM Lot it e e e e 34-3
34.4 S R A Lt e e e e e 34-3
344.1 SMR AM STATE SAVE M. . ottt et e e e 34-4
34.41.1 SMRAM State Save Map and Intel 64 ArchiteCtUre. vt s 34-6
34.4.2 SMRAM CaCNING .+t ettt ettt e et e e e e e e e 34-8
344.2.1 System Management Range Registers (SMRR) v i e 34-9
345 SMIHANDLER EXECUTION ENVIRONMENT . ..ottt ettt e et e 34-9
34.6 EXCEPTIONS AND INTERRUPTS WITHIN SMM L.ttt e e e 34-10
34.7 MANAGING SYNCHRONOUS AND ASYNCHRONOUS SYSTEM MANAGEMENT INTERRUPTS. ... 34-11
34.7.1 1/0 State IMPIEMENTAtIONt e e e e e 34-11
34.8 NMIEHANDLING WHILE IN SMM. L e e e e e e e e e ey 34-12
349 SMM REVISION IDENTIFIER . . . ottt et e e e e e e e et e e e 34-13
34,10 AUTO HALT REST AR T ittt ittt ettt e e e e e et e e e e et 34-13
34.10.1 Executing the HLT InStruction in SMM .. . i i e e et e e e 34-14
3417 SMBASE RELOCATION . u ittt ettt ettt et et e e et e e e et e e e et et et e a e 34-14
34111 Relocating SMRAM 10 an Address ADOVE T MBY ettt 34-15
3412 IO INSTRUCTION RES T AR T Lttt ittt ettt e et et e et e e et e e et e e e et e e e 34-15
34.12.1 Back-to-Back SMI Interrupts When I/0 Instruction Restart Is BeingUsed.cooviiiiiiiiiiiii i 34-16
3413 SMM MULTIPLE-PROCESSOR CONSIDERATIONS ..\ttt ettt ettt 34-16
3414 DEFAULT TREATMENT OF SMIS AND SMM WITH VMX OPERATION AND SMX OPERATIONovvvviiiiiiiiininnn 34-16
34.14.1 Default Treatment 0f SMIDEIVETY oi i e e e 34-17
34.14.2 Default Treatment Of RS M .. . e e 34-18
34.14.3 Protection 0f CRA.VMXE N SMM. L. ittt e e e e e e e 34-19
34.144 VMXOFF and SMEUNDIOCKING . . o0 vttt e e e e e e e e e e 34-19
34.15 DUAL-MONITOR TREATMENT OF SMIS AND SMM . ..ottt e et 34-19
34.15.1 DUal-Monitor TreatmMent OVEIVIEW . .. v vttt et et ettt e e e ettt e e e e ettt e et r e aenens 34-19
34.15.2 SMM UM XIS . . vttt ettt ettt et e e e e e e 34-20
34.15.2.1 Architectural State Before @ VM EXit ... o.vvie it 34-20
34.15.2.2 Updating the Current-VMCS and Executive-VMCS PoiNters. . ..ot vttt e e 34-20
34.15.2.3 Recording VM-EXit INformation. e 34-20
34.15.24 SAVING GUEST STt . oottt et e s 34-21
34.15.2.5 Updating Non-ReGiSter STate. ...t i e e 34-21
34.15.3 Operation of the SMM-TransTer MONITOr e e et et eneaas 34-22
34.154 VM Entries that Return from SMM i e e 34-22
34.15.4.1 Checks on the Executive-VMCS Pointer Field. e 34-22
34.154.2 Checks on VM-Execution Control FIeldSv v et e 34-22
341543 Checks on VM-ENtry Control FIeldSee et 34-23
34.154.4 Checks 0N the GUEST STate AT, ...ttt ittt ettt e e ettt ie e aees 34-23
34.154.5 L0adiNg GUEST STaT . ..ottt sttt et e e e e 34-23

Vol. 3A XXV

CONTENTS

34.15.4.6 AV o == T T o o I T 34-23
34.154.7 Updating the Current-VMCS and SMM-Transfer VMCS PoINters.ovv v eeieiea s 34-23
34.15.4.8 VM EXits INdUCEA DY VM BNty . oot i i e e et i 34-24
34.154.9] =] o T 34-24
34.15.4.10 Failures of VM Entries That Return from SMM. e 34-24
34.15.5 Enabling the Dual-Monitor Treatment. i i i i e e e i e 34-24
34.15.6 Activating the DUal-Monitor TreatmEnt ottt ettt e ettt 34-26
34.15.6.1 NIl CBCKS v vttt et e e e e e e e 34-26
34.156.2 MSEG CNBCKING v vt e ettt e et et e et et e e e e e 34-27
34.15.6.3 Updating the Current-VMCS and Executive-VMCS PoINTerS.vv v ee e 34-27
34.15.6.4 SAVING MO RS ittt ittt e 34-27
34.15.6.5 L0adiNg HOST STate . .ottt i e e e e 34-27
34.15.6.6 L0BAING MO RS vttt et e e e 34-29
34.15.7 Deactivating the DUual-Monitor Treatment.ottt e e e e 34-29
3416 SMI AND PROCESSOR EXTENDED STATE MANAGEMENT ... uti ittt e 34-29
CHAPTER 35
MODEL-SPECIFIC REGISTERS (MSRS)
35.1 ARCHITECTURAL MSRS .ottt e, 35-2
35.2 MSRS IN THE INTEL® CORE _,, 2 PROCESSOR FAMILY ...\ttt 35-27
353 MSRS IN THE INTEL _ ATOM ~ PROCESSOR FAMILY . .ttt ittt et e e 35-41
354 MSRS IN THE INTEL® MICROA%HITEC URE CODE NAMENEHALEM ...\ 35-52
35.4.1 Additional MSRs in the Intel ® Xeon ® Processor 5500 and 3400 SeriS. .. v vvvvviiiie i 35-68
354.2 Additional MSRs@the Im&l Xeon™ Processor 7500 Series. L CIICITEL IR IR T IRV I SPRTIVEEUPTERy 35-70
355 MSRS IN THE INTEL™ XEON™" PROCESSOR 5600 SERIES (BASED ON INTEL™" MICROARCHITECTURE CODE NAME

WESTMERE)....... @ R L T @ LI 35-85
35.6 MSRS IN THE INTEL™ XEON™" PROCESSOR E7 FAMILY (BASED ON INTEL™" MICROARCHITECTURE CODE NAME

WESTMERE) .. T G L 35-86
35.7 MSRS IN INTEL™ PROCESSOR FAMILY (BASED ON INTEL™ MICROARCHITECTURE CODE NAME SANDY BRIDGE) 35-87
35.7.1 MSRs In 2nd Generation Intel™ Core™ Processor Family (Based on Intel™ Microarchitecture Code Name Sandy

Bridge)..... I 1t GRS 35-103

35.7.2 MSRs In Intel™ Xeon™ Processor E5 Family (Based on Intel™ Microarchitecture Code Name Sandy Bridge)..... 35-106
35.8 MSRS IN THE 3RD GENERATION INTEL® CORE = PROCESSOR FAMILY (BASED ON INTEL® MICROARCHITECTURE CODE

NAME IVY BRIDGE).ovvennt & I R 35-109
35.9 MSRS IN THE NEXT GENERATION INTEL™ CORE ~ PROCESSORS (BASED ON INTEL™ MICROARCHITECTURE CODE

NAME HASWELL) FSITTEIRTeIeY @ (R 35-111
3510 MSRSINTHE PENTIUM™ 4 AND INTEL™ XEON™ PROCESSORS\ttt 35-111
35.10.1 MSRs Uniqu%)to Inte]? Xeon® Processor MP with L3 Cache. ... 35-136
3511 MSRSININTEL™ CORE SOLO AND INTEL™ CORE DUOPROCESSORS. ...\ttt it ineeen 35-138
3512 MSRSINTHE PENTIUM M PROCESSORttt ettt et et e e et e et et e ettt et eens 35-147
3513 MSRS IN THE PE FAMILY PROCESSORS. ..\ttt ittt ettt ettt eees 35-153
3514 MSRS IN PENTIUM PROCESSORS. . vttt ittt ettt e ettt et e e et e e e eees 35-162
APPENDIX A
VMX CAPABILITY REPORTING FACILITY
A1 BASIC VMX INFORMATION .ttt ettt et et et e et e e et e e e et et e e et e e e et A-1
A2 RESERVED CONTROLS AND DEFAULT SETTINGS ...ttt ittt e et et e e et e et e et e n e A-2
A3 VM-EXECUTION CONTROLS. . . ottt ittt ettt ettt et e et et et et et e et et e e e e e e A-2
A3.1 Pin-Based VM-EXeCUtioN CONTIOIS.o . vttt ettt e et e e et eeens A-2
A3.2 Primary Processor-Based VM-EXecUtion ConTrolS vttt ittt ettt et i A-3
A33 Secondary Processor-Based VM-EXecUtion CONTIOlSovvit ittt ettt n e aaas A-4
A4 VM-EXIT CONTROLS .ottt ettt e ettt e e e et e e et e e e e e e e a e e enees A-4
A5 VM-ENTRY CONT ROLS ..ttt ittt et et et e e et e e e e e e e et e ees A-5
A6 MISCELLANEOUS DA T A ittt ettt et e et et e e e et e e e et et e e e A-5
A7 VMX-FIXED BITS IN CRO. . . .ottt e et et e e e et e e e et e e e et n e A-6
A8 VMX-FIXED BITS IN QR ..ttt et e e e e e e e e e e e e e A-6
A9 VMCES ENUMERATION L oottt ettt ettt e e e et e e e e et e e e e e e e e enees A-6
A0 VPID AND EPT CAP ABILITIES .ottt ettt et e e e e e e e e e e A-7
A1 M FUN CT ON S . Lttt et e e e e e e e e e e e e e e e e e e e A-7

XXvi Vol. 3A

CONTENTS

PAGE
APPENDIX B

FIELD ENCODING IN VMCS

B.1 T OB T FIBL DS . ittt ittt it et e e e B-1
B.1.1 LS = 0o o =] a3 B-1
B.1.2 TB-Bit GUEST-STaTE FIIS . vttt it i it e e e e e it it e B-1
B.1.3 TB-Bit HOST-STate FIlaS . . vttt it ettt e e e e ettt e B-2
B.2 B BIT FIELDS . . ittt i ettt e e B-2
B.2.1 B4-Bit CONTTOl IS, v ottt e e e B-2
B.2.2 64-Bit Read-Only Data FIeld.ottt e e e e e e e e B-3
B.2.3 B4-Bit GUEST-STATE FIIdS . . ot o it it e e e e B-4
B.24 B4-Bit HOST-STate FIBlaS . ..ottt ittt e i e e e B-5
B.3 2Bl FIELDS . . ottt ittt et e e e e e B-5
B.3.1 32-Bit CONTrOl FIIAS. . .\ttt t ittt et e e e e B-5
B.3.2 32-Bit Read-Only Data Fields. oottt e e B-6
B.3.3 32-Bit GUEST-STatE FIIAS . . ot v vttt it et et e e e e e B-6
B34 32-Bit HOST-State Field . ..ottt et et e e e B-7
B4 NATURAL-WIDTH FIELDS ...ttt ittt et ettt ettt e ettt ettt i B-7
B.4.1 NAtUral-WIdth CoNtrol FIElAS ...ttt ittt e e e e e et ettt e e s B-7
B4.2 Natural-Width Read-Only Data FIeladsouiuitt e e e e et ees B-8
B4.3 Natural-Width GUEST-STate Fields.ttt e e e e et B-8
B.4.4 NatUTal-Width HOST-STate FlladS . oottt ittt e e e e e ettt r e r e e s B-9
APPENDIX C

VMX BASIC EXIT REASONS

Vol. 3A XXvii

CONTENTS

PAGE
FIGURES

Figure 1-1. Bit AN BYTE DT, . vttt s et e e e e e 1-6
Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation.o.uuiriinii e 1-7
Figure 2-1. IA-32 System-Level Registers and Data STrUCTUNESo vttt ettt eees 2-2
Figure 2-2. System-Level Registers and Data Structures in [A-32e Mode.o vvii it e 2-3
Figure 2-3. Transitions Among the Processor's Operating Modes oottt 2-8
Figure 2-4. JAZ 2 EFER MO R LAY OUL . . ottt e et et e e e e 2-9
Figure 2-5. System Flags in the EFLAGS REGISTOI\ttt e e e 2-10
Figure 2-6. Memory Management RegiSTOrSttt et 2-12
Figure 2-7. (80031 o] 2T 0 3 (= 5 2-14
Figure 2-8. XOR O Lttt e e e e e e e 2-19
Figure 2-9. WBINVD Invalidation of Shared and Non-Shared Cache Hierarchy. ... 2-23
Figure 3-1. Segmentation aNd Pagingo. vttt i e e 3-2
Figure 3-2. FIat MO, . ..ot e e 3-3
Figure 3-3. Protected FIat MOEL.o e e 3-4
Figure 3-4. MUt SEgMENT MOl ... o i it e e e 3-5
Figure 3-5. Logical Address to Linear Address TransIation. v vt 3-7
Figure 3-6. A= 1= Y= =T ot o] 3-7
Figure 3-7. YT =T L (=03 (=T 3-8
Figure 3-8. Y= 00 T=T L= ol) () 3-10
Figure 3-9. Segment Descriptor When Segment-Present FlagIs Clear.ooooiiii i 3-11
Figure 3-10. Global and Local Descriptor Tables. v it e e e it it eaas 3-15
Figure 3-17. PSeUdO-DeSCriPOr FOMmMats .o\ttt ettt et ettt e e ettt e e e e et 3-16
Figure 4-1. Enabling and Changing Paging Modest e e 4-3
Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging. ...t 4-9
Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging.ovvvviiiiiiii it 4-9
Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-BitPaging ... 4-10
Figure 4-5. Linear-Address Translation to a 4-KByte Page using PAE Pagingcov ittt e 4-15
Figure 4-6. Linear-Address Translation to a 2-MByte Page using PAE Paging.ovvviviiii it 4-16
Figure 4-7. Formats of CR3 and Paging-Structure Entries with PAEPaging.ccoiviiii i 4-18
Figure 4-8. Linear-Address Translation to a 4-KByte Page using IA-32e Paging ...ttt 4-20
Figure 4-9. Linear-Address Translation to a 2-MByte Page using |A-32€ Pagingovvvieiii ittt ieieaaas 4-21
Figure 4-10. Linear-Address Translation to a 1-GByte Page using IA-32e Pagingcovviiiiiiiiiiiii i 4-21
Figure 4-11. Formats of CR3 and Paging-Structure Entries with IA-32e Paging..........cov i i 4-28
Figure 4-12. Page-Fault Error COQe ... i ittt et e e e e e e 4-30
Figure 4-13. Memory Management Convention That Assigns a Page Tableto EachSegment ..., 4-45
Figure 5-1. Descriptor Fields Used for ProteCtion oot ettt et aens 5-3
Figure 5-2. Descriptor Fields with FIags used in 1A-328 MOde. ov ittt e 5-4
Figure 5-3. PrOtECtION RINGS. . .ttt e e e e e e e 5-7
Figure 5-4. Privilege Check fOr Data ACCESS ..ttt t ittt ettt et et e e ettt e e e e e ettt et et et aenens 5-8
Figure 5-5. Examples of Accessing Data Segments From Various Privilege Levelso 5-9
Figure 5-6. Privilege Check for Control Transfer Without Usinga Gatevuniriiiii i 5-11
Figure 5-7. Examples of Accessing Conforming and Nonconforming Code Segments From Various Privilege Levels.......... 5-12
Figure 5-8. (0| O = =T 0] o PP 5-13
Figure 5-9. Call-Gate Descriptor iNTA-328 MO e e 5-14
Figure 5-10. Call-Gate MECNaN S, . ..ottt e e e et e e e et e e et e e e e 5-15
Figure 5-11. Privilege Check for Control Transfer With Call Gateouvuiuiiir i e 5-16
Figure 5-12. Example of Accessing Call Gates At Various Privilege Levels ..o i 5-17
Figure 5-13. Stack Switching During an Interprivilege-Level Call i e et 5-19
Figure 5-14. MSRs Used by SYSCALL and SY S RETttt e e i 5-23
Figure 5-15. Use of RPL to Weaken Privilege Level of Called Procedureot 5-26
Figure 6-1. Relationship of the IDTR @nd IDTt e et et e ettt i e aens 6-9
Figure 6-2. 10 T} (T ol] 0 P 6-10
Figure 6-3. INterrupt Procedure Call. e e e e 6-11
Figure 6-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routinesccociiiiii it 6-12
Figure 6-5. INtermUPT Task SWITCN. . oo e s 6-14
Figure 6-6. o o L= 6-15
Figure 6-7. B4-Bit DT Gate DS T i P OrS vttt ittt ittt ittt ettt e e e e e 6-16
Figure 6-8. IA-32e Mode Stack Usage After Privilege Level Change.ovvririiii it 6-18
Figure 6-9. Page-Fault BrmOr COOEttt ettt e e e e e e e e 6-40
Figure 7-1. I T 0 = = T I £ 7-2
Figure 7-2. 32-Bit Task-State SegmMENT (TS). ..ttt ittt e e e e e e 7-4
Figure 7-3. LI 310 L= o 1 () 7-6

Xxxviii Vol. 3A

Figure 7-4.
Figure 7-5.
Figure 7-6.
Figure 7-7.
Figure 7-8.
Figure 7-9.
Figure 7-10.
Figure 7-11.
Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 8-5.
Figure 8-6.
Figure 8-7.
Figure 8-1.
Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.
Figure 9-5.
Figure 9-6.
Figure 9-7.
Figure 9-8.
Figure 9-9.
Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 10-4.
Figure 10-5.
Figure 10-6.
Figure 10-7.
Figure 10-8.
Figure 10-9.

Figure 10-10.
Figure 10-11.
Figure 10-12.
Figure 10-13.
Figure 10-14.
Figure 10-15.
Figure 10-16.
Figure 10-17.
Figure 10-18.
Figure 10-19.
Figure 10-20.
Figure 10-21.
Figure 10-22.
Figure 10-23.
Figure 10-24.
Figure 10-25.
Figure 10-26.
Figure 10-27.
Figure 10-28.
Figure 10-29.
Figure 10-30.

Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.
Figure 11-5.
Figure 11-6.
Figure 11-7.
Figure 11-8.
Figure 11-9.
Figure 12-1.

Format of TSS and LDT Descriptors in 64-bit Mode
Task Register ..o
Task-Gate Descriptor
Task Gates Referencing the Same Task
Nested Tasksvvii e
Overlapping Linear-to-Physical Mappings
16-Bit TSS Format
64-Bit TSS Format
Example of Write Ordering in Multiple-Processor Systems
Interpretation of APIC ID in Early MP Systems
Local APICs and I/0 APIC in MP System Supporting Intel HT Technology
IA-32 Processor with Two Logical Processors Supporting Intel HT Technology
Generalized Four level Interpretation of the APIC ID
Conceptual Five-level Topology and 32-bit APIC ID Composition
Topological Relationships between Hierarchical IDs in a Hypothetical MP Platform
MP System With Multiple Pentium Ill Processors
Contents of CRO Register after Reset
Version Information in the EDX Register after Reset
Processor State After Reset
Constructing Temporary GDT and Switching to Protected Mode (Lines 162-172 of List File)
Moving the GDT, IDT, and TSS from ROM to RAM (Lines 196-261 of List File)
Task Switching (Lines 282-296 of List File)
Applying Microcode Updates
Microcode Update Write Operation Flow [1]
Microcode Update Write Operation Flow [2]
Relationship of Local APIC and I/0 APIC In Single-Processor Systems
Local APICs and I/0 APIC When Intel Xeon Processors Are Used in Multiple-Processor Systems
Local APICs and I/0 APIC When P6 Family Processors Are Used in Multiple-Processor Systems
Local APIC Structure
IA32_APIC_BASE MSR (APIC_BASE_MSR in P6 Family)
Local APIC ID Register
Local APIC Version Register
Local Vector Table (LVT)
Error Status Register (ESR)
Divide Configuration Register
Initial Count and Current Count Registers
Interrupt Command Register (ICR)
Logical Destination Register (LDR)
Destination Format Register (DFR)
Arbitration Priority Register (APR)
Interrupt Acceptance Flow Chart for the Local APIC (Pentium 4 and Intel Xeon Processors)
Interrupt Acceptance Flow Chart for the Local APIC (P6 Family and Pentium Processors)
Task-Priority Register (TPR)
Processor-Priority Register (PPR)
IRR, ISR and TMR Registers
EOI REGISTEI. . o\ttt
CRB REGISTEr . . vttt e
Spurious-Interrupt Vector Register (SVR)
Layout of the MSI Message Address Register
Layout of the MSI Message Data Register
IA32_APIC_BASE MSR Supporting x2APIC
Local x2APIC State Transitions with IA32_APIC_BASE, INIT, and Reset
Interrupt Command Register (ICR) in x2APIC Mode
Logical Destination Register in x2APIC Mode
SELF IPI register
Cache Structure of the Pentium 4 and Intel Xeon Processors
Cache Structure of the Intel Core i7 Processors
Cache-Control Registers and Bits Available in Intel 64 and I1A-32 Processors
Mapping Physical Memory With MTRRs
IA32_MTRRCAP Register
IA32_MTRR_DEF_TYPE MSR
IA32_MTRR_PHYSBASEN and IA32_MTRR_PHYSMASKn Variable-Range Register Pair
IA32_SMRR_PHYSBASE and IA32_SMRR_PHYSMASK SMRR Pair

IA32_PAT MSR

Mapping of MMX Registers to Floating-Point Registers

CONTENTS

Vol. 3A XxXiX

CONTENTS

Figure 12-2.
Figure 13-1.

Figure 13-2.
Figure 13-3.
Figure 13-4,
Figure 14-1.
Figure 14-2.
Figure 14-3.
Figure 14-4.
Figure 14-5.
Figure 14-6.

Figure 14-7.
Figure 14-8.
Figure 14-9.

Figure 14-10.
Figure 14-11.
Figure 14-12.
Figure 14-13.
Figure 14-14.
Figure 14-15.
Figure 14-16.
Figure 14-17.
Figure 14-18.
Figure 14-19.
Figure 14-20.
Figure 14-21.
Figure 14-22.
Figure 14-23.
Figure 14-24.
Figure 14-25.
Figure 14-26.
Figure 14-27.
Figure 14-28.

Figure 15-1.
Figure 15-2.
Figure 15-3.
Figure 15-4.
Figure 15-5.
Figure 15-6.
Figure 15-7.
Figure 15-8.
Figure 15-9.
Figure 17-1.
Figure 17-2.
Figure 17-3.
Figure 17-4.
Figure 17-5.
Figure 17-6.
Figure 17-7.
Figure 17-8.
Figure 17-9.

Figure 17-10.
Figure 17-11.
Figure 17-12.
Figure 17-13.
Figure 17-14.
Figure 17-15.
Figure 17-16.
Figure 17-17.
Figure 17-18.

Figure 18-1.
Figure 18-2.
Figure 18-3.

XXX Vol. 3A

Mapping of MMX Registers to x87 FPU Data Register Stack. ... e 12-5
Example of Saving the x87 FPU, MMX, SSE, SSE2, SSE3, and SSSE3 State During an Operating-System Controlled
TaSK SN L e e e e 13-7
Future Layout of XSAVE/XRSTOR Area and XSTATE_BV with Five Sets of Processor State Extensions......... 13-9
OS Enabling of Processor Extended State SUPPOIT. vr et e 13-11
Application Detection of New Instruction Extensions and Processor Extended State 13-12
IA32_MPERF MSR and IA32_APERF MSR for P-state Coordination.oovvvrvuiniiii i 14-2
L P o O I 2T 1L (= 14-4
Periodic Query of Activity Ratio of Opportunistic Processor Operation...........ouviviiiriiiiiieiieniininnns 14-5
IA32_ENERGY _PERF _BIAS REGISTEI vttt vttt ettt ettt et ettt e e 14-6
Processor Modulation Through Stop-Clock Mechanism . ..o e 14-8
MSR_THERMZ_CTL Register On Processors with CPUID Family/Model/Stepping Signature Encoded as 0x69n or
05) 14-9
MSR_THERMZ2_CTL Register for SUPPOrting TM2 vttt 14-10
JAB 2 _THERM ST ATUS MO R ..ttt ettt e e e e e e e 14-10
IA32_THERM_INTERRUPT MSR. . .\ttt ettt ettt et e et e e e 14-11
IA32_CLOCK_MODULATION MSR . . ittt ettt et et e e et e e et e e ee s 14-12
IA32_CLOCK_MODULATION MSR with Clock Modulation EXteNSIONvvvvriiini i 14-13
IA3 2 _THERM ST ATUS REGIS T . o vttt ettt et ettt et e et e et et ee s 14-14
IA32_THERM_INTERRUPT REGISTON. . . vttt ettt ettt et et e e et e e e en s 14-15
IA32_PACKAGE_THERM _STATUS REGISTEI. . o\ttt vttt ettt et et et e en 14-17
IA32_PACKAGE_THERM_INTERRUPT REGISTEI ..\ vttt vttt ettt et e e et e e et nen 14-18
MSR_RAPL_POWER _UNIT REGIST . . v vttt ettt ettt et et e e et e e et e e e ee s 14-20
MSR_PKG_POWER _LIMIT RIS O . .o v vttt ettt ettt et ettt et en s 14-21
MSR_PKG_ENERGY _STATUS MSR ..ttt ittt ittt e e ettt e 14-22
MSR_PKG_POWER _INFO REGISTET . .\ttt ettt ettt et e et e et ee s 14-22
MSR _PKG _ PERF ST ATUS MR .ttt e e e e e 14-23
MSR_PPO_POWER_LIMIT/MSR_PP1_POWER_LIMIT REGISTEN . . v\ vttt ettt nea 14-23
MSR_PPO_ENERGY_STATUS/MSR_PPT_ENERGY_STATUS MSRot 14-24
MSR_PPO_POLICY/MSR_PP1_POULICY REGISTON .\ttt ettt ettt ettt e e an s 14-24
MSR_PPO_PERF_STATUS MSR .ttt ettt ittt et e et e e e e e e e e 14-25
MSR_DRAM_POWER _LIMIT REGISTET . ot vttt ettt ettt e ettt e e e es 14-25
MSR_DRAM_ENERGY _STATUS MSR .ttt ittt it e 14-26
MSR_DRAM_POWER _INFO RIS OI v vttt ettt ettt et e et et e et e e e e en s 14-26
MSR_DRAM _PERF_STATUS MR ..ttt e e e e e 14-26
MaChiNE-ChECK MRS, . . ettt e e e e e e s 15-2
L i (O T O Y o =T] (=T 15-2
IA32 MO ST ATUS REGISTEI . 1\ vt vttt ettt et e e e e e et aaas 15-3
1 (O O 1 (=T =Y 15-4
A3 MO ST ATUS REGIS .« .t vttt ettt ettt et e et e e et et e et et e et e e 15-5
IAB2_MUI_ADDR MSR . . ittt e e e e e 15-7
UCR Support in IA32_ MU _MISC REGIS I . . vttt ittt i e e et e e et eaas 15-8
1 [O O 1 =Y £ (=T 15-9
[0 O 2= T 1Yo 15-12
DEDUG RO S OIS . . ittt i i i e e e e 17-3
DR6/DR7 Layout on Processors Supporting Intel® 64 Architecture ... it 17-7
IA32_DEBUGCTL MSR for Processors based on Intel Core microarchitecturecoovviiiiiiiiinnn.s. 17-12
64-bit Address Layout 0f LBR MSRot e e et e 17-15
DS SV A . .ottt e e e e e 17-17
32-bit Branch Trace RecOrd FOMMat.o u ittt ettt e e e e e en s 17-18
PEBS RECOMA FOmmMIat. . vttt ettt et et e e e et e e e e e 17-18
[A-328 MOAE DS SAVE ATB@. . . e vttt ettt ettt ettt et et e e et e e 17-19
64-bit Branch Trace Record FOrmMat. v ittt e e 17-19
64-bit PEBS RECOMA FOMMIAt . ..ttt ettt e e ettt e e e r i 17-20
IA32_DEBUGCTL MSR for Processors based on Intel microarchitecture code name Nehalem 17-25
MSR_DEBUGCTLA MSR for Pentium 4 and Intel Xe0N ProCeSSOrS vvtvir et eienenn 17-29
LBR MSR Branch Record Layout for the Pentium 4 and Intel Xeon Processor Family........................... 17-31
IA32_DEBUGCTL MSR for Intel Core Solo and Intel Core DUO PrOCESSOTS ... vvvvv v eiieii e veieiienenns 17-32
LBR Branch Record Layout for the Intel Core Solo and Intel Core DUo Processor.ovvvvvivivininenenennn. 17-32
MSR_DEBUGCTLB MSR for Pentium M PrOCESSOrS ..ttt ittt et ettt et ittt et ettt ettt it e 17-33
LBR Branch Record Layout for the Pentium M Processor.ttt i e e 17-34
DEBUGCTLMSR Register (P6 Family PrOCESSOMS) . .. v vt vttt eaeas 17-35
Layout OF IA32_PERFEV T SELX MSRS ..\ttt ittt et e e e 18-3
Layout of IA32_FIXED_CTR_CTRLU MSR ..ttt e e 18-5
Layout of IA32_PERF_GLOBAL_CTRU MSR ... ittt et 18-6

Figure 18-4.
Figure 18-5.
Figure 18-6.
Figure 18-7.
Figure 18-8.
Figure 18-9.

Figure 18-10.
Figure 18-11.
Figure 18-12.
Figure 18-13.
Figure 18-14.
Figure 18-15.
Figure 18-16.
Figure 18-17.
Figure 18-18.
Figure 18-19.
Figure 18-20.
Figure 18-21.
Figure 18-22.
Figure 18-23.
Figure 18-24.
Figure 18-25.
Figure 18-26.
Figure 18-27.
Figure 18-28.
Figure 18-29.
Figure 18-30.
Figure 18-31.
Figure 18-32.
Figure 18-33.
Figure 18-34.
Figure 18-35.

Figure 18-36.
Figure 18-37.
Figure 18-38.
Figure 18-39.

Figure 18-40.
Figure 18-41.
Figure 18-42.
Figure 18-43.
Figure 18-44.
Figure 18-45.
Figure 18-46.
Figure 18-47.
Figure 18-48.
Figure 18-49.
Figure 18-50.
Figure 18-51.
Figure 18-52.
Figure 18-53.

Figure 20-1.
Figure 20-2.
Figure 20-3.
Figure 20-4.
Figure 20-5.
Figure 21-1.
Figure 22-1.
Figure 23-1.
Figure 24-1.
Figure 28-1.
Figure 30-1.
Figure 30-2.
Figure 31-1.

CONTENTS

PAGE

Layout of IA32_PERF_GLOBAL _STATUS MSR. ..\ttt 18-6
Layout of IA32_PERF_GLOBAL _OVF_CTRL MSR L.ttt e e 18-7
Layout of IA32_PERFEVTSELx MSRs Supporting Architectural Performance Monitoring Version 3.............. 18-7
Layout of IA32_FIXED_CTR_CTRL MSR Supporting Architectural Performance Monitoring Version 3............ 18-8
Layout of Global Performance Monitoring Control MSR e 18-8
Global Performance Monitoring Overflow Status and Control MSRS.ottt e 18-9
Layout of MSR_PERF_FIXED_CTR _CTRUMSR ...\ttt et e ee s 18-14
Layout of MSR_PERF_GLOBAL _CTRL MSR ...ttt ittt e e 18-15
Layout of MSR_PERF_GLOBAL _STATUS MSR L.ttt et e e 18-15
Layout of MSR_PERF_GLOBAL_OVF_CTRUMSR. ...\ttt et 18-16
IA32_PERF_GLOBAL _STATUS MSR. . .ttt ittt e e e en s 18-20
Layout O IA32_PEBS_ENABLE MSR ... ittt ittt e e e e 18-21
PEBS Programming ENVIEONmMENTottt ettt e et e e e e e 18-23
Layout 0F MSR_PEBS LD _LAT MR, . .ttt ittt et e 18-25
Layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 to Configure Off-core Response Events 18-26
Layout of MSR_UNCORE_PERF_GLOBAL_CTRLUMSR. ...ttt sttt ettt en 18-28
Layout of MSR_UNCORE_PERF_GLOBAL_STATUS MSR. ... ittt 18-29
Layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRLMSR ..\ttt e 18-29
Layout of MSR_UNCORE_PERFEVTSELX MSRS ...ttt e 18-30
Layout of MSR_UNCORE_FIXED_CTR_CTRLMSRttt 18-31
Layout of MSR_UNCORE_ADDR _OPCODE_MATCH MSR ...ttt 18-31
Distributed Units of the Uncore of Intel® Xeon® Processor 7500 SEMES vvvrvireii i iiieiiennenns 18-33
IA32_PERF_GLOBAL_CTRL MSR in Intel® Microarchitecture Code Name Sandy Bridgeovvnae 18-36
IA32_PERF_GLOBAL_STATUS MSR in Intel® Microarchitecture Code Name Sandy Bridge 18-36
IA32_PERF_GLOBAL_OVF_CTRL MSR in Intel microarchitecture code name Sandy Bridge 18-37
Layout O IA32_PEBS_ENABLE MSR ittt e 18-39
Request_Type Fields for MSR_OFFCORE_RSP _X ...\ vttt et e 18-43
Response_Supplier and Snoop Info Fields for MSR_OFFCORE_RSP_X......cviviiiiiii it ciieiaens 18-44
Layout of Uncore PERFEVTSEL MSR for a C-Box Unit or the ARBURNIT. ..o 18-45
Layout of MSR_UNC_PERF_GLOBAL_CTRLMSR for UNCOrE. ... v vttt ettt i it ieie e 18-46
Layout of IA32_PERFEVTSELX MSRs Supporting Intel TSX. ... vi e 18-53
Event Selection Control Register (ESCR) for Pentium 4 and Intel Xeon Processors without Intel HT Technology

1 Y00 o 18-58
Performance Counter (Pentium 4 and Intel Xe0n ProCeSSOMS) ... v.vvvit vttt et ie i ienenns 18-60
Counter Configuration Control Register (CCCR) vttt e e 18-61
Effects Of EAQe FIOMiNgot e e e e et et e 18-65
Event Selection Control Register (ESCR) for the Pentium 4 Processor, Intel Xeon Processor and Intel Xeon

Processor MP Supporting Hyper-Threading TeChNologyvvvii i 18-72
Counter Configuration Control Register (CCCR) ... u.vu ittt ettt et 18-74
Layout of IA32_PERF_CAPABILITIES MSR. . ..ttt ettt e e e 18-79
Block Diagram of 64-bit Intel Xeon Processor MP with 8-MByte L3........coiiiiii i 18-80
MSR_IFSB_IBUSQx, Addresses: TO7CCH aNd TO7ZCDH. ovitt et 18-80
MSR_IFSB_ISNPQx, Addresses: TOZCEH aNd TO7ZCFH. iu it i 18-81
MSR_EFSB_DRDYx, Addresses: 1T07D0OH and TO7ZDTH oviriit e ee s 18-81
MSR_IFSB_CTL6, Address: 107D2H; MSR_IFSB_CNTR7, Address: TO7D3H.ovvvviii i eenn 18-82
Block Diagram of Intel Xeon Processor 7400 SEIES vttt ettt et i e 18-83
Block Diagram of Intel Xeon Processor 7100 SEIES . ..o v vttt ettt eaeas 18-84
MSR_EMON_L3_CTR_CTLO/1, Addresses: TOZCCH/TO7ZCDH .. .vvuii it 18-85
MSR_EMON_L3_CTR_CTL2/3, Addresses: TOZCEH/TO7ZCFH. . ..ot 18-87
MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: TO7DOH-TO7D3H.vvririiiii i 18-87
PerfEVISEl0 and PerfEUtSelT MRS, . .ttt ittt et e e e e 18-89
CESR MSR (Pentium ProCeSSOr ONIY). .o v et e et ettt et e et e e e et et et e e et 18-92
Real-Address Mode Address Translationvuuineu i e 20-3
Interrupt Vector Table in Real-Address Mode it e e e e i e 20-5
Entering and Leaving Virtual-8086 MOGe vv vttt e 20-9
Privilege Level O Stack After Interrupt or Exception in Virtual-8086 Mode.coovv i 20-13
Software Interrupt Redirection Bit Map in TSSo ettt 20-18
Stack after Far 16-and 32-Bit Callsvuii it e e e e 21-5
1/0 Map Base Address DifferenCeS. . .o v vttt e e 22-29
Interaction of a Virtual-Machine Monitor and GUESTS.t 23-2
STATES OF UM X ottt ettt e e e e e e e e 24-2
Formats of EPTP and EPT Paging-Structure ENtries .. .o.vu i 28-8
L YA e =Tt o 30-3
LA LAY o Y 0 o 30-6
VMX Transitions and States of VMCS in @ Logical ProCeSSOr. .. .vvviui ittt eas 31-3

Vol. 3A XXXi

CONTENTS

Figure 32-1.
Figure 33-1.
Figure 34-1.
Figure 34-2.
Figure 34-3.
Figure 34-4,
Figure 34-5.

XxXii Vol. 3A

VUL TUB SO, L vttt ittt et e e e e e e et e 32-5
Host External Interrupts and Guest Virtual INterruptscoviinii i e 33-4
SR AM USB0. + ot ottt ettt ettt e e e e e e e e 34-4
SMM REVISION ANt BT . ot v et e e e e e 34-13
AUTO HALT RESTart FIeld . ..o vttt ittt e i e i e e it e e i it i 34-14
SMBASE Rel0oCation Field. ...ttt ittt et et i e 34-14
/0 INStrUCtion ReSTart FIEldottt et e e e 34-15

CONTENTS

PAGE

TABLES
Table 2-1. IA32_EFER MSR I Ommation . ..ottt ettt e e e e e e e e e 2-9
Table 2-2. Action Taken By x87 FPU Instructions for Different Combinations of EM, MP,and TScovvviinen. 2-16
Table 2-3. SUMMANY Of SYSTEM INSITUCHIONS . . .ttt e ettt ae e aaas 2-20
Table 3-1. Code- anNd Data-SegmENt Ty DS . vttt vttt ettt et e ettt e e 3-12
Table 3-2. System-Segment and Gate-DesCripior TYPES vt 3-14
Table 4-1. Properties of Different Paging MOGesSoviiiiiii et et e 4-2
Table 4-2. Paging Structures in the Different Paging ModeSo vttt e e 4-7
Table 4-3. Use of CRI With 32-Bit Pagingovuiii e e 4-10
Table 4-4. Format of a 32-Bit Page-Directory Entry that Mapsa4-MByte Pagecccoiiiii it 4-11
Table 4-6. Format of a 32-Bit Page-Table Entry that Maps a4-KByte Pagecovviriiiiiiii it 4-12
Table 4-5. Format of a 32-Bit Page-Directory Entry that ReferencesaPage Tablecooviiiiiiiiii i 4-12
Table 4-7. Use 0f CR3 With PAE Paging ... v vttt ittt e ettt ettt aenenees 4-13
Table 4-8. Format of a PAE Page-Directory-Pointer-Table Entry (PDPTE)oviviiiiii e i 4-14
Table 4-S. Format of a PAE Page-Directory Entry that Maps a 2-MByte Page.c.oooviiiiiiiiii e 4-16
Table 4-10. Format of a PAE Page-Directory Entry that ReferencesaPage Table ..., 4-17
Table 4-11. Format of a PAE Page-Table Entry that Maps @ 4-KByte Page. ..ot 4-17
Table4-12. Use of CR3 with IA-32e Paging and CRAPCIDE = 0 ettt 4-19
Table 4-13. Use of CR3 with IA-32e Paging and CRA. PCIDE = 1ttt et ettt 4-19
Table 4-14. Format of an IA-32e PML4 Entry (PML4E) that References a Page-Directory-Pointer Table..................... 4-23
Table 4-15. Format of an |A-32e Page-Directory-Pointer-Table Entry (PDPTE) that Maps a 1-GByte Page................... 4-24
Table 4-16. Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that References a Page Directory............ 4-25
Table 4-17. Format of an IA-32e Page-Directory Entry that Mapsa 2-MByte Page.oovvviiiiiii it 4-25
Table 4-18. Format of an IA-32e Page-Directory Entry that ReferencesaPage Table.............coooviiiiiiiiiiii it 4-26
Table 4-19. Format of an IA-32e Page-Table Entry that Maps a 4-KByte Page.ot 4-27
Table 5-1. Privilege Check RUIES TOr Call Gates. . ..o v vttt e e e 5-16
Table 5-2. 64-Bit-Mode Stack Layout After CALLF wWith CPLChaNgevvi i 5-19
Table 5-3. Combined Page-Directory and Page-Table Protection.t e i 5-29
Table 5-4. Extended Feature ENable MSR (JA32_EFER).uuititi it e e 5-30
Table 5-6. Legacy PAE-Enabled 4-KByte Page Level Protection Matrix with Execute-Disable Bit Capability 5-31
Table 5-7. Legacy PAE-Enabled 2-MByte Page Level Protection with Execute-Disable Bit Capability....................... 5-31
Table 5-5. IA-32e Mode Page Level Protection Matrix with Execute-Disable Bit Capabilityoooiiiiii, 5-31
Table 5-9. Reserved Bit Checking WIth Execute-Disable Bit Capability Not Enabled ...t 5-32
Table 5-8. IA-32e Mode Page Level Protection Matrix with Execute-Disable Bit Capability Enabled 5-32
Table 6-1. Protected-Mode EXCeptions and IMTETUPTS ...\ttt e e e 6-2
Table 6-2. Priority Among Simultaneous Exceptions and INTermuUPTS. vu it 6-8
Table 6-3. Debug Exception Conditions and Corresponding EXception Classes ...ttt 6-20
Table 6-4. INterrUPT and EXCEPTION ClaSSES . . .ttt ittt ettt e e 6-27
Table 6-5. Conditions for Generatinga Double Faultooie i 6-27
Table 6-6. INVAlIA TSS CONAITIONS . ..o v ettt et et e et et e et e e e r e 6-30
Table 6-7. Alignment RequiremMents DY Data Ty P . .o . vttt e e e 6-44
Table 6-8. SIMD Floating-Point EXCEPtioNS Priority.vu it 6-48
Table 7-1. Exception Conditions Checked During a Task SWItCh ... i e e e 7-11
Table 7-2. Effect of a Task Switch on Busy Flag, NT Flag, Previous Task Link Field,and TSFlag..............cooovviininns 7-13
Table 8-1. Initial APIC IDs for the Logical Processors in a System that has Four Intel Xeon MP Processors Supporting Intel

Hyper-ThreadingTechnoIogy1 .. 8-36
Table 8-2. Initial APIC IDs for the Logical Processors in a System that has Two Physical Processors Supporting Dual-Core and

Intel Hyper-Threading TEChNOIOGY ov it e 8-36
Table 8-3. Example of Possible x2APIC ID Assignment in a System that has Two Physical Processors Supporting x2APIC and

Intel Hyper-Threading TeChNOIOgYo.oviii i e e e 8-37
Table 8-4. Boot Phase [Pl MeSsage FOmmMatttt et 8-53
Table 9-1. IA-32 Processor States Following Power-up, Reset, or INITo oo e e i 9-2
Table 9-2. Recommended Settings of EM and MP FIags 0N 1A-32 ProCESSOTS ... vvvttitttstn et i it eaanens 9-5
Table 9-3. Software Emulation Settings of EM, MP, and NE FIagsoouiiii e 9-6
Table 9-4. Main Initialization Steps in STARTUP.ASM Source Listingoviuiiii ittt eeas 9-15
Table 9-5. Relationship Between BLD Item and ASM SOUMCE File. vt e 9-26
Table 9-6. Microcode Update Field Definitionsc.ve e e s 9-27
Table 9-7. Microcode Update Fommat. . ..ot i e e 9-29
Table 9-8. Extended Processor Signature Table Header STrUCtUMe.o. vt 9-30
Table 9-9. Processor SIgNAtUre STTUCTUNEttt 9-30
Table 9-10. e ool = o = o 9-32
Table 9-11. Microcode Update Signature . ..ottt ettt e e e e e 9-36
Table 9-12. Microcode Update FUNCHIONSottt et e e e e aenes 9-41

Vol. 3A Xxxiii

CONTENTS

Table 9-13.
Table 9-14.
Table 9-15.
Table 9-16.
Table 9-17.
Table 9-18.
Table 10-1

Table 10-2.
Table 10-3
Table 10-4
Table 10-5.
Table 10-6.
Table 10-7.
Table 10-1.
Table 10-2.
Table 10-3.
Table 10-4.
Table 11-1.
Table 11-2.
Table 11-3.

Table 11-4.
Table 11-5.
Table 11-6.
Table 11-7.
Table 11-8.
Table 11-9.
Table 11-10.
Table 11-11.
Table 11-12.
Table 12-1.
Table 12-3.
Table 12-2.
Table 13-1.
Table 13-2.
Table 13-3.
Table 13-4.
Table 13-5.
Table 13-6.
Table 13-7.
Table 13-8.
Table 13-9.
Table 13-10.
Table 13-11.
Table 13-12.
Table 13-13.
Table 14-1.
Table 14-2.
Table 15-1.
Table 15-2.
Table 15-3.
Table 15-4.
Table 15-5.
Table 15-7.
Table 15-6.
Table 15-8.
Table 15-9.
Table 15-10.
Table 15-11.
Table 15-12.
Table 15-13.
Table 15-14.
Table 15-15.
Table 15-16.
Table 15-17.

XXXiv Vol. 3A

Parameters fOr the PreSENCe TSt .. vttt ettt et et et e et e 9-41
Parameters for the Write Update Data FUNCHION.v.vuiee e aaas 9-42
Parameters for the Control Update Sub-function e 9-46
T T=T o ol Y L= 9-46
Parameters for the Read Microcode Update Data FUNCLION.ovvieiei e 9-46
ReTUMN Code DefinitioNS. . o\ttt e e e e e e 9-48
LoCal APIC REGISTEr AAIESS MaD . . vttt ettt ettt et e ettt e e e e et 10-6
[Tore A o O T =Tl i o T TP 10-17
Valid Combinations for the Pentium 4 and Intel Xeon Processors’ Local XAPIC Interrupt Command Register..... 10-21
Valid Combinations for the P6 Family Processors' Local APIC Interrupt Command Register..................... 10-22
X2APIC Operating Mode Configurationsov vttt e e 10-37
Local APIC Register Address Map Supported by X2APIC.o e e 10-38
MSR/MMIO Interface of a Local x2APIC in Different Modes of Operationcooviiiiiiiiiiiieennnnns 10-40
EOIMESSAGE (14 QYIS) vttt ettt et e e e e e e e e e e e e e 10-47
SHOMTMESSAGE (21 CYCIES) . v vttt et ettt e e e et e et e e 10-48
Non-Focused Lowest Priority Message (34 CYCIES) ... v vttt e 10-49
APIC Bus Status Cycles INterpretation ... vttt e e e 10-51
Characteristics of the Caches, TLBs, Store Buffer, and Write Combining Buffer in Intel 64 and IA-32 Processors . 11-2
Memory Types and Their PropertiEsottt et ettt eaeas 11-6
Methods of Caching Available in Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium M, Pentium 4, Intel Xeon,

P6 Family, and PentiUm ProCeSS0rS . . ittt ittt it et e e e 11-7
MEST CaCNE LINE STaES vttt ettt ettt e e e ettt e e et e e 11-9
Cache OPErating MOGES . ..ottt ettt e e e e e 11-12
Effective Page-Level Memory Type for Pentium Pro and Pentium Il Processorsccoovvviiiennnns, 11-14
Effective Page-Level Memory Types for Pentium lll and More Recent Processor Families...................... 11-15
Memory Types That Can Be ENcoded iNn MTRRS. v it i e 11-21
Address Mapping for Fixed-Range MTRRS.ttt i i e e et 11-24
Memory Types That Can Be Encoded With PAT i 11-34
Selection of PAT Entries with PAT, PCD, and PWT FIags. cvviii e 11-35
Memory Type Setting of PAT Entries Following a Power-up or Reset..........cooviiiii it 11-35
Action Taken By MMX Instructions for Different Combinations of EM,MPand TS................coiiiiinnnt 12-1
Effect of the MMX, x87 FPU, and FXSAVE/FXRSTOR Instructions on the x87 FPU TagWord. 12-3
Effects of MMX INStructions 0N X87 FPU STateiu ittt 12-3
Action Taken for Combinations of OSFXSR, OSXMMEXCPT, SSE, SSE2, SSE3, EM,MP,and TSTt. 13-3
Action Taken for Combinations of OSFXSR, SSSE3,SSE4, EM, and TS ... 13-3
XS AVE HEader FOrmMat. . .ottt e e e et e e e e e e s 13-9
XRSTOR Action on MXCSR, X87 FPU, XMM ReGISTEr ...\ vititi ittt ettt eaens 13-10
XSAVE Action on MXCSR, X87 FPU, XMM REGISTEI . . .\ttt tt ettt ettt et eaas 13-11
XCRO and Processor State ComPONENtS . ..ottt ittt ettt et et et ettt 13-14
CR4 bits for AVX New Instructions technology SUPPOItov ittt 13-14
Layout of XSAVE Area For Processor Supporting YMM Statet e e 13-14
D YNV o 1= T =Yl o 1 T 13-15
XSAVE Save Area Layout for YMM State (EXT_Save_ArEa_2)vviirii ettt ininieeienns 13-15
XRSTOR Action on MXCSR, XMM Registers, YMM REGISTErSvuvtitiiiti ittt eeaens 13-15
Processor Supplied Init Values XRSTOR May USe.i ittt et ettt it aaas 13-16
XSAVE Action on MXCSR, XMM, YMM REGIS O,ttt tt ettt ettt et ettt et eaens 13-16
0On-Demand Clock Modulation Duty Cycle Field ENcodingcvvniiiiii i 14-12
RAPL MSR Interfaces and RAPL DOMaiNS. . ..o v vttt ettt ettt e et et et e e et enas 14-21
Bits 54:53 in IA32_MCi_STATUS MSRs when IA32_MCG_CAP[11]1=1andUC=0.......cooivviiiiiiniianiinnns 15-6
Overwrite Rules for ENAbIEd ErTOrS vttt et e e e e 15-7
Address Mode in TA32 MO _MISC BB, . . vttt ettt e e e e e 15-8
Extended Machine Check State MSRs in Processors Without Support for Intel 64 Architecture.................. 15-9
Extended Machine Check State MSRs In Processors With Support For Intel 64 Architecture.................... 15-10
Overwrite Rules for UC, CE, aNA UCR EITOS ... v vttt ittt te e et et et e et n e e et in e e e 15-16
(O =y ol O T o= o 15-16
IA32_MCi_Status [15:0] Simple Error Code ENCOAING. ..o vt v vttt i aeaes 15-18
IA32_MCi_Status [15:0] Compound Error Code ENCOAING. vvviii ittt it i enaas 15-19
Encoding for TT (Transaction Type) SUD-Fieldoirii i e e 15-20
Level Encoding for LL (Memory Hierarchy Level) Sub-Field...........cccoiiii e 15-20
Encoding of Request (RRRR) SUD-FIeld.ooiei e 15-20
Encodings of PP, T, and 1 SUD-FIeldsottt e e et et 15-21
Encodings of MMM and CCCC SUD-FIEldSo v vttt e e i 15-21
MCA Compound Error Code ENcoding fOr SRAD EITOTS. vttt e eens 15-22
IA32_MCIi_STATUS ValUues fOr SRAD EITOMS ... vv vttt ettt et ie et et e e et e enns 15-22
IA32_MCG_STATUS Flag Indication for SRAD EITOrS ... v vttt iaaes 15-22

Table 15-18.
Table 15-19.
Table 15-20.

Table 16-1.
Table 16-2.
Table 16-3.
Table 16-4.
Table 16-5.
Table 16-6.
Table 16-7.
Table 16-8.
Table 16-9.

Table 16-10.
Table 16-11.
Table 16-12.
Table 16-13.
Table 16-14.
Table 16-15.
Table 16-16.
Table 16-17.
Table 16-18.
Table 16-20.
Table 16-19.
Table 16-21.
Table 16-22.
Table 16-23.
Table 16-24.

Table 17-1.
Table 17-2.
Table 17-3.
Table 17-4.
Table 17-5.
Table 17-6.
Table 17-7.
Table 17-8.
Table 17-9.

Table 17-10.
Table 17-11.
Table 17-12.
Table 17-13.

Table 18-1.
Table 18-2.
Table 18-3.
Table 18-4.
Table 18-5.
Table 18-6.
Table 18-7.
Table 18-8.
Table 18-9

Table 18-10.
Table 18-11.
Table 18-12.
Table 18-13.
Table 18-14.
Table 18-15.
Table 18-16.
Table 18-17.
Table 18-19.
Table 18-18.
Table 18-20.
Table 18-21.
Table 18-22.
Table 18-23.
Table 18-24.
Table 18-25.

MCA Compound Error Code Encoding Tor SRAR EITOrS. . ..o v vttt e i i eeaes
IA32_MCI_STATUS Values for SRAR BITOMS o\t v vttt ittt ettt i i et eans
IA32_MCG_STATUS Flag Indication for SRAR EITOrS\ttt e i i ieaeas
CPUID DisplayFamily_DisplayModel Signatures for Processor Family 06Hcocovunt,
Incremental Decoding Information: Processor Family 06H Machine Error Codes For Machine Check.......
CPUID DisplayFamily_DisplayModel Signatures for Processors Based on Intel Core Microarchitecture....
Incremental Bus Error Codes of Machine Check for Processors Based on Intel Core Microarchitecture
Incremental MCA Error Code Types for Intel Xeon Processor 7400........cooviiiiiiiiiiiiiennnnns
Type B Bus and INterconnect Ermor COdBS. . ..o v vttt ettt it eas
Type C Cache Bus Controller Error COABSvii ittt ittt eaes
Intel QPI Machine Check Error Codes for IA32_MCO_STATUS and IA32_MC1_STATUS...................
Intel QPI Machine Check Error Codes for IA32_MCO_MISCand IA32_MCT_MISCcovvvivvinnnnnns
Machine Check Error Codes for IA32_MC7_STATUS ...t
Incremental Memory Controller Error Codes of Machine Check for IA32_MC8_STATUS
Incremental Memory Controller Error Codes of Machine Check for IA32_MC8 _MISC......................
Machine Check Error Codes for IA32_MCA_STATUS .. ot
Intel QPI MC Error Codes for IA32_MC6_STATUS and IA32_MC7_STATUS ...t
Intel IMC MC Error Codes for IA32_MCIi_STATUS (iI= 8, T1) .ovvutii i
Intel IMC MC Error Codes for IA32_MCI_MISC (1= 8, T1). . v vuiei it
Incremental Decoding Information: Processor Family OFH Machine Error Codes For Machine Check.......
MCIi_STATUS Register Bit Definitionot et e e
Other Information Field Bit Definition. u i e
Incremental MCA Error Code for Intel Xeon Processor MP 7100,vvviiiiii e
TYPE A L3 ErTOr COOBS ittt ittt ettt ettt e e e et e
Type B Bus and INterconnect Error COAES. v vttt ettt et neiaanas
Type C Cache Bus Controller Error COAeS ... vviii ittt e e
Decoding Family OFH Machine Check Codes for Cache Hierarchy Errors............ccoviiiiiiiannn..
BreakpOiNT EXAMIDIES . . oottt e e
Debug EXCEPLION CONAitioNS. . .. vttt et e e e e
LBR Stack Size and TOS PoINter RaNGe.ttt et e it i
IA32_DEBUGCTL FIag ENCOINGS . . o vttt ettt et ettt ettt ettt e e ettt e e r e nenenanas
CPL-Qualified Branch Trace STore ENCOdINGS v vttt ettt neees
IA32_LASTBRANCH _X_FROM _IP ..\ttt e s
IA32_LASTBRANCH _X_TO P .\ttt ettt e e et
LBR Stack Size and TOS POINter RANGEo v ittt
MSR_LBR_SELECT for Intel microarchitecture code name Nehalem.cooviiiiiiiiiiiiiinnnnns
MSR_LBR_SELECT for Intel microarchitecture code name Sandy Bridge..................coovviiiiint,
MSR_LBR_SELECT for Intel microarchitecture code name Haswellc.oooiiiiiiiiiiiiiinnn
IA32_LASTBRANCH_Xx_FROM_IP with TSX INformationoviiviiii it

LBR MSR Stack Size and TOS Pointer Range for the Pentium® 4 and the Intel® Xeon® Processor Family

UMask and Event Select Encodings for Pre-Defined Architectural Performance Events..................
Core Specificity Encoding within a Non-ArchitecturalUmask ...
Agent Specificity Encoding within a Non-ArchitecturalUmask..............cooo i
HW Prefetch Qualification Encoding within a Non-Architectural Umaskcooovviiiiiiiiiinnnnss
MESI Qualification Definitions within a Non-Architectural Umaskcooovviiiiiiiii i
Bus Snoop Qualification Definitions within @ Non-Architectural Umask...............cooiiiiiiinnnnns,
Snoop Type Qualification Definitions within a Non-Architectural Umaskcccoiiiiiiinninns.
Association of Fixed-Function Performance Counters with Architectural Performance Events............
At-Retirement Performance Events for Intel Core Microarchitectureoovvviiiii i,
PEBS Performance Events for Intel Core Microarchitecturevvvien e
Requirements t0 Program PEBSo i i i i e
PEBS Record Format for Intel Core i7 Processor Family..........oovriiiiii i
Data Source Encoding for Load Latency ReCOrdoviriii i e
Off-Core Response EVENt ENCOdING. vvni ettt ettt ettt e eaenens
MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definitioncovoviiviiiinnnnns,
Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCH vt
O ol = o W S 2 YU 1= Y/
(000 r I o U T3 370 Yo
Uncore PMU MSR Summary for Intel® Xeon® Processor E7 Familycooiiiiiiiiiiiiiiiiinnnnns
PEBS FaCility COMPAriSONo vttt ettt et et e et e e e e et e
PEBS Performance Events for Intel® Microarchitecture Code Name Sandy Bridge........................
Layout of Data Source Field of Load Latency Recordcoviiriiiiiiii i
Layout of Precise Store Information INPEBS Record. ... i
Off-Core Response EVENt ENCOGING. v vttt ettt ettt et it aenens
MSR_OFFCORE_RSP_x Request_Type Field Definition. ... e

CONTENTS

Vol. 3A XXXV

CONTENTS

Table 18-26.
Table 18-27.
Table 18-29.
Table 18-28.
Table 18-30.
Table 18-31.
Table 18-32.
Table 18-33.
Table 18-34.
Table 18-35.
Table 18-36.
Table 18-37.
Table 18-38.
Table 18-39.
Table 18-40.
Table 18-41.
Table 18-42.
Table 18-43.
Table 19-1.

Table 19-2.

Table 19-3.

Table 19-4.

Table 19-5.

Table 19-6.
Table 19-7.
Table 19-8.
Table 19-9.
Table 19-10.
Table 19-11.
Table 19-12.
Table 19-13.

Table 19-14.
Table 19-15.
Table 19-16.
Table 19-17.
Table 19-18.
Table 19-19.
Table 19-20.
Table 19-21.

Table 19-22.
Table 19-23.
Table 19-24.
Table 19-25.
Table 19-26.
Table 19-27.
Table 19-28.
Table 19-29.
Table 20-1.
Table 20-2.
Table 21-1.
Table 22-1.
Table 22-3.
Table 22-2.

Table 22-4.

XXXVi Vol. 3A

MSR_OFFCORE_RSP_x Response Supplier Info Field Definition.............coiii i 18-44
MSR_OFFCORE_RSP_x Snoop Info Field Definition.vuvrii i 18-45
MSR_OFFCORE_RSP_x Supplier Info Field Definitions.ouveiii i 18-47
UNCOME PMU MR SUMIMI Y vttt ittt ettt et et e e et e e ettt e e e n e e e r et eas 18-47
Uncore PMU MSR Summary for Intel® Xeon® Processor E5 Family..........cooiiiiiii i 18-48
(000 = O o = o 18-48
PEBS FaCility COmPamiSOn .ottt ettt ettt e e ettt e e e e e e e e e e e 18-49
PEBS Record Format for Next Generation Intel Core Processor Family..........c.o.oviiiiiiiiiiiiiiiinenn. 18-50
Precise Events That Supports Data Linear Address Profiling ... 18-50
Layout of Data Linear Address Information INPEBS ReCOMdcciviiiii e eee s 18-51
MSR_OFFCORE_RSP_x Request_Type Definition (Haswell). ... e 18-52
TX Abort Information Field Definition. e 18-54
UNCOME PMU MR UMM Y vttt ettt ittt ettt et et e e ettt e ettt e e e r s e e a e i aeas 18-54
Performance Counter MSRs and Associated CCCR and ESCR MSRs (Pentium 4 and Intel Xeon Processors)...... 18-55
VBN EXAIPIE ittt i i e e e 18-62
CCR NAmMES and Bit POSITIONS . ..o\ttt et e e e e e 18-66
Effect of Logical Processor and CPL Qualification for Logical-Processor-Specific (TS) Events................... 18-75
Effect of Logical Processor and CPL Qualification for Non-logical-Processor-specific (Tl) Events................ 18-76
Architectural Performance BVEN S ittt ettt e e e s 19-1
Non-Architectural Performance Events In the Processor Core of Next Generation Intel® Core™ Processors....... 19-2
INtel TSX Performance BVENTS. ...ttt ettt ettt e e e et ettt 19-10
Non-Architectural Uncore Performance Events In the Next Generation Intel® Core™ Processors................ 19-12
Non-Architectural Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3

0 Lol =TS0 19-13
Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxXx,

Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors €5 Family 19-22
Non-Architectural Performance Events applicable only to the Processor core for 2nd Generation Intel® Core™
i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2XXX ProCeSS0Or SEMES. ..o\ vvvrvtt ittt ci i i eaanes 19-31
Non-Architectural Performance Events Applicable only to the Processor Core of Intel® Xeon® Processor E5

=] 1111 19-33
Non-Architectural Performance Events In the Processor Uncore for 2nd Generation Intel® Core™ i7-2xxX,

Intel® Core™ i5-2xxX, Intel® Core™ i3-2XXX ProCeSSOr SEMES ..\t v ittt eiaaas 19-34
Non-Architectural Performance Events In the Processor Core for Intel® Core™ i7 Processor and Intel® Xeon®
PrOCESSOT 5500 SIS, . vttt ittt ettt ittt ettt ettt e e e e e e e 19-35
Non-Architectural Performance Events In the Processor Uncore for Intel® Core™ i7 Processor and Intel® Xeon®
PrOCESSOr 5500 SIS . . oottt ittt ittt ettt e e e e e 19-52
Non-Architectural Performance Events In the Processor Core for Processors Based on Intel® Microarchitecture

000 T L=l =T T[S 11T o= 19-64
Non-Architectural Performance Events In the Processor Uncore for Processors Based on Intel® Microarchitecture

000 T L=l =T TS [11T o 19-81
Non-Architectural Performance Events for Processors Based on Enhanced Intel Core Microarchitecture........ 19-96
Fixed-Function Performance Counter and Pre-defined Performance Events..................ccoiviiiiiinnnt, 19-96
Non-Architectural Performance Events in Processors Based on Intel® Core™ Microarchitecture................. 19-97
Non-Architectural Performance Events for Intel® Atom™ ProCesSOrSo vt ieaen 19-122
Non-Architectural Performance Events in Intel® Core™ Solo and Intel® Core™ Duo Processors................. 19-136
Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture for Non-Retirement Counting19-141
Performance Monitoring Events For Intel NetBurst® Microarchitecture for At-Retirement Counting 19-159
Intel NetBurst® Microarchitecture Model-Specific Performance Monitoring Events (For Model Encoding 3, 4

(o]) 19-164
List of Metrics Available for Front_end Tagging (For Front_end EventOnly)ccovvviviiiiinininnnnn, 19-164
List of Metrics Available for Execution Tagging (For Execution EventOnly)ovvviivvi i 19-164
List of Metrics Available for Replay Tagging (For Replay Event Only)ovvvvvvrviniiiii s 19-165
Event Mask Qualification for Logical PrOCESSOTSv ittt et 19-166
Performance Monitoring Events on Intel® Pentium® M ProCessorsvvvriiiiiiii i eieiiinenenannn. 19-171
Performance Monitoring Events Modified on Intel® Pentium® M Processorscocovvvrvivivenenenennn. 19-172
Events That Can Be Counted with the P6 Family Performance-Monitoring Counters...............cocovvvns. 19-173
Events That Can Be Counted with Pentium Processor Performance-Monitoring Counters.................... 19-182
Real-Address Mode EXceptions and INteITUPTSvuiuirit et et e e eaaas 20-6
Software Interrupt Handling Methods While in Virtual-8086 Modeccco i 20-17
Characteristics of 16-Bit and 32-Bit Program Modules . ..o i 21-1
New Instruction in the Pentium Processor and Later [A-32 Processorsvviviii e iiiiiiiiiieieiananns 22-4
EM and MP FIag INterpretation L. vttt e e 22-16
Recommended Values of the EM, MP, and NE Flags for Intel486 SX Microprocessor/Intel 487 SX Math

800 o] o Tl =1Y o) V£ =] 1 22-16
Exception Conditions for Legacy SIMD/MMX Instructions with FP Exception and 16-Byte Alignment 22-21

CONTENTS

PAGE
Table 22-5 Exception Conditions for Legacy SIMD/MMX Instructions with XMM and FP Exception......................... 22-22
Table 22-6 Exception Conditions for Legacy SIMD/MMX Instructions with XMM and without FP Exception................. 22-23
Table 22-7 Exception Conditions for SIMD/MMX Instructions with Memory Reference...............cooviiiiiiiiin.s,. 22-24
Table 22-8. Exception Conditions for Legacy SIMD/MMX Instructions without FP Exception................coovviiiinnnt. 22-25
Table 22-9 Exception Conditions for Legacy SIMD/MMX Instructions without Memory Referencecovvvvnnt 22-26
Table 24-1 FOrmat Of The VMCS REGION. . ..ottt e et e e e et ettt aenenaes 24-2
Table 24-2 FOrmMat Of ACCESS RIGNTSot e et 24-4
Table 24-3. Format of Interruptibility State.o s 24-5
Table 24-4. Format of Pending-Debug-EXCePtioNS e e 24-6
Table 24-5. Definitions of Pin-Based VM-EXeCUtion CONTrolS.v vt e e 24-8
Table 24-6. Definitions of Primary Processor-Based VM-Execution CONtrolS.vviiii it iinneianas 24-9
Table 24-7. Definitions of Secondary Processor-Based VM-Execution CoNtrolsc.cvvviiiiiiiiiiiiiiiiii i eannss 24-10
Table 24-8. Format of Extended-Page-Table Pointer. e e 24-13
Table 24-9. Definitions of VM-FUNCLION CONTIOISo vttt e e e s 24-14
Table 24-10. Definitions Of VM-EXit CONMTIOIS. . ..ottt e e e e e e e 24-15
B o] (S e O o T = o= N Y R 24-16
Table 24-12. Definitions 0f VM-ENTry COntrolS . ..o .oui ittt e e e e e 24-16
Table 24-13. Format of the VM-Entry Interruption-Information Field e 24-18
Table 24-T4. FOrmat Of EXit REESOM. ...ttt ettt et e et e e 24-19
Table 24-15. Format of the VM-Exit Interruption-Information Field.ot e 24-20
Table 24-16. Format of the IDT-Vectoring Information Field ... e 24-20
Table 24-17. Structure of VMCS Component ENCOING. vv vttt ettt e et eaens 24-22
Table 27-1. Exit Qualification for DEDUG EXCEPTIONS. . vttt ettt e e e e s e 27-4
Table 27-2. Exit Qualification for Task SWITCNot e 27-5
Table 27-3. Exit Qualification for CONtrol-REGISTEr ACCESSES. . . vttt ettt ettt et et aanas 27-6
Table 27-5. Exit Qualification for /O INSTIUCTIONS v vttt e e e e 27-7
Table 27-4. EXit QUAlIfICation TOr MOV DR ...ttt e e e e e e e 27-7
Table 27-6. Exit Qualification for APIC-Access VM Exits from Linear Accesses and Guest-Physical Accesses................. 27-8
Table 27-7. Exit Qualification for EPT Violationso.vu i e 27-9
Table 27-9. Format of the VM-Exit Instruction-Information Field as Used for INVEPT, INVPCID, and INVVPID............... 27-14
Table 27-8. Format of the VM-Exit Instruction-Information Field as Used for INSand OUTS ..o, 27-14
Table 27-10. Format of the VM-Exit Instruction-Information Field as Used for LIDT, LGDT, SIDT, or SGDT................t... 27-15
Table 27-11. Format of the VM-Exit Instruction-Information Field as Used for LLDT, LTR, SLDT,and STR.................... 27-16
Table 27-13. Format of the VM-Exit Instruction-Information Field as Used for VMCLEAR, VMPTRLD, VMPTRST, and VMXON . 27-18
Table 27-12. Format of the VM-Exit Instruction-Information Field as Used for RDRANDovviiiiiiiiiiniinnnenn, 27-18
Table 27-14. Format of the VM-Exit Instruction-Information Field as Used for VMREAD and VMWRITE...................... 27-19
Table 28-1. Format of an EPT PMLA ENtry (PMULAE) ..o oottt e 28-3
Table 28-2. Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that Maps a 1-GBytePage 28-4
Table 28-4. Format of an EPT Page-Directory Entry (PDE) that Maps a 2-MByte Page.ovviviiiiiii i 28-5
Table 28-3. Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that References an EPT Page Directory......... 28-5
Table 28-5. Format of an EPT Page-Directory Entry (PDE) that References an EPT Page Table..............ccoovvvviinnnnn 28-6
Table 28-6. Format of an EPT Page-Table BNty e e et et 28-7
Table 29-1. Format of Posted-INterrUpt DeSCriplOr. .. .ot e e e e 29-13
Table 30-1. VM-INsStruction Error NUMDETS.ot e e e 30-30
Table 31-1. Operating Modes for Host and Guest ENVIFONMENTSouiriii et ie i ieeees 31-12
Table 34-T. SMRAM STaT8 SAVE MaD ..ottt ittt e ettt e e s 34-5
Table 34-2. Processor Signatures and 64-bit SMRAM State Save Map FOrmat.ov v e 34-6
Table 34-3. SMRAM State Save Map for Intel 64 ArChiteCtUreooii ettt e it 34-7
Table 34-4. Processor Register Initialization in SMM. i 34-10
Table 34-5. I/0 Instruction Information in the SMM State Save Mapvvvii it e e 34-12
Table 34-6. 1/0 INStrUCtion TYPE ENCOMINGS . ..o ottt ettt e e et e ettt et et e 34-12
Table 34-7. AUTO HALT Restart FIag ValUesottt e e e e e et eaens 34-14
Table 34-8. I/0 Instruction Restart FIield ValUes.o v ot e 34-16
Table 34-9. Exit Qualification for SMIs That Arrive Immediately After the Retirement of an I/0 Instruction................. 34-21
Table 34-T0. FOrmat Of MSEG HEAAET\ v vttt ettt e e e et e e e e e e ee s 34-25
Table 35-1. CPUID Signature Values of DisplayFamily_DisplayModelooiuiiiiiiiii it 35-1
Table 35-2. IA-32 ArChItECIUrAl MSRS . . ottt e e e e 35-2
Table 35-3. MSRs in Processors Based on Intel® Core™ MicroarChitecture. . ..o vv v vt 35-28
Table 35-4. MSRs in Intel® Atom™ Processor Family ... v e 35-42
Table 35-5. MSRs Supported by Intel® Atom™ Processors with CPUID Signature 06_27Hcoviviiiiiiiiinnnnns, 35-52
Table 35-6. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem.oocvviiiiiii i, 35-53
Table 35-7. Additional MSRs in Intel® Xeon® Processor 5500 and 3400 SEMES vvvvrviiiti e iieienenns 35-69
Table 35-8. Additional MSRs in Intel® Xeon® Processor 7500 Semies ... vvuvvr ittt 35-70
Table 35-9. Additional MSRs Supported by Intel Processors (Based on Intel® Microarchitecture Code Name Westmere) 35-85
Table 35-10. Additional MSRs Supported by Intel® Xeon® Processor E7 Familyoviiiiiiiii i 35-86

Vol. 3A XXXVii

CONTENTS

Table 35-11.
Table 35-12.

Table 35-13.
Table 35-14.
Table 35-15.

Table 35-16.
Table 35-17.
Table 35-18.
Table 35-19.
Table 35-20.
Table 35-21.
Table 35-22.
Table A-1.
Table B-1.
Table B-2.
Table B-3.
Table B-4.
Table B-5.
Table B-6.
Table B-7.
Table B-8.
Table B-9.
Table B-10.
Table B-11.
Table B-13.
Table B-14.
Table B-12.
Table B-15.
Table C-1.

XxXviii Vol. 3A

MSRs Supported by Intel® Processors Based on Intel® Microarchitecture Code Name Sandy Bridge.............. 35-87
MSRs Supported by Second Generation Intel® Core™ Processors (Intel® Microarchitecture Code Name Sandy

2T 0 35-103
Selected MSRs Supported by Intel® Xeon® Processors E5 Family (Based on Intel® Microarchitecture Code Name

SANAY BriGE) ..ot s 35-106
Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (Based on Intel® Microarchitecture Code

NME VY BIIAGE) . oottt e e e 35-109
Additional MSRs Supported by Next Generation Intel® Core™ Processors (Based on Intel® Microarchitecture

Code NamME HasWeEIL)t e e e e e e e e 35-111
MSRs in the Pentium® 4 and INtel® XE0N® PrOCESSOIS. .. v\ttt et ettt et e et et es 35-112
MSRs Unique to 64-bit Intel® Xeon® Processor MP withUptoan8MB L3 Cache............ovvvvviiinnns, 35-136
MSRs Unique to Intel Xeon Processor 7100 SEries ...ttt ittt 35-137
MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV............. 35-138
MSRS N PENTIUM M PrOCESSOMS vttt ettt et ettt e et e e e e e e s 35-147
MSRS iN The P Family PrOCESS OIS . v ittt ittt ettt ettt ettt ittt aeas 35-154
MSRS N the PentiUm PrOCESSOT. . v\ vttt ettt ettt e ettt e e e e 35-162
MemOory TYPES USEA FOr VMES ACCESS .« . vttt vttt ettt ettt e ettt ettt a e A-1
€ncoding for 16-Bit Control Fields (0000_00XX_XXXX_XXXOB)\ vuir ittt B-1
Encodings for 16-Bit Guest-State Fields (0000_TOXX_XXXX_XXXOB).vvviririiini i B-1
Encodings for 16-Bit Host-State Fields (0000_11TXX_XXXX_XXXOB). \uviuitiiiiii it ei i it eiaaanes B-2
Encodings for 64-Bit Control Fields (00T0_00XX_XXXX_XXXAD) . v u vttt B-2
Encodings for 64-Bit Read-Only Data Field (00TO_O0TXX_XXXX_XXXAD) ...t \ vttt eneineiniiennens B-4
Encodings for 64-Bit Guest-State Fields (00T0_TOXX_XXXX_XXXAD). . ..\ vuurittttii it nenei i eieieaenas B-4
Encodings for 64-Bit Host-State Fields (00T0_TTXX_XXXX_XXXAD). . .\t vu ittt it B-5
€ncodings for 32-Bit Control Fields (0T00_00XX_XXXX_XXXOB) vuttttttteineiei e eneneinaiannens B-5
Encodings for 32-Bit Read-Only Data Fields (0100_07TXX_XXXX_XXXOB) uuiririiiiiiiiiiiieieieinnnnns B-6
Encodings for 32-Bit Guest-State Fields (0T00_TOXX_XXXX_XXXOB).vuviriuiiiiii it B-6
Encoding for 32-Bit Host-State Field (0TO0_TTXX_XXXX_XXXOB). \vuvit ettt B-7
Encodings for Natural-Width Read-Only Data Fields (0110_07TXX_XXXX_XXXOB).vuviiiiiiiiiiiiinnnnnnns B-8
€ncodings for Natural-Width Guest-State Fields (07 T0_TOXX_XXXX_XXXO0B)covviviiiiiiiiiiiiiii s B-8
Encodings for Natural-Width Control Fields (0T 10_00XX_XXXX_XXXOB). ...\ vututtrnitiieiiineneneiniiannns B-8
Encodings for Natural-Width Host-State Fields (01 T0_TTXX_XXXX_XXXO0B)oiviiiiiiiiiiiiiiiieiennnns B-9
5 T (ol == Ko C-1

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A: System Programming Guide,
Part 1 (order number 253668), the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3B:
System Programming Guide, Part 2 (order number 253669) and the Intel® 64 and I1A-32 Architectures Software
Developer’s Manual, Volume 3C: System Programming Guide, Part 3 (order number 326019) are part of a set that
describes the architecture and programming environment of Intel 64 and 1A-32 Architecture processors. The other
volumes in this set are:

® Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (order number
253665).

® Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B & 2C: Instruction Set
Reference (order numbers 253666, 253667 and 326018).

The Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture
and programming environment of Intel 64 and 1A-32 processors. The Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volumes 2A, 2B & 2C, describe the instruction set of the processor and the opcode structure.
These volumes apply to application programmers and to programmers who write operating systems or executives.
The Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volumes 3A, 3B & 3C, describe the oper-
ating-system support environment of Intel 64 and 1A-32 processors. These volumes target operating-system and
BIOS designers. In addition, Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, and
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3C address the programming environ-
ment for classes of software that host operating systems.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64 and 1A-32 processors, which
include:

* Ppentium® processors

® P6 family processors

* pentium® 4 processors

* pentium®M processors

* Intel® Xeon® processors

* pentium®D processors

® pentium® processor Extreme Editions

® 64-bit Intel® Xeon® processors

®* Intel® Core™ Duo processor

* Intel® Core™ Solo processor

® Dual-Core Intel® Xeon® processor LV

* Intel® Core™2 Duo processor

®* Intel® Core™2 Quad processor Q6000 series
* Intel® Xeon® processor 3000, 3200 series

* Intel® Xeon® processor 5000 series

* Intel® Xeon® processor 5100, 5300 series

® Intel® Core™2 Extreme processor X7000 and X6800 series
* Intel® Core™2 Extreme QX6000 series

* Intel® Xeon® processor 7100 series

Vol. 3A 1-1

ABOUT THIS MANUAL

* Intel® Pentium® Dual-Core processor

* Intel® Xeon® processor 7200, 7300 series

® Intel® Core™2 Extreme QX9000 series

* Intel® Xeon® processor 5200, 5400, 7400 series

* Intel® Core™2 Extreme processor QX9000 and X9000 series

® Intel® Core™2 Quad processor Q9000 series

* Intel® Core™2 Duo processor EB000, T9000 series

* Intel® Atom™ processor family

* Intel® Core™ i7 processor

® Intel® Core™i5 processor

* Intel® Xeon® processor E7-8800/4800/2800 product families

* Intel® Xeon® processor E5 family

* Intel® Xeon® processor E3-1200 family

® Intel® Core™ i7-3930K processor

® 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
* Intel® Xeon® processor E3-1200 v2 product family

® 3rd generation Intel® Core™ processors

® Next generation Intel® Core™ processors

P6 family processors are 1A-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® 11, Pentium® I, and Pentium® Il Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® microar-
chitecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad and Intel® Core™2 Extreme processors are based on Intel® Core™ microarchi-
tecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor ES000 series are based on Enhanced
Intel® Core™ microarchitecture.

The Intel® Atom™ processor family is based on the Intel® Atom™ microarchitecture and supports Intel 64 archi-
tecture.

The Intel® Core™i7 processor and the Intel® Core™i5 processor are based on the Intel® microarchitecture code
name Nehalem and support Intel 64 architecture.

Processors based on Intel® microarchitecture code name Westmere support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Core™ i7-3930K processor, 2nd generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code name Sandy
Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v2 product family and 3rd generation Intel® Core™ processors are based on
the Intel® microarchitecture code name Ivy Bridge and support Intel 64 architecture.

The Next Generation Intel® Core™ processors are based on the Intel® microarchitecture code name Haswell and
support Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support 1A-32 architecture. The Intel® Atom™
processor Z5xx series support 1A-32 architecture.

1-2 Vol.3A

ABOUT THIS MANUAL

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors, Pentium®
Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architec-
ture.

I1A-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit microproces-
sors. Intel® 64 architecture is the instruction set architecture and programming environment which is a superset
of and compatible with 1A-32 architecture.

1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE

A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all seven volumes of the Intel® 64 and I1A-32 Architec-
tures Software Developer’s Manual. It also describes the notational conventions in these manuals and lists related
Intel manuals and documentation of interest to programmers and hardware designers.

Chapter 2 — System Architecture Overview. Describes the modes of operation used by Intel 64 and 1A-32
processors and the mechanisms provided by the architectures to support operating systems and executives,
including the system-oriented registers and data structures and the system-oriented instructions. The steps
necessary for switching between real-address and protected modes are also identified.

Chapter 3 — Protected-Mode Memory Management. Describes the data structures, registers, and instructions
that support segmentation and paging. The chapter explains how they can be used to implement a “flat” (unseg-
mented) memory model or a segmented memory model.

Chapter 4 — Paging. Describes the paging modes supported by Intel 64 and 1A-32 processors.

Chapter 5 — Protection. Describes the support for page and segment protection provided in the Intel 64 and 1A-
32 architectures. This chapter also explains the implementation of privilege rules, stack switching, pointer valida-
tion, user and supervisor modes.

Chapter 6 — Interrupt and Exception Handling. Describes the basic interrupt mechanisms defined in the Intel
64 and 1A-32 architectures, shows how interrupts and exceptions relate to protection, and describes how the archi-
tecture handles each exception type. Reference information for each exception is given in this chapter. Includes
programming the LINTO and LINT1 inputs and gives an example of how to program the LINTO and LINT1 pins for
specific interrupt vectors.

Chapter 7 — Task Management. Describes mechanisms the Intel 64 and 1A-32 architectures provide to support
multitasking and inter-task protection.

Chapter 8 — Multiple-Processor Management. Describes the instructions and flags that support multiple
processors with shared memory, memory ordering, and Intel® Hyper-Threading Technology. Includes MP initializa-
tion for P6 family processors and gives an example of how to use of the MP protocol to boot P6 family processors in
an MP system.

Chapter 9 — Processor Management and Initialization. Defines the state of an Intel 64 or 1A-32 processor
after reset initialization. This chapter also explains how to set up an Intel 64 or 1A-32 processor for real-address
mode operation and protected- mode operation, and how to switch between modes.

Chapter 10 — Advanced Programmable Interrupt Controller (APIC). Describes the programming interface
to the local APIC and gives an overview of the interface between the local APIC and the 1/0 APIC. Includes APIC bus
message formats and describes the message formats for messages transmitted on the APIC bus for P6 family and
Pentium processors.

Chapter 11 — Memory Cache Control. Describes the general concept of caching and the caching mechanisms
supported by the Intel 64 or I1A-32 architectures. This chapter also describes the memory type range registers
(MTRRs) and how they can be used to map memory types of physical memory. Information on using the new cache
control and memory streaming instructions introduced with the Pentium Ill, Pentium 4, and Intel Xeon processors
is also given.

Chapter 12 — Intel® MMX™ Technology System Programming. Describes those aspects of the Intel® MMX™
technology that must be handled and considered at the system programming level, including: task switching,
exception handling, and compatibility with existing system environments.

Vol.3A 1-3

ABOUT THIS MANUAL

Chapter 13 — System Programming For Instruction Set Extensions And Processor Extended States.
Describes the operating system requirements to support SSE/SSE2/SSE3/SSSE3/SSE4 extensions, including task
switching, exception handling, and compatibility with existing system environments. The latter part of this chapter
describes the extensible framework of operating system requirements to support processor extended states.
Processor extended state may be required by instruction set extensions beyond those of
SSE/SSE2/SSE3/SSSE3/SSE4 extensions.

Chapter 14 — Power and Thermal Management. Describes facilities of Intel 64 and 1A-32 architecture used for
power management and thermal monitoring.

Chapter 15 — Machine-Check Architecture. Describes the machine-check architecture and machine-
check exception mechanism found in the Pentium 4, Intel Xeon, and P6 family processors. Additionally,
a signaling mechanism for software to respond to hardware corrected machine check error is covered.

Chapter 16 — Interpreting Machine-Check Error Codes. Gives an example of how to interpret the error codes
for a machine-check error that occurred on a P6 family processor.

Chapter 17 — Debugging, Branch Profiles and Time-Stamp Counter. Describes the debugging registers and
other debug mechanism provided in Intel 64 or 1A-32 processors. This chapter also describes the time-stamp
counter.

Chapter 18 — Performance Monitoring. Describes the Intel 64 and 1A-32 architectures’ facilities for monitoring
performance.

Chapter 19 — Performance-Monitoring Events. Lists architectural performance events. Non-architectural
performance events (i.e. model-specific events) are listed for each generation of microarchitecture.

Chapter 20 — 8086 Emulation. Describes the real-address and virtual-8086 modes of the 1A-32 architecture.

Chapter 21 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and 32-bit code modules within the
same program or task.

Chapter 22 — 1A-32 Architecture Compatibility. Describes architectural compatibility among 1A-32 proces-
sors.

Chapter 23 — Introduction to Virtual-Machine Extensions. Describes the basic elements of virtual machine
architecture and the virtual-machine extensions for Intel 64 and 1A-32 Architectures.

Chapter 24 — Virtual-Machine Control Structures. Describes components that manage VMX operation. These
include the working-VMCS pointer and the controlling-VMCS pointer.

Chapter 25 — VMX Non-Root Operation. Describes the operation of a VMX non-root operation. Processor oper-
ation in VMX non-root mode can be restricted programmatically such that certain operations, events or conditions
can cause the processor to transfer control from the guest (running in VMX non-root mode) to the monitor software
(running in VMX root mode).

Chapter 26 — VM Entries. Describes VM entries. VM entry transitions the processor from the VMM running in VMX
root-mode to a VM running in VMX non-root mode. VM-Entry is performed by the execution of VMLAUNCH or VMRE-
SUME instructions.

Chapter 27 — VM Exits. Describes VM exits. Certain events, operations or situations while the processor is in VMX
non-root operation may cause VM-exit transitions. In addition, VM exits can also occur on failed VM entries.

Chapter 28 — VMX Support for Address Translation. Describes virtual-machine extensions that support
address translation and the virtualization of physical memory.

Chapter 29 — APIC Virtualization and Virtual Interrupts. Describes the VMCS including controls that enable
the virtualization of interrupts and the Advanced Programmable Interrupt Controller (APIC).

Chapter 30 — VMX Instruction Reference. Describes the virtual-machine extensions (VMX). VMX is intended
for a system executive to support virtualization of processor hardware and a system software layer acting as a host
to multiple guest software environments.

Chapter 31 — Virtual-Machine Monitoring Programming Considerations. Describes programming consider-
ations for VMMs. VMMs manage virtual machines (VMs).

Chapter 32 — Virtualization of System Resources. Describes the virtualization of the system resources. These
include: debugging facilities, address translation, physical memory, and microcode update facilities.

1-4 Vol. 3A

ABOUT THIS MANUAL

Chapter 33 — Handling Boundary Conditions in a Virtual Machine Monitor. Describes what a VMM must
consider when handling exceptions, interrupts, error conditions, and transitions between activity states.

Chapter 34 — System Management Mode. Describes Intel 64 and 1A-32 architectures’ system management
mode (SMM) facilities.

Chapter 35 — Model-Specific Registers (MSRs). Lists the MSRs available in the Pentium processors, the P6
family processors, the Pentium 4, Intel Xeon, Intel Core Solo, Intel Core Duo processors, and Intel Core 2
processor family and describes their functions.

Appendix A — VMX Capability Reporting Facility. Describes the VMX capability MSRs. Support for specific VMX
features is determined by reading capability MSRs.

Appendix B — Field Encoding in VMCS. Enumerates all fields in the VMCS and their encodings. Fields are
grouped by width (16-bit, 32-bit, etc.) and type (guest-state, host-state, etc.).

Appendix C — VM Basic Exit Reasons. Describes the 32-bit fields that encode reasons for a VM exit. Examples
of exit reasons include, but are not limited to: software interrupts, processor exceptions, software traps, NMIs,
external interrupts, and triple faults.

1.3 NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic representation of instructions, and for
hexadecimal and binary numbers. A review of this notation makes the manual easier to read.

1.3.1 Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the bottom of the figure; addresses
increase toward the top. Bit positions are numbered from right to left. The numerical value of a set bit is equal to

two raised to the power of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this means
the bytes of a word are numbered starting from the least significant byte. Figure 1-1 illustrates these conventions.

1.3.2 Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When bits are marked as
reserved, it is essential for compatibility with future processors that software treat these bits as having a future,
though unknown, effect. The behavior of reserved bits should be regarded as not only undefined, but unpredict-
able. Software should follow these guidelines in dealing with reserved bits:

® Do not depend on the states of any reserved bits when testing the values of registers which contain such bits.
Mask out the reserved bits before testing.

® Do not depend on the states of any reserved bits when storing to memory or to a register.
¢ Do not depend on the ability to retain information written into any reserved bits.

® When loading a register, always load the reserved bits with the values indicated in the documentation, if any,
or reload them with values previously read from the same register.

NOTE

Avoid any software dependence upon the state of reserved bits in Intel 64 and IA-32 registers.
Depending upon the values of reserved register bits will make software dependent upon the
unspecified manner in which the processor handles these bits. Programs that depend upon
reserved values risk incompatibility with future processors.

Vol.3A 1-5

ABOUT THIS MANUAL

Data Structure
31 24 23 16 15 8 7 0 -«— Bit offset
28
24
20
16
12
8
4
Byte 3 Byte 2 Byte 1 ByteO | O

)

Byte Offset

Highest
Address

Lowest
Address

Figure 1-1. Bit and Byte Order

1.3.3 Instruction Operands

When instructions are represented symbolically, a subset of assembly language is used. In this subset, an instruc-
tion has the following format:
label: mnemonic argument1, argument2, argument3
where:
® A label is an identifier which is followed by a colon.
® A mnemonic is a reserved name for a class of instruction opcodes which have the same function.

® The operands argumentl, argument2, and argument3 are optional. There may be from zero to three
operands, depending on the opcode. When present, they take the form of either literals or identifiers for data
items. Operand identifiers are either reserved names of registers or are assumed to be assigned to data items
declared in another part of the program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the source and the left
operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is the destination operand,
and SUBTOTAL is the source operand. Some assembly languages put the source and destination in reverse order.

1.3.4 Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by the character H (for
example, F82EH). A hexadecimal digit is a character from the following set: 0, 1, 2, 3,4, 5,6, 7,8, 9, A, B, C, D,
E, and F

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the character B (for
example, 1010B). The “B” designation is only used in situations where confusion as to the type of number might
arise.

1.3.5 Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a sequence of bytes.
Whether one or more bytes are being accessed, a byte address is used to locate the byte or bytes memory. The
range of memory that can be addressed is called an address space.

1-6 Vol. 3A

ABOUT THIS MANUAL

The processor also supports segmented addressing. This is a form of addressing where a program may have many
independent address spaces, called segments. For example, a program can keep its code (instructions) and stack
in separate segments. Code addresses would always refer to the code space, and stack addresses would always
refer to the stack space. The following notation is used to specify a byte address within a segment:

Segment-register:Byte-address
For example, the following segment address identifies the byte at address FF79H in the segment pointed by the DS
register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS register points to the
code segment and the EIP register contains the address of the instruction.

CSEIP

1.3.6 Syntax for CPUID, CR, and MSR Values

Obtain feature flags, status, and system information by using the CPUID instruction, by checking control register
bits, and by reading model-specific registers. We are moving toward a single syntax to represent this type of infor-
mation. See Figure 1-2.

Syntax Representation for CPUID Input and Output
CPUID.01H : ECX.SSE [bit 25] =1

v

Input value for EAX defines output

(NOTE: Some leaves require input values for
EAX and ECX. If only one value is present,
EAX is implied.)

Output register and feature flag or
field name with bit position(s)

Value (or range) of output

For Control Register Values
CR4.0SFXSRIbit 9] = 1

Example CR name i

Feature flag or field name
with bit position(s)

Value (or range) of output
For Model-Specific Register Values
IA32_MISC_ENABLES.ENABLEFOPCODE(bit 2] = 1

Example MSR name i
Feature flag or field name with bit position(s)

Value (or range) of output

OM17732

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation

Vol.3A 1-7

ABOUT THIS MANUAL

1.3.7 Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example, an attempt to
divide by zero generates an exception. However, some exceptions, such as breakpoints, occur under other condi-
tions. Some types of exceptions may provide error codes. An error code reports additional information about the
error. An example of the notation used to show an exception and error code is shown below:

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a type of fault is
reported. Under some conditions, exceptions which produce error codes may not be able to report an accurate
code. In this case, the error code is zero, as shown below for a general-protection exception:

#GP(0)

1.4 RELATED LITERATURE

Literature related to Intel 64 and 1A-32 processors is listed on-line at:
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html.html

Some of the documents listed at this web site can be viewed on-line; others can be ordered. The literature available
is listed by Intel processor and then by the following literature types: applications notes, data sheets, manuals,
papers, and specification updates.

See also:
® The data sheet for a particular Intel 64 or 1A-32 processor
® The specification update for a particular Intel 64 or 1A-32 processor

* Intel® C++ Compiler documentation and online help:
http://software.intel.com/en-us/articles/intel-compilers/

* Intel® Fortran Compiler documentation and online help:
http://software.intel.com/en-us/articles/intel-compilers/

* Intel® VTune™ Performance Analyzer documentation and online help:
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

* Intel® 64 and 1A-32 Architectures Software Developer’s Manual (in three or five volumes):
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html.html

* Intel® 64 and 1A-32 Architectures Optimization Reference Manual:
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-
manual.html

* Intel® Processor Identification with the CPUID Instruction, AP-485:
http://www.intel.com/Assets/PDF/appnote/241618.pdf

® Intel 64 Architecture x2APIC Specification:

http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specifi-
cation.html

® Intel 64 Architecture Processor Topology Enumeration:
http://softwarecommunity.intel.com/articles/eng/3887.htm

* Intel® Trusted Execution Technology Measured Launched Environment Programming Guide:
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html

* Intel® SSE4 Programming Reference: http://edc.intel.com/Link.aspx?id=1630&wapkw=intel® sse4
programming reference

® Developing Multi-threaded Applications: A Platform Consistent Approach:
http://cache-www.intel.com/cd/00/00/05/15/51534 _developing_multithreaded_applications.pdf

1-8 Vol. 3A

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://softwarecommunity.intel.com/articles/eng/3887.htm

ABOUT THIS MANUAL

® Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
http://software.intel.com/en-us/articles/ap949-using-spin-loops-on-intel-pentiumr-4-processor-and-intel-
xeonr-processor/

® Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

More relevant links are:

® Software network link:
http://softwarecommunity.intel.com/isn/home/

® Developer centers:
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm

® Processor support general link:
http://www.intel.com/support/processors/

® Software products and packages:
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

® Intel 64 and 1A-32 processor manuals (printed or PDF downloads):
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html.html

* Intel® Multi-Core Technology:
http://software.intel.com/partner/multicore

* Intel® Hyper-Threading Technology (Intel® HT Technology):
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm

Vol.3A 1-9

http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
http://softwarecommunity.intel.com/isn/home/
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/support/processors/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/technology/hyperthread/

ABOUT THIS MANUAL

1-10 Vol. 3A

CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW

I1A-32 architecture (beginning with the Intel386 processor family) provides extensive support for operating-system
and system-development software. This support offers multiple modes of operation, which include:

® Real mode, protected mode, virtual 8086 mode, and system management mode. These are sometimes
referred to as legacy modes.

Intel 64 architecture supports almost all the system programming facilities available in 1A-32 architecture and
extends them to a new operating mode (I1A-32e mode) that supports a 64-bit programming environment. 1A-32e
mode allows software to operate in one of two sub-modes:

® 64-bit mode supports 64-bit OS and 64-bit applications

® Compatibility mode allows most legacy software to run; it co-exists with 64-bit applications under a 64-bit OS.
The 1A-32 system-level architecture and includes features to assist in the following operations:
¢ Memory management

® Protection of software modules

® Multitasking

® Exception and interrupt handling

® Multiprocessing

® Cache management

® Hardware resource and power management

® Debugging and performance monitoring

This chapter provides a description of each part of this architecture. It also describes the system registers that are
used to set up and control the processor at the system level and gives a brief overview of the processor’s system-
level (operating system) instructions.

Many features of the system-level architectural are used only by system programmers. However, application
programmers may need to read this chapter and the following chapters in order to create a reliable and secure
environment for application programs.

This overview and most subsequent chapters of this book focus on protected-mode operation of the 1A-32 architec-
ture. 1A-32e mode operation of the Intel 64 architecture, as it differs from protected mode operation, is also
described.

All Intel 64 and 1A-32 processors enter real-address mode following a power-up or reset (see Chapter 9, “Processor
Management and Initialization™). Software then initiates the switch from real-address mode to protected mode. If
IA-32e mode operation is desired, software also initiates a switch from protected mode to 1A-32e mode.

2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE

System-level architecture consists of a set of registers, data structures, and instructions designed to support basic
system-level operations such as memory management, interrupt and exception handling, task management, and
control of multiple processors.

Figure 2-1 provides a summary of system registers and data structures that applies to 32-bit modes. System regis-
ters and data structures that apply to 1A-32e mode are shown in Figure 2-2.

Vol. 3A 2-1

SYSTEM ARCHITECTURE OVERVIEW

2-2 Vol. 3A

\j

EFLAGS Register Physical Address Code, Data or
- Linear Address Stack Segment
Control Registers e Task-State
ggg _Sgg_m_erlSelector =Segment_(T_S§) Task
- — Cod
CR2 R
CR1 . =Data
- CRO Global Descriptor Stack
Task Register Table (GDT)
[Segment Sel. | - »| Seg. Desc. | Irgerrupt Handler
| Code |
Current- — »
Interrupt TSS Seg. Sel.| — »| TSS Desc. TSS L Stack
Vector
) - — - - > Seg. Desc.
Interrupt Descriptor | Task-State
Table (IDT) - — »| TSS Desc. Segment (TSS) > Task
[-1 Code
Interrupt Gate| - — » | LDT Desc. |— "~ T Daa
| - = >
Task Gate | - - - - B Stack
GDTR
> Trap Gate |- -~ .
! Local Descriptor Exception Handler
. Table (LDT) *TCode |
| Current- — » Stack
IDTR Call-Gate - »| Seg. Desc. TSS L
Segment Selector
| |- >| CallGate B 1 Protected Procedure
“““ Cod
XCRO (XFEM) LDTR | Current- — »—
TSS |_ Stack
Linear Address Space Linear Address
J—>l Dir | Table Offset |
Linear Addr. Page Directory Page Table Page

Physical Addr.

0

Pg. Dir. Entry Pg. Tbl. Entry
> —|—> —|—>

' This page mapping example is for 4-KByte pages

*Physical Address

and the normal 32-bit physical address size.

Figure 2-1. IA-32 System-Level Registers and Data Structures

SYSTEM ARCHITECTURE OVERVIEW

RFLAGS

> Trap Gate |- -~

|
Lo— —

A el

i —
_Pt]){s_lc_aI}Address Code, Data or Stack

Control Register Linear Address Segment (Base =0)

CR8 Task-State

CR4 Segment Selector Segment (TSS)

CR3 Rl >

CR2

CR1

- CRO Global Descriptor
Task Register Table (GDT)
|Segment Sel. F - »! Seg. Desc. |— Irgelrrupt Handler
NULL - — »code]
Interrupt TR } - »| TSS Desc. Stack
Vector
. - - - - > Seg. Desc.
Interrupt Descriptor |
Table (IDT) | — »| Seg.Desc. | Interr. Handler
- — > e
h Code
Interrupt Gate - — — | LDT Desc. Current TSS
[

Interrupt Gate | - - Stack

Local Descriptor

Exception Handler

Table (LDT)

Linear Address Space

Linear Address

T Code |

N NULL
| Stack
IDTR Call-Gate - »| Seg. Desc. L
Segment Selector
| b-> CallGate | |-) Protected Procedure
XCRO (XFEM) IDTR |< _ oode

|_ Stack

*Physical Address

J—H PML4 | Dir. Pointer | Directory | Table [Offset |
Linear Addr. . .
PML4 Pg. Dir. Ptr.| Page Dir. Page Table Page
Physical
PMLA4. Pg. Dir. Page Thl Addr.
Entry Entry Entry
>
o This page mapping example is for 4-KByte pages
and 40-bit physical address size.

Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode

Global and Local Descriptor Tables

When operating in protected mode, all memory accesses pass through either the global descriptor table (GDT) or
an optional local descriptor table (LDT) as shown in Figure 2-1. These tables contain entries called segment

descriptors. Segment descriptors provide the base address of segments well as access rights, type, and usage
information.

Each segment descriptor has an associated segment selector. A segment selector provides the software that uses
it with an index into the GDT or LDT (the offset of its associated segment descriptor), a global/local flag (deter-
mines whether the selector points to the GDT or the LDT), and access rights information.

Vol. 3A 2-3

SYSTEM ARCHITECTURE OVERVIEW

To access a byte in a segment, a segment selector and an offset must be supplied. The segment selector provides
access to the segment descriptor for the segment (in the GDT or LDT). From the segment descriptor, the processor
obtains the base address of the segment in the linear address space. The offset then provides the location of the
byte relative to the base address. This mechanism can be used to access any valid code, data, or stack segment,
provided the segment is accessible from the current privilege level (CPL) at which the processor is operating. The
CPL is defined as the protection level of the currently executing code segment.

See Figure 2-1. The solid arrows in the figure indicate a linear address, dashed lines indicate a segment selector,
and the dotted arrows indicate a physical address. For simplicity, many of the segment selectors are shown as
direct pointers to a segment. However, the actual path from a segment selector to its associated segment is always
through a GDT or LDT.

The linear address of the base of the GDT is contained in the GDT register (GDTR); the linear address of the LDT is
contained in the LDT register (LDTR).

2.1.1.1 Global and Local Descriptor Tables in IA-32e Mode

GDTR and LDTR registers are expanded to 64-bits wide in both 1A-32e sub-modes (64-bit mode and compatibility
mode). For more information: see Section 3.5.2, “Segment Descriptor Tables in 1A-32e Mode.”

Global and local descriptor tables are expanded in 64-bit mode to support 64-bit base addresses, (16-byte LDT
descriptors hold a 64-bit base address and various attributes). In compatibility mode, descriptors are not
expanded.

2.1.2 System Segments, Segment Descriptors, and Gates

Besides code, data, and stack segments that make up the execution environment of a program or procedure, the
architecture defines two system segments: the task-state segment (TSS) and the LDT. The GDT is not considered
a segment because it is not accessed by means of a segment selector and segment descriptor. TSSs and LDTs have
segment descriptors defined for them.

The architecture also defines a set of special descriptors called gates (call gates, interrupt gates, trap gates, and
task gates). These provide protected gateways to system procedures and handlers that may operate at a different
privilege level than application programs and most procedures. For example, a CALL to a call gate can provide
access to a procedure in a code segment that is at the same or a numerically lower privilege level (more privileged)
than the current code segment. To access a procedure through a call gate, the calling procedure® supplies the
selector for the call gate. The processor then performs an access rights check on the call gate, comparing the CPL
with the privilege level of the call gate and the destination code segment pointed to by the call gate.

If access to the destination code segment is allowed, the processor gets the segment selector for the destination
code segment and an offset into that code segment from the call gate. If the call requires a change in privilege
level, the processor also switches to the stack for the targeted privilege level. The segment selector for the new
stack is obtained from the TSS for the currently running task. Gates also facilitate transitions between 16-bit and
32-bit code segments, and vice versa.

2.1.2.1 Gates in IA-32e Mode

In 1A-32e mode, the following descriptors are 16-byte descriptors (expanded to allow a 64-bit base): LDT descrip-
tors, 64-bit TSSs, call gates, interrupt gates, and trap gates.

Call gates facilitate transitions between 64-bit mode and compatibility mode. Task gates are not supported in 1A-
32e mode. On privilege level changes, stack segment selectors are not read from the TSS. Instead, they are set to
NULL.

1. The word “procedure” is commonly used in this document as a general term for a logical unit or block of code (such as a program, pro-
cedure, function, or routine).

2-4 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

2.1.3 Task-State Segments and Task Gates

The TSS (see Figure 2-1) defines the state of the execution environment for a task. It includes the state of general-
purpose registers, segment registers, the EFLAGS register, the EIP register, and segment selectors with stack
pointers for three stack segments (one stack for each privilege level). The TSS also includes the segment selector
for the LDT associated with the task and the base address of the paging-structure hierarchy.

All program execution in protected mode happens within the context of a task (called the current task). The
segment selector for the TSS for the current task is stored in the task register. The simplest method for switching
to a task is to make a call or jump to the new task. Here, the segment selector for the TSS of the new task is given
in the CALL or JMP instruction. In switching tasks, the processor performs the following actions:

Stores the state of the current task in the current TSS.

2. Loads the task register with the segment selector for the new task.
3. Accesses the new TSS through a segment descriptor in the GDT.
4. Loads the state of the new task from the new TSS into the general-purpose registers, the segment registers,

the LDTR, control register CR3 (base address of the paging-structure hierarchy), the EFLAGS register, and the
EIP register.

5. Begins execution of the new task.

A task can also be accessed through a task gate. A task gate is similar to a call gate, except that it provides access
(through a segment selector) to a TSS rather than a code segment.

2.1.3.1 Task-State Segments in IA-32e Mode

Hardware task switches are not supported in 1A-32e mode. However, TSSs continue to exist. The base address of
a TSS is specified by its descriptor.

A 64-bit TSS holds the following information that is important to 64-bit operation:
® Stack pointer addresses for each privilege level

® Pointer addresses for the interrupt stack table

® Offset address of the 10-permission bitmap (from the TSS base)

The task register is expanded to hold 64-bit base addresses in 1A-32e mode. See also: Section 7.7, “Task Manage-
ment in 64-bit Mode.”

2.1.4 Interrupt and Exception Handling

External interrupts, software interrupts and exceptions are handled through the interrupt descriptor table (IDT).
The IDT stores a collection of gate descriptors that provide access to interrupt and exception handlers. Like the
GDT, the IDT is not a segment. The linear address for the base of the IDT is contained in the IDT register (IDTR).

Gate descriptors in the IDT can be interrupt, trap, or task gate descriptors. To access an interrupt or exception
handler, the processor first receives an interrupt vector (interrupt number) from internal hardware, an external
interrupt controller, or from software by means of an INT, INTO, INT 3, or BOUND instruction. The interrupt vector
provides an index into the IDT. If the selected gate descriptor is an interrupt gate or a trap gate, the associated
handler procedure is accessed in a manner similar to calling a procedure through a call gate. If the descriptor is a
task gate, the handler is accessed through a task switch.

2.1.4.1 Interrupt and Exception Handling IA-32e Mode

In 1A-32e mode, interrupt descriptors are expanded to 16 bytes to support 64-bit base addresses. This is true for
64-bit mode and compatibility mode.

The IDTR register is expanded to hold a 64-bit base address. Task gates are not supported.

Vol. 3A 2-5

SYSTEM ARCHITECTURE OVERVIEW

2.1.5 Memory Management

System architecture supports either direct physical addressing of memory or virtual memory (through paging).
When physical addressing is used, a linear address is treated as a physical address. When paging is used: all code,
data, stack, and system segments (including the GDT and IDT) can be paged with only the most recently accessed
pages being held in physical memory.

The location of pages (sometimes called page frames) in physical memory is contained in the paging structures.
These structures reside in physical memory (see Figure 2-1 for the case of 32-bit paging).

The base physical address of the paging-structure hierarchy is contained in control register CR3. The entries in the
paging structures determine the physical address of the base of a page frame, access rights and memory manage-
ment information.

To use this paging mechanism, a linear address is broken into parts. The parts provide separate offsets into the
paging structures and the page frame. A system can have a single hierarchy of paging structures or several. For
example, each task can have its own hierarchy.

2.1.5.1 Memory Management in IA-32e Mode

In 1A-32e mode, physical memory pages are managed by a set of system data structures. In compatibility mode
and 64-bit mode, four levels of system data structures are used. These include:

® The page map level 4 (PML4) — An entry in a PML4 table contains the physical address of the base of a page
directory pointer table, access rights, and memory management information. The base physical address of the
PML4 is stored in CR3.

® A set of page directory pointer tables — An entry in a page directory pointer table contains the physical
address of the base of a page directory table, access rights, and memory management information.

® Sets of page directories — An entry in a page directory table contains the physical address of the base of a
page table, access rights, and memory management information.

® Sets of page tables — An entry in a page table contains the physical address of a page frame, access rights,
and memory management information.

2.1.6 System Registers

To assist in initializing the processor and controlling system operations, the system architecture provides system
flags in the EFLAGS register and several system registers:

® The system flags and IOPL field in the EFLAGS register control task and mode switching, interrupt handling,
instruction tracing, and access rights. See also: Section 2.3, “System Flags and Fields in the EFLAGS Register.”

® The control registers (CRO, CR2, CR3, and CR4) contain a variety of flags and data fields for controlling system-
level operations. Other flags in these registers are used to indicate support for specific processor capabilities
within the operating system or executive. See also: Section 2.5, “Control Registers.”

® The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for use in debugging programs
and systems software. See also: Chapter 17, “Debugging, Branch Profiling, and Time-Stamp Counter.”

® The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes (limits) of their respective tables.
See also: Section 2.4, “Memory-Management Registers.”

® The task register contains the linear address and size of the TSS for the current task. See also: Section 2.4,
“Memory-Management Registers.”

® Model-specific registers (not shown in Figure 2-1).

The model-specific registers (MSRs) are a group of registers available primarily to operating-system or executive
procedures (that is, code running at privilege level 0). These registers control items such as the debug extensions,
the performance-monitoring counters, the machine- check architecture, and the memory type ranges (MTRRS).

The number and function of these registers varies among different members of the Intel 64 and 1A-32 processor
families. See also: Section 9.4, “Model-Specific Registers (MSRs),” and Chapter 35, “Model-Specific Registers
(MSRs).”

2-6 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

Most systems restrict access to system registers (other than the EFLAGS register) by application programs.
Systems can be designed, however, where all programs and procedures run at the most privileged level (privilege
level 0). In such a case, application programs would be allowed to modify the system registers.

2.1.6.1 System Registers in IA-32e Mode

In 1A-32e mode, the four system-descriptor-table registers (GDTR, IDTR, LDTR, and TR) are expanded in hardware
to hold 64-bit base addresses. EFLAGS becomes the 64-bit RFLAGS register. CRO—CR4 are expanded to 64 bits.
CR8 becomes available. CR8 provides read-write access to the task priority register (TPR) so that the operating
system can control the priority classes of external interrupts.

In 64-bit mode, debug registers DRO—DR7 are 64 bits. In compatibility mode, address-matching in DRO-DR3 is
also done at 64-bit granularity.

On systems that support 1A-32e mode, the extended feature enable register (IA32_EFER) is available. This model-
specific register controls activation of I1A-32e mode and other 1A-32e mode operations. In addition, there are
several model-specific registers that govern 1A-32e mode instructions:

® 1A32_KernelGSbase — Used by SWAPGS instruction.

® 1A32_LSTAR — Used by SYSCALL instruction.

® 1A32_SYSCALL_FLAG_MASK — Used by SYSCALL instruction.
® 1A32_STAR_CS — Used by SYSCALL and SYSRET instruction.

2.1.7 Other System Resources

Besides the system registers and data structures described in the previous sections, system architecture provides
the following additional resources:

® Operating system instructions (see also: Section 2.7, “System Instruction Summary”).
® Performance-monitoring counters (not shown in Figure 2-1).
® Internal caches and buffers (not shown in Figure 2-1).

Performance-monitoring counters are event counters that can be programmed to count processor events such as
the number of instructions decoded, the number of interrupts received, or the number of cache loads. See also:
Chapter 23, “Introduction to Virtual-Machine Extensions.”

The processor provides several internal caches and buffers. The caches are used to store both data and instruc-
tions. The buffers are used to store things like decoded addresses to system and application segments and write
operations waiting to be performed. See also: Chapter 11, “Memory Cache Control.”

2.2 MODES OF OPERATION

The 1A-32 supports three operating modes and one quasi-operating mode:

® Protected mode — This is the native operating mode of the processor. It provides a rich set of architectural
features, flexibility, high performance and backward compatibility to existing software base.

® Real-address mode — This operating mode provides the programming environment of the Intel 8086
processor, with a few extensions (such as the ability to switch to protected or system management mode).

® System management mode (SMM) — SMM is a standard architectural feature in all 1A-32 processors,
beginning with the Intel386 SL processor. This mode provides an operating system or executive with a
transparent mechanism for implementing power management and OEM differentiation features. SMM is
entered through activation of an external system interrupt pin (SMI#), which generates a system management
interrupt (SMI). In SMM, the processor switches to a separate address space while saving the context of the
currently running program or task. SMM-specific code may then be executed transparently. Upon returning
from SMM, the processor is placed back into its state prior to the SMI.

® Virtual-8086 mode — In protected mode, the processor supports a quasi-operating mode known as virtual-
8086 mode. This mode allows the processor execute 8086 software in a protected, multitasking environment.

Vol. 3A 2-7

SYSTEM ARCHITECTURE OVERVIEW

Intel 64 architecture supports all operating modes of 1A-32 architecture and 1A-32e modes:

® 1A-32e mode — In IA-32e mode, the processor supports two sub-modes: compatibility mode and 64-bit
mode. 64-bit mode provides 64-bit linear addressing and support for physical address space larger than 64
GBytes. Compatibility mode allows most legacy protected-mode applications to run unchanged.

Figure 2-3 shows how the processor moves between operating modes.

SMi#

Real-Address
Mode

Reset
or
Reset or _ RSM
PE=0 T PE=1
SMI#
Reset
Protected Mode RSM System

Management

LME=1, CRO.PG=1* g4 Mode

>
See’:\ -
RSM
VM=1
* See Section 9.8.5
SMI# ** See Section 9.8.5.4

Virtual-8086
Mode

Figure 2-3. Transitions Among the Processor’'s Operating Modes

The processor is placed in real-address mode following power-up or a reset. The PE flag in control register CRO then
controls whether the processor is operating in real-address or protected mode. See also: Section 9.9, “Mode
Switching.” and Section 4.1.2, “Paging-Mode Enabling.”

The VM flag in the EFLAGS register determines whether the processor is operating in protected mode or virtual-
8086 mode. Transitions between protected mode and virtual-8086 mode are generally carried out as part of a task
switch or a return from an interrupt or exception handler. See also: Section 20.2.5, “Entering Virtual-8086 Mode.”

The LMA bit (IA32_EFER.LMA[bit 10]) determines whether the processor is operating in 1A-32e mode. When
running in 1A-32e mode, 64-bit or compatibility sub-mode operation is determined by CS.L bit of the code segment.
The processor enters into 1A-32e mode from protected mode by enabling paging and setting the LME bit
(IA32_EFER.LME[bit 8]). See also: Chapter 9, “Processor Management and Initialization.”

The processor switches to SMM whenever it receives an SMI while the processor is in real-address, protected,
virtual-8086, or 1A-32e modes. Upon execution of the RSM instruction, the processor always returns to the mode
it was in when the SMI occurred.

2-8 Vol.3A

SYSTEM ARCHITECTURE OVERVIEW

2.2.1 Extended Feature Enable Register

The 1A32_EFER MSR provides several fields related to 1A-32e mode enabling and operation. It also provides one
field that relates to page-access right modification (see Section 4.6, “Access Rights”). The layout of the
IA32_EFER MSR is shown in Figure 2-4.

63 1211109 8 7 1 0

IA32_EFER

Execute Disable Bit Enable

IA-32e Mode Active

IA-32e Mode Enable

SYSCALL Enable

D Reserved

Figure 2-4. IA32_EFER MSR Layout

Table 2-1. IA32_EFER MSR Information

Bit Description
0 SYSCALL Enable (R/W)

Enables SYSCALL/SYSRET instructions in 64-bit mode.
7:1 Reserved.

IA-32e Mode Enable (R/W)
Enables IA-32e mode operation.

9 Reserved.
10 IA-32e Mode Active (R)

Indicates IA-32e mode is active when set.
11 Execute Disable Bit Enable (R/W)

Enables page access restriction by preventing instruction fetches from PAE pages with the XD bit set (See Section 4.6).
63:12 Reserved.

2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER

The system flags and I0OPL field of the EFLAGS register control 1/0, maskable hardware interrupts, debugging, task
switching, and the virtual-8086 mode (see Figure 2-5). Only privileged code (typically operating system or execu-
tive code) should be allowed to modify these bits.

The system flags and IOPL are:

TF Trap (bit 8) — Set to enable single-step mode for debugging; clear to disable single-step mode. In single-
step mode, the processor generates a debug exception after each instruction. This allows the execution
state of a program to be inspected after each instruction. If an application program sets the TF flag using

Vol. 3A 2-9

SYSTEM ARCHITECTURE OVERVIEW

10PL

NT

RF

VM

a POPF, POPFD, or IRET instruction, a debug exception is generated after the instruction that follows the
POPF, POPFD, or IRET.

31 22212019181716151413121110 9 8 7 6 5 43 2 1 0

VIV alv Rl 8] o [ololi|x]s|zl, Al el]c

Reserved (set to 0) DF',F'CMFOT 0 |EIFIE|e|E|EIO|FIOE]2]F
L

ID — Identification FlagQ

VIP — Virtual Interrupt Pending
VIF — Virtual Interrupt Flag
AC — Alignment Check
VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag
IOPL— I/O Privilege Level
IF — Interrupt Enable Flag
TF — Trap Flag

D Reserved

Figure 2-5. System Flags in the EFLAGS Register

Interrupt enable (bit 9) — Controls the response of the processor to maskable hardware interrupt
requests (see also: Section 6.3.2, “Maskable Hardware Interrupts”). The flag is set to respond to maskable
hardware interrupts; cleared to inhibit maskable hardware interrupts. The IF flag does not affect the gener-
ation of exceptions or nonmaskable interrupts (NMI interrupts). The CPL, IOPL, and the state of the VME
flag in control register CR4 determine whether the IF flag can be modified by the CLI, STI, POPF, POPFD,
and IRET.

1/0 privilege level field (bits 12 and 13) — Indicates the 1/0 privilege level (I0PL) of the currently
running program or task. The CPL of the currently running program or task must be less than or equal to
the IOPL to access the 1/0 address space. This field can only be modified by the POPF and IRET instructions
when operating at a CPL of 0.

The IOPL is also one of the mechanisms that controls the modification of the IF flag and the handling of
interrupts in virtual-8086 mode when virtual mode extensions are in effect (when CR4.VME = 1). See also:
Chapter 14, “Input/Output,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1.

Nested task (bit 14) — Controls the chaining of interrupted and called tasks. The processor sets this flag
on calls to a task initiated with a CALL instruction, an interrupt, or an exception. It examines and modifies
this flag on returns from a task initiated with the IRET instruction. The flag can be explicitly set or cleared
with the POPF/POPFD instructions; however, changing to the state of this flag can generate unexpected
exceptions in application programs.

See also: Section 7.4, “Task Linking.”

Resume (bit 16) — Controls the processor’s response to instruction-breakpoint conditions. When set, this
flag temporarily disables debug exceptions (#¥DB) from being generated for instruction breakpoints
(although other exception conditions can cause an exception to be generated). When clear, instruction
breakpoints will generate debug exceptions.

The primary function of the RF flag is to allow the restarting of an instruction following a debug exception
that was caused by an instruction breakpoint condition. Here, debug software must set this flag in the
EFLAGS image on the stack just prior to returning to the interrupted program with IRETD (to prevent the
instruction breakpoint from causing another debug exception). The processor then automatically clears
this flag after the instruction returned to has been successfully executed, enabling instruction breakpoint
faults again.

See also: Section 17.3.1.1, “Instruction-Breakpoint Exception Condition.”
Virtual-8086 mode (bit 17) — Set to enable virtual-8086 mode; clear to return to protected mode.

2-10 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

See also: Section 20.2.1, “Enabling Virtual-8086 Mode.”

AC Alignment check (bit 18) — Set this flag and the AM flag in control register CRO to enable alignment
checking of memory references; clear the AC flag and/or the AM flag to disable alignment checking. An
alignment-check exception is generated when reference is made to an unaligned operand, such as a word
at an odd byte address or a doubleword at an address which is not an integral multiple of four. Alignment-
check exceptions are generated only in user mode (privilege level 3). Memory references that default to
privilege level O, such as segment descriptor loads, do not generate this exception even when caused by
instructions executed in user-mode.

The alignment-check exception can be used to check alignment of data. This is useful when exchanging
data with processors which require all data to be aligned. The alignment-check exception can also be used
by interpreters to flag some pointers as special by misaligning the pointer. This eliminates overhead of
checking each pointer and only handles the special pointer when used.

VIF Virtual Interrupt (bit 19) — Contains a virtual image of the IF flag. This flag is used in conjunction with
the VIP flag. The processor only recognizes the VIF flag when either the VME flag or the PVI flag in control
register CR4 is set and the IOPL is less than 3. (The VME flag enables the virtual-8086 mode extensions;
the PVI flag enables the protected-mode virtual interrupts.)

See also: Section 20.3.3.5, “Method 6: Software Interrupt Handling,” and Section 20.4, “Protected-Mode
Virtual Interrupts.”

VIP Virtual interrupt pending (bit 20) — Set by software to indicate that an interrupt is pending; cleared to
indicate that no interrupt is pending. This flag is used in conjunction with the VIF flag. The processor reads
this flag but never modifies it. The processor only recognizes the VIP flag when either the VME flag or the
PVI flag in control register CR4 is set and the IOPL is less than 3. The VME flag enables the virtual-8086
mode extensions; the PVI flag enables the protected-mode virtual interrupts.

See Section 20.3.3.5, “Method 6: Software Interrupt Handling,” and Section 20.4, “Protected-Mode Virtual
Interrupts.”

ID Identification (bit 21). — The ability of a program or procedure to set or clear this flag indicates support
for the CPUID instruction.

2.3.1 System Flags and Fields in IA-32e Mode

In 64-bit mode, the RFLAGS register expands to 64 bits with the upper 32 bits reserved. System flags in RFLAGS
(64-bit mode) or EFLAGS (compatibility mode) are shown in Figure 2-5.

In 1A-32e mode, the processor does not allow the VM bit to be set because virtual-8086 mode is not supported
(attempts to set the bit are ignored). Also, the processor will not set the NT bit. The processor does, however, allow
software to set the NT bit (note that an IRET causes a general protection fault in IA-32e mode if the NT bit is set).

In 1A-32e mode, the SYSCALL/SYSRET instructions have a programmable method of specifying which bits are
cleared in RFLAGS/EFLAGS. These instructions save/restore EFLAGS/RFLAGS.

2.4 MEMORY-MANAGEMENT REGISTERS

The processor provides four memory-management registers (GDTR, LDTR, IDTR, and TR) that specify the locations
of the data structures which control segmented memory management (see Figure 2-6). Special instructions are
provided for loading and storing these registers.

Vol. 3A 2-11

SYSTEM ARCHITECTURE OVERVIEW

System Table Registers

47(79) 16 15 0
GDTR 32(64)-bit Linear Base Address 16-Bit Table Limit
IDTR 32(64)-bit Linear Base Address 16-Bit Table Limit
System Segment Segment Descriptor Registers (Automatically Loaded)
Registers
5 0 Attributes
Task [geq. sel 32(64)-bit Linear Base Add s t Limit
Register eg. Sel. (64)-bit Linear Base ress egment Limi
LDTR Seg. Sel. 32(64)-bit Linear Base Address Segment Limit

Figure 2-6. Memory Management Registers

2.4.1 Global Descriptor Table Register (GDTR)

The GDTR register holds the base address (32 bits in protected mode; 64 bits in IA-32e mode) and the 16-bit table
limit for the GDT. The base address specifies the linear address of byte O of the GDT; the table limit specifies the
number of bytes in the table.

The LGDT and SGDT instructions load and store the GDTR register, respectively. On power up or reset of the
processor, the base address is set to the default value of O and the limit is set to OFFFFH. A new base address must
be loaded into the GDTR as part of the processor initialization process for protected-mode operation.

See also: Section 3.5.1, “Segment Descriptor Tables.”

2.4.2 Local Descriptor Table Register (LDTR)

The LDTR register holds the 16-bit segment selector, base address (32 bits in protected mode; 64 bits in 1A-32e
mode), segment limit, and descriptor attributes for the LDT. The base address specifies the linear address of byte
0 of the LDT segment; the segment limit specifies the number of bytes in the segment. See also: Section 3.5.1,
“Segment Descriptor Tables.”

The LLDT and SLDT instructions load and store the segment selector part of the LDTR register, respectively. The
segment that contains the LDT must have a segment descriptor in the GDT. When the LLDT instruction loads a
segment selector in the LDTR: the base address, limit, and descriptor attributes from the LDT descriptor are auto-
matically loaded in the LDTR.

When a task switch occurs, the LDTR is automatically loaded with the segment selector and descriptor for the LDT
for the new task. The contents of the LDTR are not automatically saved prior to writing the new LDT information
into the register.

On power up or reset of the processor, the segment selector and base address are set to the default value of 0 and
the limit is set to OFFFFH.

2.4.3 IDTR Interrupt Descriptor Table Register

The IDTR register holds the base address (32 bits in protected mode; 64 bits in IA-32e mode) and 16-bit table limit
for the IDT. The base address specifies the linear address of byte O of the IDT; the table limit specifies the number
of bytes in the table. The LIDT and SIDT instructions load and store the IDTR register, respectively. On power up or
reset of the processor, the base address is set to the default value of O and the limit is set to OFFFFH. The base
address and limit in the register can then be changed as part of the processor initialization process.

See also: Section 6.10, “Interrupt Descriptor Table (IDT).”

2-12 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

24.4 Task Register (TR)

The task register holds the 16-bit segment selector, base address (32 bits in protected mode; 64 bits in 1A-32e
mode), segment limit, and descriptor attributes for the TSS of the current task. The selector references the TSS
descriptor in the GDT. The base address specifies the linear address of byte 0 of the TSS; the segment limit speci-
fies the number of bytes in the TSS. See also: Section 7.2.4, “Task Register.”

The LTR and STR instructions load and store the segment selector part of the task register, respectively. When the
LTR instruction loads a segment selector in the task register, the base address, limit, and descriptor attributes from
the TSS descriptor are automatically loaded into the task register. On power up or reset of the processor, the base
address is set to the default value of 0 and the limit is set to OFFFFH.

When a task switch occurs, the task register is automatically loaded with the segment selector and descriptor for
the TSS for the new task. The contents of the task register are not automatically saved prior to writing the new TSS
information into the register.

2.5 CONTROL REGISTERS

Control registers (CRO, CR1, CR2, CR3, and CR4; see Figure 2-7) determine operating mode of the processor and
the characteristics of the currently executing task. These registers are 32 bits in all 32-bit modes and compatibility
mode.

In 64-bit mode, control registers are expanded to 64 bits. The MOV CRn instructions are used to manipulate the
register bits. Operand-size prefixes for these instructions are ignored. The following is also true:

® Bits 63:32 of CRO and CR4 are reserved and must be written with zeros. Writing a nonzero value to any of the
upper 32 bits results in a general-protection exception, #GP(0).

® All 64 bits of CR2 are writable by software.
® Bits 51:40 of CR3 are reserved and must be 0.

® The MOV CRn instructions do not check that addresses written to CR2 and CR3 are within the linear-address or
physical-address limitations of the implementation.

® Register CR8 is available in 64-bit mode only.

The control registers are summarized below, and each architecturally defined control field in these control registers
are described individually. In Figure 2-7, the width of the register in 64-bit mode is indicated in parenthesis (except
for CRO).

® CRO — Contains system control flags that control operating mode and states of the processor.
® CR1 — Reserved.
® CR2 — Contains the page-fault linear address (the linear address that caused a page fault).

® CR3 — Contains the physical address of the base of the paging-structure hierarchy and two flags (PCD and
PWT). Only the most-significant bits (less the lower 12 bits) of the base address are specified; the lower 12 bits
of the address are assumed to be 0. The first paging structure must thus be aligned to a page (4-KByte)
boundary. The PCD and PWT flags control caching of that paging structure in the processor’s internal data
caches (they do not control TLB caching of page-directory information).

When using the physical address extension, the CR3 register contains the base address of the page-directory-
pointer table In IA-32e mode, the CR3 register contains the base address of the PML4 table.

See also: Chapter 4, “Paging.”

® CR4 — Contains a group of flags that enable several architectural extensions, and indicate operating system or
executive support for specific processor capabilities. The control registers can be read and loaded (or modified)
using the move-to-or-from-control-registers forms of the MOV instruction. In protected mode, the MOV
instructions allow the control registers to be read or loaded (at privilege level 0 only). This restriction means
that application programs or operating-system procedures (running at privilege levels 1, 2, or 3) are prevented
from reading or loading the control registers.

Vol.3A 2-13

SYSTEM ARCHITECTURE OVERVIEW

CR8 — Provides read and write access to the Task Priority Register (TPR). It specifies the priority threshold
value that operating systems use to control the priority class of external interrupts allowed to interrupt the
processor. This register is available only in 64-bit mode. However, interrupt filtering continues to apply in
compatibility mode.

31(63) 20 181716151413 121110 9 8 7 6 5 4 3 2 1 0
s s|v
PlpIM|P|P|.|T|P|V
Reserved M M clc|c|a|s|B|s|v|m| cra
X ElE|E|E|E|"|D|1]|E
P E|E
J |—FSGSBASE LI— OSFXSR
OSXSAVE PCIDE OSXMMEXCPT
31(63) 1211 5432
PP
. CR3
Page-Directory Base c\w
9 y e (PDBR)
31(63) 0
Page-Fault Linear Address CR2
31(63) 0
CR1
313029 28 19181716 15 6543210
P|C|N Al |w N|E|T|E|M|P
G|D|w M| [P E|T|s|m|p|e| CRO
l:l Reserved

Figure 2-7. Control Registers

When loading a control register, reserved bits should always be set to the values previously read. The flags in
control registers are:

PG

CD

NW

AM

Paging (bit 31 of CRO) — Enables paging when set; disables paging when clear. When paging is
disabled, all linear addresses are treated as physical addresses. The PG flag has no effect if the PE flag (bit
0 of register CRO) is not also set; setting the PG flag when the PE flag is clear causes a general-protection
exception (#GP). See also: Chapter 4, “Paging.”

On Intel 64 processors, enabling and disabling 1A-32e mode operation also requires modifying CRO.PG.

Cache Disable (bit 30 of CRO) — When the CD and NW flags are clear, caching of memory locations for
the whole of physical memory in the processor’s internal (and external) caches is enabled. When the CD
flag is set, caching is restricted as described in Table 11-5. To prevent the processor from accessing and
updating its caches, the CD flag must be set and the caches must be invalidated so that no cache hits can
occur.

See also: Section 11.5.3, “Preventing Caching,” and Section 11.5, “Cache Control.”

Not Write-through (bit 29 of CRO) — When the NW and CD flags are clear, write-back (for Pentium 4,
Intel Xeon, P6 family, and Pentium processors) or write-through (for Intel486 processors) is enabled for
writes that hit the cache and invalidation cycles are enabled. See Table 11-5 for detailed information about
the affect of the NW flag on caching for other settings of the CD and NW flags.

Alignment Mask (bit 18 of CRO) — Enables automatic alignment checking when set; disables alignment
checking when clear. Alignment checking is performed only when the AM flag is set, the AC flag in the
EFLAGS register is set, CPL is 3, and the processor is operating in either protected or virtual-8086 mode.

2-14 Vol. 3A

WP

NE

ET

TS

SYSTEM ARCHITECTURE OVERVIEW

Write Protect (bit 16 of CRO) — When set, inhibits supervisor-level procedures from writing into read-
only pages; when clear, allows supervisor-level procedures to write into read-only pages (regardless of the
U/S bit setting; see Section 4.1.3 and Section 4.6). This flag facilitates implementation of the copy-on-
write method of creating a new process (forking) used by operating systems such as UNIX.

Numeric Error (bit 5 of CRO) — Enables the native (internal) mechanism for reporting x87 FPU errors
when set; enables the PC-style x87 FPU error reporting mechanism when clear. When the NE flag is clear
and the IGNNE# input is asserted, x87 FPU errors are ignored. When the NE flag is clear and the IGNNE#
input is deasserted, an unmasked x87 FPU error causes the processor to assert the FERR# pin to generate
an external interrupt and to stop instruction execution immediately before executing the next waiting
floating-point instruction or WAIT/FWAIT instruction.

The FERR# pin is intended to drive an input to an external interrupt controller (the FERR# pin emulates the
ERROR# pin of the Intel 287 and Intel 387 DX math coprocessors). The NE flag, IGNNE# pin, and FERR#
pin are used with external logic to implement PC-style error reporting. Using FERR# and IGNNE# to handle
floating-point exceptions is deprecated by modern operating systems; this non-native approach also limits
newer processors to operate with one logical processor active.

See also: “Software Exception Handling” in Chapter 8, “Programming with the x87 FPU,” and Appendix A,
“EFLAGS Cross-Reference,” in the Intel® 64 and I1A-32 Architectures Software Developer’s Manual,
Volume 1.

Extension Type (bit 4 of CRO) — Reserved in the Pentium 4, Intel Xeon, P6 family, and Pentium proces-
sors. In the Pentium 4, Intel Xeon, and P6 family processors, this flag is hardcoded to 1. In the Intel386
and Intel486 processors, this flag indicates support of Intel 387 DX math coprocessor instructions when
set.

Task Switched (bit 3 of CRO) — Allows the saving of the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4
context on a task switch to be delayed until an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction is
actually executed by the new task. The processor sets this flag on every task switch and tests it when
executing x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

* Ifthe TS flag is set and the EM flag (bit 2 of CRO) is clear, a device-not-available exception (#NM) is
raised prior to the execution of any x87 FPU/MMX/SSE/ SSE2/SSE3/SSSE3/SSE4 instruction; with the
exception of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and POPCNT.
See the paragraph below for the special case of the WAIT/FWAIT instructions.

* Ifthe TS flag is set and the MP flag (bit 1 of CRO) and EM flag are clear, an #NM exception is not raised
prior to the execution of an x87 FPU WAIT/FWAIT instruction.

¢ If the EM flag is set, the setting of the TS flag has no affect on the execution of x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

Table 2-2 shows the actions taken when the processor encounters an x87 FPU instruction based on the
settings of the TS, EM, and MP flags. Table 12-1 and 13-1 show the actions taken when the processor
encounters an MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction.

The processor does not automatically save the context of the x87 FPU, XMM, and MXCSR registers on a
task switch. Instead, it sets the TS flag, which causes the processor to raise an #NM exception whenever
it encounters an x87 FPU/MMX/SSE /SSE2/SSE3/SSSE3/SSE4 instruction in the instruction stream for the
new task (with the exception of the instructions listed above).

The fault handler for the #NM exception can then be used to clear the TS flag (with the CLTS instruction) and save
the context of the x87 FPU, XMM, and MXCSR registers. If the task never encounters an x87
FPU/MMX/SSE/SSE2/SSE3//SSSE3/SSE4 instruction; the x87 FPU/MMX/SSE/SSE2/ SSE3/SSSE3/SSE4 context is
never saved.

Vol.3A 2-15

SYSTEM ARCHITECTURE OVERVIEW

Table 2-2. Action Taken By x87 FPU Instructions for Different Combinations of EM, MP, and TS

CRO Flags x87 FPU Instruction Type

EM MP TS Floating-Point WAIT/FWAIT
0 0 0 Execute Execute.

0 0 1 #NM Exception Execute.

0 1 0 Execute Execute.

0 1 1 #NM Exception #NM exception.

1 0 0 #NM Exception Execute.

1 0 1 #NM Exception Execute.

1 1 0 #NM Exception Execute.

1 1 1 #NM Exception #NM exception.

EM Emulation (bit 2 of CRO) — Indicates that the processor does not have an internal or external x87 FPU

when set; indicates an x87 FPU is present when clear. This flag also affects the execution of
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

When the EM flag is set, execution of an x87 FPU instruction generates a device-not-available exception
(#NM). This flag must be set when the processor does not have an internal x87 FPU or is not connected to
an external math coprocessor. Setting this flag forces all floating-point instructions to be handled by soft-
ware emulation. Table 9-2 shows the recommended setting of this flag, depending on the 1A-32 processor
and x87 FPU or math coprocessor present in the system. Table 2-2 shows the interaction of the EM, MP, and
TS flags.

Also, when the EM flag is set, execution of an MMX instruction causes an invalid-opcode exception (#UD)
to be generated (see Table 12-1). Thus, if an 1A-32 or Intel 64 processor incorporates MMX technology, the
EM flag must be set to O to enable execution of MMX instructions.

Similarly for SSE/SSE2/SSE3/SSSE3/SSE4 extensions, when the EM flag is set, execution of most
SSE/SSE2/SSE3/SSSE3/SSE4 instructions causes an invalid opcode exception (#UD) to be generated (see
Table 13-1). If an 1A-32 or Intel 64 processor incorporates the SSE/SSE2/SSE3/SSSE3/SSE4 extensions,
the EM flag must be set to O to enable execution of these extensions. SSE/SSE2/SSE3/SSSE3/SSE4
instructions not affected by the EM flag include: PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI,
CLFLUSH, CRC32, and POPCNT.

MP Monitor Coprocessor (bit 1 of CR0O). — Controls the interaction of the WAIT (or FWAIT) instruction with
the TS flag (bit 3 of CRO). If the MP flag is set, a WAIT instruction generates a device-not-available exception
(#NM) if the TS flag is also set. If the MP flag is clear, the WAIT instruction ignores the setting of the TS flag.
Table 9-2 shows the recommended setting of this flag, depending on the 1A-32 processor and x87 FPU or
math coprocessor present in the system. Table 2-2 shows the interaction of the MP, EM, and TS flags.

PE Protection Enable (bit O of CRO) — Enables protected mode when set; enables real-address mode when
clear. This flag does not enable paging directly. It only enables segment-level protection. To enable paging,
both the PE and PG flags must be set.

See also: Section 9.9, “Mode Switching.”

PCD Page-level Cache Disable (bit 4 of CR3) — Controls the memory type used to access the first paging
structure of the current paging-structure hierarchy. See Section 4.9, “Paging and Memory Typing”. This bit
is not used if paging is disabled, with PAE paging, or with 1A-32e paging if CR4.PCIDE=1.

PWT Page-level Write-Through (bit 3 of CR3) — Controls the memory type used to access the first paging
structure of the current paging-structure hierarchy. See Section 4.9, “Paging and Memory Typing”. This bit
is not used if paging is disabled, with PAE paging, or with 1A-32e paging if CR4.PCIDE=1.

VME Virtual-8086 Mode Extensions (bit O of CR4) — Enables interrupt- and exception-handling extensions
in virtual-8086 mode when set; disables the extensions when clear. Use of the virtual mode extensions can
improve the performance of virtual-8086 applications by eliminating the overhead of calling the virtual-
8086 monitor to handle interrupts and exceptions that occur while executing an 8086 program and,
instead, redirecting the interrupts and exceptions back to the 8086 program’s handlers. It also provides

2-16 Vol. 3A

PVI

TSD

DE

PSE

PAE

MCE

PGE

PCE

SYSTEM ARCHITECTURE OVERVIEW

hardware support for a virtual interrupt flag (VIF) to improve reliability of running 8086 programs in multi-
tasking and multiple-processor environments.

See also: Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode.”

Protected-Mode Virtual Interrupts (bit 1 of CR4) — Enables hardware support for a virtual interrupt
flag (VIF) in protected mode when set; disables the VIF flag in protected mode when clear.

See also: Section 20.4, “Protected-Mode Virtual Interrupts.”

Time Stamp Disable (bit 2 of CR4) — Restricts the execution of the RDTSC instruction to procedures
running at privilege level 0 when set; allows RDTSC instruction to be executed at any privilege level when
clear. This bit also applies to the RDTSCP instruction if supported (if CPUID.80000001H:EDX[27] = 1).

Debugging Extensions (bit 3 of CR4) — References to debug registers DR4 and DR5 cause an unde-
fined opcode (#UD) exception to be generated when set; when clear, processor aliases references to regis-
ters DR4 and DR5 for compatibility with software written to run on earlier 1A-32 processors.

See also: Section 17.2.2, “Debug Registers DR4 and DR5.”

Page Size Extensions (bit 4 of CR4) — Enables 4-MByte pages with 32-bit paging when set; restricts
32-bit paging to pages to 4 KBytes when clear.

See also: Section 4.3, “32-Bit Paging.”

Physical Address Extension (bit 5 of CR4) — When set, enables paging to produce physical addresses
with more than 32 bits. When clear, restricts physical addresses to 32 bits. PAE must be set before entering
1A-32e mode.

See also: Chapter 4, “Paging.”

Machine-Check Enable (bit 6 of CR4) — Enables the machine-check exception when set; disables the
machine-check exception when clear.

See also: Chapter 15, “Machine-Check Architecture.”

Page Global Enable (bit 7 of CR4) — (Introduced in the P6 family processors.) Enables the global page
feature when set; disables the global page feature when clear. The global page feature allows frequently
used or shared pages to be marked as global to all users (done with the global flag, bit 8, in a page-direc-
tory or page-table entry). Global pages are not flushed from the translation-lookaside buffer (TLB) on a
task switch or a write to register CR3.

When enabling the global page feature, paging must be enabled (by setting the PG flag in control register
CRO) before the PGE flag is set. Reversing this sequence may affect program correctness, and processor
performance will be impacted.

See also: Section 4.10, “Caching Translation Information.”

Performance-Monitoring Counter Enable (bit 8 of CR4) — Enables execution of the RDPMC instruc-
tion for programs or procedures running at any protection level when set; RDPMC instruction can be
executed only at protection level O when clear.

OSFXSR

Operating System Support for FXSAVE and FXRSTOR instructions (bit 9 of CR4) — When set, this
flag: (1) indicates to software that the operating system supports the use of the FXSAVE and FXRSTOR
instructions, (2) enables the FXSAVE and FXRSTOR instructions to save and restore the contents of the
XMM and MXCSR registers along with the contents of the x87 FPU and MMX registers, and (3) enables the
processor to execute SSE/SSE2/SSE3/SSSE3/SSE4 instructions, with the exception of the PAUSE,
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and POPCNT.

If this flag is clear, the FXSAVE and FXRSTOR instructions will save and restore the contents of the x87 FPU
and MMX instructions, but they may not save and restore the contents of the XMM and MXCSR registers.
Also, the processor will generate an invalid opcode exception (#UD) if it attempts to execute any
SSE/SSE2/SSE3 instruction, with the exception of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE,
MOVNTI, CLFLUSH, CRC32, and POPCNT. The operating system or executive must explicitly set this flag.

Vol.3A 2-17

SYSTEM ARCHITECTURE OVERVIEW

NOTE

CPUID feature flags FXSR indicates availability of the FXSAVE/FXRSTOR instructions. The OSFXSR
bit provides operating system software with a means of enabling FXSAVE/FXRSTOR to save/restore
the contents of the X87 FPU, XMM and MXCSR registers. Consequently OSFXSR bit indicates that
the operating system provides context switch support for SSE/SSE2/SSE3/SSSE3/SSE4.

OSXMMEXCPT
Operating System Support for Unmasked SIMD Floating-Point Exceptions (bit 10 of CR4) —
When set, indicates that the operating system supports the handling of unmasked SIMD floating-point
exceptions through an exception handler that is invoked when a SIMD floating-point exception (#XF) is
generated. SIMD floating-point exceptions are only generated by SSE/SSE2/SSE3/SSE4.1 SIMD floating-
point instructions.

The operating system or executive must explicitly set this flag. If this flag is not set, the processor will
generate an invalid opcode exception (#UD) whenever it detects an unmasked SIMD floating-point excep-

tion.

VMXE
VMX-Enable Bit (bit 13 of CR4) — Enables VMX operation when set. See Chapter 23, “Introduction to
Virtual-Machine Extensions.”

SMXE

SMX-Enable Bit (bit 14 of CR4) — Enables SMX operation when set. See Chapter 30, “VMX Instruction
Reference” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

FSGSBASE
FSGSBASE-Enable Bit (bit 16 of CR4) — Enables the instructions RDFSBASE, RDGSBASE, WRFSBASE,
and WRGSBASE.

PCIDE
PCID-Enable Bit (bit 17 of CR4) — Enables process-context identifiers (PCIDs) when set. See Section
4.10.1, “Process-Context Identifiers (PCIDs)”. Can be set only in 1A-32e mode (if IA32_EFER.LMA = 1).

OSXSAVE
XSAVE and Processor Extended States-Enable Bit (bit 18 of CR4) — When set, this flag: (1) indi-
cates (via CPUID.01H:ECX.OSXSAVE[bit 27]) that the operating system supports the use of the XGETBV,
XSAVE and XRSTOR instructions by general software; (2) enables the XSAVE and XRSTOR instructions to
save and restore the x87 FPU state (including MMX registers), the SSE state (XMM registers and MXCSR),
along with other processor extended states enabled in XCRO; (3) enables the processor to execute XGETBV
and XSETBYV instructions in order to read and write XCRO. See Section 2.6 and Chapter 13, “System
Programming for Instruction Set Extensions and Processor Extended States”.

SMEP
SMEP-Enable Bit (bit 20 of CR4) — Enables supervisor-mode execution prevention (SMEP) when set.
See Section 4.6, “Access Rights”.

TPL
Task Priority Level (bit 3:0 of CR8) — This sets the threshold value corresponding to the highest-
priority interrupt to be blocked. A value of 0 means all interrupts are enabled. This field is available in 64-
bit mode. A value of 15 means all interrupts will be disabled.

2.5.1 CPUID Qualification of Control Register Flags

Not all flags in control register CR4 are implemented on all processors. With the exception of the PCE flag, they can
be qualified with the CPUID instruction to determine if they are implemented on the processor before they are
used.

The CR8 register is available on processors that support Intel 64 architecture.

2-18 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

2.6 EXTENDED CONTROL REGISTERS (INCLUDING XCRO)

If CPUID.O1H:ECX.XSAVE[bit 26] is 1, the processor supports one or more extended control registers (XCRSs).
Currently, the only such register defined is XCRO. This register specifies the set of processor states that the oper-
ating system enables on that processor, e.g. x87 FPU state, SSE state, AVX state, and other processor extended
states that Intel 64 architecture may introduce in the future. The OS programs XCRO to reflect the features it
supports.

63 210

|

Reserved for XCRO bit vector expansion

Reserved / Future processor extended states
AVX state
SSE state
x87 FPU/MMX state (must be 1)

[| Reserved (must be 0)

Figure 2-8. XCRO

Software can access XCRO only if CR4.0SXSAVE[bit 18] = 1. (This bit is also readable as
CPUID.01H:ECX.OSXSAVE[bit 27].) The layout of XCRO is architected to allow software to use CPUID leaf function
ODH to enumerate the set of bits that the processor supports in XCRO (see CPUID instruction in Intel® 64 and
1A-32 Architectures Software Developer’'s Manual, Volume 2A). Each processor state (X87 FPU state, SSE state,
AVX state, or a future processor extended state) is represented by a bit in XCRO. The OS can enable future
processor extended states in a forward manner by specifying the appropriate bit mask value using the XSETBV
instruction according to the results of the CPUID leaf ODH.

With the exception of bit 63, each bit in XCRO corresponds to a subset of the processor states. XCRO thus provides
space for up to 63 sets of processor state extensions. Bit 63 of XCRO is reserved for future expansion and will not
represent a processor extended state.

Currently, XCRO has three processor states defined, with up to 61 bits reserved for future processor extended
states:

¢ XCRO0.X87 (bit 0): This bit 0 must be 1. An attempt to write O to this bit causes a #GP exception.

® XCRO.SSE (bit 1): If 1, XSAVE, XSAVEOPT, and XRSTOR can be used to manage MXCSR and XMM registers
(XMMO-XMM15 in 64-bit mode; otherwise XMMO-XMM7).

® XCRO.AVX (bit 2): If 1, AVX instructions can be executed and XSAVE, XSAVEOPT, and XRSTOR can be used to
manage the upper halves of the YMM registers (YMMO-YMM15 in 64-bit mode; otherwise YMMO-YMM7).

Any attempt to set a reserved bit (as determined by the contents of EAX and EDX after executing CPUID with
EAX=0DH, ECX= OH) in XCRO for a given processor will result in a #GP exception. An attempt to write O to
XCRO0.x87 (bit 0) will result in a #GP exception. An attempt to write O to XCRO.SSE (bit 1) and 1 to XCRO.AVX (bit
2) also results in a #GP exception.

If a bit in XCRO is 1, software can use the XSAVE instruction to save the corresponding processor state to memory
(see XSAVE instruction in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B).

After reset, all bits (except bit 0) in XCRO are cleared to zero, XCRO[0] is set to 1.

2.7 SYSTEM INSTRUCTION SUMMARY

System instructions handle system-level functions such as loading system registers, managing the cache,
managing interrupts, or setting up the debug registers. Many of these instructions can be executed only by oper-

Vol.3A 2-19

SYSTEM ARCHITECTURE OVERVIEW

ating-system or executive procedures (that is, procedures running at privilege level 0). Others can be executed at
any privilege level and are thus available to application programs.

Table 2-3 lists the system instructions and indicates whether they are available and useful for application programs.
These instructions are described in the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volumes

2A, 2B & 2C.

Table 2-3. Summary of System Instructions

Useful to Protected from

Instruction Description Application? Application?

LLDT Load LDT Register No Yes
SLDT Store LDT Register No No
LGDT Load GDT Register No Yes
SGDT Store GDT Register No No
LTR Load Task Register No Yes
STR Store Task Register No No
LIDT Load IDT Register No Yes
SIDT Store IDT Register No No
MOV CRn Load and store control registers No Yes
SMSw Store MSW Yes No
MSw Load MSW No Yes
CLTS Clear TS flag in CRO No Yes
ARPL Adjust RPL Yes'5 No
LAR Load Access Rights Yes No
LSL Load Segment Limit Yes No
VERR Verify for Reading Yes No
VERW Verify for Writing Yes No
MOV DRn Load and store debug registers No Yes
INVD Invalidate cache, no writeback No Yes
WBINVD Invalidate cache, with writeback No Yes
INVLPG Invalidate TLB entry No Yes
HLT Halt Processor No Yes
LOCK (Prefix) Bus Lock Yes No
RSM Return from system management mode No Yes
RDMSR3 Read Model-Specific Registers No Yes
WRMSR3 Write Model-Specific Registers No Yes
RDPMC* Read Performance-Monitoring Counter Yes Yes?
RDTSC3 Read Time-Stamp Counter Yes Yes?
RDTSCP/ Read Serialized Time-Stamp Counter Yes Yes?
XGETBV Return the state of XCRO Yes No
XSETBV Enable one or more processor extended states No®é Yes

2-20 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

Table 2-3. Summary of System Instructions (Contd.)

Useful to Protected from

Instruction Description Application? Application?

NOTES:

1. Useful to application programs running at a CPL of 1 or 2.

2. The TSD and PCE flags in control register CR4 control access to these instructions by application programs running at a CPL of 3.

3. These instructions were introduced into the |A-32 Architecture with the Pentium processor.

4., This instruction was introduced into the IA-32 Architecture with the Pentium Pro processor and the Pentium processor with MMX
technology.

5. This instruction is not supported in 64-bit mode.

6. Application uses XGETBV to query which set of processor extended states are enabled.

7.RDTSCP is introduced in Intel Core i7 processor.

2.7.1 Loading and Storing System Registers

The GDTR, LDTR, IDTR, and TR registers each have a load and store instruction for loading data into and storing
data from the register:

¢ LGDT (Load GDTR Register) — Loads the GDT base address and limit from memory into the GDTR register.
® SGDT (Store GDTR Register) — Stores the GDT base address and limit from the GDTR register into memory.
¢ LIDT (Load IDTR Register) — Loads the IDT base address and limit from memory into the IDTR register.
® SIDT (Load IDTR Register — Stores the IDT base address and limit from the IDTR register into memory.

® LLDT (Load LDT Register) — Loads the LDT segment selector and segment descriptor from memory into the
LDTR. (The segment selector operand can also be located in a general-purpose register.)

® SLDT (Store LDT Register) — Stores the LDT segment selector from the LDTR register into memory or a
general-purpose register.

® LTR (Load Task Register) — Loads segment selector and segment descriptor for a TSS from memory into the
task register. (The segment selector operand can also be located in a general-purpose register.)

® STR (Store Task Register) — Stores the segment selector for the current task TSS from the task register into
memory or a general-purpose register.

The LMSW (load machine status word) and SMSW (store machine status word) instructions operate on bits O
through 15 of control register CRO. These instructions are provided for compatibility with the 16-bit Intel 286
processor. Programs written to run on 32-bit 1A-32 processors should not use these instructions. Instead, they
should access the control register CRO using the MOV instruction.

The CLTS (clear TS flag in CRO) instruction is provided for use in handling a device-not-available exception (#NM)
that occurs when the processor attempts to execute a floating-point instruction when the TS flag is set. This
instruction allows the TS flag to be cleared after the x87 FPU context has been saved, preventing further #NM
exceptions. See Section 2.5, “Control Registers,” for more information on the TS flag.

The control registers (CRO, CR1, CR2, CR3, CR4, and CR8) are loaded using the MOV instruction. The instruction
loads a control register from a general-purpose register or stores the content of a control register in a general-
purpose register.

2.7.2 Verifying of Access Privileges

The processor provides several instructions for examining segment selectors and segment descriptors to deter-
mine if access to their associated segments is allowed. These instructions duplicate some of the automatic access
rights and type checking done by the processor, thus allowing operating-system or executive software to prevent
exceptions from being generated.

The ARPL (adjust RPL) instruction adjusts the RPL (requestor privilege level) of a segment selector to match that
of the program or procedure that supplied the segment selector. See Section 5.10.4, “Checking Caller Access Priv-

Vol. 3A 2-21

SYSTEM ARCHITECTURE OVERVIEW

ileges (ARPL Instruction),” for a detailed explanation of the function and use of this instruction. Note that ARPL is
not supported in 64-bit mode.

The LAR (load access rights) instruction verifies the accessibility of a specified segment and loads access rights
information from the segment’s segment descriptor into a general-purpose register. Software can then examine
the access rights to determine if the segment type is compatible with its intended use. See Section 5.10.1,
“Checking Access Rights (LAR Instruction),” for a detailed explanation of the function and use of this instruction.

The LSL (load segment limit) instruction verifies the accessibility of a specified segment and loads the segment
limit from the segment’s segment descriptor into a general-purpose register. Software can then compare the
segment limit with an offset into the segment to determine whether the offset lies within the segment. See Section
5.10.3, “Checking That the Pointer Offset Is Within Limits (LSL Instruction),” for a detailed explanation of the func-
tion and use of this instruction.

The VERR (verify for reading) and VERW (verify for writing) instructions verify if a selected segment is readable or
writable, respectively, at a given CPL. See Section 5.10.2, “Checking Read/Write Rights (VERR and VERW Instruc-
tions),” for a detailed explanation of the function and use of this instruction.

2.7.3 Loading and Storing Debug Registers

Internal debugging facilities in the processor are controlled by a set of 8 debug registers (DR0O-DR7). The MOV
instruction allows setup data to be loaded to and stored from these registers.

On processors that support Intel 64 architecture, debug registers DRO-DR7 are 64 bits. In 32-bit modes and
compatibility mode, writes to a debug register fill the upper 32 bits with zeros. Reads return the lower 32 bits. In
64-bit mode, the upper 32 bits of DR6-DR7 are reserved and must be written with zeros. Writing one to any of the
upper 32 bits causes an exception, #GP(0).

In 64-bit mode, MOV DRn instructions read or write all 64 bits of a debug register (operand-size prefixes are
ignored). All 64 bits of DRO-DR3 are writable by software. However, MOV DRn instructions do not check that
addresses written to DRO-DR3 are in the limits of the implementation. Address matching is supported only on valid
addresses generated by the processor implementation.

2.74 Invalidating Caches and TLBs

The processor provides several instructions for use in explicitly invalidating its caches and TLB entries. The INVD
(invalidate cache with no writeback) instruction invalidates all data and instruction entries in the internal caches
and sends a signal to the external caches indicating that they should be also be invalidated.

The WBINVD (invalidate cache with writeback) instruction performs the same function as the INVD instruction,
except that it writes back modified lines in its internal caches to memory before it invalidates the caches. After
invalidating the caches local to the executing logical processor or processor core, WBINVD signals caches higher in
the cache hierarchy (caches shared with the invalidating logical processor or core) to write back any data they have
in modified state, at the time of instruction execution and to invalidate their contents.

Note, non-shared caches may not be written back nor invalidated. In Figure 2-9 below, if code executing on either
LPO or LP1 were to execute a WBINVD, the shared L1 and L2 for LPO/LP1 will be written back and invalidated as do
the shared L3. However, the L1 and L2 caches not shared with LPO and LP1 will not be written back nor invalidated.

2-22 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

Not Written back and

not Invalidated
Logical Processors | LPO LP1 | LP2 ‘LP3 LP4 ‘Lp5 LP6 |LP7 | —

L1 & L2 Cache _ |]
Written back < P

& Invalidated =l

\

Execution Engine

L3 Cache Written back and Invalidated

Uncore

QPI

DDR3

Figure 2-9. WBINVD Invalidation of Shared and Non-Shared Cache Hierarchy

The INVLPG (invalidate TLB entry) instruction invalidates (flushes) the TLB entry for a specified page.

2.7.5 Controlling the Processor

The HLT (halt processor) instruction stops the processor until an enabled interrupt (such as NMI or SMI, which are
normally enabled), a debug exception, the BINIT# signal, the INIT# signal, or the RESET# signal is received. The
processor generates a special bus cycle to indicate that the halt mode has been entered.

Hardware may respond to this signal in a number of ways. An indicator light on the front panel may be turned on.
An NMI interrupt for recording diagnostic information may be generated. Reset initialization may be invoked (note
that the BINIT# pin was introduced with the Pentium Pro processor). If any non-wake events are pending during

shutdown, they will be handled after the wake event from shutdown is processed (for example, A20M# interrupts).

The LOCK prefix invokes a locked (atomic) read-modify-write operation when modifying a memory operand. This
mechanism is used to allow reliable communications between processors in multiprocessor systems, as described
below:

® In the Pentium processor and earlier 1A-32 processors, the LOCK prefix causes the processor to assert the
LOCK# signal during the instruction. This always causes an explicit bus lock to occur.

® Inthe Pentium 4, Intel Xeon, and P6 family processors, the locking operation is handled with either a cache lock
or bus lock. If a memory access is cacheable and affects only a single cache line, a cache lock is invoked and
the system bus and the actual memory location in system memory are not locked during the operation. Here,
other Pentium 4, Intel Xeon, or P6 family processors on the bus write-back any modified data and invalidate
their caches as necessary to maintain system memory coherency. If the memory access is not cacheable
and/or it crosses a cache line boundary, the processor’s LOCK# signal is asserted and the processor does not
respond to requests for bus control during the locked operation.

The RSM (return from SMM) instruction restores the processor (from a context dump) to the state it was in prior to
an system management mode (SMM) interrupt.

2.7.6 Reading Performance-Monitoring and Time-Stamp Counters

The RDPMC (read performance-monitoring counter) and RDTSC (read time-stamp counter) instructions allow
application programs to read the processor’s performance-monitoring and time-stamp counters, respectively.
Processors based on Intel NetBurst® microarchitecture have eighteen 40-bit performance-monitoring counters; P6
family processors have two 40-bit counters. Intel® Atom™ processors and most of the processors based on the
Intel Core microarchitecture support two types of performance monitoring counters: two programmable perfor-

Vol. 3A 2-23

SYSTEM ARCHITECTURE OVERVIEW

mance counters similar to those available in the P6 family, and three fixed-function performance monitoring
counters.

The programmable performance counters can support counting either the occurrence or duration of events. Events
that can be monitored on programmable counters generally are model specific (except for architectural perfor-
mance events enumerated by CPUID leaf OAH); they may include the number of instructions decoded, interrupts
received, or the number of cache loads. Individual counters can be set up to monitor different events. Use the
system instruction WRMSR to set up values in IA32_PERFEVTSELO/1 (for Intel Atom, Intel Core 2, Intel Core Duo,
and Intel Pentium M processors), in one of the 45 ESCRs and one of the 18 CCCR MSRs (for Pentium 4 and Intel
Xeon processors); or in the PerfEvtSelO or the PerfEvtSell MSR (for the P6 family processors). The RDPMC instruc-
tion loads the current count from the selected counter into the EDX:EAX registers.

Fixed-function performance counters record only specific events that are defined in Chapter 23, “Introduction to
Virtual-Machine Extensions”, and the width/number of fixed-function counters are enumerated by CPUID leaf OAH.

The time-stamp counter is a model-specific 64-bit counter that is reset to zero each time the processor is reset. If
not reset, the counter will increment ~9.5 x 1016 times per year when the processor is operating at a clock rate
of 3GHz. At this clock frequency, it would take over 190 years for the counter to wrap around. The RDTSC
instruction loads the current count of the time-stamp counter into the EDX:EAX registers.

See Section 18.1, “Performance Monitoring Overview,” and Section 17.13, “Time-Stamp Counter,” for more infor-
mation about the performance monitoring and time-stamp counters.

The RDTSC instruction was introduced into the 1A-32 architecture with the Pentium processor. The RDPMC instruc-
tion was introduced into the 1A-32 architecture with the Pentium Pro processor and the Pentium processor with
MMX technology. Earlier Pentium processors have two performance-monitoring counters, but they can be read only
with the RDMSR instruction, and only at privilege level 0.

2.7.6.1 Reading Counters in 64-Bit Mode

In 64-bit mode, RDTSC operates the same as in protected mode. The count in the time-stamp counter is stored in
EDX:EAX (or RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32] cleared).

RDPMC requires an index to specify the offset of the performance-monitoring counter. In 64-bit mode for Pentium
4 or Intel Xeon processor families, the index is specified in ECX[30:0]. The current count of the performance-moni-
toring counter is stored in EDX:EAX (or RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32] cleared).

2.7.7 Reading and Writing Model-Specific Registers

The RDMSR (read model-specific register) and WRMSR (write model-specific register) instructions allow a
processor’s 64-bit model-specific registers (MSRs) to be read and written, respectively. The MSR to be read or
written is specified by the value in the ECX register.

RDMSR reads the value from the specified MSR to the EDX:EAX registers; WRMSR writes the value in the EDX:EAX
registers to the specified MSR. RDMSR and WRMSR were introduced into the 1A-32 architecture with the Pentium
processor.

See Section 9.4, “Model-Specific Registers (MSRs),” for more information.

2.7.7.1 Reading and Writing Model-Specific Registers in 64-Bit Mode

RDMSR and WRMSR require an index to specify the address of an MSR. In 64-bit mode, the index is 32 bits; it is
specified using ECX.

2.7.8 Enabling Processor Extended States

The XSETBYV instruction is required to enable OS support of individual processor extended states in XCRO (see
Section 2.6).

2-24 Vol. 3A

CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT

This chapter describes the Intel 64 and I1A-32 architecture’s protected-mode memory management facilities,
including the physical memory requirements, segmentation mechanism, and paging mechanism.

See also: Chapter 5, “Protection” (for a description of the processor’s protection mechanism) and Chapter 20,
“8086 Emulation” (for a description of memory addressing protection in real-address and virtual-8086 modes).

3.1 MEMORY MANAGEMENT OVERVIEW

The memory management facilities of the 1A-32 architecture are divided into two parts: segmentation and paging.
Segmentation provides a mechanism of isolating individual code, data, and stack modules so that multiple
programs (or tasks) can run on the same processor without interfering with one another. Paging provides a mech-
anism for implementing a conventional demand-paged, virtual-memory system where sections of a program’s
execution environment are mapped into physical memory as needed. Paging can also be used to provide isolation
between multiple tasks. When operating in protected mode, some form of segmentation must be used. There is
no mode bit to disable segmentation. The use of paging, however, is optional.

These two mechanisms (segmentation and paging) can be configured to support simple single-program (or single-
task) systems, multitasking systems, or multiple-processor systems that used shared memory.

As shown in Figure 3-1, segmentation provides a mechanism for dividing the processor’s addressable memory
space (called the linear address space) into smaller protected address spaces called segments. Segments can
be used to hold the code, data, and stack for a program or to hold system data structures (such as a TSS or LDT).
If more than one program (or task) is running on a processor, each program can be assigned its own set of
segments. The processor then enforces the boundaries between these segments and insures that one program
does not interfere with the execution of another program by writing into the other program’s segments. The
segmentation mechanism also allows typing of segments so that the operations that may be performed on a partic-
ular type of segment can be restricted.

All the segments in a system are contained in the processor’s linear address space. To locate a byte in a particular
segment, a logical address (also called a far pointer) must be provided. A logical address consists of a segment
selector and an offset. The segment selector is a unique identifier for a segment. Among other things it provides an
offset into a descriptor table (such as the global descriptor table, GDT) to a data structure called a segment
descriptor. Each segment has a segment descriptor, which specifies the size of the segment, the access rights and
privilege level for the segment, the segment type, and the location of the first byte of the segment in the linear
address space (called the base address of the segment). The offset part of the logical address is added to the base
address for the segment to locate a byte within the segment. The base address plus the offset thus forms a linear
address in the processor’s linear address space.

Vol. 3A 3-1

PROTECTED-MODE MEMORY MANAGEMENT

Logical Address
(or Far Pointer)

Segment l

Selector Offset Linear Address
| | | | Space
. Linear Address
Global Descriptor - .
Table (GDT) Dir [Table | Offset | i%?g:g
Space
Segment
Segment Page Table Page
Descriptor {—7 (| (| 01 0| """
g R Page Directory Phy. Addr.
ﬂ|—> Lin. Addr. Entry]
A Entry >

SegmentJ g

Base Address

I~ Page

}7 Segmentation I Paging I

Figure 3-1. Segmentation and Paging

If paging is not used, the linear address space of the processor is mapped directly into the physical address space
of processor. The physical address space is defined as the range of addresses that the processor can generate on
its address bus.

Because multitasking computing systems commonly define a linear address space much larger than it is economi-
cally feasible to contain all at once in physical memory, some method of “virtualizing” the linear address space is
needed. This virtualization of the linear address space is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space is simulated with a small
amount of physical memory (RAM and ROM) and some disk storage. When using paging, each segment is divided
into pages (typically 4 KBytes each in size), which are stored either in physical memory or on the disk. The oper-
ating system or executive maintains a page directory and a set of page tables to keep track of the pages. When a
program (or task) attempts to access an address location in the linear address space, the processor uses the page
directory and page tables to translate the linear address into a physical address and then performs the requested
operation (read or write) on the memory location.

If the page being accessed is not currently in physical memory, the processor interrupts execution of the program
(by generating a page-fault exception). The operating system or executive then reads the page into physical
memory from the disk and continues executing the program.

When paging is implemented properly in the operating-system or executive, the swapping of pages between phys-
ical memory and the disk is transparent to the correct execution of a program. Even programs written for 16-bit 1A-
32 processors can be paged (transparently) when they are run in virtual-8086 mode.

3.2 USING SEGMENTS

The segmentation mechanism supported by the 1A-32 architecture can be used to implement a wide variety of
system designs. These designs range from flat models that make only minimal use of segmentation to protect

3-2 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

programs to multi-segmented models that employ segmentation to create a robust operating environment in
which multiple programs and tasks can be executed reliably.

The following sections give several examples of how segmentation can be employed in a system to improve
memory management performance and reliability.

3.2.1 Basic Flat Model

The simplest memory model for a system is the basic “flat model,” in which the operating system and application

programs have access to a continuous, unsegmented address space. To the greatest extent possible, this basic flat
model hides the segmentation mechanism of the architecture from both the system designer and the application

programmer.

To implement a basic flat memory model with the 1A-32 architecture, at least two segment descriptors must be
created, one for referencing a code segment and one for referencing a data segment (see Figure 3-2). Both of
these segments, however, are mapped to the entire linear address space: that is, both segment descriptors have
the same base address value of O and the same segment limit of 4 GBytes. By setting the segment limit to 4
GBytes, the segmentation mechanism is kept from generating exceptions for out of limit memory references, even
if no physical memory resides at a particular address. ROM (EPROM) is generally located at the top of the physical
address space, because the processor begins execution at FFFF_FFFOH. RAM (DRAM) is placed at the bottom of the
address space because the initial base address for the DS data segment after reset initialization is O.

3.2.2 Protected Flat Model

The protected flat model is similar to the basic flat model, except the segment limits are set to include only the
range of addresses for which physical memory actually exists (see Figure 3-3). A general-protection exception
(#GP) is then generated on any attempt to access nonexistent memory. This model provides a minimum level of
hardware protection against some kinds of program bugs.

Linear Address Space
(or Physical Memory)

FS

Segment >

Registers Code FFFFFFFFH
Code- and Data-Segment

Descriptors
NotPresen
I T

Access Limit Data and
Base Address | > Stack 0

GS

Figure 3-2. Flat Model

Vol. 3A 3-3

PROTECTED-MODE MEMORY MANAGEMENT

Segment Linear Address Space
Descriptors (or Physical Memory)
Segment -
Registers Access Limit [——> Code FEFFEFEFH
Base Address E—

S
Not Present

Memory 1/0
Limit J

S

Y

S

Access

> Base Address

Data and
Stack
> 0

Figure 3-3. Protected Flat Model

More complexity can be added to this protected flat model to provide more protection. For example, for the paging
mechanism to provide isolation between user and supervisor code and data, four segments need to be defined:
code and data segments at privilege level 3 for the user, and code and data segments at privilege level O for the
supervisor. Usually these segments all overlay each other and start at address O in the linear address space. This
flat segmentation model along with a simple paging structure can protect the operating system from applications,
and by adding a separate paging structure for each task or process, it can also protect applications from each other.
Similar designs are used by several popular multitasking operating systems.

3.2.3 Multi-Segment Model

A multi-segment model (such as the one shown in Figure 3-4) uses the full capabilities of the segmentation mech-
anism to provided hardware enforced protection of code, data structures, and programs and tasks. Here, each
program (or task) is given its own table of segment descriptors and its own segments. The segments can be
completely private to their assigned programs or shared among programs. Access to all segments and to the
execution environments of individual programs running on the system is controlled by hardware.

3-4 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

Segment Segment Linear Address Space
Registers Descriptors (or Physical Memory)
IE - Access \ Limit
Base Address) Stack
Access [Limit

Y

[ss]

Base Address

Access [Limit
DS >
Base Address Code
E > Access \ Limit
Base Address
— Data
Access \ Limit
FS >
Base Address
Data
IE > Access \ Limit
Base Address
— Data
Access \ Limit
Base Address A
Access \ Limit
Base Address
Data

Access [Limit
Base Address

Access \ Limit

Base Address T
Figure 3-4. Multi-Segment Model

Access checks can be used to protect not only against referencing an address outside the limit of a segment, but
also against performing disallowed operations in certain segments. For example, since code segments are desig-
nated as read-only segments, hardware can be used to prevent writes into code segments. The access rights infor-
mation created for segments can also be used to set up protection rings or levels. Protection levels can be used to
protect operating-system procedures from unauthorized access by application programs.

3.24 Segmentation in IA-32e Mode

In 1A-32e mode of Intel 64 architecture, the effects of segmentation depend on whether the processor is running
in compatibility mode or 64-bit mode. In compatibility mode, segmentation functions just as it does using legacy
16-bit or 32-bit protected mode semantics.

In 64-bit mode, segmentation is generally (but not completely) disabled, creating a flat 64-bit linear-address
space. The processor treats the segment base of CS, DS, ES, SS as zero, creating a linear address that is equal to
the effective address. The FS and GS segments are exceptions. These segment registers (which hold the segment
base) can be used as an additional base registers in linear address calculations. They facilitate addressing local
data and certain operating system data structures.

Note that the processor does not perform segment limit checks at runtime in 64-bit mode.

3.25 Paging and Segmentation

Paging can be used with any of the segmentation models described in Figures 3-2, 3-3, and 3-4. The processor’s
paging mechanism divides the linear address space (into which segments are mapped) into pages (as shown in
Figure 3-1). These linear-address-space pages are then mapped to pages in the physical address space. The
paging mechanism offers several page-level protection facilities that can be used with or instead of the segment-

Vol. 3A 3-5

PROTECTED-MODE MEMORY MANAGEMENT

protection facilities. For example, it lets read-write protection be enforced on a page-by-page basis. The paging
mechanism also provides two-level user-supervisor protection that can also be specified on a page-by-page basis.

3.3 PHYSICAL ADDRESS SPACE

In protected mode, the 1A-32 architecture provides a normal physical address space of 4 GBytes (232 bytes). This
is the address space that the processor can address on its address bus. This address space is flat (unsegmented),
with addresses ranging continuously from 0 to FFFFFFFFH. This physical address space can be mapped to read-
write memory, read-only memory, and memory mapped 1/0. The memory mapping facilities described in this
chapter can be used to divide this physical memory up into segments and/or pages.

Starting with the Pentium Pro processor, the 1A-32 architecture also supports an extension of the physical address
space to 238 bytes (64 GBytes); with a maximum physical address of FFFFFFFFFH. This extension is invoked in
either of two ways:

® Using the physical address extension (PAE) flag, located in bit 5 of control register CR4.
® Using the 36-bit page size extension (PSE-36) feature (introduced in the Pentium Il processors).

Physical address support has since been extended beyond 36 bits. See Chapter 4, “Paging” for more information
about 36-bit physical addressing.

3.3.1 Intel® 64 Processors and Physical Address Space

On processors that support Intel 64 architecture (CPUID.80000001:EDX[29] = 1), the size of the physical address
range is implementation-specific and indicated by CPUID.80000008H:EAX[bits 7-0].

For the format of information returned in EAX, see “CPUID—CPU ldentification” in Chapter 3 of the Intel® 64 and
1A-32 Architectures Software Developer’'s Manual, Volume 2A. See also: Chapter 4, “Paging.”

3.4 LOGICAL AND LINEAR ADDRESSES

At the system-architecture level in protected mode, the processor uses two stages of address translation to arrive
at a physical address: logical-address translation and linear address space paging.

Even with the minimum use of segments, every byte in the processor’s address space is accessed with a logical
address. A logical address consists of a 16-bit segment selector and a 32-bit offset (see Figure 3-5). The segment
selector identifies the segment the byte is located in and the offset specifies the location of the byte in the segment
relative to the base address of the segment.

The processor translates every logical address into a linear address. A linear address is a 32-bit address in the
processor’s linear address space. Like the physical address space, the linear address space is a flat (unsegmented),
232—byte address space, with addresses ranging from O to FFFFFFFFH. The linear address space contains all the
segments and system tables defined for a system.

To translate a logical address into a linear address, the processor does the following:

1. Uses the offset in the segment selector to locate the segment descriptor for the segment in the GDT or LDT and
reads it into the processor. (This step is needed only when a new segment selector is loaded into a segment
register.)

2. Examines the segment descriptor to check the access rights and range of the segment to insure that the
segment is accessible and that the offset is within the limits of the segment.

3. Adds the base address of the segment from the segment descriptor to the offset to form a linear address.

3-6 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

15 0 31(63) 0
Seg. Selector | Offset (Effective Address) |

Logical
Address

Descriptor Table

Segment

Base Address
H R — . s +
Descriptor .

31(63) 0
Linear Address |

Figure 3-5. Logical Address to Linear Address Translation

If paging is not used, the processor maps the linear address directly to a physical address (that is, the linear
address goes out on the processor’s address bus). If the linear address space is paged, a second level of address
translation is used to translate the linear address into a physical address.

See also: Chapter 4, “Paging.”

3.4.1 Logical Address Translation in IA-32e Mode

In 1A-32e mode, an Intel 64 processor uses the steps described above to translate a logical address to a linear
address. In 64-bit mode, the offset and base address of the segment are 64-bits instead of 32 bits. The linear
address format is also 64 bits wide and is subject to the canonical form requirement.

Each code segment descriptor provides an L bit. This bit allows a code segment to execute 64-bit code or legacy
32-bit code by code segment.

34.2 Segment Selectors

A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not point directly to the segment,
but instead points to the segment descriptor that defines the segment. A segment selector contains the following
items:

Index (Bits 3 through 15) — Selects one of 8192 descriptors in the GDT or LDT. The processor multiplies
the index value by 8 (the number of bytes in a segment descriptor) and adds the result to the base
address of the GDT or LDT (from the GDTR or LDTR register, respectively).

Tl (table indicator) flag
(Bit 2) — Specifies the descriptor table to use: clearing this flag selects the GDT; setting this flag
selects the current LDT.

15 3210

Index MRPL|

Table Indicator ‘
0=GDT
1=LDT

Requested Privilege Level (RPL)

Figure 3-6. Segment Selector

Vol. 3A 3-7

PROTECTED-MODE MEMORY MANAGEMENT

Requested Privilege Level (RPL)
(Bits 0 and 1) — Specifies the privilege level of the selector. The privilege level can range from O to
3, with O being the most privileged level. See Section 5.5, “Privilege Levels”, for a description of the
relationship of the RPL to the CPL of the executing program (or task) and the descriptor privilege
level (DPL) of the descriptor the segment selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points to this entry of the GDT (that
is, a segment selector with an index of 0 and the TI flag set to 0) is used as a “null segment selector.” The processor
does not generate an exception when a segment register (other than the CS or SS registers) is loaded with a null
selector. It does, however, generate an exception when a segment register holding a null selector is used to access
memory. A null selector can be used to initialize unused segment registers. Loading the CS or SS register with a null
segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable, but the values of selectors are
usually assigned or modified by link editors or linking loaders, not application programs.

343 Segment Registers

To reduce address translation time and coding complexity, the processor provides registers for holding up to 6
segment selectors (see Figure 3-7). Each of these segment registers support a specific kind of memory reference
(code, stack, or data). For virtually any kind of program execution to take place, at least the code-segment (CS),
data-segment (DS), and stack-segment (SS) registers must be loaded with valid segment selectors. The processor
also provides three additional data-segment registers (ES, FS, and GS), which can be used to make additional data
segments available to the currently executing program (or task).

For a program to access a segment, the segment selector for the segment must have been loaded in one of the
segment registers. So, although a system can define thousands of segments, only 6 can be available for immediate
use. Other segments can be made available by loading their segment selectors into these registers during program
execution.

Visible Part Hidden Part
Segment Selector Base Address, Limit, Access Information | CS
SS
DS
ES
FS
GS

Figure 3-7. Segment Registers

Every segment register has a “visible” part and a “hidden” part. (The hidden part is sometimes referred to as a
“descriptor cache” or a “shadow register.”) When a segment selector is loaded into the visible part of a segment
register, the processor also loads the hidden part of the segment register with the base address, segment limit, and
access control information from the segment descriptor pointed to by the segment selector. The information cached
in the segment register (visible and hidden) allows the processor to translate addresses without taking extra bus
cycles to read the base address and limit from the segment descriptor. In systems in which multiple processors
have access to the same descriptor tables, it is the responsibility of software to reload the segment registers when
the descriptor tables are modified. If this is not done, an old segment descriptor cached in a segment register might
be used after its memory-resident version has been modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS instructions. These instructions
explicitly reference the segment registers.

3-8 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

2. Implied load instructions such as the far pointer versions of the CALL, JMP, and RET instructions, the SYSENTER
and SYSEXIT instructions, and the IRET, INTn, INTO and INT3 instructions. These instructions change the
contents of the CS register (and sometimes other segment registers) as an incidental part of their operation.

The MOV instruction can also be used to store visible part of a segment register in a general-purpose register.

344 Segment Loading Instructions in IA-32e Mode

Because ES, DS, and SS segment registers are not used in 64-bit mode, their fields (base, limit, and attribute) in
segment descriptor registers are ignored. Some forms of segment load instructions are also invalid (for example,
LDS, POP ES). Address calculations that reference the ES, DS, or SS segments are treated as if the segment base
is zero.

The processor checks that all linear-address references are in canonical form instead of performing limit checks.
Mode switching does not change the contents of the segment registers or the associated descriptor registers.
These registers are also not changed during 64-bit mode execution, unless explicit segment loads are performed.

In order to set up compatibility mode for an application, segment-load instructions (MOV to Sreg, POP Sreg) work
normally in 64-bit mode. An entry is read from the system descriptor table (GDT or LDT) and is loaded in the
hidden portion of the segment descriptor register. The descriptor-register base, limit, and attribute fields are all
loaded. However, the contents of the data and stack segment selector and the descriptor registers are ignored.

When FS and GS segment overrides are used in 64-bit mode, their respective base addresses are used in the linear
address calculation: (FS or GS).base + index + displacement. FS.base and GS.base are then expanded to the full
linear-address size supported by the implementation. The resulting effective address calculation can wrap across
positive and negative addresses; the resulting linear address must be canonical.

In 64-bit mode, memory accesses using FS-segment and GS-segment overrides are not checked for a runtime limit
nor subjected to attribute-checking. Normal segment loads (MOV to Sreg and POP Sreg) into FS and GS load a
standard 32-bit base value in the hidden portion of the segment descriptor register. The base address bits above
the standard 32 bits are cleared to 0 to allow consistency for implementations that use less than 64 bits.

The hidden descriptor register fields for FS.base and GS.base are physically mapped to MSRs in order to load all
address bits supported by a 64-bit implementation. Software with CPL = O (privileged software) can load all
supported linear-address bits into FS.base or GS.base using WRMSR. Addresses written into the 64-bit FS.base
and GS.base registers must be in canonical form. A WRMSR instruction that attempts to write a non-canonical
address to those registers causes a #GP fault.

When in compatibility mode, FS and GS overrides operate as defined by 32-bit mode behavior regardless of the
value loaded into the upper 32 linear-address bits of the hidden descriptor register base field. Compatibility mode
ignores the upper 32 bits when calculating an effective address.

A new 64-bit mode instruction, SWAPGS, can be used to load GS base. SWAPGS exchanges the kernel data struc-
ture pointer from the 1A32_KernelGSbase MSR with the GS base register. The kernel can then use the GS prefix on
normal memory references to access the kernel data structures. An attempt to write a non-canonical value (using
WRMSR) to the IA32_KernelGSBase MSR causes a #GP fault.

3.4.5 Segment Descriptors

A segment descriptor is a data structure in a GDT or LDT that provides the processor with the size and location of
a segment, as well as access control and status information. Segment descriptors are typically created by
compilers, linkers, loaders, or the operating system or executive, but not application programs. Figure 3-8 illus-
trates the general descriptor format for all types of segment descriptors.

Vol. 3A 3-9

PROTECTED-MODE MEMORY MANAGEMENT

31 242322212019 1615141312 11 8 7 0
D| |A|l Seg. D
Base 31:24 G|/ |L|v| Limt |P| p |S| Type Base 23:16 4
L| 19:16 L
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0
L — 64-bit code segment (IA-32e mode only)
AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)
DPL — Descriptor privilege level
G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)
TYPE — Segment type

Figure 3-8. Segment Descriptor

The flags and fields in a segment descriptor are as follows:

Segment limit field

Specifies the size of the segment. The processor puts together the two segment limit fields to form
a 20-bit value. The processor interprets the segment limit in one of two ways, depending on the
setting of the G (granularity) flag:

= If the granularity flag is clear, the segment size can range from 1 byte to 1 MByte, in byte incre-
ments.

- If the granularity flag is set, the segment size can range from 4 KBytes to 4 GBytes, in 4-KByte
increments.

The processor uses the segment limit in two different ways, depending on whether the segment is
an expand-up or an expand-down segment. See Section 3.4.5.1, “Code- and Data-Segment
Descriptor Types”, for more information about segment types. For expand-up segments, the offset
in a logical address can range from O to the segment limit. Offsets greater than the segment limit
generate general-protection exceptions (#GP, for all segment other than SS) or stack-fault excep-
tions (#SS for the SS segment). For expand-down segments, the segment limit has the reverse
function; the offset can range from the segment limit plus 1 to FFFFFFFFH or FFFFH, depending on
the setting of the B flag. Offsets less than or equal to the segment limit generate general-protection
exceptions or stack-fault exceptions. Decreasing the value in the segment limit field for an expand-
down segment allocates new memory at the bottom of the segment's address space, rather than at
the top. 1A-32 architecture stacks always grow downwards, making this mechanism convenient for
expandable stacks.

Base address fields

Type field

3-10 Vol. 3A

Defines the location of byte 0 of the segment within the 4-GByte linear address space. The
processor puts together the three base address fields to form a single 32-bit value. Segment base
addresses should be aligned to 16-byte boundaries. Although 16-byte alignment is not required,
this alignment allows programs to maximize performance by aligning code and data on 16-byte
boundaries.

Indicates the segment or gate type and specifies the kinds of access that can be made to the
segment and the direction of growth. The interpretation of this field depends on whether the
descriptor type flag specifies an application (code or data) descriptor or a system descriptor. The
encoding of the type field is different for code, data, and system descriptors (see Figure 5-1). See
Section 3.4.5.1, “Code- and Data-Segment Descriptor Types”, for a description of how this field is
used to specify code and data-segment types.

PROTECTED-MODE MEMORY MANAGEMENT

S (descriptor type) flag
Specifies whether the segment descriptor is for a system segment (S flag is clear) or a code or data
segment (S flag is set).

DPL (descriptor privilege level) field
Specifies the privilege level of the segment. The privilege level can range from 0 to 3, with O being
the most privileged level. The DPL is used to control access to the segment. See Section 5.5, “Priv-
ilege Levels”, for a description of the relationship of the DPL to the CPL of the executing code
segment and the RPL of a segment selector.

P (segment-present) flag
Indicates whether the segment is present in memory (set) or not present (clear). If this flag is clear,
the processor generates a segment-not-present exception (#NP) when a segment selector that
points to the segment descriptor is loaded into a segment register. Memory management software
can use this flag to control which segments are actually loaded into physical memory at a given
time. It offers a control in addition to paging for managing virtual memory.

Figure 3-9 shows the format of a segment descriptor when the segment-present flag is clear. When
this flag is clear, the operating system or executive is free to use the locations marked “Available” to
store its own data, such as information regarding the whereabouts of the missing segment.

D/B (default operation size/default stack pointer size and/or upper bound) flag
Performs different functions depending on whether the segment descriptor is an executable code
segment, an expand-down data segment, or a stack segment. (This flag should always be set to 1
for 32-bit code and data segments and to O for 16-bit code and data segments.)

Executable code segment. The flag is called the D flag and it indicates the default length for
effective addresses and operands referenced by instructions in the segment. If the flag is set,
32-bit addresses and 32-bit or 8-bit operands are assumed; if it is clear, 16-bit addresses and
16-bit or 8-bit operands are assumed.

The instruction prefix 66H can be used to select an operand size other than the default, and the
prefix 67H can be used select an address size other than the default.

Stack segment (data segment pointed to by the SS register). The flag is called the B (big)
flag and it specifies the size of the stack pointer used for implicit stack operations (such as
pushes, pops, and calls). If the flag is set, a 32-bit stack pointer is used, which is stored in the
32-bit ESP register; if the flag is clear, a 16-bit stack pointer is used, which is stored in the 16-
bit SP register. If the stack segment is set up to be an expand-down data segment (described in
the next paragraph), the B flag also specifies the upper bound of the stack segment.

Expand-down data segment. The flag is called the B flag and it specifies the upper bound of
the segment. If the flag is set, the upper bound is FFFFFFFFH (4 GBytes); if the flag is clear, the
upper bound is FFFFH (64 KBytes).

31 16 15 14 1312 11 8 7 0
Available 0| P |S| Type Available 4
L
31 0
Available 0

Figure 3-9. Segment Descriptor When Segment-Present Flag Is Clear

G (granularity) flag
Determines the scaling of the segment limit field. When the granularity flag is clear, the segment
limit is interpreted in byte units; when flag is set, the segment limit is interpreted in 4-KByte units.
(This flag does not affect the granularity of the base address; it is always byte granular.) When the
granularity flag is set, the twelve least significant bits of an offset are not tested when checking the

Vol. 3A 3-11

PROTECTED-MODE MEMORY MANAGEMENT

offset against the segment limit. For example, when the granularity flag is set, a limit of O results in
valid offsets from O to 4095.

L (64-bit code segment) flag
In 1A-32e mode, bit 21 of the second doubleword of the segment descriptor indicates whether a
code segment contains native 64-bit code. A value of 1 indicates instructions in this code segment
are executed in 64-bit mode. A value of O indicates the instructions in this code segment are
executed in compatibility mode. If L-bit is set, then D-bit must be cleared. When not in IA-32e mode
or for non-code segments, bit 21 is reserved and should always be set to O.

Available and reserved bits
Bit 20 of the second doubleword of the segment descriptor is available for use by system software.

3.4.5.1 Code- and Data-Segment Descriptor Types

When the S (descriptor type) flag in a segment descriptor is set, the descriptor is for either a code or a data
segment. The highest order bit of the type field (bit 11 of the second double word of the segment descriptor) then
determines whether the descriptor is for a data segment (clear) or a code segment (set).

For data segments, the three low-order bits of the type field (bits 8, 9, and 10) are interpreted as accessed (A),
write-enable (W), and expansion-direction (E). See Table 3-1 for a description of the encoding of the bits in the
type field for code and data segments. Data segments can be read-only or read/write segments, depending on the
setting of the write-enable bit.

Table 3-1. Code- and Data-Segment Types

Type Field Descriptor Description
Decimal 11 10 9 8 Type
€ W A
0 0 0 0 0 Data Read-Only
1 0 0 0 1 Data Read-Only, accessed
2 0 0 1 0 Data Read/Write
3 0 0 1 1 Data Read/Write, accessed
4 0 1 0 0 Data Read-Only, expand-down
5 0 1 0 1 Data Read-Only, expand-down, accessed
6 0 1 1 0 Data Read/Write, expand-down
7 0 1 1 1 Data Read/Write, expand-down, accessed
C R A
8 1 0 0 0 Code Execute-Only
9 1 0 0 1 Code Execute-Only, accessed
10 1 0 1 0 Code Execute/Read
1 1 0 1 1 Code Execute/Read, accessed
12 1 1 0 0 Code Execute-Only, conforming
13 1 1 0 1 Code Execute-Only, conforming, accessed
14 1 1 1 0 Code Execute/Read, conforming
15 1 1 1 1 Code Execute/Read, conforming, accessed

Stack segments are data segments which must be read/write segments. Loading the SS register with a segment
selector for a nonwritable data segment generates a general-protection exception (#GP). If the size of a stack
segment needs to be changed dynamically, the stack segment can be an expand-down data segment (expansion-
direction flag set). Here, dynamically changing the segment limit causes stack space to be added to the bottom of

3-12 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

the stack. If the size of a stack segment is intended to remain static, the stack segment may be either an expand-
up or expand-down type.

The accessed bit indicates whether the segment has been accessed since the last time the operating-system or
executive cleared the bit. The processor sets this bit whenever it loads a segment selector for the segment into a
segment register, assuming that the type of memory that contains the segment descriptor supports processor
writes. The bit remains set until explicitly cleared. This bit can be used both for virtual memory management and
for debugging.

For code segments, the three low-order bits of the type field are interpreted as accessed (A), read enable (R), and
conforming (C). Code segments can be execute-only or execute/read, depending on the setting of the read-enable
bit. An execute/read segment might be used when constants or other static data have been placed with instruction
code in a ROM. Here, data can be read from the code segment either by using an instruction with a CS override
prefix or by loading a segment selector for the code segment in a data-segment register (the DS, ES, FS, or GS
registers). In protected mode, code segments are not writable.

Code segments can be either conforming or nonconforming. A transfer of execution into a more-privileged
conforming segment allows execution to continue at the current privilege level. A transfer into a nonconforming
segment at a different privilege level results in a general-protection exception (#GP), unless a call gate or task
gate is used (see Section 5.8.1, “Direct Calls or Jumps to Code Segments”, for more information on conforming and
nonconforming code segments). System utilities that do not access protected facilities and handlers for some types
of exceptions (such as, divide error or overflow) may be loaded in conforming code segments. Utilities that need to
be protected from less privileged programs and procedures should be placed in nonconforming code segments.

NOTE

Execution cannot be transferred by a call or a jump to a less-privileged (numerically higher
privilege level) code segment, regardless of whether the target segment is a conforming or
nonconforming code segment. Attempting such an execution transfer will result in a general-
protection exception.

All data segments are nonconforming, meaning that they cannot be accessed by less privileged programs or proce-
dures (code executing at numerically high privilege levels). Unlike code segments, however, data segments can be
accessed by more privileged programs or procedures (code executing at numerically lower privilege levels) without
using a special access gate.

If the segment descriptors in the GDT or an LDT are placed in ROM, the processor can enter an indefinite loop if
software or the processor attempts to update (write to) the ROM-based segment descriptors. To prevent this
problem, set the accessed bits for all segment descriptors placed in a ROM. Also, remove operating-system or
executive code that attempts to modify segment descriptors located in ROM.

3.5 SYSTEM DESCRIPTOR TYPES

When the S (descriptor type) flag in a segment descriptor is clear, the descriptor type is a system descriptor. The
processor recognizes the following types of system descriptors:

® Local descriptor-table (LDT) segment descriptor.
® Task-state segment (TSS) descriptor.

® Call-gate descriptor.

® Interrupt-gate descriptor.

® Trap-gate descriptor.

® Task-gate descriptor.

These descriptor types fall into two categories: system-segment descriptors and gate descriptors. System-
segment descriptors point to system segments (LDT and TSS segments). Gate descriptors are in themselves
“gates,” which hold pointers to procedure entry points in code segments (call, interrupt, and trap gates) or which
hold segment selectors for TSS’s (task gates).

Vol.3A 3-13

PROTECTED-MODE MEMORY MANAGEMENT

Table 3-2 shows the encoding of the type field for system-segment descriptors and gate descriptors. Note that
system descriptors in 1A-32e mode are 16 bytes instead of 8 bytes.

Table 3-2. System-Segment and Gate-Descriptor Types

Type Field Description
Decimal 11 10 32-Bit Mode IA-32e Mode
0 0 0 0 Reserved Upper 8 byte of an 16-byte
descriptor
1 0 0 0 1 16-bit TSS (Available) Reserved
2 0 0 1 0 LDT LDT
3 0 0 1 1 16-bit TSS (Busy) Reserved
4 0 1 0 0 16-bit Call Gate Reserved
5 0 1 0 1 Task Gate Reserved
6 0 1 1 0 16-bit Interrupt Gate Reserved
7 0 1 1 1 16-bit Trap Gate Reserved
8 1 0 0 0 Reserved Reserved
9 1 0 0 1 32-bit TSS (Available) 64-bit TSS (Available)
10 1 0 1 0 Reserved Reserved
11 1 0 1 1 32-bit TSS (Busy) 64-bit TSS (Busy)
12 1 1 0 0 32-bit Call Gate 64-bit Call Gate
13 1 1 0 1 Reserved Reserved
14 1 1 1 0 32-bit Interrupt Gate 64-bit Interrupt Gate
15 1 1 1 1 32-bit Trap Gate 64-bit Trap Gate

See also: Section 3.5.1, “Segment Descriptor Tables”, and Section 7.2.2, “TSS Descriptor” (for more information
on the system-segment descriptors); see Section 5.8.3, “Call Gates”, Section 6.11, “IDT Descriptors”, and Section

7.2.5, “Task-Gate Descriptor” (for more information on the gate descriptors).

3.5.1 Segment Descriptor Tables

A segment descriptor table is an array of segment descriptors (see Figure 3-10). A descriptor table is variable in
length and can contain up to 8192 (213) 8-byte descriptors. There are two kinds of descriptor tables:

® The global descriptor table (GDT)
® The local descriptor tables (LDT)

3-14 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

Global Local
Descriptor Descriptor
Table (GDT) Table (LDT)
i ¢ ¢
| TI=0 TI=1
Segment
Selector
56 56
48 48
40 40
32 32
24 24
16 16
8 8
First Descriptor in
GDT is Not Used 0 0
GDTR Register LDTR Register
Limit | Limit
| Base Address Base Address
Seg. Sel.

Figure 3-10. Global and Local Descriptor Tables

Each system must have one GDT defined, which may be used for all programs and tasks in the system. Optionally,
one or more LDTs can be defined. For example, an LDT can be defined for each separate task being run, or some or
all tasks can share the same LDT.

The GDT is not a segment itself; instead, it is a data structure in linear address space. The base linear address and
limit of the GDT must be loaded into the GDTR register (see Section 2.4, “Memory-Management Registers”). The
base addresses of the GDT should be aligned on an eight-byte boundary to yield the best processor performance.
The limit value for the GDT is expressed in bytes. As with segments, the limit value is added to the base address to
get the address of the last valid byte. A limit value of O results in exactly one valid byte. Because segment descrip-
tors are always 8 bytes long, the GDT limit should always be one less than an integral multiple of eight (that is, 8N
—1).

The first descriptor in the GDT is not used by the processor. A segment selector to this “null descriptor” does not
generate an exception when loaded into a data-segment register (DS, ES, FS, or GS), but it always generates a
general-protection exception (#GP) when an attempt is made to access memory using the descriptor. By initializing
the segment registers with this segment selector, accidental reference to unused segment registers can be guar-
anteed to generate an exception.

The LDT is located in a system segment of the LDT type. The GDT must contain a segment descriptor for the LDT
segment. If the system supports multiple LDTs, each must have a separate segment selector and segment
descriptor in the GDT. The segment descriptor for an LDT can be located anywhere in the GDT. See Section 3.5,
“System Descriptor Types”, information on the LDT segment-descriptor type.

An LDT is accessed with its segment selector. To eliminate address translations when accessing the LDT, the
segment selector, base linear address, limit, and access rights of the LDT are stored in the LDTR register (see
Section 2.4, “Memory-Management Registers”).

When the GDTR register is stored (using the SGDT instruction), a 48-bit “pseudo-descriptor” is stored in memory
(see top diagram in Figure 3-11). To avoid alignment check faults in user mode (privilege level 3), the pseudo-

Vol.3A 3-15

PROTECTED-MODE MEMORY MANAGEMENT

descriptor should be located at an odd word address (that is, address MOD 4 is equal to 2). This causes the
processor to store an aligned word, followed by an aligned doubleword. User-mode programs normally do not store
pseudo-descriptors, but the possibility of generating an alignment check fault can be avoided by alighing pseudo-
descriptors in this way. The same alignment should be used when storing the IDTR register using the SIDT instruc-
tion. When storing the LDTR or task register (using the SLDT or STR instruction, respectively), the pseudo-
descriptor should be located at a doubleword address (that is, address MOD 4 is equal to 0).

47 16 15 0
| 32-bit Base Address | Limit |

79 16 15 0
| 64-bitBase Address | Limit |

Figure 3-11. Pseudo-Descriptor Formats

3.5.2 Segment Descriptor Tables in IA-32e Mode

In 1A-32e mode, a segment descriptor table can contain up to 8192 (213) 8-byte descriptors. An entry in the
segment descriptor table can be 8 bytes. System descriptors are expanded to 16 bytes (occupying the space of two
entries).

GDTR and LDTR registers are expanded to hold 64-bit base address. The corresponding pseudo-descriptor is 80
bits. (see the bottom diagram in Figure 3-11).

The following system descriptors expand to 16 bytes:
— Call gate descriptors (see Section 5.8.3.1, “lA-32e Mode Call Gates”)
— IDT gate descriptors (see Section 6.14.1, “64-Bit Mode IDT”)
— LDT and TSS descriptors (see Section 7.2.3, “TSS Descriptor in 64-bit mode”).

3-16 Vol. 3A

CHAPTER 4
PAGING

Chapter 3 explains how segmentation converts logical addresses to linear addresses. Paging (or linear-address
translation) is the process of translating linear addresses so that they can be used to access memory or 1/0
devices. Paging translates each linear address to a physical address and determines, for each translation, what
accesses to the linear address are allowed (the address’s access rights) and the type of caching used for such
accesses (the address’s memory type).

Intel-64 processors support three different paging modes. These modes are identified and defined in Section 4.1.
Section 4.2 gives an overview of the translation mechanism that is used in all modes. Section 4.3, Section 4.4, and
Section 4.5 discuss the three paging modes in detail.

Section 4.6 details how paging determines and uses access rights. Section 4.7 discusses exceptions that may be
generated by paging (page-fault exceptions). Section 4.8 considers data which the processor writes in response to
linear-address accesses (accessed and dirty flags).

Section 4.9 describes how paging determines the memory types used for accesses to linear addresses. Section
4.10 provides details of how a processor may cache information about linear-address translation. Section 4.11
outlines interactions between paging and certain VMX features. Section 4.12 gives an overview of how paging can
be used to implement virtual memory.

4.1 PAGING MODES AND CONTROL BITS

Paging behavior is controlled by the following control bits:
® The WP and PG flags in control register CRO (bit 16 and bit 31, respectively).

® The PSE, PAE, PGE, PCIDE, and SMEP flags in control register CR4 (bit 4, bit 5, bit 7, bit 17, and bit 20 respec-
tively).

® The LME and NXE flags in the 1A32_EFER MSR (bit 8 and bit 11, respectively).

Software enables paging by using the MOV to CRO instruction to set CRO.PG. Before doing so, software should
ensure that control register CR3 contains the physical address of the first paging structure that the processor will
use for linear-address translation (see Section 4.2) and that structure is initialized as desired. See Table 4-3,
Table 4-7, and Table 4-12 for the use of CR3 in the different paging modes.

Section 4.1.1 describes how the values of CRO.PG, CR4.PAE, and 1A32_EFER.LME determine whether paging is in
use and, if so, which of three paging modes is in use. Section 4.1.2 explains how to manage these bits to establish
or make changes in paging modes. Section 4.1.3 discusses how CR0.WP, CR4.PSE, CR4.PGE, CR4.PCIDE,
CR4.SMEP, and 1A32_EFER.NXE modify the operation of the different paging modes.

4.1.1 Three Paging Modes

If CRO.PG = 0, paging is not used. The logical processor treats all linear addresses as if they were physical
addresses. CR4.PAE and IA32_EFER.LME are ignored by the processor, as are CRO.WP, CR4.PSE, CR4.PGE,
CR4.SMEP, and 1A32_EFER.NXE.

Paging is enabled if CRO.PG = 1. Paging can be enabled only if protection is enabled (CRO.PE = 1). If paging is

enabled, one of three paging modes is used. The values of CR4.PAE and IA32_EFER.LME determine which paging

mode is used:

® If CRO.PG =1 and CR4.PAE = 0, 32-bit paging is used. 32-bit paging is detailed in Section 4.3. 32-bit paging
uses CRO.WP, CR4.PSE, CR4.PGE, and CR4.SMEP as described in Section 4.1.3.

® IfCRO.PG =1, CR4.PAE = 1, and IA32_EFER.LME = 0, PAE paging is used. PAE paging is detailed in Section
4.4. PAE paging uses CRO.WP, CR4.PGE, CR4.SMEP, and I1A32_EFER.NXE as described in Section 4.1.3.

Vol. 3A 4-1

PAGING

® IfCRO.PG =1, CR4.PAE =1, and IA32_EFER.LME = 1, 1A-32e paging is used.! IA-32e paging is detailed in
Section 4.5. 1A-32e paging uses CRO.WP, CR4.PGE, CR4.PCIDE, CR4.SMEP, and I1A32_EFER.NXE as described
in Section 4.1.3. 1A-32e paging is available only on processors that support the Intel 64 architecture.

The three paging modes differ with regard to the following details:
® Linear-address width. The size of the linear addresses that can be translated.
® Physical-address width. The size of the physical addresses produced by paging.

® Page size. The granularity at which linear addresses are translated. Linear addresses on the same page are
translated to corresponding physical addresses on the same page.

® Support for execute-disable access rights. In some paging modes, software can be prevented from fetching
instructions from pages that are otherwise readable.

® Support for PCIDs. In some paging modes, software can enable a facility by which a logical processor caches
information for multiple linear-address spaces. The processor may retain cached information when software
switches between different linear-address spaces.

Table 4-1 illustrates the key differences between the three paging modes.

Table 4-1. Properties of Different Paging Modes

Paging PGin PAE in LME in ;-\Igdr K%f Page 'E':epg?{;s Supports
Mode CRO CR4 IA32_EFER Width Width? Sizes Dreatle? PCIDs?
None 0 N/A N/A 32 32 N/A No No
32-bit 1 0 02 32 28;}0 . 5%4 No No
PAE 1 1 0 32 gg to g pK,I% Yes® No
Up 1o 4KB
IA-32e 1 1 1 48 52 2MB Yes5 Yes’
1GB®
NOTES:

1. The physical-address width is always bounded by MAXPHYADDR; see Section 4.1.4.
2. The processor ensures that IA32_EFER.LME must be O if CRO.PG = 1 and CR4.PAE = 0.

3. 32-bit paging supports physical-address widths of more than 32 bits only for 4-MByte pages and only if the PSE-36 mechanism is
supported; see Section 4.1.4 and Section 4.3.

4. 4-MByte pages are used with 32-bit paging only if CR4.PSE = 1; see Section 4.3.

5. Execute-disable access rights are applied only if IA32_EFER.NXE = 1; see Section 4.6.

6. Not all processors that support IA-32e paging support 1-GByte pages; see Section 4.1.4.
7. PCIDs are used only if CR4.PCIDE = 1; see Section 4.10.1.

Because they are used only if IA32_EFER.LME = 0, 32-bit paging and PAE paging is used only in legacy protected
mode. Because legacy protected mode cannot produce linear addresses larger than 32 bits, 32-bit paging and PAE
paging translate 32-bit linear addresses.

Because it is used only if IA32_EFER.LME = 1, 1A-32e paging is used only in 1A-32e mode. (In fact, it is the use of
IA-32e paging that defines 1A-32e mode.) IA-32e mode has two sub-modes:

® Compatibility mode. This mode uses only 32-bit linear addresses. 1A-32e paging treats bits 47:32 of such an
address as all O.

1. The LMA flag in the IA32_EFER MSR (bit 10) is a status bit that indicates whether the logical processor is in IA-32e mode (and thus
using IA-32e paging). The processor always sets IA32_EFER.LMA to CRO.PG & IA32_EFER.LME. Software cannot directly modify
IA32_EFER.LMA; an execution of WRMSR to the IA32_EFER MSR ignores bit 10 of its source operand.

4-2 Vol.3A

PAGING

® 64-bit mode. While this mode produces 64-bit linear addresses, the processor ensures that bits 63:47 of such

an address are identical.l 1A-32e paging does not use bits 63:48 of such addresses.

4.1.2 Paging-Mode Enabling

If CRO.PG = 1, a logical processor is in one of three paging modes, depending on the values of CR4.PAE and
IA32_EFER.LME. Figure 4-1 illustrates how software can enable these modes and make transitions between them.
The following items identify certain limitations and other details:

#GP 4GP

Set LME‘ Set LME f

No Pagin SetPG -bit Pagi Set PAE
ging _m 32-bit Paging _ T e/ PaEPagig
PG=0 PG=1 PG=1
PAE=0 PAE=0 PAE_: 1
Clear PG LME=0 Clear PAE LME=0

#GP

A

ClearPAE SetPG
Clear PAE |

Set PAE

Clear PG

w

o

= g

m 2
=
=
m

!_ o Paging —! !_ No Paging | 1A-32e Paging
| PG=0 [| PG=0 | PG=1
. PAE=0 , PAE=L PAE=1
L _U\Ezl_ N L LME=0 | LME=1
| =
SetPG | o
sere| & : g
= =
v Clear PAE & Clear PG m
ha Set PAE v
#GP
!— No Paging \
| PG=0 |
, PE=1
L _WME=L

Figure 4-1. Enabling and Changing Paging Modes

® 1A32_EFER.LME cannot be modified while paging is enabled (CRO.PG = 1). Attempts to do so using WRMSR
cause a general-protection exception (#GP(0)).

® Paging cannot be enabled (by setting CRO.PG to 1) while CR4.PAE = 0 and IA32_EFER.LME = 1. Attempts to do
so using MOV to CRO cause a general-protection exception (#GP(0)).

® CRA4.PAE cannot be cleared while 1A-32e paging is active (CR0O.PG = 1 and IA32_EFER.LME = 1). Attempts to
do so using MOV to CR4 cause a general-protection exception (#GP(0)).

® Regardless of the current paging mode, software can disable paging by clearing CRO.PG with MOV to CRO.2

1. Such an address is called canonical. Use of a non-canonical linear address in 64-bit mode produces a general-protection exception
(#GP(0)); the processor does not attempt to translate non-canonical linear addresses using IA-32e paging.

2. If CR4.PCIDE = 1, an attempt to clear CRO.PG causes a general-protection exception (#GP); software should clear CR4.PCIDE before
attempting to disable paging.

Vol. 3A 4-3

PAGING

® Software can make transitions between 32-bit paging and PAE paging by changing the value of CR4.PAE with
MOV to CR4.

® Software cannot make transitions directly between 1A-32e paging and either of the other two paging modes. It
must first disable paging (by clearing CRO.PG with MOV to CRO), then set CR4.PAE and IA32_EFER.LME to the
desired values (with MOV to CR4 and WRMSR), and then re-enable paging (by setting CRO.PG with MOV to
CRO). As noted earlier, an attempt to clear either CR4.PAE or IA32_EFER.LME cause a general-protection
exception (#GP(0)).

® VMX transitions allow transitions between paging modes that are not possible using MOV to CR or WRMSR. This
is because VMX transitions can load CRO, CR4, and I1A32_EFER in one operation. See Section 4.11.1.

4.1.3 Paging-Mode Modifiers

Details of how each paging mode operates are determined by the following control bits:

® The WP flag in CRO (bit 16).

® The PSE, PGE, PCIDE, and SMEP flags in CR4 (bit 4, bit 7, bit 17, and bit 20, respectively).
® The NXE flag in the 1A32_EFER MSR (bit 11).

CRO.WP allows pages to be protected from supervisor-mode writes. If CRO.WP = 0, supervisor-mode write
accesses are allowed to linear addresses with read-only access rights; if CRO.WP = 1, they are not. (User-mode
write accesses are never allowed to linear addresses with read-only access rights, regardless of the value of
CRO.WP.) Section 4.6 explains how access rights are determined, including the definition of supervisor-mode and
user-mode accesses.

CR4.PSE enables 4-MByte pages for 32-bit paging. If CR4.PSE = 0, 32-bit paging can use only 4-KByte pages; if
CR4.PSE =1, 32-bit paging can use both 4-KByte pages and 4-MByte pages. See Section 4.3 for more information.
(PAE paging and IA-32e paging can use multiple page sizes regardless of the value of CR4.PSE.)

CR4.PGE enables global pages. If CR4.PGE = 0, no translations are shared across address spaces; if CR4.PGE =1,
specified translations may be shared across address spaces. See Section 4.10.2.4 for more information.

CR4.PCIDE enables process-context identifiers (PCIDs) for 1A-32e paging (CR4.PCIDE can be 1 only when 1A-32e
paging is in use). PCIDs allow a logical processor to cache information for multiple linear-address spaces. See
Section 4.10.1 for more information.

CR4.SMEP allows pages to be protected from supervisor-mode instruction fetches. If CR4.SMEP = 1, software
operating in supervisor mode cannot fetch instructions from linear addresses that are accessible in user mode.
Section 4.6 explains how access rights are determined, including the definition of supervisor-mode accesses and
user-mode accessibility.

IA32_EFER.NXE enables execute-disable access rights for PAE paging and 1A-32e paging. If IA32_EFER.NXE =1,
instructions fetches can be prevented from specified linear addresses (even if data reads from the addresses are
allowed). Section 4.6 explains how access rights are determined. (IA32_EFER.NXE has no effect with 32-bit
paging. Software that wants to use this feature to limit instruction fetches from readable pages must use either PAE
paging or 1A-32e paging.)

4.1.4 Enumeration of Paging Features by CPUID

Software can discover support for different paging features using the CPUID instruction:

® PSE: page-size extensions for 32-bit paging.
If CPUID.O1H:EDX.PSE [bit 3] = 1, CR4.PSE may be set to 1, enabling support for 4-MByte pages with 32-bit
paging (see Section 4.3).

® PAE: physical-address extension.
If CPUID.01H:EDX.PAE [bit 6] = 1, CR4.PAE may be set to 1, enabling PAE paging (this setting is also required
for 1A-32e paging).

® PGE: global-page support.
If CPUID.O1H:EDX.PGE [bit 13] = 1, CR4.PGE may be set to 1, enabling the global-page feature (see Section
4.10.2.4).

4-4 Vol. 3A

PAGING

® PAT: page-attribute table.
If CPUID.O1H:EDX.PAT [bit 16] = 1, the 8-entry page-attribute table (PAT) is supported. When the PAT is
supported, three bits in certain paging-structure entries select a memory type (used to determine type of
caching used) from the PAT (see Section 4.9.2).

® PSE-36: page-size extensions with 40-bit physical-address extension.
If CPUID.01H:EDX.PSE-36 [bit 17] = 1, the PSE-36 mechanism is supported, indicating that translations using
4-MByte pages with 32-bit paging may produce physical addresses with up to 40 bits (see Section 4.3).

® PCID: process-context identifiers.
If CPUID.O1H:ECX.PCID [bit 17] = 1, CR4.PCIDE may be set to 1, enabling process-context identifiers (see
Section 4.10.1).

® SMEP: supervisor-mode execution prevention.
If CPUID.(EAX=07H,ECX=0H):EBX.SMEP [bit 7] = 1, CR4.SMEP may be set to 1, enabling supervisor-mode
execution prevention (see Section 4.6).

® NX: execute disable.
If CPUID.80000001H:EDX.NX [bit 20] = 1, IA32_EFER.NXE may be set to 1, allowing PAE paging and 1A-32e
paging to disable execute access to selected pages (see Section 4.6). (Processors that do not support CPUID
function 80000001H do not allow 1A32_EFER.NXE to be set to 1.)

® PagelGB: 1-GByte pages.
If CPUID.80000001H:EDX.PagelGB [bit 26] = 1, 1-GByte pages are supported with 1A-32e paging (see
Section 4.5).

® LM: IA-32e mode support.
If CPUID.80000001H:EDX.LM [bit 29] = 1, IA32_EFER.LME may be set to 1, enabling 1A-32e paging.
(Processors that do not support CPUID function 80000001H do not allow 1A32_EFER.LME to be set to 1.)

® CPUID.80000008H:EAX[7:0] reports the physical-address width supported by the processor. (For processors
that do not support CPUID function 80000008H, the width is generally 36 if CPUID.0O1H:EDX.PAE [bit 6] = 1
and 32 otherwise.) This width is referred to as MAXPHYADDR. MAXPHYADDR is at most 52.

¢ CPUID.80000008H:EAX[15:8] reports the linear-address width supported by the processor. Generally, this
value is 48 if CPUID.80000001H:EDX.LM [bit 29] = 1 and 32 otherwise. (Processors that do not support CPUID
function 80000008H, support a linear-address width of 32.)

4.2 HIERARCHICAL PAGING STRUCTURES: AN OVERVIEW

All three paging modes translate linear addresses use hierarchical paging structures. This section provides an
overview of their operation. Section 4.3, Section 4.4, and Section 4.5 provide details for the three paging modes.

Every paging structure is 4096 Bytes in size and comprises a number of individual entries. With 32-bit paging,
each entry is 32 bits (4 bytes); there are thus 1024 entries in each structure. With PAE paging and 1A-32e paging,
each entry is 64 bits (8 bytes); there are thus 512 entries in each structure. (PAE paging includes one exception, a
paging structure that is 32 bytes in size, containing 4 64-bit entries.)

The processor uses the upper portion of a linear address to identify a series of paging-structure entries. The last of
these entries identifies the physical address of the region to which the linear address translates (called the page
frame). The lower portion of the linear address (called the page offset) identifies the specific address within that
region to which the linear address translates.

Each paging-structure entry contains a physical address, which is either the address of another paging structure or
the address of a page frame. In the first case, the entry is said to reference the other paging structure; in the
latter, the entry is said to map a page.

The first paging structure used for any translation is located at the physical address in CR3. A linear address is
translated using the following iterative procedure. A portion of the linear address (initially the uppermost bits)
select an entry in a paging structure (initially the one located using CR3). If that entry references another paging
structure, the process continues with that paging structure and with the portion of the linear address immediately
below that just used. If instead the entry maps a page, the process completes: the physical address in the entry is
that of the page frame and the remaining lower portion of the linear address is the page offset.

Vol. 3A 4-5

PAGING

The following items give an example for each of the three paging modes (each example locates a 4-KByte page
frame):

® With 32-bit paging, each paging structure comprises 1024 = 210 entries. For this reason, the translation
process uses 10 bits at a time from a 32-bit linear address. Bits 31:22 identify the first paging-structure entry
and bits 21:12 identify a second. The latter identifies the page frame. Bits 11:0 of the linear address are the
page offset within the 4-KByte page frame. (See Figure 4-2 for an illustration.)

® With PAE paging, the first paging structure comprises only 4 = 22 entries. Translation thus begins by using
bits 31:30 from a 32-bit linear address to identify the first paging-structure entry. Other paging structures
comprise 512 =29 entries, so the process continues by using 9 bits at a time. Bits 29:21 identify a second
paging-structure entry and bits 20:12 identify a third. This last identifies the page frame. (See Figure 4-5 for
an illustration.)

® With I1A-32e paging, each paging structure comprises 512 = 29 entries and translation uses 9 bits at a time
from a 48-bit linear address. Bits 47:39 identify the first paging-structure entry, bits 38:30 identify a second,
bits 29:21 a third, and bits 20:12 identify a fourth. Again, the last identifies the page frame. (See Figure 4-8
for an illustration.)

The translation process in each of the examples above completes by identifying a page frame. However, the paging
structures may be configured so that translation terminates before doing so. This occurs if process encounters a
paging-structure entry that is marked “not present” (because its P flag — bit 0 — is clear) or in which a reserved bit
is set. In this case, there is no translation for the linear address; an access to that address causes a page-fault
exception (see Section 4.7).

In the examples above, a paging-structure entry maps a page with 4-KByte page frame when only 12 bits remain
in the linear address; entries identified earlier always reference other paging structures. That may not apply in
other cases. The following items identify when an entry maps a page and when it references another paging struc-
ture:

® If more than 12 bits remain in the linear address, bit 7 (PS — page size) of the current paging-structure entry
is consulted. If the bit is O, the entry references another paging structure; if the bit is 1, the entry maps a page.

® If only 12 bits remain in the linear address, the current paging-structure entry always maps a page (bit 7 is
used for other purposes).

If a paging-structure entry maps a page when more than 12 bits remain in the linear address, the entry identifies
a page frame larger than 4 KBytes. For example, 32-bit paging uses the upper 10 bits of a linear address to locate
the first paging-structure entry; 22 bits remain. If that entry maps a page, the page frame is 222 Bytes = 4 MBytes.
32-bit paging supports 4-MByte pages if CR4.PSE = 1. PAE paging and IA-32e paging support 2-MByte pages
(regardless of the value of CR4.PSE). 1A-32e paging may support 1-GByte pages (see Section 4.1.4).

Paging structures are given different names based their uses in the translation process. Table 4-2 gives the names
of the different paging structures. It also provides, for each structure, the source of the physical address used to
locate it (CR3 or a different paging-structure entry); the bits in the linear address used to select an entry from the
structure; and details of about whether and how such an entry can map a page.

4-6 Vol. 3A

PAGING

Table 4-2. Paging Structures in the Different Paging Modes

Physical . .
: Entry : Bits Selecting .
Paging Structure Paging Mode Address of Page Mapping
Name Structure Entry
32-bit, PAE N/A
PML4 table PML4E
IA-32e CR3 47:39 N/A (PS must be 0)
32-bit N/A
Page-directory- PDPTE | PAE (R3 31:30 N/A (PS must be 0)
pointer table
1A-32e PML4E 38:30 1-GByte page if PS=1"
32-bit CR3 31:22 4-MByte page if PS=12
Page directory PDE
PAE, IA-32¢e PDPTE 29:21 2-MByte page if PS=1
32-bit 21:12 4-KByte page
Page table PTE PDE
PAE, IA-32e 20:12 4-KByte page

NOTES:
1. Not all processors allow the PS flag to be 1 in PDPTEs; see Section 4.1.4 for how to determine whether 1-GByte pages are supported.

2. 32-bit paging ignores the PS flag in a PDE (and uses the entry to reference a page table) unless CR4.PSE = 1. Not all processors allow
CR4.PSE to be 1; see Section 4.1.4 for how to determine whether 4-MByte pages are supported with 32-bit paging.

4.3 32-BIT PAGING

A logical processor uses 32-bit paging if CRO.PG = 1 and CR4.PAE = 0. 32-bit paging translates 32-bit linear
addresses to 40-bit physical addresses.! Although 40 bits corresponds to 1 TByte, linear addresses are limited to
32 bits; at most 4 GBytes of linear-address space may be accessed at any given time.

32-bit paging uses a hierarchy of paging structures to produce a translation for a linear address. CR3 is used to
locate the first paging-structure, the page directory. Table 4-3 illustrates how CR3 is used with 32-bit paging.

32-bit paging may map linear addresses to either 4-KByte pages or 4-MByte pages. Figure 4-2 illustrates the
translation process when it uses a 4-KByte page; Figure 4-3 covers the case of a 4-MByte page. The following
items describe the 32-bit paging process in more detail as well has how the page size is determined:

® A 4-KByte naturally aligned page directory is located at the physical address specified in bits 31:12 of CR3 (see
Table 4-3). A page directory comprises 1024 32-bit entries (PDEs). A PDE is selected using the physical address
defined as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from CR3.

— Bits 11:2 are bits 31:22 of the linear address.
— Bits 1:0 are 0.

Because a PDE is identified using bits 31:22 of the linear address, it controls access to a 4-Mbyte region of the
linear-address space. Use of the PDE depends on CR.PSE and the PDE’s PS flag (bit 7):

1. Bits in the range 39:32 are 0 in any physical address used by 32-bit paging except those used to map 4-MByte pages. If the proces-
sor does not support the PSE-36 mechanism, this is true also for physical addresses used to map 4-MByte pages. If the processor
does support the PSE-36 mechanism and MAXPHYADDR < 40, bits in the range 39:MAXPHYADDR are 0 in any physical address used
to map a 4-MByte page. (The corresponding bits are reserved in PDEs.) See Section 4.1.4 for how to determine MAXPHYADDR and
whether the PSE-36 mechanism is supported.

Vol. 3A 4-7

PAGING

® If CR4.PSE = 1 and the PDE’s PS flag is 1, the PDE maps a 4-MByte page (see Table 4-4). The final physical
address is computed as follows:

— Bits 39:32 are bits 20:13 of the PDE.
— Bits 31:22 are bits 31:22 of the PDE.}

— Bits 21:0 are from the original linear address.

® If CR4.PSE = 0O or the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the physical
address specified in bits 31:12 of the PDE (see Table 4-5). A page table comprises 1024 32-bit entries (PTES).
A PTE is selected using the physical address defined as follows:

— Bits 39:32 are all O.

— Bits 31:12 are from the PDE.

— Bits 11:2 are bits 21:12 of the linear address.
— Bits 1:0 are 0.

® Because a PTE is identified using bits 31:12 of the linear address, every PTE maps a 4-KByte page (see
Table 4-6). The final physical address is computed as follows:

— Bits 39:32 are all O.
— Bits 31:12 are from the PTE.
— Bits 11:0 are from the original linear address.

If a paging-structure entry’s P flag (bit 0) is O or if the entry sets any reserved bit, the entry is used neither to refer-
ence another paging-structure entry nor to map a page. A reference using a linear address whose translation would
use such a paging-structure entry causes a page-fault exception (see Section 4.7).

With 32-bit paging, there are reserved bits only if CR4.PSE = 1:

® If the P flag and the PS flag (bit 7) of a PDE are both 1, the bits reserved depend on MAXPHYADDR whether the
PSE-36 mechanism is supported:2

— If the PSE-36 mechanism is not supported, bits 21:13 are reserved.

— If the PSE-36 mechanism is supported, bits 21:(M—19) are reserved, where M is the minimum of 40 and
MAXPHYADDR.

® If the PAT is not supported:3

— If the P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.
(If CR4.PSE = 0, no bits are reserved with 32-bit paging.)

A reference using a linear address that is successfully translated to a physical address is performed only if allowed
by the access rights of the translation; see Section 4.6.

1. The upper bits in the final physical address do not all come from corresponding positions in the PDE; the physical-address bits in the
PDE are not all contiguous.

. See Section 4.1.4 for how to determine MAXPHYADDR and whether the PSE-36 mechanism is supported.
3. See Section 4.1.4 for how to determine whether the PAT is supported.

4-8 Vol. 3A

Linear Address
12 11 0

31 22 21

Directory Table

Offset

12 4-KByte Page

10 10 Page Table Physical Address
Page Directory
PTE >
20

»| PDE with PS=0 >

o 20
32

CR3

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

Linear Address

31 22 21 0

| Directory | Offset

J 22 4-MByte Page
10 Page Directory

Physical Address

PDE with PS=1

>
>
>
2

3

CR3

18

Y

Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

PAGING

Vol. 3A 4-9

PAGING

Figure 4-4 gives a summary of the formats of CR3 and the paging-structure entries with 32-bit paging. For the
paging structure entries, it identifies separately the format of entries that map pages, those that reference other
paging structures, and those that do neither because they are “not present”; bit O (P) and bit 7 (PS) are highlighted
because they determine how such an entry is used.

31[30[29(28/27]26]25[24|23]|22]21]20[19|18]17][16]15]14]13][12][11[10]/9 8|7 [6[5]4[3]2[1]0
P
Address of page directory1 Ignored C P-\r"l Ignored CR3
D
: : P P UlR PDE:
Bits 31:22 of address Reserved Bits 39:32 of PW
2> |A| Ignored |G|1|D|A|C /1711 4MB
of 2MB page frame (must be 0) address T D T S |w page
I P PW UlR PDE:
Address of page table Ignored 0|g|A|C T /1711 page
n D S|w table
PDE:
Ignored 0 not
present
P P PW UlR PTE:
Address of 4KB page frame Ignored |G|A|D|A|C T /71 4KB
T D S|W page
PTE:
Ignored 0 not
present

Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging

NOTES:
1. CR3 has 64 bits on processors supporting the Intel-64 architecture. These bits are ignored with 32-bit paging.

2. This example illustrates a processor in which MAXPHYADDR is 36. If this value is larger or smaller, the number of bits reserved in
positions 20:13 of a PDE mapping a 4-MByte will change.

Table 4-3. Use of CR3 with 32-Bit Paging

Bit Contents

Position(s)

2.0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page directory during linear-
address translation (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page directory during linear-
address translation (see Section 4.9)

11:5 Ignored

31:12 Physical address of the 4-KByte aligned page directory used for linear-address translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)

4-10 Vol. 3A

PAGING

Table 4-4. Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 4-MByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 4-MByte page referenced by this entry (see Section 4.6)

2 (U/S) Use)r/supervisor; if 0, user-mode accesses are not allowed to the 4-MByte page referenced by this entry (see Section
46

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-MByte page referenced by
this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-MByte page referenced by
this entry (see Section 4.9)

5(A) Accessed; indicates whether software has accessed the 4-MByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-MByte page referenced by this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-5)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-MByte page referenced by this
entry (see Section 4.9.2); otherwise, reserved (must be 0)"

(M-20):13 Bits (M-1):32 of physical address of the 4-MByte page referenced by this entry®

21:(M-19) Reserved (must be 0)

31:22 Bits 31:22 of physical address of the 4-MByte page referenced by this entry

NOTES:

1. See Section 4.1.4 for how to determine whether the PAT is supported.

2. If the PSE-36 mechanism is not supported, M is 32, and this row does not apply. If the PSE-36 mechanism is supported, M is the min-
imum of 40 and MAXPHYADDR (this row does not apply if MAXPHYADDR = 32). See Section 4.1.4 for how to determine MAXPHY-
ADDR and whether the PSE-36 mechanism is supported.

Vol. 3A 4-11

PAGING

Table 4-5. Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if O, writes may not be allowed to the 4-MByte region controlled by this entry (see Section 4.6)

2 (U/S) gsee)r/supervisor; if 0, user-mode accesses are not allowed to the 4-MByte region controlled by this entry (see Section

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9)

5(A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) If CR4.PSE = 1, must be O (otherwise, this entry maps a 4-MByte page; see Table 4-4); otherwise, ignored

11:8 Ignored

31:12 Physical address of 4-KByte aligned page table referenced by this entry

Table 4-6. Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)

2 (U/S) Usse)r/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section
4.

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9)

5(A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9.2); otherwise, reserved (must be 0)'

8(Q) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

31:12 Physical address of the 4-KByte page referenced by this entry

NOTES:

1. See Section 4.1.4 for how to determine whether the PAT is supported.

4-12 Vol. 3A

PAGING

4.4 PAE PAGING

A logical processor uses PAE paging if CRO.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 0. PAE paging translates
32-bit linear addresses to 52-bit physical addresses.! Although 52 bits corresponds to 4 PBytes, linear addresses
are limited to 32 bits; at most 4 GBytes of linear-address space may be accessed at any given time.

With PAE paging, a logical processor maintains a set of four (4) PDPTE registers, which are loaded from an address
in CR3. Linear address are translated using 4 hierarchies of in-memory paging structures, each located using one
of the PDPTE registers. (This is different from the other paging modes, in which there is one hierarchy referenced
by CR3.)

Section 4.4.1 discusses the PDPTE registers. Section 4.4.2 describes linear-address translation with PAE paging.

4.4.1 PDPTE Registers

When PAE paging is used, CR3 references the base of a 32-Byte page-directory-pointer table. Table 4-7 illus-
trates how CR3 is used with PAE paging.

Table 4-7. Use of CR3 with PAE Paging

Bit Contents

Position(s)

4.0 Ignored

315 Physical address of the 32-Byte aligned page-directory-pointer table used for linear-address translation
63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)

The page-directory-pointer-table comprises four (4) 64-bit entries called PDPTEs. Each PDPTE controls access to a
1-GByte region of the linear-address space. Corresponding to the PDPTEs, the logical processor maintains a set of
four (4) internal, non-architectural PDPTE registers, called PDPTEO, PDPTE1, PDPTE2, and PDPTE3. The logical
processor loads these registers from the PDPTEs in memory as part of certain operations:

® If PAE paging would be in use following an execution of MOV to CRO or MOV to CR4 (see Section 4.1.1) and the
instruction is modifying any of CR0.CD, CRO.NW, CR0O.PG, CR4.PAE, CR4.PGE, CR4.PSE, or CR4.SMEP; then the
PDPTEs are loaded from the address in CR3.

® If MOV to CR3 is executed while the logical processor is using PAE paging, the PDPTEs are loaded from the
address being loaded into CR3.

® If PAE paging is in use and a task switch changes the value of CR3, the PDPTEs are loaded from the address in
the new CR3 value.

® Certain VMX transitions load the PDPTE registers. See Section 4.11.1.

Table 4-8 gives the format of a PDPTE. If any of the PDPTEs sets both the P flag (bit 0) and any reserved bit, the
MOV to CR instruction causes a general-protection exception (#GP(0)) and the PDPTEs are not loaded.? As shown
in Table 4-8, bits 2:1, 8:5, and 63:MAXPHYADDR are reserved in the PDPTEs.

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used by PAE paging. (The corresponding
bits are reserved in the paging-structure entries.) See Section 4.1.4 for how to determine MAXPHYADDR.

2. On some processors, reserved bits are checked even in PDPTEs in which the P flag (bit 0) is O.

Vol.3A 4-13

PAGING

Table 4-8. Format of a PAE Page-Directory-Pointer-Table Entry (PDPTE)

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a page directory

2:1 Reserved (must be 0)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page directory referenced by
this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page directory referenced by
this entry (see Section 4.9)

8.5 Reserved (must be 0)

11:9 Ignored

M-1)12 Physical address of 4-KByte aligned page directory referenced by this entry1

63:M Reserved (must be 0)

NOTES:
1. Mis an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

4.4.2 Linear-Address Translation with PAE Paging

PAE paging may map linear addresses to either 4-KByte pages or 2-MByte pages. Figure 4-5 illustrates the trans-
lation process when it produces a 4-KByte page; Figure 4-6 covers the case of a 2-MByte page. The following items
describe the PAE paging process in more detail as well has how the page size is determined:

® Bits 31:30 of the linear address select a PDPTE register (see Section 4.4.1); this is PDPTEI, where i is the value
of bits 31:30.1 Because a PDPTE register is identified using bits 31:30 of the linear address, it controls access
to a 1-GByte region of the linear-address space. If the P flag (bit 0) of PDPTEi is O, the processor ignores bits
63:1, and there is no mapping for the 1-GByte region controlled by PDPTEi. A reference using a linear address
in this region causes a page-fault exception (see Section 4.7).

® Ifthe P flag of PDPTEi is 1, 4-KByte naturally aligned page directory is located at the physical address specified
in bits 51:12 of PDPTEI (see Table 4-8 in Section 4.4.1) A page directory comprises 512 64-bit entries (PDESs).
A PDE is selected using the physical address defined as follows:
— Bits 51:12 are from PDPTEi.
— Bits 11:3 are bits 29:21 of the linear address.
— Bits 2:0 are 0.

Because a PDE is identified using bits 31:21 of the linear address, it controls access to a 2-Mbyte region of the
linear-address space. Use of the PDE depends on its PS flag (bit 7):

® Ifthe PDE’s PS flag is 1, the PDE maps a 2-MByte page (see Table 4-9). The final physical address is computed
as follows:

— Bits 51:21 are from the PDE.
— Bits 20:0 are from the original linear address.

® If the PDE’s PS flag is O, a 4-KByte naturally aligned page table is located at the physical address specified in
bits 51:12 of the PDE (see Table 4-10). A page directory comprises 512 64-bit entries (PTEs). A PTE is selected
using the physical address defined as follows:

— Bits 51:12 are from the PDE.

1. With PAE paging, the processor does not use CR3 when translating a linear address (as it does the other paging modes). It does not
access the PDPTEs in the page-directory-pointer table during linear-address translation.

4-14 Vol. 3A

PAGING

— Bits 11:3 are bits 20:12 of the linear address.

— Bits 2:0 are 0.

® Because a PTE is identified using bits 31:12 of the linear address, every PTE maps a 4-KByte page (see
Table 4-11). The final physical address is computed as follows:

— Bits 51:12 are from the PTE.
— Bits 11:0 are from the original linear address.

If the P flag (bit O) of a PDE or a PTE is O or if a PDE or a PTE sets any reserved bit, the entry is used neither to
reference another paging-structure entry nor to map a page. A reference using a linear address whose translation
would use such a paging-structure entry causes a page-fault exception (see Section 4.7).

The following bits are reserved with PAE paging:
® If the P flag (bit O) of a PDE or a PTE is 1, bits 62:MAXPHYADDR are reserved.
® If the P flag and the PS flag (bit 7) of a PDE are both 1, bits 20:13 are reserved.
® If IA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63) is reserved.
® If the PAT is not supported:®
— If the P flag of a PTE is 1, bit 7 is reserved.
— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

A reference using a linear address that is successfully translated to a physical address is performed only if allowed
by the access rights of the translation; see Section 4.6.

Linear Address
31 30 29 21 20 12 11 0
Directory Pointer »| ‘ Directory Table Offset

12 4-KByte Page

Page Table Physical Address

Page Directory 9

PTE >
9 40

»| PDE with PS=0
2 40

Y

PDPTE Registers

40

— > |PDPTE value

Figure 4-5. Linear-Address Translation to a 4-KByte Page using PAE Paging

1. See Section 4.1.4 for how to determine whether the PAT is supported.

Vol. 3A 4-15

PAGING

Linear Address
3130 29 21 20 0

—>| | Directory Offset

Directory
Pointer

21 2-MByte Page

Page Directory Physical Address

PDPTE Registers

~>»| PDE with PS=1

»|PDPTE value 4>

40

\

31

Figure 4-6. Linear-Address Translation to a 2-MByte Page using PAE Paging

Table 4-9. Format of a PAE Page-Directory Entry that Maps a 2-MByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 2-MByte page referenced by this entry (see Section 4.6)

2 (U/S) Usse)r/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte page referenced by this entry (see Section
4.

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 2-MByte page referenced by
this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 2-MByte page referenced by this
entry (see Section 4.9)

5(A) Accessed; indicates whether software has accessed the 2-MByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-10)

8 (Q) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 2-MByte page referenced by this
entry (see Section 4.9.2); otherwise, reserved (must be 0)"

20:13 Reserved (must be 0)

(M-1):21 Physical address of the 2-MByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte page controlled by
this entry; see Section 4.6); otherwise, reserved (must be 0)

NOTES:

1. See Section 4.1.4 for how to determine whether the PAT is supported.

4-16 Vol. 3A

PAGING

Table 4-10. Format of a PAE Page-Directory Entry that References a Page Table

Bit Contents

Position(s)

0P Present; must be 1 to reference a page table

1 (R/W) Read/write; if O, writes may not be allowed to the 2-MByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if O, user-mode accesses are not allowed to the 2-MByte region controlled by this entry (see
Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9)

5(A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be O (otherwise, this entry maps a 2-MByte page; see Table 4-9)

11:8 Ignored

M-1)12 Physical address of 4-KByte aligned page table referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte region controlled
by this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-11. Format of a PAE Page-Table Entry that Maps a 4-KByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if O, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by
this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9)

5(A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-KByte page referenced by this

entry (see Section 4.9.2); otherwise, reserved (must be 0)'

8(Q) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

Vol.3A 4-17

PAGING

Table 4-11. Format of a PAE Page-Table Entry that Maps a 4-KByte Page (Contd.)

Bit Contents
Position(s)
11:9 Ignored

M-1)12 Physical address of the 4-KByte page referenced by this entry

62M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 4-KByte page controlled by
this entry; see Section 4.6); otherwise, reserved (must be 0)

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

Figure 4-7 gives a summary of the formats of CR3 and the paging-structure entries with PAE paging. For the paging
structure entries, it identifies separately the format of entries that map pages, those that reference other paging
structures, and those that do neither because they are “not present”; bit O (P) and bit 7 (PS) are highlighted
because they determine how a paging-structure entry is used.

6[6[6]/6[5[5]5|5[5]5[5/5[5 M! [M-1 3[3[3[2[2]2[2]2[2]2[2]|2[2|1[T|T[T|T[T[T[T]T]1
3|2(1]0]/9/8(7|6|5|4|3|2|1 2/1/0/9|8|7/6|5|4/3|2|1|0/9|8|7|6/5|4|3|2|/1|0/9/8|7|6/5|4|3|2|1|0
Ignored? Address of page-directory-pointer table Ignored CR3
PIPIRs || PoPTE:
Reserved? Address of page directory Ign. | Rsvd. I()Z_/I_\I vd 1 presen't
PDTPE:
Ignored 0 not
present
X P PIP|, [R PDE:
D Reserved pgddress of Reserved |Al Ign. |G[1[D|A[cW| /(1] 2MB
4 Pag T DIT[=W page
X | [P|P U R PDE:
D Reserved Address of page table Ign. |0|g|A|C W/S /{1|] page
n| [D|T{ W table
PDE:
Ignored 0 not
present
X P PIP U R PTE:
D Reserved Address of 4KB page frame Ign. |G|A|D|A|C W/S /|1] 4KB
T DIT[-|W page
PTE:
Ignored 0 not
present
Figure 4-7. Formats of CR3 and Paging-Structure Entries with PAE Paging
NOTES:

1. Mis an abbreviation for MAXPHYADDR.

2. CR3 has 64 bits only on processors supporting the Intel-64 architecture. These bits are ignored with PAE paging.
3. Reserved fields must be 0.

4. If IA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63) is reserved.

4-18 Vol. 3A

PAGING

4.5 IA-32E PAGING

A logical processor uses I1A-32e paging if CRO.PG = 1, CR4.PAE =1, and IA32_EFER.LME = 1. With 1A-32e paging,
linear address are translated using a hierarchy of in-memory paging structures located using the contents of CR3.
I1A-32e paging translates 48-bit linear addresses to 52-bit physical addresses.® Although 52 bits corresponds to 4
PBytes, linear addresses are limited to 48 bits; at most 256 TBytes of linear-address space may be accessed at any
given time.

IA-32e paging uses a hierarchy of paging structures to produce a translation for a linear address. CR3 is used to
locate the first paging-structure, the PML4 table. Use of CR3 with 1A-32e paging depends on whether process-
context identifiers (PCIDs) have been enabled by setting CR4.PCIDE:

® Table 4-12 illustrates how CR3 is used with 1A-32e paging if CR4.PCIDE = 0.

Table 4-12. Use of CR3 with IA-32e Paging and CR4.PCIDE = 0

Bit Contents

Position(s)

2.0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the PML4 table during linear-
address translation (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the PML4 table during linear-address
translation (see Section 4.9.2)

11:5 Ignored

M-1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address translation’

63:M Reserved (must be 0)

NOTES:

1. Mis an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

® Table 4-13 illustrates how CR3 is used with 1A-32e paging if CR4.PCIDE = 1.

Table 4-13. Use of CR3 with IA-32e Paging and CR4.PCIDE = 1

Bit Contents
Position(s)
11:0 PCID (see Section 4.10.1)
M-1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address translation®
63:M Reserved (must be 0)3
NOTES:

1. Section 4.9.2 explains how the processor determines the memory type used to access the PML4 table during linear-address transla-
tion with CR4.PCIDE = 1.

2. Mis an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

3. See Section 4.10.4.1 for use of bit 63 of the source operand of the MOV to CR3 instruction.

After software modifies the value of CR4.PCIDE, the logical processor immediately begins using CR3 as specified
for the new value. For example, if software changes CR4.PCIDE from 1 to O, the current PCID immediately changes

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used by IA-32e paging. (The correspond-
ing bits are reserved in the paging-structure entries.) See Section 4.1.4 for how to determine MAXPHYADDR.

Vol. 3A 4-19

PAGING

from CR3[11:0] to OOOH (see also Section 4.10.4.1). In addition, the logical processor subsequently determines
the memory type used to access the PML4 table using CR3.PWT and CR3.PCD, which had been bits 4:3 of the PCID.

IA-32e paging may map linear addresses to 4-KByte pages, 2-MByte pages, or 1-GByte pages.! Figure 4-8 illus-
trates the translation process when it produces a 4-KByte page; Figure 4-9 covers the case of a 2-MByte page, and
Figure 4-10 the case of a 1-GByte page.

Linear Address

47 39 38 3029 2120 12 11 0
| PML4 | Directory Ptr Directory Table Offset
1 | ° .
9 12 4-KByte Page
Physical Addr
PTE >
Page-Directory- PDE with PS=0 > 40
Pointer Table 40 Page Table
Page-Directory
L»{ PDPTE 40
9
40
> PML4E
40
CR3

Figure 4-8. Linear-Address Translation to a 4-KByte Page using IA-32e Paging

1. Not all processors support 1-GByte pages; see Section 4.1.4.

4-20 Vol. 3A

Linear Address

47 39 38 3029 2120
| PML4 ‘ Directory Ptr Directory Offset
‘ 9 21
9
2-MByte Page
Physical Addr
Page-Directory- PDE with PS=1 >
Pointer Table 31

= -

PDPTE

40

-
<

PML4E

40

CR3

T Page-Directory

40

Figure 4-9. Linear-Address Translation to a 2-MByte Page using IA-32e Paging

Linear Address

47 39 38 3029
| PML4 ‘ Directory Ptr Offset
9
1-GByte Page

Page-Directory-
Pointer Table

=

PDPTE with PS=1

+ Physical Addr

A

PML4E

40

CR3

22

40

Figure 4-10. Linear-Address Translation to a 1-GByte Page using IA-32e Paging

PAGING

Vol. 3A 4-21

PAGING

The following items describe the 1A-32e paging process in more detail as well has how the page size is determined.

® A 4-KByte naturally aligned PML4 table is located at the physical address specified in bits 51:12 of CR3 (see
Table 4-12). A PML4 table comprises 512 64-bit entries (PML4Es). A PMLAE is selected using the physical
address defined as follows:

— Bits 51:12 are from CR3.
— Bits 11:3 are bits 47:39 of the linear address.

— Bits 2:0 are all 0.

Because a PMLA4E is identified using bits 47:39 of the linear address, it controls access to a 512-GByte region of
the linear-address space.

® A 4-KByte naturally aligned page-directory-pointer table is located at the physical address specified in
bits 51:12 of the PML4E (see Table 4-14). A page-directory-pointer table comprises 512 64-bit entries
(PDPTESs). A PDPTE is selected using the physical address defined as follows:

— Bits 51:12 are from the PML4E.
— Bits 11:3 are bits 38:30 of the linear address.
— Bits 2:0 are all 0.

Because a PDPTE is identified using bits 47:30 of the linear address, it controls access to a 1-GByte region of the
linear-address space. Use of the PDPTE depends on its PS flag (bit 7):1

® If the PDPTE’s PS flag is 1, the PDPTE maps a 1-GByte page (see Table 4-15). The final physical address is
computed as follows:

— Bits 51:30 are from the PDPTE.
— Bits 29:0 are from the original linear address.

® If the PDE’s PS flag is 0, a 4-KByte naturally aligned page directory is located at the physical address specified
in bits 51:12 of the PDPTE (see Table 4-16). A page directory comprises 512 64-bit entries (PDEs). A PDE is
selected using the physical address defined as follows:

— Bits 51:12 are from the PDPTE.
— Bits 11:3 are bits 29:21 of the linear address.
— Bits 2:0 are all 0.

Because a PDE is identified using bits 47:21 of the linear address, it controls access to a 2-MByte region of the
linear-address space. Use of the PDE depends on its PS flag:

¢ If the PDE’s PS flag is 1, the PDE maps a 2-MByte page. The final physical address is computed as shown in
Table 4-17.

— Bits 51:21 are from the PDE.
— Bits 20:0 are from the original linear address.

® If the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the physical address specified in
bits 51:12 of the PDE (see Table 4-18). A page table comprises 512 64-bit entries (PTEs). A PTE is selected
using the physical address defined as follows:

— Bits 51:12 are from the PDE.
— Bits 11:3 are bits 20:12 of the linear address.
— Bits 2:0 are all 0.

® Because a PTE is identified using bits 47:12 of the linear address, every PTE maps a 4-KByte page (see
Table 4-19). The final physical address is computed as follows:

— Bits 51:12 are from the PTE.

— Bits 11:0 are from the original linear address.

1. The PS flag of a PDPTE is reserved and must be O (if the P flag is 1) if 1-GByte pages are not supported. See Section 4.1.4 for how
to determine whether 1-GByte pages are supported.

4-22 Vol. 3A

PAGING

If a paging-structure entry’s P flag (bit 0) is O or if the entry sets any reserved bit, the entry is used neither to refer-
ence another paging-structure entry nor to map a page. A reference using a linear address whose translation would
use such a paging-structure entry causes a page-fault exception (see Section 4.7).

The following bits are reserved with 1A-32e paging:

® If the P flag of a paging-structure entry is 1, bits 51:MAXPHYADDR are reserved.

® If the P flag of a PML4E is 1, the PS flag is reserved.

® |f 1-GByte pages are not supported and the P flag of a PDPTE is 1, the PS flag is reserved.!

® If the P flag and the PS flag of a PDPTE are both 1, bits 29:13 are reserved.

® If the P flag and the PS flag of a PDE are both 1, bits 20:13 are reserved.

® If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1, the XD flag (bit 63) is reserved.

A reference using a linear address that is successfully translated to a physical address is performed only if allowed
by the access rights of the translation; see Section 4.6.

Figure 4-11 gives a summary of the formats of CR3 and the 1A-32e paging-structure entries. For the paging struc-
ture entries, it identifies separately the format of entries that map pages, those that reference other paging struc-
tures, and those that do neither because they are “not present”; bit O (P) and bit 7 (PS) are highlighted because
they determine how a paging-structure entry is used.

Table 4-14. Format of an IA-32e PML4 Entry (PML4E) that References a Page-Directory-Pointer Table

Bit Contents

Position(s)

0P Present; must be 1 to reference a page-directory-pointer table

1 (R/W) Read/write; if O, writes may not be allowed to the 512-GByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if O, user-mode accesses are not allowed to the 512-GByte region controlled by this entry (see
Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page-directory-pointer table
referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page-directory-pointer table
referenced by this entry (see Section 4.9.2)

5(A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Reserved (must be 0)

11:8 Ignored

M-1:12 Physical address of 4-KByte aligned page-directory-pointer table referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 512-GByte region

controlled by this entry; see Section 4.6); otherwise, reserved (must be 0)

1. See Section 4.1.4 for how to determine whether 1-GByte pages are supported.

Vol. 3A 4-23

PAGING

Table 4-15. Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that Maps a 1-GByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 1-GByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 1-GByte page referenced by this entry (see Section 4.6)

2 (U/S) gsee)r/supervisor; if 0, user-mode accesses are not allowed to the 1-GByte page referenced by this entry (see Section

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 1-GByte page referenced by this
entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 1-GByte page referenced by this
entry (see Section 4.9.2)

5(A) Accessed; indicates whether software has accessed the 1-GByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 1-GByte page referenced by this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page directory; see Table 4-16)

8(Q) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

12 (PAT) Id?girze)ﬁtly determines the memory type used to access the 1-GByte page referenced by this entry (see Section

29:13 Reserved (must be 0)

(M-1):30 Physical address of the 1-GByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 1-GByte page controlled by
this entry; see Section 4.6); otherwise, reserved (must be 0)

NOTES:

1. The PAT is supported on all processors that support IA-32e paging.

4-24 Vol. 3A

PAGING

Table 4-16. Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that References a Page Directory

Bit Contents

Position(s)

0P Present; must be 1 to reference a page directory

1 (R/W) Read/write; if O, writes may not be allowed to the 1-GByte region controlled by this entry (see Section 4.6)

2 (U/S) Use)r/supervisor; if 0, user-mode accesses are not allowed to the 1-GByte region controlled by this entry (see Section
4.6

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page directory referenced by
this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page directory referenced by
this entry (see Section 4.9.2)

5(A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be O (otherwise, this entry maps a 1-GByte page; see Table 4-15)

11:8 Ignored

M-1)12 Physical address of 4-KByte aligned page directory referenced by this entry

51M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 1-GByte region controlled
by this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-17. Format of an IA-32e Page-Directory Entry that Maps a 2-MByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 2-MByte page referenced by this entry (see Section 4.6)

2 (U/S) Use)r/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte page referenced by this entry (see Section
46

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 2-MByte page referenced by
this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 2-MByte page referenced by
this entry (see Section 4.9.2)

5(A) Accessed; indicates whether software has accessed the 2-MByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-18)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

Vol. 3A 4-25

PAGING

Table 4-17. Format of an IA-32e Page-Directory Entry that Maps a 2-MByte Page (Contd.)

Bit Contents

Position(s)

11:9 Ignored

12 (PAT) I:girze)ctly determines the memory type used to access the 2-MByte page referenced by this entry (see Section

20:13 Reserved (must be 0)

(M-1):.21 Physical address of the 2-MByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte page controlled by
this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-18. Format of an IA-32e Page-Directory Entry that References a Page Table

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if O, writes may not be allowed to the 2-MByte region controlled by this entry (see Section 4.6)

2 (U/S) gsee)r/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte region controlled by this entry (see Section

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9.2)

5(A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be O (otherwise, this entry maps a 2-MByte page; see Table 4-17)

11:8 Ignored

M-1)12 Physical address of 4-KByte aligned page table referenced by this entry

51M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte region controlled
by this entry; see Section 4.6); otherwise, reserved (must be 0)

4-26 Vol.3A

PAGING

Table 4-19. Format of an IA-32e Page-Table Entry that Maps a 4-KByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)

2 (U/S) Use)r/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section
46

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by

this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9.2)

5(A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

7 (PAT) Indirectly determines the memory type used to access the 4-KByte page referenced by this entry (see Section 4.9.2)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

(M-1)12 Physical address of the 4-KByte page referenced by this entry

51M Reserved (must be 0)
62:52 Ignored
63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 4-KByte page controlled by

this entry; see Section 4.6); otherwise, reserved (must be 0)

Vol. 3A 4-27

PAGING

6/6(6/6[5[5|5|5[5]5[5/5[5 M [M-1 3(3[3[2[2]2[2[2]2[2[2[2]2[T[T[T[T[T[T|T[T[T]1
3|2(1]0|9/8|7|6|5|4|3|2|1 2/1/0|9|8|7|6|5|4/3|2|1|0/9|8|7|6|5 1/0|9|8|7|6|5|4/3|2|1|0
P|P
Reserved? Address of PML4 table Ignored Ig \{l_\l Ign. CR3
X Re ! PIPIU(R|. | PMUL4E:
2 Ignored Rsvd. Address of page-directory-pointer table Ign. vd g A Ig\'ll'\lls\//\l 1 preseni
PML4E:
Ignored 0 not
present
P P|P|, IR PDPTE:
>D(Ignored Rsvd. méd%reéﬁcfafme Reserved A| Ign. |G|1|D|A|C \/\l/% /{1] 1GB
pag T DIT[-|W page
X Il PIPIy[R PDPTE:
D Ignored Rsvd. Address of page directory Ign. [0|g|A|C \/\l/S /{1| page
n| [D|T{-|w| | directory
PDTPE:
Ignored 1] not
present
P P|P|, IR PDE:
X Address of U
D Ignored Rsvd. 2MB page frame Reserved # Ign. |G|1|D|A IS\ZI'\I/S\//\I 1 S:QIFe
X Il PIPIy[R PDE:
D Ignored Rsvd. Address of page table Ign. [0|g|A|C \/\l/S /{1| page
n| [D|T[{ W table
PDE:
Ignored 0 not
present
X P PIPIUR PTE:
D Ignored Rsvd. Address of 4KB page frame Ign. |G|A|D|A|C \/\l/S /11| 4KB
T DIT[W page
PTE:
Ignored 0 not
present
Figure 4-11. Formats of CR3 and Paging-Structure Entries with IA-32e Paging
NOTES:

1. Mis an abbreviation for MAXPHYADDR.
2. Reserved fields must be 0.
3. If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1, the XD flag (bit 63) is reserved.

4.6 ACCESS RIGHTS

There is a translation for a linear address if the processes described in Section 4.3, Section 4.4.2, and Section 4.5
(depending upon the paging mode) completes and produces a physical address. Whether an access is permitted by
a translation is determined by the access rights specified by the paging-structure entries controlling the transla-
tion;! paging-mode modifiers in CRO, CR4, and the 1A32_EFERMSR; and the mode of the access.

1. With PAE paging, the PDPTEs do not determine access rights.

4-28 Vol. 3A

PAGING

Every access to a linear address is either a supervisor-mode access or a user-mode access. All accesses
performed while the current privilege level (CPL) is less than 3 are supervisor-mode accesses. If CPL = 3, accesses
are generally user-mode accesses. However, some operations implicitly access system data structures with linear
addresses; the resulting accesses to those data structures are supervisor-mode accesses regardless of CPL. Exam-
ples of such implicit supervisor accesses include the following: accesses to the global descriptor table (GDT) or
local descriptor table (LDT) to load a segment descriptor; accesses to the interrupt descriptor table (IDT) when
delivering an interrupt or exception; and accesses to the task-state segment (TSS) as part of a task switch or
change of CPL.

The following items detail how paging determines access rights:
® For supervisor-mode accesses:

— Data reads.
Data may be read from any linear address with a valid translation.

— Data writes.
* If CRO.WP = 0, data may be written to any linear address with a valid translation.

e |If CRO.WP = 1, data may be written to any linear address with a valid translation for which the R/W flag
(bit 1) is 1 in every paging-structure entry controlling the translation.

— Instruction fetches.
®* For 32-bit paging or if IA32_EFER.NXE = 0, access rights depend on the value of CR4.SMEP:
— If CR4.SMEP = 0, instructions may be fetched from any linear address with a valid translation.

— If CR4.SMEP = 1, instructions may be fetched from any linear address with a valid translation for
which the U/S flag (bit 2) is O in at least one of the paging-structure entries controlling the trans-
lation.

®* For PAE paging or 1A-32e paging with IA32_EFER.NXE = 1, access rights depend on the value of
CR4.SMEP:

— If CR4.SMEP = 0, instructions may be fetched from any linear address with a valid translation for
which the XD flag (bit 63) is 0 in every paging-structure entry controlling the translation.

— If CR4.SMEP = 1, instructions may be fetched from any linear address with a valid translation for
which (1) the U/S flag is O in at least one of the paging-structure entries controlling the translation;
and (2) the XD flag is O in every paging-structure entry controlling the translation.

® For user-mode accesses:

— Data reads.
Data may be read from any linear address with a valid translation for which the U/S flag (bit 2) is 1 in every
paging-structure entry controlling the translation.

— Data writes.
Data may be written to any linear address with a valid translation for which both the R/W flag and the U/S

flag are 1 in every paging-structure entry controlling the translation.
— Instruction fetches.

®* For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from any linear address with a
valid translation for which the U/S flag is 1 in every paging-structure entry controlling the translation.

®* For PAE paging or 1A-32e paging with IA32_EFER.NXE = 1, instructions may be fetched from any linear
address with a valid translation for which the U/S flag is 1 and the XD flag is O in every paging-structure
entry controlling the translation.

A processor may cache information from the paging-structure entries in TLBs and paging-structure caches (see
Section 4.10). These structures may include information about access rights. The processor may enforce access
rights based on the TLBs and paging-structure caches instead of on the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change access rights, the processor might
not use that change for a subsequent access to an affected linear address (see Section 4.10.4.3). See Section
4.10.4.2 for how software can ensure that the processor uses the modified access rights.

Vol. 3A 4-29

PAGING

4.7 PAGE-FAULT EXCEPTIONS

Accesses using linear addresses may cause page-fault exceptions (#PF; exception 14). An access to a linear
address may cause page-fault exception for either of two reasons: (1) there is no valid translation for the linear
address; or (2) there is a valid translation for the linear address, but its access rights do not permit the access.

As noted in Section 4.3, Section 4.4.2, and Section 4.5, there is no valid translation for a linear address if the trans-
lation process for that address would use a paging-structure entry in which the P flag (bit 0) is O or one that sets a
reserved bit. If there is a valid translation for a linear address, its access rights are determined as specified in
Section 4.6.

Figure 4-12 illustrates the error code that the processor provides on delivery of a page-fault exception. The
following items explain how the bits in the error code describe the nature of the page-fault exception:

31 43210
SIBISE™
Reserved = Rgee
P 0 The fault was caused by a non-present page.
1 The fault was caused by a page-level protection violation.

W/R 0 The access causing the fault was a read.
1 The access causing the fault was a write.

u/s 0 A supervisor-mode access caused the fault.
1 A user-mode access caused the fault.

RSVD 0 The fault was not caused by reserved bit violation.
1 The fault was caused by a reserved bit set to 1 in some
paging-structure entry.

IID 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.

Figure 4-12. Page-Fault Error Code

® P flag (bit 0).
This flag is O if there is no valid translation for the linear address because the P flag was O in one of the paging-
structure entries used to translate that address.

®* W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; otherwise, it is 0. This flag describes
the access causing the page-fault exception, not the access rights specified by paging.

® U/S (bit 2).
If a user-mode access caused the page-fault exception, this flag is 1; it is O if a supervisor-mode access did so.
This flag describes the access causing the page-fault exception, not the access rights specified by paging. User-
mode and supervisor-mode accesses are defined in Section 4.6.

® RSVD flag (bit 3).
This flag is 1 if there is no valid translation for the linear address because a reserved bit was set in one of the
paging-structure entries used to translate that address. (Because reserved bits are not checked in a paging-
structure entry whose P flag is O, bit 3 of the error code can be set only if bit O is also set.)

Bits reserved in the paging-structure entries are reserved for future functionality. Software developers should
be aware that such bits may be used in the future and that a paging-structure entry that causes a page-fault
exception on one processor might not do so in the future.

® 1/D flag (bit 4).
This flag is 1 if (1) the access causing the page-fault exception was an instruction fetch; and (2) either
(a) CR4.SMEP = 1; or (b) both (i) CR4.PAE = 1 (either PAE paging or IA-32e paging is in use); and
(ii) IA32_EFER.NXE = 1. Otherwise, the flag is 0. This flag describes the access causing the page-fault
exception, not the access rights specified by paging.

4-30 Vol. 3A

PAGING

Page-fault exceptions occur only due to an attempt to use a linear address. Failures to load the PDPTE registers
with PAE paging (see Section 4.4.1) cause general-protection exceptions (#GP(0)) and not page-fault exceptions.

4.8 ACCESSED AND DIRTY FLAGS

For any paging-structure entry that is used during linear-address translation, bit 5 is the accessed flag.1 For
paging-structure entries that map a page (as opposed to referencing another paging structure), bit 6 is the dirty
flag. These flags are provided for use by memory-management software to manage the transfer of pages and
paging structures into and out of physical memory.

Whenever the processor uses a paging-structure entry as part of linear-address translation, it sets the accessed
flag in that entry (if it is not already set).

Whenever there is a write to a linear address, the processor sets the dirty flag (if it is not already set) in the paging-
structure entry that identifies the final physical address for the linear address (either a PTE or a paging-structure
entry in which the PS flag is 1).

Memory-management software may clear these flags when a page or a paging structure is initially loaded into
physical memory. These flags are “sticky,” meaning that, once set, the processor does not clear them; only soft-
ware can clear them.

A processor may cache information from the paging-structure entries in TLBs and paging-structure caches (see
Section 4.10). This fact implies that, if software changes an accessed flag or a dirty flag from 1 to 0, the processor
might not set the corresponding bit in memory on a subsequent access using an affected linear address (see
Section 4.10.4.3). See Section 4.10.4.2 for how software can ensure that these bits are updated as desired.

NOTE

The accesses used by the processor to set these flags may or may not be exposed to the
processor’s self-modifying code detection logic. If the processor is executing code from the same
memory area that is being used for the paging structures, the setting of these flags may or may not
result in an immediate change to the executing code stream.

4.9 PAGING AND MEMORY TYPING

The memory type of a memory access refers to the type of caching used for that access. Chapter 11, “Memory
Cache Control” provides many details regarding memory typing in the Intel-64 and 1A-32 architectures. This
section describes how paging contributes to the determination of memory typing.

The way in which paging contributes to memory typing depends on whether the processor supports the Page
Attribute Table (PAT; see Section 11.12).2 Section 4.9.1 and Section 4.9.2 explain how paging contributes to
memory typing depending on whether the PAT is supported.

4.9.1 Paging and Memory Typing When the PAT is Not Supported (Pentium Pro and
Pentium Il Processors)

NOTE

The PAT is supported on all processors that support 1A-32e paging. Thus, this section applies only
to 32-bit paging and PAE paging.

1. With PAE paging, the PDPTEs are not used during linear-address translation but only to load the PDPTE registers for some execu-
tions of the MOV CR instruction (see Section 4.4.1). For this reason, the PDPTEs do not contain accessed flags with PAE paging.

2. The PAT is supported on Pentium lll and more recent processor families. See Section 4.1.4 for how to determine whether the PAT is
supported.

Vol. 3A 4-31

PAGING

If the PAT is not supported, paging contributes to memory typing in conjunction with the memory-type range regis-
ters (MTRRSs) as specified in Table 11-6 in Section 11.5.2.1.

For any access to a physical address, the table combines the memory type specified for that physical address by
the MTRRs with a PCD value and a PWT value. The latter two values are determined as follows:

® For an access to a PDE with 32-bit paging, the PCD and PWT values come from CR3.
® For an access to a PDE with PAE paging, the PCD and PWT values come from the relevant PDPTE register.
® For an access to a PTE, the PCD and PWT values come from the relevant PDE.

® For an access to the physical address that is the translation of a linear address, the PCD and PWT values come
from the relevant PTE (if the translation uses a 4-KByte page) or the relevant PDE (otherwise).

® With PAE paging, the UC memory type is used when loading the PDPTEs (see Section 4.4.1).

4.9.2 Paging and Memory Typing When the PAT is Supported (Pentium Il and More Recent
Processor Families)

If the PAT is supported, paging contributes to memory typing in conjunction with the PAT and the memory-type
range registers (MTRRS) as specified in Table 11-7 in Section 11.5.2.2.

The PAT is a 64-bit MSR (IA32_PAT; MSR index 277H) comprising eight (8) 8-bit entries (entry i comprises
bits 8i+7:8i of the MSR).

For any access to a physical address, the table combines the memory type specified for that physical address by
the MTRRs with a memory type selected from the PAT. Table 11-11 in Section 11.12.3 specifies how a memory type
is selected from the PAT. Specifically, it comes from entry i of the PAT, where i is defined as follows:
® For an access to an entry in a paging structure whose address is in CR3 (e.g., the PML4 table with 1A-32e
paging):
— For 1A-32e paging with CR4.PCIDE =1, i = 0.
— Otherwise, i = 2*PCD+PWT, where the PCD and PWT values come from CR3.

® For an access to a PDE with PAE paging, i = 2*PCD+PWT, where the PCD and PWT values come from the
relevant PDPTE register.

® For an access to a paging-structure entry X whose address is in another paging-structure entry Y, i =
2*PCD+PWT, where the PCD and PWT values come from Y.

® For an access to the physical address that is the translation of a linear address, i = 4*PAT+2*PCD+PWT, where
the PAT, PCD, and PWT values come from the relevant PTE (if the translation uses a 4-KByte page), the relevant
PDE (if the translation uses a 2-MByte page or a 4-MByte page), or the relevant PDPTE (if the translation uses
a 1-GByte page).

® With PAE paging, the WB memory type is used when loading the PDPTEs (see Section 4.4.1).1

4.9.3 Caching Paging-Related Information about Memory Typing

A processor may cache information from the paging-structure entries in TLBs and paging-structure caches (see
Section 4.10). These structures may include information about memory typing. The processor may use memory-
typing information from the TLBs and paging-structure caches instead of from the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change the memory-typing bits, the
processor might not use that change for a subsequent translation using that entry or for access to an affected linear
address. See Section 4.10.4.2 for how software can ensure that the processor uses the modified memory typing.

1. Some older IA-32 processors used the UC memory type when loading the PDPTEs. Some processors may use the UC memory type if
CRO.CD =1 or if the MTRRs are disabled. These behaviors are model-specific and not architectural.

4-32 Vol. 3A

PAGING

410 CACHING TRANSLATION INFORMATION

The Intel-64 and 1A-32 architectures may accelerate the address-translation process by caching data from the
paging structures on the processor. Because the processor does not ensure that the data that it caches are always
consistent with the structures in memory, it is important for software developers to understand how and when the
processor may cache such data. They should also understand what actions software can take to remove cached
data that may be inconsistent and when it should do so. This section provides software developers information
about the relevant processor operation.

Section 4.10.1 introduces process-context identifiers (PCIDs), which a logical processor may use to distinguish
information cached for different linear-address spaces. Section 4.10.2 and Section 4.10.3 describe how the
processor may cache information in translation lookaside buffers (TLBs) and paging-structure caches, respectively.
Section 4.10.4 explains how software can remove inconsistent cached information by invalidating portions of the
TLBs and paging-structure caches. Section 4.10.5 describes special considerations for multiprocessor systems.

4.10.1 Process-Context Identifiers (PCIDs)

Process-context identifiers (PCIDs) are a facility by which a logical processor may cache information for multiple
linear-address spaces. The processor may retain cached information when software switches to a different linear-
address space with a different PCID (e.g., by loading CR3; see Section 4.10.4.1 for details).

A PCID is a 12-bit identifier. Non-zero PCIDs are enabled by setting the PCIDE flag (bit 17) of CR4. If CR4.PCIDE =
0, the current PCID is always O00OH; otherwise, the current PCID is the value of bits 11:0 of CR3. Not all processors
allow CR4.PCIDE to be set to 1; see Section 4.1.4 for how to determine whether this is allowed.

The processor ensures that CR4.PCIDE can be 1 only in 1A-32e mode (thus, 32-bit paging and PAE paging use only
PCID O0OOH). In addition, software can change CR4.PCIDE from O to 1 only if CR3[11:0] = O00H. These require-
ments are enforced by the following limitations on the MOV CR instruction:

® MOV to CR4 causes a general-protection exception (#GP) if it would change CR4.PCIDE from O to 1 and either
IA32_EFER.LMA = 0 or CR3[11:0] # O00H.

® MOV to CRO causes a general-protection exception if it would clear CRO.PG to O while CR4.PCIDE = 1.

When a logical processor creates entries in the TLBs (Section 4.10.2) and paging-structure caches (Section
4.10.3), it associates those entries with the current PCID. When using entries in the TLBs and paging-structure
caches to translate a linear address, a logical processor uses only those entries associated with the current PCID
(see Section 4.10.2.4 for an exception).

If CR4.PCIDE = 0, a logical processor does not cache information for any PCID other than O00H. This is because
(1) if CR4.PCIDE = 0, the logical processor will associate any newly cached information with the current PCID,
0O00H; and (2) if MOV to CR4 clears CR4.PCIDE, all cached information is invalidated (see Section 4.10.4.1).

NOTE

In revisions of this manual that were produced when no processors allowed CR4.PCIDE to be set to
1, Section 4.10 discussed the caching of translation information without any reference to PCIDs.
While the section now refers to PCIDs in its specification of this caching, this documentation change
is not intended to imply any change to the behavior of processors that do not allow CR4.PCIDE to
be set to 1.

4.10.2 Translation Lookaside Buffers (TLBs)

A processor may cache information about the translation of linear addresses in translation lookaside buffers
(TLBs). In general, TLBs contain entries that map page numbers to page frames; these terms are defined in
Section 4.10.2.1. Section 4.10.2.2 describes how information may be cached in TLBs, and Section 4.10.2.3 gives
details of TLB usage. Section 4.10.2.4 explains the global-page feature, which allows software to indicate that
certain translations should receive special treatment when cached in the TLBs.

Vol. 3A 4-33

PAGING

4.10.2.1 Page Numbers, Page Frames, and Page Offsets

Section 4.3, Section 4.4.2, and Section 4.5 give details of how the different paging modes translate linear
addresses to physical addresses. Specifically, the upper bits of a linear address (called the page number) deter-
mine the upper bits of the physical address (called the page frame); the lower bits of the linear address (called the
page offset) determine the lower bits of the physical address. The boundary between the page number and the
page offset is determined by the page size. Specifically:

® 32-bit paging:

— If the translation does not use a PTE (because CR4.PSE = 1 and the PS flag is 1 in the PDE used), the page
size is 4 MBytes and the page number comprises bits 31:22 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page number comprises bits 31:12 of
the linear address.

® PAE paging:

— If the translation does not use a PTE (because the PS flag is 1 in the PDE used), the page size is 2 MBytes
and the page number comprises bits 31:21 of the linear address.

— If the translation does uses a PTE, the page size is 4 KBytes and the page number comprises bits 31:12 of
the linear address.

® |A-32e paging:

— If the translation does not use a PDE (because the PS flag is 1 in the PDPTE used), the page size is 1 GBytes
and the page number comprises bits 47:30 of the linear address.

— If the translation does use a PDE but does not uses a PTE (because the PS flag is 1 in the PDE used), the
page size is 2 MBytes and the page number comprises bits 47:21 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page number comprises bits 47:12 of
the linear address.

4.10.2.2 Caching Translations in TLBs

The processor may accelerate the paging process by caching individual translations in translation lookaside
buffers (TLBs). Each entry in a TLB is an individual translation. Each translation is referenced by a page number.
It contains the following information from the paging-structure entries used to translate linear addresses with the
page number:

® The physical address corresponding to the page number (the page frame).

® The access rights from the paging-structure entries used to translate linear addresses with the page number
(see Section 4.6):

— The logical-AND of the R/W flags.
— The logical-AND of the U/S flags.
— The logical-OR of the XD flags (necessary only if IA32_EFER.NXE = 1).

® Attributes from a paging-structure entry that identifies the final page frame for the page number (either a PTE
or a paging-structure entry in which the PS flag is 1):

— The dirty flag (see Section 4.8).
— The memory type (see Section 4.9).

(TLB entries may contain other information as well. A processor may implement multiple TLBs, and some of these
may be for special purposes, e.g., only for instruction fetches. Such special-purpose TLBs may not contain some of
this information if it is not necessary. For example, a TLB used only for instruction fetches need not contain infor-
mation about the R/W and dirty flags.)

As noted in Section 4.10.1, any TLB entries created by a logical processor are associated with the current PCID.

Processors need not implement any TLBs. Processors that do implement TLBs may invalidate any TLB entry at any
time. Software should not rely on the existence of TLBs or on the retention of TLB entries.

4-34 Vol. 3A

PAGING

4.10.2.3 Details of TLB Use

Because the TLBs cache only valid translations, there can be a TLB entry for a page number only if the P flag is 1
and the reserved bits are 0 in each of the paging-structure entries used to translate that page number. In addition,
the processor does not cache a translation for a page number unless the accessed flag is 1 in each of the paging-
structure entries used during translation; before caching a translation, the processor sets any of these accessed
flags that is not already 1.

The processor may cache translations required for prefetches and for accesses that are a result of speculative
execution that would never actually occur in the executed code path.

If the page number of a linear address corresponds to a TLB entry associated with the current PCID, the processor
may use that TLB entry to determine the page frame, access rights, and other attributes for accesses to that linear
address. In this case, the processor may not actually consult the paging structures in memory. The processor may
retain a TLB entry unmodified even if software subsequently modifies the relevant paging-structure entries in
memory. See Section 4.10.4.2 for how software can ensure that the processor uses the modified paging-structure
entries.

If the paging structures specify a translation using a page larger than 4 KBytes, some processors may choose to
cache multiple smaller-page TLB entries for that translation. Each such TLB entry would be associated with a page
number corresponding to the smaller page size (e.g., bits 47:12 of a linear address with 1A-32e paging), even
though part of that page number (e.g., bits 20:12) are part of the offset with respect to the page specified by the
paging structures. The upper bits of the physical address in such a TLB entry are derived from the physical address
in the PDE used to create the translation, while the lower bits come from the linear address of the access for which
the translation is created. There is no way for software to be aware that multiple translations for smaller pages
have been used for a large page.

If software modifies the paging structures so that the page size used for a 4-KByte range of linear addresses
changes, the TLBs may subsequently contain multiple translations for the address range (one for each page size).
A reference to a linear address in the address range may use any of these translations. Which translation is used
may vary from one execution to another, and the choice may be implementation-specific.

4.10.2.4 Global Pages

The Intel-64 and 1A-32 architectures also allow for global pages when the PGE flag (bit 7) is 1 in CR4. If the G flag
(bit 8) is 1 in a paging-structure entry that maps a page (either a PTE or a paging-structure entry in which the PS
flag is 1), any TLB entry cached for a linear address using that paging-structure entry is considered to be global.
Because the G flag is used only in paging-structure entries that map a page, and because information from such
entries are not cached in the paging-structure caches, the global-page feature does not affect the behavior of the
paging-structure caches.

A logical processor may use a global TLB entry to translate a linear address, even if the TLB entry is associated with
a PCID different from the current PCID.

4.10.3 Paging-Structure Caches

In addition to the TLBs, a processor may cache other information about the paging structures in memory.

4.10.3.1 Caches for Paging Structures

A processor may support any or of all the following paging-structure caches:

® PML4 cache (IA-32e paging only). Each PML4-cache entry is referenced by a 9-bit value and is used for linear
addresses for which bits 47:39 have that value. The entry contains information from the PML4E used to
translate such linear addresses:

— The physical address from the PML4E (the address of the page-directory-pointer table).
— The value of the R/W flag of the PML4E.

— The value of the U/S flag of the PML4E.

— The value of the XD flag of the PML4E.

Vol. 3A 4-35

PAGING

The values of the PCD and PWT flags of the PML4E.

The following items detail how a processor may use the PML4 cache:

If the processor has a PML4-cache entry for a linear address, it may use that entry when translating the
linear address (instead of the PML4E in memory).

The processor does not create a PML4-cache entry unless the P flag is 1 and all reserved bits are O in the
PML4E in memory.

The processor does not create a PML4-cache entry unless the accessed flag is 1 in the PML4E in memory;
before caching a translation, the processor sets the accessed flag if it is not already 1.

The processor may create a PML4-cache entry even if there are no translations for any linear address that
might use that entry (e.g., because the P flags are O in all entries in the referenced page-directory-pointer
table).

If the processor creates a PML4-cache entry, the processor may retain it unmodified even if software subse-
quently modifies the corresponding PML4E in memory.

® PDPTE cache (IA-32e paging only).1 Each PDPTE-cache entry is referenced by an 18-bit value and is used for
linear addresses for which bits 47:30 have that value. The entry contains information from the PML4E and
PDPTE used to translate such linear addresses:

The physical address from the PDPTE (the address of the page directory). (No PDPTE-cache entry is created
for a PDPTE that maps a 1-GByte page.)

The logical-AND of the R/W flags in the PML4E and the PDPTE.
The logical-AND of the U/S flags in the PML4E and the PDPTE.
The logical-OR of the XD flags in the PML4E and the PDPTE.
The values of the PCD and PWT flags of the PDPTE.

The following items detail how a processor may use the PDPTE cache:

If the processor has a PDPTE-cache entry for a linear address, it may use that entry when translating the
linear address (instead of the PML4E and the PDPTE in memory).

The processor does not create a PDPTE-cache entry unless the P flag is 1, the PS flag is O, and the reserved
bits are 0 in the PML4E and the PDPTE in memory.

The processor does not create a PDPTE-cache entry unless the accessed flags are 1 in the PML4E and the
PDPTE in memory; before caching a translation, the processor sets any accessed flags that are not already
1.

The processor may create a PDPTE-cache entry even if there are no translations for any linear address that
might use that entry.

If the processor creates a PDPTE-cache entry, the processor may retain it unmodified even if software
subsequently modifies the corresponding PML4E or PDPTE in memory.

® PDE cache. The use of the PDE cache depends on the paging mode:

For 32-bit paging, each PDE-cache entry is referenced by a 10-bit value and is used for linear addresses for
which bits 31:22 have that value.

For PAE paging, each PDE-cache entry is referenced by an 11-bit value and is used for linear addresses for
which bits 31:21 have that value.

For 1A-32e paging, each PDE-cache entry is referenced by a 27-bit value and is used for linear addresses for
which bits 47:21 have that value.

A PDE-cache entry contains information from the PML4E, PDPTE, and PDE used to translate the relevant linear
addresses (for 32-bit paging and PAE paging, only the PDE applies):

The physical address from the PDE (the address of the page table). (No PDE-cache entry is created for a
PDE that maps a page.)

1. With PAE paging, the PDPTEs are stored in internal, non-architectural registers. The operation of these registers is described in Sec-
tion 4.4.1 and differs from that described here.

4-36 Vol. 3A

PAGING

— The logical-AND of the R/W flags in the PML4E, PDPTE, and PDE.
— The logical-AND of the U/S flags in the PML4E, PDPTE, and PDE.
— The logical-OR of the XD flags in the PML4E, PDPTE, and PDE.
— The values of the PCD and PWT flags of the PDE.

The following items detail how a processor may use the PDE cache (references below to PML4Es and PDPTEs
apply on to 1A-32e paging):

— If the processor has a PDE-cache entry for a linear address, it may use that entry when translating the
linear address (instead of the PML4E, the PDPTE, and the PDE in memory).

— The processor does not create a PDE-cache entry unless the P flag is 1, the PS flag is O, and the reserved
bits are 0 in the PML4E, the PDPTE, and the PDE in memory.

— The processor does not create a PDE-cache entry unless the accessed flag is 1 in the PML4E, the PDPTE,
and the PDE in memory; before caching a translation, the processor sets any accessed flags that are not
already 1.

— The processor may create a PDE-cache entry even if there are no translations for any linear address that
might use that entry.

— If the processor creates a PDE-cache entry, the processor may retain it unmodified even if software subse-
quently modifies the corresponding PML4E, the PDPTE, or the PDE in memory.

Information from a paging-structure entry can be included in entries in the paging-structure caches for other
paging-structure entries referenced by the original entry. For example, if the R/W flag is 0 in a PML4E, then the R/W
flag will be O in any PDPTE-cache entry for a PDPTE from the page-directory-pointer table referenced by that
PMLA4E. This is because the R/W flag of each such PDPTE-cache entry is the logical-AND of the R/W flags in the
appropriate PML4E and PDPTE.

The paging-structure caches contain information only from paging-structure entries that reference other paging
structures (and not those that map pages). Because the G flag is not used in such paging-structure entries, the
global-page feature does not affect the behavior of the paging-structure caches.

The processor may create entries in paging-structure caches for translations required for prefetches and for
accesses that are a result of speculative execution that would never actually occur in the executed code path.

As noted in Section 4.10.1, any entries created in paging-structure caches by a logical processor are associated
with the current PCID.

A processor may or may not implement any of the paging-structure caches. Software should rely on neither their
presence nor their absence. The processor may invalidate entries in these caches at any time. Because the
processor may create the cache entries at the time of translation and not update them following subsequent modi-
fications to the paging structures in memory, software should take care to invalidate the cache entries appropri-
ately when causing such modifications. The invalidation of TLBs and the paging-structure caches is described in
Section 4.10.4.

4.10.3.2 Using the Paging-Structure Caches to Translate Linear Addresses

When a linear address is accessed, the processor uses a procedure such as the following to determine the physical
address to which it translates and whether the access should be allowed:

® If the processor finds a TLB entry that is for the page number of the linear address and that is associated with
the current PCID (or which is global), it may use the physical address, access rights, and other attributes from
that entry.

® If the processor does not find a relevant TLB entry, it may use the upper bits of the linear address to select an
entry from the PDE cache that is associated with the current PCID (Section 4.10.3.1 indicates which bits are
used in each paging mode). It can then use that entry to complete the translation process (locating a PTE, etc.)
as if it had traversed the PDE (and, for 1A-32e paging, the PDPTE and PML4) corresponding to the PDE-cache
entry.

® The following items apply when 1A-32e paging is used:

— If the processor does not find a relevant TLB entry or a relevant PDE-cache entry, it may use bits 47:30 of
the linear address to select an entry from the PDPTE cache that is associated with the current PCID. It can

Vol. 3A 4-37

PAGING

then use that entry to complete the translation process (locating a PDE, etc.) as if it had traversed the
PDPTE and the PML4 corresponding to the PDPTE-cache entry.

— If the processor does not find a relevant TLB entry, a relevant PDE-cache entry, or a relevant PDPTE-cache
entry, it may use bits 47:39 of the linear address to select an entry from the PML4 cache that is associated
with the current PCID. It can then use that entry to complete the translation process (locating a PDPTE,
etc.) as if it had traversed the corresponding PMLA4.

(Any of the above steps would be skipped if the processor does not support the cache in question.)

If the processor does not find a TLB or paging-structure-cache entry for the linear address, it uses the linear
address to traverse the entire paging-structure hierarchy, as described in Section 4.3, Section 4.4.2, and Section
4.5.

4.10.3.3 Multiple Cached Entries for a Single Paging-Structure Entry

The paging-structure caches and TLBs and paging-structure caches may contain multiple entries associated with a

single PCID and with information derived from a single paging-structure entry. The following items give some

examples for 1A-32e paging:

® Suppose that two PML4Es contain the same physical address and thus reference the same page-directory-
pointer table. Any PDPTE in that table may result in two PDPTE-cache entries, each associated with a different
set of linear addresses. Specifically, suppose that the nlth and nzth entries in the PML4 table contain the same
physical address. This implies that the physical address in the mt PDPTE in the page-directory-pointer table
would appear in the PDPTE-cache entries associated with both p; and p,, where (p; » 9) = nq, (P2 » 9) = ny,
and (p; & 1FFH) = (p, & 1FFH) = m. This is because both PDPTE-cache entries use the same PDPTE, one
resulting from a reference from the nlth PML4E and one from the nzth PMLA4E.

® Suppose that the first PML4E (i.e., the one in position 0) contains the physical address X in CR3 (the physical
address of the PML4 table). This implies the following:

— Any PML4-cache entry associated with linear addresses with O in bits 47:39 contains address X.

— Any PDPTE-cache entry associated with linear addresses with O in bits 47:30 contains address X. This is
because the translation for a linear address for which the value of bits 47:30 is O uses the value of
bits 47:39 (0) to locate a page-directory-pointer table at address X (the address of the PML4 table). It then
uses the value of bits 38:30 (also 0) to find address X again and to store that address in the PDPTE-cache
entry.

— Any PDE-cache entry associated with linear addresses with O in bits 47:21 contains address X for similar
reasons.

— Any TLB entry for page number O (associated with linear addresses with O in bits 47:12) translates to page
frame X » 12 for similar reasons.

The same PMLA4E contributes its address X to all these cache entries because the self-referencing nature of the
entry causes it to be used as a PML4E, a PDPTE, a PDE, and a PTE.

4.10.4 Invalidation of TLBs and Paging-Structure Caches

As noted in Section 4.10.2 and Section 4.10.3, the processor may create entries in the TLBs and the paging-struc-
ture caches when linear addresses are translated, and it may retain these entries even after the paging structures
used to create them have been modified. To ensure that linear-address translation uses the modified paging struc-
tures, software should take action to invalidate any cached entries that may contain information that has since
been modified.

4.10.4.1 Operations that Invalidate TLBs and Paging-Structure Caches

The following instructions invalidate entries in the TLBs and the paging-structure caches:

® INVLPG. This instruction takes a single operand, which is a linear address. The instruction invalidates any TLB
entries that are for a page number corresponding to the linear address and that are associated with the current
PCID. It also invalidates any global TLB entries with that page number, regardless of PCID (see Section

4-38 Vol. 3A

PAGING

4.10.2.4).l INVLPG also invalidates all entries in all paging-structure caches associated with the current PCID,
regardless of the linear addresses to which they correspond.

INVPCID. The operation of this instruction is based on instruction operands, called the INVPCID type and the
INVPCID descriptor. Four INVPCID types are currently defined:

— Individual-address. If the INVPCID type is 0, the logical processor invalidates mappings—except global
translations—associated with the PCID specified in the INVPCID descriptor and that would be used to
translate the linear address specified in the INVPCID descriptor. (The instruction may also invalidate global
translations, as well as mappings associated with other PCIDs and for other linear addresses.)

— Single-context. If the INVPCID type is 1, the logical processor invalidates all mappings—except global
translations—associated with the PCID specified in the INVPCID descriptor. (The instruction may also
invalidate global translations, as well as mappings associated with other PCIDs.)

— All-context, including globals. If the INVPCID type is 2, the logical processor invalidates
mappings—including global translations—associated with all PCIDs.

— All-context. If the INVPCID type is 3, the logical processor invalidates mappings—except global transla-
tions—associated with all PCIDs. (The instruction may also invalidate global translations.)

See Chapter 3 of the Intel 64 and 1A-32 Architecture Software Developer’s Manual, Volume 2A for details of the
INVPCID instruction.

MOV to CRO. The instruction invalidates all TLB entries (including global entries) and all entries in all paging-
structure caches (for all PCIDs) if it changes the value of CRO.PG from 1 to O.

MOV to CR3. The behavior of the instruction depends on the value of CR4.PCIDE:

— If CR4.PCIDE = 0, the instruction invalidates all TLB entries associated with PCID 000H except those for
global pages. It also invalidates all entries in all paging-structure caches associated with PCID O0O0H.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is O, the instruction invalidates all TLB
entries associated with the PCID specified in bits 11:0 of the instruction’s source operand except those for
global pages. It also invalidates all entries in all paging-structure caches associated with that PCID. It is not
required to invalidate entries in the TLBs and paging-structure caches that are associated with other PCIDs.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 1, the instruction is not required to
invalidate any TLB entries or entries in paging-structure caches.

MOV to CR4. The behavior of the instruction depends on the bits being modified:

— The instruction invalidates all TLB entries (including global entries) and all entries in all paging-structure
caches (for all PCIDs) if (1) it changes the value of CR4.PGE;? or (2) it changes the value of the CR4.PCIDE
from 1 to O.

— The instruction invalidates all TLB entries and all entries in all paging-structure caches for the current PCID
if (1) it changes the value of CR4.PAE; or (2) it changes the value of CR4.SMEP from O to 1.

Task switch. If a task switch changes the value of CR3, it invalidates all TLB entries associated with PCID O00H
except those for global pages. It also invalidates all entries in all paging-structure caches for associated with
PCID O00H.3

VMX transitions. See Section 4.11.1.

The processor is always free to invalidate additional entries in the TLBs and paging-structure caches. The following
are some examples:

INVLPG may invalidate TLB entries for pages other than the one corresponding to its linear-address operand. It
may invalidate TLB entries and paging-structure-cache entries associated with PCIDs other than the current
PCID.

If the paging structures map the linear address using a page larger than 4 KBytes and there are multiple TLB entries for that page
(see Section 4.10.2.3), the instruction invalidates all of them.

If CR4.PGE is changing from O to 1, there were no global TLB entries before the execution; if CR4.PGE is changing from 1 to O, there
will be no global TLB entries after the execution.

Task switches do not occur in IA-32e mode and thus cannot occur with IA-32e paging. Since CR4.PCIDE can be set only with IA-32e
paging, task switches occur only with CR4.PCIDE = 0.

Vol. 3A 4-39

PAGING

¢ INVPCID may invalidate TLB entries for pages other than the one corresponding to the specified linear address.
It may invalidate TLB entries and paging-structure-cache entries associated with PCIDs other than the specified
PCID.

¢ MOV to CRO may invalidate TLB entries even if CRO.PG is not changing. For example, this may occur if either
CRO.CD or CRO.NW is modified.

® MOV to CR3 may invalidate TLB entries for global pages. If CR4.PCIDE = 1 and bit 63 of the instruction’s source
operand is O, it may invalidate TLB entries and entries in the paging-structure caches associated with PCIDs
other than the current PCID. It may invalidate entries if CR4.PCIDE = 1 and bit 63 of the instruction’s source
operand is 1.

® MOV to CR4 may invalidate TLB entries when changing CR4.PSE or when changing CR4.SMEP from 1 to O.

® On a processor supporting Hyper-Threading Technology, invalidations performed on one logical processor may
invalidate entries in the TLBs and paging-structure caches used by other logical processors.

(Other instructions and operations may invalidate entries in the TLBs and the paging-structure caches, but the
instructions identified above are recommended.)

In addition to the instructions identified above, page faults invalidate entries in the TLBs and paging-structure
caches. In particular, a page-fault exception resulting from an attempt to use a linear address will invalidate any
TLB entries that are for a page number corresponding to that linear address and that are associated with the
current PCID. it also invalidates all entries in the paging-structure caches that would be used for that linear address
and that are associated with the current PCID.! These invalidations ensure that the page-fault exception will not
recur (if the faulting instruction is re-executed) if it would not be caused by the contents of the paging structures
in memory (and if, therefore, it resulted from cached entries that were not invalidated after the paging structures
were modified in memory).

As noted in Section 4.10.2, some processors may choose to cache multiple smaller-page TLB entries for a transla-
tion specified by the paging structures to use a page larger than 4 KBytes. There is no way for software to be aware
that multiple translations for smaller pages have been used for a large page. The INVLPG instruction and page
faults provide the same assurances that they provide when a single TLB entry is used: they invalidate all TLB
entries corresponding to the translation specified by the paging structures.

4.10.4.2 Recommended Invalidation

The following items provide some recommendations regarding when software should perform invalidations:

® If software modifies a paging-structure entry that identifies the final page frame for a page number (either a
PTE or a paging-structure entry in which the PS flag is 1), it should execute INVLPG for any linear address with
a page number whose translation uses that PTE.?
(If the paging-structure entry may be used in the translation of different page numbers — see Section 4.10.3.3
— software should execute INVLPG for linear addresses with each of those page numbers; alternatively, it could
use MOV to CR3 or MOV to CR4.)

® If software modifies a paging-structure entry that references another paging structure, it may use one of the
following approaches depending upon the types and number of translations controlled by the modified entry:

— Execute INVLPG for linear addresses with each of the page numbers with translations that would use the
entry. However, if no page numbers that would use the entry have translations (e.g., because the P flags are
0 in all entries in the paging structure referenced by the modified entry), it remains necessary to execute
INVLPG at least once.

— Execute MOV to CR3 if the modified entry controls no global pages.
— Execute MOV to CR4 to modify CR4.PGE.

® If CR4.PCIDE = 1 and software modifies a paging-structure entry that does not map a page or in which the G
flag (bit 8) is O, additional steps are required if the entry may be used for PCIDs other than the current one. Any
one of the following suffices:

1. Unlike INVLPG, page faults need not invalidate all entries in the paging-structure caches, only those that would be used to translate
the faulting linear address.

2. One execution of INVLPG is sufficient even for a page with size greater than 4 KBytes.

4-40 Vol. 3A

PAGING

— Execute MOV to CR4 to modify CR4.PGE, either immediately or before again using any of the affected
PCIDs. For example, software could use different (previously unused) PCIDs for the processes that used the
affected PCIDs.

— For each affected PCID, execute MOV to CR3 to make that PCID current (and to load the address of the
appropriate PML4 table). If the modified entry controls no global pages and bit 63 of the source operand to
MOV to CR3 was 0, no further steps are required. Otherwise, execute INVLPG for linear addresses with each
of the page numbers with translations that would use the entry; if no page numbers that would use the
entry have translations, execute INVLPG at least once.

If software using PAE paging modifies a PDPTE, it should reload CR3 with the register’s current value to ensure
that the modified PDPTE is loaded into the corresponding PDPTE register (see Section 4.4.1).

If the nature of the paging structures is such that a single entry may be used for multiple purposes (see Section
4.10.3.3), software should perform invalidations for all of these purposes. For example, if a single entry might
serve as both a PDE and PTE, it may be necessary to execute INVLPG with two (or more) linear addresses, one
that uses the entry as a PDE and one that uses it as a PTE. (Alternatively, software could use MOV to CR3 or
MOV to CR4.)

As noted in Section 4.10.2, the TLBs may subsequently contain multiple translations for the address range if
software modifies the paging structures so that the page size used for a 4-KByte range of linear addresses
changes. A reference to a linear address in the address range may use any of these translations.

Software wishing to prevent this uncertainty should not write to a paging-structure entry in a way that would
change, for any linear address, both the page size and either the page frame, access rights, or other attributes.
It can instead use the following algorithm: first clear the P flag in the relevant paging-structure entry (e.g.,
PDE); then invalidate any translations for the affected linear addresses (see above); and then modify the
relevant paging-structure entry to set the P flag and establish modified translation(s) for the new page size.

Software should clear bit 63 of the source operand to a MOV to CR3 instruction that establishes a PCID that had
been used earlier for a different linear-address space (e.g., with a different value in bits 51:12 of CR3). This
ensures invalidation of any information that may have been cached for the previous linear-address space.

This assumes that both linear-address spaces use the same global pages and that it is thus not necessary to
invalidate any global TLB entries. If that is not the case, software should invalidate those entries by executing
MOV to CR4 to modify CR4.PGE.

4.10.4.3 Optional Invalidation

The following items describe cases in which software may choose not to invalidate and the potential consequences
of that choice:

If a paging-structure entry is modified to change the P flag from O to 1, no invalidation is necessary. This is
because no TLB entry or paging-structure cache entry is created with information from a paging-structure
entry in which the P flag is 0.1

If a paging-structure entry is modified to change the accessed flag from 0 to 1, no invalidation is necessary
(assuming that an invalidation was performed the last time the accessed flag was changed from 1 to 0). This is
because no TLB entry or paging-structure cache entry is created with information from a paging-structure
entry in which the accessed flag is 0.

If a paging-structure entry is modified to change the R/W flag from 0 to 1, failure to perform an invalidation
may result in a “spurious” page-fault exception (e.g., in response to an attempted write access) but no other
adverse behavior. Such an exception will occur at most once for each affected linear address (see Section
4.10.4.1).

If CR4.SMEP = 0 and a paging-structure entry is modified to change the U/S flag from 0O to 1, failure to perform
an invalidation may result in a “spurious” page-fault exception (e.g., in response to an attempted user-mode
access) but no other adverse behavior. Such an exception will occur at most once for each affected linear
address (see Section 4.10.4.1).

If a paging-structure entry is modified to change the XD flag from 1 to O, failure to perform an invalidation may
result in a “spurious” page-fault exception (e.g., in response to an attempted instruction fetch) but no other

If it is also the case that no invalidation was performed the last time the P flag was changed from 1 to 0, the processor may use a
TLB entry or paging-structure cache entry that was created when the P flag had earlier been 1.

Vol. 3A 4-41

PAGING

adverse behavior. Such an exception will occur at most once for each affected linear address (see Section
4.10.4.1).

® If a paging-structure entry is modified to change the accessed flag from 1 to O, failure to perform an invali-
dation may result in the processor not setting that bit in response to a subsequent access to a linear address
whose translation uses the entry. Software cannot interpret the bit being clear as an indication that such an
access has not occurred.

® If software modifies a paging-structure entry that identifies the final physical address for a linear address
(either a PTE or a paging-structure entry in which the PS flag is 1) to change the dirty flag from 1 to O, failure
to perform an invalidation may result in the processor not setting that bit in response to a subsequent write to
a linear address whose translation uses the entry. Software cannot interpret the bit being clear as an indication
that such a write has not occurred.

® The read of a paging-structure entry in translating an address being used to fetch an instruction may appear to
execute before an earlier write to that paging-structure entry if there is no serializing instruction between the
write and the instruction fetch. Note that the invalidating instructions identified in Section 4.10.4.1 are all
serializing instructions.

® Section 4.10.3.3 describes situations in which a single paging-structure entry may contain information cached
in multiple entries in the paging-structure caches. Because all entries in these caches are invalidated by any
execution of INVLPG, it is not necessary to follow the modification of such a paging-structure entry by
executing INVLPG multiple times solely for the purpose of invalidating these multiple cached entries. (It may be
necessary to do so to invalidate multiple TLB entries.)

4.10.4.4 Delayed Invalidation

Required invalidations may be delayed under some circumstances. Software developers should understand that,
between the modification of a paging-structure entry and execution of the invalidation instruction recommended in
Section 4.10.4.2, the processor may use translations based on either the old value or the new value of the paging-
structure entry. The following items describe some of the potential consequences of delayed invalidation:

® If a paging-structure entry is modified to change from 1 to O the P flag from 1 to O, an access to a linear address
whose translation is controlled by this entry may or may not cause a page-fault exception.

® If a paging-structure entry is modified to change the R/W flag from O to 1, write accesses to linear addresses
whose translation is controlled by this entry may or may not cause a page-fault exception.

® If a paging-structure entry is modified to change the U/S flag from O to 1, user-mode accesses to linear
addresses whose translation is controlled by this entry may or may not cause a page-fault exception.

® If a paging-structure entry is modified to change the XD flag from 1 to O, instruction fetches from linear
addresses whose translation is controlled by this entry may or may not cause a page-fault exception.

As noted in Section 8.1.1, an x87 instruction or an SSE instruction that accesses data larger than a quadword may
be implemented using multiple memory accesses. If such an instruction stores to memory and invalidation has
been delayed, some of the accesses may complete (writing to memory) while another causes a page-fault excep-
tion.! In this case, the effects of the completed accesses may be visible to software even though the overall instruc-
tion caused a fault.

In some cases, the consequences of delayed invalidation may not affect software adversely. For example, when
freeing a portion of the linear-address space (by marking paging-structure entries “not present”), invalidation
using INVLPG may be delayed if software does not re-allocate that portion of the linear-address space or the
memory that had been associated with it. However, because of speculative execution (or errant software), there
may be accesses to the freed portion of the linear-address space before the invalidations occur. In this case, the
following can happen:

® Reads can occur to the freed portion of the linear-address space. Therefore, invalidation should not be delayed
for an address range that has read side effects.

® The processor may retain entries in the TLBs and paging-structure caches for an extended period of time.
Software should not assume that the processor will not use entries associated with a linear address simply
because time has passed.

1. If the accesses are to different pages, this may occur even if invalidation has not been delayed.

4-42 \Vol. 3A

PAGING

® As noted in Section 4.10.3.1, the processor may create an entry in a paging-structure cache even if there are
no translations for any linear address that might use that entry. Thus, if software has marked “not present” all
entries in page table, the processor may subsequently create a PDE-cache entry for the PDE that references
that page table (assuming that the PDE itself is marked “present”).

® If software attempts to write to the freed portion of the linear-address space, the processor might not generate
a page fault. (Such an attempt would likely be the result of a software error.) For that reason, the page frames
previously associated with the freed portion of the linear-address space should not be reallocated for another
purpose until the appropriate invalidations have been performed.

4.10.5 Propagation of Paging-Structure Changes to Multiple Processors

As noted in Section 4.10.4, software that modifies a paging-structure entry may need to invalidate entries in the
TLBs and paging-structure caches that were derived from the modified entry before it was modified. In a system
containing more than one logical processor, software must account for the fact that there may be entries in the
TLBs and paging-structure caches of logical processors other than the one used to modify the paging-structure
entry. The process of propagating the changes to a paging-structure entry is commonly referred to as “TLB shoot-
down.”

TLB shootdown can be done using memory-based semaphores and/or interprocessor interrupts (IPl). The
following items describe a simple but inefficient example of a TLB shootdown algorithm for processors supporting
the Intel-64 and 1A-32 architectures:

1. Begin barrier: Stop all but one logical processor; that is, cause all but one to execute the HLT instruction or to
enter a spin loop.

2. Allow the active logical processor to change the necessary paging-structure entries.

Allow all logical processors to perform invalidations appropriate to the modifications to the paging-structure
entries.

4. Allow all logical processors to resume normal operation.

Alternative, performance-optimized, TLB shootdown algorithms may be developed; however, software developers
must take care to ensure that the following conditions are met:

® All logical processors that are using the paging structures that are being modified must participate and perform
appropriate invalidations after the modifications are made.

® If the modifications to the paging-structure entries are made before the barrier or if there is no barrier, the
operating system must ensure one of the following: (1) that the affected linear-address range is not used
between the time of modification and the time of invalidation; or (2) that it is prepared to deal with the conse-
quences of the affected linear-address range being used during that period. For example, if the operating
system does not allow pages being freed to be reallocated for another purpose until after the required invalida-
tions, writes to those pages by errant software will not unexpectedly modify memory that is in use.

® Software must be prepared to deal with reads, instruction fetches, and prefetch requests to the affected linear-
address range that are a result of speculative execution that would never actually occur in the executed code
path.

When multiple logical processors are using the same linear-address space at the same time, they must coordinate
before any request to modify the paging-structure entries that control that linear-address space. In these cases,
the barrier in the TLB shootdown routine may not be required. For example, when freeing a range of linear
addresses, some other mechanism can assure no logical processor is using that range before the request to free it
is made. In this case, a logical processor freeing the range can clear the P flags in the PTEs associated with the
range, free the physical page frames associated with the range, and then signal the other logical processors using
that linear-address space to perform the necessary invalidations. All the affected logical processors must complete
their invalidations before the linear-address range and the physical page frames previously associated with that
range can be reallocated.

Vol. 3A 4-43

PAGING

411 INTERACTIONS WITH VIRTUAL-MACHINE EXTENSIONS (VMX)

The architecture for virtual-machine extensions (VMX) includes features that interact with paging. Section 4.11.1
discusses ways in which VMX-specific control transfers, called VMX transitions specially affect paging. Section
4.11.2 gives an overview of VMX features specifically designed to support address translation.

411.1 VMX Transitions

The VMX architecture defines two control transfers called VM entries and VM exits; collectively, these are called
VMX transitions. VM entries and VM exits are described in detail in Chapter 26 and Chapter 27, respectively, in
the Intel® 64 and I1A-32 Architectures Software Developer’s Manual, Volume 3C. The following items identify
paging-related details:

® VMX transitions modify the CRO and CR4 registers and the 1A32_EFER MSR concurrently. For this reason, they
allow transitions between paging modes that would not otherwise be possible:

— VM entries allow transitions from 1A-32e paging directly to either 32-bit paging or PAE paging.
— VM exits allow transitions from either 32-bit paging or PAE paging directly to 1A-32e paging.
® VMX transitions that result in PAE paging load the PDPTE registers (see Section 4.4.1) as follows:

— VM entries load the PDPTE registers either from the physical address being loaded into CR3 or from the
virtual-machine control structure (VMCS); see Section 26.3.2.4.

— VM exits load the PDPTE registers from the physical address being loaded into CR3; see Section 27.5.4.

® VMX transitions invalidate the TLBs and paging-structure caches based on certain control settings. See Section
26.3.2.5 and Section 27.5.5 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3C.

4.11.2 VMX Support for Address Translation

Chapter 28, “VMX Support for Address Translation,” in the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 3C describe two features of the virtual-machine extensions (VMX) that interact directly with
paging. These are virtual-processor identifiers (VPIDs) and the extended page table mechanism (EPT).

VPIDs provide a way for software to identify to the processor the address spaces for different “virtual processors.”
The processor may use this identification to maintain concurrently information for multiple address spaces in its
TLBs and paging-structure caches, even when non-zero PCIDs are not being used. See Section 28.1 for details.

When EPT is in use, the addresses in the paging-structures are not used as physical addresses to access memory
and memory-mapped I/0. Instead, they are treated as guest-physical addresses and are translated through a set
of EPT paging structures to produce physical addresses. EPT can also specify its own access rights and memory

typing; these are used on conjunction with those specified in this chapter. See Section 28.2 for more information.

Both VPIDs and EPT may change the way that a processor maintains information in TLBs and paging structure
caches and the ways in which software can manage that information. Some of the behaviors documented in Section
4.10 may change. See Section 28.3 for details.

412 USING PAGING FOR VIRTUAL MEMORY

With paging, portions of the linear-address space need not be mapped to the physical-address space; data for the
unmapped addresses can be stored externally (e.g., on disk). This method of mapping the linear-address space is
referred to as virtual memory or demand-paged virtual memory.

Paging divides the linear address space into fixed-size pages that can be mapped into the physical-address space
and/or external storage. When a program (or task) references a linear address, the processor uses paging to trans-
late the linear address into a corresponding physical address if such an address is defined.

If the page containing the linear address is not currently mapped into the physical-address space, the processor
generates a page-fault exception as described in Section 4.7. The handler for page-fault exceptions typically

4-44 \Vol. 3A

PAGING

directs the operating system or executive to load data for the unmapped page from external storage into physical
memory (perhaps writing a different page from physical memory out to external storage in the process) and to
map it using paging (by updating the paging structures). When the page has been loaded into physical memory, a
return from the exception handler causes the instruction that generated the exception to be restarted.

Paging differs from segmentation through its use of fixed-size pages. Unlike segments, which usually are the same
size as the code or data structures they hold, pages have a fixed size. If segmentation is the only form of address
translation used, a data structure present in physical memory will have all of its parts in memory. If paging is used,
a data structure can be partly in memory and partly in disk storage.

413 MAPPING SEGMENTS TO PAGES

The segmentation and paging mechanisms provide in the support a wide variety of approaches to memory
management. When segmentation and paging are combined, segments can be mapped to pages in several ways.
To implement a flat (unsegmented) addressing environment, for example, all the code, data, and stack modules
can be mapped to one or more large segments (up to 4-GBytes) that share same range of linear addresses (see
Figure 3-2 in Section 3.2.2). Here, segments are essentially invisible to applications and the operating-system or
executive. If paging is used, the paging mechanism can map a single linear-address space (contained in a single
segment) into virtual memory. Alternatively, each program (or task) can have its own large linear-address space
(contained in its own segment), which is mapped into virtual memory through its own paging structures.

Segments can be smaller than the size of a page. If one of these segments is placed in a page which is not shared
with another segment, the extra memory is wasted. For example, a small data structure, such as a 1-Byte sema-
phore, occupies 4 KBytes if it is placed in a page by itself. If many semaphores are used, it is more efficient to pack
them into a single page.

The Intel-64 and 1A-32 architectures do not enforce correspondence between the boundaries of pages and
segments. A page can contain the end of one segment and the beginning of another. Similarly, a segment can
contain the end of one page and the beginning of another.

Memory-management software may be simpler and more efficient if it enforces some alignment between page and
segment boundaries. For example, if a segment which can fit in one page is placed in two pages, there may be
twice as much paging overhead to support access to that segment.

One approach to combining paging and segmentation that simplifies memory-management software is to give
each segment its own page table, as shown in Figure 4-13. This convention gives the segment a single entry in the
page directory, and this entry provides the access control information for paging the entire segment.

Page Frames

LDT Page Directory Page Tables >
PTE —
PTE >
PTE -
Seg. Descript.[—> PDE 4|—>
Seg. Descript.—> PDE >
PTE [

PTE —‘

Figure 4-13. Memory Management Convention That Assigns a Page Table
to Each Segment

Vol. 3A 4-45

PAGING

4-46 Vol. 3A

CHAPTER 5
PROTECTION

In protected mode, the Intel 64 and 1A-32 architectures provide a protection mechanism that operates at both the
segment level and the page level. This protection mechanism provides the ability to limit access to certain
segments or pages based on privilege levels (four privilege levels for segments and two privilege levels for pages).
For example, critical operating-system code and data can be protected by placing them in more privileged
segments than those that contain applications code. The processor’s protection mechanism will then prevent appli-
cation code from accessing the operating-system code and data in any but a controlled, defined manner.

Segment and page protection can be used at all stages of software development to assist in localizing and detecting
design problems and bugs. It can also be incorporated into end-products to offer added robustness to operating
systems, utilities software, and applications software.

When the protection mechanism is used, each memory reference is checked to verify that it satisfies various
protection checks. All checks are made before the memory cycle is started; any violation results in an exception.
Because checks are performed in parallel with address translation, there is no performance penalty. The protection
checks that are performed fall into the following categories:

® Limit checks.

® Type checks.

® Privilege level checks.

® Restriction of addressable domain.

® Restriction of procedure entry-points.
® Restriction of instruction set.

All protection violation results in an exception being generated. See Chapter 6, “Interrupt and Exception Handling,”
for an explanation of the exception mechanism. This chapter describes the protection mechanism and the viola-
tions which lead to exceptions.

The following sections describe the protection mechanism available in protected mode. See Chapter 20, “8086
Emulation,” for information on protection in real-address and virtual-8086 mode.

5.1 ENABLING AND DISABLING SEGMENT AND PAGE PROTECTION

Setting the PE flag in register CRO causes the processor to switch to protected mode, which in turn enables the
segment-protection mechanism. Once in protected mode, there is no control bit for turning the protection mecha-
nism on or off. The part of the segment-protection mechanism that is based on privilege levels can essentially be
disabled while still in protected mode by assigning a privilege level of O (most privileged) to all segment selectors
and segment descriptors. This action disables the privilege level protection barriers between segments, but other
protection checks such as limit checking and type checking are still carried out.

Page-level protection is automatically enabled when paging is enabled (by setting the PG flag in register CRO). Here
again there is no mode bit for turning off page-level protection once paging is enabled. However, page-level protec-
tion can be disabled by performing the following operations:

® Clear the WP flag in control register CRO.
® Set the read/write (R/W) and user/supervisor (U/S) flags for each page-directory and page-table entry.

This action makes each page a writable, user page, which in effect disables page-level protection.

Vol. 3A 5-1

PROTECTION

5.2 FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND

PAGE-LEVEL PROTECTION

The processor’s protection mechanism uses the following fields and flags in the system data structures to control
access to segments and pages:

Descriptor type (S) flag — (Bit 12 in the second doubleword of a segment descriptor.) Determines if the
segment descriptor is for a system segment or a code or data segment.

Type field — (Bits 8 through 11 in the second doubleword of a segment descriptor.) Determines the type of
code, data, or system segment.

Limit field — (Bits O through 15 of the first doubleword and bits 16 through 19 of the second doubleword of a
segment descriptor.) Determines the size of the segment, along with the G flag and E flag (for data segments).

G flag — (Bit 23 in the second doubleword of a segment descriptor.) Determines the size of the segment, along
with the limit field and E flag (for data segments).

E flag — (Bit 10 in the second doubleword of a data-segment descriptor.) Determines the size of the segment,
along with the limit field and G flag.

Descriptor privilege level (DPL) field — (Bits 13 and 14 in the second doubleword of a segment descriptor.)
Determines the privilege level of the segment.

Requested privilege level (RPL) field — (Bits 0 and 1 of any segment selector.) Specifies the requested
privilege level of a segment selector.

Current privilege level (CPL) field — (Bits O and 1 of the CS segment register.) Indicates the privilege level
of the currently executing program or procedure. The term current privilege level (CPL) refers to the setting of
this field.

User/supervisor (U/S) flag — (Bit 2 of paging-structure entries.) Determines the type of page: user or
supervisor.

Read/write (R/W) flag — (Bit 1 of paging-structure entries.) Determines the type of access allowed to a
page: read-only or read/write.

Execute-disable (XD) flag — (Bit 63 of certain paging-structure entries.) Determines the type of access
allowed to a page: executable or not-executable.

Figure 5-1 shows the location of the various fields and flags in the data, code, and system- segment descriptors;
Figure 3-6 shows the location of the RPL (or CPL) field in a segment selector (or the CS register); and Chapter 4
identifies the locations of the U/S, R/W, and XD flags in the paging-structure entries.

5-2 Vol. 3A

PROTECTION

Data-Segment Descriptor

31 242322212019 16 15141312 11 8 7 0
Base 31:24 G|B|0O|vV :Il‘é”l'é Pl P P Base 23:16 4
L ' L |1]0 | E ‘W| A
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0

Code-Segment Descriptor

31 242322 212019 1615141312 11 8 7 0
Base31:24 |G|D|o it el P wp Base 23:16 4
L : L |11 |c ‘ R | A
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0

System-Segment Descriptor

31 242322 212019 1615141312 11 8 7 0
Base 31:24 G| |o Limit | E o| Type Base 23:16 4
’ 19:16 L :
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0
A Accessed E Expansion Direction
AVL Available to Sys. Programmer's G Granularity
B Big R Readable
C Conforming LIMIT Segment Limit
D Default w Writable
DPL Descriptor Privilege Level P Present

D Reserved

Figure 5-1. Descriptor Fields Used for Protection

Many different styles of protection schemes can be implemented with these fields and flags. When the operating
system creates a descriptor, it places values in these fields and flags in keeping with the particular protection style
chosen for an operating system or executive. Application program do not generally access or modify these fields
and flags.

The following sections describe how the processor uses these fields and flags to perform the various categories of
checks described in the introduction to this chapter.

5.2.1 Code Segment Descriptor in 64-bit Mode

Code segments continue to exist in 64-bit mode even though, for address calculations, the segment base is treated
as zero. Some code-segment (CS) descriptor content (the base address and limit fields) is ignored; the remaining
fields function normally (except for the readable bit in the type field).

Code segment descriptors and selectors are needed in 1A-32e mode to establish the processor’s operating mode
and execution privilege-level. The usage is as follows:

Vol. 3A 5-3

PROTECTION

® 1A-32e mode uses a previously unused bit in the CS descriptor. Bit 53 is defined as the 64-bit (L) flag and is
used to select between 64-bit mode and compatibility mode when 1A-32e mode is active (IA32_EFER.LMA =1).
See Figure 5-2.

— If CS.L = 0 and 1A-32e mode is active, the processor is running in compatibility mode. In this case, CS.D
selects the default size for data and addresses. If CS.D = 0, the default data and address size is 16 bits. If
CS.D = 1, the default data and address size is 32 bits.

— If CS.L =1 and 1A-32e mode is active, the only valid setting is CS.D = 0. This setting indicates a default
operand size of 32 bits and a default address size of 64 bits. The CS.L = 1 and CS.D = 1 bit combination is
reserved for future use and a #GP fault will be generated on an attempt to use a code segment with these
bits set in 1A-32e mode.

® In IA-32e mode, the CS descriptor’s DPL is used for execution privilege checks (as in legacy 32-bit mode).

Code-Segment Descriptor

31 242322212019 1615141312 11 8 7 0

alo|Llé p| P Type 4
L L 1|C‘R|A

N

31 0

A Accessed

AVL Available to Sys. Programmer’'s G Granularity
C Conforming R Readable
D Default P Present

DPL Descriptor Privilege Level
L 64-Bit Flag

Figure 5-2. Descriptor Fields with Flags used in IA-32e Mode

53 LIMIT CHECKING

The limit field of a segment descriptor prevents programs or procedures from addressing memory locations outside
the segment. The effective value of the limit depends on the setting of the G (granularity) flag (see Figure 5-1). For
data segments, the limit also depends on the E (expansion direction) flag and the B (default stack pointer size
and/or upper bound) flag. The E flag is one of the bits in the type field when the segment descriptor is for a data-
segment type.

When the G flag is clear (byte granularity), the effective limit is the value of the 20-bit limit field in the segment
descriptor. Here, the limit ranges from 0 to FFFFFH (1 MByte). When the G flag is set (4-KByte page granularity),
the processor scales the value in the limit field by a factor of 212 (4 KBytes). In this case, the effective limit ranges
from FFFH (4 KBytes) to FFFFFFFFH (4 GBytes). Note that when scaling is used (G flag is set), the lower 12 bits of
a segment offset (address) are not checked against the limit; for example, note that if the segment limit is O,
offsets O through FFFH are still valid.

For all types of segments except expand-down data segments, the effective limit is the last address that is allowed
to be accessed in the segment, which is one less than the size, in bytes, of the segment. The processor causes a
general-protection exception (or, if the segment is SS, a stack-fault exception) any time an attempt is made to
access the following addresses in a segment:

® A byte at an offset greater than the effective limit

® A word at an offset greater than the (effective-limit — 1)

® A doubleword at an offset greater than the (effective-limit — 3)
® A quadword at an offset greater than the (effective-limit — 7)

5-4 Vol. 3A

PROTECTION

® A double quadword at an offset greater than the (effective limit — 15)

When the effective limit is FFFFFFFFH (4 GBytes), these accesses may or may not cause the indicated exceptions.
Behavior is implementation-specific and may vary from one execution to another.

For expand-down data segments, the segment limit has the same function but is interpreted differently. Here, the
effective limit specifies the last address that is not allowed to be accessed within the segment; the range of valid
offsets is from (effective-limit + 1) to FFFFFFFFH if the B flag is set and from (effective-limit + 1) to FFFFH if the B
flag is clear. An expand-down segment has maximum size when the segment limit is O.

Limit checking catches programming errors such as runaway code, runaway subscripts, and invalid pointer calcu-
lations. These errors are detected when they occur, so identification of the cause is easier. Without limit checking,
these errors could overwrite code or data in another segment.

In addition to checking segment limits, the processor also checks descriptor table limits. The GDTR and IDTR regis-
ters contain 16-bit limit values that the processor uses to prevent programs from selecting a segment descriptors
outside the respective descriptor tables. The LDTR and task registers contain 32-bit segment limit value (read from
the segment descriptors for the current LDT and TSS, respectively). The processor uses these segment limits to
prevent accesses beyond the bounds of the current LDT and TSS. See Section 3.5.1, “Segment Descriptor Tables,”
for more information on the GDT and LDT limit fields; see Section 6.10, “Interrupt Descriptor Table (IDT),” for more
information on the IDT limit field; and see Section 7.2.4, “Task Register,” for more information on the TSS segment
limit field.

5.3.1 Limit Checking in 64-bit Mode

In 64-bit mode, the processor does not perform runtime limit checking on code or data segments. However, the
processor does check descriptor-table limits.

5.4 TYPE CHECKING

Segment descriptors contain type information in two places:
® The S (descriptor type) flag.
® The type field.

The processor uses this information to detect programming errors that result in an attempt to use a segment or
gate in an incorrect or unintended manner.

The S flag indicates whether a descriptor is a system type or a code or data type. The type field provides 4 addi-
tional bits for use in defining various types of code, data, and system descriptors. Table 3-1 shows the encoding of
the type field for code and data descriptors; Table 3-2 shows the encoding of the field for system descriptors.

The processor examines type information at various times while operating on segment selectors and segment
descriptors. The following list gives examples of typical operations where type checking is performed (this list is not
exhaustive):

® When asegment selector is loaded into a segment register — Certain segment registers can contain only
certain descriptor types, for example:

— The CS register only can be loaded with a selector for a code segment.

— Segment selectors for code segments that are not readable or for system segments cannot be loaded into
data-segment registers (DS, ES, FS, and GS).

— Only segment selectors of writable data segments can be loaded into the SS register.
® When a segment selector is loaded into the LDTR or task register — For example:

— The LDTR can only be loaded with a selector for an LDT.

— The task register can only be loaded with a segment selector for a TSS.

® When instructions access segments whose descriptors are already loaded into segment registers —
Certain segments can be used by instructions only in certain predefined ways, for example:

— No instruction may write into an executable segment.

Vol. 3A 5-5

PROTECTION

— No instruction may write into a data segment if it is not writable.
— No instruction may read an executable segment unless the readable flag is set.

® When an instruction operand contains a segment selector — Certain instructions can access segments
or gates of only a particular type, for example:

— A far CALL or far JMP instruction can only access a segment descriptor for a conforming code segment,
nonconforming code segment, call gate, task gate, or TSS.

— The LLDT instruction must reference a segment descriptor for an LDT.
— The LTR instruction must reference a segment descriptor for a TSS.

— The LAR instruction must reference a segment or gate descriptor for an LDT, TSS, call gate, task gate, code
segment, or data segment.

— The LSL instruction must reference a segment descriptor for a LDT, TSS, code segment, or data segment.
— IDT entries must be interrupt, trap, or task gates.
® During certain internal operations — For example:

— On a far call or far jump (executed with a far CALL or far JMP instruction), the processor determines the
type of control transfer to be carried out (call or jump to another code segment, a call or jump through a
gate, or a task switch) by checking the type field in the segment (or gate) descriptor pointed to by the
segment (or gate) selector given as an operand in the CALL or JMP instruction. If the descriptor type is for
a code segment or call gate, a call or jump to another code segment is indicated; if the descriptor type is for
a TSS or task gate, a task switch is indicated.

— On acall or jump through a call gate (or on an interrupt- or exception-handler call through a trap or
interrupt gate), the processor automatically checks that the segment descriptor being pointed to by the
gate is for a code segment.

— On acall or jump to a new task through a task gate (or on an interrupt- or exception-handler call to a new
task through a task gate), the processor automatically checks that the segment descriptor being pointed to
by the task gate is for a TSS.

— On acall or jump to a new task by a direct reference to a TSS, the processor automatically checks that the
segment descriptor being pointed to by the CALL or JMP instruction is for a TSS.

— On return from a nested task (initiated by an IRET instruction), the processor checks that the previous task
link field in the current TSS points to a TSS.

5.4.1 Null Segment Selector Checking

Attempting to load a null segment selector (see Section 3.4.2, “Segment Selectors”) into the CS or SS segment
register generates a general-protection exception (#GP). A null segment selector can be loaded into the DS, ES,
FS, or GS register, but any attempt to access a segment through one of these registers when it is loaded with a null
segment selector results in a #GP exception being generated. Loading unused data-segment registers with a null
segment selector is a useful method of detecting accesses to unused segment registers and/or preventing
unwanted accesses to data segments.

5.4.1.1 NULL Segment Checking in 64-bit Mode

In 64-bit mode, the processor does not perform runtime checking on NULL segment selectors. The processor does
not cause a #GP fault when an attempt is made to access memory where the referenced segment register has a
NULL segment selector.

5.5 PRIVILEGE LEVELS

The processor’s segment-protection mechanism recognizes 4 privilege levels, numbered from O to 3. The greater
numbers mean lesser privileges. Figure 5-3 shows how these levels of privilege can be interpreted as rings of
protection.

5-6 Vol.3A

PROTECTION

The center (reserved for the most privileged code, data, and stacks) is used for the segments containing the critical
software, usually the kernel of an operating system. Outer rings are used for less critical software. (Systems that
use only 2 of the 4 possible privilege levels should use levels 0 and 3.)

Protection Rings

Operating

System

Kernel

Operating System
Services TN\ \

Applications

Figure 5-3. Protection Rings

The processor uses privilege levels to prevent a program or task operating at a lesser privilege level from accessing
a segment with a greater privilege, except under controlled situations. When the processor detects a privilege level
violation, it generates a general-protection exception (#GP).

To carry out privilege-level checks between code segments and data segments, the processor recognizes the
following three types of privilege levels:

Current privilege level (CPL) — The CPL is the privilege level of the currently executing program or task. It
is stored in bits O and 1 of the CS and SS segment registers. Normally, the CPL is equal to the privilege level of
the code segment from which instructions are being fetched. The processor changes the CPL when program
control is transferred to a code segment with a different privilege level. The CPL is treated slightly differently
when accessing conforming code segments. Conforming code segments can be accessed from any privilege
level that is equal to or numerically greater (less privileged) than the DPL of the conforming code segment.
Also, the CPL is not changed when the processor accesses a conforming code segment that has a different
privilege level than the CPL.

Descriptor privilege level (DPL) — The DPL is the privilege level of a segment or gate. It is stored in the DPL
field of the segment or gate descriptor for the segment or gate. When the currently executing code segment
attempts to access a segment or gate, the DPL of the segment or gate is compared to the CPL and RPL of the
segment or gate selector (as described later in this section). The DPL is interpreted differently, depending on
the type of segment or gate being accessed:

— Data segment — The DPL indicates the numerically highest privilege level that a program or task can have
to be allowed to access the segment. For example, if the DPL of a data segment is 1, only programs running
at a CPL of 0 or 1 can access the segment.

— Nonconforming code segment (without using a call gate) — The DPL indicates the privilege level that
a program or task must be at to access the segment. For example, if the DPL of a nonconforming code
segment is 0, only programs running at a CPL of O can access the segment.

— Call gate — The DPL indicates the numerically highest privilege level that the currently executing program
or task can be at and still be able to access the call gate. (This is the same access rule as for a data
segment.)

— Conforming code segment and nonconforming code segment accessed through a call gate — The
DPL indicates the numerically lowest privilege level that a program or task can have to be allowed to access
the segment. For example, if the DPL of a conforming code segment is 2, programs running at a CPL of O or
1 cannot access the segment.

Vol. 3A 5-7

PROTECTION

— TSS — The DPL indicates the numerically highest privilege level that the currently executing program or
task can be at and still be able to access the TSS. (This is the same access rule as for a data segment.)

® Requested privilege level (RPL) — The RPL is an override privilege level that is assigned to segment
selectors. It is stored in bits O and 1 of the segment selector. The processor checks the RPL along with the CPL
to determine if access to a segment is allowed. Even if the program or task requesting access to a segment has
sufficient privilege to access the segment, access is denied if the RPL is not of sufficient privilege level. That is,
if the RPL of a segment selector is numerically greater than the CPL, the RPL overrides the CPL, and vice versa.
The RPL can be used to insure that privileged code does not access a segment on behalf of an application
program unless the program itself has access privileges for that segment. See Section 5.10.4, “Checking Caller
Access Privileges (ARPL Instruction),” for a detailed description of the purpose and typical use of the RPL.

Privilege levels are checked when the segment selector of a segment descriptor is loaded into a segment register.
The checks used for data access differ from those used for transfers of program control among code segments;
therefore, the two kinds of accesses are considered separately in the following sections.

5.6 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA SEGMENTS

To access operands in a data segment, the segment selector for the data segment must be loaded into the data-
segment registers (DS, ES, FS, or GS) or into the stack-segment register (SS). (Segment registers can be loaded
with the MOV, POP, LDS, LES, LFS, LGS, and LSS instructions.) Before the processor loads a segment selector into
a segment register, it performs a privilege check (see Figure 5-4) by comparing the privilege levels of the currently
running program or task (the CPL), the RPL of the segment selector, and the DPL of the segment’s segment
descriptor. The processor loads the segment selector into the segment register if the DPL is numerically greater
than or equal to both the CPL and the RPL. Otherwise, a general-protection fault is generated and the segment
register is not loaded.

CS Register

CPL

Segment Selector
For Data Segment

RPL

Y

Privilege

Data-Segment Descriptor
Check

vy

DPL

Figure 5-4. Privilege Check for Data Access

Figure 5-5 shows four procedures (located in codes segments A, B, C, and D), each running at different privilege
levels and each attempting to access the same data segment.

1. The procedure in code segment A is able to access data segment E using segment selector E1, because the CPL
of code segment A and the RPL of segment selector E1 are equal to the DPL of data segment E.

2. The procedure in code segment B is able to access data segment E using segment selector E2, because the CPL
of code segment B and the RPL of segment selector E2 are both numerically lower than (more privileged) than
the DPL of data segment E. A code segment B procedure can also access data segment E using segment
selector E1.

3. The procedure in code segment C is not able to access data segment E using segment selector E3 (dotted line),
because the CPL of code segment C and the RPL of segment selector E3 are both numerically greater than (less
privileged) than the DPL of data segment E. Even if a code segment C procedure were to use segment selector

5-8 Vol.3A

PROTECTION

E1 or E2, such that the RPL would be acceptable, it still could not access data segment E because its CPL is not
privileged enough.

4. The procedure in code segment D should be able to access data segment E because code segment D’s CPL is
numerically less than the DPL of data segment E. However, the RPL of segment selector E3 (which the code
segment D procedure is using to access data segment E) is numerically greater than the DPL of data segment
E, so access is not allowed. If the code segment D procedure were to use segment selector E1 or E2 to access
the data segment, access would be allowed.

Segment C| [Segment Sel.E3
egment egmentSel. E3 | — _ _ _ .
CPL=3 RPL=3 |
Lowest Privilege \"/
Code
Segment Al__| Segment Sel. E1 > SegDrﬁzte%t £

- RPL=2
CPL=2 =1

Code
Segment B|—] Segment S?‘\!bEz

(CPL=1] L=l

Code
Segment D

CPL=0

m Highest Privilege

Figure 5-5. Examples of Accessing Data Segments From Various Privilege Levels

As demonstrated in the previous examples, the addressable domain of a program or task varies as its CPL changes.
When the CPL is 0, data segments at all privilege levels are accessible; when the CPL is 1, only data segments at
privilege levels 1 through 3 are accessible; when the CPL is 3, only data segments at privilege level 3 are acces-
sible.

The RPL of a segment selector can always override the addressable domain of a program or task. When properly
used, RPLs can prevent problems caused by accidental (or intensional) use of segment selectors for privileged data
segments by less privileged programs or procedures.

It is important to note that the RPL of a segment selector for a data segment is under software control. For
example, an application program running at a CPL of 3 can set the RPL for a data- segment selector to 0. With the
RPL set to O, only the CPL checks, not the RPL checks, will provide protection against deliberate, direct attempts to
violate privilege-level security for the data segment. To prevent these types of privilege-level-check violations, a
program or procedure can check access privileges whenever it receives a data-segment selector from another
procedure (see Section 5.10.4, “Checking Caller Access Privileges (ARPL Instruction)”).

5.6.1 Accessing Data in Code Segments

In some instances it may be desirable to access data structures that are contained in a code segment. The
following methods of accessing data in code segments are possible:

® Load a data-segment register with a segment selector for a nonconforming, readable, code segment.
® Load a data-segment register with a segment selector for a conforming, readable, code segment.

® Use a code-segment override prefix (CS) to read a readable, code segment whose selector is already loaded in
the CS register.

The same rules for accessing data segments apply to method 1. Method 2 is always valid because the privilege
level of a conforming code segment is effectively the same as the CPL, regardless of its DPL. Method 3 is always
valid because the DPL of the code segment selected by the CS register is the same as the CPL.

Vol. 3A 5-9

PROTECTION

5.7 PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS REGISTER

Privilege level checking also occurs when the SS register is loaded with the segment selector for a stack segment.
Here all privilege levels related to the stack segment must match the CPL; that is, the CPL, the RPL of the stack-
segment selector, and the DPL of the stack-segment descriptor must be the same. If the RPL and DPL are not equal
to the CPL, a general-protection exception (#GP) is generated.

5.8 PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING PROGRAM CONTROL
BETWEEN CODE SEGMENTS

To transfer program control from one code segment to another, the segment selector for the destination code
segment must be loaded into the code-segment register (CS). As part of this loading process, the processor exam-
ines the segment descriptor for the destination code segment and performs various limit, type, and privilege
checks. If these checks are successful, the CS register is loaded, program control is transferred to the new code
segment, and program execution begins at the instruction pointed to by the EIP register.

Program control transfers are carried out with the JMP, CALL, RET, SYSENTER, SYSEXIT, SYSCALL, SYSRET, INT n,
and IRET instructions, as well as by the exception and interrupt mechanisms. Exceptions, interrupts, and the IRET
instruction are special cases discussed in Chapter 6, “Interrupt and Exception Handling.” This chapter discusses
only the JMP, CALL, RET, SYSENTER, SYSEXIT, SYSCALL, and SYSRET instructions.

A JMP or CALL instruction can reference another code segment in any of four ways:
® The target operand contains the segment selector for the target code segment.

® The target operand points to a call-gate descriptor, which contains the segment selector for the target code
segment.

® The target operand points to a TSS, which contains the segment selector for the target code segment.

® The target operand points to a task gate, which points to a TSS, which in turn contains the segment selector for
the target code segment.

The following sections describe first two types of references. See Section 7.3, “Task Switching,” for information on
transferring program control through a task gate and/or TSS.

The SYSENTER and SYSEXIT instructions are special instructions for making fast calls to and returns from operating
system or executive procedures. These instructions are discussed in Section 5.8.7, “Performing Fast Calls to
System Procedures with the SYSENTER and SYSEXIT Instructions.”

The SYCALL and SYSRET instructions are special instructions for making fast calls to and returns from operating
system or executive procedures in 64-bit mode. These instructions are discussed in Section 5.8.8, “Fast System
Calls in 64-Bit Mode.”

5.8.1 Direct Calls or Jumps to Code Segments

The near forms of the JMP, CALL, and RET instructions transfer program control within the current code segment,
so privilege-level checks are not performed. The far forms of the JMP, CALL, and RET instructions transfer control
to other code segments, so the processor does perform privilege-level checks.

When transferring program control to another code segment without going through a call gate, the processor
examines four kinds of privilege level and type information (see Figure 5-6):

® The CPL. (Here, the CPL is the privilege level of the calling code segment; that is, the code segment that
contains the procedure that is making the call or jump.)

5-10 Vol. 3A

CS Register

CPL

Segment Selector
For Code Segment

RPL

Destination Code
Segment Descriptor

DPL

C

YYVYY

Privilege
Check

Figure 5-6. Privilege Check for Control Transfer Without Using a Gate

PROTECTIO