intel.

|IA-32 Intel’ Architecture
Software Developer’'s Manual

Volume 3B:
System Programming Guide, Part 2

NOTE: The IA-32 Intel Architecture Software Developer’s Manual
consists of five volumes: Basic Architecture, Order Number
253665; Instruction Set Reference A-M, Order Number 253666;
Instruction Set Reference N-Z, Order Number 253667; System
Programming Guide, Part 1, Order Number 253668; System
Programming Guide, Part 2, Order Number 253669. Refer to all
five volumes when evaluating your design needs.

Order Number: 253669-020US
June 2006

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EX-
PRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RE-
LATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FIT-
NESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE
SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Developers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.”
Improper use of reserved or undefined features or instructions may cause unpredictable behavior or failure in developer's
software code when running on an Intel processor. Intel reserves these features or instructions for future definition and shall
have no responsibility whatsoever for conflicts or incompatibilities arising from their unauthorized use.

The Intel® IA-32 architecture processors (e.g., Pentium® 4 and Pentium Il processors) may contain design defects or errors
known as errata. Current characterized errata are available on request.

Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting Hyper-Threading
Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will vary depending on the
specific hardware and software you use. See http://www.intel.com/techtrends/technologies/hyperthreading.htm for more in-
formation including details on which processors support HT Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor
(VMM) and for some uses, certain platform software enabled for it. Functionality, performance or other benefits will vary de-
pending on hardware and software configurations and may require a BIOS update. Software applications may not be com-
patible with all operating systems. Please check with your application vendor.

Intel® Extended Memory 64 Technology (Intel® EM64T) requires a computer system with a processor, chipset, BIOS, OS,
device drivers and applications enabled for Intel EM64T. Processor will not operate (including 32-bit operation) with-
out an Intel EM64T-enabled BIOS. Performance will vary depending on your hardware and software configurations. Intel
EM64T-enabled OS, BIOS, device drivers and applications may not be available. Check with your vendor for more
information.

Intel, Intel386, Intel486, Pentium, Intel Xeon, Intel NetBurst, Intel SpeedStep, OverDrive, MMX, Celeron, and Itanium are
trademarks or registered trademarks of Intel Corporation and its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

or call 1-800-548-4725
or visit Intel's website at http://www.intel.com

Copyright © 1997-2006 Intel Corporation

13

Debugging and
Performance
Monitoring

CHAPTER 18

DEBUGGING AND PERFORMANCE MONITORING

The 1A-32 architecture provides debug facilities for use in debugging code and monitoring
performance. These facilities are valuable for debugging application software, system software,
and multitasking operating systems. Debug support is accessed using debug registers (DBO
through DB7) and model-specific registers (MSRSs):

Debug registers hold the addresses of memory and 1/0O locations called breakpoints.
Breakpoints are user-selected locations in a program, a data-storage area in memory, or
specific 1/0 ports. They are set where a programmer or system designer wishes to halt
execution of a program and examine the state of the processor by invoking debugger
software. A debug exception (#DB) is generated when a memory or 1/O access is made to a
breakpoint address.

MSRs (which were introduced into the 1A-32 architecture in the P6 family processors)
monitor branches, interrupts, and exceptions and record the addresses of the last branch,
interrupt or exception taken and the last branch taken before an interrupt or exception.

18.1 OVERVIEW OF THE DEBUGGING SUPPORT FACILITIES

The following processor facilities support debugging and performance monitoring:

Debug exception (#DB) — Transfers program control to a debug procedure or task when a
debug event occurs.

Breakpoint exception (#BP) — Transfers program control to a debug procedure or task
when an INT 3 instruction is executed.

Breakpoint-address registers (DRO through DR3) — Specifies the addresses of up to 4
breakpoints.

Debug status register (DR6) — Reports the conditions that were in effect when a debug
or breakpoint exception was generated.

Debug control register (DR7) — Specifies the forms of memory or 1/O access that cause
breakpoints to be generated.

T (trap) flag, TSS — Generates a debug exception (#DB) when an attempt is made to
switch to a task with the T flag set in its TSS.

RF (resume) flag, EFLAGS register — Suppresses multiple exceptions to the same
instruction.

TF (trap) flag, EFLAGS register — Generates a debug exception (#DB) after every
execution of an instruction.

Vol. 3B 18-1

DEBUGGING AND PERFORMANCE MONITORING

® Breakpoint instruction (INT 3) — Generates a breakpoint exception (#BP) that transfers
program control to the debugger procedure or task. This instruction is an alternative way to
set code breakpoints. It is especially useful when more than four breakpoints are desired,
or when breakpoints are being placed in the source code.

® Last branch recording facilities — See Section 18.5, “Last Branch, Interrupt, and
Exception Recording (Pentium 4 and Intel Xeon Processors),” and Section 18.8, “Last
Branch, Interrupt, and Exception Recording (P6 Family Processors).”

These facilities allow a debugger to be called as a separate task or as a procedure in the context
of the current program or task. The following conditions can be used to invoke the debugger:

® Task switch to a specific task.

® Execution of the breakpoint instruction.

® Execution of any instruction.

® Execution of an instruction at a specified address.

® Read or write of a byte, word, or doubleword at a specified memory address.
® Write to a byte, word, or doubleword at a specified memory address.

® Input of a byte, word, or doubleword at a specified 1/0 address.

® Qutput of a byte, word, or doubleword at a specified 1/O address.

® Attempt to change the contents of a debug register.

18.2 DEBUG REGISTERS

The eight debug registers (see Figure 18-1) control the debug operation of the processor. These
registers can be written to and read using the move to or from debug register form of the MOV
instruction. A debug register may be the source or destination operand for one of these instruc-
tions. The debug registers are privileged resources; a MOV instruction that accesses these regis-
ters can only be executed in real-address mode, in SMM, or in protected mode at a CPL of 0. An
attempt to read or write the debug registers from any other privilege level generates a general-
protection exception (#GP).

The primary function of the debug registers is to set up and monitor from 1 to 4 breakpoints,
numbered 0 though 3. For each breakpoint, the following information can be specified and
detected with the debug registers:

® The linear address where the breakpoint is to occur.

® The length of the breakpoint location (1, 2, or 4 bytes).

® The operation that must be performed at the address for a debug exception to be generated.
® Whether the breakpoint is enabled.

® Whether the breakpoint condition was present when the debug exception was generated.

18-2 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

31302928 2726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
LEN|R/W|LEN|R/W|LEN|R/W|LEN|R/W|0 0|G|0 0 1|G|L|G|L|G|L|G|L|G|L DR7

3 3 2 2 1 1 0 0 D E|E|3|3|2|2|1|1|0|0

31 161514131211109 8 7 6 54 3 2 1 0
Reserved (set to 1) B|B|B|0111111111B/BBIB|pprg

T|S|D 3|12(1(0

31 0
DR5

31 0
DR4

31 0
Breakpoint 3 Linear Address DR3

31 0
Breakpoint 2 Linear Address DR2

31 0
Breakpoint 1 Linear Address DR1

31 0
Breakpoint O Linear Address DRO

|:| Reserved

Figure 18-1. Debug Registers

The following paragraphs describe the functions of flags and fields in the debug registers.

18.2.1 Debug Address Registers (DR0-DR3)

Each of the debug-address registers (DRO through DR3) holds the 32-bit linear address of a
breakpoint (see Figure 18-1). Breakpoint comparisons are made before physical address trans-
lation occurs. The contents of debug register DR7 further specifies each breakpoint condition.

Vol. 3B 18-3

DEBUGGING AND PERFORMANCE MONITORING

18.2.2 Debug Registers DR4 and DR5

Debug registers DR4 and DR5 are reserved when debug extensions are enabled (when the DE
flag in control register CR4 is set), and attempts to reference the DR4 and DRS5 registers cause
an invalid-opcode exception (#UD) to be generated. When debug extensions are not enabled
(when the DE flag is clear), these registers are aliased to debug registers DR6 and DR7.

18.2.3 Debug Status Register (DR6)

The debug status register (DR6) reports the debug conditions that were sampled at the time the
last debug exception was generated (see Figure 18-1). Updates to this register only occur when
an exception is generated. The flags in this register show the following information:

BO through B3 (breakpoint condition detected) flags (bits 0 through 3) — Indicates
(when set) that its associated breakpoint condition was met when a debug exception was
generated. These flags are set if the condition described for each breakpoint by the LENN,
and R/Wn flags in debug control register DR7 is true. They are set even if the breakpoint is
not enabled by the Ln and Gn flags in register DRY7.

BD (debug register access detected) flag (bit 13) — Indicates that the next instruction in
the instruction stream will access one of the debug registers (DRO through DR7). This flag
is enabled when the GD (general detect) flag in debug control register DR7 is set. See
Section 18.2.4, “Debug Control Register (DR7),” for further explanation of the purpose of
this flag.

BS (single step) flag (bit 14) — Indicates (when set) that the debug exception was
triggered by the single-step execution mode (enabled with the TF flag in the EFLAGS
register). The single-step mode is the highest-priority debug exception. When the BS flag
is set, any of the other debug status bits also may be set.

BT (task switch) flag (bit 15) — Indicates (when set) that the debug exception resulted
from a task switch where the T flag (debug trap flag) in the TSS of the target task was set.
See Section 6.2.1, “Task-State Segment (TSS),” for the format of a TSS. There is no flag in
debug control register DR7 to enable or disable this exception; the T flag of the TSS is the
only enabling flag.

Certain debug exceptions may clear bits 0-3. The remaining contents of the DR6 register are
never cleared by the processor. To avoid confusion in identifying debug exceptions, debug
handlers should clear the register before returning to the interrupted task.

18-4 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

18.2.4 Debug Control Register (DR7)

The debug control register (DR7) enables or disables breakpoints and sets breakpoint conditions
(see Figure 18-1). The flags and fields in this register control the following things:

L0 through L3 (local breakpoint enable) flags (bits 0, 2, 4, and 6) — Enable (when set)
the breakpoint condition for the associated breakpoint for the current task. When a
breakpoint condition is detected and its associated Ln flag is set, a debug exception is
generated. The processor automatically clears these flags on every task switch to avoid
unwanted breakpoint conditions in the new task.

GO0 through G3 (global breakpoint enable) flags (bits 1, 3, 5, and 7) — Enable (when
set) the breakpoint condition for the associated breakpoint for all tasks. When a breakpoint
condition is detected and its associated Gn flag is set, a debug exception is generated. The
processor does not clear these flags on a task switch, allowing a breakpoint to be enabled
for all tasks.

LE and GE (local and global exact breakpoint enable) flags (bits 8 and 9) — (Not
supported in the P6 family processors and later 1A-32 processors.) When set, these flags
cause the processor to detect the exact instruction that caused a data breakpoint condition.
For backward and forward compatibility with other 1A-32 processors, Intel recommends
that the LE and GE flags be set to 1 if exact breakpoints are required.

GD (general detect enable) flag (bit 13) — Enables (when set) debug-register protection,
which causes a debug exception to be generated prior to any MOV instruction that
accesses a debug register. When such a condition is detected, the BD flag in debug status
register DR6 is set prior to generating the exception. This condition is provided to support
in-circuit emulators. (When the emulator needs to access the debug registers, emulator
software can set the GD flag to prevent interference from the program currently executing
on the processor.) The processor clears the GD flag upon entering to the debug exception
handler, to allow the handler access to the debug registers.

R/WO0 through R/W3 (read/write) fields (bits 16, 17, 20, 21, 24, 25, 28, and 29) —
Specifies the breakpoint condition for the corresponding breakpoint. The DE (debug
extensions) flag in control register CR4 determines how the bits in the R/Wn fields are
interpreted. When the DE flag is set, the processor interprets these bits as follows:

00 — Break on instruction execution only.

01 — Break on data writes only.

10 — Break on 1/O reads or writes.

11 — Break on data reads or writes but not instruction fetches.

When the DE flag is clear, the processor interprets the R/Wn bits the same as for the
Intel386™ and Intel486™ processors, which is as follows:

00 — Break on instruction execution only.

01 — Break on data writes only.

10 — Undefined.

11 — Break on data reads or writes but not instruction fetches.

Vol. 3B 18-5

DEBUGGING AND PERFORMANCE MONITORING

® | ENO through LEN3 (Length) fields (bits 18, 19, 22, 23, 26, 27, 30, and 31) — Specify
the size of the memory location at the address specified in the corresponding breakpoint
address register (DRO through DR3). These fields are interpreted as follows:

00 — 1-byte length.
01 — 2-byte length.
10 — Undefined (or 8 byte length, see note below).
11 — 4-byte length.

If the corresponding RWhn field in register DR7 is 00 (instruction execution), then the LENnN
field should also be 00. The effect of using any other length is undefined. See Section 18.2.5,
“Breakpoint Field Recognition,” for more information on the use of these fields.

For Pentium 4 and Intel Xeon processor with CPUID signature corresponding to family 15
(model 3 or 4) the break point condition permit specifying 8 byte length on data read/write with
the encoding 10B in the LENX field. Otherwise, the encoding 10B is undefined for other 1A-32
Processors.

18.2.5 Breakpoint Field Recognition

The breakpoint address registers (debug registers DRO through DR3) and the LENn fields for
each breakpoint define a range of sequential byte addresses for a data or 1/O breakpoint. The
LENN fields permit specification of a 1-, 2-, 4-, or 8-byte range beginning at the linear address
specified in the corresponding debug register (DRn). Two-byte ranges must be aligned on word
boundaries and 4-byte ranges must be aligned on doubleword boundaries. 1/O breakpoint
addresses are zero extended from 16 to 32 bits for purposes of comparison with the breakpoint
address in the selected debug register. These requirements are enforced by the processor; it uses
the LENN field bits to mask the lower address bits in the debug registers. Unaligned data or 1/0
breakpoint addresses do not yield the expected results.

A data breakpoint for reading or writing data is triggered if any of the bytes participating in an
access is within the range defined by a breakpoint address register and its LENn field. Table 18-1
gives an example setup of the debug registers and the data accesses that would subsequently trap
or not trap on the breakpoints.

A data breakpoint for an unaligned operand can be constructed using two breakpoints, where
each breakpoint is byte-aligned, and the two breakpoints together cover the operand. These
breakpoints generate exceptions only for the operand, not for any neighboring bytes.

Instruction breakpoint addresses must have a length specification of 1 byte (the LENn field is
set to 00). The behavior of code breakpoints for other operand sizes is undefined. The processor
recognizes an instruction breakpoint address only when it points to the first byte of an instruc-
tion. If the instruction has any prefixes, the breakpoint address must point to the first prefix.

18-6 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

18.2.6 Debug Registers and Intel EM64T

For IA-32 processors that support Intel EM64T, debug registers DRO-DR?7 are 64 bits. In 16-bit
modes or 32-bit modes (including protected mode and compatibility mode), writes to a debug
register fill the upper 32 bits with zeros. Reads from a debug register return the lower 32 bits. In
64-bit mode, MOV DRn instructions read or write all 64 register bits. Operand-size prefixes are
ignored.

In 64-bit mode, the upper 32 bits of DR6 and DR7 are reserved and must be written with zeros.
Writing 1 to any of the upper 32 bits results in a #GP(0) exception.

All 64 bits of DRO-DRS3 are writable by software. However, MOV DRn instructions do not
check that addresses written to DRO-DR3 are in the linear-address limits of a processor imple-
mentation (address matching is supported only on valid addresses generated by the processor
implementation). Break point conditions for 8-byte memory read/writes are supported in all
modes (see Section 15.2.4 for applicability of the encoded value for 8-byte length for fields
LENO through LEN3).

63 32

DR7

31302928272625242322212019181716151413 1211109 8 7 6 54 3 2 1 0

LENR/\NLENR/WLENR/WLENR/WOOGOOlGLGLGLGLGLDR7
313122 1{1(0]|O0 D E(E|3|3(2|2[1|1|0|0
63 32
DR6
31 16151413 1211109 8 7 6 54 3 2 1 0
Reserved (set to 1) BBBOlllllllllBBBBDR6
T|(S|D 3(2(1|0

l:l Reserved

Figure 18-2. DR6 and DR7 Layout on IA-32 Processors Supporting Intel EM64T

18.3 DEBUG EXCEPTIONS

The 1A-32 processors dedicate two interrupt vectors to handling debug exceptions: vector 1
(debug exception, #DB) and vector 3 (breakpoint exception, #BP). The following sections
describe how these exceptions are generated and typical exception handler operations for
handling these exceptions.

Vol. 3B 18-7

DEBUGGING AND PERFORMANCE MONITORING

Table 18-1. Breakpointing Examples

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENN

DRO R/WO = 11 (Read/Write) | AOOO1H LENO = 00 (1 byte)

DR1 R/W1 = 01 (Write) AO002H LEN1 = 00 (1 byte)

DR2 R/W2 = 11 (Read/Write) | BOOO2H LEN2 = 01) (2 bytes)

DR3 R/W3 =01 (Write) CO000H LEN3 =11 (4 bytes)
Data Accesses

Operation Address Access Length

(In Bytes)

Data operations that trap

- Read or write A0001H 1

- Read or write AO0001H 2

- Write AO0002H 1

- Write AO0002H 2

- Read or write B0O00O1H 4

- Read or write BO002H 1

- Read or write B0O002H 2

- Write CO000H 4

- Write CO001H 2

- Write CO003H 1

Data operations that do not trap

- Read or write AO000H 1

- Read AO0002H 1

- Read or write AO003H 4

- Read or write BOOOOH 2

- Read CO000H 2

- Read or write C0004H 4

18.3.1 Debug Exception (#DB)—Interrupt Vector 1

The debug-exception handler is usually a debugger program or is part of a larger software
system. The processor generates a debug exception for any of several conditions. The debugger
can check flags in the DR6 and DRY7 registers to determine which condition caused the exception
and which other conditions might also apply. Table 18-2 shows the states of these flags
following the generation of each kind of breakpoint condition.

Instruction-breakpoint and general-detect condition (see Section 18.3.1.3, “General-Detect
Exception Condition™) result in faults; other debug-exception conditions result in traps. The
debug exception may report either or both at one time. The following sections describe each
class of debug exception. See Chapter 5, “Interrupt 1—Debug Exception (#DB),” in the 1A-32
Intel® Architecture Software Developer’s Manual, Volume 3A for additional information about
this exception.

18-8 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

18.3.1.1 Instruction-Breakpoint Exception Condition

The processor reports an instruction breakpoint when it attempts to execute an instruction at an
address specified in a breakpoint-address register (DBO through DR3) that has been set up to
detect instruction execution (R/W flag is set to 0). Upon reporting the instruction breakpoint, the
processor generates a fault-class, debug exception (#DB) before it executes the target instruction
for the breakpoint.

Instruction breakpoints are the highest priority debug exceptions. They are serviced before any
other exceptions detected during the decoding or execution of an instruction. Note, however,
that if a code instruction breakpoint is placed on an instruction located immediately after a
POP SS/MOV SS instruction, it may not be triggered. In most situations, POP SS/MOV SS
will inhibit such interrupts (see “MOV—Move” and “POP—Pop a Value from the Stack” in
Chapters 3 and 4 of the 1A-32 Intel® Architecture Software Developer’s Manual, Volumes
2A & 2B).

Table 18-2. Debug Exception Conditions

Debug or Breakpoint Condition DR6 Flags Tested | DR7 Flags Tested | Exception Class
Single-step trap BS=1 Trap
Instruction breakpoint, at addresses Bn=1and R/Wn =0 Fault
defined by DRn and LENn (GnorLn=1)

Data write breakpoint, at addresses Bn=1and R/Wn =1 Trap
defined by DRn and LENn (GnorlLn=1)

1/0O read or write breakpoint, at addresses | Bn =1 and R/Wn =2 Trap
defined by DRn and LENn (GnorLn=1)

Data read or write (but not instruction Bn=1and R/Wn =3 Trap
fetches), at addresses defined by DRn (GnorlLn=1)

and LENn

General detect fault, resulting from an BD=1 Fault
attempt to modify debug registers

(usually in conjunction with in-circuit

emulation)

Task switch BT=1 Trap

Because the debug exception for an instruction breakpoint is generated before the instruction is
executed, if the instruction breakpoint is not removed by the exception handler, the processor
will detect the instruction breakpoint again when the instruction is restarted and generate another
debug exception. To prevent looping on an instruction breakpoint, the 1A-32 architecture
provides the RF flag (resume flag) in the EFLAGS register (see Section 2.3, “System Flags and
Fields in the EFLAGS Register,” in the 1A-32 Intel® Architecture Software Developer’s Manual,
Volume 3A). When the RF flag is set, the processor ignores instruction breakpoints.

All 1A-32 processors manage the RF flag as follows. The processor sets the RF flag automati-
cally prior to calling an exception handler for any fault-class exception except a debug excep-
tion that was generated in response to an instruction breakpoint. For debug exceptions resulting
from instruction breakpoints, the processor does not set the RF flag prior to calling the debug

Vol. 3B 18-9

DEBUGGING AND PERFORMANCE MONITORING

exception handler. The debug exception handler then has the option of disabling the instruction
breakpoint or setting the RF flag in the EFLAGS image on the stack. If the RF flag in the
EFLAGS image is set when the processor returns from the exception handler, it is copied into
the RF flag in the EFLAGS register by the IRETD or task switch instruction that causes the
return. The processor then ignores instruction breakpoints for the duration of the next instruc-
tion. (Note that the POPF, POPFD, and IRET instructions do not transfer the RF image into the
EFLAGS register.) Setting the RF flag does not prevent other types of debug-exception condi-
tions (such as, I/O or data breakpoints) from being detected, nor does it prevent non-debug
exceptions from being generated. After the instruction is successfully executed, the processor
clears the RF flag in the EFLAGS register, except after an IRETD instruction or after a JMP,
CALL, or INT n instruction that causes a task switch.

Note that the processor also does not set the RF flag when calling exception or interrupt handlers
for trap-class exceptions, for hardware interrupts, or for software-generated interrupts.

For the Pentium processor, when an instruction breakpoint coincides with another fault-type
exception (such as a page fault), the processor may generate one spurious debug exception after
the second exception has been handled, even though the debug exception handler set the RF flag
in the EFLAGS image. To prevent this spurious exception with Pentium processors, all fault-
class exception handlers should set the RF flag in the EFLAGS image.

18.3.1.2 Data Memory and I/O Breakpoint Exception Conditions

Data memory and 1/0O breakpoints are reported when the processor attempts to access a memory
or 1/0 address specified in a breakpoint-address register (DBO through DR3) that has been set
up to detect data or 1/0 accesses (R/W flag is set to 1, 2, or 3). The processor generates the excep-
tion after it executes the instruction that made the access, so these breakpoint condition causes
a trap-class exception to be generated.

Because data breakpoints are traps, the original data is overwritten before the trap exception is
generated. If a debugger needs to save the contents of a write breakpoint location, it should save
the original contents before setting the breakpoint. The handler can report the saved value after
the breakpoint is triggered. The address in the debug registers can be used to locate the new
value stored by the instruction that triggered the breakpoint.

The Intel486 and later 1A-32 processors ignore the GE and LE flags in DR7. In the Intel386
processor, exact data breakpoint matching does not occur unless it is enabled by setting the LE
and/or the GE flags.

The P6 family processors, however, are unable to report data breakpoints exactly for the REP
MOVS and REP STOS instructions until the completion of the iteration after the iteration in
which the breakpoint occurred.

For repeated INS and OUTS instructions that generate an 1/0-breakpoint debug exception, the
processor generates the exception after the completion of the first iteration. Repeated INS and
OUTS instructions generate an 1/0O-breakpoint debug exception after the iteration in which the
memory address breakpoint location is accessed.

18-10 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

18.3.1.3 General-Detect Exception Condition

When the GD flag in DR7 is set, the general-detect debug exception occurs when a program
attempts to access any of the debug registers (DRO through DR7) at the same time they are being
used by another application, such as an emulator or debugger. This additional protection feature
guarantees full control over the debug registers when required. The debug exception handler can
detect this condition by checking the state of the BD flag of the DR6 register. The processor
generates the exception before it executes the MOV instruction that accesses a debug register,
which causes a fault-class exception to be generated.

18.3.1.4 Single-Step Exception Condition

The processor generates a single-step debug exception if (while an instruction is being executed)
it detects that the TF flag in the EFLAGS register is set. The exception is a trap-class exception,
because the exception is generated after the instruction is executed. (Note that the processor does
not generate this exception after an instruction that sets the TF flag. For example, if the POPF
instruction is used to set the TF flag, a single-step trap does not occur until after the instruction
that follows the POPF instruction.)

The processor clears the TF flag before calling the exception handler. If the TF flag was set in a
TSS at the time of a task switch, the exception occurs after the first instruction is executed in the
new task.

The TF flag normally is not cleared by privilege changes inside a task. The INT n and INTO
instructions, however, do clear this flag. Therefore, software debuggers that single-step code
must recognize and emulate INT n or INTO instructions rather than executing them directly. To
maintain protection, the operating system should check the CPL after any single-step trap to see
if single stepping should continue at the current privilege level.

The interrupt priorities guarantee that, if an external interrupt occurs, single stepping stops.
When both an external interrupt and a single-step interrupt occur together, the single-step inter-
rupt is processed first. This operation clears the TF flag. After saving the return address or
switching tasks, the external interrupt input is examined before the first instruction of the single-
step handler executes. If the external interrupt is still pending, then it is serviced. The external
interrupt handler does not run in single-step mode. To single step an interrupt handler, single step
an INT n instruction that calls the interrupt handler.

18.3.1.5 Task-Switch Exception Condition

The processor generates a debug exception after a task switch if the T flag of the new task’s TSS
is set. This exception is generated after program control has passed to the new task, and prior to
the execution of the first instruction of that task. The exception handler can detect this condition
by examining the BT flag of the DR6 register.

Note that, if the debug exception handler is a task, the T bit of its TSS should not be set. Failure
to observe this rule will put the processor in a loop.

Vol. 3B 18-11

DEBUGGING AND PERFORMANCE MONITORING

18.3.2 Breakpoint Exception (#BP)—Interrupt Vector 3

The breakpoint exception (interrupt 3) is caused by execution of an INT 3 instruction. See
Chapter 5, “Interrupt 3—Breakpoint Exception (#BP).” Debuggers use break exceptions in the
same way that they use the breakpoint registers; that is, as a mechanism for suspending program
execution to examine registers and memory locations. With earlier IA-32 processors, breakpoint
exceptions are used extensively for setting instruction breakpoints.

With the Intel386 and later 1A-32 processors, it is more convenient to set breakpoints with the
breakpoint-address registers (DRO through DR3). However, the breakpoint exception still is
useful for breakpointing debuggers, because the breakpoint exception can call a separate excep-
tion handler. The breakpoint exception is also useful when it is necessary to set more breakpoints
than there are debug registers or when breakpoints are being placed in the source code of a
program under development.

18.4 LAST BRANCH RECORDING OVERVIEW

P6 family processors introduced the ability to set breakpoints on taken branches, interrupts, and
exceptions, and to single-step from one branch to the next. This capability has been modified
and extended in the Pentium 4, Intel Xeon, Pentium M, Intel® Core™ Solo and Intel® Core™
Duo processors to allow logging of branch trace messages in a branch trace store (BTS) buffer
in memory.

See the following sections for descriptions of the mechanism for last branch recording:

— Section 18.5, “Last Branch, Interrupt, and Exception Recording (Pentium 4 and Intel
Xeon Processors)”

— Section 18.6, “Last Branch, Interrupt, and Exception Recording (Intel® Core™ Solo
and Intel® Core™ Duo Processors)”

— Section 18.7, “Last Branch, Interrupt, and Exception Recording (Pentium M
Processors)”

— Section 18.8, “Last Branch, Interrupt, and Exception Recording (P6 Family
Processors)”

The 1A-32 branch instructions that are tracked with the last branch recording mechanism are the
JMP, Jcc, LOOP, and CALL instructions.

18.5 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING
(PENTIUM 4 AND INTEL XEON PROCESSORYS)

The Pentium 4 and Intel Xeon processors provide the following methods of recording taken
branches, interrupts and exceptions:

® Store branch records in the last branch record (LBR) stack MSRs for the most recent taken
branches, interrupts, and/or exceptions in MSRs. A branch record consist of a branch-from
and a branch-to instruction address.

18-12 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

Send the branch records out on the system bus as branch trace messages (BTMs).
Log BTMs in a memory-resident branch trace store (BTS) buffer.

To support these functions, the processor provides the following MSRs:

MSR_DEBUGCTLA MSR — Enables last branch, interrupt, and exception recording;
single-stepping on taken branches; branch trace messages (BTMs); and branch trace store
(BTS). This register is named DebugCtIMSR in the P6 family processors.

Debug store (DS) feature flag (CPUID.1:EDX.DS[bit 21]) — Indicates that the
processor provides the debug store (DS) mechanism, which allows BTMs to be stored in a
memory-resident BTS buffer.

CPL-qualified debug store (DS) feature flag (CPUID.1:ECX.DS-CPL[bit 4]) —
Indicates that the processor provides a CPL-qualified debug store (DS) mechanism, which
allows software to selectively skip storing BTMs, according to specified current privilege
level settings, into a memory-resident BTS buffer.

IA32_MISC_ENABLE MSR — Indicates that the processor provides the BTS facilities.

Last branch record (LBR) stack — The LBR stack is a circular stack that consists of
four MSRs (MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3) for the
Pentium 4 and Intel Xeon processor family [CPUID family OFH, models OH-02H]. The
LBR stack consists of 16 MSR pairs (MSR_LASTBRANCH_0_FROM_LIP through
MSR_LASTBRANCH_15 FROM_LIP and MSR_LASTBRANCH_0_TO_LIP through
MSR_LASTBRANCH_15 TO_LIP) for the Pentium 4 and Intel Xeon processor family
[CPUID family OFH, model 03H].

Last branch record top-of-stack (TOS) pointer — The TOS Pointer MSR contains a
2-bit pointer (0-3) to the MSR in the LBR stack that contains the most recent branch,
interrupt, or exception recorded for the Pentium 4 and Intel Xeon processor family
[CPUID family OFH, models OH-02H]. This pointer becomes a 4-bit pointer (0-15) for the
Pentium 4 and Intel Xeon processor family [CPUID family OFH, model 03H]. See also:
Table 18-3, Figure 18-3, and Section 18.5.3, “LBR Stack (Pentium 4 and Intel Xeon
Processors).”

Last exception record — See Section 18.5.7, “Last Exception Records (Pentium 4 and
Intel Xeon Processors).”

18.5.1 CPL-Qualified Last Branch Recording Mechanism

CPL-qualified last branch recording mechanism is available to a subset of 1A-32 processors that
support last branch recording mechanism. Software can detect support for CPL-qualified last
branch recording mechanism by executing CPUID with EAX = 1, and examine the returned
value of bit 4 of ECX.

CPL-qualified last branch recording mechanism is similar to that described in Sections 18.5,
18.5.2, and 18.5.8. It also sends the branch records out on the system bus as branch trace
messages (BTMs). But system software can selectively specify CPL qualification to not store
BTMs associated with the specified privilege level. Two bit fields, BTS_OFF _USR and

Vol. 3B 18-13

DEBUGGING AND PERFORMANCE MONITORING

BTS_OFF_0OS, are provided in the debug control register to specify the CPL of those BTMs that
will not logged in the BTS buffer.

Table 18-3. LBR MSR Stack Structure for the Pentium 4 and Intel Xeon Processor Family

LBR MSRs for Family OFH, Models 0H-02H; Decimal Value of TOS Pointer in
MSRs at locations 1DBH-1DEH. MSR_LASTBRANCH_TOS (bits 0-1)
MSR_LASTBRANCH_O 0

MSR_LASTBRANCH_1 1

MSR_LASTBRANCH_2 2

MSR_LASTBRANCH_3 3

LBR MSRs for Family OFH, Models; MSRs at Decimal Value of TOS Pointer in
locations 680H-68FH. MSR_LASTBRANCH_TOS (bits 0-3)
MSR_LASTBRANCH_O_FROM_LIP 0
MSR_LASTBRANCH_1_FROM_LIP 1
MSR_LASTBRANCH_2_FROM_LIP 2
MSR_LASTBRANCH_3_FROM_LIP 3
MSR_LASTBRANCH_4_FROM_LIP 4
MSR_LASTBRANCH_5_FROM_LIP 5
MSR_LASTBRANCH_6_FROM_LIP 6
MSR_LASTBRANCH_7_FROM_LIP 7

MSR_LASTBRANCH_8 FROM_LIP 8
MSR_LASTBRANCH_9_FROM_LIP 9
MSR_LASTBRANCH_10_FROM_LIP 10
MSR_LASTBRANCH_11_FROM_LIP 11
MSR_LASTBRANCH_12_FROM_LIP 12
MSR_LASTBRANCH_13_FROM_LIP 13
MSR_LASTBRANCH_14_FROM_LIP 14
MSR_LASTBRANCH_15_FROM_LIP 15

LBR MSRs for Family OFH, Model 03H; MSRs
at locations 6COH-6CFH.

MSR_LASTBRANCH_0_TO_LIP 0
MSR_LASTBRANCH_1_TO_LIP 1
MSR_LASTBRANCH_2_TO_LIP 2
MSR_LASTBRANCH_3_TO_LIP 3
MSR_LASTBRANCH_4_TO_LIP 4
5
6
7
8
9

MSR_LASTBRANCH_5_TO_LIP
MSR_LASTBRANCH_6_TO_LIP
MSR_LASTBRANCH_7_TO_LIP
MSR_LASTBRANCH_8_TO_LIP
MSR_LASTBRANCH_9_TO_LIP

MSR_LASTBRANCH_10_TO_LIP 10
MSR_LASTBRANCH_11_TO_LIP 11
MSR_LASTBRANCH_12_TO_LIP 12
MSR_LASTBRANCH_13 TO_LIP 13
MSR_LASTBRANCH_14_TO_LIP 14
MSR_LASTBRANCH_15_TO_LIP 15

18-14 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

31 10

Reserved

Family OFH, Models 01-02H J
Top-of-stack pointer (TOS)

31 3 0

Reserved

Family OFH, Model 03H+ 4

Top-of-stack pointer (TOS)

Figure 18-3. MSR_LASTBRANCH_TOS MSR Layout for the Pentium 4
and Intel Xeon Processor Family

NOTE

The initial implementation of BTS_OFF USR and BTS_OFF _OS in
MSR_DEBUGCTLA is shown in Figure 18-4. The BTS_OFF_USR and
BTS_OFF_OS fields may be implemented on other model-specific debug
control register at different locations.

The following sections describe the MSR_DEBUGCTLA MSR and the various last branch
recording mechanisms. See Appendix B, “Model-Specific Registers (MSRs),” for a detailed
description of each of the last branch recording MSRs.

18.5.2 MSR_DEBUGCTLA MSR (Pentium 4 and Intel Xeon
Processors)

The MSR_DEBUGCTLA MSR enables and disables the various last branch recording mecha-
nisms described in the previous section. This register can be written to using the WRMSR
instruction, when operating at privilege level 0 or when in real-address mode. A protected-mode
operating system procedure is required to provide user access to this register. Figure 18-4 shows
the flags in the MSR_DEBUGCTLA MSR. The functions of these flags are as follows:

®* LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a
running trace of the most recent branches, interrupts, and/or exceptions taken by the
processor (prior to a debug exception being generated) in the last branch record (LBR)
stack. Each branch, interrupt, or exception is recorded as a 64-bit branch record. The
processor clears this flag whenever a debug exception is generated (for example, when an
instruction or data breakpoint or a single-step trap occurs). See Section 18.5.3, “LBR Stack
(Pentium 4 and Intel Xeon Processors).”

Vol. 3B 18-15

DEBUGGING AND PERFORMANCE MONITORING

® BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag
in the EFLAGS register as a “single-step on branches” flag rather than a “single-step on
instructions” flag. This mechanism allows single-stepping the processor on taken
branches, interrupts, and exceptions. See Section 18.5.5, “Single-Stepping on Branches,
Exceptions, and Interrupts.”

® TR (trace message enable) flag (bit 2) — When set, branch trace messages are enabled.
Thereafter, when the processor detects a taken branch, interrupt, or exception, it sends the
branch record out on the system bus as a branch trace message (BTM). See Section 18.5.6,
“Branch Trace Messages.”

31 76 543210

Reserved

BTS_OFF_USR — Disable storing non-CPL_0 BTS J
BTS_OFF_OS — Disable storing CPL_0 BTS

BTINT — Branch trace interrupt
BTS — Branch trace store
TR — Trace messages enable
BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Figure 18-4. MSR_DEBUGCTLA MSR for Pentium 4 and Intel Xeon Processors

® BTS (branch trace store) flag (bit 3) — When set, enables the BTS facilities to log BTMs
to a memory-resident BTS buffer that is part of the DS save area. See Section 18.13.5, “DS
Save Area.”

® BTINT (branch trace interrupt) flag (bits 4) — When set, the BTS facilities generate an
interrupt when the BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a
circular fashion. See Section 18.5.8, “Branch Trace Store (BTS).”

® BTS_OFF_OS (disable ring 0 branch trace store) flag (bit 5) — When set, enables the
BTS facilities to skip logging CPL_0 BTMs to the memory-resident BTS buffer. See
Section 18.5.1, “CPL-Qualified Last Branch Recording Mechanism.”

® BTS OFF_USR (disable ring 0 branch trace store) flag (bit 6) — When set, enables the
BTS facilities to skip logging non-CPL_0 BTMs to the memory-resident BTS buffer. See
Section 18.5.1, “CPL-Qualified Last Branch Recording Mechanism.”

18.5.3 LBR Stack (Pentium 4 and Intel Xeon Processors)

The LBR stack is made up of LBR MSRs that are treated by the processor as a circular stack.
The TOS pointer (MSR_LASTBRANCH_TOS MSR) points to the LBR MSR (or LBR MSR
pair) that contains the most recent (last) branch record placed on the stack. Prior to placing a new

18-16 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

branch record on the stack, the TOS is incremented by 1. When the TOS pointer reaches it
maximum value, it wraps around to 0. See Table 18-3 and Figure 18-3.

The registers in the LBR MSR stack and the MSR_LASTBRANCH_TOS MSR are read-only
and can be read using the RDMSR instruction.

Figure 18-5 shows the layout of a branch record in an LBR MSR (or MSR pair). Each branch
record consists of two linear addresses, which represent the “from” and “to” instruction pointers
for a branch, interrupt, or exception. The contents of the from and to addresses differ, depending
on the source of the branch:

® Taken branch — If the record is for a taken branch, the “from” address is the address of
the branch instruction and the “to” address is the target instruction of the branch.

® Interrupt — If the record is for an interrupt, the “from” address the return instruction
pointer (RIP) saved for the interrupt and the “to” address is the address of the first
instruction in the interrupt handler routine. The RIP is the linear address of the next
instruction to be executed upon returning from the interrupt handler.

® Exception — If the record is for an exception, the “from” address is the linear address of
the instruction that caused the exception to be generated and the “to” address is the address
of the first instruction in the exception handler routine.

CPUID Family OFH, Models OH-02H
MSR_LASTBRANCH_O through MSR_LASTBRANCH_3
63 32-31 0

To Linear Address From Linear Address

CPUID Family OFH, Model 03H-04H
MSR_LASTBRANCH_0_FROM_LIP through MSR_LASTBRANCH_15_FROM_LIP

63 32-31 0

Reserved From Linear Address

MSR_LASTBRANCH_0_TO_LIP through MSR_LASTBRANCH_15_TO_LIP
63 32-31 0

Reserved To Linear Address

Figure 18-5. LBR MSR Branch Record Layout for the Pentium 4
and Intel Xeon Processor Family

Additional information is saved if an exception or interrupt occurs in conjunction with a branch
instruction. If a branch instruction generates a trap type exception, two branch records are stored
in the LBR stack: a branch record for the branch instruction followed by a branch record for the
exception.

Vol. 3B 18-17

DEBUGGING AND PERFORMANCE MONITORING

If a branch instruction generates a fault type exception, a branch record is stored in the LBR
stack for the exception, but not for the branch instruction itself. Here, the location of the branch
instruction can be determined from the CS and EIP registers in the exception stack frame that is
written by the processor onto the stack.

If a branch instruction is immediately followed by an interrupt, a branch record is stored in the
LBR stack for the branch instruction followed by a record for the interrupt.

18.5.3.1 LBR Stack and Intel EM64T

For 1A-32 processors that support Intel EM64T, the LBR MSRs are 64-bits. If 1A-32e mode is
disabled, only the lower 32-bits are accessible. If 1A-32e mode is enabled, the processor writes
64-bit values into the MSR. In 64-bit mode, last branch records stores 64-bit addresses; in
compatibility mode, the upper 32-bits of last branch records are cleared.

18.5.4 Monitoring Branches, Exceptions, and Interrupts
(Pentium 4 and Intel Xeon Processors)

When the LBR flag in the MSR_DEBUGCTLA MSR is set, the processor automatically begins
recording branch records for taken branches, interrupts, and exceptions (except for debug excep-
tions) in the LBR stack MSRs.

When the processor generates a a debug exception (#DB), it automatically clears the LBR flag
before executing the exception handler. This action does not clear previously stored LBR stack
MSRs. The branch record for the last four taken branches, interrupts and/or exceptions are
retained for analysis.

A debugger can use the linear addresses in the LBR stack to reset breakpoints in the break-point
address registers (DRO through DR3). This allows a backward trace from the manifestation of a
articular bug toward its source.

If the LBR flag is cleared and TR flag in the MSR_DEBUGCTLA MSR remains set, the
processor will continue to update LBR stack MSRs. This is because BTM information must be
generated from entries in the LBR stack (see 14.5.5). A #DB does not automatically clear the
TR flag.

18.5.5 Single-Stepping on Branches, Exceptions, and Interrupts

When software sets both the BTF flag in the MSR_DEBUGCTLA MSR and the TF flag in the
EFLAGS register, the processor generates a single-step debug exception the next time it takes a
branch, services an interrupt, or generates an exception. This mechanism allows the debugger to
single-step on control transfers caused by branches, interrupts, and exceptions. This “control-
flow single stepping” helps isolate a bug to a particular block of code before instruction single-
stepping further narrows the search. If the BTF flag is set when the processor generates a debug
exception, the processor clears the BTF flag along with the TF flag. The debugger must reset the
BTF and TF flags before resuming program execution to continue control-flow single stepping.

18-18 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

18.5.6 Branch Trace Messages

Setting The TR flag in the MSR_DEBUGCTLA (see Figure 18-4), 1A32_DEBUG (see
Figure 18-6), or MSR_DEBUGB (see Figure 18-8) MSR enables branch trace messages
(BTMs). Thereafter, when the processor detects a branch, exception, or interrupt, it sends a
branch record out on the system bus as a BTM. A debugging device that is monitoring the
system bus can read these messages and synchronize operations with taken branch, interrupt,
and exception events.

When interrupts or exceptions occur in conjunction with a taken branch, additional BTMs are
sent out on the bus, as described in Section 18.5.4, “Monitoring Branches, Exceptions, and Inter-
rupts (Pentium 4 and Intel Xeon Processors).”

Setting this flag (BTS) alone will greatly reduces the performance of the processor. CPL-qualified
last branch recording mechanism can help mitigate the performance impact of logging branch
trace messages. See Section 18.5.1, “CPL-Qualified Last Branch Recording Mechanism.”

Unlike the P6 family processors, the Pentium 4 and Intel Xeon processors can collect branch
records in the LBR stack MSRs while at the same time sending BTMs out on the system bus
when both the TR and LBR flags are set in the MSR_DEBUGCTLA MSR.

18.5.7 Last Exception Records (Pentium 4 and Intel Xeon
Processors)

The Pentium 4 and Intel Xeon processors provide two 32 bit MSRs (the MSR_LER_TO_LIP
and the MSR_LER_FROM _LIP MSRs) that duplicate the functions of the LastExceptionTolP
and LastExceptionFromIP MSRs found in the P6 family processors. The MSR_LER_TO_LIP
and MSR_LER_FROM_LIP MSRs contain a branch record for the last branch that the processor
took prior to an exception or interrupt being generated.

18.5.7.1 Last Exception Records and Intel EM64T

For 1A-32 processors that support Intel EM64T, the MSRs that store last exception records are
64-bits. If 1A-32e mode is disabled, only the lower 32-bits are accessible. If 1A-32e mode is
enabled, the processor writes 64-bit values into the MSR. In 64-bit mode, last exception records
stores 64-bit addresses; in compatibility mode, the upper 32-bits of last exception records are
cleared.

18.5.8 Branch Trace Store (BTS)

A trace of taken branches, interrupts, and exceptions is useful for debugging code by providing
a method of determining the decision path taken to reach a particular code location. The
Pentium 4 and Intel Xeon processors provide a mechanism for capturing records of taken
branches, interrupts, and exceptions and saving them in the last branch record (LBR) stack
MSRs and/or sending them out onto the system bus as BTMSs. The branch trace store (BTS)
mechanism provides the additional capability of saving the branch records in a memory-resident

Vol. 3B 18-19

DEBUGGING AND PERFORMANCE MONITORING

BTS buffer, which is part of the DS save area. The BTS buffer can be configured to be circular
so that the most recent branch records are always available or it can be configured to generate
an interrupt when the buffer is nearly full so that all the branch records can be saved. See
Section 18.13.5, “DS Save Area.”

18.5.8.1 Detection of the BTS Facilities

The DS feature flag (bit 21) returned by the CPUID instruction indicates (when set) the avail-
ability of the DS mechanism in the processor, which supports the BTS (and PEBS) facilities.
When this bit is set, the following BTS facilities are available:

® The BTS_UNAVAILABLE flag in the 1A32_MISC_ENABLE MSR indicates (when
clear) the availability of the BTS facilities, including the ability to set the BTS and BTINT
bits in the MSR_DEBUGCTLA MSR.

® The IA32_DS_AREA MSR can be programmed to point to the DS save area.

18.5.8.2 Setting Up the DS Save Area

To save branch records with the BTS buffer, the DS save area must first be set up in memory as
described in the following procedure. See Section 18.5.8.3, “Setting Up the BTS Buffer,” and
Section 18.13.8.3, “Setting Up the PEBS Buffer,” for instructions for setting up a BTS buffer
and/or a PEBS buffer, respectively, in the DS save area:

1. Create the DS buffer management information area in memory (see Section 18.13.5, “DS
Save Area,” and Section 18.13.5.1, “DS Save Area and 1A-32e Mode Operation”). Also
see the additional notes in this section.

2. Write the base linear address of the DS buffer management area into the IA32_DS_AREA
MSR.

3. Set up the performance counter entry in the XAPIC LVT for fixed delivery and edge
sensitive. See Section 8.5.1, “Local Vector Table.”

4. Establish an interrupt handler in the IDT for the vector associated with the performance
counter entry in the XAPIC LVT.

5. Write an interrupt service routine to handle the interrupt. See Section 18.5.8.5, “Writing
the DS Interrupt Service Routine.”

The following restrictions should be applied to the DS save area.

® The three DS save area sections should be allocated from a non-paged pool, and marked
accessed and dirty. It is the responsibility of the operating system to keep the pages that
contain the buffer present and to mark them accessed and dirty. The implication is that the
operating system cannot do “lazy” page-table entry propagation for these pages.

® The DS save area can be larger than a page, but the pages must be mapped to contiguous
linear addresses. The buffer may share a page, so it need not be aligned on a 4-KByte
boundary. For performance reasons, the base of the buffer must be aligned on a
doubleword boundary and should be aligned on a cache line boundary.

18-20 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

® |t is recommended that the buffer size for the BTS buffer and the PEBS buffer be an
integer multiple of the corresponding record sizes.

® The precise event records buffer should be large enough to hold the number of precise
event records that can occur while waiting for the interrupt to be serviced.

® The DS save area should be in kernel space. It must not be on the same page as code, to
avoid triggering self-modifying code actions.

® There are no memory type restrictions on the buffers, although it is recommended that the
buffers be designated as WB memory type for performance considerations.

® Either the system must be prevented from entering A20M mode while DS save area is
active, or bit 20 of all addresses within buffer bounds must be 0.

® Pages that contain buffers must be mapped to the same physical addresses for all
processes, such that any change to control register CR3 will not change the DS addresses.

® The DS save area is expected to used only on systems with an enabled APIC. The LVT
Performance Counter entry in the APCI must be initialized to use an interrupt gate instead
of the trap gate.

18.5.8.3 Setting Up the BTS Buffer

Three flags in the MSR_DEBUGCTLA MSR (see Table 18-4), 1A32_DEBUGCTL (see
Figure 18-6), or MSR_DEBUGCTLB (see Figure 18-8) control the generation of branch
records and storing of them in the BTS buffer; these are TR, BTS, and BTINT. The TR flag
enables the generation of BTMs. The BTS flag determines whether the BTMs are sent out on
the system bus (clear) or stored in the BTS buffer (set). BTMs cannot be simultaneously sent to
the system bus and logged in the BTS buffer. The BTINT flag enables the generation of an inter-
rupt when the BTS buffer is full. When this flag is clear, the BTS buffer is a circular buffer.

Table 18-4. MSR_DEBUGCTLA, IA32_DEBUGCTL, MSR_DEBUGCLTB Flag Encodings

TR BTS BTINT Description
0 X X Branch trace messages (BTMs) off
1 0 X Generate BTMs
1 1 0 Store BTMs in the BTS buffer, used here as a circular buffer
1 1 1 Store BTMs in the BTS buffer, and generate an interrupt when the
buffer is nearly full

The following procedure describes how to set up a Pentium 4 or Intel Xeon processor to collect
branch records in the BTS buffer in the DS save area:

1. Place values in the BTS buffer base, BTS index, BTS absolute maximum, and BTS
interrupt threshold fields of the DS buffer management area to set up the BTS buffer in
memory.

Vol. 3B 18-21

DEBUGGING AND PERFORMANCE MONITORING

2. Set the TR and BTS flags in the MSR_DEBUGCTLA MSR (or 1A32_DEBUGCTL for
Intel Core Solo and Intel Core Duo processors; or MSR_DEBUGCTLB for Pentium M
processors).

3. Either clear the BTINT flag in the MSR_DEBUGCTLA MSR (to set up a circular BTS
buffer) or set the BTINT flag (to generate an interrupt when the BTS buffer is nearly full).
For Intel Core Solo and Intel Core Duo processors, do the same in 1A32_DEBUGCTL,; or
in MSR_DEBUGCTLB for Pentium M processors.

18.5.8.4 Setting Up CPL-Qualified BTS

If the processor supports CPL-qualified last branch recording mechanism, the generation of
branch records and storing of them in the BTS buffer are determined by: TR, BTS,
BTS_OFF_OS, BTS_OFF_USR, and BTINT. The encoding of these five bits are shown in
Table 18-5.

Table 18-5. CPL-Qualified Branch Trace Store Encodings

TR |[BTS |BTS_OFF_ | BTS_OFF_ | BTINT | Description
os USR

0 X X X X Branch trace messages (BTMs) off

1 0 X X X Generate BTM but does not store BTMs

=
=
o

Store all BTMs in the BTS buffer, used here as a
circular buffer

1 1 1 0 0 Store BTMs with CPL > 0 in the BTS buffer

1 1 0 1 0 Store BTMs with CPL =0 in the BTS buffer

1 1 1 1 X Generate BTM but does not store BTMs

1 1 0 0 1 Store all BTMs in the BTS buffer; generate an
interrupt when the buffer is nearly full

1 1 1 0 1 Store BTMs with CPL > 0 in the BTS buffer;
generate an interrupt when the buffer is nearly full

1 1 0 1 1 Store BTMs with CPL = 0 in the BTS buffer;

generate an interrupt when the buffer is nearly full

18.5.8.5 Writing the DS Interrupt Service Routine

The BTS, non-precise event-based sampling, and PEBS facilities share the same interrupt vector
and interrupt service routine (called the debug store interrupt service routine or DS ISR). To
handle BTS, non-precise event-based sampling, and PEBS interrupts: separate handler routines
must be included in the DS ISR. Use the following guidelines when writing a DS ISR to handle
BTS, non-precise event-based sampling, and/or PEBS interrupts.

® The DS interrupt service routine (ISR) must be part of a kernel driver and operate at a
current privilege level of 0 to secure the buffer storage area.

18-22 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

Because the BTS, non-precise event-based sampling, and PEBS facilities share the same
interrupt vector, the DS ISR must check for all the possible causes of interrupts from these
facilities and pass control on to the appropriate handler.

BTS and PEBS buffer overflow would be the sources of the interrupt if the buffer index
matches/exceeds the interrupt threshold specified. Detection of non-precise event-based
sampling as the source of the interrupt is accomplished by checking for counter overflow.

There must be separate save areas, buffers, and state for each processor in an MP system.

Upon entering the ISR, branch trace messages and PEBS should be disabled to prevent
race conditions during access to the DS save area. This is done by clearing TR flag in the
MSR_DEBUGCTLA MSR and by clearing the precise event enable flag in the
IA32_PEBS ENABLE MSR. These settings should be restored to their original values
when exiting the ISR.

The processor will not disable the DS save area when the buffer is full and the circular
mode has not been selected. The current DS setting must be retained and restored by the
ISR on exit.

After reading the data in the appropriate buffer, up to but not including the current index
into the buffer, the ISR must reset the buffer index to the beginning of the buffer.
Otherwise, everything up to the index will look like new entries upon the next invocation
of the ISR.

The ISR must clear the mask bit in the performance counter LVT entry.

The ISR must re-enable the CCCR's ENABLE bit if it is servicing an overflow PMI due to
PEBS.

The Pentium 4 Processor and Intel Xeon Processor mask PMIs upon receiving an interrupt.
Clear this condition before leaving the interrupt handler.

18.6 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING

(INTEL® CORE™ SOLO AND INTEL® CORE™ DUO
PROCESSORS)

Intel Core Solo and Intel Core Duo processors provide last branch interrupt and exception
recording. The capability is almost identical to that found in Pentium 4 and Intel Xeon proces-
sors. There are differences in the stack and in some MSR names and locations. Note the
following:

1A32_DEBUGCTL MSR — Enables debug trace interrupt, debug trace store, trace
messages enable, performance monitoring breakpoint flags, single stepping on branches,
and last branch. I1A32_DEBUGCTL MSR is located at register address 01D9H. See
Figure 18-6 the layout and the entries below for a description of the flags.

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor
records a running trace of the most recent branches, interrupts, and/or exceptions
taken by the processor (prior to a debug exception being generated) in the last

Vol. 3B 18-23

DEBUGGING AND PERFORMANCE MONITORING

branch record (LBR) stack. For more information, see the “Last Branch Record
(LBR) Stack” bullet below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor treats the
TF flag in the EFLAGS register as a “single-step on branches” flag rather than a
“single-step on instructions” flag. This mechanism allows single-stepping the
processor on taken branches, interrupts, and exceptions. See Section 18.5.5,
“Single-Stepping on Branches, Exceptions, and Interrupts,” for more information
about the BTF flag.

— TR (trace message enable) flag (bit 6) — When set, branch trace messages are
enabled. When the processor detects a taken branch, interrupt, or exception; it
sends the branch record out on the system bus as a branch trace message (BTM).
See Section 18.5.6, “Branch Trace Messages,” for more information about the TR
flag.

— BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS facilities
to log BTMs to a memory-resident BTS buffer that is part of the DS save area. See
Section 18.13.5, “DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS facilities
generate an interrupt when the BTS buffer is full. When clear, BTMs are logged to
the BTS buffer in a circular fashion. See Section 18.5.8, “Branch Trace Store
(BTS),” for a description of this mechanism.

31 876543210
Reserved
BTINT — Branch trace interrupt ‘ LJ
BTS — Branch trace store

TR — Trace messages enable
Reserved
BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Figure 18-6. 1A32_DEBUGCTL MSR for Intel® Core™ Solo and Intel® Core™ Duo
Processors

® Debug store (DS) feature flag (bit 21), returned by the CPUID instruction — Indicates
that the processor provides the debug store (DS) mechanism, which allows BTMs to be
stored in a memory-resident BTS buffer. See Section 18.5.8, “Branch Trace Store (BTS).”

® Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs
(MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’
address, bits 63-32 hold the ‘to’ address. For Pentium M Processors, these pairs are located
at register addresses 040H-047H. See Figure 18-9.

18-24 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

® Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR contains a
3-bit pointer (bits 2-0) to the MSR in the LBR stack that contains the most recent branch,
interrupt, or exception recorded. For Intel Core Solo and Intel Core Duo processors, this
MSR is located at register address 01C9H.

For compatibility, the Intel Core Solo and Intel Core Duo processors provide two 32-bit MSRs
(the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate functions of
the LastExceptionTolP and LastExceptionFromIP MSRs found in P6 family processors.

For details, see Section 18.5, “Last Branch, Interrupt, and Exception Recording (Pentium 4 and
Intel Xeon Processors),” and Appendix B.2, “MSRs In Intel® Core™ Solo and Intel® Core™
Duo Processors.”

MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7

63 32-31 0
To Linear Address From Linear Address

Figure 18-7. LBR Branch Record Layout for the Intel Core Solo and Intel Core Duo
Processor

18.7 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (PENTIUM M PROCESSORYS)

Like the Pentium 4 and Intel Xeon processor family, Pentium M processors provide last branch
interrupt and exception recording. The capability operates almost identically to that found in
Pentium 4 and Intel Xeon processors. There are differences in the shape of the stack and in some
MSR names and locations. Note the following:

®* MSR_DEBUGCTLB MSR — Enables debug trace interrupt, debug trace store, trace
messages enable, performance monitoring breakpoint flags, single stepping on branches,
and last branch. For Pentium M processors, this MSR is located at register address 01D9H.
See Figure 18-8 and the entries below for a description of the flags.

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor
records a running trace of the most recent branches, interrupts, and/or exceptions
taken by the processor (prior to a debug exception being generated) in the last
branch record (LBR) stack. For more information, see the “Last Branch Record
(LBR) Stack” bullet below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor treats the
TF flag in the EFLAGS register as a “single-step on branches” flag rather than a
“single-step on instructions” flag. This mechanism allows single-stepping the
processor on taken branches, interrupts, and exceptions. See Section 18.5.5,
“Single-Stepping on Branches, Exceptions, and Interrupts,” for more information
about the BTF flag.

Vol. 3B 18-25

DEBUGGING AND PERFORMANCE MONITORING

— PBiI (performance monitoring/breakpoint pins) flags (bits 5-2) — When these

flags are set, the performance monitoring/breakpoint pins on the processor (BP0#,
BP1#, BP2#, and BP3#) report breakpoint matches in the corresponding
breakpoint-address registers (DRO through DR3). The processor asserts then
deasserts the corresponding BPi# pin when a breakpoint match occurs. When a
PBi flag is clear, the performance monitoring/breakpoint pins report performance
events. Processor execution is not affected by reporting performance events.

TR (trace message enable) flag (bit 6) — When set, branch trace messages are
enabled. When the processor detects a taken branch, interrupt, or exception, it
sends the branch record out on the system bus as a branch trace message (BTM).
See Section 18.5.6, “Branch Trace Messages,” for more information about the TR
flag.

BTS (branch trace store) flag (bit 7) — When set, enables the BTS facilities to
log BTMs to a memory-resident BTS buffer that is part of the DS save area. See
Section 18.13.5, “DS Save Area.”

BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS facilities
generate an interrupt when the BTS buffer is full. When clear, BTMs are logged to
the BTS buffer in a circular fashion. See Section 18.5.8, “Branch Trace Store
(BTS),” for a description of this mechanism.

31 876543210
Reserved
BTINT — Branch trace interrupt ‘ LJ
BTS — Branch trace store

TR — Trace messages enable
PB3/2/1/0 — Performance monitoring breakpoint flags
BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Figure 18-8. MSR_DEBUGCTLB MSR for Pentium M Processors

Debug store (DS) feature flag (bit 21), returned by the CPUID instruction — Indicates
that the processor provides the debug store (DS) mechanism, which allows BTMs to be
stored in a memory-resident BTS buffer. See Section 18.5.8, “Branch Trace Store (BTS).”

Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs
(MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’
address, bits 63-32 hold the ‘to’ address. For Pentium M Processors, these pairs are located
at register addresses 040H-047H. See Figure 18-9.

Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR contains a
3-bit pointer (bits 2-0) to the MSR in the LBR stack that contains the most recent branch,

18-26 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

interrupt, or exception recorded. For Pentium M Processors, this MSR is located at register
address 01C9H.

For compatibility, the Pentium M processor provides two 32-bit MSRs (the
MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate the functions of the
LastExceptionTolP and LastExceptionFromIP MSRs found in P6 family processors.

MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7

63 32-31 0
To Linear Address From Linear Address

Figure 18-9. LBR Branch Record Layout for the Pentium M Processor

For more detail on these capabilities, see Section 18.5, “Last Branch, Interrupt, and Exception
Recording (Pentium 4 and Intel Xeon Processors),” and Appendix B.3, “MSRs In the Pentium M
Processor.”

18.8 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (P6 FAMILY PROCESSORS)

The P6 family processors provide five MSRs for recording the last branch, interrupt, or excep-
tion taken by the processor: DEBUGCTLMSR, LastBranchTolP, LastBranchFromlIP, LastEx-
ceptionTolP, and LastExceptionFromIP. These registers can be used to collect last branch
records, to set breakpoints on branches, interrupts, and exceptions, and to single-step from one
branch to the next.

See Appendix B, “Model-Specific Registers (MSRs),” for a detailed description of each of the
last branch recording MSRs.

18.8.1 DEBUGCTLMSR Register (P6 Family Processors)

The version of the DEBUGCTLMSR register found in the P6 family processors enables last
branch, interrupt, and exception recording; taken branch breakpoints; the breakpoint reporting
pins; and trace messages. This register can be written to using the WRMSR instruction, when
operating at privilege level 0 or when in real-address mode. A protected-mode operating system
procedure is required to provide user access to this register. Figure 18-10 shows the flags in the
DEBUGCTLMSR register for the P6 family processors. The functions of these flags are as
follows:

® | BR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records
the source and target addresses (in the LastBranchTolP, LastBranchFromlIP, LastExcepti-
onTolP, and LastExceptionFromIP MSRs) for the last branch and the last exception or

Vol. 3B 18-27

DEBUGGING AND PERFORMANCE MONITORING

interrupt taken by the processor prior to a debug exception being generated. The processor
clears this flag whenever a debug exception, such as an instruction or data breakpoint or
single-step trap occurs.

31 76543210

PlPlP|P|B|L
Reserved Tie|B|B|B|T|B
Rig|2|1]|0|F|R

TR — Trace messages enable
PBi — Performance monitoring/breakpoint pins

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Figure 18-10. DEBUGCTLMSR Register (P6 Family Processors)

BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag
in the EFLAGS register as a “single-step on branches” flag. See Section 18.5.5, “Single-
Stepping on Branches, Exceptions, and Interrupts.”

PBi (performance monitoring/breakpoint pins) flags (bits 2 through 5) — When these
flags are set, the performance monitoring/breakpoint pins on the processor (BPO#, BP1#,
BP2#, and BP3#) report breakpoint matches in the corresponding breakpoint-address
registers (DRO through DR3). The processor asserts then deasserts the corresponding BPi#
pin when a breakpoint match occurs. When a PBi flag is clear, the performance
monitoring/breakpoint pins report performance events. Processor execution is not affected
by reporting performance events.

TR (trace message enable) flag (bit 6) — When set, trace messages are enabled as
described in Section 18.5.6, “Branch Trace Messages.” Setting this flag greatly reduces the
performance of the processor. When trace messages are enabled, the values stored in the
LastBranchTolP, LastBranchFromlIP, LastExceptionTolP, and LastExceptionFromIP MSRs
are undefined.

18.8.2 Last Branch and Last Exception MSRs (P6 Family

Processors)

The LastBranchTolP and LastBranchFromIP MSRs are 32-bit registers for recording the
instruction pointers for the last branch, interrupt, or exception that the processor took prior to a
debug exception being generated. When a branch occurs, the processor loads the address of the
branch instruction into the LastBranchFromIP MSR and loads the target address for the branch
into the LastBranchTolP MSR.

When an interrupt or exception occurs (other than a debug exception), the address of the instruc-
tion that was interrupted by the exception or interrupt is loaded into the LastBranchFromIP MSR

18-28 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

and the address of the exception or interrupt handler that is called is loaded into the LastBranch-
TolP MSR.

The LastExceptionTolP and LastExceptionFromIP MSRs (also 32-bit registers) record the
instruction pointers for the last branch that the processor took prior to an exception or interrupt
being generated. When an exception or interrupt occurs, the contents of the LastBranchTolP and
LastBranchFromIP MSRs are copied into these registers before the to and from addresses of the
exception or interrupt are recorded in the LastBranchTolP and LastBranchFromIP MSRs.

These registers can be read using the RDMSR instruction.

Note that the values stored in the LastBranchTolP, LastBranchFromlIP, LastExceptionTolP, and
LastExceptionFromIP MSRs are offsets into the current code segment, as opposed to linear
addresses, which are saved in last branch records for the Pentium 4 and Intel Xeon processors.

18.8.3 Monitoring Branches, Exceptions, and Interrupts (P6
Family Processors)

When the LBR flag in the DEBUGCTLMSR register is set, the processor automatically begins
recording branches that it takes, exceptions that are generated (except for debug exceptions), and
interrupts that are serviced. Each time a branch, exception, or interrupt occurs, the processor
records the to and from instruction pointers in the LastBranchTolP and LastBranchFromlIP
MSRs. In addition, for interrupts and exceptions, the processor copies the contents of the Last-
BranchTolP and LastBranchFromIP MSRs into the LastExceptionTolP and LastException-
FromIP MSRs prior to recording the to and from addresses of the interrupt or exception.

When the processor generates a debug exception (#DB), it automatically clears the LBR flag
before executing the exception handler, but does not touch the last branch and last exception
MSRs. The addresses for the last branch, interrupt, or exception taken are thus retained in the
LastBranchTolP and LastBranchFromIP MSRs and the addresses of the last branch prior to an
interrupt or exception are retained in the LastExceptionTolP, and LastExceptionFromIP MSRs.

The debugger can use the last branch, interrupt, and/or exception addresses in combination with
code-segment selectors retrieved from the stack to reset breakpoints in the breakpoint-address
registers (DRO through DR3), allowing a backward trace from the manifestation of a particular
bug toward its source. Because the instruction pointers recorded in the LastBranchTolP, Last-
BranchFromlIP, LastExceptionTolP, and LastExceptionFromIP MSRs are offsets into a code
segment, software must determine the segment base address of the code segment associated with
the control transfer to calculate the linear address to be placed in the breakpoint-address regis-
ters. The segment base address can be determined by reading the segment selector for the code
segment from the stack and using it to locate the segment descriptor for the segment in the GDT
or LDT. The segment base address can then be read from the segment descriptor.

Before resuming program execution from a debug-exception handler, the handler must set the
LBR flag again to re-enable last branch and last exception/interrupt recording.

Vol. 3B 18-29

DEBUGGING AND PERFORMANCE MONITORING

18.9 TIME-STAMP COUNTER

The 1A-32 architecture (beginning with the Pentium processor) defines a time-stamp counter
mechanism that can be used to monitor and identify the relative time occurrence of processor
events. The counter’s architecture includes the following components:

TSC flag — A feature bit that indicates the availability of the time-stamp counter. The
counter is available in an 1A-32 processor implementation if the function
CPUID.1:EDX.TSCJbit 4] = 1.

IA32_TIME_STAMP_COUNTER MSR (called TSC MSR in P6 family and Pentium
processors) — The MSR used as the counter.

RDTSC instruction — An instruction used to read the time-stamp counter.

TSD flag — A control register flag is used to enable or disable the time-stamp counter
(enabled if CR4.TSDIbit 2] = 1).

The time-stamp counter (as implemented in the P6 family, Pentium, Pentium M, Pentium 4, Intel
Xeon, Intel Core Solo and Intel Core Duo processors) is a 64-bit counter that is set to 0 following
a RESET of the processor. Following a RESET, the counter will increment even when the
processor is halted by the HLT instruction or the external STPCLK# pin. Note that the assertion
of the external DPSLP# pin may cause the time-stamp counter to stop.

Members of the processor families increment the time-stamp counter differently:

For Pentium M processors (family [06H], models [09H, 0DH]); for Pentium 4 processors,
Intel Xeon processors (family [OFH], models [00H, 01H, or 02H]); and for P6 family
processors: the time-stamp counter increments with every internal processor clock cycle.
The internal processor clock cycle is determined by the current core-clock to bus-clock
ratio. Intel® SpeedStep® technology transitions may also impact the processor clock.

For Pentium 4 processors, Intel Xeon processors (family [OFH], models [03H and higher]),
Intel Core Solo and Intel Core Duo processors (family [06H], model [OEH]): the time-
stamp counter increments at a constant rate. That rate may be set by the maximum core-
clock to bus-clock ratio of the processor or may be set by the frequency at which the
processor is booted. The specific processor configuration determines the behavior.
Constant TSC behavior ensures that the duration of each clock tick is uniform and supports
the use of the TSC as a wall clock timer even if the processor core changes frequency. This
is the architectural behavior moving forward.

NOTE

To determine average processor clock frequency, Intel recommends the use of
EMON logic to count processor core clocks over the period of time for which
the average is required. See Section 18.13.9, “Counting Clocks,” and
Appendix A, “Performance-Monitoring Events,” for more information.

18-30 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

The RDTSC instruction reads the time-stamp counter and is guaranteed to return a monotoni-
cally increasing unique value whenever executed, except for a 64-bit counter wraparound. Intel
guarantees that the time-stamp counter will not wraparound within 10 years after being reset. The
period for counter wrap is longer for Pentium 4, Intel Xeon, P6 family, and Pentium processors.

Normally, the RDTSC instruction can be executed by programs and procedures running at any
privilege level and in virtual-8086 mode. The TSD flag allows use of this instruction to be
restricted to programs and procedures running at privilege level 0. A secure operating system
would set the TSD flag during system initialization to disable user access to the time-stamp
counter. An operating system that disables user access to the time-stamp counter should emulate
the instruction through a user-accessible programming interface.

The RDTSC instruction is not serializing or ordered with other instructions. It does not neces-
sarily wait until all previous instructions have been executed before reading the counter. Simi-
larly, subsequent instructions may begin execution before the RDTSC instruction operation is
performed.

The RDMSR and WRMSR instructions read and write the time-stamp counter, treating the
time-stamp counter as an ordinary MSR (address 10H). In the Pentium 4, Intel Xeon, and P6
family processors, all 64-bits of the time-stamp counter are read using RDMSR (just as with
RDTSC). When WRMSR s used to write the time-stamp counter on processors before family
[OFH], models [03H, 04H]: only the low-order 32-bits of the time-stamp counter can be written
(the high-order 32 bits are cleared to 0). For family [OFH], models [03H, 04H, 06H] and family
[06H]], model [OEH]: all 64 bits are writable.

18.10 PERFORMANCE MONITORING OVERVIEW

Performance monitoring was introduced to the 1A-32 architecture in the Pentium processor with
a set of model-specific performance-monitoring counter MSRs. These counters permit a selec-
tion of processor performance parameters to be monitored and measured. The information
obtained from these counters can then be used for tuning system and compiler performance.

In the Intel P6 family of processors, the performance monitoring mechanism was modified and
enhanced to permit a wider selection of events to be monitored and to allow greater control over
the choice of the events to be monitored.

The Pentium 4 and Intel Xeon processors introduced a new performance monitoring mechanism
and new set of performance events that can be counted.

The performance monitoring mechanisms and performance events defined for the Pentium, P6
family, Pentium 4, and Intel Xeon processors are not architectural. They are all model specific
and are not compatible among the three 1A-32 processor families. For Intel Core Solo and Intel
Core Duo processors, it supports a set of architectural performance events and a non-architec-
tural performance events.

See also:

Section 18.11, “Architectural Performance Monitoring”
Section 18.12, “Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo
Processors)”

Vol. 3B 18-31

DEBUGGING AND PERFORMANCE MONITORING

Section 18.13, “Performance Monitoring (Pentium 4 and Intel Xeon Processors)”
Section 18.14, “Performance Monitoring and Hyper-Threading Technology”

Section 18.15, “Performance Monitoring and Dual-Core Technology”

Section 18.16, “Performance Monitoring on 64-bit Intel Xeon Processor MP with Up
to 8-MByte L3 Cache”

Section 18.17, “Performance Monitoring (P6 Family Processor)”

Section 18.18, “Performance Monitoring (Pentium Processors)”

Starting with Intel Core Solo and Intel Core Duo processors, there are two classes of perfor-
mance monitoring capabilities. One class supports a number of events for monitoring perfor-
mance using counting or sampling usage. These events are not architectural and vary from one
processor model to another. They are similar to those available in Pentium M processors.

The programming interface for non-architectural performance monitoring events on Intel Core
Solo and Intel Core Duo processors are specific to the microarchitecture and may change with
enhancements. They are discussed in Section 18.12, “Performance Monitoring (Intel® Core™
Solo and Intel® Core™ Duo Processors).” Non-architectural events for a given microarchitec-
ture can not be enumerated using CPUID but are listed in Appendix A, “Performance-
Monitoring Events.”

The second class of performance monitoring capabilities is referred to as architectural perfor-
mance monitoring. This class supports the same counting and sampling usages, with a smaller
set of available events. The visible behavior of architectural performance events is consistent
across processor implementations. Availability of architectural performance monitoring capa-
bilities are enumerated using the CPUID.0AH leaf. They are discussed in Section 18.11.

18.11 ARCHITECTURAL PERFORMANCE MONITORING

Architectural performance monitoring was introduced first in Intel Core Solo and Intel Core
Duo processors. The feature provides a mechanism for software to enumerate performance
events and the configuration and counting facilities for the events. Performance monitoring
events are defined to be architectural when they behave consistently across microarchitectures.

Configuring an architectural performance monitoring event involves programming performance
event select registers. There are a finite number of performance event select MSRs
(IA32_PERFEVTSELx MSRs). The result of a performance monitoring event is reported in a
performance monitoring counter (IA32_PMCx MSR). Performance monitoring counters are
paired with performance monitoring select registers.

Performance monitoring select registers and counters are architectural in the following respects:
® The bit field layout of IA32_PERFEVTSELX is consistent across microarchitectures.

® The addresses of IA32_PERFEVTSELXx MSRs remain the same across microarchitectures.
® The addresses of IA32_PMC MSRs remain the same across microarchitectures.

® Each logical processor has its own set of IA32_PERFEVTSELx and 1A32_PMCx MSRs.
Configuration facilities and counters are not shared between logical processors sharing a
processor core.

18-32 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

Architectural performance monitoring provides a CPUID mechanism for enumerating the
following information:

®* The number of performance monitoring counters available in a logical processor (each
IA32_PERFEVTSELXx MSR is paired to the corresponding 1A32_PMCx MSR)

® The number of bits supported in each I1A32_PMCx

® The number of architectural performance monitoring events supported in a logical
processor

CPUID provides a leaf function that software can query by specifying OAH in EAX on input.
This architectural performance monitoring leaf provides an identifier corresponding to the
version number of architectural performance monitoring available in the processor. The version
number provides a means for software to identify enhancements or changes of architectural
performance monitoring capabilities.

The version identifier is retrieved by querying CPUID.0AH:EAX[bits 7:0] (see Chapter 3,
“Instruction Set Reference, A-M,” in the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 2A). If the version identifier is greater than zero, architectural performance
monitoring capability is supported. Software queries the CPUID.0AH for the version identifier
first; it can then analyze the value returned in CPUID.0AH:EAX to determine the architectural
performance monitoring facilities available.

In the initial implementation of architectural performance monitoring, software can determine
how many I1A32_PERFEVTSELX/ IA32_PMCx MSR pairs are supported per logical processor,
the bit-width of PMC, and the number of architectural performance monitoring events available.

18.11.1 Architectural Performance Monitoring Facilities

Architectural performance monitoring facilities include a set of performance monitoring
counters and performance event select registers. The performance monitoring counters are
architectural MSRs that have the following properties:

® |JA32_PMCx MSRs start at address 0C1H and occupy a contiguous block of MSR address
space; the number of MSRs per logical processor is reported using CPUID.0AH.

® |A32 _PERFEVTSELXx MSRs start at address 186H and occupy a contiguous block of
MSR address space. Each performance event select register is paired with a corresponding
performance counter in the 0C1H address block.

® The bit width of an IA32_PMCx MSR is reported using the CPUID.0AH leaf. In the initial
implementation, the bit width for read operations is reported using CPUID; write
operations are limited to the lower 32 bits of the registers.

® The bit field layout of IA32_PERFEVTSELX MSRs is defined architecturally.

See Figures 18-11 for the bit field layout of IA32_PERFEVTSELx MSRs. The definitions of the
bit fields are:

® Event select field (bits 0 through 7) — Selects the event logic unit to detect certain
microarchitectural conditions (see Table 18-6, for a list of architectural events and their 8-

Vol. 3B 18-33

DEBUGGING AND PERFORMANCE MONITORING

bit codes). The set of values for this field is defined architecturally; each pre-defined value
corresponds to an event logic unit for use with an architectural performance event. The
number of architectural events must be queried using CPUID.0AH:EAX. A processor may
support only a subset of pre-defined architectural event select values.

63 31 24232221201918171615 87 0

Counter Mask | | | g
(CMASK) |y|N

INV—Invert counter maskJ

EN—Enable counters

INT—APIC interrupt enable
PC—Pin control
E—Edge detect
OS—Operating system mode
USR—User Mode

z—

c Unit Mask (UMASK) Event Select

|
P|g|O
HENE

IncC

I:I Reserved

Figure 18-11. Layout of IA32_PERFEVTSELx MSRs

® Unit mask (UMASK) field (bits 8 through 15) — These bits qualify the condition that the
selected event logic unit detects. Valid UMASK values for each event logic unit are
specific to the unit. For each architectural performance event, its corresponding UMASK
value defines a specific microarchitectural condition. A pre-defined microarchitectural
condition associated with an architectural event may not be applicable to a given
processor, the processor then reports only a subset of pre-defined architectural events. Pre-
defined architectural events are listed in Table 18-6; support for pre-defined architectural
events is enumerated using CPUID.OAH:EBX. Architectural performance events available
in the initial implementation are listed in Table A-8.

® USR (user mode) flag (bit 16) — Specifies that the selected microarchitectural condition
is counted only when the logical processor is operating at privilege levels 1, 2 or 3. This
flag can be used with the OS flag.

® OS (operating system mode) flag (bit 17) — Specifies that the selected microarchitec-
tural condition is counted only when the logical processor is operating at privilege level 0.
This flag can be used with the USR flag.

® E (edge detect) flag (bit 18) — Enables (when set) edge detection of the selected microar-
chitectural condition. The logical processor counts the number of deasserted to asserted
transitions of any condition that can be expressed by the other fields. The mechanism does
not permit back-to-back assertions to be distinguished. This mechanism allows software to
measure not only the fraction of time spent in a particular state, but also the average length

18-34 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

of time spent in such a state (for example, the time spent waiting for an interrupt to be
serviced).

PC (pin control) flag (bit 19) — When set, the logical processor toggles the PMi pins and
increments the counter when performance-monitoring events occur; when clear, the
processor toggles the PMi pins when the counter overflows. The toggling of a pin is
defined as assertion of the pin for a single bus clock followed by deassertion.

INT (APIC interrupt enable) flag (bit 20) — When set, the logical processor generates
an exception through its local APIC on counter overflow.

EN (Enable Counters) Flag (bit 22) — When set, performance counting is enabled in the
corresponding performance-monitoring counter; when clear, the corresponding counter is
disabled. The event logic unit for a UMASK must be disabled by setting
IA32_PERFEVTSELX[bit 22] = 0, before writing to IA32_PMCXx.

INV (invert) flag (bit 23) — Inverts the result of the counter-mask comparison when set,
so that both greater than and less than comparisons can be made.

Counter mask (CMASK) field (bits 24 through 31) — When this field is not zero, the
logical processor compares this mask to the events count of the detected microarchitectural
condition during a single cycle. If the event count is greater than or equal to this mask, the
counter is incremented by one. Otherwise the counter is not incremented. This mask is
intended for software to characterize microarchitectural conditions that can count multiple
occurrences per cycle (for example, two or more instructions retired per clock; or bus
queue occupations). If the counter-mask field is 0, then the counter is incremented each
cycle by the event count associated with multiple occurrences.

18.11.2 Pre-define Architectural Performance Events

See Table 18-6 for a listing of architecturally defined events.

Table 18-6. UMask and Event Select Encodings of Pre-Defined Architectural
Performance Events

Bit Position Event Name UMask Event Select
CPUID.AH.EBX

0 UnHalted Core Cycles O0OH 3CH

1 Instruction Retired O00H COH

2 UnHalted Core Cycles 01H 3CH

3 LLC Reference 4FH 2EH

4 LLC Misses 41H 2EH

5 Branch Instruction Retired O00H C4H

6 Branch Misses Retired 00H C5H

Vol. 3B 18-35

DEBUGGING AND PERFORMANCE MONITORING

A processor that supports architectural performance monitoring may not support all the
predefined architectural performance events listed in Table 18-6. Software must query
CPUID.0AH:EAX]31:24] to determine the length of a bit vector, then examine the specified
length of the bit vector to determine which pre-defined architectural performance monitoring
events are not supported. The bit vector indicating which event in Table 18-6 is not available is
the content of EBX register after executing CPUID.0AH.

The behavior of each architectural performance event is expected to be consistent on all proces-
sors that support that event. Minor variations between microarchitectures are noted below:

® UnHalted Core Cycles — Event select 3CH, Umask 00H

This event counts core clock cycles whenever the clock signal on the specific core is
running (not halted). The counter does not advance while the logical processor is under the
following conditions:

— the logical processor is in an ACPI C-state other than CO for normal operation
— the logical processor is in HLT

— STPCLK# pin is asserted

— being throttled by TM1

— during the frequency switching phase of a performance state transition (see Chapter
13, “Power and Thermal Management”)

The performance counter for this event counts across performance state transitions using
different core clock frequencies

® |nstructions Retired — Event select COH, Umask 00H

This event counts the number of instructions at retirement. For instructions that consist of
multiple micro-ops, this event counts the retirement of the last micro-op of the instruction.
An instruction with REP prefix counts as one instruction (not once per iteration). Faults
occurring before the retirement of the last micro-op of a multi-ops instruction will not be
counted.

This event does not increment under VM Exit conditions. The counters continue counting
during hardware interrupts, traps, and inside interrupt handler.

® UnHalted Reference Cycles — Event select 3CH, Umask 01H

This event counts reference clock cycles while the clock signal on the specific core is
running. The reference clock operates at a fixed frequency, irrespective of core frequency
changes due to performance state transitions.

® Last Level Cache References — Event select 2EH, Umask 4FH

This event counts each request originating from the core to reference a cache line in the
last level cache. The event count may include speculation, but excludes cache line fills due
to a hardware-prefetch.

Because cache hierarchy, cache sizes and other implementation-specific characteristics,
direct value comparison to estimate performance differences is not recommended.

18-36 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

® Last Level Cache Misses — Event select 2EH, Umask 41H

This event counts each cache miss condition for references to the last level cache. The
event count may include speculation, but excludes cache line fills due to hardware-
prefetch.

Because cache hierarchy, cache sizes and other implementation-specific characteristics,
direct value comparison to estimate performance differences is not recommended.

® Branch Instructions Retired — Event select C4H, Umask 00H

This event counts branch instructions at retirement. Specifically, this event counts the
retirement of the last micro-op of a branch instruction.

® All Branch Mispredict Retired — Event select C5H, Umask 00H

This event counts mispredicted branch instructions at retirement. Specifically, this event
counts the retirement of the last micro-op of a branch instruction in the architectural path
of execution and experienced misprediction in the branch prediction hardware.

Branch prediction hardware is implementation-specific across microarchitectures, direct
value comparison to estimate performance differences is not recommended.

18.12 PERFORMANCE MONITORING (INTEL® CORE™ SOLO AND
INTEL® CORE™ DUO PROCESSORS)

In Intel Core Solo and Intel Core Duo processors, non-architectural performance monitoring
events are programmed using the same facilities (see Figure 18-11) as are used for architectural
performance events.

Non-architectural performance events use event select values that are model-specific. Event
mask (Umask) values are also specific to event logic units. Some microarchitectural conditions
detectable by a Umask value may have specificity related to processor topology (see Section 7.7,
“Detecting Hardware Multi-Threading Support and Topology,” in the 1A-32 Intel® Architecture
Software Developer’s Manual, Volume 3A). As a result, the unit mask field (for example,
IA32_PERFEVTSELXx[bits 15:8]) may contain sub-fields that specify topology information of
processor cores.

The sub-field layout within the Umask field may support two-bit encoding that qualifies the
relationship between the microarchitectural condition and the originating core. This data is
shown in Table 18-7. The two-bit encoding for core-specificity is only supported for a subset of
Umask values (see Appendix A, “Performance Monitoring Events”) and for Intel Core Duo
processors. Such events are referred to as core-specific events.

Vol. 3B 18-37

DEBUGGING AND PERFORMANCE MONITORING

Table 18-7. Core Specificity Encoding within a Non-Architectural Umask

IA32_PERFEVTSELX MSRs

Bit 15:14 Encoding Description
11B All cores
10B Reserved
01B This core
00B Reserved

Some microarchitectural conditions allow detection specificity only at the boundary of physical
processors. Some bus events belong to this category, providing specificity between the origi-
nating physical processor (a bus agent) versus other agents on the bus. Sub-field encoding for

agent specificity is in Table 18-8.

Table 18-8. Agent Specificity Encoding within a Non-Architectural Umask

IA32_PERFEVTSELX MSRs

Bit 13 Encoding Description
0 This agent
1 Include all agents

Some microarchitectural conditions are detectable only from the originating core. In such cases,
the unit mask does not support core-specificity or agent-specificity encodings. These are
referred to as core-only conditions.

Some microarchitectural conditions allow detection specificity that includes or excludes the
action of hardware prefetches. A two-bit encoding may be supported to qualify hardware
prefetch actions. Typically, this applies only to some L2 or bus events. The sub-field encoding
for hardware prefetch qualification is shown in Table 18-9.

Table 18-9. HW Prefetch Qualification Encoding within a Non-Architectural Umask

IA32_PERFEVTSELX MSRs

Bit 13:12 Encoding Description

11B All inclusive

10B Reserved

01B Hardware prefetch only
00B Exclude hardware prefetch

18-38 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

Some performance events may (a) support none of the three event-specific qualification encod-
ings (b) may support core-specificity and agent specificity simultaneously (c) or may support
core-specificity and hardware prefetch qualification simultaneously. Agent-specificity and
hardware prefetch qualification, however, are mutually exclusive.

In addition, some L2 events permit qualifications that distinguish cache coherent states. The
sub-field encoding for cache coherency state qualification is in Table 18-10.

Table 18-10. MESI Qualification Definitions within a Non-Architectural Umask

IA32_PERFEVTSELX MSRs

Bit Position Description

11 Counts modified state
10 Counts exclusive state
01B Counts shared state
00B Counts Invalid state

18.13 PERFORMANCE MONITORING (PENTIUM 4
AND INTEL XEON PROCESSORYS)

The performance monitoring mechanism provided in the Pentium 4 and Intel Xeon processors
is considerably different from that provided in the P6 family and Pentium processors. While the
general concept of selecting, filtering, counting, and reading performance events through the
WRMSR, RDMSR, and RDPMC instructions is unchanged, the setup mechanism and MSR
layouts are different and incompatible with the P6 family and Pentium processor mechanisms.
Also, the RDPMC instruction has been enhanced to read the additional performance counters
provided in the Pentium 4 and Intel Xeon processors and to allow faster reading of the counters.

The event monitoring mechanism provided with the Pentium 4 and Intel Xeon processors
consists of the following facilities:

®* The IA32_MISC_ENABLE MSR, which indicates the availability in an 1A-32 processor
of the performance monitoring and precise event-based sampling (PEBS) facilities.

® Event selection control (ESCR) MSRs for selecting events to be monitored with specific
performance counters. The number available of these differs by family and model (43
to 45).

® 18 performance counter MSRs for counting events.

® 18 counter configuration control (CCCR) MSRs, with one CCCR associated with each
performance counter. Each CCCR sets up its associated performance counter for a specific
method or style of counting.

® A debug store (DS) save area in memory for storing PEBS records.
®* The IA32_DS_AREA MSR, which establishes the location of the DS save area.

Vol. 3B 18-39

DEBUGGING AND PERFORMANCE MONITORING

® The debug store (DS) feature flag (bit 21) returned by the CPUID instruction, which
indicates the availability in an IA-32 processor of the DS mechanism.

® The IA32_PEBS_ENABLE MSR, which enables the PEBS facilities and replay tagging
used in at-retirement event counting.

® A set of predefined events and event metrics that simplify the setting up of the
performance counters to count specific events.

Table 18-11 lists the performance counters and their associated CCCRs, along with the ESCRs
that select events to be counted for each performance counter. Predefined event metrics and
events are listed in Table in Appendix A, “Performance-Monitoring Events.”

Table 18-11. Performance Counter MSRs and Associated CCCR and
ESCR MSRs (Pentium 4 and Intel Xeon Processors)

Counter CCCR ESCR
Name No. | Addr | Name Addr | Name No. | Addr
MSR_BPU_COUNTERO 0 300H MSR_BPU_CCCRO 360H | MSR_BSU_ESCRO 7 3A0H
MSR_FSB_ESCRO 6 3A2H
MSR_MOB_ESCRO0 2 3AAH
MSR_PMH_ESCRO 4 3ACH
MSR_BPU_ESCRO0 0 3B2H
MSR_IS_ESCRO 1 3B4H
MSR_ITLB_ESCRO 3 3B6H
MSR_IX_ESCRO 5 3C8H
MSR_BPU_COUNTER1 1 | 301H | MSR_BPU_CCCR1 361H | MSR_BSU_ESCRO 7 3A0H
MSR_FSB_ESCR0 6 3A2H
MSR_MOB_ESCR0 2 3AAH
MSR_PMH_ESCRO 4 3ACH
MSR_BPU_ESCRO 0 3B2H
MSR_IS_ESCRO 1 3B4H
MSR_ITLB_ESCRO 3 3B6H
MSR_IX_ESCRO 5 3C8H
MSR_BPU_COUNTER2 2 | 302H | MSR_BPU_CCCR2 362H | MSR_BSU_ESCR1 7 3A1H
MSR_FSB_ESCR1 6 3A3H
MSR_MOB_ESCR1 2 3ABH
MSR_PMH_ESCR1 4 3ADH
MSR_BPU_ESCR1 0 3B3H
MSR_IS_ESCR1 1 3B5H
MSR_ITLB_ESCR1 3 3B7H
MSR_IX_ESCR1 5 3C9H
MSR_BPU_COUNTER3 3 303H MSR_BPU_CCCR3 363H | MSR_BSU_ESCR1 7 3A1H
MSR_FSB_ESCR1 6 3A3H
MSR_MOB_ESCR1 2 3ABH
MSR_PMH_ESCR1 4 3ADH
MSR_BPU_ESCR1 0 3B3H
MSR_IS_ESCR1 1 3B5H
MSR_ITLB_ESCR1 3 3B7H
MSR_IX_ESCR1 5 3C9H
MSR_MS_COUNTERO 4 | 304H | MSR_MS_CCCRO 364H | MSR_MS_ESCRO 0 3COH
MSR_TBPU_ESCRO 2 3C2H
MSR_TC_ESCRO 1 3C4H
MSR_MS_COUNTER1 5 305H MSR_MS_CCCR1 365H | MSR_MS_ESCRO 0 3COH
MSR_TBPU_ESCRO 2 3C2H
MSR_TC_ESCRO 1 3C4H

18-40 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

Table 18-11. Performance Counter MSRs and Associated CCCR and
ESCR MSRs (Pentium 4 and Intel Xeon Processors) (Contd.)

Counter CCCR ESCR
Name No. | Addr | Name Addr | Name No. | Addr
MSR_MS_COUNTER2 6 306H MSR_MS_CCCR2 366H | MSR_MS_ESCR1 0 3C1H
MSR_TBPU_ESCR1 2 3C3H
MSR_TC_ESCR1 1 3C5H
MSR_MS_COUNTER3 7 | 307H | MSR_MS_CCCR3 367H | MSR_MS_ESCR1 0 3C1H
MSR_TBPU_ESCR1 2 3C3H
MSR_TC_ESCR1 1 3C5H
MSR_FLAME_ 8 |308H | MSR_FLAME_CCCRO | 368H | MSR_FIRM_ESCRO 1 3A4H
COUNTERO MSR_FLAME_ESCRO | 0 3A6H
MSR_DAC_ESCRO 5 3A8H
MSR_SAAT_ESCRO 2 3AEH
MSR_U2L_ESCRO 3 3BOH
MSR_FLAME_ 9 |[309H | MSR_FLAME_CCCR1 | 369H | MSR_FIRM_ESCRO 1 3A4H
COUNTER1 MSR_FLAME_ESCRO | 0 3A6H
MSR_DAC_ESCRO 5 3A8H
MSR_SAAT_ESCRO 2 3AEH
MSR_U2L_ESCRO 3 3BOH
MSR_FLAME_ 10 | 30AH | MSR_FLAME_CCCR2 | 36AH | MSR_FIRM_ESCR1 1 3A5H
COUNTER2 MSR_FLAME_ESCR1 | 0 3A7TH
MSR_DAC_ESCR1 5 3A9H
MSR_SAAT_ESCR1 2 3AFH
MSR_U2L_ESCR1 3 3B1H
MSR_FLAME_ 11 | 30BH | MSR_FLAME_CCCR3 | 36BH | MSR_FIRM_ESCR1 1 3A5H
COUNTER3 MSR_FLAME_ESCR1 | 0 3A7TH
MSR_DAC_ESCR1 5 3A9H
MSR_SAAT_ESCR1 2 3AFH
MSR_U2L_ESCR1 3 3B1H
MSR_IQ_COUNTERO 12 | 30CH | MSR_IQ_CCCRO 36CH | MSR_CRU_ESCRO 4 3B8H
MSR_CRU_ESCR2 5 | 3CCH
MSR_CRU_ESCR4 6 3EOH
MSR_IQ_ESCRO® 0 | 3BAH
MSR_RAT_ESCRO 2 3BCH
MSR_SSU_ESCRO 3 3BEH
MSR_ALF_ESCRO 1 3CAH
MSR_IQ_COUNTER1 13 | 30DH | MSR_IQ_CCCR1 36DH | MSR_CRU_ESCRO 4 3B8H
MSR_CRU_ESCR2 5 | 3CCH
MSR_CRU_ESCR4 6 3EOH
MSR_IQ_ESCRo! 0 3BAH
MSR_RAT_ESCRO 2 3BCH
MSR_SSU_ESCRO 3 3BEH
MSR_ALF_ESCRO 1 3CAH
MSR_IQ_COUNTER2 14 | 30EH | MSR_IQ_CCCR2 36EH | MSR_CRU_ESCR1 4 3B9H
MSR_CRU_ESCR3 5 3CDH
MSR_CRU_ESCR5 6 3E1H
MSR_IQ_ESCR1! 0 3BBH
MSR_RAT_ESCR1 2 3BDH
MSR_ALF_ESCR1 1 3CBH
MSR_IQ_COUNTER3 15 | 30FH | MSR_IQ_CCCR3 36FH | MSR_CRU_ESCR1 4 3B9H
MSR_CRU_ESCR3 5 3CDH
MSR_CRU_ESCR5 6 3E1H
MSR_IQ_ESCR1! 0 3BBH
MSR_RAT_ESCR1 2 3BDH
MSR_ALF_ESCR1 1 | 3CBH

Vol. 3B 18-41

DEBUGGING AND PERFORMANCE MONITORING

Table 18-11. Performance Counter MSRs and Associated CCCR and
ESCR MSRs (Pentium 4 and Intel Xeon Processors) (Contd.)

Counter CCCR ESCR
Name No. | Addr | Name Addr | Name No. | Addr
MSR_IQ_COUNTER4 16 | 310H | MSR_IQ_CCCR4 370H | MSR_CRU_ESCRO 4 3B8H
MSR_CRU_ESCR2 5 3CCH
MSR_CRU_ESCR4 6 3EOH
MSR_IQ_ESCROt 0 3BAH
MSR_RAT_ESCRO 2 3BCH
MSR_SSU_ESCRO 3 3BEH
MSR_ALF_ESCRO 1 3CAH
MSR_IQ_COUNTER5 17 | 311H | MSR_IQ_CCCR5 371H | MSR_CRU_ESCR1 4 3B9H
MSR_CRU_ESCR3 5 3CDH
MSR_CRU_ESCR5 6 3E1H
MSR_IQ_ESCR1} 0 3BBH
MSR_RAT_ESCR1 2 3BDH
MSR_ALF_ESCR1 1 3CBH

NOTES:
1. MSR_IQ_ESCRO0 and MSR_IQ_ESCR1 are available only on early processor builds (family OFH, models

01H-02H). These MSRs are not available on later versions.

The types of events that can be counted with these performance monitoring facilities are divided
into two classes: non-retirement events and at-retirement events.

Non-retirement events (see Table A-1) are events that occur any time during instruction
execution (such as bus transactions or cache transactions).

At-retirement events (see Table A-2) are events that are counted at the retirement stage of
instruction execution, which allows finer granularity in counting events and capturing
machine state. The at-retirement counting mechanism includes facilities for tagging pops
that have encountered a particular performance event during instruction execution.
Tagging allows events to be sorted between those that occurred on an execution path that
resulted in architectural state being committed at retirement as well as events that occurred
on an execution path where the results were eventually cancelled and never committed to
architectural state (such as, the execution of a mispredicted branch).

The Pentium 4 and Intel Xeon processors’ performance monitoring facilities support the three
usage models described below. The first two models can be used to count both non-retirement
and at-retirement events, the third model can be used only to count a subset of at-retirement
events:

Event counting — A performance counter is configured to count one or more types of
events. While the counter is counting, software reads the counter at selected intervals to
determine the number of events that have been counted between the intervals.

Non-precise event-based sampling — A performance counter is configured to count one
or more types of events and to generate an interrupt when it overflows. To trigger an
overflow, the counter is preset to a modulus value that will cause the counter to overflow
after a specific number of events have been counted. When the counter overflows, the
processor generates a performance monitoring interrupt (PMI). The interrupt service
routine for the PMI then records the return instruction pointer (RIP), resets the modulus,

18-42 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

and restarts the counter. Code performance can be analyzed by examining the distribution
of RIPs with a tool like the VTune™ Performance Analyzer.

® Precise event-based sampling (PEBS) — This type of performance monitoring is similar
to non-precise event-based sampling, except that a memory buffer is used to save a record
of the architectural state of the processor whenever the counter overflows. The records of
architectural state provide additional information for use in performance tuning. Precise
event-based sampling can be used to count only a subset of at-retirement events.

The following sections describe the MSRs and data structures used for performance monitoring
in the Pentium 4 and Intel Xeon processors, then describes how these facilities are used with the
three usage models described above.

18.13.1 ESCR MSRs

The 45 ESCR MSRs (see Table 18-11) allow software to select specific events to be countered.
Each ESCR is usually associated with a pair of performance counters (see Table 18-11), and
each performance counter has several ESCRs associated with it (allowing the events to be
counted to be selected from a variety of events).

Figure 18-12 shows the layout of an ESCR MSR. The functions of the flags and fields are as
follows:

® USR flag, bit 2 — When set, events are counted when the processor is operating at a
current privilege level (CPL) of 1, 2, or 3. These privilege levels are generally used by
application code and unprotected operating system code.

® OSflag, bit 3— When set, events are counted when the processor is operating at CPL of
0. This privilege level is generally reserved for protected operating system code. (When
both the OS and USR flags are set, events are counted at all privilege levels.)

3130 2524 9 8 543210
Event Tag
Select Event Mask Value
Tag Enable4
|:| Reserved os—
USR
63 32
Reserved

Figure 18-12. Event Selection Control Register (ESCR) for Pentium 4 and Intel Xeon
Processors without HT Technology Support

Vol. 3B 18-43

DEBUGGING AND PERFORMANCE MONITORING

® Tag enable, bit 4 — When set, enables tagging of pops to assist in at-retirement event
counting; when clear, disables tagging. See Section 18.13.7, “At-Retirement Counting.”

® Tag value field, bits 5 through 8 — Selects a tag value to associate with a pop to assist in
at-retirement event counting.

® Event mask field, bits 9 through 24 — Selects events to be counted from the event class
selected with the event select field.

® Event select field, bits 25 through 30) — Selects a class of events to be counted. The
events within this class that are counted are selected with the event mask field.

When setting up an ESCR, the event select field is used to select a specific class of events to
count, such as retired branches. The event mask field is then used to select one or more of the
specific events within the class to be counted. For example, when counting retired branches, four
different events can be counted: branch not taken predicted, branch not taken mispredicted,
branch taken predicted, and branch taken mispredicted. The OS and USR flags allow counts to
be enabled for events that occur when operating system code and/or application code are being
executed. If neither the OS nor USR flag is set, no events will be counted.

The ESCRs are initialized to all Os on reset. The flags and fields of an ESCR are configured by
writing to the ESCR using the WRMSR instruction. Table 18-11 gives the addresses of the
ESCR MSRs.

Writing to an ESCR MSR does not enable counting with its associated performance counter; it
only selects the event or events to be counted. The CCCR for the selected performance counter
must also be configured. Configuration of the CCCR includes selecting the ESCR and enabling
the counter.

18.13.2 Performance Counters

The performance counters in conjunction with the counter configuration control registers
(CCCRs) are used for filtering and counting the events selected by the ESCRs. The Pentium 4
and Intel Xeon processors provide 18 performance counters organized into 9 pairs. A pair of
performance counters is associated with a particular subset of events and ESCR’s (see Table
18-11). The counter pairs are partitioned into four groups:

® The BPU group, includes two performance counter pairs:
— MSR_BPU_COUNTERO and MSR_BPU_COUNTERL.
— MSR_BPU_COUNTER2 and MSR_BPU_COUNTERS.
® The MS group, includes two performance counter pairs:
— MSR_MS_COUNTERO and MSR_MS_COUNTERL.
— MSR_MS_COUNTER2 and MSR_MS_COUNTERS.
® The FLAME group, includes two performance counter pairs:
— MSR_FLAME_COUNTERO and MSR_FLAME_COUNTERL.

18-44 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

— MSR_FLAME_COUNTER2 and MSR_FLAME_COUNTERS3.
® The IQ group, includes three performance counter pairs:
— MSR_IQ _COUNTERO and MSR_IQ_COUNTERL.
— MSR_IQ_COUNTER2 and MSR_IQ_COUNTERS.
— MSR_IQ_COUNTER4 and MSR_IQ_COUNTERS.
The MSR_IQ_COUNTER4 counter in the 1Q group provides support for the PEBS.

Alternate counters in each group can be cascaded: the first counter in one pair can start the first
counter in the second pair and vice versa. A similar cascading is possible for the second counters
in each pair. For example, within the BPU group of counters, MSR_BPU_COUNTERQO can start
MSR_BPU COUNTER2 and vice versa, and MSR_BPU COUNTER1 can start
MSR_BPU_COUNTERS and vice versa (see Section 18.13.6.6, “Cascading Counters”). The
cascade flag in the CCCR register for the performance counter enables the cascading of
counters.

Each performance counter is 40-bits wide (see Figure 18-13). The RDPMC instruction has been
enhanced in the Pentium 4 and Intel Xeon processors to allow reading of either the full counter-
width (40-bits) or the low 32-bits of the counter. Reading the low 32-bits is faster than reading
the full counter width and is appropriate in situations where the count is small enough to be
contained in 32 bits.

The RDPMC instruction can be used by programs or procedures running at any privilege level
and in virtual-8086 mode to read these counters. The PCE flag in control register CR4 (bit 8)
allows the use of this instruction to be restricted to only programs and procedures running at
privilege level 0.

31 0

Counter

63 39 32

Reserved Counter

Figure 18-13. Performance Counter (Pentium 4 and Intel Xeon Processors)

The RDPMC instruction is not serializing or ordered with other instructions. Thus, it does not
necessarily wait until all previous instructions have been executed before reading the counter.
Similarly, subsequent instructions may begin execution before the RDPMC instruction opera-
tion is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the perfor-
mance counters, using the RDMSR and WRMSR instructions. A secure operating system would
clear the PCE flag during system initialization to disable direct user access to the performance-
monitoring counters, but provide a user-accessible programming interface that emulates the
RDPMC instruction.

Vol. 3B 18-45

DEBUGGING AND PERFORMANCE MONITORING

Some uses of the performance counters require the counters to be preset before counting begins
(that is, before the counter is enabled). This can be accomplished by writing to the counter using
the WRMSR instruction. To set a counter to a specified number of counts before overflow, enter
a 2s complement negative integer in the counter. The counter will then count from the preset
value up to -1 and overflow. Writing to a performance counter in a Pentium 4 or Intel Xeon
processor with the WRMSR instruction causes all 40 bits of the counter to be written.

18.13.3 CCCR MSRs

Each of the 18 performance counters in a Pentium 4 or Intel Xeon processor has one CCCR
MSR associated with it (see Table 18-11). The CCCRs control the filtering and counting of
events as well as interrupt generation. Figure 18-14 shows the layout of an CCCR MSR. The
functions of the flags and fields are as follows:

® Enable flag, bit 12 — When set, enables counting; when clear, the counter is disabled.
This flag is cleared on reset.

® ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to select events
to be counted with the counter associated with the CCCR.

® Compare flag, bit 18 — When set, enables filtering of the event count; when clear,
disables filtering. The filtering method is selected with the threshold, complement, and
edge flags.

® Complement flag, bit 19 — Selects how the incoming event count is compared with the
threshold value. When set, event counts that are less than or equal to the threshold value
result in a single count being delivered to the performance counter; when clear, counts
greater than the threshold value result in a count being delivered to the performance
counter (see Section 18.13.6.2, “Filtering Events”). The complement flag is not active
unless the compare flag is set.

® Threshold field, bits 20 through 23 — Selects the threshold value to be used for compar-
isons. The processor examines this field only when the compare flag is set, and uses the
complement flag setting to determine the type of threshold comparison to be made. The
useful range of values that can be entered in this field depend on the type of event being
counted (see Section 18.13.6.2, “Filtering Events”).

® Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge detection of the
threshold comparison output for filtering event counts; when clear, rising edge detection is
disabled. This flag is active only when the compare flag is set.

18-46 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

l:l Reserved

313029 2726252423 201918 1716 15 131211 0

Threshold ESCR Reserved
Select

Enable
Reserved: Must be set to 11B
Compare
Complement
Edge
FORCE_OVF
OVF_PMI
Cascade
OVF

63 32

Reserved

Figure 18-14. Counter Configuration Control Register (CCCR)

FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every counter
increment; when clear, overflow only occurs when the counter actually overflows.

OVF_PMI flag, bit 26 — When set, causes a performance monitor interrupt (PMI) to be
generated when the counter overflows occurs; when clear, disables PMI generation. Note
that the PMI is generated on the next event count after the counter has overflowed.

Cascade flag, bit 30 — When set, enables counting on one counter of a counter pair when
its alternate counter in the other the counter pair in the same counter group overflows (see
Section 18.13.2, “Performance Counters,” for further details); when clear, disables
cascading of counters.

OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag is a
sticky flag that must be explicitly cleared by software.

The CCCRs are initialized to all Os on reset.

The events that an enabled performance counter actually counts are selected and filtered by the
following flags and fields in the ESCR and CCCR registers and in the qualification order given:

1.

The event select and event mask fields in the ESCR select a class of events to be counted
and one or more event types within the class, respectively.

The OS and USR flags in the ESCR selected the privilege levels at which events will be
counted.

Vol. 3B 18-47

DEBUGGING AND PERFORMANCE MONITORING

3. The ESCR select field of the CCCR selects the ESCR. Since each counter has several
ESCRs associated with it, one ESCR must be chosen to select the classes of events that
may be counted.

4. The compare and complement flags and the threshold field of the CCCR select an optional
threshold to be used in qualifying an event count.

5. The edge flag in the CCCR allows events to be counted only on rising-edge transitions.

The qualification order in the above list implies that the filtered output of one “stage” forms the
input for the next. For instance, events filtered using the privilege level flags can be further qual-
ified by the compare and complement flags and the threshold field, and an event that matched
the threshold criteria, can be further qualified by edge detection.

The uses of the flags and fields in the CCCRs are discussed in greater detail in Section 18.13.6,
“Programming the Performance Counters for Non-Retirement Events.”

18.13.4 Debug Store (DS) Mechanism

The debug store (DS) mechanism was introduced in the Pentium 4 and Intel Xeon processors to
allow various types of information to be collected in memory-resident buffers for use in debug-
ging and tuning programs. For the Pentium 4 and Intel Xeon processors, the DS mechanism is
used to collect two types of information: branch records and precise event-based sampling
(PEBS) records. The availability of the DS mechanism in a processor is indicated with the DS
feature flag (bit 21) returned by the CPUID instruction.

See Section 18.5.8, “Branch Trace Store (BTS),” and Section 18.13.8, “Precise Event-Based
Sampling (PEBS),” for a description of these facilities. Records collected with the DS mecha-
nism are saved in the DS save area. See Section 18.13.5, “DS Save Area.”

18.13.5 DS Save Area

The debug store (DS) save area is a software-designated area of memory that is used to collect
the following two types of information:

® Branch records — When the BTS flag in the MSR_DEBUGCTLA MSR is set, a branch
record is stored in the BTS buffer in the DS save area whenever a taken branch, interrupt,
or exception is detected.

® PEBS records — When a performance counter is configured for PEBS, a PEBS record is
stored in the PEBS buffer in the DS save area whenever a counter overflow occurs. This
record contains the architectural state of the processor (state of the 8 general purpose
registers, EIP register, and EFLAGS register) at the time of the event that caused the
counter to overflow. When the state information has been logged, the counter is automati-
cally reset to a preselected value, and event counting begins again. This feature is available
only for a subset of the Pentium 4 and Intel Xeon processors’ performance events.

18-48 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

NOTES

DS save area and recording mechanism is not available in the SMM. The
feature is disabled on transition to the SMM mode. Similarly DS recording is
disabled on the generation of a machine check exception and is cleared on
processor RESET and INIT. DS recording is available in real address mode.

The BTS and PEBS facilities may not be available on all IA-32 processors.
The availability of these facilities is indicated with the BTS_ UNAVAILABLE
and PEBS_UNAVAILABLE flags, respectively, in the IA32_MISC_ENABLE
MSR (see Table B-1 in Appendix A, “Performance-Monitoring Events”).

The DS save area is divided into three parts (see Figure 18-15): buffer management area, branch
trace store (BTS) buffer, and PEBS buffer. The buffer management area is used to define the
location and size of the BTS and PEBS buffers. The processor then uses the buffer management
area to keep track of the branch and/or PEBS records in their respective buffers and to record
the performance counter reset value. The linear address of the first byte of the DS buffer
management area is specified with the IA32_DS_AREA MSR.

The fields in the buffer management area are as follows:

BTS buffer base — Linear address of the first byte of the BTS buffer. This address should
point to a natural doubleword boundary.

BTS index — Linear address of the first byte of the next BTS record to be written to.
Initially, this address should be the same as the address in the BTS buffer base field.

BTS absolute maximum — Linear address of the next byte past the end of the BTS
buffer. This address should be a multiple of the BTS record size (12 bytes) plus 1.

BTS interrupt threshold — Linear address of the BTS record on which an interrupt is to
be generated. This address must point to an offset from the BTS buffer base that is a
multiple of the BTS record size. Also, it must be several records short of the BTS absolute
maximum address to allow a pending interrupt to be handled prior to processor writing the
BTS absolute maximum record.

PEBS buffer base — Linear address of the first byte of the PEBS buffer. This address
should point to a natural doubleword boundary.

PEBS index — Linear address of the first byte of the next PEBS record to be written to.
Initially, this address should be the same as the address in the PEBS buffer base field.

Vol. 3B 18-49

DEBUGGING AND PERFORMANCE MONITORING

BTS Buffer Base

BTS Index

BTS Absolute
Maximum

BTS Interrupt
Threshold

PEBS Buffer Base|

PEBS Index

PEBS Absolute
Maximum

PEBS Interrupt
Threshold

PEBS
Counter Reset

Reserved

IA32_DS_AREA MSR

DS Buffer Management Area

OH———>»

4H
8H

CH

10H
14H —
18H—
1CH

20H

24H

30H

BTS Buffer

Branch Record 0

Branch Record 1

Branch Record n

PEBS Buffer

PEBS Record 0

PEBS Record 1

\i

.

PEBS Record n

® PEBS absolute maximum — Linear address of the next byte past the end of the PEBS
buffer. This address should be a multiple of the PEBS record size (40 bytes) plus 1.

¢ PEBS interrupt threshold — Linear address of the PEBS record on which an interrupt is
to be generated. This address must point to an offset from the PEBS buffer base that is a
multiple of the PEBS record size. Also, it must be several records short of the PEBS
absolute maximum address to allow a pending interrupt to be handled prior to processor

Figure 18-15. DS Save Area

writing the PEBS absolute maximum record.

18-50 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

®* PEBS counter reset value — A 40-bit value that the counter is to be reset to after state
information has collected following counter overflow. This value allows state information
to be collected after a preset number of events have been counted.

Figures 18-16 shows the structure of a 12-byte branch record in the BTS buffer. The fields in
each record are as follows:

® Last branch from — Linear address of the instruction from which the branch, interrupt, or
exception was taken.

® Last branch to — Linear address of the branch target or the first instruction in the
interrupt or exception service routine.

® Branch predicted — Bit 4 of field indicates whether the branch that was taken was
predicted (set) or not predicted (clear).

31 4 0
Last Branch From OH
Last Branch To 4H
8H
Branch Predicted 44

Figure 18-16. Branch Trace Record Format

Figures 18-18 shows the structure of the 40-byte PEBS records. Nominally the register values
are those at the beginning of the instruction that caused the event. However, there are cases
where the registers may be logged in a partially modified state. The linear IP field shows the
value in the EIP register translated from an offset into the current code segment to a linear
address.

18.13.5.1 DS Save Area and IA-32e Mode Operation

When 1A-32e mode is active (IA32_EFER.LMA is set), the structure of the DS save area is
shown in Figure 18-17. The organization of each field in IA-32e mode operation is similar to
that of non-1A-32e mode operation. However, each field now stores a 64-bit address. The
I1A32_DS_AREA MSR holds the 64-bit linear address of the first byte of the DS buffer manage-
ment area.

When 1A-32e mode is active, the structure of a branch record is similar to that shown in
Figure 18-16, but each field is 8 bytes in length. The structure of a PEBS record is similar to that
shown in Figure 18-18, but each field is 8 bytes in length. The size of a PEBS record is 80 bytes.

Vol. 3B 18-51

DEBUGGING AND PERFORMANCE MONITORING

IA32_DS_AREA MSR

DS Buffer Management Area BTS Buffer
BTS Buffer Base | OH——— >
Branch Record 0
BTS Index 8H
BTS Absolute
Maximum 10H
BTS Interrupt Branch Record 1
Threshold 18H
PEBS Buffer Base| 20H
PEBS Index 28H —
PEBS Absolute
Maximum 30H—)
Branch Record n
PEBS Interrupt | 3g
Threshold L
40H
PEBS
Counter Reset 48H PEBS Buffer
R d
eserve 50H PEBS Record 0
PEBS Record 1
PEBS Record n
B —

Figure 18-17. 1A-32e Mode DS Save Area

18.13.6 Programming the Performance Counters for Non-
Retirement Events

To program a performance counter and begin counting events, software must perform the
following operations.

1. Select the event or events to be counted.

2. For each event, select an ESCR that supports the event using the values in the ESCR
Restrictions row in Table A-1.

18-52 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

3. Match the CCCR Select value and ESCR name in Table A-1 to the values listed ESCR
Name and ESCR No. columns in Table 15-4, to select a CCCR and performance counter.

4. Setup an ESCR for the specific event or events to be counted and the privilege levels they
are to be counted at.

5. Set up the CCCR for the performance counter to be used to count the events, by selecting
the chosen the ESCR and selecting the desired event filters.

6. Set up the CCCR for optional cascading of event counts, so that when the selected counter
overflows its alternate counter starts counting.

7. Set up the CCCR to generate an optional performance monitor interrupt (PMI) when the
counter overflows. (If PMI generation is enabled, the local APIC must be set up to deliver
the interrupt to the processor and a handler for the interrupt must be in place.)

8. Enable the counter to begin counting.

31 0
EFLAGS OH
Linear IP 4H

EAX 8H
EBX CH
ECX 10H
EDX 14H
ESI 18H
EDI 1CH
EBP 20H
ESP 24H

Figure 18-18. PEBS Record Format

18.13.6.1 Selecting Events to Count

Table A-1 lists a set of non-retirement events for the Pentium 4 and Intel Xeon processors. For
each event listed in Table A-1, specific setup information is provided. Figure 18-12 gives an
example of one of the non-retirement events from Table A-1.

In Tables A-1 and A-2, the name of the event is listed in the Event Name column and various
parameters that define the event and other information are listed in the Event Parameters
column. The Parameter Value and Description columns give specific parameters for the event
and additional description information. The entries in the Event Parameters column are
described below.

Vol. 3B 18-53

DEBUGGING AND PERFORMANCE MONITORING

® ESCR restrictions — Lists the ESCRs that can be used to program the event. Typically
only one ESCR is needed to count an event.

Table 18-12. Event Example

Event Name

Event Parameters

Parameter Value

Description

Branch_retired

Counts the retirement of a branch.
Specify one or more mask bits to
select any combination of branch
taken, not-taken, predicted and
mispredicted.

ESCR restrictions

MSR_CRU_ESCR?2
MSR_CRU_ESCR3

See Table 15-3 for the addresses of
the ESCR MSRs

Counter numbers per
ESCR

ESCR2: 12, 13, 16
ESCR3: 14, 15, 17

The counter numbers associated
with each ESCR are provided. The

performance counters and
corresponding CCCRs can be
obtained from Table 15-3.

ESCR Event Select 06H ESCR[31:25]
ESCR Event Mask ESCR[24:9],
Bit 0: MMNP Branch Not-taken Predicted,
1: MMNM Branch Not-taken Mispredicted,
2: MMTP Branch Taken Predicted,
3: MMTM Branch Taken Mispredicted.
CCCR Select 05H CCCRJ[15:13]

Event Specific Notes P6: EMON_BR_INST_RETIRED

Can Support PEBS No

Requires Additional No
MSRs for Tagging

® Counter numbers per ESCR — Lists which performance counters are associated with
each ESCR. Table 18-11 gives the name of the counter and CCCR for each counter
number. Typically only one counter is needed to count the event.

® ESCR event select — Gives the value to be placed in the event select field of the ESCR to
select the event.

® ESCR event mask — Gives the value to be placed in the Event Mask field of the ESCR to
select sub-events to be counted. The parameter value column defines the documented bits
with relative bit position offset starting from 0 (where the absolute bit position of relative
offset 0 is bit 9 of the ESCR. All undocumented bits are reserved and should be set to 0.

® CCCR select — Gives the value to be placed in the ESCR select field of the CCCR
associated with the counter to select the ESCR to be used to define the event. (Note that
this value is not the address of the ESCR; instead, it is the number of the ESCR from the
Number column in Table 18-11.)

18-54 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

Event specific notes — Gives additional information about the event, such as the name of
the same or a similar event defined for the P6 family processors.

Can support PEBS — Indicates if PEBS is supported for the event. (This information is
only supplied for at-retirement events listed in Table A-2.)

Requires additional MSR for tagging — Indicates which if any additional MSRs must
be programmed to count the events. (This information is only supplied for the at-retirement
events listed in Table A-2.)

NOTE

The performance-monitoring events listed in Appendix A, “Performance-
Monitoring Events” are intended to be used as guides for performance tuning.
The counter values reported are not guaranteed to be absolutely accurate and
should be used as a relative guide for tuning. Known discrepancies are
documented where applicable.

The following procedure shows how to set up a performance counter for basic counting; that is,
the counter is set up to count a specified event indefinitely, wrapping around whenever it reaches
its maximum count. This procedure is continued through the following four sections.

Using the information given in Table A-1, an event to be counted can be selected as follows:

1.
2.
3.

Select the event to be counted.
Select the ESCR to be used to select events to be counted from the ESCRs field.

Select the number of the counter to be used to count the event from the Counter Numbers
Per ESCR field.

Determine the name of the counter and the CCCR associated with the counter, and
determine the MSR addresses of the counter, CCCR, and ESCR from Table 18-11.

Use the WRMSR instruction to write the ESCR Event Select and ESCR Event Mask
values from Table A-1 into the appropriate fields in the ESCR. At the same time set or
clear the USR and OS flags in the ESCR as desired.

Use the WRMSR instruction to write the CCCR Select value from Table A-1 into the
appropriate field in the CCCR.

NOTE

Typically all the fields and flags of the CCCR will be written with one
WRMSR instruction; however, in this procedure, several WRMSR writes are
used to more clearly demonstrate the uses of the various CCCR fields and
flags.

This setup procedure is continued in the next section, Section 18.13.6.2, “Filtering Events.”

Vol. 3B 18-55

DEBUGGING AND PERFORMANCE MONITORING

18.13.6.2 Filtering Events

Each counter receives up to 4 input lines from the processor hardware from which it is counting
events. The counter treats these inputs as binary inputs (input 0 has a value of 1, input 1 has a
value of 2, input 3 has a value of 4, and input 3 has a value of 8). When a counter is enabled, it
adds this binary input value to the counter value on each clock cycle. For each clock cycle, the
value added to the counter can then range from 0 (no event) to 15.

For many events, only the 0 input line is active, so the counter is merely counting the clock
cycles during which the 0 input is asserted. However, for some events two or more input lines
are used. Here, the counters threshold setting can be used to filter events. The compare, comple-
ment, threshold, and edge fields control the filtering of counter increments by input value.

If the compare flag is set, then a “greater than” or a “less than or equal to” comparison of the
input value vs. a threshold value can be made. The complement flag selects “less than or equal
to” (flag set) or “greater than” (flag clear). The threshold field selects a threshold value of from
0 to 15. For example, if the complement flag is cleared and the threshold field is set to 6, than
any input value of 7 or greater on the 4 inputs to the counter will cause the counter to be incre-
mented by 1, and any value less than 7 will cause an increment of 0 (or no increment) of the
counter. Conversely, if the complement flag is set, any value from 0 to 6 will increment the
counter and any value from 7 to 15 will not increment the counter. Note that when a threshold
condition has been satisfied, the input to the counter is always 1, not the input value that is
presented to the threshold filter.

The edge flag provides further filtering of the counter inputs when a threshold comparison is
being made. The edge flag is only active when the compare flag is set. When the edge flag is set,
the resulting output from the threshold filter (a value of 0 or 1) is used as an input to the edge
filter. Each clock cycle, the edge filter examines the last and current input values and sends a
count to the counter only when it detects a “rising edge” event; that is, a false-to-true transition.
Figure 18-19 illustrates rising edge filtering.

The following procedure shows how to configure a CCCR to filter events using the threshold
filter and the edge filter. This procedure is a continuation of the setup procedure introduced in
Section 18.13.6.1, “Selecting Events to Count.”

7. (Optional) To set up the counter for threshold filtering, use the WRMSR instruction to
write values in the CCCR compare and complement flags and the threshold field:

— Set the compare flag.

— Set or clear the complement flag for less than or equal to or greater than comparisons,
respectively.

— Enter a value from 0 to 15 in the threshold field.
8. (Optional) Select rising edge filtering by setting the CCCR edge flag.

This setup procedure is continued in the next section, Section 18.13.6.3, “Starting Event
Counting.”

18-56 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

Output from
Threshold Filter

Counter Increments
On Rising Edge T T
(False-to-True)

Figure 18-19. Effects of Edge Filtering

18.13.6.3 Starting Event Counting

Event counting by a performance counter can be initiated in either of two ways. The typical way
is to set the enable flag in the counter’s CCCR. Following the instruction to set the enable flag,
event counting begins and continues until it is stopped (see Section 18.13.6.5, “Halting Event
Counting”).

The following procedural step shows how to start event counting. This step is a continuation of
the setup procedure introduced in Section 18.13.6.2, “Filtering Events.”

9. To start event counting, use the WRMSR instruction to set the CCCR enable flag for the
performance counter.

This setup procedure is continued in the next section, Section 18.13.6.4, “Reading a Perfor-
mance Counter’s Count.”

The second way that a counter can be started by using the cascade feature. Here, the overflow
of one counter automatically starts its alternate counter (see Section 18.13.6.6, “Cascading
Counters™).

18.13.6.4 Reading a Performance Counter’s Count

The Pentium 4 and Intel Xeon processors’ performance counters can be read using either the
RDPMC or RDMSR instructions. The enhanced functions of the RDPMC instruction (including
fast read) are described in Section 18.13.2, “Performance Counters.” These instructions can be
used to read a performance counter while it is counting or when it is stopped.

The following procedural step shows how to read the event counter. This step is a continuation
of the setup procedure introduced in Section 18.13.6.3, “Starting Event Counting.”

10. To read a performance counters current event count, execute the RDPMC instruction with
the counter number obtained from Table 18-11 used as an operand.

This setup procedure is continued in the next section, Section 18.13.6.5, “Halting Event
Counting.”

Vol. 3B 18-57

DEBUGGING AND PERFORMANCE MONITORING

18.13.6.5 Halting Event Counting

After a performance counter has been started (enabled), it continues counting indefinitely. If the
counter overflows (goes one count past its maximum count), it wraps around and continues
counting. When the counter wraps around, it sets its OVF flag to indicate that the counter has
overflowed. The OVF flag is a sticky flag that indicates that the counter has overflowed at least
once since the OVF bit was last cleared.

To halt counting, the CCCR enable flag for the counter must be cleared.

The following procedural step shows how to stop event counting. This step is a continuation of
the setup procedure introduced in Section 18.13.6.4, “Reading a Performance Counter’s Count.”

11. To stop event counting, execute a WRMSR instruction to clear the CCCR enable flag for
the performance counter.

To halt a cascaded counter (a counter that was started when its alternate counter overflowed),
either clear the Cascade flag in the cascaded counter’s CCCR MSR or clear the OVF flag in the
alternate counter’s CCCR MSR.

18.13.6.6 Cascading Counters

As described in Section 18.13.2, “Performance Counters,” eighteen performance counters are
implemented in pairs. Nine pairs of counters and associated CCCRs are further organized as four
blocks: BPU, MS, FLAME, and 1Q (see Table 18-11). The first three blocks contain two pairs
each. The 1Q block contains three pairs of counters (12 through 17) with associated CCCRs
(MSR_IQ_CCCRO through MSR_IQ_CCCR5).

The first 8 counter pairs (0 through 15) can be programmed using ESCRs to detect performance
monitoring events. Pairs of ESCRs in each of the four blocks allow many different types of
events to be counted. The cascade flag in the CCCR MSR allows nested monitoring of events
to be performed by cascading one counter to a second counter located in another pair in the same
block (see Figure 18-14 for the location of the flag).

Counters 0 and 1 form the first pair in the BPU block. Either counter 0 or 1 can be programmed
to detect an event via MSR_MO B_ESCRO0. Counters 0 and 2 can be cascaded in any order, as
can counters 1 and 3. It’s possible to set up 4 counters in the same block to cascade on two pairs
of independent events. The pairing described also applies to subsequent blocks. Since the 1Q
PUB has two extra counters, cascading operates somewhat differently if 16 and 17 are involved.
In the 1Q block, counter 16 can only be cascaded from counter 14 (not from 12); counter 14
cannot be cascaded from counter 16 using the CCCR cascade bit mechanism. Similar restric-
tions apply to counter 17.

Example 18-19. Counting Events

Assume a scenario where counter X is set up to count 200 occurrences of event A; then counter
Y is set up to count 400 occurrences of event B. Each counter is set up to count a specific event
and overflow to the next counter. In the above example, counter X is preset for a count of -200
and counter Y for a count of -400; this setup causes the counters to overflow on the 200th and
400th counts respectively.

18-58 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

Continuing this scenario, counter X is set up to count indefinitely and wraparound on overflow.
This is described in the basic performance counter setup procedure that begins in Section
18.13.6.1, “Selecting Events to Count.” Counter Y is set up with the cascade flag in its associ-
ated CCCR MSR set to 1 and its enable flag set to 0.

To begin the nested counting, the enable bit for the counter X is set. Once enabled, counter X
counts until it overflows. At this point, counter Y is automatically enabled and begins counting.
Thus counter X overflows after 200 occurrences of event A. Counter Y then starts, counting
400 occurrences of event B before overflowing. When performance counters are cascaded, the
counter Y would typically be set up to generate an interrupt on overflow. This is described in
Section 18.13.6.9, “Generating an Interrupt on Overflow.”

The cascading counters mechanism can be used to count a single event. The counting begins on
one counter then continues on the second counter after the first counter overflows. This tech-
nique doubles the number of event counts that can be recorded, since the contents of the two
counters can be added together.

18.13.6.7 EXTENDED CASCADING

Extended cascading is a model-specific feature in the Intel NetBurst microarchitecture. The
feature is available to Pentium 4 and Xeon processor family with family encoding of 15 and
model encoding greater than or equal to 2. This feature uses bit 11 in CCCRs associated with
the 1Q block. See the table below.

Table 18-13. CCR Names and Bit Positions

CCCR Name:Bit Position Bit Name Description

MSR_IQ_CCCR1j2:11 Reserved

MSR_IQ_CCCRO0:11 CASCNT4INTOO Allow counter 4 to cascade into
counter 0

MSR_IQ_CCCR3:11 CASCNTS5INTO3 Allow counter 5 to cascade into
counter 3

MSR_IQ_CCCR4:11 CASCNTSINTO4 Allow counter 5 to cascade into
counter 4

MSR_IQ_CCCR5:11 CASCNT4INTOS5 Allow counter 4 to cascade into
counter 5

The extended cascading feature can be adapted to the sampling usage model for performance
monitoring. However, it is known that performance counters do not generate PMI in cascade
mode or extended cascade mode due to an erratum. This erratum applies to Pentium 4 and Intel
Xeon processors with model encoding of 2. For Pentium 4 and Intel Xeon processors with model
encoding of 0 and 1, the erratum applies to processors with stepping encoding greater than 09H.

Vol. 3B 18-59

DEBUGGING AND PERFORMANCE MONITORING

18.13.6.8 EXTENDED CASCADING

Counters 16 and 17 in the 1Q block are frequently used in precise event-based sampling or at-
retirement counting of events indicating a stalled condition in the pipeline. Neither counter 16
or 17 can initiate the cascading of counter pairs using the cascade bit in a CCCR.

Extended cascading permits performance monitoring tools to use counters 16 and 17 to initiate
cascading of two counters in the 1Q block. Extended cascading from counter 16 and 17 is
conceptually similar to cascading other counters, but instead of using CASCADE bit of a
CCCR, one of the four CASCNTXINTOY bits is used.

Example 18-20. Scenario for Extended Cascading

A usage scenario for extended cascading is to sample instructions retired on logical processor 1
after the first 4096 instructions retired on logical processor 0. A procedure to program extended
cascading in this scenario is outlined below:

1. Write the value 0 to counter 12.

2. Write the value 04000603H to MSR_CRU_ESCRO (corresponding to selecting the
NBOGNTAG and NBOGTAG event masks with qualification restricted to logical
processor 1).

3. Write the value 04038800H to MSR_IQ_CCCRO. This enables CASCNT4INTOO and
OVF_PMI. An ISR can sample on instruction addresses in this case (do not set ENABLE,
or CASCADE).

4. Write the value FFFFFOOOH into counter 16.

5. Write the value 0400060CH to MSR_CRU_ESCR2 (corresponding to selecting the
NBOGNTAG and NBOGTAG event masks with qualification restricted to logical
processor 0).

6. Write the value 00039000H to MSR_IQ_CCCR4 (set ENABLE bit, but not OVF_PMI).

Another use for cascading is to locate stalled execution in a multithreaded application. Assume
MOB replays in thread B cause thread A to stall. Getting a sample of the stalled execution in
this scenario could be accomplished by:

1. Set up counter B to count MOB replays on thread B.

2. Set up counter A to count resource stalls on thread A; set its force overflow bit and the
appropriate CASCNTXINTOY bit.

3. Use the performance monitoring interrupt to capture the program execution data of the
stalled thread.

18.13.6.9 Generating an Interrupt on Overflow

Any performance counter can be configured to generate a performance monitor interrupt (PMI)
if the counter overflows. The PMI interrupt service routine can then collect information about
the state of the processor or program when overflow occurred. This information can then be used

18-60 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

with a tool like the Intel® VTune™ Performance Analyzer to analyze and tune program perfor-
mance.

To enable an interrupt on counter overflow, the OVR_PMI flag in the counter’s associated
CCCR MSR must be set. When overflow occurs, a PMI is generated through the local APIC.
(Here, the performance counter entry in the local vector table [LVT] is set up to deliver the inter-
rupt generated by the PMI to the processor.)

The PMI service routine can use the OVF flag to determine which counter overflowed when
multiple counters have been configured to generate PMIs. Also, note that these processors mask
PMIs upon receiving an interrupt. Clear this condition before leaving the interrupt handler.

When generating interrupts on overflow, the performance counter being used should be preset
to value that will cause an overflow after a specified number of events are counted plus 1. The
simplest way to select the preset value is to write a negative number into the counter, as
described in Section 18.13.6.6, “Cascading Counters.” Here, however, if an interrupt is to be
generated after 100 event counts, the counter should be preset to minus 100 plus 1 (-100 + 1),
or -99. The counter will then overflow after it counts 99 events and generate an interrupt on the
next (100th) event counted. The difference of 1 for this count enables the interrupt to be gener-
ated immediately after the selected event count has been reached, instead of waiting for the over-
flow to be propagation through the counter.

Because of latency in the microarchitecture between the generation of events and the generation
of interrupts on overflow, it is sometimes difficult to generate an interrupt close to an event that
caused it. In these situations, the FORCE_OVF flag in the CCCR can be used to improve
reporting. Setting this flag causes the counter to overflow on every counter increment, which in
turn triggers an interrupt after every counter increment.

18.13.6.10 Counter Usage Guideline

There are some instances where the user must take care to configure counting logic properly, so
that it is not powered down. To use any ESCR, even when it is being used just for tagging, (any)
one of the counters that the particular ESCR (or its paired ESCR) can be connected to should be
enabled. If this is not done, 0 counts may result. Likewise, to use any counter, there must be
some event selected in a corresponding ESCR (other than no_event, which generally has a select
value of 0).

18.13.7 At-Retirement Counting

At-retirement counting provides a means counting only events that represent work committed
to architectural state and ignoring work that was performed speculatively and later discarded.

The Intel NetBurst microarchitecture used in the Pentium 4 and Intel Xeon processors performs
many speculative activities in an attempt to increase effective processing speeds. One example
of this speculative activity is branch prediction. The Pentium 4 and Intel Xeon processors typi-
cally predict the direction of branches and then decode and execute instructions down the
predicted path in anticipation of the actual branch decision. When a branch misprediction
occurs, the results of instructions that were decoded and executed down the mispredicted path

Vol. 3B 18-61

DEBUGGING AND PERFORMANCE MONITORING

are canceled. If a performance counter was set up to count all executed instructions, the count
would include instructions whose results were canceled as well as those whose results
committed to architectural state.

To provide finer granularity in event counting in these situations, the performance monitoring
facilities provided in the Pentium 4 and Intel Xeon processors provide a mechanism for tagging
events and then counting only those tagged events that represent committed results. This mech-
anism is called “at-retirement counting.”

Tables A-2 through A-6 list predefined at-retirement events and event metrics that can be used
to for tagging events when using at retirement counting. The following terminology is used in
describing at-retirement counting:

Bogus, non-bogus, retire — In at-retirement event descriptions, the term “bogus” refers
to instructions or pops that must be canceled because they are on a path taken from a
mispredicted branch. The terms “retired” and “non-bogus” refer to instructions or pops
along the path that results in committed architectural state changes as required by the
program being executed. Thus instructions and pops are either bogus or non-bogus, but not
both. Several of the Pentium 4 and Intel Xeon processors’ performance monitoring events
(such as, Instruction_Retired and Uops_Retired in Table A-2) can count instructions or
pops that are retired based on the characterization of bogus” versus non-bogus.

Tagging — Tagging is a means of marking pops that have encountered a particular
performance event so they can be counted at retirement. During the course of execution,
the same event can happen more than once per pop and a direct count of the event would
not provide an indication of how many pops encountered that event.

The tagging mechanisms allow a pop to be tagged once during its lifetime and thus
counted once at retirement. The retired suffix is used for performance metrics that
increment a count once per pop, rather than once per event. For example, a pop may
encounter a cache miss more than once during its life time, but a “Miss Retired” metric
(that counts the number of retired pops that encountered a cache miss) will increment only
once for that pop. A “Miss Retired” metric would be useful for characterizing the
performance of the cache hierarchy for a particular instruction sequence. Details of various
performance metrics and how these can be constructed using the Pentium 4 and Intel Xeon
processors performance events are provided in the Intel Pentium 4 Processor Optimization
Reference Manual (see Section 1.4, “Related Literature”™).

Replay — To maximize performance for the common case, the Intel NetBurst microarchi-
tecture aggressively schedules pops for execution before all the conditions for correct
execution are guaranteed to be satisfied. In the event that all of these conditions are not
satisfied, pops must be reissued. The mechanism that the Pentium 4 and Intel Xeon
processors use for this reissuing of pops is called replay. Some examples of replay causes
are cache misses, dependence violations, and unforeseen resource constraints. In normal
operation, some number of replays is common and unavoidable. An excessive number of
replays is an indication of a performance problem.

Assist — When the hardware needs the assistance of microcode to deal with some event,
the machine takes an assist. One example of this is an underflow condition in the input
operands of a floating-point operation. The hardware must internally modify the format of

18-62 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

the operands in order to perform the computation. Assists clear the entire machine of uops
before they begin and are costly.

18.13.7.1 Using At-Retirement Counting

The Pentium 4 and Intel Xeon processors allow counting both events and pops that encountered
a specified event. For a subset of the at-retirement events listed in Table A-2, a pop may be
tagged when it encounters that event. The tagging mechanisms can be used in non-precise event-
based sampling, and a subset of these mechanisms can be used in PEBS. There are four inde-
pendent tagging mechanisms, and each mechanism uses a different event to count pops tagged
with that mechanism:

®* Front-end tagging — This mechanism pertains to the tagging of pops that encountered
front-end events (for example, trace cache and instruction counts) and are counted with the
Front_end_event event

® Execution tagging — This mechanism pertains to the tagging of pops that encountered
execution events (for example, instruction types) and are counted with the
Execution_Event event.

® Replay tagging — This mechanism pertains to tagging of pops whose retirement is
replayed (for example, a cache miss) and are counted with the Replay_event event. Branch
mispredictions are also tagged with this mechanism.

® No tags — This mechanism does not use tags. It uses the Instr_retired and the Uops_
retired events.

Each tagging mechanism is independent from all others; that is, a pop that has been tagged using
one mechanism will not be detected with another mechanism’s tagged-pop detector. For
example, if pops are tagged using the front-end tagging mechanisms, the Replay_event will not
count those as tagged pops unless they are also tagged using the replay tagging mechanism.
However, execution tags allow up to four different types of pops to be counted at retirement
through execution tagging.

The independence of tagging mechanisms does not hold when using PEBS. When using PEBS,
only one tagging mechanism should be used at a time.

Certain kinds of pops that cannot be tagged, including 1/0, uncacheable and locked accesses,
returns, and far transfers.

Table A-2 lists the performance monitoring events that support at-retirement counting: specifi-
cally the Front_end_event, Execution_event, Replay_event, Inst retired and Uops_retired
events. The following sections describe the tagging mechanisms for using these events to tag
pop and count tagged pops.

Vol. 3B 18-63

DEBUGGING AND PERFORMANCE MONITORING

18.13.7.2 Tagging Mechanism for Front_end_event

The Front_end_event counts pops that have been tagged as encountering any of the following
events:

® uop decode events — Tagging uops for pop decode events requires specifying bits in the
ESCR associated with the performance-monitoring event, Uop_type.

® Trace cache events — Tagging pops for trace cache events may require specifying certain
bits in the MSR_TC_PRECISE_EVENT MSR (see Table A-4).

Table A-2 describes the Front_end_event and Table A-4 describes metrics that are used to set up
a Front_end_event count.

The MSRs specified in the Table A-2 that are supported by the front-end tagging mechanism
must be set and one or both of the NBOGUS and BOGUS bits in the Front_end_event event
mask must be set to count events. None of the events currently supported requires the use of the
MSR_TC_PRECISE_EVENT MSR.

18.13.7.3 Tagging Mechanism For Execution_event

Table A-2 describes the Execution_event and Table A-5 describes metrics that are used to set up
an Execution_event count.

The execution tagging mechanism differs from other tagging mechanisms in how it causes
tagging. One upstream ESCR is used to specify an event to detect and to specify a tag value (bits
5 through 8) to identify that event. A second downstream ESCR is used to detect pops that have
been tagged with that tag value identifier using Execution_event for the event selection.

The upstream ESCR that counts the event must have its tag enable flag (bit 4) set and must have
an appropriate tag value mask entered in its tag value field. The 4-bit tag value mask specifies
which of tag bits should be set for a particular pop. The value selected for the tag value should
coincide with the event mask selected in the downstream ESCR. For example, if a tag value of
1 is set, then the event mask of NBOGUSO should be enabled, correspondingly in the down-
stream ESCR. The downstream ESCR detects and counts tagged pops. The normal (not tag
value) mask bits in the downstream ESCR specify which tag bits to count. If any one of the tag
bits selected by the mask is set, the related counter is incremented by one. This mechanism is
summarized in the Table A-5 metrics that are supported by the execution tagging mechanism.
The tag enable and tag value bits are irrelevant for the downstream ESCR used to select the
Execution_event.

The four separate tag bits allow the user to simultaneously but distinctly count up to four execu-
tion events at retirement. (This applies for non-precise event-based sampling. There are addi-
tional restrictions for PEBS as noted in Section 18.13.8.3, “Setting Up the PEBS Buffer.”) It is
also possible to detect or count combinations of events by setting multiple tag value bits in the
upstream ESCR or multiple mask bits in the downstream ESCR. For example, use a tag value
of 3H in the upstream ESCR and use NBOGUSO/NBOGUS1 in the downstream ESCR event
mask.

18-64 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

18.13.7.4 Tagging Mechanism for Replay_event

Table A-2 describes the Replay_event and Table A-6 describes metrics that are used to set up an
Replay_event count.

The replay mechanism enables tagging of pops for a subset of all replays before retirement. Use
of the replay mechanism requires selecting the type of pop that may experience the replay in the
MSR_PEBS MATRIX VERT MSR and selecting the type of event in the
IA32_PEBS_ENABLE MSR. Replay tagging must also be enabled with the UOP_Tag flag (bit
24) in the IA32_PEBS_ENABLE MSR.

The Table A-6 lists the metrics that are support the replay tagging mechanism and the at-retire-
ment events that use the replay tagging mechanism, and specifies how the appropriate MSRs
need to be configured. The replay tags defined in Table A-5 also enable Precise Event-Based
Sampling (PEBS, see Section 15.9.8). Each of these replay tags can also be used in normal
sampling by not setting Bit 24 nor Bit 25 in IA_32 PEBS ENABLE_MSR. Each of these
metrics requires that the Replay_Event (see Table A-2) be used to count the tagged pops.

18.13.8 Precise Event-Based Sampling (PEBS)

The debug store (DS) mechanism in the Pentium 4 and Intel Xeon processors allow two types
of information to be collected for use in debugging and tuning programs: PEBS records and BTS
records. See Section 18.5.8, “Branch Trace Store (BTS),” for a description of the BTS mecha-
nism.

PEBS permits the saving of precise architectural information associated with one or more
performance events in the precise event records buffer, which is part of the DS save area (see
Section 18.13.5, “DS Save Area”). To use this mechanism, a counter is configured to overflow
after it has counted a preset number of events. When the counter overflows, the processor copies
the current state of the general-purpose and EFLAGS registers and instruction pointer into a
record in the precise event records buffer. The processor then resets the count in the performance
counter and restarts the counter. When the precise event records buffer is nearly full, an interrupt
is generated, allowing the precise event records to be saved. A circular buffer is not supported
for precise event records.

PEBS is supported only for a subset of the at-retirement events: Execution_event,
Front_end_event, and Replay_event. Also, PEBS can only carried out using the one perfor-
mance counter, the MSR_1Q_COUNTER4 MSR.

18.13.8.1 Detection of the Availability of the PEBS Facilities

The DS feature flag (bit 21) returned by the CPUID instruction indicates (when set) the avail-
ability of the DS mechanism in the processor, which supports the PEBS (and BTS) facilities.
When this bit is set, the following PEBS facilities are available:

® The PEBS_UNAVAILABLE flag in the 1A32_MISC_ENABLE MSR indicates (when
clear) the availability of the PEBS facilities, including the IA32_PEBS_ENABLE MSR.

Vol. 3B 18-65

DEBUGGING AND PERFORMANCE MONITORING

® The enable PEBS flag (bit 24) in the 1A32_PEBS ENABLE MSR allows PEBS to be
enabled (set) or disabled (clear).

® The IA32_DS_AREA MSR can be programmed to point to the DS save area.

18.13.8.2 Setting Up the DS Save Area

Section 18.5.8.2, “Setting Up the DS Save Area,” describes how to set up and enable the DS
save area. This procedure is common for PEBS and BTS.

18.13.8.3 Setting Up the PEBS Buffer

Only the MSR_IQ_COUNTER4 performance counter can be used for PEBS. Use the following
procedure to set up the processor and this counter for PEBS:

1. Set up the precise event buffering facilities. Place values in the precise event buffer base,
precise event index, precise event absolute maximum, and precise event interrupt
threshold, and precise event counter reset fields of the DS buffer management area (see
Figure 18-15) to set up the precise event records buffer in memory.

2. Enable PEBS. Set the Enable PEBS flag (bit 24) in 1A32_PEBS_ENABLE MSR.

3. Set up the MSR_IQ_COUNTER4 performance counter and its associated CCCR and one
or more ESCRs for PEBS as described in Tables A-2 through A-6.

18.13.8.4 Writing a PEBS Interrupt Service Routine

The PEBS facilities share the same interrupt vector and interrupt service routine (called the DS
ISR) with the non-precise event-based sampling and BTS facilities. To handle PEBS interrupts,
PEBS handler code must be included in the DS ISR. See Section 18.5.8.5, “Writing the DS Inter-
rupt Service Routine,” for guidelines for writing the DS ISR.

18.13.8.5 Other DS Mechanism Implications

The DS mechanism is not available in the SMM. It is disabled on transition to the SMM mode.
Similarly the DS mechanism is disabled on the generation of a machine check exception and is
cleared on processor RESET and INIT. The DS mechanism is available in real address mode.

18.13.9 Counting Clocks

The count of cycles, also known as clockticks, forms a the basis for measuring how long a
program takes to execute. Clockticks are also used as part of efficiency ratios like cycles per
instruction (CPI). Processor clocks may stop ticking under circumstances like the following:

® The processor is halted when there is nothing for the CPU to do. For example, the
processor may halt to save power while the computer is servicing an 1/0 request. When

18-66 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

Hyper-Threading Technology is enabled, both logical processors must be halted for
performance-monitoring counters to be powered down.

® The processor is asleep as a result of being halted or because of a power-management
scheme. There are different levels of sleep. In the some deep sleep levels, the time-stamp
counter stops counting.

There are three ways to count processor clock cycles to monitor performance. These are:

® Non-halted clockticks — Measures clock cycles in which the specified logical processor
is not halted and is not in any power-saving state. When Hyper-Threading Technology is
enabled, ticks can be measured on a per-logical-processor basis.

® Non-sleep clockticks — Measures clock cycles in which the specified physical processor
is not in a sleep mode or in a power-saving state. These ticks cannot be measured on a
logical-processor basis.

®* Time-stamp counter — Measures clock cycles in which the physical processor is not in
deep sleep. These ticks cannot be measured on a logical-processor basis.

Some processor models permit clock cycles to be measured when the physical processor is not
in deep sleep (by using the time-stamp counter and the RDTSC instruction). Note that such
sticks cannot be measured on a per-logical-processor basis. See Section 18.9, “Time-Stamp
Counter,” for detail on processor capabilities.

The first two methods use performance counters and can be set up to cause an interrupt upon
overflow (for sampling). They may also be useful where it is easier for a tool to read a perfor-
mance counter than to use a time stamp counter (the timestamp counter is accessed using the
RDTSC instruction).

For applications with a significant amount of 1/0, there are two ratios of interest:

®* Non-halted CPl1 — Non-halted clockticks/instructions retired measures the CPI for phases
where the CPU was being used. This ratio can be measured on a logical-processor basis
when Hyper-Threading Technology is enabled.

®* Nominal CPlI — Time-stamp counter ticks/instructions retired measures the CPI over the
duration of a program, including those periods when the machine halts while waiting for
1/0.

18.13.9.1 Non-Halted Clockticks
Use the following procedure to program ESCRs and CCCRs to obtain non-halted clock ticks:

1. Select an ESCR for the global_power_events and specify the RUNNING sub-event mask
and the desired TO_OS/T0_USR/T1_OS/T1_USR bits for the targeted processor.

2. Select an appropriate counter.
3. Enable counting in the CCCR for that counter by setting the enable bit.

Vol. 3B 18-67

DEBUGGING AND PERFORMANCE MONITORING

18.13.9.2 Non-Sleep Clockticks

Performance monitoring counters can be configured to count clockticks whenever the perfor-
mance monitoring hardware is not powered-down. To count Non-sleep Clockticks with a perfor-
mance-monitoring counter, do the following:

1. Select one of the 18 counters.

2. Select any of the ESCRs whose events the selected counter can count. Set its event select
to anything other than no_event. This may not seem necessary, but the counter may be
disabled if this is not done.

3. Turn threshold comparison on in the CCCR by setting the compare bit to 1.

4. Set the threshold to 15 and the complement to 1 in the CCCR. Since no event can exceed
this threshold, the threshold condition is met every cycle and the counter counts every
cycle. Note that this overrides any qualification (e.g. by CPL) specified in the ESCR.

5. Enable counting in the CCCR for the counter by setting the enable bit.

In most cases, the counts produced by the non-halted and non-sleep metrics are equivalent if the
physical package supports one logical processor and is not placed in a power-saving state. Oper-
ating systems may execute an HLT instruction and place a physical processor in a power-saving
state.

On processors that support Hyper-Threading Technology (HT), each physical package can
support two or more logical processors. Current implementation of HT provides two logical
processors for each physical processor. While both logical processors can execute two threads
simultaneously, one logical processor may halt to allow the other logical processor to execute
without sharing execution resources between two logical processors.

Non-halted Clockticks can be set up to count the number of processor clock cycles for each
logical processor whenever the logical processor is not halted (the count may include some
portion of the clock cycles for that logical processor to complete a transition to a halted state).
Physical processors that support HT enter into a power-saving state if all logical processors halt.

The Non-sleep Clockticks mechanism uses a filtering mechanism in CCCRs. The mechanism
will continue to increment as long as one logical processor is not halted or in a power-saving
state. Applications may cause a processor to enter into a power-saving state by using an OS
service that transfers control to an OS’s idle loop. The idle loop then may place the processor
into a power-saving state after an implementation-dependent period if there is no work for the
processor.

18.13.9.3 Incrementing the Time-Stamp Counter

The time-stamp counter increments when the clock signal on the system bus is active and when
the sleep pin is not asserted. The counter value can be read with the RDTSC instruction.

The time-stamp counter and the non-sleep clockticks count may not agree in all cases and for all
processors. See Section 18.9, “Time-Stamp Counter,” for more information on counter opera-
tion.

18-68 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

18.13.100perating System Implications

The DS mechanism can be used by the operating system as a debugging extension to facilitate
failure analysis. When using this facility, a 25 to 30 times slowdown can be expected due to the
effects of the trace store occurring on every taken branch.

Depending upon intended usage, the instruction pointers that are part of the branch records or
the PEBS records need to have an association with the corresponding process. One solution
requires the ability for the DS specific operating system module to be chained to the context
switch. A separate buffer can then be maintained for each process of interest and the MSR
pointing to the configuration area saved and setup appropriately on each context switch.

If the BTS facility has been enabled, then it must be disabled and state stored on transition of
the system to a sleep state in which processor context is lost. The state must be restored on return
from the sleep state.

It is required that an interrupt gate be used for the DS interrupt as opposed to a trap gate to
prevent the generation of an endless interrupt loop.

Pages that contain buffers must have mappings to the same physical address for all
processes/logical processors, such that any change to CR3 will not change DS addresses. If this
requirement cannot be satisfied (that is, the feature is enabled on a per thread/process basis), then
the operating system must ensure that the feature is enabled/disabled appropriately in the context
switch code.

18.14 PERFORMANCE MONITORING AND HYPER-THREADING
TECHNOLOGY

The performance monitoring capability of 1A-32 processors supporting Hyper-Threading Tech-
nology is similar to that on the Pentium 4 and Intel Xeon processors. However, the performance
monitoring capability is extended so that:

® The performance counters can be programmed to select events that are qualified by logical
processor IDs.

® Performance monitoring interrupts can be directed to a specific logical processor within
the physical processor.

This section describes the programming interfaces with respect to using performance counters,
qualifying events by logical processor IDs, additional programmable bits in ESCRs, and
CCCRs, as well as the special purpose IA32_PEBS_ENABLE, MSR_PEBS_MATRIX_VERT,
and MSR_TC_PRECISE_EVENT MSRs.

In Intel 1A-32 processors supporting Hyper-Threading Technology, these registers are shared
between the two logical processors in the physical processor. To allow these shared registers to
be used to monitor performance events on either logical processor or both, additional flags have
been added to the ESCR and CCCR MSRs and to the IA32_PEBS_ENABLE MSR. These addi-
tional flags and the effect of these flags on event monitoring while Hyper-Threading Technology
is active are described in the following sections.

Vol. 3B 18-69

DEBUGGING AND PERFORMANCE MONITORING

18.14.1 ESCR MSRs

Figure 18-20 shows the layout of an ESCR MSR in the Intel 1A-32 processors supporting Hyper
Threading Technology.

The functions of the flags and fields are as follows:

® T1 USR flag, bit 0 — When set, events are counted when thread 1 (logical processor 1) is
executing at a current privilege level (CPL) of 1, 2, or 3. These privilege levels are
generally used by application code and unprotected operating system code.

|:| Reserved
3130 2524 9 8 543210
Event Tag
Select Event Mask Value
Tag Enable4
TO_OS
TO_USR
T1_OS
T1_USR
63 32
Reserved

Figure 18-20. Event Selection Control Register (ESCR) for the Pentium 4 Processor, Intel
Xeon Processor and Intel Xeon Processor MP Supporting Hyper-Threading Technology

® T1 OSflag, bit 1 — When set, events are counted when thread 1 (logical processor 1) is
executing at CPL of 0. This privilege level is generally reserved for protected operating
system code. (When both the T1 OS and T1 _USR flags are set, thread 1 events are
counted at all privilege levels.)

® TO_USR flag, bit 2— When set, events are counted when thread 0 (logical processor 0) is
executing ata CPL of 1, 2, or 3.

® TO0_OS flag, bit 3 — When set, events are counted when thread 0 (logical processor 0) is
executing at CPL of 0. (When both the TO_OS and TO_USR flags are set, thread 0 events
are counted at all privilege levels.)

® Tag enable, bit 4 — When set, enables tagging of pops to assist in at-retirement event
counting; when clear, disables tagging. See Section 18.13.7, “At-Retirement Counting.”

® Tag value field, bits 5 through 8 — Selects a tag value to associate with a pop to assist in
at-retirement event counting.

18-70 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

®* Event mask field, bits 9 through 24 — Selects events to be counted from the event class
selected with the event select field.

® Event select field, bits 25 through 30) — Selects a class of events to be counted. The
events within this class that are counted are selected with the event mask field.

The TO_OS and TO_USR flags and the T1_OS and T1_USR flags allow event counting and
sampling to be specified for a specific logical processor (0 or 1) within an Intel Xeon processor
MP (See also: Section 7.5.5, “Identifying Logical Processors in an MP System,” in the 1A-32
Intel® Architecture Software Developer’s Manual, Volume 3A).

Not all performance monitoring events can be detected within an Intel Xeon processor MP on a
per logical processor basis (see Section 18.14.4, “Performance Monitoring Events”). Some sub-
events (specified by an event mask bits) are counted or sampled without regard to which logical
processor is associated with the detected event.

18.14.2 CCCR MSRs

Figure 18-21 shows the layout of a CCCR MSR in Intel 1A-32 processors supporting Hyper-
Threading Technology. The functions of the flags and fields are as follows:

® Enable flag, bit 12 — When set, enables counting; when clear, the counter is disabled.
This flag is cleared on reset

® ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to select events
to be counted with the counter associated with the CCCR.

® Active thread field, bits 16 and 17 — Enables counting depending on which logical
processors are active (executing a thread). This field enables filtering of events based on
the state (active or inactive) of the logical processors. The encodings of this field are as
follows:

00 — None. Count only when neither logical processor is active.

01 — Single. Count only when one logical processor is active (either 0 or 1).
10 — Both. Count only when both logical processors are active.

11 — Any. Count when either logical processor is active.

A halted logical processor or a logical processor in the “wait for SIPI” state is consid-
ered inactive.

® Compare flag, bit 18 — When set, enables filtering of the event count; when clear,
disables filtering. The filtering method is selected with the threshold, complement, and
edge flags.

Vol. 3B 18-71

DEBUGGING AND PERFORMANCE MONITORING

|:| Reserved

313029 2726252423 201918 1716 15 131211 0

Threshold ESCR Reserved
Select

Enable
Active Thread
Compare
Complement
Edge
FORCE_OVF
OVF_PMI_TO
OVF_PMI_T1
Cascade
OVF
63 32

Reserved

Figure 18-21. Counter Configuration Control Register (CCCR)

® Complement flag, bit 19 — Selects how the incoming event count is compared with the
threshold value. When set, event counts that are less than or equal to the threshold value
result in a single count being delivered to the performance counter; when clear, counts
greater than the threshold value result in a count being delivered to the performance
counter (see Section 18.13.6.2, “Filtering Events”). The compare flag is not active unless
the compare flag is set.

® Threshold field, bits 20 through 23 — Selects the threshold value to be used for compar-
isons. The processor examines this field only when the compare flag is set, and uses the
complement flag setting to determine the type of threshold comparison to be made. The
useful range of values that can be entered in this field depend on the type of event being
counted (see Section 18.13.6.2, “Filtering Events”).

® Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge detection of the
threshold comparison output for filtering event counts; when clear, rising edge detection is
disabled. This flag is active only when the compare flag is set.

®* FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every counter
increment; when clear, overflow only occurs when the counter actually overflows.

® OVF_PMI_TO flag, bit 26 — When set, causes a performance monitor interrupt (PMI) to
be sent to logical processor 0 when the counter overflows occurs; when clear, disables PMI
generation for logical processor 0. Note that the PMI is generate on the next event count
after the counter has overflowed.

18-72 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

®* OVF_PMI_T1 flag, bit 27 — When set, causes a performance monitor interrupt (PMI) to
be sent to logical processor 1 when the counter overflows occurs; when clear, disables PMI
generation for logical processor 1. Note that the PMI is generate on the next event count
after the counter has overflowed.

® Cascade flag, bit 30 — When set, enables counting on one counter of a counter pair when
its alternate counter in the other the counter pair in the same counter group overflows (see
Section 18.13.2, “Performance Counters,” for further details); when clear, disables
cascading of counters.

®* OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag is a
sticky flag that must be explicitly cleared by software.

18.14.3 IA32_PEBS_ENABLE MSR

In an 1A-32 processor supporting Hyper-Threading Technology, PEBS is enabled and qualified
with two bits in the IA32_PEBS_ENABLE MSR: bit 25 (ENABLE_PEBS_MY_THR) and 26
(ENABLE_PEBS_OTH_THR) respectively. These bits do not explicitly identify a specific
logical processor by logic processor ID(TO or T1); instead, they allow a software agent to enable
PEBS for subsequent threads of execution on the same logical processor on which the agent is
running (“my thread”) or for the other logical processor in the physical package on which the
agent is not running (“other thread”).

PEBS is supported for only a subset of the at-retirement events: Execution_event,
Front_end_event, and Replay_event. Also, PEBS can be carried out only with two performance
counters: MSR_1Q_CCCR4 (MSR address 370H) for logical processor 0 and MSR_IQ_CCCR5
(MSR address 371H) for logical processor 1.

Performance monitoring tools should use a processor affinity mask to bind the kernel mode
components that need to modify the ENABLE_PEBS MY_THR and
ENABLE_PEBS OTH_THR bits in the 1A32_PEBS_ENABLE MSR to a specific logical
processor. This is to prevent these kernel mode components from migrating between different
logical processors due to OS scheduling.

18.14.4 Performance Monitoring Events

All of the events listed in Table A-1 and A-2 are available in an Intel Xeon processor MP. When
Hyper-Threading Technology is active, many performance monitoring events can be can be
qualified by the logical processor 1D, which corresponds to bit O of the initial APIC ID. This
allows for counting an event in any or all of the logical processors. However, not all the events
have this logic processor specificity, or thread specificity.

Here, each event falls into one of two categories:

® Thread specific (TS) — The event can be qualified as occurring on a specific logical
processor.

Vol. 3B 18-73

DEBUGGING AND PERFORMANCE MONITORING

® Thread independent (T1) — The event cannot be qualified as being associated with a
specific logical processor.

Table A-7 gives logical processor specific information (TS or TI) for each of the events
described in Tables A-1 and A-2.

If for example, a TS event occurred in logical processor TO, the counting of the event (as shown
in Table 18-14) depends only on the setting of the TO_USR and TO_OS flags in the ESCR being
used to set up the event counter. The T1_USR and T1_OS flags have no effect on the count.

Table 18-14. Effect of Logical Processor and CPL Qualification for Logical-Processor-
Specific (TS) Events

T1_OS/T1_USR = 00

T1_OS/T1_USR =01

T1_OS/T1_USR =11

T1_OS/T1_USR =10

TO_OS/TO_USR =00

Zero count

Counts while T1 in
USR

Counts while T1 in
OS or USR

Counts while T1 in
oS

TO_OS/TO_USR =01

Counts while TO in
USR

Counts while TO in
USR or T1in USR

Counts while (a) TOin
USRor (b) T1in OS
or (c) TLin USR

Counts while (a) TOin
OSor(b) T1in OS

TO_OS/TO_USR = 11

Counts while TO in
OS or USR

Counts while (a) TOin
OS or (b) TO in USR
or(c) T1in USR

Counts irrespective of
CPL, TO, T1

Counts while (a) TO in
OS or (b) or TO in
USRor (c) T1in OS

TO_OS/TO_USR =10

Counts TO in OS

Counts TO in OS or
T1in USR

Counts while (a)TO in
Osor (b) T1in OS or
(c) T1in USR

Counts while (a) TO in
OSor(b) T1in OS

When a bit in the event mask field is Tl, the effect of specifying bit-0-3 of the associated ESCR
are described in Table 15-6. For events that are marked as Tl in Appendix A, the effect of selec-
tively specifying TO_USR, TO_OS, T1_USR, T1_OS bits is shown in Table 15-6.

Table 18-15. Effect of Logical Processor and CPL Qualification for Non-logical-
processor-specific (TI) Events

T1_OS/T1_USR = 00

T1_0S/T1_USR =01

T1_OS/T1_USR =11

T1_OS/T1_USR =10

TO_OS/TO_USR =00

Zero count

Counts while (a) TO in
USR or (b) T1in USR

Counts irrespective of
CPL,TO, T1

Counts while (a) TOin
OSor(b) TLin OS

TO_OS/TO_USR =01

Counts while (a) TOin
USR or (b) T1in USR

Counts while (&) TO in
USR or (b) T1 in USR

Counts irrespective of
CPL,TO, T1

Counts irrespective of
CPL,TO, T1

TO_OS/TO_USR =11

Counts irrespective of
CPL,TO, T1

Counts irrespective of
CPL, 7O, T1

Counts irrespective of
CPL,TO, T1

Counts irrespective of
CPL,TO, T1

TO_OS/TO_USR =0

Counts while (a) TOin
OSor (b) T1in OS

Counts irrespective of
CPL,TO, T1

Counts irrespective of
CPL,TO, T1

Counts while (a) TOin
OSor (b) T1in OS

18-74 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

18.15 PERFORMANCE MONITORING AND DUAL-CORE
TECHNOLOGY

The performance monitoring capability of dual-core processors duplicates the microarchitec-
tural resources of a single-core processor implementation. Each processor core has dedicated
performance monitoring resources.

In the case of Pentium D processor, each logical processor is associated with dedicated resources
for performance monitoring. In the case of Pentium processor Extreme edition, each processor
core has dedicated resources, but two logical processors in the same core share performance
monitoring resources (see Section 18.14, “Performance Monitoring and Hyper-Threading Tech-

nology™).

18.16 PERFORMANCE MONITORING ON 64-BIT INTEL XEON
PROCESSOR MP WITH UP TO 8-MBYTE L3 CACHE

For 64-bit Intel Xeon processor MP with up to 8-MByte L3 cache has a CPUID signature of
family [OFH], model [03H or 04H]. The performance monitoring capabilities and facilities
available to Pentium 4 and Intel Xeon processors with the same encoding values (see Section
18.10 through Section 18.14) also apply to a 64-bit Intel Xeon processor MP with an L3 cache.

The level 3 cache is connected between the system bus and 10Q through additional control
logic. See Figure 18-22.

[System Bus

!

iBUSQ and iSNPQ <

3rd Level Cache
8 or 4 -way

Processor Core
10Q < » (Front end, Execution,
Retirement, L1, L2

Figure 18-22. Block Diagram of 64-bit Intel Xeon Processor MP with 8-MByte L3

Vol. 3B 18-75

DEBUGGING AND PERFORMANCE MONITORING

Additional performance monitoring capabilities and facilities unique to the 64-bit Intel Xeon
processor MP with an L3 cache are described in this section. The facility for monitoring events
consists of a set of dedicated model-specific registers (MSRs), each dedicated to a specific
event. Programming of these MSRs requires using RDMSR/WRMSR instructions with 64-bit
values.

The lower 32-bits of the MSRs at addresses 107CC through 107D3 are treated as 32 bit perfor-
mance counter registers. These performance counters can be accessed using RDPMC instruction
with the index starting from 18 through 25. The EDX register returns zero when reading these
8 PMCs.

The performance monitoring capabilities consist of four events. These are:

® |BUSQ event — This event detects the occurrence of micro-architectural conditions
related to the iBUSQ wunit. It provides two MSRs: MSR_IFSB_IBUSQO and
MSR_IFSB_IBUSQ1. Configure sub-event qualification and enable/disable functions
using the high 32 bits of these MSRs. The low 32 bits act as a 32-bit event counter.
Counting starts after software writes a non-zero value to one or more of the upper 32 bits.
It freezes after software writes 00000000H to the upper 32 bits. See Figure 18-23.

MSR_IFSB_IBUSQx, Addresses: 107CCH and 107CDH [| Reserved
63 60 5958 57 56 55 4948 46 45 38 373635343332
1(1

Saturate 4‘

Fill_match
Eviction_match ——
L3_state_match
Snoop_match
Type_match
T1_match
TO_match

31 0

32 bit event count

Figure 18-23. MSR_IFSB_IBUSQx, Addresses: 107CCH and 107CDH

18-76 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

ISNPQ event — This event detects the occurrence of micro-architectural conditions
related to the iSNPQ wunit. It provides two MSRs: MSR_IFSB_ISNPQO and
MSR_IFSB_ISNPQL1. Configure sub-event qualifications and enable/disable functions
using the high 32 bits of the MSRs. The low 32-bits act as a 32-bit event counter. Counting
starts after software writes a non-zero value to one or more of the upper 32-bits. It freezes
after software writes 00000000H to the upper 32 bits. See Figure 18-24.

MSR_IFSB_ISNPQx, Addresses: 107CEH and 107CFH [| Reserved

63 60 59 58 57 56 55 48 4645 39 38 37 36 35 34 33 32

Saturate J

L3_state_match
Snoop_match
Type_match
Agent_match
T1_match
TO_match

31 0

32 bit event count

Figure 18-24. MSR_IFSB_ISNPQx, Addresses: 107CEH and 107CFH

Vol. 3B 18-77

DEBUGGING AND PERFORMANCE MONITORING

® |FSB event — This event detects the occurrence of micro-architectural conditions related

to the iFSB unit. It provides two MSRs: MSR_IFSB_DRDYO0 and MSR_IFSB_DRDY 1.
Configure sub-event qualifications and enable/disable functions using the high 32 bits of
the 64-bit MSR. The low 32-bit act as a 32-bit event counter. Counting starts after software
writes a non-zero value to one or more of the qualification bits in the upper 32-bits of the
MSR. It freezes after software writes 00000000H to the upper 32 bits. See Figure 18-25.

MSR_IFSB_DRDYX, Addresses: 107DOH and 107D1H l:l Reserved

63 60 59 58 57 56 55 50 49 48 39 38 37 36 35 34 33 32

Saturate J

Other
Own

31

32 bit event count

Figure 18-25. MSR_IFSB_DRDYx, Addresses: 107DOH and 107D1H

18-78 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

® |IBUSQ Latency event — This event accumulates weighted cycle counts for latency
measurement of transactions in the iBUSQ unit. The count is enabled by setting
MSR_IFSB_CTRL6[bit26] to 1, the count freezes after software sets
MSR_IFSB_CTRL6][bit 26] to 0. MSR_IFSB_CNTRY7 acts as a 64-bit event counter for
this event. See Figure 18-26.

MSR_IFSB_CTL6 Address: 107D2H
63 59 57 0

Enable J

MSR_IFSB_CNTR7 Address: 107D3H

E Reserved

63 0

64 bit event count

Figure 18-26. MSR_IFSB_CTL6, Address: 107D2H;
MSR_IFSB_CNTR7, Address: 107D3H

18.17 PERFORMANCE MONITORING (P6 FAMILY
PROCESSOR)

The P6 family processors provide two 40-bit performance counters, allowing two types of
events to be monitored simultaneously. These counters can either count events or measure dura-
tion. When counting events, a counter is incremented each time a specified event takes place or
a specified number of events takes place. When measuring duration, a counter counts the
number of processor clocks that occur while a specified condition is true. The counters can count
events or measure durations that occur at any privilege level. Table A-12 in Appendix A,
“Performance-Monitoring Events,” lists the events that can be counted with the P6 family
performance monitoring counters.

NOTE

The performance-monitoring event listed in Appendix A are intended to be
used as guides for performance tuning. The counter values reported are not
guaranteed to be absolutely accurate and should be used as a relative guide
for tuning. Known discrepancies are documented where applicable.

Vol. 3B 18-79

DEBUGGING AND PERFORMANCE MONITORING

The performance-monitoring counters are supported by four MSRs: the performance event
select MSRs (PerfEvtSel0 and PerfEvtSell) and the performance counter MSRs (PerfCtr0 and
PerfCtrl). These registers can be read from and written to using the RDMSR and WRMSR
instructions, respectively. They can be accessed using these instructions only when operating at
privilege level 0. The PerfCtr0 and PerfCtrl MSRs can be read from any privilege level using
the RDPMC (read performance-monitoring counters) instruction.

NOTE

The PerfEvtSel0, PerfEvtSell, PerfCtr0, and PerfCtrl MSRs and the events
listed in Table A-12 are model-specific for P6 family processors. They are not
guaranteed to be available in future 1A-32 processors.

18.17.1 PerfEvtSel0 and PerfEvtSell MSRs

The PerfEvtSel0 and PerfEvtSell MSRs control the operation of the performance-monitoring
counters, with one register used to set up each counter. They specify the events to be counted,
how they should be counted, and the privilege levels at which counting should take place.
Figure 18-27 shows the flags and fields in these MSRs.

The functions of the flags and fields in the PerfEvtSel0 and PerfEvtSell MSRs are as follows:

® Event select field (bits 0 through 7) — Selects the event logic unit to detect certain
microarchitectural conditions (see Table A-12, for a list of events and their 8-bit codes).

® Unit mask (UMASK) field (bits 8 through 15) — Further qualifies the event logic unit
selected in the event select field to detect a specific microarchitectural condition. For
example, for some cache events, the mask is used as a MESI-protocol qualifier of cache
states (see Table A-12).

31 24232221201918171615 87 0

Counter Mask
(CMASK)

INV—Invert counter maskJ

EN—Enable counters*

INT—APIC interrupt enable
PC—Pin control
E—Edge detect
OS—Operating system mode
USR—User Mode

<zZz-

|
Plg|O
HENE

TncC

E Unit Mask (UMASK) Event Select

* Only available in PerfEvtSelO.

D Reserved

Figure 18-27. PerfEvtSel0 and PerfEvtSell MSRs

18-80 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

USR (user mode) flag (bit 16) — Specifies that events are counted only when the
processor is operating at privilege levels 1, 2 or 3. This flag can be used in conjunction
with the OS flag.

OS (operating system mode) flag (bit 17) — Specifies that events are counted only when
the processor is operating at privilege level 0. This flag can be used in conjunction with the
USR flag.

E (edge detect) flag (bit 18) — Enables (when set) edge detection of events. The
processor counts the number of deasserted to asserted transitions of any condition that can
be expressed by the other fields. The mechanism is limited in that it does not permit back-
to-back assertions to be distinguished. This mechanism allows software to measure not
only the fraction of time spent in a particular state, but also the average length of time spent
in such a state (for example, the time spent waiting for an interrupt to be serviced).

PC (pin control) flag (bit 19) — When set, the processor toggles the PMi pins and
increments the counter when performance-monitoring events occur; when clear, the
processor toggles the PMi pins when the counter overflows. The toggling of a pin is
defined as assertion of the pin for a single bus clock followed by deassertion.

INT (APIC interrupt enable) flag (bit 20) — When set, the processor generates an
exception through its local APIC on counter overflow.

EN (Enable Counters) Flag (bit 22) — This flag is only present in the PerfEvtSel0 MSR.
When set, performance counting is enabled in both performance-monitoring counters;
when clear, both counters are disabled.

INV (invert) flag (bit 23) — Inverts the result of the counter-mask comparison when set,
so that both greater than and less than comparisons can be made.

Counter mask (CMASK) field (bits 24 through 31) — When nonzero, the processor
compares this mask to the number of events counted during a single cycle. If the event
count is greater than or equal to this mask, the counter is incremented by one. Otherwise
the counter is not incremented. This mask can be used to count events only if multiple
occurrences happen per clock (for example, two or more instructions retired per clock). If
the counter-mask field is 0, then the counter is incremented each cycle by the number of
events that occurred that cycle.

18.17.2 PerfCtr0O and PerfCtrl MSRs

The performance-counter MSRs (PerfCtr0 and PerfCtrl) contain the event or duration counts
for the selected events being counted. The RDPMC instruction can be used by programs or
procedures running at any privilege level and in virtual-8086 mode to read these counters. The
PCE flag in control register CR4 (bit 8) allows the use of this instruction to be restricted to only
programs and procedures running at privilege level 0.

The RDPMC instruction is not serializing or ordered with other instructions. Thus, it does not
necessarily wait until all previous instructions have been executed before reading the counter.
Similarly, subsequent instructions may begin execution before the RDPMC instruction opera-
tion is performed.

Vol. 3B 18-81

DEBUGGING AND PERFORMANCE MONITORING

Only the operating system, executing at privilege level 0, can directly manipulate the perfor-
mance counters, using the RDMSR and WRMSR instructions. A secure operating system would
clear the PCE flag during system initialization to disable direct user access to the performance-
monitoring counters, but provide a user-accessible programming interface that emulates the
RDPMC instruction.

The WRMSR instruction cannot arbitrarily write to the performance-monitoring counter MSRs
(PerfCtr0 and PerfCtrl). Instead, the lower-order 32 bits of each MSR may be written with any
value, and the high-order 8 bits are sign-extended according to the value of bit 31. This operation
allows writing both positive and negative values to the performance counters.

18.17.3 Starting and Stopping the Performance-Monitoring
Counters

The performance-monitoring counters are started by writing valid setup information in the
PerfEvtSel0 and/or PerfEvtSell MSRs and setting the enable counters flag in the PerfEvtSel0
MSR. If the setup is valid, the counters begin counting following the execution of a WRMSR
instruction that sets the enable counter flag. The counters can be stopped by clearing the enable
counters flag or by clearing all the bits in the PerfEvtSel0 and PerfEviSell MSRs. Counter 1
alone can be stopped by clearing the PerfEvtSell MSR.

18.17.4 Event and Time-Stamp Monitoring Software

To use the performance-monitoring counters and time-stamp counter, the operating system
needs to provide an event-monitoring device driver. This driver should include procedures for
handling the following operations:

® Feature checking.

® |nitialize and start counters.
® Stop counters.

® Read the event counters.

® Read the time-stamp counter.

The event monitor feature determination procedure must check whether the current processor
supports the performance-monitoring counters and time-stamp counter. This procedure
compares the family and model of the processor returned by the CPUID instruction with those
of processors known to support performance monitoring. (The Pentium and P6 family proces-
sors support performance counters.) The procedure also checks the MSR and TSC flags returned
to register EDX by the CPUID instruction to determine if the MSRs and the RDTSC instruction
are supported.

The initialize and start counters procedure sets the PerfEvtSelO and/or PerfEvtSell MSRs for
the events to be counted and the method used to count them and initializes the counter MSRs
(PerfCtr0 and PerfCtrl) to starting counts. The stop counters procedure stops the performance
counters (see Section 18.17.3, “Starting and Stopping the Performance-Monitoring Counters”).

18-82 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

The read counters procedure reads the values in the PerfCtr0 and PerfCtrl MSRs, and a read
time-stamp counter procedure reads the time-stamp counter. These procedures would be
provided in lieu of enabling the RDTSC and RDPMC instructions that allow application code
to read the counters.

18.17.5 Monitoring Counter Overflow

The P6 family processors provide the option of generating a local APIC interrupt when a perfor-
mance-monitoring counter overflows. This mechanism is enabled by setting the interrupt enable
flag in either the PerfEvtSelO or the PerfEvtSell MSR. The primary use of this option is for
statistical performance sampling.

To use this option, the operating system should do the following things on the processor for
which performance events are required to be monitored:

® Provide an interrupt vector for handling the counter-overflow interrupt.

® Initialize the APIC PERF local vector entry to enable handling of performance-monitor
counter overflow events.

® Provide an entry in the IDT that points to a stub exception handler that returns without
executing any instructions.

® Provide an event monitor driver that provides the actual interrupt handler and modifies the
reserved IDT entry to point to its interrupt routine.

When interrupted by a counter overflow, the interrupt handler needs to perform the following
actions:

® Save the instruction pointer (EIP register), code-segment selector, TSS segment selector,
counter values and other relevant information at the time of the interrupt.

® Reset the counter to its initial setting and return from the interrupt.

An event monitor application utility or another application program can read the information
collected for analysis of the performance of the profiled application.

18.18 PERFORMANCE MONITORING (PENTIUM PROCESSORS)

The Pentium processor provides two 40-bit performance counters, which can be used either to
count events or measure duration. The performance-monitoring counters are supported by three
MSRs: the control and event select MSR (CESR) and the performance counter MSRs (CTRO
and CTR1). These registers can be read from and written to using the RDMSR and WRMSR
instructions, respectively.

They can be accessed using these instructions only when operating at privilege level 0. Each
counter has an associated external pin (PM0/BPO0 and PM1/BP1), which can be used to indicate
the state of the counter to external hardware.

Vol. 3B 18-83

DEBUGGING AND PERFORMANCE MONITORING

NOTES

The CESR, CTRO, and CTR1 MSRs and the events listed in Table A-12 are
model-specific for the Pentium processor.

The performance-monitoring event listed in Appendix B, “Model-Specific
Registers (MSRs),” are intended to be used as guides for performance tuning.
The counter values reported are not guaranteed to be absolutely accurate and
should be used as a relative guide for tuning. Known discrepancies are
documented where applicable.

18.18.1 Control and Event Select Register (CESR)

The 32-bit control and event select MSR (CESR) is used to control the operation of perfor-
mance-monitoring counters CTRO and CTR1 and their associated pins (see Figure 18-28). To
control each counter, the CESR register contains a 6-bit event select field (ESO and ES1), a pin
control flag (PCO and PC1), and a 3-bit counter control field (CCO and CC1). The functions of
these fields are as follows:

® ESO and ES1 (event select) fields (bits 0 through 5, bits 16 through 21) — Selects (by
entering an event code in the field) up to two events to be monitored. See Table A-12 for a
list of available event codes.

31 262524 2221 1615 109 8 65 0
p P
c| cci ES1 c| cco ESO
1 0

PC1—Pin control 1
CC1——Counter control 1
ES1—Event select 1
PCO0—Pin control 0
CC0—Counter control 0
ESO—Event select 0

[| Reserved

Figure 18-28. CESR MSR (Pentium Processor Only)

® (CCO0 and CC1 (counter control) fields (bits 6 through 8, bits 22 through 24) —
Controls the operation of the counter. The possible control codes are as follows:

000 — Count nothing (counter disabled)

001 — Count the selected event while CPL is 0, 1, or 2
010 — Count the selected event while CPL is 3

011 — Count the selected event regardless of CPL

100 — Count nothing (counter disabled)

101 — Count clocks (duration) while CPL is 0, 1, or 2

18-84 Vol. 3B

DEBUGGING AND PERFORMANCE MONITORING

110 — Count clocks (duration) while CPL is 3
111 — Count clocks (duration) regardless of CPL

The highest order bit selects between counting events and counting clocks (duration); the
middle bit enables counting when the CPL is 3; and the low-order bit enables counting
when the CPL is 0, 1, or 2.

® PCO0 and PC1 (pin control) flags (bit 9, bits 25) — Selects the function of the external
performance-monitoring counter pin (PMO/BP0 and PM1/BP1). Setting one of these flags
to 1 causes the processor to assert its associated pin when the counter has overflowed,;
setting the flag to O causes the pin to be asserted when the counter has been incremented.
These flags permit the pins to be individually programmed to indicate the overflow or
incremented condition. Note that the external signalling of the event on the pins will lag
the internal event by a few clocks as the signals are latched and buffered.

While a counter need not be stopped to sample its contents, it must be stopped and cleared or
preset before switching to a new event. It is not possible to set one counter separately. If only
one event needs to be changed, the CESR register must be read, the appropriate bits modified,
and all bits must then be written back to CESR. At reset, all bits in the CESR register are cleared.

18.18.2 Use of the Performance-Monitoring Pins

When the performance-monitor pins PMO/BPO and/or PM1/BP1 are configured to indicate
when the performance-monitor counter has incremented and an “occurrence event” is being
counted, the associated pin is asserted (high) each time the event occurs. When a “duration
event” is being counted the associated PM pin is asserted for the entire duration of the event.
When the performance-monitor pins are configured to indicate when the counter has over-
flowed, the associated PM pin is not asserted until the counter has overflowed.

When the PM0/BPO0 and/or PM1/BP1 pins are configured to signal that a counter has incre-
mented, it should be noted that although the counters may increment by 1 or 2 in a single clock,
the pins can only indicate that the event occurred. Moreover, since the internal clock frequency
may be higher than the external clock frequency, a single external clock may correspond to
multiple internal clocks.

A “count up to” function may be provided when the event pin is programmed to signal an over-
flow of the counter. Because the counters are 40 bits, a carry out of bit 39 indicates an overflow.
A counter may be preset to a specific value less then 240 _ 1. After the counter has been enabled
and the prescribed number of events has transpired, the counter will overflow.

Approximately 5 clocks later, the overflow is indicated externally and appropriate action, such
as signaling an interrupt, may then be taken.

The PMO0/BPO and PM1/BP1 pins also serve to indicate breakpoint matches during in-circuit
emulation, during which time the counter increment or overflow function of these pins is not
available. After RESET, the PM0/BP0 and PM1/BP1 pins are configured for performance moni-
toring, however a hardware debugger may reconfigure these pins to indicate breakpoint
matches.

Vol. 3B 18-85

DEBUGGING AND PERFORMANCE MONITORING

18.18.3 Events Counted

The events that the performance-monitoring counters can set to count and record in the CTRO
and CTR1 MSRs are divided into two categories: occurrences and duration. Occurrences events
are counted each time the event takes place. If the PM0/BP0 or PM1/BP1 pins are configured to
indicate when a counter increments, they ar asserted each clock the counter increments. Note
that if an event can happen twice in one clock, the counter increments by 2, however, the pins
are asserted only once.

For duration events, the counter counts the total number of clocks that the condition is true.
When configured to indicate when a counter increments, the PMO/BP0 and/or PM1/BP1 pins
are asserted for the duration of the event.

Table A-12 lists the events that can be counted with the Pentium processor performance-moni-
toring counters.

18-86 Vol. 3B

19

Introduction to
Virtual-Machine
Extensions

CHAPTER 19
INTRODUCTION TO VIRTUAL-MACHINE
EXTENSIONS

19.1 OVERVIEW

This chapter describes the basics of virtual machine architecture and an overview of the virtual-
machine extensions (VMX) that support virtualization of processor hardware for multiple soft-
ware environments.

Information about VMX instructions is provided in 1A-32 Intel® Architecture Software Devel-
oper’s Manual, Volume 2B. Other aspects of VMX and system programming considerations are
described in chapters of 1A-32 Intel® Architecture Software Developer’s Manual, Volume 3B.

19.2 VIRTUAL MACHINE ARCHITECTURE

Virtual-machine extensions define processor-level support for virtual machines on 1A-32
processors. Two principal classes of software are supported:

® Virtual-machine monitors (VMM) — A VMM acts as a host and has full control of the
processor(s) and other platform hardware. A VMM presents guest software (see next
paragraph) with an abstraction of a virtual processor and allows it to execute directly on a
logical processor. A VMM is able to retain selective control of processor resources,
physical memory, interrupt management, and 1/0.

® Guest software — Each virtual machine (VM) is a guest software environment that
supports a stack consisting of operating system (OS) and application software. Each
operates independently of other virtual machines and uses on the same interface to
processor(s), memory, storage, graphics, and 1/0 provided by a physical platform. The
software stack acts as if it were running on a platform with no VMM. Software executing
in a virtual machine must operate with reduced privilege so that the VMM can retain
control of platform resources.

19.3 INTRODUCTION TO VMX OPERATION

Processor support for virtualization is provided by a form of processor operation called VMX
operation. There are two kinds of VMX operation: VMX root operation and VMX non-root
operation. In general, a VMM will run in VMX root operation and guest software will run in
VMX non-root operation. Transitions between VMX root operation and VMX non-root opera-
tion are called VMX transitions. There are two kinds of VMX transitions. Transitions into VMX
non-root operation are called VM entries. Transitions from VMX non-root operation to VMX
root operation are called VM exits.

Vol. 3B 19-1

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS

Processor behavior in VMX root operation is very much as it is outside VMX operation. The
principal differences are that a set of new instructions (the VMX instructions) is available and
that the values that can be loaded into certain control registers are limited (see Section 19.8).

Processor behavior in VMX non-root operation is restricted and modified to facilitate virtual-
ization. Instead of their ordinary operation, certain instructions (including the new VMCALL
instruction) and events cause VM exits to the VMM. Because these VM exits replace ordinary
behavior, the functionality of software in VMX non-root operation is limited. It is this limitation
that allows the VMM to retain control of processor resources.

There is no software-visible bit whose setting indicates whether a logical processor is in VMX
non-root operation. This fact may allow a VMM to prevent guest software from determining that
it is running in a virtual machine.

Because VMX operation places restrictions even on software running with current privilege
level (CPL) 0, guest software can run at the privilege level for which it was originally designed.
This capability may simplify the development of a VMM.

19.4 LIFE CYCLE OF VMM SOFTWARE

Figure 19-1 illustrates the life cycle of a VMM and its guest software as well as the interactions
between them. The following items summarize that life cycle:

® Software enters VMX operation by executing a VMXON instruction.

® Using VM entries, a VMM can then enter guests into virtual machines (one at a time). The
VMM effects a VM entry using instructions VMLAUNCH and VMRESUME; it regains
control using VM exits.

® VM exits transfer control to an entry point specified by the VMM. The VMM can take
action appropriate to the cause of the VM exit and can then return to the virtual machine
using a VM entry.

® Eventually, the VMM may decide to shut itself down and leave VMX operation. It does so
by executing the VMXOFF instruction.

19-2 Vol. 3B

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS

Guest 0 Guest 1

VM NVM Entr%Exit

VMXON — VM Monitor p—— VMXOFF

Figure 19-1. Interaction of a Virtual-Machine Monitor and Guests

19.5 VIRTUAL-MACHINE CONTROL STRUCTURE

VMX non-root operation and VMX transitions are controlled by a data structure called a virtual-
machine control structure (VMCS).

Access to the VMCS is managed through a component of processor state called the VMCS
pointer (one per logical processor). The value of the VMCS pointer is the 64-bit address of the
VMCS. The VMCS pointer is read and written using the instructions VMPTRST and
VMPTRLD. The VMM configures a VMCS using the VMREAD, VMWRITE, and VMCLEAR
instructions.

A VMM could use a different VMCS for each virtual machine that it supports. For a virtual
machine with multiple logical processors (virtual processors), the VMM could use a different
VMCS for each virtual processor.

19.6 DISCOVERING SUPPORT FOR VMX

Before system software enters into VMX operation, it must discover the presence of VMX
support in the processor. System software can determine whether a processor supports VMX
operation using CPUID. If CPUID.1:ECX.VMX|bit 5] = 1, then VMX operation is supported.
See Figure 19-1.

Vol. 3B 19-3

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS

313029282726 252423222120 191817 16 1514 1312 1110 9 8 7 6 5 4 3 2 1 0

ECX

CNXT-ID—L1 Context ID
TM2—Thermal Monitor 2
EST—Enhanced Intel SpeedStep® Technology
VMX—Virtual Machine Extensions
DS-CPL—CPL Qual. Debug Store
MONITOR—Monitor/Mwait

SSE3—Streaming SIMD Extensions 3

D Reserved

Figure 19-1. CPUID Extended Feature Information ECX

The VMX architecture is designed to be extensible so that future processors in VMX operation
can support additional features not present in first-generation implementations of the VMX
architecture. The availability of extensible VMX features is reported to software using a set of
VMX capability MSRs (see Appendix G, “VMX Capability Reporting Facility”).

19.7 ENABLING AND ENTERING VMX OPERATION

Before system software can enter VMX operation, it enables VMX by setting
CR4.VMXE[bit 13] = 1. VMX operation is then entered by executing the VMXON instruction.
VMXON causes an invalid-opcode exception (#UD) if executed with CR4.VMXE = 0. Once in
VMX operation, it is not possible to clear CR4.VMXE (see Section 19.8). System software
leaves VMX operation by executing the VMXOFF instruction. CR4.VMXE can be cleared
outside of VMX operation after executing of VMXOFF.

VMXON is also controlled by the 1A32_FEATURE_CONTROL MSR (MSR address 3AH).
This MSR is cleared to zero when a logical processor is reset. The relevant bits of the MSR are:

® Bit 0 is the lock bit. If this bit is clear, VIMXON causes a general-protection exception. If
the lock bit is set, WRMSR to this MSR causes a general-protection exception. Once the
lock bit is set, the MSR cannot be modified until a power-up reset condition. System BIOS
can use this bit to provide a setup option for BIOS to disable support for VMX. To enable
VMX support in a platform, BIOS must set bit 2 (see below) as well as the lock bit.

® Bit2 enables VMXON. If this bit is clear, VMXON causes a general-protection
exception.

19-4 Vol. 3B

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS

Before executing VMXON, software should allocate a naturally aligned 4-KByte region of
memory that a logical processor may use to support VMX operation.! This region is called the
VMXON region. The address of the VMXON region (the VMXON pointer) is provided in an
operand to VMXON. Section 20.10.4, “The VMXON Region,” details how software should
initialize and access the VMXON region.

19.8 RESTRICTIONS ON VMX OPERATION

VMX operation places restrictions on processor operation. These are detailed below:

In VMX operation, processors may fix certain bits in CR0 and CR4 to specific values and
not support other values. VMXON fails if any of these bits contains an unsupported value
(see “VMXON—Enter VMX Operation” in Chapter 5 of the 1A-32 Intel® Architecture
Software Developer’s Manual, Volume 2B). Any attempt to set one of these bits to an
unsupported value while in VMX operation (including VMX root operation) using any of
the CLTS, LMSW, or MOV CR instructions causes a general-protection exception. VM
entry or VM exit cannot set any of these bits to an unsupported value.?

NOTE

The first processors to support VMX operation require that the following bits
be 1 in VMX operation: CR0.PE, CRO.NE, CRO.PG, and CR4.VMXE. The
restrictions on CR0.PE and CRO0.PG imply that VMX operation is supported
only in paged protected mode (including 1A-32e mode). Therefore, guest
software cannot be run in unpaged protected mode or in real-address mode.
See Section 25.2, “Supporting Processor Operating Modes in Guest Environ-
ments,” for a discussion of how a VMM might support guest software that
expects to run in unpaged protected mode or in real-address mode.

VMXON fails if a logical processor is in A20M mode (see “VMXON—Enter VMX
Operation” in Chapter 5 of the 1A-32 Intel® Architecture Software Developer’s Manual,
Volume 2B). Once the processor is in VMX operation, A20M interrupts are blocked. Thus,
it is impossible to be in A20M mode in VMX operation.

The INIT signal is blocked whenever a logical processor is in VMX root operation. It is not
blocked in VMX non-root operation. Instead, INITs cause VM exits (see Section 21.2,
“Other Causes of VM EXxits”).

. Future processors may require that a different amount of memory be reserved. If so, this fact is reported

to software using the VMX capability-reporting mechanism.

. Software should consult the VMX capability MSRs IA32_VMX_CRO_FIXEDO and

IA32_VMX_CRO_FIXEDL1 to determine how bits in CRO are set. (see Appendix G.6). For CR4, software
should consult the VMX capability MSRs IA32_VMX_CR4_FIXEDO and IA32_VMX_CR4_FIXEDL1 (see
Appendix G.7).

Vol. 3B 19-5

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS

19-6 Vol. 3B

20

Virtual-Machine
Control Structures

CHAPTER 20
VIRTUAL-MACHINE CONTROL STRUCTURES

20.1 OVERVIEW

The virtual-machine control data structure (VMCS) is defined for VMX operation. A VMCS
manages transitions in and out of VMX non-root operation (VM entries and VM exits) as well
as processor behavior in VMX non-root operation. This structure is manipulated by the new
instructions VMCLEAR, VMPTRLD, VMREAD, and VMWRITE.

A VMM can use a different VMCS for each virtual machine that it supports. For a virtual
machine with multiple logical processors (virtual processors), the VMM can use a different
VMCS for each virtual processor.

Each logical processor associates a region in memory with each VMCS. This region is called
the VMCS region.! Software references a specific VMCS by using the 64-bit physical address
of the region; such an address is called a VMCS pointer. VMCS pointers must be aligned on a
4-KByte boundary (bits 11:0 must be zero). On processors that support Intel EM64T, these
pointers must not set bits beyond the processor’s physical-address width.2 On processors that do
not support Intel EM64T, they must not set any bits in the range 63:32.

A logical processor may maintain any number of active VMCSs. At any given time, one is the
current VMCS:

® Software makes a VMCS active by executing VMPTRLD with the address of the VMCS.
The processor may optimize VMX operation by maintaining the state of an active VMCS
in memory, on the processor, or both. Software should not make a VMCS active on more
than one logical processor (see Section 20.10.1 for how to migrate a VMCS from one
logical processor to another). Software makes a VMCS inactive by executing VMCLEAR
with the address of the VMCS. A logical processor does not use an inactive VMCS or
maintain its state on the processor.

If VMXOFF is executed while a VMCS is active, the VMCS data in the corresponding
VMCS region are undefined after execution of VMXOFF. Software can avoid this problem
by avoiding execution of VMXOFF while a VMCS is active.

® Software makes a VMCS current by executing VMPTRLD with the address of the
VMCS; that address is loaded into the current-VMCS pointer. VMX instructions
VMLAUNCH, VMPTRST, VMREAD, VMRESUME, and VMWRITE operate on the
current VMCS. In particular, the VMPTRST instruction stores the current-VMCS pointer
into a specified memory location (it stores the value FFFFFFFF_FFFFFFFFH if there is no

1. The amount of memory required for a VMCS region is at most 4 KBytes. The exact size is implementa-
tion specific and can be determined by consulting the VMX capability MSR IA32_VMX_BASIC to deter-
mine the size of the VMCS region (see Appendix G.1).

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in
EAX. The physical-address width is returned in bits 7:0 of EAX.

Vol. 3B 20-1

VIRTUAL-MACHINE CONTROL STRUCTURES

current VMCS). A VMCS remains current until either software executes VMPTRLD with
the address of a different VMCS (which then becomes the current VMCS) or software
executes VMCLEAR with the address of the current VMCS (after which there is no
current VMCS).

This document frequently uses the term “the VMCS?” to refer to the current VMCS.

20.2 FORMAT OF THE VMCS REGION

A VMCS region comprises up to 4-KBytes.3 The format of a VMCS region is given in
Table 20-1.

Table 20-1. Format of the VMCS Region

Byte Offset | Contents

0 VMCS revision identifier
4 VMX-abort indicator
8 VMCS data (implementation-specific format)

The first 32 bits of the VMCS region contain the VMCS revision identifier. Processors that
maintain VMCS data in different formats (see below) use different VMCS revision identifiers.
These identifiers enable software to avoid using a VMCS region formatted for one processor on
a processor that uses a different format.

Software should write the VMCS revision identifier to the VMCS region before using that
region for a VMCS. The VMCS revision identifier is never written by the processor; VMPTRLD
may fail if its operand references a VMCS region whose VMCS revision identifier differs from
that used by the processor. Software can discover the VMCS revision identifier that a processor
uses by reading the VMX capability MSR 1A32_VMX_BASIC (see Appendix G, “VMX Capa-
bility Reporting Facility”).

The next 32 bits of the VMCS region are used for the VMX-abort indicator. The contents of
these bits do not control processor operation in any way. A logical processor writes a non-zero
value into these bits if a VMX abort occurs (see Section 23.7). Software may also write into this
field.

The remainder of the VMCS region is used for VMCS data (those parts of the VMCS that
control VMX non-root operation and the VMX transitions). The format of these data is imple-
mentation-specific. VMCS data are discussed in Section 20.3 through Section 20.9. To ensure
proper behavior in VMX operation, software should maintain the VMCS region and related

3. The exact size is implementation specific and can be determined by consulting the VMX capability MSR
1A32_VMX_BASIC to determine the size of the VMCS region (see Appendix G.1).

20-2 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES

structures (enumerated in Section 20.10.3) in writeback cacheable memory. Future implemen-
tations may allow or require a different memory type®*. Software should consult the VMX capa-
bility MSR 1A32_VMX_BASIC (see Appendix G.1).

20.3 ORGANIZATION OF VMCS DATA

The VMCS data are organized into six logical groups:

® Guest-state area. Processor state is saved into the guest-state area on VM exits and loaded
from there on VM entries.

® Host-state area. Processor state is loaded from the host-state area on VM exits.

®* VM-execution control fields. These fields control processor behavior in VMX non-root
operation. They determine in part the causes of VM exits.

* VM-exit control fields. These fields control VM exits.
®* VM-entry control fields. These fields control VM entries.

®* VM-exit information fields. These fields receive information on VM exits and describe
the cause and the nature of VM exits. They are read-only.

The VM-execution control fields, the VM-exit control fields, and the VM-entry control fields
are sometimes referred to collectively as VMX controls.

20.4 GUEST-STATE AREA

This section describes fields contained in the guest-state area of the VMCS. As noted earlier,
processor state is loaded from these fields on every VM entry (see Section 22.3.2) and stored
into these fields on every VM exit (see Section 23.3).

20.4.1 Guest Register State

The following fields in the guest-state area correspond to processor registers:

® Control registers CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do not
support Intel EM64T).

® Debug register DR7 (64 bits; 32 bits on processors that do not support Intel EM64T).

4. Alternatively, software may map any of these regions or structures with the UC memory type. Doing so is
strongly discouraged unless necessary as it will cause the performance of transitions using those struc-
tures to suffer significantly. In addition, the processor will continue to use the memory type reported in
the VMX capability MSR 1A32_VMX_BASIC with exceptions noted in Appendix G.1.

Vol. 3B 20-3

VIRTUAL-MACHINE CONTROL STRUCTURES

® RSP, RIP, and RFLAGS (64 bits each; 32 bits on processors that do not support Intel
EM64T).

® The following fields for each of the registers CS, SS, DS, ES, FS, GS, LDTR, and TR:

Selector (16 bits).

Base address (64 bits; 32 bits on processors that do not support Intel EM64T). The
base-address fields for CS, SS, DS, and ES have only 32 architecturally-defined bits;
nevertheless, the corresponding VMCS fields have 64 bits on processors that support
Intel EM64T.

Segment limit (32 bits). The limit field is always a measure in bytes.

Access rights (32 bits). The format of this field is given in Table 20-2 and detailed as
follows:

* The low 16 bits correspond to bits 23:8 of the upper 32 bits of a 64-bit segment
descriptor. While bits 19:16 of code-segment and data-segment descriptors
correspond to the upper 4 bits of the segment limit, the corresponding bits
(bits 11:8) are reserved in this VMCS field.

* Bit 16 indicates an unusable segment. Attempts to use such a segment fault
except in 64-bit mode. Inegeneral, a segment register is unusable if it has been
loaded with a null selector.

* Bits 31:17 are reserved.

Table 20-2. Format of Access Rights

Bit Position(s) Field

3.0 Segment type

4 S — Descriptor type (0 = system; 1 = code or data)
6:5 DPL — Descriptor privilege level

7 P — Segment present

11:8 Reserved

12 AVL — Available for use by system software

5. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most pro-
cessors that support VMX operation also support Intel EM64T. For processors that do not support Intel
EM®64T, this notation refers to the 32-bit forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few
places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated register.

6. There are a few exceptions to this statement. For example, a segment with a non-null selector may be
unusable following a task switch that fails after its commit point; see “Interrupt 10—Invalid TSS Excep-
tion (#TS)” in Section 5.14, “Exception and Interrupt Handling in 64-bit Mode,” of the IA-32 Intel® Archi-
tecture Software Developer’s Manual, Volume 3A. In contrast, the TR register is usable after processor
reset despite having a null selector; see Table 9-1 in the 1A-32 Intel® Architecture Software Developer’s
Manual, Volume 3A.

20-4 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES

Table 20-2. Format of Access Rights (Contd.)

Bit Position(s) Field
13 Reserved (except for CS)
L — 64-bit mode active (for CS only)
14 D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)
15 G — Granularity
16 Segment unusable (0 = usable; 1 = unusable)
31:17 Reserved

The base address, segment limit, and access rights compose the “hidden” part (or
“descriptor cache”) of each segment register. These data are included in the VMCS
because it is possible for a segment register’s descriptor cache to be inconsistent with the
segment descriptor in memory (in the GDT or the LDT) referenced by the segment
register’s selector.

Note that the value of the DPL field for SS is always equal to the logical processor’s
current privilege level (CPL).”

The following fields for each of the registers GDTR and IDTR:
— Base address (64 bits; 32 bits on processors that do not support Intel EM64T).

— Limit (32 bits). The limit fields contain 32 bits even though these fields are specified
as only 16 bits in the architecture.

The following MSRs:
— 1A32_DEBUGCTL (64 bits)
— 1A32_SYSENTER_CS (32 hits)

— 1A32_SYSENTER_ESP and 1A32_SYSENTER_EIP (64 bits; 32 bits on processors
that do not support Intel EM64T)

The register SMBASE (32 bits). This register contains the base address of the logical
processor’s SMRAM image.

7.

In protected mode, CPL is also associated with the RPL field in the CS selector. However, the RPL fields
are not meaningful in real-address mode or in virtual-8086 mode.

Vol. 3B 20-5

VIRTUAL-MACHINE CONTROL STRUCTURES

20.4.2 Guest Non-Register State

In

addition to the register state described in Section 20.4.1, the guest-state area includes the

following fields that characterize guest state but which do not correspond to processor registers:

Activity state (32 bits). This field identifies the logical processor’s activity state. When a
logical processor is executing instructions normally, it is in the active state. Execution of
certain instructions and the occurrence of certain events may cause a logical processor to
transition to an inactive state in which it ceases to execute instructions.

The following activity states are defined:8
— 0: Active. The logical processor is executing instructions normally.
— 1. HLT. The logical processor is inactive because it executed the HLT instruction.

— 2: Shutdown. The logical processor is inactive because it incurred a triple fault® or
some other serious error.

— 3: Wait-for-SIPI. The logical processor is inactive because it is waiting for a startup-
IP1 (SIPI).

Future processors may include support for other activity states. Software should read the
VMX capability MSR 1A32_VMX_MISC (see Appendix G.5) to determine what activity
states are supported.

Interruptibility state (32 bits). The 1A-32 architecture includes features that permit
certain events to be blocked for a period of time. This field contains information about
such blocking. Details and the format of this field are given in Table 20-3.

Table 20-3. Format of Interruptibility State

Bit Position(s) | Bit Name Notes

0

Blocking by STI See the “STI—Set Interrupt Flag” section in Chapter 4 of the 1A-32
Intel® Architecture Software Developer’s Manual, Volume 2B.

Execution of STI with RFLAGS.IF = 0 blocks interrupts (and,
optionally, other events) for one instruction after its execution.
Setting this bit indicates that this blocking is in effect.

20-

Execution of the MWAIT instruction may put a logical processor into an inactive state. However, this
VMCS field never reflects this state. See Section 23.1.

. Atriple fault occurs when a logical processor encounters an exception while attempting to deliver a dou-

ble fault.

6 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES

Table 20-3. Format of Interruptibility State (Contd.)

Bit Position(s)

Bit Name

Notes

1

Blocking by
MOV SS

See the “MOV—Move a Value from the Stack” and “POP—Pop a
Value from the Stack” sections in Chapter 3 and Chapter 4 of the
1A-32 Intel® Architecture Software Developer’'s Manual, Volumes
2A & 2B, and Section 5.8.3 in the 1A-32 Intel® Architecture
Software Developer’s Manual, Volume 3A.

Execution of a MOV to SS or a POP to SS blocks interrupts for
one instruction after its execution. In addition, certain debug
exceptions are inhibited between a MOV to SS or a POP to SS
and a subsequent instruction. Setting this bit indicates that the
blocking of all these events is in effect. This document uses the
term “blocking by MOV SS,” but it applies equally to POP SS.

Blocking by SMI

See Section 24.2 in the 1A-32 Intel® Architecture Software
Developer’'s Manual, Volume 3A.

System-management interrupts (SMis) are disabled while the
processor is in system-management mode (SMM). Setting this bit
indicates that blocking of SMis is in effect.

Blocking by NMI

See Section 5.7.1 in the 1A-32 Intel® Architecture Software
Developer’'s Manual, Volume 3A and Section 24.8 in the IA-32
Intel® Architecture Software Developer’s Manual, Volume 3B.

Delivery of a non-maskable interrupt (NMI) or a system-
management interrupt (SMI) blocks subsequent NMIs until the
next execution of IRET. See Section 21.3 for how this behavior of
IRET may change in VMX non-root operation. Setting this bit
indicates that blocking of NMIs is in effect. Clearing this bit does
not imply that NMlIs are not (temporarily) blocked for other
reasons.

31:4

Reserved

VM entry will fail if these bits are not 0. See Section 22.3.1.5.

® Pending debug exceptions (64 bits; 32 bits on processors that do not support Intel
EMG64T). 1A-32 processors may recognize one or more debug exceptions without
immediately delivering them.2® This field contains information about such exceptions.
This field is described in Table 20-4.

® VMCS link pointer (64 bits). This field is included for future expansion. Software should
set this field to FFFFFFFF_FFFFFFFFH to avoid VM-entry failures (see Section 22.3.1.5).

10. For example, execution of a MOV to SS or a POP to SS may inhibit some debug exceptions for one
instruction. See Section 5.8.3 of IA-32 Intel® Architecture Software Developer’s Manual, Volume 3A.

In addition, certain events incident to an instruction (for example, an INIT signal) may take priority over
debug traps generated by that instruction. See Table 5-2 in the 1A-32 Intel® Architecture Software Devel-
oper’s Manual, Volume 3A.

Vol. 3B 20-7

VIRTUAL-MACHINE CONTROL STRUCTURES

Table 20-4. Format of Pending-Debug-Exceptions

Bit Position(s) | Bit Name Notes

3.0 B3 - B0 When set, each of these bits indicates that the corresponding
breakpoint condition was met. Any of these bits may be set even if
the corresponding enabling bit in DR7 is not set.

11:4 Reserved VM entry fails if these bits are not 0. See Section 22.3.1.5.

12 Enabled When set, this bit indicates that at least one data or I/0 breakpoint
breakpoint was met and was enabled in DR7.

13 Reserved VM entry fails if this bit is not 0. See Section 22.3.1.5.

14 BS When set, this bit indicates that a debug exception would have

been triggered by single-step execution mode.

63:15 Reserved VM entry fails if these bits are not 0. See Section 22.3.1.5.
Bits 63:32 exist only on processors that support Intel EM64T.

20.5 HOST-STATE AREA

This section describes fields contained in the host-state area of the VMCS. As noted earlier,
processor state is loaded from these fields on every VM exit (see Section 23.5).

All fields in the host-state area correspond to processor registers:
® CRO0, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel EM64T).
® RSP and RIP (64 bits each; 32 bits on processors that do not support Intel EM64T).

® Selector fields (16 bits each) for the segment registers CS, SS, DS, ES, FS, GS, and TR.
There is no field in the host-state area for the LDTR selector.

® Base-address fields for FS, GS, TR, GDTR, and IDTR (64 bits each; 32 bits on processors
that do not support Intel EM64T).

® The following MSRs:
— 1A32_SYSENTER_CS (32 bits)

— 1A32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on processors
that do not support Intel EM64T).

In addition to the state identified here, some processor state components are loaded with fixed
values on every VM exit; there are no fields corresponding to these components in the host-state
area. See Section 23.5 for details of how state is loaded on VM exits.

20-8 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES

20.6 VM-EXECUTION CONTROL FIELDS

The VM-execution control fields govern VMX non-root operation. These are described in
Section 20.6.1 through Section 20.6.8.

20.6.1 Pin-Based VM-Execution Controls

The pin-based VM-execution controls constitute a 32-bit vector that governs the handling of
asynchronous events (for example: interrupts).11 Table 20-5 lists the controls supported. See
Chapter 21 for how these controls affect processor behavior in VMX non-root operation.

Table 20-5. Definitions of Pin-Based VM-Execution Controls

Bit Position(s) | Name Description
0 External-interrupt If this control is 1, external interrupts cause VM exits. Otherwise,
exiting they are delivered normally through the guest interrupt-descriptor

table (IDT). If this control is 1, the value of RFLAGS.IF does not
affect interrupt blocking.

3 NMI exiting If this control is 1, non-maskable interrupts (NMIs) cause VM
exits. Otherwise, they are delivered normally using descriptor 2 of
the IDT. This control also determines interactions between IRET
and blocking by NMI (see Section 21.3).

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the
VMX capability MSR 1A32_VMX_PROCBASED_CTLS (see Appendix G.2) to determine
how it should set the reserved bits. Failure to set reserved bits properly causes subsequent
VM entries to fail (see Section 22.2).

20.6.2 Processor-Based VM-Execution Controls

The processor-based VM-execution controls constitute a 32-bit vector that governs the handling
of synchronous events, mainly those caused by the execution of specific instructions.1? Table
20-6 lists the controls supported. See Chapter 21 for more details of how these controls affect
processor behavior in VMX non-root operation.

11. Some asynchronous events cause VM exits regardless of the settings of the pin-based VM-execution
controls (see Section 21.2).

12.Some instructions cause VM exits regardless of the settings of the processor-based VM-execution con-
trols (see Section 21.1.2), as do task switches (see Section 21.2).

Vol. 3B 20-9

VIRTUAL-MACHINE CONTROL STRUCTURES

Table 20-6. Definitions of Processor-Based VM-Execution Controls

Bit Position(s)

Name

Description

2

Interrupt-window
exiting

If this control is 1, a VM exit occurs at the beginning of any
instruction if RFLAGS.IF = 1 and there are no other blocking of
interrupts (see Section 20.4.2).

Use TSC offsetting

This control determines whether executions of RDTSC and
executions of RDMSR that read from the
1A32_TIME_STAMP_COUNTER MSR return a value modified by
the TSC offset field (see Section 20.6.5 and Section 21.3).

HLT exiting

This control determines whether executions of HLT cause
VM exits.

INVLPG exiting

This determines whether executions of INVLPG cause VM exits.

10

MWAIT exiting

This control determines whether executions of MWAIT cause
VM exits.

11

RDPMC exiting

This control determines whether executions of RDPMC cause
VM exits.

12

RDTSC exiting

This control determines whether executions of RDTSC cause
VM exits.

19

CR8-load exiting

This control determines whether executions of MOV to CR8
cause VM exits. This control must be 0 on processors that do not
support Intel EM64T.

20

CR8-store exiting

This control determines whether executions of MOV from CR8
cause VM exits. This control must be 0 on processors that do not
support Intel EM64T.

21

Use TPR shadow

Setting this control to 1 activates the TPR shadow, which is
maintained in a page of memory addressed by the virtual-APIC
address. See Section 21.3.

This control must be 0 on processors that do not support Intel
EM64T.

23

MOV-DR exiting

This control determines whether executions of MOV DR cause
VM exits.

24

Unconditional 1/0
exiting

This control determines whether executions of 1/O instructions
(IN, INS/INSB/INSW/INSD, OUT, and
OUTS/OUTSB/OUTSW/OUTSD) cause VM exits.

This control is ignored if the “use /O bitmaps” control is 1.

25

Use /O bitmaps

This control determines whether 1/0 bitmaps are used to restrict
executions of I/O instructions (see Section 20.6.4 and Section
21.1.3).

For this control, “0” means “do not use I/O bitmaps” and “1”
means “use I/O bitmaps.” If the I/O bitmaps are used, the setting
of the “unconditional I/O exiting” control is ignored.

20-10 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES

Table 20-6. Definitions of Processor-Based VM-Execution Controls (Contd.)

Bit Position(s) | Name Description

28 Use MSR bitmaps This control determines whether MSR bitmaps are used to
control execution of the RDMSR and WRMSR instructions (see
Section 20.6.4 and Section 21.1.3).

For this control, “0” means “do not use MSR bitmaps” and “1”
means “use MSR bitmaps.” If the MSR bitmaps are not used, all
executions of the RDMSR and WRMSR instructions cause

VM exits.

Not all processors support the 1-setting of this control. Software
may consult the VMX capability MSR
IA32_VMX_PROCBASED_CTLS (see Appendix G.2) to
determine whether that setting is supported.

29 MONITOR exiting This control determines whether executions of MONITOR cause
VM exits.

30 PAUSE exiting This control determines whether executions of PAUSE cause
VM exits.

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the
VMX capability MSR 1A32_VMX_PINBASED_CTLS (see Appendix G.2) to determine how
it should set the reserved bits. Failure to set reserved bits properly causes subsequent VM entries
to fail (see Section 22.2).

20.6.3 Exception Bitmap

The exception bitmap is a 32-bit field that contains one bit for each 1A-32 exception. When an
exception occurs, its vector is used to select a bit in this field. If the bit is 1, the exception causes
a VM exit. If the bit is 0, the exception is delivered normally through the IDT, using the
descriptor corresponding to the exception’s vector.

Whether a page fault (exception with vector 14) causes a VM exit is determined by bit 14 in the
exception bitmap as well as the error code produced by the page fault and two 32-bit fields in
the VMCS (the page-fault error-code mask and page-fault error-code match). See Section
21.2 for details.

20.6.4 1/0-Bitmap Addresses

The VM-execution control fields include the 64-bit physical addresses of 1/0 bitmaps A and B
(each of which are 4 KBytes in size). 1/0O bitmap A contains one bit for each 1/0 port in the range
0000H through 7FFFH; 1/0 bitmap B contains bits for ports in the range 8000H through FFFFH.

A logical processor uses these bitmaps if and only if the “use 1/0 bitmaps” control is 1. If the
bitmaps are used, execution of an 1/O instruction causes a VM exit if any bit in the 1/0 bitmaps
corresponding to a port it accesses is 1. See Section 21.1.3 for details. If the bitmaps are used,
their addresses must be 4-KByte aligned.

Vol. 3B 20-11

VIRTUAL-MACHINE CONTROL STRUCTURES

20.6.5 Time-Stamp Counter Offset

VM-execution control fields include a 64-bit TSC-offset field. If the “RDTSC exiting” control
is 0 and the “use TSC offsetting” control is 1, this field controls executions of the RDTSC
instruction and executions of the RDMSR instruction that read from the
IA32_TIME_STAMP_COUNTER MSR. The signed value of the TSC offset is combined with
the contents of the time-stamp counter (using signed addition) and the sum is reported to guest
software in EDX:EAX. See Chapter 21 for a detailed treatment of the behavior of RDTSC and
RDMSR in VMX non-root operation.

20.6.6 Guest/Host Masks and Read Shadows for CRO and CR4

VM-execution control fields include guest/host masks and read shadows for the CR0 and CR4
registers. These fields control executions of instructions that access those registers (including
CLTS, LMSW, MOV CR, and SMSW). They are 64 bits on processors that support Intel EM64T
and 32 bits on processors that do not.

In general, bits set to 1 in a guest/host mask correspond to bits “owned” by the host:

® Guest attempts to set them (using CLTS, LMSW, or MOV to CR) to values differing from
the corresponding bits in the corresponding read shadow cause VM exits.

® Guest reads (using MOV from CR or SMSW) return values for these bits from the corre-
sponding read shadow.

Bits cleared to 0 correspond to bits “owned” by the guest; guest attempts to modify them
succeed and guest reads return values for these bits from the control register itself.

See Chapter 21 for details regarding how these fields affect VMX non-root operation.

20.6.7 CR3-Target Controls

The VM-execution control fields include a set of 4 CR3-target values and a CR3-target count.
The CR3-target values each have 64 bits on processors that support Intel EM64T and 32 bits on
processors that do not. The CR3-target count has 32 bits on all processors.

An execution of MOV to CR3 in VMX non-root operation does not cause a VM exit if its source
operand matches one of these values. If the CR3-target count is n, only the first n CR3-target
values are considered; if the CR3-target count is 0, MOV to CR3 always causes a VM exit

There are no limitations on the values that can be written for the CR3-target values. VM entry
fails (see Section 22.2) if the CR3-target count is greater than 4.

Future processors may support a different number of CR3-target values. Software should read
the VMX capability MSR 1A32_VMX_MISC (see Appendix G.5) to determine the number of
values supported.

20-12 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES

20.6.8 Controls for CR8 Accesses

On processors that support Intel EM64T, the CR8 register can be used in 64-bit mode to access
the task-priority register (TPR) of the logical processor’s local APIC. The VMCS contains two
fields that control MOV CR8 instructions if the “use TPR shadow” VVM-execution control is 1:

® Virtual-APIC page address (64 bits). This field is the physical address of the 4-KByte
virtual-APIC page. The virtual-APIC page contains the TPR shadow, which is read and
written by the MOV CR8 instructions. The TPR shadow comprises bits 7:4 in byte 128 of
the virtual-APIC page. If the “use TPR shadow” VM-execution control is 1, the virtual-
APIC page address must be 4-KByte aligned.

® TPR threshold (32 bits). Bits 3:0 of this field determine the threshold below which the
TPR shadow (see previous item) cannot fall. A VM exit occurs after an execution of MOV
to CR8 that reduces the TPR shadow below this value.

These fields exist only on processors that support the 1-setting of the “use TPR shadow”
VM-execution control.

Note that the TPR in the local APIC can also be accessed using memory-mapped 1/O. These
controls does not affect accesses made in that way. They affect only MOV CR8 instructions (see
Section 21.1.3 and Section 21.3).

20.6.9 MSR-Bitmap Address

On processors that support the 1-setting of the “use MSR bitmaps” VM-execution control, the
VM-execution control fields include the 64-bit physical address of four contiguous MSR
bitmaps, which are each 1-KByte in size. This field does not exist on processors that do not
support the 1-setting of that control. The four bitmaps are:

® Read bitmap for low MSRs (located at the MSR-bitmap address). This contains one bit
for each MSR address in the range 00000000H — 00001FFFH. The bit determines whether
an execution of RDMSR applied to that MSR causes a VM exit.

® Write bitmap for low MSRs (located at the MSR-bitmap address plus 1024). This
contains one bit for each MSR address in the range 00000000H — 00001FFFH. The bit
determines whether an execution of WRMSR applied to that MSR causes a VM exit.

® Read bitmap for high MSRs (located at the MSR-bitmap address plus 2048). This
contains one bit for each MSR address in the range CO000000H — CO001FFFH. The bit
determines whether an execution of RDMSR applied to that MSR causes a VM exit.

® Write bitmap for high MSRs (located at the MSR-bitmap address plus 3072). This
contains one bit for each MSR address in the range CO000000H — CO001FFFH. The bit
determines whether an execution of WRMSR applied to that MSR causes a VM exit.

A logical processor uses these bitmaps if and only if the “use MSR bitmaps” control is 1. If the
bitmaps are used, execution of an 1/O instruction causes a VM exit if a bit in the 1/O bitmaps
corresponding to a port it accesses is 1. See Section 21.1.3 for details. If the bitmaps are used,
their address must be 4-KByte aligned.

Vol. 3B 20-13

VIRTUAL-MACHINE CONTROL STRUCTURES

20.6.10 Executive-VMCS Pointer

The executive-VMCS pointer is a 64-bit field used in the dual-monitor treatment of system-
management interrupts (SMIs) and system-management mode (SMM). SMM VM exits save
this field as described in Section 24.16.2. VM entries that return from SMM use this field as
described in Section 24.16.4.

20.7 VM-EXIT CONTROL FIELDS

The VM-exit control fields govern the behavior of VM exits. They are discussed in Section
20.7.1 and Section 20.7.2.

20.7.1 VM-Exit Controls

The VM-exit controls constitute a 32-bit vector that governs the basic operation of VM exits.
Table 20-7 lists the controls supported. See Chapter 23 for complete details of how these
controls affect VM exits.

Table 20-7. Definitions of VM-Exit Controls

Bit Position(s) | Name Description
9 Host address-space | On processors that support Intel EM64T, this control determines
size whether a logical processor is in 64-bit mode after the next VM

exit. Its value is loaded into CS.L, IA32_EFER.LME, and
IA32_EFER.LMA on every VM exit.!

This control must be 0 on processors that do not support Intel

EM64T
15 Acknowledge This control affects VM exits due to external interrupts:
interrupt on exit « If such a VM exit occurs and this control is 1, the logical

processor acknowledges the interrupt controller, acquiring the
interrupt’s vector. The vector is stored in the VM-exit
interruption-information field, which is marked valid.

¢ If such a VM exit occurs and this control is 0, the interrupt is
not acknowledged and the VM-exit interruption-information
field is marked invalid.

NOTES

1. Since Intel EM64T specifies that IA32_EFER.LMA is always set to the logical-AND of CRO.PG and
IA32_EFER.LME, and since CRO.PG is always 1 in VMX operation, IA32_EFER.LMA is always identical to
IA32_EFER.LME in VMX operation.

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the
VMX capability MSR 1A32_VMX_EXIT_CTLS (see Appendix G.3) to determine how it
should set the reserved bits. Failure to set reserved bits properly causes subsequent VM entries
to fail (see Section 22.2).

20-14 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES

20.7.2 VM-Exit Controls for MSRs

A VMM may specify lists of MSRs to be stored and loaded on VM exits. The following
VM-exit control fields determine how MSRs are stored on VM exits:

VM-exit MSR-store count (32 bits). This field specifies the number of MSRs to be stored
on VM exit. It is recommended that this count not exceed 512 bytes.13 Otherwise, unpre-
dictable processor behavior (including a machine check) may result during VM exit.

VM-exit MSR-store address (64 bits). This field contains the physical address of the
VM-exit MSR-store area. The area is a table of entries, 16 bytes per entry, where the
number of entries is given by the VM-exit MSR-store count. The format of each entry is
given in Table 20-8. If the VM-exit MSR-store count is not zero, the address must be
16-byte aligned.

Table 20-8. Format of an MSR Entry

Bit Position(s) | Contents

31.0 MSR index
63:32 Reserved
127:64 MSR data

See Section 23.4 for how this area is used on VM exits.

The following VM-exit control fields determine how MSRs are loaded on VM exits:

VM-exit MSR-load count (32 bits). This field contains the number of MSRs to be loaded
on VM exit. It is recommended that this count not exceed 512 bytes. Otherwise, unpre-
dictable processor behavior (including a machine check) may result during VM exit.1*

VM-exit MSR-load address (64 bits). This field contains the physical address of the
VM-exit MSR-load area. The area is a table of entries, 16 bytes per entry, where the
number of entries is given by the VM-exit MSR-load count (see Table 20-8). If the
VM-exit MSR-load count is not zero, the address must be 16-byte aligned.

See Section 23.6 for how this area is used on VM exits.

20.8 VM-ENTRY CONTROL FIELDS

The VM-entry control fields govern the behavior of VM entries. They are discussed in Sections
20.8.1 through 20.8.3.

13. Future implementations may allow more MSRs to be stored reliably. Software should consult the VMX

capability MSR IA32_VMX_MISC to determine the number supported (see Appendix G.5).

14. Future implementations may allow more MSRs to be loaded reliably. Software should consult the VMX

capability MSR I1A32_VMX_MISC to determine the number supported (see Appendix G.5).

Vol. 3B 20-15

VIRTUAL-MACHINE CONTROL STRUCTURES

20.8.1 VM-Entry Controls

The VM-entry controls constitute a 32-bit vector that governs the basic operation of VM entries.
Table 20-9 lists the controls supported. See Chapter 22 for how these controls affect VM entries.

Table 20-9. Definitions of VM-Entry Controls

Bit Position(s) | Name Description

9 IA-32e mode guest | On processors that support Intel EM64T, this control determines
whether the logical processor is in 1A-32e mode after VM entry.
Its value is loaded into IA32_EFER.LMA and IA32_EFER.LME as
part of VM entry.t

This control must be 0 on processors that do not support Intel
Intel EM64T

10 Entry to SMM This control determines whether the logical processor is in
system-management mode (SMM) after VM entry. This control
must be 0 for any VM entry from outside SMM.

11 Deactivate dual- If setto 1, the default treatment of SMIs and SMM is in effect after
monitor treatment the VM entry (see Section 24.16.7). This control must be 0 for
any VM entry from outside SMM.

NOTES

1. Since Intel EM64T specifies that IA32_EFER.LMA is always set to the logical-AND of CR0.PG and
IA32_EFER.LME, and since CRO.PG is always 1 in VMX operation; IA32_EFER.LMA is always identical to
IA32_EFER.LME in VMX operation.

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the
VMX capability MSR 1A32_VMX_ENTRY_CTLS (see Appendix G.4) to determine how it
should set the reserved bits. Failure to set reserved bits properly causes subsequent VM entries
to fail (see Section 22.2).

20.8.2 VM-Entry Controls for MSRs

A VMM may specify a list of MSRs to be loaded on VM entries. The following VM-entry
control fields manage this functionality:

® VMe-entry MSR-load count (32 bits). This field contains the number of MSRs to be
loaded on VM entry. It is recommended that this count not exceed 512 bytes. Otherwise,
unpredictable processor behavior (including a machine check) may result during
VM entry.1

® VM-entry MSR-load address (64 bits). This field contains the physical address of the
VM-entry MSR-load area. The area is a table of entries, 16 bytes per entry, where the
number of entries is given by the VM-entry MSR-load count. The format of entries is
described in Table 20-8. If the VM-entry MSR-load count is not zero, the address must be
16-byte aligned.

15. Future implementations may allow more MSRs to be loaded reliably. Software should consult the VMX
capability MSR IA32_VMX_MISC to determine the number supported (see Appendix G.5).

20-16 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES

See Section 22.4 for details of how this area is used on VM entries.

20.8.3 VM-Entry Controls for Event Injection

VM entry can be configured to conclude by delivering an event through the guest IDT (after all
guest state and MSRs have been loaded). This process is called event injection and is controlled
by the following three VM-entry control fields:

®* VM-entry interruption-information field (32 bits). This field provides details about the
event to be injected. Table 20-10 describes the field.

Table 20-10. Format of the VM-Entry Interruption-Information Field

Bit Position(s) | Content

7:0

Vector of interrupt or exception

10:8

Interruption type:

: External interrupt

: Reserved

: Non-maskable interrupt (NMI)
: Hardware exception

: Software interrupt

: Privileged software exception
: Software exception

: Reserved

NOoO O WNEO

11

Deliver error code (0 = do not deliver; 1 = deliver)

30:12

Reserved

31

Valid

The vector (bits 7:0) determines which entry in the IDT is used.

The interruption type (bits 10:8) determines details of how the injection is
performed. In general, a VMM should use the type hardware exception for all
exceptions other than breakpoint exceptions (#BP; generated by INT3) and overflow
exceptions (#OF; generated by INTO); it should use the type software exception for
#BP and #OF.

For exceptions, the deliver-error-code bit (bit 11) determines whether delivery
pushes an error code on the guest stack.

VM entry injects an event if and only if the valid bit (bit 31) is 1.

®* VM-entry exception error code (32 bits). This field is used if and only if the valid bit
(bit 31) and the deliver-error-code bit (bit 11) are both set in the VM-entry interruption-
information field.

® VM-entry instruction length (32 bits). For injection of events whose type is software
interrupt, software exception, or privileged software exception, this field is used to
determine the value of RIP that is pushed on the stack.

Vol. 3B 20-17

VIRTUAL-MACHINE CONTROL STRUCTURES

See Section 22.5 for details regarding the mechanics of event injection, including the use of the
interruption type and the VM-entry instruction length.

VM exits clear the valid bit (bit 31) in the VM-entry interruption-information field.

20.9 VM-EXIT INFORMATION FIELDS

The VMCS contains a section of read-only fields that contain information about the most recent
VM exit. Attempts to write to these fields with VMWRITE fail (see “VMWRITE—Write Field
to Virtual-Machine Control Structure” in Chapter 5 of the 1A-32 Intel® Architecture Software
Developer’s Manual, Volume 2B).

20.9.1 Basic VM-Exit Information

The following VM-exit information fields provide basic information about a VM exit:

® Exit reason (32 bits). This field encodes the reason for the VM exit and has the structure
given in Table 20-11.

Table 20-11. Format of Exit Reason

Bit Position(s) Contents

15:0 Basic exit reason

28:16 Reserved (cleared to 0)

29 VM exit from VMX root operation

30 Reserved (cleared to 0)

31 VM-entry failure (0 = true VM exit; 1 = VM-entry failure)

— Bits 15:0 provide basic information about the cause of the VM exit (if bit 31 is clear) or
of the VM-entry failure (if bit 31 is set). Appendix | enumerates the basic exit reasons.

— BIit 29 is set if and only if the processor was in VMX root operation at the time the
VM exit occurred. This can happen only for SMM VM exits. See Section 24.16.2.

— Because some VM-entry failures load processor state from the host-state area (see
Section 22.7), software must be able to distinguish such cases from true VM exits.
Bit 31 is used for that purpose.

® Exit qualification (64 bits; 32 bits on processors that do not support Intel EM64T). This

field contains additional information about the cause of VM exits due to the following:
debug exceptions; page-fault exceptions; start-up IPIs (SIPIs); task switches; INVLPG;
VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE; VMXON; control-register
accesses; MOV DR; 1/0O instructions; and MWAIT. The format of the field depends on the
cause of the VM exit. See Section 23.2.1 for details.

20-18 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES

20.9.2 Information for VM Exits Due to Vectored Events

Event-specific information is provided for VM exits due to the following vectored events:
exceptions (including those generated by the instructions INT3, INTO, BOUND, and UD2);
external interrupts that occur while the “acknowledge interrupt on exit” VM-exit control is 1;
and non-maskable interrupts (NMIs). This information is provided in the following fields:

®* VM-exit interruption information (32 bits). This field receives basic information
associated with the event causing the VM exit. Table 20-12 describes this field.

Table 20-12. Format of the VM-Exit Interruption-Information Field
Bit Position(s) | Content

7:0 Vector of interrupt or exception
10:8 Interruption type:

0: External interrupt

1: Not used

2: Non-maskable interrupt (NMI)
3: Hardware exception

4 — 5: Not used
6: Software exception
7: Not used
11 Error code valid (0 = invalid; 1 = valid)
12 NMI unblocking due to IRET
30:13 Reserved (cleared to 0)
31 Valid

® VM-exit interruption error code (32 bits). For VM exits caused by hardware exceptions
that would have delivered an error code on the stack, this field receives that error code.

Section 23.2.2 provides details of how these fields are saved on VM exits.

20.9.3 Information for VM Exits That Occur During Event Delivery

Additional information is provided for VM exits that occur during event delivery in VMX non-
root operation.16 This information is provided in the following fields:

® |DT-vectoring information (32 bits). This field receives basic information associated
with the event that was being delivered when the VM exit occurred. Table 20-13 describes
this field.

16. This includes cases in which the event delivery was caused by event injection as part of VM entry; see
Section 22.5.2.

Vol. 3B 20-19

VIRTUAL-MACHINE CONTROL STRUCTURES

Table 20-13. Format of the IDT-Vectoring Information Field

Bit Position(s) | Content
7:0 Vector of interrupt or exception
10:8 Interruption type:
0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Software interrupt
5: Privileged software exception
6: Software exception
7: Not used
11 Error code valid (0 = invalid; 1 = valid)
12 Undefined
30:13 Reserved (cleared to 0)
31 Valid

® IDT-vectoring error code (32 bits). For VM exits the occur during delivery of hardware
exceptions that would have delivered an error code on the stack, this field receives that
error code.

See Section 23.2.3 provides details of how these fields are saved on VM exits.

20.9.4 Information for VM Exits Due to Instruction Execution

The following fields are used for VM exits caused by attempts to execute certain instructions in
VMX non-root operation:

® VMe-exit instruction length (32 bits). For VM exits resulting from instruction execution,
this field receives the length in bytes of the instruction whose execution led to the
VM exit.}” See Section 23.2.4 for details of when and how this field is used.

® Guest linear address (64 bits; 32 bits on processors that do not support Intel EM64T).
This field is used in the following cases:

— VM exits due to attempts to execute LMSW with a memory operand.
— VM exits due to attempts to execute INS or OUTS.

— VM exits due to system-management interrupts (SMIs) that arrive immediately after
retirement of 1/O instructions.

17.This field is also used for VM exits that occur during the delivery of a software interrupt or software
exception.

20-20 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES

See Section 23.2.4 for details of when and how this field is used.

® VMX-instruction information (32 bits). For VM exits due to attempts to execute
VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, or VMXON, this field
receives details about the instruction that caused the VM exit. Table 20-14 describes this
field.

Table 20-14. Format of the VMX-Instruction Information Field

Bit Position(s) | Content

1:0 Scaling:

0: no scaling

1: scale by 2

2:scale by 4

3: scale by 8 (used only on processors that support Intel EM64T)

Undefined for register instructions (bit 10 is set) or for memory instructions with no index
register (bit 10 is clear and bit 22 is set)

2 Reserved (cleared to 0)

6:3 Regl:

0 =RAX
1=RCX
2 =RDX
3 =RBX
4 =RSP
5 =RBP
6 = RSI
7 = RDI
8-15 represent R8—R15, respectively (used only on processors that support Intel
EM64T)

Undefined for memory instructions (bit 10 is clear)

9:7 Address size:

0: 16-bit

1: 32-bit

2: 64-bit (used only on processors that support Intel EM64T)

Other values not used
Undefined for register instructions (bit 10 is set)

10 Mem/Reg (0 = memory; 1 = register)

Note that VMCLEAR, VMPTRLD, VMPTRST, and VMXON are always memory
instructions and thus clear this bit.

14:11 Reserved (cleared to 0)

17:15 Segment register:
0: ES
1: CS
2:SS
3:DS
4: FS
5: GS
Other values unused
Undefined for register instructions (bit 10 is set)

21:18 IndexReg (encoded as Regl above)
Undefined if bit 22 is set or undefined

Vol. 3B 20-21

VIRTUAL-MACHINE CONTROL STRUCTURES

Table 20-14. Format of the VMX-Instruction Information Field (Contd.)

Bit Position(s) | Content

22 IndexReg invalid (0 = valid; 1 = invalid)
Undefined for register instructions (bit 10 is set)

26:23 BaseReg (encoded as Regl above)
Undefined if bit 27 is set or undefined
27 BaseReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set)

31:28 Reg2 (same encoding as Regl above)
Undefined on VM exits due to VMCLEAR, VMPTRLD, VMPTRST, and VMXON

The following fields (64 bits each; 32 bits on processors that do not support Intel EM64T) are
used only for VM exits due to SMIs that arrive immediately after retirement of 1/0 instructions.
They provide information about that 1/0 instruction:

® |/O RCX. The value of RCX before the /O instruction started.
® |/O RSI. The value of RSI before the 1/0 instruction started.
® |/O RDI. The value of RDI before the 1/O instruction started.

® |/O RIP. The value of RIP before the 1/0 instruction started (the RIP that addressed the 1/0
instruction).

20.9.5 VM-Instruction Error Field

The 32-bit VM-instruction error field does not provide information about the most recent
VM exit. In fact, it is not modified on VM exits. Instead, it provides information about errors
encountered by a non-faulting execution of one of the VMX instructions.

20.10 SOFTWARE ACCESS TO THE VMCS AND RELATED
STRUCTURES

This section details guidelines that software should observe when accessing a VMCS and related
structures. It also provides descriptions of consequences for failing to follow guidelines.

20.10.1 Software Access to the Virtual-Machine Control Structure

To ensure proper processor behavior, software should observe certain guidelines when accessing
an active VMCS.

No VMCS should ever be active on more than one logical processor. If a VMCS is to be
“migrated” from one logical processor to another, the first logical processor should execute
VMCLEAR for the VMCS (to make it inactive on that logical processor and to ensure that all

20-22 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES

VMCS data are in memory) before the other logical processor executes VMPTRLD for the
VMCS (to make it active on the second logical processor).

Software should never access or modify the VMCS data of an active VMCS using ordinary
memory operations, in part because the format used to store the VMCS data is implementation-
specific and not architecturally defined, and also because a logical processor may maintain some
VMCS data of an active VMCS on the processor and not in the VMCS region. The following
items detail some of the hazards of performing such accesses:

® Any data read from a VMCS with an ordinary memory read does not reliably reflect the
state of the VMCS. Results may vary from time to time or from logical processor to logical
processor.

® Writing to a VMCS with an ordinary memory write is not guaranteed to have a determin-
istic effect on the VMCS. Doing so may lead to unpredictable behavior. Any or all of the
following may occur: (1) VM entries may fail for unexplained reasons or may load
undesired processor state; (2) the processor may not correctly support VMX non-root
operation as documented in Chapter 21 and may generate unexpected VM exits; and
(3) VM exits may load undesired processor state, save incorrect state into the VMCS, or
cause the logical processor to transition to a shutdown state.

Software can avoid such problems by removing any linear-address mappings to a VMCS region
before executing a VMPTRLD for that region and by not remapping it until after executing
VMCLEAR for that region.

Software should use the VMREAD and VMWRITE instructions to access the different fields in
the current VMCS (see Section 20.10.2).

Software should initialize all fields in a VMCS (using VMWRITE) before using the VMCS for
VM entry. Failure to do so may result in unpredictable behavior; for example, a VM entry may
fail for unexplained reasons, or a successful transition (VM entry or VM exit) may load
processor state with unexpected values.

20.10.2 VMREAD, VMWRITE, and Encodings of VMCS Fields

Every field of the VMCS is associated with a 32-bit value that is its encoding. The encoding is
provided in an operand to VMREAD and VMWRITE when software wishes to read or write that
field. These instructions fail if given, in 64-bit mode, an operand that sets an encoding bit
beyond bit 32. See Chapter 5 of the 1A-32 Intel® Architecture Software Developer’s Manual,
Volume 2B, for a description of these instructions.

Vol. 3B 20-23

VIRTUAL-MACHINE CONTROL STRUCTURES

The structure of the 32-bit encodings of the VMCS components is determined principally by the
width of the fields and their function in the VMCS. See Table 20-15.

Table 20-15. Structure of VMCS Component Encoding

Bit Position(s)

Contents

31:15 Reserved (must be 0)
14:13 Width:

0: 16-bit

1: 64-bit

2: 32-bit

3: natural-width

Reserved (must be 0)

11:10 Type:

0: control

1: read-only data
2: guest state

3: host state

Index

Access type (0 = full; 1 = high); must be full for 16-bit, 32-bit, and natural-width fields

The following items detail the meaning of the bits in each encoding:

Field width. Bits 14:13 encode the width of the field.
0. A value of 0 indicates a 16-bit field.
1. A value of 1 indicates a 64-bit field.
2. Avalue of 2 indicates a 32-bit field.
3

A value of 3 indicates a natural-width field. Such fields have 64 bits on processors
that support Intel EM64T and 32 bits on processors that do not.

Fields whose encodings use value 1 are specially treated to allow 32-bit software access to
all 64 bits of the field. Such access is allowed by defining, for each such field, an encoding
that allows direct access to the high 32 bits of the field. See below.

Field type. Bits 11:10 encode the type of VMCS field: control, guest-state, host-state, or
read-only data. The last category includes the VM-exit information fields and the
VM-instruction error field.

Index. Bits 9:1 distinguish components with the same field width and type.

Access type. Bit 0 must be 0 for all fields except for 64-bit fields (those with field-width 1;
see above). A VMREAD or VMWRITE using an encoding with this bit cleared to 0
accesses the entire field. For a 64-bit field with field-width 1, a VMREAD or VMWRITE
using an encoding with this bit set to 1 accesses only the high 32 bits of the field.

20-24 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES

Appendix H gives the encodings of all fields in the VMCS.

The following describes the operation of VMREAD and VMWRITE based on processor mode,
VMCS-field width, and access type:

® 16-bit fields:

— A VMREAD returns the value of the field in bits 15:0 of the destination operand; other
bits of the destination operand are cleared to 0.

— A VMWRITE writes the value of bits 15:0 of the source operand into the VMCS field;
other bits of the source operand are not used.

® 32-bit fields:

— A VMREAD returns the value of the field in bits 31:0 of the destination operand; in
64-bit mode, bits 63:32 of the destination operand are cleared to 0.

— A VMWRITE writes the value of bits 31:0 of the source operand into the VMCS field,;
in 64-bit mode, bits 63:32 of the source operand are not used.

® 64-bit fields and natural-width fields using the full access type outside 1A-32e mode.

— A VMREAD returns the value of bits 31:0 of the field in its destination operand;
bits 63:32 of the field are ignored.

— A VMWRITE writes the value of its source operand to bits 31:0 of the field and clears
bits 63:32 of the field.

® 64-bit fields and natural-width fields using the full access type in 64-bit mode (only on
processors that support Intel EM64T).

— A VMREAD returns the value of the field in bits 63:0 of the destination operand
— A VMWRITE writes the value of bits 63:0 of the source operand into the VMCS field.
® 64-bit fields using the high access type.

— A VMREAD returns the value of bits 63:32 of the field in bits 31:0 of the destination
operand; in 64-bit mode, bits 63:32 of the destination operand are cleared to 0.

— A VMWRITE writes the value of bits 31:0 of the source operand to bits 63:32 of the
field; in 64-bit mode, bits 63:32 of the source operand are not used.

Software seeking to read a 64-bit field outside 1A-32e mode can use VMREAD with the full
access type (reading bits 31:0 of the field) and VMREAD with the high access type (reading
bits 63:32 of the field); the order of the two VMREAD executions is not important. Software
seeking to modify a 64-bit field outside 1A-32e mode should first use VMWRITE with the full
access type (establishing bits 31:0 of the field while clearing bits 63:32) and then use
VMWRITE with the high access type (establishing bits 63:32 of the field).

Vol. 3B 20-25

VIRTUAL-MACHINE CONTROL STRUCTURES

20.10.3 Software Access to Related Structures

In addition to data in the VMCS region itself, VMX non-root operation can be controlled by data
structures that are referenced by pointers in a VMCS (for example, the I/O bitmaps). Note that,
while the pointers to these data structures are parts of the VMCS, the data structures themselves
are not. They are not accessible using VMREAD and VMWRITE but by ordinary memory
writes.

Software should ensure that each such data structure is modified only when no logical processor
with a current VMCS that references it is in VMX non-root operation. Doing otherwise may lead
to unpredictable behavior (including behaviors identified in Section 20.10.1).

20.10.4 The VMXON Region

Before executmg VMXON, software allocates a region of memory (called the VMXON
reglon) that the logical processor uses to support VMX operation. The physical address of this
region (the VMXON pointer) is provided in an operand to VMXON. The VMXON pointer is
subject to the limitations that apply to VMCS pointers:

® The VMXON pointer must be 4-KByte aligned (bits 11:0 must be zero).

® On processors that support Intel EM64T the VMXON pointer must not set any bits beyond
the processor’s physical-address width.2® on processors that do not support Intel EM64T,
the VMXON pointer must not set any bits in the range 63:32.

Before executing VMXON, software should write the VMCS revision identifier (see Section
20.2) to the VMXON region. It need not initialize the VIMXON region in any other way. Soft-
ware should use a separate region for each logical processor and should not access or modify the
VMXON region of a logical processor between execution of VMXON and VMXOFF on that
logical processor. Doing otherwise may lead to unpredictable behavior (including behaviors
identified in Section 20.10.1).

20.11 USING VMCLEAR TO INITIALIZE A VMCS REGION

A processor may use the VMCS data portion of a VMCS region to maintain implementation-
specific information about the VMCS. When software first allocates a region of memory for use
as a VMCS region, the data in that region may be interpreted in an implementation-specific
manner. In addition to its other functions, the VMCLEAR instruction initializes any implemen-
tation-specific information in the VMCS region referenced by its operand. To avoid the uncer-
tainties of implementation-specific behavior, software should execute VMCLEAR on a VMCS
region before making the corresponding VMCS active with VMPTRLD.

18. The amount of memory required for the VMXON region is the same as that required for a VMCS region.
This size is implementation specific and can be determined by consulting the VMX capability MSR
1A32_VMX_BASIC (see Appendix G.1).

19. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in
EAX. The physical-address width is returned in bits 7:0 of EAX.

20-26 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES

A logical processor uses the VMCS region to maintain the launch state of the corresponding
VMCS. The launch state may be clear or launched. The VMCLEAR instruction puts the
VMCS referenced by its operand into the clear state. The VMLAUNCH instruction requires a
VMCS whose launch state is clear and changes its launch state to launched. The VMRESUME
instruction requires a VMCS whose launch state is launched. There are no other ways to modify
the launch state of a VMCS (it cannot be modified using VMWRITE) and there is no direct way
to read it (it cannot be read using VMREAD). Improper software usage (for example, software
writing to the VMCS data of an active VMCS) may leave the launch state undefined.

The following software usage is consistent with these limitations:
® VMCLEAR should be executed for a VMCS before it is used for VM entry.

® VMLAUNCH should be used for the first VM entry using a VMCS after VMCLEAR has
been executed for that VMCS.

® VMRESUME should be used for any subsequent VM entry using a VMCS (until the next
execution of VMCLEAR for the VMCS).

It is expected that, in general, VMRESUME will have lower latency than VMLAUNCH. Since
“migrating” a VMCS from one logical processor to another requires use of VMCLEAR (see
Section 20.10.1), which sets the launch state of the VMCS to “clear,” such migration requires
the next VM entry to be performed using VMLAUNCH. Software developers can avoid the
performance cost of increased VM-entry latency by avoiding unnecessary migration of a VMCS
from one logical processor to another.

Vol. 3B 20-27

VIRTUAL-MACHINE CONTROL STRUCTURES

20-28 Vol. 3B

21

VMX Non-Root
Operation

CHAPTER 21
VMX NON-ROOT OPERATION

In a virtualized environment using VMX, the guest software stack typically runs on a logical
processor in VMX non-root operation. This mode of operation is similar to that of ordinary
processor operation outside of the virtualized environment. This chapter describes the differ-
ences between VMX non-root operation and ordinary processor operation with special attention
to causes of VM exits (which bring a logical processor from VMX non-root operation to root
operation). The differences between VMX non-root operation and ordinary processor operation
are described in the following sections:

® Section 21.1, “Instructions That Cause VM Exits”

® Section 21.2, “Other Causes of VM Exits”

® Section 21.3, “Changes to Instruction Behavior in VMX Non-Root Operation”
® Section 21.4, “Other Changes in VMX Non-Root Operation”

Chapter 20, “Virtual-Machine Control Structures,” describes the data control structure that
governs VMX operation (root and non-root). Chapter 22, “VM Entries,” describes the operation
of VM entries which allow the processor to transition from VMX root operation to non-root
operation.

21.1 INSTRUCTIONS THAT CAUSE VM EXITS

Certain instructions may cause VM exits if executed in VMX non-root operation. Unless other-
wise specified, such VM exits are “fault-like,” meaning that the instruction causing the VM exit
does not execute and no processor state is updated by the instruction. Section 23.1 details archi-
tectural state in the context of a VM exit.

Section 21.1.1 defines the prioritization between 1A-32 faults and VM exits for instructions
subject to both. Section 21.1.2 identifies instructions that cause VM exits whenever they are
executed in VMX non-root operation (and thus can never be executed in VMX non-root opera-
tion). Section 21.1.3 identifies instructions that cause VM exits depending on the settings of
certain VM-execution control fields (see Section 20.6).

Vol. 3B 21-1

VMX NON-ROOT OPERATION

21.1.1 Relative Priority of 1A-32 Faults and VM EXxits

The following principles describe the ordering between existing 1A-32 faults and VM exits:

Certain exceptions have priority over VM exits. These include invalid-opcode exceptions,
faults based on privilege level, and general-protection exceptions that are based on
checking 1/0O permission bits in the task-state segment (TSS). For example, execution of
RDMSR with CPL = 3 generates a general-protection exception and not a VM exit.!

Faults incurred while fetching instruction operands have priority over VM exits that are
conditioned based on the contents of those operands (see LMSW in Section 21.1.3).

VM exits caused by execution of the INS and OUTS instructions (resulting either because
the “unconditional 1/0 exiting” VM-execution control is 1 or because the “use I/O bitmaps
control is 1) have priority over the following faults:

— A general-protection fault due to the relevant segment (ES for INS; DS for OUTS
unless overridden by an instruction prefix) being unusable

— A general-protection fault due to an offset beyond the limit of the relevant segment
— An alignment-check exception

Fault-like VM exits have priority over general-protection exceptions other than those
mentioned above. For example, RDMSR of a non-existent MSR with CPL = 0 generates a
VM exit and not a general-protection exception.

When Section 21.1.2 or Section 21.1.3 (below) identify an instruction execution that may lead
to a VM exit, it is assumed that the instruction does not incur a fault that takes priority over a
VM exit.

21.1.2 Instructions That Cause VM Exits Unconditionally

The following instructions cause VM exits when they are executed in VMX non-root operation:
CPUID, INVD, MOV from CR3. This is also true of instructions introduced with VMX, which
include: VMCALL,2 VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, VMREAD,
VMRESUME, VMWRITE, VMXOFF, and VMXON.

1. MOV DR is an exception to this rule; see Section 21.1.3.
2. Under the dual-monitor treatment of SMIs and SMM, executions of VMCALL cause SMM VM exits in

VMX root operation outside SMM. See Section 24.16.2.

21-2 Vol. 3B

VMX NON-ROOT OPERATION

21.1.3 Instructions That Cause VM Exits Conditionally

Certain instructions cause VM exits in VMX non-root operation depending on the setting of the
VM-execution controls. The following instructions can cause “fault-like” VM exits based on the
conditions described:

CLTS. The CLTS instruction causes a VM exit if the bits in position 3 (corresponding to
CRO.TS) are set in both the CRO guest/host mask and the CRO read shadow.

HLT. The HLT instruction causes a VM exit if the “HLT exiting” VM-execution control
is 1.

IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD. The behavior of
each of these instructions is determined by the settings of the “unconditional 1/O exiting”
and “use 1/0 bitmaps” VM-execution controls:

— If both controls are 0, the instruction executes normally.

— If the “unconditional 1/O exiting” VM-execution control is 1 and the “use 1/0 bitmaps”
VM-execution control is 0, the instruction causes a VM exit.

— If the “use 1/0 bitmaps” VM-execution control is 1, the instruction causes a VM exit if
it attempts to access an 1/O port corresponding to a bit set to 1 in the appropriate 1/0
bitmap (see Section 20.6.4). If an 1/O operation “wraps around” the 16-bit I/O-port
space (accesses ports FFFFH and 0000H), the I/O instruction causes a VM exit (the
“unconditional 1/O exiting” VVM-execution control is ignored if the “use 1/0 bitmaps”
VM-execution control is 1).

See Section 21.1.1 for information regarding the priority of VM exits relative to faults that
may be caused by the INS and OUTS instructions.

INLVPG. The INLVPG instruction causes a VM exit if the “INLVPG exiting”
VM-execution control is 1.

LMSW. In general, the LMSW instruction causes a VM exit if it would write, for any bit
set in the low 4 bits of the CRO guest/host mask, a value different than the corresponding
bit in the CRO read shadow. Note that LMSW never clears bit 0 of CRO (CRO.PE). Thus,
LMSW causes a VM exit if either of the following are true:

— The bits in position 0 (corresponding to CRO.PE) are set in both the CRO guest/mask
and the source operand, and the bit in position 0 is clear in the CRO read shadow.

— For any bit position in the range 3:1, the bit in that position is set in the CRO
guest/mask and the values of the corresponding bits in the source operand and the CRO
read shadow differ.

MONITOR. The MONITOR instruction causes a VM exit if the “MONITOR exiting”
VM-execution control is 1.

MOV from CR8. The MOV from CRS8 instruction (which can be executed only in 64-bit
mode and thus only on processors that support Intel EM64T) causes a VM exit if the
“CR8-store exiting” VVM-execution control is 1.

Vol. 3B 21-3

VMX NON-ROOT OPERATION

® MOV to CRO. The MOV to CRO instruction causes a VM exit unless the value of its
source operand matches, for the position of each bit set in the CRO guest/host mask, the
corresponding bit in the CRO read shadow. (If every bit is clear in the CRO guest/host
mask, MOV to CRO cannot cause a VM exit.)

® MOV to CR3. The MOV to CR3 instruction causes a VM exit unless the value of its
source operand is equal to one of the CR3-target values specified in the VMCS. Note that,
if the CR3-target count in n, only the first n CR3-target values are considered; if the CR3-
target count is 0, MOV to CR3 always causes a VM exit.

® MOV to CR4. The MOV to CR4 instruction causes a VM exit unless the value of its
source operand matches, for the position of each bit set in the CR4 guest/host mask, the
corresponding bit in the CR4 read shadow.

® MOV to CR8. The MOV to CR8 instruction (which can be executed only in 64-bit mode
and thus only on processors that support Intel EM64T) causes a VM exit if the “CR8-load
exiting” VM-execution control is 1. Note that, if this control is 0, the behavior of the MOV
to CR8 instruction is modified if the “use TPR shadow” VM-execution control is 1 (see
Section 21.3) and it may cause a trap-like VM exit (see below).

®* MOV DR. The MOV DR instruction causes a VM exit if the “MOV-DR exiting”
VM-execution control is 1. Such VM exits represent an exception to the principles
identified in Section 21.1.1; they take priority over all faults that may occur in the
execution of MOV DR.

®* MWAIT. The MWAIT instruction causes a VMexit if the “MWAIT exiting”
VM-execution control is 1.

® PAUSE. The PAUSE instruction causes a VM exit if the “PAUSE exiting” VM-execution
control is 1.

® RDMSR. The RDMSR instruction causes a VM exit if any of the following are true:
— The “use MSR bitmaps” VM-execution control is 0.

— The value of RCX is not in the range 00000000H — 00001FFFH or CO000000H —
COO001FFFH.

— The value of RCX is in the range 00000000H — 00001FFFH and the n™ bit in read
bitmap for low MSRs is 1, where n is the value of RCX.

— The value of RCX is in the range CO000000H — CO001FFFH and the n™ bit in read
bitmap for high MSRs is 1, where n is the value of RCX & 00001FFFH.

See Section 20.6.9 for details regarding how these bitmaps are identified.

®* RDPMC. The RDPMC instruction causes a VM exit if the “RDPMC exiting”
VM-execution control is 1.

® RDTSC. The RDTSC instruction causes a VM exit if the “RDTSC exiting” VM-execution
control is 1.

21-4 Vol. 3B

VMX NON-ROOT OPERATION

RSM. T3he RSM instruction causes a VM exit if executed in system-management mode
(SMM).

WRMSR. The WRMSR instruction causes a VM exit if any of the following are true:
— The “use MSR bitmaps” VM-execution control is 0.

— The value of RCX is not in the range 00000000H — 00001FFFH or CO000000H —
CO001FFFH.

— The value of RCX is in the range 00000000H — 00001FFFH and the n™ bit in write
bitmap for low MSRs is 1, where n is the value of RCX.

— The value of RCX is in the range CO000000H — CO001FFFH and the nt™ bit in write
bitmap for high MSRs is 1, where n is the value of RCX & 00001FFFH.

See Section 20.6.9 for details regarding how these bitmaps are identified.

The MOV to CR8 instruction (which can be executed only in 64-bit mode and thus only on
processors that support Intel EM64T) may cause a “trap-like” VM exit. This means that the
instruction completes before the VM exit occurs and that processor state is updated by the
instruction (for example, the value of RIP saved in the guest-state area of the VMCS references
the next instruction). Specifically, a VM exit occurs after execution of MOV to CR8 if the
following are true:

The “CR8-load exiting” VM-execution control is 0.
The “use TPR shadow” VM-execution control is 1.

The execution of MOV to CR8 reduces the value of the TPR shadow below that of the
TPR threshold (see Section 20.6.8 and Section 21.3).

21.2 OTHER CAUSES OF VM EXITS

In addition to VM exits caused by instruction execution, the following events can cause
VM exits:

Exceptions. Exceptions (faults, traps, and aborts) cause VM exits based on the exception
bitmap (see Section 20.6.3). If an exception occurs, its vector (in the range 0-31) is used to
select a bit in the exception bitmap. If the bit is 1, a VM exit occurs; if the bit is 0, the
exception is delivered normally through the guest IDT. This use of the exception bitmap
applies also to exceptions generated by the instructions INT3, INTO, BOUND, and UD2.

Page faults (exceptions with vector 14) are specially treated. When a page fault occurs, a
logical processor consults (1) bit 14 of the exception bitmap; (2) the error code produced
with the page fault [PFEC]; (3) the page-fault error-code mask field [PFEC_MASK]; and
(4) the page-fault error-code match field [PFEC_MATCH]. It checks if PFEC &
PFEC_MASK = PFEC_MATCH. If there is equality, the specification of bit 14 in the

3. Execution of the RSM instruction outside SMM causes an invalid-opcode exception regardless of whether

the processor is in VMX operation. It also does so in VMX root operation in SMM; see Section 24.16.3.

Vol. 3B 21-5

VMX NON-ROOT OPERATION

exception bitmap is followed (for example, a VM exit occurs if that bit is set). If there is
inequality, the meaning of that bit is reversed (for example, a VM exit occurs if that bit is
clear).

Thus, if the design requires VM exits on all page faults, software can set bit 14 in the
exception bitmap to 1 and set the page-fault error-code mask and match fields each to
00000000H. If the design does not require VM exits on page faults, software could set bit
14 in the exception bitmap to 1, set the page-fault error-code mask field to 00000000H,
and set the page-fault error-code match field to FFFFFFFFH.

® External interrupts. An external interrupt causes a VM exit if the “external-interrupt
exiting” VVM-execution control is 1. Otherwise, the interrupt is delivered normally through
the IDT. (If a logical processor is in the shutdown state or the wait-for-SIPI state, external
interrupts are blocked. The interrupt is not delivered through the IDT and no VM exit
occurs.)

® Non-maskable interrupts (NMIs). An NMI causes a VM exit if the “NMI exiting”
VM-execution control is 1. Otherwise, it is delivered using descriptor 2 of the IDT. (If a
logical processor is in the wait-for-SIPI state, NMls are blocked. The NMI is not delivered
through the IDT and no VM exit occurs.)

® INIT signals. INIT signals cause VM exits. A logical processor performs none of the
operations normally associated with these events. Such exits do not modify register state or
clear pending events as they would outside of VMX operation. (If a logical processor is in
the wait-for-SIPI state, INIT signals are blocked. They do not cause VM exits in this case.)

e Start-up IPIs (SIPIs). SIPIs cause VM exits. If a logical processor is not in the wait-for-
SIPI activity state when a SIPI arrives, no VM exit occurs and the SIPI is discarded.
VM exits due to SIPIs do not perform any of the normal operations associated with those
events: they do not modify register state as they would outside of VMX operation. (If a
logical processor is not in the wait-for-SIPI state, SIPIs are blocked. They do not cause
VM exits in this case.)

® Task switches. Task switches are not allowed in VMX non-root operation. Any attempt to
effect a task switch in VMX non-root operation causes a VM exit. See Section 21.4.2.

® System-management interrupts (SMIs). If the logical processor is using the dual-
monitor treatment of SMIs and system-management mode (SMM), SMls cause SMM VM
exits. See Section 24.16.2.4

4. Under the dual-monitor treatment of SMIs and SMM, SMIs also cause SMM VM exits if they occur in
VMX root operation outside SMM. If the processor is using the default treatment of SMIs and SMM, SMls
are delivered as described in Section 24.15.1.

21-6 Vol. 3B

VMX NON-ROOT OPERATION

In addition, there is one control that causes VM exits based on the readiness of guest software
to receive an external interrupt:

If the “interrupt-window exiting” VM-execution control is 1, a VM exit occurs before
execution of any instruction if RFLAGS.IF = 1° and there is no blocking of events by STI
or by MOV SS (see Table 20-3). Such a VM exit occurs immediately after VM entry if the
above conditions are true (see Section 22.6.4).

Non-maskable interrupts (NMIs) and higher priority events take priority over VM exits
caused by this control. VM exits caused by this control take priority over external
interrupts and lower priority events.

Such VM exits wake a logical processor from the same inactive states as would an external
interrupt. Specifically, they wake a logical processor from the states entered using the HLT
and MWAIT instructions. Such VM exits do not occur if the logical processor is in the
shutdown state or the wait-for-SIPI state.

21.3 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-ROOT

OPERATION

The behavior of some instructions is changed in VMX non-root operation. Some of these
changes are determined by the settings of certain VM-execution control fields. The following
items detail such changes:

CLTS. Behavior of the CLTS instruction is determined by the bits in position 3 (corre-
sponding to CRO.TS) in the CRO guest/host mask and the CRO read shadow:

— If bit 3 in the CRO guest/host mask is 0, CLTS clears CRO.TS normally (the value of
bit 3 in the CRO read shadow is irrelevant in this case), unless CRO.TS is fixed to 1 in
VMX operation (see Section 19.8), in which case CLTS causes a general-protection
exception.

— If bit 3 in the CRO guest/host mask is 1 and bit 3 in the CRO read shadow is 0, CLTS
completes but does not change the contents of CRO.TS.

— If the bits in position 3 in the CRO guest/host mask and the CRO read shadow are both
1, CLTS causes a VM exit (see Section 21.1.3).

IRET. Behavior of IRET with regard to the blocking by NMI (see Table 20-3) is
determined by the setting of the “NMI exiting” VM-execution control:

— If the control is O, IRET operates normally and unblocks NMls.
— If the control is 1, IRET does not affect blocking by NMI.

5.

This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most pro-
cessors that support VMX operation also support Intel EM64T. For processors that do not support Intel
EMB64T, this notation refers to the 32-bit forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few
places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated register.

Vol. 3B 21-7

VMX NON-ROOT OPERATION

® | MSW. An execution of LMSW that does not cause a VM exit (see Section 21.1.3) leaves
unmodified any bit in CRO corresponding to a bit set in the CRO guest/host mask. It causes
a general-protection exception if it attempts to set any bit to a value not supported in VMX
operation (see Section 19.8)

® MOV from CRO. The behavior of MOV from CRO is determined by the CRO guest/host
mask and the CRO read shadow. For each position corresponding to a bit clear in the CRO
guest/host mask, the destination operand is loaded with the value of the corresponding bit
in CRO. For each position corresponding to a bit set in the CRO guest/host mask, the
destination operand is loaded with the value of the corresponding bit in the CRO read
shadow. Thus, if every bit is cleared in the CRO guest/host mask, MOV from CRO reads
normally from CRO; if every bit is set in the CRO guest/host mask, MOV from CRO returns
the value of the CRO read shadow.

Note that, depending on the contents of the CRO guest/host mask and the CRO read
shadow, bits may be set in the destination that would never be set when reading directly
from CRO.

® MOV from CRA4. The behavior of MOV from CR4 is determined by the CR4 guest/host
mask and the CR4 read shadow. For each position corresponding to a bit clear in the CR4
guest/host mask, the destination operand is loaded with the value of the corresponding bit
in CR4. For each position corresponding to a bit set in the CR4 guest/host mask, the
destination operand is loaded with the value of the corresponding bit in the CR4 read
shadow. Thus, if every bit is cleared in the CR4 guest/host mask, MOV from CR4 reads
normally from CR4; if every bit is set in the CR4 guest/host mask, MOV from CR4 returns
the value of the CR4 read shadow.

Note that, depending on the contents of the CR4 guest/host mask and the CR4 read
shadow, bits may be set in the destination that would never be set when reading directly
from CRA4.

® MOV from CRS8. Behavior of the MOV from CR8 instruction (which can be executed
only in 64-bit mode and thus only on processors that support Intel EM64T) is determined
by the settings of the “CR8-store exiting” and “use TPR shadow” VM-execution controls:

— If both controls are 0, MOV from CR8 operates normally.

— If the “CR8-store exiting” VM-execution control is 0 and the “use TPR shadow”
VM-execution control is 1, MOV from CR8 reads from the TPR shadow. Specifically,
it loads bits 3:0 of its destination operand with the value of bits 7:4 of byte 128 of the
page referenced by the virtual-APIC page address (see Section 20.6.8).

— If the “CR8-store exiting” VM-execution control is 1, MOV from CR8 causes a
VM exit (see Section 21.1.3); the “use TPR shadow” VM-execution control is ignored
in this case.

® MOV to CRO. An execution of MOV to CRO that does not cause a VM exit (see Section
21.1.3) leaves unmodified any bit in CRO corresponding to a bit set in the CRO guest/host
mask. It causes a general-protection exception if it attempts to set any bit to a value not
supported in VMX operation (see Section 19.8).

21-8 Vol. 3B

VMX NON-ROOT OPERATION

MOV to CR4. An execution of MOV to CR4 that does not cause a VM exit (see Section
21.1.3) leaves unmoadified any bit in CR4 corresponding to a bit set in the CR4 guest/host
mask. Such an execution causes a general-protection exception if it attempts to set any bit
to a value not supported in VMX operation (see Section 19.8).

MOV to CR8. Behavior of the MOV to CR8 instruction (which can be executed only in
64-bit mode and thus only on processors that support Intel EM64T) is determined by the
settings of the “CR8-load exiting” and “use TPR shadow” VM-execution controls:

— If both controls are 0, MOV to CR8 operates normally.

— If the “CR8-load exiting” VM-execution control is 0 and the “use TPR shadow”
VM-execution control is 1, MOV to CR8 writes to the TPR shadow. Specifically, it
stores bits 3:0 of its source operand into bits 7:4 of bytes 128 of the page referenced by
the virtual-APIC page address (see Section 20.6.8). Such a store may cause a VM exit
to occur after it completes (see Section 21.1.3).

— If the “CR8-load exiting” VM-execution control is 1, MOV to CR8 causes a VM exit
(see Section 21.1.3); the “use TPR shadow” VM-execution control is ignored in this
case.

RDMSR. Section 21.1.3 identifies when executions of the RDMSR instruction cause
VM exits. If an execution of RDMSR does not cause a VM exit and if RCX contains 10H
(indicating the 1A32_TIME_STAMP_COUNTER MSR), the value returned by the
RDMSR instruction is determined by the setting of the “use TSC offsetting”
VM-execution control as well as the TSC offset:

— If the control is 0, RDMSR operates normally, loading EAX:EDX with the value of the
IA32_TIME_STAMP_COUNTER MSR.

— If the control is 1, RDMSR loads EAX:EDX with the sum (using signed addition) of
the value of the IA32_TIME_STAMP_COUNTER MSR and the value of the TSC
offset (interpreted as a signed value).

RDTSC. Behavior of the RDTSC instruction is determined by the settings of the “RDTSC
exiting” and “use TSC offsetting” VM-execution controls as well as the TSC offset:

— If both controls are 0, RDTSC operates normally.

— If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting”
VM-execution control is 1, RDTSC loads EAX:EDX with the sum (using signed
addition) of the value of the IA32_TIME_STAMP_COUNTER MSR and the value of
the TSC offset (interpreted as a signed value).

— If the “RDTSC exiting” VM-execution control is 1, RDTSC causes a VM exit (see
Section 21.1.3).

SMSW. The behavior of SMSW is determined by the CRO guest/host mask and the CRO
read shadow. For each position corresponding to a bit clear in the CRO guest/host mask, the
destination operand is loaded with the value of the corresponding bit in CRO. For each
position corresponding to a bit set in the CRO guest/host mask, the destination operand is
loaded with the value of the corresponding bit in the CRO read shadow. Thus, if every bit is
cleared in the CRO guest/host mask, MOV from CRO reads normally from CRO; if every

Vol. 3B 21-9

VMX NON-ROOT OPERATION

bit is set in the CRO guest/host mask, MOV from CRO returns the value of the CRO read
shadow.

Note the following: (1) for any memory destination or for a 16-bit register destination,
only the low 16 bits of the CRO guest/host mask and the CRO read shadow are used
(bits 63:16 of a register destination are left unchanged); (2) for a 32-bit register destination,
only the low 32 bits of the CRO guest/host mask and the CRO read shadow are used
(bits 63:32 of the destination are cleared); and (3) depending on the contents of the CRO
guest/host mask and the CRO read shadow, bits may be set in the destination that would
never be set when reading directly from CRO.

21.4 OTHER CHANGES IN VMX NON-ROOT OPERATION

Treatments of event blocking and of task switches differ in VMX non-root operation as
described in the following sections.

21.4.1 Event Blocking

Event blocking is modified in VMX non-root operation as follows:

If the “external-interrupt exiting” VM-execution control is 1, RFLAGS.IF does not control
the blocking of external interrupts. In this case, an external interrupt that is not blocked for
other reasons causes a VM exit (even if RFLAGS.IF = 0).

If the “external-interrupt exiting” VM-execution control is 1, external interrupts may or
may not be blocked by STI or by MOV SS (behavior is implementation-specific).

If the “NMI exiting” VM-execution control is 1, non-maskable interrupts (NMIs) may or
may not be blocked by STI or by MOV SS (behavior is implementation-specific).

21.4.2 Treatment of Task Switches

Task switches are not allowed in VMX non-root operation. Any attempt to effect a task switch
in VMX non-root operation causes a VM exit. However, the following checks are performed (in
the order indicated), possibly resulting in a fault, before there is any possibility of a VM exit due
to task switch:

1.

If a task gate is being used, appropriate checks are made on its P bit and on the proper
values of the relevant privilege fields. The following cases detail the privilege checks
performed:

a. If CALL, INT n, or JIMP accesses a task gate in 1A-32e mode, a general-protection
exception occurs.

b. If CALL, INT n, INT3, INTO, or JMP accesses a task gate outside 1A-32e mode,
privilege-levels checks are performed on the task gate but, if they pass, privilege levels
are not checked on the referenced task-state segment (TSS) descriptor.

21-10 Vol. 3B

VMX NON-ROOT OPERATION

c. If CALL or JMP accesses a TSS descriptor directly in 1A-32e mode, a general-
protection exception occurs.

d. If CALL or JMP accesses a TSS descriptor directly outside 1A-32e mode, privilege
levels are checked on the TSS descriptor.

e. If a non-maskable interrupt (NMI), an exception, or an external interrupt accesses a
task gate in the IDT in 1A-32e mode, a general-protection exception occurs.

f. If a non-maskable interrupt (NMI), an exception other than breakpoint exceptions
(#BP) and overflow exceptions (#OF), or an external interrupt accesses a task gate in
the IDT outside 1A-32e mode, no privilege checks are performed.

g. If IRET is executed with RFLAGS.NT =1 in 1A-32e mode, a general-protection
exception occurs.

h. If IRET is executed with RFLAGS.NT = 1 outside 1A-32e mode, a TSS descriptor is
accessed directly and no privilege checks are made.

2. Checks are made on the new TSS selector (for example, that is within GDT limits).

3. The new TSS descriptor is read. (A page fault results if a relevant GDT page is not
present).

4. The TSS descriptor is checked for proper values of type (depends on type of task switch),
P bit, S bit, and limit.

Only if checks 1-4 all pass (do not generate faults) might a VM exit occur. However, the
ordering between a VM exit due to a task switch and a page fault resulting from accessing the
old TSS or the new TSS is implementation-specific. Some logical processors may generate a
page fault (instead of a VM exit due to a task switch) if accessing either TSS would cause a page
fault. Other logical processors may generate a VM exit due to a task switch even if accessing
either TSS would cause a page fault.

If an attempt at a task switch through a task gate in the IDT causes an exception (before gener-
ating a VM exit due to the task switch) and that exception causes a VM exit, information about
the event whose delivery that accessed the task gate is recorded in the IDT-vectoring information
fields and information about the exception that caused the VM exit is recorded in the VM-exit
interruption-information fields. See Section 23.2. The fact that a task gate was being accessed
is not recorded in the VMCS.

If an attempt at a task switch through a task gate in the IDT causes VM exit due to the task
switch, information about the event whose delivery accessed the task gate is recorded in the IDT-
vectoring fields of the VMCS. Since the cause of such a VM exit is a task switch and not an
interruption, the valid bit for the VM-exit interruption information field is 0. See Section 23.2.

Vol. 3B 21-11

VMX NON-ROOT OPERATION

21-12 Vol. 3B

22

VM Entries

CHAPTER 22
VM ENTRIES

Software can enter VMX non-root operation using either of the VM-entry instructions
VMLAUNCH and VMRESUME. VMLAUNCH can be used only with a VMCS whose launch
state is clear and VMRESUME can be used only with a VMCS whose the launch state is
launched. VMLAUNCH should be used for the first VM entry after VMCLEAR; VMRESUME
should be used for subsequent VM entries with the same VMCS.

Each VM entry performs the following steps in the order indicated:

1.
2.

4,
5,
6.

Basic checks are performed to ensure that VM entry can commence (Section 22.1).

The control and host-state areas of the VMCS are checked to ensure that they are proper
for supporting VMX non-root operation and that the VMCS is correctly configured to
support the next VM exit (Section 22.2).

The following may be performed in parallel or in any order (Section 22.3):

® The guest-state area of the VMCS is checked to ensure that, after the VM entry
completes, the state of the logical processor is consistent with 1A-32 (as extended by
Intel EM6AT).

® Processor state is loaded from the guest-state area and based on the VM-entry controls.
® Address-range monitoring is cleared.

MSRs are loaded from the VM-entry MSR-load area (Section 22.4).

If VMLAUNCH is being executed, the launch state of the VMCS is set to “launched.”

An event may be injected in the guest context (Section 22.5).

Steps 1-4 above perform checks that may cause VM entry to fail. Such failures occur in one of
the following three ways:

Some of the checks in Section 22.1 may generate ordinary 1A-32 faults (for example, an
invalid-opcode exception). Such faults are delivered normally.

Some of the checks in Section 22.1 and all the checks in Section 22.2 cause control to pass
to the instruction following the VM-entry instruction. The failure is indicated by setting
RFLAGS.ZF! (if there is a current VMCS) or RFLAGS.CF (if there is no current VMCS).
If there is a current VMCS, an error number indicating the cause of the failure is stored in
the VM-instruction error field. See Appendix | for the error numbers.

1.

This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most pro-
cessors that support VMX operation also support Intel EM64T. For processors that do not support Intel
EMB64T, this notation refers to the 32-bit forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few
places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated register.

Vol. 3B 22-1

VM ENTRIES

® The checks in Section 22.3 and Section 22.4 cause processor state to be loaded from the
host-state area of the VMCS (as would be done on a VM exit). Information about the
failure is stored in the VM-exit information fields. See Section 22.7 for details.

EFLAGS.TF =1 causes a VM-entry instruction to generate a single-step debug exception only
if failure of one of the checks in Section 22.1 and Section 22.2 causes control to pass to the
following instruction. A VM-entry does not generate a single-step debug exception in any of the
following cases: (1) the instruction generates a fault; (2) failure of one of the checks in Section
22.3 or in loading MSRs causes processor state to be loaded from the host-state area of the
VMCS; or (3) the instruction passes all checks in Section 22.1, Section 22.2, and Section 22.3
and there is no failure in loading MSRs.

Section 24.16 describes the dual-monitor treatment of system-management interrupts (SMIs)
and system-management mode (SMM). Under this treatment, code running in SMM returns
using VM entries instead of the RSM instruction. A VM entry returns from SMM if it is
executed in SMM and the “entry to SMM” VM-entry control is 0. VM entries that return from
SMM differ from ordinary VM entries in ways that are detailed in Section 24.16.4.

22.1 BASIC VM-ENTRY CHECKS

Before a VM entry commences, the current state of the logical processor is checked in the
following order:

1. If the logical processor is in virtual-8086 mode or compatibility mode, an invalid-opcode
exception is generated.

2. If the current privilege level (CPL) is not zero, a general-protection exception is generated.

3. If there is no current VMCS, RFLAGS.CF is set to 1 and control passes to the next
instruction.

4. If there is a current VMCS, the following conditions are evaluated in order; any of these
cause VM entry to fail:

a. if there is MOV-SS blocking (see Table 20-3)
b. if the VM entry is invoked by VMLAUNCH and the VMCS launch state is not clear

c. if the VMentry is invoked by VMRESUME and the VMCS launch state is not
launched

If any of these checks fail, RFLAGS.ZF is set to 1 and control passes to the next
instruction. An error number indicating the cause of the failure is stored in the
VM-instruction error field. See Appendix J for the error numbers.

22-2 Vol. 3B

VM ENTRIES

22.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA

If the checks in Section 22.1 do not cause VM entry to fail, the control and host-state areas of
the VMCS are checked to ensure that they are proper for supporting VMX non-root operation,
that the VMCS s correctly configured to support the next VM exit, and that, after the next
VM exit, the processor’s state is consistent with 1A-32 as extended by Intel EM64T.

VM entry fails if any of these checks fail. When such failures occur, control is passed to the next
instruction, RFLAGS.ZF is set to 1 to indicate the failure, and the VM-instruction error field is
loaded with an error number that indicates whether the failure was due to the controls or the
host-state area (see Appendix I).

These checks may be performed in any order. Thus, an indication by error number of one cause
(for example, host state) does not imply that there are not also other errors. Different processors
may thus give different error numbers for the same VMCS.

The checks on the controls and the host-state area are presented in Section 22.2.1 through
Section 22.2.4. These sections reference VMCS fields that correspond to processor state. Unless
otherwise stated, these references are to fields in the host-state area.

22.2.1 Checks on VMX Controls
This section identifies VM-entry checks on the VMX control fields.

22211 VM-Execution Control Fields
VM entries perform the following checks on the VM-execution control fields:

® Reserved bits in the pin-based VM-execution controls must be set properly. The reserved
settings are indicated in Section 20.6.1. Software may consult the VMX capability MSR
IA32_VMX_PINBASED_CTLS to determine the proper settings.

® Reserved bits in the processor-based VM-execution controls must be set properly. The
reserved settings are indicated in Section 20.6.2. Software may consult the VMX
capability MSR 1A32_VMX_ PROCBASED_CTLS to determine the proper settings (see
Appendix G.2).

® The CR3-target count must not be greater than 4. Future processors may support a different
number of CR3-target values. Software should read the VMX capability MSR
1A32_VMX_MISC to determine the number of values supported (see Appendix G.5).

® If the “use I/O bitmaps” VM-execution control is 1, bits 11:0 of each 1/O-bitmap address
must be 0. On processors that support Intel EM64T, neither address should set any bits
beyond the processor’s physical-address width.2 On processors that do not support Intel
EMG64T, neither address should set any bits in the range 63:32.

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in
EAX. The physical-address width is returned in bits 7:0 of EAX.

Vol. 3B 22-3

VM ENTRIES

If the “use TPR shadow” VVM-execution control is 1, bits 11:0 of each virtual-APIC page
address must be 0. On processors that support Intel EM64T, the address should not set any
bits beyond the processor’s physical-address width. On processors that do not support Intel
EM®64T, the address should not set any bits in the range 63:32.

If the “use MSR bitmaps” VM-execution control is 1, bits 11:0 of the MSR-bitmap address
must be 0. On processors that support Intel EM64T, the address should not set any bits
beyond the processor’s physical-address width. On processors that do not support Intel
EMG64T, the address should not set any bits in the range 63:32.

The following check is performed if the “use TPR shadow” VM-execution control is 1: the
value of bits 3:0 of the TPR threshold should not be greater than the value of bits 7:4 in
byte 128 on the page referenced by the virtual-APIC page address.

22.2.1.2 VM-Exit Control Fields

VM entries perform the following checks on the VM-exit control fields.

Reserved bits in the VM-exit controls must be set properly. The reserved settings are
indicated in Section 20.7.1. In addition, software may consult the VMX capability MSR
1A32_VMX_EXIT_CTLS to determine the proper settings (see Appendix G.3).

The following checks are performed for the VM-exit MSR-store address if the VM-exit
MSR-store count field is non-zero:

— The lower 4 bits of the VM-exit MSR-store address must be 0. On processors that
support Intel EM64T, the address should not set any bits beyond the processor’s
physical-address width.3 On processors that do not support Intel EM64T, the address
should not set any bits in the range 63:32.

— On processors that support Intel EM64T, the address of the last byte in the VM-exit
MSR-store area should not set any bits beyond the processor’s physical-address width.
On processors that do not support Intel EM64T, the address of the last byte in the
VM-exit MSR-store area should not set any bits in the range 63:32. The address of this
last byte is VM-exit MSR-store address + (MSR count * 16) — 1. (The arithmetic used
for the computation uses more bits than the processor’s physical-address width.)

The following checks are performed for the VM-exit MSR-load address if the VM-exit
MSR-load count field is non-zero:

— The lower 4 bits of the VM-exit MSR-load address must be 0. On processors that
support Intel EM64T, the address should not set any bits beyond the processor’s
physical-address width. On processors that do not support Intel EM64T, the address
should not set any bits in the range 63:32.

— On processors that support Intel EM64T, the address of the last byte in the VM-exit
MSR-load area should not set any bits beyond the processor’s physical-address width.
On processors that do not support Intel EM64T, the address of the last byte in the

3.

Software can determine a processor’s physical-address width by executing CPUID with 80000008H in
EAX. The physical-address width is returned in bits 7:0 of EAX.

22-4 Vol. 3B

VM ENTRIES

VM-exit MSR-load area should not set any bits in the range 63:32. The address of this
last byte is VM-exit MSR-load address + (MSR count * 16) — 1. (The arithmetic used
for the computation uses more bits than the processor’s physical-address width.)

22.2.1.3 VM-Entry Control Fields

VM entries perform the following checks on the VM-entry control fields.

Reserved bits in the VM-entry controls must be set properly. The reserved settings are
indicated in Section 20.8.1. In addition, software may consult the VMX capability MSR
1A32_VMX_ENTRY_CTLS to determine the proper settings (see Appendix G.4).

Fields relevant to VM-entry event injection must be set properly. These fields are the
VM-entry interruption-information field (see Table 20-10), the VM-entry exception error
code, and the VM-entry instruction length. If the valid bit (bit 31) in the VM-entry inter-
ruption-information field is 1, the following must hold:

The field’s interruption type (bits 10:8) is not set to a reserved value (1 or 7).
The field’s vector (bits 7:0) is consistent with the interruption type:

* If the interruption type is non-maskable interrupt (NMI), the vector is 2.
* If the interruption type is hardware exception, the vector is at most 31.

The field’s deliver-error-code bit (bit 11) is 1 if and only if the interruption type is
hardware exception and the vector indicates an exception that would normally deliver
an error code (8=#DF; 10=TS; 11=#NP; 12=#SS; 13 =#GP; 14 =PF; or
17 = #AC).

Reserved bits in the field (30:12) are 0.

If the deliver-error-code bit (bit 11) is 1, bits 31:15 of the VM-entry exception error-
code field are 0.

If the interruption type is software interrupt, software exception, or privileged software
exception, the VM-entry instruction-length field is in the range 1-15.

The following checks are performed for the VM-entry MSR-load address if the VM-entry
MSR-load count field is non-zero:

The lower 4 bits of the VM-entry MSR-load address must be 0. On processors that
support Intel EM64T, the address should not set any bits beyond the processor’s
physical-address width.* On processors that do not support Intel EM64T, the address
should not set any bits in the range 63:32.

On processors that support Intel EM64T, the address of the last byte in the VM-entry
MSR-load area should not set any bits beyond the processor’s physical-address width.
On processors that do not support Intel EM64T, the address of the last byte in the
VM-entry MSR-load area should not set any bits in the range 63:32. The address of

4. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in

EAX. The physical-address width is returned in bits 7:0 of EAX.

Vol. 3B 22-5

VM ENTRIES

this last byte is VM-entry MSR-load address + (MSR count * 16) — 1. (The arithmetic
used for the computation uses more bits than the processor’s physical-address width.)

If the processor is not in SMM, the “entry to SMM” and “deactivate dual-monitor
treatment” VVM-entry controls must be 0.

The “entry to SMM” and “deactivate dual-monitor treatment” VM-entry controls cannot
both be 1.

22.2.2 Checks on Host Control Registers and MSRs

The following checks are performed on fields in the host-state area that correspond to control
registers and MSRs:

The CSRO field must not set any bit to a value not supported in VMX operation (see Section
19.8).

The CR4 field must not set any bit to a value not supported in VMX operation (see Section
19.8).

On processors that support Intel EM64T, the CR3 field must be such that bits 63:52 and
bits in the range 51:32 beyond the processor’s physical-address width must be 0.

On processors that support Intel EM64T, the 1A32_SYSENTER_ESP field and the
I1A32_SYSENTER_EIP field must each contain a canonical address.

22.2.3 Checks on Host Segment and Descriptor-Table Registers

The following checks are performed on fields in the host-state area that correspond to segment
and descriptor-table registers:

In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the RPL (bits 1:0) and the
Tl flag (bit 2) must be 0.

The selector fields for CS and TR cannot be 0000H.

The selector field for SS cannot be 0000H if the “host address-space size” VM-exit control
is 0.

On processors that support Intel EM64T, the base-address fields for FS, GS, GDTR, IDTR,
and TR must contain canonical addresses.

The bits corresponding to NW (bit 29) and CD (bit 30) are never checked because the values of these
bits are not changed by VM exit; see Section 23.5.1.

. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in

EAX. The physical-address width is returned in bits 7:0 of EAX.

22-6 Vol. 3B

VM ENTRIES

22.2.4 Checks Related to Address-Space Size

On processors that support Intel EM64T, the following checks related to address-space size are
performed on VMX controls and fields in the host-state area:

® |f the logical processor is outside 1A-32e mode (if IA32_EFER.LMA = 0) at the time of
VM entry, the following must hold:

— The “1A-32e mode guest” VM-entry control is 0.
— The “host address-space size” VM-exit control is 0.

® If the logical processor is in 1A-32e mode (if 1A32_EFER.LMA =1) at the time of
VM entry, the “host address-space size” VM-exit control must be 1.

® |f the “host address-space size” VM-exit control is 0, the following must hold:
— The “1A-32e mode guest” VM-entry control is 0.
— Bits 63:32 in the RIP field is 0.

® |f the “host address-space size” VM-exit control is 1, the following must hold:
— Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1.
— The RIP field contains a canonical address.

On processors that do not support Intel EM64T, checks are performed to ensure that the “1A-32e
mode guest” VM-entry control and the “host address-space size” VM-exit control are both 0.

22.3 CHECKING AND LOADING GUEST STATE

If all checks on the VMX controls and the host-state area pass (see Section 22.2), the following
operations take place concurrently: (1) the guest-state area of the VMCS is checked to ensure
that, after the VM entry completes, the state of the logical processor is consistent with 1A-32 as
extended by Intel EM64T; (2) processor state is loaded from the guest-state area or as specified
by the VM-entry control fields; and (3) address-range monitoring is cleared.

Because the checking and the loading occur concurrently, a failure may be discovered only after
some state has been loaded. For this reason, the logical processor responds to such failures by
loading state from the host-state area, as it would for a VM exit. See Section 22.7.

22.3.1 Checks on the Guest State Area

This section describes checks performed on fields in the guest-state area. These checks may be
performed in any order. The following subsections reference fields that correspond to processor
state. Unless otherwise stated, these references are to fields in the guest-state area.

Vol. 3B 22-7

VM ENTRIES

22.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRs

The following checks are performed on fields in the guest-state area corresponding to control
registers, debug registers, and MSRs:

® The CRO field must not set any bit to a value not supported in VMX operation (see
Section 19.8).7

® The CR4 field must not set any bit to a value not supported in VMX operation (see
Section 19.8).

® Bitsreserved in the IA32_DEBUGCTL MSR must be 0 in the field for that register.
® The following checks are performed on processors that support Intel EM64T:

— If the “1A-32e mode guest” VM-entry control is 1, bit5 in the CR4 field (corre-
sponding to CR4.PAE) must be 1.

— The CR3 field must be such that bits 63:52 and bits in the range 51:32 beyond the
processor’s physical-address width are 0.8

— Bits 63:32 in the DR7 field must be 0.

— The 1A32_SYSENTER_ESP field and the 1A32_SYSENTER_EIP field must each
contain a canonical address.

22.3.1.2 Checks on Guest Segment Registers

This section specifies the checks on the fields for CS, SS, DS, ES, FS, GS, TR, and LDTR. The
following terms are used in defining these checks:

® The guest will be virtual-8086 if the VM flag (bit 17) is 1 in the RFLAGS field in the
guest-state area.

® The guest will be 1A-32e mode if the “IA-32e mode guest” VM-entry control is 1. (This is
possible only on processors that support Intel EM64T.)

® Any one of these registers is said to be usable if the unusable bit (bit 16) is 0 in the access-
rights field for that register.

The following are the checks on these fields:
® Selector fields.
— TR. The Tl flag (bit 2) must be 0.
— LDTR. If LDTR is usable, the TI flag (bit 2) must be 0.

— SS. If the guest will not be virtual-8086, the RPL (bits 1:0) must equal the RPL of the
selector field for CS.

7. The bits corresponding to NW (bit 29) and CD (bit 30) are never checked because the values of these
bits are not changed by VM entry; see Section 22.3.2.1.

8. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in
EAX. The physical-address width is returned in bits 7:0 of EAX.

22-8 Vol. 3B

VM ENTRIES

Base-address fields.

— CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the address must be the
selector field shifted right 4 bits.

— The following checks are performed on processors that support Intel EM64T:
* TR, FS, GS. The address must be canonical.
* LDTR. If LDTR is usable, the address must be canonical.
* CS. Bits 63:32 of the address must be zero.
e SS, DS, ES. If the register is usable, bits 63:32 of the address must be zero.

Limit fields for CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the field must be
0000FFFFH.

Access-rights fields.
— CS, SS, DS, ES, FS, GS.

e |If the guest will be virtual-8086, the field must be 000000F3H. Note that this
implies the following:

Bits 3:0 (Type) must be 3, indicating an expand-up read/write accessed data
segment.

Bit 4 (S) must be 1.
Bits 6:5 (DPL) must be 3.
Bit 7 (P) must be 1.

Bits 11:8 (reserved), bit 12 (software available), bit 13 (reserved/L), bit 14
(D/B), bit 15 (G), bit 16 (unusable), and bits 31:17 (reserved) must all be 0.

e If the guest will not be virtual-8086, the different sub-fields are considered
separately:

Bits 3:0 (Type).

e CS. Bit 0 of the Type must be 1 (accessed) and bit 3 of the Type must be 1
(code segment).

* SS. If SS is usable, the Type must be 3 or 7 (read/write, accessed data
segment).

* DS, ES, FS, GS. The following checks apply if the register is usable:
— Bit 0 of the Type must be 1 (accessed).

— If bit 3 of the Type is 1 (code segment), then bit 1 of the Type must be
1 (readable).

Bit 4 (S). If the register is CS or if the register is usable, S must be 1.
Bits 6:5 (DPL).

Vol. 3B 22-9

VM ENTRIES

— If the Type is in the range 8-11 (non-conforming code segment), the
DPL must equal the RPL (bits 1:0) from the selector field.

— If the Type is in the range 13-15 (conforming code segment), the
DPL cannot be greater than the RPL from the selector field.

e SS. The DPL must equal the RPL from the selector field

* DS, ES, FS, GS. If the register is usable and the register’s Type is in the
range 0 — 11 (data segment or non-conforming code segment), then the
DPL cannot be less than the RPL from the selector field

Bit 7 (P). If the register is CS or if the register is usable, P must be 1.

Bits 11:8 (reserved). If the register is CS or if the register is usable, these bits
must all be 0.

Bit 14 (D/B). For CS, D/B must be 0 if the guest will be 1A-32e mode and the
L bit (bit 13) in the access-rights field is 1.

Bit 15 (G). The following checks apply if the register is CS or if the register is
usable:

¢ Ifany bit in the limit field in the range 11:0 is 0, G must be 0.
¢ Ifany bit in the limit field in the range 31:20 is 1, G must be 1.

Bits 31:17 (reserved). If the register is CS or if the register is usable, these bits
must all be 0.

— TR. The different sub-fields are considered separately:
* Bits 3:0 (Type).
— If the guest will not be 1A-32e mode, the Type must be 3 (16-bit busy TSS) or

11 (32-bit busy TSS).

— If the guest will be 1A-32e mode, the Type must be 11 (64-bit busy TSS).
* Bit4(S). SmustbeO.
e Bit7 (P). P mustbel.
* Bits 11:8 (reserved). These bits must all be 0.
* Bit15 (G).
— If any bit in the limit field in the range 11:0 is 0, G must be 0.
— If any bit in the limit field in the range 31:20 is 1, G must be 1.
¢ Bit 16 (Unusable). The unusable bit must be 0.
* Bits 31:17 (reserved). These bits must all be 0.

22-10 Vol. 3B

VM ENTRIES

— LDTR. The following checks on the different sub-fields apply only if LDTR is usable:
* Bits 3:0 (Type). The Type must be 2 (LDT).
* Bit4(S). Smustbe 0.
* Bit7 (P). P must be 1.
e Bits 11:8 (reserved). These bits must all be 0.
* Bit15 (G).
— If any bit in the limit field in the range 11:0 is 0, G must be 0.
— Ifany bit in the limit field in the range 31:20 is 1, G must be 1.
* Bits 31:17 (reserved). These bits must all be 0.

22.3.1.3 Checks on Guest Descriptor-Table Registers
The following checks are performed on the fields for GDTR and IDTR:

® On processors that support Intel EM64T, the base-address fields must contain canonical
addresses.

® Bits 31:16 of each limit field must be 0.

22.3.1.4 Checks on Guest RIP and RFLAGS

The following checks are performed on fields in the guest-state area corresponding to RIP and
RFLAGS:

® RIP. The following checks are performed on processors that support Intel EM64T:

— Bits 63:32 must be 0 if the “lA-32e mode guest” VM-entry control is O or if the L bit
(bit 13) in the access-rights field for CS is 0.

— If the processor supports N < 64 linear-address bits, bits 63:N must be identical if the
“1A-32e mode guest” VM-entry control is 1 and the L bit in the access-rights field for
CSis1.? (No check applies if the processor supports 64 linear-address bits.)

® RFLAGS.

— Reserved bits 63:22 (bits 31:22 on processors that do not support Intel EM64T),
bit 15, bit 5 and bit 3 must be 0 in the field, and reserved bit 1 must be 1.

— On processors that support Intel EM64T, the VM flag (bit 17) must be 0 if the “IA-32e
mode guest” VM-entry control is 1.

— The RF flag (bit 9) must be 1 if the valid bit (bit 31) in the VM-entry interruption-
information field is 1 and the interruption type (bits 10:8) is external interrupt.

9. Software can determine the number N by executing CPUID with 80000008H in EAX. The number of lin-
ear-address bits supported is returned in bits 15:8 of EAX.

Vol. 3B 22-11

VM ENTRIES

22.3.1.5 Checks on Guest Non-Register State

The following checks are performed on fields in the guest-state area corresponding to non-
register state:

® Activity state.

The activity-state field must contain a value in the range 0 — 3, indicating an activity
state supported by the implementation (see Section 20.4.2). Future processors may
include support for other activity states. Software should read the VMX capability
MSR 1A32_VMX_MISC (see Appendix G.5) to determine what activity states are
supported.

The activity-state field must not indicate the HLT state if the DPL (bits 6:5) in the
access-rights field for SS is not 0.10

The activity-state field must indicate the active state if the interruptibility-state field
indicates blocking by either MOV-SS or by STI (if either bit 0 or bit 1 in that field
is 1).

If the valid bit (bit 31) in the VM-entry interruption-information field is 1, the inter-
ruption to be delivered (as defined by interruption type and vector) must not be one
that would normally be blocked while a logical processor is in the activity state corre-
sponding to the contents of the activity-state field. The following items enumerate the
interruptions whose injection is allowed for the different activity states:

e Active. Any interruption is allowed.

e HLT. The only events allowed are those with interruption type external interrupt or
non-maskable interrupt (NMI) and those with interruption type hardware
exception and vector 1 (debug exception) or vector 18 (machine-check exception).

¢ Shutdown. Only NMls and machine-check exceptions are allowed.
* Wait-for-SIPI. No interruptions are allowed.

The activity-state field must not indicate the wait-for-SIPI state if the “entry to SMM”
VM-entry control is 1.

® Interruptibility state.

The reserved bits (bits 31:4) must be 0.

The field cannot indicate blocking by both STI and MOV SS (bits 0 and 1 cannot both
be 1).

Bit 0 (blocking by STI) must be 0 if the IF flag (bit 9) is 0 in the RFLAGS field.

Bit 0 (blocking by STI) and bit 1 (blocking by MOV-SS) must both be 0 if the valid bit
(bit 31) in the VM-entry interruption-information field is 1 and the interruption type
(bits 10:8) in that field has value 0, indicating external interrupt.

10. As noted in Section 20.4.1, SS.DPL corresponds to the logical processor’s current privilege level (CPL).

22-12 Vol. 3B

VM ENTRIES

Bit 1 (blocking by MOV-SS) must be 0 if the valid bit (bit 31) in the VM-entry inter-
ruption-information field is 1 and the interruption type (bits 10:8) in that field has
value 2, indicating non-maskable interrupt (NMI).

Bit 2 (blocking by SMI) must be 0 if the processor is not in SMM.
Bit 2 (blocking by SMI) must be 1 if the “entry to SMM” VM-entry control is 1.

A processor may require bit 0 (blocking by STI) to be 0 if the valid bit (bit 31) in the
VM-entry interruption-information field is 1 and the interruption type (bits 10:8) in
that field has value 2, indicating NMI. Other processors may not make this
requirement.

Note that there is no requirement that bit 3 (blocking by NMI) be 0 if the valid bit
(bit 31) in the VM-entry interruption-information field is 1 and the interruption type
(bits 10:8) in that field has value 2, indicating NMI.

® Pending debug exceptions.

Bits 11:4, bit 13, and bits 63:15 (bits 31:15 on processors that do not support Intel
EM64T) must be 0.

The following checks are performed if any of the following holds: (1) the interrupt-
ibility-state field indicates blocking by STI (bit 0 in that field is 1); (2) the interrupt-
ibility-state field indicates blocking by MOV SS (bit 1 in that field is 1); or (3) the
activity-state field indicates HLT:

* Bit 14 (BS) must be 1 if the TF flag (bit 8) in the RFLAGS field is 1 and the BTF
flag (bit 1) in the IA32_DEBUGCTL field is 0.

* Bit 14 (BS) must be 0 if the TF flag (bit 8) in the RFLAGS field is 0 or the BTF
flag (bit 1) in the IA32_DEBUGCTL field is 1.

® VMCS link pointer. The following checks apply if the field contains a value other than
FFFFFFFF_FFFFFFFFH:

Bits 11:0 must be 0.

On processors that support Intel EM64T, bits beyond the processor’s physical-address
width must be 0.1% On processors that do not support Intel EM64T, bits in the
range 63:32 must be 0.

The 32 bits located in memory referenced by the value of the field (as a physical
address) must contain the processor’s VMCS revision identifier (see Section 20.2).

If the processor is not in SMM or the “entry to SMM” VVM-entry control is 1, the field
must not contain the current VMCS pointer.

If the processor is in SMM and the “entry to SMM” VM-entry control is 0, the field
must not contain the VMXON pointer.

11. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in
EAX. The physical-address width is returned in bits 7:0 of EAX.

Vol. 3B 22-13

VM ENTRIES

22.3.1.6 Checks on Guest Page-Directory Pointers

If bit 5 in CR4 (CR4.PAE) is 1, the logical processor uses the physical-address extension
(PAE). If IA32_EFER.LMA is 0, the logical processor also uses PAE paging (see Section 3.8
in the 1A-32 Intel® Architecture Software Developer’s Manual, Volume 3A).12 When PAE
paging is in use, the physical address in CR3 references a table of page-directory pointers
(PDPTRs). A MOV to CR3 when PAE paging is in use checks the validity of these pointers.

A VM entry is to a guest that uses PAE paging if (1) bit 5 (corresponding to CR4.PAE) is set in
the CR4 field in the guest-state area; and (2) the “IA-32e mode guest” VM-entry control is 0.
Such a VM entry may check the validity of the PDPTRs referenced by the CR3 field in the guest-
state area. Such a VM entry must check their validity if either (1) PAE paging was not in use
before the VM entry; or (2) the value of CR3 is changing as a result of the VM entry. A
VM entry to a guest that does not use PAE paging must not check the validity of the PDPTRs.

A VM entry that checks the validity of the PDPTRs uses the same checks that are used when
CR3 is loaded with MOV to CR3 when PAE paging is in use. If MOV to CR3 would cause a
general-protection exception due to the PDPTRs that would be loaded (for example: because a
reserved bit is set), the VM entry fails.

22.3.2 Loading Guest State

Processor state is updated on VM entries in the following ways:

® Some state is loaded from the guest-state area.

® Some state is determined by VM-entry controls.

® The page-directory pointers are loaded based on the values of certain control registers.

This loading may be performed in any order and in parallel with the checking of VMCS contents
(see Section 22.3.1).

The loading of guest state is detailed in Section 22.3.2.1 to Section 22.3.2.4. These sections
reference VMCS fields that correspond to processor state. Unless otherwise stated, these refer-
ences are to fields in the guest-state area.

In addition to the state loading described in this section, VM entries may load MSRs from the
VM-entry MSR-load area (see Section 22.4). This loading occurs only after the state loading
described in this section and the checking of VMCS contents described in Section 22.3.1.

12.0n processors that support Intel EM64T, the physical-address extension may support more than 36
physical-address bits. Software can determine the number physical-address bits supported by executing
CPUID with 80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

22-14 Vol. 3B

VM ENTRIES

22.3.2.1 Loading Guest Control Registers, Debug Registers, and MSRs

The following items describe how guest control registers, debug registers, and MSRs are loaded
on VM entry:

CRO is loaded from the CRO field with the exception of the following bits, which are never
modified on VM entry: ET (bit 4); reserved bits 15:6, 17, and 28:19; NW (bit 29) and CD
(bit 30).13 The values of these bits in the CRO field are ignored.

CR3 and CR4 are loaded from the CR3 field and the CR4 field, respectively.

DRY7 is loaded from the DR7 field with the exception that bit 12 and bits 15:14 are always
0 and bit 10 is always 1. The values of these bits in the DR7 field are ignored.

The following describes how some MSRs are loaded using fields in the guest-state area:
— 1A32_DEBUGCTL MSR is loaded from the IA32_DEBUGCTL field.

— The 1A32_SYSENTER_CS MSR is loaded from the I1A32_SYSENTER_CS field.
Since this field has only 32 bits, bits 63:32 of the MSR are cleared to 0.

— The IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are loaded from the
IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field, respectively. On
processors that do not support Intel EM64T, these fields have only 32 bits; bits 63:32
of the MSRs are cleared to 0.

— The following are performed on processors that support Intel EM64T:

* The MSRs FS.base and GS.base are loaded from the base-address fields for FS
and GS, respectively (see Section 22.3.2.2).

* The LMA and LME bits in the IA32_EFER MSR are each loaded with the setting
of the “IA-32e mode guest” VM-entry control.

With the exception of FS.base and GS.base, any of these MSRs may be subsequently
overwritten if it appears in the VM-entry MSR-load area. See Section 22.4.

The SMBASE register is unmodified by all VM entries except those that return from
SMM.

If any of CR3[63:5] (CR3[31:5] on processors that do not support Intel EM64T), CR4.PAE,
CRA4.PSE, or IA32_EFER.LMA is changing, the TLBs are updated so that, after VM entry, the
logical processor will not use any translations that were cached before the transition. This is not
necessary for changes that would not affect paging due to the settings of other bits (for example,
changes to CR4.PSE if CR4.PAE was 1 before and after the transition).

13.Bits 15:6, bit 17, and bit 28:19 of CRO and CRO.ET are unchanged by executions of MOV to CRO.

Bits 15:6, bit 17, and bit 28:19 of CRO are always 0 and CRO.ET is always 1.

Vol. 3B 22-15

VM ENTRIES

22.3.2.2 Loading Guest Segment Registers and Descriptor-Table Registers

For each of CS, SS, DS, ES, FS, GS, TR, and LDTR, fields are loaded from the guest-state area
as follows:

The unusable bit is loaded from the access-rights field. This bit can never be set for TR
(see Section 22.3.1.2). If it is set for one of the other registers, the following apply:

— For each of CS, SS, DS, ES, FS, and GS, uses of the segment cause faults (general-
protection exception or stack-fault exception) outside 64-bit mode, just as they would
had the segment been loaded using a null selector. This bit does not cause accesses to
fault in 64-bit mode.

— If this bit is set for LDTR, uses of LDTR cause general-protection exceptions in all
modes, just as they would had LDTR been loaded using a null selector.

If this bit is clear for any of CS, SS, DS, ES, FS, GS, TR, and LDTR, a null selector value
does not cause a fault (general-protection exception or stack-fault exception).

TR. The selector, base, limit, and access-rights fields are loaded.

CS.

— The following fields are always loaded: selector, base address, limit, and (from the
access-rights field) the L, D, and G bits.

— For the other fields, the unusable bit of the access-rights field is consulted:
¢ |f the unusable bit is 0, all of the access-rights fields are loaded.
e |f the unusable bit is 1, the remainder of CS access rights are undefined after
VM entry.
SS, DS, ES, FS, and GS, and LDTR.

— The selector fields are loaded.

— For the other fields, the unusable bit of the corresponding access-rights field is
consulted:

¢ |f the unusable bit is 0, the base-address, limit, and access-rights fields are loaded.
¢ |fthe unusable bit is 1, the base address, the segment limit, and the remainder of the
access rights are undefined after VM entry. The only exceptions are the following:
— SS.DPL: always loaded from the SS access-rights field. This will be the
current privilege level (CPL) after the VM entry completes.

— The base addresses for FS and GS: always loaded. Note that, on processors
that support Intel EM64T, the values loaded for base addresses for FS and GS
are also manifest in the FS.base and GS.base MSRs.

— The base address for LDTR on processors that support Intel EM64T: set to an
undefined but canonical value.

— Bits 63:32 of the base addresses for SS, DS, and ES on processors that support
Intel EM6AT: cleared to 0.

GDTR and IDTR are loaded using the base and limit fields.

22-16 Vol. 3B

VM ENTRIES

22.3.2.3 Loading Guest RIP, RSP, and RFLAGS

RSP, RIP, and RFLAGS are loaded from the RSP field, the RIP field, and the RFLAGS field,
respectively.

22.3.2.4 Loading Page-Directory Pointers

As noted in Section 22.3.1.6, the logical processor uses PAE paging if bit 5 in CR4 (CR4.PAE)
is 1 and IA32_EFER.LMA is 0. When PAE paging is in use, the physical address in CR3 refer-
ences a table of page-directory pointers (PDPTRs). A MOV to CR3 when PAE paging is in use
loads the PDPTRSs into the processor (into internal, non-architectural registers).

A VM entry to a guest that uses PAE paging loads the PDPTRs into the processor as would
MOV to CR3, using the value of CR3 being load by the VM entry.

22.3.3 Clearing Address-Range Monitoring

1A-32 processors allow software to monitor a specified address range using the MONITOR and
MWAIT instructions. See Section 7.11.4 in the 1A-32 Intel® Architecture Software Developer’s
Manual, Volume 3A. VM entries clear any address-range monitoring that may be in effect.

22.4 LOADING MSRS

VM entries may load MSRs from the VM-entry MSR-load area (see Section 20.8.2). Specifi-
cally each entry in that area (up to the number specified in the VM-entry MSR-load count) is
processed in order by loading the MSR indexed by bits 31:0 with the contents of bits 127:64 as
they would be written by WRMSR.

Processing of an entry fails in any of the following cases:

® The value of bits 31:0 is either CO000100H (the 1A32_FS_BASE MSR) or C0000101 (the
IA32_GS_BASE MSR).

® The value of bits 31:0 is 9BH (the IA32_SMM_MONITOR_CTL MSR) and the VM entry
did not commence in system-management mode (SMM).

® The value of bits 31:0 indicates an MSR that cannot be loaded on VM entries for model-
specific reasons. A processor may prevent loading of certain MSRs even if they can
normally be written by WRMSR. Such model-specific behavior is documented in
Appendix B.

® Bits 63:32 are not all 0.

® An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry would cause a
general-protection exception if executed via WRMSR with CPL = 0.14

Vol. 3B 22-17

VM ENTRIES

The VM entry fails if processing fails for any entry. The logical processor responds to such fail-
ures by loading state from the host-state area, as it would for a VM exit. See Section 22.7.

If any MSR is being loaded in such a way that would architecturally require a TLB flush, the
TLBs are updated so that, after VM entry, the logical processor will not use any translations that
were cached before the transition.

22.5 EVENT INJECTION

If the valid bit in the VM-entry interruption-information field is 1, the logical processor delivers
an event after all components of guest state have been loaded (including MSRs). The event is
delivered using the vector in that field to select a descriptor in the IDT. Since event injection
occurs after loading IDTR from the guest-state area, this is the guest IDT.

Section 22.5.1 provides details of event injection. In general, the event is delivered exactly as it
would had it been generated normally.

If event delivery encounters a nested exception (for example, a general-protection exception
because the vector indicates a descriptor beyond the IDT limit), the exception bitmap is
consulted using the vector of that exception. If the bit is 0, the exception is delivered through the
IDT. If the bitis 1, a VM exit occurs. Section 22.5.2 details cases in which event injection causes
a VM exit.

22.5.1 Details of Event Injection

The event-injection process is controlled by the contents of the VM-entry interruption informa-
tion field (format given in Table 20-10), the VM-entry exception error-code field, and the
VM-entry instruction-length field. The following items provide details of the process:

® The value pushed on the stack for RFLAGS is generally that which was loaded from the
guest-state area. The value pushed for the RF flag is not modified based on the type of
event being delivered. However, the pushed value of RFLAGS may be modified if a
software interrupt is being injected into a guest that will be in virtual-8086 mode (see
below). After RFLAGS is pushed on the stack, the value in the RFLAGS register is
modified as is done normally when delivering an event through the IDT.

® The instruction pointer that is pushed on the stack depends on the type of event and
whether nested exceptions occur during its delivery. The term current guest RIP refers to

14.Note the following about processors that support Intel EM64T. If CRO.PG =1, WRMSR to the
IA32_EFER MSR causes a general-protection exception if it would modify the LME bit. Since CRO.PG is
always 1 in VMX operation, the IA32_EFER MSR should not be included in the VM-entry MSR-load area
for the purpose of modifying the LME bit.

22-18 Vol. 3B

VM ENTRIES

the value to be loaded from the guest-state area. The value pushed is determined as
follows:1°

— If VM entry successfully injects (with no nested exception) an event with interruption
type external interrupt, NMI, or hardware exception, the current guest RIP is pushed
on the stack.

— If VM entry successfully injects (with no nested exception) an event with interruption
type software interrupt, privileged software exception, or software exception, the
current guest RIP is incremented by the VVM-entry instruction length before being
pushed on the stack.

— If VM entry encounters an exception while injecting an event and that exception does
not cause a VM exit, the current guest RIP is pushed on the stack regardless of event
type or VMe-entry instruction length. If the encountered exception does cause a
VM exit that saves RIP, the saved RIP is current guest RIP.

® If the deliver-error-code bit (bit 11) is set in the VM-entry interruption-information field,
the contents of the VM-entry exception error-code field is pushed on the stack as an error
code would be pushed during delivery of an exception.

®* DR6, DR7, and the 1A32_DEBUGCTL MSR are not modified by event injection, even if
the event has vector 1 (normal deliveries of debug exceptions, which have vector 1, do
update these registers).

* If VM entry is injecting a software interrupt and the guest will be in virtual-8086 mode
(RFLAGS.VM = 1), no general-protection exception can occur due to RFLAGS.IOPL < 3.
A VM monitor should check RFLAGS.IOPL before injecting such an event and, if desired,
inject a general-protection exception instead of a software interrupt.

* If VM entry is injecting a software interrupt and the guest will be in virtual-8086 mode
with virtual-8086 mode extensions (RFLAGS.VM = CR4.VME = 1), event delivery is
subject to VME-based interrupt redirection based on the software interrupt redirection
bitmap in the task-state segment (TSS) as follows:

— If bit n in the bitmap is clear (where n is the number of the software interrupt), the
interrupt is directed to an 8086 program interrupt handler: the processor uses a 16-bit
interrupt-vector table (IVT) located at linear address zero. If the value of
RFLAGS.IOPL is less than 3, the following modifications are made to the value of
RFLAGS that is pushed on the stack: IOPL is set to 3, and IF is set to the value of VIF.

— If bitn in the bitmap is set (where n is the number of the software interrupt), the
interrupt is directed to a protected-mode interrupt handler. (In other words, the
injection is treated as described in the next item.) In 1A-32, a software interrupt in this
case does not invoke such a handler if RFLAGS.IOPL < 3 (a general-protection
exception occurs instead). However, as noted above, RFLAGS.IOPL cannot cause an
injected software interrupt to cause such a exception. Thus, in this case, the injection

15. While these items refer to RIP, the width of the value pushed (16 bits, 32 bits, or 64 bits) is determined
normally.

Vol. 3B 22-19

VM ENTRIES

invokes a protected-mode interrupt handler independent of the value of
RFLAGS.IOPL.

Injection of events of other types are not subject to this redirection.

® If VMentry is injecting a software interrupt (not redirected as described above) or
software exception, privilege checking is performed on the IDT descriptor being accessed
as would be the case for executions of INT n, INT3, or INTO (the descriptor’s DPL cannot
be less than CPL). There is no checking of RFLAGS.IOPL, even if the guest will be in
virtual-8086 mode. Failure of this check may lead to a nested exception. Injection of an
event with interruption type external interrupt, NMI, hardware exception, and privileged
software exception, or with interruption type software interrupt and being redirected as
described above, do not perform these checks.

® The transition causes a last-branch record to be logged if the LBR bit is set in the
1A32_DEBUGCTL MSR. This is true even for events such as debug exceptions, which
normally clear the LBR bit before delivery.

® The last-exception record MSRs (LERs) may be updated based on the setting of the LBR
bit in the 1A32_DEBUGCTL MSR. Events such as debug exceptions, which normally
clear the LBR bit before they are delivered, and therefore do not normally update the
LERs, may do so as part of VM-entry event injection.

® |finjection of an event encounters a nested exception that does not itself cause a VM exit,
the value of the EXT bit (bit 0) in any error code pushed on the stack is determined as
follows:

— If event being injected has interruption type external interrupt, NMI, hardware
exception, or privileged software exception and encounters a nested exception (but
does not produce a double fault), the error code for the first such exception
encountered sets the EXT bit.

— If event being injected is a software interrupt or an software exception and encounters
a nested exception (but does not produce a double fault), the error code for the first
such exception encountered clears the EXT bit.

— If event delivery encounters a nested exception and delivery of that exception
encounters another exception (but does not produce a double fault), the error code for
that exception sets the EXT bit. If a double fault is produced, the error code for the
double fault is 0000H (the EXT bit is clear).

22.5.2 VM Exits During Event Injection

An event being injected never directly causes a VM exit regardless of the settings of the
VM-execution controls. For example, setting the “NMI exiting” VM-execution control to 1 does
not cause a VM exit due to injection of an NMI.

However, the event-delivery process may lead to a VM exit. If the vector in the VM-entry inter-
ruption-information field identifies a task gate in the IDT, the attempted task switch may cause
a VM exit just as it would had the injected event occurred during normal execution in VMX non-

22-20 Vol. 3B

VM ENTRIES

root operation (see Section 21.4.2). Similarly, if event delivery encounters a nested exception, a
VM exit may occur depending on the contents of the exception bitmap.

If the event-delivery process does cause a VM exit, the processor state before the VM exit is
determined just as it would be had the injected event occurred during normal execution in VMX
non-root operation. If the injected event directly accesses a task gate that cause a VM exit or if
the first nested exception encountered causes a VM exit, information about the injected event is
saved in the IDT-vectoring information field (see Section 23.2.3).

22.6 SPECIAL FEATURES OF VM ENTRY

This section details a variety of features of VM entry. It uses the following terminology: a
VM entry is injecting if the valid bit (bit 31) of the VM-entry interruption information field is
set.

22.6.1 Interruptibility State

The interruptibility-state field in the guest-state area (see Table 20-3) contains bits that control
blocking by STI, blocking by MOV SS, and blocking by NMI. This field impacts event blocking
after VM entry as follows:

® |f the VM entry is injecting, there is no blocking by STI or by MOV SS following the
VM entry, regardless of the contents of the interruptibility-state field.

® If the VM entry is not injecting, the following apply:

— Events are blocked by STI if and only if bit 0 in the interruptibility-state field is 1.
Such blocking is cleared after the guest executes one instruction or incurs an exception
(including a debug exception made pending by VM entry; see Section 22.6.3).

— Events are blocked by MOV SS if and only if bit 1 in the interruptibility-state field is
1. This may affect the treatment of pending debug exceptions; see Section 22.6.3. Such
blocking is cleared after the guest executes one instruction or incurs an exception
(including a debug exception made pending by VM entry).

— Non-maskable interrupts (NMIs) are blocked if bit 3 in the interruptibility-state field is
1. If the “NMI exiting” VM-execution control is 0, such blocking remains in effect
until IRET is executed (even if the instruction generates a fault). If the “NMI exiting”
control is 1, such blocking remains in effect as long as the logical processor is in VMX
non-root operation.

— Blocking of system-management interrupts (SMIs) is determined as follows:

e If the VM entry was not executed in system-management mode (SMM), SMI
blocking is unchanged by VM entry.

¢ If the VM entry was executed in SMM, SMIs are blocked after VM entry if and
only if the bit 2 in the interruptibility-state field is 1.

Vol. 3B 22-21

VM ENTRIES

22.6.2 Activity State

The activity-state field in the guest-state area controls whether, after VM entry, the logical
processor is active or in one of the inactive states identified in Section 20.4.2. The use of this
field is determined as follows:

If the VM entry is injecting, the logical processor is in the active state after VM entry.
While the consistency checks described in Section 22.3.1.5 on the activity-state field do
apply in this case, the contents of the activity-state field do not determine the activity state
after VM entry.

If the VM entry is not injecting, the logical processor ends VM entry in the activity state
specified in the guest-state area. If VM entry ends with the logical processor in an inactive
activity state, the VM entry generates any special bus cycle that is normally generated
when that activity state is entered from the active state.

Some activity states unconditionally block certain events. The following blocking is in
effect after any VM entry that puts the processor in the indicated state:

The active state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical processor
is in the active state and in VMX non-root operation are discarded and do not cause
VM exits.

The HLT state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical processor
is in the HLT state and in VMX non-root operation are discarded and do not cause
VM exits.

The shutdown state blocks external interrupts and SIPIs. External interrupts that arrive
while a logical processor is in the shutdown state and in VMX non-root operation do
not cause VM exits even if the “external-interrupt exiting” VM-execution control is 1.
SIPIs that arrive while a logical processor is in the shutdown state and in VMX non-
root operation are discarded and do not cause VM exits.

The wait-for-SIPI state blocks external interrupts, non-maskable interrupts (NMIs),
INIT signals, and system-management interrupts (SMIs). Such events do not cause
VM exits if they arrive while a logical processor is in the wait-for-SIPI state and in
VMX non-root operation do not cause VM exits regardless of the settings of the pin-
based VM-execution controls.

22.6.3 Delivery of Pending Debug Exceptions after VM Entry

The pending debug exceptions field in the guest-state area indicates whether there are debug
exceptions that have not yet been delivered (see Section 20.4.2). This section describes how
these are treated on VM entry.

There are no pending debug exceptions after VM entry if any of the following are true:

The VM entry is injecting with one of the following interruption types: external interrupt,
non-maskable interrupt (NMI), hardware exception, or privileged software exception.

22-22 Vol. 3B

VM ENTRIES

® The interruptibility-state field does not indicate blocking by MOV SS and the VM entry is
injecting with either of the following interruption type: software interrupt or software
exception.

® The VM entry is not injecting and the activity-state field indicates either shutdown or wait-
for-SIPI.

If none of the above hold, the pending debug exceptions field specifies the debug exceptions that
are pending for the guest. There are valid pending debug exceptions if either the BS bit (bit 14)
or the enable-breakpoint bit (bit 12) is 1. If there are valid pending debug exceptions, they are
handled as follows:

* |f the VM entry is not injecting, the pending debug exceptions are treated as they would
had they been encountered normally in guest execution:

— If the logical processor is not blocking such exceptions (the interruptibility-state field
indicates no blocking by MOV SS), a debug exception is delivered after VM entry
(see below).

— If the logical processor is blocking such exceptions (due to blocking by MOV SS), the
pending debug exceptions are held pending or lost as would normally be the case.

®* If the VMentry is injecting (with interruption type software interrupt or software
exception and with blocking by MOV SS), the following items apply:

— For injection of a software interrupt or of a software exception with vector 3 (#BP) or
vector 4 (#OF), the pending debug exceptions are treated as they would had they been
encountered normally in guest execution if the corresponding instruction (INT3 or
INTO) were executed after a MOV SS that encountered a debug trap.

— For injection of a software exception with a vector other than 3 and 4, the pending
debug exceptions may be lost or they may be delivered after injection (see below).

If there are no valid pending debug exceptions (as defined above), no pending debug exceptions
are delivered after VM entry.

If a pending debug exception is delivered after VM entry, it has the priority of “traps on the
previous instruction” (see Section 5.9 in the 1A-32 Intel® Architecture Software Developer’s
Manual, Volume 3A). Thus, an INIT signal or a system-management interrupt (SMI) takes
priority of such an exception. The exception takes priority over any pending non-maskable inter-
rupt (NMI) or external interrupt.

A pending debug exception delivered after VM entry causes a VM exit if the bit 1 (#DB) is 1 in
the exception bitmap. If it does not cause a VM exit, it updates DR6 normally.

22.6.4 Interrupt-Window EXxiting

The “interrupt-window exiting” VM-execution control may cause a VM exit to occur immedi-
ately after VM entry (see Section 21.2 for details).

Vol. 3B 22-23

VM ENTRIES

Non-maskable interrupts (NMIs) and higher priority events take priority over VM exits caused
by this control. VM exits caused by this control take priority over external interrupts and lower
priority events.

VM exits cause by this control wake the logical processor if the logical processor just entered
the HLT state because of a VM entry (see Section 22.6.2). Such VM exits do not occur if the
logical processor just entered the shutdown state or the wait-for-SIPI state.

22.6.5 VM Entries and Advanced Debugging Features

VM entries are not logged with last-branch records, do not produce branch-trace messages, and
do not update the branch-trace store.

22.7 VM-ENTRY FAILURES DURING OR AFTER LOADING GUEST
STATE

VVM-entry failures due to the checks identified in Section 22.3.1 and failures during the MSR
loading identified in Section 22.4 are treated differently from those that occur earlier in
VM entry. In these cases, the following steps take place:

1. Information about the VM-entry failure is recorded in the VM-exit information fields:
— Exit reason.

* Bits 15:0 of this field contain the basic exit reason. It is loaded with a number
indicating the general cause of the VM-entry failure. The following numbers are
used:

33. VM-entry failure due to invalid guest state. A VM entry failed one of the
checks identified in Section 22.3.1.

34. VM-entry failure due to MSR loading. A VM entry failed in an attempt to
load MSRs (see Section 22.4).

41. VM-entry failure due to machine check. A machine check occurred during
VM entry (see Section 22.8).

e Bit3lissetto 1 toindicate a VM-entry failure.
* The remainder of the field (bits 30:16) is cleared.
— Exit qualification. This field is set based on the exit reason.

* VMe-entry failure due to invalid guest state. In most cases, the exit qualification is
cleared to 0. The following non-zero values are used in the cases indicated:

1. Not used.
2. Failure was due to a problem loading the PDPTRs (see Section 22.3.1.6).

22-24 Vol. 3B

3.
4.

VM ENTRIES

3. Failure was due to an attempt to inject a non-maskable interrupt (NMI) into a
guest that is blocking events through the STI blocking bit in the interrupt-
ibility-state field. Such failures are implementation-specific (see Section
22.3.1.5).

4. Failure was due to an invalid VMCS link pointer (see Section 22.3.1.5).

Note that VM-entry checks on guest-state fields may be performed in any order.
Thus, an indication by exit qualification of one cause does not imply that there are
not also other errors. Different processors may give different exit qualifications
for the same VMCS.

* VM-entry failure due to MSR loading. The exit qualification is loaded to indicate
which entry in the VM-entry MSR-load area caused the problem (1 for the first
entry, 2 for the second, etc.).

— All other VM-exit information fields are unmodified.

Processor state is loaded as would be done on a VM exit (see Section 23.5). If this results
in [CR4.PAE & CRO.PG & ~1A32_EFER.LMA] =1, page-directory pointers (PDPTRS)
may be checked and loaded (see Section 23.5.4).

The state of blocking by NMI is what it was before VM entry.
MSRs are loaded as specified in the VM-exit MSR-load area (see Section 23.6).

Although this process resembles that of a VM exit, many steps taken during a VM exit do not
occur for these VM-entry failures:

Most VM-exit information fields are not updated (see step 1 above).

The valid bit in the VM-entry interruption-information field is not cleared.
The guest-state area is not modified.

No MSRs are saved into the VM-exit MSR-store area.

22.8 MACHINE CHECKS DURING VM ENTRY

If a machine check occurs during a VM entry, one of the following occurs:

The machine check is handled normally. If CR4.MCE =1, a machine-check exception
(#MC) is delivered through the IDT. If CR4.MCE = 0, the processor goes to the shutdown
state.

A VM-entry failure occurs as described in Section 22.7. The basic exit reason is 41, for
“VM-entry failure due to machine check.”

The first option is not used if the machine check occurs after any guest state has been loaded.

Vol. 3B 22-25

VM ENTRIES

22-26 Vol. 3B

23

VM EXits

CHAPTER 23
VM EXITS

VM exits occur in response to certain instructions and events in VMX non-root operation.
Section 21.1 and Section 21.2 detail the causes of VM exits. VM exits perform the following
operation:

1. Information about the cause of the VM exit is recorded in the VM-exit information fields
and the valid bit (bit31) is cleared in the VM-entry interruption-information field
(Section 23.2).

2. Processor state is saved in the guest-state area (Section 23.3).
3. MSRs may be saved in the VM-exit MSR-store area (Section 23.4).
4. The following may be performed in parallel and in any order (Section 23.5):

® Processor state is loaded based in part on the host-state area and some VM-exit
controls. This step is not performed for SMM VM exits that activate the dual-monitor
treatment of SMIs and SMM. See Section 24.16.6 for information on how processor
state is loaded by such VM exits.

® Address-range monitoring is cleared.

5. MSRs may be loaded from the VM-exit MSR-load area (Section 23.6). This step is not
performed for SMM VM exits that activate the dual-monitor treatment of SMIs and SMM.

VM exits are not logged with last-branch records, do not produce branch-trace messages, and
do not update the branch-trace store.

Section 23.1 clarifies the nature of the architectural state before a VM exit begins. The steps
described above are detailed in Section 23.2 through Section 23.6.

Section 24.16 describes the dual-monitor treatment of system-management interrupts (SMIs)
and system-management mode (SMM). Under this treatment, ordinary transitions to SMM are
replaced by VM exits to a separate SMM monitor. Called SMM VM exits, these are caused by
the arrival of an SMI or the execution of VMCALL in VMX root operation. SMM VM exits
differ from other VM exits in ways that are detailed in Section 24.16.2.

23.1 ARCHITECTURAL STATE BEFORE A VM EXIT

This section describes the architectural state that exists before a VM exit, especially for
VM exits caused by events that would normally be delivered through the IDT. Note the
following:

® An exception causes a VM exit directly if the bit corresponding to that exception is set in
the exception bitmap. A non-maskable interrupt (NMI) causes a VM exit directly if the
“NMI exiting” VM-execution control is 1. An external interrupt causes a VM exit directly

Vol. 3B 23-1

VM EXITS

if the “external-interrupt exiting” VM-execution control is 1. A start-up IPI (SIPI) that
arrives while a logical processor is in the wait-for-SIPI activity state causes a VM exit
directly. INIT signals that arrive while the processor is not in the wait-for-SIPI activity
state cause VM exits directly.

An exception, NMI, or external interrupt causes a VM exit indirectly if it does not do so
directly but delivery of the event causes a nested exception, double fault, or task switch
that causes a VM exit.

An event results in a VM exit if it causes a VM exit (directly or indirectly).

The following bullets detail when architectural state is and is not updated in response to
VM exits:

If an event causes a VM exit directly, it does not update architectural state as it would have
if it had it not caused the VM exit:

— A debug exception does not update DR6, DR7.GD, or I1A32_DEBUGCTL.LBR.
(Information about the nature of the debug exception is saved in the exit qualification
field.)

— A page fault does not update CR2. (The linear address causing the page fault is saved
in the exit-qualification field.)

— An NMI causes subsequent NMls to be blocked, but only after the VM exit completes.

— An external interrupt does not acknowledge the interrupt controller and the interrupt
remains pending, unless the “acknowledge interrupt on exit” VM-exit control is 1. In
such a case, the interrupt controller is acknowledged and the interrupt is no longer
pending.

— The flags LO- L3 in DR7 (bit 0, bit 2, bit 4, and bit 6) are not cleared when a task
switch causes a VM exit.

— If a task switch causes a VM exit, none of the following are modified by the task
switch: old task-state segment (TSS); new TSS; old TSS descriptor; new TSS
descriptor; RFLAGS.NT?; or the TR register.

— No last-exception record is made if the event that would do so directly causes a
VM exit.

— If a machine-check exception causes a VM exit directly, this does not prevent
machine-check MSRs from being updated. These are updated by the machine check
itself and not the resulting machine-check exception.

1.

This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most pro-
cessors that support VMX operation also support Intel EM64T. For processors that do not support Intel
EM®64T, this notation refers to the 32-bit forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few
places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated register.

23-2 Vol. 3B

VM EXITS

— If the logical processor happens to be in an inactive state (see Section 20.4.2) and not
executing instructions, some events may be blocked but others may return the logical
processor to the active state. Unblocked events may cause VM exits.2 If an unblocked
event causes a VM exit directly, a return to the active state occurs only after the
VM exit completes.3 The VM exit generates any special bus cycle that is normally
generated when the active state is entered from that activity state.

® |fan event causes a VM exit indirectly, the exception does update architectural state:

— A debug exception updates DR6, DR7, and the 1A32_DEBUGCTL MSR. No debug
exceptions are considered pending.

— A page fault updates CR2.
— An NMI causes subsequent NMIs to be blocked before the VM exit commences.

— An external interrupt acknowledges the interrupt controller and the interrupt is no
longer pending.

— If the logical processor had been in an inactive state, it enters the active state and,
before the VM exit commences, generates any special bus cycle that is normally
generated when the active state is entered from that activity state.

— There is no blocking by STI or by MOV SS when the VM exit commences.

— Processor state that is normally updated as part of delivery through the IDT (CS, RIP,
SS, RSP, RFLAGS) is not modified. However, the incomplete delivery of the event
may write to the stack.

— The treatment of last-exception records is implementation dependent:

* Some processors make a last-exception record when beginning the delivery of an
event through the IDT (before it can encounter a nested exception). Such
processors perform this update even if the event encounters a nested exception
that causes a VM exit (including the case where nested exceptions lead to a triple
fault).

e Other processors delay making a last-exception record until event delivery has
reached some event handler successfully (perhaps after one or more nested excep-
tions). Such processors do not update the last-exception record if a VM exit or
triple fault occurs before an event handler is reached.

®* |f a VM exit results from a fault encountered during execution of IRET and the “NMI
exiting” VM-execution control is 0, any blocking by NMI is cleared before the VM exit
commences. However, the state of previous blocking by NMI may be recorded in the
VM-exit interruption-information field; see Section 23.2.2.

2. If a VM exit takes the processor from an inactive state resulting from execution of a specific instruction
(HLT or MWAIT), the value saved for RIP by that VM exit will reference the following instruction.

3. An exception is made if the logical processor had been inactive due to execution of MWAIT; in this case,
it is considered to have become active before the VM exit.

Vol. 3B 23-3

VM EXITS

® Suppose that a VM exit is caused directly by an x87 FPU Floating-Point Error (#MF) or by
any of the following events if the event was unblocked due to (and given priority over) an
x87 FPU Floating-Point Error: an INIT signal, an external interrupt, an NMI, an SMI; or a
machine-check exception. In these cases, there is no blocking by STI or by MOV SS when
the VM exit commences.

® Normally, a last-branch record may be made when an event is delivered through the IDT.
However, if such an event results in a VM exit before delivery is complete, no last-branch
record is made.

® |f machine-check exception results in a VM exit, processor state is suspect and may result
in suspect state being saved to the guest-state area. A VM monitor should consult the RIPV
and EIPV bits in the IA32_MCG_STATUS MSR before resuming a guest that caused a
VM exit resulting from a machine-check exception.

®* |f a VMexit results from a fault encountered while executing an instruction, data
breakpoints due to that instruction may have been recognized and information about them
may be saved in the pending debug exceptions field (see Section 23.3.4).

® The following VM exits are considered to happen after an instruction is executed:

— VM exits resulting from debug traps (single-step, 1/O breakpoints, and data break-
points).

— VM exits resulting from debug exceptions whose recognition was delayed by blocking
by MOV SS.
— VM exits resulting from some machine-check exceptions.

— Trap-like VM exits due to execution of MOV to CR8 when the “CR8-load exiting”
VM-execution control is 0 and the “use TPR shadow” VM-execution control is 1.
(Such VM exits can occur only from 64-bit mode and thus only on processors that
support Intel EM64T.)

For these VM exits, the instruction’s modifications to architectural state complete before
the VM exit occurs. Such modifications include those to the logical processor’s interrupt-
ibility state (see Table 20-3). If there had been blocking by STI before the instruction
executed, such blocking is no longer in effect (the same is true for blocking by MOV SS).

23.2 RECORDING VM-EXIT INFORMATION AND UPDATING
CONTROLS

VM exits begin by recording information about the nature of and reason for the VM exit in the
VM-exit information fields. Section 23.2.1 to Section 23.2.4 detail the use of these fields.

In addition to updating the VVM-exit information fields, the valid bit (bit 31) is cleared in the
VVM-entry interruption-information field.

23-4 Vol. 3B

VM EXITS

23.2.1 Basic VM-Exit Information

Section 20.9.1 defines the basic VM-exit information fields. The following items detail their

use.

® Exit reason.

— Bits 15:0 of this field contain the basic exit reason. It is loaded with a number
indicating the general cause of the VM exit. Appendix | lists the numbers used and
their meaning.

— The remainder of the field (bits 31:16) is cleared on every VM exit.

® Exit qualification. This field is saved for VM exits due to the following causes: debug
exceptions; page-fault exceptions; start-up IPIs (SIPIs); system-management interrupts
(SMis) that arrive immediately after the retirement of 1/O instructions; task switches;
INVLPG; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE; VMXON;
control-register accesses; MOV DR; 1/O instructions; and MWAIT. For all other VM exits,
this field is cleared. The following items provide details:

— For debug exceptions, the exit qualification contains information about the debug
exception. The information has the format given in Table 23-1.

Table 23-1. Exit Qualification for Debug Exceptions

Bit Position(s)

Contents

B3 — BO. When set, each of these bits indicates that the corresponding breakpoint

3:0 condition was met. Any of these bits may be set even if its corresponding enabling bit
in DR7 is not set.

12:4 Reserved (cleared to 0).

13 BD. When set, this bit indicates that the cause of the debug exception is “debug
register access detected.”
BS. When set, this bit indicates that the cause of the debug exception is either the

14 execution of a single instruction (if RFLAGS.TF = 1 and IA32_DEBUGCTL.BTF = 0) or
a taken branch (if RFLAGS.TF = DEBUGCTL.BTF = 1).

63:15 Reserved (cleared to 0). Bits 63:32 exist only on processors that support Intel EM64T.

— For page-fault exceptions, the exit qualification contains the linear address that caused
the page fault. On processors that support Intel EM64T, bits 63:32 are cleared if the
logical processor was not in 64-bit mode before the VM exit.

— Start-up IPI (SIPI). The SIPI vector information is stored in bits 7:0 of the exit qualifi-
cation. Bits 63:8 are cleared to 0.

Vol. 3B 23-5

VM EXITS

— Task switch. Details about the reason for the VM exit are encoded as shown in

Table 23-2.
Table 23-2. Exit Qualification for Task Switch
Bit Position(s) Contents
15:0 Selector of task-state segment (TSS) to which the guest attempted to switch
29:16 Reserved (cleared to 0)
Source of task switch initiation:

0: CALL_instrucFion
L e ncton

3: Task gate in IDT
63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel

EM64T.

For INVLPG, the exit qualification contains the linear-address operand of the
instruction.

* On processors that support Intel EM64T, bits 63:32 are cleared if the logical
processor was not in 64-bit mode before the VM exit.

¢ |f the INVLPG source operand specifies an unusable segment, the linear address
specified in the exit qualification will match the linear address that the INVLPG
would have used if no VM exit occurred. Note that this address is not architec-
turally defined and may be implementation-specific.

VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, VMXON. The exit
qualification receives the value of the instruction’s displacement field, which is sign-
extended to 64 bits if necessary (32 bits on processors that do not support Intel
EM®64T). If the instruction has no displacement (for example, has a register operand),
zero is stored into the exit qualification.

On processors that support Intel EM64T, an exception is made for RIP-relative
addressing (used only in 64-bit mode). Such addressing causes an instruction to use an
address that is the sum of the displacement field and the value of RIP that references
the following instruction. In this case, the exit qualification is loaded with the sum of
the displacement field and the appropriate RIP value.

In all cases, bits of this field beyond the instruction’s address size are undefined. For
example, suppose that the address-size field in the VMX-instruction information field
(see Section 20.9.4 and Section 23.2.4) reports an n-bit address size. Then bits 63:n
(bits 31:n on processors that do not support Intel EM64T) of the instruction
displacement are undefined.

23-6 Vol. 3B

VM EXITS

— For control-register accesses, the exit qualification contains information about the
access and has the format given in Table 23-3.

Table 23-3. Exit Qualification for Control-Register Accesses

Bit Positions

Contents

3.0

Number of control register (0 for CLTS and LMSW). Bit 3 is always 0 on processors that
do not support Intel EM64T as they do not support CR8.

5:4

Access type:
0=MOVto CR
1=MOV from CR
2=CLTS
3 =LMSW

LMSW operand type:
0 = register
1 = memory
For CLTS and MOV CR, cleared to 0

Reserved (cleared to 0)

11:8

For MOV CR, the general-purpose register:

0 = RAX

1=RCX

2 = RDX

3 =RBX

4 = RSP

5=RBP

6 =RSI

7 =RDI

8-15 represent R8—R15, respectively (used only on processors that support Intel
EM64T)

For CLTS and LMSW, cleared to 0

15:12

Reserved (cleared to 0)

31:16

For LMSW, the LMSW source data
For CLTS and MOV CR, cleared to 0

63:32

Reserved (cleared to 0). These bits exist only on processors that support Intel EM64T.

— For MOV DR, the exit qualification contains information about the instruction and has
the format given in Table 23-4.

Table 23-4. Exit Qualification for MOV DR

Bit Position(s)

Contents

2:0

Number of debug register

3

Reserved (cleared to 0)

Vol. 3B 23-7

VM EXITS

Table 23-4. Exit Qualification for MOV DR (Contd.)

Bit Position(s)

Contents

4

Direction of access (0 = MOV to DR; 1 = MOV from DR)

75

Reserved (cleared to 0)

11:8

General-purpose register:

0 = RAX

1=RCX

2 =RDX

3=RBX

4 = RSP

5=RBP

6 = RSI

7 =RDI

8 —15 = R8 — R15, respectively

63:12

Reserved (cleared to 0)

— For I/O instructions, the exit qualification contains information about the instruction
and has the format given in Table 23-5.

Table 23-5. Exit Qualification for 1/O Instructions

Bit Position(s)

Contents

Size of access:

0 = 1-byte
2:0 1 = 2-byte

3 =4-byte

Other values not used

3 Direction of the attempted access (0 = OUT, 1 = IN)
4 String instruction (0 = not string; 1 = string)
5 REP prefixed (0 = not REP; 1 = REP)
6 Operand encoding (0 = DX, 1 = immediate)
15:7 Reserved (cleared to 0)
31:16 Port number (as specified in the I/O instruction)
63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel

EM64T.

— MWAIT. A value that indicates whether address-range monitoring hardware was
armed. The exit qualification is set to either O (if address-range monitoring hardware is
not armed) or 1 (if address-range monitoring hardware is armed).

23-8 Vol. 3B

VM EXITS

23.2.2 Information for VM Exits Due to Vectored Events

Section 20.9.2 defines fields containing information for VM exits due to the following events:
exceptions (including those generated by the instructions INT3, INTO, BOUND, and UD2);
external interrupts that occur while the “acknowledge interrupt on exit” VM-exit control is 1;
and non-maskable interrupts (NMIs). Such VM exits include those that occur on an attempt at a
task switch that causes an exception before generating the VM exit due to the task switch that
causes the VM exit.

The following items detail the use of these fields:

VM-exit interruption information (format given in Table 20-12). The following items
detail how this field is established for VM exits due to these events:

— For an exception, bits 7:0 receive the exception vector (at most 31). For an NMI,
bits 7:0 are set to 2. For an external interrupt, bits 7:0 receive the interrupt number.

— Bits 10:8 are set to 0 (external interrupt), 2 (non-maskable interrupt), 3 (hardware
exception), or 6 (software exception). Hardware exceptions comprise all exceptions
except breakpoint exceptions (#BP; generated by INT3) and overflow exceptions
(#OF; generated by INTO); these are software exceptions. Note that BOUND range
exceeded exceptions (#BR; generated by BOUND) and invalid opcode exceptions
(#UD) generated by UD2 are hardware exceptions.

— Bit 11 is set to 1 if the VM exit is caused by a hardware exception that would have
delivered an error code on the stack. If bit 11 is set to 1, the error code is placed in the
VM-exit interruption error code (see below).

— Bit 12 is undefined in any of the following cases:
¢ If the VM exit occurs with the “NMI exiting” VM-execution control set to 1.

¢ [Ifthe VM exit sets the valid bit in the IDT-vectoring information field (see Section
23.2.3).

* If the VM exit is due to a double fault (the interruption type is hardware exception
and the vector is 8).

Otherwise, bit 12 is defined as follows:

e |Ifthe VM exit is due to a fault on the IRET instruction and blocking by NMI (see
Table 20-3) was in effect before execution of IRET, bit 12 is set to 1.

* For all other relevant VM exits, bit 12 is cleared to 0.
— Bits 30:13 are always set to 0.
— Bit 31 is always set to 1.

For other VM exits (including those due to external interrupts when the “acknowledge
interrupt on exit” VM-exit control is 0), the field is marked invalid (by clearing bit 31) and
the remainder of the field is undefined.

Vol. 3B 23-9

VM EXITS

® VM-exit interruption error code.

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the VM-exit
interruption-information field, this field receives the error code that would have been
pushed on the stack had the event causing the VM exit been delivered normally
through the IDT. The EXT bit is set in this field exactly when it would be set for 1A-32
exceptions. For exceptions that occur during the delivery of double fault (if the IDT-
vectoring information field indicates a double fault), the EXT bit is set to 1, assuming
that (1) that the exception would produce an error code normally (if not incident to
double-fault delivery) and (2) that the error code uses the EXT bit (not for page faults,
which use a different format).

— For other VM exits, the value of this field is undefined.

23.2.3 Information for VM Exits During Event Delivery

Section 20.9.3 defined fields containing information for VM exits that occur while delivering an
event through the IDT and as a result of either of the following two cases:

® A fault occurs during event delivery and causes a VM exit (because the bit associated with
the fault is set to 1 in the exception bitmap).*

® A task switch is invoked through a task gate in the IDT. Note that the VM exit occurs due
to the task switch only after the initial checks of the task switch pass (see Section 21.4.2).

Note that these fields are used for VM exits that occur during delivery of events injected as part
of VM entry (see Section 22.5.2).

A VM exit is not considered to occur during event delivery in any of the following circum-
stances:

® The original event causes the VM exit directly (for example, because the original event is a
non-maskable interrupt (NMI) and the “NMI exiting” VM-execution control is 1).

® The original event results in a double-fault exception that causes the VM exit directly.

® The VM exit occurred as a result of fetching the first instruction of the handler invoked by
the event delivery.

® The VM exit is caused by a triple fault.
The following items detail the use of these fields:

® IDT-vectoring information (format given in Table 20-13). The following items detail how
this field is established for VM exits that occur during event delivery:

— If the VM exit occurred during delivery of an exception, bits 7:0 receive the exception
vector (at most 31). If the VM exit occurred during delivery of an NMI, bits 7:0 are set

4. This includes the case in which a VM exit occurs while delivering a software interrupt (INT n) through the
16-bit IVT (interrupt vector table) that is used in virtual-8086 mode with virtual-machine extensions (if
RFLAGS.VM = CR4.VME = 1).

23-10 Vol. 3B

VM EXITS

to 2. If the VM exit occurred during delivery of an external interrupt, bits 7:0 receive
the interrupt number.

Bits 10:8 are set to indicate the type of event that was being delivered when the
VM exit occurred: 0 (external interrupt), 2 (non-maskable interrupt), 3 (hardware
exception), 4 (software interrupt), 5 (privileged software interrupt), or 6 (software
exception).

Hardware exceptions comprise all exceptions except breakpoint exceptions (#BP;
generated by INT3) and overflow exceptions (#OF; generated by INTO); these are
software exceptions. Note that BOUND range exceeded exceptions (#BR; generated
by BOUND) and invalid opcode exceptions (#UD) generated by UD2 are hardware
exceptions.

Bits 10:8 may indicate privileged software interrupt if such an event was injected as
part of VM entry.

Bit 11 is set to 1 if the VM exit occurred during delivery of a hardware exception that
would have delivered an error code on the stack. If bit 11 is set to 1, the error code is
placed in the IDT-vectoring error code (see below).

Bit 12 is undefined.
Bits 30:13 are always set to 0.
Bit 31 is always set to 1.

For other VM exits, the field is marked invalid (by clearing bit 31) and the remainder of
the field is undefined.

® |IDT-vectoring error code.

23.2.4

For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the IDT-
vectoring information field, this field receives the error code that would have been
pushed on the stack by the event that was being delivered through the IDT at the time
of the VM exit. The EXT bit is set in this field exactly when it would be set for 1A-32
exceptions.

For other VM exits, the value of this field is undefined.

Information for VM Exits Due to Instruction Execution

Section 20.9.4 defined fields containing information for VM exits that occur due to instruction
execution. (The VM-exit instruction length is also used for VM exits that occur during the
delivery of a software interrupt or software exception.) The following items detail their use.

® VM-exit instruction length. This field is used in the following cases:

For fault-like VM exits due to attempts to execute one of the following instructions
that cause VM exits unconditionally (see Section 21.1.2) or based on the settings of
VM-execution controls (see Section 21.1.3): CLTS, CPUID, HLT, IN, INS INVD,
INVLPG, LMSW, MONITOR, MOV CR, MOV DR, MWAIT, OUT, OUTS, PAUSE,

Vol. 3B 23-11

VM EXITS

RDMSR, RDPMC, RDTSC, RSM, VMCALL, VMCLEAR, VMLAUNCH,
VMPTRLD, VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF,
VMXON, and WRMSR.?

— For VM exits due to software exceptions (those generated by executions of INT3 or
INTO).

— For VM exits due to faults encountered during delivery of a software interrupt,
privileged software exception, or software exception.6

— For VM exits due to attempts to effect a task switch via instruction execution. These
are VM exits that produce an exit reason indicating task switch and either of the
following:

* An exit qualification indicating execution of CALL, IRET, or JMP instruction.

* An exit qualification indicating a task gate in the IDT and an IDT-vectoring
information field indicating that the task gate was encountered during delivery of
a software interrupt, privileged software exception, or software exception.’

In all these cases, this field receives the length in bytes (1-15) of the instruction (including
any instruction prefixes) whose execution led to the VM exit.® All other VM exits leave
this field undefined.

® Guest linear address. For VM exits due to some instructions, this field receives the linear
address of one of the instruction operands.

— VM exits due to attempts to execute LMSW with a memory operand. In these cases,
this field receives the linear address of that operand. On processors that support Intel
EMG6AT, bits 63:32 are cleared if the logical processor was not in 64-bit mode before
the VM exit.

— VM exits due to attempts to execute INS or OUTS for which the relevant segment (ES
for INS; DS for OUTS unless overridden by an instruction prefix) is usable. The field
receives the value of the linear address generated by ES:(E)DI (for INS) or
segment:(E)SI (for OUTS; the default segment is DS but can be overridden by a
segment override prefix). (If the relevant segment is not usable, the value is
undefined.) On processors that support Intel EM64T, bits 63:32 are cleared if the
logical processor was not in 64-bit mode before the VM exit.

— For all other VM exits, the field is undefined.

5. This item applies only to fault-like VM exits. It does not apply to trap-like VM exits following executions of
the MOV to CR8 instruction when the “use TPR shadow” VM-execution control is 1.

6. This includes faults encountered during delivery of such events when injected as part of VM entry (see
Section 22.5.2).

7. This includes faults encountered during delivery of such events when injected as part of VM entry (see
Section 22.5.2).

8. If the VM exit occurred during delivery of an event injected as part of VM entry, the VM-exit instruction
length receives the value of the VM-entry instruction length.

23-12 Vol. 3B

VM EXITS

® VMX-instruction information (format given in Table 20-14).

— For VM exits due to attempts to execute VMCLEAR, VMPTRLD, VMPTRST,
VMREAD, VMWRITE, or VMXON, this field receives information about the
instruction that caused the VM exit.

— For all other VM exits, the field is undefined.

® /O RCX, I/O RSI, 1/O RDI, I/O RIP. These fields are undefined except for SMM
VM exits due to system-management interrupts (SMIs) that arrive immediately after
retirement of 1/0O instructions. See Section 24.16.2.3.

23.3 SAVING GUEST STATE

Each field in the guest-state area of the VMCS (see Section 20.4) is written with the corre-
sponding component of processor state. On processors that support Intel EM64T, the full values
of each natural-width field (see Section 20.10.2) is saved regardless of the mode of the logical
processor before and after the VM exit.

In general, the state saved is that which was in the logical processor at the time the VM exit
commences. See Section 23.1 for a discussion of which architectural updates occur at that time.

Section 23.3.1 through Section 23.3.4 provide details for how certain components of processor
state are saved. These sections reference VMCS fields that correspond to processor state. Unless
otherwise stated, these references are to fields in the guest-state area.

23.3.1 Saving Control Registers, Debug Registers, and MSRs

The contents of CR0, CR3, CR4, DR7, and the 1A32_DEBUGCTL, IA32_SYSENTER_CS,
IA32_SYSENTER_ESP, and 1A32_SYSENTER_EIP MSRs are saved into the corresponding
fields. Bits 63:32 of the IA32_SYSENTER_CS MSR are not saved. On processors that do not
support Intel EM64T, bits 63:32 of the IA32_SYSENTER_ESP and IA32_SYSENTER_EIP
MSRs are not saved.

The value of the SMBASE field is undefined after all VM exits except SMM VM exits. See
Section 24.16.2.

23.3.2 Saving Segment Registers and Descriptor-Table Registers

For each segment register (CS, SS, DS, ES, FS, GS, LDTR, or TR), the values saved for the
base-address, segment-limit, and access rights are based on whether the register was unusable
(see Section 20.4.1) before the VM exit:

Vol. 3B 23-13

VM EXITS

® |f the register was unusable, the values saved into the following fields are undefined:
(1) base address; (2) segment limit; and (3) bits 7:0 and bits 15:12 in the access-rights
field. The following exceptions apply:

CsS.

* The base-address and segment-limit fields are saved.

* Thel, D, and G bits are saved in the access-rights field.
SS.

e DPL is saved in the access-rights field.

* On processors that support Intel EM64T, bits 63:32 of the value saved for the base
address are always zero.

DS and ES. On processors that support Intel EM64T, bits 63:32 of the values saved for
the base addresses are always zero.

FS and GS. The base-address field is saved.
LDTR. The value saved for the base address is always canonical.

® If the register was not unusable, the values saved into the following fields are those which
were in the register before the VM exit: (1) base address; (2) segment limit; and
(3) bits 7:0 and bits 15:12 in access rights.

® Bits31:17 and 11:8 in the access-rights field are always cleared. Bit 16 is set to 1 if and
only if the segment is unusable.

The contents of the GDTR and IDTR registers are saved into the corresponding base-address
and limit fields.

23.3.3 Saving RIP, RSP, and RFLAGS
The contents of the RIP, RSP, and RFLAGS registers are saved as follows:

® The value saved in the RIP field is determined by the nature and cause of the VM exit:

If the VM exit occurs due to by an attempt to execute an instruction that causes
VM exits unconditionally or that has been configured to cause a VM exit via the
VM-execution controls, the value saved references that instruction.

If the VM exit is caused by an occurrence of an INIT signal, a start-up IPI (SIPI), or
system-management interrupt (SMI), the value saved is that which was in RIP before
the event occurred.

If the VM exit occurs due to the 1-setting of the “interrupt-window exiting”
VM-execution control, the value saved is that which would be in the register had the
VM exit not occurred.

If the VM exit is due to an external interrupt, non-maskable interrupt (NMI), or
hardware exception (as defined in Section 23.2.2), the value saved is the return pointer

23-14 Vol. 3B

VM EXITS

that would have been saved (either on the stack had the event been delivered through a
trap or interrupt gate,? or into the old task-state segment had the event been delivered
through a task gate).

— If the VM exits is due to a triple fault, the value saved is the return pointer that would
have been saved (either on the stack had the event been delivered through a trap or
interrupt gate or into the old task-state segment had the event been delivered through
a task gate) had delivery of the double fault not encountered the nested exception that
caused the triple fault.

— If the VM exit is due to a software exception (due to an execution of INT3 or INTO),
the value saved references the INT3 or INTO instruction that caused that exception.

— Suppose that the VM exit is due to a task switch that was caused by execution of
CALL, IRET, or JMP or by execution of a software interrupt (INT n) or software
exception (due to execution of INT3 or INTO) that encountered a task gate in the IDT.
The value saved references the instruction that caused the task switch (CALL, IRET,
JMP, INT n, INT3, or INTO).

— Suppose that the VM exit is due to a task switch that was caused by a task gate in the
IDT that was encountered for any reason except the direct access by a software
interrupt or software exception. The value saved is that which would have been saved
in the old task-state segment had the task switch completed normally.

— If the VM exit is due to a MOV to CR8 that reduced the value of the TPR shadow
below that of the TPR threshold, the value saved references the instruction following
the MOV to CR8. (Such VM exits can occur only from 64-bit mode and thus only on
processors that support Intel EM64T.)

® The contents of the RSP register are saved into the RSP field.

® With the exception of the RF (bit 16), the contents of the RFLAGS register is saved into
the RFLAGS field. The RF is saved as follows:

— If the VM exit is caused directly by an event that would normally be delivered through
the IDT, the value saved is that which would appear in the saved RFLAGS image
(either that which would be saved on the stack had the event been delivered through a
trap or interrupt gate O or into the old task-state segment had the event been delivered
through a task gate) had the event been delivered through the IDT. See below for
VM exits due to task switches caused by task gates in the IDT.

— If the VM exit is caused by a triple fault, the value saved is that which the logical
processor would have in RF in the RFLAGS register had the triple fault taken the
logical processor to the shutdown state.

— If the VM exit is caused by a task switch (including one caused by a task gate in the
IDT), the value saved is that which would have been saved in the RFLAGS image in

9. The reference here is to the full value of RIP before any truncation that would occur had the stack width
been only 32 bits or 16 bits.

10.The reference here is to the full value of RFLAGS before any truncation that would occur had the stack
width been only 32 bits or 16 bits.

Vol. 3B 23-15

VM EXITS

the old task-state segment (TSS) had the task switch completed normally without
exception.

— If the VM exit is caused by an attempt to execute an instruction that unconditionally
causes VM exits or one that was configured to do with a VM-execution control, the
value saved is 0.1

— For all other VM exits, the value saved in is the value RFLAGS.RF had before the
VM exit occurred.

23.3.4 Saving Non-Register State

Information corresponding to guest non-register state is saved as follows:

The activity-state field is saved with the logical processor’s activity state before the
VM exit.}2 See Section 23.1 for details of how events leading to a VM exit may affect the
activity state.

The interruptibility-state field is saved to reflect the logical processor’s interruptibility
before the VM exit. See Section 23.1 for details of how events leading to a VM exit may
affect this state. VM exits that end outside system-management mode (SMM) save bit 2
(blocking by SMI) as 0 regardless of the state of such blocking before the VM exit.

The pending debug exceptions field is saved as clear for all VM exits except the following:

— A VMexit caused by an INIT signal, a machine-check exception, a system-
management interrupt (SMI), or an execution of MOV to CR8 that reduces the value
of the TPR shadow below that of the TPR threshold.

— VM exits that are not caused by debug exceptions and that occur while there is MOV-
SS blocking of debug exceptions.

For VM exits that do not clear the field, the value saved is determined as follows:

— Each of bits 3:0 may be set if it corresponds to a matched breakpoint. This may be true
even if the corresponding breakpoint is not enabled in DR7.

— Suppose that a VM exit is due to an INIT signal, a machine-check exception, an SMI,
or MOV to CRS8 that reduces the value of the TPR shadow below that of the TPR
threshold. In this case, the value saved sets bits corresponding to the causes of any
debug exceptions that were pending at the time of the VM exit. If an INIT signal,
machine check, or SMI occurs immediately after VM entry, the value saved may

11.This is true even if RFLAGS.RF was 1 before the instruction was executed. If, in response to such a

VM exit, a VM monitor re-enters the guest to re-execute the instruction that caused the VM exit (for
example, after clearing the VM-execution control that caused the VM exit), the instruction may encounter
a code breakpoint that has already been processed. A VM monitor can avoid this by setting the guest
value of RFLAGS.RF to 1 before resuming guest software.

12.1f this activity state was an inactive state resulting from execution of a specific instruction (HLT or

MWAIT), the value saved for RIP by that VM exit will reference the following instruction.

23-16 Vol. 3B

VM EXITS

match that which was loaded on VM entry (see Section 22.6.3). Otherwise, the
following items apply:

* Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched data or 1/0
breakpoint that was enabled in DR7. Bit 12 is also set if it had been set on
VM entry, causing there to be valid pending debug exceptions (see Section 22.6.3)
and the VM exit occurred before those exceptions were either delivered or lost. In
other cases, bit 12 is cleared to 0.

* Bit14 (BS) is set if RFLAGS.TF = 1 in either of the following cases:

— 1A32_DEBUGCTL.BTF = 0 and the cause of a pending debug exception was
the execution of a single instruction.

— |A32_DEBUGCTL.BTF = 1 and the cause of a pending debug exception was
a taken branch.

Suppose that a VM exit is due to another reason (but not a debug exception) and
occurs while there is MOV-SS blocking of debug exceptions. In this case, the value
saved sets bits corresponding to the causes of any debug exceptions that were pending
at the time of the VM exit. If the VM exit occurs immediately after VM entry (no
instructions were executed in VMX non-root operation), the value saved may match
that which was loaded on VM entry (see Section 22.6.3). Otherwise, the following
items apply:

* Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched data or 1/0
breakpoint that was enabled in DR7. Bit 12 is also set if it had been set on
VM entry, causing there to be valid pending debug exceptions (see Section 22.6.3)
and the VM exit occurred before those exceptions were either delivered or lost. In
other cases, bit 12 is cleared to 0.

* The setting of bit 14 (BS) is implementation-specific. However, it is not set if
RFLAGS.TF =0 or IA32_DEBUGCTL.BTF =1.

— The reserved bits in the field are cleared.

23.4 SAVING MSRS

After processor state is saved to the guest-state area, values of MSRs may be stored into the
VM-exit MSR-store area (see Section 20.7.2). Specifically each entry in that area (up to the
number specified in the VM-exit MSR-store count) is processed in order by storing the value of
the MSR indexed by bits 31:0 (as they would be read by RDMSR) into bits 127:64. Processing
of an entry fails in either of the following cases:

An attempt to read the MSR indexed by bits 31:0 would cause a general-protection
exception if executed via RDMSR with CPL = 0.

Vol. 3B 23-17

VM EXITS

A processor may prevent certain MSRs (based on the value of bits 31:0) from being stored on
VM exits, even if they can normally be read by RDMSR. Such model-specific behavior is docu-
mented in Appendix B.

® Bits 63:32 of the entry are not all 0.
A VMX abort occurs if processing fails for any entry. See Section 23.7.

23.5 LOADING HOST STATE

Processor state is updated on VM exits in the following ways:

® Some state is loaded from or otherwise determined by the contents of the host-state area.
® Some state is determined by VM-exit controls.

® Some state is established in the same way on every VM exit.

® The page-directory pointers are loaded based on the values of certain control registers.
This loading may be performed in any order.

On processors that support Intel EM64T, the full values of each 64-bit field loaded (for example,
the base address for GDTR) is loaded regardless of the mode of the logical processor before and
after the VM exit.

The loading of host state is detailed in Section 23.5.1 to Section 23.5.5. These sections reference
VMCS fields that correspond to processor state. Unless otherwise stated, these references are to
fields in the host-state area.

In addition to loading host state, VM exits clear address-range monitoring (Section 23.5.6).

After the state loading described in this section, VM exits may load MSRs from the VM-exit
MSR-load area (see Section 23.6). This loading occurs only after the state loading described in
this section.

23-18 Vol. 3B

VM EXITS

23.5.1 Loading Host Control Registers, Debug Registers, MSRs

VM exits load new values for controls registers, debug registers, and some MSRs:

® CRO, CR3, and CR4 are loaded from the CRO field, the CR3 field, and the CR4 field,
respectively. However, the following bits are not modified:

For CRO, ET, CD, NW; bits 63:32 (on processors that support Intel EM64T), 28:19,
17, and 15:6; and any bits that are fixed in VMX operation (see Section 19.8).13

For CR3, bits 63:52 and bits in the range 51:32 beyond the processor’s physical-
address width (they are cleared to O).14 (This item applies only to processors that
support Intel EM64T.)

For CR4, any bits that are fixed in VMX operation (see Section 19.8).

®* DRY7 isset to 400H.
® The following MSRs are established as follows:

The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.

The 1A32_SYSENTER_CS MSR is loaded from the 1A32_SYSENTER_CS field.
Since that field has only 32 bits, bits 63:32 of the MSR are cleared to 0.

IA32_SYSENTER_ESP MSR and IA32_SYSENTER_EIP MSR are loaded from the
IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field, respectively. On
processors that do not support Intel EM64T, these fields have only 32 bits; bits 63:32
of the MSRs are cleared to 0.

The following are performed on processors that support Intel EM64T:

* The MSRs FS.base and GS.base are loaded from the base-address fields for FS
and GS, respectively (see Section 23.5.2).

* The LMA and LME bits in the IA32_EFER MSR are each loaded with the setting
of the “host address-space size” VM-exit control.

With the exception of FS.base and GS.base, any of these MSRs is subsequently
overwritten if it appears in the VM-exit MSR-load area. See Section 23.6.

If any of CR3[63:5] (CR3[31:5] on processors that do not support Intel EM64T), CR4.PAE,
CR4.PSE, or IA32_EFER.LMA is changing, the TLBs are updated so that, after VM exit, the
logical processor does not use translations that were cached before the transition. This is not
necessary for changes that would not affect paging due to the settings of other bits (for example,
changes to CR4.PSE if CR4.PAE was 1 before and after the transition).

13.Note that bits 28:19, 17, and 15:6 of CRO and CRO.ET are unchanged by executions of MOV to CRO.
CRO.ET is always 1 and the other bits are always 0.

14.Software can determine a processor’s physical-address width by executing CPUID with 80000008H in
EAX. The physical-address width is returned in bits 7:0 of EAX.

Vol. 3B 23-19

VM EXITS

23.5.2 Loading Host Segment and Descriptor-Table Registers

Each of the registers CS, SS, DS, ES, FS, GS, and TR is loaded as follows (see below for the
treatment of LDTR):

The selector is loaded from the selector field. The segment is unusable if its selector is
loaded with zero. Note that the checks specified Section 22.3.1.2 limit the selector values
that may be loaded. In particular, CS and TR are never loaded with zero and are thus never
unusable. SS can be loaded with zero only on processors that support Intel EM64T and
only if the VM exit is to 64-bit mode (64-bit mode allows use of segments marked
unusable).

The base address is set as follows:
— CS. Cleared to zero.
— SS, DS, and ES. Undefined if the segment is unusable; otherwise, cleared to zero.

— FS and GS. Undefined (but, on processors that support Intel EM64T, canonical) if the
segment is unusable and the VM exit is not to 64-bit mode; otherwise, loaded from the
base-address field. Note that, on processors that support Intel EM64T, the values loaded
for base addresses for FS and GS are also manifest in the FS.base and GS.base MSRs.

— TR. Loaded from the host-state area.
The segment limit is set as follows:

— CS. Set to FFFFFFFFH (corresponding to a descriptor limit of FFFFFH and a G-bit
setting of 1).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to
FFFFFFFFH.

— TR. Set to 00000067H.
The type field and S bit are set as follows:

— CS. Type set to 11 and S set to 1 (execute/read, accessed, non-conforming code
segment).

— SS§, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, type set to 3
and S set to 1 (read/write, accessed, expand-up data segment).

— TR. Type set to 11 and S set to 0 (busy 32-bit task-state segment).
The DPL is set as follows:

— CS, SS, and TR. Set to 0. The current privilege level (CPL) will be 0 after the VM exit
completes.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 0.

The P bit is set as follows:
— CS, TR. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 1.

23-20 Vol. 3B

VM EXITS

® On processors that support Intel EM64T, CS.L is loaded with the setting of the “host
address-space size” VM-exit control. Because this control is also loaded into
IA32_EFER.LMA (see Section 23.5.1), no VM exit is ever to compatibility mode (which
requires IA32_EFER.LMA =1 and CS.L =0).

* D/B.

CS. Loaded with the inverse of the setting of the “host address-space size” VM-exit
control. For example, if that control is O, indicating a 32-bit guest, CS.D/B is set to 1.

SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 1.
TR. Set to 0.

CS. Setto 1.
SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 1.
TR. Set to 0.

The host-state area does not contain a selector field for LDTR. LDTR is established as follows
on all VM exits: the selector is cleared to 0000H, the segment is marked unusable and is other-
wise undefined (although the base address is always canonical).

The base addresses for GDTR and IDTR are loaded from the GDTR base-address field and the
IDTR base-address field, respectively. The GDTR and IDTR limits are each set to FFFFH.

23.5.3 Loading Host RIP, RSP, and RFLAGS

RIP and RSP are loaded from the RIP field and the RSP field, respectively. RFLAGS is cleared,
except bit 1, which is always set.

23.5.4 Checking and Loading Host Page-Directory Pointers

If bit 5 in CR4 (CR4.PAE) is 1, the logical processor uses the physical-address extension
(PAE). If, in addition, 1A32_EFER.LMA is 0, the logical processor uses PAE paging. See
Section 3.8 of the 1A-32 Intel® Architecture Software Developer’s Manual, Volume 3A.1°> When
in PAE paging is in use, the physical address in CR3 references a table of page-directory
pointers (PDPTRs). A MOV to CR3 when PAE paging is in use checks the validity of these
pointers and, if they are valid, loads them into the processor (into internal, non-architectural
registers).

15.0n processors that support Intel EM64T, the physical-address extension may support more than 36
physical-address bits. Software can determine a processor’s physical-address width by executing CPUID
with 80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

Vol. 3B 23-21

VM EXITS

A VM exit is to a VMM that uses PAE paging if (1) bit 5 (corresponding to CR4.PAE) is set in
the CRA4 field in the host-state area of the VMCS; and (2) the “host address-space size” VM-exit
control is 0. Such a VM exit may check the validity of the PDPTRs referenced by the CR3 field
in the host-state area of the VMCS. Such a VM exit must check their validity if either (1) PAE
paging was not in use before the VM exit; or (2) the value of CR3 is changing as a result of the
VM exit. A VM exit to a VMM that does not use PAE paging must not check the validity of the
PDPTRs.

A VM exit that checks the validity of the PDPTRs uses the same checks that are used when CR3
is loaded with MOV to CR3 when PAE paging is in use. If MOV to CR3 would cause a general-
protection exception due to the PDPTRs that would be loaded (e.g., because a reserved bit is set),
a VMX abort occurs. If a VM exit to a VMM that uses PAE does not cause a VMX abort, the
PDPTRs are loaded into the processor as would MOV to CR3, using the value of CR3 being load
by the VM exit.

23.5.5 Updating Non-Register State
VM exits affect the non-register state of a logical processor as follows:
® Alogical processor is always in the active state after a VM exit.
® Event blocking is affected as follows:
— There is no blocking by STI or by MOV SS after a VM exit.

— VM exits caused directly by non-maskable interrupts (NMIs) cause blocking by NMI
(see Table 20-3). Other VM exits do not affect blocking by NMI. (See Section 23.1 for
the case in which an NMI causes a VM exit indirectly.)

® There are no pending debug exceptions after a VM exit.

23.5.6 Clearing Address-Range Monitoring

IA-32 processors allow software to monitor a specified address range using the MONITOR and
MWAIT instructions. See Section 7.11.4 in the 1A-32 Intel® Architecture Software Developer’s
Manual, Volume 3A. VM exits clear any address-range monitoring that may be in effect.

23.6 LOADING MSRS

VM exits may load MSRs from the VM-exit MSR-load area (see Section 20.7.2). Specifically
each entry in that area (up to the number specified in the VM-exit MSR-load count) is processed
in order by loading the MSR indexed by bits 31:0 with the contents of bits 127:64 as they would
be written by WRMSR.

Processing of an entry fails in any of the following cases:

* The value of bits 31:0 is either CO000100H (the 1A32_FS_BASE MSR) or C0000101H
(the IA32_GS_BASE MSR).

23-22 Vol. 3B

VM EXITS

® The value of bits 31:0 is 9BH (the IA32_SMM_MONITOR_CTL MSR) and the VM exit
will not end in system-management mode (SMM).

® The value of bits 31:0 indicates an MSR that cannot be loaded on VM exits for model-
specific reasons. A processor may prevent loading of certain MSRs even if they can
normally be written by WRMSR. Such model-specific behavior is documented in
Appendix B.

® Bits 63:32 are not all 0.

® An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry would cause a
general-protection exception if executed via WRMSR with CPL = 0.16

If processing fails for any entry, a VMX abort occurs. See Section 23.7.

If any MSR is being loaded in such a way that would architecturally require a TLB flush, the
TLBs are updated so that, after VM exit, the logical processor does not use any translations that
were cached before the transition.

23.7 VMX ABORTS

A problem encountered during a VM exit leads to a VMX abort. A VMX abort takes a logical
processor into a shutdown state as described below.

A VMX abort does not modify the VMCS data in the VMCS region of any active VMCS. The
contents of these data are thus suspect after the VIMX abort.

On a VMX abort, a logical processor saves a nonzero 32-bit VMX-abort indicator field at byte
offset 4 in the VMCS region of the VMCS whose misconfiguration caused the failure (see
Section 20.2). The following values are used:

1. There was a failure in saving guest MSRs (see Section 23.4).
2. Host checking of the page-directory pointers (PDPTRs) failed (see Section 23.5.4).

3. The current VMCS has been corrupted (through writes to the corresponding VMCS
region) in such a way that the logical processor cannot complete the VM exit properly.

4. There was a failure on loading host MSRs (see Section 23.6).
5. There was a machine check during VM exit (see Section 23.8).

Some of these causes correspond to failures during the loading of state from the host-state area.
Because the loading of such state may be done in any order (see Section 23.5) a VM exit that
might lead to a VMX abort for multiple reasons (for example, the current VMCS may be corrupt
and the host PDPTRs might not be properly configured). In such cases, the VMX-abort indicator
could correspond to any one of those reasons.

16.Note the following about processors that support Intel EM64T. If CRO.PG =1, WRMSR to the
IA32_EFER MSR causes a general-protection exception if it would modify the LME bit. Since CRO.PG is
always 1 in VMX operation, the IA32_EFER MSR should not be included in the VM-exit MSR-load area
for the purpose of modifying the LME bit.

Vol. 3B 23-23

VM EXITS

A logical processor never reads the VMX-abort indicator in a VMCS region and writes it only
with one of the non-zero values mentioned above. The VMX-abort indicator allows software on
one logical processor to diagnose the VMX-abort on another. For this reason, it is recommended
that software running in VMX root operation zero the VMX-abort indicator in the VMCS region
of any VMCS that it uses.

After saving the VM X-abort indicator, the logical processor experiencing a VMX abort issues a
special bus cycle (to notify the chipset) and enters the VMX-abort shutdown state. RESET is
the only event that wakes a logical processor from the VMX-abort shutdown state. The
following events do not affect a logical processor in this state: machine checks; INIT signals;
external interrupts; non-maskable interrupts (NMIs); start-up IPIs (SIPIs); and system-manage-
ment interrupts (SMIs).

23.8 MACHINE CHECK DURING VM EXIT

If a machine check occurs during VM exit, one of the following occurs:

® The machine check is handled normally. If CR4.MCE =1, a machine-check exception
(#MC) delivered through the guest IDT. If CR4.MCE =0, the processor goes to the
shutdown state.

® A VMX abort is generated (see Section 23.7). The logical processor blocks events as done
normally in VMX abort. The VMX abort indicator is 5, for “machine check during
VM exit.”

The first option is not used if the machine check occurs after any host state has been loaded.

23-24 Vol. 3B

24

System Management

CHAPTER 24
SYSTEM MANAGEMENT

This chapter describes aspects of 1A-32 architecture used in system management mode (SMM).

SMM provides an alternate operating environment that can be used to monitor and manage
various system resources for more efficient energy usage, to control system hardware, and/or to
run proprietary code. It was introduced into the 1A-32 architecture in the Intel386 SL processor
(a mobile specialized version of the Intel386 processor). It is also available in the Pentium M,
Pentium 4, Intel Xeon, P6 family, and Pentium and Intel486 processors (beginning with the
enhanced versions of the Intel486 SL and Intel486 processors).

24.1 SYSTEM MANAGEMENT MODE OVERVIEW

SMM s a special-purpose operating mode provided for handling system-wide functions like
power management, system hardware control, or proprietary OEM-designed code. It is intended
for use only by system firmware, not by applications software or general-purpose systems soft-
ware. The main benefit of SMM is that it offers a distinct and easily isolated processor environ-
ment that operates transparently to the operating system or executive and software applications.

When SMM is invoked through a system management interrupt (SMI), the processor saves the
current state of the processor (the processor’s context), then switches to a separate operating
environment contained in system management RAM (SMRAM). While in SMM, the processor
executes SMI handler code to perform operations such as powering down unused disk drives or
monitors, executing proprietary code, or placing the whole system in a suspended state. When
the SMI handler has completed its operations, it executes a resume (RSM) instruction. This
instruction causes the processor to reload the saved context of the processor, switch back to
protected or real mode, and resume executing the interrupted application or operating-system
program or task.

The following SMM mechanisms make it transparent to applications programs and operating
systems:

® The only way to enter SMM is by means of an SMI.

® The processor executes SMM code in a separate address space (SMRAM) that can be
made inaccessible from the other operating modes.

® Upon entering SMM, the processor saves the context of the interrupted program or task.

¢ All interrupts normally handled by the operating system are disabled upon entry into
SMM.

® The RSM instruction can be executed only in SMM.

SMM is similar to real-address mode in that there are no privilege levels or address mapping.
An SMM program can address up to 4 GBytes of memory and can execute all 1/0 and appli-

Vol. 3B 24-1

SYSTEM MANAGEMENT

cable system instructions. See Section 24.5 for more information about the SMM execution
environment.

NOTES

The physical address extension (PAE) mechanism introduced in the P6 family
processors is not supported when a processor is in SMM.

The 1A-32e mode address-translation mechanism is not supported in SMM.
See Section 3.10 of 1A-32 Intel Architecture Software Developer’s Manual,
Volume 3A.

24.1.1 System Management Mode and VMX Operation

Traditionally, SMM services system management interrupts and then resumes program execu-
tion (back to the software stack consisting of executive and application software; see Section
24.2 through Section 24.14).

A virtual machine monitor (VMM) using VMX can act as a host to multiple virtual machines
and each virtual machine can support its own software stack of executive and application soft-
ware. On 1A-32 processors that support VMX, the virtual-machine extensions may use system-
management interrupts (SMIs) and system-management mode (SMM) in one of two ways:

® Default treatment. System firmware handles SMIs. The processor saves architectural
states and critical states relevant to VMX operation upon entering SMM. When the
firmware completes servicing SMIs, it uses RSM to resume VMX operation.

® Dual-monitor treatment. VMX supports the collaboration to two VM monitors while in
VMX operation to service SMIs: one VMM operates outside of SMM to support basic
virtualization in support for guests; the other VMM operates inside SMM (while in VMX
operation) to support system management functions. The former is referred to as executive
monitor, the latter SMM monitor.

The default treatment is described in Section 24.15, “Default Treatment of SMIS and SMM with
VMX?”. Dual-monitor treatment of SMM is described in Section 24.16, “Dual-Monitor Treat-
ment of SMIs and SMM”.

24.2 SYSTEM MANAGEMENT INTERRUPT (SMI)

The only way to enter SMM is by signaling an SMI through the SMI# pin on the processor or
through an SMI message received through the APIC bus. The SMI is a nonmaskable external
interrupt that operates independently from the processor’s interrupt- and exception-handling
mechanism and the local APIC. The SMI takes precedence over an NMI and a maskable inter-
rupt. SMM is non-reentrant; that is, the SMI is disabled while the processor is in SMM.

24-2 Vol. 3B

SYSTEM MANAGEMENT

NOTE

In the Pentium 4, Intel Xeon, and P6 family processors, when a processor that
is designated as an application processor during an MP initialization
sequence is waiting for a startup IPI (SIPI), it is in a mode where SMls are
masked. However if a SMI is received while an application processor is in the
wait for SIPI mode, the SMI will be pended. The processor then responds on
receipt of a SIPI by immediately servicing the pended SMI and going into
SMM before handling the SIPI.

24.3 SWITCHING BETWEEN SMM AND THE OTHER
PROCESSOR OPERATING MODES

Figure 2-3 shows how the processor moves between SMM and the other processor operating
modes (protected, real-address, and virtual-8086). Signaling an SMI while the processor is in
real-address, protected, or virtual-8086 modes always causes the processor to switch to SMM.
Upon execution of the RSM instruction, the processor always returns to the mode it was in when
the SMI occurred.

24.3.1 Entering SMM

The processor always handles an SMI on an architecturally defined “interruptible” point in
program execution (which is commonly at an 1A-32 architecture instruction boundary). When
the processor receives an SMI, it waits for all instructions to retire and for all stores to complete.
The processor then saves its current context in SMRAM (see Section 24.4), enters SMM, and
begins to execute the SMI handler.

Upon entering SMM, the processor signals external hardware that SMM handling has begun.
The signaling mechanism used is implementation dependent. For the P6 family processors, an
SMI acknowledge transaction is generated on the system bus and the multiplexed status signal
EXF4 is asserted each time a bus transaction is generated while the processor is in SMM. For
the Pentium and Intel486 processors, the SMIACT# pin is asserted.

An SMI has a greater priority than debug exceptions and external interrupts. Thus, if an NMI,
maskable hardware interrupt, or a debug exception occurs at an instruction boundary along with
an SMI, only the SMI is handled. Subsequent SMI requests are not acknowledged while the
processor is in SMM. The first SMI interrupt request that occurs while the processor is in SMM
(that is, after SMM has been acknowledged to external hardware) is latched and serviced when
the processor exits SMM with the RSM instruction. The processor will latch only one SMI while
in SMM.

See Section 24.5 for a detailed description of the execution environment when in SMM.

Vol. 3B 24-3

SYSTEM MANAGEMENT

24.3.2 Exiting From SMM

The only way to exit SMM is to execute the RSM instruction. The RSM instruction is only avail-
able to the SMI handler; if the processor is not in SMM, attempts to execute the RSM instruction
result in an invalid-opcode exception (#UD) being generated.

The RSM instruction restores the processor’s context by loading the state save image from
SMRAM back into the processor’s registers. The processor then returns an SMIACK transaction
on the system bus and returns program control back to the interrupted program.

Upon successful completion of the RSM instruction, the processor signals external hardware
that SMM has been exited. For the P6 family processors, an SMI acknowledge transaction is
generated on the system bus and the multiplexed status signal EXF4 is no longer generated on
bus cycles. For the Pentium and Intel486 processors, the SMIACT# pin is deserted.

If the processor detects invalid state information saved in the SMRAM, it enters the shutdown
state and generates a special bus cycle to indicate it has entered shutdown state. Shutdown
happens only in the following situations:

® A reserved bit in control register CR4 is set to 1 on a write to CR4. This error should not
happen unless SMI handler code modifies reserved areas of the SMRAM saved state map
(see Section 24.4.1). Note that CR4 is saved in the state map in a reserved location and
cannot be read or modified in its saved state.

® Anillegal combination of bits is written to control register CRO, in particular PG set to 1
and PE setto 0, or NW set to 1 and CD set to 0.

® (For the Pentium and Intel486 processors only.) If the address stored in the SMBASE
register when an RSM instruction is executed is not aligned on a 32-KByte boundary. This
restriction does not apply to the P6 family processors.

In the shutdown state, Intel processors stop executing instructions until a RESET#, INIT# or
NMI# is asserted. While Pentium family processors recognize the SMI# signal in shutdown
state, P6 family and Intel486 processors do not. Intel does not support using SMI# to recover
from shutdown states for any processor family; the response of processors in this circumstance
is not well defined. On Pentium 4 and later processors, shutdown will inhibit INTR and A20M
but will not change any of the other inhibits. On these processors, NMIs will be inhibited if no
action is taken in the SMM handler to uninhibit them (see Section 24.8).

If the processor is in the HALT state when the SMI is received, the processor handles the return
from SMM slightly differently (see Section 24.11). Also, the SMBASE address can be changed
on a return from SMM (see Section 24.12).

24.4 SMRAM

While in SMM, the processor executes code and stores data in the SMRAM space. The SMRAM
space is mapped to the physical address space of the processor and can be up to 4 GBytes in size.
The processor uses this space to save the context of the processor and to store the SMI handler
code, data and stack. It can also be used to store system management information (such as the

24-4 Vol. 3B

SYSTEM MANAGEMENT

system configuration and specific information about powered-down devices) and OEM-specific
information.

The default SMRAM size is 64 KBytes beginning at a base physical address in physical memory
called the SMBASE (see Figure 24-1). The SMBASE default value following a hardware reset
is 30000H. The processor looks for the first instruction of the SMI handler at the address
[SMBASE + 8000H]. It stores the processor’s state in the area from [SMBASE + FEOOH] to
[SMBASE + FFFFH]. See Section 24.4.1 for a description of the mapping of the state save area.

The system logic is minimally required to decode the physical address range for the SMRAM
from [SMBASE + 8000H] to [SMBASE + FFFFH]. A larger area can be decoded if needed. The
size of this SMRAM can be between 32 KBytes and 4 GBytes.

The location of the SMRAM can be changed by changing the SMBASE value (see Section
24.12). It should be noted that all processors in a multiple-processor system are initialized with
the same SMBASE value (30000H). Initialization software must sequentially place each
processor in SMM and change its SMBASE so that it does not overlap those of other processors.

The actual physical location of the SMRAM can be in system memory or in a separate RAM
memory. The processor generates an SMI acknowledge transaction (P6 family processors) or
asserts the SMIACT# pin (Pentium and Intel486 processors) when the processor receives an
SMI (see Section 24.3.1).

System logic can use the SMI acknowledge transaction or the assertion of the SMIACT# pin to
decode accesses to the SMRAM and redirect them (if desired) to specific SMRAM memory. If
a separate RAM memory is used for SMRAM, system logic should provide a programmable
method of mapping the SMRAM into system memory space when the processor is not in SMM.
This mechanism will enable start-up procedures to initialize the SMRAM space (that is, load the
SMI handler) before executing the SMI handler during SMM.

24.4.1 SMRAM State Save Map

When an |A-32 processor that does not support Intel EM64T initially enters SMM, it writes its
state to the state save area of the SMRAM. The state save area begins at [SMBASE + 8000H
+ 7FFFH] and extends down to [SMBASE + 8000H + 7EQ0H]. Table 24-1 shows the state save
map. The offset in column 1 is relative to the SMBASE value plus 8000H. Reserved spaces
should not be used by software.

Some of the registers in the SMRAM state save area (marked YES in column 3) may be read
and changed by the SMI handler, with the changed values restored to the processor registers by
the RSM instruction. Some register images are read-only, and must not be modified (modifying
these registers will result in unpredictable behavior). An SMI handler should not rely on any
values stored in an area that is marked as reserved.

Vol. 3B 24-5

SYSTEM MANAGEMENT

SMRAM

SMBASE + FFFFH
Start of State Save Area

SMI Handler Entry Point
SMBASE + 8000H

SMBASE

Figure 24-1. SMRAM Usage

Table 24-1. SMRAM State Save Map

Offset
(Added to SMBASE +

8000H) Register Writable?
7FFCH CRO No
7FF8H CR3 No
7FF4H EFLAGS Yes
7FFOH EIP Yes
7FECH EDI Yes
7FESH ESI Yes
7FE4H EBP Yes
7FEOH ESP Yes
7FDCH EBX Yes
7FD8H EDX Yes
7FD4H ECX Yes
7FDOH EAX Yes
7FCCH DR6 No
7FC8H DR7 No
7FC4H TR! No
7FCOH Reserved No
7FBCH Gst No
7FB8H Fst No
7FB4H pst No
7FBOH sst No

24-6 Vol. 3B

SYSTEM MANAGEMENT

Table 24-1. SMRAM State Save Map (Contd.)

Offset
(Added to SMBASE +
8000H) Register Writable?
7FACH cst No
7FASH est No
7FA4H 1/O State Field, see Section 24.7 No
7FAOH 1/0 Memory Address Field, see Section 24.7 No
7F9FH-7FO3H Reserved No
7FO2H Auto HALT Restart Field (Word) Yes
7FOOH I/O Instruction Restart Field (Word) Yes
7EFCH SMM Revision Identifier Field (Doubleword) No
7EF8H SMBASE Field (Doubleword) Yes
7EF7H - 7EOOH Reserved No

NOTE:
1. The two most significant bytes are reserved.

The following registers are saved (but not readable) and restored upon exiting SMM:
® Control register CR4. (This register is cleared to all 0s while in SMM).

® The hidden segment descriptor information stored in segment registers CS, DS, ES, FS,
GS, and SS.

If an SMI request is issued for the purpose of powering down the processor, the values of all
reserved locations in the SMM state save must be saved to nonvolatile memory.

The following state is not automatically saved and restored following an SMI and the RSM
instruction, respectively:

® Debug registers DRO through DR3.
® The x87 FPU registers.

® The MTRRs.

® Control register CR2.

® The model-specific registers (for the P6 family and Pentium processors) or test registers
TR3 through TR7 (for the Pentium and Intel486 processors).

® The state of the trap controller.

® The machine-check architecture registers.

®* The APIC internal interrupt state (ISR, IRR, etc.).
® The microcode update state.

Vol. 3B 24-7

SYSTEM MANAGEMENT

If an SMI is used to power down the processor, a power-on reset will be required before
returning to SMM, which will reset much of this state back to its default values. So an SMI
handler that is going to trigger power down should first read these registers listed above directly,
and save them (along with the rest of RAM) to nonvolatile storage. After the power-on reset, the
continuation of the SMI handler should restore these values, along with the rest of the system's
state. Anytime the SMI handler changes these registers in the processor, it must also save and

restore them.

NOTES

A small subset of the MSRs (such as, the time-stamp counter and
performance-monitoring counters) are not arbitrarily writable and therefore
cannot be saved and restored. SMM-based power-down and restoration
should only be performed with operating systems that do not use or rely on
the values of these registers.

Operating system developers should be aware of this fact and insure that their
operating-system assisted power-down and restoration software is immune to
unexpected changes in these register values.

24411 SMRAM State Save Map and Intel EM64T

When the processor initially enters SMM, it writes its state to the state save area of the SMRAM.
The state save area on an 1A-32 processor that supports Intel EM64T begins at [SMBASE +

8000H + 7FFFH] and extends to [SMBASE + 8000H + 7CO0H].
Intel EM64T is supported in an 1A-32 processor if the processor reports

CPUID.80000001:EDX][29] = 1. The layout of the SMRAM state save map is shown in Table

24-2.
Table 24-2. SMRAM State Save Map for Intel EM64T
Offset
(Added to SMBASE +

8000H) Register Writable?
7FF8H CRO No
7FFOH CR3 No
7FE8H RFLAGS Yes
7FEOH IA32_EFER Yes
7FD8H RIP Yes
7FDOH DR6 No
7FC8H DR7 No
7FC4H TR SEL! No
7FCOH LDTR SEL1 No
7FBCH Gs SeL! No

24-8 Vol. 3B

SYSTEM MANAGEMENT

Table 24-2. SMRAM State Save Map for Intel EM64T (Contd.)

Offset
(Added to SMBASE +

8000H) Register Writable?
7FB8H Fs seL! No
7FB4H Ds SEL? No
7FBOH ss seL? No
7FACH cs seL! No
7FA8H Es SEL? No
TFA4H I0_MISC No
7F9CH 10_MEM_ADDR No
7F94H RDI Yes
7F8CH RSI Yes
7F84H RBP Yes
7F7CH RSP Yes
7TF74H RBX Yes
7F6CH RDX Yes
7F64H RCX Yes
7F5CH RAX Yes
7F54H R8 Yes
7FACH R9 Yes
7F44H R10 Yes
7F3CH R11 Yes
7F34H R12 Yes
7F2CH R13 Yes
7F24H R14 Yes
7F1CH R15 Yes

7F1BH-7F04H Reserved No
7FO02H Auto HALT Restart Field (Word) Yes
7FOOH I/O Instruction Restart Field (Word) Yes
7EFCH SMM Revision Identifier Field (Doubleword) No
7EF8H SMBASE Field (Doubleword) Yes

7TEF7H - TEA8H Reserved No
TEA4H LDT Info No
7EAOH LDT Limit No
7E9CH LDT Base (lower 32 bits) No

Vol. 3B 24-9

SYSTEM MANAGEMENT

Table 24-2. SMRAM State Save Map for Intel EM64T (Contd.)

Offset
(Added to SMBASE +
8000H) Register Writable?
7E98H IDT Limit No
7E94H IDT Base (lower 32 bits) No
7E90H GDT Limit No
7E8CH GDT Base (lower 32 bits) No
7E8BH - 7TE44H Reserved No
7E40H CR4 No
7E3FH - 7DFOH Reserved No
7DE8SH IO_EIP Yes
7DE7H - 7DDCH Reserved No
7DD8H IDT Base (Upper 32 bits) No
7DD4H LDT Base (Upper 32 bits) No
7DDOH GDT Base (Upper 32 bits) No
7DCFH - 7CO0H Reserved No

NOTE:
1. The two most significant bytes are reserved.

24.4.2 SMRAM Caching

An 1A-32 processor does not automatically write back and invalidate its caches before entering
SMM or before exiting SMM. Because of this behavior, care must be taken in the placement of
the SMRAM in system memory and in the caching of the SMRAM to prevent cache incoher-
ence when switching back and forth between SMM and protected mode operation. Either of the
following three methods of locating the SMRAM in system memory will guarantee cache
coherency:

Place the SRAM in a dedicated section of system memory that the operating system and
applications are prevented from accessing. Here, the SRAM can be designated as
cacheable (WB, WT, or WC) for optimum processor performance, without risking cache
incoherence when entering or exiting SMM.

Place the SRAM in a section of memory that overlaps an area used by the operating system
(such as the video memory), but designate the SMRAM as uncacheable (UC). This method
prevents cache access when in SMM to maintain cache coherency, but the use of
uncacheable memory reduces the performance of SMM code.

Place the SRAM in a section of system memory that overlaps an area used by the operating
system and/or application code, but explicitly flush (write back and invalidate) the caches
upon entering and exiting SMM mode. This method maintains cache coherency, but the
incurs the overhead of two complete cache flushes.

24-10 Vol. 3B

SYSTEM MANAGEMENT

For Pentium 4, Intel Xeon, and P6 family processors, a combination of the first two methods of
locating the SMRAM is recommended. Here the SMRAM is split between an overlapping and
a dedicated region of memory. Upon entering SMM, the SMRAM space that is accessed over-
laps video memory (typically located in low memory). This SMRAM section is designated as
UC memory. The initial SMM code then jumps to a second SMRAM section that is located in a
dedicated region of system memory (typically in high memory). This SMRAM section can be
cached for optimum processor performance.

For systems that explicitly flush the caches upon entering SMM (the third method described
above), the cache flush can be accomplished by asserting the FLUSH# pin at the same time as
the request to enter SMM (generally initiated by asserting the SMI# pin). The priorities of the
FLUSH# and SMI# pins are such that the FLUSH# is serviced first. To guarantee this behavior,
the processor requires that the following constraints on the interaction of FLUSH# and SMI# be
met. In a system where the FLUSH# and SMI# pins are synchronous and the set up and hold
times are met, then the FLUSH# and SMI# pins may be asserted in the same clock. In asynchro-
nous systems, the FLUSH# pin must be asserted at least one clock before the SMI# pin to guar-
antee that the FLUSH# pin is serviced first.

Upon leaving SMM (for systems that explicitly flush the caches), the WBINVD instruction
should be executed prior to leaving SMM to flush the caches.

NOTES

In systems based on the Pentium processor that use the FLUSH# pin to write
back and invalidate cache contents before entering SMM, the processor will
prefetch at least one cache line in between when the Flush Acknowledge
cycle is run and the subsequent recognition of SMI# and the assertion of
SMIACTH#.

It is the obligation of the system to ensure that these lines are not cached by
returning KEN# inactive to the Pentium processor.

24.5 SMI HANDLER EXECUTION ENVIRONMENT

After saving the current context of the processor, the processor initializes its core registers to the
values shown in Table 24-3. Upon entering SMM, the PE and PG flags in control register CRO
are cleared, which places the processor is in an environment similar to real-address mode. The
differences between the SMM execution environment and the real-address mode execution
environment are as follows:

® The addressable SMRAM address space ranges from 0 to FFFFFFFFH (4 GBytes). (The
physical address extension (enabled with the PAE flag in control register CR4) is not
supported in SMM.)

® The normal 64-KByte segment limit for real-address mode is increased to 4 GBytes.

® The default operand and address sizes are set to 16 bits, which restricts the addressable
SMRAM address space to the 1-MByte real-address mode limit for native real-address-

Vol. 3B 24-11

SYSTEM MANAGEMENT

mode code. However, operand-size and address-size override prefixes can be used to
access the address space beyond the 1-MByte.

Table 24-3. Processor Register Initialization in SMM

Register Contents

General-purpose registers Undefined

EFLAGS 00000002H

EIP 00008000H

CS selector SMM Base shifted right 4 bits (default 3000H)
CS base SMM Base (default 30000H)

DS, ES, FS, GS, SS Selectors 0000H

DS, ES, FS, GS, SS Bases 000000000H

DS, ES, FS, GS, SS Limits OFFFFFFFFH

CRO PE, EM, TS, and PG flags set to 0; others unmodified
CR4 Cleared to zero

DR6 Undefined

DR7 00000400H

® Near jumps and calls can be made to anywhere in the 4-GByte address space if a 32-bit
operand-size override prefix is used. Due to the real-address-mode style of base-address
formation, a far call or jump cannot transfer control to a segment with a base address of
more than 20 bits (1 MByte). However, since the segment limit in SMM is 4 GBytes,
offsets into a segment that go beyond the 1-MByte limit are allowed when using 32-bit
operand-size override prefixes. Any program control transfer that does not have a 32-bit
operand-size override prefix truncates the EIP value to the 16 low-order bits.

® Data and the stack can be located anywhere in the 4-GByte address space, but can be
accessed only with a 32-bit address-size override if they are located above 1 MByte. As
with the code segment, the base address for a data or stack segment cannot be more than
20 bits.

The value in segment register CS is automatically set to the default of 30000H for the SMBASE
shifted 4 bits to the right; that is, 3000H. The EIP register is set to 8000H. When the EIP value
is added to shifted CS value (the SMBASE), the resulting linear address points to the first
instruction of the SMI handler.

The other segment registers (DS, SS, ES, FS, and GS) are cleared to 0 and their segment limits
are set to 4 GBytes. In this state, the SMRAM address space may be treated as a single flat
4-GByte linear address space. If a segment register is loaded with a 16-bit value, that value is
then shifted left by 4 bits and loaded into the segment base (hidden part of the segment register).
The limits and attributes are not modified.

24-12 Vol. 3B

SYSTEM MANAGEMENT

Maskable hardware interrupts, exceptions, NMI interrupts, SMI interrupts, A20M interrupts,
single-step traps, breakpoint traps, and INIT operations are inhibited when the processor enters
SMM. Maskable hardware interrupts, exceptions, single-step traps, and breakpoint traps can be
enabled in SMM if the SMM execution environment provides and initializes an interrupt table
and the necessary interrupt and exception handlers (see Section 24.6).

24.6 EXCEPTIONS AND INTERRUPTS WITHIN SMM

When the processor enters SMM, all hardware interrupts are disabled in the following manner:

® The IF flag in the EFLAGS register is cleared, which inhibits maskable hardware
interrupts from being generated.

® The TF flag in the EFLAGS register is cleared, which disables single-step traps.

® Debug register DR7 is cleared, which disables breakpoint traps. (This action prevents a
debugger from accidentally breaking into an SMM handler if a debug breakpoint is set in
normal address space that overlays code or data in SMRAM.)

®* NMI, SMI, and A20M interrupts are blocked by internal SMM logic. (See Section 24.8 for
more information about how NMls are handled in SMM.)

Software-invoked interrupts and exceptions can still occur, and maskable hardware interrupts
can be enabled by setting the IF flag. Intel recommends that SMM code be written in so that it
does not invoke software interrupts (with the INT n, INTO, INT 3, or BOUND instructions) or
generate exceptions.

If the SMM handler requires interrupt and exception handling, an SMM interrupt table and the
necessary exception and interrupt handlers must be created and initialized from within SMM.
Until the interrupt table is correctly initialized (using the LIDT instruction), exceptions and soft-
ware interrupts will result in unpredictable processor behavior.

The following restrictions apply when designing SMM interrupt and exception-handling
facilities:

® The interrupt table should be located at linear address 0 and must contain real-address
mode style interrupt vectors (4 bytes containing CS and IP).

® Due to the real-address mode style of base address formation, an interrupt or exception
cannot transfer control to a segment with a base address of more that 20 bits.

® Aninterrupt or exception cannot transfer control to a segment offset of more than 16 bits
(64 KBytes).

® When an exception or interrupt occurs, only the 16 least-significant bits of the return
address (EIP) are pushed onto the stack. If the offset of the interrupted procedure is greater
than 64 KBytes, it is not possible for the interrupt/exception handler to return control to
that procedure. (One solution to this problem is for a handler to adjust the return address on
the stack.)

® The SMBASE relocation feature affects the way the processor will return from an interrupt
or exception generated while the SMI handler is executing. For example, if the SMBASE

Vol. 3B 24-13

SYSTEM MANAGEMENT

is relocated to above 1 MByte, but the exception handlers are below 1 MByte, a normal
return to the SMI handler is not possible. One solution is to provide the exception handler
with a mechanism for calculating a return address above 1 MByte from the 16-bit return
address on the stack, then use a 32-bit far call to return to the interrupted procedure.

® If an SMI handler needs access to the debug trap facilities, it must insure that an SMM
accessible debug handler is available and save the current contents of debug registers DRO
through DR3 (for later restoration). Debug registers DRO through DR3 and DR7 must then
be initialized with the appropriate values.

® |f an SMI handler needs access to the single-step mechanism, it must insure that an SMM
accessible single-step handler is available, and then set the TF flag in the EFLAGS
register.

® If the SMI design requires the processor to respond to maskable hardware interrupts or
software-generated interrupts while in SMM, it must ensure that SMM accessible interrupt
handlers are available and then set the IF flag in the EFLAGS register (using the STI
instruction). Software interrupts are not blocked upon entry to SMM, so they do not need
to be enabled.

24.7 MANAGING SYNCHRONOUS AND ASYNCHRONOUS
SYSTEM MANAGEMENT INTERRUPTS

When coding for a multiprocessor system or a system with Intel HT Technology, it was not
always possible for an SMI handler to distinguish between a synchronous SMI (triggered during
an 1/O instruction) and an asynchronous SMI. To facilitate the discrimination of these two
events, incremental state information has been added to the SMM state save map.

Processors that have an SMM revision ID of 30004H or higher have the incremental state infor-
mation described below.

24.7.1 1/O State Implementation

Within the extended SMM state save map, a bit (I0_SMI) is provided that is set only when an
SMI is either taken immediately after a successful 1/0 instruction or is taken after a successful
iteration of a REP 1/O instruction (note that the successful notion pertains to the processor point
of view; not necessarily to the corresponding platform function). When set, the 10_SMI bit
provides a strong indication that the corresponding SMI was synchronous. In this case, the SMM
State Save Map also supplies the port address of the I/O operation. The 10_SMI bit and the 1/O
Port Address may be used in conjunction with the information logged by the platform to confirm
that the SMI was indeed synchronous.

Note that the IO_SMI bit by itself is a strong indication, not a guarantee, that the SMI is synchro-
nous. This is because an asynchronous SMI might coincidentally be taken after an 1/0 instruc-
tion. In such a case, the IO_SMI bit would still be set in the SMM state save map.

Information characterizing the 1/O instruction is saved in two locations in the SMM State Save
Map (Table 24-4). Note that the 10_SMI bit also serves as a valid bit for the rest of the 1/O infor-

24-14 Vol. 3B

SYSTEM MANAGEMENT

mation fields. The contents of these 1/0 information fields are not defined when the IO_SMI bit

is not set.

Table 24-4. 1/O Instruction Information in the SMM State Save Map

State (SMM Rev. ID: 30004H or

higher) Format
31 16 | 15 8 4 1 0
1/0 State Field s P = =l B
SMRAM offset 7FA4 2 a S =
=] 2 3 3| =
- 9] (0] «Q -

= 5

31 0

1/0 Memory Address Field
SMRAM offset 7FAQ

1/0 Memory Address

When 10_SMI is set, the other fields may be interpreted as follows:

¢ 1/O length:
e 001-Byte
e 010 -Word
¢ 100 - Dword

® |/O instruction type (Table 24-5)

Table 24-5. 1/O Instruction Type Encodings

Instruction Encoding
IN Immediate 1001
IN DX 0001
OUT Immediate 1000
OUT DX 0000
INS 0011
OUTS 0010
REP INS 0111
REP OUTS 0110

Vol. 3B 24-15

SYSTEM MANAGEMENT

24.8 NMI HANDLING WHILE IN SMM

NMI interrupts are blocked upon entry to the SMI handler. If an NMI request occurs during the
SMI handler, it is latched and serviced after the processor exits SMM. Only one NMI request
will be latched during the SMI handler. If an NMI request is pending when the processor
executes the RSM instruction, the NMI is serviced before the next instruction of the interrupted
code sequence. This assumes that NMIs were not blocked before the SMI occurred. If NMls
were blocked before the SMI occurred, they are blocked after execution of RSM.

Although NMI requests are blocked when the processor enters SMM, they may be enabled
through software by executing an IRET/IRETD instruction. If the SMM handler requires the use
of NMI interrupts, it should invoke a dummy interrupt service routine for the purpose of
executing an IRET/IRETD instruction. Once an IRET/IRETD instruction is executed, NMI
interrupt requests are serviced in the same “real mode” manner in which they are handled
outside of SMM.

A special case can occur if an SMI handler nests inside an NMI handler and then another NMI
occurs. During NMI interrupt handling, NMI interrupts are disabled, so normally NMI inter-
rupts are serviced and completed with an IRET instruction one at a time. When the processor
enters SMM while executing an NMI handler, the processor saves the SMRAM state save map
but does not save the attribute to keep NMI interrupts disabled. Potentially, an NMI could be
latched (while in SMM or upon exit) and serviced upon exit of SMM even though the previous
NMI handler has still not completed. One or more NMIs could thus be nested inside the first
NMI handler. The NMI interrupt handler should take this possibility into consideration.

Also, for the Pentium processor, exceptions that invoke a trap or fault handler will enable NMI
interrupts from inside of SMM. This behavior is implementation specific for the Pentium
processor and is not part the 1A-32 architecture.

24.9 SAVING THE X87 FPU STATE WHILE IN SMM

In some instances (for example prior to powering down system memory when entering a 0-volt
suspend state), it is necessary to save the state of the x87 FPU while in SMM. Care should be
taken when performing this operation to insure that relevant x87 FPU state information is not
lost. The safest way to perform this task is to place the processor in 32-bit protected mode before
saving the x87 FPU state. The reason for this is as follows.

The FSAVE instruction saves the x87 FPU context in any of four different formats, depending
on which mode the processor is in when FSAVE is executed (see Chapter 8, “Programming with
the x87 FPU”, in the 1A-32 Intel Architecture Software Developer’s Manual, Volume 1). When
in SMM, by default, the 16-bit real-address mode format is used. If an SMI interrupt occurs
while the processor is in a mode other than 16-bit real-address mode, FSAVE and FRSTOR will
be unable to save and restore all the relevant x87 FPU information, and this situation may result
in a malfunction when the interrupted program is resumed. To avoid this problem, the processor
should be in 32-bit protected mode when executing the FSAVE and FRSTOR instructions.

24-16 Vol. 3B

SYSTEM MANAGEMENT

The following guidelines should be used when going into protected mode from an SMI handler
to save and restore the x87 FPU state:

® Use the CPUID instruction to insure that the processor contains an x87 FPU.

® Create a 32-bit code segment in SMRAM space that contains procedures or routines to
save and restore the x87 FPU using the FSAVE and FRSTOR instructions, respectively. A
GDT with an appropriate code-segment descriptor (D bit is set to 1) for the 32-bit code
segment must also be placed in SMRAM.

® Write a procedure or routine that can be called by the SMI handler to save and restore the
x87 FPU state. This procedure should do the following:

— Place the processor in 32-bit protected mode as describe in Section 9.9.1 in 1A-32
Intel® Architecture Software Developer’s Manual, Volume 3A.

— Execute a far JMP to the 32-bit code segment that contains the x87 FPU save and
restore procedures.

— Place the processor back in 16-bit real-address mode before returning to the SMI
handler (see Section 9.9.2 in 1A-32 Intel® Architecture Software Developer’s Manual,
Volume 3A).

The SMI handler may continue to execute in protected mode after the x87 FPU state has been
saved and return safely to the interrupted program from protected mode. However, it is recom-
mended that the handler execute primarily in 16- or 32-bit real-address mode.

24.10 SMM REVISION IDENTIFIER

The SMM revision identifier field is used to indicate the version of SMM and the SMM exten-
sions that are supported by the processor (see Figure 24-2). The SMM revision identifier is
written during SMM entry and can be examined in SMRAM space at offset 7EFCH. The
lower word of the SMM revision identifier refers to the version of the base SMM architecture.

Register Offset

7EFCH

31 18171615 0
Reserved SMM Revision Identifier

SMBASE Relocation
I/O Instruction Restart

Figure 24-2. SMM Revision Identifier

The upper word of the SMM revision identifier refers to the extensions available. If the I/O
instruction restart flag (bit 16) is set, the processor supports the 1/O instruction restart (see

Vol. 3B 24-17

SYSTEM MANAGEMENT

Section 24.13); if the SMBASE relocation flag (bit 17) is set, SMRAM base address relocation
is supported (see Section 24.12).

24.11 AUTO HALT RESTART

If the processor is in a HALT state (due to the prior execution of a HLT instruction) when it
receives an SMI, the processor records the fact in the auto HALT restart flag in the saved
processor state (see Figure 24-3). (This flag is located at offset 7F02H and bit 0 in the state save
area of the SMRAM.)

If the processor sets the auto HALT restart flag upon entering SMM (indicating that the SMI
occurred when the processor was in the HALT state), the SMI handler has two options:

® |t can leave the auto HALT restart flag set, which instructs the RSM instruction to return
program control to the HLT instruction. This option in effect causes the processor to re-
enter the HALT state after handling the SMI. (This is the default operation.)

® It can clear the auto HALT restart flag, with instructs the RSM instruction to return
program control to the instruction following the HLT instruction.

15 10
Reserved

Register Offset
7FO02H

Auto HALT Restart J

Figure 24-3. Auto HALT Restart Field

These options are summarized in Table 24-6. Note that if the processor was not in a HALT state
when the SMI was received (the auto HALT restart flag is cleared), setting the flag to 1 will
cause unpredictable behavior when the RSM instruction is executed.

Table 24-6. Auto HALT Restart Flag Values

Value of Flag After | Value of Flag When

Entry to SMM Exiting SMM Action of Processor When Exiting SMM

0 0 Returns to next instruction in interrupted program or task
0 1 Unpredictable

1 0 Returns to next instruction after HLT instruction

1 1 Returns to HALT state

If the HLT instruction is restarted, the processor will generate a memory access to fetch the HLT
instruction (if it is not in the internal cache), and execute a HLT bus transaction. This behavior
results in multiple HLT bus transactions for the same HLT instruction.

24-18 Vol. 3B

SYSTEM MANAGEMENT

24.11.1 Executing the HLT Instruction in SMM

The HLT instruction should not be executed during SMM, unless interrupts have been enabled
by setting the IF flag in the EFLAGS register. If the processor is halted in SMM, the only event
that can remove the processor from this state is a maskable hardware interrupt or a hardware reset.

24.12 SMBASE RELOCATION

The default base address for the SMRAM is 30000H. This value is contained in an internal
processor register called the SMBASE register. The operating system or executive can relocate
the SMRAM by setting the SMBASE field in the saved state map (at offset 7EF8H) to a new
value (see Figure 24-4). The RSM instruction reloads the internal SMBASE register with the
value in the SMBASE field each time it exits SMM. All subsequent SMI requests will use the
new SMBASE value to find the starting address for the SMI handler (at SMBASE + 8000H) and
the SMRAM state save area (from SMBASE + FEOOH to SMBASE + FFFFH). (The processor
resets the value in its internal SMBASE register to 30000H on a RESET, but does not change it
on an INIT.)

31 0

Register Offset

SMM Base 7EE8H

Figure 24-4. SMBASE Relocation Field

In multiple-processor systems, initialization software must adjust the SMBASE value for each
processor so that the SMRAM state save areas for each processor do not overlap. (For Pentium
and Intel486 processors, the SMBASE values must be aligned on a 32-KByte boundary or the
processor will enter shutdown state during the execution of a RSM instruction.)

If the SMBASE relocation flag in the SMM revision identifier field is set, it indicates the ability
to relocate the SMBASE (see Section 24.10).

24.12.1 Relocating SMRAM to an Address Above 1 MByte

In SMM, the segment base registers can only be updated by changing the value in the segment
registers. The segment registers contain only 16 bits, which allows only 20 bits to be used for a
segment base address (the segment register is shifted left 4 bits to determine the segment base
address). If SMRAM s relocated to an address above 1 MByte, software operating in real-
address mode can no longer initialize the segment registers to point to the SMRAM base address
(SMBASE).

The SMRAM can still be accessed by using 32-bit address-size override prefixes to generate an
offset to the correct address. For example, if the SMBASE has been relocated to FFFFFFH
(immediately below the 16-MByte boundary) and the DS, ES, FS, and GS registers are still

Vol. 3B 24-19

SYSTEM MANAGEMENT

initialized to OH, data in SMRAM can be accessed by using 32-bit displacement registers, as in
the following example:

mov esi, 00FFxxxxH; 64K segment immediately below 16M
mov ax,ds: [esi]

A stack located above the 1-MByte boundary can be accessed in the same manner.

24.13 1/O INSTRUCTION RESTART

If the 1/O instruction restart flag in the SMM revision identifier field is set (see Section 24.10),
the I/O instruction restart mechanism is present on the processor. This mechanism allows an
interrupted 1/O instruction to be re-executed upon returning from SMM mode. For example, if
an 1/0 instruction is used to access a powered-down 1/O device, a chip set supporting this device
can intercept the access and respond by asserting SMI#. This action invokes the SMI handler to
power-up the device. Upon returning from the SMI handler, the 1/O instruction restart mecha-
nism can be used to re-execute the 1/0 instruction that caused the SMI.

The I/O instruction restart field (at offset 7FOOH in the SMM state-save area, see Figure 24-5)
controls I/O instruction restart. When an RSM instruction is executed, if this field contains the
value FFH, then the EIP register is modified to point to the I/O instruction that received the SMI
request. The processor will then automatically re-execute the I/O instruction that the SMI
trapped. (The processor saves the necessary machine state to insure that re-execution of the
instruction is handled coherently.)

15 0

Register Offset
7FO0H

1/O Instruction Restart Field

Figure 24-5. 1/O Instruction Restart Field

If the 1/O instruction restart field contains the value 00OH when the RSM instruction is executed,
then the processor begins program execution with the instruction following the 1/0O instruction.
(When a repeat prefix is being used, the next instruction may be the next 1/0 instruction in the
repeat loop.) Not re-executing the interrupted 1/O instruction is the default behavior; the
processor automatically initializes the 1/O instruction restart field to 00OH upon entering SMM.
Table 24-7 summarizes the states of the 1/0O instruction restart field.

Table 24-7. 1/0O Instruction Restart Field Values

Value of Flag After Value of Flag When
Entry to SMM Exiting SMM Action of Processor When Exiting SMM
00H O00H Does not re-execute trapped I/O instruction.
00H FFH Re-executes trapped /O instruction.

24-20 Vol. 3B

SYSTEM MANAGEMENT

Note that the /O instruction restart mechanism does not indicate the cause of the SMI. It is the
responsibility of the SMI handler to examine the state of the processor to determine the cause of
the SMI and to determine if an I/O instruction was interrupted and should be restarted upon
exiting SMM. If an SMI interrupt is signaled on a non-1/0 instruction boundary, setting the 1/O
instruction restart field to FFH prior to executing the RSM instruction will likely result in a
program error.

24.13.1 Back-to-Back SMI Interrupts When 1/O Instruction Restart
Is Being Used

If an SMI interrupt is signaled while the processor is servicing an SMI interrupt that occurred
on an 1/O instruction boundary, the processor will service the new SMI request before restarting
the originally interrupted I/O instruction. If the I/O instruction restart field is set to FFH prior to
returning from the second SMI handler, the EIP will point to an address different from the orig-
inally interrupted 1/0 instruction, which will likely lead to a program error. To avoid this situa-
tion, the SMI handler must be able to recognize the occurrence of back-to-back SMI interrupts
when 1/O instruction restart is being used and insure that the handler sets the 1/O instruction
restart field to O0H prior to returning from the second invocation of the SMI handler.

24.14 SMM MULTIPLE-PROCESSOR CONSIDERATIONS
The following should be noted when designing multiple-processor systems:
® Any processor in a multiprocessor system can respond to an SMM.

® Each processor needs its own SMRAM space. This space can be in system memory or in a
separate RAM.

®* The SMRAMs for different processors can be overlapped in the same memory space. The
only stipulation is that each processor needs its own state save area and its own dynamic
data storage area. (Also, for the Pentium and Intel486 processors, the SMBASE address
must be located on a 32-KByte boundary.) Code and static data can be shared among
processors. Overlapping SMRAM spaces can be done more efficiently with the P6 family
processors because they do not require that the SMBASE address be on a 32-KByte
boundary.

® The SMI handler will need to initialize the SMBASE for each processor.

® Processors can respond to local SMIs through their SMI# pins or to SMIs received through
the APIC interface. The APIC interface can distribute SMIs to different processors.

® Two or more processors can be executing in SMM at the same time.

® When operating Pentium processors in dual processing (DP) mode, the SMIACT# pin is
driven only by the MRM processor and should be sampled with ADS#. For additional
details, see Chapter 14 of the Pentium Processor Family User’s Manual, Volume 1.

SMM is not re-entrant, because the SMRAM State Save Map is fixed relative to the SMBASE.
If there is a need to support two or more processors in SMM mode at the same time then each

Vol. 3B 24-21

SYSTEM MANAGEMENT

processor should have dedicated SMRAM spaces. This can be done by using the SMBASE
Relocation feature (see Section 24.12).

24.15 DEFAULT TREATMENT OF SMIs AND SMM WITH VMX

Under the default treatment, the interactions of VMX with SMIs and SMM are few. This section
details those interactions.

24.15.1 Default Treatment of SMI Delivery

Ordinary SMI delivery saves processor state into SMRAM and then loads state based on archi-
tectural definitions. Under the default treatment, processors that support VMX operation
perform SMI delivery as follows (the underlining details VMX-specific treatment):
Enter SMM,;
save the following internal to the processor:
CR4.VMXE
an indication of whether the logical processor was in VMX operation (root or non-root)
IF the logical processor is in VMX operation
THEN
save current VMCS pointer internal to the processor;
leave VMX operation;
save VMX-critical state defined below:

EL;
CR4.VMXE « 0;
perform ordinary SMI delivery:
save processor state in SMRAM,;
set processor state to standard SMM values;!

The pseudocode above makes reference to the saving of VMX-critical state. This state consists
of the following: (1) SS.DPL (the current privilege level); (2) RFLAGS.VM?; and (3) the state
of blocking by STl and by MOV SS (see Table 20-3 in Section 20.4.2). These data may be saved
internal to the processor or in the VMCS region of the current VMCS. Note that processors that
do not support SMI recognition while there is blocking by STI or by MOV SS need not save the
state of such blocking.

Because SMI delivery causes a logical processor to leave VMX operation, all the controls asso-
ciated with VMX non-root operation are disabled in SMM and thus cannot cause VM exits.

1. This causes the logical processor to block INIT signals, NMis, and SMis.

2. Section 24.15 and Section 24.16 use the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers
because most processors that support VMX operation also support Intel EM64T. For processors that do
not support Intel EM64T, this notation refers to the 32-bit forms of these registers (EAX, EIP, ESP,
EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to the lower 32 bits of
the register.

24-22 Vol. 3B

SYSTEM MANAGEMENT

24.15.2 Default Treatment of RSM

Ordinary execution of RSM restores processor state from SMRAM. Under the default treatment,
processors that support VM X operation perform RSM as follows (the underlining details VM X-
specific treatment):

IF VMXE =1 in CR4 image in SMRAM
THEN fail and enter shutdown state;
ELSE
restore state normally from SMRAM,;
CR4.VMXE <« value stored internally:
IF internal storage indicates that the logical processor
had been in VMX operation (root or non-root)
THEN
enter VMX operation (root or non-root):
restore VMX-critical state as defined in Section 24.15.1;
set CRO.PE, CRO.NE, and CR0O.PG to 1;
IF RFLAGS.VM =0
THEN
CS.RPL <~ SS.DPL;
SS.RPL « SS.DPL;

EL;

restore current VMCS pointer;
EL
Leave SMM;

IF logical processor will be in VMX operation after RSM
THEN block A20M and leave A20M mode;

EL
EL

If RSM returns a logical processor to VMX non-root operation, it re-establishes the controls
associated with the current VMCS. If the “interrupt-window exiting” VM-execution control is
1, a VM exit occurs immediately after RSM if the enabling conditions apply (see Section 21.2).

RSM unblocks SMIs and restores the state of blocking by NMI (see Table 20-3 in Section
20.4.2), as it does normally. INIT signals are blocked after RSM if and only if the logical
processor will be in VMX root operation.

Vol. 3B 24-23

SYSTEM MANAGEMENT

24.15.3 Protection of CR4.VMXE in SMM

Under the default treatment, CR4.VMXE is treated as a reserved bit while a logical processor is
in SMM. Any attempt by software running in SMM to set this bit causes a general-protection
exception. In addition, software cannot use VMX instructions or enter VMX operation while in
SMM.

24.16 DUAL-MONITOR TREATMENT OF SMIs AND SMM

Dual-monitor treatment is activated through the cooperation of executive monitor and SMM
monitor code. Control is transferred to the SMM monitor through VM exits; VM entries are
used to return from SMM.

24.16.1 Dual-Monitor Treatment Overview

The dual-monitor treatment uses an executive monitor and an SMM monitor. Transitions from
the executive monitor or its guests to the SMM monitor are called SMM VM exits and are
discussed in Section 24.16.2. SMM VM exits are caused by SMIs as well as executions of
VMCALL in VMX root operation. The latter allow the executive monitor to call the SMM
monitor for service.

The SMM monitor runs in VMX root operation and uses VMX instructions to establish a VMCS
and perform VM entries to its own guests. This is done all inside SMM (see Section 24.16.3).
The SMM monitor returns from SMM, not by using the RSM instruction, but by using a
VM entry that returns from SMM. Such VM entries are described in Section 24.16.4.

Initially, there is no SMM monitor and the default treatment (Section 24.15) is used. The dual-
monitor treatment is not used until it is enabled and activated. The steps to do this are described
in Section 24.16.5 and Section 24.16.6.

It is not possible to leave VMX operation under the dual-monitor treatment; VMXOFF will fail
if executed. The dual-monitor treatment must be deactivated first. The SMM monitor deacti-
vates dual-monitor treatment using a VM entry that returns from SMM with the “deactivate
dual-monitor treatment” VM-entry control set to 1 (see Section 24.16.7).

The executive monitor configures any VMCS that it uses for VM exits to the executive monitor.
SMM VM exits, which transfer control to the SMM monitor, use a different VMCS. Under the
dual-monitor treatment, each logical processor uses a separate VMCS called the SMM-transfer
VMCS. When the dual-monitor treatment is active, the logical processor maintains another
VMCS pointer called the SMM-transfer VMCS pointer. The SMM-transfer VMCS pointer is
established when the dual-monitor treatment is activated.

24-24 Vol. 3B

SYSTEM MANAGEMENT

24.16.2 SMM VM Exits

An SMM VM exit is a VM exit that begins outside SMM and that ends in SMM.

Unlike other VM exits, SMM VM exits can begin in VMX root operation. SMM VM exits
result from the arrival of an SMI outside SMM or from execution of VMCALL in VMX root
operation outside SMM. Execution of VMCALL in VMX root operation causes an SMM
VM exit only if the valid bit is set in the IA32_SMM_MONITOR_CTL MSR (see Section
24.16.5).

Execution of VMCALL in VMX root operation causes an SMM VM exit even under the default
treatment. This SMM VM exit activates the dual-monitor treatment (see Section 24.16.6).

Differences between SMM VM exits and other VM exits are detailed in Sections 24.16.2.1
through 24.16.2.5. Differences between SMM VM exits that activate the dual-monitor treatment
and other SMM VM exits are described in Section 24.16.6.

24.16.2.1 Architectural State Before a VM EXxit

System-management interrupts (SMIs) that cause SMM VM exits always do so directly. They
do not save state to SMRAM as they do under the default treatment.

24.16.2.2 Updating the Current-VMCS and Executive-VMCS Pointers
SMM VM exits begin by performing the following steps:
1. The executive-VMCS pointer field in the SMM-transfer VMCS is loaded as follows:

— If the SMM VM exit commenced in VMX non-root operation, it receives the current-
VMCS pointer.

— If the SMM VM exit commenced in VMX root operation, it receives the VMXON
pointer.

2. The current-VMCS pointer is loaded with the value of the SMM-transfer VMCS pointer.

The last step ensures that the current VMCS is the SMM-transfer VMCS. State is saved into the
guest-state area of that VMCS. The VM-exit controls and host-state area of that VMCS deter-
mine how the VM exit operates.

24.16.2.3 Recording VM-Exit Information

SMM VM exits differ from other VM exit with regard to the way they record VM-exit informa-
tion. The differences follow.

® Exit reason.

— Bits 15:0 of this field contain the basic exit reason. The field is loaded with the reason
for the SMM VM exit: 1/0 SMI (an SMI arrived immediately after retirement of an
I/0 instruction), other SMI, or VMCALL. See Appendix I, “VMX Basic Exit
Reasons”.

Vol. 3B 24-25

SYSTEM MANAGEMENT

— SMM VM exits are the only VM exits that may occur in VMX root operation. Because
the SMM monitor may need to know whether it was invoked from VMX root or VMX
non-root operation, this information is stored in bit 29 of the exit-reason field (see
Table 20-11 in Section 20.9.1). The bit is set by SMM VM exits from VMX root
operation.

— Bits 28:16 and bits 31:30 are clear.

Exit qualification. For an SMM VM exit due an SMI that arrives immediately after the
retirement of an 1/O instruction, the exit qualification contains information about the 1/0
instruction that retired immediately before the SML.It has the format given in Table 24-6.

Table 24-6. Exit Qualification for SMIs That Arrive Immediately
After the Retirement of an I/O Instruction

Bit Position(s) Contents

Size of access:
0 = 1-byte
1 = 2-byte
3 =4-byte
Other values not used.

Direction of the attempted access (0 = OUT, 1 = IN)

String instruction (0 = not string; 1 = string)

REP prefixed (0 = not REP; 1 = REP)

Operand encoding (0 = DX, 1 = immediate)

15:7 Reserved (cleared to 0)
31:16 Port number (as specified in the I/O instruction)
63:32 Reserved (cleared to 0). These bits exist only on processors

that support Intel EM64T.

Guest linear address. This field is used for VM exits due to SMIs that arrive immediately
after the retirement of an INS or OUTS instruction for which the relevant segment (ES for
INS; DS for OUTS unless overridden by an instruction prefix) is usable. The field receives
the value of the linear address generated by ES:(E)DI (for INS) or segment:(E)SI (for
OUTS; the default segment is DS but can be overridden by a segment override prefix) at
the time the instruction started. If the relevant segment is not usable, the value is
undefined. On processors that support Intel EM64T, bits 63:32 are clear if the logical
processor was not in 64-bit mode before the VM exit.

1/0 RCX, 1/0O RSI, 1/O RDI, and 1/O RIP. For an SMM VM exit due an SMI that arrives
immediately after the retirement of an 1/O instruction, these fields receive the values that
were in RCX, RSI, RDI, and RIP, respectively, before the 1/O instruction executed. Thus,
the value saved for 1/0O RIP addresses the /O instruction.

24-26 Vol. 3B

SYSTEM MANAGEMENT

24.16.2.4 Saving Guest State

SMM VM exits save the contents of the SMBASE register into the corresponding field in the
guest-state area.

24.16.2.5 Updating Non-Register State
SMM VM exits affect the non-register state of a logical processor as follows:

® SMM VM exits cause non-maskable interrupts (NMIs) to be blocked; they may be
unblocked through execution of IRET or through a VM entry (depending on the value
loaded for the interruptibility state).

® SMM VM exits cause SMIs to be blocked; they may be unblocked by a VM entry that
returns from SMM (see Section 24.16.4).

24.16.3 Operation of an SMM Monitor

Once invoked, an SMM monitor is in VMX root operation and can use VMX instructions to
configure VMCSs and to cause VM entries to virtual machines supported by those structures.
As noted in Section 24.16.1, the VMXOFF instruction cannot be used under the dual-monitor
treatment and thus cannot be used by an SMM monitor.

The RSM instruction also cannot be used under the dual-monitor treatment. As noted in Section
21.1.3, it causes a VM exit if executed in SMM in VMX non-root operation. If executed in VMX
root operation, it causes an invalid-opcode exception. SMM monitor uses VM entries to return
from SMM (see Section 24.16.4).

24.16.4 VM Entries that Return from SMM

The SMM monitor returns from SMM using a VM entry with the “entry to SMM” VM-entry
control clear. VM entries that return from SMM reverse the effects of an SMM VM exit (see
Section 24.16.2).

VM entries that return from SMM may differ from other VM entries in that they do not neces-
sarily enter VMX non-root operation. If the executive-VMCS pointer field in the current VMCS
contains the VMXON pointer, the logical processor remains in VMX root operation after
VM entry.

For differences between VM entries that return from SMM and other VM entries see Sections
24.16.4.1 through 24.16.4.8.

24.16.4.1 Checks on the Executive-VMCS Pointer Field

VM entries that return from SMM perform the following checks on the executive-VMCS
pointer field in the current VMCS:

® Bits 11:0 must be 0.

Vol. 3B 24-27

SYSTEM MANAGEMENT

® On processors that support Intel EM64T the pointer must not set any bits beyond the
processor’s physical-address width.2 On processors that do not support Intel EM64T, it
must not set any bits in the range 63:32.

® The 32 bits located in memory referenced by the physical address in the pointer must
contain the processor’s VMCS revision identifier (see Section 20.2).

The checks above are performed before the checks described in Section 24.16.4.2 and before
any of the following checks:

® |f the “deactivate dual-monitor treatment” VVM-entry control is O, the launch state of the
executive VMCS (the VMCS referenced by the executive-VMCS pointer field) must be
launched (see Section 20.11).

® If the “deactivate dual-monitor treatment” VM-entry control is 1, the executive-VMCS
pointer field must contain the VMXON pointer (see Section 24.16. 7)

24.16.4.2 Checks on VM-Execution Control Fields

VM entries that return from SMM differ from other VM entries with regard to the checks
performed on the VM-execution control fields specified in Section 22.2.1.1. They do not apply
the checks to the current VMCS. Instead, VM-entry behavior depends on whether the executive-
VMCS pointer field contains the VMXON pointer: 4

® If the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains
in VMX root operation), the checks are not performed at all.

® |f the executive-VMCS pointer field does not contain the VMXON pointer (the VM entry
enters VMX non-root operation), the checks are performed on the VM-execution control
fields in the executive VMCS (the VMCS referenced by the executive-VMCS pointer field
in the current VMCS). These checks are performed after checking the executive-VMCS
pointer field itself (for proper alignment).

24.16.4.3 Checks on Guest Non-Register State

For VM entries that return from SMM, the activity-state field must not indicate the wait-for-SIPI
state if the executive- VMCS pointer field contains the VMXON pointer (the VM entry is to
VMX root operation).*

24.16.4.4 Loading Guest State
VM entries that return from SMM load the SMBASE register from the SMBASE field.

3. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in
EAX. The physical-address width is returned in bits 7:0 of EAX.

4. An SMM monitor can determine the VMXON pointer by reading the executive-VMCS pointer field in the
current VMCS after the SMM VM exit that activates the dual-monitor treatment.

24-28 Vol. 3B

SYSTEM MANAGEMENT

24.16.4.5 Updating the Current-VMCS and SMM-Transfer VMCS Pointers

Successful VM entries (returning from SMM) load the SMM-transfer VMCS pointer with the
current-VMCS pointer. Following this, they load the current-VMCS pointer from a field in the
current VMCS:

® |f the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains
in VMX root operation), the current-VMCS pointer is loaded from the VMCS-link pointer
field.

® |f the executive-VMCS pointer field does not contain the VMXON pointer (the VM entry
enters VMX non-root operation), the current-VMCS pointer is loaded with the value of the
executive-VMCS pointer field.

If the VM entry successfully enters VMX non-root operation, the VM-execution controls in
effect after the VM entry are those from the new current VMCS. This includes any structures
external to the VMCS referenced by VM-execution control fields.

The updating of these VMCS pointers occurs before event injection. Event injection is deter-
mined, however, by the VM-entry control fields in the VMCS that was current when the
VM entry commenced.

24.16.4.6 VM Exits Induced by VM Entry

Section 22.5.2 describes how the event-delivery process invoked by event injection may lead to
a VM exit. Section 22.6.4 describes how the “interrupt-window exiting” VM-execution control
may cause a VM exit to occur immediately after VM entry.

For VM exits that are determined by VVM-execution control fields, the fields used are those from
the VMCS that is current after the VM entry (see Section 24.16.4.5). This VMCS is used to
control the delivery of VM exits resulting from event injection or due to the “interrupt-window
exiting” VM-execution control. Thus, VM exits induced by a VM entry returning from SMM
are to the executive monitor and not the SMM monitor.

24.16.4.7 SMI Blocking

VM entries that return from SMM determine the blocking of system-management interrupts
(SMIs) as follows:

® |f the “deactivate dual-monitor treatment” VM-entry control is 0, SMIs are blocked after
VM entry if and only if the bit 2 in the interruptibility-state field is 1.

® |f the “deactivate dual-monitor treatment” VM-entry control is 1, SMIs are unblocked by
VM entry.

VM entries that return from SMM and that do not deactivate the dual-monitor treatment may
leave SMIs blocked. This feature exists to allow an SMM monitor to invoke functionality
outside of SMM without unblocking SMis.

Vol. 3B 24-29

SYSTEM MANAGEMENT

24.16.4.8 Failures of VM Entries That Return from SMM

Section 22.7 describes the treatment of VM entries that fail during or after loading guest state.
Such failures record information in the VM-exit information fields and load processor state as
would be done on a VM exit. The VMCS used is the one that was current before the VM entry
commenced. Control is thus transferred to the SMM monitor and the logical processor remains
in SMM.

24.16.5 Enabling the Dual-Monitor Treatment

Code and data for the SMM monitor reside in a region of SMRAM called the monitor segment
(MSEG). Code running in SMM determines the location of MSEG and establishes its content.
This code is also responsible for enabling the dual-monitor treatment.

SMM code enables the dual-monitor treatment and determines the location of MSEG by writing
to IA32_SMM_MONITOR_CTL MSR (index 9BH). The MSR has the following format:

® BitOis the register’s valid bit. The SMM monitor may be invoked using VMCALL only if
this bit is 1. Because VMCALL is used to activate the dual-monitor treatment (see Section
24.16.6), the dual-monitor treatment cannot be activated if the bit is 0. This bit is cleared
when the logical processor is reset.

® Bits 11:1 are reserved.

® Bits 31:12 contain a value that, when shifted right 12 bits, is the physical address of MSEG
(the MSEG base address).

® Bits 63:32 are reserved.
The following items detail use of this MSR:

® A write to the IA32_SMM_MONITOR_CTL MSR using WRMSR generates a general-
protection fault (#GP(0)) if executed outside of SMM or if an attempt is made to set any
reserved bit. An attempt to write to 1A32_SMM_MONITOR_CTL MSR fails if made as
part of a VM exit that does not end in SMM or part of a VM entry that does not begin in
SMM.

® Reads from IA32_SMM_MONITOR_CTL MSR using RDMSR are allowed any time
RDMSR is allowed. The MSR may be read as part of any VM exit.

® The dual-monitor treatment can be activated only if the valid bit in the MSR is set to 1.

The 32 bytes located at the MSEG base address are called the MSEG header. The format of the
MSEG header is given in Table 24-7 (each field is 32 bits).

Table 24-7. Format of MSEG Header

Byte Offset Field
0 MSEG-header revision identifier
4 SMM-monitor features

24-30 Vol. 3B

SYSTEM MANAGEMENT

Table 24-7. Format of MSEG Header (Contd.)
Byte Offset Field
8 GDTR limit
12 GDTR base offset
16 CS selector
20 EIP offset
24 ESP offset
28 CR3 offset

To ensure proper behavior in VMX operation, software should maintain the MSEG header in
wrlteback cacheable memory. Future implementations may allow or require a different memory
type. 5 Software should consult the VMX capability MSR 1A32_VMX_BASIC (see Appendix
G1l).

SMM code should enable the dual-monitor treatment (by setting the valid bit in
IA32_SMM_MONITOR_CTL MSR) only after establishing the content of the MSEG header
as follows:

Bytes 3:0 contain the MSEG revision identifier. Different processors may use different
MSEG revision identifiers. These identifiers enable software to avoid using an MSEG
header formatted for one processor on a processor that uses a different format. Software
can discover the MSEG revision identifier that a processor uses by reading the VMX
capability MSR 1A32_VMX_MISC (see Appendix G.5).

Bytes 7:4 contain the SMM-monitor features field. Bits 31:1 of this fleld are reserved and
must be zero. Bit 0 of the field is the 1A-32e mode SMM feature bit.® It indicates whether
the logical processor will be in 1A-32e mode after the SMM monitor is activated (see
Section 24.16.6).

Bytes 31:8 contain fields that determine how processor state is loaded when the SMM
monitor is activated (see Section 24.16.6.4). SMM code should establish these fields so
that activating of the SMM monitor invokes the SMM monitor’s initialization code.

5. Alternatively, software may map the MSEG header with the UC memory type; this may be necessary,

depending on how memory is organized. Doing so is strongly discouraged unless necessary as it will
cause the performance of transitions using those structures to suffer significantly. In addition, the proces-
sor will continue to use the memory type reported in the VMX capability MSR 1A32_VMX_BASIC with
exceptions noted in Appendix G.1.

. Note that use of 1A-32e mode address-translation mechanism is not currently supported in SMM. Thus,

setting the IA-32e mode SMM feature bit to 1 is not currently supported. See note in Section 24.1.

Vol. 3B 24-31

SYSTEM MANAGEMENT

24.16.6 Activating the Dual-Monitor Treatment

The dual-monitor treatment may be enabled by SMM code as described in Section 24.16.5. The
dual-monitor treatment is activated only if it is enabled and only by the executive monitor. The
executive monitor activates the dual-monitor treatment by executing VMCALL in VMX root
operation.

When VMCALL activates the dual-monitor treatment, it causes an SMM VM exit. Differences
between this SMM VM exit and other SMM VM exits are discussed in Sections 24.16.6.1
through 24.16.6.5. See also “VMCALL—Call to VM Monitor” in Chapter 5 of 1A-32 Intel®
Architecture Software Developer’s Manual, Volume 2B.

24.16.6.1 Initial Checks

An execution of VMCALL attempts to activate the dual-monitor treatment if (1) the logical
processor is in VMX root operation; (2) the logical processor is outside SMM and the valid bit
is setinthe IA32_ SMM_MONITOR_CTL MSR; (3) the logical processor is not in virtual-8086
mode and, if the processor supports Intel EM64T, not in compatibility mode; (4) CPL = 0; and
(5) the dual-monitor treatment is not active.

The VMCS that manages SMM VM exit caused by this VMCALL is the current VMCS estab-
lished by the executive monitor. The VMCALL performs the following checks on the current
VMCS in the order indicated:

1. There must be a current VMCS pointer.
2. The launch state of the current VMCS must be clear.
3. The VM-exit control fields must be valid:

— Reserved bits in the VM-exit controls must be set properly. The reserved settings are
indicated in Section 20.7.1. In addition, software may consult the VMX capability
MSR 1A32_VMX_EXIT_CTLS to determine the proper settings (see Appendix G.3).

— The following checks are performed for the VM-exit MSR-store address if the
VM-exit MSR-store count field is non-zero:

* The lower 4 bits of the VM-exit MSR-store address must be 0. On processors that
support Intel EM64T, the address should not set any bits beyond the processor’s
physical-address width.” On processors that do not support Intel EM64T, the
address should not set any bits in the range 63:32.

* On processors that support Intel EM64T, the address of the last byte in the
VM-exit MSR-store area should not set any bits beyond the processor’s physical-
address width. On processors that do not support Intel EM64T, the address of the
last byte in the VM-exit MSR-store area should not set any bits in the range 63:32.

7. Software can determine a processor’'s physical-address width by executing CPUID with 80000008H in
EAX. The physical-address width is returned in bits 7:0 of EAX.

24-32 Vol. 3B

SYSTEM MANAGEMENT

The address of this last byte is VM-exit MSR-store address + (MSR count * 16) —
1. (The arithmetic used for the computation uses more bits than the processor’s
physical-address width.)

If any of these checks fail, subsequent checks are skipped and VMCALL fails. If all these checks
succeed, the logical processor uses the IA32_ SMM_MONITOR_CTL MSR to determine the
base address of MSEG. The following checks are performed in the order indicated:

1. The logical processor reads the 32 bits at the base of MSEG and compares them to the
processor’s MSEG revision identifier.

2. The logical processor reads the SMM-monitor features field:

— Bit 0 of the field is the 1A-32e mode SMM feature bit, and it indicates whether the
logical processor will be in IA-32e mode after the SMM monitor is activated.

* Ifthe VMCALL is executed on a processor that does not support Intel EM64T, the
IA-32e mode SMM feature bit must be 0.

* |f the VMCALL is executed in 64-bit mode, the 1A-32e mode SMM feature bit
must be 1.

— Bits 31:1 of this field are currently reserved and must be zero.

If any of these checks fail, subsequent checks are skipped and the VMCALL fails.

24.16.6.2 MSEG Checking

SMM VM exits that activate the dual-monitor treatment check the following before updating the
current-VMCS pointer and the executive-VMCS pointer field (see Section 24.16.2.2):

® The 32 bits at the MSEG base address (used as a physical address) must contain the
processor’s MSEG revision identifier.

® Bits 31:1 of the SMM-monitor features field in the MSEG header (see Table 24-7) must be
0. Bit 0 of the field (the 1A-32e mode SMM feature bit) must be 0 if the processor does not
support Intel EM64T.

If either of these checks fail, execution of VMCALL fails.

24.16.6.3 Updating the Current-VMCS and Executive-VMCS Pointers

Before performing the steps in Section 24.16.2.2, SMM VM exits that activate the dual-monitor
treatment begin by loading the SMM-transfer VMCS pointer with the value of the current-
VMCS pointer.

24.16.6.4 Loading Host State

The VMCS that is current during an SMM VM exit that activates the dual-monitor treatment
was established by the executive monitor. It does not contain the VM-exit controls and host state
required to initialize the SMM monitor. For this reason, such SMM VM exits do not load

Vol. 3B 24-33

SYSTEM MANAGEMENT

processor state as described in Section 23.5. Instead, state is set to fixed values or loaded based
on the content of the MSEG header (see Table 24-7):

CRO is set to as follows:

PG, NE, ET, MP, and PE are all set to 1.
CD and NW are left unchanged.
All other bits are cleared to 0.

CR3 is set as follows:

Bits 63:32 are cleared on processors that supports 1A-32e mode.

Bits 31:12 are set to bits 31:12 of the sum of the MSEG base address and the
CR3-offset field in the MSEG header.

Bits 11:5 and bits 2:0 are cleared (the corresponding bits in the CR3-offset field in the
MSEG header are ignored).

Bits 4:3 are set to bits 4:3 of the CR3-offset field in the MSEG header.

CR4 is set as follows:

MCE and PGE are cleared.
PAE is set to the value of the IA-32e mode SMM feature bit.

If the 1A-32e mode SMM feature bit is clear, PSE is set to 1 if supported by the
processor; if the bit is set, PSE is cleared.

All other bits are unchanged.

DR7 is set to 400H.
The 1A32_DEBUGCTL MSR is cleared to 00000000_00000000H.
The registers CS, SS, DS, ES, FS, and GS are loaded as follows:

All registers are usable.

CS.selector is loaded from the corresponding fields in the MSEG header (the high 16
bits are ignored), with bits 2:0 cleared to 0. If the result is 0000H, CS.selector is set to
0008H.

The selectors for SS, DS, ES, FS, and GS are set to CS.selector+0008H. If the result is
000O0H (if the CS selector was OxFFF8), these selectors are instead set to 0008H.

The base addresses of all registers are cleared to zero.

The segment limits for all registers are set to FFFFFFFFH.

The AR bytes for the registers are set as follows:

* CS.Typeissetto 11 (execute/read, accessed, non-conforming code segment).

* ForSS, DS, FS, and GS, the Type is set to 3 (read/write, accessed, expand-up data
segment).

24-34 Vol. 3B

SYSTEM MANAGEMENT

* The S bits for all registers are set to 1.
* The DPL for each register is set to 0.
* The P bits for all registers are set to 1.

* On processors that support Intel EM64T, CS.L is loaded with the value of the
IA-32e mode SMM feature bit.

* CS.Dis loaded with the inverse of the value of the |1A-32e mode SMM feature bit.
* For each of SS, DS, FS, and GS, the D/B bit is set to 1.
* The G bits for all registers are set to 1.

® | DTR is unusable. The LDTR selector is cleared to 0000H, and the register is otherwise
undefined (although the base address is always canonical)

® GDTR.base is set to the sum of the MSEG base address and the GDTR base-offset field in
the MSEG header (bits 63:32 are always cleared on processors that supports 1A-32e
mode). GDTR.limit is set to the corresponding field in the MSEG header (the high 16 bits
are ignored).

® IDTR.base is unchanged. IDTR.limit is cleared to 0000H.

® RIP is set to the sum of the MSEG base address and the value of the RIP-offset field in the
MSEG header (bits 63:32 are always cleared on logical processors that support 1A-32e
mode).

® RSP s set to the sum of the MSEG base address and the value of the RSP-offset field in the
MSEG header (bits 63:32 are always cleared on logical processor that supports 1A-32e
mode).

® RFLAGS is cleared, except bit 1, which is always set.
® The logical processor is left in the active state.
® Event blocking after the SMM VM exit is as follows:
— There is no blocking by STI or by MOV SS.
— There is blocking by non-maskable interrupts (NMIs) and by SMls.
® There are no pending debug exceptions after the SMM VM exit.

® For processors that support 1A-32e mode, the IA32_EFER MSR is modified so that LME
and LMA both contain the value of the |A-32e mode SMM feature bit.

If any of CR3[63:5], CR4.PAE, CR4.PSE, or IA32_EFER.LMA is changing, the TLBs are
updated so that, after VM exit, the logical processor does not use translations that were cached
before the transition. This is not necessary for changes that would not affect paging due to the
settings of other bits (for example, changes to CR4.PSE if IA32_EFER.LMA was 1 before and
after the transition).

Vol. 3B 24-35

SYSTEM MANAGEMENT

24.16.6.5 Loading MSRs

The VM-exit MSR-load area is not used by SMM VM exits that activate the dual-monitor treat-
ment. No MSRs are loaded from that area.

24.16.7 Deactivating the Dual-Monitor Treatment

An SMM monitor may deactivate the dual monitor treatment and return the processor to default
treatment of SMIs and SMM (see Section 24.15). It does this by executing a VM entry with the
“deactivate dual-monitor treatment” \VM-entry control set to 1.

As noted in Section 22.2.1.3 and Section 24.16.4.1, an attempt to deactivate the dual-monitor
treatment fails in the following situations: (1) the processor is not in SMM; (2) the “entry to
SMM” VM-entry control is 1; or (3) the executive-VMCS pointer does not contain the VMXON
pointer (the VM entry is to VMX non-root operation).

As noted in Section 24.16.4.7, VM entries that deactivate the dual-monitor treatment ignore the
SMI bit in the interruptibility-state field of the guest-state area. Instead, such a VM entry uncon-
ditionally unmasks SMls.

24-36 Vol. 3B

25

Virtual Machine
Monitor
Programming
Considerations

CHAPTER 25
VIRTUAL-MACHINE MONITOR PROGRAMMING
CONSIDERATIONS

25.1 VMX SYSTEM PROGRAMMING OVERVIEW

The Virtual Machine Monitor (VMM) is a software class used to manage virtual machines
(VM). This chapter describes programming considerations for VMMs.

Each VM behaves like a complete physical machine and can run operating system (OS) and
applications. The VMM software layer runs at the most privileged level and has complete
ownership of the underlying system hardware. The VMM controls creation of a VM, transfers
control to a VM, and manages situations that can cause transitions between the guest VMs and
host VMM. The VMM allows the VMs to share the underlying hardware and yet provides isola-
tion between the VMs. The guest software executing in a VM is unaware of any transitions that
might have occurred between the VM and its host.

25.2 SUPPORTING PROCESSOR OPERATING MODES IN GUEST
ENVIRONMENTS

Typically, VMMs transfer control to a VM using VM X transitions referred to as VM entries. The
boundary conditions that define what a VM is allowed to execute in isolation are specified in a
virtual-machine control structure (VMCS).

As noted in Section 19.8, processors may fix certain bits in CR0 and CR4 to specific values and
not support other values. The first processors to support VMX operation require that CR0.PE
and CRO.PG be 1 in VMX operation. Thus, a VM entry is allowed only to guests with paging
enabled that are in protected mode or in virtual-8086 mode. Guest execution in other processor
operating modes need to be specially handled by the VMM.

One example of such a condition is guest execution in real-mode. A VMM could support guest
real-mode execution using at least two approaches:

® By using a fast instruction set emulator in the VMM.

® By using the similarity between real-mode and virtual-8086 mode to support real-mode
guest execution in a virtual-8086 container. The virtual-8086 container may be
implemented as a virtual-8086 container task within a monitor that emulates real-mode
guest state and instructions, or by running the guest VM as the virtual-8086 container (by
entering the guest with RFLAGS.VM~ set). Attempts by real-mode code to access

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most pro-
cessors that support VMX operation also support Intel EM64T. For processors that do not support Intel
EMG64T, this notation refers to the 32-bit forms of those registers (EAX, EIP, ESP, EFLAGS, etc.).

Vol. 3B 25-1

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

privileged state outside the virtual-8086 container would trap to the VMM and would also
need to be emulated.

Another example of such a condition is guest execution in protected mode with paging disabled.
A VMM could support such guest execution by using “identity” page tables to emulate unpaged
protected mode.

25.2.1 Emulating Guest Execution

In certain conditions, VMMs may resort to using a virtual-