intel.

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Volume 3B:
System Programming Guide, Part 2

NOTE: The Intef® 64 and IA-32 Architectures Software Developer’s Manual
consists of five volumes: Basic Architecture, Order Number 253665;
Instruction Set Reference A-M, Order Number 253666; Instruction Set
Reference N-Z, Order Number 253667; System Programming Guide,
Part 1, Order Number 253668; System Programming Guide, Part 2, Order
Number 253669. Refer to all five volumes when evaluating your design
needs.

Order Number: 253669-033US
December 2009

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR IN-
TENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUA-
TION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or "unde-
fined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. The information here is subject to change without no-
tice. Do not finalize a design with this information.

The Intel® 64 architecture processors may contain design defects or errors known as errata. Current char-
acterized errata are available on request.

Intel® Hyper-Threading Technology requires a computer system with an Intel® processor supporting Intel
Hyper-Threading Technology and an Intel® HT Technology enabled chipset, BIOS and operating system.
Performance will vary depending on the specific hardware and software you use. For more information, see
http://www.intel.com/technology/hyperthread/index.ntm; including details on which processors support Intel HT
Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will_vary depending on hardware and software configurations. Intel® Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, oper-
ating system, device drivers and applications enabled for Intel® 64 architecture. Processors will not operate
(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary depend-
ing on your hardware and software configurations. Consult with your system vendor for more information.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability
and a supporting operating system. Check with your PC manufacturer on whether your system delivers Ex-
ecute Disable Bit functionality.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo,
Intel Core 2 Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are trade-
marks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other coun-
tries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725, or by visiting Intel’s website at http://www.intel.com

Copyright © 1997-2009 Intel Corporation

i Vol.3B

CHAPTER 20
INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS

20.1 OVERVIEW

This chapter describes the basics of virtual machine architecture and an overview of
the virtual-machine extensions (VMX) that support virtualization of processor hard-
ware for multiple software environments.

Information about VMX instructions is provided in Intel® 64 and 1A-32 Architectures
Software Developer’s Manual, Volume 2B. Other aspects of VMX and system
programming considerations are described in chapters of Intel® 64 and 1A-32 Archi-
tectures Software Developer’s Manual, Volume 3B.

20.2 VIRTUAL MACHINE ARCHITECTURE

Virtual-machine extensions define processor-level support for virtual machines on
1A-32 processors. Two principal classes of software are supported:

® Virtual-machine monitors (VMM) — A VMM acts as a host and has full control
of the processor(s) and other platform hardware. A VMM presents guest software
(see next paragraph) with an abstraction of a virtual processor and allows it to
execute directly on a logical processor. A VMM is able to retain selective control of
processor resources, physical memory, interrupt management, and 1/0.

® Guest software — Each virtual machine (VM) is a guest software environment
that supports a stack consisting of operating system (OS) and application
software. Each operates independently of other virtual machines and uses on the
same interface to processor(s), memory, storage, graphics, and 1/0 provided by
a physical platform. The software stack acts as if it were running on a platform
with no VMM. Software executing in a virtual machine must operate with reduced
privilege so that the VMM can retain control of platform resources.

20.3 INTRODUCTION TO VMX OPERATION

Processor support for virtualization is provided by a form of processor operation
called VMX operation. There are two kinds of VMX operation: VMX root operation and
VMX non-root operation. In general, a VMM will run in VMX root operation and guest
software will run in VMX non-root operation. Transitions between VMX root operation
and VMX non-root operation are called VMX transitions. There are two kinds of VMX
transitions. Transitions into VMX non-root operation are called VM entries. Transi-
tions from VMX non-root operation to VMX root operation are called VM exits.

Vol.3 20-1

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS

Processor behavior in VMX root operation is very much as it is outside VMX operation.
The principal differences are that a set of new instructions (the VMX instructions) is
available and that the values that can be loaded into certain control registers are
limited (see Section 20.8).

Processor behavior in VMX non-root operation is restricted and modified to facilitate
virtualization. Instead of their ordinary operation, certain instructions (including the
new VMCALL instruction) and events cause VM exits to the VMM. Because these

VM exits replace ordinary behavior, the functionality of software in VMX non-root
operation is limited. It is this limitation that allows the VMM to retain control of
processor resources.

There is no software-visible bit whose setting indicates whether a logical processor is
in VMX non-root operation. This fact may allow a VMM to prevent guest software from
determining that it is running in a virtual machine.

Because VMX operation places restrictions even on software running with current
privilege level (CPL) O, guest software can run at the privilege level for which it was
originally designed. This capability may simplify the development of a VMM.

20.4 LIFE CYCLE OF VMM SOFTWARE

Figure 20-1 illustrates the life cycle of a VMM and its guest software as well as the
interactions between them. The following items summarize that life cycle:

® Software enters VMX operation by executing a VMXON instruction.

® Using VM entries, a VMM can then enter guests into virtual machines (one at a
time). The VMM effects a VM entry using instructions VMLAUNCH and
VMRESUME; it regains control using VM exits.

® VM exits transfer control to an entry point specified by the VMM. The VMM can
take action appropriate to the cause of the VM exit and can then return to the
virtual machine using a VM entry.

® Eventually, the VMM may decide to shut itself down and leave VMX operation. It
does so by executing the VMXOFF instruction.

20-2 Vol. 3

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS

Guest 0 Guest 1
M NVM Entr% Exit
VMXON VM Monitor p—— VMXOFF

Figure 20-1. Interaction of a Virtual-Machine Monitor and Guests

20.5 VIRTUAL-MACHINE CONTROL STRUCTURE

VMX non-root operation and VMX transitions are controlled by a data structure called
a virtual-machine control structure (VMCS).

Access to the VMCS is managed through a component of processor state called the
VMCS pointer (one per logical processor). The value of the VMCS pointer is the 64-bit
address of the VMCS. The VMCS pointer is read and written using the instructions
VMPTRST and VMPTRLD. The VMM configures a VMCS using the VMREAD, VMWRITE,
and VMCLEAR instructions.

A VMM could use a different VMCS for each virtual machine that it supports. For a
virtual machine with multiple logical processors (virtual processors), the VMM could
use a different VMCS for each virtual processor.

20.6 DISCOVERING SUPPORT FOR VMX

Before system software enters into VMX operation, it must discover the presence of
VMX support in the processor. System software can determine whether a processor
supports VMX operation using CPUID. If CPUID.1:ECX.VMX[bit 5] = 1, then VMX
operation is supported. See Chapter 3, “Instruction Set Reference, A-M” of Intel® 64
and 1A-32 Architectures Software Developer’s Manual, Volume 2A.

The VMX architecture is designed to be extensible so that future processors in VMX
operation can support additional features not present in first-generation implemen-
tations of the VMX architecture. The availability of extensible VMX features is
reported to software using a set of VMX capability MSRs (see Appendix G, “VMX
Capability Reporting Facility”).

Vol.3 20-3

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS

20.7 ENABLING AND ENTERING VMX OPERATION

Before system software can enter VMX operation, it enables VMX by setting
CR4.VMXE[bit 13] = 1. VMX operation is then entered by executing the VMXON
instruction. VMXON causes an invalid-opcode exception (#UD) if executed with
CR4.VMXE = 0. Once in VMX operation, it is not possible to clear CR4.VMXE (see
Section 20.8). System software leaves VMX operation by executing the VMXOFF
instruction. CR4.VMXE can be cleared outside of VMX operation after executing of
VMXOFF.

VMXON is also controlled by the IA32_FEATURE_CONTROL MSR (MSR address 3AH).
This MSR is cleared to zero when a logical processor is reset. The relevant bits of the
MSR are:

® Bit O is the lock bit. If this bit is clear, VMXON causes a general-protection
exception. If the lock bit is set, WRMSR to this MSR causes a general-protection
exception; the MSR cannot be modified until a power-up reset condition. System
BIOS can use this bit to provide a setup option for BIOS to disable support for
VMX. To enable VMX support in a platform, BIOS must set bit 1, bit 2, or both
(see below), as well as the lock bit.

® Bit 1 enables VMXON in SMX operation. If this bit is clear, execution of
VMXON in SMX operation causes a general-protection exception. Attempts to set
this bit on logical processors that do not support both VMX operation (see Section
20.6) and SMX operation (see Chapter 6, “Safer Mode Extensions Reference,” in
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2B)
cause general-protection exceptions.

® Bit 2 enables VMXON outside SMX operation. If this bit is clear, execution of
VMXON outside SMX operation causes a general-protection exception. Attempts
to set this bit on logical processors that do not support VMX operation (see
Section 20.6) cause general-protection exceptions.

NOTE

A logical processor is in SMX operation if GETSEC[SEXIT] has not
been executed since the last execution of GETSEC[SENTER]. A logical
processor is outside SMX operation if GETSEC[SENTER] has not been
executed or if GETSEC[SEXIT] was executed after the last execution
of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions
Reference,” in Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volume 2B.

Before executing VMXON, software should allocate a naturally aligned 4-KByte region
of memory that a logical processor may use to support VMX operation.! This region
is called the VMXON region. The address of the VMXON region (the VMXON pointer)

1. Future processors may require that a different amount of memory be reserved. If so, this fact is
reported to software using the VMX capability-reporting mechanism.

20-4 Vol.3

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS

is provided in an operand to VMXON. Section 21.10.5, “VYMXON Region,” details how
software should initialize and access the VMXON region.

20.8 RESTRICTIONS ON VMX OPERATION

VMX operation places restrictions on processor operation. These are detailed below:

In VMX operation, processors may fix certain bits in CRO and CR4 to specific
values and not support other values. VMXON fails if any of these bits contains an
unsupported value (see “VMXON—Enter VMX Operation” in Chapter 5 of the
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2B).
Any attempt to set one of these bits to an unsupported value while in VMX
operation (including VMX root operation) using any of the CLTS, LMSW, or MOV
CR instructions causes a general-protection exception. VM entry or VM exit
cannot set any of these bits to an unsupported value.?

NOTES

The first processors to support VMX operation require that the
following bits be 1 in VMX operation: CRO.PE, CRO.NE, CRO.PG, and
CR4.VMXE. The restrictions on CRO.PE and CRO.PG imply that VMX
operation is supported only in paged protected mode (including
IA-32e mode). Therefore, guest software cannot be run in unpaged
protected mode or in real-address mode. See Section 27.2,
“Supporting Processor Operating Modes in Guest Environments,” for
a discussion of how a VMM might support guest software that expects
to run in unpaged protected mode or in real-address mode.

Later processors support a VM-execution control called “unrestricted
guest” (see Section 21.6.2). If this control is 1, CRO.PE and CRO.PG
may be 0 in VMX non-root operation (even if the capability MSR
IA32_VMX_CRO_FIXED1 reports otherwise).® Such processors allow
guest software to run in unpaged protected mode or in real-address
mode.

VMXON fails if a logical processor is in A20M mode (see “VMXON—Enter VMX
Operation” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B). Once the processor is in VMX operation, A20M

Software should consult the VMX capability MSRs IA32_VMX_CRO_FIXEDO and
IA32_VMX_CRO_FIXED1 to determine how bits in CRO are set. (see Appendix G.7). For CR4, soft-
ware should consult the VMX capability MSRs IA32_VMX_CR4_FIXEDO and
IA32_VMX_CR4_FIXED1 (see Appendix G.8).

“Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“unrestricted guest” VM-execution control were 0. See Section 21.6.2.

Vol.3 20-5

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS

interrupts are blocked. Thus, it is impossible to be in A20M mode in VMX
operation.

® The INIT signal is blocked whenever a logical processor is in VMX root operation.
It is not blocked in VMX non-root operation. Instead, INITs cause VM exits (see
Section 22.3, “Other Causes of VM EXxits”).

20-6 Vol. 3

CHAPTER 21
VIRTUAL-MACHINE CONTROL STRUCTURES

21.1 OVERVIEW

A logical processor uses virtual-machine control data structures (VMCSs) while
it is in VMX operation. These manage transitions into and out of VMX non-root oper-
ation (VM entries and VM exits) as well as processor behavior in VMX non-root oper-
ation. This structure is manipulated by the new instructions VMCLEAR, VMPTRLD,
VMREAD, and VMWRITE.

A VMM can use a different VMCS for each virtual machine that it supports. For a
virtual machine with multiple logical processors (virtual processors), the VMM can
use a different VMCS for each virtual processor.

A logical processor associates a region in memory with each VMCS. This region is
called the VMCS region.! Software references a specific VMCS using the 64-bit
physical address of the region (a VMCS pointer). VMCS pointers must be aligned on
a 4-KByte boundary (bits 11:0 must be zero). On processors that support Intel 64
architecture, these pointers must not set bits beyond the processor’s physical-
address width.2 On processors that do not support Intel 64 architecture, they must
not set any bits in the range 63:32.

A logical processor may maintain a number of VMCSs that are active. The processor
may optimize VMX operation by maintaining the state of an active VMCS in memory,
on the processor, or both. At any given time, at most one of the active VMCSs is the
current VMCS. (This document frequently uses the term “the VMCS” to refer to the
current VMCS.) The VMLAUNCH, VMREAD, VMRESUME, and VMWRITE instructions
operate only on the current VMCS.

The following items describe how a logical processor determines which VMCSs are
active and which is current:

® The memory operand of the VMPTRLD instruction is the address of a VMCS. After
execution of the instruction, that VMCS is both active and current on the logical
processor. Any other VMCS that had been active remains so, but no other VMCS
is current.

® The memory operand of the VMCLEAR instruction is also the address of a VMCS.
After execution of the instruction, that VMCS is neither active nor current on the

1. The amount of memory required for a VMCS region is at most 4 KBytes. The exact size is imple-
mentation specific and can be determined by consulting the VMX capability MSR
IA32_VMX_BASIC to determine the size of the VMCS region (see Appendix G.1).

2. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

Vol.3 21-1

VIRTUAL-MACHINE CONTROL STRUCTURES

logical processor. If the VMCS had been current on the logical processor, the
logical processor no longer has a current VMCS.

The VMPTRST instruction stores the address of the logical processor’s current VMCS
into a specified memory location (it stores the value FFFFFFFF_FFFFFFFFH if there is
no current VMCS).

The launch state of a VMCS determines which VM-entry instruction should be used
with that VMCS: the VMLAUNCH instruction requires a VMCS whose launch state is
“clear”; the VMRESUME instruction requires a VMCS whose launch state is
“launched”. A logical processor maintains a VMCS'’s launch state in the corresponding
VMCS region. The following items describe how a logical processor manages the
launch state of a VMCS:

® |If the launch state of the current VMCS is “clear”, successful execution of the
VMLAUNCH instruction changes the launch state to “launched”.

® The memory operand of the VMCLEAR instruction is the address of a VMCS. After
execution of the instruction, the launch state of that VMCS is “clear”.

® There are no other ways to modify the launch state of a VMCS (it cannot be
modified using VMWRITE) and there is no direct way to discover it (it cannot be
read using VMREAD).

Figure 21-1 illustrates the different states of a VMCS. It uses “X” to refer to the VMCS
and “Y” to refer to any other VMCS. Thus: “VMPTRLD X” always makes X current and
active; “VMPTRLD Y” always makes X not current (because it makes Y current);
VMLAUNCH makes the launch state of X “launched” if X was current and its launch
state was “clear”; and VMCLEAR X always makes X inactive and not current and
makes its launch state “clear”.

The figure does not illustrate operations that do not modify the VMCS state relative
to these parameters (e.g., execution of VMPTRLD X when X is already current). Note
that VMCLEAR X makes X “inactive, not current, and clear,” even if X’s current state
is not defined (e.g., even if X has not yet been initialized). See Section 21.10.3.

21-2 Vol.3

VIRTUAL-MACHINE CONTROL STRUCTURES

Active
Not Current
Launched

Inactive
Not Current
Clear

Active
Not Current

< < +¢ VMCLEAR X < <
£ £ 9 b@ = =
3 3 S o 3 3
T T Q& Q X Py
5 5 A K 5 &
< < N Anything - =< =
Else
Current VMLAUNCH: Current

Clear Launched

Figure 21-1. States of VMCS X

21.2 FORMAT OF THE VMCS REGION

A VMCS region comprises up to 4-KBytes.! The format of a VMCS region is given in
Table 21-1.

Table 21-1. Format of the VMCS Region

Byte Offset Contents

0 VMCS revision identifier

4 VMX-abort indicator

8 VMCS data (implementation-specific format)

The first 32 bits of the VMCS region contain the VMCS revision identifier. Proces-
sors that maintain VMCS data in different formats (see below) use different VMCS

1. The exact size is implementation specific and can be determined by consulting the VMX capabil-
ity MSR IA32_VMX_BASIC to determine the size of the VMCS region (see Appendix G.1).

Vol.3 21-3

VIRTUAL-MACHINE CONTROL STRUCTURES

revision identifiers. These identifiers enable software to avoid using a VMCS region
formatted for one processor on a processor that uses a different format.!

Software should write the VMCS revision identifier to the VMCS region before using
that region for a VMCS. The VMCS revision identifier is never written by the
processor; VMPTRLD may fail if its operand references a VMCS region whose VMCS
revision identifier differs from that used by the processor. Software can discover the
VMCS revision identifier that a processor uses by reading the VMX capability MSR
1A32_VMX_BASIC (see Appendix G, “VMX Capability Reporting Facility”).

The next 32 bits of the VMCS region are used for the VMX-abort indicator. The
contents of these bits do not control processor operation in any way. A logical
processor writes a non-zero value into these bits if a VMX abort occurs (see Section
24.7). Software may also write into this field.

The remainder of the VMCS region is used for VMCS data (those parts of the VMCS
that control VMX non-root operation and the VMX transitions). The format of these
data is implementation-specific. VMCS data are discussed in Section 21.3 through
Section 21.9. To ensure proper behavior in VMX operation, software should maintain
the VMCS region and related structures (enumerated in Section 21.10.4) in
writeback cacheable memory. Future implementations may allow or require a
different memory typez. Software should consult the VMX capability MSR
1A32_VMX_BASIC (see Appendix G.1).

21.3 ORGANIZATION OF VMCS DATA

The VMCS data are organized into six logical groups:

® Guest-state area. Processor state is saved into the guest-state area on
VM exits and loaded from there on VM entries.

® Host-state area. Processor state is loaded from the host-state area on VM exits.

® VM-execution control fields. These fields control processor behavior in VMX
non-root operation. They determine in part the causes of VM exits.

® VM-exit control fields. These fields control VM exits.
® VM-entry control fields. These fields control VM entries.

® VM-exit information fields. These fields receive information on VM exits and
describe the cause and the nature of VM exits. They are read-only.

1. Logical processors that use the same VMCS revision identifier use the same size for VMCS
regions.

2. Alternatively, software may map any of these regions or structures with the UC memory type.
Doing so is strongly discouraged unless necessary as it will cause the performance of transitions
using those structures to suffer significantly. In addition, the processor will continue to use the
memory type reported in the VMX capability MSR IA32_VMX_BASIC with exceptions noted in
Appendix G.1.

21-4 Vol.3

VIRTUAL-MACHINE CONTROL STRUCTURES

The VM-execution control fields, the VM-exit control fields, and the VM-entry control
fields are sometimes referred to collectively as VMX controls.

21.4 GUEST-STATE AREA

This section describes fields contained in the guest-state area of the VMCS. As noted
earlier, processor state is loaded from these fields on every VM entry (see Section
23.3.2) and stored into these fields on every VM exit (see Section 24.3).

21.4.1 Guest Register State

The following fields in the guest-state area correspond to processor registers:

Control registers CRO, CR3, and CR4 (64 bits each; 32 bits on processors that do
not support Intel 64 architecture).

Debug register DR7 (64 bits; 32 bits on processors that do not support Intel 64
architecture).

RSP, RIP, and RFLAGS (64 bits each; 32 bits on processors that do not support
Intel 64 architecture).®

The following fields for each of the registers CS, SS, DS, ES, FS, GS, LDTR, and
TR:

— Selector (16 bits).

— Base address (64 bits; 32 bits on processors that do not support Intel 64
architecture). The base-address fields for CS, SS, DS, and ES have only 32
architecturally-defined bits; nevertheless, the corresponding VMCS fields
have 64 bits on processors that support Intel 64 architecture.

— Segment limit (32 bits). The limit field is always a measure in bytes.

— Access rights (32 bits). The format of this field is given in Table 21-2 and
detailed as follows:

* The low 16 bits correspond to bits 23:8 of the upper 32 bits of a 64-bit
segment descriptor. While bits 19:16 of code-segment and data-segment
descriptors correspond to the upper 4 bits of the segment limit, the corre-
sponding bits (bits 11:8) are reserved in this VMCS field.

This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For processors that
do not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers
(EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to
lower 32 bits of the indicated register.

Vol.3 21-5

VIRTUAL-MACHINE CONTROL STRUCTURES

® Bit 16 indicates an unusable segment. Attempts to use such a segment
fault except in 64-bit mode. In general, a segment register is unusable if
it has been loaded with a null selector.t

®* Bits 31:17 are reserved.

Table 21-2. Format of Access Rights

Bit Position(s) Field
3.0 Segment type
4 S — Descriptor type (0 = system; 1 = code or data)
6:5 DPL — Descriptor privilege level
7 P — Segment present
118 Reserved
12 AVL — Available for use by system software
13 Reserved (except for CS)
L — 64-bit mode active (for CS only)
14 D/B — Default operation size (0O = 16-bit segment; 1 = 32-bit segment)
15 G — Granularity
16 Segment unusable (O = usable; 1 = unusable)
31:17 Reserved

The base address, segment limit, and access rights compose the “hidden” part
(or “descriptor cache”) of each segment register. These data are included in the
VMCS because it is possible for a segment register’s descriptor cache to be incon-
sistent with the segment descriptor in memory (in the GDT or the LDT)
referenced by the segment register’s selector.

The value of the DPL field for SS is always equal to the logical processor’s current
privilege level (CPL).2

® The following fields for each of the registers GDTR and IDTR:

1. There are a few exceptions to this statement. For example, a segment with a non-null selector
may be unusable following a task switch that fails after its commit point; see “Interrupt
10—Invalid TSS Exception (#TS)" in Section 6.14, “Exception and Interrupt Handling in 64-bit
Mode,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. In
contrast, the TR register is usable after processor reset despite having a null selector; see Table
10-1 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

21-6 Vol. 3

VIRTUAL-MACHINE CONTROL STRUCTURES

— Base address (64 bits; 32 bits on processors that do not support Intel 64
architecture).

— Limit (32 bits). The limit fields contain 32 bits even though these fields are
specified as only 16 bits in the architecture.

The following MSRs:
— 1A32_DEBUGCTL (64 bits)
— 1A32_SYSENTER_CS (32 bits)

— 1A32_SYSENTER_ESP and 1A32_SYSENTER_EIP (64 bits; 32 bits on
processors that do not support Intel 64 architecture)

— 1A32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on logical
processors that support the 1-setting of the “load
IA32_PERF_GLOBAL_CTRL” VM-entry control.

— 1A32_PAT (64 bits). This field is supported only on logical processors that
support either the 1-setting of the “load 1A32_PAT” VM-entry control or that
of the “save 1A32_PAT” VM-exit control.

— 1A32_EFER (64 bits). This field is supported only on logical processors that
support either the 1-setting of the “load 1A32_EFER” VM-entry control or that
of the “save 1A32_EFER” VM-exit control.

The register SMBASE (32 bits). This register contains the base address of the
logical processor’s SMRAM image.

21.4.2 Guest Non-Register State

In addition to the register state described in Section 21.4.1, the guest-state area
includes the following fields that characterize guest state but which do not corre-
spond to processor registers:

Activity state (32 bits). This field identifies the logical processor’s activity state.
When a logical processor is executing instructions normally, it is in the active
state. Execution of certain instructions and the occurrence of certain events may
cause a logical processor to transition to an inactive state in which it ceases to
execute instructions.

The following activity states are defined:?t
— 0: Active. The logical processor is executing instructions normally.

— 1: HLT. The logical processor is inactive because it executed the HLT
instruction.

In protected mode, CPL is also associated with the RPL field in the CS selector. However, the RPL
fields are not meaningful in real-address mode or in virtual-8086 mode.

Execution of the MWAIT instruction may put a logical processor into an inactive state. However,
this VMCS field never reflects this state. See Section 24.1.

Vol.3 21-7

VIRTUAL-MACHINE CONTROL STRUCTURES

— 2: Shutdown. The logical processor is inactive because it incurred a triple
fault! or some other serious error.

— 3: Wait-for-SIPI. The logical processor is inactive because it is waiting for a

startup-1P1 (SIPI).

Future processors may include support for other activity states. Software should
read the VMX capability MSR 1A32_VMX_MISC (see Appendix G.6) to determine
what activity states are supported.

Interruptibility state (32 bits). The 1A-32 architecture includes features that
permit certain events to be blocked for a period of time. This field contains
information about such blocking. Details and the format of this field are given in

Table 21-3.

Table 21-3. Format of Interruptibility State

Bit

Position(s)

Bit Name

Notes

0

Blocking by STI

See the “STI—Set Interrupt Flag” section in Chapter 4 of the
Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2B.

Execution of STl with RFLAGS.IF = O blocks interrupts (and,
optionally, other events) for one instruction after its
execution. Setting this bit indicates that this blocking is in
effect.

Blocking by
MOV SS

See the “"MOV—Move a Value from the Stack” and “POP—Pop
a Value from the Stack” sections in Chapter 3 and Chapter 4
of the Intel® 64 and IA-32 Architectures Software
Developer's Manual, Volumes 2A & 2B, and Section 6.8.3 in
the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

Execution of a MOV to SS or a POP to SS blocks interrupts for
one instruction after its execution. In addition, certain debug
exceptions are inhibited between a MOV to SS or a POP to SS
and a subsequent instruction. Setting this bit indicates that
the blocking of all these events is in effect. This document
uses the term “blocking by MOV SS,” but it applies equally to
POP SS.

Blocking by SMI

See Section 26.2. System-management interrupts (SMls) are
disabled while the processor is in system-management mode
(SMM). Setting this bit indicates that blocking of SMis is in
effect.

1. A triple fault occurs when a logical processor encounters an exception while attempting to
deliver a double fault.

21-8 Vol. 3

VIRTUAL-MACHINE CONTROL STRUCTURES

Table 21-3. Format of Interruptibility State (Contd.)

Bit
Position(s)

Bit Name

Notes

3

Blocking by NMI

See Section 6.7.1 in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A and Section 26.8.

Delivery of a non-maskable interrupt (NMI) or a system-
management interrupt (SMI) blocks subsequent NMis until
the next execution of IRET. See Section 22.4 for how this
behavior of IRET may change in VMX non-root operation.
Setting this bit indicates that blocking of NMIs is in effect.
Clearing this bit does not imply that NMis are not
(temporarily) blocked for other reasons.

If the “virtual NMIs” VM-execution control (see Section
21.6.1)is 1, this bit does not control the blocking of NMIs.
Instead, it refers to “virtual-NMI blocking” (the fact that guest
software is not ready for an NMI).

314

Reserved

VM entry will fail if these bits are not 0. See Section 23.3.1.5.

Pending debug exceptions (64 bits; 32 bits on processors that do not support
Intel 64 architecture). IA-32 processors may recognize one or more debug
exceptions without immediately delivering them.! This field contains information
about such exceptions. This field is described in Table 21-4.

Table 21-4. Format of Pending-Debug-Exceptions

Bit Bit Name Notes

Position(s)

3.0 B3 -BO When set, each of these bits indicates that the corresponding
breakpoint condition was met. Any of these bits may be set
even if the corresponding enabling bit in DR7 is not set.

11:4 Reserved VM entry fails if these bits are not 0. See Section 23.3.1.5.

12 Enabled When set, this bit indicates that at least one data or I/0

breakpoint breakpoint was met and was enabled in DR7.

1.

For example, execution of a MOV to SS or a POP to SS may inhibit some debug exceptions for one

instruction. See Section 6.8.3 of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A. In addition, certain events incident to an instruction (for example, an INIT signal) may
take priority over debug traps generated by that instruction. See Table 6-2 in the Intel® 64 and
IA-32 Architectures Software Developer's Manual, Volume 3A.

Vol.3 21-9

VIRTUAL-MACHINE CONTROL STRUCTURES

Table 21-4. Format of Pending-Debug-Exceptions (Contd.)

Bit Bit Name Notes

Position(s)

13 Reserved VM entry fails if this bit is not 0. See Section 23.3.1.5.

14 BS When set, this bit indicates that a debug exception would
have been triggered by single-step execution mode.

63:15 Reserved VM entry fails if these bits are not 0. See Section 23.3.1.5.
Bits 63:32 exist only on processors that support Intel 64
architecture.

® VMCS link pointer (64 bits). This field is included for future expansion. Software
should set this field to FFFFFFFF_FFFFFFFFH to avoid VM-entry failures (see
Section 23.3.1.5).

® VMX-preemption timer value (32 bits). This field is supported only on logical
processors that support the 1-setting of the “activate VMX-preemption timer”
VM-execution control. This field contains the value that the VMX-preemption
timer will use following the next VM entry with that setting. See Section 22.7.1
and Section 23.6.4.

® Page-directory-pointer-table entries (PDPTEs; 64 bits each). These four (4)
fields (PDPTEO, PDPTEL, PDPTEZ2, and PDPTE3) are supported only on logical
processors that support the 1-setting of the “enable EPT” VM-execution control.
They correspond to the PDPTEs referenced by CR3 when PAE paging is in use (see
Section 4.4 in the Intel® 64 and I1A-32 Architectures Software Developer’s
Manual, Volume 3A). They are used only if the “enable EPT” VM-execution control
is 1.

21.5 HOST-STATE AREA

This section describes fields contained in the host-state area of the VMCS. As noted
earlier, processor state is loaded from these fields on every VM exit (see Section
24.5).

All fields in the host-state area correspond to processor registers:

® CRO, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel
64 architecture).

® RSP and RIP (64 bits each; 32 bits on processors that do not support Intel 64
architecture).

® Selector fields (16 bits each) for the segment registers CS, SS, DS, ES, FS, GS,
and TR. There is no field in the host-state area for the LDTR selector.

® Base-address fields for FS, GS, TR, GDTR, and IDTR (64 bits each; 32 bits on
processors that do not support Intel 64 architecture).

21-10 Vol.3

VIRTUAL-MACHINE CONTROL STRUCTURES

® The following MSRs:
— 1A32_SYSENTER_CS (32 bits)

— 1A32_SYSENTER_ESP and I1A32_SYSENTER_EIP (64 bits; 32 bits on
processors that do not support Intel 64 architecture).

— 1A32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on logical
processors that support the 1-setting of the “load
IA32_PERF_GLOBAL_CTRL” VM-exit control.

— 1A32_PAT (64 bits). This field is supported only on logical processors that
support either the 1-setting of the “load IA32_PAT” VM-exit control.

— 1A32_EFER (64 bits). This field is supported only on logical processors that
support either the 1-setting of the “load 1A32_EFER” VM-exit control.

In addition to the state identified here, some processor state components are loaded
with fixed values on every VM exit; there are no fields corresponding to these
components in the host-state area. See Section 24.5 for details of how state is loaded
on VM exits.

21.6 VM-EXECUTION CONTROL FIELDS

The VM-execution control fields govern VMX non-root operation. These are described
in Section 21.6.1 through Section 21.6.8.

21.6.1 Pin-Based VM-Execution Controls

The pin-based VM-execution controls constitute a 32-bit vector that governs the
handling of asynchronous events (for example: interrupts).® Table 21-5 lists the
controls supported. See Chapter 21 for how these controls affect processor behavior
in VMX non-root operation.

1. Some asynchronous events cause VM exits regardless of the settings of the pin-based VM-exe-
cution controls (see Section 22.3).

Vol.3 21-11

VIRTUAL-MACHINE CONTROL STRUCTURES

Table 21-5. Definitions of Pin-Based VM-Execution Controls

Bit Position(s) | Name Description
0 External-interrupt | If this control is 1, external interrupts cause VM exits.
exiting Otherwise, they are delivered normally through the guest

interrupt-descriptor table (IDT). If this control is 1, the value
of RFLAGS.IF does not affect interrupt blocking.

3 NMI exiting If this control is 1, non-maskable interrupts (NMIs) cause
VM exits. Otherwise, they are delivered normally using
descriptor 2 of the IDT. This control also determines
interactions between IRET and blocking by NMI (see Section
22.4).

5 Virtual NMIs If this control is 1, NMIs are never blocked and the “blocking
by NMI” bit (bit 3) in the interruptibility-state field indicates
“virtual-NMI blocking” (see Table 21-3). This control also
interacts with the "NMI-window exiting” VM-execution
control (see Section 21.6.2).

This control can be set only if the “NMI exiting” VM-execution
control (above) is 1.

6 Activate VMX- If this control is 1, the VMX-preemption timer counts down in
preemption timer | VMX non-root operation; see Section 22.7.1. A VM exit occurs
when the timer counts down to zero; see Section 22.3.

All other bits in this field are reserved, some to O and some to 1. Software should
consult the VMX capability MSRs 1A32_VMX_PINBASED_CTLS and
1A32_VMX_TRUE_PINBASED_CTLS (see Appendix G.3.1) to determine how to set
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to
fail (see Section 23.2).

The first processors to support the virtual-machine extensions supported only the 1-
settings of bits 1, 2, and 4. The VMX capability MSR 1A32_VMX_PINBASED_CTLS wiill
always report that these bits must be 1. Logical processors that support the 0-
settings of any of these bits will support the VMX capability MSR

IA32_VMX_ TRUE_PINBASED_CTLS MSR, and software should consult this MSR to
discover support for the 0-settings of these bits. Software that is not aware of the
functionality of any one of these bits should set that bit to 1.

21.6.2 Processor-Based VM-Execution Controls

The processor-based VM-execution controls constitute two 32-bit vectors that
govern the handling of synchronous events, mainly those caused by the execution of
specific instructions.! These are the primary processor-based VM-execution
controls and the secondary processor-based VM-execution controls.

21-12 Vol.3

VIRTUAL-MACHINE CONTROL STRUCTURES

Table 21-6 lists the primary processor-based VM-execution controls. See Chapter 21
for more details of how these controls affect processor behavior in VMX non-root

operation.

Table 21-6. Definitions of Primary Processor-Based VM-Execution Controls

Bit Position(s)

Name

Description

2

Interrupt-window
exiting

If this control is 1, a VM exit occurs at the beginning of any
instruction if RFLAGS.IF = 1 and there are no other blocking
of interrupts (see Section 21.4.2).

Use TSC offsetting

This control determines whether executions of RDTSC,
executions of RDTSCP, and executions of RDMSR that read
from the IA32_TIME_STAMP_COUNTER MSR return a value
modified by the TSC offset field (see Section 21.6.5 and
Section 22.4).

HLT exiting

This control determines whether executions of HLT cause
VM exits.

INVLPG exiting

This determines whether executions of INVLPG cause
VM exits.

10

MWAIT exiting

This control determines whether executions of MWAIT cause
VM exits.

11

RDPMC exiting

This control determines whether executions of RDPMC cause
VM exits.

12

RDTSC exiting

This control determines whether executions of RDTSC and
RDTSCP cause VM exits.

15

CR3-load exiting

In conjunction with the CR3-target controls (see Section
21.6.7), this control determines whether executions of MOV
to CR3 cause VM exits. See Section 22.1.3.

The first processors to support the virtual-machine
extensions supported only the 1-setting of this control.

16

CR3-store exiting

This control determines whether executions of MOV from
CR3 cause VM exits.

The first processors to support the virtual-machine
extensions supported only the 1-setting of this control.

19

CR8-load exiting

This control determines whether executions of MOV to CR8
cause VM exits.

This control must be 0 on processors that do not support
Intel 64 architecture.

1. Some instructions cause VM exits regardless of the settings of the processor-based VM-execu-
tion controls (see Section 22.1.2), as do task switches (see Section 22.3).

Vol.3 21-13

VIRTUAL-MACHINE CONTROL STRUCTURES

Table 21-6. Definitions of Primary Processor-Based VM-Execution Controls (Contd.)

Bit Position(s)

Name

Description

20

CR8-store exiting

This control determines whether executions of MOV from
CR8 cause VM exits.

This control must be 0 on processors that do not support
Intel 64 architecture.

21

Use TPR shadow

Setting this control to 1 activates the TPR shadow, which is
maintained in a page of memory addressed by the virtual-
APIC address. See Section 22.4.

This control must be 0 on processors that do not support
Intel 64 architecture.

22

NMI-window
exiting

If this control is 1, a VM exit occurs at the beginning of any
instruction if there is no virtual-NMI blocking (see Section
21.4.2).

This control can be set only if the “virtual NMIs” VM-
execution control (see Section 21.6.1)is 1.

23

MOV-DR exiting

This control determines whether executions of MOV DR
cause VM exits.

24

Unconditional I/0
exiting

This control determines whether executions of 1/0
instructions (IN, INS/INSB/INSW/INSD, OUT, and
OUTS/OUTSB/OUTSW/OUTSD) cause VM exits.

This control is ignored if the “use 1/0 bitmaps” control is 1.

25

Use I/0 bitmaps

This control determines whether I/0 bitmaps are used to
restrict executions of I/0 instructions (see Section 21.6.4 and
Section 22.1.3).

For this control, “0” means “do not use I/0 bitmaps” and “1”
means “use 1/0 bitmaps.” If the I/0 bitmaps are used, the
setting of the “unconditional I/0 exiting” control is ignored.

27

Monitor trap flag

If this control is 1, the monitor trap flag debugging feature is
enabled. See Section 22.7.2.

28

Use MSR bitmaps

This control determines whether MSR bitmaps are used to
control execution of the RDMSR and WRMSR instructions
(see Section 21.6.9 and Section 22.1.3).

For this control, “0" means “do not use MSR bitmaps” and “1”
means “use MSR bitmaps.” If the MSR bitmaps are not used,

all executions of the RDMSR and WRMSR instructions cause

VM exits.

29

MONITOR exiting

This control determines whether executions of MONITOR
cause VM exits.

21-14 Vol.3

VIRTUAL-MACHINE CONTROL STRUCTURES

Table 21-6. Definitions of Primary Processor-Based VM-Execution Controls (Contd.)

Bit Position(s) | Name Description
30 PAUSE exiting This control determines whether executions of PAUSE cause
VM exits.
31 Activate secondary | This control determines whether the secondary processor-
controls based VM-execution controls are used. If this control is O, the
logical processor operates as if all the secondary processor-
based VM-execution controls were also 0.

All other bits in this field are reserved, some to O and some to 1. Software should
consult the VMX capability MSRs IA32_VMX_PROCBASED_CTLS and
1IA32_VMX_TRUE_PROCBASED_CTLS (see Appendix G.3.2) to determine how to set
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to
fail (see Section 23.2).

The first processors to support the virtual-machine extensions supported only the 1-
settings of bits 1, 4-6, 8, 13-16, and 26. The VMX capability MSR
1IA32_VMX_PROCBASED_CTLS will always report that these bits must be 1. Logical
processors that support the O-settings of any of these bits will support the VMX capa-
bility MSR 1A32_VMX_TRUE_PROCBASED_CTLS MSR, and software should consult
this MSR to discover support for the 0-settings of these bits. Software that is not
aware of the functionality of any one of these bits should set that bit to 1.

Bit 31 of the primary processor-based VM-execution controls determines whether
the secondary processor-based VM-execution controls are used. If that bit is O,
VM entry and VMX non-root operation function as if all the secondary processor-
based VM-execution controls were 0. Processors that support only the O-setting of
bit 31 of the primary processor-based VM-execution controls do not support the
secondary processor-based VM-execution controls.

Table 21-7 lists the secondary processor-based VM-execution controls. See Chapter
21 for more details of how these controls affect processor behavior in VMX non-root
operation.

Table 21-7. Definitions of Secondary Processor-Based VM-Execution Controls

Bit Position(s) | Name Description
0 Virtualize APIC If this control is 1, a VM exit occurs on any attempt to access
accesses data on the page with the APIC-access address. See Section
22.2.
1 Enable EPT If this control is 1, extended page tables (EPT) are enabled.
See Chapter 25.
2 Descriptor-table This control determines whether executions of LGDT, LIDT,
exiting LLDT, LTR, SGDT, SIDT, SLDT, and STR cause VM exits.
3 Enable RDTSCP If this control is O, any execution of RDTSCP causes and
invalid-opcode exception (#UD).

Vol.3 21-15

VIRTUAL-MACHINE CONTROL STRUCTURES

Table 21-7. Definitions of Secondary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) | Name Description

4 Virtualize x2APIC | Setting this control to 1 causes RDMSR and WRMSR to MSR
mode 808H to use the TPR shadow, which is maintained on the

virtual-APIC page. See Section 22.4.

5 Enable VPID If this control is 1, cached translations of linear addresses are
associated with a virtual-processor identifier (VPID). See
Chapter 25.1.

6 WBINVD exiting This control determines whether executions of WBINVD
cause VM exits.

7 Unrestricted guest | This control determines whether guest software may run in
unpaged protected mode or in real-address mode.

10 PAUSE-loop exiting | This control determines whether a series of executions of
PAUSE can cause a VM exit (see Section 21.6.13 and Section
22.1.3).

All other bits in these fields are reserved to 0. Software should consult the VMX capa-
bility MSR 1A32_VMX_PROCBASED_CTLS2 (see Appendix G.3.3) to determine how to
set reserved bits. Failure to clear reserved bits causes subsequent VM entries to fail

(see Section 23.2).

If a logical processor supports the 1-setting of bit 31 of the primary processor-based
VM-execution controls but software has set that bit is 0, VM entry and VMX non-root
operation function as if all the secondary processor-based VM-execution controls
were 0. However, the logical processor will maintain the secondary processor-based
VM-execution controls as written by VMWRITE.

21.6.3 Exception Bitmap

The exception bitmap is a 32-bit field that contains one bit for each exception.
When an exception occurs, its vector is used to select a bit in this field. If the bitis 1,
the exception causes a VM exit. If the bit is 0, the exception is delivered normally
through the IDT, using the descriptor corresponding to the exception’s vector.

Whether a page fault (exception with vector 14) causes a VM exit is determined by
bit 14 in the exception bitmap as well as the error code produced by the page fault
and two 32-bit fields in the VMCS (the page-fault error-code mask and page-
fault error-code match). See Section 22.3 for details.

21.6.4 1/0-Bitmap Addresses

The VM-execution control fields include the 64-bit physical addresses of 170
bitmaps A and B (each of which are 4 KBytes in size). 1/0 bitmap A contains one bit

21-16 Vol.3

VIRTUAL-MACHINE CONTROL STRUCTURES

for each 1/0 port in the range O000H through 7FFFH; 1/0 bitmap B contains bits for
ports in the range 8000H through FFFFH.

A logical processor uses these bitmaps if and only if the “use 1/0 bitmaps” control is
1. If the bitmaps are used, execution of an 1/0 instruction causes a VM exit if any bit
in the 170 bitmaps corresponding to a port it accesses is 1. See Section 22.1.3 for
details. If the bitmaps are used, their addresses must be 4-KByte aligned.

21.6.5 Time-Stamp Counter Offset

VM-execution control fields include a 64-bit TSC-offset field. If the “RDTSC exiting”
control is 0 and the “use TSC offsetting” control is 1, this field controls executions of
the RDTSC and RDTSCP instructions. It also controls executions of the RDMSR
instruction that read from the 1A32_TIME_STAMP_COUNTER MSR. For all of these,
the signed value of the TSC offset is combined with the contents of the time-stamp
counter (using signed addition) and the sum is reported to guest software in
EDX:EAX. See Chapter 21 for a detailed treatment of the behavior of RDTSC,
RDTSCP, and RDMSR in VMX non-root operation.

21.6.6 Guest/Host Masks and Read Shadows for CRO and CR4

VM-execution control fields include guest/host masks and read shadows for the
CRO and CR4 registers. These fields control executions of instructions that access
those registers (including CLTS, LMSW, MOV CR, and SMSW). They are 64 bits on
processors that support Intel 64 architecture and 32 bits on processors that do not.

In general, bits set to 1 in a guest/host mask correspond to bits “owned” by the host:

® Guest attempts to set them (using CLTS, LMSW, or MOV to CR) to values differing
from the corresponding bits in the corresponding read shadow cause VM exits.

® Guest reads (using MOV from CR or SMSW) return values for these bits from the
corresponding read shadow.

Bits cleared to O correspond to bits “owned” by the guest; guest attempts to modify
them succeed and guest reads return values for these bits from the control register
itself.

See Chapter 21 for details regarding how these fields affect VMX non-root operation.

21.6.7 CR3-Target Controls

The VM-execution control fields include a set of 4 CR3-target values and a CR3-
target count. The CR3-target values each have 64 bits on processors that support
Intel 64 architecture and 32 bits on processors that do not. The CR3-target count has
32 bits on all processors.

An execution of MOV to CR3 in VMX non-root operation does not cause a VM exit if its
source operand matches one of these values. If the CR3-target count is n, only the

Vol.3 21-17

VIRTUAL-MACHINE CONTROL STRUCTURES

first n CR3-target values are considered; if the CR3-target count is O, MOV to CR3
always causes a VM exit

There are no limitations on the values that can be written for the CR3-target values.
VM entry fails (see Section 23.2) if the CR3-target count is greater than 4.

Future processors may support a different number of CR3-target values. Software
should read the VMX capability MSR 1A32_VMX_MISC (see Appendix G.6) to deter-
mine the number of values supported.

21.6.8 Controls for APIC Accesses

There are three mechanisms by which software accesses registers of the logical
processor’s local APIC:

® If the local APIC is in XAPIC mode, it can perform memory-mapped accesses to
addresses in the 4-KByte page referenced by the physical address in the
IA32_APIC_BASE MSR (see Section 10.4.4, “Local APIC Status and Location” in
the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A
and Intel® 64 Architecture Processor Topology Enumeration).1

® If the local APIC is in Xx2APIC mode, it can accesses the local APIC’s registers
using the RDMSR and WRMSR instructions (see Intel® 64 Architecture Processor
Topology Enumeration).

® In 64-bit mode, it can access the local APIC’s task-priority register (TPR) using
the MOV CRS8 instruction.

There are three processor-based VM-execution controls (see Section 21.6.2) that
control such accesses. There are “use TPR shadow?”, “virtualize APIC accesses”, and
“virtualize x2APIC mode”. These controls interact with the following fields:

® APIC-access address (64 bits). This field is the physical address of the 4-KByte
APIC-access page. If the “virtualize APIC accesses” VM-execution control is 1,
operations that access this page may cause VM exits. See Section 22.2 and
Section 22.5.

The APIC-access address exists only on processors that support the 1-setting of
the “virtualize APIC accesses” VM-execution control.

® Virtual-APIC address (64 bits). This field is the physical address of the 4-KByte
virtual-APIC page.

If the “use TPR shadow” VM-execution control is 1, the virtual-APIC address must
be 4-KByte aligned. The virtual-APIC page is accessed by the following
operations if the “use TPR shadow” VM-execution control is 1:

— The MOV CRS8 instructions (see Section 22.1.3 and Section 22.4).

— Accesses to byte 80H on the APIC-access page if, in addition, the “virtualize
APIC accesses” VM-execution control is 1 (see Section 22.5.3).

1. If the local APIC does not support x2APIC mode, it is always in XAPIC mode.

21-18 Vol.3

VIRTUAL-MACHINE CONTROL STRUCTURES

— The RDMSR and WRMSR instructions if, in addition, the value of ECX is 808H
(indicating the TPR MSR) and the “virtualize x2APIC mode” VM-execution
control is 1 (see Section 22.4).

The virtual-APIC address exists only on processors that support the 1-setting of
the “use TPR shadow” VM-execution control.

® TPR threshold (32 bits). Bits 3:0 of this field determine the threshold below
which the TPR shadow (bits 7:4 of byte 80H of the virtual-APIC page) cannot fall.
A VM exit occurs after an operation (e.g., an execution of MOV to CR8) that
reduces the TPR shadow below this value. See Section 22.4 and Section 22.5.3.

The TPR threshold exists only on processors that support the 1-setting of the
“use TPR shadow” VM-execution control.

21.6.9 MSR-Bitmap Address

On processors that support the 1-setting of the “use MSR bitmaps” VM-execution
control, the VM-execution control fields include the 64-bit physical address of four
contiguous MSR bitmaps, which are each 1-KByte in size. This field does not exist
on processors that do not support the 1-setting of that control. The four bitmaps are:

® Read bitmap for low MSRs (located at the MSR-bitmap address). This contains
one bit for each MSR address in the range 00000000H to O0001FFFH. The bit
determines whether an execution of RDMSR applied to that MSR causes a
VM exit.

® Read bitmap for high MSRs (located at the MSR-bitmap address plus 1024).
This contains one bit for each MSR address in the range COOO0000H
toCOO01FFFH. The bit determines whether an execution of RDMSR applied to that
MSR causes a VM exit.

® Write bitmap for low MSRs (located at the MSR-bitmap address plus 2048).
This contains one bit for each MSR address in the range 00000000H to
0O0001FFFH. The bit determines whether an execution of WRMSR applied to that
MSR causes a VM exit.

® Write bitmap for high MSRs (located at the MSR-bitmap address plus 3072).
This contains one bit for each MSR address in the range COOO0000H
toCOOO01FFFH. The bit determines whether an execution of WRMSR applied to
that MSR causes a VM exit.

A logical processor uses these bitmaps if and only if the “use MSR bitmaps” control
is 1. If the bitmaps are used, an execution of RDMSR or WRMSR causes a VM exit if
the value of RCX is in neither of the ranges covered by the bitmaps or if the appro-
priate bit in the MSR bitmaps (corresponding to the instruction and the RCX value) is
1. See Section 22.1.3 for details. If the bitmaps are used, their address must be 4-
KByte aligned.

Vol.3 21-19

VIRTUAL-MACHINE CONTROL STRUCTURES

21.6.10 Executive-VMCS Pointer

The executive-VMCS pointer is a 64-bit field used in the dual-monitor treatment of
system-management interrupts (SMIs) and system-management mode (SMM). SMM
VM exits save this field as described in Section 26.15.2. VM entries that return from
SMM use this field as described in Section 26.15.4.

21.6.11 Extended-Page-Table Pointer (EPTP)

The extended-page-table pointer (EPTP) contains the address of the base of
EPML4 table (see Chapter 25), as well as other EPT configuration information. The
format of this field is shown in Table 21-8.

Table 21-8. Format of Extended-Page-Table Pointer

Bit Position(s) | Field

2.0 EPT paging-structure memory type (see Section 25.2.4):

0 = Uncacheable (UC)
6 = Write-back (WB)

Other values are reserved.!

5:3 This value is 1 less than the EPT page-walk length (see Section 25.2.2)
11:6 Reserved
N-1:12 Bits N-1:12 of the physical address of the 4-KByte aligned EPT PML4 table?
63:N Reserved
NOTES:

1. Software should read the VMX capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix G.10) to
determine what EPT paging-structure memory types are supported.

2. N is the physical-address width supported by the logical processor. Software can determine a pro-
cessor's physical-address width by executing CPUID with 80000008H in EAX. The physical-
address width is returned in bits 7:0 of EAX.

The EPTP exists only on processors that support the 1-setting of the “enable EPT”
VM-execution control.

21.6.12 Virtual-Processor Identifier (VPID)

The virtual-processor identifier (VPID) is a 16-bit field. It exists only on proces-
sors that support the 1-setting of the “enable VPID” VM-execution control. See
Chapter 25.1 for details regarding the use of this field.

21-20 Vol.3

VIRTUAL-MACHINE CONTROL STRUCTURES

21.6.13 Controls for PAUSE-Loop Exiting

On processors that support the 1-setting of the “PAUSE-loop exiting” VM-execution
control, the VM-execution control fields include the following 32-bit fields:

® PLE_Gap. Software can configure this field as an upper bound on the amount of
time between two successive executions of PAUSE in a loop.

® PLE_Window. Software can configure this field as an upper bound on the
amount of time a guest is allowed to execute in a PAUSE loop.

These fields measure time based on a counter that runs at the same rate as the
timestamp counter (TSC). See Section 22.1.3 for more details regarding PAUSE-loop
exiting.

21.7 VM-EXIT CONTROL FIELDS

The VM-exit control fields govern the behavior of VM exits. They are discussed in
Section 21.7.1 and Section 21.7.2.

21.7.1 VM-Exit Controls

The VM-exit controls constitute a 32-bit vector that governs the basic operation of
VM exits. Table 21-9 lists the controls supported. See Chapter 23 for complete details
of how these controls affect VM exits.

Table 21-9. Definitions of VM-Exit Controls

Bit Position(s | Name Description

)

2 Save debug This control determines whether DR7 and the
controls IA32_DEBUGCTL MSR are saved on VM exit.

The first processors to support the virtual-machine
extensions supported only the 1-setting of this control.

9 Host address- On processors that support Intel 64 architecture, this
space size control determines whether a logical processor is in 64-bit
mode after the next VM exit. Its value is loaded into CS.L,
IA32_EFER.LME, and IA32_EFER.LMA on every VM exit.!

This control must be 0 on processors that do not support
Intel 64 architecture.

12 Load This control determines whether the
IA32_PERF_GLOB | IA32_PERF_GLOBAL_CTRL MSR is loaded on VM exit.
AL_CTRL

Vol.3 21-21

VIRTUAL-MACHINE CONTROL STRUCTURES

Table 21-9. Definitions of VM-Exit Controls (Contd.)
Bit Position(s | Name Description

)

15 Acknowledge This control affects VM exits due to external interrupts:

interrupt on exit = If such a VM exit occurs and this control is 1, the logical
processor acknowledges the interrupt controller,
acquiring the interrupt's vector. The vector is stored in
the VM-exit interruption-information field, which is
marked valid.

= |f such a VM exit occurs and this control is O, the
interrupt is not acknowledged and the VM-exit
interruption-information field is marked invalid.

18 Save IA32_PAT This control determines whether the IA32_PAT MSR is
saved on VM exit.
19 Load IA32_PAT This control determines whether the IA32_PAT MSR is
loaded on VM exit.
20 Save IA32_EFER This control determines whether the IA32_EFER MSR is
saved on VM exit.
21 Load IA32_EFER This control determines whether the IA32_EFER MSR is
loaded on VM exit.
22 Save VMX- This control determines whether the value of the VMX-
preemption timer | preemption timer is saved on VM exit.
value
NOTES:

1. Since Intel 64 architecture specifies that IA32_EFER.LMA is always set to the logical-AND of
CRO.PG and IA32_EFER.LME, and since CRO.PG is always 1 in VMX operation, IA32_EFER.LMA is
always identical to IA32_EFER.LME in VMX operation.

All other bits in this field are reserved, some to O and some to 1. Software should
consult the VMX capability MSRs 1A32_VMX_EXIT_CTLS and
1A32_VMX_TRUE_EXIT_CTLS (see Appendix G.4) to determine how it should set the
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to
fail (see Section 23.2).

The first processors to support the virtual-machine extensions supported only the 1-
settings of bits 0-8, 10, 11, 13, 14, 16, and 17. The VMX capability MSR
1A32_VMX_EXIT_CTLS always reports that these bits must be 1. Logical processors
that support the 0-settings of any of these bits will support the VMX capability MSR
IA32_VMX_ TRUE_EXIT_CTLS MSR, and software should consult this MSR to discover
support for the O-settings of these bits. Software that is not aware of the function-
ality of any one of these bits should set that bit to 1.

21-22 Vol.3

VIRTUAL-MACHINE CONTROL STRUCTURES

21.7.2 VM-Exit Controls for MSRs

A VMM may specify lists of MSRs to be stored and loaded on VM exits. The following
VM-exit control fields determine how MSRs are stored on VM exits:

VM-exit MSR-store count (32 bits). This field specifies the number of MSRs to
be stored on VM exit. It is recommended that this count not exceed 512 bytes.t
Otherwise, unpredictable processor behavior (including a machine check) may
result during VM exit.

VM-exit MSR-store address (64 bits). This field contains the physical address
of the VM-exit MSR-store area. The area is a table of entries, 16 bytes per entry,
where the number of entries is given by the VM-exit MSR-store count. The format
of each entry is given in Table 21-10. If the VM-exit MSR-store count is not zero,
the address must be 16-byte aligned.

Table 21-10. Format of an MSR Entry

Bit Position(s) | Contents
31:.0 MSR index
63:32 Reserved
127:64 MSR data

See Section 24.4 for how this area is used on VM exits.

The following VM-exit control fields determine how MSRs are loaded on VM exits:

VM-exit MSR-load count (32 bits). This field contains the number of MSRs to
be loaded on VM exit. It is recommended that this count not exceed 512 bytes.
Otherwise, unpredictable processor behavior (including a machine check) may
result during VM exit.?

VM-exit MSR-load address (64 bits). This field contains the physical address of
the VM-exit MSR-load area. The area is a table of entries, 16 bytes per entry,
where the number of entries is given by the VM-exit MSR-load count (see

Table 21-10). If the VM-exit MSR-load count is not zero, the address must be
16-byte aligned.

See Section 24.6 for how this area is used on VM exits.

Future implementations may allow more MSRs to be stored reliably. Software should consult the
VMX capability MSR 1A32_VMX_MISC to determine the number supported (see Appendix G.6).

Future implementations may allow more MSRs to be loaded reliably. Software should consult the
VMX capability MSR 1A32_VMX_MISC to determine the number supported (see Appendix G.6).

Vol.3 21-23

VIRTUAL-MACHINE CONTROL STRUCTURES

21.8

VM-ENTRY CONTROL FIELDS

The VM-entry control fields govern the behavior of VM entries. They are discussed in

Sections 21.8.1 through 21.8.3.

21.8.1

VM-Entry Controls

The VM-entry controls constitute a 32-bit vector that governs the basic operation of
VM entries. Table 21-11 lists the controls supported. See Chapter 22 for how these
controls affect VM entries.

Table 21-11. Definitions of VM-Entry Controls
Bit Position(s) | Name Description
2 Load debug This control determines whether DR7 and the
controls IA32_DEBUGCTL MSR are loaded on VM exit.
The first processors to support the virtual-machine
extensions supported only the 1-setting of this control.

9 IA-32e mode guest | On processors that support Intel 64 architecture, this control
determines whether the logical processor is in IA-32e mode
after VM entry. Its value is loaded into IA32_EFER.LMA as
part of VM entry.!

This control must be 0 on processors that do not support
Intel 64 architecture.

10 Entry to SMM This control determines whether the logical processor is in
system-management mode (SMM) after VM entry. This
control must be O for any VM entry from outside SMM.

11 Deactivate dual- If set to 1, the default treatment of SMIs and SMM is in effect

monitor treatment | after the VM entry (see Section 26.15.7). This control must
be 0 for any VM entry from outside SMM.

13 Load This control determines whether the

IA32_PERF_GLOBA |IA32_PERF_GLOBAL_CTRL MSR is loaded on VM entry.
L_CTRL

14 Load IA32_PAT This control determines whether the IA32_PAT MSR is
loaded on VM entry.

15 Load IA32_EFER This control determines whether the IA32_EFER MSR is
loaded on VM entry.

NOTES:

1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-setting
of the “unrestricted guest” VM-execution control. If it is read as 1, every VM exit stores the value
of IA32_EFER.LMA into the “IA-32e mode guest” VM-entry control (see Section 24.2).

21-24 Vol.3

VIRTUAL-MACHINE CONTROL STRUCTURES

All other bits in this field are reserved, some to O and some to 1. Software should
consult the VMX capability MSRs I1A32_VMX_ENTRY_CTLS and
1IA32_VMX_TRUE_ENTRY_CTLS (see Appendix G.5) to determine how it should set
the reserved bits. Failure to set reserved bits properly causes subsequent VM entries
to fail (see Section 23.2).

The first processors to support the virtual-machine extensions supported only the 1-
settings of bits 0—8 and 12. The VMX capability MSR 1A32_VMX_ENTRY_CTLS always
reports that these bits must be 1. Logical processors that support the 0O-settings of
any of these bits will support the VMX capability MSR 1A32_VMX_TRUE_ENTRY_CTLS
MSR, and software should consult this MSR to discover support for the O-settings of
these bits. Software that is not aware of the functionality of any one of these bits
should set that bit to 1.

21.8.2 VM-Entry Controls for MSRs

A VMM may specify a list of MSRs to be loaded on VM entries. The following VM-entry
control fields manage this functionality:

® VM-entry MSR-load count (32 bits). This field contains the number of MSRs to
be loaded on VM entry. It is recommended that this count not exceed 512 bytes.
Otherwise, unpredictable processor behavior (including a machine check) may
result during VM entry.1

® VM-entry MSR-load address (64 bits). This field contains the physical address
of the VM-entry MSR-load area. The area is a table of entries, 16 bytes per entry,
where the number of entries is given by the VM-entry MSR-load count. The
format of entries is described in Table 21-10. If the VM-entry MSR-load count is
not zero, the address must be 16-byte aligned.

See Section 23.4 for details of how this area is used on VM entries.

21.8.3 VM-Entry Controls for Event Injection

VM entry can be configured to conclude by delivering an event through the IDT (after
all guest state and MSRs have been loaded). This process is called event injection
and is controlled by the following three VM-entry control fields:

® VM-entry interruption-information field (32 bits). This field provides details
about the event to be injected. Table 21-12 describes the field.

Table 21-12. Format of the VM-Entry Interruption-Information Field

Bit Content
Position(s)

7.0 Vector of interrupt or exception

1. Future implementations may allow more MSRs to be loaded reliably. Software should consult the
VMX capability MSR 1A32_VMX_MISC to determine the number supported (see Appendix G.6).

Vol.3 21-25

VIRTUAL-MACHINE CONTROL STRUCTURES

Table 21-12. Format of the VM-Entry Interruption-Information Field (Contd.)

Bit

Position(s)

Content

10:8

Interruption type:

0: External interrupt

1: Reserved

2: Non-maskable interrupt (NMI)
3: Hardware exception

4; Software interrupt

5: Privileged software exception
6: Software exception

7: Other event

1

Deliver error code (0 = do not deliver; 1 = deliver)

30:12

Reserved

31

Valid

The vector (bits 7:0) determines which entry in the IDT is used or which
other event is injected.

The interruption type (bits 10:8) determines details of how the injection is
performed. In general, a VMM should use the type hardware exception for
all exceptions other than breakpoint exceptions (#BP; generated by INT3)
and overflow exceptions (#OF; generated by INTO); it should use the type
software exception for #BP and #OF. The type other event is used for
injection of events that are not delivered through the IDT.

For exceptions, the deliver-error-code bit (bit 11) determines whether
delivery pushes an error code on the guest stack.

VM entry injects an event if and only if the valid bit (bit 31) is 1. The valid bit
in this field is cleared on every VM exit (see Section 24.2).

® VM-entry exception error code (32 bits). This field is used if and only if the
valid bit (bit 31) and the deliver-error-code bit (bit 11) are both set in the
VM-entry interruption-information field.

® VM-entry instruction length (32 bits). For injection of events whose type is
software interrupt, software exception, or privileged software exception, this
field is used to determine the value of RIP that is pushed on the stack.

See Section 23.5 for details regarding the mechanics of event injection, including the
use of the interruption type and the VM-entry instruction length.

VM exits clear the valid bit (bit 31) in the VM-entry interruption-information field.

21-26 Vol.3

21.9

VIRTUAL-MACHINE CONTROL STRUCTURES

VM-EXIT INFORMATION FIELDS

The VMCS contains a section of read-only fields that contain information about the
most recent VM exit. Attempts to write to these fields with VMWRITE fail (see
“VMWRITE—Write Field to Virtual-Machine Control Structure” in Chapter 6 of the
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2B).

21.9.1

Basic VM-Exit Information

The following VM-exit information fields provide basic information about a VM exit:

® Exit reason (32 bits). This field encodes the reason for the VM exit and has the
structure given in Table 21-13.

Table 21-13. Format of Exit Reason

Bit Contents

Position(s)

150 Basic exit reason

27:16 Reserved (cleared to 0)

28 Pending MTF VM exit

29 VM exit from VMX root operation

30 Reserved (cleared to 0)

31 VM-entry failure (0 = true VM exit; 1 = VM-entry failure)

Bits 15:0 provide basic information about the cause of the VM exit (if bit 31 is
clear) or of the VM-entry failure (if bit 31 is set). Appendix | enumerates the
basic exit reasons.

Bit 28 is set only by an SMM VM exit (see Section 26.15.2) that took priority
over an MTF VM exit (see Section 22.7.2) that would have occurred had the
SMM VM exit not occurred. See Section 26.15.2.3.

Bit 29 is set if and only if the processor was in VMX root operation at the time
the VM exit occurred. This can happen only for SMM VM exits. See Section
26.15.2.

Because some VM-entry failures load processor state from the host-state
area (see Section 23.7), software must be able to distinguish such cases from
true VM exits. Bit 31 is used for that purpose.

¢ Exit qualification (64 bits; 32 bits on processors that do not support Intel 64
architecture). This field contains additional information about the cause of
VM exits due to the following: debug exceptions; page-fault exceptions; start-up
IPIs (SIPIs); task switches; INVEPT; INVLPG;INVVPID; LGDT; LIDT; LLDT; LTR;

Vol.3 21-27

VIRTUAL-MACHINE CONTROL STRUCTURES

SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE;
VMXON; control-register accesses; MOV DR; 1/0 instructions; and MWAIT. The
format of the field depends on the cause of the VM exit. See Section 24.2.1 for

details.

® Guest-linear address (64 bits; 32 bits on processors that do not support
Intel 64 architecture). This field is used in the following cases:

— VM exits due to attempts to execute LMSW with a memory operand.
— VM exits due to attempts to execute INS or OUTS.

— VM exits due to system-management interrupts (SMIs) that arrive
immediately after retirement of 1/0 instructions.

— Certain VM exits due to EPT violations

See Section 24.2.1 and Section 26.15.2.3 for details of when and how this field is

used.
® Guest-physical address (64 bits). This field is used VM exits due to EPT

violations and EPT misconfigurations. See Section 24.2.1 for details of when and

how this field is used.

21.9.2 Information for VM Exits Due to Vectored Events

Event-specific information is provided for VM exits due to the following vectored
events: exceptions (including those generated by the instructions INT3, INTO,

BOUND, and UD2); external interrupts that occur while the “acknowledge interrupt
on exit” VM-exit control is 1; and non-maskable interrupts (NMIs). This information

is provided in the following fields:
® VM-exit interruption information (32 bits). This field receives basic

information associated with the event causing the VM exit. Table 21-14 describes

this field.

Table 21-14. Format of the VM-Exit Interruption-Information Field

Bit Position(s) | Content

7:0 Vector of interrupt or exception
10:8 Interruption type:

0: External interrupt

1: Not used

2: Non-maskable interrupt (NMI)
3: Hardware exception

4 - 5: Not used

6: Software exception

7: Not used
11 Error code valid (0 = invalid; 1 = valid)
12 NMI unblocking due to IRET

21-28 Vol.3

Table 21-

VIRTUAL-MACHINE CONTROL STRUCTURES

14. Format of the VM-Exit Interruption-Information Field (Contd.)

Bit Position(s) | Content
30:13 Reserved (cleared to 0)
31 Valid

VM-exit interruption error code (32 bits). For VM exits caused by hardware

exceptions that would have delivered an error code on the stack, this field
receives that error code.

Section 24.2.2 provides details of how these fields are saved on VM exits.

21.9.3

Information for VM Exits That Occur During Event Delivery

Additional information is provided for VM exits that occur during event delivery in
VMX non-root operation.1 This information is provided in the following fields:

IDT-vectoring information (32 bits). This field receives basic information

associated with the event that was being delivered when the VM exit occurred.
Table 21-15 describes this field.

Table 21-15. Format of the IDT-Vectoring Information Field

Bit Content
Position(s)
7.0 Vector of interrupt or exception
10:8 Interruption type:
0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Software interrupt
5: Privileged software exception
6: Software exception
7: Not used
11 Error code valid (0 = invalid; 1 = valid)
12 Undefined
30:13 Reserved (cleared to 0)
31 Valid

1. This includes cases in which the event delivery was caused by event injection as part of
VM entry; see Section 23.5.1.2.

Vol.3 21-29

VIRTUAL-MACHINE CONTROL STRUCTURES

® IDT-vectoring error code (32 bits). For VM exits the occur during delivery of
hardware exceptions that would have delivered an error code on the stack, this
field receives that error code.

See Section 24.2.3 provides details of how these fields are saved on VM exits.

21.9.4 Information for VM Exits Due to Instruction Execution

The following fields are used for VM exits caused by attempts to execute certain
instructions in VMX non-root operation:

® VM-exit instruction length (32 bits). For VM exits resulting from instruction
execution, this field receives the length in bytes of the instruction whose
execution led to the VM exit.1 See Section 24.2.4 for details of when and how this
field is used.

® VM-exit instruction information (32 bits). This field is used for VM exits due
to attempts to execute INS, INVEPT, INVVPID, LIDT, LGDT, LLDT, LTR, OUTS,
SIDT, SGDT, SLDT, STR, VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, or
VMXON.? The format of the field depends on the cause of the VM exit. See
Section 24.2.4 for details.

The following fields (64 bits each; 32 bits on processors that do not support Intel 64
architecture) are used only for VM exits due to SMIs that arrive immediately after
retirement of 1/0 instructions. They provide information about that 1/0 instruction:

® |/0 RCX. The value of RCX before the 1/0 instruction started.
® 1/0 RSI. The value of RSI before the 1/0 instruction started.
® 1/0 RDI. The value of RDI before the 1/0 instruction started.

® 1/0 RIP. The value of RIP before the 1/0 instruction started (the RIP that
addressed the 1/0 instruction).

21.9.5 VM-Instruction Error Field

The 32-bit VM-instruction error field does not provide information about the most
recent VM exit. In fact, it is not modified on VM exits. Instead, it provides information
about errors encountered by a non-faulting execution of one of the VMX instructions.

1. This field is also used for VM exits that occur during the delivery of a software interrupt or soft-
ware exception.

2. Whether the processor provides this information on VM exits due to attempts to execute INS or
OUTS can be determined by consulting the VMX capability MSR 1A32_VMX_BASIC (see Appendix
G.1).

21-30 Vol.3

VIRTUAL-MACHINE CONTROL STRUCTURES

21.10 SOFTWARE USE OF THE VMCS AND RELATED
STRUCTURES

This section details guidelines that software should observe when using a VMCS and
related structures. It also provides descriptions of consequences for failing to follow
guidelines.

21.10.1 Software Use of Virtual-Machine Control Structures

To ensure proper processor behavior, software should observe certain guidelines
when using an active VMCS.

No VMCS should ever be active on more than one logical processor. If a VMCS is to
be “migrated” from one logical processor to another, the first logical processor
should execute VMCLEAR for the VMCS (to make it inactive on that logical processor
and to ensure that all VMCS data are in memory) before the other logical processor
executes VMPTRLD for the VMCS (to make it active on the second logical processor).
A VMCS that is made active on more than one logical processor may become
corrupted (see below).

Software should use the VMREAD and VMWRITE instructions to access the different
fields in the current VMCS (see Section 21.10.2). Software should never access or
modify the VMCS data of an active VMCS using ordinary memory operations, in part
because the format used to store the VMCS data is implementation-specific and not
architecturally defined, and also because a logical processor may maintain some
VMCS data of an active VMCS on the processor and not in the VMCS region. The
following items detail some of the hazards of accessing VMCS data using ordinary
memory operations:

® Any data read from a VMCS with an ordinary memory read does not reliably
reflect the state of the VMCS. Results may vary from time to time or from logical
processor to logical processor.

® Writing to a VMCS with an ordinary memory write is not guaranteed to have a
deterministic effect on the VMCS. Doing so may cause the VMCS to become
corrupted (see below).

(Software can avoid these hazards by removing any linear-address mappings to a
VMCS region before executing a VMPTRLD for that region and by not remapping it
until after executing VMCLEAR for that region.)

If a logical processor leaves VMX operation, any VMCSs active on that logical
processor may be corrupted (see below). To prevent such corruption of a VMCS that
may be used either after a return to VMX operation or on another logical processor,
software should VMCLEAR that VMCS before executing the VMXOFF instruction or
removing power from the processor (e.g., as part of a transition to the S3 and S4
power states).

This section has identified operations that may cause a VMCS to become corrupted.
These operations may cause the VMCS'’s data to become undefined. Behavior may be

Vol.3 21-31

VIRTUAL-MACHINE CONTROL STRUCTURES

unpredictable if that VMCS used subsequently on any logical processor. The following
items detail some hazards of VMCS corruption:

® VM entries may fail for unexplained reasons or may load undesired processor
state.

® The processor may not correctly support VMX non-root operation as documented
in Chapter 21 and may generate unexpected VM exits.

® VM exits may load undesired processor state, save incorrect state into the VMCS,
or cause the logical processor to transition to a shutdown state.

21.10.2 VMREAD, VMWRITE, and Encodings of VMCS Fields

Every field of the VMCS is associated with a 32-bit value that is its encoding. The
encoding is provided in an operand to VMREAD and VMWRITE when software wishes
to read or write that field. These instructions fail if given, in 64-bit mode, an operand
that sets an encoding bit beyond bit 32. See Chapter 5 of the Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 2B, for a description of these
instructions.

The structure of the 32-bit encodings of the VMCS components is determined princi-
pally by the width of the fields and their function in the VMCS. See Table 21-16.

Table 21-16. Structure of VMCS Component Encoding

Bit Position(s) | Contents

31:15 Reserved (must be 0)

14:13 Width:

0: 16-bit

1: 64-bit

2: 32-bit

3: natural-width

12 Reserved (must be 0)

11:10 Type:

0: control

1: read-only data
2: guest state

3: host state

91 Index
0 Access type (0 = full; 1 = high); must be full for 16-bit, 32-bit, and natural-
width fields

The following items detail the meaning of the bits in each encoding:

21-32 Vol.3

VIRTUAL-MACHINE CONTROL STRUCTURES

Field width. Bits 14:13 encode the width of the field.
— A value of O indicates a 16-bit field.
— A value of 1 indicates a 64-bit field.
— A value of 2 indicates a 32-bit field.

— A value of 3 indicates a natural-width field. Such fields have 64 bits on
processors that support Intel 64 architecture and 32 bits on processors that
do not.

Fields whose encodings use value 1 are specially treated to allow 32-bit software
access to all 64 bits of the field. Such access is allowed by defining, for each such
field, an encoding that allows direct access to the high 32 bits of the field. See
below.

Field type. Bits 11:10 encode the type of VMCS field: control, guest-state, host-
state, or read-only data. The last category includes the VM-exit information fields
and the VM-instruction error field.

Index. Bits 9:1 distinguish components with the same field width and type.

Access type. Bit 0 must be 0 for all fields except for 64-bit fields (those with
field-width 1; see above). A VMREAD or VMWRITE using an encoding with this bit
cleared to O accesses the entire field. For a 64-bit field with field-width 1, a
VMREAD or VMWRITE using an encoding with this bit set to 1 accesses only the
high 32 bits of the field.

Appendix H gives the encodings of all fields in the VMCS.

The following describes the operation of VMREAD and VMWRITE based on processor
mode, VMCS-field width, and access type:

16-bit fields:

— A VMREAD returns the value of the field in bits 15:0 of the destination
operand; other bits of the destination operand are cleared to O.

— A VMWRITE writes the value of bits 15:0 of the source operand into the VMCS
field; other bits of the source operand are not used.

32-bit fields:

— A VMREAD returns the value of the field in bits 31:0 of the destination

operand; in 64-bit mode, bits 63:32 of the destination operand are cleared to
0.

— A VMWRITE writes the value of bits 31:0 of the source operand into the VMCS
field; in 64-bit mode, bits 63:32 of the source operand are not used.

64-bit fields and natural-width fields using the full access type outside 1A-32e
mode.

— A VMREAD returns the value of bits 31:0 of the field in its destination
operand; bits 63:32 of the field are ignored.

Vol.3 21-33

VIRTUAL-MACHINE CONTROL STRUCTURES

— A VMWRITE writes the value of its source operand to bits 31:0 of the field and
clears bits 63:32 of the field.

® 64-bit fields and natural-width fields using the full access type in 64-bit mode
(only on processors that support Intel 64 architecture).

— A VMREAD returns the value of the field in bits 63:0 of the destination
operand

— A VMWRITE writes the value of bits 63:0 of the source operand into the VMCS
field.

® 64-bit fields using the high access type.

— A VMREAD returns the value of bits 63:32 of the field in bits 31:0 of the
destination operand; in 64-bit mode, bits 63:32 of the destination operand
are cleared to O.

— A VMWRITE writes the value of bits 31:0 of the source operand to bits 63:32
of the field; in 64-bit mode, bits 63:32 of the source operand are not used.

Software seeking to read a 64-bit field outside 1A-32e mode can use VMREAD with
the full access type (reading bits 31:0 of the field) and VMREAD with the high access
type (reading bits 63:32 of the field); the order of the two VMREAD executions is not
important. Software seeking to modify a 64-bit field outside 1A-32e mode should first
use VMWRITE with the full access type (establishing bits 31:0 of the field while
clearing bits 63:32) and then use VMWRITE with the high access type (establishing
bits 63:32 of the field).

21.10.3 Initializing a VMCS

Software should initialize fields in a VMCS (using VMWRITE) before using the VMCS
for VM entry. Failure to do so may result in unpredictable behavior; for example, a
VM entry may fail for unexplained reasons, or a successful transition (VM entry or
VM exit) may load processor state with unexpected values.

It is not necessary to initialize fields that the logical processor will not use. (For
example, it is not necessary to unitize the MSR-bitmap address if the “use MSR
bitmaps” VM-execution control is 0.)

A processor maintains some VMCS information that cannot be modified with the
VMWRITE instruction; this includes a VMCS’s launch state (see Section 21.1). Such
information may be stored in the VMCS data portion of a VMCS region. Because the
format of this information is implementation-specific, there is no way for software to
know, when it first allocates a region of memory for use as a VMCS region, how the
processor will determine this information from the contents of the memory region.

In addition to its other functions, the VMCLEAR instruction initializes any implemen-
tation-specific information in the VMCS region referenced by its operand. To avoid
the uncertainties of implementation-specific behavior, software should execute
VMCLEAR on a VMCS region before making the corresponding VMCS active with

21-34 Vol.3

VIRTUAL-MACHINE CONTROL STRUCTURES

VMPTRLD for the first time. (Figure 21-1 illustrates how execution of VMCLEAR puts
a VMCS into a well-defined state.)

The following software usage is consistent with these limitations:

® VMCLEAR should be executed for a VMCS before it is used for VM entry for the
first time.

® VMLAUNCH should be used for the first VM entry using a VMCS after VMCLEAR
has been executed for that VMCS.

® VMRESUME should be used for any subsequent VM entry using a VMCS (until the
next execution of VMCLEAR for the VMCS).

It is expected that, in general, VMRESUME will have lower latency than VMLAUNCH.
Since “migrating” a VMCS from one logical processor to another requires use of
VMCLEAR (see Section 21.10.1), which sets the launch state of the VMCS to “clear”,
such migration requires the next VM entry to be performed using VMLAUNCH. Soft-
ware developers can avoid the performance cost of increased VM-entry latency by
avoiding unnecessary migration of a VMCS from one logical processor to another.

21.10.4 Software Access to Related Structures

In addition to data in the VMCS region itself, VMX non-root operation can be
controlled by data structures that are referenced by pointers in a VMCS (for example,
the 1/0 bitmaps). While the pointers to these data structures are parts of the VMCS,
the data structures themselves are not. They are not accessible using VMREAD and
VMWRITE but by ordinary memory writes.

Software should ensure that each such data structure is modified only when no
logical processor with a current VMCS that references it is in VMX non-root operation.
Doing otherwise may lead to unpredictable behavior (including behaviors identified in
Section 21.10.1).

21.10.5 VMXON Region

Before executing VMXON, software allocates a region of memory (called the VMXON
region)® that the logical processor uses to support VMX operation. The physical
address of this region (the VMXON pointer) is provided in an operand to VMXON. The
VMXON pointer is subject to the limitations that apply to VMCS pointers:

® The VMXON pointer must be 4-KByte aligned (bits 11:0 must be zero).

® On processors that support Intel 64 architecture, the VMXON pointer must not
set any bits beyond the processor’s physical-address width.2 On processors that

1. The amount of memory required for the VMXON region is the same as that required for a VMCS
region. This size is implementation specific and can be determined by consulting the VMX capa-
bility MSR 1A32_VMX_BASIC (see Appendix G.1).

Vol.3 21-35

VIRTUAL-MACHINE CONTROL STRUCTURES

do not support Intel 64 architecture, the VMXON pointer must not set any bits in
the range 63:32.

Before executing VMXON, software should write the VMCS revision identifier (see
Section 21.2) to the VMXON region. It need not initialize the VMXON region in any
other way. Software should use a separate region for each logical processor and
should not access or modify the VMXON region of a logical processor between execu-
tion of VMXON and VMXOFF on that logical processor. Doing otherwise may lead to
unpredictable behavior (including behaviors identified in Section 21.10.1).

2. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

21-36 Vol.3

CHAPTER 22
VMX NON-ROOT OPERATION

In a virtualized environment using VMX, the guest software stack typically runs on a
logical processor in VMX non-root operation. This mode of operation is similar to that
of ordinary processor operation outside of the virtualized environment. This chapter
describes the differences between VMX non-root operation and ordinary processor
operation with special attention to causes of VM exits (which bring a logical processor
from VMX non-root operation to root operation). The differences between VMX non-
root operation and ordinary processor operation are described in the following
sections:

® Section 22.1, “Instructions That Cause VM EXxits”

® Section 22.2, “APIC-Access VM EXxits”

® Section 22.3, “Other Causes of VM Exits”

® Section 22.4, “Changes to Instruction Behavior in VMX Non-Root Operation”
® Section 22.5, “APIC Accesses That Do Not Cause VM Exits”

® Section 22.6, “Other Changes in VMX Non-Root Operation”

® Section 22.7, “Features Specific to VMX Non-Root Operation”

Chapter 21, “Virtual-Machine Control Structures,” describes the data control struc-
ture that governs VMX operation (root and non-root). Chapter 22, “VMX Non-Root
Operation,” describes the operation of VM entries which allow the processor to tran-
sition from VMX root operation to non-root operation.

22.1 INSTRUCTIONS THAT CAUSE VM EXITS

Certain instructions may cause VM exits if executed in VMX non-root operation.
Unless otherwise specified, such VM exits are “fault-like,” meaning that the instruc-
tion causing the VM exit does not execute and no processor state is updated by the
instruction. Section 24.1 details architectural state in the context of a VM exit.

Section 22.1.1 defines the prioritization between faults and VM exits for instructions
subject to both. Section 22.1.2 identifies instructions that cause VM exits whenever
they are executed in VMX non-root operation (and thus can never be executed in

VMX non-root operation). Section 22.1.3 identifies instructions that cause VM exits
depending on the settings of certain VM-execution control fields (see Section 21.6).

22.1.1 Relative Priority of Faults and VM Exits

The following principles describe the ordering between existing faults and VM exits:

Vol.3 22-1

VMX NON-ROOT OPERATION

® Certain exceptions have priority over VM exits. These include invalid-opcode
exceptions, faults based on privilege level,! and general-protection exceptions
that are based on checking 1/0 permission bits in the task-state segment (TSS).
For example, execution of RDMSR with CPL = 3 generates a general-protection
exception and not a VM exit.?

® Faults incurred while fetching instruction operands have priority over VM exits
that are conditioned based on the contents of those operands (see LMSW in
Section 22.1.3).

® VM exits caused by execution of the INS and OUTS instructions (resulting either
because the “unconditional 1/0 exiting” VM-execution control is 1 or because the
“use 1/0 bitmaps control is 1) have priority over the following faults:

— A general-protection fault due to the relevant segment (ES for INS; DS for
OUTS unless overridden by an instruction prefix) being unusable

— A general-protection fault due to an offset beyond the limit of the relevant
segment

— An alignment-check exception

® Fault-like VM exits have priority over exceptions other than those mentioned
above. For example, RDMSR of a non-existent MSR with CPL = O generates a
VM exit and not a general-protection exception.

When Section 22.1.2 or Section 22.1.3 (below) identify an instruction execution that
may lead to a VM exit, it is assumed that the instruction does not incur a fault that
takes priority over a VM exit.

22.1.2 Instructions That Cause VM Exits Unconditionally

The following instructions cause VM exits when they are executed in VMX non-root
operation: CPUID, GETSEC,3 INVD, and XSETBV.? This is also true of instructions
introduced with VMX, which include: INVEPT, INVVPID, VMCALL,® VMCLEAR,
VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF, and
VMXON.

1. These include faults generated by attempts to execute, in virtual-8086 mode, privileged instruc-
tions that are not recognized in that mode.

2. MOV DR is an exception to this rule; see Section 22.1.3.

3. An execution of GETSEC in VMX non-root operation causes a VM exit if CR4.SMXE[Bit 14] = 1
regardless of the value of CPL or RAX. An execution of GETSEC causes an invalid-opcode excep-
tion (#UD) if CR4.SMXE[Bit 14] = 0.

4, An execution of XSETBV in VMX non-root operation causes a VM exit if CR4.0SXSAVE[Bit 18] =
1 regardless of the value of CPL, RAX, RCX, or RDX. An execution of XSETBV causes an invalid-
opcode exception (#UD) if CR4.0SXSAVE[Bit 18] = 0.

5. Under the dual-monitor treatment of SMIs and SMM, executions of VMCALL cause SMM VM exits
in VMX root operation outside SMM. See Section 26.15.2.

22-2 Vol.3

VMX NON-ROOT OPERATION

22.1.3 Instructions That Cause VM Exits Conditionally

Certain instructions cause VM exits in VMX non-root operation depending on the
setting of the VM-execution controls. The following instructions can cause “fault-like”
VM exits based on the conditions described:

CLTS. The CLTS instruction causes a VM exit if the bits in position 3 (corre-
sponding to CRO.TS) are set in both the CRO guest/host mask and the CRO read
shadow.

HLT. The HLT instruction causes a VM exit if the “HLT exiting” VM-execution
control is 1.

IN, INS/ZINSB/INSW/INSD, OUT, OUTS/0OUTSB/0OUTSW/0OUTSD. The
behavior of each of these instructions is determined by the settings of the
“unconditional 1/0 exiting” and “use 1/0 bitmaps” VM-execution controls:

— If both controls are O, the instruction executes normally.

— If the “unconditional 1/0 exiting” VM-execution control is 1 and the “use 1/0
bitmaps” VM-execution control is O, the instruction causes a VM exit.

— If the “use 1I/0 bitmaps” VM-execution control is 1, the instruction causes a
VM exit if it attempts to access an 1/0 port corresponding to a bit set to 1 in
the appropriate 1/0 bitmap (see Section 21.6.4). If an 1/0 operation “wraps
around” the 16-bit 1/0-port space (accesses ports FFFFH and O0000H), the 1/0
instruction causes a VM exit (the “unconditional 1/0 exiting” VM-execution
control is ignored if the “use 1/0 bitmaps” VM-execution control is 1).

See Section 22.1.1 for information regarding the priority of VM exits relative to
faults that may be caused by the INS and OUTS instructions.

INLVPG. The INLVPG instruction causes a VM exit if the “INLVPG exiting”
VM-execution control is 1.

LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR. These instructions cause
VM exits if the “descriptor-table exiting” VM-execution control is 1.1

LMSW. In general, the LMSW instruction causes a VM exit if it would write, for
any bit set in the low 4 bits of the CRO guest/host mask, a value different than the
corresponding bit in the CRO read shadow. LMSW never clears bit 0 of CRO
(CRO.PE); thus, LMSW causes a VM exit if either of the following are true:

— The bits in position O (corresponding to CRO.PE) are set in both the CRO
guest/mask and the source operand, and the bit in position O is clear in the
CRO read shadow.

— For any bit position in the range 3:1, the bit in that position is set in the CRO
guest/mask and the values of the corresponding bits in the source operand
and the CRO read shadow differ.

1.

“Descriptor-table exiting” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
"descriptor-table exiting” VM-execution control were 0. See Section 21.6.2.

Vol.3 22-3

VMX NON-ROOT OPERATION

® MONITOR. The MONITOR instruction causes a VM exit if the “MONITOR exiting”
VM-execution control is 1.

® MOV from CR3. The MOV from CR3 instruction causes a VM exit if the “CR3-
store exiting” VM-execution control is 1. The first processors to support the
virtual-machine extensions supported only the 1-setting of this control.

® MOV from CR8. The MOV from CRS8 instruction (which can be executed only in
64-bit mode) causes a VM exit if the “CR8-store exiting” VM-execution control is
1. If this control is O, the behavior of the MOV from CRS8 instruction is modified if
the “use TPR shadow” VM-execution control is 1 (see Section 22.4).

¢ MOV to CRO. The MOV to CRO instruction causes a VM exit unless the value of its
source operand matches, for the position of each bit set in the CRO guest/host
mask, the corresponding bit in the CRO read shadow. (If every bit is clear in the
CRO guest/host mask, MOV to CRO cannot cause a VM exit.)

¢ MOV to CR3. The MOV to CR3 instruction causes a VM exit unless the “CR3-load
exiting” VM-execution control is O or the value of its source operand is equal to
one of the CR3-target values specified in the VMCS. If the CR3-target count in n,
only the first n CR3-target values are considered; if the CR3-target count is O,
MOV to CR3 always causes a VM exit.

The first processors to support the virtual-machine extensions supported only
the 1-setting of the “CR3-load exiting” VM-execution control. These processors
always consult the CR3-target controls to determine whether an execution of
MOV to CR3 causes a VM exit.

® MOV to CR4. The MOV to CR4 instruction causes a VM exit unless the value of its
source operand matches, for the position of each bit set in the CR4 guest/host
mask, the corresponding bit in the CR4 read shadow.

® MOV to CR8. The MOV to CR8 instruction (which can be executed only in 64-bit
mode) causes a VM exit if the “CR8-load exiting” VM-execution control is 1. If this
control is 0, the behavior of the MOV to CR8 instruction is modified if the “use TPR
shadow” VM-execution control is 1 (see Section 22.4) and it may cause a trap-
like VM exit (see below).

® MOV DR. The MOV DR instruction causes a VM exit if the “MOV-DR exiting”
VM-execution control is 1. Such VM exits represent an exception to the principles
identified in Section 22.1.1 in that they take priority over the following: general-
protection exceptions based on privilege level; and invalid-opcode exceptions
that occur because CR4.DE=1 and the instruction specified access to DR4 or DR5.

® MWAIT. The MWAIT instruction causes a VM exit if the “MWAIT exiting”
VM-execution control is 1.

® PAUSE.The behavior of each of this instruction depends on CPL and the settings
of the “PAUSE exiting” and “PAUSE-loop exiting” VM-execution controls:

— CPL=0.

* If the “PAUSE exiting” and “PAUSE-loop exiting” VM-execution controls
are both 0, the PAUSE instruction executes normally.

22-4 Vol.3

VMX NON-ROOT OPERATION

If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction
causes a VM exit (the “PAUSE-loop exiting” VM-execution control is
ignored if CPL = 0 and the “PAUSE exiting” VM-execution control is 1).

If the “PAUSE exiting” VM-execution control is O and the “PAUSE-loop
exiting” VM-execution control is 1, the following treatment applies.

The logical processor determines the amount of time between this
execution of PAUSE and the previous execution of PAUSE at CPL O. If this
amount of time exceeds the value of the VM-execution control field
PLE_Gap, the processor considers this execution to be the first execution
of PAUSE in a loop. (It also does so for the first execution of PAUSE at CPL
0 after VM entry.)

Otherwise, the logical processor determines the amount of time since the
most recent execution of PAUSE that was considered to be the first in a
loop. If this amount of time exceeds the value of the VM-execution control
field PLE_Window, a VM exit occurs.

For purposes of these computations, time is measured based on a counter
that runs at the same rate as the timestamp counter (TSC).

— CPL=>0.

If the “PAUSE exiting” VM-execution control is O, the PAUSE instruction
executes normally.

If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction
causes a VM exit.

The “PAUSE-loop exiting” VM-execution control is ignored if CPL > 0.

RDMSR. The RDMSR instruction causes a VM exit if any of the following are true:

— The “use MSR bitmaps” VM-execution control is O.

— The value of ECX is not in the range 00000000H — O0001FFFH or
COO00000H — COOO1FFFH.

— The value of ECX is in the range 00000000H — O0001FFFH and bit n in read
bitmap for low MSRs is 1, where n is the value of ECX.

— The value of ECX is in the range COOO0000H — CO001FFFH and bit n in read
bitmap for high MSRs is 1, where n is the value of ECX & O0001FFFH.

See Section 21.6.9 for details regarding how these bitmaps are identified.

RDPMC. The RDPMC instruction causes a VM exit if the “RDPMC exiting”
VM-execution control is 1.

RDTSC. The RDTSC instruction causes a VM exit if the “RDTSC exiting”
VM-execution control is 1.

RDTSCP. The RDTSCP instruction causes a VM exit if the “RDTSC exiting” and
“enable RDTSCP” VM-execution controls are both 1.

RSM. The RSM instruction causes a VM exit if executed in system-management
mode (SMM).1

Vol.3 22-5

VMX NON-ROOT OPERATION

WBINVD. The WBINVD instruction causes a VM exit if the “WBINVD exiting”
VM-execution control is 1.1

WRMSR. The WRMSR instruction causes a VM exit if any of the following are
true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the range 00000000H — O0O001FFFH or
COOOOOOOH — COO01FFFH.

— The value of ECX is in the range 00000000H — OO001FFFH and bit n in write
bitmap for low MSRs is 1, where n is the value of ECX.

— The value of ECX is in the range COO0O0000H — COO01FFFH and bit n in write
bitmap for high MSRs is 1, where n is the value of ECX & O0001FFFH.

See Section 21.6.9 for details regarding how these bitmaps are identified.

If an execution of WRMSR does not cause a VM exit as specified above and
ECX = 808H (indicating the TPR MSR), instruction behavior is modified if the
“virtualize x2APIC mode” VM-execution control is 1 (see Section 22.4) and it
may cause a trap-like VM exit (see below).2

The MOV to CR8 and WRMSR instructions may cause “trap-like” VM exits. In such a
case, the instruction completes before the VM exit occurs and that processor state is
updated by the instruction (for example, the value of CS:RIP saved in the guest-state
area of the VMCS references the next instruction).

Specifically, a trap-like VM exit occurs following either instruction if the execution
reduces the value of the TPR shadow below that of the TPR threshold VM-execution
control field (see Section 21.6.8 and Section 22.4) and the following hold:

For MOV to CR8:

— The “CR8-load exiting” VM-execution control is O.
— The “use TPR shadow” VM-execution control is 1.
For WRMSR:

— The “use MSR bitmaps” VM-execution control is 1, the value of ECX is 808H,
and bit 808H in write bitmap for low MSRs is O (see above).

— The “virtualize Xx2APIC mode” VM-execution control is 1.

Execution of the RSM instruction outside SMM causes an invalid-opcode exception regardless of
whether the processor is in VMX operation. It also does so in VMX root operation in SMM; see
Section 26.15.3.

. "WBINVD exiting” is a secondary processor-based VM-execution control. If bit 31 of the primary

processor-based VVM-execution controls is 0, VMX non-root operation functions as if the
"WBINVD exiting” VM-execution control were 0. See Section 21.6.2.

“Virtualize x2APIC mode” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
"virtualize x2APIC mode” VM-execution control were 0. See Section 21.6.2.

22-6 Vol.3

VMX NON-ROOT OPERATION

22.2 APIC-ACCESS VM EXITS

If the “virtualize APIC accesses” VM-execution control is 1, an attempt to access
memory using a physical address on the APIC-access page (see Section 21.6.8)
causes a VM exit.1*2 Such a VM exit is called an APIC-access VM exit.

Whether an operation that attempts to access memory with a physical address on the
APIC-access page causes an APIC-access VM exit may be qualified based on the type
of access. Section 22.2.1 describes the treatment of linear accesses, while Section
22.2.3 describes that of physical accesses. Section 22.2.4 discusses accesses to the
TPR field on the APIC-access page (called VTPR accesses), which do not, if the “use
TPR shadow” VM-execution control is 1, cause APIC-access VM exits.

22.2.1 Linear Accesses to the APIC-Access Page

An access to the APIC-access page is called a linear access if (1) it results from a
memory access using a linear address; and (2) the access’s physical address is the
translation of that linear address. Section 22.2.1.1 specifies which linear accesses to
the APIC-access page cause APIC-access VM exits.

In general, the treatment of APIC-access VM exits caused by linear accesses is
similar to that of page faults and EPT violations. Based upon this treatment, Section
22.2.1.2 specifies the priority of such VM exits with respect to other events, while
Section 22.2.1.3 discusses instructions that may cause page faults without accessing
memory and the treatment when they access the APIC-access page.

22.2.1.1 Llinear Accesses That Cause APIC-Access VM Exits

Whether a linear access to the APIC-access page causes an APIC-access VM exit
depends in part of the nature of the translation used by the linear address:

® If the linear access uses a translation with a 4-KByte page, it causes an APIC-
access VM exit.

® If the linear access uses a translation with a large page (2-MByte or 4-MByte),
the access may or may not cause an APIC-access VM exit. Section 22.5.1
describes the treatment of such accesses that do not cause an APIC-access
VM exits.

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
"virtualize APIC accesses” VM-execution control were 0. See Section 21.6.2.

2. Even when addresses are translated using EPT (see Chapter 25), the determination of whether
an APIC-access VM exit occurs depends on an access's physical address, not its guest-physical
address.

Vol.3 22-7

VMX NON-ROOT OPERATION

If CRO.PG = 1 and EPT is in use (the “enable EPT” VM-execution control is 1), a
linear access uses a translation with a large page only if a large page is specified
by both the guest paging structures and the EPT paging structures.t

It is recommended that software configure the paging structures so that any transla-
tion to the APIC-access page uses a 4-KByte page.

A linear access to the APIC-access page might not cause an APIC-access VM exit if
the “enable EPT” VM-execution control is 1 and software has not properly invalidate
information cached from the EPT paging structures:

¢ Attime t;, EPT was in use, the EPTP value was X, and some guest-physical
address Y translated to an address that was not on the APIC-access page at that
time. (This might be because the “virtualize APIC accesses” VM-execution control
was 0.)

® At later time t,, EPT is in use, the EPTP value is X, and a memory access uses a
linear address that translates to Y, which now translates to an address on the
APIC-access page. (This implies that the “virtualize APIC accesses” VM-execution
control is 1 at this time.)

¢ Software did not execute the INVEPT instruction between times t; and t,, either
with the all-context INVEPT type or with the single-context INVEPT type and X as
the INVEPT descriptor.

In this case, the linear access at time t, might or might not cause an APIC-access
VM exit. If it does not, the access operates on memory on the APIC-access page.

Software can avoid this situation through appropriate use of the INVEPT instruction;
see Section 25.3.3.4.

A linear access to the APIC-access page might not cause an APIC-access VM exit if
the “enable VPID” VM-execution control is 1 and software has not properly invali-
dated the TLBs and paging-structure caches:

® At time tq, the processor was in VMX non-root operation with non-zero VPID X,
and some linear address Y translated to an address that was not on the APIC-
access page at that time. (This might be because the “virtualize APIC accesses”
VM-execution control was 0.)

® At later time t,, the processor was again in VMX non-root operation with VPID X,
and a memory access uses linear address, which now translates to an address on
the APIC-access page. (This implies that the “virtualize APIC accesses” VM-
execution control is 1 at this time.)

® Software did not execute the INVVPID instruction in any of the following ways
between times t; and t;:

1. If the capability MSR IA32_VMX_CRO_FIXED1 reports that CRO.PG must be 1 in VMX operation,
CRO.PG must be 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary
processor-based VM-execution controls are both 1. “Enable EPT” is a secondary processor-based
VVM-execution control. If bit 31 of the primary processor-based VM-execution controls is 0, VMX
non-root operation functions as if the “enable EPT" VM-execution control were 0. See Section
21.6.2.

22-8 Vol.3

VMX NON-ROOT OPERATION

— With the individual-address INVVPID type and an INVVPID descriptor
specifying VPID X and linear address Y.

— With the single-context INVVPID type and an INVVPID descriptor specifying
VPID X.

— With the all-context INVEPT type.

— With the single-context-retaining-globals INVVPID type and an INVVPID
descriptor specifying VPID X (assuming that, at time t1, the translation for Y
was global; see Section 4.10, “Caching Translation Information” in Intel® 64
and 1A-32 Architectures Software Developer’s Manual, Volume 3A for details
regarding global translations).

In this case, the linear access at time t, might or might not cause an APIC-access
VM exit. If it does not, the access operates on memory on the APIC-access page.

Software can avoid this situation through appropriate use of the INVVPID instruction;
see Section 25.3.3.3.

22.2.1.2 Priority of APIC-Access VM Exits Caused by Linear Accesses

The following items specify the priority relative to other events of APIC-access
VM exits caused by linear accesses.

® The priority of an APIC-access VM exit on a linear access to memory is below that
of any page fault or EPT violation that that access may incur. That is, a linear
access does not cause an APIC-access VM exit if it would cause a page fault or an
EPT violation.

® Alinear access does not cause an APIC-access VM exit until after the accessed
bits are set in the paging structures.

® Alinear write access will not cause an APIC-access VM exit until after the dirty bit
is set in the appropriate paging structure.

® With respect to all other events, any APIC-access VM exit due to a linear access
has the same priority as any page fault or EPT violation that the linear access
could cause. (This item applies to other events that the linear access may
generate as well as events that may be generated by other accesses by the same
instruction or operation.)

These principles imply among other things, that an APIC-access VM exit may occur
during the execution of a repeated string instruction (including INS and OUTS).
Suppose, for example, that the first n iterations (n may be 0) of such an instruction
do not access the APIC-access page and that the next iteration does access that
page. As a result, the first n iterations may complete and be followed by an APIC-
access VM exit. The instruction pointer saved in the VMCS references the repeated
string instruction and the values of the general-purpose registers reflect the comple-
tion of n iterations.

Vol.3 22-9

VMX NON-ROOT OPERATION

22.2.1.3 Instructions That May Cause Page Faults or EPT Violations

Without Accessing Memory

APIC-access VM exits may occur as a result of executing an instruction that can
cause a page fault or an EPT violation even if that instruction would not access the
APIC-access page. The following are some examples:

The CLFLUSH instruction is considered to read from the linear address in its
source operand. If that address translates to one on the APIC-access page, the
instruction causes an APIC-access VM exit.

The ENTER instruction causes a page fault if the byte referenced by the final
value of the stack pointer is not writable (even though ENTER does not write to
that byte if its size operand is non-zero). If that byte is writable but is on the
APIC-access page, ENTER causes an APIC-access VM exit.1

An execution of the MASKMOVQ or MASKMOVDQU instructions with a zero mask
may or may not cause a page fault or an EPT violation if the destination page is
unwritable (the behavior is implementation-specific). An execution with a zero
mask causes an APIC-access VM exit only on processors for which it could cause
a page fault or an EPT violation.

The MONITOR instruction is considered to read from the effective address in RAX.
If the linear address corresponding to that address translates to one on the APIC-
access page, the instruction causes an APIC-access VM exit.?

An execution of the PREFETCH instruction that would result in an access to the
APIC-access page does not cause an APIC-access VM exit.

22.2.2 Guest-Physical Accesses to the APIC-Access Page

An access to the APIC-access page is called a guest-physical access if
(1) CRO.PG = 1;8 (2) the “enable EPT” VM-execution control is 1;4 (3) the access’s
physical address is the result of an EPT translation; and (4) either (a) the access was

1.

The ENTER instruction may also cause page faults due to the memory accesses that it actually
does perform. With regard to APIC-access VM exits, these are treated just as accesses by any
other instruction.

This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For IA-32 processors,
this notation refers to the 32-bit forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few

places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated regis-

ter.

If the capability MSR IA32_VMX_CRO_FIXED1 reports that CRO.PG must be 1 in VMX operation,
CRO.PG must be 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary
processor-based VM-execution controls are both 1.

“Enable EPT" is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable
EPT" VM-execution control were 0. See Section 21.6.2.

22-10 Vol.3

VMX NON-ROOT OPERATION

not generated by a linear address; or (b) the access’s guest-physical address is not
the translation of the access’s linear address. Guest-physical accesses include the
following when guest-physical addresses are being translated using EPT:

® Reads from the guest paging structures when translating a linear address (such
an access uses a guest-physical address that is not the translation of that linear
address).

® Loads of the page-directory-pointer-table entries by MOV to CR when the logical
processor is using (or that causes the logical processor to use) PAE paging.l

® Updates to the accessed and dirty bits in the guest paging structures when using
a linear address (such an access uses a guest-physical address that is not the
translation of that linear address).

Section 22.2.2.1 specifies when guest-physical accesses to the APIC-access page
might not cause APIC-access VM exits. In general, the treatment of APIC-access
VM exits caused by guest-physical accesses is similar to that of EPT violations. Based
upon this treatment, Section 22.2.2.2 specifies the priority of such VM exits with
respect to other events.

22.2.2.1 Guest-Physical Accesses That Might Not Cause APIC-Access
VM Exits

Whether a guest-physical access to the APIC-access page causes an APIC-access
VM exit depends on the nature of the EPT translation used by the guest-physical
address and on how software is managing information cached from the EPT paging
structures. The following items detail cases in which a guest-physical access to the
APIC-access page might not an APIC-access VM exit:

® If the access uses a guest-physical address whose translation to the APIC-access
page uses an EPT PDE that maps a 2-MByte page (because bit 7 of the EPT PDE
is 1).

® Software has not properly invalidated information cached from the EPT paging
structures:

— At time t,, EPT was in use, the EPTP value was X, and some guest-physical
address Y translated to an address that was not on the APIC-access page at
that time. (This might be because the “virtualize APIC accesses” VM-
execution control was 0.)

— At later time t,, the EPTP value is X and a memory access uses guest-physical
address Y, which now translates to an address on the APIC-access page. (This
implies that the “virtualize APIC accesses” VM-execution control is 1 at this
time.)

1. Alogical processor uses PAE paging if CRO.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Vol.3 22-11

VMX NON-ROOT OPERATION

— Software did not execute the INVEPT instruction, either with the all-context
INVEPT type or with the single-context INVEPT type and X as the INVEPT
descriptor, between times t, and t,.

In any of the above cases, the guest-physical access at time t, might or might not an
APIC-access VM exit. If it does not, the access operates on memory on the APIC-
access page.

Software can avoid this situation through appropriate use of the INVEPT instruction;
see Section 25.3.3.4.

22.2.2.2 Priority of APIC-Access VM Exits Caused by Guest-Physical
Accesses

The following items specify the priority relative to other events of APIC-access
VM exits caused by guest-physical accesses.

® The priority of an APIC-access VM exit caused by a guest-physical access to
memory is below that of any EPT violation that that access may incur. That is, a
guest-physical access does not cause an APIC-access VM exit if it would cause an
EPT violation.

® With respect to all other events, any APIC-access VM exit caused by a guest-
physical access has the same priority as any EPT violation that the guest-physical
access could cause.

22.2.3 Physical Accesses to the APIC-Access Page

An access to the APIC-access page is called a physical access if (1) either (a) the
“enable EPT” VM-execution control is 0;1 or (b) the access’s physical address is not
the result of a translation through the EPT paging structures; and (2) either (a) the
access is not generated by a linear address; or (b) the access’s physical address is
not the translation of its linear address.

Physical accesses include the following:
® If the “enable EPT” VM-execution control is O:
— Reads from the paging structures when translating a linear address.

— Loads of the page-directory-pointer-table entries by MOV to CR when the
logical processor is using (or that causes the logical processor to use) PAE
iy 2
paging.

1. "Enable EPT" is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable
EPT" VM-execution control were 0. See Section 21.6.2.

2. Alogical processor uses PAE paging if CRO.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

22-12 Vol.3

VMX NON-ROOT OPERATION

— Updates to the accessed and dirty bits in the paging structures.

® If the “enable EPT” VM-execution control is 1, accesses to the EPT paging
structures.

® Any of the following accesses made by the processor to support VMX non-root
operation:

— Accesses to the VMCS region.

— Accesses to data structures referenced (directly or indirectly) by physical
addresses in VM-execution control fields in the VMCS. These include the 1/0
bitmaps, the MSR bitmaps, and the virtual-APIC page.

® Accesses that effect transitions into and out of SMM.® These include the
following:

— Accesses to SMRAM during SMI delivery and during execution of RSM.

— Accesses during SMM VM exits (including accesses to MSEG) and during
VM entries that return from SMM.

A physical access to the APIC-access page may or may not cause an APIC-access
VM exit. (A physical write to the APIC-access page may write to memory as specified
in Section 22.5.2 before causing the APIC-access VM exit.) The priority of an APIC-
access VM exit caused by physical access is not defined relative to other events that
the access may cause. Section 22.5.2 describes the treatment of physical accesses to
the APIC-access page that do not cause APIC-access VM exits.

It is recommended that software not set the APIC-access address to any of those
used by physical memory accesses (identified above). For example, it should not set
the APIC-access address to the physical address of any of the active paging struc-
tures if the “enable EPT” VM-execution control is O.

22.2.4 VTPR Accesses

A memory access is a VTPR access if all of the following hold: (1) the “use TPR
shadow” VM-execution control is 1; (2) the access is not for an instruction fetch;
(3) the access is at most 32 bits in width; and (4) the access is to offset 80H on the
APIC-access page.

A memory access is not a VTPR access (even if it accesses only bytes in the range
80H—-83H on the APIC-access page) if any of the following hold: (1) the “use TPR
shadow” VM-execution control is O; (2) the access is for an instruction fetch; (3) the
access is more than 32 bits in width; or (4) the access is to some offset is on the
APIC-access page other than 80H. For example, a 16-bit access to offset 81H on the
APIC-access page is not a VTPR access, even if the “use TPR shadow” VM-execution
control is 1.

1. Technically, these accesses do not occur in VMX non-root operation. They are included here for
clarity.

Vol.3 22-13

VMX NON-ROOT OPERATION

In general, VTPR accesses do not cause APIC-access VM exits. Instead, they are
treated as described in Section 22.5.3. Physical VTPR accesses (see Section 22.2.3)
may or may not cause APIC-access VM exits; see Section 22.5.2.

22.3 OTHER CAUSES OF VM EXITS

In addition to VM exits caused by instruction execution, the following events can
cause VM exits:

Exceptions. Exceptions (faults, traps, and aborts) cause VM exits based on the
exception bitmap (see Section 21.6.3). If an exception occurs, its vector (in the
range 0—31) is used to select a bit in the exception bitmap. If the bitis 1, a

VM exit occurs; if the bit is 0, the exception is delivered normally through the
guest IDT. This use of the exception bitmap applies also to exceptions generated
by the instructions INT3, INTO, BOUND, and UD2.

Page faults (exceptions with vector 14) are specially treated. When a page fault
occurs, a logical processor consults (1) bit 14 of the exception bitmap; (2) the
error code produced with the page fault [PFEC]; (3) the page-fault error-code
mask field [PFEC_MASK]; and (4) the page-fault error-code match field
[PFEC_MATCH]. It checks if PFEC & PFEC_MASK = PFEC_MATCH. If there is
equality, the specification of bit 14 in the exception bitmap is followed (for
example, a VM exit occurs if that bit is set). If there is inequality, the meaning of
that bit is reversed (for example, a VM exit occurs if that bit is clear).

Thus, if software desires VM exits on all page faults, it can set bit 14 in the
exception bitmap to 1 and set the page-fault error-code mask and match fields
each to O0000000H. If software desires VM exits on no page faults, it can set bit
14 in the exception bitmap to 1, the page-fault error-code mask field to
00000000H, and the page-fault error-code match field to FFFFFFFFH.

Triple fault. A VM exit occurs if the logical processor encounters an exception
while attempting to call the double-fault handler and that exception itself does
not cause a VM exit due to the exception bitmap. This applies to the case in which
the double-fault exception was generated within VMX non-root operation, the
case in which the double-fault exception was generated during event injection by
VM entry, and to the case in which VM entry is injecting a double-fault exception.

External interrupts. An external interrupt causes a VM exit if the “external-
interrupt exiting” VM-execution control is 1. Otherwise, the interrupt is delivered
normally through the IDT. (If a logical processor is in the shutdown state or the
wait-for-SIPI state, external interrupts are blocked. The interrupt is not delivered
through the IDT and no VM exit occurs.)

Non-maskable interrupts (NMIs). An NMI causes a VM exit if the “NMI
exiting” VM-execution control is 1. Otherwise, it is delivered using descriptor 2 of
the IDT. (If a logical processor is in the wait-for-SIPI state, NMIs are blocked. The
NMI is not delivered through the IDT and no VM exit occurs.)

22-14 Vol.3

VMX NON-ROOT OPERATION

INIT signals. INIT signals cause VM exits. A logical processor performs none of
the operations normally associated with these events. Such exits do not modify
register state or clear pending events as they would outside of VMX operation. (If
a logical processor is in the wait-for-SIPI state, INIT signals are blocked. They do
not cause VM exits in this case.)

Start-up IPIs (SIPIs). SIPIs cause VM exits. If a logical processor is not in
the wait-for-SIPI activity state when a SIPI arrives, no VM exit occurs and the
SIPI is discarded. VM exits due to SIPIs do not perform any of the normal
operations associated with those events: they do not modify register state as
they would outside of VMX operation. (If a logical processor is not in the wait-for-
SIPI state, SIPIs are blocked. They do not cause VM exits in this case.)

Task switches. Task switches are not allowed in VMX non-root operation. Any
attempt to effect a task switch in VMX non-root operation causes a VM exit. See
Section 22.6.2.

System-management interrupts (SMIs). If the logical processor is using the
dual-monitor treatment of SMIs and system-management mode (SMM), SMis
cause SMM VM exits. See Section 26.15.2.1

VMX-preemption timer. A VM exit occurs when the timer counts down to zero.
See Section 22.7.1 for details of operation of the VMX-preemption timer. As noted
in that section, the timer does not cause VM exits if the logical processor is
outside the C-states CO, C1, and C2.

Debug-trap exceptions and higher priority events take priority over VM exits
caused by the VMX-preemption timer. VM exits caused by the VMX-preemption
timer take priority over VM exits caused by the “NMI-window exiting”
VM-execution control and lower priority events.

These VM exits wake a logical processor from the same inactive states as would
an external interrupt. Specifically, they wake a logical processor from the states
entered using the HLT and MWAIT instructions. These VM exits do not occur if the
logical processor is in the shutdown state or the wait-for-SIPI state.

In addition, there are controls that cause VM exits based on the readiness of guest
software to receive interrupts:

If the “interrupt-window exiting” VM-execution control is 1, a VM exit occurs
before execution of any instruction if RFLAGS.IF = 1 and there is no blocking of
events by STI or by MOV SS (see Table 21-3). Such a VM exit occurs immediately
after VM entry if the above conditions are true (see Section 23.6.5).

Non-maskable interrupts (NMIs) and higher priority events take priority over
VM exits caused by this control. VM exits caused by this control take priority over
external interrupts and lower priority events.

Under the dual-monitor treatment of SMis and SMM, SMis also cause SMM VM exits if they occur
in VMX root operation outside SMM. If the processor is using the default treatment of SMis and
SMM, SMiIs are delivered as described in Section 26.14.1.

Vol.3 22-15

VMX NON-ROOT OPERATION

These VM exits wake a logical processor from the same inactive states as would
an external interrupt. Specifically, they wake a logical processor from the states
entered using the HLT and MWAIT instructions. These VM exits do not occur if the
logical processor is in the shutdown state or the wait-for-SIPI state.

® If the “NMI-window exiting” VM-execution control is 1, a VM exit occurs before
execution of any instruction if there is no virtual-NMI blocking and there is no
blocking of events by MOV SS (see Table 21-3). (A logical processor may also
prevent such a VM exit if there is blocking of events by STI.) Such a VM exit
occurs immediately after VM entry if the above conditions are true (see Section
23.6.6).

VM exits caused by the VMX-preemption timer and higher priority events take
priority over VM exits caused by this control. VM exits caused by this control take
priority over non-maskable interrupts (NMIs) and lower priority events.

These VM exits wake a logical processor from the same inactive states as would
an NMI. Specifically, they wake a logical processor from the shutdown state and
from the states entered using the HLT and MWAIT instructions. These VM exits do
not occur if the logical processor is in the wait-for-SIPI state.

22.4 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-
ROOT OPERATION

The behavior of some instructions is changed in VMX non-root operation. Some of
these changes are determined by the settings of certain VM-execution control fields.
The following items detail such changes:

® CLTS. Behavior of the CLTS instruction is determined by the bits in position 3
(corresponding to CRO.TS) in the CRO guest/host mask and the CRO read
shadow:

— If bit 3 in the CRO guest/host mask is 0, CLTS clears CRO.TS normally (the
value of bit 3 in the CRO read shadow is irrelevant in this case), unless CRO.TS
is fixed to 1 in VMX operation (see Section 20.8), in which case CLTS causes
a general-protection exception.

— If bit 3 in the CRO guest/host mask is 1 and bit 3 in the CRO read shadow is O,
CLTS completes but does not change the contents of CRO.TS.

— If the bits in position 3 in the CRO guest/host mask and the CRO read shadow
are both 1, CLTS causes a VM exit (see Section 22.1.3).

® |IRET. Behavior of IRET with regard to NMI blocking (see Table 21-3) is
determined by the settings of the “NMI exiting” and “virtual NMIs” VM-execution
controls:

— If the “NMI exiting” VM-execution control is O, IRET operates normally and
unblocks NMls.

22-16 Vol.3

VMX NON-ROOT OPERATION

— If the “NMI exiting” VM-execution control is 1, IRET does not affect blocking
of NMls.

— If the “virtual NMIs” VM-execution control is 1, the logical processor tracks
virtual-NMI blocking. In this case, IRET removes any virtual-NMI blocking.

If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” control must be
0. (See Section 23.2.1.1.)

LMSW. Outside of VMX non-root operation, LMSW loads its source operand into
CRO[3:0], but it does not clear CRO.PE if that bit is set. In VMX non-root
operation, an execution of LMSW that does not cause a VM exit (see Section
22.1.3) leaves unmodified any bit in CRO[3:0] corresponding to a bit set in the
CRO guest/host mask. An attempt to set any other bit in CRO[3:0] to a value not
supported in VMX operation (see Section 20.8) causes a general-protection
exception. Attempts to clear CRO.PE are ignored without fault.

MOV from CRO. The behavior of MOV from CRO is determined by the CRO
guest/host mask and the CRO read shadow. For each position corresponding to a
bit clear in the CRO guest/host mask, the destination operand is loaded with the
value of the corresponding bit in CRO. For each position corresponding to a bit set
in the CRO guest/host mask, the destination operand is loaded with the value of
the corresponding bit in the CRO read shadow. Thus, if every bit is cleared in the
CRO guest/host mask, MOV from CRO reads normally from CRO; if every bit is set
in the CRO guest/host mask, MOV from CRO returns the value of the CRO read
shadow.

Depending on the contents of the CRO guest/host mask and the CRO read
shadow, bits may be set in the destination that would never be set when reading
directly from CRO.

MOV from CR3. If the “enable EPT” VM-execution control is 1 and an execution
of MOV from CR3 does not cause a VM exit (see Section 22.1.3), the value loaded
from CR3 is a guest-physical address; see Section 25.2.1.

MOV from CRA4. The behavior of MOV from CR4 is determined by the CR4
guest/host mask and the CR4 read shadow. For each position corresponding to a
bit clear in the CR4 guest/host mask, the destination operand is loaded with the
value of the corresponding bit in CR4. For each position corresponding to a bit set
in the CR4 guest/host mask, the destination operand is loaded with the value of
the corresponding bit in the CR4 read shadow. Thus, if every bit is cleared in the
CR4 guest/host mask, MOV from CR4 reads normally from CR4; if every bit is set
in the CR4 guest/host mask, MOV from CR4 returns the value of the CR4 read
shadow.

Depending on the contents of the CR4 guest/host mask and the CR4 read
shadow, bits may be set in the destination that would never be set when reading
directly from CRA4.

MOV from CR8. Behavior of the MOV from CR8 instruction (which can be
executed only in 64-bit mode) is determined by the settings of the “CR8-store
exiting” and “use TPR shadow” VM-execution controls:

— If both controls are 0, MOV from CR8 operates normally.

Vol.3 22-17

VMX NON-ROOT OPERATION

— If the “CR8-store exiting” VM-execution control is O and the “use TPR
shadow” VM-execution control is 1, MOV from CR8 reads from the TPR
shadow. Specifically, it loads bits 3:0 of its destination operand with the value
of bits 7:4 of byte 80H of the virtual-APIC page (see Section 21.6.8). Bits
63:4 of the destination operand are cleared.

— If the “CR8-store exiting” VM-execution control is 1, MOV from CR8 causes a
VM exit (see Section 22.1.3); the “use TPR shadow” VM-execution control is
ignored in this case.

® MOV to CRO. An execution of MOV to CRO that does not cause a VM exit (see
Section 22.1.3) leaves unmodified any bit in CRO corresponding to a bit set in the
CRO guest/host mask. Treatment of attempts to modify other bits in CRO depends
on the setting of the “unrestricted guest” VM-execution control:1

— If the control is 0, MOV to CRO causes a general-protection exception if it
attempts to set any bit in CRO to a value not supported in VMX operation (see
Section 20.8).

— If the control is 1, MOV to CRO causes a general-protection exception if it
attempts to set any bit in CRO other than bit O (PE) or bit 31 (PG) to a value
not supported in VMX operation. It remains the case, however, that MOV to
CRO causes a general-protection exception if it would result in CRO.PE = 0
and CRO.PG = 1 or if it would result in CRO.PG = 1, CR4.PAE = 0, and
IA32_EFER.LME = 1.

® MOV to CR3. If the “enable EPT” VM-execution control is 1 and an execution of
MOV to CR3 does not cause a VM exit (see Section 22.1.3), the value loaded into
CR3 is treated as a guest-physical address; see Section 25.2.1.

— If PAE paging is not being used, the instruction does not use the guest-
physical address to access memory and it does not cause it to be translated
through EPT.?

— If PAE paging is being used, the instruction translates the guest-physical
address through EPT and uses the result to load the four (4) page-directory-
pointer-table entries (PDPTESs). The instruction does not use the guest-
physical addresses the PDPTEs to access memory and it does not cause them
to be translated through EPT.

® MOV to CR4. An execution of MOV to CR4 that does not cause a VM exit (see
Section 22.1.3) leaves unmodified any bit in CR4 corresponding to a bit set in the
CR4 guest/host mask. Such an execution causes a general-protection exception
if it attempts to set any bit in CR4 (not corresponding to a bit set in the CR4
guest/host mask) to a value not supported in VMX operation (see Section 20.8).

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“unrestricted guest” VM-execution control were 0. See Section 21.6.2.

2. Alogical processor uses PAE paging if CRO.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

22-18 Vol.3

VMX NON-ROOT OPERATION

MOV to CR8. Behavior of the MOV to CR8 instruction (which can be executed
only in 64-bit mode) is determined by the settings of the “CR8-load exiting” and
“use TPR shadow” VM-execution controls:

If both controls are 0, MOV to CR8 operates normally.

If the “CR8-load exiting” VM-execution control is O and the “use TPR shadow”
VM-execution control is 1, MOV to CR8 writes to the TPR shadow. Specifically,
it stores bits 3:0 of its source operand into bits 7:4 of byte 80H of the virtual-
APIC page (see Section 21.6.8); bits 3:0 of that byte and bytes 129-131 of
that page are cleared. Such a store may cause a VM exit to occur after it
completes (see Section 22.1.3).

If the “CR8-load exiting” VM-execution control is 1, MOV to CR8 causes a
VM exit (see Section 22.1.3); the “use TPR shadow” VM-execution control is
ignored in this case.

RDMSR. Section 22.1.3 identifies when executions of the RDMSR instruction
cause VM exits. If such an execution causes neither a fault due to CPL > 0 nor a
VM exit, the instruction’s behavior may be modified for certain values of ECX:

If ECX contains 10H (indicating the 1A32_TIME_STAMP_COUNTER MSR), the
value returned by the instruction is determined by the setting of the “use TSC
offsetting” VM-execution control as well as the TSC offset:

* If the control is O, the instruction operates normally, loading EAX:EDX
with the value of the 1A32_TIME_STAMP_COUNTER MSR.

* If the control is 1, the instruction loads EAX:EDX with the sum (using
signed addition) of the value of the 1A32_TIME_STAMP_COUNTER MSR
and the value of the TSC offset (interpreted as a signed value).

If ECX contains 808H (indicating the TPR MSR), instruction behavior is
determined by the setting of the “virtualize x2APIC mode” VM-execution
control:!

* If the control is O, the instruction operates normally. If the local APIC is in
X2APIC mode, EAX[7:0] is loaded with the value of the APIC’s task-
priority register (EDX and EAX[31:8] are cleared to 0). If the local APIC is
not in XxX2APIC mode, a general-protection fault occurs.

* |f the control is 1, the instruction loads EAX:EDX with the value of
bytes 87H:80H of the virtual-APIC page. This occurs even if the local APIC
is not in x2APIC mode (no general-protection fault occurs because the
local APIC is not x2APIC mode).

RDTSC. Behavior of the RDTSC instruction is determined by the settings of the
“RDTSC exiting” and “use TSC offsetting” VM-execution controls as well as the

TSC offset:

1.

“Virtualize x2APIC mode” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
"virtualize x2APIC mode” VM-execution control were 0. See Section 21.6.2.

Vol.3 22-19

VMX NON-ROOT OPERATION

— If both controls are 0, RDTSC operates normally.

— If the “RDTSC exiting” VM-execution control is O and the “use TSC offsetting”
VM-execution control is 1, RDTSC loads EAX:EDX with the sum (using signed
addition) of the value of the IA32_TIME_STAMP_COUNTER MSR and the
value of the TSC offset (interpreted as a signed value).

— If the “RDTSC exiting” VM-execution control is 1, RDTSC causes a VM exit
(see Section 22.1.3).

® RDTSCP. Behavior of the RDTSCP instruction is determined first by the setting of
the “enable RDTSCP” VM-execution control:*

— If the “enable RDTSCP” VM-execution control is 0, RDTSCP causes an invalid-
opcode exception (#UD).

— If the “enable RDTSCP” VM-execution control is 1, treatment is based on the
settings the “RDTSC exiting” and “use TSC offsetting” VM-execution controls
as well as the TSC offset:

* If both controls are 0, RDTSCP operates normally.

* If the “RDTSC exiting” VM-execution control is O and the “use TSC
offsetting” VM-execution control is 1, RDTSCP loads EAX:EDX with the
sum (using signed addition) of the value of the
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset (inter-
preted as a signed value); it also loads ECX with the value of bits 31:0 of
the 1A32_TSC_AUX MSR.

* If the “RDTSC exiting” VM-execution control is 1, RDTSCP causes a
VM exit (see Section 22.1.3).

® SMSW. The behavior of SMSW is determined by the CRO guest/host mask and
the CRO read shadow. For each position corresponding to a bit clear in the CRO
guest/host mask, the destination operand is loaded with the value of the corre-
sponding bit in CRO. For each position corresponding to a bit set in the CRO
guest/host mask, the destination operand is loaded with the value of the corre-
sponding bit in the CRO read shadow. Thus, if every bit is cleared in the CRO
guest/host mask, MOV from CRO reads normally from CRO; if every bit is set in
the CRO guest/host mask, MOV from CRO returns the value of the CRO read
shadow.

Note the following: (1) for any memory destination or for a 16-bit register desti-
nation, only the low 16 bits of the CRO guest/host mask and the CRO read shadow
are used (bits 63:16 of a register destination are left unchanged); (2) for a 32-bit
register destination, only the low 32 bits of the CRO guest/host mask and the CRO
read shadow are used (bits 63:32 of the destination are cleared); and

(3) depending on the contents of the CRO guest/host mask and the CRO read

1. “Enable RDTSCP” is a secondary processor-based VM-execution control. If bit 31 of the primary
processor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable
RDTSCP”" VM-execution control were 0. See Section 21.6.2.

22-20 Vol.3

VMX NON-ROOT OPERATION

shadow, bits may be set in the destination that would never be set when reading
directly from CRO.

® WRMSR. Section 22.1.3 identifies when executions of the WRMSR instruction
cause VM exits. If such an execution neither a fault due to CPL > 0 nor a VM exit,
the instruction’s behavior may be modified for certain values of ECX:

— If ECX contains 79H (indicating 1A32_BIOS_UPDT_TRIG MSR), no microcode
update is loaded, and control passes to the next instruction. This implies that
microcode updates cannot be loaded in VMX non-root operation.

— If ECX contains 808H (indicating the TPR MSR) and either EDX or EAX[31:8]
is non-zero, a general-protection fault occurs (this is true even if the logical
processor is not in VMX non-root operation). Otherwise, instruction behavior
is determined by the setting of the “virtualize x2APIC mode” VM-execution
control and the value of the TPR-threshold VM-execution control field:

* If the control is O, the instruction operates normally. If the local APIC is in
X2APIC mode, the value of EAX[7:0] is written to the APIC’s task-priority
register. If the local APIC is not in x2APIC mode, a general-protection
fault occurs.

* |f the control is 1, the instruction stores the value of EAX:EDX to
bytes 87H:80H of the virtual-APIC page. This store occurs even if the
local APIC is not in x2APIC mode (no general-protection fault occurs
because the local APIC is not x2APIC mode). The store may cause a
VM exit to occur after the instruction completes (see Section 22.1.3).

22.5 APIC ACCESSES THAT DO NOT CAUSE VM EXITS

As noted in Section 22.2, if the “virtualize APIC accesses” VM-execution control is 1,
most memory accesses to the APIC-access page (see Section 21.6.2) cause APIC-
access VM exits.! Section 22.2 identifies potential exceptions. These are covered in
Section 22.5.1 through Section 22.5.3.

In some cases, an attempt to access memory on the APIC-access page is converted
to an access to the virtual-APIC page (see Section 21.6.8). In these cases, the access
uses the memory type reported in bit 53:50 of the 1A32_VMX_BASIC MSR (see
Appendix G.1).

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
"virtualize APIC accesses” VM-execution control were 0. See Section 21.6.2.

Vol.3 22-21

VMX NON-ROOT OPERATION

22.5.1 Linear Accesses to the APIC-Access Page Using Large-Page
Translations

As noted in Section 22.2.1, a linear access to the APIC-access page using translation
with a large page (2-MByte or 4-MByte) may or may not cause an APIC-access

VM exit. If it does not and the access is not a VTPR access (see Section 22.2.4), the
access operates on memory on the APIC-access page. Section 22.5.3 describes the
treatment if there is no APIC-access VM exit and the access is a VTPR access.

22.5.2 Physical Accesses to the APIC-Access Page

A physical access to the APIC-access page may or may not cause an APIC-access
VM exit. If it does not and the access is not a VTPR access (see Section 22.2.4), the
access operates on memory on the APIC-access page (this may happen if the access
causes an APIC-access VM exit). Section 22.5.3 describes the treatment if there is no
APIC-access VM exit and the access is a VTPR access.

22.5.3 VTPR Accesses

As noted in Section 22.2.4, a memory access is a VTPR access if all of the following

hold: (1) the “use TPR shadow” VM-execution control is 1; (2) the access is not for

an instruction fetch; (3) the access is at most 32 bits in width; and (4) the access is
to offset 80H on the APIC-access page.

The treatment of VTPR accesses depends on the nature of the access:

® Alinear VTPR access using a translation with a 4-KByte page does not cause an
APIC-access VM exit. Instead, it is converted so that, instead of accessing offset
80H on the APIC-access page, it accesses offset 80H on the virtual-APIC page.
Further details are provided in Section 22.5.3.1 to Section 22.5.3.3.

® Alinear VTPR access using a translation with a large page (2-MByte or 4-MByte)
may be treated in either of two ways:

— It may operate on memory on the APIC-access page. The details in Section
22.5.3.1 to Section 22.5.3.3 do not apply.

— It may be converted so that, instead of accessing offset 80H on the APIC-
access page, it accesses offset 80H on the virtual-APIC page. Further details
are provided in Section 22.5.3.1 to Section 22.5.3.3.

® A physical VTPR access may be treated in one of three ways:

— It may cause an APIC-access VM exit. The details in Section 22.5.3.1 to
Section 22.5.3.3 do not apply.

— It may operate on memory on the APIC-access page (and possibly then cause
an APIC-access VM exit). The details in Section 22.5.3.1 to Section 22.5.3.3
do not apply.

22-22 Vol.3

VMX NON-ROOT OPERATION

— It may be converted so that, instead of accessing offset 80H on the APIC-
access page, it accesses offset 80H on the virtual-APIC page. Further details
are provided in Section 22.5.3.1 to Section 22.5.3.3.

Linear VTPR accesses never cause APIC-access VM exits (recall that an access is a
VTPR access only if the “use TPR shadow” VM-execution control is 1).

22.5.3.1 Treatment of Individual VTPR Accesses

The following items detail the treatment of VTPR accesses:

® VTPR read accesses. Such an access completes normally (reading data from the
field at offset 80H on the virtual-APIC page).

The following items detail certain instructions that are considered to perform
read accesses and how they behavior when accessing the VTPR:

— A VTPR access using the CLFLUSH instruction flushes data for offset 80H on
the virtual-APIC page.

— A VTPR access using the LMSW instruction may cause a VM exit due to the
CRO guest/host mask and the CRO read shadow.

— A VTPR access using the MONITOR instruction causes the logical processor to
monitor offset 80H on the virtual-APIC page.

— A VTPR access using the PREFETCH instruction may prefetch data; if so, it is
from offset 80H on the virtual-APIC page.

® VTPR write accesses. Such an access completes normally (writing data to the
field at offset 80H on the virtual-APIC page) and causes a TPR-shadow update
(see Section 22.5.3.3).

The following items detail certain instructions that are considered to perform
write accesses and how they behavior when accessing the VTPR:

— The ENTER instruction is considered to write to VTPR if the byte referenced by
the final value of the stack pointer is at offset 80H on the APIC-access page
(even though ENTER does not write to that byte if its size operand is non-
zero). The instruction is followed by a TPR-shadow update.

— A VTPR access using the SMSW instruction stores data determined by the
current CRO contents, the CRO guest/host mask, and the CRO read shadow.
The instruction is followed by a TPR-shadow update.

22.5.3.2 Operations with Multiple Accesses

Some operations may access multiple addresses. These operations include the
execution of some instructions and the delivery of events through the IDT (including
those injected with VM entry). In some cases, the Intel® 64 architecture specifies the
ordering of these memory accesses. The following items describe the treatment of
VTPR accesses that are part of such multi-access operations:

Vol.3 22-23

VMX NON-ROOT OPERATION

® Read-modify-write instructions may first perform a VTPR read access and then a
VTPR write access. Both accesses complete normally (as described in Section
22.5.3.1). The instruction is followed by a TPR-shadow update (see Section
22.5.3.3).

® Some operations may perform a VTPR write access and subsequently cause a
fault. This situation is treated as follows:

— If the fault leads to a VM exit, no TPR-shadow update occurs.

— If the fault does not lead to a VM exit, a TPR-shadow update occurs after fault
delivery completes and before execution of the fault handler.

® If an operation includes a VTPR access and an access to some other field on the
APIC-access page, the latter access causes an APIC-access VM exit as described
in Section 22.2.

If the operation performs a VTPR write access before the APIC-access VM exit,
there is no TPR-shadow update.

® Suppose that the first iteration of a repeated string instruction (including OUTS)
that accesses the APIC-access page performs a VTPR read access and that the
next iteration would read from the APIC-access page using an offset other than
80H. The following items describe the behavior of the logical processor:

— The iteration that performs the VTPR read access completes successfully,
reading data from offset 80H on the virtual-APIC page.

— The iteration that would read from the other offset causes an APIC-access
VM exit. The instruction pointer saved in the VMCS references the repeated
string instruction and the values of the general-purpose registers are such
that iteration would be repeated if the instruction were restarted.

® Suppose that the first iteration of a repeated string instruction (including INS)
that accesses the APIC-access page performs a VTPR write access and that the
next iteration would write to the APIC-access page using an offset other than
80H. The following items describe the behavior of the logical processor:

— The iteration that performs the VTPR write access writes data to offset 80H on
the virtual-APIC page. The write is followed by a TPR-shadow update, which
may cause a VM exit (see Section 22.5.3.3).

— If the TPR-shadow update does cause a VM exit, the instruction pointer saved
in the VMCS references the repeated string instruction and the values of the
general-purpose registers are such that the next iteration would be
performed if the instruction were restarted.

— If the TPR-shadow update does not cause a VM exit, the iteration that would
write to the other offset causes an APIC-access VM exit. The instruction
pointer saved in the VMCS references the repeated string instruction and the
values of the general-purpose registers are such that that iteration would be
repeated if the instruction were restarted.

® Suppose that the last iteration of a repeated string instruction (including INS)
performs a VTPR write access. The iteration writes data to offset 80H on the

22-24 Vol.3

VMX NON-ROOT OPERATION

virtual-APIC page. The write is followed by a TPR-shadow update, which may
cause a VM exit (see Section 22.5.3.3). If it does, the instruction pointer saved in
the VMCS references the instruction after the string instruction and the values of
the general-purpose registers reflect completion of the string instruction.

22.5.3.3 TPR-Shadow Updates

If the “use TPR shadow” and “virtualize APIC accesses” VM-execution controls are
both 1, a logical processor performs certain actions after any operation (or iteration
of a repeated string instruction) with a VTPR write access. These actions are called a
TPR-shadow update. (As noted in Section 22.5.3.2, a TPR-shadow update does not
occur following an access that causes a VM exit.)

A TPR-shadow update includes the following actions:
1. Bits 31:8 at offset 80H on the virtual-APIC page are cleared.

2. If the value of bits 3:0 of the TPR threshold VM-execution control field is greater
than the value of bits 7:4 at offset 80H on the virtual-APIC page, a VM exit will
occur.

TPR-shadow updates take priority over system-management interrupts (SMIs), INIT
signals, and lower priority events. A TPR-shadow update thus has priority over any
debug exceptions that may have been triggered by the operation causing the TPR-
shadow update. TPR-shadow updates (and any VM exits they cause) are not blocked
if RFLAGS.IF = 0 or by the MOV SS, POP SS, or STI instructions.

22.6 OTHER CHANGES IN VMX NON-ROOT OPERATION

Treatments of event blocking and of task switches differ in VMX non-root operation as
described in the following sections.

22.6.1 Event Blocking

Event blocking is modified in VMX non-root operation as follows:

® If the “external-interrupt exiting” VM-execution control is 1, RFLAGS.IF does not
control the blocking of external interrupts. In this case, an external interrupt that
is not blocked for other reasons causes a VM exit (even if RFLAGS.IF = 0).

¢ If the “external-interrupt exiting” VM-execution control is 1, external interrupts
may or may not be blocked by STI or by MOV SS (behavior is implementation-
specific).

® If the “NMI exiting” VM-execution control is 1, non-maskable interrupts (NMIs)
may or may not be blocked by STI or by MOV SS (behavior is implementation-
specific).

Vol.3 22-25

VMX NON-ROOT OPERATION

22.6.2 Treatment of Task Switches

Task switches are not allowed in VMX non-root operation. Any attempt to effect a
task switch in VMX non-root operation causes a VM exit. However, the following
checks are performed (in the order indicated), possibly resulting in a fault, before
there is any possibility of a VM exit due to task switch:

1. If a task gate is being used, appropriate checks are made on its P bit and on the
proper values of the relevant privilege fields. The following cases detail the
privilege checks performed:

a. If CALL, INT n, or JMP accesses a task gate in 1A-32e mode, a general-
protection exception occurs.

b. If CALL, INT n, INT3, INTO, or JMP accesses a task gate outside I1A-32e mode,
privilege-levels checks are performed on the task gate but, if they pass,
privilege levels are not checked on the referenced task-state segment (TSS)
descriptor.

c. If CALL or JMP accesses a TSS descriptor directly in 1A-32e mode, a general-
protection exception occurs.

d. If CALL or JMP accesses a TSS descriptor directly outside 1A-32e mode,
privilege levels are checked on the TSS descriptor.

e. If a non-maskable interrupt (NMI), an exception, or an external interrupt
accesses a task gate in the IDT in 1A-32e mode, a general-protection
exception occurs.

f. If a non-maskable interrupt (NMI), an exception other than breakpoint
exceptions (#BP) and overflow exceptions (#0F), or an external interrupt
accesses a task gate in the IDT outside 1A-32e mode, no privilege checks are
performed.

g. If IRET is executed with RFLAGS.NT = 1 in IA-32e mode, a general-
protection exception occurs.

h. If IRET is executed with RFLAGS.NT = 1 outside IA-32e mode, a TSS
descriptor is accessed directly and no privilege checks are made.

2. Checks are made on the new TSS selector (for example, that is within GDT
limits).

3. The new TSS descriptor is read. (A page fault results if a relevant GDT page is not
present).

4. The TSS descriptor is checked for proper values of type (depends on type of task
switch), P bit, S bit, and limit.

Only if checks 1-4 all pass (do not generate faults) might a VM exit occur. However,
the ordering between a VM exit due to a task switch and a page fault resulting from
accessing the old TSS or the new TSS is implementation-specific. Some logical
processors may generate a page fault (instead of a VM exit due to a task switch) if
accessing either TSS would cause a page fault. Other logical processors may

22-26 Vol.3

VMX NON-ROOT OPERATION

generate a VM exit due to a task switch even if accessing either TSS would cause a
page fault.

If an attempt at a task switch through a task gate in the IDT causes an exception
(before generating a VM exit due to the task switch) and that exception causes a
VM exit, information about the event whose delivery that accessed the task gate is
recorded in the IDT-vectoring information fields and information about the exception
that caused the VM exit is recorded in the VM-exit interruption-information fields.
See Section 24.2. The fact that a task gate was being accessed is not recorded in the
VMCS.

If an attempt at a task switch through a task gate in the IDT causes VM exit due to
the task switch, information about the event whose delivery accessed the task gate
is recorded in the IDT-vectoring fields of the VMCS. Since the cause of such a VM exit
is a task switch and not an interruption, the valid bit for the VM-exit interruption
information field is 0. See Section 24.2.

22.7 FEATURES SPECIFIC TO VMX NON-ROOT OPERATION

Some VM-execution controls cause VM exits using features that are specific to VMX
non-root operation. These are the VMX-preemption timer (Section 22.7.1) and the
monitor trap flag (Section 22.7.2).

22.7.1 VMX-Preemption Timer

If the last VM entry was performed with the 1-setting of “activate VMX-preemption
timer” VM-execution control, the VMX-preemption timer counts down (from the
value loaded by VM entry; see Section 23.6.4) in VMX non-root operation. When the
timer counts down to zero, it stops counting down and a VM exit occurs (see Section
22.3).

The VMX-preemption timer counts down at rate proportional to that of the timestamp
counter (TSC). Specifically, the timer counts down by 1 every time bit X in the TSC
changes due to a TSC increment. The value of X is in the range 0—31 and can be
determined by consulting the VMX capability MSR 1A32_VMX_MISC (see Appendix
G.6).

The VMX-preemption timer operates only in the C-states CO, C1, and C2. If the timer
counts down to zero in C1 or C2, the logical processor transitions to the CO C-state
and causes a VM exit. Outside the C-states CO, C1, and C2, the timer is not decre-
mented and does not cause VM exits.

Treatment of the timer in the case of system management interrupts (SMIs) and
system-management mode (SMM) depends on whether the treatment of SMIs and
SMM:

® If the default treatment of SMIs and SMM (see Section 26.14) is active, the VMX-
preemption timer counts across an SMI to VMX non-root operation, subsequent

Vol.3 22-27

VMX NON-ROOT OPERATION

execution in SMM, and the return from SMM via the RSM instruction. However,
the timer can cause a VM exit only from VMX non-root operation. If the timer
expires during SMI, in SMM, or during RSM, a timer-induced VM exit occurs
immediately after RSM with its normal priority unless it is blocked based on
activity state (Section 22.3).

If the dual-monitor treatment of SMIs and SMM (see Section 26.15) is active,
transitions into and out of SMM are VM exits and VM entries, respectively. The
treatment of the VMX-preemption timer by those transitions is mostly the same
as for ordinary VM exits and VM entries; Section 26.15.2 and Section 26.15.4
detail some differences.

22.7.2 Monitor Trap Flag

The monitor trap flag is a debugging feature that causes VM exits to occur on
certain instruction boundaries in VMX non-root operation. Such VM exits are called
MTF VM exits. An MTF VM exit may occur on an instruction boundary in VMX non-
root operation as follows:

If the “monitor trap flag” VM-execution control is 1 and VM entry is injecting a
vectored event (see Section 23.5.1), an MTF VM exit is pending on the instruction
boundary before the first instruction following the VM entry.

If VM entry is injecting a pending MTF VM exit (see Section 23.5.2), an MTF
VM exit is pending on the instruction boundary before the first instruction
following the VM entry. This is the case even if the “monitor trap flag” VM-
execution control is O.

If the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an
event, and a pending event (e.g., debug exception or interrupt) is delivered
before an instruction can execute, an MTF VM exit is pending on the instruction
boundary following delivery of the event (or any nested exception).

Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not
injecting an event, and the first instruction following VM entry is a REP-prefixed
string instruction:

— If the first iteration of the instruction causes a fault, an MTF VM exit is
pending on the instruction boundary following delivery of the fault (or any
nested exception).

— If the first iteration of the instruction does not cause a fault, an MTF VM exit
is pending on the instruction boundary after that iteration.

Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not
injecting an event, and the first instruction following VM entry is not a REP-
prefixed string instruction:

— If the instruction causes a fault, an MTF VM exit is pending on the instruction
boundary following delivery of the fault (or any nested exception).!

22-28 Vol.3

VMX NON-ROOT OPERATION

— If the instruction does not cause a fault, an MTF VM exit is pending on the
instruction boundary following execution of that instruction. If the instruction
is INT3 or INTO, this boundary follows delivery of any software exception. If
the instruction is INT n, this boundary follows delivery of a software interrupt.
If the instruction is HLT, the MTF VM exit will be from the HLT activity state.

No MTF VM exit occurs if another VM exit occurs before reaching the instruction
boundary on which an MTF VM exit would be pending (e.g., due to an exception or
triple fault).

An MTF VM exit occurs on the instruction boundary on which it is pending unless a
higher priority event takes precedence or the MTF VM exit is blocked due to the
activity state:

® System-management interrupts (SMIs), INIT signals, and higher priority events
take priority over MTF VM exits. MTF VM exits take priority over debug-trap
exceptions and lower priority events.

® No MTF VM exit occurs if the processor is in either the shutdown activity state or
wait-for-SIPI activity state. If a non-maskable interrupt subsequently takes the
logical processor out of the shutdown activity state without causing a VM exit, an
MTF VM exit is pending after delivery of that interrupt.

22.7.3 Translation of Guest-Physical Addresses Using EPT

The extended page-table mechanism (EPT) is a feature that can be used to support
the virtualization of physical memory. When EPT is in use, certain physical addresses
are treated as guest-physical addresses and are not used to access memory directly.
Instead, guest-physical addresses are translated by traversing a set of EPT paging
structures to produce physical addresses that are used to access memory.

Details of the EPT are given in Chapter 25.

22.8 UNRESTRICTED GUESTS

The first processors to support VMX operation require CR0O.PE and CRO.PG to be 1 in
VMX operation (see Section 20.8). This restriction implies that guest software cannot
be run in unpaged protected mode or in real-address mode. Later processors support
a VM-execution control called “unrestricted guest”.® If this control is 1, CRO.PE and

CRO.PG may be 0 in VMX non-root operation. Such processors allow guest software

1. This item includes the cases of an invalid opcode exception—#UD— generated by the UD2
instruction and a BOUND-range exceeded exception—#BR—generated by the BOUND instruc-
tion.

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“unrestricted guest” VM-execution control were 0. See Section 21.6.2.

Vol.3 22-29

VMX NON-ROOT OPERATION

to run in unpaged protected mode or in real-address mode. The following items
describe the behavior of such software:

The MOV CRO instructions does not cause a general-protection exception simply
because it would set either CRO.PE and CRO.PG to 0. See Section 22.4 for details.

A logical processor treats the values of CRO.PE and CRO.PG in VMX non-root
operation just as it does outside VMX operation. Thus, if CRO.PE = 0, the
processor operates as it does normally in real-address mode (for example, it uses
the 16-bit interrupt table to deliver interrupts and exceptions). If CRO.PG = 0O,
the processor operates as it does normally when paging is disabled.

Processor operation is modified by the fact that the processor is in VMX non-root
operation and by the settings of the VM-execution controls just as it is in
protected mode or when paging is enabled. Instructions, interrupts, and
exceptions that cause VM exits in protected mode or when paging is enabled also
do so in real-address mode or when paging is disabled. The following examples
should be noted:

— If CRO.PG = 0, page faults do not occur and thus cannot cause VM exits.

— If CRO.PE = 0, invalid-TSS exceptions do not occur and thus cannot cause
VM exits.

— If CRO.PE = 0, the following instructions cause invalid-opcode exceptions and
do not cause VM exits: INVEPT, INVVPID, LLDT, LTR, SLDT, STR, VMCLEAR,
VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF,
and VMXON.

If CRO.PG = 0, each linear address is passed directly to the EPT mechanism for
translation to a physical address.! The guest memory type passed on to the EPT
mechanism is WB (writeback).

1.

As noted in Section 23.2.1.1, the “enable EPT" VM-execution control must be 1 if the “unre-
stricted guest” VM-execution control is 1.

22-30 Vol.3

CHAPTER 23
VM ENTRIES

Software can enter VMX non-root operation using either of the VM-entry instructions
VMLAUNCH and VMRESUME. VMLAUNCH can be used only with a VMCS whose launch
state is clear and VMRESUME can be used only with a VMCS whose the launch state

is launched. VMLAUNCH should be used for the first VM entry after VMCLEAR; VMRE-
SUME should be used for subsequent VM entries with the same VMCS.

Each VM entry performs the following steps in the order indicated:

1.

6.

Basic checks are performed to ensure that VM entry can commence
(Section 23.1).

The control and host-state areas of the VMCS are checked to ensure that they are
proper for supporting VMX non-root operation and that the VMCS is correctly
configured to support the next VM exit (Section 23.2).

The following may be performed in parallel or in any order (Section 23.3):

® The guest-state area of the VMCS is checked to ensure that, after the
VM entry completes, the state of the logical processor is consistent with
IA-32 and Intel 64 architectures.

® Processor state is loaded from the guest-state area and based on controls in
the VMCS.

® Address-range monitoring is cleared.
MSRs are loaded from the VM-entry MSR-load area (Section 23.4).

If VMLAUNCH is being executed, the launch state of the VMCS is set to
“launched.”

An event may be injected in the guest context (Section 23.5).

Steps 1-4 above perform checks that may cause VM entry to fail. Such failures occur
in one of the following three ways:

Some of the checks in Section 23.1 may generate ordinary faults (for example,
an invalid-opcode exception). Such faults are delivered normally.

Some of the checks in Section 23.1 and all the checks in Section 23.2 cause
control to pass to the instruction following the VM-entry instruction. The failure is
indicated by setting RFLAGS.ZF! (if there is a current VMCS) or RFLAGS.CF (if
there is no current VMCS). If there is a current VMCS, an error number indicating
the cause of the failure is stored in the VM-instruction error field. See Chapter 5

1.

This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For IA-32 processors,
this notation refers to the 32-bit forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few
places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated register.

Vol.3 23-1

VM ENTRIES

of the Intel® 64 and I1A-32 Architectures Software Developer’s Manual, Volume
2B for the error numbers.

® The checks in Section 23.3 and Section 23.4 cause processor state to be loaded
from the host-state area of the VMCS (as would be done on a VM exit).
Information about the failure is stored in the VM-exit information fields. See
Section 23.7 for details.

EFLAGS.TF = 1 causes a VM-entry instruction to generate a single-step debug excep-
tion only if failure of one of the checks in Section 23.1 and Section 23.2 causes
control to pass to the following instruction. A VM-entry does not generate a single-
step debug exception in any of the following cases: (1) the instruction generates a
fault; (2) failure of one of the checks in Section 23.3 or in loading MSRs causes
processor state to be loaded from the host-state area of the VMCS; or (3) the instruc-
tion passes all checks in Section 23.1, Section 23.2, and Section 23.3 and there is no
failure in loading MSRs.

Section 26.15 describes the dual-monitor treatment of system-management inter-
rupts (SMIs) and system-management mode (SMM). Under this treatment, code
running in SMM returns using VM entries instead of the RSM instruction. A VM entry
returns from SMM if it is executed in SMM and the “entry to SMM” VM-entry control
is 0. VM entries that return from SMM differ from ordinary VM entries in ways that
are detailed in Section 26.15.4.

23.1 BASIC VM-ENTRY CHECKS

Before a VM entry commences, the current state of the logical processor is checked
in the following order:

1. If the logical processor is in virtual-8086 mode or compatibility mode, an
invalid-opcode exception is generated.

2. If the current privilege level (CPL) is not zero, a general-protection exception is
generated.

3. Ifthere is no current VMCS, RFLAGS.CF is set to 1 and control passes to the next
instruction.

4. |If thereis a current VMCS, the following conditions are evaluated in order; any of
these cause VM entry to fail:

a. if there is MOV-SS blocking (see Table 21-3)

b. if the VM entry is invoked by VMLAUNCH and the VMCS launch state is not
clear

c. if the VM entry is invoked by VMRESUME and the VMCS launch state is not
launched

If any of these checks fail, RFLAGS.ZF is set to 1 and control passes to the next
instruction. An error number indicating the cause of the failure is stored in the

23-2 Vol.3

VM ENTRIES

VM-instruction error field. See Chapter 5 of the Intel® 64 and 1A-32 Architec-
tures Software Developer’s Manual, Volume 2B for the error numbers.

23.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA

If the checks in Section 23.1 do not cause VM entry to fail, the control and host-state
areas of the VMCS are checked to ensure that they are proper for supporting VMX
non-root operation, that the VMCS is correctly configured to support the next

VM exit, and that, after the next VM exit, the processor’s state is consistent with the
Intel 64 and 1A-32 architectures.

VM entry fails if any of these checks fail. When such failures occur, control is passed
to the next instruction, RFLAGS.ZF is set to 1 to indicate the failure, and the
VM-instruction error field is loaded with an error number that indicates whether the
failure was due to the controls or the host-state area (see Chapter 5 of the Intel® 64
and 1A-32 Architectures Software Developer’s Manual, Volume 2B).

These checks may be performed in any order. Thus, an indication by error number of
one cause (for example, host state) does not imply that there are not also other
errors. Different processors may thus give different error numbers for the same
VMCS.

The checks on the controls and the host-state area are presented in Section 23.2.1
through Section 23.2.4. These sections reference VMCS fields that correspond to
processor state. Unless otherwise stated, these references are to fields in the host-
state area.

23.2.1 Checks on VMX Controls

This section identifies VM-entry checks on the VMX control fields.

23.2.1.1 VM-Execution Control Fields

VM entries perform the following checks on the VM-execution control fields:!

® Reserved bits in the pin-based VM-execution controls must be set properly.
Software may consult the VMX capability MSRs to determine the proper settings
(see Appendix G.3.1).

® Reserved bits in the primary processor-based VM-execution controls must be set
properly. Software may consult the VMX capability MSRs to determine the proper
settings (see Appendix G.3.2).

® If the “activate secondary controls” primary processor-based VM-execution
control is 1, reserved bits in the secondary processor-based VM-execution

1. If the “activate secondary controls” primary processor-based VVM-execution control is 0, VM entry
operates as if each secondary processor-based VM-execution control were O.

Vol.3 23-3

VM ENTRIES

controls must be set properly. Software may consult the VMX capability MSRs to
determine the proper settings (see Appendix G.3.3).

If the “activate secondary controls” primary processor-based VM-execution
control is O (or if the processor does not support the 1-setting of that control),
no checks are performed on the secondary processor-based VM-execution
controls. The logical processor operates as if all the secondary processor-based
VM-execution controls were 0.

® The CR3-target count must not be greater than 4. Future processors may support
a different number of CR3-target values. Software should read the VMX capability
MSR 1A32_VMX_MISC to determine the number of values supported (see
Appendix G.6).

® If the “use I/0 bitmaps” VM-execution control is 1, bits 11:0 of each 1/0-bitmap
address must be 0. On processors that support Intel 64 architecture, neither
address should set any bits beyond the processor’s physical-address width.1 On
processors that do not support Intel 64 architecture, neither address should set
any bits in the range 63:32.

® If the “use MSR bitmaps” VM-execution control is 1, bits 11:0 of the MSR-bitmap
address must be 0. On processors that support Intel 64 architecture, the address
should not set any bits beyond the processor’s physical-address width. On
processors that do not support Intel 64 architecture, the address should not set
any bits in the range 63:32.

® |f the “use TPR shadow” VM-execution control is 1, the virtual-APIC address must
satisfy the following checks:

— Bits 11:0 of the address must be 0.

— On processors that support Intel 64 architecture, the address should not set
any bits beyond the processor's physical-address width.

— On processors that support the 1A-32 architecture, the address should not set
any bits in the range 63:32.

The following items describe the treatment of bytes 81H-83H on the virtual-
APIC page (see Section 21.6.8) if all of the above checks are satisfied and the
“use TPR shadow” VM-execution control is 1, treatment depends upon the
setting of the “virtualize APIC accesses” VM-execution control:?

— If the “virtualize APIC accesses” VM-execution control is O, the bytes may be
cleared. (If the bytes are not cleared, they are left unmodified.)

— If the “virtualize APIC accesses” VM-execution control is 1, the bytes are
cleared.

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

2. "Virtualize APIC accesses"” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VM entry functions as if the “virtualize APIC
accesses” VM-execution control were 0. See Section 21.6.2.

23-4 Vol.3

VM ENTRIES

— If the VM entry fails, the any clearing of the bytes may or may not occur. This
is true either if the failure causes control to pass to the instruction following
the VM-entry instruction or if it cause processor state to be loaded from the
host-state area of the VMCS. Behavior may be implementation-specific.

If the “use TPR shadow” VM-execution control is 1, bits 31:4 of the TPR threshold
VM-execution control field must be 0.

The following check is performed if the “use TPR shadow” VM-execution control is
1 and the “virtualize APIC accesses” VM-execution control is O: the value of

bits 3:0 of the TPR threshold VM-execution control field should not be greater
than the value of bits 7:4 in byte 80H on the virtual-APIC page (see Section
21.6.8).

If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” VM-execution
control must be 0.

If the “virtual NMIs” VM-execution control is 0, the “NMI-window exiting” VM-
execution control must be 0.

If the “virtualize APIC-accesses” VM-execution control is 1, the APIC-access
address must satisfy the following checks:

— Bits 11:0 of the address must be 0.

— On processors that support Intel 64 architecture, the address should not set
any bits beyond the processor's physical-address width.

— On processors that support the 1A-32 architecture, the address should not set
any bits in the range 63:32.

If the “virtualize Xx2APIC mode” VM-execution control is 1, the “use TPR shadow”
VM-execution control must be 1 and the “virtualize APIC accesses” VM-execution
control must be 0.1

If the “enable VPID” VM-execution control is 1, the value of the VPID VM-
execution control field must not be O000H.

If the “enable EPT” VM-execution control is 1, the EPTP VM-execution control field
(see Table 21-8 in Section 21.6.11) must satisfy the following checks:?

— The EPT memory type (bits 2:0) must be a value supported by the logical
processor as indicated in the 1A32_VMX_EPT_VPID_CAP MSR (see Appendix
G.10).

— Bits 5:3 (1 less than the EPT page-walk length) must be 3, indicating an EPT
page-walk length of 4; see Section 25.2.2.

. "“Virtualize APIC accesses” and “virtualize x2APIC mode” are both secondary processor-based VM-
execution controls. If bit 31 of the primary processor-based VM-execution controls is 0, VM entry
functions as if both these controls were 0. See Section 21.6.2.

. "Enable EPT" is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VM entry functions as if the “enable EPT" VM-execu-
tion control were 0. See Section 21.6.2.

Vol.3 23-5

VM ENTRIES

— Reserved bits 11:6 and 63:N (where N is the processor’s physical-address
width) must all be 0.

— If the “unrestricted guest” VM-execution control is 1, the “enable EPT” VM-
execution control must also be 1.1

23.2.1.2 VM-Exit Control Fields

VM entries perform the following checks on the VM-exit control fields.

Reserved bits in the VM-exit controls must be set properly. Software may consult
the VMX capability MSRs to determine the proper settings (see Appendix G.4).

If “activate VMX-preemption timer” VM-execution control is O, the “save VMX-
preemption timer value” VM-exit control must also be 0.

The following checks are performed for the VM-exit MSR-store address if the
VM-exit MSR-store count field is non-zero:

— The lower 4 bits of the VM-exit MSR-store address must be 0. On processors
that support Intel 64 architecture, the address should not set any bits beyond
the processor’s physical-address width.2 On processors that do not support
Intel 64 architecture, the address should not set any bits in the range 63:32.

— On processors that support Intel 64 architecture, the address of the last byte
in the VM-exit MSR-store area should not set any bits beyond the processor’s
physical-address width. On processors that do not support Intel 64 archi-
tecture, the address of the last byte in the VM-exit MSR-store area should not
set any bits in the range 63:32. The address of this last byte is VM-exit MSR-
store address + (MSR count * 16) — 1. (The arithmetic used for the
computation uses more bits than the processor’s physical-address width.)

The following checks are performed for the VM-exit MSR-load address if the
VM-exit MSR-load count field is non-zero:

— The lower 4 bits of the VM-exit MSR-load address must be 0. On processors
that support Intel 64 architecture, the address should not set any bits beyond
the processor’s physical-address width. On processors that do not support
Intel 64 architecture, the address should not set any bits in the range 63:32.

— On processors that support Intel 64 architecture, the address of the last byte
in the VM-exit MSR-load area should not set any bits beyond the processor’s
physical-address width. On processors that do not support Intel 64 archi-
tecture, the address of the last byte in the VM-exit MSR-load area should not
set any bits in the range 63:32. The address of this last byte is VM-exit MSR-

“Unrestricted guest” and “enable EPT" are both secondary processor-based VM-execution con-
trols. If bit 31 of the primary processor-based VM-execution controls is 0, VM entry functions as
if both these controls were 0. See Section 21.6.2.

Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

23-6 Vol.3

VM ENTRIES

load address + (MSR count * 16) — 1. (The arithmetic used for the
computation uses more bits than the processor’s physical-address width.)

23.2.1.3 VM-Entry Control Fields

VM entries perform the following checks on the VM-entry control fields.

Reserved bits in the VM-entry controls must be set properly. Software may
consult the VMX capability MSRs to determine the proper settings (see Appendix
G.5).

Fields relevant to VM-entry event injection must be set properly. These fields are
the VM-entry interruption-information field (see Table 21-12 in Section 21.8.3),
the VM-entry exception error code, and the VM-entry instruction length. If the
valid bit (bit 31) in the VM-entry interruption-information field is 1, the following
must hold:

The field’s interruption type (bits 10:8) is not set to a reserved value. Value 1
is reserved on all logical processors; value 7 (other event) is reserved on
logical processors that do not support the 1-setting of the “monitor trap flag”
VM-execution control.

The field’s vector (bits 7:0) is consistent with the interruption type:
* |If the interruption type is non-maskable interrupt (NMI), the vector is 2.
* If the interruption type is hardware exception, the vector is at most 31.
* If the interruption type is other event, the vector is O (pending MTF

VM exit).

The field's deliver-error-code bit (bit 11) is 1 if and only if (1) either (a) the
"unrestricted guest™" VM-execution control is O; or (b) bit O (corresponding to
CRO.PE) is set in the CRO field in the guest-state area; (2) the interruption
type is hardware exception; and (3) the vector indicates an exception that
would normally deliver an error code (8 = #DF; 10 = TS; 11 = #NP; 12 =
#SS; 13 = #GP; 14 = #PF; or 17 = #AC).

Reserved bits in the field (30:12) are O.

If the deliver-error-code bit (bit 11) is 1, bits 31:15 of the VM-entry
exception error-code field are 0.

If the interruption type is software interrupt, software exception, or
privileged software exception, the VM-entry instruction-length field is in the
range 1-15.

The following checks are performed for the VM-entry MSR-load address if the
VM-entry MSR-load count field is non-zero:

The lower 4 bits of the VM-entry MSR-load address must be 0. On processors
that support Intel 64 architecture, the address should not set any bits beyond
the processor’s physical-address width.! On processors that do not support

Intel 64 architecture, the address should not set any bits in the range 63:32.

Vol.3 23-7

VM ENTRIES

— On processors that support Intel 64 architecture, the address of the last byte
in the VM-entry MSR-load area should not set any bits beyond the processor’s
physical-address width. On processors that do not support Intel 64 archi-
tecture, the address of the last byte in the VM-entry MSR-load area should
not set any bits in the range 63:32. The address of this last byte is VM-entry
MSR-load address + (MSR count * 16) — 1. (The arithmetic used for the
computation uses more bits than the processor’s physical-address width.)

If the processor is not in SMM, the “entry to SMM” and “deactivate dual-monitor
treatment” VM-entry controls must be 0.

The “entry to SMM” and “deactivate dual-monitor treatment” VM-entry controls
cannot both be 1.

23.2.2 Checks on Host Control Registers and MSRs

The following checks are performed on fields in the host-state area that correspond
to control registers and MSRs:

The CRO field must not set any bit to a value not supported in VMX operation (see
Section 20.8).1

The CRA4 field must not set any bit to a value not supported in VMX operation (see
Section 20.8).

On processors that support Intel 64 architecture, the CR3 field must be such that
bits 63:52 and bits in the range 51:32 beyond the processor’s physical-address
width must be 0.2

On processors that support Intel 64 architecture, the 1A32_SYSENTER_ESP field
and the IA32_SYSENTER_EIP field must each contain a canonical address.

If the “load 1A32_PERF_GLOBAL_CTRL” VM-exit control is 1, bits reserved in the
IA32_PERF_GLOBAL_CTRL MSR must be O in the field for that register (see
Figure 30-3).

If the “load 1A32_PAT” VM-exit control is 1, the value of the field for the 1A32_PAT
MSR must be one that could be written by WRMSR without fault at CPL 0. Specif-
ically, each of the 8 bytes in the field must have one of the values 0 (UC), 1 (WC),
4 (WT), 5 (WP), 6 (WB), or 7 (UC-).

If the “load 1A32_EFER” VM-exit control is 1, bits reserved in the IA32_EFER MSR
must be 0 in the field for that register. In addition, the values of the LMA and LME

. Software can determine a processor’s physical-address width by executing CPUID with

80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

. The bits corresponding to CRO.NW (bit 29) and CRO.CD (bit 30) are never checked because the

values of these bits are not changed by VM exit; see Section 24.5.1.

Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

23-8 Vol. 3

VM ENTRIES

bits in the field must each be that of the “host address-space size” VM-exit
control.

23.2.3 Checks on Host Segment and Descriptor-Table Registers

The following checks are performed on fields in the host-state area that correspond
to segment and descriptor-table registers:

® In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the RPL (bits 1:0)
and the TI flag (bit 2) must be 0.

® The selector fields for CS and TR cannot be O000H.

® The selector field for SS cannot be OO00H if the “host address-space size” VM-exit
control is O.

® On processors that support Intel 64 architecture, the base-address fields for FS,
GS, GDTR, IDTR, and TR must contain canonical addresses.

23.2.4 Checks Related to Address-Space Size

On processors that support Intel 64 architecture, the following checks related to
address-space size are performed on VMX controls and fields in the host-state area:

® If the logical processor is outside 1A-32e mode (if IA32_EFER.LMA = 0) at the
time of VM entry, the following must hold:

— The “lA-32e mode guest” VM-entry control is O.

— The “host address-space size” VM-exit control is O.

® If the logical processor is in 1A-32e mode (if IA32_EFER.LMA = 1) at the time of
VM entry, the “host address-space size” VM-exit control must be 1.

® If the “host address-space size” VM-exit control is 0, the following must hold:
— The “lA-32e mode guest” VM-entry control is 0.
— Bits 63:32 in the RIP field is O.

® If the “host address-space size” VM-exit control is 1, the following must hold:
— Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1.
— The RIP field contains a canonical address.

On processors that do not support Intel 64 architecture, checks are performed to
ensure that the “l1A-32e mode guest” VM-entry control and the “host address-space
size” VM-exit control are both O.

Vol.3 23-9

VM ENTRIES

23.3 CHECKING AND LOADING GUEST STATE

If all checks on the VMX controls and the host-state area pass (see Section 23.2), the
following operations take place concurrently: (1) the guest-state area of the VMCS is
checked to ensure that, after the VM entry completes, the state of the logical
processor is consistent with 1A-32 and Intel 64 architectures; (2) processor state is
loaded from the guest-state area or as specified by the VM-entry control fields; and
(3) address-range monitoring is cleared.

Because the checking and the loading occur concurrently, a failure may be discov-
ered only after some state has been loaded. For this reason, the logical processor
responds to such failures by loading state from the host-state area, as it would for a
VM exit. See Section 23.7.

23.3.1 Checks on the Guest State Area

This section describes checks performed on fields in the guest-state area. These
checks may be performed in any order. The following subsections reference fields
that correspond to processor state. Unless otherwise stated, these references are to
fields in the guest-state area.

23.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRs

The following checks are performed on fields in the guest-state area corresponding to

control registers, debug registers, and MSRs:

® The CRO field must not set any bit to a value not supported in VMX operation
(see Section 20.8). The following are exceptions:

— Bit 0 (corresponding to CRO.PE) and bit 31 (PG) are not checked if the
“unrestricted guest” VM-execution control is 1.1

— Bit 29 (corresponding to CRO.NW) and bit 30 (CD) are never checked
because the values of these bits are not changed by VM entry; see Section
23.3.2.1.

® If bit 31 in the CRO field (corresponding to PG) is 1, bit O in that field (PE) must
also be 1.2

® The CR4 field must not set any bit to a value not supported in VMX operation
(see Section 20.8).

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if the “unrestricted
guest” VM-execution control were 0. See Section 21.6.2.

2. If the capability MSR IA32_VMX_CRO_FIXED1 reports that CRO.PE must be 1 in VMX operation,
bit 0 in the CRO field must be 1 unless the “unrestricted guest” VM-execution control and bit 31
of the primary processor-based VM-execution controls are both 1.

23-10 Vol.3

VM ENTRIES

If the “load debug controls” VM-entry control is 1, bits reserved in the
1IA32_DEBUGCTL MSR must be 0 in the field for that register. The first processors
to support the virtual-machine extensions supported only the 1-setting of this
control and thus performed this check unconditionally.

The following checks are performed on processors that support Intel 64 archi-
tecture:

— If the “IA-32e mode guest” VM-entry control is 1, bit 31 in the CRO field
(corresponding to CRO.PG) and bit 5 in the CR4 field (corresponding to
CR4.PAE) must each be 1.1

— The CR3 field must be such that bits 63:52 and bits in the range 51:32
beyond the processor’s physical-address width are 0.2

— If the “load debug controls” VM-entry control is 1, bits 63:32 in the DR7 field
must be 0. The first processors to support the virtual-machine extensions
supported only the 1-setting of this control and thus performed this check
unconditionally (if they supported Intel 64 architecture).

— The IA32_SYSENTER_ESP field and the 1A32_SYSENTER_EIP field must each
contain a canonical address.

If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, bits reserved in the
IA32_PERF_GLOBAL_CTRL MSR must be 0 in the field for that register (see
Figure 30-3).

If the “load IA32_PAT” VM-entry control is 1, the value of the field for the
1A32_PAT MSR must be one that could be written by WRMSR without fault at CPL
0. Specifically, each of the 8 bytes in the field must have one of the values 0 (UC),
1 (WC), 4 (WT), 5 (WP), 6 (WB), or 7 (UC-).

If the “load 1A32_EFER” VM-entry control is 1, the following checks are performed
on the field for the 1A32_EFER MSR :

— Bits reserved in the 1A32_EFER MSR must be 0.

— Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of the
“l1A-32e mode guest” VM-exit control. It must also be identical to bit 8 (LME)
if bit 31 in the CRO field (corresponding to CRO.PG) is 1.3

If the capability MSR IA32_VMX_CRO_FIXED1 reports that CRO.PG must be 1 in VMX operation,
bit 31 in the CRO field must be 1 unless the “unrestricted guest” VM-execution control and bit 31
of the primary processor-based VM-execution controls are both 1.

. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

If the capability MSR IA32_VMX_CRO_FIXED1 reports that CRO.PG must be 1 in VMX operation,
bit 31 in the CRO field must be 1 unless the “unrestricted guest” VM-execution control and bit 31
of the primary processor-based VM-execution controls are both 1.

Vol.3 23-11

VM ENTRIES

23.3.1.2 Checks on Guest Segment Registers

This section specifies the checks on the fields for CS, SS, DS, ES, FS, GS, TR, and
LDTR. The following terms are used in defining these checks:

The guest will be virtual-8086 if the VM flag (bit 17) is 1 in the RFLAGS field in
the guest-state area.

The guest will be 1A-32e mode if the “IA-32e mode guest” VM-entry control is 1.
(This is possible only on processors that support Intel 64 architecture.)

Any one of these registers is said to be usable if the unusable bit (bit 16) is O in
the access-rights field for that register.

The following are the checks on these fields:

Selector fields.
— TR. The TI flag (bit 2) must be 0.
— LDTR. If LDTR is usable, the Tl flag (bit 2) must be O.

— SS. If the guest will not be virtual-8086 and the “unrestricted guest” VM-
execution control is 0, the RPL (bits 1:0) must equal the RPL of the selector
field for CS.1

Base-address fields.

— CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the address must be
the selector field shifted left 4 bits (multiplied by 16).

— The following checks are performed on processors that support Intel 64 archi-
tecture:

* TR, FS, GS. The address must be canonical.
* LDTR. If LDTR is usable, the address must be canonical.
® (CS. Bits 63:32 of the address must be zero.

® SS, DS, ES. If the register is usable, bits 63:32 of the address must be
zero.

Limit fields for CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the field
must be O0O00FFFFH.

Access-rights fields.
— CS, SS, DS, ES, FS, GS.

* If the guest will be virtual-8086, the field must be 000000F3H. This
implies the following:

— Bits 3:0 (Type) must be 3, indicating an expand-up read/write
accessed data segment.

. "Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-

mary processor-based VM-execution controls is 0, VM entry functions as if the “unrestricted
guest” VM-execution control were 0. See Section 21.6.2.

23-12 Vol.3

VM ENTRIES

— Bit 4 (S) must be 1.
— Bits 6:5 (DPL) must be 3.
— Bit 7 (P) must be 1.

— Bits 11:8 (reserved), bit 12 (software available), bit 13 (reserved/L),
bit 14 (D/B), bit 15 (G), bit 16 (unusable), and bits 31:17 (reserved)
must all be 0.

If the guest will not be virtual-8086, the different sub-fields are
considered separately:

— Bits 3:0 (Type).

CS. The values allowed depend on the setting of the
“unrestricted guest” VM-execution control:

— If the control is O, the Type must be 9, 11, 13, or 15
(accessed code segment).

— If the control is 1, the Type must be either 3 (read/write
accessed expand-up data segment) or one of 9, 11, 13, and
15 (accessed code segment).

SS. If SS is usable, the Type must be 3 or 7 (read/write,
accessed data segment).

DS, ES, FS, GS. The following checks apply if the register is
usable:

— Bit 0 of the Type must be 1 (accessed).

— If bit 3 of the Type is 1 (code segment), then bit 1 of the
Type must be 1 (readable).

— Bit 4 (S). If the register is CS or if the register is usable, S must
be 1.

— Bits 6:5 (DPL).

CS.

— If the Type is 3 (read/write accessed expand-up data
segment), the DPL must be 0. The Type can be 3 only if the
“unrestricted guest” VM-execution control is 1.

— If the Type is 9 or 11 (non-conforming code segment), the
DPL must equal the DPL in the access-rights field for SS.

— If the Type is 13 or 15 (conforming code segment), the DPL
cannot be greater than the DPL in the access-rights field for
SS.

SS.

— If the “unrestricted guest” VM-execution control is O, the DPL
must equal the RPL from the selector field.

Vol.3 23-13

VM ENTRIES

— The DPL must be O either if the Type in the access-rights field
for CS is 3 (read/write accessed expand-up data segment) or
if bit 0 in the CRO field (corresponding to CRO.PE) is 0.1

®* DS, ES, FS, GS. The DPL cannot be less than the RPL in the
selector field if (1) the “unrestricted guest” VM-execution control
is 0; (2) the register is usable; and (3) the Type in the access-
rights field is in the range 0 - 11 (data segment or non-
conforming code segment).

— Bit 7 (P). If the register is CS or if the register is usable, P must be 1.

— Bits 11:8 (reserved). If the register is CS or if the register is usable,
these bits must all be 0.

— Bit 14 (D/B). For CS, D/B must be O if the guest will be 1A-32e mode
and the L bit (bit 13) in the access-rights field is 1.

— Bit 15 (G). The following checks apply if the register is CS or if the
register is usable:

* If any bit in the limit field in the range 11:0 is 0, G must be 0.
* If any bit in the limit field in the range 31:20 is 1, G must be 1.

— Bits 31:17 (reserved). If the register is CS or if the register is
usable, these bits must all be 0.

— TR. The different sub-fields are considered separately:
® Bits 3:0 (Type).

— If the guest will not be 1A-32e mode, the Type must be 3 (16-bit
busy TSS) or 11 (32-bit busy TSS).

— If the guest will be 1A-32e mode, the Type must be 11 (64-bit busy
TSS).

® Bit4 (S). S must be 0.
e Bit7 (P). P must be 1.
* Bits 11:8 (reserved). These bits must all be 0.
* Bit 15 (G).
— If any bit in the limit field in the range 11:0 is 0, G must be O.

— If any bit in the limit field in the range 31:20 is 1, G must be 1.
®* Bit 16 (Unusable). The unusable bit must be 0.

® Bits 31:17 (reserved). These bits must all be O.

1. The following apply if either the “unrestricted guest” VM-execution control or bit 31 of the pri-
mary processor-based VM-execution controls is O: (1) bit O in the CRO field must be 1 if the capa-
bility MSR 1A32_VMX_CRO_FIXED1 reports that CRO.PE must be 1 in VMX operation; and (2) the
Type in the access-rights field for CS cannot be 3.

23-14 Vol.3

VM ENTRIES

— LDTR. The following checks on the different sub-fields apply only if LDTR is
usable:

® Bits 3:0 (Type). The Type must be 2 (LDT).

® Bit4 (S). S must be 0.

e Bit7 (P). P mustbe 1.

® Bits 11:8 (reserved). These bits must all be 0.

* Bit 15 (G).
— If any bit in the limit field in the range 11:0 is 0, G must be 0.
— If any bit in the limit field in the range 31:20 is 1, G must be 1.

® Bits 31:17 (reserved). These bits must all be 0.

23.3.1.3 Checks on Guest Descriptor-Table Registers

The following checks are performed on the fields for GDTR and IDTR:

® On processors that support Intel 64 architecture, the base-address fields must
contain canonical addresses.

® Bits 31:16 of each limit field must be O.

23.3.1.4 Checks on Guest RIP and RFLAGS

The following checks are performed on fields in the guest-state area corresponding to
RIP and RFLAGS:

® RIP. The following checks are performed on processors that support Intel 64
architecture:

— Bits 63:32 must be 0 if the “IA-32e mode guest” VM-entry control is O or if
the L bit (bit 13) in the access-rights field for CS is O.

— If the processor supports N < 64 linear-address bits, bits 63:N must be
identical if the “IA-32e mode guest” VM-entry control is 1 and the L bit in the
access-rights field for CS is 1.t (No check applies if the processor supports 64
linear-address bits.)

® RFLAGS.

— Reserved bits 63:22 (bits 31:22 on processors that do not support Intel 64
architecture), bit 15, bit 5 and bit 3 must be 0 in the field, and reserved bit 1
must be 1.

— The VM flag (bit 17) must be O either if the “1A-32e mode guest” VM-entry
control is 1 or if bit 0 in the CRO field (corresponding to CRO.PE) is 0.2

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The num-
ber of linear-address bits supported is returned in bits 15:8 of EAX.

Vol.3 23-15

VM ENTRIES

The IF flag (RFLAGS[bit 9]) must be 1 if the valid bit (bit 31) in the VM-entry
interruption-information field is 1 and the interruption type (bits 10:8) is
external interrupt.

23.3.1.5 Checks on Guest Non-Register State

The following checks are performed on fields in the guest-state area corresponding to
non-register state:

Activity state.

The activity-state field must contain a value in the range O — 3, indicating an
activity state supported by the implementation (see Section 21.4.2). Future
processors may include support for other activity states. Software should
read the VMX capability MSR 1A32_VMX_MISC (see Appendix G.6) to
determine what activity states are supported.

The activity-state field must not indicate the HLT state if the DPL (bits 6:5) in
the access-rights field for SS is not 0.1

The activity-state field must indicate the active state if the interruptibility-
state field indicates blocking by either MOV-SS or by STI (if either bit O or
bit 1 in that field is 1).

If the valid bit (bit 31) in the VM-entry interruption-information field is 1, the
interruption to be delivered (as defined by interruption type and vector) must
not be one that would normally be blocked while a logical processor is in the
activity state corresponding to the contents of the activity-state field. The
following items enumerate the interruptions (as specified in the VM-entry
interruption-information field) whose injection is allowed for the different
activity states:

® Active. Any interruption is allowed.
® HLT. The only events allowed are the following:

— Those with interruption type external interrupt or non-maskable
interrupt (NMI).

— Those with interruption type hardware exception and vector 1
(debug exception) or vector 18 (machine-check exception).

— Those with interruption type other event and vector O (pending MTF
VM exit).

2.

1.

If the capability MSR IA32_VMX_CRO_FIXED1 reports that CRO.PE must be 1 in VMX operation,
bit 0 in the CRO field must be 1 unless the “unrestricted guest” VM-execution control and bit 31
of the primary processor-based VM-execution controls are both 1.

As noted in Section 21.4.1, SS.DPL corresponds to the logical processor’s current privilege level
(CPL).

23-16 Vol.3

VM ENTRIES

See Table 21-12 in Section 21.8.3 for details regarding the format of the
VM-entry interruption-information field.

¢ Shutdown. Only NMIs and machine-check exceptions are allowed.
¢ Wait-for-SIPI. No interruptions are allowed.

The activity-state field must not indicate the wait-for-SIPI state if the “entry
to SMM” VM-entry control is 1.

® Interruptibility state.

The reserved bits (bits 31:4) must be 0.

The field cannot indicate blocking by both STI and MOV SS (bits O and 1
cannot both be 1).

Bit O (blocking by STI) must be O if the IF flag (bit 9) is O in the RFLAGS field.

Bit O (blocking by STI) and bit 1 (blocking by MOV-SS) must both be 0 if the
valid bit (bit 31) in the VM-entry interruption-information field is 1 and the
interruption type (bits 10:8) in that field has value 0, indicating external
interrupt.

Bit 1 (blocking by MOV-SS) must be 0 if the valid bit (bit 31) in the VM-entry
interruption-information field is 1 and the interruption type (bits 10:8) in that
field has value 2, indicating non-maskable interrupt (NMI).

Bit 2 (blocking by SMI) must be 0 if the processor is not in SMM.
Bit 2 (blocking by SMI) must be 1 if the “entry to SMM” VM-entry control is 1.

A processor may require bit O (blocking by STI) to be O if the valid bit (bit 31)
in the VM-entry interruption-information field is 1 and the interruption type
(bits 10:8) in that field has value 2, indicating NMI. Other processors may not
make this requirement.

Bit 3 (blocking by NMI) must be O if the “virtual NMIs” VM-execution control
is 1, the valid bit (bit 31) in the VM-entry interruption-information field is 1,
and the interruption type (bits 10:8) in that field has value 2 (indicating
NMI).

NOTE

If the “virtual NMIs” VM-execution control is O, there is no
requirement that bit 3 be O if the valid bit in the VM-entry
interruption-information field is 1 and the interruption type in that
field has value 2.

® Pending debug exceptions.

Bits 11:4, bit 13, and bits 63:15 (bits 31:15 on processors that do not
support Intel 64 architecture) must be 0.

The following checks are performed if any of the following holds: (1) the
interruptibility-state field indicates blocking by STI (bit O in that field is 1);

Vol.3 23-17

VM ENTRIES

(2) the interruptibility-state field indicates blocking by MOV SS (bit 1 in that
field is 1); or (3) the activity-state field indicates HLT:

® Bit 14 (BS) must be 1 if the TF flag (bit 8) in the RFLAGS field is 1 and the
BTF flag (bit 1) in the 1A32_DEBUGCTL field is O.

* Bit 14 (BS) must be O if the TF flag (bit 8) in the RFLAGS field is O or the
BTF flag (bit 1) in the 1A32_DEBUGCTL field is 1.

® VMCS link pointer. The following checks apply if the field contains a value other
than FFFFFFFF_FFFFFFFFH:

— Bits 11:0 must be 0.

— On processors that support Intel 64 architecture, bits beyond the processor’s
physical-address width must be 0.1 on processors that do not support Intel
64 architecture, bits in the range 63:32 must be O.

— The 32 bits located in memory referenced by the value of the field (as a
physical address) must contain the processor’s VMCS revision identifier (see
Section 21.2).

— If the processor is not in SMM or the “entry to SMM” VM-entry control is 1, the
field must not contain the current VMCS pointer.

— If the processor is in SMM and the “entry to SMM” VM-entry control is O, the
field must not contain the VMXON pointer.

23.3.1.6 Checks on Guest Page-Directory-Pointer-Table Entries

If CRO.PG =1, CR4.PAE =1, and IA32_EFER.LMA = 0, the logical processor also uses
PAE paging (see Section 4.4 in the Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volume 3A).2 When PAE paging is in use, the physical address in
CR3 references a table of page-directory-pointer-table entries (PDPTEs). A MOV
to CR3 when PAE paging is in use checks the validity of the PDPTEs.

A VM entry is to a guest that uses PAE paging if (1) bit 5 (corresponding to CR4.PAE)
is set in the CR4 field in the guest-state area; and (2) the “lA-32e mode guest”
VM-entry control is 0. Such a VM entry checks the validity of the PDPTEs:

® If the “enable EPT” VM-execution control is 0, VM entry checks the validity of the
PDPTEs referenced by the CR3 field in the guest-state area if either (1) PAE
paging was not in use before the VM entry; or (2) the value of CR3 is changing as
a result 03]‘ the VM entry. VM entry may check their validity even if neither (1) nor
(2) hold.

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

2. On processors that support Intel 64 architecture, the physical-address extension may support
more than 36 physical-address bits. Software can determine the number physical-address bits
supported by executing CPUID with 80000008H in EAX. The physical-address width is returned
in bits 7:0 of EAX.

23-18 Vol.3

VM ENTRIES

® If the “enable EPT” VM-execution control is 1, VM entry checks the validity of the
PDPTE fields in the guest-state area (see Section 21.4.2).

A VM entry to a guest that does not use PAE paging does not check the validity of any
PDPTEs.

A VM entry that checks the validity of the PDPTEs uses the same checks that are used
when CR3 is loaded with MOV to CR3 when PAE paging is in use.l If MOV to CR3
would cause a general-protection exception due to the PDPTEs that would be loaded
(e.g., because a reserved bit is set), the VM entry fails.

23.3.2 Loading Guest State

Processor state is updated on VM entries in the following ways:
® Some state is loaded from the guest-state area.
® Some state is determined by VM-entry controls.

® The page-directory pointers are loaded based on the values of certain control
registers.

This loading may be performed in any order and in parallel with the checking of VMCS
contents (see Section 23.3.1).

The loading of guest state is detailed in Section 23.3.2.1 to Section 23.3.2.4. These
sections reference VMCS fields that correspond to processor state. Unless otherwise
stated, these references are to fields in the guest-state area.

In addition to the state loading described in this section, VM entries may load MSRs
from the VM-entry MSR-load area (see Section 23.4). This loading occurs only after
the state loading described in this section and the checking of VMCS contents
described in Section 23.3.1.

23.3.2.1 Loading Guest Control Registers, Debug Registers, and MSRs

The following items describe how guest control registers, debug registers, and MSRs
are loaded on VM entry:

® CRO is loaded from the CRO field with the exception of the following bits, which
are never modified on VM entry: ET (bit 4); reserved bits 15:6, 17, and 28:19;

3. “Enable EPT" is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is O, VM entry functions as if the “enable EPT" VM-execu-
tion control were 0. See Section 21.6.2.

1. This implies that (1) bits 11:9 in each PDPTE are ignored; and (2) if bit O (present) is clear in one
of the PDPTEs, bits 63:1 of that PDPTE are ignored.

Vol.3 23-19

VM ENTRIES

NW (bit 29) and CD (bit 30).1 The values of these bits in the CRO field are
ignored.

® CR3 and CR4 are loaded from the CR3 field and the CR4 field, respectively.

® If the “load debug controls” VM-execution control is 1, DR7 is loaded from the
DR7 field with the exception that bit 12 and bits 15:14 are always 0 and bit 10 is
always 1. The values of these bits in the DR7 field are ignored.

The first processors to support the virtual-machine extensions supported only
the 1-setting of the “load debug controls” VM-execution control and thus always
loaded DR7 from the DRY7 field.

® The following describes how some MSRs are loaded using fields in the guest-state
area:

— If the “load debug controls” VM-execution control is 1, the 1A32_DEBUGCTL
MSR is loaded from the 1A32_DEBUGCTL field. The first processors to support
the virtual-machine extensions supported only the 1-setting of this control
and thus always loaded the 1A32_DEBUGCTL MSR from the IA32_DEBUGCTL
field.

— The IA32_SYSENTER_CS MSR is loaded from the 1A32_SYSENTER_CS field.
Since this field has only 32 bits, bits 63:32 of the MSR are cleared to O.

— The IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are loaded from
the 1A32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field, respec-
tively. On processors that do not support Intel 64 architecture, these fields
have only 32 bits; bits 63:32 of the MSRs are cleared to 0.

— The following are performed on processors that support Intel 64 architecture:

* The MSRs FS.base and GS.base are loaded from the base-address fields
for FS and GS, respectively (see Section 23.3.2.2).

* |fthe “load IA32_EFER” VM-entry control is O, bits in the IA32_EFER MSR
are modified as follows:

— IA32_EFER.LMA is loaded with the setting of the “lA-32e mode
guest” VM-entry control.

— If CRO is being loaded so that CRO.PG = 1, IA32_EFER.LME is also
loaded with the setting of the “lA-32e mode guest” VM-entry
control.2 Otherwise, 1A32_EFER.LME is unmodified.

See below for the case in which the “load 1A32_EFER” VM-entry control is
1

1. Bits 15:6, bit 17, and bit 28:19 of CRO and CRO.ET are unchanged by executions of MOV to CRO.
Bits 15:6, bit 17, and bit 28:19 of CRO are always 0 and CRO.ET is always 1.

2. If the capability MSR 1A32_VMX_CRO_FIXED1 reports that CRO.PG must be 1 in VMX operation,
VM entry must be loading CRO so that CRO.PG = 1 unless the “unrestricted guest” VM-execution
control and bit 31 of the primary processor-based VM-execution controls are both 1.

23-20 Vol.3

VM ENTRIES

— If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, the
IA32_PERF_GLOBAL_CTRL MSR is loaded from the
IA32_PERF_GLOBAL_CTRL field.

— If the “load 1A32_PAT” VM-entry control is 1, the IA32_PAT MSR is loaded
from the 1A32_PAT field.

— If the “load 1A32_EFER” VM-entry control is 1, the IA32_EFER MSR is loaded
from the 1A32_EFER field.

With the exception of FS.base and GS.base, any of these MSRs is subsequently
overwritten if it appears in the VM-entry MSR-load area. See Section 23.4.

The SMBASE register is unmodified by all VM entries except those that return
from SMM.

23.3.2.2 Loading Guest Segment Registers and Descriptor-Table Registers

For each of CS, SS, DS, ES, FS, GS, TR, and LDTR, fields are loaded from the guest-
state area as follows:

The unusable bit is loaded from the access-rights field. This bit can never be set
for TR (see Section 23.3.1.2). If it is set for one of the other registers, the
following apply:

— For each of CS, SS, DS, ES, FS, and GS, uses of the segment cause faults
(general-protection exception or stack-fault exception) outside 64-bit mode,
just as they would had the segment been loaded using a null selector. This bit
does not cause accesses to fault in 64-bit mode.

— If this bit is set for LDTR, uses of LDTR cause general-protection exceptions in
all modes, just as they would had LDTR been loaded using a null selector.

If this bit is clear for any of CS, SS, DS, ES, FS, GS, TR, and LDTR, a null
selector value does not cause a fault (general-protection exception or stack-
fault exception).

TR. The selector, base, limit, and access-rights fields are loaded.
Cs.

— The following fields are always loaded: selector, base address, limit, and
(from the access-rights field) the L, D, and G bits.

— For the other fields, the unusable bit of the access-rights field is consulted:
¢ If the unusable bit is 0O, all of the access-rights fields are loaded.

* If the unusable bit is 1, the remainder of CS access rights are undefined
after VM entry.

SS, DS, ES, FS, and GS, and LDTR.

— The selector fields are loaded.

Vol.3 23-21

VM ENTRIES

— For the other fields, the unusable bit of the corresponding access-rights field
is consulted:

* If the unusable bit is O, the base-address, limit, and access-rights fields
are loaded.

* If the unusable bit is 1, the base address, the segment limit, and the
remainder of the access rights are undefined after VM entry. The only
exceptions are the following:

— Bits 3:0 of the base address for SS are cleared to 0.

— SS.DPL: always loaded from the SS access-rights field. This will be
the current privilege level (CPL) after the VM entry completes.

— SS.B:setto 1.

— The base addresses for FS and GS: always loaded. On processors
that support Intel 64 architecture, the values loaded for base
addresses for FS and GS are also manifest in the FS.base and
GS.base MSRs.

— The base address for LDTR on processors that support Intel 64 archi-
tecture: set to an undefined but canonical value.

— Bits 63:32 of the base addresses for SS, DS, and ES on processors
that support Intel 64 architecture: cleared to O.

GDTR and IDTR are loaded using the base and limit fields.

23.3.2.3 Loading Guest RIP, RSP, and RFLAGS

RSP, RIP, and RFLAGS are loaded from the RSP field, the RIP field, and the RFLAGS
field, respectively. The following items regard the upper 32 bits of these fields on
VM entries that are not to 64-bit mode:

® Bits 63:32 of RSP are undefined outside 64-bit mode. Thus, a logical processor
may ignore the contents of bits 63:32 of the RSP field on VM entries that are not
to 64-bit mode.

® As noted in Section 23.3.1.4, bits 63:32 of the RIP and RFLAGS fields must be O
on VM entries that are not to 64-bit mode.

23.3.2.4 Loading Page-Directory-Pointer-Table Entries

As noted in Section 23.3.1.6, the logical processor uses PAE paging if bit 5 in CR4
(CR4.PAE) is 1 and IA32_EFER.LMA is 0. A VM entry to a guest that uses PAE paging
loads the PDPTEs into internal, non-architectural registers based on the setting of the
“enable EPT” VM-execution control:

® If the control is O, the PDPTEs are loaded from the page-directory-pointer table
referenced by the physical address in the value of CR3 being loaded by the
VM entry (see Section 23.3.2.1). The values loaded are treated as physical
addresses in VMX non-root operation.

23-22 Vol.3

VM ENTRIES

® If the control is 1, the PDPTEs are loaded from corresponding fields in the guest-
state area (see Section 21.4.2). The values loaded are treated as guest-physical
addresses in VMX non-root operation.

23.3.2.5 Updating Non-Register State

Section 25.3 describe how the VMX architecture controls how a logical processor
manages information in the TLBs and paging-structure caches. The following items
detail how VM entries invalidate cached mappings:

® If the “enable VPID” VM-execution control is 0, the logical processor invalidates
VPID-tagged mappings and dual-tagged mappings associated with VPID O000H;
dual-tagged mappings for VPID O000H are invalidated for all EPTPs.

® VM entries are not required to invalidate any EPTP-tagged mappings, nor are
they required to invalidate any VPID-tagged mappings or dual-tagged mappings
if the “enable VPID” VM-execution control is 1.

23.3.3 C(Clearing Address-Range Monitoring

The Intel 64 and 1A-32 architectures allow software to monitor a specified address
range using the MONITOR and MWAIT instructions. See Section 8.10.4 in the Intel®
64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A. VM entries
clear any address-range monitoring that may be in effect.

23.4 LOADING MSRS

VM entries may load MSRs from the VM-entry MSR-load area (see Section 21.8.2).
Specifically each entry in that area (up to the number specified in the VM-entry MSR-
load count) is processed in order by loading the MSR indexed by bits 31:0 with the
contents of bits 127:64 as they would be written by WRMSR.1

Processing of an entry fails in any of the following cases:

® The value of bits 31:0 is either COO00100H (the 1A32_FS_BASE MSR) or
C0000101 (the 1A32_GS_BASE MSR).

® The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that
allows access to an APIC register when the local APIC is in xX2APIC mode.

® The value of bits 31:0 indicates an MSR that can be written only in system-
management mode (SMM) and the VM entry did not commence in SMM.
(IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)

® The value of bits 31:0 indicates an MSR that cannot be loaded on VM entries for
model-specific reasons. A processor may prevent loading of certain MSRs even if

1. Because attempts to modify the value of IA32_EFER.LMA by WRMSR are ignored, attempts to
modify it using the VM-entry MSR-load area are also ignored.

Vol.3 23-23

VM ENTRIES

they can normally be written by WRMSR. Such model-specific behavior is
documented in Appendix B.

® Bits 63:32 are not all 0.

® An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry
would cause a general-protection exception if executed via WRMSR with
cPL=o0.1

The VM entry fails if processing fails for any entry. The logical processor responds to
such failures by loading state from the host-state area, as it would for a VM exit. See
Section 23.7.

If any MSR is being loaded in such a way that would architecturally require a TLB
flush, the TLBs are updated so that, after VM entry, the logical processor will not use
any translations that were cached before the transition.

23.5 EVENT INJECTION

If the valid bit in the VM-entry interruption-information field (see Section 21.8.3) is
1, VM entry causes an event to be delivered (or made pending) after all components
of guest state have been loaded (including MSRs) and after the VM-execution control
fields have been established.

® If the interruption type in the field is O (external interrupt), 2 (non-maskable
interrupt); 3 (hardware exception), 4 (software interrupt), 5 (privileged software
exception), or 6 (software exception), the event is delivered as described in
Section 23.5.1.

® If the interruption type in the field is 7 (other event) and the vector field is 0, an
MTF VM exit is pending after VM entry. See Section 23.5.2.

23.5.1 Vectored-Event Injection

VM entry delivers an injected vectored event within the guest context established by
VM entry. This means that delivery occurs after all components of guest state have
been loaded (including MSRs) and after the VM-execution control fields have been
established.? The event is delivered using the vector in that field to select a
descriptor in the IDT. Since event injection occurs after loading IDTR from the guest-
state area, this is the guest IDT.

1. If CRO.PG = 1, WRMSR to the IA32_EFER MSR causes a general-protection exception if it would
modify the LME bit. If VM entry has established CRO.PG = 1, the IA32_EFER MSR should not be
included in the VM-entry MSR-load area for the purpose of modifying the LME bit.

2. This does not imply that injection of an exception or interrupt will cause a VM exit due to the set-
tings of VM-execution control fields (such as the exception bitmap) that would cause a VM exit if
the event had occurred in VMX non-root operation. In contrast, a nested exception encountered
during event delivery may cause a VM exit; see Section 23.5.1.1.

23-24 Vol.3

VM ENTRIES

Section 23.5.1.1 provides details of vectored-event injection. In general, the event is
delivered exactly as if it had been generated normally.

If event delivery encounters a nested exception (for example, a general-protection
exception because the vector indicates a descriptor beyond the IDT limit), the excep-
tion bitmap is consulted using the vector of that exception. If the bit is O, the excep-
tion is delivered through the IDT. If the bit is 1, a VM exit occurs. Section 23.5.1.2
details cases in which event injection causes a VM exit.

23.5.1.1 Details of Vectored-Event Injection

The event-injection process is controlled by the contents of the VM-entry interruption
information field (format given in Table 21-12), the VM-entry exception error-code
field, and the VM-entry instruction-length field. The following items provide details of
the process:

® The value pushed on the stack for RFLAGS is generally that which was loaded
from the guest-state area. The value pushed for the RF flag is not modified based
on the type of event being delivered. However, the pushed value of RFLAGS may
be modified if a software interrupt is being injected into a guest that will be in
virtual-8086 mode (see below). After RFLAGS is pushed on the stack, the value
in the RFLAGS register is modified as is done normally when delivering an event
through the IDT.

® The instruction pointer that is pushed on the stack depends on the type of event
and whether nested exceptions occur during its delivery. The term current
guest RIP refers to the value to be loaded from the guest-state area. The value
pushed is determined as follows: 1

— If VM entry successfully injects (with no nested exception) an event with
interruption type external interrupt, NMI, or hardware exception, the current
guest RIP is pushed on the stack.

— If VM entry successfully injects (with no nested exception) an event with
interruption type software interrupt, privileged software exception, or
software exception, the current guest RIP is incremented by the VM-entry
instruction length before being pushed on the stack.

— If VM entry encounters an exception while injecting an event and that
exception does not cause a VM exit, the current guest RIP is pushed on the
stack regardless of event type or VM-entry instruction length. If the
encountered exception does cause a VM exit that saves RIP, the saved RIP is
current guest RIP.

® If the deliver-error-code bit (bit 11) is set in the VM-entry interruption-
information field, the contents of the VM-entry exception error-code field is
pushed on the stack as an error code would be pushed during delivery of an
exception.

1. While these items refer to RIP, the width of the value pushed (16 bits, 32 bits, or 64 bits) is
determined normally.

Vol.3 23-25

VM ENTRIES

¢ DR6, DR7, and the IA32_DEBUGCTL MSR are not modified by event injection,
even if the event has vector 1 (normal deliveries of debug exceptions, which have
vector 1, do update these registers).

® If VM entry is injecting a software interrupt and the guest will be in virtual-8086
mode (RFLAGS.VM = 1), no general-protection exception can occur due to
RFLAGS.IOPL < 3. A VM monitor should check RFLAGS.IOPL before injecting
such an event and, if desired, inject a general-protection exception instead of a
software interrupt.

® If VM entry is injecting a software interrupt and the guest will be in virtual-8086
mode with virtual-8086 mode extensions (RFLAGS.VM = CR4.VME = 1), event
delivery is subject to VME-based interrupt redirection based on the software
interrupt redirection bitmap in the task-state segment (TSS) as follows:

— If bit n in the bitmap is clear (where n is the number of the software
interrupt), the interrupt is directed to an 8086 program interrupt handler: the
processor uses a 16-bit interrupt-vector table (IVT) located at linear address
zero. If the value of RFLAGS.IOPL is less than 3, the following modifications
are made to the value of RFLAGS that is pushed on the stack: IOPL is set to
3, and IF is set to the value of VIF.

— If bit n in the bitmap is set (where n is the number of the software interrupt),
the interrupt is directed to a protected-mode interrupt handler. (In other
words, the injection is treated as described in the next item.) In this case, the
software interrupt does not invoke such a handler if RFLAGS.IOPL < 3 (a
general-protection exception occurs instead). However, as noted above,
RFLAGS.IOPL cannot cause an injected software interrupt to cause such a
exception. Thus, in this case, the injection invokes a protected-mode
interrupt handler independent of the value of RFLAGS.IOPL.

Injection of events of other types are not subject to this redirection.

® If VM entry is injecting a software interrupt (not redirected as described above)
or software exception, privilege checking is performed on the IDT descriptor
being accessed as would be the case for executions of INT n, INT3, or INTO (the
descriptor’s DPL cannot be less than CPL). There is no checking of RFLAGS.IOPL,
even if the guest will be in virtual-8086 mode. Failure of this check may lead to a
nested exception. Injection of an event with interruption type external interrupt,
NMI, hardware exception, and privileged software exception, or with interruption
type software interrupt and being redirected as described above, do not perform
these checks.

® If VM entry is injecting a non-maskable interrupt (NMI) and the “virtual NMIs”
VM-execution control is 1, virtual-NMI blocking is in effect after VM entry.

® The transition causes a last-branch record to be logged if the LBR bit is set in the
IA32_DEBUGCTL MSR. This is true even for events such as debug exceptions,
which normally clear the LBR bit before delivery.

® The last-exception record MSRs (LERS) may be updated based on the setting of
the LBR bit in the IA32_DEBUGCTL MSR. Events such as debug exceptions, which

23-26 Vol.3

VM ENTRIES

normally clear the LBR bit before they are delivered, and therefore do not
normally update the LERs, may do so as part of VM-entry event injection.

® Ifinjection of an event encounters a nested exception that does not itself cause a
VM exit, the value of the EXT bit (bit O) in any error code pushed on the stack is
determined as follows:

— If event being injected has interruption type external interrupt, NMI,
hardware exception, or privileged software exception and encounters a
nested exception (but does not produce a double fault), the error code for the
first such exception encountered sets the EXT bit.

— If event being injected is a software interrupt or an software exception and
encounters a nested exception (but does not produce a double fault), the
error code for the first such exception encountered clears the EXT bit.

— If event delivery encounters a nested exception and delivery of that
exception encounters another exception (but does not produce a double
fault), the error code for that exception sets the EXT bit. If a double fault is
produced, the error code for the double fault is 0O000H (the EXT bit is clear).

23.5.1.2 VM Exits During Event Injection

An event being injected never causes a VM exit directly regardless of the settings of
the VM-execution controls. For example, setting the “NMI exiting” VM-execution
control to 1 does not cause a VM exit due to injection of an NMI.

However, the event-delivery process may lead to a VM exit:

® If the vector in the VM-entry interruption-information field identifies a task gate
in the IDT, the attempted task switch may cause a VM exit just as it would had
the injected event occurred during normal execution in VMX non-root operation
(see Section 22.6.2).

® |If event delivery encounters a nested exception, a VM exit may occur depending
on the contents of the exception bitmap (see Section 22.3).

® If event delivery generates a double-fault exception (due to a nested exception);
the logical processor encounters another nested exception while attempting to
call the double-fault handler; and that exception does not cause a VM exit due to
the exception bitmap; then a VM exit occurs due to triple fault (see Section
22.3).

® If event delivery injects a double-fault exception and encounters a nested
exception that does not cause a VM exit due to the exception bitmap, then a
VM exit occurs due to triple fault (see Section 22.3).

® If the “virtualize APIC accesses” VM-execution control is 1 and event delivery
generates an access to the APIC-access page, that access may cause an APIC-
access VM exit (see Section 22.2) or, if the access is a VTPR access, be treated as
specified in Section 22.5.3.1

Vol.3 23-27

VM ENTRIES

If the event-delivery process does cause a VM exit, the processor state before the
VM exit is determined just as it would be had the injected event occurred during
normal execution in VMX non-root operation. If the injected event directly accesses a
task gate that cause a VM exit or if the first nested exception encountered causes a
VM exit, information about the injected event is saved in the IDT-vectoring informa-
tion field (see Section 24.2.3).

23.5.1.3 Event Injection for VM Entries to Real-Address Mode

If VM entry is loading CRO.PE with O, any injected vectored event is delivered as
would normally be done in real-address mode.! Specifically, VM entry uses the vector
provided in the VM-entry interruption-information field to select a 4-byte entry from
an interrupt-vector table at the linear address in IDTR.base. Further details are
provided in Section 15.1.4 in Volume 3A of the 1A-32 Intel® Architecture Software
Developer’s Manual.

Because bit 11 (deliver error code) in the VM-entry interruption-information field
must be 0 if CRO.PE will be O after VM entry (see Section 23.2.1.3), vectored events
injected with CRO.PE = 0 do not push an error code on the stack. This is consistent
with event delivery in real-address mode.

If event delivery encounters a fault (due to a violation of IDTR.limit or of SS.limit),
the fault is treated as if it had occurred during event delivery in VMX non-root opera-
tion. Such a fault may lead to a VM exit as discussed in Section 23.5.1.2.

23.5.2 Injection of Pending MTF VM Exits

If the interruption type in the VM-entry interruption-information field is 7 (other
event) and the vector field is 0, VM entry causes an MTF VM exit to be pending on the
instruction boundary following VM entry. This is the case even if the “monitor trap
flag” VM-execution control is 0. See Section 22.7.2 for the treatment of pending MTF
VM exits.

23.6 SPECIAL FEATURES OF VM ENTRY

This section details a variety of features of VM entry. It uses the following termi-
nology: a VM entry is vectoring if the valid bit (bit 31) of the VM-entry interruption
information field is 1 and the interruption type in the field is O (external interrupt), 2

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VM entry functions as if the “virtualize APIC
accesses” VM-execution control were 0. See Section 21.6.2.

1. If the capability MSR IA32_VMX_CRO_FIXED1 reports that CRO.PE must be 1 in VMX operation,
VM entry must be loading CRO.PE with 1 unless the “unrestricted guest” VM-execution control
and bit 31 of the primary processor-based VM-execution controls are both 1.

23-28 Vol.3

VM ENTRIES

(non-maskable interrupt); 3 (hardware exception), 4 (software interrupt), 5 (privi-
leged software exception), or 6 (software exception).

23.6.1

Interruptibility State

The interruptibility-state field in the guest-state area (see Table 21-3) contains bits
that control blocking by STI, blocking by MOV SS, and blocking by NMI. This field
impacts event blocking after VM entry as follows:

If the VM entry is vectoring, there is no blocking by STI or by MOV SS following
the VM entry, regardless of the contents of the interruptibility-state field.

If the VM entry is not vectoring, the following apply:

Events are blocked by STI if and only if bit O in the interruptibility-state field
is 1. Such blocking is cleared after the guest executes one instruction or
incurs an exception (including a debug exception made pending by VM entry;
see Section 23.6.3).

Events are blocked by MOV SS if and only if bit 1 in the interruptibility-state
field is 1. This may affect the treatment of pending debug exceptions; see
Section 23.6.3. Such blocking is cleared after the guest executes one
instruction or incurs an exception (including a debug exception made pending
by VM entry).

The blocking of non-maskable interrupts (NMIs) is determined as follows:

If the “virtual NMIs” VM-execution control is 0, NMlIs are blocked if bit 3
(blocking by NMI) in the interruptibility-state field is 1. If the “NMI exiting”
VM-execution control is 0, such blocking remains in effect until IRET is
executed (even if the instruction generates a fault). If the “NMI exiting”
control is 1, such blocking remains in effect as long as the logical processor is
in VMX non-root operation.

The following items describe the use of bit 3 (blocking by NMI) in the inter-
ruptibility-state field if the “virtual NMIs” VM-execution control is 1:

®* The bit’s value does not affect the blocking of NMIs after VM entry. NMls
are not blocked in VMX non-root operation (except for ordinary blocking
for other reasons, such as by the MOV SS instruction, the wait-for-SIPI
state, etc.)

®* The bit’s value determines whether there is virtual-NMI blocking after
VM entry. If the bit is 1, virtual-NMI blocking is in effect after VM entry. If
the bit is 0, there is no virtual-NMI blocking after VM entry unless the
VM entry is injecting an NMI (see Section 23.5.1.1).

Blocking of system-management interrupts (SMIs) is determined as follows:

If the VM entry was not executed in system-management mode (SMM), SMI
blocking is unchanged by VM entry.

Vol.3 23-29

VM ENTRIES

— If the VM entry was executed in SMM, SMIs are blocked after VM entry if and
only if the bit 2 in the interruptibility-state field is 1.

23.6.2 Activity State

The activity-state field in the guest-state area controls whether, after VM entry, the
logical processor is active or in one of the inactive states identified in Section 21.4.2.
The use of this field is determined as follows:

If the VM entry is vectoring, the logical processor is in the active state after

VM entry. While the consistency checks described in Section 23.3.1.5 on the
activity-state field do apply in this case, the contents of the activity-state field do
not determine the activity state after VM entry.

If the VM entry is not vectoring, the logical processor ends VM entry in the
activity state specified in the guest-state area. If VM entry ends with the logical
processor in an inactive activity state, the VM entry generates any special bus
cycle that is normally generated when that activity state is entered from the
active state. If VM entry would end with the logical processor in the shutdown
state and the logical processor is in SMX operation,1 an Intel® TXT shutdown
condition occurs. The error code used is 0000H, indicating “legacy shutdown.”
See Intel® Trusted Execution Technology Preliminary Architecture Specification.

Some activity states unconditionally block certain events. The following blocking
is in effect after any VM entry that puts the processor in the indicated state:

— The active state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical
processor is in the active state and in VMX non-root operation are discarded
and do not cause VM exits.

— The HLT state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical
processor is in the HLT state and in VMX non-root operation are discarded and
do not cause VM exits.

— The shutdown state blocks external interrupts and SIPIs. External interrupts
that arrive while a logical processor is in the shutdown state and in VMX non-
root operation do not cause VM exits even if the “external-interrupt exiting”
VM-execution control is 1. SIPIs that arrive while a logical processor is in the
shutdown state and in VMX non-root operation are discarded and do not
cause VM exits.

— The wait-for-SIPI state blocks external interrupts, non-maskable interrupts
(NMIs), INIT signals, and system-management interrupts (SMIs). Such
events do not cause VM exits if they arrive while a logical processor is in the
wait-for-SIPI state and in VMX non-root operation do not cause VM exits
regardless of the settings of the pin-based VM-execution controls.

1.

A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64
and IA-32 Architectures Software Developer's Manual, Volume 2B.

23-30 Vol.3

VM ENTRIES

23.6.3 Delivery of Pending Debug Exceptions after VM Entry

The pending debug exceptions field in the guest-state area indicates whether there
are debug exceptions that have not yet been delivered (see Section 21.4.2). This
section describes how these are treated on VM entry.

There are no pending debug exceptions after VM entry if any of the following are
true:

® The VM entry is vectoring with one of the following interruption types: external
interrupt, non-maskable interrupt (NMI), hardware exception, or privileged
software exception.

® The interruptibility-state field does not indicate blocking by MOV SS and the
VM entry is vectoring with either of the following interruption type: software
interrupt or software exception.

® The VM entry is not vectoring and the activity-state field indicates either
shutdown or wait-for-SIPI.

If none of the above hold, the pending debug exceptions field specifies the debug
exceptions that are pending for the guest. There are valid pending debug excep-
tions if either the BS bit (bit 14) or the enable-breakpoint bit (bit 12) is 1. If there
are valid pending debug exceptions, they are handled as follows:

® If the VM entry is not vectoring, the pending debug exceptions are treated as
they would had they been encountered normally in guest execution:

— If the logical processor is not blocking such exceptions (the interruptibility-
state field indicates no blocking by MOV SS), a debug exception is delivered
after VM entry (see below).

— If the logical processor is blocking such exceptions (due to blocking by
MOV SS), the pending debug exceptions are held pending or lost as would
normally be the case.

® If the VM entry is vectoring (with interruption type software interrupt or software
exception and with blocking by MOV SS), the following items apply:

— For injection of a software interrupt or of a software exception with vector 3
(#BP) or vector 4 (#0OF), the pending debug exceptions are treated as they
would had they been encountered normally in guest execution if the corre-
sponding instruction (INT3 or INTO) were executed after a MOV SS that
encountered a debug trap.

— For injection of a software exception with a vector other than 3 and 4, the
pending debug exceptions may be lost or they may be delivered after
injection (see below).

If there are no valid pending debug exceptions (as defined above), no pending debug
exceptions are delivered after VM entry.

If a pending debug exception is delivered after VM entry, it has the priority of “traps
on the previous instruction” (see Section 6.9 in the Intel® 64 and 1A-32 Architec-
tures Software Developer’s Manual, Volume 3A). Thus, INIT signals and system-

Vol.3 23-31

VM ENTRIES

management interrupts (SMIs) take priority of such an exception, as do VM exits
induced by the TPR shadow (see Section 23.6.7) and pending MTF VM exits (see
Section 23.6.8. The exception takes priority over any pending non-maskable inter-
rupt (NMI) or external interrupt and also over VM exits due to the 1-settings of the
“interrupt-window exiting” and “NMI-window exiting” VM-execution controls.

A pending debug exception delivered after VM entry causes a VM exit if the bit 1
(#DB) is 1 in the exception bitmap. If it does not cause a VM exit, it updates DR6
normally.

23.6.4 VMX-Preemption Timer

If the “activate VMX-preemption timer” VM-execution control is 1, VM entry starts
the VMX-preemption timer with the unsigned value in the VMX-preemption timer-
value field.

If the “activate VMX-preemption timer” 1 and the value in the VMX-preemption
timer-value field is zero, a VM exit occurs before execution of any instruction
following VM entry (if it is not blocked by activity state). The VM exit occurs with its
normal priority after any event injection. For example, any pending debug exceptions
established by VM entry (see Section 23.6.3) take priority over a timer-induced

VM exit. (The timer-induced VM exit will occur after delivery of the debug exception,
unless that exception or its delivery causes a different VM exit.)

See Section 22.7.1 for details of the operation of the VMX-preemption timer in VMX
non-root operation, including the blocking and priority of the VM exits that it causes.

23.6.5 Interrupt-Window Exiting

The “interrupt-window exiting” VM-execution control may cause a VM exit to occur
immediately after VM entry (see Section 22.3 for details).

The following items detail the treatment of these VM exits:
® These VM exits follow event injection if such injection is specified for VM entry.

® Non-maskable interrupts (NMIs) and higher priority events take priority over
VM exits caused by this control. VM exits caused by this control take priority over
external interrupts and lower priority events.

® VM exits caused by this control wake the logical processor if it just entered the
HLT state because of a VM entry (see Section 23.6.2). They do not occur if the
logical processor just entered the shutdown state or the wait-for-SIPI state.

23.6.6 NMI-Window Exiting

The “NMI-window exiting” VM-execution control may cause a VM exit to occur imme-
diately after VM entry (see Section 22.3 for details).

23-32 Vol.3

VM ENTRIES

The following items detail the treatment of these VM exits:

These VM exits follow event injection if such injection is specified for VM entry.

Debug-trap exceptions (see Section 23.6.3) and higher priority events take
priority over VM exits caused by this control. VM exits caused by this control take
priority over non-maskable interrupts (NMIs) and lower priority events.

VM exits caused by this control wake the logical processor if it just entered either
the HLT state or the shutdown state because of a VM entry (see Section 23.6.2).
They do not occur if the logical processor just entered the wait-for-SIPI state.

23.6.7 VM Exits Induced by the TPR Shadow

If the “use TPR shadow” and “virtualize APIC accesses” VM-execution controls are
both 1, a VM exit occurs immediately after VM entry if the value of bits 3:0 of the TPR
threshold VM-execution control field is greater than the value of bits 7:4 in byte 80H
on the virtual-APIC page (see Section 21.6.8).1

The following items detail the treatment of these VM exits:

The VM exits are not blocked if RFLAGS.IF = 0 or by the setting of bits in the
interruptibility-state field in guest-state area.

The VM exits follow event injection if such injection is specified for VM entry.

VM exits caused by this control take priority over system-management interrupts
(SMIs), INIT signals, and lower priority events. They thus have priority over the
VM exits described in Section 23.6.5, Section 23.6.6, and Section 23.6.8, as well
as any interrupts or debug exceptions that may be pending at the time of

VM entry.

These VM exits wake the logical processor if it just entered the HLT state as part
of a VM entry (see Section 23.6.2). They do not occur if the logical processor just
entered the shutdown state or the wait-for-SIPI state.

If such a VM exit is suppressed because the processor just entered the
shutdown state, it occurs after the delivery of any event that cause the logical
processor to leave the shutdown state while remaining in VMX non-root
operation (e.g., due to an NMI that occurs while the “NMI-exiting” VM-execution
control is 0).

The basic exit reason is “TPR below threshold.”

—_

. "“Virtualize APIC accesses” is a secondary processor-based VVM-execution control. If bit 31 of the

primary processor-based VM-execution controls is 0, VM entry functions as if the “virtualize APIC
accesses” VM-execution control were 0. See Section 21.6.2.

Vol.3 23-33

VM ENTRIES

23.6.8 Pending MTF VM Exits

As noted in Section 23.5.2, VM entry may cause an MTF VM exit to be pending imme-
diately after VM entry. The following items detail the treatment of these VM exits:

® System-management interrupts (SMIs), INIT signals, and higher priority events
take priority over these VM exits. These VM exits take priority over debug-trap
exceptions and lower priority events.

® These VM exits wake the logical processor if it just entered the HLT state because
of a VM entry (see Section 23.6.2). They do not occur if the logical processor just
entered the shutdown state or the wait-for-SIPI state.

23.6.9 VM Entries and Advanced Debugging Features

VM entries are not logged with last-branch records, do not produce branch-trace
messages, and do not update the branch-trace store.

23.7 VM-ENTRY FAILURES DURING OR AFTER LOADING
GUEST STATE

VM-entry failures due to the checks identified in Section 23.3.1 and failures during
the MSR loading identified in Section 23.4 are treated differently from those that
occur earlier in VM entry. In these cases, the following steps take place:

1. Information about the VM-entry failure is recorded in the VM-exit information
fields:

— Exit reason.

® Bits 15:0 of this field contain the basic exit reason. It is loaded with a
number indicating the general cause of the VM-entry failure. The
following numbers are used:

33. VM-entry failure due to invalid guest state. A VM entry failed one of
the checks identified in Section 23.3.1.

34. VM-entry failure due to MSR loading. A VM entry failed in an attempt
to load MSRs (see Section 23.4).

41. VM-entry failure due to machine check. A machine check occurred
during VM entry (see Section 23.8).

* Bit 31 is set to 1 to indicate a VM-entry failure.
®* The remainder of the field (bits 30:16) is cleared.

23-34 Vol.3

3.
4.

VM ENTRIES

— Exit qualification. This field is set based on the exit reason.

VM-entry failure due to invalid guest state. In most cases, the exit quali-
fication is cleared to 0. The following non-zero values are used in the
cases indicated:

1. Not used.

2. Failure was due to a problem loading the PDPTEs (see Section
23.3.1.6).

3. Failure was due to an attempt to inject a non-maskable interrupt
(NMI) into a guest that is blocking events through the STI blocking bit
in the interruptibility-state field. Such failures are implementation-
specific (see Section 23.3.1.5).

4 .Failure was due to an invalid VMCS link pointer (see Section 23.3.1.5).

VM-entry checks on guest-state fields may be performed in any order.
Thus, an indication by exit qualification of one cause does not imply that
there are not also other errors. Different processors may give different
exit qualifications for the same VMCS.

VM-entry failure due to MSR loading. The exit qualification is loaded to
indicate which entry in the VM-entry MSR-load area caused the problem
(1 for the first entry, 2 for the second, etc.).

— All other VM-exit information fields are unmodified.

Processor state is loaded as would be done on a VM exit (see Section 24.5). If
this results in [CR4.PAE & CRO.PG & ~1A32_EFER.LMA] = 1, page-directory-
pointer-table entries (PDPTEs) may be checked and loaded (see Section 24.5.4).

The state of blocking by NMI is what it was before VM entry.

MSRs are loaded as specified in the VM-exit MSR-load area (see Section 24.6).

Although this process resembles that of a VM exit, many steps taken during a VM exit
do not occur for these VM-entry failures:

Most VM-exit information fields are not updated (see step 1 above).

The valid bit in the VM-entry interruption-information field is not cleared.
The guest-state area is not modified.

No MSRs are saved into the VM-exit MSR-store area.

23.8

If a machine check occurs during a VM entry, one of the following occurs:

MACHINE CHECKS DURING VM ENTRY

The machine check is handled normally:

If CR4.MCE = 1, a machine-check exception (#MC) is delivered through the
IDT.

Vol.3 23-35

VM ENTRIES

— If CR4.MCE = 0, operation of the logical processor depends on whether the
logical processor is in SMX operation:®
* If the logical processor is in SMX operation, an Intel® TXT shutdown

condition occurs. The error code used is 000CH, indicating “unrecoverable
machine check condition.” See Intel® Trusted Execution Technology

Preliminary Architecture Specification.
* |If the logical processor is outside SMX operation, it goes to the shutdown
state.
® A VM-entry failure occurs as described in Section 23.7. The basic exit reason is
41, for “VM-entry failure due to machine check.”
The first option is not used if the machine check occurs after any guest state has
been loaded.

1. Alogical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER]
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.

23-36 Vol.3

CHAPTER 24
VM EXITS

VM exits occur in response to certain instructions and events in VMX non-root opera-
tion. Section 22.1 through Section 22.3 detail the causes of VM exits. VM exits
perform the following operation:

1. Information about the cause of the VM exit is recorded in the VM-exit information
fields and VM-entry control fields are modified as described in Section 24.2.

2. Processor state is saved in the guest-state area (Section 24.3).
MSRs may be saved in the VM-exit MSR-store area (Section 24.4).
The following may be performed in parallel and in any order (Section 24.5):

— Processor state is loaded based in part on the host-state area and some
VM-exit controls. This step is not performed for SMM VM exits that activate
the dual-monitor treatment of SMIs and SMM. See Section 26.15.6 for
information on how processor state is loaded by such VM exits.

— Address-range monitoring is cleared.

5. MSRs may be loaded from the VM-exit MSR-load area (Section 24.6). This step is
not performed for SMM VM exits that activate the dual-monitor treatment of
SMIs and SMM.

VM exits are not logged with last-branch records, do not produce branch-trace
messages, and do not update the branch-trace store.

Section 24.1 clarifies the nature of the architectural state before a VM exit begins.
The steps described above are detailed in Section 24.2 through Section 24.6.

Section 26.15 describes the dual-monitor treatment of system-management inter-
rupts (SMIs) and system-management mode (SMM). Under this treatment, ordinary
transitions to SMM are replaced by VM exits to a separate SMM monitor. Called SMM
VM exits, these are caused by the arrival of an SMI or the execution of VMCALL in
VMX root operation. SMM VM exits differ from other VM exits in ways that are
detailed in Section 26.15.2.

24.1 ARCHITECTURAL STATE BEFORE A VM EXIT

This section describes the architectural state that exists before a VM exit, especially
for VM exits caused by events that would normally be delivered through the IDT.
Note the following:

® An exception causes a VM exit directly if the bit corresponding to that exception
is set in the exception bitmap. A non-maskable interrupt (NMI) causes a VM exit
directly if the “NMI exiting” VM-execution control is 1. An external interrupt

Vol.3 24-1

VM EXITS

causes a VM exit directly if the “external-interrupt exiting” VM-execution control
is 1. A start-up IPI (SIPI) that arrives while a logical processor is in the wait-for-
SIPI activity state causes a VM exit directly. INIT signals that arrive while the
processor is not in the wait-for-SIPI activity state cause VM exits directly.

® An exception, NMI, external interrupt, or software interrupt causes a VM exit
indirectly if it does not do so directly but delivery of the event causes a nested
exception, double fault, task switch, APIC access (see Section 22.2), EPT
violation, or EPT misconfiguration that causes a VM exit.

® Anevent results in a VM exit if it causes a VM exit (directly or indirectly).

The following bullets detail when architectural state is and is not updated in response
to VM exits:

® If an event causes a VM exit directly, it does not update architectural state as it
would have if it had it not caused the VM exit:

— A debug exception does not update DR6, DR7.GD, or I1A32_DEBUGCTL.LBR.
(Information about the nature of the debug exception is saved in the exit
qualification field.)

— A page fault does not update CR2. (The linear address causing the page fault
is saved in the exit-qualification field.)

— An NMI causes subsequent NMls to be blocked, but only after the VM exit
completes.

— An external interrupt does not acknowledge the interrupt controller and the
interrupt remains pending, unless the “acknowledge interrupt on exit”
VM-exit control is 1. In such a case, the interrupt controller is acknowledged
and the interrupt is no longer pending.

— The flags LO — L3 in DR7 (bit O, bit 2, bit 4, and bit 6) are not cleared when a
task switch causes a VM exit.

— If a task switch causes a VM exit, none of the following are modified by the
task switch: old task-state segment (TSS); new TSS; old TSS descriptor; new
TSS descriptor; RFLAGS.NTl; or the TR register.

— No last-exception record is made if the event that would do so directly causes
a VM exit.

— If a machine-check exception causes a VM exit directly, this does not prevent
machine-check MSRs from being updated. These are updated by the machine
check itself and not the resulting machine-check exception.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For processors that do
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers
(EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to
lower 32 bits of the indicated register.

24-2 Vol.3

VM EXITS

If the logical processor is in an inactive state (see Section 21.4.2) and not
executing instructions, some events may be blocked but others may return
the logical processor to the active state. Unblocked events may cause

VM exits. If an unblocked event causes a VM exit directly, a return to the
active state occurs only after the VM exit completes.2 The VM exit generates
any special bus cycle that is normally generated when the active state is
entered from that activity state.

MTF VM exits (see Section 22.7.2 and Section 23.6.8) are not blocked in the
HLT activity state. If an MTF VM exit occurs in the HLT activity state, the
logical processor returns to the active state only after the VM exit completes.
MTF VM exits are blocked the shutdown state and the wait-for-SIPI state.

If an event causes a VM exit indirectly, the event does update architectural state:

A debug exception updates DR6, DR7, and the 1A32_DEBUGCTL MSR. No
debug exceptions are considered pending.

A page fault updates CR2.

An NMI causes subsequent NMIs to be blocked before the VM exit
commences.

An external interrupt acknowledges the interrupt controller and the interrupt
is no longer pending.

If the logical processor had been in an inactive state, it enters the active state
and, before the VM exit commences, generates any special bus cycle that is
normally generated when the active state is entered from that activity state.

There is no blocking by STI or by MOV SS when the VM exit commences.

Processor state that is normally updated as part of delivery through the IDT
(CS, RIP, SS, RSP, RFLAGS) is not modified. However, the incomplete delivery
of the event may write to the stack.

The treatment of last-exception records is implementation dependent:

® Some processors make a last-exception record when beginning the
delivery of an event through the IDT (before it can encounter a nested
exception). Such processors perform this update even if the event
encounters a nested exception that causes a VM exit (including the case
where nested exceptions lead to a triple fault).

* Other processors delay making a last-exception record until event
delivery has reached some event handler successfully (perhaps after one
or more nested exceptions). Such processors do not update the last-

1.

If a VM exit takes the processor from an inactive state resulting from execution of a specific
instruction (HLT or MWAIT), the value saved for RIP by that VM exit will reference the following
instruction.

An exception is made if the logical processor had been inactive due to execution of MWAIT; in
this case, it is considered to have become active before the VM exit.

Vol.3 24-3

VM EXITS

exception record if a VM exit or triple fault occurs before an event handler
is reached.

® If the “virtual NMIs” VM-execution control is 1, VM entry injects an NMI, and
delivery of the NMI causes a nested exception, double fault, task switch, or APIC
access that causes a VM exit, virtual-NMI blocking is in effect before the VM exit
commences.

® If a VM exit results from a fault, EPT violation, or EPT misconfiguration
encountered during execution of IRET and the “NMI exiting” VM-execution
control is 0, any blocking by NMI is cleared before the VM exit commences.
However, the previous state of blocking by NMI may be recorded in the VM-exit
interruption-information field; see Section 24.2.2.

® If a VM exit results from a fault, EPT violation, or EPT misconfiguration
encountered during execution of IRET and the “virtual NMIs” VM-execution
control is 1, virtual-NMI blocking is cleared before the VM exit commences.
However, the previous state of virtual-NMI blocking may be recorded in the
VM-exit interruption-information field; see Section 24.2.2.

® Suppose that a VM exit is caused directly by an x87 FPU Floating-Point Error
(#MF) or by any of the following events if the event was unblocked due to (and
given priority over) an x87 FPU Floating-Point Error: an INIT signal, an external
interrupt, an NMI, an SMI; or a machine-check exception. In these cases, there
is no blocking by STI or by MOV SS when the VM exit commences.

® Normally, a last-branch record may be made when an event is delivered through
the IDT. However, if such an event results in a VM exit before delivery is
complete, no last-branch record is made.

® If machine-check exception results in a VM exit, processor state is suspect and
may result in suspect state being saved to the guest-state area. A VM monitor
should consult the RIPV and EIPV bits in the 1A32_MCG_STATUS MSR before
resuming a guest that caused a VM exit resulting from a machine-check
exception.

® Ifa VM exit results from a fault, APIC access (see Section 22.2), EPT violation, or
EPT misconfiguration encountered while executing an instruction, data
breakpoints due to that instruction may have been recognized and information
about them may be saved in the pending debug exceptions field (see Section
24.3.4).

® The following VM exits are considered to happen after an instruction is executed:

— VM exits resulting from debug traps (single-step, 1/0 breakpoints, and data
breakpoints).

— VM exits resulting from debug exceptions whose recognition was delayed by
blocking by MOV SS.

— VM exits resulting from some machine-check exceptions.

— Trap-like VM exits due to execution of MOV to CR8 when the “CR8-load
exiting” VM-execution control is 0 and the “use TPR shadow” VM-execution

24-4 Vol.3

VM EXITS

control is 1. (Such VM exits can occur only from 64-bit mode and thus only on
processors that support Intel 64 architecture.)

— Trap-like VM exits due to execution of WRMSR when the “use MSR bitmaps”
VM-execution control is 1, the value of ECX is 808H, bit 808H in write bitmap
for low MSRs is 0, and the “virtualize x2APIC mode” VM-execution control is
1. See Section 22.1.3.

— VM exits caused by TPR-shadow updates (see Section 22.5.3.3) that result
from APIC accesses as part of instruction execution.

For these VM exits, the instruction’s modifications to architectural state complete
before the VM exit occurs. Such modifications include those to the logical
processor’s interruptibility state (see Table 21-3). If there had been blocking by
MOV SS, POP SS, or STI before the instruction executed, such blocking is no
longer in effect.

24.2 RECORDING VM-EXIT INFORMATION AND UPDATING
VM-ENTRY CONTROL FIELDS

VM exits begin by recording information about the nature of and reason for the
VM exit in the VM-exit information fields. Section 24.2.1 to Section 24.2.4 detail the
use of these fields.

In addition to updating the VM-exit information fields, the valid bit (bit 31) is cleared
in the VM-entry interruption-information field. If bit 5 of the 1A32_VMX_MISC MSR
(index 485H) is read as 1 (see Appendix G.6), the value of IA32_EFER.LMA is stored
into the “IA-32e mode guest” VM-entry control.1

24.2.1 Basic VM-Exit Information

Section 21.9.1 defines the basic VM-exit information fields. The following items detail
their use.

® EXxit reason.

— Bits 15:0 of this field contain the basic exit reason. It is loaded with a number
indicating the general cause of the VM exit. Appendix I lists the numbers used
and their meaning.

— The remainder of the field (bits 31:16) is cleared to O (certain SMM VM exits
may set some of these bits; see Section 26.15.2.3).2

1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-set-
ting of the “unrestricted guest” VM-execution control.

2. Bit 13 of this field is set on certain VM-entry failures; see Section 23.7.

Vol.3 24-5

VM EXITS

¢ Exit qualification. This field is saved for VM exits due to the following causes:
debug exceptions; page-fault exceptions; start-up IPIs (SIPIs); system-
management interrupts (SMIs) that arrive immediately after the retirement of
1/0 instructions; task switches; INVEPT; INVLPG;INVVPID; LGDT; LIDT; LLDT;
LTR; SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD;
VMWRITE; VMXON; control-register accesses; MOV DR; 1/0 instructions;
MWAIT; accesses to the APIC-access page (see Section 22.2); and EPT violations.
For all other VM exits, this field is cleared. The following items provide details:

For a debug exception, the exit qualification contains information about the
debug exception. The information has the format given in Table 24-1.

Table 24-1. Exit Qualification for Debug Exceptions

Bit Position(s) Contents

3.0

B3 - BO. When set, each of these bits indicates that the corresponding
breakpoint condition was met. Any of these bits may be set even if its
corresponding enabling bit in DR7 is not set.

12:4 Reserved (cleared to Q).

13 BD. When set, this bit indicates that the cause of the debug exception is
“debug register access detected.”

14 BS. When set, this bit indicates that the cause of the debug exception is
either the execution of a single instruction (if RFLAGS.TF = 1 and
IA32_DEBUGCTL.BTF = 0) or a taken branch (if
RFLAGS.TF = DEBUGCTL.BTF = 1).

63:15 Reserved (cleared to Q). Bits 63:32 exist only on processors that

support Intel 64 architecture.

For a page-fault exception, the exit qualification contains the linear address
that caused the page fault. On processors that support Intel 64 architecture,
bits 63:32 are cleared if the logical processor was not in 64-bit mode before
the VM exit.

For a start-up IP1 (SIPI), the exit qualification contains the SIPI vector
information in bits 7:0. Bits 63:8 of the exit qualification are cleared to O.

For a task switch, the exit qualification contains details about the task switch,
encoded as shown in Table 24-2.

Table 24-2. Exit Qualification for Task Switch

Bit Position(s) Contents

15:.0

Selector of task-state segment (TSS) to which the guest attempted to switch

24-6 Vol. 3

VM EXITS

Table 24-2. Exit Qualification for Task Switch (Contd.)

Bit Position(s) Contents

29:16

Reserved (cleared to 0)

31:30

Source of task switch initiation:

0: CALL instruction
1: IRET instruction
2: JMP instruction

3: Task gate in IDT

63:32

Reserved (cleared to 0). These bits exist only on processors that support Intel
64 architecture.

For INVLPG, the exit qualification contains the linear-address operand of the
instruction.

®* On processors that support Intel 64 architecture, bits 63:32 are cleared if
the logical processor was not in 64-bit mode before the VM exit.

* If the INVLPG source operand specifies an unusable segment, the linear
address specified in the exit qualification will match the linear address
that the INVLPG would have used if no VM exit occurred. This address is
not architecturally defined and may be implementation-specific.

For INVEPT, INVVPID, LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR,
VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, and VMXON, the exit
qualification receives the value of the instruction’s displacement field, which
is sign-extended to 64 bits if necessary (32 bits on processors that do not
support Intel 64 architecture). If the instruction has no displacement (for
example, has a register operand), zero is stored into the exit qualification.

On processors that support Intel 64 architecture, an exception is made for
RIP-relative addressing (used only in 64-bit mode). Such addressing causes
an instruction to use an address that is the sum of the displacement field
and the value of RIP that references the following instruction. In this case,
the exit qualification is loaded with the sum of the displacement field and
the appropriate RIP value.

In all cases, bits of this field beyond the instruction’s address size are
undefined. For example, suppose that the address-size field in the VM-exit
instruction-information field (see Section 21.9.4 and Section 24.2.4) reports
an n-bit address size. Then bits 63:n (bits 31:n on processors that do not
support Intel 64 architecture) of the instruction displacement are undefined.

Vol.3 24-7

VM EXITS

— For a control-register access, the exit qualification contains information about
the access and has the format given in Table 24-3.

Table 24-3. Exit Qualification for Control-Register Accesses

Bit Positions Contents

3.0 Number of control register (O for CLTS and LMSW). Bit 3 is always O on
processors that do not support Intel 64 architecture as they do not support CR8.

5:4 Access type:

0=MOV to CR

1 =MOV from CR
2 =CLTS

3 = LMSW

6 LMSW operand type:
0 =register
1 = memory

For CLTS and MOV CR, cleared to O

7 Reserved (cleared to 0)

11:8 For MOV CR, the general-purpose register:
0 =RAX

1 =RCX

2 =RDX

3 =RBX

4 =RSP

5 =RBP

6 =RSI

7 =RDI

8-15 represent R8-R15, respectively (used only on processors that support
Intel 64 architecture)

For CLTS and LMSW, cleared to O

15:12 Reserved (cleared to 0)

31:16 For LMSW, the LMSW source data
For CLTS and MOV CR, cleared to O

63:32 Reserved (cleared to Q). These bits exist only on processors that support Intel
64 architecture.

24-8 Vol.3

VM EXITS

— For MOV DR, the exit qualification contains information about the instruction
and has the format given in Table 24-4.

Table 24-4. €xit Qualification for MOV DR

Bit Position(s)

Contents

2.0

Number of debug register

3

Reserved (cleared to 0)

4

Direction of access (0 = MOV to DR; 1 = MOV from DR)

7:5

Reserved (cleared to 0)

118

General-purpose register:

0 =RAX

1 =RCX

2 = RDX

3 =RBX

4 =RSP

5 =RBP

6 =RSI

7 =RDI

8-15 =R8 - R15, respectively

63:12

Reserved (cleared to 0)

— For an I/0 instruction, the exit qualification contains information about the
instruction and has the format given in Table 24-5.

Table 24-5. Exit Qualification for 1/0 Instructions

Bit Position(s) Contents
2.0 Size of access:

0 = 1-byte

1 =2-byte

3 =4-byte

Other values not used

3 Direction of the attempted access (0 = OUT, T =IN)
4 String instruction (0 = not string; 1 = string)

Vol.3 24-9

VM EXITS

Table 24-5. Exit Qualification for I/0 Instructions (Contd.)

Bit Position(s)

Contents

5 REP prefixed (0 = not REP; 1 = REP)

6 Operand encoding (0 = DX, 1 = immediate)

15.7 Reserved (cleared to 0)

31:16 Port number (as specified in DX or in an immediate operand)

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel

64 architecture.

— For MWAIT, the exit qualification contains a value that indicates whether
address-range monitoring hardware was armed. The exit qualification is set
either to O (if address-range monitoring hardware is not armed) or to 1 (if
address-range monitoring hardware is armed).

— For an APIC-access VM exit resulting from a linear access or a guest-physical
access to the APIC-access page (see Section 22.2.1 and Section 22.2.2), the
exit qualification contains information about the access and has the format
given in Table 24-6.1

Table 24-6. Exit Qualification for APIC-Access VM Exits from Linear Accesses and

Guest-Physical Accesses

Bit Position(s)

Contents

11.0

= |If the APIC-access VM exit is due to a linear access, the offset of access
within the APIC page.
= Undefined if the APIC-access VM exit is due a guest-physical access

15:12

Access type:

0 = linear access for a data read during instruction execution

1 = linear access for a data write during instruction execution

2 = linear access for an instruction fetch

3 = linear access (read or write) during event delivery

10 = guest-physical access during event delivery

15 = guest-physical access for an instruction fetch or during instruction
execution

Other values not used

63:16

Reserved (cleared to 0). Bits 63:32 exist only on processors that support
Intel 64 architecture.

24-10 Vol.3

VM EXITS

Such a VM exit that set bits 15:12 of the exit qualification to 0000b (data
read during instruction execution) or 0001b (data write during instruction
execution) set bit 12—which distinguishes data read from data write—to that
which would have been stored in bit 1—W/R—of the page-fault error code had
the access caused a page fault instead of an APIC-access VM exit. This
implies the following:

®* For an APIC-access VM exit caused by the CLFLUSH instruction, the
access type is “data read during instruction execution.”

® For an APIC-access VM exit caused by the ENTER instruction, the access
type is “data write during instruction execution.”

®* For an APIC-access VM exit caused by the MASKMOVQ instruction or the
MASKMOVDQU instruction, the access type is “data write during
instruction execution.”

®* For an APIC-access VM exit caused by the MONITOR instruction, the
access type is “data read during instruction execution.”

Such a VM exit stores 1 for bit 31 for IDT-vectoring information field (see
Section 24.2.3) if and only if it sets bits 15:12 of the exit qualification to
0011b (linear access during event delivery) or 1010b (guest-physical access
during event delivery).

See Section 22.2.1.3 for further discussion of these instructions and APIC-
access VM exits.

For APIC-access VM exits resulting from physical accesses, the APIC-access
page (see Section 22.2.3), the exit qualification is undefined.

For an EPT violation, the exit qualification contains information about the
access causing the EPT violation and has the format given in Table 24-5.

Table 24-7. Exit Qualification for EPT Violations

Bit Position(s) Contents

0 Set if the access causing the EPT violation was a data read.
1 Set if the access causing the EPT violation was a data write.
2 Set if the access causing the EPT violation was an instruction fetch.

1.

The exit qualification is undefined if the access was part of the logging of a branch record or a
precise-event-based-sampling (PEBS) record to the DS save area. It is recommended that soft-
ware configure the paging structures so that no address in the DS save area translates to an
address on the APIC-access page.

Vol.3 24-11

VM EXITS

Table 24-7. Exit Qualification for EPT Violations (Contd.)

Bit Position(s)

Contents

3

The logical-AND of bit O in the EPT paging-structures entries used to translate
the guest-physical address of the access causing the EPT violation (indicates
that the guest-physical address was readable).!

4 The logical-AND of bit 1 in the EPT paging-structures entries used to translate
the guest-physical address of the access causing the EPT violation (indicates
that the guest-physical address was writeable).

5 The logical-AND of bit 2 in the EPT paging-structures entries used to translate
the guest-physical address of the access causing the EPT violation (indicates
that the guest-physical address was executable).

6 Reserved (cleared to 0).

7 Set if the guest linear-address field is valid.

The guest linear-address field is valid for all EPT violations except those
resulting from an attempt to load the guest PDPTEs as part of the execution of
the MOV CR instruction.
8 If bit 7 is 1:
= Set if the access causing the EPT violation is to a guest-physical address
that is the translation of a linear address.

= C(lear if the access causing the EPT violation is to a paging-structure entry
as part of a page walk or the update of an accessed or dirty bit.

Reserved if bit 7 is O (cleared to 0).

11:9 Reserved (cleared to 0).

12 NMI unblocking due to IRET

63:13 Reserved (cleared to 0).

NOTES:

1. Bits 5:3 are cleared to O if any of EPT paging-structures entries used to translate the guest-physi-
cal address of the access causing the EPT violation is not present (see Section 25.2.2).

An EPT violation that occurs during as a result of execution of a read-modify-
write operation sets bit 1 (data write). Whether it also sets bit O (data read)
is implementation-specific and, for a given implementation, may differ for
different kinds of read-modify-write operations.

Bit 12 is undefined in any of the following cases:

e |If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs”
VM-execution control is O.

24-12 Vol.3

VM EXITS

* If the VM exit sets the valid bit in the IDT-vectoring information field (see
Section 24.2.3).

Otherwise, bit 12 is defined as follows:

* |f the “virtual NMIs” VM-execution control is O, the EPT violation was
caused by a memory access as part of execution of the IRET instruction,
and blocking by NMI (see Table 21-3) was in effect before execution of
IRET, bit 12 is set to 1.

* |If the “virtual NMIs” VM-execution control is 1,the EPT violation was
caused by a memory access as part of execution of the IRET instruction,
and virtual-NMI blocking was in effect before execution of IRET, bit 12 is
setto 1.

®* For all other relevant VM exits, bit 12 is cleared to O.

Guest-linear address. For some VM exits due to some instructions, this field
receives the linear address of one of the instruction operands. For some VM exits
due to EPT violations, this field receives a linear address associated the guest-
physical address that caused the EPT violation.

— VM exits due to attempts to execute LMSW with a memory operand. In these
cases, this field receives the linear address of that operand. On processors
that support Intel 64 architecture, bits 63:32 are cleared if the logical
processor was not in 64-bit mode before the VM exit.

— VM exits due to attempts to execute INS or OUTS for which the relevant
segment (ES for INS; DS for OUTS unless overridden by an instruction prefix)
is usable. The field receives the value of the linear address generated by
ES:(E)DI (for INS) or segment:(E)SI (for OUTS; the default segment is DS
but can be overridden by a segment override prefix). (If the relevant
segment is not usable, the value is undefined.) On processors that support
Intel 64 architecture, bits 63:32 are cleared if the logical processor was not in
64-bit mode before the VM exit.

— VM exits due to EPT violations that set bit 7 of the exit qualification (see
Table 24-7; these are all EPT violations except those resulting from an
attempt to load the PDPTEs as of execution of the MOV CR instruction). The
linear address may translate to the guest-physical address whose access
caused the EPT violation. Alternatively, translation of the linear address may
reference a paging-structure entry whose access caused the EPT violation.

— For all other VM exits, the field is undefined.

Guest-physical address. For a VM exit due to an EPT violation or an EPT
misconfiguration, this field receives the guest-physical address that caused the
EPT violation or EPT misconfiguration. For all other VM exits, the field is
undefined.

Vol.3 24-13

VM EXITS

24.2.2

Information for VM Exits Due to Vectored Events

Section 21.9.2 defines fields containing information for VM exits due to the following
events: exceptions (including those generated by the instructions INT3, INTO,
BOUND, and UD2); external interrupts that occur while the “acknowledge interrupt
on exit” VM-exit control is 1; and non-maskable interrupts (NMIs). Such VM exits
include those that occur on an attempt at a task switch that causes an exception
before generating the VM exit due to the task switch that causes the VM exit.

The following items detail the use of these fields:

® VM-exitinterruption information (format given in Table 21-14). The following
items detail how this field is established for VM exits due to these events:

For an exception, bits 7:0 receive the exception vector (at most 31). For an
NMI, bits 7:0 are set to 2. For an external interrupt, bits 7:0 receive the
interrupt number.

Bits 10:8 are set to 0 (external interrupt), 2 (non-maskable interrupt), 3
(hardware exception), or 6 (software exception). Hardware exceptions
comprise all exceptions except breakpoint exceptions (#BP; generated by
INT3) and overflow exceptions (#OF; generated by INTO); these are
software exceptions. BOUND-range exceeded exceptions (#BR; generated by
BOUND) and invalid opcode exceptions (#UD) generated by UD2 are
hardware exceptions.

Bit 11 is set to 1 if the VM exit is caused by a hardware exception that would
have delivered an error code on the stack. This bit is always 0 if the VM exit
occurred while the logical processor was in real-address mode (CRO.PE=0).1
If bit 11 is set to 1, the error code is placed in the VM-exit interruption error
code (see below).

Bit 12 is undefined in any of the following cases:

* If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs”
VM-execution control is 0.

* If the VM exit sets the valid bit in the IDT-vectoring information field (see
Section 24.2.3).

* If the VM exit is due to a double fault (the interruption type is hardware
exception and the vector is 8).

Otherwise, bit 12 is defined as follows:

* If the “virtual NMIs” VM-execution control is 0, the VM exit is due to a
fault on the IRET instruction (other than a debug exception for an
instruction breakpoint), and blocking by NMI (see Table 21-3) was in
effect before execution of IRET, bit 12 is set to 1.

1. If the capability MSR IA32_VMX_CRO_FIXED1 reports that CRO.PE must be 1 in VMX operation, a
logical processor cannot be in real-address mode unless the “unrestricted guest” VM-execution
control and bit 31 of the primary processor-based VM-execution controls are both 1.

24-14 Vol.3

VM EXITS

* |If the “virtual NMIs” VM-execution control is 1, the VM exit is due to a
fault on the IRET instruction (other than a debug exception for an
instruction breakpoint), and virtual-NMI blocking was in effect before
execution of IRET, bit 12 is set to 1.

®* For all other relevant VM exits, bit 12 is cleared to 0.l
— Bits 30:13 are always set to 0.
— Bit 31 is always set to 1.

For other VM exits (including those due to external interrupts when the
“acknowledge interrupt on exit” VM-exit control is 0), the field is marked invalid
(by clearing bit 31) and the remainder of the field is undefined.

VM-exit interruption error code.

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the
VM-exit interruption-information field, this field receives the error code that
would have been pushed on the stack had the event causing the VM exit been
delivered normally through the IDT. The EXT bit is set in this field exactly
when it would be set normally. For exceptions that occur during the delivery
of double fault (if the IDT-vectoring information field indicates a double fault),
the EXT bitis set to 1, assuming that (1) that the exception would produce an
error code normally (if not incident to double-fault delivery) and (2) that the
error code uses the EXT bit (not for page faults, which use a different format).

— For other VM exits, the value of this field is undefined.

24.2.3 Information for VM Exits During Event Delivery

Section 21.9.3 defined fields containing information for VM exits that occur while
delivering an event through the IDT and as a result of any of the following cases:?

A fault occurs during event delivery and causes a VM exit (because the bit
associated with the fault is set to 1 in the exception bitmap).

A task switch is invoked through a task gate in the IDT. The VM exit occurs due to
the task switch only after the initial checks of the task switch pass (see Section
22.6.2).

Event delivery causes an APIC-access VM exit (see Section 22.2).

An EPT violation or EPT misconfiguration that occurs during event delivery.

These fields are used for VM exits that occur during delivery of events injected as
part of VM entry (see Section 23.5.1.2).

1.

The conditions imply that, if the “NMI exiting” VM-execution control is O or the “virtual NMIs" VM-
execution control is 1, bit 12 is always cleared to 0 by VM exits due to debug exceptions.

This includes the case in which a VM exit occurs while delivering a software interrupt (INT n)
through the 16-bit IVT (interrupt vector table) that is used in virtual-8086 mode with virtual-
machine extensions (if RFLAGS.VM = CR4.VME = 1).

Vol.3 24-15

VM EXITS

A VM exit is not considered to occur during event delivery in any of the following
circumstances:

The original event causes the VM exit directly (for example, because the original
event is a non-maskable interrupt (NMI) and the “NMI exiting” VM-execution
control is 1).

The original event results in a double-fault exception that causes the VM exit
directly.

The VM exit occurred as a result of fetching the first instruction of the handler
invoked by the event delivery.

The VM exit is caused by a triple fault.

The following items detail the use of these fields:

IDT-vectoring information (format given in Table 21-15). The following items
detail how this field is established for VM exits that occur during event delivery:

— If the VM exit occurred during delivery of an exception, bits 7:0 receive the
exception vector (at most 31). If the VM exit occurred during delivery of an
NMI, bits 7:0 are set to 2. If the VM exit occurred during delivery of an
external interrupt, bits 7:0 receive the interrupt number.

— Bits 10:8 are set to indicate the type of event that was being delivered when
the VM exit occurred: O (external interrupt), 2 (non-maskable interrupt), 3
(hardware exception), 4 (software interrupt), 5 (privileged software
interrupt), or 6 (software exception).

Hardware exceptions comprise all exceptions except breakpoint exceptions
(#BP; generated by INT3) and overflow exceptions (#OF; generated by
INTO); these are software exceptions. BOUND-range exceeded exceptions
(#BR; generated by BOUND) and invalid opcode exceptions (#UD) generated
by UD2 are hardware exceptions.

Bits 10:8 may indicate privileged software interrupt if such an event was
injected as part of VM entry.

— Bit 11 is set to 1 if the VM exit occurred during delivery of a hardware
exception that would have delivered an error code on the stack. This bit is
always O if the VM exit occurred while the logical processor was in real-
address mode (CRO.PE=O).1 If bit 11 is set to 1, the error code is placed in
the IDT-vectoring error code (see below).

— Bit 12 is undefined.
— Bits 30:13 are always set to O.
— Bit 31 is always set to 1.

If the capability MSR IA32_VMX_CRO_FIXED1 reports that CRO.PE must be 1 in VMX operation, a
logical processor cannot be in real-address mode unless the “unrestricted guest” VM-execution
control and bit 31 of the primary processor-based VM-execution controls are both 1.

24-16 Vol.3

VM EXITS

For other VM exits, the field is marked invalid (by clearing bit 31) and the
remainder of the field is undefined.

® IDT-vectoring error code.

For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the
IDT-vectoring information field, this field receives the error code that would
have been pushed on the stack by the event that was being delivered through
the IDT at the time of the VM exit. The EXT bit is set in this field when it would
be set normally.

For other VM exits, the value of this field is undefined.

24.2.4 Information for VM Exits Due to Instruction Execution

Section 21.9.4 defined fields containing information for VM exits that occur due to
instruction execution. (The VM-exit instruction length is also used for VM exits that
occur during the delivery of a software interrupt or software exception.) The
following items detail their use.

® VM-exit instruction length. This field is used in the following cases:

For fault-like VM exits due to attempts to execute one of the following
instructions that cause VM exits unconditionally (see Section 22.1.2) or
based on the settings of VM-execution controls (see Section 22.1.3): CLTS,
CPUID, GETSEC, HLT, IN, INS, INVD, INVEPT, INVLPG, INVVPID, LGDT, LIDT,
LLDT, LMSW, LTR, MONITOR, MOV CR, MOV DR, MWAIT, OUT, OUTS, PAUSE,
RDMSR, RDPMC, RDTSC, RDTSCP, RSM, SGDT, SIDT, SLDT, STR, VMCALL,
VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, VMRESUME,
VMWRITE, VMXOFF, VMXON, WBINVD, WRMSR, and XSETBV.1

For VM exits due to software exceptions (those generated by executions of
INT3 or INTO).

For VM exits due to faults encountered during delivery of a software
interrupt, privileged software exception, or software exception.

For VM exits due to attempts to effect a task switch via instruction execution.
These are VM exits that produce an exit reason indicating task switch and
either of the following:

* An exit qualification indicating execution of CALL, IRET, or JMP
instruction.

®* An exit qualification indicating a task gate in the IDT and an IDT-vectoring
information field indicating that the task gate was encountered during

1. This item applies only to fault-like VM exits. It does not apply to trap-like VM exits following exe-
cutions of the MOV to CR8 instruction when the “use TPR shadow"” VM-execution control is 1 or
to those following executions of the WRMSR instruction when the “virtualize x2APIC mode” VM-
execution control is 1.

Vol.3 24-17

VM EXITS

delivery of a software interrupt, privileged software exception, or
software exception.

— For APIC-access VM exits resulting from linear accesses (see Section 22.2.1)
and encountered during delivery of a software interrupt, privileged software
exception, or software exception.1

In all the above cases, this field receives the length in bytes (1-15) of the
instruction (including any instruction prefixes) whose execution led to the
VM exit (see the next paragraph for one exception).

The cases of VM exits encountered during delivery of a software interrupt,
privileged software exception, or software exception include those encountered
during delivery of events injected as part of VM entry (see Section 23.5.1.2). If
the original event was injected as part of VM entry, this field receives the value of
the VM-entry instruction length.

All VM exits other than those listed in the above items leave this field undefined.

VM-exit instruction information. For VM exits due to attempts to execute
INS, INVEPT, INVVPID, LIDT, LGDT, LLDT, LTR, OUTS, SIDT, SGDT, SLDT, STR,
VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, or VMXON, this field
receives information about the instruction that caused the VM exit. The format of
the field depends on the identity of the instruction causing the VM exit:

— For VM exits due to attempts to execute INS or OUTS, the field has the format
is given in Table 24-8.2

Table 24-8. Format of the VM-Exit Instruction-Information Field as Used for INS and

ouTsS

Bit Position(s) | Content
6:0 Undefined.
9.7 Address size:

0: 16-bit

1. 32-bit

2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

14:10 Undefined.

1.

The VM-exit instruction-length field is not defined following APIC-access VM exits resulting from
physical accesses (see Section 22.2.3) even if encountered during delivery of a software inter-
rupt, privileged software exception, or software exception.

The format of the field was undefined for these VM exits on the first processors to support the
virtual-machine extensions. Software can determine whether the format specified in Table 24-8
is used by consulting the VMX capability MSR IA32_VMX_BASIC (see Appendix G.1).

24-18 Vol.3

VM EXITS

Table 24-8. Format of the VM-Exit Instruction-Information Field as Used for INS and

OUTS (Contd.)

Bit Position(s)

Content

17:15

Segment register:
0: €S
1.CS
2:SS
3:DS
4. FS
5:GS

Other values not used. Undefined for VM exits due to execution of INS.

31:18

Undefined.

— For VM exits due to attempts to execute LIDT, LGDT, SIDT, or SGDT, the field
has the format is given in Table 24-9.

Table 24-9.

Format of the VM-Exit Instruction-Information Field as Used for LIDT,
LGDT, SIDT, or SGDT

Bit Position(s)

Content

1.0

Scaling:

0: no scaling
1:scale by 2
2:scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2

Undefined.

9.7

Address size:
0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10

Cleared to O.

11

Operand size:
0: 16-bit
1: 32-bit

Other values not used. Undefined for VM exits from 64-bit mode.

1412

Undefined.

Vol.3 24-19

VM EXITS

Table 24-9.

Format of the VM-Exit Instruction-Information Field as Used for LIDT,
LGDT, SIDT, or SGDT (Contd.)

Bit Position(s)

Content

17:15

Segment register:
0: €S
1.CS
2:SS
3:DS
4. FS
5:GS

Other values not used.

21:18

IndexReg:
0 =RAX
1 =RCX
2 = RDX
3=RBX
4 = RSP
5=RBP
6 =RSI
7 =RDI
8-15 represent R8-R15, respectively (used only on processors that support
Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22

IndexReg invalid (0 = valid; 1 = invalid)

26:23

BaseReg (encoded as IndexReg above)
Undefined for instructions with no base register (bit 27 is set).

27

BaseReg invalid (0 = valid; 1 = invalid)

29:28

Instruction identity:

0: SGDT
1:SIDT
2: LGDT
3:LIDT

31:30

Undefined.

— For VM exits due to attempts to execute LLDT, LTR, SLDT, or STR, the field has
the format is given in Table 24-10.

— For VM exits due to attempts to execute VMCLEAR, VMPTRLD, VMPTRST, or
VMXON, the field has the format is given in Table 24-11.

— For VM exits due to attempts to execute VMREAD or VMWRITE, the field has
the format is given in Table 24-12.

24-20 Vol.3

Table 24-10.

VM EXITS

Format of the VM-Exit Instruction-Information Field as Used for LLDT,
LTR, SLDT, and STR

Bit Position(s)

Content

1.0

Scaling:
0: no scaling
1: scale by 2
2:scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for register instructions (bit 10 is set) and for memory instructions with
no index register (bit 10 is clear and bit 22 is set).

Undefined.

Reg1:
0 =RAX
1 =RCX
2 =RDX
3 =RBX
4 = RSP
5 =RBP
6 =RSI
7 =RDI
8-15 represent R8-R15, respectively (used only on processors that support
Intel 64 architecture)

Undefined for memory instructions (bit 10 is clear).

9.7

Address size:
0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used. Undefined for register instructions (bit 10 is set).

10

Mem/Reg (0 = memory; 1 = register).

14:11

Undefined.

17:15

Segment register:
0: €S
1.CS
2:SS
3:DS
4. FS
5:.GS

Other values not used. Undefined for register instructions (bit 10 is set).

Vol.3 24-21

VM EXITS

Table 24-10.

Format of the VM-Exit Instruction-Information Field as Used for LLDT,
LTR, SLDT, and STR (Contd.)

Bit Position(s)

Content

21:18

IndexReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with
no index register (bit 10 is clear and bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)
Undefined for register instructions (bit 10 is set).
26:23 BaseReg (encoded as Reg1 above)
Undefined for register instructions (bit 10 is set) and for memory instructions with
no base register (bit 10 is clear and bit 27 is set).
27 BaseReg invalid (0 = valid; 1 = invalid)
Undefined for register instructions (bit 10 is set).
29:28 Instruction identity:
0: SLDT
1:STR
2: LLDT
3:LTR
31:30 Undefined.

Table 24-11. Format of the VM-Exit Instruction-Information Field as Used for

VMCLEAR, VMPTRLD, VMPTRST, and VMXON

Bit Position(s) | Content

1.0 Scaling:
0: no scaling
1:scale by 2
2:scale by 4

3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.
9.7 Address size:
0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)
Other values not used.
10 Cleared to O.
14:11 Undefined.

24-22 Vol.3

VM EXITS

Table 24-11. Format of the VM-Exit Instruction-Information Field as Used for

VMCLEAR, VMPTRLD, VMPTRST, and VMXON (Contd.)

Bit Position(s)

Content

17:15

Segment register:
0: €S
1.CS
2:SS
3:DS
4. FS
5:GS

Other values not used.

21:18

IndexReg:
0 =RAX
1 =RCX
2 = RDX
3 =RBX
4 = RSP
5 =RBP
6 =RSI
7 =RDI
8-15 represent R8-R15, respectively (used only on processors that support
Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22

IndexReg invalid (0 = valid; 1 = invalid)

26:23

BaseReg (encoded as IndexReg above)
Undefined for instructions with no base register (bit 27 is set).

27

BaseReg invalid (0 = valid; 1 = invalid)

31:28

Undefined.

Table 24-12. Format of the VM-Exit Instruction-Information Field as Used for

VMREAD and VMWRITE
Bit Position(s) | Content
1:.0 Scaling:
0: no scaling
1:scale by 2
2:scale by 4

3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for register instructions (bit 10 is set) and for memory instructions with
no index register (bit 10 is clear and bit 22 is set).

Vol.3 24-23

VM EXITS

Table 24-12. Format of the VM-Exit Instruction-Information Field as Used for

VMREAD and VMWRITE (Contd.)

Bit Position(s)

Content

2

Undefined.

6:3

Reg1:
0 =RAX
1=RCX
2 = RDX
3 =RBX
4 =RSP
5=RBP
6 =RSI
7 =RDI
8-15 represent R8-R15, respectively (used only on processors that support
Intel 64 architecture)

Undefined for memory instructions (bit 10 is clear).

9.7

Address size:
0: 16-bit
1. 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used. Undefined for register instructions (bit 10 is set).

10

Mem/Reg (0 = memory; 1 = register).

14:11

Undefined.

17:15

Segment register:
0: €S
1:CS
2:SS
3:DS
4:FS
5:GS

Other values not used. Undefined for register instructions (bit 10 is set).

21:18

IndexReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with
no index register (bit 10 is clear and bit 22 is set).

22

IndexReg invalid (0 = valid; 1 = invalid)
Undefined for register instructions (bit 10 is set).

24-24 \Vol.3

VM EXITS

Table 24-12. Format of the VM-Exit Instruction-Information Field as Used for

VMREAD and VMWRITE (Contd.)

Bit Position(s) | Content

26:23 BaseReg (encoded as Reg1 above)
Undefined for register instructions (bit 10 is set) and for memory instructions with
no base register (bit 10 is clear and bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)
Undefined for register instructions (bit 10 is set).

31:28 Reg? (same encoding as Reg1 above)

— For VM exits due to attempts to execute INVEPT or INVVPID, the field has the
format is given in Table 24-13.

Table 24-13. Format of the VM-Exit Instruction-Information Field as Used for INVEPT

and INVVPID

Bit Position(s)

Content

1:.0

Scaling:

0: no scaling
1: scale by 2
2:scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2

Undefined.

9.7

Address size:
0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10

Cleared to O.

1411

Undefined.

17:15

Segment register:
0:ES
1.CS
2:SS
3:DS
4: FS
5:GS

Other values not used.

Vol.3 24-25

VM EXITS

Table 24-13. Format of the VM-Exit Instruction-Information Field as Used for INVEPT
and INVVPID (Contd.)

Bit Position(s) | Content

21:18 IndexReg:

0 =RAX

1 =RCX

2 =RDX

3=RBX

4 =RSP

5 =RBP

6 =RSI

7 =RDI

8-15 represent R8-R15, respectively (used only on processors that support
Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)
26:23 BaseReg (encoded as IndexReg above)
Undefined for memory instructions with no base register (bit 27 is set).
27 BaseReg invalid (0 = valid; 1 = invalid)
31:28 Reg?2 (same encoding as IndexReg above)

For all other VM exits, the field is undefined.

® 1/0RCX, I/O RSI, I/0 RDI, 1I/0 RIP. These fields are undefined except for
SMM VM exits due to system-management interrupts (SMls) that arrive
immediately after retirement of 1/0 instructions. See Section 26.15.2.3.

24.3 SAVING GUEST STATE

Each field in the guest-state area of the VMCS (see Section 21.4) is written with the
corresponding component of processor state. On processors that support Intel 64
architecture, the full values of each natural-width field (see Section 21.10.2) is saved
regardless of the mode of the logical processor before and after the VM exit.

In general, the state saved is that which was in the logical processor at the time the
VM exit commences. See Section 24.1 for a discussion of which architectural updates
occur at that time.

Section 24.3.1 through Section 24.3.4 provide details for how certain components of
processor state are saved. These sections reference VMCS fields that correspond to

processor state. Unless otherwise stated, these references are to fields in the guest-
state area.

24-26 Vol.3

VM EXITS

24.3.1 Saving Control Registers, Debug Registers, and MSRs

Contents of certain control registers, debug registers, and MSRs is saved as follows:

The contents of CRO, CR3, CR4, and the IA32_SYSENTER_CS,
IA32_SYSENTER_ESP, and IA32_SYSENTER_EIP MSRs are saved into the corre-
sponding fields. Bits 63:32 of the I1A32_SYSENTER_CS MSR are not saved. On
processors that do not support Intel 64 architecture, bits 63:32 of the
IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are not saved.

If the “save debug controls” VM-exit control is 1, the contents of DR7 and the
IA32_DEBUGCTL MSR are saved into the corresponding fields. The first
processors to support the virtual-machine extensions supported only the 1-
setting of this control and thus always saved data into these fields.

If the “save IA32_PAT” VM-exit control is 1, the contents of the IA32_PAT MSR
are saved into the corresponding field.

If the “save IA32_EFER” VM-exit control is 1, the contents of the IA32_EFER MSR
are saved into the corresponding field.

The value of the SMBASE field is undefined after all VM exits except SMM
VM exits. See Section 26.15.2.

24.3.2 Saving Segment Registers and Descriptor-Table Registers

For each segment register (CS, SS, DS, ES, FS, GS, LDTR, or TR), the values saved
for the base-address, segment-limit, and access rights are based on whether the
register was unusable (see Section 21.4.1) before the VM exit:

If the register was unusable, the values saved into the following fields are
undefined: (1) base address; (2) segment limit; and (3) bits 7:0 and bits 15:12
in the access-rights field. The following exceptions apply:

— Cs.

® The base-address and segment-limit fields are saved.

* Thel, D, and G bits are saved in the access-rights field.
— SS.

* DPL is saved in the access-rights field.

®* On processors that support Intel 64 architecture, bits 63:32 of the value
saved for the base address are always zero.

— DS and ES. On processors that support Intel 64 architecture, bits 63:32 of
the values saved for the base addresses are always zero.

— FS and GS. The base-address field is saved.

— LDTR. The value saved for the base address is always canonical.

Vol.3 24-27

VM EXITS

® If the register was not unusable, the values saved into the following fields are
those which were in the register before the VM exit: (1) base address;
(2) segment limit; and (3) bits 7:0 and bits 15:12 in access rights.

® Bits 31:17 and 11:8 in the access-rights field are always cleared. Bit 16 is set to
1 if and only if the segment is unusable.

The contents of the GDTR and IDTR registers are saved into the corresponding base-
address and limit fields.

24.3.3 Saving RIP, RSP, and RFLAGS

The contents of the RIP, RSP, and RFLAGS registers are saved as follows:

® The value saved in the RIP field is determined by the nature and cause of the
VM exit:

— If the VM exit occurs due to by an attempt to execute an instruction that
causes VM exits unconditionally or that has been configured to cause a
VM exit via the VM-execution controls, the value saved references that
instruction.

— If the VM exit is caused by an occurrence of an INIT signal, a start-up IPI
(SIPI), or system-management interrupt (SMI), the value saved is that which
was in RIP before the event occurred.

— If the VM exit occurs due to the 1-setting of either the “interrupt-window
exiting” VM-execution control or the “NMI-window exiting” VM-execution
control, the value saved is that which would be in the register had the VM exit
not occurred.

— If the VM exit is due to an external interrupt, non-maskable interrupt (NMI),
or hardware exception (as defined in Section 24.2.2), the value saved is the
return pointer that would have been saved (either on the stack had the event
been delivered through a trap or interrupt gate,® or into the old task-state
segment had the event been delivered through a task gate).

— If the VM exit is due to a triple fault, the value saved is the return pointer that
would have been saved (either on the stack had the event been delivered
through a trap or interrupt gate, or into the old task-state segment had the
event been delivered through a task gate) had delivery of the double fault not
encountered the nested exception that caused the triple fault.

— If the VM exit is due to a software exception (due to an execution of INT3 or
INTO), the value saved references the INT3 or INTO instruction that caused
that exception.

— Suppose that the VM exit is due to a task switch that was caused by execution
of CALL, IRET, or JMP or by execution of a software interrupt (INT n) or

1. The reference here is to the full value of RIP before any truncation that would occur had the
stack width been only 32 bits or 16 bits.

24-28 Vol.3

VM EXITS

software exception (due to execution of INT3 or INTO) that encountered a
task gate in the IDT. The value saved references the instruction that caused
the task switch (CALL, IRET, JMP, INT n, INT3, or INTO).

Suppose that the VM exit is due to a task switch that was caused by a task
gate in the IDT that was encountered for any reason except the direct access
by a software interrupt or software exception. The value saved is that which
would have been saved in the old task-state segment had the task switch
completed normally.

If the VM exit is due to an execution of MOV to CR8 or WRMSR that reduced
the value of the TPR shadow? below that of TPR threshold VM-execution
control field, the value saved references the instruction following the MOV to
CR8 or WRMSR.

If the VM exit was caused by a TPR-shadow update (see Section 21.5.3.3)
that results from an APIC access as part of instruction execution, the value
saved references the instruction following the one whose execution caused
the VTPR access.

The contents of the RSP register are saved into the RSP field.

With the exception of the resume flag (RF; bit 16), the contents of the RFLAGS
register is saved into the RFLAGS field. RFLAGS.RF is saved as follows:

If the VM exit is caused directly by an event that would normally be delivered
through the IDT, the value saved is that which would appear in the saved
RFLAGS image (either that which would be saved on the stack had the event
been delivered through a trap or interrupt gate2 or into the old task-state
segment had the event been delivered through a task gate) had the event
been delivered through the IDT. See below for VM exits due to task switches
caused by task gates in the IDT.

If the VM exit is caused by a triple fault, the value saved is that which the
logical processor would have in RF in the RFLAGS register had the triple fault
taken the logical processor to the shutdown state.

If the VM exit is caused by a task switch (including one caused by a task gate
in the IDT), the value saved is that which would have been saved in the
RFLAGS image in the old task-state segment (TSS) had the task switch
completed normally without exception.

If the VM exit is caused by an attempt to execute an instruction that uncondi-
tionally causes VM exits or one that was configured to do with a VM-execution
control, the value saved is 0.3

The TPR shadow is bits 7:4 of the byte at offset 80H of the virtual-APIC page (see Section
21.6.8).

The reference here is to the full value of RFLAGS before any truncation that would occur had the
stack width been only 32 bits or 16 bits.

Vol.3 24-29

VM EXITS

— For APIC-access VM exits and for VM exits caused by EPT violations and EPT
misconfigurations, the value saved depends on whether the VM exit occurred
during delivery of an event through the IDT:

* If the VM exit stored O for bit 31 for IDT-vectoring information field
(because the VM exit did not occur during delivery of an event through
the IDT; see Section 24.2.3), the value saved is 1.

* If the VM exit stored 1 for bit 31 for IDT-vectoring information field
(because the VM exit did occur during delivery of an event through the
IDT), the value saved is the value that would have appeared in the saved
RFLAGS image had the event been delivered through the IDT (see
above).

— For all other VM exits, the value saved is the value RFLAGS.RF had before the
VM exit occurred.

24.3.4 Saving Non-Register State

Information corresponding to guest non-register state is saved as follows:

The activity-state field is saved with the logical processor’s activity state before
the VM exit.1 See Section 24.1 for details of how events leading to a VM exit may
affect the activity state.

The interruptibility-state field is saved to reflect the logical processor’s interrupt-
ibility before the VM exit. See Section 24.1 for details of how events leading to a
VM exit may affect this state. VM exits that end outside system-management
mode (SMM) save bit 2 (blocking by SMI) as O regardless of the state of such
blocking before the VM exit.

Bit 3 (blocking by NMI) is treated specially if the “virtual NMIs” VM-execution
control is 1. In this case, the value saved for this field does not indicate the
blocking of NMlIs but rather the state of virtual-NMI blocking.

The pending debug exceptions field is saved as clear for all VM exits except the
following:

— A VM exit caused by an INIT signal, a machine-check exception, or a system-
management interrupt (SMI).

— A VM exit with basic exit reason either “TPR below threshold.”2

— A VM exit with basic exit reason “monitor trap flag.”

This is true even if RFLAGS.RF was 1 before the instruction was executed. If, in response to such
a VM exit, a VM monitor re-enters the guest to re-execute the instruction that caused the

VM exit (for example, after clearing the VM-execution control that caused the VM exit), the
instruction may encounter a code breakpoint that has already been processed. A VM monitor can
avoid this by setting the guest value of RFLAGS.RF to 1 before resuming guest software.

If this activity state was an inactive state resulting from execution of a specific instruction (HLT
or MWAIT), the value saved for RIP by that VM exit will reference the following instruction.

24-30 Vol.3

VM EXITS

— VM exits that are not caused by debug exceptions and that occur while there
is MOV-SS blocking of debug exceptions.

For VM exits that do not clear the field, the value saved is determined as follows:

— Each of bits 3:0 may be set if it corresponds to a matched breakpoint. This
may be true even if the corresponding breakpoint is not enabled in DR7.

— Suppose that a VM exit is due to an INIT signal, a machine-check exception,
or an SMI; or that a VM exit has basic exit reason “TPR below threshold” or
“monitor trap flag.” In this case, the value saved sets bits corresponding to
the causes of any debug exceptions that were pending at the time of the
VM exit.

If the VM exit occurs immediately after VM entry, the value saved may match
that which was loaded on VM entry (see Section 23.6.3). Otherwise, the
following items apply:

* Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched
data or 1/0 breakpoint that was enabled in DR7. Bit 12 is also set if it had
been set on VM entry, causing there to be valid pending debug exceptions
(see Section 23.6.3) and the VM exit occurred before those exceptions
were either delivered or lost. In other cases, bit 12 is cleared to O.

* Bit 14 (BS) is set if RFLAGS.TF = 1 in either of the following cases:

i IA32_DEBUGCTL.BTF = 0 and the cause of a pending debug
exception was the execution of a single instruction.

° IA32_DEBUGCTL.BTF = 1 and the cause of a pending debug
exception was a taken branch.

— Suppose that a VM exit is due to another reason (but not a debug exception)
and occurs while there is MOV-SS blocking of debug exceptions. In this case,
the value saved sets bits corresponding to the causes of any debug
exceptions that were pending at the time of the VM exit. If the VM exit occurs
immediately after VM entry (no instructions were executed in VMX non-root
operation), the value saved may match that which was loaded on VM entry
(see Section 23.6.3). Otherwise, the following items apply:

* Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched
data or 1/0 breakpoint that was enabled in DR7. Bit 12 is also set if it had
been set on VM entry, causing there to be valid pending debug exceptions
(see Section 23.6.3) and the VM exit occurred before those exceptions
were either delivered or lost. In other cases, bit 12 is cleared to O.

®* The setting of bit 14 (BS) is implementation-specific. However, it is not
set if RFLAGS.TF = 0 or IA32_DEBUGCTL.BTF = 1.

— The reserved bits in the field are cleared.

2. This item includes VM exits that occur after executions of MOV to CR8 or WRMSR (Section
22.1.3), TPR-shadow updates (Section 22.5.3.3), and certain VM entries (Section 23.6.7).

Vol.3 24-31

VM EXITS

If the “save VMX-preemption timer value” VM-exit control is 1, the value of timer
is saved into the VMX-preemption timer-value field. This is the value loaded from
this field on VM entry as subsequently decremented (see Section 22.7.1). (If the
“save VMX-preemption timer value” VM-exit control is 0, VM exit does not modify
the value of the VMX-preemption timer-value field.)

If the logical processor supports the 1-setting of the “enable EPT” VM-execution
control, values are saved into the four (4) PDPTE fields as follows:

— If the “enable EPT” VM-execution control is 1 and the logical processor was
using PAE paging at the time of the VM exit, the PDPTE values currently in use
are saved:

®* The values saved into bits 11:9 of each of the fields is undefined.

* If the value saved into one of the fields has bit O (present) clear, the value
saved into bits 63:1 of that field is undefined. That value need not
correspond to the value that was loaded by VM entry or to any value that
might have been loaded in VMX non-root operation.

* If the value saved into one of the fields has bit O (present) set, the value
saved into bits 63:12 of the field is a guest-physical address.

— If the “enable EPT” VM-execution control is O or the logical processor was not
using PAE paging at the time of the VM exit, the values saved are undefined.

24.4 SAVING MSRS

After processor state is saved to the guest-state area, values of MSRs may be stored
into the VM-exit MSR-store area (see Section 21.7.2). Specifically each entry in that
area (up to the number specified in the VM-exit MSR-store count) is processed in

order by storing the value of the MSR indexed by bits 31:0 (as they would be read by
RDMSR) into bits 127:64. Processing of an entry fails in either of the following cases:

The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that
allows access to an APIC register when the local APIC is in x2APIC mode.

The value of bits 31:0 indicates an MSR that can be read only in system-
management mode (SMM) and the VM exit will not end in SMM.

The value of bits 31:0 indicates an MSR that cannot be saved on VM exits for
model-specific reasons. A processor may prevent certain MSRs (based on the
value of bits 31:0) from being stored on VM exits, even if they can normally be
read by RDMSR. Such model-specific behavior is documented in Appendix B.

A logical processor uses PAE paging if CRO.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3A.
“Enable EPT" is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VM exit functions as if the “enable EPT" VM-execution
control were 0. See Section 21.6.2.

24-32 Vol.3

VM EXITS

® Bits 63:32 of the entry are not all 0.

® An attempt to read the MSR indexed by bits 31:0 would cause a general-
protection exception if executed via RDMSR with CPL = O.

A VMX abort occurs if processing fails for any entry. See Section 24.7.

24.5 LOADING HOST STATE

Processor state is updated on VM exits in the following ways:

® Some state is loaded from or otherwise determined by the contents of the host-
state area.

® Some state is determined by VM-exit controls.
® Some state is established in the same way on every VM exit.

® The page-directory pointers are loaded based on the values of certain control
registers.

This loading may be performed in any order.

On processors that support Intel 64 architecture, the full values of each 64-bit field
loaded (for example, the base address for GDTR) is loaded regardless of the mode of
the logical processor before and after the VM exit.

The loading of host state is detailed in Section 24.5.1 to Section 24.5.5. These
sections reference VMCS fields that correspond to processor state. Unless otherwise
stated, these references are to fields in the host-state area.

A logical processor is in 1A-32e mode after a VM exit only if the “host address-space
size” VM-exit control is 1. If the logical processor was in 1A-32e mode before the
VM exit and this control is 0, a VMX abort occurs. See Section 24.7.

In addition to loading host state, VM exits clear address-range monitoring (Section
24.5.6).

After the state loading described in this section, VM exits may load MSRs from the
VM-exit MSR-load area (see Section 24.6). This loading occurs only after the state
loading described in this section.

24.5.1 Loading Host Control Registers, Debug Registers, MSRs

VM exits load new values for controls registers, debug registers, and some MSRs:

® CRO, CR3, and CR4 are loaded from the CRO field, the CR3 field, and the CR4
field, respectively, with the following exceptions:

— The following bits are not modified:

®* For CRO, ET, CD, NW; bits 63:32 (on processors that support Intel 64
architecture), 28:19, 17, and 15:6; and any bits that are fixed in VMX
operation (see Section 20.8).1

Vol.3 24-33

VM EXITS

®* For CR3, bits 63:52 and bits in the range 51:32 beyond the processor’s
physical-address width (they are cleared to 0).1 (This item applies only to
processors that support Intel 64 architecture.)

®* For CR4, any bits that are fixed in VMX operation (see Section 20.8).
CR4.PAE is set to 1 if the “host address-space size” VM-exit control is 1.

® DR7 is set to 400H.

® The following MSRs are established as follows:

The 1A32_DEBUGCTL MSR is cleared to 00000000_00000000H.

The IA32_SYSENTER_CS MSR is loaded from the 1A32_SYSENTER_CS field.
Since that field has only 32 bits, bits 63:32 of the MSR are cleared to O.

IA32_SYSENTER_ESP MSR and IA32_SYSENTER_EIP MSR are loaded from
the 1A32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field, respec-
tively. On processors that do not support Intel 64 architecture, these fields
have only 32 bits; bits 63:32 of the MSRs are cleared to 0.

The following are performed on processors that support Intel 64 architecture:

* The MSRs FS.base and GS.base are loaded from the base-address fields
for FS and GS, respectively (see Section 24.5.2).

® The LMA and LME bits in the I1A32_EFER MSR are each loaded with the
setting of the “host address-space size” VM-exit control.

If the “load 1A32_PERF_GLOBAL_CTRL” VM-exit control is 1, the
IA32_PERF_GLOBAL_CTRL MSR is loaded from the
IA32_PERF_GLOBAL_CTRL field.

If the “load 1A32_PAT” VM-exit control is 1, the IA32_PAT MSR is loaded from
the 1A32_PAT field.

If the “load 1A32_EFER” VM-exit control is 1, the IA32_EFER MSR is loaded
from the 1A32_EFER field.

With the exception of FS.base and GS.base, any of these MSRs is subsequently
overwritten if it appears in the VM-exit MSR-load area. See Section 24.6.

24.5.2 Loading Host Segment and Descriptor-Table Registers

Each of the registers CS, SS, DS, ES, FS, GS, and TR is loaded as follows (see below
for the treatment of LDTR):

1. Bits 28:19, 17, and 15:6 of CRO and CRO.ET are unchanged by executions of MOV to CRO. CRO.ET
is always 1 and the other bits are always O.

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

24-34 Vol.3

VM EXITS

The selector is loaded from the selector field. The segment is unusable if its
selector is loaded with zero. The checks specified Section 23.3.1.2 limit the
selector values that may be loaded. In particular, CS and TR are never loaded
with zero and are thus never unusable. SS can be loaded with zero only on
processors that support Intel 64 architecture and only if the VM exit is to 64-bit
mode (64-bit mode allows use of segments marked unusable).

The base address is set as follows:
— CS. Cleared to zero.

— SS, DS, and ES. Undefined if the segment is unusable; otherwise, cleared to
zero.

— FS and GS. Undefined (but, on processors that support Intel 64 architecture,
canonical) if the segment is unusable and the VM exit is not to 64-bit mode;
otherwise, loaded from the base-address field. On processors that support
Intel 64 architecture, the values loaded for base addresses for FS and GS are
also manifest in the FS.base and GS.base MSRs.

— TR. Loaded from the host-state area.
The segment limit is set as follows:

— CS. Set to FFFFFFFFH (corresponding to a descriptor limit of FFFFFH and a G-
bit setting of 1).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set
to FFFFFFFFH.

— TR. Set to 00000067H.
The type field and S bit are set as follows:

— CS. Type set to 11 and S set to 1 (execute/read, accessed, non-conforming
code segment).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise,
type set to 3 and S set to 1 (read/write, accessed, expand-up data segment).

— TR. Type set to 11 and S set to 0 (busy 32-bit task-state segment).
The DPL is set as follows:

— CS, SS, and TR. Set to 0. The current privilege level (CPL) will be O after the
VM exit completes.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to
0.

The P bit is set as follows:
— CS, TR. Setto 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set
to 1.

On processors that support Intel 64 architecture, CS.L is loaded with the setting
of the “host address-space size” VM-exit control. Because the value of this

Vol.3 24-35

VM EXITS

control is also loaded into IA32_EFER.LMA (see Section 24.5.1), no VM exit is
ever to compatibility mode (which requires IA32_EFER.LMA = 1 and CS.L = 0).

¢* D/B.

— CS. Loaded with the inverse of the setting of the “host address-space size”
VM-exit control. For example, if that control is 0, indicating a 32-bit guest,
CS.D/Bis set to 1.

— SS. Setto 1.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to
1.

— TR. Setto O.

— CS. Setto 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set
to 1.

— TR. Set to O.

The host-state area does not contain a selector field for LDTR. LDTR is established as
follows on all VM exits: the selector is cleared to 0000H, the segment is marked
unusable and is otherwise undefined (although the base address is always canon-
ical).

The base addresses for GDTR and IDTR are loaded from the GDTR base-address field

and the IDTR base-address field, respectively. The GDTR and IDTR limits are each set
to FFFFH.

24.5.3 Loading Host RIP, RSP, and RFLAGS

RIP and RSP are loaded from the RIP field and the RSP field, respectively. RFLAGS is
cleared, except bit 1, which is always set.

24.5.4 Checking and Loading Host Page-Directory-Pointer-Table
Entries

If CRO.PG = 1, CR4.PAE = 1, and IA32_EFER.LMA = 0, the logical processor uses
PAE paging. See Section 4.4 of the Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volume 3A.1 When in PAE paging is in use, the physical address
in CR3 references a table of page-directory-pointer-table entries (PDPTEs). A

1. On processors that support Intel 64 architecture, the physical-address extension may support
more than 36 physical-address bits. Software can determine a processor’s physical-address
width by executing CPUID with 80000008H in EAX. The physical-address width is returned in
bits 7:0 of EAX.

24-36 Vol.3

VM EXITS

MOV to CR3 when PAE paging is in use checks the validity of the PDPTEs and, if they
are valid, loads them into the processor (into internal, non-architectural registers).

A VM exit is to a VMM that uses PAE paging if (1) bit 5 (corresponding to CR4.PAE) is
set in the CR4 field in the host-state area of the VMCS; and (2) the “host address-
space size” VM-exit control is 0. Such a VM exit may check the validity of the PDPTEs
referenced by the CR3 field in the host-state area of the VMCS. Such a VM exit must
check their validity if either (1) PAE paging was not in use before the VM exit; or
(2) the value of CR3 is changing as a result of the VM exit. A VM exit to a VMM that
does not use PAE paging must not check the validity of the PDPTEs.

A VM exit that checks the validity of the PDPTEs uses the same checks that are used
when CR3 is loaded with MOV to CR3 when PAE paging is in use. If MOV to CR3 would
cause a general-protection exception due to the PDPTEs that would be loaded (e.g.,
because a reserved bit is set), a VMX abort occurs (see Section 24.7). If a VM exit to
a VMM that uses PAE does not cause a VMX abort, the PDPTEs are loaded into the
processor as would MOV to CR3, using the value of CR3 being load by the VM exit.

24.5.5 Updating Non-Register State

VM exits affect the non-register state of a logical processor as follows:
® Alogical processor is always in the active state after a VM exit.
® Event blocking is affected as follows:

— There is no blocking by STI or by MOV SS after a VM exit.

— VM exits caused directly by non-maskable interrupts (NMIs) cause blocking
by NMI (see Table 21-3). Other VM exits do not affect blocking by NMI. (See
Section 24.1 for the case in which an NMI causes a VM exit indirectly.)

® There are no pending debug exceptions after a VM exit.

Section 25.3 describes how the VMX architecture controls how a logical processor
manages information in the TLBs and paging-structure caches. The following items
detail how VM exits invalidate cached mappings:

® If the “enable VPID” VM-execution control is 0, the logical processor invalidates
VPID-tagged mappings and dual-tagged mappings associated with VPID O000H;
dual-tagged mappings for VPID O000H are invalidated for all EPTPs.

® VM exits are not required to invalidate any EPTP-tagged mappings, nor are they
required to invalidate any VPID-tagged mappings or dual-tagged mappings if the
“enable VPID” VM-execution control is 1.

24.5.6 Clearing Address-Range Monitoring

The Intel 64 and 1A-32 architectures allow software to monitor a specified address
range using the MONITOR and MWAIT instructions. See Section 8.10.4 in the Intel®

Vol.3 24-37

VM EXITS

64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. VM exits clear
any address-range monitoring that may be in effect.

24.6 LOADING MSRS

VM exits may load MSRs from the VM-exit MSR-load area (see Section 21.7.2).
Specifically each entry in that area (up to the number specified in the VM-exit MSR-
load count) is processed in order by loading the MSR indexed by bits 31:0 with the
contents of bits 127:64 as they would be written by WRMSR.

Processing of an entry fails in any of the following cases:

® The value of bits 31:0 is either COO00100H (the 1A32_FS_BASE MSR) or
CO000101H (the 1IA32_GS_BASE MSR).

® The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that
allows access to an APIC register when the local APIC is in x2APIC mode.

® The value of bits 31:0 indicates an MSR that can be read only in system-
management mode (SMM) and the VM exit will not end in SMM.
(IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)

® The value of bits 31:0 indicates an MSR that cannot be loaded on VM exits for
model-specific reasons. A processor may prevent loading of certain MSRs even if
they can normally be written by WRMSR. Such model-specific behavior is
documented in Appendix B.

® Bits 63:32 are not all 0.

¢ An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry
would cause a general-protection exception if executed via WRMSR with
cpL=0.1

If processing fails for any entry, a VMX abort occurs. See Section 24.7.

If any MSR is being loaded in such a way that would architecturally require a TLB
flush, the TLBs are updated so that, after VM exit, the logical processor does not use
any translations that were cached before the transition.

24.7 VMX ABORTS

A problem encountered during a VM exit leads to a VMX abort. A VMX abort takes a
logical processor into a shutdown state as described below.

1. Note the following about processors that support Intel 64 architecture. If CRO.PG = 1, WRMSR to
the IA32_EFER MSR causes a general-protection exception if it would modify the LME bit. Since
CRO.PG is always 1 in VMX operation, the IA32_EFER MSR should not be included in the VM-exit
MSR-load area for the purpose of modifying the LME bit.

24-38 Vol.3

VM EXITS

A VMX abort does not modify the VMCS data in the VMCS region of any active VMCS.
The contents of these data are thus suspect after the VMX abort.

On a VMX abort, a logical processor saves a honzero 32-bit VMX-abort indicator field
at byte offset 4 in the VMCS region of the VMCS whose misconfiguration caused the
failure (see Section 21.2). The following values are used:

1. There was a failure in saving guest MSRs (see Section 24.4).

2. Host checking of the page-directory-pointer-table entries (PDPTESs) failed (see
Section 24.5.4).

3. The current VMCS has been corrupted (through writes to the corresponding
VMCS region) in such a way that the logical processor cannot complete the
VM exit properly.

There was a failure on loading host MSRs (see Section 24.6).
There was a machine check during VM exit (see Section 24.8).

The logical processor was in 1A-32e mode before the VM exit and the “host
address-space size” VM-entry control was O (see Section 24.5).

Some of these causes correspond to failures during the loading of state from the
host-state area. Because the loading of such state may be done in any order (see
Section 24.5) a VM exit that might lead to a VMX abort for multiple reasons (for
example, the current VMCS may be corrupt and the host PDPTEs might not be prop-
erly configured). In such cases, the VMX-abort indicator could correspond to any one
of those reasons.

A logical processor never reads the VMX-abort indicator in a VMCS region and writes
it only with one of the non-zero values mentioned above. The VMX-abort indicator
allows software on one logical processor to diagnose the VMX-abort on another. For
this reason, it is recommended that software running in VMX root operation zero the
VMX-abort indicator in the VMCS region of any VMCS that it uses.

After saving the VMX-abort indicator, operation of a logical processor experiencing a
VMX abort depends on whether the logical processor is in SMX operation:1

® If the logical processor is in SMX operation, an Intel® TXT shutdown condition
occurs. The error code used is 000DH, indicating “VMX abort.” See Intel® Trusted
Execution Technology Measured Launched Environment Programming Guide.

® If the logical processor is outside SMX operation, it issues a special bus cycle (to
notify the chipset) and enters the VMX-abort shutdown state. RESET is the
only event that wakes a logical processor from the VMX-abort shutdown state.
The following events do not affect a logical processor in this state: machine

1. Alogical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER]
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer's Manual, Volume 2B.

Vol.3 24-39

VM EXITS

checks; INIT signals; external interrupts; non-maskable interrupts (NMIs); start-
up IPIs (SIPIs); and system-management interrupts (SMIs).

24.8 MACHINE CHECK DURING VM EXIT

If a machine check occurs during VM exit, one of the following occurs:
® The machine check is handled normally:

— If CR4.MCE = 1, a machine-check exception (#MC) delivered through the
guest IDT.

— If CR4.MCE = 0, operation of the logical processor depends on whether the
logical processor is in SMX operation:®
* If the logical processor is in SMX operation, an Intel® TXT shutdown
condition occurs. The error code used is 000CH, indicating “unrecoverable
machine check condition.” See Intel® Trusted Execution Technology
Measured Launched Environment Programming Guide.

* If the logical processor is outside SMX operation, it goes to the shutdown
state.
® A VMX abort is generated (see Section 24.7). The logical processor blocks events
as done normally in VMX abort. The VMX abort indicator is 5, for “machine check
during VM exit.”

The first option is not used if the machine check occurs after any host state has been
loaded.

1. Alogical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER]
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.

24-40 Vol.3

CHAPTER 25
VMX SUPPORT FOR ADDRESS TRANSLATION

The architecture for VMX operation includes two features that support address trans-
lation: virtual-processor identifiers (VPIDs) and the extended page-table mechanism
(EPT). VPIDs are a mechanism for managing translations of linear addresses. EPT
defines a layer of address translation that augments the translation of linear
addresses.

Section 25.1 details the architecture of VPIDs. Section 25.2 provides the details of
EPT. Section 25.3 explains how a logical processor may cache information from the
paging structures, how it may use that cached information, and how software can
managed the cached information.

25.1 VIRTUAL PROCESSOR IDENTIFIERS (VPIDS)

The original architecture for VMX operation required VMX transitions to flush the TLBs
and paging-structure caches. This ensured that translations cached for the old linear-
address space would not be used after the transition.

Virtual-processor identifiers (VPI1Ds) introduce to VMX operation a facility by which
a logical processor may cache information for multiple linear-address spaces. When
VPIDs are used, VMX transitions may retain cached information and the logical
processor switches to a different linear-address space.

Section 25.3 details the mechanisms by which a logical processor manages informa-
tion cached for multiple address spaces. A logical processor may tag some cached
information with a 16-bit VPID. This section specifies how the current VPID is deter-
mined at any point in time:

® The current VPID is O000H in the following situations:

— Outside VMX operation. (This includes operation in system-management
mode under the default treatment of SMIs and SMM with VMX operation; see
Section 26.14.)

— In VMX root operation.
— In VMX non-root operation when the “enable VPID” VM-execution control is O.

® If the logical processor is in VMX non-root operation and the “enable VPID” VM-
execution control is 1, the current VPID is the value of the VPID VM-execution
control field in the VMCS. (VM entry ensures that this value is never OO0O0H; see
Section 23.2.1.1.)

Vol.3 25-1

VMX SUPPORT FOR ADDRESS TRANSLATION

25.2 THE EXTENDED PAGE TABLE MECHANISM (EPT)

The extended page-table mechanism (EPT) is a feature that can be used to support
the virtualization of physical memory. When EPT is in use, certain addresses that
would normally be treated as physical addresses (and used to access memory) are
instead treated as guest-physical addresses. Guest-physical addresses are trans-
lated by traversing a set of EPT paging structures to produce physical addresses
that are used to access memory.

® Section 25.2.1 gives an overview of EPT.

® Section 25.2.2 describes operation of EPT-based address translation.

® Section 25.2.3 discusses VM exits that may be caused by EPT.

® Section 25.2.4 describes interactions between EPT and memory typing.

25.2.1 EPT Overview

EPT is used when the “enable EPT” VM-execution control is 1.1 It translates the
guest-physical addresses used in VMX non-root operation and those used by
VM entry for event injection.

The translation from guest-physical addresses to physical addresses is determined
by a set of EPT paging structures. The EPT paging structures are similar to those
used to translate linear addresses while the processor is in IA-32e mode. Section
25.2.2 gives the details of the EPT paging structures.

If CRO.PG = 1, linear addresses are translated through paging structures referenced
through control register CR3 . While the “enable EPT” VM-execution control is 1,
these are called guest paging structures. There are no guest paging structures if
CRO.PG = 0.2

When the “enable EPT” VM-execution control is 1, the identity of guest-physical
addresses depends on the value of CRO.PG:

® If CRO.PG = 0, each linear address is treated as a guest-physical address.

® If CRO.PG = 1, guest-physical addresses are those derived from the contents of
control register CR3 and the guest paging structures. (This includes the values of

1. "Enable EPT" is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is O, the logical processor operates as if the “enable EPT”
VM-execution control were 0. See Section 21.6.2.

2. If the capability MSR IA32_VMX_CRO_FIXED1 reports that CRO.PG must be 1 in VMX operation,
CRO.PG can be 0 in VMX non-root operation only if the “unrestricted guest” VM-execution control
and bit 31 of the primary processor-based VM-execution controls are both 1.

25-2 Vol. 3

VMX SUPPORT FOR ADDRESS TRANSLATION

the PDPTEs, which logical processors store in internal, non-architectural

registers.) The latter includes (in page-table entries and in other paging-
structure entries for which bit 7—PS—is 1) the addresses to which linear
addresses are translated by the guest paging structures.

If CRO.PG = 1, the translation of a linear address to a physical address requires
multiple translations of guest-physical addresses using EPT. Assume, for example,
that CR4.PAE = CR4.PSE = 0. The translation of a 32-bit linear address then oper-
ates as follows:

Bits 31:22 of the linear address select an entry in the guest page directory
located at the guest-physical address in CR3. The guest-physical address of the
guest page-directory entry (PDE) is translated through EPT to determine the
guest PDE’s physical address.

Bits 21:12 of the linear address select an entry in the guest page table located at
the guest-physical address in the guest PDE. The guest-physical address of the
guest page-table entry (PTE) is translated through EPT to determine the guest
PTE’s physical address.

Bits 11:0 of the linear address is the offset in the page frame located at the
guest-physical address in the guest PTE. The guest-physical address determined
by this offset is translated through EPT to determine the physical address to
which the original linear address translates.

In addition to translating a guest-physical address to a physical address, EPT speci-
fies the privileges that software is allowed when accessing the address. Attempts at
disallowed accesses are called EPT violations and cause VM exits. See Section
25.2.3.

A logical processor uses EPT to translate guest-physical addresses only when those
addresses are used to access memory. This principle implies the following:

The MOV to CR3 instruction loads CR3 with a guest-physical address. Whether
that address is translated through EPT depends on whether PAE paging is being
used.t

— If PAE paging is not being used, the instruction does not use that address to
access memory and does not cause it to be translated through EPT. (If
CRO.PG = 1, the address will be translated through EPT on the next memory
accessing using a linear address.)

— If PAE paging is being used, the instruction loads the four (4) page-directory-
pointer-table entries (PDPTES) from that address and it does cause the
address to be translated through EPT.

The MOV to CRO instruction establishes PAE paging if it results in CR0.PG = 1 and
the following were held before the instruction executed: (1) CRO.PG = 0;
(2) CR4.PAE = 1; and (3) IA32_EFER.LME = 0. Such an execution loads the

A logical processor uses PAE paging if CRO.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Vol.3 25-3

VMX SUPPORT FOR ADDRESS TRANSLATION

PDPTEs from the guest-physical address in CR3. The address is translated
through EPT.

The MOV to CR4 instruction establishes PAE paging if it results in CR4.PAE = 1
and the following were held before the instruction executed: (1) CRO.PG = 1;
(2) CR4.PAE = 0; and (3) 1A32_EFER.LMA = 0. Such an execution loads the
PDPTEs from the guest-physical address in CR3. The address is translated
through EPT.

The PDPTEs contain guest-physical addresses. The instructions that load the
PDPTEs (see above) do not use those addresses to access memory and do not
cause them to be translated through EPT. (The address in a PDPTE will be
translated through EPT on the next memory accessing using a linear address that
uses that PDPTE.)

25.2.2 EPT Translation Mechanism

The EPT translation mechanism uses only bits 47:0 of each guest-physical address.!
It uses a page-walk length of 4, meaning that at most 4 EPT paging-structure entries
are accessed to translate a guest-physical address.?

These 48 bits are partitioned by the logical processor to traverse the EPT paging
structures:

A 4-KByte naturally aligned EPT PML4 table is located at the physical address
specified in bits 51:12 of the extended-page-table pointer (EPTP), a VM-
execution control field (see Table 21-8 in Section 21.6.11). An EPT PML4 table
comprises 512 64-bit entries (EPT PML4Es). An EPT PMLA4E is selected using the
physical address defined as follows:

— Bits 63:52 are all O.

— Bits 51:12 are from the EPTP.

— Bits 11:3 are bits 47:39 of the guest-physical address.
— Bits 2:0 are all 0.

Because an EPT PMLA4E is identified using bits 47:39 of the guest-physical
address, it controls access to a 512-GByte region of the guest-physical-address
space.

No processors supporting the Intel 64 architecture support more than 48 physical-address bits.
Thus, no such processor can produce a guest-physical address with more than 48 bits. An
attempt to use such an address causes a page fault. An attempt to load CR3 with such an
address causes a general-protection fault. If PAE paging is being used, an attempt to load CR3
that would load a PDPTE with such an address causes a general-protection fault.

Future processors may include support for other EPT page-walk lengths. Software should read
the VMX capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix G.10) to determine what EPT
page-walk lengths are supported.

25-4 Vol.3

VMX SUPPORT FOR ADDRESS TRANSLATION

® A 4-KByte naturally aligned EPT page-directory-pointer table is located at the
physical address specified in bits 51:12 of the EPT PML4E (see Table 25-1). An
EPT page-directory-pointer table comprises 512 64-bit entries (PDPTES). An EPT
PDPTE is selected using the physical address defined as follows:

Table 25-1. Format of an EPT PML4 Entry (PML4E)

Bit Contents

Position(s)

0 Read access; indicates whether reads are allowed from the 512-GByte region
controlled by this entry

1 Write access; indicates whether writes are allowed to the 512-GByte region
controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 512-
GByte region controlled by this entry

7:3 Reserved (must be 0)

11:8 Ignored

(N-1)12 Physical address of 4-KByte aligned EPT page-directory-pointer table referenced
by this entry’

51N Reserved (must be 0)

63:52 Ignored

NOTES:

1. N is the physical-address width supported by the processor. Software can determine a processor’s
physical-address width by executing CPUID with 80000008H in EAX. The physical-address width
is returned in bits 7:0 of EAX.

— Bits 63:52 are all O.
— Bits 51:12 are from the EPT PML4 entry.

— Bits 11:3 are bits 38:30 of the guest-physical address.
— Bits 2:0 are all 0.

Because a PDPTE is identified using bits 47:30 of the guest-physical address, it
controls access to a 1-GByte region of the guest-physical-address space. Use of the
PDPTE depends on the value of bit 7 in that entry:?!

1. Not all processors allow bit 7 of an EPT PDPTE to be set to 1. Software should read the VMX
capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix G.10) to determine whether this is

allowed.

Vol.3 25-5

VMX SUPPORT FOR ADDRESS TRANSLATION

® If bit 7 of the EPT PDPTE is 1, the EPT PDPTE maps a 1-GByte page (see
Table 25-2). The final physical address is computed as follows:

Table 25-2. Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that Maps

a 1-GByte Page

Bit Contents

Position(s)

0 Read access; indicates whether reads are allowed from the 1-GByte page
referenced by this entry

1 Write access; indicates whether writes are allowed to the 1-GByte page
referenced by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 1-
GByte page referenced by this entry

5:3 EPT memory type for this 1-GByte page (see Section 25.2.4)

6 Ignore PAT memory type for this 1-GByte page (see Section 25.2.4)

7 Must be 1 (otherwise, this entry references an EPT page directory)

11:8 Ignored

29:12 Reserved (must be 0)

(N-1):30 Physical address of the 1-GByte page referenced by this entry’

51N Reserved (must be 0)

63:52 Ignored

NOTES:

1. N is the physical-address width supported by the logical processor.

— Bits 63:52 are all O.
— Bits 51:30 are from the EPT PDPTE.

— Bits 29:0 are from the original guest-physical address.

® If bit 7 of the EPT PDPTE is 0, a 4-KByte naturally aligned EPT page directory is
located at the physical address specified in bits 51:12 of the EPT PDPTE (see
Table 25-3). An EPT page-directory comprises 512 64-bit entries (PDEs). An EPT
PDE is selected using the physical address defined as follows:

— Bits 63:52 are all O.
— Bits 51:12 are from the EPT PDPTE.

— Bits 11:3 are bits 29:21 of the guest-physical address.

25-6 Vol. 3

VMX SUPPORT FOR ADDRESS TRANSLATION

Table 25-3. Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that

References an EPT Page Directory

Bit Contents

Position(s)

0 Read access; indicates whether reads are allowed from the 1-GByte region
controlled by this entry

1 Write access; indicates whether writes are allowed to the 1-GByte region
controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 1-
GByte region controlled by this entry

7:3 Reserved (must be 0)

11:8 Ignored

(N-1)12 Physical address of 4-KByte aligned EPT page directory referenced by this entry’

51N Reserved (must be 0)

63:52 Ignored

NOTES:

1. N is the physical-address width supported by the logical processor.

— Bits 2:0 are all 0.

Because an EPT PDE is identified using bits 47:21 of the guest-physical address, it
controls access to a 2-MByte region of the guest-physical-address space. Use of the
EPT PDE depends on the value of bit 7 in that entry:

If bit 7 of the EPT PDE is 1, the EPT PDE maps a 2-MByte page (see Table 25-4).
The final physical address is computed as follows:

— Bits 63:52 are all 0.
— Bits 51:21 are from the EPT PDE.
— Bits 20:0 are from the original guest-physical address.

If bit 7 of the EPT PDE is O, a 4-KByte naturally aligned EPT page table is located
at the physical address specified in bits 51:12 of the EPT PDE (see Table 25-5).
An EPT page table comprises 512 64-bit entries (PTEs). An EPT PTE is selected
using a physical address defined as follows:

— Bits 63:52 are all O.

— Bits 51:12 are from the EPT PDE.

— Bits 11:3 are bits 20:12 of the guest-physical address.
— Bits 2:0 are all O.

Vol.3 25-7

VMX SUPPORT FOR ADDRESS TRANSLATION

Table 25-4. Format of an EPT Page-Directory Entry (PDE) that Maps a 2-MByte Page

Bit Contents
Position(s)
0 Read access; indicates whether reads are allowed from the 2-MByte page

referenced by this entry

1 Write access; indicates whether writes are allowed to the 2-MByte page
referenced by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 2-
MByte page referenced by this entry

5:3 EPT memory type for this 2-MByte page (see Section 25.2.4)
6 Ignore PAT memory type for this 2-MByte page (see Section 25.2.4)
7 Must be 1 (otherwise, this entry references an EPT page table)
11:8 Ignored
20:12 Reserved (must be 0)
(N-1):21 Physical address of the 2-MByte page referenced by this entry1
51N Reserved (must be 0)
63:52 Ignored

NOTES:

1. N is the physical-address width supported by the logical processor.

® Because an EPT PTE is identified using bits 47:12 of the guest-physical address,
every EPT PTE maps a 4-KByte page (see Table 25-6). The final physical address
is computed as follows:

®* Bits 63:52 are all 0.
®* Bits 51:12 are from the EPT PTE.
®* Bits 11:0 are from the original guest-physical address.

If bits 2:0 of an EPT paging-structure entry are all O, the entry is not present. The
processor ignores bits 63:3 and does uses the entry neither to reference another EPT
paging-structure entry nor to produce a physical address. A reference using a guest-
physical address whose translation encounters an EPT paging-structure that is not
present causes an EPT violation (see Section 25.2.3.2).

The discussion above describes how the EPT paging structures reference each other
and how the logical processor traverses those structures when translating a guest-
physical address. It does not cover all details of the translation process. Additional
details are provided as follows:

25-8 Vol.3

VMX SUPPORT FOR ADDRESS TRANSLATION

Table 25-5. Format of an EPT Page-Directory Entry (PDE) that References an EPT

Page Table

Bit Contents

Position(s)

0 Read access; indicates whether reads are allowed from the 2-MByte region
controlled by this entry

1 Write access; indicates whether writes are allowed to the 2-MByte region
controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 2-

MByte region controlled by this entry

6:3 Reserved (must be 0)
7 Must be O (otherwise, this entry maps a 2-MByte page)
11:8 Ignored

(N-1)12 Physical address of 4-KByte aligned EPT page table referenced by this entry’

51N Reserved (must be 0)
63:52 Ignored
NOTES:

1. N is the physical-address width supported by the logical processor.

® Situations in which the translation process may lead to VM exits (sometimes
before the process completes) are described in Section 25.2.3.

® Interactions between the EPT translation mechanism and memory typing are
described in Section 25.2.4.

Figure 25-1 gives a summary of the formats of the EPTP and the EPT paging-struc-
ture entries. For the EPT paging structure entries, it identifies separately the format
of entries that map pages, those that reference other EPT paging structures, and
those that do neither because they are “not present”; bits 2:0 and bit 7 are high-
lighted because they determine how a paging-structure entry is used.

25.2.3 EPT-Induced VM Exits

Accesses using guest-physical addresses may cause VM exits due to EPT miscon-
figurations and EPT violations. An EPT misconfiguration occurs when, in the
course of translation a guest-physical address, the logical processor encounters an
EPT paging-structure entry that contains an unsupported value. An EPT violation
occurs when there is no EPT misconfiguration but the EPT paging-structure entries
disallow an access using the guest-physical address.

Vol.3 25-9

VMX SUPPORT FOR ADDRESS TRANSLATION

Table 25-6. Format of an EPT Page-Table Entry

Bit Contents

Position(s)

0 Read access; indicates whether reads are allowed from the 4-KByte page
referenced by this entry

1 Write access; indicates whether writes are allowed to the 4-KByte page
referenced by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 4-
KByte page referenced by this entry

5:3 EPT memory type for this 4-KByte page (see Section 25.2.4)

6 Ignore PAT memory type for this 4-KByte page (see Section 25.2.4)

11.7 Ignored

(N-1)12 Physical address of the 4-KByte page referenced by this entry’

51N Reserved (must be 0)

63:52 Ignored

NOTES:

1. N is the physical-address width supported by the logical processor.

EPT misconfigurations and EPT violations occur only due to an attempt to access
memory with a guest-physical address. Loading CR3 with a guest-physical address
with the MOV to CR3 instruction can cause neither an EPT configuration nor an EPT

violation until that address is used to access a paging structure.

25.2.3.1

1

EPT Misconfigurations

AN EPT misconfiguration occurs if any of the following is identified while translating a
guest-physical address:

® The value of bits 2:0 of an EPT paging-structure entry is either 010b (write-only)
or 110b (write/execute).

® The value of bits 2:0 of an EPT paging-structure entry is 100b (execute-only) and
this value is not supported by the logical processor. Software should read the

1. If the logical processor is using PAE paging—because CRO.PG = CR4.PAE = 1 and
IA32_EFER.LMA = 0—the MOV to CR3 instruction loads the PDPTEs from memory using the
guest-physical address being loaded into CR3. In this case, therefore, the MOV to CR3 instruction
may cause an EPT misconfiguration or an EPT violation.

25-10 Vol.3

VMX SUPPORT FOR ADDRESS TRANSLATION

6/6/6|6(5(5/|5|5|5/5|5(5|5 M! M-1 3|3(3(2(2|2|2[2[2|2|2[2|2|1{1|1|1|1{1|1]|1|1[1
3/2|1/0(9|8|7|6/5|4/3|2|1 2/1/0|9/8(7|6|5/4/3|2|1|0|9/8|7|6|5/4/3|2|1|0|9|8|7|6|5/4/3|2|1|0
EPT | EPT
Reserved Address of EPT PML4 table Reserved P\/¥L— I\Iﬁ EPTP?
. . PML4E:
Ignored Rsvd. Address of EPT page-directory-pointer table | Ign. |ReservedXWR present
PML4E:
Ignored 0|ojo] not
present
Physical b ept PDPTE:
Ignored Rsvd. | address of Reserved Ign. |1 Al MT XWR] 1GB
1GB page T page
PDPTE:
Ignored Rsvd. Address of EPT page directory Ign. |0| Rsvd. XWR] page
directory
PDTPE:
Ignored 0|ojo] not
present
Physical address IID EPT PDE:
Ignored Rsvd. of 2MB page Reserved Ign. (1 Al MT XWR| 2MB
T page
PDE:
Ignored Rsvd. Address of EPT page table Ign. |0| Rsvd. XWR] page
table
PDE:
Ignored 0|ojo] not
present
I .
. p| ePT s
Ignored Rsvd. Physical address of 4KB page Ign. Al MT XWR| 4KB
T page
PTE:
Ignored 0|ojo] not
present

Figure 25-1. Formats of EPTP and EPT Paging-Structure Entries

NOTES:
1. Mis an abbreviation for MAXPHYADDR.
2. See Section 21.6.11 for details of the EPTP.

VMX capability MSR 1A32_VMX_EPT_VPID_CAP to determine whether this value
is supported (see Appendix G.10).

Vol.3 25-11

VMX SUPPORT FOR ADDRESS TRANSLATION

® The value of bits 2:0 of an EPT paging-structure entry is not 000b (the entry is
present) and one of the following holds:

— Avreserved bit is set. This includes the setting of a bit in the range 51:12 that
is beyond the logical processor’s physical-address width.! See Section 25.2.2
for details of which bits are reserved in which EPT paging-structure entries.

— The entry is the last one used to translate a guest physical address (either an
EPT PDE with bit 7 set to 1 or an EPT PTE) and the value of bits 5:3 (EPT
memory type) is 2, 3, or 7 (these values are reserved).

EPT misconfigurations result when an EPT paging-structure entry is configured with
settings reserved for future functionality. Software developers should be aware that
such settings may be used in the future and that an EPT paging-structure entry that
causes an EPT misconfiguration on one processor might not do so in the future.

25.2.3.2 EPT Violations

An EPT violation may occur during an access using a guest-physical address whose
translation does not cause an EPT misconfiguration. An EPT violation occurs in any of
the following situations:

® Translation of the guest-physical address encounters an EPT paging-structure
entry that is not present (see Section 25.2.2).

® The access is a data read and bit O was clear in any of the EPT paging-structure
entries used to translate the guest-physical address. Reads by the logical
processor of guest paging structures to translate a linear address are considered
to be data reads.

® The access is a data write and bit 1 was clear in any of the EPT paging-structure
entries used to translate the guest-physical address. Writes by the logical
processor to guest paging structures to update accessed and dirty flags are
considered to be data writes.

® The access is an instruction fetch and bit 2 was clear in any of the EPT paging-
structure entries used to translate the guest-physical address.

25.2.3.3 Prioritization of EPT-Induced VM Exits

The translation of a linear address to a physical address requires one or more trans-
lations of guest-physical addresses using EPT (see Section 25.2.1). This section
specifies the relative priority of EPT-induced VM exits with respect to each other and
to other events that may be encountered when accessing memory using a linear
address.

For an access to a guest-physical address, determination of whether an EPT miscon-
figuration or an EPT violation occurs is based on an iterative process:2

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

25-12 Vol.3

VMX SUPPORT FOR ADDRESS TRANSLATION

1. An EPT paging-structure entry is read (initially, this is an EPT PML4 entry):
a. If the entry is not present (bits 2:0 are all 0), an EPT violation occurs.

b. If the entry is present but its contents are not configured properly (see
Section 25.2.3.1), an EPT misconfiguration occurs.

c. If the entry is present and its contents are configured properly, operation
depends on whether the entry references another EPT paging structure
(whether it is an EPT PDE with bit 7 set to 1 or an EPT PTE):

i) If the entry does references another EPT paging structure, an entry from
that structure is accessed; step 1 is executed for that other entry.

ii) Otherwise, the entry is used to produce the ultimate physical address
(the translation of the original guest-physical address); step 2 is
executed.

2. Once the ultimate physical address is determined, the privileges determined by
the EPT paging-structure entries are evaluated:

a. If the access to the guest-physical address is not allowed by these privileges
(see Section 25.2.3.2), an EPT violation occurs.

b. If the access to the guest-physical address is allowed by these privileges,
memory is accessed using the ultimate physical address.

If CRO.PG = 1, the translation of a linear address is also an iterative process, with the
processor first accessing an entry in the guest paging structure referenced by the
guest-physical address in CR3, then accessing an entry in another guest paging
structure referenced by the guest-physical address in the first guest paging-structure
entry, etc. Each guest-physical address is itself translated using EPT and may cause
an EPT-induced VM exit. The following items detail how page faults and EPT-induced
VM exits are recognized during this iterative process:

1. An attempt is made to access a guest paging-structure entry with a guest-
physical address (initially, the address is derived from the one in CR3).

a. If the access fails because of an EPT misconfiguration or an EPT violation (see
above), an EPT-induced VM exit occurs.

b. If the access does not cause an EPT-induced VM exit, bit O (the present flag)
of the entry is consulted:

i) If the present flag is O or any reserved bit is set, a page fault occurs.

ii) If the present flag is 1, no reserved bit is set, operation depends on
whether the entry references another guest paging structure (whether it
is a guest PDE with PS = 1 or a guest PTE):

* If the entry does references another guest paging structure, an entry
from that structure is accessed; step 1 is executed for that other
entry.

2. This is a simplification of the more detailed description given in Section 25.2.2.

Vol.3 25-13

VMX SUPPORT FOR ADDRESS TRANSLATION

®* Otherwise, the entry is used to produce the ultimate guest-physical
address (the translation of the original linear address); step 2 is
executed.

2. Once the ultimate guest-physical address is determined, the privileges
determined by the guest paging-structure entries are evaluated:

a. If the access to the linear address is not allowed by these privileges (e.g., it
was a write to a read-only page), a page fault occurs.

b. If the access to the linear address is allowed by these privileges, an attempt
is made to access memory at the ultimate guest-physical address:

i) If the access fails because of an EPT misconfiguration or an EPT violation
(see above), an EPT-induced VM exit occurs.

ii) If the access does not cause an EPT-induced VM exit, memory is accessed
using the ultimate physical address (the translation, using EPT, of the
ultimate guest-physical address).

If CRO.PG = 0, a linear address is treated as a guest-physical address and is trans-
lated using EPT (see above). This process, if it completes without an EPT violation or
EPT misconfiguration, produces a physical address and determines the privileges
allowed by the EPT paging-structure entries. If these privileges do not allow the
access to the physical address (see Section 25.2.3.2), an EPT violation occurs.
Otherwise, memory is accessed using the physical address.

25.2.4 EPT and Memory Typing

This section specifies how a logical processor determines the memory type use for a
memory access while EPT is in use. (See Chapter 11, “Memory Cache Control” of
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A for
details of memory typing in the Intel 64 architecture.) Section 25.2.4.1 explains how
the memory type is determined for accesses to the EPT paging structures. Section
25.2.4.2 explains how the memory type is determined for an access using a guest-
physical address that is translated using EPT.

25.2.4.1 Memory Type Used for Accessing EPT Paging Structures

This section explains how the memory type is determined for accesses to the EPT
paging structures. The determination is based first on the value of bit 30 (cache
disable—CD) in control register CRO:

¢ If CRO.CD = 0, the memory type used for any such reference is the EPT paging-
structure memory type, which is specified in bits 2:0 of the extended-page-table
pointer (EPTP), a VM-execution control field (see Section 21.6.11). A value of O
indicates the uncacheable type (UC), while a value of 6 indicates the write-back
type (WB). Other values are reserved.

® If CRO.CD = 1, the memory type used for any such reference is uncacheable
o).

25-14 Vol.3

VMX SUPPORT FOR ADDRESS TRANSLATION

The MTRRs have no effect on the memory type used for an access to an EPT paging
structure.

25.2.4.2 Memory Type Used for Translated Guest-Physical Addresses

The effective memory type of a memory access using a guest-physical address (an
access that is translated using EPT) is the memory type that is used to access
memory. The effective memory type is based on the value of bit 30 (cache
disable—CD) in control register CRO; the last EPT paging-structure entry used to
translate the guest-physical address (either an EPT PDE with bit 7 set to 1 or an EPT
PTE); and the PAT memory type (see below):

® The PAT memory type depends on the value of CRO.PG:
— If CRO.PG = 0, the PAT memory type is WB (writeback).1

— If CRO.PG = 1, the PAT memory type is the memory type selected from the
IA32_PAT MSR as specified in Section 11.12.3, “Selecting a Memory Type
from the PAT”.2

® The EPT memory type is specified in bits 5:3 of the last EPT paging-structure
entry: 0 =UC; 1 =WC; 4 =WT; 5 =WP; and 6 = WB. Other values are reserved
and cause EPT misconfigurations (see Section 25.2.3).

® If CRO.CD = 0, the effective memory type depends upon the value of bit 6 of the
last EPT paging-structure entry:

— If the value is 0, the effective memory type is the combination of the EPT
memory type and the PAT memory type specified in Table 11-7 in Section
11.5.2.2, using the EPT memory type in place of the MTRR memory type.

— If the value is 1, the memory type used for the access is the EPT memory
type. The PAT memory type is ignored.

® If CRO.CD =1, the effective memory type is UC.

The MTRRs have no effect on the memory type used for an access to a guest-physical
address.

1. If the capability MSR IA32_VMX_CRO_FIXED1 reports that CRO.PG must be 1 in VMX operation,
CRO.PG can be 0 in VMX non-root operation only if the “unrestricted guest” VM-execution control
and bit 31 of the primary processor-based VM-execution controls are both 1.

2. Table 11-11 in Section 11.12.3, “Selecting a Memory Type from the PAT" illustrates how the PAT
memory type is selected based on the values of the PAT, PCD, and PWT bits in a page-table entry
(or page-directory entry with PS = 1). For accesses to a guest paging-structure entry X, the PAT
memory type is selected from the table by using a value of 0 for the PAT bit with the values of
PCD and PWT from the paging-structure entry Y that references X (or from CR3 if X is in the root
paging structure). With PAE paging, the PAT memory type for accesses to the PDPTEs is WB.

Vol.3 25-15

VMX SUPPORT FOR ADDRESS TRANSLATION

25.3 CACHING TRANSLATION INFORMATION

Processors supporting Intel® 64 and 1A-32 architectures may accelerate the
address-translation process by caching on the processor data from the structures in
memory that control that process. Such caching is discussed in the application note
“TLBs, Paging-Structure Caches, and Their Invalidation.” This section describes how
this caching interacts with the VMX architecture.

The VPID and EPT features of the architecture for VMX operation augment this
caching architecture. EPT defines the guest-physical address space and defines
translations to that address space (from the linear-address space) and from that
address space (to the physical-address space). Both features control the ways in
which a logical processor may create and use information cached from the paging
structures.

Section 25.3.1 describes the different kinds of information that may be cached.
Section 25.3.2 specifies when such information may be cached and how it may be
used. Section 25.3.3 details how software can invalidate cached information.

25.3.1 Information That May Be Cached

“Caching Translation Information” in Chapter 4, “Paging,” identifies two kinds of
translation-related information that may be cached by a logical processor: transla-
tions, which are mappings from linear page numbers to physical page frames, and
paging-structure caches, which map the upper bits of a linear page number to
information from the paging-structure entries used to translate linear addresses
matching those upper bits.

The same kinds of information may be cached when VPIDs and EPT are in use. A
logical processor may cache and use such information based on its function. Informa-
tion with different functionality is tagged appropriately:

¢ VPID-tagged mappings. There are two kinds:

— VPID-tagged translations. Each of these is a mapping from a linear page
number to the physical page frame to which it translates, along with
information about access privileges and memory typing.

— VPID-tagged paging-structure-cache entries. Each of these is a mapping
from the upper portion of a linear address to the physical address of the
paging structure used to translate the corresponding region of the linear-
address space, along with information about access privileges. For example,
bits 47:39 of a linear address would map to the address of the relevant page-
directory-pointer table.

VPID-tagged mappings do not contain information from any EPT paging
structure.

¢ EPTP-tagged mappings. There are two kinds:

25-16 Vol.3

VMX SUPPORT FOR ADDRESS TRANSLATION

— EPTP-tagged translations. Each of these is a mapping from a guest-physical
page number to the physical page frame to which it translates, along with
information about access privileges and memory typing.

— EPTP-tagged paging-structure-cache entries. Each of these is a mapping
from the upper portion of a guest-physical address to the physical address of
the EPT paging structure used to translate the corresponding region of the
guest-physical address space, along with information about access
privileges.

The information in EPTP-tagged mappings about access privileges and memory

typing is derived from EPT paging structures.

Dual-tagged mappings. There are two kinds:

— Dual-tagged translations. Each of these is a mapping from a linear page
number to the physical page frame to which it translates, along with
information about access privileges and memory typing.

— Dual-tagged paging-structure-cache entries. Each of these is a mapping from
the upper portion of a linear address to the physical address of the paging
structure used to translate the corresponding region of the linear-address
space, along with information about access privileges.

The information in dual-tagged mappings about access privileges and memory
typing is derived from both guest paging structures and EPT paging structures.

25.3.2 Creating and Using Cached Translation Information

The following items detail the creation of the mappings described in the previous
section:

The following items describe the creation of mappings while EPT is not in use
(including execution outside VMX non-root operation):

— VPID-tagged mappings may be created. They are derived from the paging
structures referenced (directly or indirectly) by the current value of CR3 and
are associated with the current VPID.

— No VPID-tagged mappings are created with information derived from paging-
structure entries that are not present (bit O is O) or that set reserved bits. For
example, if a PTE is not present, no VPID-tagged mapping are created for any
linear page number whose translation would use that PTE.

— No EPTP-tagged or dual-tagged mappings are created while EPT is not in use.
The following items describe the creation of mappings while EPT is in use:

— EPTP-tagged mappings may be created. They are derived from the EPT
paging structures referenced (directly or indirectly) by the current EPTP and
are associated with that EPTP.

— Dual-tagged mappings may be created. They are derived from the EPT
paging structures referenced (directly or indirectly) by the current EPTP. If

Vol.3 25-17

VMX SUPPORT FOR ADDRESS TRANSLATION

CRO.PG = 1, they are also derived from the paging structures referenced
(directly or indirectly) by the current value of CR3. They are associated with
the current VPID and the current EPTP.1 No dual-tagged paging-structure-
cache entries are created if CRO.PG = 0.2

— No EPTP-tagged mappings or dual-tagged mappings are created with
information derived from EPT paging-structure entries that are not present
(bits 2:0 are all 0) or that are misconfigured (see Section 25.2.3.1).

— No dual-tagged mappings are created with information derived from guest
paging-structure entries that are not present or that set reserved bits.

— No VPID-tagged mappings are created while EPT is in use.
The following items detail the use of the various mappings:

® If EPT is not in use (e.g., when outside VMX non-root operation), a logical
processor may use cached mappings as follows:

— For accesses using linear addresses, it may use VPID-tagged mappings
associated with the current VPID.

— No EPTP-tagged or dual-tagged mappings are used while EPT is not in use.
® IfEPT isin use, a logical processor may use cached mappings as follows:

— For accesses using linear addresses, it may use dual-tagged mappings
associated with the current VPID and the current EPTP.

— For accesses using guest-physical addresses, it may use EPTP-tagged
mappings associated with the current EPTP.

— No VPID-tagged mappings are used while EPT is in use.

25.3.3 Invalidating Cached Translation Information

Software modifications of paging structures (including EPT paging structures) may
result in inconsistencies between those structures and the mappings cached by a
logical processor. Certain operations invalidate information cached by a logical
processor and can be used to eliminate such inconsistencies.

25.3.3.1 Operations that Invalidate Cached Mappings

The following operations invalidate cached mappings as indicated:

1. At any given time, a logical processor may cache dual-tagged mappings for a VPID that are asso-
ciated with different EPTPs. Similarly, it may cache dual-tagged mappings for an EPTP that are
associated with different VPIDs.

2. If the capability MSR 1A32_VMX_CRO_FIXED1 reports that CRO.PG must be 1 in VMX operation,
CRO.PG can be 0 in VMX non-root operation only if the “unrestricted guest” VM-execution control
and bit 31 of the primary processor-based VM-execution controls are both 1.

25-18 Vol.3

VMX SUPPORT FOR ADDRESS TRANSLATION

Operations that architecturally invalidate entries in the TLBs or paging-structure
caches independent of VMX operation (e.g., the INVLPG instruction) invalidate
VPID-tagged mappings and dual-tagged mappings. They are required to do so
only for the current VPID (but, for dual-tagged mappings, all EPTPs). VPID-
tagged mappings for the current VPID are invalidated even if EPT is in use.l Dual-
tagged mappings for the current VPID are invalidated even if EPT is not in use.?

An EPT violation invalidates any EPTP-tagged mappings (associated with the
current EPTP) that would be used to translate the guest-physical address that
caused the EPT violation. If that guest-physical address was the translation of a
linear address, the EPT violation also invalidates any dual-tagged mappings for
that linear address associated with the current VPID and the current EPTP.

If the “enable VPID” VM-execution control is O, VM entries and VM exits
invalidate VPID-tagged mappings and dual-tagged mappings associated with
VPID 0000H. Dual-tagged mappings for VPID OO00OH are invalidated for all EPTPs.

Execution of the INVVPID instruction invalidates VPID-tagged mappings and
dual-tagged mappings. Invalidation is based on instruction operands, called the
INVVPID type and the INVVPID descriptor. Four INVVPID types are currently
defined:

— Individual-address. If the INVVPID type is 0O, the logical processor
invalidates VPID-tagged mappings and dual-tagged mappings associated
with the VPID specified in the INVVPID descriptor and that would be used to
translate the linear address specified in of the INVVPID descriptor. Dual-
tagged mappings for that VPID and linear address are invalidated for all
EPTPs. (The instruction may also invalidate mappings associated with other
VPIDs and for other linear addresses.)

— Single-context. If the INVVPID type is 1, the logical processor invalidates all
VPID-tagged mappings and dual-tagged mappings associated with the VPID
specified in the INVVPID descriptor. Dual-tagged mappings for that VPID are
invalidated for all EPTPs. (The instruction may also invalidate mappings
associated with other VPIDs.)

— All-context. If the INVVPID type is 2, the logical processor invalidates VPID-
tagged mappings and dual-tagged mappings associated with all VPIDs except
VPID 0000H. (In some cases, it may invalidate VPID-tagged mappings with
VPID O00OH as well.) Dual-tagged mappings are invalidated for all EPTPs.

— Single-context-retaining-globals. If the INVVPID type is 3, the logical
processor invalidates VPID-tagged mappings and dual-tagged mappings
associated with the VPID specified in the INVVPID descriptor. Dual-tagged

1.

While no VPID-tagged mappings are created while EPT is in use, a logical processor may retain,
while EPT is in use, VPID-tagged mappings (for the same VPID as the current one) there were
created earlier, when EPT was not in use.

While no dual-tagged mappings are created while EPT is not in use, a logical processor may
retain, while EPT is in not use, dual-tagged mappings (for the same VPID as the current one)
there were created earlier, when EPT was in use.

Vol.3 25-19

VMX SUPPORT FOR ADDRESS TRANSLATION

mappings for that VPID are invalidated for all EPTPs. The logical processor is
not required to invalidate information that was used for global translations
(although it may do so0). See Section 4.10, “Caching Translation Information”
for details regarding global translations. (The instruction may invalidate
mappings associated with other VPIDs.)

See Chapter 5 of the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 2B for details of the INVVPID instruction. See Section 25.3.3.3
for guidelines regarding use of this instruction.

Execution of the INVEPT instruction invalidates EPTP-tagged mappings and dual-
tagged mappings. Invalidation is based on instruction operands, called the
INVEPT type and the INVEPT descriptor. Two INVEPT types are currently defined:

— Single-context. If the INVEPT type is 1, the logical processor invalidates all
EPTP-tagged mappings and dual-tagged mappings associated with the EPTP
specified in the INVEPT descriptor. Dual-tagged mappings for that EPTP are
invalidated for all VPIDs. (The instruction may invalidate mappings
associated with other EPTPs.)

— All-context. If the INVEPT type is 2, the logical processor invalidates EPTP-
tagged mappings and dual-tagged mappings associated with all EPTPs (and,
for dual-tagged mappings, for all VPIDs).

See Chapter 5 of the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 2B for details of the INVEPT instruction. See Section 25.3.3.4 for
guidelines regarding use of this instruction.

A power-up or a reset invalidates all VPID-tagged mappings, EPTP-tagged
mappings, and dual-tagged mappings.

25.3.3.2 Operations that Need Not Invalidate Cached Mappings

The following items detail cases of operations that are not required to invalidate
certain cached mappings:

Operations that architecturally invalidate entries in the TLBs or paging-structure
caches independent of VMX operation are not required to invalidate any EPTP-
tagged mappings.

The INVVPID instruction is not required to invalidate any EPTP-tagged mappings.
The INVEPT instruction is not required to invalidate any VPID-tagged mappings.

VMX transitions are not required to invalidate any EPTP-tagged mappings. If the
“enable VPID” VM-execution control is 1, VMX transitions are not required to
invalidate any VPID-tagged mappings or dual-tagged mappings.

The VMXOFF and VMXON instructions are not required to invalidate any VPID-
tagged mappings, EPTP-tagged mappings, or dual-tagged mappings.

A logical processor may invalidate any cached mappings at any time. For this reason,
the operations identified above may invalidate the indicated mappings despite the
fact that doing so is not required.

25-20 Vol.3

VMX SUPPORT FOR ADDRESS TRANSLATION

25.3.3.3 Guidelines for Use of the INVVPID Instruction

The need for VMM software to use the INVVPID instruction depends on how that soft-
ware is virtualizing memory (e.g., see Section 28.3, “Memory Virtualization”). If the
VMM is virtualizing the guest paging structures, certain operations that would invali-
date the TLBs and the paging-structure caches (e.g., the INVLPG instruction) may be
configured to cause VM exits. If VMM software is emulating these operations, it may
be necessary to use the INVVPID instruction to ensure that the logical processor’s
TLBs and the paging-structure caches are appropriately invalidated. (If EPT is being
used, many uses of the INVVPID instruction may not be required.)

Requirements of when software should use the INVVPID instruction depend on the
specific algorithm being used for page-table virtualization. The following items
provide guidelines for software developers:

® Emulation of the INVLPG instruction may require execution of the INVVPID
instruction as follows:

— The INVVPID type is individual-address (0).

— The VPID in the INVVPID descriptor is the one assigned to the virtual
processor whose execution is being emulated.

— The linear address in the INVVPID descriptor is that of the operand of the
INVLPG instruction being emulated.

® Some instructions invalidate all entries in the TLBs and paging-structure
caches—except for global translations. An example is the MOV to CR3 instruction.
(See Section 4.10, “Caching Translation Information” for details regarding global
translations.) Emulation of such an instruction may require execution of the
INVVPID instruction as follows:

— The INVVPID type is single-context-retaining-globals (3).

— The VPID in the INVVPID descriptor is the one assigned to the virtual
processor whose execution is being emulated.

® Some instructions invalidate all entries in the TLBs and paging-structure
caches—including for global translations. An example is the MOV to CR4
instruction if the value of value of bit 4 (page global enable—PGE) is changing.
Emulation of such an instruction may require execution of the INVVPID
instruction as follows:

— The INVVPID type is single-context (1).

— The VPID in the INVVPID descriptor is the one assigned to the virtual
processor whose execution is being emulated.

If EPT is in use, the instructions enumerated above might not be configured to cause
VM exits and the VMM might not be emulating them. In that case, executions of the
instructions by guest software properly invalidate the required entries in the TLBs
and paging-structure caches (see Section 25.3.3.1); execution of the INVVPID
instruction is not required.

Vol.3 25-21

VMX SUPPORT FOR ADDRESS TRANSLATION

The following guidelines apply more generally and are appropriate even if EPT is in
use:

As detailed in Section 22.2.1.1, an access to the APIC-access page might not
cause an APIC-access VM exit if software does not properly invalidate information
that may be cached from the paging structures. If, at one time, the current VPID
on a logical processor was a non-zero value X, it is recommended that software
use the INVVPID instruction with the “single-context” INVVPID type and with
VPID X in the INVVPID descriptor before a VM entry on the same logical
processor that establishes VPID X and either (a) the “virtualize APIC accesses”
VM-execution control was changed from O to 1; or (b) the value of the APIC-
access address was changed.

Software can use the INVVPID instruction with the “all-context” INVVPID type
immediately after execution of the VMXON instruction or immediately prior to
execution of the VMXOFF instruction. Either prevents potentially undesired
retention of information cached from paging structures between separate uses of
VMX operation.

25.3.3.4 Guidelines for Use of the INVEPT Instruction

The following items provide guidelines for use of the INVEPT instruction to invalidate
information cached from the EPT paging structures.

Software should use the INVEPT instruction with the “single-context” INVEPT
type after making any of the following changes to an EPT paging-structure entry
(the INVEPT descriptor should be set to the EPTP value that references the
modified EPT paging structure):

— Changing any of the privilege bits 2:0 from 1 to O.
— Changing the physical address in bits 51:12.

— For an EPT PDE, changing bit 7 (which determines whether the EPT PDE maps
a 2-MByte page).

— For the last EPT paging-structure entry used to translate a guest-physical
address (either an EPT PDE with bit 7 set to 1 or an EPT PTE), changing either
bits 5:3 or bit 6. (These bits determine the effective memory type of
accesses using that EPT paging-structure entry; see Section 25.2.4.)

Software may use the INVEPT instruction after modifying a present EPT paging-
structure entry to change any of the privilege bits 2:0 from O to 1. Failure to do
SO0 may cause an EPT violation that would not otherwise occur. Because an EPT
violation invalidates any mappings that would be used by the access that caused
the EPT violation (see Section 25.3.3.1), an EPT violation will not recur if the
original access is performed again, even if the INVEPT instruction is not executed.

Because a logical processor does not cache any information derived from EPT
paging-structure entries that are not present or misconfigured (see Section
25.2.3.1), it is not necessary to execute INVEPT following modification of an EPT
paging-structure entry that had been not present or misconfigured.

25-22 Vol.3

VMX SUPPORT FOR ADDRESS TRANSLATION

® As detailed in Section 22.2.1.1 and Section 22.2.2.1, an access to the APIC-
access page might not cause an APIC-access VM exit if software does not
properly invalidate information that may be cached from the EPT paging
structures. If EPT was in use on a logical processor at one time with EPTP X, it is
recommended that software use the INVEPT instruction with the “single-context”
INVEPT type and with EPTP X in the INVEPT descriptor before a VM entry on the
same logical processor that enables EPT with EPTP X and either (a) the “virtualize
APIC accesses” VM-execution control was changed from 0 to 1; or (b) the value
of the APIC-access address was changed.

® Software can use the INVEPT instruction with the “all-context” INVEPT type
immediately after execution of the VMXON instruction or immediately prior to
execution of the VMXOFF instruction. Either prevents potentially undesired
retention of information cached from EPT paging structures between separate
uses of VMX operation.

In a system containing more than one logical processor, software must account for
the fact that information from an EPT paging-structure entry may be cached on
logical processors other than the one that modifies that entry. The process of propa-
gating the changes to a paging-structure entry is commonly referred to as “TLB
shootdown.” A discussion of TLB shootdown appears in “Propagation of Paging-Struc-
ture Changes to Multiple Processors” in Chapter 4, “Paging,” in the Intel® 64 and
I1A-32 Architectures Software Developer’s Manual, Volume 3A.

Vol.3 25-23

VMX SUPPORT FOR ADDRESS TRANSLATION

25-24 Vol.3

CHAPTER 26
SYSTEM MANAGEMENT MODE

This chapter describes aspects of 1A-64 and 1A-32 architecture used in system
management mode (SMM).

SMM provides an alternate operating environment that can be used to monitor and
manage various system resources for more efficient energy usage, to control system
hardware, and/or to run proprietary code. It was introduced into the 1A-32 architec-
ture in the Intel386 SL processor (a mobile specialized version of the Intel386
processor). It is also available in the Pentium M, Pentium 4, Intel Xeon, P6 family, and
Pentium and Intel486 processors (beginning with the enhanced versions of the
Intel486 SL and Intel486 processors).

26.1 SYSTEM MANAGEMENT MODE OVERVIEW

SMM is a special-purpose operating mode provided for handling system-wide func-
tions like power management, system hardware control, or proprietary OEM-
designed code. It is intended for use only by system firmware, not by applications
software or general-purpose systems software. The main benefit of SMM is that it
offers a distinct and easily isolated processor environment that operates transpar-
ently to the operating system or executive and software applications.

When SMM is invoked through a system management interrupt (SMI), the processor
saves the current state of the processor (the processor’s context), then switches to a
separate operating environment contained in system management RAM (SMRAM).
While in SMM, the processor executes SMI handler code to perform operations such
as powering down unused disk drives or monitors, executing proprietary code, or
placing the whole system in a suspended state. When the SMI handler has completed
its operations, it executes a resume (RSM) instruction. This instruction causes the
processor to reload the saved context of the processor, switch back to protected or
real mode, and resume executing the interrupted application or operating-system
program or task.

The following SMM mechanisms make it transparent to applications programs and
operating systems:

® The only way to enter SMM is by means of an SMI.

® The processor executes SMM code in a separate address space (SMRAM) that can
be made inaccessible from the other operating modes.

® Upon entering SMM, the processor saves the context of the interrupted program
or task.

Vol.3 26-1

SYSTEM MANAGEMENT MODE

¢ All interrupts normally handled by the operating system are disabled upon entry
into SMM.

® The RSM instruction can be executed only in SMM.

SMM is similar to real-address mode in that there are no privilege levels or address
mapping. An SMM program can address up to 4 GBytes of memory and can execute
all 1/0 and applicable system instructions. See Section 26.5 for more information
about the SMM execution environment.

NOTES

Software developers should be aware that, even if a logical processor
was using the physical-address extension (PAE) mechanism
(introduced in the P6 family processors) or was in 1A-32e mode
before an SMI, this will not be the case after the SMI is delivered. This
is because delivery of an SMI disables paging (see Table 26-4). (This
does not apply if the dual-monitor treatment of SMIs and SMM is
active; see Section 26.15.)

26.1.1 System Management Mode and VMX Operation

Traditionally, SMM services system management interrupts and then resumes
program execution (back to the software stack consisting of executive and applica-
tion software; see Section 26.2 through Section 26.13).

A virtual machine monitor (VMM) using VMX can act as a host to multiple virtual
machines and each virtual machine can support its own software stack of executive
and application software. On processors that support VMX, virtual-machine exten-
sions may use system-management interrupts (SMIs) and system-management
mode (SMM) in one of two ways:

® Default treatment. System firmware handles SMIs. The processor saves archi-
tectural states and critical states relevant to VMX operation upon entering SMM.
When the firmware completes servicing SMIs, it uses RSM to resume VMX
operation.

® Dual-monitor treatment. Two VM monitors collaborate to control the servicing
of SMIs: one VMM operates outside of SMM to provide basic virtualization in
support for guests; the other VMM operates inside SMM (while in VMX operation)
to support system-management functions. The former is referred to as
executive monitor, the latter SMM monitor.t

The default treatment is described in Section 26.14, “Default Treatment of SMIs and
SMM with VMX Operation and SMX Operation”. Dual-monitor treatment of SMM is
described in Section 26.15, “Dual-Monitor Treatment of SMIs and SMM”.

1. The dual-monitor treatment may not be supported by all processors. Software should consult the
VMX capability MSR 1A32_VMX_BASIC (see Appendix G.1) to determine whether it is supported.

26-2 Vol.3

SYSTEM MANAGEMENT MODE

26.2 SYSTEM MANAGEMENT INTERRUPT (SMI)

The only way to enter SMM is by signaling an SMI through the SMI# pin on the
processor or through an SMI message received through the APIC bus. The SMl is a
nonmaskable external interrupt that operates independently from the processor’s
interrupt- and exception-handling mechanism and the local APIC. The SMI takes
precedence over an NMI and a maskable interrupt. SMM is non-reentrant; that is, the
SMI is disabled while the processor is in SMM.

NOTES

In the Pentium 4, Intel Xeon, and P6 family processors, when a
processor that is designated as an application processor during an MP
initialization sequence is waiting for a startup IP1 (SIPI), itisin a
mode where SMIs are masked. However if a SMI is received while an
application processor is in the wait for SIPI mode, the SMI will be
pended. The processor then responds on receipt of a SIPI by
immediately servicing the pended SMI and going into SMM before
handling the SIPI.

An SMI may be blocked for one instruction following execution of STI,
MOV to SS, or POP into SS.

26.3 SWITCHING BETWEEN SMM AND THE OTHER
PROCESSOR OPERATING MODES

Figure 2-3 shows how the processor moves between SMM and the other processor
operating modes (protected, real-address, and virtual-8086). Signaling an SMI while
the processor is in real-address, protected, or virtual-8086 modes always causes the
processor to switch to SMM. Upon execution of the RSM instruction, the processor
always returns to the mode it was in when the SMI occurred.

26.3.1 Entering SMM

The processor always handles an SMI on an architecturally defined “interruptible”
point in program execution (which is commonly at an 1A-32 architecture instruction
boundary). When the processor receives an SMI, it waits for all instructions to retire
and for all stores to complete. The processor then saves its current context in SMRAM
(see Section 26.4), enters SMM, and begins to execute the SMI handler.

Upon entering SMM, the processor signals external hardware that SMM handling has
begun. The signaling mechanism used is implementation dependent. For the P6
family processors, an SMI acknowledge transaction is generated on the system bus
and the multiplexed status signal EXF4 is asserted each time a bus transaction is
generated while the processor is in SMM. For the Pentium and Intel486 processors,
the SMIACT# pin is asserted.

Vol.3 26-3

SYSTEM MANAGEMENT MODE

An SMI has a greater priority than debug exceptions and external interrupts. Thus, if
an NMI, maskable hardware interrupt, or a debug exception occurs at an instruction
boundary along with an SMI, only the SMI is handled. Subsequent SMI requests are
not acknowledged while the processor is in SMM. The first SMI interrupt request that
occurs while the processor is in SMM (that is, after SMM has been acknowledged to
external hardware) is latched and serviced when the processor exits SMM with the
RSM instruction. The processor will latch only one SMI while in SMM.

See Section 26.5 for a detailed description of the execution environment when in
SMM.

26.3.2 Exiting From SMM

The only way to exit SMM is to execute the RSM instruction. The RSM instruction is
only available to the SMI handler; if the processor is not in SMM, attempts to execute
the RSM instruction result in an invalid-opcode exception (#UD) being generated.

The RSM instruction restores the processor’s context by loading the state save image
from SMRAM back into the processor’s registers. The processor then returns an
SMIACK transaction on the system bus and returns program control back to the
interrupted program.

Upon successful completion of the RSM instruction, the processor signals external
hardware that SMM has been exited. For the P6 family processors, an SMI acknowl-
edge transaction is generated on the system bus and the multiplexed status signal
EXF4 is no longer generated on bus cycles. For the Pentium and Intel486 processors,
the SMIACT# pin is deserted.

If the processor detects invalid state information saved in the SMRAM, it enters the
shutdown state and generates a special bus cycle to indicate it has entered shutdown
state. Shutdown happens only in the following situations:

® Avreserved bit in control register CR4 is set to 1 on a write to CR4. This error
should not happen unless SMI handler code modifies reserved areas of the
SMRAM saved state map (see Section 26.4.1). CR4 is saved in the state map in a
reserved location and cannot be read or modified in its saved state.

® An illegal combination of bits is written to control register CRO, in particular PG
set to 1 and PE set to O, or NW set to 1 and CD set to O.

® (For the Pentium and Intel486 processors only.) If the address stored in the
SMBASE register when an RSM instruction is executed is not aligned on a
32-KByte boundary. This restriction does not apply to the P6 family processors.

In the shutdown state, Intel processors stop executing instructions until a RESET#,
INIT# or NMI# is asserted. While Pentium family processors recognize the SMI#
signal in shutdown state, P6 family and Intel486 processors do not. Intel does not
support using SMI# to recover from shutdown states for any processor family; the
response of processors in this circumstance is not well defined. On Pentium 4 and
later processors, shutdown will inhibit INTR and A20M but will not change any of the

26-4 Vol.3

SYSTEM MANAGEMENT MODE

other inhibits. On these processors, NMIs will be inhibited if no action is taken in the
SMM handler to uninhibit them (see Section 26.8).

If the processor is in the HALT state when the SMI is received, the processor handles
the return from SMM slightly differently (see Section 26.10). Also, the SMBASE
address can be changed on a return from SMM (see Section 26.11).

264 SMRAM

While in SMM, the processor executes code and stores data in the SMRAM space. The
SMRAM space is mapped to the physical address space of the processor and can be
up to 4 GBytes in size. The processor uses this space to save the context of the
processor and to store the SMI handler code, data and stack. It can also be used to
store system management information (such as the system configuration and
specific information about powered-down devices) and OEM-specific information.

The default SMRAM size is 64 KBytes beginning at a base physical address in physical
memory called the SMBASE (see Figure 26-1). The SMBASE default value following a
hardware reset is 30000H. The processor looks for the first instruction of the SMI
handler at the address [SMBASE + 8000H]. It stores the processor’s state in the area
from [SMBASE + FEOOH] to [SMBASE + FFFFH]. See Section 26.4.1 for a description
of the mapping of the state save area.

The system logic is minimally required to decode the physical address range for the
SMRAM from [SMBASE + 8000H] to [SMBASE + FFFFH]. A larger area can be
decoded if needed. The size of this SMRAM can be between 32 KBytes and 4 GBytes.

The location of the SMRAM can be changed by changing the SMBASE value (see
Section 26.11). It should be noted that all processors in a multiple-processor system
are initialized with the same SMBASE value (30000H). Initialization software must
sequentially place each processor in SMM and change its SMBASE so that it does not
overlap those of other processors.

The actual physical location of the SMRAM can be in system memory or in a separate
RAM memory. The processor generates an SMI acknowledge transaction (P6 family
processors) or asserts the SMIACT# pin (Pentium and Intel486 processors) when the
processor receives an SMI (see Section 26.3.1).

System logic can use the SMI acknowledge transaction or the assertion of the
SMIACT# pin to decode accesses to the SMRAM and redirect them (if desired) to
specific SMRAM memory. If a separate RAM memory is used for SMRAM, system logic
should provide a programmable method of mapping the SMRAM into system memory
space when the processor is not in SMM. This mechanism will enable start-up proce-
dures to initialize the SMRAM space (that is, load the SMI handler) before executing
the SMI handler during SMM.

Vol. 3 26-5

SYSTEM MANAGEMENT MODE

26.4.1 SMRAM State Save Map

When an I1A-32 processor that does not support Intel 64 architecture initially enters
SMM, it writes its state to the state save area of the SMRAM. The state save area
begins at [SMBASE + 8000H + 7FFFH] and extends down to [SMBASE + 8000H +
7EOOH]. Table 26-1 shows the state save map. The offset in column 1 is relative to
the SMBASE value plus 8000H. Reserved spaces should not be used by software.

Some of the registers in the SMRAM state save area (marked YES in column 3) may
be read and changed by the SMI handler, with the changed values restored to the
processor registers by the RSM instruction. Some register images are read-only, and
must not be modified (modifying these registers will result in unpredictable
behavior). An SMI handler should not rely on any values stored in an area that is
marked as reserved.

SMRAM

SMBASE + FFFFH
Start of State Save Area

SMI Handler Entry Point
SMBASE + 8000H

SMBASE

Figure 26-1. SMRAM Usage

Table 26-1. SMRAM State Save Map

Offset Register Writable?
(Added to SMBASE +
8000H)
7FFCH CRO No
7FF8H CR3 No
7FF4H EFLAGS Yes
7FFOH EIP Yes
7FECH DI Yes
7FE8H Esl Yes
7FE4H EBP Yes
7FEOH ESP Yes

26-6 Vol.3

SYSTEM MANAGEMENT MODE

Table 26-1. SMRAM State Save Map (Contd.)

Offset Register Writable?
(Added to SMBASE +
8000H)
7FDCH EBX Yes
7FD8H EDX Yes
7FD4H ECX Yes
7FDOH EAX Yes
7FCCH DR6 No
7FC8H DR7 No
7FC4H TR? No
7FCOH Reserved No
7FBCH Gst No
7FB8H Fst No
7FBAH Dst No
7FBOH sst No
7FACH cst No
7FA8H est No
7FA4H I/0 State Field, see Section 26.7 No
7FACH I/0 Memory Address Field, see Section 26.7 No
7FSFH-7FO03H Reserved No
7F02H Auto HALT Restart Field (Word) Yes
7FO0H 1/0 Instruction Restart Field (Word) Yes
7EFCH SMM Revision Identifier Field (Doubleword) No
7EF8H SMBASE Field (Doubleword) Yes
7EF7H - 7EQ0H Reserved No

NOTE:
1. The two most significant bytes are reserved.

The following registers are saved (but not readable) and restored upon exiting SMM:

Control register CR4. (This register is cleared to all Os while in SMM).

The hidden segment descriptor information stored in segment registers CS, DS,

ES, FS, GS, and SS.

Vol.3 26-7

SYSTEM MANAGEMENT MODE

If an SMI request is issued for the purpose of powering down the processor, the
values of all reserved locations in the SMM state save must be saved to nonvolatile
memory.

The following state is not automatically saved and restored following an SMI and the
RSM instruction, respectively:

® Debug registers DRO through DR3.

® The x87 FPU registers.

® The MTRRs.

® Control register CR2.

® The model-specific registers (for the P6 family and Pentium processors) or test
registers TR3 through TR7 (for the Pentium and Intel486 processors).

® The state of the trap controller.

® The machine-check architecture registers.

® The APIC internal interrupt state (ISR, IRR, etc.).
® The microcode update state.

If an SMI is used to power down the processor, a power-on reset will be required
before returning to SMM, which will reset much of this state back to its default
values. So an SMI handler that is going to trigger power down should first read these
registers listed above directly, and save them (along with the rest of RAM) to nonvol-
atile storage. After the power-on reset, the continuation of the SMI handler should
restore these values, along with the rest of the system's state. Anytime the SMI
handler changes these registers in the processor, it must also save and restore them.

NOTES

A small subset of the MSRs (such as, the time-stamp counter and
performance-monitoring counters) are not arbitrarily writable and
therefore cannot be saved and restored. SMM-based power-down
and restoration should only be performed with operating systems
that do not use or rely on the values of these registers.

Operating system developers should be aware of this fact and insure
that their operating-system assisted power-down and restoration
software is immune to unexpected changes in these register values.

26.4.1.1 SMRAM State Save Map and Intel 64 Architecture

When the processor initially enters SMM, it writes its state to the state save area of
the SMRAM. The state save area on an Intel 64 processor at [SMBASE + 8000H +
7FFFH] and extends to [SMBASE + 8000H + 7COOH].

Support for Intel 64 architecture is reported by CPUID.80000001:EDX[29] = 1. The
layout of the SMRAM state save map is shown in Table 26-3.

26-8 Vol.3

SYSTEM MANAGEMENT MODE

Additionally, the SMRAM state save map shown in Table 26-3 also applies to proces-
sors with the following CPUID signatures listed in Table 26-2, irrespective of the value
in CPUID.80000001:EDX[29].

Table 26-2. Processor Signatures and 64-bit SMRAM State Save Map Format

DisplayFamily_DisplayModel

Processor Families/Processor Number Series

06_17H Intel Xeon Processor 5200, 5400 series, Intel Core 2 Quad
processor Q9xxx, Intel Core 2 Duo processors EB000, T9000,
06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel
Core 2 Quad, Intel Core 2 Extreme, Intel Core 2 Duo processors,
Intel Pentium dual-core processors
06_1CH Intel Atom processors
Table 26-3. SMRAM State Save Map for Intel 64 Architecture
Offset Register Writable?
(Added to SMBASE +
8000H)
7FF8H CRO No
7FFOH CR3 No
7FE8H RFLAGS Yes
7FECH IA32_EFER Yes
7FD8H RIP Yes
7FDOH DR6 No
7FC8H DR7 No
7FC4H TR SEL No
7FCOH LDTR SEL! No
7FBCH Gs seLt No
7FB8H Fs SeLt No
7FB4H DS SEL No
7FBOH Ss SeL! No
7FACH cs selt No
7FASH Es SELY No
7FA4H 10_MISC No
7F9CH I0_MEM_ADDR No

Vol.3 26-9

SYSTEM MANAGEMENT MODE

Table 26-3. SMRAM State Save Map for Intel 64 Architecture (Contd.)

Offset Register Writable?
(Added to SMBASE +
8000H)
7F94H RDI Yes
7F8CH RSI Yes
7F84H RBP Yes
7F7CH RSP Yes
7F74H RBX Yes
7F6CH RDX Yes
7F64H RCX Yes
7F5CH RAX Yes
7F54H R8 Yes
7F4ACH R9 Yes
7F44H R10 Yes
7F3CH R11 Yes
7F34H R12 Yes
7F2CH R13 Yes
7F24H R14 Yes
7F1CH R15 Yes
7F1BH-7F04H Reserved No
7F02H Auto HALT Restart Field (Word) Yes
7FO0H I/0 Instruction Restart Field (Word) Yes
7€FCH SMM Revision Identifier Field (Doubleword) No
7EF8H SMBASE Field (Doubleword) Yes
7EF7H - 7EE4H Reserved No
7EEQH Setting of “enable EPT" VM-execution control No
7ED8H Value of EPTP VM-execution control field No
7ED7H - 7EA8H Reserved No
7EA4H LDT Info No
7EAOH LDT Limit No
7E9CH LDT Base (lower 32 bits) No
7E98H IDT Limit No

26-10 Vol.3

SYSTEM MANAGEMENT MODE

Table 26-3. SMRAM State Save Map for Intel 64 Architecture (Contd.)

Offset Register Writable?
(Added to SMBASE +
8000H)
7E94H IDT Base (lower 32 bits) No
7E90H GDT Limit No
7E8CH GDT Base (lower 32 bits) No
7E8BH - 7€44H Reserved No
7E40H CR4 No
7€3FH - 7DFOH Reserved No
7DE8H IO_EIP Yes
7DE7H - 7DDCH Reserved No
7DD8H IDT Base (Upper 32 bits) No
7DD4H LDT Base (Upper 32 bits) No
7DDOH GDT Base (Upper 32 bits) No
7DCFH - 7COOH Reserved No

NOTE:

1. The two most significant bytes are reserved.

26.4.2 SMRAM Caching

An 1A-32 processor does not automatically write back and invalidate its caches before
entering SMM or before exiting SMM. Because of this behavior, care must be taken in
the placement of the SMRAM in system memory and in the caching of the SMRAM to
prevent cache incoherence when switching back and forth between SMM and
protected mode operation. Either of the following three methods of locating the
SMRAM in system memory will guarantee cache coherency:

® Place the SRAM in a dedicated section of system memory that the operating
system and applications are prevented from accessing. Here, the SRAM can be
designated as cacheable (WB, WT, or WC) for optimum processor performance,
without risking cache incoherence when entering or exiting SMM.

® Place the SRAM in a section of memory that overlaps an area used by the
operating system (such as the video memory), but designate the SMRAM as

uncacheable (UC). This method prevents cache access when in SMM to maintain
cache coherency, but the use of uncacheable memory reduces the performance
of SMM code.

Place the SRAM in a section of system memory that overlaps an area used by the
operating system and/or application code, but explicitly flush (write back and
invalidate) the caches upon entering and exiting SMM mode. This method

Vol.3 26-11

SYSTEM MANAGEMENT MODE

maintains cache coherency, but the incurs the overhead of two complete cache
flushes.

For Pentium 4, Intel Xeon, and P6 family processors, a combination of the first two
methods of locating the SMRAM is recommended. Here the SMRAM is split between
an overlapping and a dedicated region of memory. Upon entering SMM, the SMRAM
space that is accessed overlaps video memory (typically located in low memory).
This SMRAM section is designated as UC memory. The initial SMM code then jumps to
a second SMRAM section that is located in a dedicated region of system memory
(typically in high memory). This SMRAM section can be cached for optimum
processor performance.

For systems that explicitly flush the caches upon entering SMM (the third method
described above), the cache flush can be accomplished by asserting the FLUSH# pin
at the same time as the request to enter SMM (generally initiated by asserting the
SMI# pin). The priorities of the FLUSH# and SMI# pins are such that the FLUSH# is
serviced first. To guarantee this behavior, the processor requires that the following
constraints on the interaction of FLUSH# and SMI# be met. In a system where the
FLUSH# and SMI# pins are synchronous and the set up and hold times are met, then
the FLUSH# and SMI# pins may be asserted in the same clock. In asynchronous
systems, the FLUSH# pin must be asserted at least one clock before the SMI# pin to
guarantee that the FLUSH# pin is serviced first.

Upon leaving SMM (for systems that explicitly flush the caches), the WBINVD instruc-
tion should be executed prior to leaving SMM to flush the caches.

NOTES

In systems based on the Pentium processor that use the FLUSH# pin
to write back and invalidate cache contents before entering SMM, the
processor will prefetch at least one cache line in between when the
Flush Acknowledge cycle is run and the subsequent recognition of
SMI# and the assertion of SMIACT#.

It is the obligation of the system to ensure that these lines are not
cached by returning KEN# inactive to the Pentium processor.

26.4.2.1 System Management Range Registers (SMRR)

SMI handler code and data stored by SMM code resides in SMRAM. The SMRR inter-
face is an enhancement in Intel 64 architecture to limit cacheable reference of
addresses in SMRAM to code running in SMM. The SMRR interface can be configured
only by code running in SMM. Details of SMRR is described in Section 11.11.2.4.

26.5 SMI HANDLER EXECUTION ENVIRONMENT

After saving the current context of the processor, the processor initializes its core
registers to the values shown in Table 26-4. Upon entering SMM, the PE and PG flags
in control register CRO are cleared, which places the processor is in an environment

26-12 Vol.3

SYSTEM MANAGEMENT MODE

similar to real-address mode. The differences between the SMM execution environ-
ment and the real-address mode execution environment are as follows:

The addressable SMRAM address space ranges from 0 to FFFFFFFFH (4 GBytes).
(The physical address extension (enabled with the PAE flag in control register
CR4) is not supported in SMM.)

The normal 64-KByte segment limit for real-address mode is increased to
4 GBytes.

The default operand and address sizes are set to 16 bits, which restricts the
addressable SMRAM address space to the 1-MByte real-address mode limit for
native real-address-mode code. However, operand-size and address-size
override prefixes can be used to access the address space beyond the 1-MByte.

Table 26-4. Processor Register Initialization in SMM

Register Contents

General-purpose registers Undefined

EFLAGS 00000002H

EIP 00008000H

CS selector SMM Base shifted right 4 bits (default 3000H)
CS base SMM Base (default 30000H)

DS, ES, FS, GS, SS Selectors 0000H

DS, ES, FS, GS, SS Bases 000000000H

DS, ES, FS, GS, SS Limits OFFFFFFFFH

CRO PE, EM, TS, and PG flags set to 0; others unmodified
CR4 Cleared to zero

DR6 Undefined

DR7 00000400H

Near jumps and calls can be made to anywhere in the 4-GByte address space if a
32-bit operand-size override prefix is used. Due to the real-address-mode style
of base-address formation, a far call or jump cannot transfer control to a
segment with a base address of more than 20 bits (1 MByte). However, since the
segment limit in SMM is 4 GBytes, offsets into a segment that go beyond the
1-MByte limit are allowed when using 32-bit operand-size override prefixes. Any
program control transfer that does not have a 32-bit operand-size override prefix
truncates the EIP value to the 16 low-order bits.

Data and the stack can be located anywhere in the 4-GByte address space, but
can be accessed only with a 32-bit address-size override if they are located above
1 MByte. As with the code segment, the base address for a data or stack segment
cannot be more than 20 bits.

The value in segment register CS is automatically set to the default of 30000H for the
SMBASE shifted 4 bits to the right; that is, 3000H. The EIP register is set to 8000H.

Vol.3 26-13

SYSTEM MANAGEMENT MODE

When the EIP value is added to shifted CS value (the SMBASE), the resulting linear
address points to the first instruction of the SMI handler.

The other segment registers (DS, SS, ES, FS, and GS) are cleared to 0 and their
segment limits are set to 4 GBytes. In this state, the SMRAM address space may be
treated as a single flat 4-GByte linear address space. If a segment register is loaded
with a 16-bit value, that value is then shifted left by 4 bits and loaded into the
segment base (hidden part of the segment register). The limits and attributes are not
modified.

Maskable hardware interrupts, exceptions, NMI interrupts, SMI interrupts, A20M
interrupts, single-step traps, breakpoint traps, and INIT operations are inhibited
when the processor enters SMM. Maskable hardware interrupts, exceptions, single-
step traps, and breakpoint traps can be enabled in SMM if the SMM execution envi-
ronment provides and initializes an interrupt table and the necessary interrupt and
exception handlers (see Section 26.6).

26.6 EXCEPTIONS AND INTERRUPTS WITHIN SMM

When the processor enters SMM, all hardware interrupts are disabled in the following
manner:

® The IF flag in the EFLAGS register is cleared, which inhibits maskable hardware
interrupts from being generated.

® The TF flag in the EFLAGS register is cleared, which disables single-step traps.

® Debug register DR7 is cleared, which disables breakpoint traps. (This action
prevents a debugger from accidentally breaking into an SMM handler if a debug
breakpoint is set in normal address space that overlays code or data in SMRAM.)

¢ NMI, SMI, and A20M interrupts are blocked by internal SMM logic. (See Section
26.8 for more information about how NMIs are handled in SMM.)

Software-invoked interrupts and exceptions can still occur, and maskable hardware
interrupts can be enabled by setting the IF flag. Intel recommends that SMM code be
written in so that it does not invoke software interrupts (with the INT n, INTO, INT 3,
or BOUND instructions) or generate exceptions.

If the SMM handler requires interrupt and exception handling, an SMM interrupt table
and the necessary exception and interrupt handlers must be created and initialized
from within SMM. Until the interrupt table is correctly initialized (using the LIDT
instruction), exceptions and software interrupts will result in unpredictable processor
behavior.

The following restrictions apply when designing SMM interrupt and exception-
handling facilities:

® The interrupt table should be located at linear address O and must contain real-
address mode style interrupt vectors (4 bytes containing CS and IP).

26-14 Vol.3

SYSTEM MANAGEMENT MODE

® Due to the real-address mode style of base address formation, an interrupt or
exception cannot transfer control to a segment with a base address of more that
20 bits.

® An interrupt or exception cannot transfer control to a segment offset of more
than 16 bits (64 KBytes).

® When an exception or interrupt occurs, only the 16 least-significant bits of the
return address (EIP) are pushed onto the stack. If the offset of the interrupted
procedure is greater than 64 KBytes, it is not possible for the interrupt/exception
handler to return control to that procedure. (One solution to this problem is for a
handler to adjust the return address on the stack.)

® The SMBASE relocation feature affects the way the processor will return from an
interrupt or exception generated while the SMI handler is executing. For
example, if the SMBASE is relocated to above 1 MByte, but the exception
handlers are below 1 MByte, a normal return to the SMI handler is not possible.
One solution is to provide the exception handler with a mechanism for calculating
areturn address above 1 MByte from the 16-bit return address on the stack, then
use a 32-bit far call to return to the interrupted procedure.

® If an SMI handler needs access to the debug trap facilities, it must insure that an
SMM accessible debug handler is available and save the current contents of
debug registers DRO through DR3 (for later restoration). Debug registers DRO
through DR3 and DR7 must then be initialized with the appropriate values.

® If an SMI handler needs access to the single-step mechanism, it must insure that
an SMM accessible single-step handler is available, and then set the TF flag in the
EFLAGS register.

® If the SMI design requires the processor to respond to maskable hardware
interrupts or software-generated interrupts while in SMM, it must ensure that
SMM accessible interrupt handlers are available and then set the IF flag in the
EFLAGS register (using the STI instruction). Software interrupts are not blocked
upon entry to SMM, so they do not need to be enabled.

26.7 MANAGING SYNCHRONOUS AND ASYNCHRONOUS
SYSTEM MANAGEMENT INTERRUPTS

When coding for a multiprocessor system or a system with Intel HT Technology, it
was not always possible for an SMI handler to distinguish between a synchronous
SMI (triggered during an 1/0 instruction) and an asynchronous SMI. To facilitate the
discrimination of these two events, incremental state information has been added to
the SMM state save map.

Processors that have an SMM revision ID of 30004H or higher have the incremental
state information described below.

Vol.3 26-15

SYSTEM MANAGEMENT MODE

26.7.1 1/0 State Implementation

Within the extended SMM state save map, a bit (I0_SMI) is provided that is set only
when an SMI is either taken immediately after a successful 1/0 instruction or is taken
after a successful iteration of a REP 1/0 instruction (the successful notion pertains to
the processor point of view; not necessarily to the corresponding platform function).
When set, the 10_SMI bit provides a strong indication that the corresponding SMI
was synchronous. In this case, the SMM State Save Map also supplies the port
address of the 1/0 operation. The 10_SMI bit and the 1/0 Port Address may be used
in conjunction with the information logged by the platform to confirm that the SMI

was indeed synchronous.
The 10_SMI bit by itself is a strong indication, not a guarantee, that the SMI is

synchronous. This is because an asynchronous SMI might coincidentally be taken
after an 1/0 instruction. In such a case, the 10_SMI bit would still be set in the SMM

state save map.

Information characterizing the 1/0 instruction is saved in two locations in the SMM
State Save Map (Table 26-5). The 10_SMI bit also serves as a valid bit for the rest of
the 170 information fields. The contents of these 1/0 information fields are not
defined when the 10_SMI bit is not set.

Table 26-5. 1/0 Instruction Information in the SMM State Save Map

State (SMM Rev. ID: 30004H or Format
higher)
31 16 (15 8 7 4 3 1 0
1/0 State Field S § S S |5
SMRAM offset 7FA4 S o < | %
3 2 3 gl =
=0
31 0
1/0 Memory Address Field I/0 Memory Address
SMRAM offset 7FAQ
When 10_SMIl is set, the other fields may be interpreted as follows:
® /0 length:

* 001 - Byte
e 010 - Word
* 100 — Dword
® 1/0 instruction type (Table 26-6)

26-16 Vol.3

SYSTEM MANAGEMENT MODE

Table 26-6. 1/0 Instruction Type Encodings

Instruction Encoding
IN Immediate 1001
IN DX 0001
OUT Immediate 1000
OUT DX 0000
INS 0011
ouTS 0010
REP INS 0111
REP OUTS 0110

26.8 NMI HANDLING WHILE IN SMM

NMI interrupts are blocked upon entry to the SMI handler. If an NMI request occurs
during the SMI handler, it is latched and serviced after the processor exits SMM. Only
one NMI request will be latched during the SMI handler. If an NMI request is pending
when the processor executes the RSM instruction, the NMI is serviced before the next
instruction of the interrupted code sequence. This assumes that NMIs were not
blocked before the SMI occurred. If NMIs were blocked before the SMI occurred, they
are blocked after execution of RSM.

Although NMI requests are blocked when the processor enters SMM, they may be
enabled through software by executing an IRET instruction. If the SMM handler
requires the use of NMI interrupts, it should invoke a dummy interrupt service
routine for the purpose of executing an IRET instruction. Once an IRET instruction is
executed, NMI interrupt requests are serviced in the same “real mode” manner in
which they are handled outside of SMM.

A special case can occur if an SMI handler nests inside an NMI handler and then
another NMI occurs. During NMI interrupt handling, NMI interrupts are disabled, so
normally NMI interrupts are serviced and completed with an IRET instruction one at
a time. When the processor enters SMM while executing an NMI handler, the
processor saves the SMRAM state save map but does not save the attribute to keep
NMI interrupts disabled. Potentially, an NMI could be latched (while in SMM or upon
exit) and serviced upon exit of SMM even though the previous NMI handler has still
not completed. One or more NMIs could thus be nested inside the first NMI handler.
The NMI interrupt handler should take this possibility into consideration.

Also, for the Pentium processor, exceptions that invoke a trap or fault handler will
enable NMI interrupts from inside of SMM. This behavior is implementation specific
for the Pentium processor and is not part of the 1A-32 architecture.

Vol.3 26-17

SYSTEM MANAGEMENT MODE

26.9 SMM REVISION IDENTIFIER

The SMM revision identifier field is used to indicate the version of SMM and the SMM
extensions that are supported by the processor (see Figure 26-2). The SMM revision
identifier is written during SMM entry and can be examined in SMRAM space at offset
7EFCH. The lower word of the SMM revision identifier refers to the version of the base
SMM architecture.

Register Offset
7EFCH

31 181716 15 0

Reserved SMM Revision Identifier

SMBASE Relocation
1/0 Instruction Restart

Figure 26-2. SMM Revision Identifier

The upper word of the SMM revision identifier refers to the extensions available. If
the 1/0 instruction restart flag (bit 16) is set, the processor supports the 1/0 instruc-
tion restart (see Section 26.12); if the SMBASE relocation flag (bit 17) is set, SMRAM
base address relocation is supported (see Section 26.11).

26.10 AUTO HALT RESTART

If the processor is in a HALT state (due to the prior execution of a HLT instruction)
when it receives an SMI, the processor records the fact in the auto HALT restart flag
in the saved processor state (see Figure 26-3). (This flag is located at offset 7FO2H
and bit O in the state save area of the SMRAM.)

If the processor sets the auto HALT restart flag upon entering SMM (indicating that
the SMI occurred when the processor was in the HALT state), the SMI handler has
two options:

® It can leave the auto HALT restart flag set, which instructs the RSM instruction to
return program control to the HLT instruction. This option in effect causes the
processor to re-enter the HALT state after handling the SMI. (This is the default
operation.)

® It can clear the auto HALT restart flag, with instructs the RSM instruction to
return program control to the instruction following the HLT instruction.

26-18 Vol.3

SYSTEM MANAGEMENT MODE

15 10
Reserved

Auto HALT Restart J

Figure 26-3. Auto HALT Restart Field

Register Offset
7FO2H

These options are summarized in Table 26-7. If the processor was not in a HALT state
when the SMI was received (the auto HALT restart flag is cleared), setting the flag to
1 will cause unpredictable behavior when the RSM instruction is executed.

Table 26-7. Auto HALT Restart Flag Values

Value of Flag | Value of Flag Action of Processor When Exiting SMM

After Entry to | When Exiting SMM

SMM

0 0 Returns to next instruction in interrupted program or task.
0 1 Unpredictable.

1 0 Returns to next instruction after HLT instruction.

1 1 Returns to HALT state.

If the HLT instruction is restarted, the processor will generate a memory access to
fetch the HLT instruction (if it is not in the internal cache), and execute a HLT bus
transaction. This behavior results in multiple HLT bus transactions for the same HLT
instruction.

26.10.1 Executing the HLT Instruction in SMM

The HLT instruction should not be executed during SMM, unless interrupts have been
enabled by setting the IF flag in the EFLAGS register. If the processor is halted in
SMM, the only event that can remove the processor from this state is a maskable
hardware interrupt or a hardware reset.

26.11 SMBASE RELOCATION

The default base address for the SMRAM is 30000H. This value is contained in an
internal processor register called the SMBASE register. The operating system or
executive can relocate the SMRAM by setting the SMBASE field in the saved state
map (at offset 7EF8H) to a new value (see Figure 26-4). The RSM instruction reloads
the internal SMBASE register with the value in the SMBASE field each time it exits
SMM. All subsequent SMI requests will use the new SMBASE value to find the starting

Vol.3 26-19

SYSTEM MANAGEMENT MODE

address for the SMI handler (at SMBASE + 8000H) and the SMRAM state save area
(from SMBASE + FEOOH to SMBASE + FFFFH). (The processor resets the value in its
internal SMBASE register to 30000H on a RESET, but does not change it on an INIT.)

31 0

Register Offset
SMM Base 7EF8H

Figure 26-4. SMBASE Relocation Field

In multiple-processor systems, initialization software must adjust the SMBASE value
for each processor so that the SMRAM state save areas for each processor do not
overlap. (For Pentium and Intel486 processors, the SMBASE values must be aligned
on a 32-KByte boundary or the processor will enter shutdown state during the execu-
tion of a RSM instruction.)

If the SMBASE relocation flag in the SMM revision identifier field is set, it indicates the
ability to relocate the SMBASE (see Section 26.9).

26.11.1 Relocating SMRAM to an Address Above 1 MByte

In SMM, the segment base registers can only be updated by changing the value in the
segment registers. The segment registers contain only 16 bits, which allows only 20
bits to be used for a segment base address (the segment register is shifted left 4 bits
to determine the segment base address). If SMRAM is relocated to an address above
1 MByte, software operating in real-address mode can no longer initialize the
segment registers to point to the SMRAM base address (SMBASE).

The SMRAM can still be accessed by using 32-bit address-size override prefixes to
generate an offset to the correct address. For example, if the SMBASE has been relo-
cated to FFFFFFH (immediately below the 16-MByte boundary) and the DS, ES, FS,
and GS registers are still initialized to OH, data in SMRAM can be accessed by using
32-bit displacement registers, as in the following example:

mov esi,00FFxxxxH; 64K segment immediately below 16M
mov ax,ds:[esi]

A stack located above the 1-MByte boundary can be accessed in the same manner.

26.12 1/0 INSTRUCTION RESTART

If the 1/0 instruction restart flag in the SMM revision identifier field is set (see Section
26.9), the 1/0 instruction restart mechanism is present on the processor. This mech-
anism allows an interrupted 1/0 instruction to be re-executed upon returning from

26-20 Vol.3

SYSTEM MANAGEMENT MODE

SMM mode. For example, if an I/0 instruction is used to access a powered-down 1/0
device, a chip set supporting this device can intercept the access and respond by
asserting SMI#. This action invokes the SMI handler to power-up the device. Upon
returning from the SMI handler, the 1/0 instruction restart mechanism can be used to
re-execute the 1/0 instruction that caused the SMI.

The 1/0 instruction restart field (at offset 7FOOH in the SMM state-save area, see
Figure 26-5) controls 1/0 instruction restart. When an RSM instruction is executed, if
this field contains the value FFH, then the EIP register is modified to point to the 1/0
instruction that received the SMI request. The processor will then automatically re-
execute the 1/0 instruction that the SMI trapped. (The processor saves the necessary
machine state to insure that re-execution of the instruction is handled coherently.)

15 0

Register Offset
7FO0H

1/O Instruction Restart Field

Figure 26-5. 1/0 Instruction Restart Field

If the 1/0 instruction restart field contains the value OOH when the RSM instruction is
executed, then the processor begins program execution with the instruction following
the 1/0 instruction. (When a repeat prefix is being used, the next instruction may be
the next 1I/0 instruction in the repeat loop.) Not re-executing the interrupted 1/0
instruction is the default behavior; the processor automatically initializes the 1/0
instruction restart field to OOH upon entering SMM. Table 26-8 summarizes the states
of the 1/0 instruction restart field.

Table 26-8. 1/0 Instruction Restart Field Values

Value of Flag After | Value of Flag When Action of Processor When Exiting SMM
Entry to SMM Exiting SMM

OC0H OOH Does not re-execute trapped I/0 instruction.
OCOH FFH Re-executes trapped I/0 instruction.

The 1/0 instruction restart mechanism does not indicate the cause of the SMI. Itis
the responsibility of the SMI handler to examine the state of the processor to deter-
mine the cause of the SMI and to determine if an 1/0 instruction was interrupted and
should be restarted upon exiting SMM. If an SMI interrupt is signaled on a non-1/0
instruction boundary, setting the 1/0 instruction restart field to FFH prior to executing
the RSM instruction will likely result in a program error.

Vol.3 26-21

SYSTEM MANAGEMENT MODE

26.12.1 Back-to-Back SMI Interrupts When 1/0 Instruction Restart Is
Being Used

If an SMI interrupt is signaled while the processor is servicing an SMI interrupt that
occurred on an 1/0 instruction boundary, the processor will service the new SMI
request before restarting the originally interrupted 1/0 instruction. If the 1/0 instruc-
tion restart field is set to FFH prior to returning from the second SMI handler, the EIP
will point to an address different from the originally interrupted 1/0 instruction, which
will likely lead to a program error. To avoid this situation, the SMI handler must be
able to recognize the occurrence of back-to-back SMI interrupts when 1/0 instruction
restart is being used and insure that the handler sets the 1/0 instruction restart field
to OOH prior to returning from the second invocation of the SMI handler.

26.13 SMM MULTIPLE-PROCESSOR CONSIDERATIONS

The following should be noted when designing multiple-processor systems:
® Any processor in a multiprocessor system can respond to an SMM.

® Each processor needs its own SMRAM space. This space can be in system
memory or in a separate RAM.

® The SMRAMSs for different processors can be overlapped in the same memory
space. The only stipulation is that each processor needs its own state save area
and its own dynamic data storage area. (Also, for the Pentium and Intel486
processors, the SMBASE address must be located on a 32-KByte boundary.) Code
and static data can be shared among processors. Overlapping SMRAM spaces can
be done more efficiently with the P6 family processors because they do not
require that the SMBASE address be on a 32-KByte boundary.

® The SMI handler will need to initialize the SMBASE for each processor.

® Processors can respond to local SMIs through their SMI# pins or to SMIs received
through the APIC interface. The APIC interface can distribute SMIs to different
processors.

® Two or more processors can be executing in SMM at the same time.

® When operating Pentium processors in dual processing (DP) mode, the SMIACT#
pin is driven only by the MRM processor and should be sampled with ADS#. For
additional details, see Chapter 14 of the Pentium Processor Family User’s Manual,
Volume 1.

SMM is not re-entrant, because the SMRAM State Save Map is fixed relative to the
SMBASE. If there is a need to support two or more processors in SMM mode at the
same time then each processor should have dedicated SMRAM spaces. This can be
done by using the SMBASE Relocation feature (see Section 26.11).

26-22 Vol.3

SYSTEM MANAGEMENT MODE

26.14 DEFAULT TREATMENT OF SMIS AND SMM WITH VMX
OPERATION AND SMX OPERATION

Under the default treatment, the interactions of SMIs and SMM with VMX operation
are few. This section details those interactions. It also explains how this treatment
affects SMX operation.

26.14.1 Default Treatment of SMI Delivery

Ordinary SMI delivery saves processor state into SMRAM and then loads state based
on architectural definitions. Under the default treatment, processors that support
VMX operation perform SMI delivery as follows:

enter SMM;
save the following internal to the processor:
CR4.VMXE
an indication of whether the logical processor was in VMX operation (root or non-root)
IF the logical processor is in VMX operation
THEN
save current VMCS pointer internal to the processor;
leave VMX operation;
save VMX-critical state defined below;
Fl;
IF the logical processor supports SMX operation
THEN
save internal to the logical processor an indication of whether the Intel® TXT private space
is locked;
IF the TXT private space is unlocked
THEN lock the TXT private space;
Fl;
Fl;
CR4.VMXE « O;
perform ordinary SMI delivery:
save processor state in SMRAM;
set processor state to standard SMM values;’
invalidate VPID-tagged mappings and dual-tagged mappings associated with VPID 0000H; dual-
tagged mappings for VPID 0000H are invalidated for all EPTPs (see Section 25.3);

The pseudocode above makes reference to the saving of VMX-critical state. This
state consists of the following: (1) SS.DPL (the current privilege level);

2 RFLAGS.VMZ; (3) the state of blocking by STI and by MOV SS (see Table 21-3 in
Section 21.4.2); (4) the state of virtual-NMI blocking (only if the processor is in VMX

1. This causes the logical processor to block INIT signals, NMls, and SMis.

Vol.3 26-23

SYSTEM MANAGEMENT MODE

non-root operation and the “virtual NMIs” VM-execution control is 1); and (5) an
indication of whether an MTF VM exit is pending (see Section 22.7.2). These data
may be saved internal to the processor or in the VMCS region of the current VMCS.
Processors that do not support SMI recognition while there is blocking by STI or by
MOV SS need not save the state of such blocking.

If the logical processor supports the 1-setting of the “enable EPT” VM-execution
control and the logical processor was in VMX non-root operation at the time of an
SMI, it saves the value of that control into bit O of the 32-bit field at offset SMBASE +
8000H + 7EEOH (SMBASE + FEEOH; see Table 26-3).1 If the logical processor was
not in VMX non-root operation at the time of the SMI, it saves O into that bit. If the
logical processor saves 1 into that bit (it was in VMX non-root operation and the
“enable EPT” VM-execution control was 1), it saves the value of the EPT pointer
(EPTP) into the 64-bit field at offset SMBASE + 8000H + 7ED8H (SMBASE + FED8H).

Because SMI delivery causes a logical processor to leave VMX operation, all the
controls associated with VMX non-root operation are disabled in SMM and thus
cannot cause VM exits while the logical processor in SMM.

26.14.2 Default Treatment of RSM

Ordinary execution of RSM restores processor state from SMRAM. Under the default
treatment, processors that support VMX operation perform RSM as follows:

IF VMXE = 1 in CR4 image in SMRAM
THEN fail and enter shutdown state;
ELSE
restore state normally from SMRAM,;
invalidate VPID-tagged mappings and dual-tagged mappings associated with all VPIDs; dual-
tagged mappings are invalidated for all EPTPs (see Section 25.3);
IF the logical processor supports SMX operation andthe Intel® TXT private space was
unlocked at the time of the last SMI (as saved)
THEN unlock the TXT private space;
Fl;
CR4.VMXE « value stored internally;
IF internal storage indicates that the logical processor
had been in VMX operation (root or non-root)

2. Section 26.14 and Section 26.15 use the notation RAX, RIP, RSP, RFLAGS, etc. for processor reg-
isters because most processors that support VMX operation also support Intel 64 architecture.
For processors that do not support Intel 64 architecture, this notation refers to the 32-bit forms
of these registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to
refer specifically to the lower 32 bits of the register.

1. "Enable EPT" is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, SMI functions as the “enable EPT” VM-execution control
were 0. See Section 21.6.2.

26-24 Vol.3

SYSTEM MANAGEMENT MODE

THEN
enter VMX operation (root or non-root);
restore VMX-critical state as defined in Section 26.14.1;
set to their fixed values any bits in CRO and CR4 whose values must be fixed in
VMX operation (see Section 20.8);!
IF RFLAGS.VM = 0 AND (in VMX root operation OR the “unrestricted guest” VM-
execution control is 0)2

THEN
CS.RPL « SS.DPL;
SS.RPL « SS.DPL;
FI;
restore current VMCS pointer;
Fl;
leave SMM;

IF logical processor will be in VMX operation or in SMX operation after RSM
THEN block A20M and leave A20M mode;
Fl;
Fl;

RSM unblocks SMls. It restores the state of blocking by NMI (see Table 21-3 in
Section 21.4.2) as follows:

® If the RSMis not to VMX non-root operation or if the “virtual NMIs” VM-execution
control will be 0, the state of NMI blocking is restored normally.

® If the RSM is to VMX non-root operation and the “virtual NMIs” VM-execution
control will be 1, NMlIs are not blocked after RSM. The state of virtual-NMI
blocking is restored as part of VMX-critical state.

INIT signals are blocked after RSM if and only if the logical processor will be in VMX
root operation.

If RSM returns a logical processor to VMX non-root operation, it re-establishes the
controls associated with the current VMCS. If the “interrupt-window exiting”
VM-execution control is 1, a VM exit occurs immediately after RSM if the enabling
conditions apply. The same is true for the “NMI-window exiting” VM-execution
control. Such VM exits occur with their normal priority. See Section 22.3.

If an MTF VM exit was pending at the time of the previous SMI, an MTF VM exit is
pending on the instruction boundary following execution of RSM. The following items
detail the treatment of MTF VM exits that may be pending following RSM:

1. If the RSMis to VMX non-root operation and both the “unrestricted guest” VM-execution control
and bit 31 of the primary processor-based VM-execution controls will be 1, CRO.PE and CRO.PG
retain the values that were loaded from SMRAM regardless of what is reported in the capability
MSR 1A32_VMX_CRO_FIXED1.

2. "Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if the “unrestricted
guest” VM-execution control were 0. See Section 21.6.2.

Vol.3 26-25

SYSTEM MANAGEMENT MODE

® System-management interrupts (SMIs), INIT signals, and higher priority events
take priority over these MTF VM exits. These MTF VM exits take priority over
debug-trap exceptions and lower priority events.

® These MTF VM exits wake the logical processor if RSM caused the logical
processor to enter the HLT state (see Section 26.10). They do not occur if the
logical processor just entered the shutdown state.

26.14.3 Protection of CR4.VMXE in SMM

Under the default treatment, CR4.VMXE is treated as a reserved bit while a logical
processor is in SMM. Any attempt by software running in SMM to set this bit causes a
general-protection exception. In addition, software cannot use VMX instructions or
enter VMX operation while in SMM.

26.15 DUAL-MONITOR TREATMENT OF SMIs AND SMM

Dual-monitor treatment is activated through the cooperation of the executive
monitor (the VMM that operates outside of SMM to provide basic virtualization) and
the SMM monitor (the VMM that operates inside SMM—while in VMX operation—to
support system-management functions). Control is transferred to the SMM monitor
through VM exits; VM entries are used to return from SMM.

The dual-monitor treatment may not be supported by all processors. Software should
consult the VMX capability MSR 1A32_VMX_BASIC (see Appendix G.1) to determine
whether it is supported.

26.15.1 Dual-Monitor Treatment Overview

The dual-monitor treatment uses an executive monitor and an SMM monitor. Transi-
tions from the executive monitor or its guests to the SMM monitor are called SMM
VM exits and are discussed in Section 26.15.2. SMM VM exits are caused by SMls as
well as executions of VMCALL in VMX root operation. The latter allow the executive
monitor to call the SMM monitor for service.

The SMM monitor runs in VMX root operation and uses VMX instructions to establish
a VMCS and perform VM entries to its own guests. This is done all inside SMM (see
Section 26.15.3). The SMM monitor returns from SMM, not by using the RSM instruc-
tion, but by using a VM entry that returns from SMM. Such VM entries are described
in Section 26.15.4.

Initially, there is no SMM monitor and the default treatment (Section 26.14) is used.
The dual-monitor treatment is not used until it is enabled and activated. The steps to
do this are described in Section 26.15.5 and Section 26.15.6.

It is not possible to leave VMX operation under the dual-monitor treatment; VMXOFF
will fail if executed. The dual-monitor treatment must be deactivated first. The SMM

26-26 Vol.3

SYSTEM MANAGEMENT MODE

monitor deactivates dual-monitor treatment using a VM entry that returns from SMM
with the “deactivate dual-monitor treatment” VM-entry control set to 1 (see Section
26.15.7).

The executive monitor configures any VMCS that it uses for VM exits to the executive
monitor. SMM VM exits, which transfer control to the SMM monitor, use a different
VMCS. Under the dual-monitor treatment, each logical processor uses a separate
VMCS called the SMM-transfer VMCS. When the dual-monitor treatment is active,
the logical processor maintains another VMCS pointer called the SMM-transfer
VMCS pointer. The SMM-transfer VMCS pointer is established when the dual-
monitor treatment is activated.

26.15.2 SMM VM Exits

An SMM VM exit is a VM exit that begins outside SMM and that ends in SMM.

Unlike other VM exits, SMM VM exits can begin in VMX root operation. SMM VM exits
result from the arrival of an SMI outside SMM or from execution of VMCALL in VMX
root operation outside SMM. Execution of VMCALL in VMX root operation causes an
SMM VM exit only if the valid bit is set in the IA32_SMM_MONITOR_CTL MSR (see
Section 26.15.5).

Execution of VMCALL in VMX root operation causes an SMM VM exit even under the
default treatment. This SMM VM exit activates the dual-monitor treatment (see
Section 26.15.6).

Differences between SMM VM exits and other VM exits are detailed in Sections
26.15.2.1 through 26.15.2.5. Differences between SMM VM exits that activate the
dual-monitor treatment and other SMM VM exits are described in Section 26.15.6.

26.15.2.1 Architectural State Before a VM Exit

System-management interrupts (SMIs) that cause SMM VM exits always do so
directly. They do not save state to SMRAM as they do under the default treatment.

26.15.2.2 Updating the Current-VMCS and Executive-VMCS Pointers
SMM VM exits begin by performing the following steps:
1. The executive-VMCS pointer field in the SMM-transfer VMCS is loaded as follows:

— If the SMM VM exit commenced in VMX non-root operation, it receives the
current-VMCS pointer.

— If the SMM VM exit commenced in VMX root operation, it receives the VMXON
pointer.

2. The current-VMCS pointer is loaded with the value of the SMM-transfer VMCS
pointer.

Vol.3 26-27

SYSTEM MANAGEMENT MODE

The last step ensures that the current VMCS is the SMM-transfer VMCS. VM-exit
information is recorded in that VMCS, and VM-entry control fields in that VMCS are
updated. State is saved into the guest-state area of that VMCS. The VM-exit controls
and host-state area of that VMCS determine how the VM exit operates.

26.15.2.3 Recording VM-Exit Information

SMM VM exits differ from other VM exit with regard to the way they record VM-exit
information. The differences follow.

® Exit reason.

Bits 15:0 of this field contain the basic exit reason. The field is loaded with
the reason for the SMM VM exit: 1/0 SMI (an SMI arrived immediately after
retirement of an 1/0 instruction), other SMI, or VMCALL. See Appendix I,
“VMX Basic Exit Reasons”.

SMM VM exits are the only VM exits that may occur in VMX root operation.
Because the SMM monitor may need to know whether it was invoked from
VMX root or VMX non-root operation, this information is stored in bit 29 of the
exit-reason field (see Table 21-13 in Section 21.9.1). The bit is set by SMM
VM exits from VMX root operation.

If the SMM VM exit occurred in VMX non-root operation and an MTF VM exit
was pending, bit 28 of the exit-reason field is set; otherwise, it is cleared.

Bits 27:16 and bits 31:30 are cleared.

® Exit qualification. For an SMM VM exit due an SMI that arrives immediately
after the retirement of an 1/0 instruction, the exit qualification contains
information about the 1/0 instruction that retired immediately before the SMI.It
has the format given in Table 26-9.

Table 26-9. Exit Qualification for SMIs That Arrive Inmediately
After the Retirement of an I/0 Instruction

Bit Position(s) | Contents

2.0 Size of access:

0 = 1-byte

1 = 2-byte

3 =4-byte

Other values not used.

3 Direction of the attempted access (0 = OUT, 1 = IN)
4 String instruction (O = not string; 1 = string)
5 REP prefixed (0 = not REP; 1 = REP)

26-28 Vol.3

SYSTEM MANAGEMENT MODE

Table 26-9. Exit Qualification for SMIs That Arrive Immediately
After the Retirement of an 1/0 Instruction (Contd.)

Bit Position(s) | Contents

6 Operand encoding (0 = DX, 1 = immediate)

15:7 Reserved (cleared to 0)

31:16 Port number (as specified in the I/0 instruction)

63:32 Reserved (cleared to 0). These bits exist only on processors
that support Intel 64 architecture.

Guest linear address. This field is used for VM exits due to SMIs that arrive
immediately after the retirement of an INS or OUTS instruction for which the
relevant segment (ES for INS; DS for OUTS unless overridden by an instruction
prefix) is usable. The field receives the value of the linear address generated by
ES:(E)DI (for INS) or segment:(E)SI (for OUTS; the default segment is DS but
can be overridden by a segment override prefix) at the time the instruction
started. If the relevant segment is not usable, the value is undefined. On
processors that support Intel 64 architecture, bits 63:32 are clear if the logical
processor was not in 64-bit mode before the VM exit.

1/0 RCX, I/0 RSI, I/0 RDI, and I/0 RIP. For an SMM VM exit due an SMI
that arrives immediately after the retirement of an 1/0 instruction, these fields
receive the values that were in RCX, RSI, RDI, and RIP, respectively, before the
1/0 instruction executed. Thus, the value saved for I/0 RIP addresses the 1/0
instruction.

26.15.2.4 Saving Guest State

SMM VM exits save the contents of the SMBASE register into the corresponding field
in the guest-state area.

The value of the VMX-preemption timer is saved into the corresponding field in the
guest-state area if the “save VMX-preemption timer value” VM-exit control is 1. That
field becomes undefined if, in addition, either the SMM VM exit is from VMX root
operation or the SMM VM exit is from VMX non-root operation and the “activate VMX-
preemption timer” VM-execution control is O.

26.15.2.5 Updating Non-Register State

SMM VM exits affect the non-register state of a logical processor as follows:

SMM VM exits cause non-maskable interrupts (NMIs) to be blocked; they may be
unblocked through execution of IRET or through a VM entry (depending on the
value loaded for the interruptibility state and the setting of the “virtual NMIs”
VM-execution control).

Vol.3 26-29

SYSTEM MANAGEMENT MODE

® SMM VM exits cause SMIs to be blocked; they may be unblocked by a VM entry
that returns from SMM (see Section 26.15.4).

SMM VM exits invalidate VPID-tagged mappings and dual-tagged mappings associ-
ated with VPID O000OH (dual-tagged mappings for VPID 0000H are invalidated for all
EPTPs); see Section 25.3. (Ordinary VM exits are not required to perform such inval-
idation if the “enable VPID” VM-execution control is 1; see Section 24.5.5.)

26.15.3 Operation of an SMM Monitor

Once invoked, an SMM monitor is in VMX root operation and can use VMX instructions
to configure VMCSs and to cause VM entries to virtual machines supported by those
structures. As noted in Section 26.15.1, the VMXOFF instruction cannot be used
under the dual-monitor treatment and thus cannot be used by an SMM monitor.

The RSM instruction also cannot be used under the dual-monitor treatment. As noted
in Section 22.1.3, it causes a VM exit if executed in SMM in VMX non-root operation.
If executed in VMX root operation, it causes an invalid-opcode exception. SMM
monitor uses VM entries to return from SMM (see Section 26.15.4).

26.15.4 VM Entries that Return from SMM

The SMM monitor returns from SMM using a VM entry with the “entry to SMM”
VM-entry control clear. VM entries that return from SMM reverse the effects of an
SMM VM exit (see Section 26.15.2).

VM entries that return from SMM may differ from other VM entries in that they do not
necessarily enter VMX non-root operation. If the executive-VMCS pointer field in the
current VMCS contains the VMXON pointer, the logical processor remains in VMX root
operation after VM entry.

For differences between VM entries that return from SMM and other VM entries see
Sections 26.15.4.1 through 26.15.4.10.

26.15.4.1 Checks on the Executive-VMCS Pointer Field

VM entries that return from SMM perform the following checks on the executive-
VMCS pointer field in the current VMCS:

® Bits 11:0 must be 0.

® On processors that support Intel 64 architecture, the pointer must not set any
bits beyond the processor’s physical-address width.1 On processors that do not
support Intel 64 architecture, it must not set any bits in the range 63:32.

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

26-30 Vol.3

SYSTEM MANAGEMENT MODE

® The 32 bits located in memory referenced by the physical address in the pointer
must contain the processor’s VMCS revision identifier (see Section 21.2).

The checks above are performed before the checks described in Section 26.15.4.2
and before any of the following checks:

® If the “deactivate dual-monitor treatment” VM-entry control is O, the launch state
of the executive VMCS (the VMCS referenced by the executive-VMCS pointer
field) must be launched (see Section 21.10.3).

® If the “deactivate dual-monitor treatment” VM-entry control is 1, the executive-
VMCS pointer field must contain the VMXON pointer (see Section 26.15.7).1

26.15.4.2 Checks on VM-Execution Control Fields

VM entries that return from SMM differ from other VM entries with regard to the
checks performed on the VM-execution control fields specified in Section 23.2.1.1.
They do not apply the checks to the current VMCS. Instead, VM-entry behavior
depends on whether the executive-VMCS pointer field contains the VMXON pointer:

® If the executive-VMCS pointer field contains the VMXON pointer (the VM entry
remains in VMX root operation), the checks are not performed at all.

® If the executive-VMCS pointer field does not contain the VMXON pointer (the
VM entry enters VMX non-root operation), the checks are performed on the
VM-execution control fields in the executive VMCS (the VMCS referenced by the
executive-VMCS pointer field in the current VMCS). These checks are performed
after checking the executive-VMCS pointer field itself (for proper alignment).

Other VM entries ensure that, if “activate VMX-preemption timer” VM-execution
control is 0, the “save VMX-preemption timer value” VM-exit control is also 0. This
check is not performed by VM entries that return from SMM.

26.15.4.3 Checks on VM-Entry Control Fields

VM entries that return from SMM differ from other VM entries with regard to the
checks performed on the VM-entry control fields specified in Section 23.2.1.3.

Specifically, if the executive-VMCS pointer field contains the VMXON pointer (the
VM entry remains in VMX root operation), the following must not all hold for the
VM-entry interruption-information field:

® the valid bit (bit 31) in the VM-entry interruption-information field is 1
® the interruption type (bits 10:8) is not 7 (other event); and
® the vector (bits 7:0) is not O (pending MTF VM exit).

1. An SMM monitor can determine the VMXON pointer by reading the executive-VMCS pointer field
in the current VMCS after the SMM VM exit that activates the dual-monitor treatment.

Vol.3 26-31

SYSTEM MANAGEMENT MODE

26.15.4.4 Checks on the Guest State Area

Section 23.3.1 specifies checks performed on fields in the guest-state area of the
VMCS. Some of these checks are conditioned on the settings of certain VM-execution
controls (e.g., “virtual NMIs” or “unrestricted guest”). VM entries that return from
SMM modify these checks based on whether the executive-VMCS pointer field
contains the VMXON pointer:1

® If the executive-VMCS pointer field contains the VMXON pointer (the VM entry
remains in VMX root operation), the checks are performed as all relevant VM-
execution controls were 0. (As a result, some checks may not be performed at
all.)

® If the executive-VMCS pointer field does not contain the VMXON pointer (the
VM entry enters VMX non-root operation), this check is performed based on the
settings of the VM-execution controls in the executive VMCS (the VMCS
referenced by the executive-VMCS pointer field in the current VMCS).

For VM entries that return from SMM, the activity-state field must not indicate the
wait-for-SIPI state if the executive-VMCS pointer field contains the VMXON pointer
(the VM entry is to VMX root operation).

26.15.4.5 Loading Guest State
VM entries that return from SMM load the SMBASE register from the SMBASE field.

VM entries that return from SMM invalidate VPID-tagged mappings and dual-tagged
mappings associated with all VPIDs (dual-tagged mappings are invalidated for all
EPTPs); see Section 25.3. (Ordinary VM entries are required to perform such invali-
dation only for VPID O0O00H and are not required to do even that if the “enable VPID”
VM-execution control is 1; see Section 23.3.2.5.)

26.15.4.6 VMX-Preemption Timer

A VM entry that returns from SMM activates the VMX-preemption timer only if the
executive-VMCS pointer field does not contain the VMXON pointer (the VM entry
enters VMX non-root operation) and the “activate VMX-preemption timer” VM-entry
control is 1 in the executive VMCS (the VMCS referenced by the executive-VMCS
pointer field). In this case, VM entry starts the VMX-preemption timer with the value
in the VMX-preemption timer-value field in the current VMCS.

1. An SMM monitor can determine the VMXON pointer by reading the executive-VMCS pointer field
in the current VMCS after the SMM VM exit that activates the dual-monitor treatment.

26-32 Vol.3

SYSTEM MANAGEMENT MODE

26.15.4.7 Updating the Current-VMCS and SMM-Transfer VMCS Pointers

Successful VM entries (returning from SMM) load the SMM-transfer VMCS pointer
with the current-VMCS pointer. Following this, they load the current-VMCS pointer
from a field in the current VMCS:

® If the executive-VMCS pointer field contains the VMXON pointer (the VM entry
remains in VMX root operation), the current-VMCS pointer is loaded from the
VMCS-link pointer field.

® If the executive-VMCS pointer field does not contain the VMXON pointer (the
VM entry enters VMX non-root operation), the current-VMCS pointer is loaded
with the value of the executive-VMCS pointer field.

If the VM entry successfully enters VMX non-root operation, the VM-execution
controls in effect after the VM entry are those from the new current VMCS. This
includes any structures external to the VMCS referenced by VM-execution control
fields.

The updating of these VMCS pointers occurs before event injection. Event injection is
determined, however, by the VM-entry control fields in the VMCS that was current
when the VM entry commenced.

26.15.4.8 VM Exits Induced by VM Entry

Section 23.5.1.2 describes how the event-delivery process invoked by event injec-
tion may lead to a VM exit. Section 23.6.3 to Section 23.6.7 describe other situations
that may cause a VM exit to occur immediately after a VM entry.

Whether these VM exits occur is determined by the VM-execution control fields in the
current VMCS. For VM entries that return from SMM, they can occur only if the exec-
utive-VMCS pointer field does not contain the VMXON pointer (the VM entry enters
VMX non-root operation).

In this case, determination is based on the VM-execution control fields in the VMCS
that is current after the VM entry. This is the VMCS referenced by the value of the
executive-VMCS pointer field at the time of the VM entry (see Section 26.15.4.7).
This VMCS also controls the delivery of such VM exits. Thus, VM exits induced by a
VM entry returning from SMM are to the executive monitor and not to the SMM
monitor.

26.15.4.9 SMI Blocking

VM entries that return from SMM determine the blocking of system-management
interrupts (SMIs) as follows:

® If the “deactivate dual-monitor treatment” VM-entry control is 0, SMls are
blocked after VM entry if and only if the bit 2 in the interruptibility-state field is 1.

® If the “deactivate dual-monitor treatment” VM-entry control is 1, the blocking of
SMIs depends on whether the logical processor is in SMX operation:®

Vol.3 26-33

SYSTEM MANAGEMENT MODE

— If the logical processor is in SMX operation, SMIs are blocked after VM entry.

— If the logical processor is outside SMX operation, SMls are unblocked after
VM entry.

VM entries that return from SMM and that do not deactivate the dual-monitor treat-
ment may leave SMIs blocked. This feature exists to allow an SMM monitor to invoke
functionality outside of SMM without unblocking SMis.

26.15.4.10 Failures of VM Entries That Return from SMM

Section 23.7 describes the treatment of VM entries that fail during or after loading
guest state. Such failures record information in the VM-exit information fields and
load processor state as would be done on a VM exit. The VMCS used is the one that
was current before the VM entry commenced. Control is thus transferred to the SMM
monitor and the logical processor remains in SMM.

26.15.5 Enabling the Dual-Monitor Treatment

Code and data for the SMM monitor reside in a region of SMRAM called the monitor
segment (MSEG). Code running in SMM determines the location of MSEG and estab-
lishes its content. This code is also responsible for enabling the dual-monitor treat-
ment.

SMM code enables the dual-monitor treatment and determines the location of MSEG
by writing to IA32_SMM_MONITOR_CTL MSR (index 9BH). The MSR has the following
format:

® Bit O is the register’s valid bit. The SMM monitor may be invoked using VMCALL
only if this bit is 1. Because VMCALL is used to activate the dual-monitor
treatment (see Section 26.15.6), the dual-monitor treatment cannot be
activated if the bit is 0. This bit is cleared when the logical processor is reset.

® Bits 11:1 are reserved.

® Bits 31:12 contain a value that, when shifted right 12 bits, is the physical address
of MSEG (the MSEG base address).

® Bits 63:32 are reserved.
The following items detail use of this MSR:

® The lA32_SMM_MONITOR_CTL MSR is supported only on processors that support
the dual-monitor treatment.® On other processors, accesses to the MSR using
RDMSR or WRMSR generate a general-protection fault (#GP(0)).

1. Alogical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER]
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.

26-34 Vol.3

SYSTEM MANAGEMENT MODE

® A write to the IA32_SMM_MONITOR_CTL MSR using WRMSR generates a
general-protection fault (#GP(0)) if executed outside of SMM or if an attempt is
made to set any reserved bit. An attempt to write to 1A32_SMM_MONITOR_CTL
MSR fails if made as part of a VM exit that does not end in SMM or part of a
VM entry that does not begin in SMM.

® Reads from IA32_SMM_MONITOR_CTL MSR using RDMSR are allowed any time
RDMSR is allowed. The MSR may be read as part of any VM exit.

® The dual-monitor treatment can be activated only if the valid bit in the MSR is set
to 1.

The 32 bytes located at the MSEG base address are called the MSEG header. The
format of the MSEG header is given in Table 26-10 (each field is 32 bits).

Table 26-10. Format of MSEG Header

Byte Offset Field

0 MSEG-header revision identifier
4 SMM-monitor features

8 GDTR limit

12 GDTR base offset

16 CS selector

20 EIP offset

24 ESP offset

28 CR3 offset

To ensure proper behavior in VMX operation, software should maintain the MSEG
header in writeback cacheable memory. Future implementations may allow or
require a different memory type.1 Software should consult the VMX capability MSR
1A32_VMX_BASIC (see Appendix G.1).

SMM code should enable the dual-monitor treatment (by setting the valid bit in
IA32_SMM_MONITOR_CTL MSR) only after establishing the content of the MSEG
header as follows:

1. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix G.1) to deter-
mine whether the dual-monitor treatment is supported.

1. Alternatively, software may map the MSEG header with the UC memory type; this may be neces-
sary, depending on how memory is organized. Doing so is strongly discouraged unless necessary
as it will cause the performance of transitions using those structures to suffer significantly. In
addition, the processor will continue to use the memory type reported in the VMX capability MSR
IA32_VMX_BASIC with exceptions noted in Appendix G.1.

Vol.3 26-35

SYSTEM MANAGEMENT MODE

® Bytes 3:0 contain the MSEG revision identifier. Different processors may use
different MSEG revision identifiers. These identifiers enable software to avoid
using an MSEG header formatted for one processor on a processor that uses a
different format. Software can discover the MSEG revision identifier that a
processor uses by reading the VMX capability MSR 1A32_VMX_MISC (see
Appendix G.6).

® Bytes 7:4 contain the SMM-monitor features field. Bits 31:1 of this field are
reserved and must be zero. Bit O of the field is the 1A-32e mode SMM feature
bit. It indicates whether the logical processor will be in 1A-32e mode after the
SMM monitor is activated (see Section 26.15.6).

® Bytes 31:8 contain fields that determine how processor state is loaded when the
SMM monitor is activated (see Section 26.15.6.4). SMM code should establish
these fields so that activating of the SMM monitor invokes the SMM monitor’s
initialization code.

26.15.6 Activating the Dual-Monitor Treatment

The dual-monitor treatment may be enabled by SMM code as described in Section
26.15.5. The dual-monitor treatment is activated only if it is enabled and only by the
executive monitor. The executive monitor activates the dual-monitor treatment by
executing VMCALL in VMX root operation.

When VMCALL activates the dual-monitor treatment, it causes an SMM VM exit.
Differences between this SMM VM exit and other SMM VM exits are discussed in
Sections 26.15.6.1 through 26.15.6.5. See also “VMCALL—Call to VM Monitor” in
Chapter 6 of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B.

26.15.6.1 Initial Checks

An execution of VMCALL attempts to activate the dual-monitor treatment if (1) the
processor supports the dual-monitor treatment;! (2) the logical processor is in VMX
root operation; (3) the logical processor is outside SMM and the valid bit is set in the
1A32_SMM_MONITOR_CTL MSR; (4) the logical processor is not in virtual-8086
mode and not in compatibility mode; (5) CPL = O; and (6) the dual-monitor treat-
ment is not active.

The VMCS that manages SMM VM exit caused by this VMCALL is the current VMCS
established by the executive monitor. The VMCALL performs the following checks on
the current VMCS in the order indicated:

1. There must be a current VMCS pointer.

2. The launch state of the current VMCS must be clear.

1. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix G.1) to deter-
mine whether the dual-monitor treatment is supported.

26-36 Vol.3

SYSTEM MANAGEMENT MODE

3. The VM-exit control fields must be valid:

— Reserved bits in the VM-exit controls must be set properly. Software may
consult the VMX capability MSR 1A32_VMX_EXIT_CTLS to determine the
proper settings (see Appendix G.4).

— The following checks are performed for the VM-exit MSR-store address if the
VM-exit MSR-store count field is non-zero:

The lower 4 bits of the VM-exit MSR-store address must be 0. On
processors that support Intel 64 architecture, the address should not set
any bits beyond the processor’s physical-address width.1 On processors
that do not support Intel 64 architecture, the address should not set any
bits in the range 63:32.

On processors that support Intel 64 architecture, the address of the last
byte in the VM-exit MSR-store area should not set any bits beyond the
processor’s physical-address width. On processors that do not support
Intel 64 architecture, the address of the last byte in the VM-exit MSR-
store area should not set any bits in the range 63:32. The address of this
last byte is VM-exit MSR-store address + (MSR count * 16) — 1. (The
arithmetic used for the computation uses more bits than the processor’s
physical-address width.)

If any of these checks fail, subsequent checks are skipped and VMCALL fails. If all
these checks succeed, the logical processor uses the IA32_SMM_MONITOR_CTL MSR
to determine the base address of MSEG. The following checks are performed in the
order indicated:

1.

The logical processor reads the 32 bits at the base of MSEG and compares them
to the processor’s MSEG revision identifier.

The logical processor reads the SMM-monitor features field:

— Bit 0 of the field is the 1A-32e mode SMM feature bit, and it indicates whether
the logical processor will be in 1A-32e mode after the SMM monitor is
activated.

If the VMCALL is executed on a processor that does not support Intel 64
architecture, the 1A-32e mode SMM feature bit must be 0.

If the VMCALL is executed in 64-bit mode, the I1A-32e mode SMM feature
bit must be 1.

— Bits 31:1 of this field are currently reserved and must be zero.

If any of these checks fail, subsequent checks are skipped and the VMCALL fails.

1.

Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

Vol.3 26-37

SYSTEM MANAGEMENT MODE

26.15.6.2 MSEG Checking

SMM VM exits that activate the dual-monitor treatment check the following before
updating the current-VMCS pointer and the executive-VMCS pointer field (see
Section 26.15.2.2):

® The 32 bits at the MSEG base address (used as a physical address) must contain
the processor’s MSEG revision identifier.

® Bits 31:1 of the SMM-monitor features field in the MSEG header (see
Table 26-10) must be 0. Bit O of the field (the 1A-32e mode SMM feature bit)
must be O if the processor does not support Intel 64 architecture.

If either of these checks fail, execution of VMCALL fails.

26.15.6.3 Updating the Current-VMCS and Executive-VMCS Pointers

Before performing the steps in Section 26.15.2.2, SMM VM exits that activate the
dual-monitor treatment begin by loading the SMM-transfer VMCS pointer with the
value of the current-VMCS pointer.

26.15.6.4 Loading Host State

The VMCS that is current during an SMM VM exit that activates the dual-monitor
treatment was established by the executive monitor. It does not contain the VM-exit
controls and host state required to initialize the SMM monitor. For this reason, such
SMM VM exits do not load processor state as described in Section 24.5. Instead,
state is set to fixed values or loaded based on the content of the MSEG header (see
Table 26-10):

® CRO is set to as follows:
— PG, NE, ET, MP, and PE are all set to 1.
— CD and NW are left unchanged.
— All other bits are cleared to 0.
® CRS3is set as follows:
— Bits 63:32 are cleared on processors that supports 1A-32e mode.

— Bits 31:12 are set to bits 31:12 of the sum of the MSEG base address and the
CR3-offset field in the MSEG header.

— Bits 11:5 and bits 2:0 are cleared (the corresponding bits in the CR3-offset
field in the MSEG header are ignored).

— Bits 4:3 are set to bits 4:3 of the CR3-offset field in the MSEG header.
® CR4is set as follows:

— MCE and PGE are cleared.

— PAE is set to the value of the 1A-32e mode SMM feature bit.

26-38 Vol.3

SYSTEM MANAGEMENT MODE

— If the IA-32e mode SMM feature bit is clear, PSE is set to 1 if supported by the
processor; if the bit is set, PSE is cleared.

— All other bits are unchanged.

DR?7 is set to 400H.

The 1A32_DEBUGCTL MSR is cleared to 00000000_00000000H.
The registers CS, SS, DS, ES, FS, and GS are loaded as follows:

— All registers are usable.

— CS.selector is loaded from the corresponding fields in the MSEG header (the
high 16 bits are ignored), with bits 2:0 cleared to O. If the result is OO00H,
CS.selector is set to O008H.

— The selectors for SS, DS, ES, FS, and GS are set to CS.selector+0008H. If the
result is 0000H (if the CS selector was OxFFF8), these selectors are instead
set to OOO8H.

— The base addresses of all registers are cleared to zero.

— The segment limits for all registers are set to FFFFFFFFH.

— The AR bytes for the registers are set as follows:

CS.Type is set to 11 (execute/read, accessed, non-conforming code
segment).

For SS, DS, FS, and GS, the Type is set to 3 (read/write, accessed,
expand-up data segment).

The S bits for all registers are set to 1.
The DPL for each register is set to 0.
The P bits for all registers are set to 1.

On processors that support Intel 64 architecture, CS.L is loaded with the
value of the 1A-32e mode SMM feature bit.

CS.D is loaded with the inverse of the value of the 1A-32e mode SMM
feature bit.

For each of SS, DS, FS, and GS, the D/B bit is set to 1.

The G bits for all registers are set to 1.

LDTR is unusable. The LDTR selector is cleared to O000H, and the register is
otherwise undefined (although the base address is always canonical)

GDTR.base is set to the sum of the MSEG base address and the GDTR base-offset
field in the MSEG header (bits 63:32 are always cleared on processors that
supports 1A-32e mode). GDTR.limit is set to the corresponding field in the MSEG
header (the high 16 bits are ignored).

IDTR.base is unchanged. IDTR.limit is cleared to OOO0H.

Vol.3 26-39

SYSTEM MANAGEMENT MODE

® RIP is set to the sum of the MSEG base address and the value of the RIP-offset
field in the MSEG header (bits 63:32 are always cleared on logical processors
that support 1A-32e mode).

® RSP is set to the sum of the MSEG base address and the value of the RSP-offset
field in the MSEG header (bits 63:32 are always cleared on logical processor that
supports 1A-32e mode).

® RFLAGS is cleared, except bit 1, which is always set.
® The logical processor is left in the active state.
® Event blocking after the SMM VM exit is as follows:
— There is no blocking by STI or by MOV SS.
— There is blocking by non-maskable interrupts (NMls) and by SMis.
® There are no pending debug exceptions after the SMM VM exit.

® For processors that support 1A-32e mode, the IA32_EFER MSR is modified so that
LME and LMA both contain the value of the 1A-32e mode SMM feature bit.

If any of CR3[63:5], CR4.PAE, CR4.PSE, or IA32_EFER.LMA is changing, the TLBs are
updated so that, after VM exit, the logical processor does not use translations that
were cached before the transition. This is not necessary for changes that would not
affect paging due to the settings of other bits (for example, changes to CR4.PSE if
IA32_EFER.LMA was 1 before and after the transition).

26.15.6.5 Loading MSRs

The VM-exit MSR-load area is not used by SMM VM exits that activate the dual-
monitor treatment. No MSRs are loaded from that area.

26.15.7 Deactivating the Dual-Monitor Treatment

An SMM monitor may deactivate the dual monitor treatment and return the
processor to default treatment of SMIs and SMM (see Section 26.14). It does this by
executing a VM entry with the “deactivate dual-monitor treatment” VM-entry control
setto 1.

As noted in Section 23.2.1.3 and Section 26.15.4.1, an attempt to deactivate the
dual-monitor treatment fails in the following situations: (1) the processor is not in
SMM; (2) the “entry to SMM” VM-entry control is 1; or (3) the executive-VMCS
pointer does not contain the VMXON pointer (the VM entry is to VMX non-root oper-
ation).

As noted in Section 26.15.4.9, VM entries that deactivate the dual-monitor treat-
ment ignore the SMI bit in the interruptibility-state field of the guest-state area.
Instead, such a VM entry unconditionally unmasks SMis.

26-40 Vol.3

SYSTEM MANAGEMENT MODE

26.16 SMI AND PROCESSOR EXTENDED STATE
MANAGEMENT

On processors that support processor extended states using XSAVE/XRSTOR (see
Chapter 13, “System Programming for Instruction Set Extensions and Processor
Extended States”), the processor does not save any XSAVE/XRSTOR related state on
an SMI. It is the responsibility of the SMM handler code to properly preserve the state
information (including CR4.0SXSAVE, the XFEATURE_ENABLED_MASK register, and
possibly processor extended states using XSAVE/XRSTOR). Therefore, the SMM
handler must follow the rules described in Chapter 13.

Vol.3 26-41

SYSTEM MANAGEMENT MODE

26-42 Vol.3

CHAPTER 27
VIRTUAL-MACHINE MONITOR PROGRAMMING
CONSIDERATIONS

27.1 VMX SYSTEM PROGRAMMING OVERVIEW

The Virtual Machine Monitor (VMM) is a software class used to manage virtual
machines (VM). This chapter describes programming considerations for VMMs.

Each VM behaves like a complete physical machine and can run operating system
(0OS) and applications. The VMM software layer runs at the most privileged level and
has complete ownership of the underlying system hardware. The VMM controls
creation of a VM, transfers control to a VM, and manages situations that can cause
transitions between the guest VMs and host VMM. The VMM allows the VMs to share
the underlying hardware and yet provides isolation between the VMs. The guest soft-
ware executing in a VM is unaware of any transitions that might have occurred
between the VM and its host.

27.2 SUPPORTING PROCESSOR OPERATING MODES IN
GUEST ENVIRONMENTS

Typically, VMMs transfer control to a VM using VMX transitions referred to as VM
entries. The boundary conditions that define what a VM is allowed to execute in isola-
tion are specified in a virtual-machine control structure (VMCS).

As noted in Section 20.8, processors may fix certain bits in CRO and CR4 to specific
values and not support other values. The first processors to support VMX operation
require that CRO.PE and CRO.PG be 1 in VMX operation. Thus, a VM entry is allowed
only to guests with paging enabled that are in protected mode or in virtual-8086
mode. Guest execution in other processor operating modes need to be specially
handled by the VMM.

One example of such a condition is guest execution in real-mode. A VMM could
support guest real-mode execution using at least two approaches:

® By using a fast instruction set emulator in the VMM.

® By using the similarity between real-mode and virtual-8086 mode to support
real-mode guest execution in a virtual-8086 container. The virtual-8086
container may be implemented as a virtual-8086 container task within a monitor
that emulates real-mode guest state and instructions, or by running the guest VM
as the virtual-8086 container (by entering the guest with RFLAGS.VM! set).
Attempts by real-mode code to access privileged state outside the virtual-8086
container would trap to the VMM and would also need to be emulated.

Vol.3 27-1

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

Another example of such a condition is guest execution in protected mode with
paging disabled. A VMM could support such guest execution by using “identity” page
tables to emulate unpaged protected mode.

27.2.1 Emulating Guest Execution

In certain conditions, VMMs may resort to using a virtual-8086 container to support
guest execution in operating modes not supported by VMX. But for other conditions,
VMMs may need to resort to emulating guest execution.

These are example conditions that require guest emulation in the VMM:

® Programming conditions that are not allowed by the VMX consistency checks.
Examples of this include transient conditions introduced when switching between
real-mode and protected mode (where some segment may not be consistent with
the operating mode).

® Conditions of guest task switching. Task switches always cause VM exits. To
correctly advance the guest state, the monitor needs to emulate the guest task-
switching behavior.

® When a SMM monitor is configured, conditions where the SMRAM is relocated to
an address above 1 MByte (HSEG).

® When executing SMM code in a guest container by an SMM monitor. SMM
processor operation allows address space ranges from 0-4 GBytes compared to
the 1 MByte address space in real-mode operation. Also, the 64-KByte segment
limit of real-mode is increased to 4 GBytes in SMM).

27.3 MANAGING VMCS REGIONS AND POINTERS

A VMM must observe necessary procedures when working with a VMCS, the associ-
ated VMCS pointer, and the VMCS region. It must also not assume the state of persis-
tency for VMCS regions in memory or cache.

Before entering VMX operation, the host VMM allocates a VMXON region. A VMM can
host several virtual machines and have many VMCSs active under its management.
A unique VMCS region is required for each virtual machine; a VMXON region is
required for the VMM itself.

A VMM determines the VMCS region size by reading 1A32_VMX_BASIC MSR; it
creates VMCS regions of this size using a 4-KByte-aligned area of physical memory.
Each VMCS region needs to be initialized with a VMCS revision identifier (at byte

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For processors that do
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers
(EAX, EIP, ESP, EFLAGS, etc.).

27-2 Vol.3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

offset 0) identical to the revision reported by the processor in the VMX capability
MSR.

NOTE

Software must not read or write directly to the VMCS data region as
the format is not architecturally defined. Consequently, Intel
recommends that the VMM remove any linear-address mappings to
VMCS regions before loading.

System software does not need to do special preparation to the VMXON region before
entering into VMX operation. The address of the VMXON region for the VMM is
provided as an operand to VMXON instruction. Once in VMX root operation, the VMM
needs to prepare data fields in the VMCS that control the execution of a VM upon a
VM entry. The VMM can make a VMCS the current VMCS by using the VMPTRLD
instruction. VMCS data fields must be read or written only through VMREAD and
VMWRITE commands respectively.

Every component of the VMCS is identified by a 32-bit encoding that is provided as
an operand to VMREAD and VMWRITE. Appendix H provides the encodings. A VMM
must properly initialize all fields in a VMCS before using the current VMCS for VM
entry.

A VMCS is referred to as a controlling VMCS if it is the current VMCS on a logical
processor in VMX non-root operation. A current VMCS for controlling a logical
processor in VMX non-root operation may be referred to as a working VMCS if the
logical processor is not in VMX non-root operation. The relationship of active, current
(i.e. working) and controlling VMCS during VMX operation is shown in Figure 27-1.

NOTE

As noted in Section 21.1, the processor may optimize VMX operation
by maintaining the state of an active VMCS (one for which VMPTRLD
has been executed) on the processor. Before relinquishing control to
other system software that may, without informing the VMM, remove
power from the processor (e.g., for transitions to S3 or S4) or leave
VMX operation, a VMM must VMCLEAR all active VMCSs. This ensures
that all VMCS data cached by the processor are flushed to memory
and that no other software can corrupt the current VMM’s VMCS data.
It is also recommended that the VMM execute VMXOFF after such
executions of VMCLEAR.

The VMX capability MSR 1A32_VMX_BASIC reports the memory type used by the
processor for accessing a VMCS or any data structures referenced through pointers in
the VMCS. Software must maintain the VMCS structures in cache-coherent memory.
Software must always map the regions hosting the 1/0 bitmaps, MSR bitmaps, VM-
exit MSR-store area, VM-exit MSR-load area, and VM-entry MSR-load area to the
write-back (WB) memory type. Mapping these regions to uncacheable (UC) memory
type is supported, but strongly discouraged due to negative impact on performance.

Vol.3 27-3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

(a) VMX Operation and VMX Transitions

VM Entry W VM Entry 1 VM Entryl VM Entry 1 VMXOFF 1

Processor N N
Operation ---—--f ™ P
V' 4
J i i J VM Exit

VM Exit VM Exit
VMXON VM Exit
Legend: N : :
Outside VMX Root VMX
VMX Operation Non-Root
Operation Operation
(b) State of VMCS and VMX Operation
VMRESUME— N
VMLAUNCH—— VMCLEAR B
VMPTRLD B—
VM Exit VM Exit
VMCS B
VMCS A
VMPTRLD A VMPTRLD A VM Bxit= VM Exit=
VMLAUNCH VMRESUME VMCLEAR A
Legend: - 3
Inactive Current VMCS Active VMCS Current VMCS
VMCS (working) (not current) (controlling)

Figure 27-1. VMX Transitions and States of VMCS in a Logical Processor

274 USING VMX INSTRUCTIONS

VMX instructions are allowed only in VMX root operation. An attempt to execute a
VMX instruction in VMX non-root operation causes a VM exit.

27-4 Vol.3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

Processors perform various checks while executing any VMX instruction. They follow
well-defined error handling on failures. VMX instruction execution failures detected
before loading of a guest state are handled by the processor as follows:

® If the working-VMCS is not valid, the instruction fails by setting RFLAGS.CF = 1.

® If the working-VMCS pointer is valid, RFLAGS.ZF is set to value 1 and the proper
error-code is saved in the VM-instruction error field of the working-VMCS.

Software is required to check RFLAGS.CF and RFLAGS.ZF to determine the success or
failure of VMX instruction executions.

After a VM-entry instruction (VMRESUME or VMLAUNCH) successfully completes the
general checks and checks on VMX controls and the host-state area (see Section
23.2), any errors encountered while loading of guest-state (due to bad guest-state or
bad MSR loading) causes the processor to load state from the host-state area of the
working VMCS as if a VM exit had occurred (see Section 27.7).

This failure behavior differs from that of VM exits in that no guest-state is saved to
the guest-state area. A VMM can detect its VM-exit handler was invoked by such a
failure by checking bit 31 (for 1) in the exit reason field of the working VMCS and
further identify the failure by using the exit qualification field.

275 VMM SETUP & TEAR DOWN

VMMs need to ensure that the processor is running in protected mode with paging
before entering VMX operation. The following list describes the minimal steps
required to enter VMX root operation with a VMM running at CPL = 0.

® Check VMX support in processor using CPUID.

¢ Determine the VMX capabilities supported by the processor through the VMX
capability MSRs. See Section 27.5.1 and Appendix G.

® Create a VMXON region in non-pageable memory of a size specified by
1A32_VMX_BASIC MSR and aligned to a 4-KByte boundary. Software should read
the capability MSRs to determine width of the physical addresses that may be
used for the VMXON region and ensure the entire VMXON region can be
addressed by addresses with that width. Also, software must ensure that the
VMXON region is hosted in cache-coherent memory.

® Initialize the version identifier in the VMXON region (the first 32 bits) with the
VMCS revision identifier reported by capability MSRs.

® Ensure the current processor operating mode meets the required CRO fixed bits
(CRO.PE = 1, CRO.PG = 1). Other required CRO fixed bits can be detected
through the 1A32_VMX_CRO_FIXEDO and IA32_VMX_CRO_FIXED1 MSRs.

® Enable VMX operation by setting CR4.VMXE = 1. Ensure the resultant CR4 value
supports all the CR4 fixed bits reported in the 1A32_VMX_CR4_FIXEDO and
IA32_VMX_CR4_FIXED1 MSRs.

Vol.3 27-5

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

® Ensure that the 1A32_FEATURE_CONTROL MSR (MSR index 3AH) has been
properly programmed and that its lock bit is set (Bit 0 = 1). This MSR is generally
configured by the BIOS using WRMSR.

¢ Execute VMXON with the physical address of the VMXON region as the operand.
Check successful execution of VMXON by checking if RFLAGS.CF = 0.

Upon successful execution of the steps above, the processor is in VMX root operation.

A VMM executing in VMX root operation and CPL = O leaves VMX operation by
executing VMXOFF and verifies successful execution by checking if RFLAGS.CF = 0
and RFLAGS.ZF = 0.

If an SMM monitor has been configured to service SMIs while in VMX operation (see
Section 26.15), the SMM monitor needs to be torn down before the executive
monitor can leave VMX operation (see Section 26.15.7). VMXOFF fails for the execu-
tive monitor (a VMM that entered VMX operation by way of issuing VMXON) if SMM
monitor is configured.

27.5.1 Algorithms for Determining VMX Capabilities

As noted earlier, a VMM should determine the VMX capabilities supported by the
processor by reading the VMX capability MSRs. The architecture for these MSRs is
detailed in Appendix G.

As noted in Chapter 21, “Virtual-Machine Control Structures”, certain VMX controls
are reserved and must be set to a specific value (0 or 1) determined by the processor.
The specific value to which a reserved control must be set is its default setting.
Most controls have a default setting of O; Appendix G.2 identifies those controls that
have a default setting of 1. The term defaultl describes the class of controls whose
default setting is 1. The are controls in this class from the pin-based VM-execution
controls, the primary processor-based VM-execution controls, the VM-exit controls,
and the VM-entry controls. There are no secondary processor-based VM-execution
controls in the defaultl class.

Future processors may define new functionality for one or more reserved controls.
Such processors would allow each newly defined control to be set either to O or to 1.
Software that does not desire a control’s new functionality should set the control to
its default setting.

The capability MSRs 1A32_VMX_PINBASED_CTLS, 1A32_VMX_PROCBASED_CTLS,
IA32_VMX_EXIT_CTLS, and IA32_VMX_ENTRY_CTLS report, respectively, on the
allowed settings of most of the pin-based VM-execution controls, the primary
processor-based VM-execution controls, the VM-exit controls, and the VM-entry
controls. However, they will always report that any control in the defaultl class must
be 1. If a logical processor allows any control in the defaultl class to be O, it indicates
this fact by returning 1 for the value of bit 55 of the 1A32_VMX_BASIC MSR. If this bit
is 1, the logical processor supports the capability MSRs
IA32_VMX_TRUE_PINBASED_CTLS, 1A32_VMX_TRUE_PROCBASED_CTLS,
1A32_VMX_TRUE_EXIT_CTLS, and IA32_VMX_TRUE_ENTRY_CTLS. These capability

27-6 Vol. 3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

MSRs report, respectively, on the allowed settings of all of the pin-based VM-execu-
tion controls, the primary processor-based VM-execution controls, the VM-exit
controls, and the VM-entry controls.

Software may use one of the following high-level algorithms to determine the correct
default control settings:l

1. The following algorithm does not use the details given in Appendix G.2:
a. Ignore bit 55 of the 1A32_VMX_BASIC MSR.

b. Using RDMSR, read the VMX capability MSRs 1A32_VMX_PINBASED_CTLS,
IA32_VMX_PROCBASED_CTLS, IA32_VMX_EXIT_CTLS, and
IA32_VMX_ENTRY_CTLS.

c. Set the VMX controls as follows:

i) If the relevant VMX capability MSR reports that a control has a single
setting, use that setting.

ii) If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; and (2) the control’'s meaning is known to the VMM; then set the
control based on functionality desired.

iii) If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; and (2) the control’'s meaning is not known to the VMM; then set
the control to 0.

A VMM using this algorithm will set to 1 all controls in the defaultl class (in
step (c)(i)). It will operate correctly even on processors that allow some
controls in the defaultl class to be 0. However, such a VMM will not be able to
use the new features enabled by the O-setting of such controls. For that reason,
this algorithm is not recommended.

2. The following algorithm uses the details given in Appendix G.2. This algorithm
requires software to know the identity of the controls in the defaultl class:

a. Using RDMSR, read the 1A32_VMX_BASIC MSR.
b. Use bit 55 of that MSR as follows:

i) If bit 55 is O, use RDMSR to read the VMX capability MSRs
I1A32_VMX_PINBASED_CTLS, 1A32_VMX_PROCBASED_CTLS,
IA32_VMX_EXIT_CTLS, and 1A32_VMX_ENTRY_CTLS.

ii) If bit 55 is 1, use RDMSR to read the VMX capability MSRs
1A32_VMX_TRUE_PINBASED_CTLS,
1A32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and
IA32_VMX_TRUE_ENTRY_CTLS.

1. These algorithms apply only to the pin-based VM-execution controls, the primary processor-
based VM-execution controls, the VM-exit controls, and the VM-entry controls. Because there are
no secondary processor-based VM-execution controls in the default1 class, a VMM can always
set to 0 any such control whose meaning is unknown to it.

Vol.3 27-7

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

c. Set the VMX controls as follows:

)

i)

i)

iv)

If the relevant VMX capability MSR reports that a control has a single
setting, use that setting.

If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; and (2) the control’s meaning is known to the VMM; then set the
control based on functionality desired.

If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; (2) the control’s meaning is not known to the VMM; and (3) the
control is not in the defaultl class; then set the control to O.

If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; (2) the control’s meaning is not known to the VMM; and (3) the
control is in the defaultl class; then set the control to 1.

A VMM using this algorithm will set to 1 all controls in defaultl class whose
meaning it does not know (either in step (c)(i) or step (c)(iv)). It will operate
correctly even on processors that allow some controls in the defaultl class to be
0. Unlike a VMM using Algorithm 1, a VMM using Algorithm 2 will be able to use
the new features enabled by the O-setting of such controls.

3. The following algorithm uses the details given in Appendix G.2. This algorithm
does not require software to know the identity of the controls in the defaultl

class:

a. Using RDMSR, read the VMX capability MSRs 1A32_VMX_BASIC,
IA32_VMX_PINBASED_CTLS, 1A32_VMX_PROCBASED_CTLS,
IA32_VMX_EXIT_CTLS, and IA32_VMX_ENTRY_CTLS.

b. If bit 55 of the IA32_VMX_BASIC MSR is 0, set the VMX controls as follows:

D)

ii)

i)

If the relevant VMX capability MSR reports that a control has a single
setting, use that setting.

If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; and (2) the control’s meaning is known to the VMM; then set the
control based on functionality desired.

If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; and (2) the control’s meaning is not known to the VMM; then set
the control to O.

c. If bit 55 of the IA32_VMX_BASIC MSR is 1, use RDMSR to read the VMX
capability MSRs 1A32_VMX_TRUE_PINBASED_CTLS,
1IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and
IA32_VMX_TRUE_ENTRY_CTLS. Set the VMX controls as follows:

D)

ii)

27-8 Vol.3

If the relevant VMX capability MSR just read reports that a control has a
single setting, use that setting.

If (1) the relevant VMX capability MSR just read reports that a control can
be setto O or 1; and (2) the control’s meaning is known to the VMM; then
set the control based on functionality desired.

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

iii) If (1) the relevant VMX capability MSR just read reports that a control can
be set to 0 or 1; (2) the control’s meaning is not known to the VMM; and
(3) the relevant VMX capability MSR as read in step (a) reports that a
control can be set to O; then set the control to O.

iv) If (1) the relevant VMX capability MSR just read reports that a control can
be set to O or 1; (2) the control’s meaning is not known to the VMM; and
(3) the relevant VMX capability MSR as read in step (a) reports that a
control must be 1; then set the control to 1.

A VMM using this algorithm will set to 1 all controls in the defaultl class whose
meaning it does not know (in step (b)(i), step (c)(i), or step (c)(iv)). It will
operate correctly even on processors that allow some controls in the defaultl
class to be 0. Unlike a VMM using Algorithm 1, a VMM using Algorithm 3 will be
able to use the new features enabled by the O-setting of such controls. Unlike a
VMM using Algorithm 2, a VMM using Algorithm 3 need not know the identities
of the controls in the defaultl class.

27.6 PREPARATION AND LAUNCHING A VIRTUAL
MACHINE

The following list describes the minimal steps required by the VMM to set up and
launch a guest VM.

® Create a VMCS region in non-pageable memory of size specified by the VMX
capability MSR 1A32_VMX_BASIC and aligned to 4-KBytes. Software should read
the capability MSRs to determine width of the physical addresses that may be
used for a VMCS region and ensure the entire VMCS region can be addressed by
addresses with that width. The term “guest-VMCS address” refers to the physical
address of the new VMCS region for the following steps.

® Initialize the version identifier in the VMCS (first 32 bits) with the VMCS revision
identifier reported by the VMX capability MSR 1A32_VMX_BASIC.

® Execute the VMCLEAR instruction by supplying the guest-VMCS address. This will
initialize the new VMCS region in memory and set the launch state of the VMCS
to “clear”. This action also invalidates the working-VMCS pointer register to
FFFFFFFF_FFFFFFFFH. Software should verify successful execution of VMCLEAR
by checking if RFLAGS.CF = 0 and RFLAGS.ZF = 0.

® Execute the VMPTRLD instruction by supplying the guest-VMCS address. This
initializes the working-VMCS pointer with the new VMCS region’s physical
address.

® Issue a sequence of VMWRITES to initialize various host-state area fields in the
working VMCS. The initialization sets up the context and entry-points to the VMM
upon subsequent VM exits from the guest. Host-state fields include control
registers (CRO, CR3 and CR4), selector fields for the segment registers (CS, SS,
DS, ES, FS, GS and TR), and base-address fields (for FS, GS, TR, GDTR and IDTR;
RSP, RIP and the MSRs that control fast system calls).

Vol.3 27-9

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

Chapter 22 describes the host-state consistency checking done by the processor
for VM entries. The VMM is required to set up host-state that comply with these
consistency checks. For example, VMX requires the host-area to have a task

register (TR) selector with Tl and RPL fields set to O and pointing to a valid TSS.

® Use VMWRITEsS to set up the various VM-exit control fields, VM-entry control
fields, and VM-execution control fields in the VMCS. Care should be taken to
make sure the settings of individual fields match the allowed 0 and 1 settings for
the respective controls as reported by the VMX capability MSRs (see Appendix G).
Any settings inconsistent with the settings reported by the capability MSRs will
cause VM entries to fail.

® Use VMWRITE to initialize various guest-state area fields in the working VMCS.
This sets up the context and entry-point for guest execution upon VM entry.
Chapter 22 describes the guest-state loading and checking done by the processor
for VM entries to protected and virtual-8086 guest execution.

® The VMM is required to set up guest-state that complies with these consistency
checks:

— If the VMM design requires the initial VM launch to cause guest software
(typically the guest virtual BIOS) execution from the guest’s reset vector, it
may need to initialize the guest execution state to reflect the state of a
physical processor at power-on reset (described in Chapter 9, Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 3A).

— The VMM may need to initialize additional guest execution state that is not
captured in the VMCS guest-state area by loading them directly on the
respective processor registers. Examples include general purpose registers,
the CR2 control register, debug registers, floating point registers and so forth.
VMM may support lazy loading of FPU, MMX, SSE, and SSE2 states with
CRO.TS = 1 (described in Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volume 3A).

® Execute VMLAUNCH to launch the guest VM. If VMLAUNCH fails due to any
consistency checks before guest-state loading, RFLAGS.CF or RFLAGS.ZF will be
set and the VM-instruction error field (see Section 21.9.5) will contain the error-
code. If guest-state consistency checks fail upon guest-state loading, the
processor loads state from the host-state area as if a VM exit had occurred (see
Section 27.6).

VMLAUNCH updates the controlling-VMCS pointer with the working-VMCS pointer
and saves the old value of controlling-VMCS as the parent pointer. In addition, the
launch state of the guest VMCS is changed to “launched” from “clear”. Any
programmed exit conditions will cause the guest to VM exit to the VMM. The VMM
should execute VMRESUME instruction for subsequent VM entries to guests in a
“launched” state.

27-10 Vol.3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

27.7 HANDLING OF VM EXITS

This section provides examples of software steps involved in a VMM'’s handling of VM-
exit conditions:

¢ Determine the exit reason through a VMREAD of the exit-reason field in the
working-VMCS. Appendix | describes exit reasons and their encodings.

® VMREAD the exit-qualification from the VMCS if the exit-reason field provides a
valid qualification. The exit-qualification field provides additional details on the
VM-exit condition. For example, in case of page faults, the exit-qualification field
provides the guest linear address that caused the page fault.

® Depending on the exit reason, fetch other relevant fields from the VMCS.
Appendix I lists the various exit reasons.

® Handle the VM-exit condition appropriately in the VMM. This may involve the
VMM emulating one or more guest instructions, programming the underlying
host hardware resources, and then re-entering the VM to continue execution.

27.7.1 Handling VM Exits Due to Exceptions

As noted in Section 22.3, an exception causes a VM exit if the bit corresponding to
the exception’s vector is set in the exception bitmap. (For page faults, the error code
also determines whether a VM exit occurs.) This section provide some guidelines of
how a VMM might handle such exceptions.

Exceptions result when a logical processor encounters an unusual condition that soft-
ware may not have expected. When guest software encounters an exception, it may
be the case that the condition was caused by the guest software. For example, a
guest application may attempt to access a page that is restricted to supervisor
access. Alternatively, the condition causing the exception may have been established
by the VMM. For example, a guest OS may attempt to access a page that the VMM
has chosen to make not present.

When the condition causing an exception was established by guest software, the
VMM may choose to reflect the exception to guest software. When the condition was
established by the VMM itself, the VMM may choose to resume guest software after
removing the condition.

27.7.1.1 Reflecting Exceptions to Guest Software

If the VMM determines that a VM exit was caused by an exception due to a condition
established by guest software, it may reflect that exception to guest software. The
VMM would cause the exception to be delivered to guest software, where it can be
handled as it would be if the guest were running on a physical machine. This section
describes how that may be done.

In general, the VMM can deliver the exception to guest software using VM-entry
event injection as described in Section 23.5. The VMM can copy (using VMREAD and

Vol.3 27-11

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

VMWRITE) the contents of the VM-exit interruption-information field (which is valid,
since the VM exit was caused by an exception) to the VM-entry interruption-informa-
tion field (which, if valid, will cause the exception to be delivered as part of the next
VM entry). The VMM would also copy the contents of the VM-exit interruption error-
code field to the VM-entry exception error-code field; this need not be done if bit 11
(error code valid) is clear in the VM-exit interruption-information field. After this, the
VMM can execute VMRESUME.

The following items provide details that may qualify the general approach:

Care should be taken to ensure that reserved bits 30:12 in the VM-entry inter-
ruption-information field are 0. In particular, some VM exits may set bit 12 in the
VM-exit interruption-information field to indicate NMI unblocking due to IRET. If
this bit is copied as 1 into the VM-entry interruption-information field, the next
VM entry will fail because that bit should be 0.

Bit 31 (valid) of the IDT-vectoring information field indicates, if set, that the
exception causing the VM exit occurred while another event was being delivered
to guest software. If this is the case, it may not be appropriate simply to reflect
that exception to guest software. To provide proper virtualization of the exception
architecture, a VMM should handle nested events as a physical processor would.
Processor handling is described in Chapter 6, “Interrupt 8—Double Fault
Exception (#DF)” in Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 3A.

— The VMM should reflect the exception causing the VM exit to guest software
in any of the following cases:

® The value of bits 10:8 (interruption type) of the IDT-vectoring
information field is anything other than 3 (hardware exception).

®* The value of bits 7:0 (vector) of the IDT-vectoring information field
indicates a benign exception (1, 2, 3, 4,5, 6, 7,9, 16, 17, 18, or 19).

® The value of bits 7:0 (vector) of the VM-exit interruption-information field
indicates a benign exception.

® The value of bits 7:0 of the IDT-vectoring information field indicates a
contributory exception (0, 10, 11, 12, or 13) and the value of bits 7:0 of
the VM-exit interruption-information field indicates a page fault (14).

— If the value of bits 10:8 of the IDT-vectoring information field is 3 (hardware
exception), the VMM should reflect a double-fault exception to guest software
in any of the following cases:

®* The value of bits 7:0 of the IDT-vectoring information field and the value
of bits 7:0 of the VM-exit interruption-information field each indicates a
contributory exception.

® The value of bits 7:0 of the IDT-vectoring information field indicates a
page fault and the value of bits 7:0 of the VM-exit interruption-
information field indicates either a contributory exception or a page fault.

27-12 Vol.3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

A VMM can reflect a double-fault exception to guest software by setting the
VM-entry interruption-information and VM-entry exception error-code fields
as follows:

® Set bits 7:0 (vector) of the VM-entry interruption-information field to 8
(#DF).

® Setbits 10:8 (interruption type) of the VM-entry interruption-information
field to 3 (hardware exception).

® Set bit 11 (deliver error code) of the VM-entry interruption-information
field to 1.

® Clear bits 30:12 (reserved) of VM-entry interruption-information field.
* Set bit 31 (valid) of VM-entry interruption-information field.
®* Set the VM-entry exception error-code field to zero.

— If the value of bits 10:8 of the IDT-vectoring information field is 3 (hardware
exception) and the value of bits 7:0 is 8 (#DF), guest software would have
encountered a triple fault. Event injection should not be used in this case. The
VMM may choose to terminate the guest, or it might choose to enter the
guest in the shutdown activity state.

27.7.1.2 Resuming Guest Software after Handling an Exception

If the VMM determines that a VM exit was caused by an exception due to a condition
established by the VMM itself, it may choose to resume guest software after
removing the condition. The approach for removing the condition may be specific to
the VMM'’s software architecture. and algorithms This section describes how guest
software may be resumed after removing the condition.

In general, the VMM can resume guest software simply by executing VMRESUME. The
following items provide details of cases that may require special handling:

If the “NMI exiting” VM-execution control is O, bit 12 of the VM-exit interruption-
information field indicates that the VM exit was due to a fault encountered during
an execution of the IRET instruction that unblocked non-maskable interrupts
(NMIs). In particular, it provides this indication if the following are both true:

— Bit 31 (valid) in the IDT-vectoring information field is O.

— The value of bits 7:0 (vector) of the VM-exit interruption-information field is
not 8 (the VM exit is not due to a double-fault exception).

If both are true and bit 12 of the VM-exit interruption-information field is 1, NMls
were blocked before guest software executed the IRET instruction that caused
the fault that caused the VM exit. The VMM should set bit 3 (blocking by NMI) in
the interruptibility-state field (using VMREAD and VMWRITE) before resuming
guest software.

If the “virtual NMIs” VM-execution control is 1, bit 12 of the VM-exit interruption-
information field indicates that the VM exit was due to a fault encountered during

Vol.3 27-13

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

an execution of the IRET instruction that removed virtual-NMI blocking. In
particular, it provides this indication if the following are both true:

— Bit 31 (valid) in the IDT-vectoring information field is O.

— The value of bits 7:0 (vector) of the VM-exit interruption-information field is
not 8 (the VM exit is not due to a double-fault exception).

If both are true and bit 12 of the VM-exit interruption-information field is 1, there
was virtual-NMI blocking before guest software executed the IRET instruction
that caused the fault that caused the VM exit. The VMM should set bit 3 (blocking
by NMI) in the interruptibility-state field (using VMREAD and VMWRITE) before
resuming guest software.

¢ Bit 31 (valid) of the IDT-vectoring information field indicates, if set, that the
exception causing the VM exit occurred while another event was being delivered
to guest software. The VMM should ensure that the other event is delivered when
guest software is resumed. It can do so using the VM-entry event injection
described in Section 23.5 and detailed in the following paragraphs:

— The VMM can copy (using VMREAD and VMWRITE) the contents of the IDT-
vectoring information field (which is presumed valid) to the VM-entry inter-
ruption-information field (which, if valid, will cause the exception to be
delivered as part of the next VM entry).

® The VMM should ensure that reserved bits 30:12 in the VM-entry inter-
ruption-information field are O. In particular, the value of bit 12 in the IDT-
vectoring information field is undefined after all VM exits. If this bit is
copied as 1 into the VM-entry interruption-information field, the next
VM entry will fail because the bit should be 0.

* |If the “virtual NMIs” VM-execution control is 1 and the value of bits 10:8
(interruption type) in the IDT-vectoring information field is 2 (indicating
NMI), the VM exit occurred during delivery of an NMI that had been
injected as part of the previous VM entry. In this case, bit 3 (blocking by
NMI) will be 1 in the interruptibility-state field in the VMCS. The VMM
should clear this bit; otherwise, the next VM entry will fail (see Section
23.3.1.5).

— The VMM can also copy the contents of the IDT-vectoring error-code field to
the VM-entry exception error-code field. This need not be done if bit 11 (error
code valid) is clear in the IDT-vectoring information field.

— The VMM can also copy the contents of the VM-exit instruction-length field to
the VM-entry instruction-length field. This need be done only if bits 10:8
(interruption type) in the IDT-vectoring information field indicate either
software interrupt, privileged software exception, or software exception.

27-14 Vol.3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

27.8 MULTI-PROCESSOR CONSIDERATIONS

The most common VMM design will be the symmetric VMM. This type of VMM runs the
same VMM binary on all logical processors. Like a symmetric operating system, the
symmetric VMM is written to ensure all critical data is updated by only one processor
at a time, 10 devices are accessed sequentially, and so forth. Asymmetric VMM
designs are possible. For example, an asymmetric VMM may run its scheduler on one
processor and run just enough of the VMM on other processors to allow the correct
execution of guest VMs. The remainder of this section focuses on the multi-processor
considerations for a symmetric VMM.

A symmetric VMM design does not preclude asymmetry in its operations. For
example, a symmetric VMM can support asymmetric allocation of logical processor
resources to guests. Multiple logical processors can be brought into a single guest
environment to support an MP-aware guest OS. Because an active VMCS can not
control more than one logical processor simultaneously, a symmetric VMM must
make copies of its VMCS to control the VM allocated to support an MP-aware guest
OS. Care must be taken when accessing data structures shared between these
VMCSs. See Section 27.8.4.

Although it may be easier to develop a VMM that assumes a fully-symmetric view of
hardware capabilities (with all processors supporting the same processor feature
sets, including the same revision of VMX), there are advantages in developing a VMM
that comprehends different levels of VMX capability (reported by VMX capability
MSRs). One possible advantage of such an approach could be that an existing soft-
ware installation (VMM and guest software stack) could continue to run without
requiring software upgrades to the VMM, when the software installation is upgraded
to run on hardware with enhancements in the processor’s VMX capabilities. Another
advantage could be that a single software installation image, consisting of a VMM and
guests, could be deployed to multiple hardware platforms with varying VMX capabil-
ities. In such cases, the VMM could fall back to a common subset of VMX features
supported by all VMX revisions, or choose to understand the asymmetry of the VMX
capabilities and assign VMs accordingly.

This section outlines some of the considerations to keep in mind when developing an
MP-aware VMM.

27.8.1 Initialization

Before enabling VMX, an MP-aware VMM must check to make sure that all processors
in the system are compatible and support features required. This can be done by:

® Checking the CPUID on each logical processor to ensure VMX is supported and
that the overall feature set of each logical processor is compatible.

® Checking VMCS revision identifiers on each logical processor.

® Checking each of the “allowed-1" or “allowed-0” fields of the VMX capability
MSR’s on each processor.

Vol.3 27-15

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

27.8.2 Moving a VMCS Between Processors

An MP-aware VMM is free to assign any logical processor to a VM. But for perfor-
mance considerations, moving a guest VMCS to another logical processor is slower
than resuming that guest VMCS on the same logical processor. Certain VMX perfor-
mance features (such as caching of portions of the VMCS in the processor) are opti-
mized for a guest VMCS that runs on the same logical processor.

The reasons are:

® To restart a guest on the same logical processor, a VMM can use VMRESUME.
VMRESUME is expected to be faster than VMLAUNCH in general.

® To migrate a VMCS to another logical processor, a VMM must use the sequence of
VMCLEAR, VMPTRLD and VMLAUNCH.

® Operations involving VMCLEAR can impact performance negatively. See
Section 21.10.3.

A VMM scheduler should make an effort to schedule a guest VMCS to run on the
logical processor where it last ran. Such a scheduler might also benefit from doing
lazy VMCLEARSs (that is: performing a VMCLEAR on a VMCS only when the scheduler
knows the VMCS is being moved to a new logical processor). The remainder of this
section describes the steps a VMM must take to move a VMCS from one processor to
another.

A VMM must check the VMCS revision identifier in the VMX capability MSR
1A32_VMX_BASIC to determine if the VMCS regions are identical between all logical
processors. If the VMCS regions are identical (same revision ID) the following
sequence can be used to move or copy the VMCS from one logical processor to
another:

® Perform a VMCLEAR operation on the source logical processor. This ensures that
all VMCS data that may be cached by the processor are flushed to memory.

® Copy the VMCS region from one memory location to another location. This is an
optional step assuming the VMM wishes to relocate the VMCS or move the VMCS
to another system.

® Perform a VMPTRLD of the physical address of VMCS region on the destination
processor to establish its current VMCS pointer.

If the revision identifiers are different, each field must be copied to an intermediate
structure using individual reads (VMREAD) from the source fields and writes
(VMWRITE) to destination fields. Care must be taken on fields that are hard-wired to
certain values on some processor implementations.

27.8.3 Paired Index-Data Registers

A VMM may need to virtualize hardware that is visible to software using paired index-
data registers. Paired index-data register interfaces, such as those used in PCI (CF8,
CFC), require special treatment in cases where a VM performing writes to these pairs
can be moved during execution. In this case, the index (e.g. CF8) should be part of

27-16 Vol.3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

the virtualized state. If the VM is moved during execution, writes to the index should
be redone so subsequent data reads/writes go to the right location.

27.8.4 External Data Structures

Certain fields in the VMCS point to external data structures (for example: the MSR
bitmap, the 1/0 bitmaps). If a logical processor is in VMX non-root operation, none of
the external structures referenced by that logical processor's current VMCS should be
modified by any logical processor or DMA. Before updating one of these structures,
the VMM must ensure that no logical processor whose current VMCS references the
structure is in VMX non-root operation.

If a VMM uses multiple VMCS with each VMCS using separate external structures,
and these structures must be kept synchronized, the VMM must apply the same care
to updating these structures.

27.8.5 CPUID Emulation

CPUID reports information that is used by OS and applications to detect hardware
features. It also provides multi-threading/multi-core configuration information. For
example, MP-aware OSs rely on data reported by CPUID to discover the topology of
logical processors in a platform (see Section 8.9, “Programming Considerations for
Hardware Multi-Threading Capable Processors,” in the Intel® 64 and 1A-32 Architec-
tures Software Developer’s Manual, Volume 3A).

If a VMM is to support asymmetric allocation of logical processor resources to guest
OSs that are MP aware, then the VMM must emulate CPUID for its guests. The emula-
tion of CPUID by the VMM must ensure the guest’s view of CPUID leaves are consis-
tent with the logical processor allocation committed by the VMM to each guest OS.

27.9 32-BIT AND 64-BIT GUEST ENVIRONMENTS

For the most part, extensions provided by VMX to support virtualization are orthog-
onal to the extensions provided by Intel 64 architecture. There are considerations
that impact VMM designs. These are described in the following subsections.

27.9.1 Operating Modes of Guest Environments

For Intel 64 processors, VMX operation supports host and guest environments that
run in 1A-32e mode or without 1A-32e mode. VMX operation also supports host and
guest environments on 1A-32 processors.

A VMM entering VMX operation while 1A-32e mode is active is considered to be an
1A-32e mode host. A VMM entering VMX operation while 1A-32e mode is not activated

Vol.3 27-17

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

or not available is referred to as a 32-bit VMM. The type of guest operations such
VMMs support are summarized in Table 27-1.

Table 27-1. Operating Modes for Host and Guest Environments

Capability Guest Operation Guest Operation

in IA-32e mode Not Requiring IA-32e Mode
IA-32e mode VMM Yes Yes
32-bit VMM Not supported Yes

A VM exit may occur to an 1A-32e mode guest in either 64-bit sub-mode or compati-
bility sub-mode of 1A-32e mode. VMMs may resume guests in either mode. The sub-
mode in which an I1A-32e mode guest resumes VMX non-root operation is determined
by the attributes of the code segment which experienced the VM exit. If CS.L = 1,
the guest is executing in 64-bit mode; if CS.L = 0, the guest is executing in compat-
ibility mode (see Section 27.9.5).

Not all of an 1A-32e mode VMM must run in 64-bit mode. While some parts of an
1A-32e mode VMM must run in 64-bit mode, there are only a few restrictions
preventing a VMM from executing in compatibility mode. The most notable restriction
is that most VMX instructions cause exceptions when executed in compatibility mode.

27.9.2 Handling Widths of VMCS Fields

Individual VMCS control fields must be accessed using VMREAD or VMWRITE instruc-
tions. Outside of 64-Bit mode, VMREAD and VMWRITE operate on 32 bits of data. The
widths of VMCS control fields may vary depending on whether a processor supports

Intel 64 architecture.

Many VMCS fields are architected to extend transparently on processors supporting
Intel 64 architecture (64 bits on processors that support Intel 64 architecture, 32 bits
on processors that do not). Some VMCS fields are 64-bits wide regardless of whether
the processor supports Intel 64 architecture or is in 1A-32e mode.

27.9.2.1 Natural-Width VMCS Fields

Many VMCS fields operate using natural width. Such fields return (on reads) and set
(on writes) 32-bits when operating in 32-bit mode and 64-bits when operating in
64-bit mode. For the most part, these fields return the naturally expected data
widths. The “Guest RIP” field in the VMCS guest-state area is an example of this type
of field.

27.9.2.2 64-Bit VMCS Fields

Unlike natural width fields, these fields are fixed to 64-bit width on all processors.
When in 64-bit mode, reads of these fields return 64-bit wide data and writes to

27-18 Vol.3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

these fields write 64-bits. When outside of 64-bit mode, reads of these fields return
the low 32-bits and writes to these fields write the low 32-bits and zero the upper
32-bits. Should a non-1A-32e mode host require access to the upper 32-bits of these
fields, a separate VMCS encoding is used when issuing VMREAD/VMWRITE instruc-
tions.

The VMCS control field “MSR bitmap address” (which contains the physical address of
a region of memory which specifies which MSR accesses should generate VM-exits) is
an example of this type of field. Specifying encoding 00002004H to VMREAD returns
the lower 32-bits to non-1A-32e mode hosts and returns 64-bits to 64-bit hosts. The
separate encoding 00002005H returns only the upper 32-bits.

27.9.3 IA-32e Mode Hosts

An 1A-32e mode host is required to support 64-bit guest environments. Because acti-
vating 1A-32e mode currently requires that paging be disabled temporarily and VMX
entry requires paging to be enabled, 1A-32e mode must be enabled before entering

VMX operation. For this reason, it is not possible to toggle in and out of IA-32e mode
in a VMM.

Section 27.5 describes the steps required to launch a VMM. An 1A-32e mode host is
also required to set the “host address-space size” VMCS VM-exit control to 1. The
value of this control is then loaded in the I1A32_EFER.LME/LMA and CS.L bits on each
VM exit. This establishes a 64-bit host environment as execution transfers to the
VMM entry point. At a minimum, the entry point is required to be in a 64-bit code
segment. Subsequently, the VMM can, if it chooses, switch to 32-bit compatibility
mode on a code-segment basis (see Section 27.9.1). Note, however, that VMX
instructions other than VMCALL are not supported in compatibility mode; they
generate an invalid opcode exception if used.

The following VMCS controls determine the value of IA32_EFER when a VM exit
occurs: the “host address-space size” control (described above), the “load
IA32_EFER” VM-exit control, the “VM-exit MSR-load count,” and the “VM-exit MSR-
load address” (see Section 24.3).

If the “load 1A32_EFER” VM-exit control is 1, the value of the LME and LMA bits in the
IA32_EFER field in the host-state area must be the value of the “host address-space
size” VM-exit control.

The loading of IA32_EFER.LME/LMA and CS.L bits established by the “host address-
space size” control precede any loading of the IA32_EFER MSR due from the VM-exit
MSR-load area. If IA32_EFER is specified in the VM-exit MSR-load area, the value of
the LME bit in the load image of 1A32_EFER should match the setting of the “host
address-space size” control. Otherwise the attempt to modify the LME bit (while
paging is enabled) will lead to a VMX-abort. However, I1A32_EFER.LMA is always set
by the processor to equal IA32_EFER.LME & CRO.PG; the value specified for LMA in
the load image of the IA32_EFER MSR is ignored. For these and performance
reasons, VMM writers may choose to not use the VM-exit/entry MSR-load/save areas
for IA32_EFER.

Vol.3 27-19

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

On a VMM teardown, VMX operation should be exited before deactivating 1A-32e
mode if the latter is required.

279.4 IA-32e Mode Guests

A 32-bit guest can be launched by either 1A-32e-mode hosts or non-l1A-32e-mode
hosts. A 64-bit guests can only be launched by a 1A-32e-mode host.

In addition to the steps outlined in Section 27.6, VMM writers need to:

® Set the “lA-32e-mode guest” VM-entry control to 1 in the VMCS to assure
VM-entry (VMLAUNCH or VMRESUME) will establish a 64-bit (or 32-bit
compatible) guest operating environment.

® Enable paging (CR0O.PG) and PAE mode (CR4.PAE) to assure VM-entry to a 64-bit
guest will succeed.

® Ensure that the host to be in 1A-32e mode (the IA32_EFER.LMA must be set to 1)
and the setting of the VM-exit “host address-space size” control bit in the VMCS
must also be set to 1.

If each of the above conditions holds true, then VM-entry will copy the value of the
VM-entry “lA-32e-mode guest” control bit into the guests IA32_EFER.LME bit, which
will result in subsequent activation of 1A-32e mode. If any of the above conditions is
false, the VM-entry will fail and load state from the host-state area of the working
VMCS as if a VM exit had occurred (see Section 23.7).

The following VMCS controls determine the value of IA32_EFER on a VM entry: the
“lA-32e-mode guest” VM-entry control (described above), the “load IA32_EFER” VM-
entry control, the “VM-entry MSR-load count,” and the “VM-entry MSR-load address”
(see Section 23.4).

If the “load 1A32_EFER” VM-entry control is 1, the value of the LME and LMA bits in
the 1A32_EFER field in the guest-state area must be the value of the “I1A-32e-mode
guest” VM-exit control. Otherwise, the VM entry fails.

The loading of IA32_EFER.LME bit (described above) precedes any loading of the
1A32_EFER MSR from the VM-entry MSR-load area of the VMCS. If loading of
IA32_EFER is specified in the VM-entry MSR-load area, the value of the LME bit in the
load image should be match the setting of the “I1A-32e-mode guest” VM-entry
control. Otherwise, the attempt to modify the LME bit (while paging is enabled)
results in a failed VM entry. However, 1A32_EFER.LMA is always set by the processor
to equal IA32_EFER.LME & CRO.PG; the value specified for LMA in the load image of
the 1A32_EFER MSR is ignored. For these and performance reasons, VMM writers
may choose to not use the VM-exit/entry MSR-load/save areas for IA32_EFER MSR.

Note that the VMM can control the processor’s architectural state when transferring
control to a VM. VMM writers may choose to launch guests in protected mode and
subsequently allow the guest to activate 1A-32e mode or they may allow guests to
toggle in and out of 1A-32e mode. In this case, the VMM should require VM exit on
accesses to the IA32_EFER MSR to detect changes in the operating mode and modify
the VM-entry “l1A-32e-mode guest” control accordingly.

27-20 Vol.3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

A VMM should save/restore the extended (full 64-bit) contents of the guest general-
purpose registers, the new general-purpose registers (R8-R15) and the SIMD regis-
ters introduced in 64-bit mode should it need to modify these upon VM exit.

27.9.5 32-Bit Guests

To launch or resume a 32-bit guest, VMM writers can follow the steps outlined in
Section 27.6, making sure that the “lA-32e-mode guest” VM-entry control bit is set
to 0. Then the “l1A-32e-mode guest” control bit is copied into the guest
IA32_EFER.LME bit, establishing 1A32_EFER.LMA as O.

27.10 HANDLING MODEL SPECIFIC REGISTERS

Model specific registers (MSR) provide a wide range of functionality. They affect
processor features, control the programming interfaces, or are used in conjunction
with specific instructions. As part of processor virtualization, a VMM may wish to
protect some or all MSR resources from direct guest access.

VMX operation provides the following features to virtualize processor MSRs.

27.10.1 Using VM-Execution Controls

Processor-based VM-execution controls provide two levels of support for handling
guest access to processor MSRs using RDMSR and WRMSR:

MSR bitmaps: In VMX implementations that support a 1-setting (see Appendix
G) of the user-MSR-bitmaps execution control bit, MSR bitmaps can be used to
provide flexibility in managing guest MSR accesses. The MSR-bitmap-address in
the guest VMCS can be programmed by VMM to point to a bitmap region which
specifies VM-exit behavior when reading and writing individual MSRs.

MSR bitmaps form a 4-KByte region in physical memory and are required to be
aligned to a 4-KByte boundary. The first 1-KByte region manages read control of
MSRs in the range 00000000H-00001FFFH; the second 1-KByte region covers
read control of MSR addresses in the range COO0O0000H-CO001FFFH. The bitmaps
for write control of these MSRs are located in the 2-KByte region immediately
following the read control bitmaps. While the MSR bitmap address is part of
VMCS, the MSR bitmaps themselves are not. This implies MSR bitmaps are not
accessible through VMREAD and VMWRITE instructions but rather by using
ordinary memory writes. Also, they are not specially cached by the processor and
may be placed in normal cache-coherent memory by the VMM.

When MSR bitmap addresses are properly programmed and the use-MSR-bitmap
control (see Section 21.6.2) is set, the processor consults the associated bit in
the appropriate bitmap on guest MSR accesses to the corresponding MSR and
causes a VM exit if the bit in the bitmap is set. Otherwise, the access is permitted

Vol.3 27-21

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

to proceed. This level of protection may be utilized by VMMs to selectively allow
guest access to some MSRs while virtualizing others.

¢ Default MSR protection: If the use-MSR-bitmap control is not set, an attempt
by a guest to access any MSR causes a VM exit. This also occurs for any attempt
to access an MSR outside the ranges identified above (even if the use-MSR-
bitmap control is set).

VM exits due to guest MSR accesses may be identified by the VMM through VM-exit
reason codes. The MSR-read exit reason implies guest software attempted to read an
MSR protected either by default or through MSR bitmaps. The MSR-write exit reason
implies guest software attempting to write a MSR protected through the VM-execu-
tion controls. Upon VM exits caused by MSR accesses, the VMM may virtualize the
guest MSR access through emulation of RDMSR/WRMSR.

27.10.2 Using VM-Exit Controls for MSRs

If a VMM allows its guest to access MSRs directly, the VMM may need to store guest
MSR values and load host MSR values for these MSRs on VM exits. This is especially
true if the VMM uses the same MSRs while in VMX root operation.

A VMM can use the VM-exit MSR-store-address and the VM-exit MSR-store-count exit
control fields (see Section 21.7.2) to manage how MSRs are stored on VM exits. The
VM-exit MSR-store-address field contains the physical address (16-byte aligned) of
the VM-exit MSR-store area (a table of entries with 16 bytes per entry). Each table
entry specifies an MSR whose value needs to be stored on VM exits. The VM-exit
MSR-store-count contains the number of entries in the table.

Similarly the VM-exit MSR-load-address and VM-exit MSR-load-count fields point to
the location and size of the VM-exit MSR load area. The entries in the VM-exit MSR-
load area contain the host expected values of specific MSRs when a VM exit occurs.

Upon VM-exit, bits 127:64 of each entry in the VM-exit MSR-store area is updated
with the contents of the MSR indexed by bits 31:0. Also, bits 127:64 of each entry in
the VM-exit MSR-load area is updated by loading with values from bits 127:64 the
contents of the MSR indexed by bits 31:0.

27.10.3 Using VM-Entry Controls for MSRs

A VMM may require specific MSRs to be loaded explicitly on VM entries while
launching or resuming guest execution. The VM-entry MSR-load-address and
VM-entry MSR-load-count entry control fields determine how MSRs are loaded on
VM-entries. The VM-entry MSR-load-address and count fields are similar in structure
and function to the VM-exit MSR-load address and count fields, except the MSR
loading is done on VM-entries.

27-22 Vol.3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

27.10.4 Handling Special-Case MSRs and Instructions

A number of instructions make use of designated MSRs in their operation. The VMM
may need to consider saving the states of those MSRs. Instructions that merit such
consideration include SYSENTER/SYSEXIT, SYSCALL/SYSRET, SWAPGS.

27.10.4.1 Handling IA32_EFER MSR

The 1A32_EFER MSR includes bit fields that allow system software to enable
processor features. For example: the SCE bit enables SYSCALL/SYSRET and the NXE
bit enables the execute-disable bits in the paging-structure entries.

VMX provides hardware support to load the IA32_EFER MSR on VMX transitions and
to save it on VM exits. Because of this, VMM software need not use the RDMSR and
WRMSR instruction to give the register different values during host and guest execu-
tion.

27.10.4.2 Handling the SYSENTER and SYSEXIT Instructions

The SYSENTER and SYSEXIT instructions use three dedicated MSRs

(IA32_SYSENTER_CS, 1A32_SYSENTER_ESP and IA32_SYSENTER_EIP) to manage
fast system calls. These MSRs may be utilized by both the VMM and the guest OS to
manage system calls in VMX root operation and VMX non-root operation respectively.

VM entries load these MSRs from fields in the guest-state area of the VMCS. VM exits
save the values of these MSRs into those fields and loads the MSRs from fields in the
host-state area.

27.10.4.3 Handling the SYSCALL and SYSRET Instructions

The SYSCALL/SYSRET instructions are similar to SYSENTER/SYSEXIT but are
designed to operate within the context of a 64-bit flat code segment. They are avail-
able only in 64-bit mode and only when the SCE bit of the IA32_EFER MSR is set.
SYSCALL/SYSRET invocations can occur from either 32-bit compatibility mode appli-
cation code or from 64-bit application code. Three related MSR registers
(IA32_STAR, IA32_LSTAR, IA32_FMASK) are used in conjunction with fast system
calls/returns that use these instructions.

64-Bit hosts which make use of these instructions in the VMM environment will need
to save the guest state of the above registers on VM exit, load the host state, and
restore the guest state on VM entry. One possible approach is to use the VM-exit
MSR-save and MSR-load areas and the VM-entry MSR-load area defined by controls
in the VMCS. A disadvantage to this approach, however, is that the approach results
in the unconditional saving, loading, and restoring of MSR registers on each VM exit
or VM entry.

Depending on the design of the VMM, it is likely that many VM-exits will require no
fast system call support but the VMM will be burdened with the additional overhead
of saving and restoring MSRs if the VMM chooses to support fast system call

Vol.3 27-23

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

uniformly. Further, even if the host intends to support fast system calls during a
VM-exit, some of the MSR values (such as the setting of the SCE bit in IA32_EFER)
may not require modification as they may already be set to the appropriate value in
the guest.

For performance reasons, a VMM may perform lazy save, load, and restore of these
MSR values on certain VM exits when it is determined that this is acceptable. The
lazy-save-load-restore operation can be carried out “manually” using RDMSR and
WRMSR.

27.10.4.4 Handling the SWAPGS Instruction

The SWAPGS instruction is available only in 64-bit mode. It swaps the contents of
two specific MSRs (IA32_GSBASE and 1A32_KERNEL_GSBASE). The 1A32_GSBASE
MSR shadows the base address portion of the GS descriptor register; the
IA32_KERNEL_GSBASE MSR holds the base address of the GS segment used by the
kernel (typically it houses kernel structures). SWAPGS is intended for use with fast
system calls when in 64-bit mode to allow immediate access to kernel structures on
transition to kernel mode.

Similar to SYSCALL/SYSRET, 1A-32e mode hosts which use fast system calls may
need to save, load, and restore these MSR registers on VM exit and VM entry using
the guidelines discussed in previous paragraphs.

27.10.4.5 Implementation Specific Behavior on Writing to Certain MSRs

As noted in Section 23.4 and Section 24.4, a processor may prevent writing to
certain MSRs when loading guest states on VM entries or storing guest states on VM
exits. This is done to ensure consistent operation. The subset and number of MSRs
subject to restrictions are implementation specific. For initial VMX implementations,
there are two MSRs: 1A32_BIOS_UPDT_TRIG and I1A32_BIOS_SIGN_ID (see
Appendix B).

27.10.5 Handling Accesses to Reserved MSR Addresses

Privileged software (either a VMM or a guest OS) can access a model specific register
by specifying addresses in MSR address space. VMMs, however, must prevent a guest
from accessing reserved MSR addresses in MSR address space.

Consult Appendix B for lists of supported MSRs and their usage. Use the MSR bitmap
control to cause a VM exit when a guest attempts to access a reserved MSR address.
The response to such a VM exit should be to reflect #GP(0) back to the guest.

27-24 Vol.3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

27.11 HANDLING ACCESSES TO CONTROL REGISTERS

Bit fields in control registers (CRO, CR4) control various aspects of processor opera-
tion. The VMM must prevent guests from modifying bits in CRO or CR4 that are
reserved at the time the VMM is written.

Guest/host masks should be used by the VMM to cause VM exits when a guest
attempts to modify reserved bits. Read shadows should be used to ensure that the
guest always reads the reserved value (usually 0) for such bits. The VMM response to
VM exits due to attempts from a guest to modify reserved bits should be to emulate
the response which the processor would have normally produced (usually a #GP(0)).

27.12 PERFORMANCE CONSIDERATIONS

VMX provides hardware features that may be used for improving processor virtual-
ization performance. VMMs must be designed to use this support properly. The basic
idea behind most of these performance optimizations of the VMM is to reduce the
number of VM exits while executing a guest VM.

This section lists ways that VMMs can take advantage of the performance enhancing
features in VMX.

® Read Access to Control Registers. Analysis of common client workloads with
common PC operating systems in a virtual machine shows a large number of
VM-exits are caused by control register read accesses (particularly CR0). Reads
of CRO and CR4 does not cause VM exits. Instead, they return values from the
CRO/CRA4 read-shadows configured by the VMM in the guest controlling-VMCS
with the guest-expected values.

® Write Access to Control Registers. Most VMM designs require only certain bits
of the control registers to be protected from direct guest access. Write access to
CRO/CRA4 registers can be reduced by defining the host-owned and guest-owned
bits in them through the CR0/CR4 host/guest masks in the VMCS. CRO/CR4 write
values by the guest are qualified with the mask bits. If they change only guest-
owned bits, they are allowed without causing VM exits. Any write that cause
changes to host-owned bits cause VM exits and need to be handled by the VMM.

® Access Rights based Page Table protection. For VMM that implement
access-rights-based page table protection, the VMCS provides a CR3 target value
list that can be consulted by the processor to determine if a VM exit is required.
Loading of CR3 with a value matching an entry in the CR3 target-list are allowed
to proceed without VM exits. The VMM can utilize the CR3 target-list to save
page-table hierarchies whose state is previously verified by the VMM.

® Page-fault handling. Another common cause for a VM exit is due to page-faults
induced by guest address remapping done through virtual memory virtualization.
VMX provides page-fault error-code mask and match fields in the VMCS to filter
VM exits due to page-faults based on their cause (reflected in the error-code).

Vol.3 27-25

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

27-26 Vol.3

CHAPTER 28
VIRTUALIZATION OF SYSTEM RESOURCES

28.1 OVERVIEW

When a VMM is hosting multiple guest environments (VMs), it must monitor potential
interactions between software components using the same system resources. These
interactions can require the virtualization of resources. This chapter describes the
virtualization of system resources. These include: debugging facilities, address
translation, physical memory, and microcode update facilities.

28.2 VIRTUALIZATION SUPPORT FOR DEBUGGING
FACILITIES

The Intel 64 and 1A-32 debugging facilities (see Chapter 16) provide breakpoint
instructions, exception conditions, register flags, debug registers, control registers
and storage buffers for functions related to debugging system and application soft-
ware. In VMX operation, a VMM can support debugging system and application soft-
ware from within virtual machines if the VMM properly virtualizes debugging
facilities. The following list describes features relevant to virtualizing these facilities.

® The VMM can program the exception-bitmap (see Section 21.6.3) to ensure it
gets control on debug functions (like breakpoint exceptions occurring while
executing guest code such as INT3 instructions). Normally, debug exceptions
modify debug registers (such as DR6, DR7, IA32_DEBUGCTL). However, if debug
exceptions cause VM exits, exiting occurs before register modification.

® The VMM may utilize the VM-entry event injection facilities described in Section
23.5 to inject debug or breakpoint exceptions to the guest. See Section 28.2.1
for a more detailed discussion.

® The MOV-DR exiting control bit in the processor-based VM-execution control field
(see Section 21.6.2) can be enabled by the VMM to cause VM exits on explicit
guest access of various processor debug registers (for example, MOV to/from
DRO-DR7). These exits would always occur on guest access of DRO-DR7 registers
regardless of the values in CPL, DR4.DE or DR7.GD. Since all guest task switches
cause VM exits, a VMM can control any indirect guest access or modification of
debug registers during guest task switches.

® Guest software access to debug-related model-specific registers (such as
IA32_DEBUGCTL MSR) can be trapped by the VMM through MSR access control
features (such as the MSR-bitmaps that are part of processor-based VM-
execution controls). See Section 27.10 for details on MSR virtualization.

Vol.3 28-1

VIRTUALIZATION OF SYSTEM RESOURCES

® Debug registers such as DR7 and the I1A32_DEBUGCTL MSR may be explicitly
modified by the guest (through MOV-DR or WRMSR instructions) or modified
implicitly by the processor as part of generating debug exceptions. The current
values of DR7 and the IA32_DEBUGCTL MSR are saved to guest-state area of
VMCS on every VM exit. Pending debug exceptions are debug exceptions that are
recognized by the processor but not yet delivered. See Section 23.6.3 for details
on pending debug exceptions.

® DR7 and the IA32-DEBUGCTL MSR are loaded from values in the guest-state area
of the VMCS on every VM entry. This allows the VMM to properly virtualize debug
registers when injecting debug exceptions to guest. Similarly, the RFLAGS?
register is loaded on every VM entry (or pushed to stack if injecting a virtual
event) from guest-state area of the VMCS. Pending debug exceptions are also
loaded from guest-state area of VMCS so that they may be delivered after VM
entry is completed.

28.2.1 Debug Exceptions

If a VMM emulates a guest instruction that would encounter a debug trap (single step
or data or 1/0 breakpoint), it should cause that trap to be delivered. The VMM should
not inject the debug exception using VM-entry event injection, but should set the
appropriate bits in the pending debug exceptions field. This method will give the trap
the right priority with respect to other events. (If the exception bitmap was
programmed to cause VM exits on debug exceptions, the debug trap will cause a VM
exit. At this point, the trap can be injected during VM entry with the proper priority.)

There is a valid pending debug exception if the BS bit (see Table 21-4) is set, regard-
less of the values of RFLAGS.TF or IA32_DEBUGCTL.BTF. The values of these bits do
not impact the delivery of pending debug exceptions.

VMMs should exercise care when emulating a guest write (attempted using WRMSR)
to 1A32_DEBUGCTL to modify BTF if this is occurring with RFLAGS.TF = 1 and after a
MOV SS or POP SS instruction (for example: while debug exceptions are blocked).
Note the following:

® Normally, if WRMSR clears BTF while RFLAGS.TF = 1 and with debug exceptions
blocked, a single-step trap will occur after WRMSR. A VMM emulating such an
instruction should set the BS bit (see Table 21-4) in the pending debug
exceptions field before VM entry.

® Normally, if WRMSR sets BTF while RFLAGS.TF = 1 and with debug exceptions
blocked, neither a single-step trap nor a taken-branch trap can occur after
WRMSR. A VMM emulating such an instruction should clear the BS bit (see Table
21-4) in the pending debug exceptions field before VM entry.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For processors that do
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers
(EAX, EIP, ESP, EFLAGS, etc.).

28-2 Vol.3

VIRTUALIZATION OF SYSTEM RESOURCES

28.3 MEMORY VIRTUALIZATION

VMMs must control physical memory to ensure VM isolation and to remap guest
physical addresses in host physical address space for virtualization. Memory virtual-
ization allows the VMM to enforce control of physical memory and yet support guest
OSs’ expectation to manage memory address translation.

28.3.1 Processor Operating Modes & Memory Virtualization

Memory virtualization is required to support guest execution in various processor
operating modes. This includes: protected mode with paging, protected mode with
no paging, real-mode and any other transient execution modes. VMX allows guest
operation in protected-mode with paging enabled and in virtual-8086 mode (with
paging enabled) to support guest real-mode execution. Guest execution in transient
operating modes (such as in real mode with one or more segment limits greater than
64-KByte) must be emulated by the VMM.

Since VMX operation requires processor execution in protected mode with paging
(through CRO and CR4 fixed bits), the VMM may utilize paging structures to support
memory virtualization. To support guest real-mode execution, the VMM may estab-
lish a simple flat page table for guest linear to host physical address mapping.
Memory virtualization algorithms may also need to capture other guest operating
conditions (such as guest performing A20M# address masking) to map the resulting
20-bit effective guest physical addresses.

28.3.2 Guest & Host Physical Address Spaces

Memory virtualization provides guest software with contiguous guest physical
address space starting zero and extending to the maximum address supported by
the guest virtual processor’s physical address width. The VMM utilizes guest physical
to host physical address mapping to locate all or portions of the guest physical
address space in host memory. The VMM is responsible for the policies and algo-
rithms for this mapping which may take into account the host system physical
memory map and the virtualized physical memory map exposed to a guest by the
VMM. The memory virtualization algorithm needs to accommodate various guest
memory uses (such as: accessing DRAM, accessing memory-mapped registers of
virtual devices or core logic functions and so forth). For example:

® To support guest DRAM access, the VMM needs to map DRAM-backed guest
physical addresses to host-DRAM regions. The VMM also requires the guest to
host memory mapping to be at page granularity.

® Virtual devices (1/0 devices or platform core logic) emulated by the VMM may
claim specific regions in the guest physical address space to locate memory-
mapped registers. Guest access to these virtual registers may be configured to
cause page-fault induced VM-exits by marking these regions as always not

Vol.3 28-3

VIRTUALIZATION OF SYSTEM RESOURCES

present. The VMM may handle these VM exits by invoking appropriate virtual
device emulation code.

28.3.3 Virtualizing Virtual Memory by Brute Force

VMX provides the hardware features required to fully virtualize guest virtual memory
accesses. VMX allows the VMM to trap guest accesses to the PAT (Page Attribute
Table) MSR and the MTRR (Memory Type Range Registers). This control allows the
VMM to virtualize the specific memory type of a guest memory. The VMM may control
caching by controlling the guest CRO.CRD and CRO.NW bits, as well as by trapping
guest execution of the INVD instruction. The VMM can trap guest CR3 loads and
stores, and it may trap guest execution of INVLPG.

Because a VMM must retain control of physical memory, it must also retain control
over the processor’s address-translation mechanisms. Specifically, this means that
only the VMM can access CR3 (which contains the base of the page directory) and can
execute INVLPG (the only other instruction that directly manipulates the TLB).

At the same time that the VMM controls address translation, a guest operating
system will also expect to perform normal memory management functions. It will
access CR3, execute INVLPG, and modify (what it believes to be) page directories
and page tables. Virtualization of address translation must tolerate and support
guest attempts to control address translation.

A simple-minded way to do this would be to ensure that all guest attempts to access
address-translation hardware trap to the VMM where such operations can be properly
emulated. It must ensure that accesses to page directories and page tables also get
trapped. This may be done by protecting these in-memory structures with conven-
tional page-based protection. The VMM can do this because it can locate the page
directory because its base address is in CR3 and the VMM receives control on any
change to CR3; it can locate the page tables because their base addresses are in the
page directory.

Such a straightforward approach is not necessarily desirable. Protection of the in-
memory translation structures may be cumbersome. The VMM may maintain these
structures with different values (e.g., different page base addresses) than guest soft-
ware. This means that there must be traps on guest attempt to read these structures
and that the VMM must maintain, in auxiliary data structures, the values to return to
these reads. There must also be traps on modifications to these structures even if the
translations they effect are never used. All this implies considerable overhead that
should be avoided.

28.3.4 Alternate Approach to Memory Virtualization

Guest software is allowed to freely modify the guest page-table hierarchy without
causing traps to the VMM. Because of this, the active page-table hierarchy might not
always be consistent with the guest hierarchy. Any potential problems arising from

28-4 Vol.3

VIRTUALIZATION OF SYSTEM RESOURCES

inconsistencies can be solved using techniques analogous to those used by the
processor and its TLB.

This section describes an alternative approach that allows guest software to freely
access page directories and page tables. Traps occur on CR3 accesses and executions
of INVLPG. They also occur when necessary to ensure that guest modifications to the
translation structures actually take effect. The software mechanisms to support this
approach are collectively called virtual TLB. This is because they emulate the func-
tionality of the processor’s physical translation look-aside buffer (TLB).

The basic idea behind the virtual TLB is similar to that behind the processor TLB.
While the page-table hierarchy defines the relationship between physical to linear
address, it does not directly control the address translation of each memory access.
Instead, translation is controlled by the TLB, which is occasionally filled by the
processor with translations derived from the page-table hierarchy. With a virtual TLB,
the page-table hierarchy established by guest software (specifically, the guest oper-
ating system) does not control translation, either directly or indirectly. Instead,
translation is controlled by the processor (through its TLB) and by the VMM (through
a page-table hierarchy that it maintains).

Specifically, the VMM maintains an alternative page-table hierarchy that effectively
caches translations derived from the hierarchy maintained by guest software. The
remainder of this document refers to the former as the active page-table hierarchy
(because it is referenced by CR3 and may be used by the processor to load its TLB)
and the latter as the guest page-table hierarchy (because it is maintained by guest
software). The entries in the active hierarchy may resemble the corresponding
entries in the guest hierarchy in some ways and may differ in others.

Guest software is allowed to freely modify the guest page-table hierarchy without
causing VM exits to the VMM. Because of this, the active page-table hierarchy might
not always be consistent with the guest hierarchy. Any potential problems arising
from any inconsistencies can be solved using techniques analogous to those used by
the processor and its TLB. Note the following:

® Suppose the guest page-table hierarchy allows more access than active hierarchy
(for example: there is a translation for a linear address in the guest hierarchy but
not in the active hierarchy); this is analogous to a situation in which the TLB
allows less access than the page-table hierarchy. If an access occurs that would
be allowed by the guest hierarchy but not the active one, a page fault occurs; this
is analogous to a TLB miss. The VMM gains control (as it handles all page faults)
and can update the active page-table hierarchy appropriately; this corresponds
to a TLB fill.

® Suppose the guest page-table hierarchy allows less access than the active
hierarchy; this is analogous to a situation in which the TLB allows more access
than the page-table hierarchy. This situation can occur only if the guest operating
system has modified a page-table entry to reduce access (for example: by
marking it not-present). Because the older, more permissive translation may
have been cached in the TLB, the processor is architecturally permitted to use the
older translation and allow more access. Thus, the VMM may (through the active
page-table hierarchy) also allow greater access. For the new, less permissive

Vol.3 28-5

VIRTUALIZATION OF SYSTEM RESOURCES

translation to take effect, guest software should flush any older translations from
the TLB either by executing INVLPG or by loading CR3. Because both these
operations will cause a trap to the VMM, the VMM will gain control and can
remove from the active page-table hierarchy the translations indicated by guest
software (the translation of a specific linear address for INVLPG or all translations
for a load of CR3).

As noted previously, the processor reads the page-table hierarchy to cache transla-
tions in the TLB. It also writes to the hierarchy to main the accessed (A) and dirty (D)
bits in the PDEs and PTEs. The virtual TLB emulates this behavior as follows:

When a page is accessed by guest software, the A bit in the corresponding PTE
(or PDE for a 4-MByte page) in the active page-table hierarchy will be set by the
processor (the same is true for PDEs when active page tables are accessed by the
processor). For guest software to operate properly, the VMM should update the A
bit in the guest entry at this time. It can do this reliably if it keeps the active PTE
(or PDE) marked not-present until it has set the A bit in the guest entry.

When a page is written by guest software, the D bit in the corresponding PTE (or
PDE for a 4-MByte page) in the active page-table hierarchy will be set by the
processor. For guest software to operate properly, the VMM should update the D
bit in the guest entry at this time. It can do this reliably if it keeps the active PTE
(or PDE) marked read-only until it has set the D bit in the guest entry. This
solution is valid for guest software running at privilege level 3; support for more
privileged guest software is described in Section 28.3.5.

28.3.5 Details of Virtual TLB Operation

This section describes in more detail how a VMM could support a virtual TLB. It
explains how an active page-table hierarchy is initialized and how it is maintained in
response to page faults, uses of INVLPG, and accesses to CR3. The mechanisms
described here are the minimum necessary. They may not result in the best perfor-
mance.

28-6 Vol.3

VIRTUALIZATION OF SYSTEM RESOURCES

"Virtual TLB"
Active Page-Table Hierarchy Guest Page-Table Hierarchy
Active Guest

CR3 CR3 F

F
_ refill on A PT
. "~ page fault .
PD
set dirty | set accessed
accessed ~ F and dirty bits © \
7]

PT

refill on
TLB TLB miss PD

PT

] .

INVLPG Ii
MOV to
CR3
task switch N INVLPG
MOV to CR3
PD = page directory task switch

PT = page table
F = page frame
OM19040

Figure 28-1. Virtual TLB Scheme

As noted above, the VMM maintains an active page-table hierarchy for each virtual
machine that it supports. It also maintains, for each machine, values that the
machine expects for control registers CRO, CR2, CR3, and CR4 (they control address
translation). These values are called the guest control registers.

In general, the VMM selects the physical-address space that is allocated to guest
software. The term guest address refers to an address installed by guest software in
the guest CR3, in a guest PDE (as a page table base address or a page base address),
or in a guest PTE (as a page base address). While guest software considers these to
be specific physical addresses, the VMM may map them differently.

28.3.5.1 Initialization of Virtual TLB

To enable the Virtual TLB scheme, the VMCS must be set up to trigger VM exits on:

® All writes to CR3 (the CR3-target count should be 0) or the paging-mode bits in
CRO and CR4 (using the CRO and CR4 guest/host masks)

® Page-fault (#PF) exceptions
® Execution of INVLPG

Vol.3 28-7

VIRTUALIZATION OF SYSTEM RESOURCES

When guest software first enables paging, the VMM creates an aligned 4-KByte active
page directory that is invalid (all entries marked not-present). This invalid directory
is analogous to an empty TLB.

28.3.5.2 Response to Page Faults

Page faults can occur for a variety of reasons. In some cases, the page fault alerts the
VMM to an inconsistency between the active and guest page-table hierarchy. In such
cases, the VMM can update the former and re-execute the faulting instruction. In
other cases, the hierarchies are already consistent and the fault should be handled
by the guest operating system. The VMM can detect this and use an established
mechanism for raising a page fault to guest software.

The VMM can handle a page fault by following these steps (The steps below assume
the guest is operating in a paging mode without PAE. Analogous steps to handle
address translation using PAE or four-level paging mechanisms can be derived by
VMM developers according to the paging behavior defined in Chapter 3 of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A):

1. First consult the active PDE, which can be located using the upper 10 bits of the
faulting address and the current value of CR3. The active PDE is the source of the
fault if it is marked not present or if its R/W bit and U/S bits are inconsistent with
the attempted guest access (the guest privilege level and the value of CRO:WP
should also be taken into account).

2. If the active PDE is the source of the fault, consult the corresponding guest PDE
using the same 10 bits from the faulting address and the physical address that
corresponds to the guest address in the guest CR3. If the guest PDE would cause
a page fault (for example: it is marked not present), then raise a page fault to the
guest operating system.

The following steps assume that the guest PDE would not have caused a page
fault.

3. If the active PDE is the source of the fault and the guest PDE contains, as page-
table base address (if PS = 0) or page base address (PS = 1), a guest address
that the VMM has chosen not to support; then raise a machine check (or some
other abort) to the guest operating system.

The following steps assume that the guest address in the guest PDE is supported
for the virtual machine.

4. If the active PDE is marked not-present, then set the active PDE to correspond to
guest PDE as follows:

a. If the active PDE contains a page-table base address (if PS = 0), then
allocate an aligned 4-KByte active page table marked