intel.

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Volume 3B:
System Programming Guide, Part 2

NOTE: The Intef® 64 and IA-32 Architectures Software Developer’s Manual
consists of five volumes: Basic Architecture, Order Number 253665;
Instruction Set Reference A-M, Order Number 253666; Instruction Set
Reference N-Z, Order Number 253667; System Programming Guide,
Part 1, Order Number 253668; System Programming Guide, Part 2, Order
Number 253669. Refer to all five volumes when evaluating your design
needs.

Order Number: 253669-028US
September 2008

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED
FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Developers must not rely on the absence or characteristics of any features or instructions marked “reserved”
or “undefined.” Improper use of reserved or undefined features or instructions may cause unpredictable be-
havior or failure in developer's software code when running on an Intel processor. Intel reserves these fea-
tures or instructions for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from their unauthorized use.

The Intel® 64 architecture processors may contain design defects or errors known as errata. Current char-
acterized errata are available on request.

Hyper-Threading Technology requires a computer system with an Intel® processor supporting Hyper-
Threading Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will
vary depending on the specific hardware and software you use. For more information, see http://www.in-
tel.com/technology/hyperthread/index.ntm; including details on which processors support HT Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will_vary depending on hardware and software configurations. Intel® Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, oper-
ating system, device drivers and applications enabled for Intel® 64 architecture. Processors will not operate
(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary depend-
ing on your hardware and software configurations. Consult with your system vendor for more information.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability
and a supporting operating system. Check with your PC manufacturer on whether your system delivers Ex-
ecute Disable Bit functionality.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2
Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are trademarks or reg-
istered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

or call 1-800-548-4725
or visit Intel's website at http://www.intel.com

Copyright © 1997-2008 Intel Corporation

2 Vol.3B

CHAPTER 18
DEBUGGING AND PERFORMANCE MONITORING

Intel 64 and 1A-32 architectures provide debug facilities for use in debugging code

and monitoring performance. These facilities are valuable for debugging application

software, system software, and multitasking operating systems. Debug support is

accessed using debug registers (DBO through DB7) and model-specific registers

(MSRs):

® Debug registers hold the addresses of memory and 1/0 locations called break-
points. Breakpoints are user-selected locations in a program, a data-storage area
in memory, or specific 1/0 ports. They are set where a programmer or system
designer wishes to halt execution of a program and examine the state of the
processor by invoking debugger software. A debug exception (#DB) is generated
when a memory or 1/0 access is made to a breakpoint address.

® MSRs monitor branches, interrupts, and exceptions; they record addresses of the
last branch, interrupt or exception taken and the last branch taken before an
interrupt or exception.

18.1 OVERVIEW OF DEBUG SUPPORT FACILITIES

The following processor facilities support debugging and performance monitoring:

® Debug exception (#DB) — Transfers program control to a debug procedure or
task when a debug event occurs.

® Breakpoint exception (#BP) — See breakpoint instruction (INT 3) below.

® Breakpoint-address registers (DRO through DR3) — Specifies the
addresses of up to 4 breakpoints.

® Debug status register (DR6) — Reports the conditions that were in effect
when a debug or breakpoint exception was generated.

® Debug control register (DR7) — Specifies the forms of memory or 1/0 access
that cause breakpoints to be generated.

® T (trap) flag, TSS — Generates a debug exception (#DB) when an attempt is
made to switch to a task with the T flag set in its TSS.

® RF (resume) flag, EFLAGS register — Suppresses multiple exceptions to the
same instruction.

® TF (trap) flag, EFLAGS register — Generates a debug exception (#DB) after
every execution of an instruction.

® Breakpoint instruction (INT 3) — Generates a breakpoint exception (#BP)
that transfers program control to the debugger procedure or task. This
instruction is an alternative way to set code breakpoints. It is especially useful

Vol.3 18-1

DEBUGGING AND PERFORMANCE MONITORING

when more than four breakpoints are desired, or when breakpoints are being
placed in the source code.

® Last branch recording facilities — Store branch records in the last branch
record (LBR) stack MSRs for the most recent taken branches, interrupts, and/or
exceptions in MSRs. A branch record consist of a branch-from and a branch-to
instruction address. Send branch records out on the system bus as branch trace
messages (BTMs).

These facilities allow a debugger to be called as a separate task or as a procedure in
the context of the current program or task. The following conditions can be used to
invoke the debugger:

® Task switch to a specific task.

® Execution of the breakpoint instruction.

® Execution of any instruction.

® Execution of an instruction at a specified address.

® Read or write to a specified memory address/range.
® Write to a specified memory address/range.

® Input from a specified 1/0 address/range.

® Output to a specified 1/0 address/range.

¢ Attempt to change the contents of a debug register.

18.2 DEBUG REGISTERS

Eight debug registers (see Figure 18-1) control the debug operation of the processor.
These registers can be written to and read using the move to/from debug register
form of the MOV instruction. A debug register may be the source or destination
operand for one of these instructions.

Debug registers are privileged resources; a MOV instruction that accesses these
registers can only be executed in real-address mode, in SMM or in protected mode at
a CPL of 0. An attempt to read or write the debug registers from any other privilege
level generates a general-protection exception (#GP).

The primary function of the debug registers is to set up and monitor from 1 to 4
breakpoints, numbered 0 though 3. For each breakpoint, the following information
can be specified:

® The linear address where the breakpoint is to occur.
® The length of the breakpoint location (1, 2, or 4 bytes).

® The operation that must be performed at the address for a debug exception to be
generated.

® Whether the breakpoint is enabled.

18-2 Vol.3

DEBUGGING AND PERFORMANCE MONITORING

® Whether the breakpoint condition was present when the debug exception was
generated.

31302928 27262524 232221201918 1716151413 1211109 8 7 6 5 4 3 2 1 0
LEN|R/W|LEN |R/W|LEN|R/W|LEN|R/W[0 0|G|0 0 1|G|L|G|L|G|L|G|L|G|L DR7

3 3 2 2 1 1 0 0 D E|E|3|3]|2|2|1|1|0|0

31 161514131211109 8 7 6 5 4 3 2 1 0
Reserved (set to 1) B|IBjB|0111111111|BB|B|B|pRg

T|S|D 3|12(1(0

31 0
DR5

31 0
DR4

31 0
Breakpoint 3 Linear Address DR3

31 0
Breakpoint 2 Linear Address DR2

31 0
Breakpoint 1 Linear Address DR1

31 0
Breakpoint O Linear Address DRO

D Reserved

Figure 18-1. Debug Registers

The following paragraphs describe the functions of flags and fields in the debug
registers.

Vol.3 18-3

DEBUGGING AND PERFORMANCE MONITORING

18.2.1 Debug Address Registers (DRO-DR3)

Each of the debug-address registers (DRO through DR3) holds the 32-bit linear
address of a breakpoint (see Figure 18-1). Breakpoint comparisons are made before
physical address translation occurs. The contents of debug register DR7 further spec-
ifies breakpoint conditions.

18.2.2 Debug Registers DR4 and DR5

Debug registers DR4 and DR5 are reserved when debug extensions are enabled
(when the DE flag in control register CR4 is set) and attempts to reference the DR4
and DR5 registers cause invalid-opcode exceptions (#UD). When debug extensions
are not enabled (when the DE flag is clear), these registers are aliased to debug
registers DR6 and DR7.

18.2.3 Debug Status Register (DR6)

The debug status register (DR6) reports debug conditions that were sampled at the
time the last debug exception was generated (see Figure 18-1). Updates to this
register only occur when an exception is generated. The flags in this register show
the following information:

¢ BO through B3 (breakpoint condition detected) flags (bits O through 3)
— Indicates (when set) that its associated breakpoint condition was met when a
debug exception was generated. These flags are set if the condition described for
each breakpoint by the LENn, and R/Wn flags in debug control register DR7 is
true. They are set even if the breakpoint is not enabled by the Ln and Gn flags in
register DR7. Non-enabled breakpoints matched on a previous iteration of a REP
instruction may or may not be recorded in bits 0-3 on a debug exception caused
by a later iteration of the REP instruction.

¢ BD (debug register access detected) flag (bit 13) — Indicates that the next
instruction in the instruction stream accesses one of the debug registers (DRO
through DR7). This flag is enabled when the GD (general detect) flag in debug
control register DR7 is set. See Section 18.2.4, “Debug Control Register (DR7),”
for further explanation of the purpose of this flag.

® BS (single step) flag (bit 14) — Indicates (when set) that the debug exception
was triggered by the single-step execution mode (enabled with the TF flag in the
EFLAGS register). The single-step mode is the highest-priority debug exception.
When the BS flag is set, any of the other debug status bits also may be set.

® BT (task switch) flag (bit 15) — Indicates (when set) that the debug
exception resulted from a task switch where the T flag (debug trap flag) in the
TSS of the target task was set. See Section 6.2.1, “Task-State Segment (TSS),”
for the format of a TSS. There is no flag in debug control register DR7 to enable
or disable this exception; the T flag of the TSS is the only enabling flag.

18-4 Vol.3

DEBUGGING AND PERFORMANCE MONITORING

Certain debug exceptions may clear bits 0-3. The remaining contents of the DR6
register are never cleared by the processor. To avoid confusion in identifying debug
exceptions, debug handlers should clear the register before returning to the inter-
rupted task.

18.2.4 Debug Control Register (DR7)

The debug control register (DR7) enables or disables breakpoints and sets break-
point conditions (see Figure 18-1). The flags and fields in this register control the
following things:

® LO through L3 (local breakpoint enable) flags (bits O, 2, 4, and 6) —
Enables (when set) the breakpoint condition for the associated breakpoint for the
current task. When a breakpoint condition is detected and its associated Ln flag
is set, a debug exception is generated. The processor automatically clears these
flags on every task switch to avoid unwanted breakpoint conditions in the new
task.

® GO through G3 (global breakpoint enable) flags (bits 1, 3, 5, and 7) —
Enables (when set) the breakpoint condition for the associated breakpoint for all
tasks. When a breakpoint condition is detected and its associated Gn flag is set,
a debug exception is generated. The processor does not clear these flags on a
task switch, allowing a breakpoint to be enabled for all tasks.

® LE and GE (local and global exact breakpoint enable) flags (bits 8, 9) —
This feature is not supported in the P6 family processors, later 1A-32 processors,
and Intel 64 processors. When set, these flags cause the processor to detect the
exact instruction that caused a data breakpoint condition. For backward and
forward compatibility with other Intel processors, we recommend that the LE and
GE flags be set to 1 if exact breakpoints are required.

® GD (general detect enable) flag (bit 13) — Enables (when set) debug-
register protection, which causes a debug exception to be generated prior to any
MOV instruction that accesses a debug register. When such a condition is
detected, the BD flag in debug status register DR6 is set prior to generating the
exception. This condition is provided to support in-circuit emulators.

When the emulator needs to access the debug registers, emulator software can
set the GD flag to prevent interference from the program currently executing on
the processor.

The processor clears the GD flag upon entering to the debug exception handler,
to allow the handler access to the debug registers.

®* R/WO through R/W3 (read/write) fields (bits 16, 17, 20, 21, 24, 25, 28,
and 29) — Specifies the breakpoint condition for the corresponding breakpoint.
The DE (debug extensions) flag in control register CR4 determines how the bits in
the R/Wn fields are interpreted. When the DE flag is set, the processor interprets
bits as follows:

Vol.3 18-5

DEBUGGING AND PERFORMANCE MONITORING

00 — Break on instruction execution only.

01 — Break on data writes only.

10 — Break on 1/0 reads or writes.

11 — Break on data reads or writes but not instruction fetches.

When the DE flag is clear, the processor interprets the R/Wn bits the same as for
the Intel386™ and Intel486™ processors, which is as follows:

00 — Break on instruction execution only.

01 — Break on data writes only.

10 — Undefined.

11 — Break on data reads or writes but not instruction fetches.

® LENO through LEN3 (Length) fields (bits 18, 19, 22, 23, 26, 27, 30, and
31) — Specify the size of the memory location at the address specified in the
corresponding breakpoint address register (DRO through DR3). These fields are
interpreted as follows:

00 — 1-byte length.
01 — 2-byte length.
10 — Undefined (or 8 byte length, see note below).
11 — 4-byte length.

If the corresponding RWn field in register DR7 is 00 (instruction execution), then the
LENN field should also be 00. The effect of using other lengths is undefined. See
Section 18.2.5, “Breakpoint Field Recognition,” below.

NOTES

For Pentium® 4 and Intel® Xeon® processors with a CPUID signature
corresponding to family 15 (model 3, 4, and 6), break point
conditions permit specifying 8-byte length on data read/write with an
of encoding 10B in the LENX field.

Encoding 10B is also supported in processors based on Intel Core
microarchitecture or enhanced Intel Core microarchitecture, the
respective CPUID signatures corresponding to family 6, model 15,
and family 6, display_model value 23. The Encoding 10B is supported
in processors based on Intel Atom microarchitecture, with CPUID
signature of family 6, display_model value 28. The encoding 10B is
undefined for other processors.

18.2.5 Breakpoint Field Recognition

Breakpoint address registers (debug registers DRO through DR3) and the LENnN fields
for each breakpoint define a range of sequential byte addresses for a data or 1/0
breakpoint. The LENn fields permit specification of a 1-, 2-, 4-, or 8-byte range,
beginning at the linear address specified in the corresponding debug register (DRn).
Two-byte ranges must be aligned on word boundaries; 4-byte ranges must be
aligned on doubleword boundaries. 1/0 addresses are zero-extended (from 16 to 32

18-6 Vol.3

DEBUGGING AND PERFORMANCE MONITORING

bits, for comparison with the breakpoint address in the selected debug register).
These requirements are enforced by the processor; it uses LENN field bits to mask
the lower address bits in the debug registers. Unaligned data or 1/0 breakpoint
addresses do not yield valid results.

A data breakpoint for reading or writing data is triggered if any of the bytes partici-
pating in an access is within the range defined by a breakpoint address register and
its LENN field. Table 18-1 provides an example setup of debug registers and data
accesses that would subsequently trap or not trap on the breakpoints.

A data breakpoint for an unaligned operand can be constructed using two break-
points, where each breakpoint is byte-aligned and the two breakpoints together
cover the operand. The breakpoints generate exceptions only for the operand, not for
neighboring bytes.

Instruction breakpoint addresses must have a length specification of 1 byte (the
LENN field is set to 00). Code breakpoints for other operand sizes are undefined. The
processor recognizes an instruction breakpoint address only when it points to the
first byte of an instruction. If the instruction has prefixes, the breakpoint address
must point to the first prefix.

Table 18-1. Breakpoint Examples

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENNn
DRO R/WO = 11 (Read/Write) | AOOOTH LENO =00 (1 byte)
DR1 R/W1 =01 (Write) AOOO2H LEN1T =00 (1 byte)
DR2 R/W2 = 11 (Read/Write) | BOOO2H LENZ2 = 01) (2 bytes)
DR3 R/W3 =01 (Write) COOO00OH LEN3 =11 (4 bytes)
Data Accesses
Operation Address Access Length
(In Bytes)
Data operations that trap
- Read or write AOOOTH 1
- Read or write AOOOTH 2
- Write AOOO02H 1
- Write AOOO2H 2
- Read or write BOOO1TH 4
- Read or write BOOO2H 1
- Read or write BOOOZ2H 2
- Write COO00H 4
- Write CO001TH 2
- Write COO03H 1

Vol.3 18-7

DEBUGGING AND PERFORMANCE MONITORING

Table 18-1. Breakpoint Examples (Contd.)

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENN
Data operations that do not trap

- Read or write AOOOOH 1

- Read AO0002H 1

- Read or write AOOO3H 4

- Read or write BOOOOH 2

- Read COOO0CH 2

- Read or write CO004H 4

18.2.6 Debug Registers and Intel® 64 Processors

For Intel 64 architecture processors, debug registers DRO—DR7 are 64 bits. In 16-bit
or 32-bit modes (protected mode and compatibility mode), writes to a debug register
fill the upper 32 bits with zeros. Reads from a debug register return the lower 32 bits.
In 64-bit mode, MOV DRn instructions read or write all 64 bits. Operand-size prefixes
are ignored.

In 64-bit mode, the upper 32 bits of DR6 and DR7 are reserved and must be written
with zeros. Writing 1 to any of the upper 32 bits results in a #GP(0) exception (see
Figure 18-2). All 64 bits of DRO—DR3 are writable by software. However, MOV DRn
instructions do not check that addresses written to DRO—DR3 are in the linear-
address limits of the processor implementation (address matching is supported only
on valid addresses generated by the processor implementation). Break point condi-
tions for 8-byte memory read/writes are supported in all modes.

18-8 Vol.3

DEBUGGING AND PERFORMANCE MONITORING

63 32

DR7

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

LEN|R/W|LEN|R/W|LEN|R/W|LEN|R/W|0 0|G|0 0 1|G|L|G|L|G|L|G|L|G|L DR7
3|13(2|2|1|1]|0]0O0 D E|E[3|3|2|2|1|1|0|0
63 32
DR6
31 161514131211109 8 7 6 54 3 2 1 0
Reserved (set to 1) BBBOlllllllllBBBBDR6
T|S|D 3(2(1|0

I:I Reserved

Figure 18-2. DR6/DR7 Layout on Processors Supporting Intel 64 Technology

18.3 DEBUG EXCEPTIONS

The Intel 64 and 1A-32 architectures dedicate two interrupt vectors to handling
debug exceptions: vector 1 (debug exception, #DB) and vector 3 (breakpoint excep-
tion, #BP). The following sections describe how these exceptions are generated and
typical exception handler operations.

18.3.1 Debug Exception (#DB)—Interrupt Vector 1

The debug-exception handler is usually a debugger program or part of a larger soft-
ware system. The processor generates a debug exception for any of several condi-
tions. The debugger checks flags in the DR6 and DR7 registers to determine which
condition caused the exception and which other conditions might apply. Table 18-2
shows the states of these flags following the generation of each kind of breakpoint
condition.

Instruction-breakpoint and general-detect condition (see Section 18.3.1.3, “General-
Detect Exception Condition”) result in faults; other debug-exception conditions result
in traps. The debug exception may report one or both at one time. The following
sections describe each class of debug exception.

Vol.3 18-9

DEBUGGING AND PERFORMANCE MONITORING

See also: Chapter 5, “Interrupt 1—Debug Exception (#DB),” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Table 18-2. Debug Exception Conditions

Debug or Breakpoint Condition DR6 Flags DR7 Flags Exception Class
Tested Tested

Single-step trap BS=1 Trap

Instruction breakpoint, at addresses Bn=1and R/Wn=0 Fault

defined by DRnand LENn (Gnorln=1)

Data write breakpoint, at addresses Bn=1and R/Wn =1 Trap

defined by DRnand LENn (GnorLn=1)

1/0 read or write breakpoint, at Bn=1and R/Wn =2 Trap

addresses defined by DRn and LENn (GnorLn=1)

Data read or write (but not instruction | Bn=1 and R/wWn =3 Trap

fetches), at addresses defined by DRn | (Gnor Ln=1)

and LENn

General detect fault, resulting froman |BD =1 Fault

attempt to modify debug registers

(usually in conjunction with in-circuit

emulation)

Task switch BT =1 Trap

18.3.1.1 Instruction-Breakpoint Exception Condition

The processor reports an instruction breakpoint when it attempts to execute an
instruction at an address specified in a breakpoint-address register (DBO through
DR3) that has been set up to detect instruction execution (R/W flag is set to 0). Upon
reporting the instruction breakpoint, the processor generates a fault-class, debug
exception (#DB) before it executes the target instruction for the breakpoint.

Instruction breakpoints are the highest priority debug exceptions. They are serviced
before any other exceptions detected during the decoding or execution of an instruc-
tion. However, if a code instruction breakpoint is placed on an instruction located
immediately after a POP SS/MOV SS instruction, the breakpoint may not be trig-
gered. In most situations, POP SS/MOV SS will inhibit such interrupts (see
“MOV—Move” and “POP—Pop a Value from the Stack” in Chapters 3 and 4 of the
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volumes

2A & 2B).

Because the debug exception for an instruction breakpoint is generated before the
instruction is executed, if the instruction breakpoint is not removed by the exception
handler; the processor will detect the instruction breakpoint again when the instruc-
tion is restarted and generate another debug exception. To prevent looping on an
instruction breakpoint, the Intel 64 and 1A-32 architectures provide the RF flag

18-10 Vol.3

DEBUGGING AND PERFORMANCE MONITORING

(resume flag) in the EFLAGS register (see Section 2.3, “System Flags and Fields in
the EFLAGS Register,” in the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 3A). When the RF flag is set, the processor ignores instruction
breakpoints.

All Intel 64 and 1A-32 processors manage the RF flag as follows. The RF Flag is
cleared at the start of the instruction after the check for code breakpoint, CS limit
violation and FP exceptions. Task Switches and IRETD/IRETQ instructions transfer
the RF image from the TSS/stack to the EFLAGS register.

When calling an event handler, Intel 64 and 1A-32 processors establish the value of
the RF flag in the EFLAGS image pushed on the stack:

® For any fault-class exception except a debug exception generated in response to
an instruction breakpoint, the value pushed for RF is 1.

® For any interrupt arriving after any iteration of a repeated string instruction but
the last iteration, the value pushed for RF is 1.

® For any trap-class exception generated by any iteration of a repeated string
instruction but the last iteration, the value pushed for RF is 1.

® For other cases, the value pushed for RF is the value that was in EFLAG.RF at the
time the event handler was called. This includes:

— Debug exceptions generated in response to instruction breakpoints

— Hardware-generated interrupts arriving between instructions (including
those arriving after the last iteration of a repeated string instruction)

— Trap-class exceptions generated after an instruction completes (including
those generated after the last iteration of a repeated string instruction)

— Software-generated interrupts (RF is pushed as 0, since it was cleared at the
start of the software interrupt)

As noted above, the processor does not set the RF flag prior to calling the debug
exception handler for debug exceptions resulting from instruction breakpoints. The
debug exception handler can prevent recurrence of the instruction breakpoint by
setting the RF flag in the EFLAGS image on the stack. If the RF flag in the EFLAGS
image is set when the processor returns from the exception handler, it is copied into
the RF flag in the EFLAGS register by IRETD/IRETQ or a task switch that causes the
return. The processor then ignores instruction breakpoints for the duration of the
next instruction. (Note that the POPF, POPFD, and IRET instructions do not transfer
the RF image into the EFLAGS register.) Setting the RF flag does not prevent other
types of debug-exception conditions (such as, 1/0 or data breakpoints) from being
detected, nor does it prevent non-debug exceptions from being generated.

For the Pentium processor, when an instruction breakpoint coincides with another
fault-type exception (such as a page fault), the processor may generate one spurious
debug exception after the second exception has been handled, even though the
debug exception handler set the RF flag in the EFLAGS image. To prevent a spurious
exception with Pentium processors, all fault-class exception handlers should set the
RF flag in the EFLAGS image.

Vol.3 18-11

DEBUGGING AND PERFORMANCE MONITORING

18.3.1.2 Data Memory and I/0 Breakpoint Exception Conditions

Data memory and 1/0 breakpoints are reported when the processor attempts to
access a memory or 1/0 address specified in a breakpoint-address register (DBO
through DR3) that has been set up to detect data or 1/0 accesses (R/W flag is set to
1, 2, or 3). The processor generates the exception after it executes the instruction
that made the access, so these breakpoint condition causes a trap-class exception to
be generated.

Because data breakpoints are traps, the original data is overwritten before the trap
exception is generated. If a debugger needs to save the contents of a write break-
point location, it should save the original contents before setting the breakpoint. The
handler can report the saved value after the breakpoint is triggered. The address in
the debug registers can be used to locate the new value stored by the instruction that
triggered the breakpoint.

Intel486 and later processors ignore the GE and LE flags in DR7. In Intel386 proces-
sors, exact data breakpoint matching does not occur unless it is enabled by setting
the LE and/or the GE flags.

P6 family processors are unable to report data breakpoints exactly for the REP MOVS
and REP STOS instructions until the completion of the iteration after the iteration in
which the breakpoint occurred.

For repeated INS and OUTS instructions that generate an 1/0-breakpoint debug
exception, the processor generates the exception after the completion of the first
iteration. Repeated INS and OUTS instructions generate a memory-breakpoint debug
exception after the iteration in which the memory address breakpoint location is
accessed.

18.3.1.3 General-Detect Exception Condition

When the GD flag in DR7 is set, the general-detect debug exception occurs when a
program attempts to access any of the debug registers (DRO through DR7) at the
same time they are being used by another application, such as an emulator or
debugger. This protection feature guarantees full control over the debug registers
when required. The debug exception handler can detect this condition by checking
the state of the BD flag in the DR6 register. The processor generates the exception
before it executes the MOV instruction that accesses a debug register, which causes
a fault-class exception to be generated.

18.3.1.4 Single-Step Exception Condition

The processor generates a single-step debug exception if (while an instruction is
being executed) it detects that the TF flag in the EFLAGS register is set. The excep-
tion is a trap-class exception, because the exception is generated after the instruc-
tion is executed. The processor will not generate this exception after the instruction
that sets the TF flag. For example, if the POPF instruction is used to set the TF flag, a

18-12 Vol.3

DEBUGGING AND PERFORMANCE MONITORING

single-step trap does not occur until after the instruction that follows the POPF
instruction.

The processor clears the TF flag before calling the exception handler. If the TF flag
was set in a TSS at the time of a task switch, the exception occurs after the first
instruction is executed in the new task.

The TF flag normally is not cleared by privilege changes inside a task. The INT n and
INTO instructions, however, do clear this flag. Therefore, software debuggers that
single-step code must recognize and emulate INT n or INTO instructions rather than
executing them directly. To maintain protection, the operating system should check
the CPL after any single-step trap to see if single stepping should continue at the
current privilege level.

The interrupt priorities guarantee that, if an external interrupt occurs, single step-
ping stops. When both an external interrupt and a single-step interrupt occur
together, the single-step interrupt is processed first. This operation clears the TF flag.
After saving the return address or switching tasks, the external interrupt input is
examined before the first instruction of the single-step handler executes. If the
external interrupt is still pending, then it is serviced. The external interrupt handler
does not run in single-step mode. To single step an interrupt handler, single step an
INT n instruction that calls the interrupt handler.

18.3.1.5 Task-Switch Exception Condition

The processor generates a debug exception after a task switch if the T flag of the new
task's TSS is set. This exception is generated after program control has passed to the
new task, and prior to the execution of the first instruction of that task. The exception
handler can detect this condition by examining the BT flag of the DR6 register.

If the debug exception handler is a task, the T bit of its TSS should not be set. Failure
to observe this rule will put the processor in a loop.

18.3.2 Breakpoint Exception (#BP)—Interrupt Vector 3

The breakpoint exception (interrupt 3) is caused by execution of an INT 3 instruction.
See Chapter 5, “Interrupt 3—Breakpoint Exception (#BP).” Debuggers use break
exceptions in the same way that they use the breakpoint registers; that is, as a
mechanism for suspending program execution to examine registers and memory
locations. With earlier 1A-32 processors, breakpoint exceptions are used extensively
for setting instruction breakpoints.

With the Intel386 and later 1A-32 processors, it is more convenient to set break-
points with the breakpoint-address registers (DRO through DR3). However, the
breakpoint exception still is useful for breakpointing debuggers, because a break-
point exception can call a separate exception handler. The breakpoint exception is
also useful when it is necessary to set more breakpoints than there are debug regis-
ters or when breakpoints are being placed in the source code of a program under
development.

Vol.3 18-13

DEBUGGING AND PERFORMANCE MONITORING

18.4 LAST BRANCH RECORDING OVERVIEW

P6 family processors introduced the ability to set breakpoints on taken branches,
interrupts, and exceptions, and to single-step from one branch to the next. This
capability has been modified and extended in the Pentium 4, Intel Xeon, Pentium M,
Intel® Core™ Solo, Intel® Core™ Duo, Intel® Core™2 Duo and Intel® Atom™
processors to allow logging of branch trace messages in a branch trace store (BTS)
buffer in memory.

See the following sections:

— Section 18.5, “Last Branch, Interrupt, and Exception Recording (Intel®
Core™2 Duo and Intel® Atom™ Processor Family)”

— Section 18.6, “Last Branch, Interrupt, and Exception Recording (Processors
based on Intel NetBurst® Microarchitecture)”

— Section 18.7, “Last Branch, Interrupt, and Exception Recording (Intel® Core™
Solo and Intel® Core™ Duo Processors)”

— Section 18.8, “Last Branch, Interrupt, and Exception Recording (Pentium M
Processors)”

— Section 18.9, “Last Branch, Interrupt, and Exception Recording (P6 Family
Processors)”

The last branch recording mechanism tracks not only branch instructions (like JMP,
Jcc, LOOP and CALL instructions), but also other operations that cause a change in
the instruction pointer (like external interrupts, traps and faults).

18.5 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (INTEL® CORE™2 DUO AND INTEL®
ATOM™ PROCESSOR FAMILY)

The Intel Core 2 Duo processor family and Intel Xeon processors based on Intel Core
microarchitecture or enhanced Intel Core microarchitecture provide last branch
interrupt and exception recording. The facilities described in this section also apply to
Intel Atom processor family. These capabilities are similar to those found in Pentium
4 processors, including support for the following facilities:

¢ Debug Trace and Branch Recording Control — The 1A32_DEBUGCTL MSR
provide bit fields for software to configure mechanisms related to debug trace,
branch recording, branch trace store, and performance counter operations. See
Section 18.5.1.

® Last branch record (LBR) stack — There are a collection of MSR pairs that
store the source and destination addresses related to recently executed
branches. See Section 18.5.2.

18-14 Vol.3

DEBUGGING AND PERFORMANCE MONITORING

® Monitoring and single-stepping of branches, exceptions, and interrupts
— See Section 18.6.4 and Section 18.6.5. In addition, the ability to freeze the
LBR stack on a PMI request is available.

® Branch trace messages and last exception records — See Section 18.6.6
and Section 18.6.7.

® Branch trace store and CPL-qualified BTS — See Section 18.6.8.

18.5.1 IA32_DEBUGCTL MSR

The 1A32_DEBUGCTL MSR provides bit field controls to enable debug trace inter-
rupts, debug trace stores, trace messages enable, single stepping on branches, last
branch record recording, and to control freezing of LBR stack or performance
counters on a PMI request. 1A32_DEBUGCTL MSR is located at register address
O1D9H.

See Figure 18-3 for the MSR layout and the bullets below for a description of the
flags:

® LBR (last branch/interrupt/exception) flag (bit 0) — When set, the
processor records a running trace of the most recent branches, interrupts, and/or
exceptions taken by the processor (prior to a debug exception being generated)
in the last branch record (LBR) stack. For more information, see the Section
18.5.2, “LBR Stack”.

® BTF (single-step on branches) flag (bit 1) — When set, the processor treats
the TF flag in the EFLAGS register as a “single-step on branches” flag rather than
a “single-step on instructions” flag. This mechanism allows single-stepping the
processor on taken branches, interrupts, and exceptions. See Section 18.6.5,
“Single-Stepping on Branches, Exceptions, and Interrupts,” for more information
about the BTF flag.

® TR (trace message enable) flag (bit 6) — When set, branch trace messages
are enabled. When the processor detects a taken branch, interrupt, or exception;
it sends the branch record out on the system bus as a branch trace message
(BTM). See Section 18.6.6, “Branch Trace Messages,” for more information about
the TR flag.

¢ BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS

facilities to log BTMs to a memory-resident BTS buffer that is part of the DS save
area. See Section 18.16.5, “DS Save Area.”

¢ BTINT (branch trace interrupt) flag (bit 8) — When set, the BTS facilities
generate an interrupt when the BTS buffer is full. When clear, BTMs are logged to
the BTS buffer in a circular fashion. See Section 18.6.8, “Branch Trace Store (BTS),”
for a description of this mechanism.

Vol.3 18-15

DEBUGGING AND PERFORMANCE MONITORING

31 14 12111098 76543210

Reserved

FREEZE_WHILE_SMM_EN g LJ

FREEZE_PERFMON_ON_PMI
FREEZE_LBRS_ON_PMI
BTS_OFF_USR — BTS off in user code
BTS_OFF_OS — BTS off in OS
BTINT — Branch trace interrupt
BTS — Branch trace store
TR — Trace messages enable
Reserved
BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Figure 18-3. IA32_DEBUGCTL MSR for Processors based
on Intel Core microarchitecture

® BTS_OFF_OS (branch trace off in privileged code) flag (bit 9) — When set,
BTS or BTM is skipped if CPL is 0. See Section 18.6.1.

® BTS_OFF_USR (branch trace off in user code) flag (bit 10) — When set,
BTS or BTM is skipped if CPL is greater than 0. See Section 18.6.1.

® FREEZE_LBRS_ON_PMI flag (bit 11) — When set, the LBR stack is frozen on a
hardware PMI request (e.g. when a counter overflows and is configured to trigger
PMI).

® FREEZE_PERFMON_ON_PMI flag (bit 12) — When set, a PMI request clears
each of the “ENABLE” field of MSR_PERF_GLOBAL_CTRL MSR (see Figure 18-21) to
disable all the counters.

® FREEZE_WHILE_SMM_EN (bit 14) — If this bit is set, upon the delivery of an
SMI, the processor will clear all the enable bits of IA32_PERF_GLOBAL_CTRL,
save a copy of the content of IA32_DEBUGCTL and disable LBR, BTF, TR, and BTS
fields of 1A32_DEBUGCTL before transferring control to the SMI handler. Subse-
quently, the enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved
copy of 1A32_DEBUGCTL prior to SMI delivery will be restored, after the SMI
handler issues RSM to complete its service. Note that system software must
check IA32_DEBUGCTL. to determine if the processor supports the
FREEZE_WHILE_SMM_EN control bit. FREEZE_WHILE_SMM_EN is supported if
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See
Section 18.19 for details of detecting the presence of IA32_PERF_CAPABILITIES
MSR.

18-16 Vol.3

DEBUGGING AND PERFORMANCE MONITORING

18.5.2 LBR Stack

The last branch record stack and top-of-stack (TOS) pointer MSRs are supported
across Intel Core 2, Intel Xeon and Intel Atom processor families. However, the
number of MSRs in the LBR stack and the valid range of TOS pointer value can vary
between different processor families. Table 18-3 lists the LBR stack size and TOS
pointer range for several processor families according to the CPUID signatures of
DisplayFamily/DisplayModel encoding (see CPUID instruction in Chapter 3 of Intel®
64 and 1A-32 Architectures Software Developer’s Manual, Volume 2A).

Table 18-3. LBR Stack Size and TOS Pointer Range

DisplayFamily_DisplayModel | Size of LBR Stack Range of TOS Pointer
06_17H 4 Oto3
06_0FH 4 Oto3
06_1CH 8 Oto7

® Last Branch Record (LBR) Stack — The LBR consists of N pairs of MSRs (N is
listed in the LBR stack size column of Table 18-3) that store source and
destination address of recent branches (see Figure 18-4):

— MSR_LASTBRANCH_0O_FROM_IP (address 40H) through
MSR_LASTBRANCH_(N-1)_FROM_IP (address 40H + N-1) stores source
addresses

— MSR_LASTBRANCH_O_TO_IP (address 60H) through MSR_LASTBRANCH_ (N-
1) To_IP (address 60H + N-1) stores destination addresses.

MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_(N-1)_FROM_IP
63 0

Source Address

MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_(N-1)_TO_IP
63 0

Destination Address

Figure 18-4. 64-bit Address Layout of LBR MSR

Vol.3 18-17

DEBUGGING AND PERFORMANCE MONITORING

Software should query an architectural MSR 1A32_PERF_CAPABILITIES[5:0]
about the format of the address that is stored in the LBR stack. Three formats are
defined by following encoding:

— 000000B (32-bit record format) — Stores 32-bit offset in current CS of
respective source/destination,

— 000001B (64-bit LIP record format) — Stores 64-bit linear address of
respective source/destination,

— 000010B (64-bit EIP record format) — Stores 64-bit offset (effective
address) of respective source/destination.

Processor’s support for the architectural MSR I1A32_PERF_CAPABILITIES is
provided by CPUID.01H:ECX[PERF_CAPAB_MSR] (bit 15).

® Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant M
bits of the TOS Pointer MSR (MSR_LASTBRANCH_TOS, address 1C9H) contains
an M-bit pointer to the MSR in the LBR stack that contains the most recent
branch, interrupt, or exception recorded. The valid range of the M-bit POS pointer
is given in Table 18-3.

For compatibility, the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) dupli-
cate functions of the LastExceptionTolP and LastExceptionFromIP MSRs found in P6
family processors.

18.5.3 BTS and Related Facilities

The Debug store (DS) feature flag (bit 21), returned by CPUID.1:EDX[21] Indicates
that the processor provides the debug store (DS) mechanism. This mechanism
allows BTMs to be stored in a memory-resident BTS buffer. See Section 18.6.8,
“Branch Trace Store (BTS).” Precise event-based sampling (PEBS) also uses the DS
save area provided by debug store mechanism.

18.5.3.1 Freezing LBR and Performance Counters on PMI

Many issues may generate a performance monitoring interrupt (PMI); a PMI service
handler will need to determine cause to handle the situation. Two capabilities that
allow a PMI service routine to improve branch tracing and performance monitoring
are:

® Freezing LBRs on PMI — The processor freezes LBRs on a PMI request by
clearing the LBR bit (bit 0) in IA32_DEBUGCTL. Software must then re-enable
IA32_DEBUGCTL.[0] to continue monitoring branches. When using this feature,
software should be careful about writes to 1A32_DEBUGCTL to avoid re-enabling
LBRs by accident if they were just disabled.

® Freezing PMCs on PMI — The processor freezes the performance counters on a
PMI request by clearing the MSR_PERF_GLOBAL_CTRL MSR (see Figure 18-21).
The PMCs affected include both general-purpose counters and fixed-function
counters (see Section 18.14.1, “Fixed-function Performance Counters”).

18-18 Vol.3

DEBUGGING AND PERFORMANCE MONITORING

Software must re-enable counts by writing 1s to the corresponding enable bits in
MSR_PERF_GLOBAL_CTRL before leaving a PMI service routine to continue
counter operation.

Freezing LBRs and PMCs on PMIs occur when:

® A performance counter had an overflow and was programmed to signal a PMI in
case of an overflow.

— For the general-purpose counters; this is done by setting bit 20 of the
IA32_PERFEVTSELX register.

— For the fixed-function counters; this is done by setting the 3rd bit in the
corresponding 4-bit control field of the MSR_PERF_FIXED_CTR_CTRL register
(see Figure 18-20) or 1A32_FIXED_CTR_CTRL MSR (see Figure 18-13).

® The PEBS buffer is almost full and reaches the interrupt threshold.
® The BTS buffer is almost full and reaches the interrupt threshold.

18.5.3.2 Debug Store (DS) Mechanism

The debug store mechanism provides the DS save area for software to collect branch
records or precise-event-based-sampling (PEBS) records. Fields in the buffer
management area of a DS save area are described in Section 18.16.5.

The format of a branch trace record and a PEBS record are the same as the 64-bit
record formats shown in Figures 18-31 and Figures 18-32, with the exception that
the branch predicted bit is not supported by Intel Core microarchitecture. The 64-bit
record formats for BTS and PEBS apply to DS save area for all operating modes.

The procedures used to program IA32_DEBUG_CTRL MSR to set up a BTS buffer or a
CPL-qualified BTS are described in Section 18.6.8.3 and Section 18.6.8.4.

Required elements for writing a DS interrupt service routine are largely the same as
those described in Section 18.6.8.5. However, instead of re-enabling counting using
CCCRs like on processors based on Intel NetBurst® microarchitecture, a DS interrupt
service routine on processors based on Intel Core or Intel Atom microarchitecture
should:

® Re-enable the enable bits in MSR_PERF_GLOBAL_CTRL MSR if it is servicing an
overflow PMI due to PEBS.

® Clear overflow indications by writing to MSR_PERF_GLOBAL_OVF_CTRL when a
counting configuration is changed. This includes bit 62 (ClrOvfBuffer) and the
overflow indication of counters used in either PEBS or general-purpose counting
(specifically: bits O or 1; see Figures 18-23).

Vol.3 18-19

DEBUGGING AND PERFORMANCE MONITORING

18.6 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (PROCESSORS BASED ON INTEL
NETBURST® MICROARCHITECTURE)

Pentium 4 and Intel Xeon processors based on Intel NetBurst microarchitecture
provide the following methods for recording taken branches, interrupts and excep-
tions:

® Store branch records in the last branch record (LBR) stack MSRs for the most
recent taken branches, interrupts, and/or exceptions in MSRs. A branch record
consist of a branch-from and a branch-to instruction address.

® Send the branch records out on the system bus as branch trace messages
(BTMs).

® Log BTMs in a memory-resident branch trace store (BTS) buffer.

To support these functions, the processor provides the following MSRs and related
facilities:

¢ MSR_DEBUGCTLA MSR — Enables last branch, interrupt, and exception
recording; single-stepping on taken branches; branch trace messages (BTMs);
and branch trace store (BTS). This register is named DebugCtIMSR in the P6
family processors.

® Debug store (DS) feature flag (CPUID.1:EDX.DS[bit 21]) — Indicates that
the processor provides the debug store (DS) mechanism, which allows BTMs to
be stored in a memory-resident BTS buffer.

® CPL-qualified debug store (DS) feature flag (CPUID.1:ECX.DS-CPL[bit
41) — Indicates that the processor provides a CPL-qualified debug store (DS)
mechanism, which allows software to selectively skip sending and storing BTMs,
according to specified current privilege level settings, into a memory-resident
BTS buffer.

¢ 1A32_MISC_ENABLE MSR — Indicates that the processor provides the BTS
facilities.

® Last branch record (LBR) stack — The LBR stack is a circular stack that
consists of four MSRs (MSR_LASTBRANCH_O through MSR_LASTBRANCH__3) for
the Pentium 4 and Intel Xeon processor family [CPUID family OFH, models OH-
02H]. The LBR stack consists of 16 MSR pairs (MSR_LASTBRANCH_O_FROM_LIP
through MSR_LASTBRANCH_15_FROM_LIP and MSR_LASTBRANCH_O_TO_LIP
through MSR_LASTBRANCH_15_TO_LIP) for the Pentium 4 and Intel Xeon
processor family [CPUID family OFH, model O3H].

® Last branch record top-of-stack (TOS) pointer — The TOS Pointer MSR
contains a 2-bit pointer (0-3) to the MSR in the LBR stack that contains the most
recent branch, interrupt, or exception recorded for the Pentium 4 and Intel Xeon
processor family [CPUID family OFH, models OH-02H]. This pointer becomes a
4-bit pointer (0-15) for the Pentium 4 and Intel Xeon processor family [CPUID
family OFH, model O3H]. See also: Table 18-4, Figure 18-5, and Section 18.6.3,
“LBR Stack for Processors Based on Intel NetBurst Microarchitecture.”

18-20 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING

® Last exception record — See Section 18.6.7, “Last Exception Records.”

18.6.1 CPL-Qualified Branch Trace Mechanism

CPL-qualified branch trace mechanism is available to a subset of Intel 64 and 1A-32
processors that support the branch trace storing mechanism. The processor supports
the CPL-qualified branch trace mechanism if CPUID.01H:ECX[bit 4] = 1.

The CPL-qualified branch trace mechanism is described in Section 18.6.8.4. System
software can selectively specify CPL qualification to not send/store Branch Trace
Messages associated with a specified privilege level. Two bit fields, BTS_OFF_USR
and BTS_OFF_OS, are provided in the debug control register to specify the CPL of
BTMs that will not be logged in the BTS buffer or sent on the bus.

Table 18-4. LBR MSR Stack Structure for the Pentium® 4 and
the Intel® Xeon® Processor Family

LBR MSRs for Family OFH, Models OH-02H;
MSRs at locations 1DBH-1DEH.

Decimal Value of TOS Pointer in
MSR_LASTBRANCH_TOS (bits 0-1)

MSR_LASTBRANCH_O
MSR_LASTBRANCH_1
MSR_LASTBRANCH_2
MSR_LASTBRANCH_3

0
1
2
3

LBR MSRs for Family OFH, Models; MSRs at
locations 680H-68FH.

Decimal Value of TOS Pointer in
MSR_LASTBRANCH_TOS (bits 0-3

MSR_LASTBRANCH_O_FROM_LIP
MSR_LASTBRANCH_1_FROM_LIP
MSR_LASTBRANCH_2_FROM_LIP
MSR_LASTBRANCH_3_FROM_LIP
MSR_LASTBRANCH_4_FROM_LIP
MSR_LASTBRANCH_5_FROM_LIP
MSR_LASTBRANCH_6_FROM_LIP
MSR_LASTBRANCH_7_FROM_LIP
MSR_LASTBRANCH_8_FROM_LIP
MSR_LASTBRANCH_9_FROM_LIP
MSR_LASTBRANCH_10_FROM_LIP
MSR_LASTBRANCH_11_FROM_LIP
MSR_LASTBRANCH_12_FROM_LIP
MSR_LASTBRANCH_13_FROM_LIP
MSR_LASTBRANCH_14_FROM_LIP
MSR_LASTBRANCH_15_FROM_LIP

O NO UV b~ WN = O

JHE G (U (U I (i S U0)
u b W NN = O

Vol.3 18-21

DEBUGGING AND PERFORMANCE MONITORING

Table 18-4. LBR MSR Stack Structure for the Pentium® 4 and
the Intel® Xeon® Processor Family (Contd.)

LBR MSRs for Family OFH, Models; MSRs at | Decimal Value of TOS Pointer in
locations 680H-68FH. MSR_LASTBRANCH_TOS (bits 0-3)
LBR MSRs for Family OFH, Model 03H; MSRs
at locations 6COH-6CFH.
MSR_LASTBRANCH_0_TO_LIP 0
MSR_LASTBRANCH_1_TO_LIP 1
MSR_LASTBRANCH_2_TO_LIP 2
MSR_LASTBRANCH_3_TO_LIP 3
MSR_LASTBRANCH_4_TO_LIP 4
MSR_LASTBRANCH_5_TO_LIP 5
MSR_LASTBRANCH_6_TO_LIP 6
MSR_LASTBRANCH_7_TO_LIP 7
MSR_LASTBRANCH_8_TO_LIP 8
MSR_LASTBRANCH_9_TO_LIP 9
MSR_LASTBRANCH_10_TO_LIP 10
MSR_LASTBRANCH_11_TO_LIP 11
MSR_LASTBRANCH_12_TO_LIP 12
MSR_LASTBRANCH_13_TO_LIP 13
MSR_LASTBRANCH_14_TO_LIP 14
MSR_LASTBRANCH_15_TO_LIP 15
NOTE

The initial implementation of BTS_OFF_USR and BTS_OFF_OS in
MSR_DEBUGCTLA is shown in Figure 18-5. The BTS_OFF_USR and
BTS_OFF_OS fields may be implemented on other model-specific
debug control register at different locations.

The following sections describe the MSR_DEBUGCTLA MSR and the various last
branch recording mechanisms. See Appendix B, “Model-Specific Registers (MSRs),”
for a detailed description of each of the last branch recording MSRs.

18-22 Vol.3

DEBUGGING AND PERFORMANCE MONITORING

18.6.2 MSR_DEBUGCTLA MSR

The MSR_DEBUGCTLA MSR enables and disables the various last branch recording
mechanisms described in the previous section. This register can be written to using
the WRMSR instruction, when operating at privilege level O or when in real-address
mode. A protected-mode operating system procedure is required to provide user
access to this register. Figure 18-5 shows the flags in the MSR_DEBUGCTLA MSR.
The functions of these flags are as follows:

LBR (last branch/interrupt/exception) flag (bit 0) — When set, the
processor records a running trace of the most recent branches, interrupts, and/or
exceptions taken by the processor (prior to a debug exception being generated)
in the last branch record (LBR) stack. Each branch, interrupt, or exception is
recorded as a 64-bit branch record. The processor clears this flag whenever a
debug exception is generated (for example, when an instruction or data
breakpoint or a single-step trap occurs). See Section 18.6.3, “LBR Stack for
Processors Based on Intel NetBurst Microarchitecture.”

BTF (single-step on branches) flag (bit 1) — When set, the processor treats
the TF flag in the EFLAGS register as a “single-step on branches” flag rather than
a “single-step on instructions” flag. This mechanism allows single-stepping the
processor on taken branches, interrupts, and exceptions. See Section 18.6.5,
“Single-Stepping on Branches, Exceptions, and Interrupts.”

TR (trace message enable) flag (bit 2) — When set, branch trace messages
are enabled. Thereafter, when the processor detects a taken branch, interrupt, or
exception, it sends the branch record out on the system bus as a branch trace
message (BTM). See Section 18.6.6, “Branch Trace Messages.”

31 76 543210

Reserved

BTS_OFF_USR — Disable storing non-CPL_0 BTS J
BTS_OFF_OS — Disable storing CPL_0 BTS

BTINT — Branch trace interrupt
BTS — Branch trace store
TR — Trace messages enable
BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Figure 18-5. MSR_DEBUGCTLA MSR for Pentium 4 and Intel Xeon Processors

BTS (branch trace store) flag (bit 3) — When set, enables the BTS facilities to
log BTMs to a memory-resident BTS buffer that is part of the DS save area. See
Section 18.16.5, “DS Save Area.”

Vol.3 18-23

DEBUGGING AND PERFORMANCE MONITORING

¢ BTINT (branch trace interrupt) flag (bits 4) — When set, the BTS facilities
generate an interrupt when the BTS buffer is full. When clear, BTMs are logged to
the BTS buffer in a circular fashion. See Section 18.6.8, “Branch Trace Store (BTS).”

® BTS_OFF_OS (disable ring O branch trace store) flag (bit 5) — When set,
enables the BTS facilities to skip sending/logging CPL_0 BTMs to the memory-
resident BTS buffer. See Section 18.6.1, “CPL-Qualified Branch Trace
Mechanism.”

® BTS_OFF_USR (disable ring O branch trace store) flag (bit 6) — When set,
enables the BTS facilities to skip sending/logging non-CPL_0O BTMs to the
memory-resident BTS buffer. See Section 18.6.1, “CPL-Qualified Branch Trace
Mechanism.”

18.6.3 LBR Stack for Processors Based on Intel NetBurst
Microarchitecture

The LBR stack is made up of LBR MSRs that are treated by the processor as a circular
stack. The TOS pointer (MSR_LASTBRANCH_TOS MSR) points to the LBR MSR (or
LBR MSR pair) that contains the most recent (last) branch record placed on the stack.
Prior to placing a new branch record on the stack, the TOS is incremented by 1. When
the TOS pointer reaches it maximum value, it wraps around to 0. See Table 18-4 and
Figure 18-5.

The registers in the LBR MSR stack and the MSR_LASTBRANCH_TOS MSR are read-
only and can be read using the RDMSR instruction.

Figure 18-6 shows the layout of a branch record in an LBR MSR (or MSR pair). Each
branch record consists of two linear addresses, which represent the “from” and “to”
instruction pointers for a branch, interrupt, or exception. The contents of the from
and to addresses differ, depending on the source of the branch:

® Taken branch — If the record is for a taken branch, the “from” address is the
address of the branch instruction and the “to” address is the target instruction of
the branch.

® Interrupt — If the record is for an interrupt, the “from” address the return
instruction pointer (RIP) saved for the interrupt and the “to” address is the
address of the first instruction in the interrupt handler routine. The RIP is the
linear address of the next instruction to be executed upon returning from the
interrupt handler.

® Exception — If the record is for an exception, the “from” address is the linear
address of the instruction that caused the exception to be generated and the “to”
address is the address of the first instruction in the exception handler routine.

18-24 Vol.3

DEBUGGING AND PERFORMANCE MONITORING

CPUID Family OFH, Models OH-02H
MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3
63 32-31 0

To Linear Address From Linear Address

CPUID Family OFH, Model 03H-04H
MSR_LASTBRANCH_0_FROM_LIP through MSR_LASTBRANCH_15_FROM_LIP

63 32-31 0

Reserved From Linear Address

MSR_LASTBRANCH_0_TO_LIP through MSR_LASTBRANCH_15_TO_LIP
63 32-31 0

Reserved To Linear Address

Figure 18-6. LBR MSR Branch Record Layout for the Pentium 4
and Intel Xeon Processor Family

Additional information is saved if an exception or interrupt occurs in conjunction with
a branch instruction. If a branch instruction generates a trap type exception, two
branch records are stored in the LBR stack: a branch record for the branch instruction
followed by a branch record for the exception.

If a branch instruction is immediately followed by an interrupt, a branch record is
stored in the LBR stack for the branch instruction followed by a record for the
interrupt.

18.6.3.1 LBR Stack and Intel® 64 Processors

LBR MSRs are 64-bits. If IA-32e mode is disabled, only the lower 32-bits of the
address is recorded. If IA-32e mode is enabled, the processor writes 64-bit values
into the MSR.

In 64-bit mode, last branch records store 64-bit addresses; in compatibility mode,
the upper 32-bits of last branch records are cleared.

18.6.4 Monitoring Branches, Exceptions, and Interrupts

When the LBR flag in the MSR_DEBUGCTLA MSR is set, the processor automatically
begins recording branch records for taken branches, interrupts, and exceptions
(except for debug exceptions) in the LBR stack MSRs.

Vol.3 18-25

DEBUGGING AND PERFORMANCE MONITORING

When the processor generates a a debug exception (#DB), it automatically clears the
LBR flag before executing the exception handler. This action does not clear previously
stored LBR stack MSRs. The branch record for the last four taken branches, interrupts
and/or exceptions are retained for analysis.

A debugger can use the linear addresses in the LBR stack to re-set breakpoints in the
breakpoint address registers (DRO through DR3). This allows a backward trace from
the manifestation of a particular bug toward its source.

If the LBR flag is cleared and TR flag in the MSR_DEBUGCTLA MSR remains set, the
processor will continue to update LBR stack MSRs. This is because BTM information
must be generated from entries in the LBR stack (see 14.5.5). A #DB does not auto-
matically clear the TR flag.

18.6.5 Single-Stepping on Branches, Exceptions, and Interrupts

When software sets both the BTF flag in the MSR_DEBUGCTLA MSR and the TF flag in
the EFLAGS register, the processor generates a single-step debug exception the next
time it takes a branch, services an interrupt, or generates an exception. This mecha-
nism allows the debugger to single-step on control transfers caused by branches,
interrupts, and exceptions. This “control-flow single stepping” helps isolate a bug to
a particular block of code before instruction single-stepping further narrows the
search. If the BTF flag is set when the processor generates a debug exception, the
processor clears the BTF flag along with the TF flag. The debugger must reset the BTF
and TF flags before resuming program execution to continue control-flow single step-

ping.

18.6.6 Branch Trace Messages

Setting the TR flag in the MSR_DEBUGCTLA (see Figure 18-5), IA32_DEBUGCTL (see
Figure 18-7), or MSR_DEBUGCTLB (see Figure 18-9) MSR enables branch trace
messages (BTMs). Thereafter, when the processor detects a branch, exception, or
interrupt, it sends a branch record out on the system bus as a BTM. A debugging
device that is monitoring the system bus can read these messages and synchronize
operations with taken branch, interrupt, and exception events.

When interrupts or exceptions occur in conjunction with a taken branch, additional
BTMs are sent out on the bus, as described in Section 18.6.4, “Monitoring Branches,
Exceptions, and Interrupts.”

Setting this flag (BTS) alone can greatly reduce the performance of the processor.
CPL-qualified branch trace storing mechanism can help mitigate the performance
impact of sending/logging branch trace messages. See Section 18.6.1, “CPL-Quali-
fied Branch Trace Mechanism.”

Unlike the P6 family processors, the Pentium 4, Atom, and Intel Xeon processors can
collect branch records in the LBR stack MSRs while at the same time sending/storing

18-26 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING

BTMs when both the TR and LBR flags are set in the
MSR_DEBUGCTLA/IA32_DEBUGCTL MSR.

18.6.7 Last Exception Records

The Pentium 4 and Intel Xeon processors provide two 32 bit MSRs (the
MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate the functions
of the LastExceptionTolP and LastExceptionFromIP MSRs found in the P6 family
processors. The MSR_LER_TO_LIP and MSR_LER_FROM_LIP MSRs contain a branch
record for the last branch that the processor took prior to an exception or interrupt
being generated.

18.6.7.1 Last Exception Records and Intel 64 Architecture

The MSRs that store last exception records are 64-bits. If IA-32e mode is disabled,
only the lower 32-bits of the address is recorded. If IA-32e mode is enabled, the
processor writes 64-bit values into the MSR. In 64-bit mode, last exception records
store 64-bit addresses; in compatibility mode, the upper 32-bits of last exception
records are cleared.

18.6.8 Branch Trace Store (BTS)

A trace of taken branches, interrupts, and exceptions is useful for debugging code by
providing a method of determining the decision path taken to reach a particular code
location. The Pentium 4 and Intel Xeon processors provide a mechanism for
capturing records of taken branches, interrupts, and exceptions and saving them in
the last branch record (LBR) stack MSRs and/or sending them out onto the system
bus as BTMs. The branch trace store (BTS) mechanism provides the additional capa-
bility of saving the branch records in a memory-resident BTS buffer, which is part of
the DS save area. The BTS buffer can be configured to be circular so that the most
recent branch records are always available or it can be configured to generate an
interrupt when the buffer is nearly full so that all the branch records can be saved.
See Section 18.16.5, “DS Save Area.”

18.6.8.1 Detection of the BTS Facilities

The DS feature flag (bit 21) returned by the CPUID instruction indicates (when set)
the availability of the DS mechanism in the processor, which supports the BTS (and
PEBS) facilities. When this bit is set, the following BTS facilities are available:

¢ The BTS_UNAVAILABLE flag in the 1A32_MISC_ENABLE MSR indicates (when
clear) the availability of the BTS facilities, including the ability to set the BTS and
BTINT bits in the MSR_DEBUGCTLA MSR.

® The IA32_DS_AREA MSR can be programmed to point to the DS save area.

Vol.3 18-27

DEBUGGING AND PERFORMANCE MONITORING

18.6.8.2 Setting Up the DS Save Area

To save branch records with the BTS buffer, the DS save area must first be set up in
memory as described in the following procedure. See Section 18.6.8.3, “Setting Up
the BTS Buffer,” and Section 18.16.8.3, “Setting Up the PEBS Buffer,” for instructions
for setting up a BTS buffer and/or a PEBS buffer, respectively, in the DS save area:

1.

Create the DS buffer management information area in memory (see Section
18.16.5, “DS Save Area,” and Section 18.16.5.1, “DS Save Area and IA-32e Mode
Operation”). Also see the additional notes in this section.

Write the base linear address of the DS buffer management area into the
IA32_DS_AREA MSR.

Set up the performance counter entry in the xXAPIC LVT for fixed delivery and
edge sensitive. See Section 9.5.1, “Local Vector Table.”

Establish an interrupt handler in the IDT for the vector associated with the
performance counter entry in the XAPIC LVT.

Write an interrupt service routine to handle the interrupt. See Section 18.6.8.5,
“Writing the DS Interrupt Service Routine.”

The following restrictions should be applied to the DS save area.

The three DS save area sections should be allocated from a non-paged pool, and
marked accessed and dirty. It is the responsibility of the operating system to
keep the pages that contain the buffer present and to mark them accessed and
dirty. The implication is that the operating system cannot d