
Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Volume 3B:
System Programming Guide, Part 2

NOTE: The Intel® 64 and IA-32 Architectures Software Developer's Manual
consists of seven volumes: Basic Architecture, Order Number 253665;
Instruction Set Reference A-L, Order Number 253666; Instruction Set
Reference M-Z, Order Number 253667; Instruction Set Reference, Order
Number 326018; System Programming Guide, Part 1, Order Number
253668; System Programming Guide, Part 2, Order Number 253669;
System Programming Guide, Part 3, Order Number 326019. Refer to all
seven volumes when evaluating your design needs.

Order Number:  253669-041US
December 2011



INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT.  EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR IN-
TENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUA-
TION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. 

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or "unde-
fined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. The information here is subject to change without no-
tice. Do not finalize a design with this information. 

The Intel® 64 architecture processors may contain design defects or errors known as errata. Current char-
acterized errata are available on request.

Intel® Hyper-Threading Technology requires a computer system with an Intel® processor supporting Intel
Hyper-Threading Technology and an Intel® HT Technology enabled chipset, BIOS and operating system.
Performance will vary depending on the specific hardware and software you use. For more information, see
http://www.intel.com/technology/hyperthread/index.htm; including details on which processors support Intel HT
Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will vary depending on hardware and software configurations. Intel® Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, oper-
ating system, device drivers and applications enabled for Intel® 64 architecture. Processors will not operate
(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary depend-
ing on your hardware and software configurations. Consult with your system vendor for more information.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability
and a supporting operating system. Check with your PC manufacturer on whether your system delivers Ex-
ecute Disable Bit functionality.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo,
Intel Core 2 Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are trade-
marks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other coun-
tries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725, or by visiting Intel’s website at http://www.intel.com

Copyright © 1997-2011 Intel Corporation
ii Vol. 3B



CHAPTER 14
POWER AND THERMAL MANAGEMENT

This chapter describes facilities of Intel 64 and IA-32 architecture used for power 
management and thermal monitoring.

14.1 ENHANCED INTEL SPEEDSTEP® TECHNOLOGY
Enhanced Intel SpeedStep® Technology was introduced in the Pentium M processor; 
it is available in Pentium 4, Intel Xeon, Intel® Core™ Solo, Intel® Core™ Duo, Intel® 
Atom™ and Intel® Core™2 Duo processors. The technology manages processor 
power consumption using performance state transitions. These states are defined as 
discrete operating points associated with different frequencies. 

Enhanced Intel SpeedStep Technology differs from previous generations of Intel 
SpeedStep Technology in two ways:
• Centralization of the control mechanism and software interface in the processor 

by using model-specific registers.
• Reduced hardware overhead; this permits more frequent performance state 

transitions.

Previous generations of the Intel SpeedStep Technology require processors to be a 
deep sleep state, holding off bus master transfers for the duration of a performance 
state transition. Performance state transitions under the Enhanced Intel SpeedStep 
Technology are discrete transitions to a new target frequency.

Support is indicated by CPUID, using ECX feature bit 07. Enhanced Intel SpeedStep 
Technology is enabled by setting IA32_MISC_ENABLE MSR, bit 16. On reset, bit 16 of 
IA32_MISC_ENABLE MSR is cleared. 

14.1.1 Software Interface For Initiating Performance State 
Transitions

State transitions are initiated by writing a 16-bit value to the IA32_PERF_CTL 
register, see Figure 14-2. If a transition is already in progress, transition to a new 
value will subsequently take effect. 

Reads of IA32_PERF_CTL determine the last targeted operating point. The current 
operating point can be read from IA32_PERF_STATUS. IA32_PERF_STATUS is 
updated dynamically.

The 16-bit encoding that defines valid operating points is model-specific. Applications 
and performance tools are not expected to use either IA32_PERF_CTL or 
IA32_PERF_STATUS and should treat both as reserved. Performance monitoring 
Vol. 3B 14-1



POWER AND THERMAL MANAGEMENT
tools can access model-specific events and report the occurrences of state 
transitions.

14.2 P-STATE HARDWARE COORDINATION
The Advanced Configuration and Power Interface (ACPI) defines performance states 
(P-state) that are used facilitate system software’s ability to manage processor 
power consumption. Different P-state correspond to different performance levels 
that are applied while the processor is actively executing instructions. Enhanced Intel 
SpeedStep Technology supports P-state by providing software interfaces that control 
the operating frequency and voltage of a processor. 

With multiple processor cores residing in the same physical package, hardware 
dependencies may exist for a subset of logical processors on a platform. These 
dependencies may impose requirements that impact coordination of P-state transi-
tions. As a result, multi-core processors may require an OS to provide additional soft-
ware support for coordinating P-state transitions for those subsets of logical 
processors.

A BIOS (following ACPI 3.0 specification) can choose to expose P-state as dependent 
and hardware-coordinated to OS power management (OSPM) policy. To support 
OSPMs, multi-core processors must have additional built-in support for P-state hard-
ware coordination and feedback.

Intel 64 and IA-32 processors with dependent P-state amongst a subset of logical 
processors permit hardware coordination of P-state and provide a hardware-coordi-
nation feedback mechanism using IA32_MPERF MSR and IA32_APERF MSR. See 
Figure 14-1 for an overview of the two 64-bit MSRs and the bullets below for a 
detailed description:

• Use CPUID to check the P-State hardware coordination feedback capability bit. 
CPUID.06H.ECX[Bit 0] = 1 indicates IA32_MPERF MSR and IA32_APERF MSR are 
present.

• IA32_MPERF MSR (0xE7) increments in proportion to a fixed frequency, which is 
configured when the processor is booted.

Figure 14-1.  IA32_MPERF MSR and IA32_APERF MSR for P-state Coordination

63 0

IA32_MPERF (Addr: E7H)

630

IA32_APERF (Addr: E8H)
14-2 Vol. 3B



POWER AND THERMAL MANAGEMENT
• IA32_APERF MSR (0xE8) increments in proportion to actual performance, while 
accounting for hardware coordination of P-state and TM1/TM2; or software 
initiated throttling.

• The MSRs are per logical processor; they measure performance only when the 
targeted processor is in the C0 state.

• Only the IA32_APERF/IA32_MPERF ratio is architecturally defined; software 
should not attach meaning to the content of the individual of IA32_APERF or 
IA32_MPERF MSRs.

• When either MSR overflows, both MSRs are reset to zero and continue to 
increment.

• Both MSRs are full 64-bits counters. Each MSR can be written to independently. 
However, software should follow the guidelines illustrated in Example 14-1.

If P-states are exposed by the BIOS as hardware coordinated, software is expected 
to confirm processor support for P-state hardware coordination feedback and use the 
feedback mechanism to make P-state decisions. The OSPM is expected to either save 
away the current MSR values (for determination of the delta of the counter ratio at a 
later time) or reset both MSRs (execute WRMSR with 0 to these MSRs individually) at 
the start of the time window used for making the P-state decision. When not reset-
ting the values, overflow of the MSRs can be detected by checking whether the new 
values read are less than the previously saved values. 

Example 14-1 demonstrates steps for using the hardware feedback mechanism 
provided by IA32_APERF MSR and IA32_MPERF MSR to determine a target P-state.

Example 14-1.  Determine Target P-state From Hardware Coordinated Feedback

DWORD PercentBusy; // Percentage of processor time not idle.
// Measure “PercentBusy“ during previous sampling window.
// Typically, “PercentBusy“ is measure over a time scale suitable for
// power management decisions
// 
// RDMSR of MCNT and ACNT should be performed without delay.
// Software needs to exercise care to avoid delays between 
// the two RDMSRs (for example, interrupts).
MCNT = RDMSR(IA32_MPERF);
ACNT = RDMSR(IA32_APERF);

// PercentPerformance indicates the percentage of the processor
// that is in use. The calculation is based on the PercentBusy, 
// that is the percentage of processor time not idle and the P-state
// hardware coordinated feedback using the ACNT/MCNT ratio.
// Note that both values need to be calculated over the same 
// time window. 

PercentPerformance = PercentBusy * (ACNT/MCNT);
Vol. 3B 14-3



POWER AND THERMAL MANAGEMENT
// This example does not cover the additional logic or algorithms
// necessary to coordinate multiple logical processors to a target P-state.

TargetPstate = FindPstate(PercentPerformance);

if (TargetPstate != currentPstate) {
SetPState(TargetPstate);

} 
// WRMSR of MCNT and ACNT should be performed without delay.

  // Software needs to exercise care to avoid delays between 
  // the two WRMSRs (for example, interrupts).
  WRMSR(IA32_MPERF, 0);
  WRMSR(IA32_APERF, 0);

14.3 SYSTEM SOFTWARE CONSIDERATIONS AND 
OPPORTUNISTIC PROCESSOR PERFORMANCE 
OPERATION

An Intel 64 processor may support a form of processor operation that takes advan-
tage of design headroom to opportunistically increase performance. In Intel Core i7 
processors, Intel Turbo Boost Technology can convert thermal headroom into higher 
performance across multi-threaded and single-threaded workloads. In Intel Core 2 
processors, Intel Dynamic Acceleration can convert thermal headroom into higher 
performance if only one thread is active.

14.3.1 Intel Dynamic Acceleration
Intel Core 2 Duo processor T 7700 introduces Intel Dynamic Acceleration (IDA). IDA 
takes advantage of thermal design headroom and opportunistically allows a single 
core to operate at a higher performance level when the operating system requests 
increased performance. 

14.3.2 System Software Interfaces for Opportunistic Processor 
Performance Operation

Opportunistic processor operation, applicable to Intel Dynamic Acceleration and Intel 
Turbo Boost Technology, has the following characteristics:
• A transition from a normal state of operation (e.g. IDA/Turbo mode disengaged) 

to a target state is not guaranteed, but may occur opportunistically after the 
14-4 Vol. 3B



POWER AND THERMAL MANAGEMENT
corresponding enable mechanism is activated, the headroom is available and 
certain criteria are met.

• The opportunistic processor performance operation is generally transparent to 
most application software.

• System software (BIOS and Operating system) must be aware of hardware 
support for opportunistic processor performance operation and may need to 
temporarily disengage opportunistic processor performance operation when it 
requires more predictable processor operation. 

• When opportunistic processor performance operation is engaged, the OS should 
use hardware coordination feedback mechanisms to prevent un-intended policy 
effects if it is activated during inappropriate situations.

14.3.2.1  Discover Hardware Support and Enabling of Opportunistic 
Processor Operation

If an Intel 64 processor has hardware support for opportunistic processor perfor-
mance operation, the power-on default state of IA32_MISC_ENABLE[38] indicates 
the presence of such hardware support. For Intel 64 processors that support oppor-
tunistic processor performance operation, the default value is 1, indicating its pres-
ence. For processors that do not support opportunistic processor performance 
operation, the default value is 0. The power-on default value of 
IA32_MISC_ENABLE[38] allows BIOS to detect the presence of hardware support of 
opportunistic processor performance operation. 

IA32_MISC_ENABLE[38] is shared across all logical processors in a physical 
package. It is written by BIOS during platform initiation to enable/disable opportu-
nistic processor operation in conjunction of OS power management capabilities, see 
Section 14.3.2.2. BIOS can set IA32_MISC_ENABLE[38] with 1 to disable opportu-
nistic processor performance operation; it must clear the default value of 
IA32_MISC_ENABLE[38] to 0 to enable opportunistic processor performance opera-
tion. OS and applications must use CPUID leaf 06H if it needs to detect processors 
that has opportunistic processor operation enabled.

When CPUID is executed with EAX = 06H on input, Bit 1 of EAX in Leaf 06H (i.e. 
CPUID.06H:EAX[1]) indicates opportunistic processor performance operation, such 
as IDA, has been enabled by BIOS. 

Opportunistic processor performance operation can be disabled by setting bit 38 of 
IA32_MISC_ENABLE. This mechanism is intended for BIOS only. If 
IA32_MISC_ENABLE[38] is set, CPUID.06H:EAX[1] will return 0. 

14.3.2.2  OS Control of Opportunistic Processor Performance Operation
There may be phases of software execution in which system software cannot tolerate 
the non-deterministic aspects of opportunistic processor performance operation. For 
example, when calibrating a real-time workload to make a CPU reservation request 
Vol. 3B 14-5



POWER AND THERMAL MANAGEMENT
to the OS, it may be undesirable to allow the possibility of the processor delivering 
increased performance that cannot be sustained after the calibration phase. 

System software can temporarily disengage opportunistic processor performance 
operation by setting bit 32 of the IA32_PERF_CTL MSR (0199H), using a read-
modify-write sequence on the MSR. The opportunistic processor performance opera-
tion can be re-engaged by clearing bit 32 in IA32_PERF_CTL MSR, using a read-
modify-write sequence. The DISENAGE bit in IA32_PERF_CTL is not reflected in bit 
32 of the IA32_PERF_STATUS MSR (0198H), and it is not shared between logical 
processors in a physical package. In order for OS to engage IDA/Turbo mode, the 
BIOS must 
• enable opportunistic processor performance operation, as described in Section 

14.3.2.1,
• expose the operating points associated with IDA/Turbo mode to the OS.

14.3.2.3  Required Changes to OS Power Management P-state Policy
Intel Dynamic Acceleration (IDA) and Intel Turbo Boost Technology can provide 
opportunistic performance greater than the performance level corresponding to the 
maximum qualified frequency of the processor (see CPUID’s brand string informa-
tion). System software can use a pair of MSRs to observe performance feedback. 
Software must query for the presence of IA32_APERF and IA32_MPERF (see Section 
14.2). The ratio between IA32_APERF and IA32_MPERF is architecturally defined and 
a value greater than unity indicates performance increase occurred during the obser-
vation period due to IDA. Without incorporating such performance feedback, the 
target P-state evaluation algorithm can result in a non-optimal P-state target. 

There are other scenarios under which OS power management may want to disable 
IDA, some of these are listed below:
• When engaging ACPI defined passive thermal management, it may be more 

effective to disable IDA for the duration of passive thermal management.
• When the user has indicated a policy preference of power savings over perfor-

mance, OS power management may want to disable IDA while that policy is in 
effect.

Figure 14-2.  IA32_PERF_CTL Register

63 0

Reserved

16

EIST Transition Target 

153233 31

IDA/Turbo DISENGAGE
14-6 Vol. 3B



POWER AND THERMAL MANAGEMENT
14.3.2.4  Application Awareness of Opportunistic Processor Operation 
(Optional)

There may be situations that an end user or application software wishes to be aware 
of turbo mode activity. It is possible for an application-level utility to periodically 
check the occurrences of opportunistic processor operation. The basic elements of an 
algorithm is described below, using the characteristics of Intel Turbo Boost Tech-
nology as example.

Using an OS-provided timer service, application software can periodically calculate 
the ratio between unhalted-core-clockticks (UCC) relative to the unhalted-reference-
clockticks (URC) on each logical processor to determine if that logical processor had 
been requested by OS to run at some frequency higher than the invariant TSC 
frequency, or the OS has determined system-level demand has reduced sufficiently 
to put that logical processor into a lower-performance p-state or even lower-activity 
state. 

If an application software have access to information of the base operating ratio 
between the invariant TSC frequency and the base clock (133.33 MHz), it can convert 
the sampled ratio into a dynamic frequency estimate for each prior sampling period. 
The base operating ratio can be read from MSR_PLATFORM_INFO[15:8].

The periodic sampling technique is depicted in Figure 14-3 and described below:

• The sampling period chosen by the application (to program an OS timer service) 
should be sufficiently large to avoid excessive polling overhead to other applica-
tions or tasks managed by the OS. 

Figure 14-3.  Periodic Query of Activity Ratio of Opportunistic Processor Operation

LP 2
LP 1

n-1 n+3Sample period

LP 0

n+2n n+1

UCCn, 0

URCn, 0

FixedCtr1

FixedCtr2

LP 2
LP 1

LP 0

LP 2
LP 1

LP 0

LP 2
LP 1

LP 0

UCCn+1, 0

URCn+1, 0

UCCn+2, 0

URCn+2, 0

UCCn+3, 0

URCn+3, 0

Logical Processor i Turbo Activity Ratio = (UCCn+1, i - UCCn, i) / (URCn+1, i - URCn, i)

Unhalted core clockticks

Unhalted reference 
clockticks

..... ..... ..... .....
Vol. 3B 14-7



POWER AND THERMAL MANAGEMENT
• When the OS timer service transfers control, the application can use RDPMC 
(with ECX = 4000_0001H) to read IA32_PERF_FIXED_CTR1 (MSR address 30AH) 
to record the unhalted core clocktick (UCC) value; followed by RDPMC 
(ECX=4000_0002H) to read IA32_PERF_FIXED_CTR2 (MSR address 30BH) to 
record the unhalted reference clocktick (URC) value. This pair of values is needed 
for each logical processor for each sampling period. 

• The application can calculate the Turbo activity ratio based on the difference of 
UCC between each sample period, over the difference of URC difference. The 
effective frequency of each sample period of the logical processor, i, can be 
estimated by:
(UCCn+1, i - UCC n, i)/(URCn+1, i - URC n, i)* Base_operating_ratio* 133.33MHz

It is possible that the OS had requested a lower-performance P-state during a 
sampling period. Thus the ratio (UCCn+1, i - UCC n, i)/(URCn+1, i - URC n, i) can reflect 
the average of Turbo activity (driving the ratio above unity) and some lower P-state 
transitions (causing the ratio to be < 1). 

It is also possible that the OS might requested C-state transitions when the demand 
is low. The above ratio generally does not account for cycles any logical processor 
was idle. On Intel Core i7 processors, an application can make use of the time stamp 
counter (IA-32_TSC) running at a constant frequency (i.e. Base_operating_ratio* 
133.33MHz) during C-states. Thus software can calculate ratios that can indicate 
fractions of sample period spent in the C0 state, using the unhalted reference clock-
ticks and the invariant TSC. Note the estimate of fraction spent in C0 may be affected 
by SMM handler if the system software makes use of the “FREEZE_WHILE_SMM_EN“ 
capability to freeze performance counter values while the SMM handler is servicing 
an SMI (see Chapter 23, “Introduction to Virtual-Machine Extensions”).

14.3.3 Intel Turbo Boost Technology
Intel Turbo Boost Technology is supported in Intel Core i7 processors and Intel Xeon 
processors based on Intel® microarchitecture code name Nehalem. It uses the same 
principle of leveraging thermal headroom to dynamically increase processor perfor-
mance for single-threaded and multi-threaded/multi-tasking environment. The 
programming interface described in Section 14.3.2 also applies to Intel Turbo Boost 
Technology.

14.3.4 Performance and Energy Bias Hint support
Intel 64 processors may support additional software hint to guide the hardware 
heuristic of power management features to favor increasing dynamic performance or 
conserve energy consumption. 

Software can detect processor's capability to support performance-energy bias pref-
erence hint by examining bit 3 of ECX in CPUID leaf 6. The processor supports this 
14-8 Vol. 3B



POWER AND THERMAL MANAGEMENT
capability if CPUID.06H:ECX.SETBH[bit 3] is set and it also implies the presence of a 
new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H).

Software can program the lowest four bits of IA32_ENERGY_PERF_BIAS MSR with a 
value from 0 - 15. The values represent a sliding scale, where a value of 0 (the 
default reset value) corresponds to a hint preference for highest performance and a 
value of 15 corresponds to the maximum energy savings. A value of 7 roughly trans-
lates into a hint to balance performance with energy consumption

The layout of IA32_ENERGY_PERF_BIAS is shown in Figure 14-4. The scope of 
IA32_ENERGY_PERF_BIAS is per logical processor, which means that each of the 
logical processors in the package can be programmed with a different value. This 
may be especially important in virtualization scenarios, where the performance / 
energy requirements of one logical processor may differ from the other. Conflicting 
"hints" from various logical processors at higher hierarchy level will be resolved in 
favor of performance over energy savings. 

Software can use whatever criteria it sees fit to program the MSR with the appro-
priate value. However, the value only serves as a hint to the hardware and the actual 
impact on performance and energy savings is model specific.

14.4 MWAIT EXTENSIONS FOR ADVANCED POWER 
MANAGEMENT

IA-32 processors may support a number of C-states1 that reduce power consumption 
for inactive states. Intel Core Solo and Intel Core Duo processors support both 
deeper C-state and MWAIT extensions that can be used by OS to implement power 
management policy.

Figure 14-4.  IA32_ENERGY_PERF_BIAS Register

1. The processor-specific C-states defined in MWAIT extensions can map to ACPI defined C-state 
types (C0, C1, C2, C3). The mapping relationship depends on the definition of a C-state by proces-
sor implementation and is exposed to OSPM by the BIOS using the ACPI defined _CST table.

63 0

Reserved

Energy Policy Preference Hint

4 3
Vol. 3B 14-9



POWER AND THERMAL MANAGEMENT
Software should use CPUID to discover if a target processor supports the enumera-
tion of MWAIT extensions. If CPUID.05H.ECX[Bit 0] = 1, the target processor 
supports MWAIT extensions and their enumeration (see Chapter 3, “Instruction Set 
Reference, A-L,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A).

If CPUID.05H.ECX[Bit 1] = 1, the target processor supports using interrupts as 
break-events for MWAIT, even when interrupts are disabled. Use this feature to 
measure C-state residency as follows:
• Software can write to bit 0 in the MWAIT Extensions register (ECX) when issuing 

an MWAIT to enter into a processor-specific C-state or sub C-state.
• When a processor comes out of an inactive C-state or sub C-state, software can 

read a timestamp before an interrupt service routine (ISR) is potentially 
executed. 

CPUID.05H.EDX allows software to enumerate processor-specific C-states and sub 
C-states available for use with MWAIT extensions. IA-32 processors may support 
more than one C-state of a given C-state type. These are called sub C-states. Numer-
ically higher C-state have higher power savings and latency (upon entering and 
exiting) than lower-numbered C-state. 

At CPL = 0, system software can specify desired C-state and sub C-state by using the 
MWAIT hints register (EAX). Processors will not go to C-state and sub C-state deeper 
than what is specified by the hint register. If CPL > 0 and if MONITOR/MWAIT is 
supported at CPL > 0, the processor will only enter C1-state (regardless of the 
C-state request in the hints register). 

Executing MWAIT generates an exception on processors operating at a privilege level 
where MONITOR/MWAIT are not supported.

NOTE
If MWAIT is used to enter a C-state (including sub C-state) that is 
numerically higher than C1, a store to the address range armed by 
MONITOR instruction will cause the processor to exit MWAIT if the 
store was originated by other processor agents. A store from non-
processor agent may not cause the processor to exit MWAIT. 

14.5 THERMAL MONITORING AND PROTECTION
The IA-32 architecture provides the following mechanisms for monitoring tempera-
ture and controlling thermal power:

1. The catastrophic shutdown detector forces processor execution to stop if the 
processor’s core temperature rises above a preset limit.

2. Automatic and adaptive thermal monitoring mechanisms force the 
processor to reduce it’s power consumption in order to operate within predeter-
mined temperature limits.
14-10 Vol. 3B



POWER AND THERMAL MANAGEMENT
3. The software controlled clock modulation mechanism permits operating 
systems to implement power management policies that reduce power 
consumption; this is in addition to the reduction offered by automatic thermal 
monitoring mechanisms.

4. On-die digital thermal sensor and interrupt mechanisms permit the OS to 
manage thermal conditions natively without relying on BIOS or other system 
board components.

The first mechanism is not visible to software. The other three mechanisms are 
visible to software using processor feature information returned by executing CPUID 
with EAX = 1.

The second mechanism includes: 
• Automatic thermal monitoring provides two modes of operation. One mode 

modulates the clock duty cycle; the second mode changes the processor’s 
frequency. Both modes are used to control the core temperature of the processor.

• Adaptive thermal monitoring can provide flexible thermal management on 
processors made of multiple cores.

The third mechanism modulates the clock duty cycle of the processor. As shown in 
Figure 14-5, the phrase ‘duty cycle’ does not refer to the actual duty cycle of the 
clock signal. Instead it refers to the time period during which the clock signal is 
allowed to drive the processor chip. By using the stop clock mechanism to control 
how often the processor is clocked, processor power consumption can be modulated. 

For previous automatic thermal monitoring mechanisms, software controlled mecha-
nisms that changed processor operating parameters to impact changes in thermal 
conditions. Software did not have native access to the native thermal condition of the 
processor; nor could software alter the trigger condition that initiated software 
program control. 

The fourth mechanism (listed above) provides access to an on-die digital thermal 
sensor using a model-specific register and uses an interrupt mechanism to alert soft-
ware to initiate digital thermal monitoring. 

Figure 14-5.  Processor Modulation Through Stop-Clock Mechanism

Clock Applied to Processor

Stop-Clock Duty Cycle

25% Duty Cycle (example only)
Vol. 3B 14-11



POWER AND THERMAL MANAGEMENT
14.5.1 Catastrophic Shutdown Detector
P6 family processors introduced a thermal sensor that acts as a catastrophic shut-
down detector. This catastrophic shutdown detector was also implemented in 
Pentium 4, Intel Xeon and Pentium M processors. It is always enabled. When 
processor core temperature reaches a factory preset level, the sensor trips and 
processor execution is halted until after the next reset cycle.

14.5.2 Thermal Monitor
Pentium 4, Intel Xeon and Pentium M processors introduced a second temperature 
sensor that is factory-calibrated to trip when the processor’s core temperature 
crosses a level corresponding to the recommended thermal design envelop. The trip-
temperature of the second sensor is calibrated below the temperature assigned to 
the catastrophic shutdown detector. 

14.5.2.1  Thermal Monitor 1
The Pentium 4 processor uses the second temperature sensor in conjunction with a 
mechanism called Thermal Monitor 1 (TM1) to control the core temperature of the 
processor. TM1 controls the processor’s temperature by modulating the duty cycle of 
the processor clock. Modulation of duty cycles is processor model specific. Note that 
the processors STPCLK# pin is not used here; the stop-clock circuitry is controlled 
internally.

Support for TM1 is indicated by CPUID.1:EDX.TM[bit 29] = 1.

TM1 is enabled by setting the thermal-monitor enable flag (bit 3) in 
IA32_MISC_ENABLE [see Chapter 34, “Model-Specific Registers (MSRs),”]. Following 
a power-up or reset, the flag is cleared, disabling TM1. BIOS is required to enable 
only one automatic thermal monitoring modes. Operating systems and applications 
must not disable the operation of these mechanisms.

14.5.2.2  Thermal Monitor 2
An additional automatic thermal protection mechanism, called Thermal Monitor 2 
(TM2), was introduced in the Intel Pentium M processor and also incorporated in 
newer models of the Pentium 4 processor family. Intel Core Duo and Solo processors, 
and Intel Core 2 Duo processor family all support TM1 and TM2. TM2 controls the 
core temperature of the processor by reducing the operating frequency and voltage 
of the processor and offers a higher performance level for a given level of power 
reduction than TM1.

TM2 is triggered by the same temperature sensor as TM1. The mechanism to enable 
TM2 may be implemented differently across various IA-32 processor families with 
different CPUID signatures in the family encoding value, but will be uniform within an 
IA-32 processor family. 
14-12 Vol. 3B



POWER AND THERMAL MANAGEMENT
Support for TM2 is indicated by CPUID.1:ECX.TM2[bit 8] = 1.

14.5.2.3  Two Methods for Enabling TM2
On processors with CPUID family/model/stepping signature encoded as 0x69n or 
0x6Dn (early Pentium M processors), TM2 is enabled if the TM_SELECT flag (bit 16) 
of the MSR_THERM2_CTL register is set to 1 (Figure 14-6) and bit 3 of the 
IA32_MISC_ENABLE register is set to 1. 

Following a power-up or reset, the TM_SELECT flag may be cleared. BIOS is required 
to enable either TM1 or TM2. Operating systems and applications must not disable 
mechanisms that enable TM1 or TM2. If bit 3 of the IA32_MISC_ENABLE register is 
set and TM_SELECT flag of the MSR_THERM2_CTL register is cleared, TM1 is 
enabled.

On processors introduced after the Pentium 4 processor (this includes most Pentium 
M processors), the method used to enable TM2 is different. TM2 is enable by setting 
bit 13 of IA32_MISC_ENABLE register to 1. This applies to Intel Core Duo, Core Solo, 
and Intel Core 2 processor family.

The target operating frequency and voltage for the TM2 transition after TM2 is trig-
gered is specified by the value written to MSR_THERM2_CTL, bits 15:0 (Figure 14-7). 
Following a power-up or reset, BIOS is required to enable at least one of these two 
thermal monitoring mechanisms. If both TM1 and TM2 are supported, BIOS may 
choose to enable TM2 instead of TM1. Operating systems and applications must not 
disable the mechanisms that enable TM1or TM2; and they must not alter the value in 
bits 15:0 of the MSR_THERM2_CTL register.

Figure 14-6.  MSR_THERM2_CTL Register On Processors with CPUID 
Family/Model/Stepping Signature Encoded as 0x69n or 0x6Dn

TM_SELECT

Reserved

31 0

Reserved

16
Vol. 3B 14-13



POWER AND THERMAL MANAGEMENT
14.5.2.4  Performance State Transitions and Thermal Monitoring
If the thermal control circuitry (TCC) for thermal monitor (TM1/TM2) is active, writes 
to the IA32_PERF_CTL will effect a new target operating point as follows:
• If TM1 is enabled and the TCC is engaged, the performance state transition can 

commence before the TCC is disengaged. 
• If TM2 is enabled and the TCC is engaged, the performance state transition 

specified by a write to the IA32_PERF_CTL will commence after the TCC has 
disengaged. 

14.5.2.5  Thermal Status Information
The status of the temperature sensor that triggers the thermal monitor (TM1/TM2) is 
indicated through the thermal status flag and thermal status log flag in the 
IA32_THERM_STATUS MSR (see Figure 14-8). 

The functions of these flags are:
• Thermal Status flag, bit 0 — When set, indicates that the processor core 

temperature is currently at the trip temperature of the thermal monitor and that 
the processor power consumption is being reduced via either TM1 or TM2, 
depending on which is enabled. When clear, the flag indicates that the core 
temperature is below the thermal monitor trip temperature. This flag is read only. 

• Thermal Status Log flag, bit 1 — When set, indicates that the thermal sensor 
has tripped since the last power-up or reset or since the last time that software 
cleared this flag. This flag is a sticky bit; once set it remains set until cleared by 
software or until a power-up or reset of the processor. The default state is clear.

Figure 14-7.  MSR_THERM2_CTL Register for Supporting TM2

63 0

Reserved

15

TM2 Transition Target 
14-14 Vol. 3B



POWER AND THERMAL MANAGEMENT
After the second temperature sensor has been tripped, the thermal monitor 
(TM1/TM2) will remain engaged for a minimum time period (on the order of 1 ms). 
The thermal monitor will remain engaged until the processor core temperature drops 
below the preset trip temperature of the temperature sensor, taking hysteresis into 
account.

While the processor is in a stop-clock state, interrupts will be blocked from inter-
rupting the processor. This holding off of interrupts increases the interrupt latency, 
but does not cause interrupts to be lost. Outstanding interrupts remain pending until 
clock modulation is complete. 

The thermal monitor can be programmed to generate an interrupt to the processor 
when the thermal sensor is tripped. The delivery mode, mask and vector for this 
interrupt can be programmed through the thermal entry in the local APIC’s LVT (see 
Section 10.5.1, “Local Vector Table”). The low-temperature interrupt enable and 
high-temperature interrupt enable flags in the IA32_THERM_INTERRUPT MSR (see 
Figure 14-9) control when the interrupt is generated; that is, on a transition from a 
temperature below the trip point to above and/or vice-versa.

• High-Temperature Interrupt Enable flag, bit 0 — Enables an interrupt to be 
generated on the transition from a low-temperature to a high-temperature when 
set; disables the interrupt when clear.(R/W).

• Low-Temperature Interrupt Enable flag, bit 1 — Enables an interrupt to be 
generated on the transition from a high-temperature to a low-temperature when 
set; disables the interrupt when clear.

The thermal monitor interrupt can be masked by the thermal LVT entry. After a 
power-up or reset, the low-temperature interrupt enable and high-temperature 

Figure 14-8.  IA32_THERM_STATUS MSR

Figure 14-9.  IA32_THERM_INTERRUPT MSR

63 0

Reserved

12

Thermal Status
Thermal Status Log

63 0

Reserved

12

High-Temperature Interrupt Enable
Low-Temperature Interrupt Enable
Vol. 3B 14-15



POWER AND THERMAL MANAGEMENT
interrupt enable flags in the IA32_THERM_INTERRUPT MSR are cleared (interrupts 
are disabled) and the thermal LVT entry is set to mask interrupts. This interrupt 
should be handled either by the operating system or system management mode 
(SMM) code.

Note that the operation of the thermal monitoring mechanism has no effect upon the 
clock rate of the processor's internal high-resolution timer (time stamp counter). 

14.5.2.6  Adaptive Thermal Monitor 
The Intel Core 2 Duo processor family supports enhanced thermal management 
mechanism, referred to as Adaptive Thermal Monitor (Adaptive TM). 

Unlike TM2, Adaptive TM is not limited to one TM2 transition target. During a thermal 
trip event, Adaptive TM (if enabled) selects an optimal target operating point based 
on whether or not the current operating point has effectively cooled the processor.

Similar to TM2, Adaptive TM is enable by BIOS. The BIOS is required to test the TM1 
and TM2 feature flags and enable all available thermal control mechanisms (including 
Adaptive TM) at platform initiation. 

Adaptive TM is available only to a subset of processors that support TM2.

In each chip-multiprocessing (CMP) silicon die, each core has a unique thermal 
sensor that triggers independently. These thermal sensor can trigger TM1 or TM2 
transitions in the same manner as described in Section 14.5.2.1 and Section 
14.5.2.2. The trip point of the thermal sensor is not programmable by software since 
it is set during the fabrication of the processor. 

Each thermal sensor in a processor core may be triggered independently to engage 
thermal management features. In Adaptive TM, both cores will transition to a lower 
frequency and/or lower voltage level if one sensor is triggered.

Triggering of this sensor is visible to software via the thermal interrupt LVT entry in 
the local APIC of a given core. 

14.5.3 Software Controlled Clock Modulation
Pentium 4, Intel Xeon and Pentium M processors also support software-controlled 
clock modulation. This provides a means for operating systems to implement a power 
management policy to reduce the power consumption of the processor. Here, the 
stop-clock duty cycle is controlled by software through the 
IA32_CLOCK_MODULATION MSR (see Figure 14-10). 
14-16 Vol. 3B



POWER AND THERMAL MANAGEMENT
The IA32_CLOCK_MODULATION MSR contains the following flag and field used to 
enable software-controlled clock modulation and to select the clock modulation duty 
cycle:
• On-Demand Clock Modulation Enable, bit 4 — Enables on-demand software 

controlled clock modulation when set; disables software-controlled clock 
modulation when clear.

• On-Demand Clock Modulation Duty Cycle, bits 1 through 3 — Selects the 
on-demand clock modulation duty cycle (see Table 14-1). This field is only active 
when the on-demand clock modulation enable flag is set.

Note that the on-demand clock modulation mechanism (like the thermal monitor) 
controls the processor’s stop-clock circuitry internally to modulate the clock signal. 
The STPCLK# pin is not used in this mechanism.

The on-demand clock modulation mechanism can be used to control processor power 
consumption. Power management software can write to the 
IA32_CLOCK_MODULATION MSR to enable clock modulation and to select a modula-
tion duty cycle. If on-demand clock modulation and TM1 are both enabled and the 
thermal status of the processor is hot (bit 0 of the IA32_THERM_STATUS MSR is set), 

Figure 14-10.  IA32_CLOCK_MODULATION MSR

Table 14-1.  On-Demand Clock Modulation Duty Cycle Field Encoding

Duty Cycle Field Encoding Duty Cycle

000B Reserved

001B 12.5% (Default)

010B 25.0%

011B 37.5%

100B 50.0%

101B 63.5%

110B 75%

111B 87.5%

63 0

Reserved

13

On-Demand Clock Modulation Duty Cycle
On-Demand Clock Modulation Enable

45

Reserved
Vol. 3B 14-17



POWER AND THERMAL MANAGEMENT
clock modulation at the duty cycle specified by TM1 takes precedence, regardless of 
the setting of the on-demand clock modulation duty cycle.

For Hyper-Threading Technology enabled processors, the 
IA32_CLOCK_MODULATION register is duplicated for each logical processor. In order 
for the On-demand clock modulation feature to work properly, the feature must be 
enabled on all the logical processors within a physical processor. If the programmed 
duty cycle is not identical for all the logical processors, the processor clock will modu-
late to the highest duty cycle programmed. 

For the P6 family processors, on-demand clock modulation was implemented 
through the chipset, which controlled clock modulation through the processor’s 
STPCLK# pin.

14.5.3.1  Extension of Software Controlled Clock Modulation
Extension of the software controlled clock modulation facility supports on-demand 
clock modulation duty cycle with 4-bit dynamic range (increased from 3-bit range). 
Granularity of clock modulation duty cycle is increased to 6.25% (compared to 
12.5%).

Four bit dynamic range control is provided by using bit 0 in conjunction with bits 3:1 
of the IA32_CLOCK_MODULATION MSR (see Figure 14-11).

Extension to software controlled clock modulation is supported only if 
CPUID.06H:EAX[Bit 5] = 1. If CPUID.06H:EAX[Bit 5] = 0, then bit 0 of 
IA32_CLOCK_MODULATION is reserved.

14.5.4 Detection of Thermal Monitor and Software Controlled
Clock Modulation Facilities

The ACPI flag (bit 22) of the CPUID feature flags indicates the presence of the 
IA32_THERM_STATUS, IA32_THERM_INTERRUPT, IA32_CLOCK_MODULATION 
MSRs, and the xAPIC thermal LVT entry. 

The TM1 flag (bit 29) of the CPUID feature flags indicates the presence of the auto-
matic thermal monitoring facilities that modulate clock duty cycles.

Figure 14-11.  IA32_CLOCK_MODULATION MSR with Clock Modulation Extension

63 0

Reserved

3

Extended On-Demand Clock Modulation Duty Cycle
On-Demand Clock Modulation Enable

45

Reserved
14-18 Vol. 3B



POWER AND THERMAL MANAGEMENT
14.5.4.1  Detection of Software Controlled Clock Modulation Extension
Processor’s support of software controlled clock modulation extension is indicated by 
CPUID.06H:EAX[Bit 5] = 1. 

14.5.5 On Die Digital Thermal Sensors
On die digital thermal sensor can be read using an MSR (no I/O interface). In Intel 
Core Duo processors, each core has a unique digital sensor whose temperature is 
accessible using an MSR. The digital thermal sensor is the preferred method for 
reading the die temperature because (a) it is located closer to the hottest portions of 
the die, (b) it enables software to accurately track the die temperature and the 
potential activation of thermal throttling.

14.5.5.1  Digital Thermal Sensor Enumeration
The processor supports a digital thermal sensor if CPUID.06H.EAX[0] = 1. If the 
processor supports digital thermal sensor, EBX[bits 3:0] determine the number of 
thermal thresholds that are available for use. 

Software sets thermal thresholds by using the IA32_THERM_INTERRUPT MSR. Soft-
ware reads output of the digital thermal sensor using the IA32_THERM_STATUS 
MSR.

14.5.5.2  Reading the Digital Sensor
Unlike traditional analog thermal devices, the output of the digital thermal sensor is 
a temperature relative to the maximum supported operating temperature of the 
processor.

Temperature measurements returned by digital thermal sensors are always at or 
below TCC activation temperature. Critical temperature conditions are detected 
using the “Critical Temperature Status” bit. When this bit is set, the processor is 
operating at a critical temperature and immediate shutdown of the system should 
occur. Once the “Critical Temperature Status” bit is set, reliable operation is not guar-
anteed. 

See Figure 14-12 for the layout of IA32_THERM_STATUS MSR. Bit fields include:
• Thermal Status (bit 0, RO) — This bit indicates whether the digital thermal 

sensor high-temperature output signal (PROCHOT#) is currently active. Bit 0 = 1 
indicates the feature is active. This bit may not be written by software; it reflects 
the state of the digital thermal sensor.

• Thermal Status Log (bit 1, R/WC0) — This is a sticky bit that indicates the 
history of the thermal sensor high temperature output signal (PROCHOT#). 
Bit 1 = 1 if PROCHOT# has been asserted since a previous RESET or the last time 
software cleared the bit. Software may clear this bit by writing a zero.
Vol. 3B 14-19



POWER AND THERMAL MANAGEMENT
• PROCHOT# or FORCEPR# Event (bit 2, RO) — Indicates whether PROCHOT# 
or FORCEPR# is being asserted by another agent on the platform. 

• PROCHOT# or FORCEPR# Log (bit 3, R/WC0) — Sticky bit that indicates 
whether PROCHOT# or FORCEPR# has been asserted by another agent on the 
platform since the last clearing of this bit or a reset. If bit 3 = 1, PROCHOT# or 
FORCEPR# has been externally asserted. Software may clear this bit by writing a 
zero. External PROCHOT# assertions are only acknowledged if the Bidirectional 
Prochot feature is enabled.

• Critical Temperature Status (bit 4, RO) — Indicates whether the critical 
temperature detector output signal is currently active. If bit 4 = 1, the critical 
temperature detector output signal is currently active.

• Critical Temperature Log (bit 5, R/WC0) — Sticky bit that indicates whether 
the critical temperature detector output signal has been asserted since the last 
clearing of this bit or reset. If bit 5 = 1, the output signal has been asserted. 
Software may clear this bit by writing a zero.

• Thermal Threshold #1 Status (bit 6, RO) — Indicates whether the actual 
temperature is currently higher than or equal to the value set in Thermal 
Threshold #1. If bit 6 = 0, the actual temperature is lower. If bit 6 = 1, the 
actual temperature is greater than or equal to TT#1. Quantitative information of 
actual temperature can be inferred from Digital Readout, bits 22:16.

• Thermal Threshold #1 Log (bit 7, R/WC0) — Sticky bit that indicates 
whether the Thermal Threshold #1 has been reached since the last clearing of 

Figure 14-12.  IA32_THERM_STATUS Register 

63 0

Reserved

15

Reading Valid

1234581016222327

Resolution in Deg. Celsius
Digital Readout

Thermal Threshold #2 Log
Thermal Threshold #2 Status 
Thermal Threshold #1 Log
Thermal Threshold #1 Status
Critical Temperature Log

6793132

Critical Temperature Status
PROCHOT# or FORCEPR# Log
PROCHOT# or FORCEPR# Event
Thermal Status Log
Thermal Status

11

Power Limit Notification Log
Power Limit Notification Status
14-20 Vol. 3B



POWER AND THERMAL MANAGEMENT
this bit or a reset. If bit 7 = 1, the Threshold #1 has been reached. Software may 
clear this bit by writing a zero.

• Thermal Threshold #2 Status (bit 8, RO) — Indicates whether actual 
temperature is currently higher than or equal to the value set in Thermal 
Threshold #2. If bit 8 = 0, the actual temperature is lower. If bit 8 = 1, the 
actual temperature is greater than or equal to TT#2. Quantitative information of 
actual temperature can be inferred from Digital Readout, bits 22:16.

• Thermal Threshold #2 Log (bit 9, R/WC0) — Sticky bit that indicates 
whether the Thermal Threshold #2 has been reached since the last clearing of 
this bit or a reset. If bit 9 = 1, the Thermal Threshold #2 has been reached. 
Software may clear this bit by writing a zero.

• Power Limitation Status (bit 10, RO) — Indicates whether the processor is 
currently operating below OS-requested P-state (specified in IA32_PERF_CTL) or 
OS-requested clock modulation duty cycle (specified in 
IA32_CLOCK_MODULATION). This field is supported only if CPUID.06H:EAX[bit 
4] = 1. Package level power limit notification can be delivered independently to 
IA32_PACKAGE_THERM_STATUS MSR.

• Power Notification Log (bit 11, R/WCO) — Sticky bit that indicates the 
processor went below OS-requested P-state or OS-requested clock modulation 
duty cycle since the last clearing of this or RESET. This field is supported only if 
CPUID.06H:EAX[bit 4] = 1. Package level power limit notification is indicated 
independently in IA32_PACKAGE_THERM_STATUS MSR.

• Digital Readout (bits 22:16, RO) — Digital temperature reading in 1 degree 
Celsius relative to the TCC activation temperature. 
0: TCC Activation temperature, 
1: (TCC Activation - 1) , etc. See the processor’s data sheet for details regarding 
TCC activation.
A lower reading in the Digital Readout field (bits 22:16) indicates a higher actual 
temperature.

• Resolution in Degrees Celsius (bits 30:27, RO) — Specifies the resolution 
(or tolerance) of the digital thermal sensor. The value is in degrees Celsius. It is 
recommended that new threshold values be offset from the current temperature 
by at least the resolution + 1 in order to avoid hysteresis of interrupt generation.

• Reading Valid (bit 31, RO) — Indicates if the digital readout in bits 22:16 is 
valid. The readout is valid if bit 31 = 1.

Changes to temperature can be detected using two thresholds (see Figure 14-13); 
one is set above and the other below the current temperature. These thresholds have 
the capability of generating interrupts using the core's local APIC which software 
must then service. Note that the local APIC entries used by these thresholds are also 
used by the Intel® Thermal Monitor; it is up to software to determine the source of a 
specific interrupt.
Vol. 3B 14-21



POWER AND THERMAL MANAGEMENT
See Figure 14-13 for the layout of IA32_THERM_INTERRUPT MSR. Bit fields include:
• High-Temperature Interrupt Enable (bit 0, R/W) — This bit allows the BIOS 

to enable the generation of an interrupt on the transition from low-temperature 
to a high-temperature threshold.  Bit 0 = 0 (default) disables interrupts; 
bit 0 = 1 enables interrupts.

• Low-Temperature Interrupt Enable (bit 1, R/W) — This bit allows the BIOS 
to enable the generation of an interrupt on the transition from high-temperature 
to a low-temperature (TCC de-activation). Bit 1 = 0 (default) disables interrupts; 
bit 1 = 1 enables interrupts.

• PROCHOT# Interrupt Enable (bit 2, R/W) — This bit allows the BIOS or OS 
to enable the generation of an interrupt when PROCHOT# has been asserted by 
another agent on the platform and the Bidirectional Prochot feature is enabled. 
Bit 2 = 0 disables the interrupt; bit 2 = 1 enables the interrupt.

• FORCEPR# Interrupt Enable (bit 3, R/W) — This bit allows the BIOS or OS to 
enable the generation of an interrupt when FORCEPR# has been asserted by 
another agent on the platform. Bit 3 = 0 disables the interrupt; bit 3 = 1 enables 
the interrupt.

• Critical Temperature Interrupt Enable (bit 4, R/W) — Enables the 
generation of an interrupt when the Critical Temperature Detector has detected a 
critical thermal condition. The recommended response to this condition is a 
system shutdown. Bit 4 = 0 disables the interrupt; bit 4 = 1 enables the 
interrupt.

• Threshold #1 Value (bits 14:8, R/W) — A temperature threshold, encoded 
relative to the TCC Activation temperature (using the same format as the Digital 
Readout). This threshold is compared against the Digital Readout and is used to 

Figure 14-13.  IA32_THERM_INTERRUPT Register 

63 0

Reserved

15

Threshold #2 Interrupt Enable 

1234581416222324

Threshold #2 Value 
Threshold #1 Interrupt Enable 
Threshold #1 Value
Overheat Interrupt Enable
FORCPR# Interrupt Enable 
PROCHOT# Interrupt Enable 
Low Temp. Interrupt Enable 
High Temp. Interrupt Enable

25

Power Limit Notification Enable 
14-22 Vol. 3B



POWER AND THERMAL MANAGEMENT
generate the Thermal Threshold #1 Status and Log bits as well as the Threshold 
#1 thermal interrupt delivery.

• Threshold #1 Interrupt Enable (bit 15, R/W) — Enables the generation of 
an interrupt when the actual temperature crosses the Threshold #1 setting in any 
direction.  Bit 15 = 0 enables the interrupt; bit 15 = 1 disables the interrupt.

• Threshold #2 Value (bits 22:16, R/W) —A temperature threshold, encoded 
relative to the TCC Activation temperature (using the same format as the Digital 
Readout). This threshold is compared against the Digital Readout and is used to 
generate the Thermal Threshold #2 Status and Log bits as well as the Threshold 
#2 thermal interrupt delivery.

• Threshold #2 Interrupt Enable (bit 23, R/W) — Enables the generation of 
an interrupt when the actual temperature crosses the Threshold #2 setting in any 
direction.  Bit 23 = 0 enables the interrupt; bit 23 = 1 disables the interrupt.

• Power Limit Notification Enable (bit 24, R/W) — Enables the generation of 
power notification events when the processor went below OS-requested P-state 
or OS-requested clock modulation duty cycle. This field is supported only if 
CPUID.06H:EAX[bit 4] = 1. Package level power limit notification can be enabled 
independently by IA32_PACKAGE_THERM_INTERRUPT MSR.

14.5.6 Power Limit Notification
Platform firmware may be capable of specifying a power limit to restrict power deliv-
ered to a platform component, such as a physical processor package. This constraint 
imposed by platform firmware may occasionally cause the processor to operate 
below OS-requested P or T-state. A power limit notification event can be delivered 
using the existing thermal LVT entry in the local APIC. 

Software can enumerate the presence of the processor’s support for power limit noti-
fication by verifying CPUID.06H:EAX[bit 4] = 1.

If CPUID.06H:EAX[bit 4] = 1, then IA32_THERM_INTERRUPT and 
IA32_THERM_STATUS provides the following facility to manage power limit notifica-
tion:
• Bits 10 and 11 in IA32_THERM_STATUS informs software of the occurrence of 

processor operating below OS-requested P-state or clock modulation duty cycle 
setting (see Figure 14-12).

• Bit 24 in IA32_THERM_INTERRUPT enables the local APIC to deliver a thermal 
event when the processor went below OS-requested P-state or clock modulation 
duty cycle setting (see Figure 14-13).

14.6 PACKAGE LEVEL THERMAL MANAGEMENT
The thermal management facilities like IA32_THERM_INTERRUPT and 
IA32_THERM_STATUS are often implemented with a processor core granularity. To 
Vol. 3B 14-23



POWER AND THERMAL MANAGEMENT
facilitate software manage thermal events from a package level granularity, two 
architectural MSR is provided for package level thermal management. The 
IA32_PACKAGE_THERM_STATUS and IA32_PACKAGE_THERM_INTERRUPT MSRs 
use similar interfaces as IA32_THERM_STATUS and IA32_THERM_INTERRUPT, but 
are shared in each physical processor package.

Software can enumerate the presence of the processor’s support for package level 
thermal management facility (IA32_PACKAGE_THERM_STATUS and 
IA32_PACKAGE_THERM_INTERRUPT) by verifying CPUID.06H:EAX[bit 6] = 1.

The layout of IA32_PACKAGE_THERM_STATUS MSR is shown in Figure 14-14.

• Package Thermal Status (bit 0, RO) — This bit indicates whether the digital 
thermal sensor high-temperature output signal (PROCHOT#) for the package is 
currently active. Bit 0 = 1 indicates the feature is active. This bit may not be 
written by software; it reflects the state of the digital thermal sensor.

• Package Thermal Status Log (bit 1, R/WC0) — This is a sticky bit that 
indicates the history of the thermal sensor high temperature output signal 
(PROCHOT#) of the package. Bit 1 = 1 if package PROCHOT# has been asserted 
since a previous RESET or the last time software cleared the bit. Software may 
clear this bit by writing a zero.

• Package PROCHOT# Event (bit 2, RO) — Indicates whether package 
PROCHOT# is being asserted by another agent on the platform. 

Figure 14-14.  IA32_PACKAGE_THERM_STATUS Register 

63 0

Reserved

15 1234581016222327

PKG Digital Readout

PKG Thermal Threshold #2 Log
PKG Thermal Threshold #2 Status 
PKG Thermal Threshold #1 Log
PKG Thermal Threshold #1 Status
PKG Critical Temperature Log

6793132

PKG Critical Temperature Status
PKG PROCHOT# or FORCEPR# Log
PKG PROCHOT# or FORCEPR# Event
PKG Thermal Status Log
PKG Thermal Status

11

PKG Power Limit Notification Log
PKG Power Limit Notification Status
14-24 Vol. 3B



POWER AND THERMAL MANAGEMENT
• Package PROCHOT# Log (bit 3, R/WC0) — Sticky bit that indicates whether 
package PROCHOT# has been asserted by another agent on the platform since 
the last clearing of this bit or a reset. If bit 3 = 1, package PROCHOT# has been 
externally asserted. Software may clear this bit by writing a zero. 

• Package Critical Temperature Status (bit 4, RO) — Indicates whether the 
package critical temperature detector output signal is currently active. If 
bit 4 = 1, the package critical temperature detector output signal is currently 
active.

• Package Critical Temperature Log (bit 5, R/WC0) — Sticky bit that indicates 
whether the package critical temperature detector output signal has been 
asserted since the last clearing of this bit or reset. If bit 5 = 1, the output signal 
has been asserted. Software may clear this bit by writing a zero.

• Package Thermal Threshold #1 Status (bit 6, RO) — Indicates whether the 
actual package temperature is currently higher than or equal to the value set in 
Package Thermal Threshold #1. If bit 6 = 0, the actual temperature is lower. If 
bit 6 = 1, the actual temperature is greater than or equal to PTT#1. Quantitative 
information of actual package temperature can be inferred from Package Digital 
Readout, bits 22:16.

• Package Thermal Threshold #1 Log (bit 7, R/WC0) — Sticky bit that 
indicates whether the Package Thermal Threshold #1 has been reached since the 
last clearing of this bit or a reset. If bit 7 = 1, the Package Threshold #1 has been 
reached. Software may clear this bit by writing a zero.

• Package Thermal Threshold #2 Status (bit 8, RO) — Indicates whether 
actual package temperature is currently higher than or equal to the value set in 
Package Thermal Threshold #2. If bit 8 = 0, the actual temperature is lower. If 
bit 8 = 1, the actual temperature is greater than or equal to PTT#2. Quantitative 
information of actual temperature can be inferred from Package Digital Readout, 
bits 22:16.

• Package Thermal Threshold #2 Log (bit 9, R/WC0) — Sticky bit that 
indicates whether the Package Thermal Threshold #2 has been reached since the 
last clearing of this bit or a reset. If bit 9 = 1, the Package Thermal Threshold #2 
has been reached. Software may clear this bit by writing a zero.

• Package Power Limitation Status (bit 10, RO) — Indicates package power 
limit is forcing one ore more processors to operate below OS-requested P-state. 
Note that package power limit violation may be caused by processor cores or by 
devices residing in the uncore. Software can examine IA32_THERM_STATUS to 
determine if the cause originates from a processor core (see Figure 14-12).

• Package Power Notification Log (bit 11, R/WCO) — Sticky bit that indicates 
any processor in the package went below OS-requested P-state or OS-requested 
clock modulation duty cycle since the last clearing of this or RESET. 

• Package Digital Readout (bits 22:16, RO) — Package digital temperature 
reading in 1 degree Celsius relative to the package TCC activation temperature. 
0: Package TCC Activation temperature, 
Vol. 3B 14-25



POWER AND THERMAL MANAGEMENT
1: (PTCC Activation - 1) , etc. See the processor’s data sheet for details regarding 
PTCC activation.
A lower reading in the Package Digital Readout field (bits 22:16) indicates a 
higher actual temperature.

The layout of IA32_PACKAGE_THERM_INTERRUPT MSR is shown in Figure 14-15.

• Package High-Temperature Interrupt Enable (bit 0, R/W) — This bit 
allows the BIOS to enable the generation of an interrupt on the transition from 
low-temperature to a package high-temperature threshold.  Bit 0 = 0 (default) 
disables interrupts; bit 0 = 1 enables interrupts.

• Package Low-Temperature Interrupt Enable (bit 1, R/W) — This bit allows 
the BIOS to enable the generation of an interrupt on the transition from high-
temperature to a low-temperature (TCC de-activation). Bit 1 = 0 (default) 
disables interrupts; bit 1 = 1 enables interrupts.

• Package PROCHOT# Interrupt Enable (bit 2, R/W) — This bit allows the 
BIOS or OS to enable the generation of an interrupt when Package PROCHOT# 
has been asserted by another agent on the platform and the Bidirectional Prochot 
feature is enabled. Bit 2 = 0 disables the interrupt; bit 2 = 1 enables the 
interrupt.

• Package Critical Temperature Interrupt Enable (bit 4, R/W) — Enables the 
generation of an interrupt when the Package Critical Temperature Detector has 
detected a critical thermal condition. The recommended response to this 
condition is a system shutdown. Bit 4 = 0 disables the interrupt; bit 4 = 1 
enables the interrupt.

• Package Threshold #1 Value (bits 14:8, R/W) — A temperature threshold, 
encoded relative to the Package TCC Activation temperature (using the same 
format as the Digital Readout). This threshold is compared against the Package 

Figure 14-15.  IA32_PACKAGE_THERM_INTERRUPT Register 

63 0

Reserved

15

Pkg Threshold #2 Interrupt Enable 

1234581416222324

Pkg Threshold #2 Value 
Pkg Threshold #1 Interrupt Enable 
Pkg Threshold #1 Value
Pkg Overheat Interrupt Enable
Pkg PROCHOT# Interrupt Enable 
Pkg Low Temp. Interrupt Enable 
Pkg High Temp. Interrupt Enable

25

Pkg Power Limit Notification Enable 
14-26 Vol. 3B



POWER AND THERMAL MANAGEMENT
Digital Readout and is used to generate the Package Thermal Threshold #1 
Status and Log bits as well as the Package Threshold #1 thermal interrupt 
delivery.

• Package Threshold #1 Interrupt Enable (bit 15, R/W) — Enables the 
generation of an interrupt when the actual temperature crosses the Package 
Threshold #1 setting in any direction.  Bit 15 = 0 enables the interrupt; bit 15 = 
1 disables the interrupt.

• Package Threshold #2 Value (bits 22:16, R/W) —A temperature threshold, 
encoded relative to the PTCC Activation temperature (using the same format as 
the Package Digital Readout). This threshold is compared against the Package 
Digital Readout and is used to generate the Package Thermal Threshold #2 
Status and Log bits as well as the Package Threshold #2 thermal interrupt 
delivery.

• Package Threshold #2 Interrupt Enable (bit 23, R/W) — Enables the 
generation of an interrupt when the actual temperature crosses the Package 
Threshold #2 setting in any direction.  Bit 23 = 0 enables the interrupt; bit 23 = 
1 disables the interrupt.

• Package Power Limit Notification Enable (bit 24, R/W) — Enables the 
generation of package power notification events.

14.6.1 Support for Passive and Active cooling
Passive and active cooling may be controlled by the OS power management agent 
through ACPI control methods. On platforms providing package level thermal 
management facility described in the previous section, it is recommended that active 
cooling (FAN control) should be driven by measuring the package temperature using 
the IA32_PACKAGE_THERM_INTERRUPT MSR. 

Passive cooling (frequency throttling) should be driven by measuring (a) the core 
and package temperatures, or (b) only the package temperature. If measured 
package temperature led the power management agent to choose which core to 
execute passive cooling, then all cores need to execute passive cooling. Core temper-
ature is measured using the IA32_THERMAL_STATUS and 
IA32_THERMAL_INTERRUPT MSRs. The exact implementation details depend on the 
platform firmware and possible solutions include defining two different thermal zones 
(one for core temperature and passive cooling and the other for package tempera-
ture and active cooling).

14.7 PLATFORM SPECIFIC POWER MANAGEMENT 
SUPPORT

This section covers power management interfaces that are not architectural but 
addresses the power management needs of several platform specific components. 
Vol. 3B 14-27



POWER AND THERMAL MANAGEMENT
Specifically, RAPL (Running Average Power Limit) interfaces provide mechanisms to 
enforce power consumption limit. Power limiting usages have specific usages in client 
and server platforms. 

For client platform power limit control and for server platforms used in a data center, 
the following power and thermal related usages are desirable:
• Platform Thermal Management: Robust mechanisms to manage component, 

platform, and group-level thermals, either proactively or reactively (e.g., in 
response to a platform-level thermal trip point).

• Platform Power Limiting: More deterministic control over the system's power 
consumption, for example to meet battery life targets on rack- or container-level 
power consumption goals within a datacenter. 

• Power/Performance Budgeting: Efficient means to control the power consumed 
(and therefore the sustained performance delivered) within and across 
platforms.

The server and client usage models are addressed by RAPL interfaces, which exposes 
multiple domains of power rationing within each processor socket. Generally, these 
RAPL domains may be viewed to include hierarchically:
• Package domain is the processor die. 
• Memory domain include the directly-attached DRAM; additional power plane may 

constitutes a separate domain. 

In order to manage the power consumed across multiple sockets via RAPL, individual 
limits must be programmed for each processor complex. Programming specific RAPL 
domain across multiple sockets is not supported.

14.7.1 RAPL Interfaces
RAPL interfaces consist of non-architectural MSRs. Each RAPL domain supports the 
following set of capabilities, some of which are optional as stated below.
• Power limit - MSR interfaces to specify power limit, time window; lock bit, clamp 

bit etc.
• Energy Status - Power metering interface providing energy consumption infor-

mation.
• Perf Status (Optional) - Interface providing information on the performance 

effects (regression) due to power limits. It is defined as a duration metric that 
measures the power limit effect in the respective domain. The meaning of 
duration is domain specific.

• Power Info (Optional) - Interface providing information on the range of 
parameters for a given domain, minimum power, maximum power etc.

• Policy (Optional) - 4-bit priority information which is a hint to hardware for 
dividing budget between sub-domains in a parent domain.
14-28 Vol. 3B



POWER AND THERMAL MANAGEMENT
Each of the above capabilities requires specific units in order to describe them. Power 
is expressed in Watts, Time is expressed in Seconds and Energy is expressed in 
Joules. Scaling factors are supplied to each unit to make the information presented 
meaningful in a finite number of bits. Units for power, energy and time are exposed 
in the read-only MSR_RAPL_POWER_UNIT MSR. 

MSR_RAPL_POWER_UNIT (Figure 14-16) provides the following information across 
all RAPL domains:
• Power Units (bits 3:0): Power related information (in Watts) is based on the 

multiplier, 1/ 2^PU; where PU is an unsigned integer represented by bits 3:0. 
Default value is 0011b, indicating power unit is in 1/8 Watts increment.

• Energy Status Units (bit 12:8): Energy related information (in Joules) is based 
on the multiplier, 1/2^ESU; where ESU is an unsigned integer represented by 
bits 12:8. Default value is 10000b, indicating energy status unit is in 15.3 micro-
Joules increment.

• Time Units (bits 19:16): Time related information (in Seconds) is based on the 
multiplier, 1/ 2^TU; where TU is an unsigned integer represented by bits 19:16. 
Default value is 1010b, indicating time unit is in 976 micro-seconds increment.

14.7.2 RAPL Domains and Platform Specificity
The specific RAPL domains available in a platform varies across product segments. 
Platforms targeting client segment support the following RAPL domain hierarchy:
• Package
• Two power planes: PP0 and PP1 (PP1 may reflect to uncore devices)

Platforms targeting server segment support the following RAPL domain hierarchy:
• Package
• Power plane: PP0
• DRAM

Figure 14-16.  MSR_RAPL_POWER_UNIT Register 

63 0

Reserved

13 347812151920

Time units
Energy status units
Power units 

16
Vol. 3B 14-29



POWER AND THERMAL MANAGEMENT
Each level of the RAPL hierarchy provides respective set of RAPL interface MSRs. 
Table 14-2 lists the RAPL MSR interfaces available for each RAPL domain. The power 
limit MSR of each RAPL domain is located at offset 0 relative to an MSR base address 
which is non-architectural (see Chapter 34). The energy status MSR of each domain 
is located at offset 1 relative to the MSR base address of respective domain.

The presence of the optional MSR interfaces (the three right-most columns of Table 
14-2) may be model-specific. See Chapter 34 for detail.

14.7.3 Package RAPL Domain
The MSR interfaces defined for the package RAPL domain are:
• MSR_PKG_POWER_LIMIT allows software to set power limits for the package and 

measurement attributes associated with each limit,
• MSR_PKG_ENERGY_STATUS reports measured actual energy usage,
• MSR_PKG_POWER_INFO reports the package power range information for RAPL 

usage.

MSR_PKG_RAPL_PERF_STATUS can report the performance impact of power 
limiting, but its availability may be model-specific.

Table 14-2.  RAPL MSR Interfaces and RAPL Domains

 Domain  Power Limit
(Offset 0)

 Energy Status 
(Offset 1)

 Policy
(Offset 2)

 Perf Status
(Offset 3)

 Power Info
(Offset 4)

PKG MSR_PKG_PO
WER_LIMIT

MSR_PKG_ENER
GY_STATUS

RESERVED MSR_PKG_RAPL_
PERF_STATUS

MSR_PKG_PO
WER_INFO

DRAM MSR_DRAM_
POWER_LIMIT

MSR_DRAM_EN
ERGY_STATUS

RESERVED MSR_DRAM_RAPL
_PERF_STATUS

MSR_DRAM_P
OWER_INFO

PP0 MSR_PP0_PO
WER_LIMIT

MSR_PP0_ENER
GY_STATUS

MSR_PP0_P
OLICY

RESERVED RESERVED

PP1 MSR_PP1_PO
WER_LIMIT

MSR_PP1_ENER
GY_STATUS

MSR_PP1_P
OLICY

RESERVED RESERVED
14-30 Vol. 3B



POWER AND THERMAL MANAGEMENT
MSR_PKG_POWER_LIMIT allows a software agent to define power limitation for the 
package domain. Power limitation is defined in terms of average power usage 
(Watts) over a time window specified in MSR_PKG_POWER_LIMIT. Two power limits 
can be specified, corresponding to time windows of different sizes. Each power limit 
provides independent clamping control that would permit the processor cores to go 
below OS-requested state to meet the power limits. A lock mechanism allow the soft-
ware agent to enforce power limit settings. Once the lock bit is set, the power limit 
settings are static and un-modifiable until next RESET. 

The bit fields of MSR_PKG_POWER_LIMIT (Figure 14-17) are:
• Package Power Limit #1(bits 14:0): Sets the average power usage limit of the 

package domain corresponding to time window # 1. The unit of this field is 
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.
• Package Clamping Limitation #1 (bits 16): Allow going below OS-requested 

P/T state setting during time window specified by bits 23:17.
• Time Window for Power Limit #1 (bits 23:17): Indicates the length of time 

window over which the power limit #1 The numeric value encoded by bits 23:17 
is represented by the product of 2^Y *F; where F is a single-digit decimal 
floating-point value between 1.0 and 1.3 with the fraction digit represented by 
bits 23:22, Y is an unsigned integer represented by bits 21:17. The unit of this 
field is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

• Package Power Limit #2(bits 46:32): Sets the average power usage limit of 
the package domain corresponding to time window # 2. The unit of this field is 
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Enable Power Limit #2(bit 47): 0 = disabled; 1 = enabled.
• Package Clamping Limitation #2 (bits 48): Allow going below OS-requested 

P/T state setting during time window specified by bits 23:17.

Figure 14-17.  MSR_PKG_POWER_LIMIT Register

63

Enable limit #1
Pkg clamping limit #1
Enable limit #2
Pkg clamping limit #2

31 24 23 15 0

Pkg Power Limit #1

48 47 3262 56 55 49 46 14
L
O
C

Pkg Power Limit #2

1617

K

Time window 
Power Limit #2

Time window 
Power Limit #1
Vol. 3B 14-31



POWER AND THERMAL MANAGEMENT
• Time Window for Power Limit #2 (bits 55:49): Indicates the length of time 
window over which the power limit #2 The numeric value encoded by bits 23:17 
is represented by the product of 2^Y *F; where F is a single-digit decimal 
floating-point value between 1.0 and 1.3 with the fraction digit represented by 
bits 23:22, Y is an unsigned integer represented by bits 21:17. The unit of this 
field is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT. This field 
may have a hard-coded value in hardware and ignores values written by 
software.

• Lock (bits 63): If set, all write attempts to this MSR are ignored until next RESET.

MSR_PKG_ENERGY_STATUS is a read-only MSR. It reports the actual energy use for 
the package domain. This MSR is updated every ~1msec. It has a wraparound time 
of around 60 secs when power consumption is high, and may be longer otherwise.

• Total Energy Consumed (bits 31:0): The unsigned integer value represents 
the total amount of energy consumed since that last time this register is cleared. 
The unit of this field is specified by the “Energy Status Units” field of 
MSR_RAPL_POWER_UNIT. 

MSR_PKG_POWER_INFO is a read-only MSR. It reports the package power range 
information for RAPL usage. This MSR provides maximum/minimum values (derived 
from electrical specification), thermal specification power of the package domain. It 
also provides the largest possible time window for software to program the RAPL 
interface.

Figure 14-18.  MSR_PKG_ENERGY_STATUS MSR

Figure 14-19.  MSR_PKG_POWER_INFO Register

63 0

Reserved

Total Energy Consumed

3132

Reserved

63 31 30 15 0

Thermal Spec Power 

48 47 3254 53 46 14

Maximum Power

16

Maximum Time window Minimum Power
14-32 Vol. 3B



POWER AND THERMAL MANAGEMENT
• Thermal Spec Power (bits 14:0): The unsigned integer value is the equivalent 
of thermal specification power of the package domain. The unit of this field is 
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT. 

• Minimum Power (bits 30:16): The unsigned integer value is the equivalent of 
minimum power derived from electrical spec of the package domain. The unit of 
this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT. 

• Maximum Power (bits 46:32): The unsigned integer value is the equivalent of 
maximum power derived from the electrical spec of the package domain. The unit 
of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT. 

• Maximum Time Window (bits 46:32): The unsigned integer value is the 
equivalent of largest acceptable value to program the time window of 
MSR_PKG_POWER_LIMIT. The unit of this field is specified by the “Time Units” 
field of MSR_RAPL_POWER_UNIT. 

MSR_PKG_PERF_STATUS is a read-only MSR. It reports the total time for which the 
package was throttled due to the RAPL power limits. Throttling in this context is 
defined as going below the OS-requested P-state or T-state. It has a wrap-around 
time of many hours. The availability of this MSR is platform specific (see Chapter 34).

• Accumulated Package Throttled Time (bits 31:0): The unsigned integer 
value represents the cumulative time (since the last time this register is cleared) 
that the package has throttled. The unit of this field is specified by the “Time 
Units” field of MSR_RAPL_POWER_UNIT. 

14.7.4 PP0/PP1 RAPL Domains
The MSR interfaces defined for the PP0 and PP1 domains are identical in layout. 
Generally, PP0 refers to the processor cores. The availability of PP1 RAPL domain 
interface is platform-specific. For a client platform, PP1 domain refers to the power 
plane of a specific device in the uncore. For server platforms, PP1 domain is not 
supported, but its PP0 domain supports the MSR_PP0_PERF_STATUS interface.
• MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT allow software to set power 

limits for the respective power plane domain.

Figure 14-20.  MSR_PKG_PERF_STATUS MSR

63 0

Reserved

Accumulated pkg throttled time

3132

Reserved
Vol. 3B 14-33



POWER AND THERMAL MANAGEMENT
• MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS report actual energy 
usage on a power plane.

• MSR_PP0_POLICY/MSR_PP1_POLICY allow software to adjust balance for 
respective power plane.

MSR_PP0_PERF_STATUS can report the performance impact of power limiting, but it 
is not available in client platform.

MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT allows a software agent to define 
power limitation for the respective power plane domain. A lock mechanism in each 
power plane domain allow the software agent to enforce power limit settings inde-
pendently. Once a lock bit is set, the power limit settings in that power plane are 
static and un-modifiable until next RESET. 

The bit fields of MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT (Figure 14-21) 
are:
• Power Limit (bits 14:0): Sets the average power usage limit of the respective 

power plane domain. The unit of this field is specified by the “Power Units” field of 
MSR_RAPL_POWER_UNIT.

• Enable Power Limit (bit 15): 0 = disabled; 1 = enabled.
• Clamping Limitation (bits 16): Allow going below OS-requested P/T state 

setting during time window specified by bits 23:17.
• Time Window for Power Limit (bits 23:17): Indicates the length of time 

window over which the power limit #1 The numeric value encoded by bits 23:17 
is represented by the product of 2^Y *F; where F is a single-digit decimal 
floating-point value between 1.0 and 1.3 with the fraction digit represented by 
bits 23:22, Y is an unsigned integer represented by bits 21:17. The unit of this 
field is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

• Lock (bits 63): If set, all write attempts to the MSR and corresponding policy 
MSR_PP0_POLICY/MSR_PP1_POLICY are ignored until next RESET.

Figure 14-21.  MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT Register

63

Enable limit 
Clamping limit

30 24 23 15 0

Power Limit

3132 14
L
O
C

1617

K

Time window 
Power Limit 
14-34 Vol. 3B



POWER AND THERMAL MANAGEMENT
MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS is a read-only MSR. It 
reports the actual energy use for the respective power plane domain. This MSR is 
updated every ~1msec. 

• Total Energy Consumed (bits 31:0): The unsigned integer value represents 
the total amount of energy consumed since that last time this register is cleared. 
The unit of this field is specified by the “Energy Status Units” field of 
MSR_RAPL_POWER_UNIT. 

MSR_PP0_POLICY/MSR_PP1_POLICY provide balance power policy control for each 
power plane by providing inputs to the power budgeting management algorithm. On 
the platform that supports PP0 (IA cores) and PP1 (uncore graphic device), the 
default value give priority to the non-IA power plane. These MSRs enable the PCU to 
balance power consumption between the IA cores and uncore graphic device. 

• Priority Level (bits 4:0): Priority level input to the PCU for respective power 
plane. PP0 covers the IA processor cores, PP1 covers the uncore graphic device. 
The value 31 is considered highest priority.

MSR_PP0_PERF_STATUS is a read-only MSR. It reports the total time for which the 
PP0 domain was throttled due to the power limits. This MSR is supported only in 
server platform. Throttling in this context is defined as going below the OS-requested 
P-state or T-state. 

Figure 14-22.  MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS MSR

Figure 14-23.  MSR_PP0_POLICY/MSR_PP1_POLICY Register

63 0

Reserved

Total Energy Consumed

3132

Reserved

63 4 0

Priority Level

5

Vol. 3B 14-35



POWER AND THERMAL MANAGEMENT
• Accumulated PP0 Throttled Time (bits 31:0): The unsigned integer value 
represents the cumulative time (since the last time this register is cleared) that 
the PP0 domain has throttled. The unit of this field is specified by the “Time Units” 
field of MSR_RAPL_POWER_UNIT. 

14.7.5 DRAM RAPL Domain
The MSR interfaces defined for the DRAM domain is supported only in the server plat-
form. The MSR interfaces are:
• MSR_DRAM_POWER_LIMIT allows software to set power limits for the DRAM 

domain and measurement attributes associated with each limit,
• MSR_DRAM_ENERGY_STATUS reports measured actual energy usage,
• MSR_DRAM_POWER_INFO reports the DRAM domain power range information 

for RAPL usage.
• MSR_DRAM_RAPL_PERF_STATUS can report the performance impact of power 

limiting.

Figure 14-24.  MSR_PP0_PERF_STATUS MSR

Figure 14-25.  MSR_DRAM_POWER_LIMIT Register

63 0

Reserved

Accumulated PP0 throttled time

3132

Reserved

63

Enable limit 
Clamping limit

30 24 23 15 0

Power Limit

3132 14
L
O
C

1617

K

Time window 
Power Limit 
14-36 Vol. 3B



POWER AND THERMAL MANAGEMENT
MSR_DRAM_POWER_LIMIT allows a software agent to define power limitation for the 
DRAM domain. Power limitation is defined in terms of average power usage (Watts) 
over a time window specified in MSR_DRAM_POWER_LIMIT. A power limit can be 
specified along with a time window. A lock mechanism allow the software agent to 
enforce power limit settings. Once the lock bit is set, the power limit settings are 
static and un-modifiable until next RESET. 

The bit fields of MSR_DRAM_POWER_LIMIT (Figure 14-17) are:
• DRAM Power Limit #1(bits 14:0): Sets the average power usage limit of the 

DRAM domain corresponding to time window # 1. The unit of this field is specified 
by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.
• Time Window for Power Limit (bits 23:17): Indicates the length of time 

window over which the power limit The numeric value encoded by bits 23:17 is 
represented by the product of 2^Y *F; where F is a single-digit decimal floating-
point value between 1.0 and 1.3 with the fraction digit represented by bits 23:22, 
Y is an unsigned integer represented by bits 21:17. The unit of this field is 
specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

• Lock (bits 63): If set, all write attempts to this MSR are ignored until next RESET.

MSR_DRAM_ENERGY_STATUS is a read-only MSR. It reports the actual energy use 
for the DRAM domain. This MSR is updated every ~1msec. 

• Total Energy Consumed (bits 31:0): The unsigned integer value represents 
the total amount of energy consumed since that last time this register is cleared. 
The unit of this field is specified by the “Energy Status Units” field of 
MSR_RAPL_POWER_UNIT. 

MSR_DRAM_POWER_INFO is a read-only MSR. It reports the DRAM power range 
information for RAPL usage. This MSR provides maximum/minimum values (derived 
from electrical specification), thermal specification power of the DRAM domain. It 

Figure 14-26.  MSR_DRAM_ENERGY_STATUS MSR

63 0

Reserved

Total Energy Consumed

3132

Reserved
Vol. 3B 14-37



POWER AND THERMAL MANAGEMENT
also provides the largest possible time window for software to program the RAPL 
interface.

• Thermal Spec Power (bits 14:0): The unsigned integer value is the equivalent 
of thermal specification power of the DRAM domain. The unit of this field is 
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT. 

• Minimum Power (bits 30:16): The unsigned integer value is the equivalent of 
minimum power derived from electrical spec of the DRAM domain. The unit of this 
field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT. 

• Maximum Power (bits 46:32): The unsigned integer value is the equivalent of 
maximum power derived from the electrical spec of the DRAM domain. The unit 
of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT. 

• Maximum Time Window (bits 46:32): The unsigned integer value is the 
equivalent of largest acceptable value to program the time window of 
MSR_DRAM_POWER_LIMIT. The unit of this field is specified by the “Time Units” 
field of MSR_RAPL_POWER_UNIT. 

MSR_DRAM_PERF_STATUS is a read-only MSR. It reports the total time for which the 
package was throttled due to the RAPL power limits. Throttling in this context is 
defined as going below the OS-requested P-state or T-state. It has a wrap-around 
time of many hours. The availability of this MSR is platform specific (see Chapter 34).

• Accumulated Package Throttled Time (bits 31:0): The unsigned integer 
value represents the cumulative time (since the last time this register is cleared) 

Figure 14-27.  MSR_DRAM_POWER_INFO Register

Figure 14-28.  MSR_DRAM_PERF_STATUS MSR

63 31 30 15 0

Thermal Spec Power 

48 47 3254 53 46 14

Maximum Power

16

Maximum Time window Minimum Power

63 0

Reserved

Accumulated DRAM throttled time

3132

Reserved
14-38 Vol. 3B



POWER AND THERMAL MANAGEMENT
that the DRAM domain has throttled. The unit of this field is specified by the 
“Time Units” field of MSR_RAPL_POWER_UNIT. 
Vol. 3B 14-39



POWER AND THERMAL MANAGEMENT
14-40 Vol. 3B



CHAPTER 15
MACHINE-CHECK ARCHITECTURE

This chapter describes the machine-check architecture and machine-check exception 
mechanism found in the Pentium 4, Intel Xeon, and P6 family processors. See 
Chapter 6, “Interrupt 18—Machine-Check Exception (#MC),” for more information on 
machine-check exceptions. A brief description of the Pentium processor’s machine 
check capability is also given.
Additionally, a signaling mechanism for software to respond to hardware corrected 
machine check error is covered.

15.1 MACHINE-CHECK ARCHITECTURE
The Pentium 4, Intel Xeon, and P6 family processors implement a machine-check 
architecture that provides a mechanism for detecting and reporting hardware 
(machine) errors, such as: system bus errors, ECC errors, parity errors, cache 
errors, and TLB errors. It consists of a set of model-specific registers (MSRs) that are 
used to set up machine checking and additional banks of MSRs used for recording 
errors that are detected. 
The processor signals the detection of an uncorrected machine-check error by gener-
ating a machine-check exception (#MC), which is an abort class exception. The 
implementation of the machine-check architecture does not ordinarily permit the 
processor to be restarted reliably after generating a machine-check exception. 
However, the machine-check-exception handler can collect information about the 
machine-check error from the machine-check MSRs.
Starting with 45nm Intel 64 processor on which CPUID reports 
DisplayFamily_DisplayModel as 06H_1AH (see CPUID instruction in Chapter 3, 
“Instruction Set Reference, A-L” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A), the processor can report information on corrected 
machine-check errors and deliver a programmable interrupt for software to respond 
to MC errors, referred to as corrected machine-check error interrupt (CMCI). See 
Section 15.5 for detail. 
Intel 64 processors supporting machine-check architecture and CMCI may also 
support an additional enhancement, namely, support for software recovery from 
certain uncorrected recoverable machine check errors. See Section 15.6 for detail. 

15.2 COMPATIBILITY WITH PENTIUM PROCESSOR
The Pentium 4, Intel Xeon, and P6 family processors support and extend the 
machine-check exception mechanism introduced in the Pentium processor. The 
Pentium processor reports the following machine-check errors:
Vol. 3B 15-1



MACHINE-CHECK ARCHITECTURE
• data parity errors during read cycles
• unsuccessful completion of a bus cycle
The above errors are reported using the P5_MC_TYPE and P5_MC_ADDR MSRs 
(implementation specific for the Pentium processor). Use the RDMSR instruction to 
read these MSRs. See Chapter 34, “Model-Specific Registers (MSRs),” for the 
addresses.
The machine-check error reporting mechanism that Pentium processors use is 
similar to that used in Pentium 4, Intel Xeon, and P6 family processors. When an 
error is detected, it is recorded in P5_MC_TYPE and P5_MC_ADDR; the processor 
then generates a machine-check exception (#MC).
See Section 15.3.3, “Mapping of the Pentium Processor Machine-Check Errors to the 
Machine-Check Architecture,” and Section 15.10.2, “Pentium Processor Machine-
Check Exception Handling,” for information on compatibility between machine-check 
code written to run on the Pentium processors and code written to run on P6 family 
processors.

15.3 MACHINE-CHECK MSRS
Machine check MSRs in the Pentium 4, Intel Xeon, and P6 family processors consist 
of a set of global control and status registers and several error-reporting register 
banks. See Figure 15-1.

Figure 15-1.  Machine-Check MSRs

0

63 0

63

IA32_MCG_CAP MSR

IA32_MCG_STATUS MSR

Error-Reporting Bank Registers

0

63 0

63

IA32_MCi_CTL MSR

IA32_MCi_STATUS MSR

0

63 0

63

IA32_MCi_ADDR MSR

IA32_MCi_MISC MSR

Global Control MSRs
(One Set for Each Hardware Unit)

063

IA32_MCG_CTL MSR

063

IA32_MCi_CTL2 MSR
15-2 Vol. 3B



MACHINE-CHECK ARCHITECTURE
Each error-reporting bank is associated with a specific hardware unit (or group of 
hardware units) in the processor. Use RDMSR and WRMSR to read and to write these 
registers. 

15.3.1 Machine-Check Global Control MSRs
The machine-check global control MSRs include the IA32_MCG_CAP, 
IA32_MCG_STATUS, and IA32_MCG_CTL. See Chapter 34, “Model-Specific Registers 
(MSRs),” for the addresses of these registers. 

15.3.1.1  IA32_MCG_CAP MSR
The IA32_MCG_CAP MSR is a read-only register that provides information about the 
machine-check architecture of the processor. Figure 15-2 shows the structure of the 
register in Pentium 4, Intel Xeon, and P6 family processors.

Where:
• Count field, bits 7:0 — Indicates the number of hardware unit error-reporting 

banks available in a particular processor implementation.
• MCG_CTL_P (control MSR present) flag, bit 8 — Indicates that the processor 

implements the IA32_MCG_CTL MSR when set; this register is absent when clear.
• MCG_EXT_P (extended MSRs present) flag, bit 9 — Indicates that the 

processor implements the extended machine-check state registers found starting 
at MSR address 180H; these registers are absent when clear.

• MCG_CMCI_P (Corrected MC error counting/signaling extension 
present) flag, bit 10 — Indicates (when set) that extended state and 
associated MSRs necessary to support the reporting of an interrupt on a 

Figure 15-2.  IA32_MCG_CAP Register

MCG_TES_P[11]
MCG_EXT_CNT[23:16]

63 9

Reserved

101112

MCG_CMCI_P[10]

08 7

Count

MCG_EXT_P[9]

15162324

MCG_CTL_P[8]

MCG_SER_P[24]

25
Vol. 3B 15-3



MACHINE-CHECK ARCHITECTURE
corrected MC error event and/or count threshold of corrected MC errors, is 
present. When this bit is set, it does not imply this feature is supported across all 
banks. Software should check the availability of the necessary logic on a bank by 
bank basis when using this signaling capability (i.e. bit 30 settable in individual 
IA32_MCi_CTL2 register). 

• MCG_TES_P (threshold-based error status present) flag, bit 11 — 
Indicates (when set) that bits 56:53 of the IA32_MCi_STATUS MSR are part of 
the architectural space. Bits 56:55 are reserved, and bits 54:53 are used to 
report threshold-based error status. Note that when MCG_TES_P is not set, bits 
56:53 of the IA32_MCi_STATUS MSR are model-specific.

• MCG_EXT_CNT, bits 23:16 — Indicates the number of extended machine-
check state registers present. This field is meaningful only when the MCG_EXT_P 
flag is set.

• MCG_SER_P (software error recovery support present) flag, bit 24— 
Indicates (when set) that the processor supports software error recovery (see 
Section 15.6), and IA32_MCi_STATUS MSR bits 56:55 are used to report the 
signaling of uncorrected recoverable errors and whether software must take 
recovery actions for uncorrected errors. Note that when MCG_TES_P is not set, 
bits 56:53 of the IA32_MCi_STATUS MSR are model-specific. If MCG_TES_P is set 
but MCG_SER_P is not set, bits 56:55 are reserved.

The effect of writing to the IA32_MCG_CAP MSR is undefined. 

15.3.1.2  IA32_MCG_STATUS MSR
The IA32_MCG_STATUS MSR describes the current state of the processor after a 
machine-check exception has occurred (see Figure 15-3).

Where:
• RIPV (restart IP valid) flag, bit 0 — Indicates (when set) that program 

execution can be restarted reliably at the instruction pointed to by the instruction 
pointer pushed on the stack when the machine-check exception is generated. 

Figure 15-3.  IA32_MCG_STATUS Register

EIPV—Error IP valid flag
MCIP—Machine check in progress flag

63 0

Reserved

123
E
I
P
V

M
C
I
P

R
I
P
V

RIPV—Restart IP valid flag
15-4 Vol. 3B



MACHINE-CHECK ARCHITECTURE
When clear, the program cannot be reliably restarted at the pushed instruction 
pointer.

• EIPV (error IP valid) flag, bit 1 — Indicates (when set) that the instruction 
pointed to by the instruction pointer pushed onto the stack when the machine-
check exception is generated is directly associated with the error. When this flag 
is cleared, the instruction pointed to may not be associated with the error.

• MCIP (machine check in progress) flag, bit 2 — Indicates (when set) that a 
machine-check exception was generated. Software can set or clear this flag. The 
occurrence of a second Machine-Check Event while MCIP is set will cause the 
processor to enter a shutdown state. For information on processor behavior in 
the shutdown state, please refer to the description in Chapter 6, “Interrupt and 
Exception Handling”: “Interrupt 8—Double Fault Exception (#DF)”.

Bits 63:03 in IA32_MCG_STATUS are reserved. 

15.3.1.3  IA32_MCG_CTL MSR
The IA32_MCG_CTL MSR is present if the capability flag MCG_CTL_P is set in the 
IA32_MCG_CAP MSR. 
IA32_MCG_CTL controls the reporting of machine-check exceptions. If present, 
writing 1s to this register enables machine-check features and writing all 0s disables 
machine-check features. All other values are undefined and/or implementation 
specific.

15.3.2 Error-Reporting Register Banks
Each error-reporting register bank can contain the IA32_MCi_CTL, 
IA32_MCi_STATUS, IA32_MCi_ADDR, and IA32_MCi_MISC MSRs. The number of 
reporting banks is indicated by bits [7:0] of IA32_MCG_CAP MSR (address 0179H). 
The first error-reporting register (IA32_MC0_CTL) always starts at address 400H. 
See Chapter 34, “Model-Specific Registers (MSRs),” for addresses of the error-
reporting registers in the Pentium 4 and Intel Xeon processors; and for addresses of 
the error-reporting registers P6 family processors. 

15.3.2.1  IA32_MCi_CTL MSRs
The IA32_MCi_CTL MSR controls error reporting for errors produced by a particular 
hardware unit (or group of hardware units). Each of the 64 flags (EEj) represents a 
potential error. Setting an EEj flag enables reporting of the associated error and 
clearing it disables reporting of the error. The processor does not write changes to 
bits that are not implemented. Figure 15-4 shows the bit fields of IA32_MCi_CTL.
Vol. 3B 15-5



MACHINE-CHECK ARCHITECTURE
NOTE
For P6 family processors, processors based on Intel Core microarchi-
tecture (excluding those on which on which CPUID reports 
DisplayFamily_DisplayModel as 06H_1AH and onward): the operating 
system or executive software must not modify the contents of the 
IA32_MC0_CTL MSR. This MSR is internally aliased to the 
EBL_CR_POWERON MSR and controls platform-specific error 
handling features. System specific firmware (the BIOS) is responsible 
for the appropriate initialization of the IA32_MC0_CTL MSR. P6 family 
processors only allow the writing of all 1s or all 0s to the 
IA32_MCi_CTL MSR.

15.3.2.2  IA32_MCi_STATUS MSRS
Each IA32_MCi_STATUS MSR contains information related to a machine-check error 
if its VAL (valid) flag is set (see Figure 15-5). Software is responsible for clearing 
IA32_MCi_STATUS MSRs by explicitly writing 0s to them; writing 1s to them causes 
a general-protection exception.

NOTE
Figure 15-5 depicts the IA32_MCi_STATUS MSR when 
IA32_MCG_CAP[24] = 1, IA32_MCG_CAP[11] = 1 and 
IA32_MCG_CAP[10] = 1. When IA32_MCG_CAP[24] = 0 and 
IA32_MCG_CAP[11] = 1, bits 56:55 is reserved and bits 54:53 for 
threshold-based error reporting. When IA32_MCG_CAP[11] = 0, bits 
56:53 are part of the “Other Information” field. The use of bits 54:53 
for threshold-based error reporting began with Intel Core Duo 
processors, and is currently used for cache memory. See Section 
15.4, “Enhanced Cache Error reporting,” for more information. When 
IA32_MCG_CAP[10] = 0, bits 52:38 are part of the “Other Infor-
mation” field. The use of bits 52:38 for corrected MC error count is 
introduced with Intel 64 processor on which CPUID reports 
DisplayFamily_DisplayModel as 06H_1AH. 

Where:

Figure 15-4.  IA32_MCi_CTL Register

EEj—Error reporting enable flag

63 0123
E
E
0
1

E
E
0
2

E
E
0
0

E
E
6
1

E
E
6
2

E
E
6
3

62 61

. . . . .
         (where j is 00 through 63)
15-6 Vol. 3B



MACHINE-CHECK ARCHITECTURE
• MCA (machine-check architecture) error code field, bits 15:0 — Specifies 
the machine-check architecture-defined error code for the machine-check error 
condition detected. The machine-check architecture-defined error codes are 
guaranteed to be the same for all IA-32 processors that implement the machine-
check architecture. See Section 15.9, “Interpreting the MCA Error Codes,” and 
Chapter 16, “Interpreting Machine-Check Error Codes”, for information on 
machine-check error codes. 

• Model-specific error code field, bits 31:16 — Specifies the model-specific 
error code that uniquely identifies the machine-check error condition detected. 
The model-specific error codes may differ among IA-32 processors for the same 
machine-check error condition. See Chapter 16, “Interpreting Machine-Check 
Error Codes”for information on model-specific error codes.

• Reserved, Error Status, and Other Information fields, bits 56:32 — 

• Bits 37:32 always contain “Other Information” that is implementation-
specific and is not part of the machine-check architecture. Software that 
is intended to be portable among IA-32 processors should not rely on 
these values. 

• If IA32_MCG_CAP[10] is 0, bits 52:38 also contain “Other Information” 
(in the same sense as bits 37:32).

• If IA32_MCG_CAP[10] is 1, bits 52:38 are architectural (not model-
specific). In this case, bits 52:38 reports the value of a 15 bit counter that 
increments each time a corrected error is observed by the MCA recording 

Figure 15-5.  IA32_MCi_STATUS Register

63

Threshold-based error status (54:53)*
AR — Recovery action required for UCR error (55)**
S — Signaling an uncorrected recoverable (UCR) error (56)**
PCC — Processor context corrupted (57)

37 32 31 16 0

P
C

AE

ADDRV — MCi_ADDR register valid (58)
MISCV — MCi_MISC register valid (59)
EN — Error reporting enabled (60)
UC — Uncorrected error (61)
OVER — Error overflow (62)
VAL — MCi_STATUS register valid (63)

C

MCA Error Code
U S

R
Other MSCOD Model

54 53 3862 61 60 59 58 57 56 55 52 15

V
A
L

O
V
E
R

C N Specific Error CodeInfo
Corrected Error
Count

* When IA32_MCG_CAP[11] (MCG_TES_P) is not set, these bits are model-specific 
 (part of “Other Information”).

** When IA32_MCG_CAP[11] or IA32_MCG_CAP[24] are not set, these bits are reserved, or
 model-specific (part of “Other Information”).
Vol. 3B 15-7



MACHINE-CHECK ARCHITECTURE
bank. This count value will continue to increment until cleared by 
software. The most significant bit, 52, is a sticky count overflow bit. 

• If IA32_MCG_CAP[11] is 0, bits 56:53 also contain “Other Information” 
(in the same sense).

• If IA32_MCG_CAP[11] is 1, bits 56:53 are architectural (not model-
specific). In this case, bits 56:53 have the following functionality:

• If IA32_MCG_CAP[24] is 0, bits 56:55 are reserved.

• If IA32_MCG_CAP[24] is 1, bits 56:55 are defined as follows: 

• S (Signaling) flag, bit 56 - Signals the reporting of UCR errors in this 
MC bank. See Section 15.6.2 for additional detail. 

• AR (Action Required) flag, bit 55 - Indicates (when set) that MCA 
error code specific recovery action must be performed by system 
software at the time this error was signaled. See Section 15.6.2 for 
additional detail.

• If the UC bit (Figure 15-5) is 1, bits 54:53 are undefined. 

• If the UC bit (Figure 15-5) is 0, bits 54:53 indicate the status of the 
hardware structure that reported the threshold-based error. See 
Table 15-1.

• PCC (processor context corrupt) flag, bit 57 — Indicates (when set) that the 
state of the processor might have been corrupted by the error condition detected 
and that reliable restarting of the processor may not be possible. When clear, this 
flag indicates that the error did not affect the processor’s state. Software 
restarting might be possible.

• ADDRV (IA32_MCi_ADDR register valid) flag, bit 58 — Indicates (when set) 
that the IA32_MCi_ADDR register contains the address where the error occurred 
(see Section 15.3.2.3, “IA32_MCi_ADDR MSRs”). When clear, this flag indicates 
that the IA32_MCi_ADDR register is either not implemented or does not contain 

Table 15-1.  Bits 54:53 in IA32_MCi_STATUS MSRs 
when IA32_MCG_CAP[11] = 1 and UC = 0

Bits 54:53 Meaning

00 No tracking - No hardware status tracking is provided for the structure reporting this 
event. 

01 Green - Status tracking is provided for the structure posting the event; the current 
status is green (below threshold). For more information, see Section 15.4, “Enhanced 
Cache Error reporting”. 

10 Yellow - Status tracking is provided for the structure posting the event; the current 
status is yellow (above threshold). For more information, see Section 15.4, “Enhanced 
Cache Error reporting”. 

11 Reserved
15-8 Vol. 3B



MACHINE-CHECK ARCHITECTURE
the address where the error occurred. Do not read these registers if they are not 
implemented in the processor.

• MISCV (IA32_MCi_MISC register valid) flag, bit 59 — Indicates (when set) 
that the IA32_MCi_MISC register contains additional information regarding the 
error. When clear, this flag indicates that the IA32_MCi_MISC register is either 
not implemented or does not contain additional information regarding the error. 
Do not read these registers if they are not implemented in the processor.

• EN (error enabled) flag, bit 60 — Indicates (when set) that the error was 
enabled by the associated EEj bit of the IA32_MCi_CTL register.

• UC (error uncorrected) flag, bit 61 — Indicates (when set) that the processor 
did not or was not able to correct the error condition. When clear, this flag 
indicates that the processor was able to correct the error condition.

• OVER (machine check overflow) flag, bit 62 — Indicates (when set) that a 
machine-check error occurred while the results of a previous error were still in 
the error-reporting register bank (that is, the VAL bit was already set in the 
IA32_MCi_STATUS register). The processor sets the OVER flag and software is 
responsible for clearing it. In general, enabled errors are written over disabled 
errors, and uncorrected errors are written over corrected errors. Uncorrected 
errors are not written over previous valid uncorrected errors. For more infor-
mation, see Section 15.3.2.2.1, “Overwrite Rules for Machine Check Overflow”.

• VAL (IA32_MCi_STATUS register valid) flag, bit 63 — Indicates (when set) 
that the information within the IA32_MCi_STATUS register is valid. When this flag 
is set, the processor follows the rules given for the OVER flag in the 
IA32_MCi_STATUS register when overwriting previously valid entries. The 
processor sets the VAL flag and software is responsible for clearing it.

15.3.2.2.1  Overwrite Rules for Machine Check Overflow

Table 15-2 shows the overwrite rules for how to treat a second event if the cache has 
already posted an event to the MC bank – that is, what to do if the valid bit for an MC 
bank already is set to 1. When more than one structure posts events in a given bank, 
these rules specify whether a new event will overwrite a previous posting or not. 
These rules define a priority for uncorrected (highest priority), yellow, and 
green/unmonitored (lowest priority) status.
In Table 15-2, the values in the two left-most columns are 
IA32_MCi_STATUS[54:53]. 

Table 15-2.  Overwrite Rules for Enabled Errors
First Event Second Event UC bit Color MCA Info

00/green 00/green 0 00/green second

00/green yellow 0 yellow second error

yellow 00/green 0 yellow first error 

yellow yellow 0 yellow either
Vol. 3B 15-9



MACHINE-CHECK ARCHITECTURE
If a second event overwrites a previously posted event, the information (as guarded 
by individual valid bits) in the MCi bank is entirely from the second event. Similarly, 
if a first event is retained, all of the information previously posted for that event is 
retained. In either case, the OVER bit (MCi_Status[62]) will be set to indicate an 
overflow. 
After software polls a posting and clears the register, the valid bit is no longer set and 
therefore the meaning of the rest of the bits, including the yellow/green/00 status 
field in bits 54:53, is undefined. The yellow/green indication will only be posted for 
events associated with monitored structures – otherwise the unmonitored (00) code 
will be posted in MCi_Status[54:53].

15.3.2.3  IA32_MCi_ADDR MSRs
The IA32_MCi_ADDR MSR contains the address of the code or data memory location 
that produced the machine-check error if the ADDRV flag in the IA32_MCi_STATUS 
register is set (see Section 15-6, “IA32_MCi_ADDR MSR”). The IA32_MCi_ADDR 
register is either not implemented or contains no address if the ADDRV flag in the 
IA32_MCi_STATUS register is clear. When not implemented in the processor, all reads 
and writes to this MSR will cause a general protection exception. 
The address returned is an offset into a segment, linear address, or physical address. 
This depends on the error encountered. When these registers are implemented, 
these registers can be cleared by explicitly writing 0s to these registers. Writing 1s to 
these registers will cause a general-protection exception. See Figure 15-6.

00/green/yellow UC 1 undefined second

UC 00/green/yellow 1 undefined first 

Figure 15-6.  IA32_MCi_ADDR MSR

Table 15-2.  Overwrite Rules for Enabled Errors
First Event Second Event UC bit Color MCA Info

Address

63 0

Reserved

3536

Address*

63 0

Processor Without Support For Intel 64 Architecture

Processor With Support for Intel 64 Architecture

* Useful bits in this field depend on the address methodology in use when the 

the register state is saved.
15-10 Vol. 3B



MACHINE-CHECK ARCHITECTURE
15.3.2.4  IA32_MCi_MISC MSRs
The IA32_MCi_MISC MSR contains additional information describing the machine-
check error if the MISCV flag in the IA32_MCi_STATUS register is set. The 
IA32_MCi_MISC_MSR is either not implemented or does not contain additional infor-
mation if the MISCV flag in the IA32_MCi_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR will cause a 
general protection exception. When implemented in a processor, these registers can 
be cleared by explicitly writing all 0s to them; writing 1s to them causes a general-
protection exception to be generated. This register is not implemented in any of the 
error-reporting register banks for the P6 family processors. 
If both MISCV and IA32_MCG_CAP[24] are set, the IA32_MCi_MISC_MSR is defined 
according to Figure 15-7 to support software recovery of uncorrected errors (see 
Section 15.6):

• Recoverable Address LSB (bits 5:0): The lowest valid recoverable address bit. 
Indicates the position of the least significant bit (LSB) of the recoverable error 
address. For example, if the processor logs bits [43:9] of the address, the LSB 
sub-field in IA32_MCi_MISC is 01001b (9 decimal). For this example, bits [8:0] 
of the recoverable error address in IA32_MCi_ADDR should be ignored. 

• Address Mode (bits 8:6): Address mode for the address logged in 
IA32_MCi_ADDR. The supported address modes are given in Table 15-3.

Figure 15-7.  UCR Support in IA32_MCi_MISC Register

Table 15-3.  Address Mode in IA32_MCi_MISC[8:6] 
IA32_MCi_MISC[8:6] Encoding Definition

000 Segment Offset

001 Linear Address

010 Physical Address

011 Memory Address

Address Mode

63 0

Model Specific Information

6 5

Recoverable Address LSB

89
Vol. 3B 15-11



MACHINE-CHECK ARCHITECTURE
• Model Specific Information (bits 63:9): Not architecturally defined.

15.3.2.5  IA32_MCi_CTL2 MSRs
The IA32_MCi_CTL2 MSR provides the programming interface to use corrected MC 
error signaling capability that is indicated by IA32_MCG_CAP[10] = 1. Software must 
check for the presence of IA32_MCi_CTL2 on a per-bank basis. 
When IA32_MCG_CAP[10] = 1, the IA32_MCi_CTL2 MSR for each bank exists, i.e. 
reads and writes to these MSR are supported. However, signaling interface for 
corrected MC errors may not be supported in all banks. 
The layout of IA32_MCi_CTL2 is shown in Figure 15-8:

• Corrected error count threshold, bits 14:0 — Software must initialize this 
field. The value is compared with the corrected error count field in 
IA32_MCi_STATUS, bits 38 through 52. An overflow event is signaled to the CMCI 
LVT entry (see Table 10-1) in the APIC when the count value equals the threshold 
value. The new LVT entry in the APIC is at 02F0H offset from the APIC_BASE. If 
CMCI interface is not supported for a particular bank (but IA32_MCG_CAP[10] = 
1), this field will always read 0.

• CMCI_EN-Corrected error interrupt enable/disable/indicator, bits 30 — 
Software sets this bit to enable the generation of corrected machine-check error 
interrupt (CMCI). If CMCI interface is not supported for a particular bank (but 
IA32_MCG_CAP[10] = 1), this bit is writeable but will always return 0 for that 
bank. This bit also indicates CMCI is supported or not supported in the corre-
sponding bank. See Section 15.5 for details of software detection of CMCI facility.

100 to 110 Reserved

111 Generic

Figure 15-8.  IA32_MCi_CTL2 Register

Table 15-3.  Address Mode in IA32_MCi_MISC[8:6] 
IA32_MCi_MISC[8:6] Encoding Definition

CMCI_EN—Enable/disable CMCI

63 15

Reserved

29

Corrected error count threshold

01431 30

Reserved
15-12 Vol. 3B



MACHINE-CHECK ARCHITECTURE
Some microarchitectural sub-systems that are the source of corrected MC errors may 
be shared by more than one logical processors. Consequently, the facilities for 
reporting MC errors and controlling mechanisms may be shared by more than one 
logical processors. For example, the IA32_MCi_CTL2 MSR is shared between logical 
processors sharing a processor core. Software is responsible to program 
IA32_MCi_CTL2 MSR in a consistent manner with CMCI delivery and usage. 
After processor reset, IA32_MCi_CTL2 MSRs are zero’ed.

15.3.2.6  IA32_MCG Extended Machine Check State MSRs
The Pentium 4 and Intel Xeon processors implement a variable number of extended 
machine-check state MSRs. The MCG_EXT_P flag in the IA32_MCG_CAP MSR indi-
cates the presence of these extended registers, and the MCG_EXT_CNT field indi-
cates the number of these registers actually implemented. See Section 15.3.1.1, 
“IA32_MCG_CAP MSR.” Also see Table 15-4.

Table 15-4.  Extended Machine Check State MSRs
in Processors Without Support for Intel 64 Architecture

MSR Address Description

IA32_MCG_EAX 180H Contains state of the EAX register at the time of the machine-
check error.

IA32_MCG_EBX 181H Contains state of the EBX register at the time of the machine-
check error.

IA32_MCG_ECX 182H Contains state of the ECX register at the time of the machine-
check error.

IA32_MCG_EDX 183H Contains state of the EDX register at the time of the machine-
check error.

IA32_MCG_ESI 184H Contains state of the ESI register at the time of the machine-
check error.

IA32_MCG_EDI 185H Contains state of the EDI register at the time of the machine-
check error.

IA32_MCG_EBP 186H Contains state of the EBP register at the time of the machine-
check error.

IA32_MCG_ESP 187H Contains state of the ESP register at the time of the machine-
check error.

IA32_MCG_EFLAGS 188H Contains state of the EFLAGS register at the time of the 
machine-check error.

IA32_MCG_EIP 189H Contains state of the EIP register at the time of the machine-
check error.

IA32_MCG_MISC 18AH When set, indicates that a page assist or page fault occurred 
during DS normal operation.
Vol. 3B 15-13



MACHINE-CHECK ARCHITECTURE
In processors with support for Intel 64 architecture, 64-bit machine check state 
MSRs are aliased to the legacy MSRs. In addition, there may be registers beyond 
IA32_MCG_MISC. These may include up to five reserved MSRs 
(IA32_MCG_RESERVED[1:5]) and save-state MSRs for registers introduced in 64-bit 
mode. See Table 15-5. 

Table 15-5.  Extended Machine Check State MSRs 
In Processors With Support For Intel 64 Architecture

MSR Address Description

IA32_MCG_RAX 180H Contains state of the RAX register at the time of the machine-
check error.

IA32_MCG_RBX 181H Contains state of the RBX register at the time of the machine-
check error.

IA32_MCG_RCX 182H Contains state of the RCX register at the time of the machine-
check error.

IA32_MCG_RDX 183H Contains state of the RDX register at the time of the machine-
check error.

IA32_MCG_RSI 184H Contains state of the RSI register at the time of the machine-
check error.

IA32_MCG_RDI 185H Contains state of the RDI register at the time of the machine-
check error.

IA32_MCG_RBP 186H Contains state of the RBP register at the time of the machine-
check error.

IA32_MCG_RSP 187H Contains state of the RSP register at the time of the machine-
check error.

IA32_MCG_RFLAGS 188H Contains state of the RFLAGS register at the time of the 
machine-check error.

IA32_MCG_RIP 189H Contains state of the RIP register at the time of the machine-
check error.

IA32_MCG_MISC 18AH When set, indicates that a page assist or page fault occurred 
during DS normal operation.

IA32_MCG_
RSERVED[1:5]

18BH-
18FH

These registers, if present, are reserved.

IA32_MCG_R8 190H Contains state of the R8 register at the time of the machine-
check error.

IA32_MCG_R9 191H Contains state of the R9 register at the time of the machine-
check error.

IA32_MCG_R10 192H Contains state of the R10 register at the time of the machine-
check error.
15-14 Vol. 3B



MACHINE-CHECK ARCHITECTURE
When a machine-check error is detected on a Pentium 4 or Intel Xeon processor, the 
processor saves the state of the general-purpose registers, the R/EFLAGS register, 
and the R/EIP in these extended machine-check state MSRs. This information can be 
used by a debugger to analyze the error.
These registers are read/write to zero registers. This means software can read them; 
but if software writes to them, only all zeros is allowed. If software attempts to write 
a non-zero value into one of these registers, a general-protection (#GP) exception is 
generated. These registers are cleared on a hardware reset (power-up or RESET), 
but maintain their contents following a soft reset (INIT reset).

15.3.3 Mapping of the Pentium Processor Machine-Check Errors
to the Machine-Check Architecture

The Pentium processor reports machine-check errors using two registers: 
P5_MC_TYPE and P5_MC_ADDR. The Pentium 4, Intel Xeon, and P6 family proces-
sors map these registers to the IA32_MCi_STATUS and IA32_MCi_ADDR in the error-
reporting register bank. This bank reports on the same type of external bus errors 
reported in P5_MC_TYPE and P5_MC_ADDR. 
The information in these registers can then be accessed in two ways:
• By reading the IA32_MCi_STATUS and IA32_MCi_ADDR registers as part of a 

general machine-check exception handler written for Pentium 4 and P6 family 
processors.

• By reading the P5_MC_TYPE and P5_MC_ADDR registers using the RDMSR 
instruction.

The second capability permits a machine-check exception handler written to run on a 
Pentium processor to be run on a Pentium 4, Intel Xeon, or P6 family processor. There 
is a limitation in that information returned by the Pentium 4, Intel Xeon, and P6 
family processors is encoded differently than information returned by the Pentium 

IA32_MCG_R11 193H Contains state of the R11 register at the time of the machine-
check error.

IA32_MCG_R12 194H Contains state of the R12 register at the time of the machine-
check error.

IA32_MCG_R13 195H Contains state of the R13 register at the time of the machine-
check error.

IA32_MCG_R14 196H Contains state of the R14 register at the time of the machine-
check error.

IA32_MCG_R15 197H Contains state of the R15 register at the time of the machine-
check error.

Table 15-5.  Extended Machine Check State MSRs 
In Processors With Support For Intel 64 Architecture (Contd.)

MSR Address Description
Vol. 3B 15-15



MACHINE-CHECK ARCHITECTURE
processor. To run a Pentium processor machine-check exception handler on a 
Pentium 4, Intel Xeon, or P6 family processor; the handler must be written to inter-
pret P5_MC_TYPE encodings correctly.

15.4 ENHANCED CACHE ERROR REPORTING
Starting with Intel Core Duo processors, cache error reporting was enhanced. In 
earlier Intel processors, cache status was based on the number of correction events 
that occurred in a cache. In the new paradigm, called “threshold-based error status”, 
cache status is based on the number of lines (ECC blocks) in a cache that incur 
repeated corrections. The threshold is chosen by Intel, based on various factors. If a 
processor supports threshold-based error status, it sets IA32_MCG_CAP[11] 
(MCG_TES_P) to 1; if not, to 0. 
A processor that supports enhanced cache error reporting contains hardware that 
tracks the operating status of certain caches and provides an indicator of their 
“health”. The hardware reports a “green” status when the number of lines that incur 
repeated corrections is at or below a pre-defined threshold, and a “yellow” status 
when the number of affected lines exceeds the threshold. Yellow status means that 
the cache reporting the event is operating correctly, but you should schedule the 
system for servicing within a few weeks.
Intel recommends that you rely on this mechanism for structures supported by 
threshold-base error reporting. 
The CPU/system/platform response to a yellow event should be less severe than its 
response to an uncorrected error. An uncorrected error means that a serious error 
has actually occurred, whereas the yellow condition is a warning that the number of 
affected lines has exceeded the threshold but is not, in itself, a serious event: the 
error was corrected and system state was not compromised. 
The green/yellow status indicator is not a foolproof early warning for an uncorrected 
error resulting from the failure of two bits in the same ECC block. Such a failure can 
occur and cause an uncorrected error before the yellow threshold is reached. 
However, the chance of an uncorrected error increases as the number of affected 
lines increases. 

15.5 CORRECTED MACHINE CHECK ERROR INTERRUPT
Corrected machine-check error interrupt (CMCI) is an architectural enhancement to 
the machine-check architecture. It provides capabilities beyond those of threshold-
based error reporting (Section 15.4). With threshold-based error reporting, software 
is limited to use periodic polling to query the status of hardware corrected MC errors. 
CMCI provides a signaling mechanism to deliver a local interrupt based on threshold 
values that software can program using the IA32_MCi_CTL2 MSRs. 
15-16 Vol. 3B



MACHINE-CHECK ARCHITECTURE
CMCI is disabled by default. System software is required to enable CMCI for each 
IA32_MCi bank that support the reporting of hardware corrected errors if 
IA32_MCG_CAP[10] = 1.
System software use IA32_MCi_CTL2 MSR to enable/disable the CMCI capability for 
each bank and program threshold values into IA32_MCi_CTL2 MSR. CMCI is not 
affected by the CR4.MCE bit, and it is not affected by the IA32_MCi_CTL MSR’s.
To detect the existence of thresholding for a given bank, software writes only bits 
14:0 with the threshold value. If the bits persist, then thresholding is available (and 
CMCI is available). If the bits are all 0's, then no thresholding exists. To detect that 
CMCI signaling exists, software writes a 1 to bit 30 of the MCi_CTL2 register. Upon 
subsequent read, If Bit 30 = 0, no CMCI is available for this bank. If Bit 30 = 1, then 
CMCI is available and enabled.

15.5.1 CMCI Local APIC Interface
The operation of CMCI is depicted in Figure 15-9. 

CMCI interrupt delivery is configured by writing to the LVT CMCI register entry in the 
local APIC register space at default address of APIC_BASE + 2F0H. A CMCI interrupt 
can be delivered to more than one logical processors if multiple logical processors are 
affected by the associated MC errors. For example, if a corrected bit error in a cache 
shared by two logical processors caused a CMCI, the interrupt will be delivered to 
both logical processors sharing that microarchitectural sub-system. Similarly, 
package level errors may cause CMCI to be delivered to all logical processors within 
the package. However, system level errors will not be handled by CMCI.
See Section 10.5.1, “Local Vector Table” for details regarding the LVT CMCI register.

Figure 15-9.  CMCI Behavior

Error threshold

63 0

MCi_CTL2

3031

Error count

53 0

Software write 1 to enable

Count overflow threshold -> CMCI LVT in local APIC

29 14

37

MCi_STATUS

3852

?=
APIC_BASE + 2F0H
Vol. 3B 15-17



MACHINE-CHECK ARCHITECTURE
15.5.2 System Software Recommendation for Managing CMCI and 
Machine Check Resources

System software must enable and manage CMCI, set up interrupt handlers to service 
CMCI interrupts delivered to affected logical processors, program CMCI LVT entry, 
and query machine check banks that are shared by more than one logical processors. 
This section describes techniques system software can implement to manage CMCI 
initialization, service CMCI interrupts in a efficient manner to minimize contentions to 
access shared MSR resources.

15.5.2.1  CMCI Initialization
Although a CMCI interrupt may be delivered to more than one logical processors 
depending on the nature of the corrected MC error, only one instance of the interrupt 
service routine needs to perform the necessary service and make queries to the 
machine-check banks. The following steps describes a technique that limits the 
amount of work the system has to do in response to a CMCI.
• To provide maximum flexibility, system software should define per-thread data 

structure for each logical processor to allow equal-opportunity and efficient 
response to interrupt delivery. Specifically, the per-thread data structure should 
include a set of per-bank fields to track which machine check bank it needs to 
access in response to a delivered CMCI interrupt. The number of banks that 
needs to be tracked is determined by IA32_MCG_CAP[7:0].

• Initialization of per-thread data structure. The initialization of per-thread data 
structure must be done serially on each logical processor in the system. The 
sequencing order to start the per-thread initialization between different logical 
processor is arbitrary. But it must observe the following specific detail to satisfy 
the shared nature of specific MSR resources:

a. Each thread initializes its data structure to indicate that it does not own any 
MC bank registers.

b. Each thread examines IA32_MCi_CTL2[30] indicator for each bank to 
determine if another thread has already claimed ownership of that bank.

• If IA32_MCi_CTL2[30] had been set by another thread. This thread can 
not own bank i and should proceed to step b. and examine the next 
machine check bank until all of the machine check banks are exhausted. 

• If IA32_MCi_CTL2[30] = 0, proceed to step c.

c. Check whether writing a 1 into IA32_MCi_CTL2[30] can return with 1 on a 
subsequent read to determine this bank can support CMCI. 

• If IA32_MCi_CTL2[30] = 0, this bank does not support CMCI. This thread 
can not own bank i and should proceed to step b. and examine the next 
machine check bank until all of the machine check banks are exhausted.

• If IA32_MCi_CTL2[30] = 1, modify the per-thread data structure to 
indicate this thread claims ownership to the MC bank; proceed to initialize 
15-18 Vol. 3B



MACHINE-CHECK ARCHITECTURE
the error threshold count (bits 15:0) of that bank as described in Chapter 
15, “CMCI Threshold Management”. Then proceed to step b. and examine 
the next machine check bank until all of the machine check banks are 
exhausted.

• After the thread has examined all of the machine check banks, it sees if it owns 
any MC banks to service CMCI. If any bank has been claimed by this thread:

— Ensure that the CMCI interrupt handler has been set up as described in 
Chapter 15, “CMCI Interrupt Handler”.

— Initialize the CMCI LVT entry, as described in Section 15.5.1, “CMCI Local 
APIC Interface”.

— Log and clear all of IA32_MCi_Status registers for the banks that this thread 
owns. This will allow new errors to be logged.

15.5.2.2  CMCI Threshold Management
The Corrected MC error threshold field, IA32_MCi_CTL2[15:0], is architecturally 
defined. Specifically, all these bits are writable by software, but different processor 
implementations may choose to implement less than 15 bits as threshold for the 
overflow comparison with IA32_MCi_STATUS[52:38]. The following describes tech-
niques that software can manage CMCI threshold to be compatible with changes in 
implementation characteristics:
• Software can set the initial threshold value to 1 by writing 1 to 

IA32_MCi_CTL2[15:0]. This will cause overflow condition on every corrected MC 
error and generates a CMCI interrupt.

• To increase the threshold and reduce the frequency of CMCI servicing:

a. Find the maximum threshold value a given processor implementation 
supports. The steps are:

• Write 7FFFH to IA32_MCi_CTL2[15:0],

• Read back IA32_MCi_CTL2[15:0], the lower 15 bits (14:0) is the 
maximum threshold supported by the processor.

b. Increase the threshold to a value below the maximum value discovered using 
step a.

15.5.2.3  CMCI Interrupt Handler
The following describes techniques system software may consider to implement a 
CMCI service routine:
• The service routine examines its private per-thread data structure to check which 

set of MC banks it has ownership. If the thread does not have ownership of a 
given MC bank, proceed to the next MC bank. Ownership is determined at initial-
ization time which is described in Section [Cross Reference to 14.5.2.1].

• If the thread had claimed ownership to an MC bank,
Vol. 3B 15-19



MACHINE-CHECK ARCHITECTURE
— Check for valid MC errors by testing IA32_MCi_STATUS.VALID[63],

• Log MC errors,

• Clear the MSRs of this MC bank. 

— If no valid error, proceed to next MC bank.
• When all MC banks have been processed, exit service routine and return to 

original program execution.
This technique will allow each logical processors to handle corrected MC errors inde-
pendently and requires no synchronization to access shared MSR resources.

15.6 RECOVERY OF UNCORRECTED RECOVERABLE (UCR) 
ERRORS 

Recovery of uncorrected recoverable machine check errors is an enhancement in 
machine-check architecture. The first processor that supports this feature is 45nm 
Intel 64 processor on which CPUID reports DisplayFamily_DisplayModel as 06H_2EH 
(see CPUID instruction in Chapter 3, “Instruction Set Reference, A-L” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 2A). This allow 
system software to perform recovery action on certain class of uncorrected errors 
and continue execution.

15.6.1 Detection of Software Error Recovery Support
Software must use bit 24 of IA32_MCG_CAP (MCG_SER_P) to detect the presence of 
software error recovery support (see Figure 15-2). When IA32_MCG_CAP[24] is set, 
this indicates that the processor supports software error recovery. When this bit is 
clear, this indicates that there is no support for error recovery from the processor and 
the primary responsibility of the machine check handler is logging the machine check 
error information and shutting down the system. 
The new class of architectural MCA errors from which system software can attempt 
recovery is called Uncorrected Recoverable (UCR) Errors. UCR errors are uncorrected 
errors that have been detected and signaled but have not corrupted the processor 
context. For certain UCR errors, this means that once system software has 
performed a certain recovery action, it is possible to continue execution on this 
processor. UCR error reporting provides an error containment mechanism for data 
poisoning. The machine check handler will use the error log information from the 
error reporting registers to analyze and implement specific error recovery actions for 
UCR errors. 
15-20 Vol. 3B



MACHINE-CHECK ARCHITECTURE
15.6.2 UCR Error Reporting and Logging
IA32_MCi_STATUS MSR is used for reporting UCR errors and existing corrected or 
uncorrected errors. The definitions of IA32_MCi_STATUS, including bit fields to iden-
tify UCR errors, is shown in Figure 15-5. UCR errors can be signaled through either 
the corrected machine check interrupt (CMCI) or machine check exception (MCE) 
path depending on the type of the UCR error. 
When IA32_MCG_CAP[24] is set, a UCR error is indicated by the following bit settings 
in the IA32_MCi_STATUS register: 
• Valid (bit 63) = 1
• UC (bit 61) = 1
• PCC (bit 57) = 0
Additional information from the IA32_MCi_MISC and the IA32_MCi_ADDR registers 
for the UCR error are available when the ADDRV and the MISCV flags in the 
IA32_MCi_STATUS register are set (see Section 15.3.2.4). The MCA error code field 
of the IA32_MCi_STATUS register indicates the type of UCR error. System software 
can interpret the MCA error code field to analyze and identify the necessary recovery 
action for the given UCR error.
In addition, the IA32_MCi_STATUS register bit fields, bits 56:55, are defined (see 
Figure 15-5) to provide additional information to help system software to properly 
identify the necessary recovery action for the UCR error:
• S (Signaling) flag, bit 56 - Indicates (when set) that a machine check exception 

was generated for the UCR error reported in this MC bank and system software 
needs to check the AR flag and the MCA error code fields in the 
IA32_MCi_STATUS register to identify the necessary recovery action for this 
error. When the S flag in the IA32_MCi_STATUS register is clear, this UCR error 
was not signaled via a machine check exception and instead was reported as a 
corrected machine check (CMC). System software is not required to take any 
recovery action when the S flag in the IA32_MCi_STATUS register is clear. 

• AR (Action Required) flag, bit 55 - Indicates (when set) that MCA error code 
specific recovery action must be performed by system software at the time this 
error was signaled. This recovery action must be completed successfully before 
any additional work is scheduled for this processor When the RIPV flag in the 
IA32_MCG_STATUS is clear, an alternative execution stream needs to be 
provided; when the MCA error code specific recovery specific recovery action 
cannot be successfully completed, system software must shut down the system. 
When the AR flag in the IA32_MCi_STATUS register is clear, system software may 
still take MCA error code specific recovery action but this is optional; system 
software can safely resume program execution at the instruction pointer saved 
on the stack from the machine check exception when the RIPV flag in the 
IA32_MCG_STATUS register is set. 

Both the S and the AR flags in the IA32_MCi_STATUS register are defined to be sticky 
bits, which mean that once set, the processor does not clear them. Only software and 
Vol. 3B 15-21



MACHINE-CHECK ARCHITECTURE
good power-on reset can clear the S and the AR-flags. Both the S and the AR flags 
are only set when the processor reports the UCR errors (MCG_CAP[24] is set).

15.6.3 UCR Error Classification
With the S and AR flag encoding in the IA32_MCi_STATUS register, UCR errors can be 
classified as:
• Uncorrected no action required (UCNA) - is a UCR error that is not signaled via a 

machine check exception and, instead, is reported to system software as a 
corrected machine check error. UCNA errors indicate that some data in the 
system is corrupted, but the data has not been consumed and the processor 
state is valid and you may continue execution on this processor. UCNA errors 
require no action from system software to continue execution. A UNCA error is 
indicated with UC=1, PCC=0, S=0 and AR=0 in the IA32_MCi_STATUS register.

• Software recoverable action optional (SRAO) - a UCR error is signaled via a 
machine check exception and a system software recovery action is optional and 
not required to continue execution from this machine check exception. SRAO 
errors indicate that some data in the system is corrupt, but the data has not been 
consumed and the processor state is valid. SRAO errors provide the additional 
error information for system software to perform a recovery action. An SRAO 
error is indicated with UC=1, PCC=0, S=1, EN=1 and AR=0 in the 
IA32_MCi_STATUS register. Recovery actions for SRAO errors are MCA error code 
specific. The MISCV and the ADDRV flags in the IA32_MCi_STATUS register are 
set when the additional error information is available from the IA32_MCi_MISC 
and the IA32_MCi_ADDR registers. System software needs to inspect the MCA 
error code fields in the IA32_MCi_STATUS register to identify the specific 
recovery action for a given SRAO error. If MISCV and ADDRV are not set, it is 
recommended that no system software error recovery be performed however, 
you can resume execution.

• Software recoverable action required (SRAR) - a UCR error that requires system 
software to take a recovery action on this processor before scheduling another 
stream of execution on this processor. SRAR errors indicate that the error was 
detected and raised at the point of the consumption in the execution flow. An 
SRAR error is indicated with UC=1, PCC=0, S=1, EN=1 and AR=1 in the 
IA32_MCi_STATUS register. Recovery actions are MCA error code specific. The 
MISCV and the ADDRV flags in the IA32_MCi_STATUS register are set when the 
additional error information is available from the IA32_MCi_MISC and the 
IA32_MCi_ADDR registers. System software needs to inspect the MCA error code 
fields in the IA32_MCi_STATUS register to identify the specific recovery action for 
a given SRAR error. If MISCV and ADDRV are not set, it is recommended that 
system software shutdown the system.
15-22 Vol. 3B



MACHINE-CHECK ARCHITECTURE
Table 15-6 summarizes UCR, corrected, and uncorrected errors. 

15.6.4 UCR Error Overwrite Rules
In general, the overwrite rules are as follows:
• UCR errors will overwrite corrected errors. 
• Uncorrected (PCC=1) errors overwrite UCR (PCC=0) errors.   
• UCR errors are not written over previous UCR errors. 
• Corrected errors do not write over previous UCR errors. 
Regardless of whether the 1st error is retained or the 2nd error is overwritten over 
the 1st error, the OVER flag in the IA32_MCi_STATUS register will be set to indicate 
an overflow condition. As the S flag and AR flag in the IA32_MCi_STATUS register are 
defined to be sticky flags, a second event cannot clear these 2 flags once set, 
however the MC bank information may be filled in for the 2nd error. The table below 
shows the overwrite rules and how to treat a second error if the first event is already 
logged in a MC bank along with the resulting bit setting of the UC, PCC, and AR flags 
in the IA32_MCi_STATUS register. As UCNA and SRA0 errors do not require recovery 
action from system software to continue program execution, a system reset by 

Table 15-6.  MC Error Classifications
Type of Error1

NOTES:
1. VAL=1, EN=1 for UC=1 errors; OVER=0 for UC=1 and PCC=0 errors SRAR, SRAO and UCNA errors 

are supported by the processor only when IA32_MCG_CAP[24] (MCG_SER_P) is set. 

UC PCC S AR Signaling Software Action Example

Uncorrected Error 
(UC)

1 1 x x MCE Reset the system

SRAR 1 0 1 1 MCE For known MCACOD, 
take specific recovery 
action;

For unknown MCACOD, 
must bugcheck

Cache to 
processor load 
error

SRAO 1 0 1 0 MCE For known MCACOD, 
take specific recovery 
action;

For unknown MCACOD, 
OK to keep the system 
running

Patrol scrub and 
explicit writeback 
poison errors

UCNA 1 0 0 0 CMC Log the error and Ok to 
keep the system running

Poison detection 
error

Corrected Error (CE) 0 0 x x CMC Log the error and no 
corrective action 
required

ECC in caches and 
memory
Vol. 3B 15-23



MACHINE-CHECK ARCHITECTURE
system software is not required unless the AR flag or PCC flag is set for the UCR over-
flow case (OVER=1, VAL=1, UC=1, PCC=0). 
Table 15-7 lists overwrite rules for uncorrected errors, corrected errors, and uncor-
rected recoverable errors. 

15.7 MACHINE-CHECK AVAILABILITY
The machine-check architecture and machine-check exception (#MC) are model-
specific features. Software can execute the CPUID instruction to determine whether 
a processor implements these features. Following the execution of the CPUID 
instruction, the settings of the MCA flag (bit 14) and MCE flag (bit 7) in EDX indicate 
whether the processor implements the machine-check architecture and machine-
check exception.

15.8 MACHINE-CHECK INITIALIZATION
To use the processors machine-check architecture, software must initialize the 
processor to activate the machine-check exception and the error-reporting mecha-
nism. 
Example 15-1 gives pseudocode for performing this initialization. This pseudocode 
checks for the existence of the machine-check architecture and exception; it then 

Table 15-7.  Overwrite Rules for UC, CE, and UCR Errors
First Event Second Event UC PCC S AR MCA Bank Reset System

CE UCR 1 0 0 if UCNA, 
else 1

1 if SRAR, 
else 0

second yes, if AR=1

UCR CE 1 0 0 if UCNA, 
else 1

1 if SRAR, 
else 0

first  yes, if AR=1

UCNA UCNA 1 0 0 0 first no

UCNA SRAO 1 0 1 0 first no

UCNA SRAR 1 0 1 1 first yes

SRAO UCNA 1 0 1 0 first no

SRAO SRAO 1 0 1 0 first no

SRAO SRAR 1 0 1 1 first yes

SRAR UCNA 1 0 1 1 first yes

SRAR SRAO 1 0 1 1 first yes

SRAR SRAR 1 0 1 1 first yes

UCR UC 1 1 undefined undefined second yes

UC UCR 1 1 undefined undefined first yes 
15-24 Vol. 3B



MACHINE-CHECK ARCHITECTURE
enables machine-check exception and the error-reporting register banks. The 
pseudocode shown is compatible with the Pentium 4, Intel Xeon, P6 family, and 
Pentium processors. 
Following power up or power cycling, IA32_MCi_STATUS registers are not guaran-
teed to have valid data until after they are initially cleared to zero by software (as 
shown in the initialization pseudocode in Example 15-1). In addition, when using P6 
family processors, software must set MCi_STATUS registers to zero when doing a 
soft-reset.

Example 15-1.  Machine-Check Initialization Pseudocode

Check CPUID Feature Flags for MCE and MCA support
IF CPU supports MCE
THEN

IF CPU supports MCA
THEN

IF (IA32_MCG_CAP.MCG_CTL_P = 1)
(* IA32_MCG_CTL register is present *)
THEN

IA32_MCG_CTL ← FFFFFFFFFFFFFFFFH;
(* enables all MCA features *)

FI

(* Determine number of error-reporting banks supported *)
COUNT← IA32_MCG_CAP.Count;
MAX_BANK_NUMBER ← COUNT - 1;

IF (Processor Family is 6H and Processor EXTMODEL:MODEL is less than 1AH)
THEN

(* Enable logging of all errors except for MC0_CTL register *)
FOR error-reporting banks (1 through MAX_BANK_NUMBER)
DO

IA32_MCi_CTL ← 0FFFFFFFFFFFFFFFFH;
OD

ELSE
(* Enable logging of all errors including MC0_CTL register *)
FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

IA32_MCi_CTL ← 0FFFFFFFFFFFFFFFFH;
OD

FI

(* BIOS clears all errors only on power-on reset *)
IF (BIOS detects Power-on reset)
THEN 

FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

IA32_MCi_STATUS ← 0;
OD

ELSE
Vol. 3B 15-25



MACHINE-CHECK ARCHITECTURE
FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

(Optional for BIOS and OS) Log valid errors
(OS only) IA32_MCi_STATUS ← 0;

OD

FI
FI

Setup the Machine Check Exception (#MC) handler for vector 18 in IDT

Set the MCE bit (bit 6) in CR4 register to enable Machine-Check Exceptions
FI

15.9 INTERPRETING THE MCA ERROR CODES
When the processor detects a machine-check error condition, it writes a 16-bit error 
code to the MCA error code field of one of the IA32_MCi_STATUS registers and sets 
the VAL (valid) flag in that register. The processor may also write a 16-bit model-
specific error code in the IA32_MCi_STATUS register depending on the implementa-
tion of the machine-check architecture of the processor.
The MCA error codes are architecturally defined for Intel 64 and IA-32 processors. To 
determine the cause of a machine-check exception, the machine-check exception 
handler must read the VAL flag for each IA32_MCi_STATUS register. If the flag is set, 
the machine check-exception handler must then read the MCA error code field of the 
register. It is the encoding of the MCA error code field [15:0] that determines the 
type of error being reported and not the register bank reporting it.
There are two types of MCA error codes: simple error codes and compound error 
codes. 

15.9.1 Simple Error Codes
Table 15-8 shows the simple error codes. These unique codes indicate global error 
information.

Table 15-8.  IA32_MCi_Status [15:0] Simple Error Code Encoding 
Error Code Binary Encoding Meaning

No Error 0000 0000 0000 0000 No error has been reported to this bank of 
error-reporting registers.

Unclassified 0000 0000 0000 0001 This error has not been classified into the 
MCA error classes.

Microcode ROM Parity 
Error

0000 0000 0000 0010 Parity error in internal microcode ROM
15-26 Vol. 3B



MACHINE-CHECK ARCHITECTURE
15.9.2 Compound Error Codes
Compound error codes describe errors related to the TLBs, memory, caches, bus and 
interconnect logic, and internal timer. A set of sub-fields is common to all of 
compound errors. These sub-fields describe the type of access, level in the cache 
hierarchy, and type of request. Table 15-9 shows the general form of the compound 
error codes. 

The “Interpretation” column in the table indicates the name of a compound error. The 
name is constructed by substituting mnemonics for the sub-field names given within 
curly braces. For example, the error code ICACHEL1_RD_ERR is constructed from the 
form: 

{TT}CACHE{LL}_{RRRR}_ERR,
where {TT} is replaced by I, {LL} is replaced by L1, and {RRRR} is replaced by RD.

For more information on the “Form” and “Interpretation” columns, see Sections 
Section 15.9.2.1, “Correction Report Filtering (F) Bit” through Section 15.9.2.5, “Bus 
and Interconnect Errors”.

External Error 0000 0000 0000 0011 The BINIT# from another processor caused 
this processor to enter machine check.1

FRC Error 0000 0000 0000 0100 FRC (functional redundancy check) 
master/slave error

Internal Parity Error 0000 0000 0000 0101 Internal parity error.

Internal Timer Error 0000 0100 0000 0000 Internal timer error.

Internal Unclassified 0000 01xx xxxx xxxx Internal unclassified errors. 2

NOTES:
1. BINIT# assertion will cause a machine check exception if the processor (or any processor on the 

same external bus) has BINIT# observation enabled during power-on configuration (hardware 
strapping) and if machine check exceptions are enabled (by setting CR4.MCE = 1).

2. At least one X must equal one. Internal unclassified errors have not been classified. 

Table 15-9.  IA32_MCi_Status [15:0] Compound Error Code Encoding 
Type Form Interpretation

Generic Cache Hierarchy 000F 0000 0000 11LL Generic cache hierarchy error

TLB Errors 000F 0000 0001 TTLL {TT}TLB{LL}_ERR

Memory Controller Errors 000F 0000 1MMM CCCC {MMM}_CHANNEL{CCCC}_ERR

Cache Hierarchy Errors 000F 0001 RRRR TTLL {TT}CACHE{LL}_{RRRR}_ERR

Bus and Interconnect Errors 000F 1PPT RRRR IILL BUS{LL}_{PP}_{RRRR}_{II}_{T}_ERR

Table 15-8.  IA32_MCi_Status [15:0] Simple Error Code Encoding  (Contd.)
Vol. 3B 15-27



MACHINE-CHECK ARCHITECTURE
15.9.2.1  Correction Report Filtering (F) Bit 
Starting with Intel Core Duo processors, bit 12 in the “Form” column in Table 15-9 is 
used to indicate that a particular posting to a log may be the last posting for correc-
tions in that line/entry, at least for some time:
• 0 in bit 12 indicates “normal” filtering (original P6/Pentium4/Xeon processor 

meaning).
• 1 in bit 12 indicates “corrected” filtering (filtering is activated for the line/entry in 

the posting). Filtering means that some or all of the subsequent corrections to 
this entry (in this structure) will not be posted. The enhanced error reporting 
introduced with the Intel Core Duo processors is based on tracking the lines 
affected by repeated corrections (see Section 15.4, “Enhanced Cache Error 
reporting”). This capability is indicated by IA32_MCG_CAP[11]. Only the first few 
correction events for a line are posted; subsequent redundant correction events 
to the same line are not posted. Uncorrected events are always posted. 

The behavior of error filtering after crossing the yellow threshold is model-specific.

15.9.2.2  Transaction Type (TT) Sub-Field
The 2-bit TT sub-field (Table 15-10) indicates the type of transaction (data, instruc-
tion, or generic). The sub-field applies to the TLB, cache, and interconnect error 
conditions. Note that interconnect error conditions are primarily associated with P6 
family and Pentium processors, which utilize an external APIC bus separate from the 
system bus. The generic type is reported when the processor cannot determine the 
transaction type.

15.9.2.3  Level (LL) Sub-Field
The 2-bit LL sub-field (see Table 15-11) indicates the level in the memory hierarchy 
where the error occurred (level 0, level 1, level 2, or generic). The LL sub-field also 
applies to the TLB, cache, and interconnect error conditions. The Pentium 4, Intel 
Xeon, and P6 family processors support two levels in the cache hierarchy and one 
level in the TLBs. Again, the generic type is reported when the processor cannot 
determine the hierarchy level.

Table 15-10.  Encoding for TT (Transaction Type) Sub-Field
Transaction Type Mnemonic Binary Encoding

Instruction I 00

Data D 01

Generic G 10

Table 15-11.  Level Encoding for LL (Memory Hierarchy Level) Sub-Field 
Hierarchy Level Mnemonic Binary Encoding

Level 0 L0 00
15-28 Vol. 3B



MACHINE-CHECK ARCHITECTURE
15.9.2.4  Request (RRRR) Sub-Field
The 4-bit RRRR sub-field (see Table 15-12) indicates the type of action associated 
with the error. Actions include read and write operations, prefetches, cache evictions, 
and snoops. Generic error is returned when the type of error cannot be determined. 
Generic read and generic write are returned when the processor cannot determine 
the type of instruction or data request that caused the error. Eviction and snoop 
requests apply only to the caches. All of the other requests apply to TLBs, caches and 
interconnects.

15.9.2.5  Bus and Interconnect Errors
The bus and interconnect errors are defined with the 2-bit PP (participation), 1-bit T 
(time-out), and 2-bit II (memory or I/O) sub-fields, in addition to the LL and RRRR 
sub-fields (see Table 15-13). The bus error conditions are implementation dependent 
and related to the type of bus implemented by the processor. Likewise, the intercon-
nect error conditions are predicated on a specific implementation-dependent inter-
connect model that describes the connections between the different levels of the 
storage hierarchy. The type of bus is implementation dependent, and as such is not 
specified in this document. A bus or interconnect transaction consists of a request 
involving an address and a response.

Level 1 L1 01

Level 2 L2 10

Generic LG 11

Table 15-12.  Encoding of Request (RRRR) Sub-Field 
Request Type Mnemonic Binary Encoding

Generic Error ERR 0000

Generic Read RD 0001

Generic Write WR 0010

Data Read DRD 0011

Data Write DWR 0100

Instruction Fetch IRD 0101

Prefetch PREFETCH 0110

Eviction EVICT 0111

Snoop SNOOP 1000

Table 15-13.  Encodings of PP, T, and II Sub-Fields 
Sub-Field Transaction Mnemonic Binary Encoding

Table 15-11.  Level Encoding for LL (Memory Hierarchy Level) Sub-Field  (Contd.)
Vol. 3B 15-29



MACHINE-CHECK ARCHITECTURE
15.9.2.6  Memory Controller Errors
The memory controller errors are defined with the 3-bit MMM (memory transaction 
type), and 4-bit CCCC (channel) sub-fields. The encodings for MMM and CCCC are 
defined in Table 15-14.

15.9.3 Architecturally Defined UCR Errors 
Software recoverable compound error code are defined in this section.

PP (Participation) Local processor* originated request SRC 00

Local processor* responded to request RES 01

Local processor* observed error as 
third party

OBS 10

Generic 11

T (Time-out) Request timed out TIMEOUT 1

Request did not time out NOTIMEOUT 0

II (Memory or I/O) Memory Access M 00

Reserved 01

I/O IO 10

Other transaction 11

NOTE:
* Local processor differentiates the processor reporting the error from other system compo-

nents (including the APIC, other processors, etc.).

Table 15-14.  Encodings of MMM and CCCC Sub-Fields 
Sub-Field Transaction Mnemonic Binary Encoding

MMM Generic undefined request GEN 000

Memory read error RD 001

Memory write error WR 010

Address/Command Error AC 011

Memory Scrubbing Error MS 100

Reserved 101-111

CCCC Channel number CHN 0000-1110

Channel not specified 1111

Table 15-13.  Encodings of PP, T, and II Sub-Fields  (Contd.)
15-30 Vol. 3B



MACHINE-CHECK ARCHITECTURE
15.9.3.1  Architecturally Defined SRAO Errors
The following two SRAO errors are architecturally defined. 
• UCR Errors detected by memory controller scrubbing; and
• UCR Errors detected during L3 cache (L3) explicit writebacks.
The MCA error code encodings for these two architecturally-defined UCR errors 
corresponds to sub-classes of compound MCA error codes (see Table 15-9). Their 
values and compound encoding format are given in Table 15-15. 

Table 15-16 lists values of relevant bit fields of IA32_MCi_STATUS for architecturally 
defined SRAO errors. 

For both the memory scrubbing and L3 explicit writeback errors, the ADDRV and 
MISCV flags in the IA32_MCi_STATUS register are set to indicate that the offending 
physical address information is available from the IA32_MCi_MISC and the 
IA32_MCi_ADDR registers.  For the memory scrubbing and L3 explicit writeback 
errors, the address mode in the IA32_MCi_MISC register should be set as physical 
address mode (010b) and the address LSB information in the IA32_MCi_MISC 
register should indicate the lowest valid address bit in the address information 
provided from the IA32_MCi_ADDR register. 
An MCE signal is broadcast to all logical processors on the system on which the UCR 
errors are supported. MCi_STATUS banks can be shared by logical processors within 

Table 15-15.  MCA Compound Error Code Encoding for SRAO Errors
Type MCACOD Value MCA Error Code Encoding1

NOTES:
1. Note that for both of these errors the correction report filtering (F) bit (bit 12) of the MCA error is 

0, indicating "normal" filtering. 

Memory Scrubbing 0xC0 - 0xCF 0000_0000_1100_CCCC

000F 0000 1MMM CCCC (Memory Controller Error), where

Memory subfield MMM = 100B (memory scrubbing)

Channel subfield CCCC = channel # or generic

L3 Explicit Writeback 0x17A 0000_0001_0111_1010

000F 0001 RRRR TTLL (Cache Hierarchy Error) where

Request subfields RRRR = 0111B (Eviction)

Transaction Type subfields TT = 10B (Generic)

Level subfields LL = 10B 

Table 15-16.  IA32_MCi_STATUS Values for SRAO Errors
SRAO Error Valid OVER UC EN MISCV ADDRV PCC S AR MCACOD

Memory Scrubbing 1 0 1 1 1 1 0 1 0 0xC0-0xCF

L3 Explicit Writeback 1 0 1 1 1 1 0 1 0 0x17A
Vol. 3B 15-31



MACHINE-CHECK ARCHITECTURE
a core or within the same package. So several logical processors may find an SRAO 
error in the shared IA32_MCi_STATUS bank but other processors do not find it in any 
of the IA32_MCi_STATUS banks. Table 15-17 shows the RIPV and EIPV flag indication 
in the IA32_MCG_STATUS register for the memory scrubbing and L3 explicit write-
back errors on both the reporting and non-reporting logical processors. 

15.9.3.2  Architecturally Defined SRAR Errors
The following two SRAR errors are architecturally defined. 
• UCR Errors detected on data load; and
• UCR Errors detected on instruction fetch.
The MCA error code encodings for these two architecturally-defined UCR errors 
corresponds to sub-classes of compound MCA error codes (see Table 15-9). Their 
values and compound encoding format are given in Table 15-18. 

Table 15-17.  IA32_MCG_STATUS Flag Indication for SRAO Errors
SRAO Type Reporting Logical Processors Non-reporting Logical Processors

RIPV EIPV RIPV EIPV

Memory Scrubbing 1 0 1 0

L3 Explicit Writeback 1 0 1 0

Table 15-18.  MCA Compound Error Code Encoding for SRAR Errors
Type MCACOD Value MCA Error Code Encoding1

NOTES:
1. Note that for both of these errors the correction report filtering (F) bit (bit 12) of the MCA error is 

0, indicating "normal" filtering. 

Data Load 0x134 0000_0001_0011_0100

000F 0001 RRRR TTLL (Cache Hierarchy Error), where

Request subfield RRRR = 0011B (Data Load)

Transaction Type subfield TT= 01B (Data)

Level subfield LL = 00B (Level 0)

Instruction Fetch 0x150 0000_0001_0101_0000

000F 0001 RRRR TTLL (Cache Hierarchy Error), where

Request subfield RRRR = 0101B (Instruction Fetch)

Transaction Type subfield TT= 00B (Instruction)

Level subfield LL = 00B (Level 0)
15-32 Vol. 3B



MACHINE-CHECK ARCHITECTURE
Table 15-19 lists values of relevant bit fields of IA32_MCi_STATUS for architecturally 
defined SRAR errors. 

For both the data load and instruction fetch errors, the ADDRV and MISCV flags in the 
IA32_MCi_STATUS register are set to indicate that the offending physical address 
information is available from the IA32_MCi_MISC and the IA32_MCi_ADDR registers.  
For the memory scrubbing and L3 explicit writeback errors, the address mode in the 
IA32_MCi_MISC register should be set as physical address mode (010b) and the 
address LSB information in the IA32_MCi_MISC register should indicate the lowest 
valid address bit in the address information provided from the IA32_MCi_ADDR 
register. 
An MCE signal is broadcast to all logical processors on the system on which the UCR 
errors are supported. The IA32_MCG_STATUS MSR allows system software to distin-
guish the affected logical processor of an SRAR error amongst logical processors that 
observed SRAR via a shared MCi_STATUS bank.
Table 15-20 shows the RIPV and EIPV flag indication in the IA32_MCG_STATUS 
register for the data load and instruction fetch errors on both the reporting and non-
reporting logical processors. 

The affected logical processor is the one that has detected and raised an SRAR error 
at the point of the consumption in the execution flow. The affected logical processor 
should find the Data Load or the Instruction Fetch error information in the 
IA32_MCi_STATUS register that is reporting the SRAR error.  
For Data Load recoverable errors, the affected logical processor should find that the 
IA32_MCG_STATUS.RIPV flag is cleared and the IA32_MCG_STATUS.EIPV flag is set 
indicating that the error is detected at the instruction pointer saved on the stack for 
this machine check exception and restarting execution with the interrupted context is 
not possible.  
For Instruction Fetch recoverable error, the affected logical processor should find that 
the RIPV flag and the EIPV Flag in the IA32_MCG_STATUS register are cleared, indi-
cating that the error is detected at the instruction pointer saved on the stack may not 
be associated with this error and restarting the execution with the interrupted 
context is not possible. 

Table 15-19.  IA32_MCi_STATUS Values for SRAR Errors
SRAR Error Valid OVER UC EN MISCV ADDRV PCC S AR MCACOD

Data Load 1 0 1 1 1 1 0 1 1 0x134

Instruction Fetch 1 0 1 1 1 1 0 1 1 0x150

Table 15-20.  IA32_MCG_STATUS Flag Indication for SRAR Errors
SRAR Type Affected Logical Processors Non-Affected Logical Processors

RIPV EIPV RIPV EIPV

Data Load 0 1 1 0

instruction Fetch 0 0 1 0
Vol. 3B 15-33



MACHINE-CHECK ARCHITECTURE
The logical processors that observed but not affected by an SRAR error should find 
that the RIPV flag in the IA32_MCG_STATUS register is set and the EIPV flag in the 
IA32_MCG_STATUS register is cleared, indicating that it is safe to restart the execu-
tion at the instruction saved on the stack for the machine check exception on these 
processors after the recovery action is successfully taken by system software. 
For the Data-Load and the Instruction-Fetch recoverable errors, system software 
may take the following recovery actions for the affected logical processor: 
• The current executing thread cannot be continued.  You must terminate the 

interrupted stream of execution and provide a new stream of execution on return 
from the machine check handler for the affected logical processor

In addition to taking the recovery action described above, system software may also 
need to disable the use of the affected page from the program. This recovery action 
by system software may prevent the occurrence of future consumption errors from 
that affected page.  

15.9.4 Multiple MCA Errors 
When multiple MCA errors are detected within a certain detection window, the 
processor may aggregate the reporting of these errors together as a single event, i.e. 
a single machine exception condition.  If this occurs, system software may find 
multiple MCA errors logged in different MC banks on one logical processor or find 
multiple MCA errors logged across different processors for a single machine check 
broadcast event.  In order to handle multiple UCR errors reported from a single 
machine check event and possibly recover from multiple errors, system software 
may consider the following: 
• Whether it can recover from multiple errors is determined by the most severe 

error reported on the system.  If the most severe error is found to be an unrecov-
erable error (VAL=1, UC=1, PCC=1 and EN=1) after system software examines 
the MC banks of all processors to which the MCA signal is broadcast, recovery 
from the multiple errors is not possible and system software needs to reset the 
system. 

• When multiple recoverable errors are reported and no other fatal condition (e.g.. 
overflowed condition for SRAR error) is found for the reported recoverable errors, 
it is possible for system software to recover from the multiple recoverable errors 
by taking necessary recovery action for each individual recoverable error.  
However, system software can no longer expect one to one relationship with the 
error information recorded in the IA32_MCi_STATUS register and the states of 
the RIPV and EIPV flags in the IA32_MCG_STATUS register as the states of the 
RIPV and the EIPV flags in the IA32_MCG_STATUS register may indicate the 
information for the most severe error recorded on the processor.  System 
software is required to use the RIPV flag indication in the IA32_MCG_STATUS 
register to make a final decision of recoverability of the errors and find the 
15-34 Vol. 3B



MACHINE-CHECK ARCHITECTURE
restart-ability requirement after examining each IA32_MCi_STATUS register 
error information in the MC banks.  

15.9.5 Machine-Check Error Codes Interpretation
Chapter 16, “Interpreting Machine-Check Error Codes,” provides information on 
interpreting the MCA error code, model-specific error code, and other information 
error code fields. For P6 family processors, information has been included on 
decoding external bus errors. For Pentium 4 and Intel Xeon processors; information 
is included on external bus, internal timer and cache hierarchy errors.

15.10 GUIDELINES FOR WRITING MACHINE-CHECK 
SOFTWARE

The machine-check architecture and error logging can be used in three different 
ways:
• To detect machine errors during normal instruction execution, using the 

machine-check exception (#MC).
• To periodically check and log machine errors.
• To examine recoverable UCR errors, determine software recoverability and 

perform recovery actions via a machine-check exception handler or a corrected 
machine-check interrupt handler.

To use the machine-check exception, the operating system or executive software 
must provide a machine-check exception handler. This handler may need to be 
designed specifically for each family of processors.
A special program or utility is required to log machine errors.
Guidelines for writing a machine-check exception handler or a machine-error logging 
utility are given in the following sections.

15.10.1 Machine-Check Exception Handler
The machine-check exception (#MC) corresponds to vector 18. To service machine-
check exceptions, a trap gate must be added to the IDT. The pointer in the trap gate 
must point to a machine-check exception handler. Two approaches can be taken to 
designing the exception handler:

1. The handler can merely log all the machine status and error information, then call 
a debugger or shut down the system.

2. The handler can analyze the reported error information and, in some cases, 
attempt to correct the error and restart the processor.
Vol. 3B 15-35



MACHINE-CHECK ARCHITECTURE
For Pentium 4, Intel Xeon, P6 family, and Pentium processors; virtually all machine-
check conditions cannot be corrected (they result in abort-type exceptions). The 
logging of status and error information is therefore a baseline implementation 
requirement.
When recovery from a machine-check error may be possible, consider the following 
when writing a machine-check exception handler:
• To determine the nature of the error, the handler must read each of the error-

reporting register banks. The count field in the IA32_MCG_CAP register gives 
number of register banks. The first register of register bank 0 is at address 400H.

• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the 
error information in the register is valid. If this flag is clear, the registers in that 
bank do not contain valid error information and do not need to be checked.

• To write a portable exception handler, only the MCA error code field in the 
IA32_MCi_STATUS register should be checked. See Section 15.9, “Interpreting 
the MCA Error Codes,” for information that can be used to write an algorithm to 
interpret this field.

• The RIPV, PCC, and OVER flags in each IA32_MCi_STATUS register indicate 
whether recovery from the error is possible. If PCC or OVER are set, recovery is 
not possible. If RIPV is not set, program execution can not be restarted reliably. 
When recovery is not possible, the handler typically records the error information 
and signals an abort to the operating system.

• Correctable errors are corrected automatically by the processor. The UC flag in 
each IA32_MCi_STATUS register indicates whether the processor automatically 
corrected an error.

• The RIPV flag in the IA32_MCG_STATUS register indicates whether the program 
can be restarted at the instruction indicated by the instruction pointer (the 
address of the instruction pushed on the stack when the exception was 
generated). If this flag is clear, the processor may still be able to be restarted (for 
debugging purposes) but not without loss of program continuity.

• For unrecoverable errors, the EIPV flag in the IA32_MCG_STATUS register 
indicates whether the instruction indicated by the instruction pointer pushed on 
the stack (when the exception was generated) is related to the error. If the flag is 
clear, the pushed instruction may not be related to the error.

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-
check exception was generated. Before returning from the machine-check 
exception handler, software should clear this flag so that it can be used reliably by 
an error logging utility. The MCIP flag also detects recursion. The machine-check 
architecture does not support recursion. When the processor detects machine-
check recursion, it enters the shutdown state.

Example 15-2 gives typical steps carried out by a machine-check exception handler.

Example 15-2.  Machine-Check Exception Handler Pseudocode

IF CPU supports MCE
15-36 Vol. 3B



MACHINE-CHECK ARCHITECTURE
THEN
IF CPU supports MCA

THEN
call errorlogging routine; (* returns restartability *)

FI;
ELSE (* Pentium(R) processor compatible *)

READ P5_MC_ADDR
READ P5_MC_TYPE;
report RESTARTABILITY to console;

FI;
IF error is not restartable

THEN
report RESTARTABILITY to console;
abort system;

FI;
CLEAR MCIP flag in IA32_MCG_STATUS;

15.10.2 Pentium Processor Machine-Check Exception Handling
Machine-check exception handler on P6 family and later processor families, should 
follow the guidelines described in Section 15.10.1 and Example 15-2 that check the 
processor’s support of MCA.

NOTE
On processors that support MCA (CPUID.1.EDX.MCA = 1) reading the 
P5_MC_TYPE and P5_MC_ADDR registers may produce invalid data.

When machine-check exceptions are enabled for the Pentium processor (MCE flag is 
set in control register CR4), the machine-check exception handler uses the RDMSR 
instruction to read the error type from the P5_MC_TYPE register and the machine 
check address from the P5_MC_ADDR register. The handler then normally reports 
these register values to the system console before aborting execution (see Example 
15-2).

15.10.3 Logging Correctable Machine-Check Errors
The error handling routine for servicing the machine-check exceptions is responsible 
for logging uncorrected errors.
If a machine-check error is correctable, the processor does not generate a machine-
check exception for it. To detect correctable machine-check errors, a utility program 
must be written that reads each of the machine-check error-reporting register banks 
and logs the results in an accounting file or data structure. This utility can be imple-
mented in either of the following ways.
• A system daemon that polls the register banks on an infrequent basis, such as 

hourly or daily.
Vol. 3B 15-37



MACHINE-CHECK ARCHITECTURE
• A user-initiated application that polls the register banks and records the 
exceptions. Here, the actual polling service is provided by an operating-system 
driver or through the system call interface.

• An interrupt service routine servicing CMCI can read the MC banks and log the 
error. 

Example 15-3 gives pseudocode for an error logging utility.

Example 15-3.  Machine-Check Error Logging Pseudocode

Assume that execution is restartable;
IF the processor supports MCA

THEN
FOR each bank of machine-check registers 

DO
READ IA32_MCi_STATUS;
IF VAL flag in IA32_MCi_STATUS = 1

THEN
IF ADDRV flag in IA32_MCi_STATUS = 1

THEN READ IA32_MCi_ADDR; 
FI;
IF MISCV flag in IA32_MCi_STATUS = 1

THEN READ IA32_MCi_MISC;
FI;
IF MCIP flag in IA32_MCG_STATUS = 1

(* Machine-check exception is in progress *) 
AND PCC flag in IA32_MCi_STATUS = 1
OR RIPV flag in IA32_MCG_STATUS = 0
(* execution is not restartable *)

THEN 
RESTARTABILITY = FALSE;
return RESTARTABILITY to calling procedure;

FI;
Save time-stamp counter and processor ID;
Set IA32_MCi_STATUS to all 0s;
Execute serializing instruction (i.e., CPUID);

FI;
OD;

FI;

If the processor supports the machine-check architecture, the utility reads through 
the banks of error-reporting registers looking for valid register entries. It then saves 
the values of the IA32_MCi_STATUS, IA32_MCi_ADDR, IA32_MCi_MISC and 
IA32_MCG_STATUS registers for each bank that is valid. The routine minimizes 
processing time by recording the raw data into a system data structure or file, 
reducing the overhead associated with polling. User utilities analyze the collected 
data in an off-line environment.
When the MCIP flag is set in the IA32_MCG_STATUS register, a machine-check 
exception is in progress and the machine-check exception handler has called the 
exception logging routine. 
15-38 Vol. 3B



MACHINE-CHECK ARCHITECTURE
Once the logging process has been completed the exception-handling routine must 
determine whether execution can be restarted, which is usually possible when 
damage has not occurred (The PCC flag is clear, in the IA32_MCi_STATUS register) 
and when the processor can guarantee that execution is restartable (the RIPV flag is 
set in the IA32_MCG_STATUS register). If execution cannot be restarted, the system 
is not recoverable and the exception-handling routine should signal the console 
appropriately before returning the error status to the Operating System kernel for 
subsequent shutdown.
The machine-check architecture allows buffering of exceptions from a given error-
reporting bank although the Pentium 4, Intel Xeon, and P6 family processors do not 
implement this feature. The error logging routine should provide compatibility with 
future processors by reading each hardware error-reporting bank's 
IA32_MCi_STATUS register and then writing 0s to clear the OVER and VAL flags in 
this register. The error logging utility should re-read the IA32_MCi_STATUS register 
for the bank ensuring that the valid bit is clear. The processor will write the next error 
into the register bank and set the VAL flags. 
Additional information that should be stored by the exception-logging routine 
includes the processor’s time-stamp counter value, which provides a mechanism to 
indicate the frequency of exceptions. A multiprocessing operating system stores the 
identity of the processor node incurring the exception using a unique identifier, such 
as the processor’s APIC ID (see Section 10.8, “Handling Interrupts”). 
The basic algorithm given in Example 15-3 can be modified to provide more robust 
recovery techniques. For example, software has the flexibility to attempt recovery 
using information unavailable to the hardware. Specifically, the machine-check 
exception handler can, after logging carefully analyze the error-reporting registers 
when the error-logging routine reports an error that does not allow execution to be 
restarted. These recovery techniques can use external bus related model-specific 
information provided with the error report to localize the source of the error within 
the system and determine the appropriate recovery strategy. 

15.10.4 Machine-Check Software Handler Guidelines for Error 
Recovery

15.10.4.1  Machine-Check Exception Handler for Error Recovery
When writing a machine-check exception (MCE) handler to support software 
recovery from Uncorrected Recoverable (UCR) errors, consider the following: 
• When IA32_MCG_CAP [24] is zero, there are no recoverable errors supported 

and all machine-check are fatal exceptions. The logging of status and error 
information is therefore a baseline implementation requirement. 

• When IA32_MCG_CAP [24] is 1, certain uncorrected errors called uncorrected 
recoverable (UCR) errors may be software recoverable. The handler can analyze 
Vol. 3B 15-39



MACHINE-CHECK ARCHITECTURE
the reported error information, and in some cases attempt to recover from the 
uncorrected error and continue execution.

• For processors on which CPUID reports DisplayFamily_DisplayModel as 06H_0EH 
and onward, an MCA signal is broadcast to all logical processors in the system 
(see CPUID instruction in Chapter 3, “Instruction Set Reference, A-L” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A).  
Due to the potentially shared machine check MSR resources among the logical 
processors on the same package/core, the MCE handler may be required to 
synchronize with the other processors that received a machine check error and 
serialize access to the machine check registers when analyzing, logging and 
clearing the information in the machine check registers.

• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the 
error information in the register is valid. If this flag is clear, the registers in that 
bank do not contain valid error information and should not be checked.

• The MCE handler is primarily responsible for processing uncorrected errors. The 
UC flag in each IA32_MCi_Status register indicates whether the reported error 
was corrected (UC=0) or uncorrected (UC=1).  The MCE handler can optionally 
log and clear the corrected errors in the MC banks if it can implement software 
algorithm to avoid the undesired race conditions with the CMCI or CMC polling 
handler.

• For uncorrectable errors, the EIPV flag in the IA32_MCG_STATUS register 
indicates (when set) that the instruction pointed to by the instruction pointer 
pushed onto the stack when the machine-check exception is generated is directly 
associated with the error. When this flag is cleared, the instruction pointed to 
may not be associated with the error. 

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-
check exception was generated. When a machine check exception is generated, 
it is expected that the MCIP flag in the IA32_MCG_STATUS register is set to 1. If 
it is not set, this machine check was generated by either an INT 18 instruction or 
some piece of hardware signaling an interrupt with vector 18. 

When IA32_MCG_CAP [24] is 1, the following rules can apply when writing a machine 
check exception (MCE) handler to support software recovery: 
• The PCC flag in each IA32_MCi_STATUS register indicates whether recovery from 

the error is possible for uncorrected errors (UC=1).  If the PCC flag is set for 
uncorrected errors (UC=1), recovery is not possible.  When recovery is not 
possible, the MCE handler typically records the error information and signals the 
operating system to reset the system. 

• The RIPV flag in the IA32_MCG_STATUS register indicates whether restarting the 
program execution from the instruction pointer saved on the stack for the 
machine check exception is possible.  When the RIPV is set, program execution 
can be restarted reliably when recovery is possible.  If the RIPV flag is not set, 
program execution cannot be restarted reliably. In this case the recovery 
algorithm may involve terminating the current program execution and resuming 
an alternate thread of execution upon return from the machine check handler 
15-40 Vol. 3B



MACHINE-CHECK ARCHITECTURE
when recovery is possible.  When recovery is not possible, the MCE handler 
signals the operating system to reset the system. 

• When the EN flag is zero but the VAL and UC flags are one in the 
IA32_MCi_STATUS register, the reported uncorrected error in this bank is not 
enabled.  As uncorrected errors with the EN flag = 0 are not the source of 
machine check exceptions, the MCE handler should log and clear non-enabled 
errors when the S bit is set and should continue searching for enabled errors from 
the other IA32_MCi_STATUS registers.  Note that when IA32_MCG_CAP [24] is 0, 
any uncorrected error condition (VAL =1 and UC=1) including the one with the 
EN flag cleared are fatal and the handler must signal the operating system to 
reset the system.  For the errors that do not generate machine check exceptions, 
the EN flag has no meaning.  See Chapter 19: Table 19-11 to find the errors that 
do not generate machine check exceptions. 

• When the VAL flag is one, the UC flag is one, the EN flag is one and the PCC flag 
is zero in the IA32_MCi_STATUS register, the error in this bank is an uncorrected 
recoverable (UCR) error. The MCE handler needs to examine the S flag and the 
AR flag to find the type of the UCR error for software recovery and determine if 
software error recovery is possible. 

• When both the S and the AR flags are clear in the IA32_MCi_STATUS register for 
the UCR error (VAL=1, UC=1, EN=x and PCC=0), the error in this bank is an 
uncorrected no-action required error (UCNA). UCNA errors are uncorrected but 
do not require any OS recovery action to continue execution.  These errors 
indicate that some data in the system is corrupt, but that data has not been 
consumed and may not be consumed.   If that data is consumed a non-UNCA 
machine check exception will be generated. UCNA errors are signaled in the same 
way as corrected machine check errors and the CMCI and CMC polling handler is 
primarily responsible for handling UCNA errors.  Like corrected errors, the MCA 
handler can optionally log and clear UCNA errors as long as it can avoid the 
undesired race condition with the CMCI or CMC polling handler.  As UCNA errors 
are not the source of machine check exceptions, the MCA handler should 
continue searching for uncorrected or software recoverable errors in all other MC 
banks. 

• When the S flag in the IA32_MCi_STATUS register is set for the UCR error 
((VAL=1, UC=1, EN=1 and PCC=0), the error in this bank is software recoverable 
and it was signaled through a machine-check exception.  The AR flag in the 
IA32_MCi_STATUS register further clarifies the type of the software recoverable 
errors. 

• When the AR flag in the IA32_MCi_STATUS register is clear for the software 
recoverable error (VAL=1, UC=1, EN=1, PCC=0 and S=1), the error in this bank 
is a software recoverable action optional (SRAO) error. The MCE handler and the 
operating system can analyze the IA32_MCi_STATUS [15:0] to implement MCA 
error code specific optional recovery action, but this recovery action is optional. 
System software can resume the program execution from the instruction pointer 
saved on the stack for the machine check exception when the RIPV flag in the 
IA32_MCG_STATUS register is set. 
Vol. 3B 15-41



MACHINE-CHECK ARCHITECTURE
• When the OVER flag in the IA32_MCi_STATUS register is set for the SRAO error 
(VAL=1, UC=1, EN=1, PCC=0, S=1 and AR=0), the MCE handler cannot take 
recovery action as the information of the SRAO error in the IA32_MCi_STATUS 
register was potentially lost due to the overflow condition.  Since the recovery 
action for SRAO errors is optional, restarting the program execution from the 
instruction pointer saved on the stack for the machine check exception is still 
possible for the overflowed SRAO error if the RIPV flag in the IA32_MCG_STATUS 
is set. 

• When the AR flag in the IA32_MCi_STATUS register is set for the software 
recoverable error (VAL=1, UC=1, EN=1, PCC=0 and S=1), the error in this bank 
is a software recoverable action required (SRAR) error. The MCE handler and the 
operating system must take recovery action in order to continue execution after 
the machine-check exception. The MCA handler and the operating system need 
to analyze the IA32_MCi_STATUS [15:0] to determine the MCA error code 
specific recovery action.  If no recovery action can be performed, the operating 
system must reset the system. 

• When the OVER flag in the IA32_MCi_STATUS register is set for the SRAR error 
(VAL=1, UC=1, EN=1, PCC=0, S=1 and AR=1), the MCE handler cannot take 
recovery action as the information of the SRAR error in the IA32_MCi_STATUS 
register was potentially lost due to the overflow condition. Since the recovery 
action for SRAR errors must be taken, the MCE handler must signal the operating 
system to reset the system. 

• When the MCE handler cannot find any uncorrected (VAL=1, UC=1 and EN=1) or 
any software recoverable errors (VAL=1, UC=1, EN=1, PCC=0 and S=1) in any 
of the IA32_MCi banks of the processors, this is an unexpected condition for the 
MCE handler and the handler should signal the operating system to reset the 
system. 

• Before returning from the machine-check exception handler, software must clear 
the MCIP flag in the IA32_MCG_STATUS register. The MCIP flag is used to detect 
recursion. The machine-check architecture does not support recursion. When the 
processor receives a machine check when MCIP is set, it automatically enters the 
shutdown state.

Example 15-4 gives pseudocode for an MC exception handler that supports recovery 
of UCR.

Example 15-4.  Machine-Check Error Handler Pseudocode Supporting UCR

MACHINE CHECK HANDLER:  (* Called from INT 18 handler *)
NOERROR = TRUE;
ProcessorCount = 0;
IF CPU supports MCA

THEN
RESTARTABILITY = TRUE;
IF (Processor Family = 6 AND DisplayModel ≥ 0EH) OR (Processor Family > 6) 

THEN
MCA_BROADCAST = TRUE;
15-42 Vol. 3B



MACHINE-CHECK ARCHITECTURE
Acquire SpinLock; 
ProcessorCount++;  (* Allowing one logical processor at a time to examine machine check 

registers *)
CALL MCA ERROR PROCESSING; (* returns RESTARTABILITY and NOERROR *)

ELSE 
MCA_BROADCAST = FALSE;
(* Implement a rendezvous mechanism with the other processors if necessary *)
CALL MCA ERROR PROCESSING;

FI;
ELSE (* Pentium(R) processor compatible *)

READ P5_MC_ADDR
READ P5_MC_TYPE;
RESTARTABILITY = FALSE;

FI;

IF NOERROR = TRUE
    THEN

IF NOT (MCG_RIPV = 1 AND MCG_EIPV = 0) 
THEN 

RESTARTABILITY = FALSE;
FI

FI;

IF RESTARTABILITY = FALSE
THEN 

Report RESTARTABILITY to console;
Reset system; 

FI;

IF MCA_BROADCAST = TRUE
THEN

IF ProcessorCount = MAX_PROCESSORS
    AND NOERROR = TRUE

THEN
Report RESTARTABILITY to console;
Reset system;

FI;
Release SpinLock; 
Wait till ProcessorCount = MAX_PROCESSRS on system; 
(* implement a timeout and abort function if necessary *)

FI;
CLEAR MCIP flag in IA32_MCG_STATUS;
RESUME Execution;
(* End of MACHINE CHECK HANDLER*)

MCA ERROR PROCESSING:    (* MCA Error Processing Routine called from MCA Handler *)
IF MCIP flag in IA32_MCG_STATUS = 0

THEN (* MCIP=0 upon MCA is unexpected *)
RESTARTABILITY = FALSE;

FI;
FOR each bank of machine-check registers 
Vol. 3B 15-43



MACHINE-CHECK ARCHITECTURE
DO
CLEAR_MC_BANK = FALSE;
READ IA32_MCi_STATUS;
IF VAL Flag in IA32_MCi_STATUS = 1

THEN
IF UC Flag in IA32_MCi_STATUS = 1

THEN 
IF Bit 24 in IA32_MCG_CAP = 0

THEN (* the processor does not support software error recovery *)
RESTARTABILITY = FALSE;
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI;
(* the processor supports software error recovery *)
IF EN Flag in IA32_MCi_STATUS = 0 AND OVER Flag in IA32_MCi_STATUS=0

THEN (* It is a spurious MCA Log. Log and clear the register *)
CLEAR_MC_BANK = TRUE;
GOTO LOG MCA REGISTER;

FI;
IF PCC Flag in IA32_MCi_STATUS = 1

THEN (* processor context might have been corrupted *)
RESTARTABILITY = FALSE; 

ELSE (* It is a uncorrected recoverable (UCR) error *)
IF S Flag in IA32_MCi_STATUS = 0

THEN 
IF AR Flag in IA32_MCi_STATUS = 0

THEN (* It is a uncorrected no action required (UCNA) error *)
GOTO CONTINUE; (* let CMCI and CMC polling handler to process *)

ELSE
FESTARTABILITY = FALSE; (* S=0, AR=1 is illegal *)

FI
FI; 
IF RESTARTABILITY = FALSE

THEN (* no need to take recovery action if RESTARTABILITY is already false *)
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI;
(* S in IA32_MCi_STATUS = 1 *) 
IF AR Flag in IA32_MCi_STATUS = 1

THEN (* It is a software recoverable and action required (SRAR) error *)
IF OVER Flag in IA32_MCi_STATUS = 1

THEN
RESTARTABILITY = FALSE;
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI
IF MCACOD Value in IA32_MCi_STATUS is recognized
    AND Current Processor is an Affected Processor 

THEN
Implement MCACOD specific recovery action;
CLEAR_MC_BANK = TURE;  

ELSE 
15-44 Vol. 3B



MACHINE-CHECK ARCHITECTURE
RESTARTABILITY = FALSE;
FI;

ELSE (* It is a software recoverable and action optional (SRAO) error *)
IF OVER Flag in IA32_MCi_STATUS = 0 AND
 MCACOD in IA32_MCi_STATUS is recognized

THEN
Implement MCACOD specific recovery action;

FI;
CLEAR_MC_BANK = TRUE;

FI; AR 
FI; PCC
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

ELSE  (* It is a corrected error; continue to the next IA32_MCi_STATUS *) 
GOTO CONTINUE;

FI; UC
FI; VAL 

LOG MCA REGISTER:
SAVE IA32_MCi_STATUS;
If MISCV in IA32_MCi_STATUS 

THEN
SAVE IA32_MCi_MISC;

FI;
IF ADDRV in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_ADDR;

FI;
IF CLEAR_MC_BANK = TRUE

THEN
SET all 0 to IA32_MCi_STATUS;
If MISCV in IA32_MCi_STATUS 

THEN
SET all 0 to IA32_MCi_MISC;

FI;
IF ADDRV in IA32_MCi_STATUS

THEN
SET all 0 to IA32_MCi_ADDR;

FI;
FI;
CONTINUE:

OD;
( *END FOR *)
RETURN;
(* End of MCA ERROR PROCESSING*)

15.10.4.2  Corrected Machine-Check Handler for Error Recovery
When writing a corrected machine check handler, which is invoked as a result of CMCI 
or called from an OS CMC Polling dispatcher, consider the following: 
Vol. 3B 15-45



MACHINE-CHECK ARCHITECTURE
• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the 
error information in the register is valid. If this flag is clear, the registers in that 
bank does not contain valid error information and does not need to be checked.

• The CMCI or CMC polling handler is responsible for logging and clearing corrected 
errors. The UC flag in each IA32_MCi_Status register indicates whether the 
reported error was corrected (UC=0) or not (UC=1). 

• When IA32_MCG_CAP [24] is one, the CMC handler is also responsible for 
logging and clearing uncorrected no-action required (UCNA) errors.  When the 
UC flag is one but the PCC, S, and AR flags are zero in the IA32_MCi_STATUS 
register, the reported error in this bank is an uncorrected no-action required 
(UCNA) error. 

• In addition to corrected errors and UCNA errors, the CMC handler optionally logs 
uncorrected (UC=1 and PCC=1), software recoverable machine check errors 
(UC=1, PCC=0 and S=1), but should avoid clearing those errors from the MC 
banks. Clearing these errors may result in accidentally removing these errors 
before these errors are actually handled and processed by the MCE handler for 
attempted software error recovery.

Example 15-5 gives pseudocode for a CMCI handler with UCR support.

Example 15-5.  Corrected Error Handler Pseudocode with UCR Support

Corrected Error HANDLER:  (* Called from CMCI handler or OS CMC Polling Dispatcher*)
IF CPU supports MCA

THEN
FOR each bank of machine-check registers 

DO
READ IA32_MCi_STATUS;
IF VAL flag in IA32_MCi_STATUS = 1

THEN
IF UC Flag in IA32_MCi_STATUS = 0 (* It is a corrected error *)

THEN 
GOTO LOG CMC ERROR;

ELSE 
IF Bit 24 in IA32_MCG_CAP = 0

THEN
GOTO CONTINUE;

FI;
IF S Flag in IA32_MCi_STATUS = 0 AND AR Flag in IA32_MCi_STATUS = 0

THEN (* It is a uncorrected no action required error *)
GOTO LOG CMC ERROR

FI
IF EN Flag in IA32_MCi_STATUS = 0

THEN (* It is a spurious MCA error *)
GOTO LOG CMC ERROR

FI;
FI;

FI;
GOTO CONTINUE;
15-46 Vol. 3B



MACHINE-CHECK ARCHITECTURE
LOG CMC ERROR: 
SAVE IA32_MCi_STATUS;
If MISCV Flag in IA32_MCi_STATUS 

THEN
SAVE IA32_MCi_MISC;
SET all 0 to IA32_MCi_MISC;

FI;
IF ADDRV Flag in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_ADDR;
SET all 0 to IA32_MCi_ADDR

FI;
SET all 0 to IA32_MCi_STATUS;
CONTINUE:

OD;
( *END FOR *)

FI;
Vol. 3B 15-47



MACHINE-CHECK ARCHITECTURE
15-48 Vol. 3B



CHAPTER 16
INTERPRETING MACHINE-CHECK

ERROR CODES

Encoding of the model-specific and other information fields is different across 
processor families. The differences are documented in the following sections.

16.1 INCREMENTAL DECODING INFORMATION: 
PROCESSOR FAMILY 06H MACHINE ERROR CODES 
FOR MACHINE CHECK

Section 16.1 provides information for interpreting additional model-specific fields for 
external bus errors relating to processor family 06H. The references to processor 
family 06H refers to only IA-32 processors with CPUID signatures listed in Table 
16-1. 

These errors are reported in the IA32_MCi_STATUS MSRs. They are reported archi-
tecturally) as compound errors with a general form of 0000 1PPT RRRR IILL in the 
MCA error code field. See Chapter 15 for information on the interpretation of 
compound error codes. Incremental decoding information is listed in Table 16-2.

Table 16-1.   CPUID DisplayFamily_DisplayModel Signatures for Processor Family 06H
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_09H Intel Pentium M processor

06_7H, 06_08H, 06_0AH, 
06_0BH

Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor 

06_01H Intel Pentium Pro Processor 
Vol. 3B 16-1



INTERPRETING MACHINE-CHECK ERROR CODES
Table 16-2.  Incremental Decoding Information: Processor Family 06H 
Machine Error Codes For Machine Check 

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

0-15

Model specific 
errors

16-18 Reserved Reserved

Model specific 
errors

19-24 Bus queue request 
type

000000 for BQ_DCU_READ_TYPE error

000010 for BQ_IFU_DEMAND_TYPE error

000011 for BQ_IFU_DEMAND_NC_TYPE error

000100 for BQ_DCU_RFO_TYPE error

000101 for BQ_DCU_RFO_LOCK_TYPE error

000110 for BQ_DCU_ITOM_TYPE error

001000 for BQ_DCU_WB_TYPE error

001010 for BQ_DCU_WCEVICT_TYPE error

001011 for BQ_DCU_WCLINE_TYPE error

001100 for BQ_DCU_BTM_TYPE error

001101 for BQ_DCU_INTACK_TYPE error

001110 for BQ_DCU_INVALL2_TYPE error

001111 for BQ_DCU_FLUSHL2_TYPE error

010000 for BQ_DCU_PART_RD_TYPE error

010010 for BQ_DCU_PART_WR_TYPE error

010100 for BQ_DCU_SPEC_CYC_TYPE error

011000 for BQ_DCU_IO_RD_TYPE error

011001 for BQ_DCU_IO_WR_TYPE error

011100 for BQ_DCU_LOCK_RD_TYPE error

011110 for BQ_DCU_SPLOCK_RD_TYPE error

011101 for BQ_DCU_LOCK_WR_TYPE error
16-2 Vol. 3B



INTERPRETING MACHINE-CHECK ERROR CODES
Model specific 
errors

27-25 Bus queue error type 000 for BQ_ERR_HARD_TYPE error

001 for BQ_ERR_DOUBLE_TYPE error

010 for BQ_ERR_AERR2_TYPE error

100 for BQ_ERR_SINGLE_TYPE error

101 for BQ_ERR_AERR1_TYPE error

Model specific 
errors

28 FRC error 1 if FRC error active

29 BERR 1 if BERR is driven

30 Internal BINIT 1 if BINIT driven for this processor

31 Reserved Reserved

Other 
information

32-34 Reserved Reserved

35 External BINIT 1 if BINIT is received from external bus.

36 Response parity error This bit is asserted in IA32_MCi_STATUS if this 
component has received a parity error on the 
RS[2:0]# pins for a response transaction. The 
RS signals are checked by the RSP# external 
pin.

37 Bus BINIT This bit is asserted in IA32_MCi_STATUS if this 
component has received a hard error response 
on a split transaction one access that has 
needed to be split across the 64-bit external 
bus interface into two accesses).

38 Timeout BINIT This bit is asserted in IA32_MCi_STATUS if this 
component has experienced a ROB time-out, 
which indicates that no micro-instruction has 
been retired for a predetermined period of 
time.

A ROB time-out occurs when the 15-bit ROB 
time-out counter carries a 1 out of its high 
order bit. 2 The timer is cleared when a micro-
instruction retires, an exception is detected by 
the core processor, RESET is asserted, or when 
a ROB BINIT occurs.

Table 16-2.  Incremental Decoding Information: Processor Family 06H 
Machine Error Codes For Machine Check  (Contd.)

Type Bit No. Bit Function Bit Description
Vol. 3B 16-3



INTERPRETING MACHINE-CHECK ERROR CODES
The ROB time-out counter is prescaled by the 
8-bit PIC timer which is a divide by 128 of the 
bus clock the bus clock is 1:2, 1:3, 1:4 of the 
core clock). When a carry out of the 8-bit PIC 
timer occurs, the ROB counter counts up by 
one. While this bit is asserted, it cannot be 
overwritten by another error.

39-41 Reserved Reserved

42 Hard error This bit is asserted in IA32_MCi_STATUS if this 
component has initiated a bus transactions 
which has received a hard error response. While 
this bit is asserted, it cannot be overwritten.

43 IERR This bit is asserted in IA32_MCi_STATUS if this 
component has experienced a failure that 
causes the IERR pin to be asserted. While this 
bit is asserted, it cannot be overwritten.

44 AERR This bit is asserted in IA32_MCi_STATUS if this 
component has initiated 2 failing bus 
transactions which have failed due to Address 
Parity Errors AERR asserted). While this bit is 
asserted, it cannot be overwritten.

45 UECC The Uncorrectable ECC error bit is asserted in 
IA32_MCi_STATUS for uncorrected ECC errors. 
While this bit is asserted, the ECC syndrome 
field will not be overwritten.

46 CECC The correctable ECC error bit is asserted in 
IA32_MCi_STATUS for corrected ECC errors.

47-54 ECC syndrome The ECC syndrome field in IA32_MCi_STATUS 
contains the 8-bit ECC syndrome only if the 
error was a correctable/uncorrectable ECC error 
and there wasn't a previous valid ECC error 
syndrome logged in IA32_MCi_STATUS. 

A previous valid ECC error in IA32_MCi_STATUS 
is indicated by IA32_MCi_STATUS.bit45 
uncorrectable error occurred) being asserted. 
After processing an ECC error, machine-check 
handling software should clear 
IA32_MCi_STATUS.bit45 so that future ECC 
error syndromes can be logged.

Table 16-2.  Incremental Decoding Information: Processor Family 06H 
Machine Error Codes For Machine Check  (Contd.)

Type Bit No. Bit Function Bit Description
16-4 Vol. 3B



INTERPRETING MACHINE-CHECK ERROR CODES
16.2 INCREMENTAL DECODING INFORMATION: INTEL 
CORE 2 PROCESSOR FAMILY MACHINE ERROR CODES 
FOR MACHINE CHECK

Table 16-4 provides information for interpreting additional model-specific fields for 
external bus errors relating to processor based on Intel Core microarchitecture, 
which implements the P4 bus specification. Table 16-3 lists the CPUID signatures for 
Intel 64 processors that are covered by Table 16-4. These errors are reported in the 
IA32_MCi_STATUS MSRs. They are reported architecturally) as compound errors 
with a general form of 0000 1PPT RRRR IILL in the MCA error code field. See Chapter 
15 for information on the interpretation of compound error codes.

55-56 Reserved Reserved.

Status register 
validity  
indicators1 

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” 

for more information.
2. For processors with a CPUID signature of 06_0EH, a ROB time-out occurs when the 23-bit ROB 

time-out counter carries a 1 out of its high order bit.

Table 16-3.   CPUID DisplayFamily_DisplayModel Signatures for Processors Based on 
Intel Core Microarchitecture

DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_1DH Intel Xeon Processor 7400 series.

06_17H Intel Xeon Processor 5200, 5400 series, Intel Core 2 Quad 
processor Q9650.

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel 
Core 2 Quad, Intel Core 2 Extreme, Intel Core 2 Duo processors, 
Intel Pentium dual-core processors

Table 16-2.  Incremental Decoding Information: Processor Family 06H 
Machine Error Codes For Machine Check  (Contd.)

Type Bit No. Bit Function Bit Description
Vol. 3B 16-5



INTERPRETING MACHINE-CHECK ERROR CODES
Table 16-4.  Incremental Bus Error Codes of Machine Check for Processors Based on 
Intel Core Microarchitecture

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

0-15

Model specific 
errors

16-18 Reserved Reserved

Model specific 
errors

19-24 Bus queue request 
type

‘000001 for BQ_PREF_READ_TYPE error

000000 for BQ_DCU_READ_TYPE error

000010 for BQ_IFU_DEMAND_TYPE error

000011 for BQ_IFU_DEMAND_NC_TYPE error

000100 for BQ_DCU_RFO_TYPE error

000101 for BQ_DCU_RFO_LOCK_TYPE error

000110 for BQ_DCU_ITOM_TYPE error

001000 for BQ_DCU_WB_TYPE error

001010 for BQ_DCU_WCEVICT_TYPE error

001011 for BQ_DCU_WCLINE_TYPE error

001100 for BQ_DCU_BTM_TYPE error

001101 for BQ_DCU_INTACK_TYPE error

001110 for BQ_DCU_INVALL2_TYPE error

001111 for BQ_DCU_FLUSHL2_TYPE error

010000 for BQ_DCU_PART_RD_TYPE error

010010 for BQ_DCU_PART_WR_TYPE error

010100 for BQ_DCU_SPEC_CYC_TYPE error

011000 for BQ_DCU_IO_RD_TYPE error

011001 for BQ_DCU_IO_WR_TYPE error

011100 for BQ_DCU_LOCK_RD_TYPE error

011110 for BQ_DCU_SPLOCK_RD_TYPE error

011101 for BQ_DCU_LOCK_WR_TYPE error

100100 for BQ_L2_WI_RFO_TYPE error

100110 for BQ_L2_WI_ITOM_TYPE error
16-6 Vol. 3B



INTERPRETING MACHINE-CHECK ERROR CODES
Model specific 
errors

27-25 Bus queue error type ‘001 for Address Parity Error

‘010 for Response Hard Error

‘011 for Response Parity Error

Model specific 
errors

28 MCE Driven 1 if MCE is driven

29 MCE Observed 1 if MCE is observed

30 Internal BINIT 1 if BINIT driven for this processor

31 BINIT Observed 1 if BINIT is observed for this processor

Other 
information

32-33 Reserved Reserved

34 PIC and FSB data 
parity

Data Parity detected on either PIC or FSB 
access

35 Reserved Reserved

36 Response parity error This bit is asserted in IA32_MCi_STATUS if this 
component has received a parity error on the 
RS[2:0]# pins for a response transaction. The 
RS signals are checked by the RSP# external 
pin.

37 FSB address parity Address parity error detected:

1 = Address parity error detected
0 = No address parity error

38 Timeout BINIT This bit is asserted in IA32_MCi_STATUS if this 
component has experienced a ROB time-out, 
which indicates that no micro-instruction has 
been retired for a predetermined period of 
time.

A ROB time-out occurs when the 23-bit ROB 
time-out counter carries a 1 out of its high 
order bit. The timer is cleared when a micro-
instruction retires, an exception is detected by 
the core processor, RESET is asserted, or when 
a ROB BINIT occurs.

Table 16-4.  Incremental Bus Error Codes of Machine Check for Processors Based on 
Intel Core Microarchitecture

Type Bit No. Bit Function Bit Description
Vol. 3B 16-7



INTERPRETING MACHINE-CHECK ERROR CODES
The ROB time-out counter is prescaled by the 
8-bit PIC timer which is a divide by 128 of the 
bus clock the bus clock is 1:2, 1:3, 1:4 of the 
core clock). When a carry out of the 8-bit PIC 
timer occurs, the ROB counter counts up by 
one. While this bit is asserted, it cannot be 
overwritten by another error.

39-41 Reserved Reserved

42 Hard error This bit is asserted in IA32_MCi_STATUS if this 
component has initiated a bus transactions 
which has received a hard error response. While 
this bit is asserted, it cannot be overwritten.

43 IERR This bit is asserted in IA32_MCi_STATUS if this 
component has experienced a failure that 
causes the IERR pin to be asserted. While this 
bit is asserted, it cannot be overwritten.

44 Reserved Reserved

45 Reserved Reserved

46 Reserved Reserved

47-54 Reserved Reserved

55-56 Reserved Reserved.

Status register 
validity  
indicators1 

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” 

for more information.

Table 16-4.  Incremental Bus Error Codes of Machine Check for Processors Based on 
Intel Core Microarchitecture

Type Bit No. Bit Function Bit Description
16-8 Vol. 3B



INTERPRETING MACHINE-CHECK ERROR CODES
16.2.1  Model-Specific Machine Check Error Codes for Intel Xeon 
Processor 7400 Series

Intel Xeon processor 7400 series has machine check register banks that generally 
follows the description of Chapter 15 and Section 16.2. Additional error codes specific 
to Intel Xeon processor 7400 series is describe in this section.

MC4_STATUS[63:0] is the main error logging for the processor’s L3 and front side 
bus errors for Intel Xeon processor 7400 series. It supports the L3 Errors, Bus and 
Interconnect Errors Compound Error Codes in the MCA Error Code Field.

16.2.1.1  Processor Machine Check Status Register 
Incremental MCA Error Code Definition

Intel Xeon processor 7400 series use compound MCA Error Codes for logging its Bus 
internal machine check errors, L3 Errors, and Bus/Interconnect Errors. It defines 
incremental Machine Check error types (IA32_MC6_STATUS[15:0]) beyond those 
defined in Chapter 15. Table 16-5 lists these incremental MCA error code types that 
apply to IA32_MC6_STATUS. Error code details are specified in MC6_STATUS 
[31:16] (see Section 16.2.2), the "Model Specific Error Code" field. The information 
in the "Other_Info" field (MC4_STATUS[56:32]) is common to the three processor 
error types and contains a correctable event count and specifies the MC6_MISC 
register format.

Table 16-5.  Incremental MCA Error Code Types for Intel Xeon Processor 7400 

Processor MCA_Error_Code (MC6_STATUS[15:0])

Type Error Code Binary Encoding Meaning

C Internal Error 0000 0100 0000 0000 Internal Error Type Code

B Bus and 
Interconnect

Error

0000 100x 0000 1111 Not used but this encoding is reserved for 
compatibility with other MCA 
implementations

0000 101x 0000 1111 Not used but this encoding is reserved for 
compatibility with other MCA 
implementations

0000 110x 0000 1111 Not used but this encoding is reserved for 
compatibility with other MCA 
implementations

0000 1110 0000 1111 Bus and Interconnection Error Type Code

0000 1111 0000 1111 Not used but this encoding is reserved for 
compatibility with other MCA 
implementations
Vol. 3B 16-9



INTERPRETING MACHINE-CHECK ERROR CODES
The Bold faced binary encodings are the only encodings used by the processor for 
MC4_STATUS[15:0].

16.2.2  Intel Xeon Processor 7400 Model Specific Error Code Field

16.2.2.1  Processor Model Specific Error Code Field
Type B:  Bus and Interconnect Error

Note: The Model Specific Error Code field in MC6_STATUS (bits 31:16)

16.2.2.2  Processor Model Specific Error Code Field
Type C:  Cache Bus Controller Error

Table 16-6.  Type B Bus and Interconnect Error Codes

Bit Num Sub-Field Name Description

16 FSB Request 
Parity

Parity error detected during FSB request phase

19:17 Reserved

20 FSB Hard Fail 
Response

“Hard Failure“ response received for a local transaction

21 FSB Response 
Parity

Parity error on FSB response field detected

22 FSB Data Parity FSB data parity error on inbound data detected

31:23 --- Reserved

Table 16-7.  Type C Cache Bus Controller Error Codes

MC4_STATUS[31:16] (MSCE) Value Error Description

0000_0000_0000_0001   0x0001 Inclusion Error from Core 0

0000_0000_0000_0010   0x0002 Inclusion Error from Core 1

0000_0000_0000_0011   0x0003 Write Exclusive Error from Core 0

0000_0000_0000_0100   0x0004 Write Exclusive Error from Core 1

0000_0000_0000_0101   0x0005 Inclusion Error from FSB

0000_0000_0000_0110   0x0006 SNP Stall Error from FSB

0000_0000_0000_0111   0x0007 Write Stall Error from FSB
16-10 Vol. 3B



INTERPRETING MACHINE-CHECK ERROR CODES
16.3 INCREMENTAL DECODING INFORMATION: 
PROCESSOR FAMILY WITH CPUID 
DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 
06_1AH, MACHINE ERROR CODES FOR MACHINE 
CHECK

Table 16-8 through Table 16-12 provide information for interpreting additional 
model-specific fields for memory controller errors relating to the processor family 
with CPUID DisplayFamily_DisplaySignature 06_1AH, which supports Intel QuickPath 
Interconnect links. Incremental MC error codes related to the Intel QPI links are 
reported in the register banks IA32_MC0 and IA32_MC1, incremental error codes for 
internal machine check is reported in the register bank IA32_MC7, and incremental 
error codes for the memory controller unit is reported in the register banks 
IA32_MC8.

0000_0000_0000_1000   0x0008 FSB Arb Timeout Error

0000_0000_0000_1010   0x000A Inclusion Error from Core 2

0000_0000_0000_1011   0x000B Write Exclusive Error from Core 2

0000_0010_0000_0000   0x0200 Internal Timeout error

0000_0011_0000_0000   0x0300 Internal Timeout Error

0000_0100_0000_0000   0x0400 Intel® Cache Safe Technology Queue Full Error or Disabled-
ways-in-a-set overflow

0000_0101_0000_0000   0x0500 Quiet cycle Timeout Error (correctable)

1100_0000_0000_0010   0xC002 Correctable ECC event on outgoing Core 0 data

1100_0000_0000_0100   0xC004 Correctable ECC event on outgoing Core 1 data

1100_0000_0000_1000   0xC008 Correctable ECC event on outgoing Core 2 data

1110_0000_0000_0010   0xE002 Uncorrectable ECC error on outgoing Core 0 data

1110_0000_0000_0100   0xE004 Uncorrectable ECC error on outgoing Core 1 data

1110_0000_0000_1000   0xE008 Uncorrectable ECC error on outgoing Core 2 data

 — all other encodings — Reserved

Table 16-7.  Type C Cache Bus Controller Error Codes

MC4_STATUS[31:16] (MSCE) Value Error Description
Vol. 3B 16-11



INTERPRETING MACHINE-CHECK ERROR CODES
16.3.1  Intel QPI Machine Check Errors

Table 16-8.  Intel QPI Machine Check Error Codes for IA32_MC0_STATUS and 
IA32_MC1_STATUS

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” 

for more information.

0-15 MCACOD Bus error format: 1PPTRRRRIILL

Model specific 
errors

16 Header Parity if 1, QPI Header had bad parity

17 Data Parity If 1, QPI Data packet had bad parity

18 Retries Exceeded If 1, number of QPI retries was exceeded

19 Received Poison if 1, Received a data packet that was marked as 
poisoned by the sender

21-20 Reserved Reserved

22 Unsupported 
Message

If 1, QPI received a message encoding it does 
not support

23 Unsupported Credit If 1, QPI credit type is not supported.

24 Receive Flit Overrun If 1, Sender sent too many QPI flits to the 
receiver.

25 Received Failed 
Response

If 1, Indicates that sender sent a failed 
response to receiver.

26 Receiver Clock Jitter If 1, clock jitter detected in the internal QPI 
clocking

56-27 Reserved Reserved

Status register 
validity  
indicators1 

57-63
16-12 Vol. 3B



INTERPRETING MACHINE-CHECK ERROR CODES
Table 16-9.  Intel QPI Machine Check Error Codes for IA32_MC0_MISC and 
IA32_MC1_MISC

16.3.2  Internal Machine Check Errors

Table 16-10.  Machine Check Error Codes for IA32_MC7_STATUS

Type Bit No. Bit Function Bit Description

Model specific 
errors1

NOTES:
1. Which of these fields are valid depends on the error type.

7-0 QPI Opcode Message class and opcode from the packet with 
the error

13-8 RTId QPI Request Transaction ID

15-14 Reserved Reserved

18-16 RHNID QPI Requestor/Home Node ID

23-19 Reserved Reserved

24 IIB QPI Interleave/Head Indication Bit

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

0-15 MCACOD

Model specific 
errors

23-16 Reserved Reserved

31-24 Reserved except for 
the following

00h - No Error

03h - Reset firmware did not complete

08h - Received an invalid CMPD

0Ah - Invalid Power Management Request

0Dh - Invalid S-state transition

11h - VID controller does not match POC 
controller selected

1Ah - MSID from POC does not match CPU MSID

56-32 Reserved Reserved

Status register 
validity  
indicators1 

57-63
Vol. 3B 16-13



INTERPRETING MACHINE-CHECK ERROR CODES
16.3.3  Memory Controller Errors

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” 

for more information.

Table 16-11.  Incremental Memory Controller Error Codes of Machine Check for 
IA32_MC8_STATUS

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” 

for more information.

0-15 MCACOD Memory error format: 1MMMCCCC

Model specific 
errors

16 Read ECC error if 1, ECC occurred on a read

17 RAS ECC error If 1, ECC occurred on a scrub

18 Write parity error If 1, bad parity on a write

19 Redundancy loss if 1, Error in half of redundant memory

20 Reserved Reserved

21 Memory range error If 1, Memory access out of range

22 RTID out of range If 1, Internal ID invalid

23 Address parity error If 1, bad address parity 

24 Byte enable parity 
error

If 1, bad enable parity 

Other 
information

37-25 Reserved Reserved

52:38 CORE_ERR_CNT Corrected error count

56-53 Reserved Reserved

Status register 
validity  
indicators1 

57-63
16-14 Vol. 3B



INTERPRETING MACHINE-CHECK ERROR CODES
Table 16-12.  Incremental Memory Controller Error Codes of Machine Check for 
IA32_MC8_MISC

16.4 INCREMENTAL DECODING INFORMATION: 
PROCESSOR FAMILY WITH CPUID 
DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 
06_2DH, MACHINE ERROR CODES FOR MACHINE 
CHECK

Table 16-8 through Table 16-12 provide information for interpreting additional 
model-specific fields for memory controller errors relating to the processor family 
with CPUID DisplayFamily_DisplaySignature 06_2DH, which supports Intel Quick-
Path Interconnect links. Incremental MC error codes related to the Intel QPI links are 
reported in the register banks IA32_MC6 and IA32_MC7, incremental error codes for 
internal machine check error from PCU controller is reported in the register bank 
IA32_MC4, and incremental error codes for the memory controller unit is reported in 
the register banks IA32_MC8-IA32_MC11.

Type Bit No. Bit Function Bit Description

Model specific 
errors1

NOTES:
1. Which of these fields are valid depends on the error type.

7-0 RTId Transaction Tracker ID

15-8 Reserved Reserved

17-16 DIMM DIMM ID which got the error

19-18 Channel Channel ID which got the error

31-20 Reserved Reserved

63-32 Syndrome ECC Syndrome
Vol. 3B 16-15



INTERPRETING MACHINE-CHECK ERROR CODES
16.4.1  Internal Machine Check Errors

Table 16-13.  Machine Check Error Codes for IA32_MC4_STATUS
Type Bit No. Bit Function Bit Description

MCA error 
codes1 

0-15 MCACOD

Model specific 
errors

19:16 Reserved except for 
the following

0000b - No Error

0001b - Non_IMem_Sel

0010b - I_Parity_Error

0011b - Bad_OpCode

0100b - I_Stack_Underflow

0101b - I_Stack_Overflow

0110b - D_Stack_Underflow

0111b - D_Stack_Overflow

1000b - Non-DMem_Sel

1001b - D_Parity_Error

23-20 Reserved Reserved

31-24 Reserved except for 
the following

00h - No Error

0Dh - MC_IMC_FORCE_SR_S3_TIMEOUT

0Eh - MC_CPD_UNCPD_ST_TIMOUT

0Fh - MC_PKGS_SAFE_WP_TIMEOUT

43h - MC_PECI_MAILBOX_QUIESCE_TIMEOUT

5Ch - MC_MORE_THAN_ONE_LT_AGENT

60h - MC_INVALID_PKGS_REQ_PCH

61h - MC_INVALID_PKGS_REQ_QPI

62h - MC_INVALID_PKGS_RES_QPI

63h - MC_INVALID_PKGC_RES_PCH

64h - MC_INVALID_PKG_STATE_CONFIG

70h - MC_WATCHDG_TIMEOUT_PKGC_SLAVE

71h - MC_WATCHDG_TIMEOUT_PKGC_MASTER

70h - MC_WATCHDG_TIMEOUT_PKGS_MASTER

7ah - MC_HA_FAILSTS_CHANGE_DETECTED

81h - 
MC_RECOVERABLE_DIE_THERMAL_TOO_HOT
16-16 Vol. 3B



INTERPRETING MACHINE-CHECK ERROR CODES
56-32 Reserved Reserved

Status register 
validity  
indicators1 

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” 

for more information.

Type Bit No. Bit Function Bit Description
Vol. 3B 16-17



INTERPRETING MACHINE-CHECK ERROR CODES
16.4.2  Intel QPI Machine Check Errors

Table 16-14.  Intel QPI MC Error Codes for IA32_MC6_STATUS and IA32_MC7_STATUS

16.4.3  Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the 
MSRs IA32_MC8_STATUS-IA32_MC11_STATUS. The supported error codes are 
follows the architectural MCACOD definition type 1MMMCCCC (see Chapter 15, “Machine-
Check Architecture,”).

16.5 INCREMENTAL DECODING INFORMATION: 
PROCESSOR FAMILY 0FH MACHINE ERROR CODES 
FOR MACHINE CHECK

Table 16-15 provides information for interpreting additional family 0FH model-
specific fields for external bus errors. These errors are reported in the 
IA32_MCi_STATUS MSRs. They are reported architecturally) as compound errors 
with a general form of 0000 1PPT RRRR IILL in the MCA error code field. See Chapter 
15 for information on the interpretation of compound error codes.

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” 

for more information.

0-15 MCACOD Bus error format: 1PPTRRRRIILL

Model specific 
errors

56-16 Reserved Reserved

Status register 
validity  
indicators1 

57-63
16-18 Vol. 3B



INTERPRETING MACHINE-CHECK ERROR CODES
Table 16-10 provides information on interpreting additional family 0FH, model 
specific fields for cache hierarchy errors. These errors are reported in one of the 

Table 16-15.  Incremental Decoding Information: Processor Family 0FH 
Machine Error Codes For Machine Check 

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” 

for more information.

0-15

Model-specific 
error codes

16 FSB address parity Address parity error detected:

1 = Address parity error detected

0 = No address parity error

17 Response hard fail Hardware failure detected on response

18 Response parity Parity error detected on response

19 PIC and FSB data parity Data Parity detected on either PIC or FSB 
access

20 Processor Signature = 
00000F04H: Invalid PIC 
request

All other processors:

Reserved

Processor Signature = 00000F04H. 
Indicates error due to an invalid PIC request 
access was made to PIC space with WB 
memory):

1 = Invalid PIC request error

0 = No Invalid PIC request error

Reserved

21 Pad state machine The state machine that tracks P and N 
data-strobe relative timing has become 
unsynchronized or a glitch has been 
detected.

22 Pad strobe glitch Data strobe glitch

Type Bit No. Bit Function Bit Description

23 Pad address glitch Address strobe glitch

Other 
Information

24-56 Reserved Reserved

Status register 
validity  
indicators1 

57-63
Vol. 3B 16-19



INTERPRETING MACHINE-CHECK ERROR CODES
IA32_MCi_STATUS MSRs. These errors are reported, architecturally, as compound 
errors with a general form of 0000 0001 RRRR TTLL in the MCA error code field. See 
Chapter 15 for how to interpret the compound error code. 

16.5.1  Model-Specific Machine Check Error Codes for Intel Xeon 
Processor MP 7100 Series

Intel Xeon processor MP 7100 series has 5 register banks which contains information 
related to Machine Check Errors. MCi_STATUS[63:0] refers to all 5 register banks. 
MC0_STATUS[63:0] through MC3_STATUS[63:0] is the same as on previous genera-
tion of Intel Xeon processors within Family 0FH. MC4_STATUS[63:0] is the main error 
logging for the processor’s L3 and front side bus errors. It supports the L3 Errors, Bus 
and Interconnect Errors Compound Error Codes in the MCA Error Code Field.

Table 16-16.  MCi_STATUS Register Bit Definition 

Bit Field Name Bits Description

MCA_Error_Code 15:0 Specifies the machine check architecture defined error code for the 
machine check error condition detected. The machine check 
architecture defined error codes are guaranteed to be the same for 
all Intel Architecture processors that implement the machine check 
architecture. See tables below 

Model_Specific_E
rror_Code

31:16 Specifies the model specific error code that uniquely identifies the 
machine check error condition detected. The model specific error 
codes may differ among Intel Architecture processors for the same 
Machine Check Error condition. See tables below

Other_Info 56:32 The functions of the bits in this field are implementation specific 
and are not part of the machine check architecture. Software that is 
intended to be portable among Intel Architecture processors should 
not rely on the values in this field.

PCC 57 Processor Context Corrupt flag indicates that the state of 
the processor might have been corrupted by the error 
condition detected and that reliable restarting of the processor may 
not be possible. When clear, this flag indicates that the error did not 
affect the processor's state. This bit will always be set for MC errors 
which are not corrected.

ADDRV 58 MC_ADDR register valid flag indicates that the MC_ADDR register 
contains the address where the error occurred. When clear, this flag 
indicates that the MC_ADDR register does not contain the address 
where the error occurred. The MC_ADDR register should not be 
read if the ADDRV bit is clear.
16-20 Vol. 3B



INTERPRETING MACHINE-CHECK ERROR CODES
16.5.1.1  Processor Machine Check Status Register 
MCA Error Code Definition

Intel Xeon processor MP 7100 series use compound MCA Error Codes for logging its 
CBC internal machine check errors, L3 Errors, and Bus/Interconnect Errors. It 
defines additional Machine Check error types (IA32_MC4_STATUS[15:0]) beyond 
those defined in Chapter 15. Table 16-17 lists these model-specific MCA error 
codes. Error code details are specified in MC4_STATUS [31:16] (see Section 
16.5.3), the "Model Specific Error Code" field. The information in the "Other_Info" 
field (MC4_STATUS[56:32]) is common to the three processor error types and 
contains a correctable event count and specifies the MC4_MISC register format.

MISCV 59 MC_MISC register valid flag indicates that the MC_MISC register 
contains additional information regarding the error. When clear, this 
flag indicates that the MC_MISC register does not contain additional 
information regarding the error. MC_MISC should not be read if the 
MISCV bit is not set.  

EN 60 Error enabled flag indicates that reporting of the machine check 
exception for this error was enabled by the associated flag bit of 
the MC_CTL register. Note that correctable errors do not have 
associated enable bits in the MC_CTL register so the EN bit should 
be clear when a correctable error is logged.

UC 61 Error uncorrected flag indicates that the processor did not correct 
the error condition. When clear, this flag indicates that the 
processor was able to correct the event condition.

OVER 62 Machine check overflow flag indicates that a machine check error 
occurred while the results of a previous error were still in the 
register bank (i.e., the VAL bit was already set in the 
MC_STATUS register). The processor sets the OVER flag and 
software is responsible for clearing it.  Enabled errors are written 
over disabled errors, and uncorrected errors are written over 
corrected events. Uncorrected errors are not written over previous 
valid uncorrected errors. 

VAL 63 MC_STATUS register valid flag indicates that the information within 
the MC_STATUS register is valid. When this flag is set, the processor 
follows the rules given for the OVER flag in the MC_STATUS register 
when overwriting previously valid entries. The processor sets the 
VAL flag and software is responsible for clearing it.

Table 16-16.  MCi_STATUS Register Bit Definition  (Contd.)

Bit Field Name Bits Description
Vol. 3B 16-21



INTERPRETING MACHINE-CHECK ERROR CODES
The Bold faced binary encodings are the only encodings used by the processor for 
MC4_STATUS[15:0].

16.5.2  Other_Info Field (all MCA Error Types)

The MC4_STATUS[56:32] field is common to the processor's three MCA error types 
(A, B & C):

Table 16-17.  Incremental MCA Error Code for Intel Xeon Processor MP 7100 

Processor MCA_Error_Code (MC4_STATUS[15:0])

Type Error Code Binary Encoding Meaning

C Internal Error 0000 0100 0000 0000 Internal Error Type Code

A L3 Tag Error 0000 0001 0000 1011 L3 Tag Error Type Code

B Bus and 
Interconnect

Error

0000 100x 0000 1111 Not used but this encoding is reserved for 
compatibility with other MCA 
implementations

0000 101x 0000 1111 Not used but this encoding is reserved for 
compatibility with other MCA 
implementations

0000 110x 0000 1111 Not used but this encoding is reserved for 
compatibility with other MCA 
implementations

0000 1110 0000 1111 Bus and Interconnection Error Type Code

0000 1111 0000 1111 Not used but this encoding is reserved for 
compatibility with other MCA 
implementations
16-22 Vol. 3B



INTERPRETING MACHINE-CHECK ERROR CODES
Table 16-18.  Other Information Field Bit Definition 

Bit Field Name Bits Description

39:32 8-bit 
Correct
able 
Event 
Count

Holds a count of the number of correctable events since cold reset.  
This is a saturating counter; the counter begins at 1 (with the first 
error) and saturates at a count of 255.

41:40 MC4_MI
SC 
format 
type

The value in this field specifies the format of information in the 
MC4_MISC register.  Currently, only two values are defined.  Valid 
only when MISCV is asserted.

43:42 – Reserved

51:44 ECC 
syndro
me

ECC syndrome value for a correctable ECC event when the “Valid 
ECC syndrome” bit is asserted

52 Valid 
ECC 
syndro
me

Set when correctable ECC event supplies the ECC syndrome

54:53 Thresh
old-
Based 
Error 
Status

00: No tracking - No hardware status tracking is provided for the 
structure reporting this event.

01: Green - Status tracking is provided for the structure posting the 
event; the current status is green (below threshold).

10: Yellow - Status tracking is provided for the structure posting the 
event; the current status is yellow (above threshold).

11: Reserved for future use

Valid only if Valid bit (bit 63) is set

Undefined if the UC bit (bit 61) is set

56:55 – Reserved
Vol. 3B 16-23



INTERPRETING MACHINE-CHECK ERROR CODES
16.5.3  Processor Model Specific Error Code Field

16.5.3.1  MCA Error Type A:  L3 Error

Note: The Model Specific Error Code field in MC4_STATUS (bits 31:16)

16.5.3.2  Processor Model Specific Error Code Field
Type B:  Bus and Interconnect Error

Note: The Model Specific Error Code field in MC4_STATUS (bits 31:16)

Table 16-19.  Type A: L3 Error Codes

Bit 
Num

Sub-Field 
Name

Description Legal Value(s)

18:16 L3 Error 
Code

Describes the L3 
error 
encountered

000 - No error

001 - More than one way reporting a correctable 
event

010 - More than one way reporting an uncorrectable 
error

011 - More than one way reporting a tag hit

100 - No error

101 - One way reporting a correctable event 

110 - One way reporting an uncorrectable error

111 - One or more ways reporting a correctable event 
while one or more ways are reporting an 
uncorrectable error 

20:19 – Reserved 00 

31:21 – Fixed pattern 0010_0000_000
16-24 Vol. 3B



INTERPRETING MACHINE-CHECK ERROR CODES
Exactly one of the bits defined in the preceding table will be set for a Bus and Inter-
connect Error.  The Data ECC can be correctable or uncorrectable (the 
MC4_STATUS.UC bit, of course, distinguishes between correctable and uncorrectable 
cases with the Other_Info field possibly providing the ECC Syndrome for correctable 
errors).  All other errors for this processor MCA Error Type are uncorrectable.

Table 16-20.  Type B Bus and Interconnect Error Codes

Bit Num Sub-Field Name Description

16 FSB Request 
Parity

Parity error detected during FSB request phase

17 Core0 Addr Parity Parity error detected on Core 0 request’s address field

18 Core1 Addr Parity Parity error detected on Core 1 request’s address field

19 Reserved

20 FSB Response 
Parity

Parity error on FSB response field detected

21 FSB Data Parity FSB data parity error on inbound data detected

22 Core0 Data Parity Data parity error on data received from Core 0 detected

23 Core1 Data Parity Data parity error on data received from Core 1 detected

24 IDS Parity Detected an Enhanced Defer parity error (phase A or phase B)

25 FSB Inbound Data 
ECC

Data ECC event to error on inbound data (correctable or 
uncorrectable)

26 FSB Data Glitch Pad logic detected a data strobe ‘glitch’ (or sequencing error)

27 FSB Address Glitch Pad logic detected a request strobe ‘glitch’ (or sequencing 
error)

31:28 --- Reserved
Vol. 3B 16-25



INTERPRETING MACHINE-CHECK ERROR CODES
16.5.3.3  Processor Model Specific Error Code Field
Type C:  Cache Bus Controller Error

Table 16-21.  Type C Cache Bus Controller Error Codes 

MC4_STATUS[31:16] (MSCE) Value Error Description

0000_0000_0000_0001   0x0001 Inclusion Error from Core 0

0000_0000_0000_0010   0x0002 Inclusion Error from Core 1

0000_0000_0000_0011   0x0003 Write Exclusive Error from Core 0

0000_0000_0000_0100   0x0004 Write Exclusive Error from Core 1

0000_0000_0000_0101   0x0005 Inclusion Error from FSB

0000_0000_0000_0110   0x0006 SNP Stall Error from FSB

0000_0000_0000_0111   0x0007 Write Stall Error from FSB

0000_0000_0000_1000   0x0008 FSB Arb Timeout Error

0000_0000_0000_1001   0x0009 CBC OOD Queue Underflow/overflow

0000_0001_0000_0000   0x0100 Enhanced Intel SpeedStep Technology TM1-TM2 Error

0000_0010_0000_0000   0x0200 Internal Timeout error

0000_0011_0000_0000   0x0300 Internal Timeout Error

0000_0100_0000_0000   0x0400 Intel® Cache Safe Technology Queue Full Error or Disabled-
ways-in-a-set overflow

1100_0000_0000_0001   0xC001 Correctable ECC event on outgoing FSB data

1100_0000_0000_0010   0xC002 Correctable ECC event on outgoing Core 0 data

1100_0000_0000_0100   0xC004 Correctable ECC event on outgoing Core 1 data

1110_0000_0000_0001   0xE001 Uncorrectable ECC error on outgoing FSB data

1110_0000_0000_0010   0xE002 Uncorrectable ECC error on outgoing Core 0 data

1110_0000_0000_0100   0xE004 Uncorrectable ECC error on outgoing Core 1 data

 — all other encodings — Reserved
16-26 Vol. 3B



INTERPRETING MACHINE-CHECK ERROR CODES
All errors - except for the correctable ECC types - in this table are uncorrectable.  The 
correctable ECC events may supply the ECC syndrome in the Other_Info field of the 
MC4_STATUS MSR..

Table 16-22.  Decoding Family 0FH Machine Check Codes for Cache Hierarchy Errors

Type Bit No. Bit Function Bit Description

MCA error 
codes1

0-15

Model 
specific error 
codes

16-17 Tag Error Code Contains the tag error code for this machine check 
error:

00 = No error detected

01 = Parity error on tag miss with a clean line

10 = Parity error/multiple tag match on tag hit

11 = Parity error/multiple tag match on tag miss

18-19 Data Error Code Contains the data error code for this machine check 
error:

00 = No error detected

01 = Single bit error

10 = Double bit error on a clean line

11 = Double bit error on a modified line

20 L3 Error This bit is set if the machine check error originated 
in the L3 it can be ignored for invalid PIC request 
errors):

1 = L3 error

0 = L2 error

21 Invalid PIC Request Indicates error due to invalid PIC request access 
was made to PIC space with WB memory):

1 = Invalid PIC request error

0 = No invalid PIC request error

22-31 Reserved Reserved

Other 
Information

32-39 8-bit Error Count Holds a count of the number of errors since reset. 
The counter begins at 0 for the first error and 
saturates at a count of 255.

40-56 Reserved Reserved

Status 
register 
validity 
indicators1

57-63
Vol. 3B 16-27



INTERPRETING MACHINE-CHECK ERROR CODES
NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for 

more information.
16-28 Vol. 3B



CHAPTER 17
DEBUGGING, BRANCH PROFILING, AND TIME-STAMP

COUNTER

Intel 64 and IA-32 architectures provide debug facilities for use in debugging code 
and monitoring performance. These facilities are valuable for debugging application 
software, system software, and multitasking operating systems. Debug support is 
accessed using debug registers (DR0 through DR7) and model-specific registers 
(MSRs): 
• Debug registers hold the addresses of memory and I/O locations called break-

points. Breakpoints are user-selected locations in a program, a data-storage area 
in memory, or specific I/O ports. They are set where a programmer or system 
designer wishes to halt execution of a program and examine the state of the 
processor by invoking debugger software. A debug exception (#DB) is generated 
when a memory or I/O access is made to a breakpoint address. 

• MSRs monitor branches, interrupts, and exceptions; they record addresses of the 
last branch, interrupt or exception taken and the last branch taken before an 
interrupt or exception.

17.1 OVERVIEW OF DEBUG SUPPORT FACILITIES
The following processor facilities support debugging and performance monitoring:
• Debug exception (#DB) — Transfers program control to a debug procedure or 

task when a debug event occurs.
• Breakpoint exception (#BP) — See breakpoint instruction (INT 3) below.
• Breakpoint-address registers (DR0 through DR3) — Specifies the 

addresses of up to 4 breakpoints.
• Debug status register (DR6) — Reports the conditions that were in effect 

when a debug or breakpoint exception was generated.
• Debug control register (DR7) — Specifies the forms of memory or I/O access 

that cause breakpoints to be generated.
• T (trap) flag, TSS — Generates a debug exception (#DB) when an attempt is 

made to switch to a task with the T flag set in its TSS.
• RF (resume) flag, EFLAGS register — Suppresses multiple exceptions to the 

same instruction.
• TF (trap) flag, EFLAGS register — Generates a debug exception (#DB) after 

every execution of an instruction.
• Breakpoint instruction (INT 3) — Generates a breakpoint exception (#BP) 

that transfers program control to the debugger procedure or task. This 
Vol. 3B 17-1



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
instruction is an alternative way to set code breakpoints. It is especially useful 
when more than four breakpoints are desired, or when breakpoints are being 
placed in the source code.

• Last branch recording facilities — Store branch records in the last branch 
record (LBR) stack MSRs for the most recent taken branches, interrupts, and/or 
exceptions in MSRs. A branch record consist of a branch-from and a branch-to 
instruction address. Send branch records out on the system bus as branch trace 
messages (BTMs).

These facilities allow a debugger to be called as a separate task or as a procedure in 
the context of the current program or task. The following conditions can be used to 
invoke the debugger:
• Task switch to a specific task.
• Execution of the breakpoint instruction.
• Execution of any instruction.
• Execution of an instruction at a specified address.
• Read or write to a specified memory address/range.
• Write to a specified memory address/range.
• Input from a specified I/O address/range.
• Output to a specified I/O address/range.
• Attempt to change the contents of a debug register.

17.2 DEBUG REGISTERS
Eight debug registers (see Figure 17-1) control the debug operation of the processor. 
These registers can be written to and read using the move to/from debug register 
form of the MOV instruction. A debug register may be the source or destination 
operand for one of these instructions. 

Debug registers are privileged resources; a MOV instruction that accesses these 
registers can only be executed in real-address mode, in SMM or in protected mode at 
a CPL of 0. An attempt to read or write the debug registers from any other privilege 
level generates a general-protection exception (#GP).

The primary function of the debug registers is to set up and monitor from 1 to 4 
breakpoints, numbered 0 though 3. For each breakpoint, the following information 
can be specified:
• The linear address where the breakpoint is to occur.
• The length of the breakpoint location (1, 2, or 4 bytes).
• The operation that must be performed at the address for a debug exception to be 

generated.
• Whether the breakpoint is enabled.
17-2 Vol. 3B



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
• Whether the breakpoint condition was present when the debug exception was 
generated.

The following paragraphs describe the functions of flags and fields in the debug 
registers.

Figure 17-1.  Debug Registers

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

DR7L

Reserved

0

1234569101718252627282930

G
0

L
1

L
2

L
3

G
3

L
E

G
E

G
2

G
1

0 0 G
D

R/W
0

LEN
0

R/W
1

LEN
1

R/W
2

LEN
2

R/W
3

LEN
3

31 16 15 1314 12 11 8 7 0

DR6B
0

123456910

B
1

B
2

B
3

0 1 1  1 1 1  1 1 1B
D

B
S

B
T

31 0

DR5

31 0

DR4

31 0

DR3Breakpoint 3 Linear Address

31 0

DR2Breakpoint 2 Linear Address

31 0

DR1Breakpoint 1 Linear Address

31 0

DR0Breakpoint 0 Linear Address

0 0 1

Reserved (set to 1)
Vol. 3B 17-3



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.2.1 Debug Address Registers (DR0-DR3)
Each of the debug-address registers (DR0 through DR3) holds the 32-bit linear 
address of a breakpoint (see Figure 17-1). Breakpoint comparisons are made before 
physical address translation occurs. The contents of debug register DR7 further spec-
ifies breakpoint conditions. 

17.2.2 Debug Registers DR4 and DR5
Debug registers DR4 and DR5 are reserved when debug extensions are enabled 
(when the DE flag in control register CR4 is set) and attempts to reference the DR4 
and DR5 registers cause invalid-opcode exceptions (#UD). When debug extensions 
are not enabled (when the DE flag is clear), these registers are aliased to debug 
registers DR6 and DR7.

17.2.3 Debug Status Register (DR6)
The debug status register (DR6) reports debug conditions that were sampled at the 
time the last debug exception was generated (see Figure 17-1). Updates to this 
register only occur when an exception is generated. The flags in this register show 
the following information:
• B0 through B3 (breakpoint condition detected) flags (bits 0 through 3) 

— Indicates (when set) that its associated breakpoint condition was met when a 
debug exception was generated. These flags are set if the condition described for 
each breakpoint by the LENn, and R/Wn flags in debug control register DR7 is 
true. They may or may not be set if the breakpoint is not enabled by the Ln or the 
Gn flags in register DR7. Therefore on a #DB, a debug handler should check only 
those B0-B3 bits which correspond to an enabled breakpoint.

• BD (debug register access detected) flag (bit 13) — Indicates that the next 
instruction in the instruction stream accesses one of the debug registers (DR0 
through DR7). This flag is enabled when the GD (general detect) flag in debug 
control register DR7 is set. See Section 17.2.4, “Debug Control Register (DR7),” 
for further explanation of the purpose of this flag. 

• BS (single step) flag (bit 14) — Indicates (when set) that the debug exception 
was triggered by the single-step execution mode (enabled with the TF flag in the 
EFLAGS register). The single-step mode is the highest-priority debug exception. 
When the BS flag is set, any of the other debug status bits also may be set.

• BT (task switch) flag (bit 15) — Indicates (when set) that the debug 
exception resulted from a task switch where the T flag (debug trap flag) in the 
TSS of the target task was set. See Section 7.2.1, “Task-State Segment (TSS),” 
for the format of a TSS. There is no flag in debug control register DR7 to enable 
or disable this exception; the T flag of the TSS is the only enabling flag.

Certain debug exceptions may clear bits 0-3. The remaining contents of the DR6 
register are never cleared by the processor. To avoid confusion in identifying debug 
17-4 Vol. 3B



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
exceptions, debug handlers should clear the register before returning to the inter-
rupted task.

17.2.4 Debug Control Register (DR7)
The debug control register (DR7) enables or disables breakpoints and sets break-
point conditions (see Figure 17-1). The flags and fields in this register control the 
following things:
• L0 through L3 (local breakpoint enable) flags (bits 0, 2, 4, and 6) — 

Enables (when set) the breakpoint condition for the associated breakpoint for the 
current task. When a breakpoint condition is detected and its associated Ln flag 
is set, a debug exception is generated. The processor automatically clears these 
flags on every task switch to avoid unwanted breakpoint conditions in the new 
task.

• G0 through G3 (global breakpoint enable) flags (bits 1, 3, 5, and 7) — 
Enables (when set) the breakpoint condition for the associated breakpoint for all 
tasks. When a breakpoint condition is detected and its associated Gn flag is set, 
a debug exception is generated. The processor does not clear these flags on a 
task switch, allowing a breakpoint to be enabled for all tasks.

• LE and GE (local and global exact breakpoint enable) flags (bits 8, 9) — 
This feature is not supported in the P6 family processors, later IA-32 processors, 
and Intel 64 processors. When set, these flags cause the processor to detect the 
exact instruction that caused a data breakpoint condition. For backward and 
forward compatibility with other Intel processors, we recommend that the LE and 
GE flags be set to 1 if exact breakpoints are required.

• GD (general detect enable) flag (bit 13) — Enables (when set) debug-
register protection, which causes a debug exception to be generated prior to any 
MOV instruction that accesses a debug register. When such a condition is 
detected, the BD flag in debug status register DR6 is set prior to generating the 
exception. This condition is provided to support in-circuit emulators. 
When the emulator needs to access the debug registers, emulator software can 
set the GD flag to prevent interference from the program currently executing on 
the processor.
The processor clears the GD flag upon entering to the debug exception handler, 
to allow the handler access to the debug registers.

• R/W0 through R/W3 (read/write) fields (bits 16, 17, 20, 21, 24, 25, 28, 
and 29) — Specifies the breakpoint condition for the corresponding breakpoint. 
The DE (debug extensions) flag in control register CR4 determines how the bits in 
the R/Wn fields are interpreted. When the DE flag is set, the processor interprets 
bits as follows:

00 — Break on instruction execution only. 
01 — Break on data writes only.
Vol. 3B 17-5



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
10 — Break on I/O reads or writes.
11 — Break on data reads or writes but not instruction fetches.

When the DE flag is clear, the processor interprets the R/Wn bits the same as for 
the Intel386™ and Intel486™ processors, which is as follows:

00 — Break on instruction execution only.
01 — Break on data writes only.
10 — Undefined.
11 — Break on data reads or writes but not instruction fetches.

• LEN0 through LEN3 (Length) fields (bits 18, 19, 22, 23, 26, 27, 30, and 
31) — Specify the size of the memory location at the address specified in the 
corresponding breakpoint address register (DR0 through DR3). These fields are 
interpreted as follows:

00 — 1-byte length.
01 — 2-byte length.
10 — Undefined (or 8 byte length, see note below).
11 — 4-byte length.

If the corresponding RWn field in register DR7 is 00 (instruction execution), then the 
LENn field should also be 00. The effect of using other lengths is undefined. See 
Section 17.2.5, “Breakpoint Field Recognition,” below.

NOTES
For Pentium® 4 and Intel® Xeon® processors with a CPUID signature 
corresponding to family 15 (model 3, 4, and 6), break point 
conditions permit specifying 8-byte length on data read/write with an 
of encoding 10B in the LENn field. 
Encoding 10B is also supported in processors based on Intel Core 
microarchitecture or enhanced Intel Core microarchitecture, the 
respective CPUID signatures corresponding to family 6, model 15, 
and family 6, DisplayModel value 23 (see CPUID instruction in 
Chapter 3, “Instruction Set Reference, A-L” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2A). The 
Encoding 10B is supported in processors based on Intel® Atom™ 
microarchitecture, with CPUID signature of family 6, DisplayModel 
value 28. The encoding 10B is undefined for other processors.

17.2.5 Breakpoint Field Recognition
Breakpoint address registers (debug registers DR0 through DR3) and the LENn fields 
for each breakpoint define a range of sequential byte addresses for a data or I/O 
breakpoint. The LENn fields permit specification of a 1-, 2-, 4-, or 8-byte range, 
beginning at the linear address specified in the corresponding debug register (DRn). 
Two-byte ranges must be aligned on word boundaries; 4-byte ranges must be 
aligned on doubleword boundaries. I/O addresses are zero-extended (from 16 to 32 
17-6 Vol. 3B



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
bits, for comparison with the breakpoint address in the selected debug register). 
These requirements are enforced by the processor; it uses LENn field bits to mask 
the lower address bits in the debug registers. Unaligned data or I/O breakpoint 
addresses do not yield valid results.

A data breakpoint for reading or writing data is triggered if any of the bytes partici-
pating in an access is within the range defined by a breakpoint address register and 
its LENn field. Table 17-1 provides an example setup of debug registers and data 
accesses that would subsequently trap or not trap on the breakpoints.

A data breakpoint for an unaligned operand can be constructed using two break-
points, where each breakpoint is byte-aligned and the two breakpoints together 
cover the operand. The breakpoints generate exceptions only for the operand, not for 
neighboring bytes.

Instruction breakpoint addresses must have a length specification of 1 byte (the 
LENn field is set to 00). Code breakpoints for other operand sizes are undefined. The 
processor recognizes an instruction breakpoint address only when it points to the 
first byte of an instruction. If the instruction has prefixes, the breakpoint address 
must point to the first prefix.

Table 17-1.  Breakpoint Examples

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENn

DR0
DR1
DR2
DR3

R/W0 = 11 (Read/Write)
R/W1 = 01 (Write)
R/W2 = 11 (Read/Write)
R/W3 = 01 (Write)

A0001H
A0002H
B0002H
C0000H

LEN0 = 00 (1 byte)
LEN1 = 00 (1 byte)
LEN2 = 01) (2 bytes)
LEN3 = 11 (4 bytes)

Data Accesses

Operation Address Access Length 
(In Bytes)

Data operations that trap
- Read or write
- Read or write
- Write
- Write
- Read or write
- Read or write
- Read or write
- Write
- Write
- Write

A0001H
A0001H
A0002H
A0002H
B0001H
B0002H
B0002H
C0000H
C0001H
C0003H

1
2
1
2
4
1
2
4
2
1

Vol. 3B 17-7



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.2.6 Debug Registers and Intel® 64 Processors
For Intel 64 architecture processors, debug registers DR0–DR7 are 64 bits. In 16-bit 
or 32-bit modes (protected mode and compatibility mode), writes to a debug register 
fill the upper 32 bits with zeros. Reads from a debug register return the lower 32 bits. 
In 64-bit mode, MOV DRn instructions read or write all 64 bits. Operand-size prefixes 
are ignored. 

In 64-bit mode, the upper 32 bits of DR6 and DR7 are reserved and must be written 
with zeros. Writing 1 to any of the upper 32 bits results in a #GP(0) exception (see 
Figure 17-2). All 64 bits of DR0–DR3 are writable by software. However, MOV DRn 
instructions do not check that addresses written to DR0–DR3 are in the linear-
address limits of the processor implementation (address matching is supported only 
on valid addresses generated by the processor implementation). Break point condi-
tions for 8-byte memory read/writes are supported in all modes.

Data operations that do not trap
- Read or write
- Read
- Read or write
- Read or write
- Read
- Read or write

A0000H
A0002H
A0003H
B0000H
C0000H
C0004H

1
1
4
2
2
4

Table 17-1.  Breakpoint Examples (Contd.)

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENn
17-8 Vol. 3B



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.3 DEBUG EXCEPTIONS
The Intel 64 and IA-32 architectures dedicate two interrupt vectors to handling 
debug exceptions: vector 1 (debug exception, #DB) and vector 3 (breakpoint excep-
tion, #BP). The following sections describe how these exceptions are generated and 
typical exception handler operations.

17.3.1 Debug Exception (#DB)—Interrupt Vector 1
The debug-exception handler is usually a debugger program or part of a larger soft-
ware system. The processor generates a debug exception for any of several condi-
tions. The debugger checks flags in the DR6 and DR7 registers to determine which 
condition caused the exception and which other conditions might apply. Table 17-2 
shows the states of these flags following the generation of each kind of breakpoint 
condition.

Instruction-breakpoint and general-detect condition (see Section 17.3.1.3, “General-
Detect Exception Condition”) result in faults; other debug-exception conditions result 
in traps. The debug exception may report one or both at one time. The following 
sections describe each class of debug exception. 

Figure 17-2.  DR6/DR7 Layout on Processors Supporting Intel 64 Technology

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

DR7L

Reserved

0

1234569101718252627282930

G
0

L
1

L
2

L
3

G
3

L
E

G
E

G
2

G
1

G
D

R/W
0

LEN
0

R/W
1

LEN
1

R/W
2

LEN
2

R/W
3

LEN
3

31 16 15 1314 12 11 8 7 0

DR6B
0

123456910

B
1

B
2

B
3

0 1 1 1 1 1 1 1 1 1B
D

B
S

B
T

63 32

63 32

DR6

DR7

0 0 0 0 1

Reserved (set to 1)
Vol. 3B 17-9



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
See also: Chapter 6, “Interrupt 1—Debug Exception (#DB),” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

17.3.1.1  Instruction-Breakpoint Exception Condition
The processor reports an instruction breakpoint when it attempts to execute an 
instruction at an address specified in a breakpoint-address register (DR0 through 
DR3) that has been set up to detect instruction execution (R/W flag is set to 0). Upon 
reporting the instruction breakpoint, the processor generates a fault-class, debug 
exception (#DB) before it executes the target instruction for the breakpoint. 

Instruction breakpoints are the highest priority debug exceptions. They are serviced 
before any other exceptions detected during the decoding or execution of an instruc-
tion. However, if a code instruction breakpoint is placed on an instruction located 
immediately after a POP SS/MOV SS instruction, the breakpoint may not be trig-
gered. In most situations, POP SS/MOV SS will inhibit such interrupts (see 
“MOV—Move” and “POP—Pop a Value from the Stack” in Chapter 4 of the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 2B).

Because the debug exception for an instruction breakpoint is generated before the 
instruction is executed, if the instruction breakpoint is not removed by the exception 
handler; the processor will detect the instruction breakpoint again when the instruc-
tion is restarted and generate another debug exception. To prevent looping on an 
instruction breakpoint, the Intel 64 and IA-32 architectures provide the RF flag 
(resume flag) in the EFLAGS register (see Section 2.3, “System Flags and Fields in 

Table 17-2.  Debug Exception Conditions

Debug or Breakpoint Condition DR6 Flags 
Tested

DR7 Flags 
Tested

Exception Class

Single-step trap BS = 1 Trap

Instruction breakpoint, at addresses 
defined by DRn and LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 0 Fault

Data write breakpoint, at addresses 
defined by DRn and LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 1 Trap

I/O read or write breakpoint, at 
addresses defined by DRn and LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 2 Trap

Data read or write (but not instruction 
fetches), at addresses defined by DRn 
and LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 3 Trap

General detect fault, resulting from an 
attempt to modify debug registers 
(usually in conjunction with in-circuit 
emulation)

BD = 1 Fault

Task switch BT = 1 Trap
17-10 Vol. 3B



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
the EFLAGS Register,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A). When the RF flag is set, the processor ignores instruction 
breakpoints.

All Intel 64 and IA-32 processors manage the RF flag as follows. The RF Flag is 
cleared at the start of the instruction after the check for code breakpoint, CS limit 
violation and FP exceptions. Task Switches and IRETD/IRETQ instructions transfer 
the RF image from the TSS/stack to the EFLAGS register.

When calling an event handler, Intel 64 and IA-32 processors establish the value of 
the RF flag in the EFLAGS image pushed on the stack:
• For any fault-class exception except a debug exception generated in response to 

an instruction breakpoint, the value pushed for RF is 1.
• For any interrupt arriving after any iteration of a repeated string instruction but 

the last iteration, the value pushed for RF is 1.
• For any trap-class exception generated by any iteration of a repeated string 

instruction but the last iteration, the value pushed for RF is 1.
• For other cases, the value pushed for RF is the value that was in EFLAG.RF at the 

time the event handler was called. This includes:

— Debug exceptions generated in response to instruction breakpoints

— Hardware-generated interrupts arriving between instructions (including 
those arriving after the last iteration of a repeated string instruction)

— Trap-class exceptions generated after an instruction completes (including 
those generated after the last iteration of a repeated string instruction)

— Software-generated interrupts (RF is pushed as 0, since it was cleared at the 
start of the software interrupt)

As noted above, the processor does not set the RF flag prior to calling the debug 
exception handler for debug exceptions resulting from instruction breakpoints. The 
debug exception handler can prevent recurrence of the instruction breakpoint by 
setting the RF flag in the EFLAGS image on the stack. If the RF flag in the EFLAGS 
image is set when the processor returns from the exception handler, it is copied into 
the RF flag in the EFLAGS register by IRETD/IRETQ or a task switch that causes the 
return. The processor then ignores instruction breakpoints for the duration of the 
next instruction. (Note that the POPF, POPFD, and IRET instructions do not transfer 
the RF image into the EFLAGS register.) Setting the RF flag does not prevent other 
types of debug-exception conditions (such as, I/O or data breakpoints) from being 
detected, nor does it prevent non-debug exceptions from being generated.

For the Pentium processor, when an instruction breakpoint coincides with another 
fault-type exception (such as a page fault), the processor may generate one spurious 
debug exception after the second exception has been handled, even though the 
debug exception handler set the RF flag in the EFLAGS image. To prevent a spurious 
exception with Pentium processors, all fault-class exception handlers should set the 
RF flag in the EFLAGS image.
Vol. 3B 17-11



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.3.1.2  Data Memory and I/O Breakpoint Exception Conditions
Data memory and I/O breakpoints are reported when the processor attempts to 
access a memory or I/O address specified in a breakpoint-address register (DR0 
through DR3) that has been set up to detect data or I/O accesses (R/W flag is set to 
1, 2, or 3). The processor generates the exception after it executes the instruction 
that made the access, so these breakpoint condition causes a trap-class exception to 
be generated. 

Because data breakpoints are traps, an instruction that writes memory overwrites 
the original data before the debug exception generated by a data breakpoint is 
generated. If a debugger needs to save the contents of a write breakpoint location, it 
should save the original contents before setting the breakpoint. The handler can 
report the saved value after the breakpoint is triggered. The address in the debug 
registers can be used to locate the new value stored by the instruction that triggered 
the breakpoint.

If a data breakpoint is detected during an iteration of a string instruction executed 
with fast-string operation (see Section 7.3.9.3 of Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1), delivery of the resulting debug exception 
may be delayed until completion of the corresponding group of iterations.

Intel486 and later processors ignore the GE and LE flags in DR7. In Intel386 proces-
sors, exact data breakpoint matching does not occur unless it is enabled by setting 
the LE and/or the GE flags. 

For repeated INS and OUTS instructions that generate an I/O-breakpoint debug 
exception, the processor generates the exception after the completion of the first 
iteration. Repeated INS and OUTS instructions generate a data-breakpoint debug 
exception after the iteration in which the memory address breakpoint location is 
accessed.

17.3.1.3  General-Detect Exception Condition
When the GD flag in DR7 is set, the general-detect debug exception occurs when a 
program attempts to access any of the debug registers (DR0 through DR7) at the 
same time they are being used by another application, such as an emulator or 
debugger. This protection feature guarantees full control over the debug registers 
when required. The debug exception handler can detect this condition by checking 
the state of the BD flag in the DR6 register. The processor generates the exception 
before it executes the MOV instruction that accesses a debug register, which causes 
a fault-class exception to be generated. 

17.3.1.4  Single-Step Exception Condition
The processor generates a single-step debug exception if (while an instruction is 
being executed) it detects that the TF flag in the EFLAGS register is set. The excep-
tion is a trap-class exception, because the exception is generated after the instruc-
tion is executed. The processor will not generate this exception after the instruction 
17-12 Vol. 3B



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
that sets the TF flag. For example, if the POPF instruction is used to set the TF flag, a 
single-step trap does not occur until after the instruction that follows the POPF 
instruction.

The processor clears the TF flag before calling the exception handler. If the TF flag 
was set in a TSS at the time of a task switch, the exception occurs after the first 
instruction is executed in the new task.

The TF flag normally is not cleared by privilege changes inside a task. The INT n and 
INTO instructions, however, do clear this flag. Therefore, software debuggers that 
single-step code must recognize and emulate INT n or INTO instructions rather than 
executing them directly. To maintain protection, the operating system should check 
the CPL after any single-step trap to see if single stepping should continue at the 
current privilege level.

The interrupt priorities guarantee that, if an external interrupt occurs, single step-
ping stops. When both an external interrupt and a single-step interrupt occur 
together, the single-step interrupt is processed first. This operation clears the TF flag. 
After saving the return address or switching tasks, the external interrupt input is 
examined before the first instruction of the single-step handler executes. If the 
external interrupt is still pending, then it is serviced. The external interrupt handler 
does not run in single-step mode. To single step an interrupt handler, single step an 
INT n instruction that calls the interrupt handler.

17.3.1.5  Task-Switch Exception Condition
The processor generates a debug exception after a task switch if the T flag of the new 
task's TSS is set. This exception is generated after program control has passed to the 
new task, and prior to the execution of the first instruction of that task. The exception 
handler can detect this condition by examining the BT flag of the DR6 register.

If entry 1 (#DB) in the IDT is a task gate, the T bit of the corresponding TSS should 
not be set. Failure to observe this rule will put the processor in a loop.

17.3.2 Breakpoint Exception (#BP)—Interrupt Vector 3
The breakpoint exception (interrupt 3) is caused by execution of an INT 3 instruction. 
See Chapter 6, “Interrupt 3—Breakpoint Exception (#BP).” Debuggers use break 
exceptions in the same way that they use the breakpoint registers; that is, as a 
mechanism for suspending program execution to examine registers and memory 
locations. With earlier IA-32 processors, breakpoint exceptions are used extensively 
for setting instruction breakpoints.

With the Intel386 and later IA-32 processors, it is more convenient to set break-
points with the breakpoint-address registers (DR0 through DR3). However, the 
breakpoint exception still is useful for breakpointing debuggers, because a break-
point exception can call a separate exception handler. The breakpoint exception is 
also useful when it is necessary to set more breakpoints than there are debug regis-
Vol. 3B 17-13



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
ters or when breakpoints are being placed in the source code of a program under 
development.

17.4 LAST BRANCH, INTERRUPT, AND EXCEPTION 
RECORDING OVERVIEW

P6 family processors introduced the ability to set breakpoints on taken branches, 
interrupts, and exceptions, and to single-step from one branch to the next. This 
capability has been modified and extended in the Pentium 4, Intel Xeon, Pentium M, 
Intel® Core™ Solo, Intel® Core™ Duo, Intel® Core™2 Duo, Intel® Core™ i7 and 
Intel® Atom™ processors to allow logging of branch trace messages in a branch trace 
store (BTS) buffer in memory. 

See the following sections for processor specific implementation of last branch, inter-
rupt and exception recording:

— Section 17.5, “Last Branch, Interrupt, and Exception Recording (Intel® 
Core™2 Duo and Intel® Atom™ Processor Family)”

— Section 17.6, “Last Branch, Interrupt, and Exception Recording for 
Processors based on Intel® Microarchitecture code name Nehalem”

— Section 17.8, “Last Branch, Interrupt, and Exception Recording (Processors 
based on Intel NetBurst® Microarchitecture)”

— Section 17.9, “Last Branch, Interrupt, and Exception Recording (Intel® Core™ 
Solo and Intel® Core™ Duo Processors)”

— Section 17.10, “Last Branch, Interrupt, and Exception Recording (Pentium M 
Processors)”

— Section 17.11, “Last Branch, Interrupt, and Exception Recording (P6 Family 
Processors)”

The following subsections of Section 17.4 describe common features of profiling 
branches. These features are generally enabled using the IA32_DEBUGCTL MSR 
(older processor may have implemented a subset or model-specific features, see 
definitions of MSR_DEBUGCTLA, MSR_DEBUGCTLB, MSR_DEBUGCTL).

17.4.1 IA32_DEBUGCTL MSR
The IA32_DEBUGCTL MSR provides bit field controls to enable debug trace inter-
rupts, debug trace stores, trace messages enable, single stepping on branches, last 
branch record recording, and to control freezing of LBR stack or performance 
counters on a PMI request. IA32_DEBUGCTL MSR is located at register address 
01D9H. 

See Figure 17-3 for the MSR layout and the bullets below for a description of the 
flags:
17-14 Vol. 3B



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the 
processor records a running trace of the most recent branches, interrupts, and/or 
exceptions taken by the processor (prior to a debug exception being generated) 
in the last branch record (LBR) stack. For more information, see the Section 
17.5.1, “LBR Stack” (Intel® Core™2 Duo and Intel® Atom™ Processor Family) 
and Section 17.6.1, “LBR Stack” (processors based on Intel® Microarchitecture 
code name Nehalem).

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats 
the TF flag in the EFLAGS register as a “single-step on branches” flag rather than 
a “single-step on instructions” flag. This mechanism allows single-stepping the 
processor on taken branches. See Section 17.4.3, “Single-Stepping on 
Branches,” for more information about the BTF flag.

• TR (trace message enable) flag (bit 6) — When set, branch trace messages 
are enabled. When the processor detects a taken branch, interrupt, or exception; 
it sends the branch record out on the system bus as a branch trace message 
(BTM). See Section 17.4.4, “Branch Trace Messages,” for more information about 
the TR flag.

• BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS 
facilities to log BTMs to a memory-resident BTS buffer that is part of the DS save 
area. See Section 17.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bit 8) — When set, the BTS facilities 
generate an interrupt when the BTS buffer is full. When clear, BTMs are logged to 
the BTS buffer in a circular fashion. See Section 17.4.5, “Branch Trace Store (BTS),” 
for a description of this mechanism.

Figure 17-3.  IA32_DEBUGCTL MSR for Processors based 
on Intel Core microarchitecture

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1  0

BTS — Branch trace store

Reserved

910

BTS_OFF_OS — BTS off in OS
BTS_OFF_USR — BTS off in user code
FREEZE_LBRS_ON_PMI
FREEZE_PERFMON_ON_PMI

111214

FREEZE_WHILE_SMM_EN
Vol. 3B 17-15



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
• BTS_OFF_OS (branch trace off in privileged code) flag (bit 9) — When set, 
BTS or BTM is skipped if CPL is 0. See Section 17.8.2.

• BTS_OFF_USR (branch trace off in user code) flag (bit 10) — When set, 
BTS or BTM is skipped if CPL is greater than 0. See Section 17.8.2.

• FREEZE_LBRS_ON_PMI flag (bit 11) — When set, the LBR stack is frozen on a 
hardware PMI request (e.g. when a counter overflows and is configured to trigger 
PMI). 

• FREEZE_PERFMON_ON_PMI flag (bit 12) — When set, a PMI request clears 
each of the “ENABLE” field of MSR_PERF_GLOBAL_CTRL MSR (see Figure 18-3) to 
disable all the counters. 

• FREEZE_WHILE_SMM_EN (bit 14) — If this bit is set, upon the delivery of an 
SMI, the processor will clear all the enable bits of IA32_PERF_GLOBAL_CTRL, 
save a copy of the content of IA32_DEBUGCTL and disable LBR, BTF, TR, and BTS 
fields of IA32_DEBUGCTL before transferring control to the SMI handler. Subse-
quently, the enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved 
copy of IA32_DEBUGCTL prior to SMI delivery will be restored, after the SMI 
handler issues RSM to complete its service. Note that system software must 
check IA32_DEBUGCTL. to determine if the processor supports the 
FREEZE_WHILE_SMM_EN control bit. FREEZE_WHILE_SMM_EN is supported if 
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See 
Section 18.13 for details of detecting the presence of IA32_PERF_CAPABILITIES 
MSR.

17.4.2 Monitoring Branches, Exceptions, and Interrupts
When the LBR flag (bit 0) in the IA32_DEBUGCTL MSR is set, the processor automat-
ically begins recording branch records for taken branches, interrupts, and exceptions 
(except for debug exceptions) in the LBR stack MSRs.

When the processor generates a a debug exception (#DB), it automatically clears the 
LBR flag before executing the exception handler. This action does not clear previously 
stored LBR stack MSRs. The branch record for the last four taken branches, interrupts 
and/or exceptions are retained for analysis.

A debugger can use the linear addresses in the LBR stack to re-set breakpoints in the 
breakpoint address registers (DR0 through DR3). This allows a backward trace from 
the manifestation of a particular bug toward its source.

If the LBR flag is cleared and TR flag in the IA32_DEBUGCTL MSR remains set, the 
processor will continue to update LBR stack MSRs. This is because BTM information 
must be generated from entries in the LBR stack. A #DB does not automatically clear 
the TR flag.
17-16 Vol. 3B



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.4.3 Single-Stepping on Branches
When software sets both the BTF flag (bit 1) in the IA32_DEBUGCTL MSR and the TF 
flag in the EFLAGS register, the processor generates a single-step debug exception 
only after instructions that cause a branch.1 This mechanism allows a debugger to 
single-step on control transfers caused by branches. This “branch single stepping” 
helps isolate a bug to a particular block of code before instruction single-stepping 
further narrows the search. The processor clears the BTF flag when it generates a 
debug exception. The debugger must set the BTF flag before resuming program 
execution to continue single-stepping on branches.

17.4.4 Branch Trace Messages
Setting the TR flag (bit 6) in the IA32_DEBUGCTL MSR enables branch trace 
messages (BTMs). Thereafter, when the processor detects a branch, exception, or 
interrupt, it sends a branch record out on the system bus as a BTM. A debugging 
device that is monitoring the system bus can read these messages and synchronize 
operations with taken branch, interrupt, and exception events. 

When interrupts or exceptions occur in conjunction with a taken branch, additional 
BTMs are sent out on the bus, as described in Section 17.4.2, “Monitoring Branches, 
Exceptions, and Interrupts.”

For P6 processor family, Pentium M processor family, processors based on Intel Core 
microarchitecture, TR and LBR bits can not be set at the same time due to hardware 
limitation. The content of LBR stack is undefined when TR is set. 

For IA processor families based on Intel NetBurst microarchitecture, Intel microarchi-
tecture code name Nehalem and Intel Atom processor family, the processor can 
collect branch records in the LBR stack and at the same time send/store BTMs when 
both the TR and LBR flags are set in the IA32_DEBUGCTL MSR (or the equivalent 
MSR_DEBUGCTLA, MSR_DEBUGCTLB).

The following exception applies:
• BTM may not be observable on Intel Atom processor family processors that do 

not provide an externally visible system bus.

17.4.4.1  Branch Trace Message Visibility
Branch trace message (BTM) visibility is implementation specific and limited to  
systems with a front side bus (FSB). BTMs may not be visible to newer system link 
interfaces or a system bus that deviates from a traditional FSB.

1. Executions of CALL, IRET, and JMP that cause task switches never cause single-step debug 
exceptions (regardless of the value of the BTF flag). A debugger desiring debug exceptions on 
switches to a task should set the T flag (debug trap flag) in the TSS of that task. See Section 
7.2.1, “Task-State Segment (TSS).”
Vol. 3B 17-17



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.4.5 Branch Trace Store (BTS)
A trace of taken branches, interrupts, and exceptions is useful for debugging code by 
providing a method of determining the decision path taken to reach a particular code 
location. The LBR flag (bit 0) of IA32_DEBUGCTL provides a mechanism for capturing 
records of taken branches, interrupts, and exceptions and saving them in the last 
branch record (LBR) stack MSRs, setting the TR flag for sending them out onto the 
system bus as BTMs. The branch trace store (BTS) mechanism provides the addi-
tional capability of saving the branch records in a memory-resident BTS buffer, which 
is part of the DS save area. The BTS buffer can be configured to be circular so that 
the most recent branch records are always available or it can be configured to 
generate an interrupt when the buffer is nearly full so that all the branch records can 
be saved. The BTINT flag (bit 8) can be used to enable the generation of interrupt 
when the BTS buffer is full. See Section 17.4.9.2, “Setting Up the DS Save Area.” for 
additional details.

Setting this flag (BTS) alone can greatly reduce the performance of the processor. 
CPL-qualified branch trace storing mechanism can help mitigate the performance 
impact of sending/logging branch trace messages.

17.4.6 CPL-Qualified Branch Trace Mechanism
CPL-qualified branch trace mechanism is available to a subset of Intel 64 and IA-32 
processors that support the branch trace storing mechanism. The processor supports 
the CPL-qualified branch trace mechanism if CPUID.01H:ECX[bit 4] = 1.

The CPL-qualified branch trace mechanism is described in Section 17.4.9.4. System 
software can selectively specify CPL qualification to not send/store Branch Trace 
Messages associated with a specified privilege level. Two bit fields, BTS_OFF_USR 
(bit 10) and BTS_OFF_OS (bit 9), are provided in the debug control register to 
specify the CPL of BTMs that will not be logged in the BTS buffer or sent on the bus.

17.4.7 Freezing LBR and Performance Counters on PMI 
Many issues may generate a performance monitoring interrupt (PMI); a PMI service 
handler will need to determine cause to handle the situation. Two capabilities that 
allow a PMI service routine to improve branch tracing and performance monitoring 
are:
• Freezing LBRs on PMI (bit 11)— The processor freezes LBRs on a PMI request 

by clearing the LBR bit (bit 0) in IA32_DEBUGCTL. Software must then re-enable 
IA32_DEBUGCTL.[0] to continue monitoring branches. When using this feature, 
software should be careful about writes to IA32_DEBUGCTL to avoid re-enabling 
LBRs by accident if they were just disabled.

• Freezing PMCs on PMI (bit 12) — The processor freezes the performance 
counters on a PMI request by clearing the MSR_PERF_GLOBAL_CTRL MSR (see 
Figure 18-3). The PMCs affected include both general-purpose counters and 
17-18 Vol. 3B



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
fixed-function counters (see Section 18.4.1, “Fixed-function Performance 
Counters”). Software must re-enable counts by writing 1s to the corresponding 
enable bits in MSR_PERF_GLOBAL_CTRL before leaving a PMI service routine to 
continue counter operation.

Freezing LBRs and PMCs on PMIs occur when:
• A performance counter had an overflow and was programmed to signal a PMI in 

case of an overflow.

— For the general-purpose counters; this is done by setting bit 20 of the 
IA32_PERFEVTSELx register.

— For the fixed-function counters; this is done by setting the 3rd bit in the 
corresponding 4-bit control field of the MSR_PERF_FIXED_CTR_CTRL register 
(see Figure 18-1) or IA32_FIXED_CTR_CTRL MSR (see Figure 18-2).

• The PEBS buffer is almost full and reaches the interrupt threshold.
• The BTS buffer is almost full and reaches the interrupt threshold.

17.4.8 LBR Stack 
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported 
across Intel 64 and IA-32 processor families. However, the number of MSRs in the 
LBR stack and the valid range of TOS pointer value can vary between different 
processor families. Table 17-3 lists the LBR stack size and TOS pointer range for 
several processor families according to the CPUID signatures of 
DisplayFamily_DisplayModel encoding (see CPUID instruction in Chapter 3 of Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). 

The last branch recording mechanism tracks not only branch instructions (like JMP, 
Jcc, LOOP and CALL instructions), but also other operations that cause a change in 
the instruction pointer (like external interrupts, traps and faults). The branch 
recording mechanisms generally employs a set of MSRs, referred to as last branch 
record (LBR) stack. The size and exact locations of the LBR stack are generally 

Table 17-3.   LBR Stack Size and TOS Pointer Range 
DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_2AH 16 0 to 15

06_1AH, 06_1EH, 06_1FH, 
06_2EH, 06_25H, 06_2CH

16 0 to 15

06_17H, 06_1DH 4 0 to 3

06_0FH 4 0 to 3

06_1CH 8 0 to 7
Vol. 3B 17-19



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
model-specific (see Chapter 34, “Model-Specific Registers (MSRs)” of Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3C for model-specific MSR 
addresses). 
• Last Branch Record (LBR) Stack — The LBR consists of N pairs of MSRs (N is 

listed in the LBR stack size column of Table 17-3) that store source and 
destination address of recent branches (see Figure 17-3): 

— MSR_LASTBRANCH_0_FROM_IP (address is model specific) through the next 
consecutive (N-1) MSR address store source addresses

— MSR_LASTBRANCH_0_TO_IP (address is model specific ) through the next 
consecutive (N-1) MSR address store destination addresses.

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant M 
bits of the TOS Pointer MSR (MSR_LASTBRANCH_TOS, address is model specific) 
contains an M-bit pointer to the MSR in the LBR stack that contains the most 
recent branch, interrupt, or exception recorded. The valid range of the M-bit POS 
pointer is given in Table 17-3.

17.4.8.1  LBR Stack and Intel® 64 Processors 
LBR MSRs are 64-bits. If IA-32e mode is disabled, only the lower 32-bits of the 
address is recorded. If IA-32e mode is enabled, the processor writes 64-bit values 
into the MSR. 

In 64-bit mode, last branch records store 64-bit addresses; in compatibility mode, 
the upper 32-bits of last branch records are cleared.

Software should query an architectural MSR IA32_PERF_CAPABILITIES[5:0] 
about the format of the address that is stored in the LBR stack. Four formats are 
defined by the following encoding:

— 000000B (32-bit record format) — Stores 32-bit offset in current CS of 
respective source/destination,

Figure 17-4.  64-bit Address Layout of LBR MSR 

63

Source Address

0

063

Destination Address

MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_(N-1)_FROM_IP

MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_(N-1)_TO_IP
17-20 Vol. 3B



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
— 000001B (64-bit LIP record format) — Stores 64-bit linear address of 
respective source/destination,

— 000010B (64-bit EIP record format) — Stores 64-bit offset (effective 
address) of respective source/destination.

— 000011B (64-bit EIP record format) and Flags — Stores 64-bit offset 
(effective address) of respective source/destination. LBR flags are supported 
in the upper bits of ‘FROM’ register in the LBR stack. See LBR stack details 
below for flag support and definition.

Processor’s support for the architectural MSR IA32_PERF_CAPABILITIES is 
provided by CPUID.01H:ECX[PERF_CAPAB_MSR] (bit 15).

17.4.8.2  LBR Stack and IA-32 Processors 
The LBR MSRs in IA-32 processors introduced prior to Intel 64 architecture store the 
32-bit “To Linear Address” and “From Linear Address“ using the high and low half of 
each 64-bit MSR. 

17.4.8.3  Last Exception Records and Intel 64 Architecture
Intel 64 and IA-32 processors also provide MSRs that store the branch record for the 
last branch taken prior to an exception or an interrupt. The location of the last excep-
tion record (LER) MSRs are model specific. The MSRs that store last exception 
records are 64-bits. If IA-32e mode is disabled, only the lower 32-bits of the address 
is recorded. If IA-32e mode is enabled, the processor writes 64-bit values into the 
MSR. In 64-bit mode, last exception records store 64-bit addresses; in compatibility 
mode, the upper 32-bits of last exception records are cleared.

17.4.9 BTS and DS Save Area
The Debug store (DS) feature flag (bit 21), returned by CPUID.1:EDX[21] Indicates 
that the processor provides the debug store (DS) mechanism. This mechanism 
allows BTMs to be stored in a memory-resident BTS buffer. See Section 17.4.5, 
“Branch Trace Store (BTS).” Precise event-based sampling (PEBS, see Section 
18.4.4, “Precise Event Based Sampling (PEBS),”) also uses the DS save area 
provided by debug store mechanism. When CPUID.1:EDX[21] is set, the following 
BTS facilities are available:
• The BTS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates (when 

clear) the availability of the BTS facilities, including the ability to set the BTS and 
BTINT bits in the MSR_DEBUGCTLA MSR.

• The IA32_DS_AREA MSR can be programmed to point to the DS save area. 

The debug store (DS) save area is a software-designated area of memory that is 
used to collect the following two types of information:
Vol. 3B 17-21



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
• Branch records — When the BTS flag in the IA32_DEBUGCTL MSR is set, a 
branch record is stored in the BTS buffer in the DS save area whenever a taken 
branch, interrupt, or exception is detected. 

• PEBS records — When a performance counter is configured for PEBS, a PEBS 
record is stored in the PEBS buffer in the DS save area after the counter overflow 
occurs. This record contains the architectural state of the processor (state of the 
8 general purpose registers, EIP register, and EFLAGS register) at the next 
occurrence of the PEBS event that caused the counter to overflow. When the 
state information has been logged, the counter is automatically reset to a 
preselected value, and event counting begins again. 

NOTE
On processors based on Intel Core microarchitecture and for Intel 
Atom processor family, PEBS is supported only for a subset of the 
performance events. 

NOTES
DS save area and recording mechanism is not available in the SMM. 
The feature is disabled on transition to the SMM mode. Similarly DS 
recording is disabled on the generation of a machine check exception 
and is cleared on processor RESET and INIT. DS recording is available 
in real address mode.
The BTS and PEBS facilities may not be available on all processors. 
The availability of these facilities is indicated by the 
BTS_UNAVAILABLE and PEBS_UNAVAILABLE flags, respectively, in 
the IA32_MISC_ENABLE MSR (see Chapter 34).

The DS save area is divided into three parts (see Figure 17-5): buffer management 
area, branch trace store (BTS) buffer, and PEBS buffer. The buffer management area 
is used to define the location and size of the BTS and PEBS buffers. The processor 
then uses the buffer management area to keep track of the branch and/or PEBS 
records in their respective buffers and to record the performance counter reset value. 
The linear address of the first byte of the DS buffer management area is specified 
with the IA32_DS_AREA MSR.

The fields in the buffer management area are as follows: 
• BTS buffer base — Linear address of the first byte of the BTS buffer. This 

address should point to a natural doubleword boundary.
• BTS index — Linear address of the first byte of the next BTS record to be written 

to. Initially, this address should be the same as the address in the BTS buffer 
base field.

• BTS absolute maximum — Linear address of the next byte past the end of the 
BTS buffer. This address should be a multiple of the BTS record size (12 bytes) 
plus 1.
17-22 Vol. 3B



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
• BTS interrupt threshold — Linear address of the BTS record on which an 
interrupt is to be generated. This address must point to an offset from the BTS 
buffer base that is a multiple of the BTS record size. Also, it must be several 
records short of the BTS absolute maximum address to allow a pending interrupt 
to be handled prior to processor writing the BTS absolute maximum record.

• PEBS buffer base — Linear address of the first byte of the PEBS buffer. This 
address should point to a natural doubleword boundary.

• PEBS index — Linear address of the first byte of the next PEBS record to be 
written to. Initially, this address should be the same as the address in the PEBS 
buffer base field.

Figure 17-5.  DS Save Area

BTS Buffer Base

BTS Index

BTS Absolute 

BTS Interrupt 

PEBS Absolute

PEBS Interrupt

PEBS 

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter Reset

Reserved

0H

4H

8H

CH

10H

14H

18H

1CH

20H

24H

30H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n

BTS Buffer

PEBS Buffer

DS Buffer Management Area

IA32_DS_AREA MSR
Vol. 3B 17-23



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
• PEBS absolute maximum — Linear address of the next byte past the end of the 
PEBS buffer. This address should be a multiple of the PEBS record size (40 bytes) 
plus 1.

• PEBS interrupt threshold — Linear address of the PEBS record on which an 
interrupt is to be generated. This address must point to an offset from the PEBS 
buffer base that is a multiple of the PEBS record size. Also, it must be several 
records short of the PEBS absolute maximum address to allow a pending 
interrupt to be handled prior to processor writing the PEBS absolute maximum 
record.

• PEBS counter reset value — A 40-bit value that the counter is to be reset to 
after state information has collected following counter overflow. This value allows 
state information to be collected after a preset number of events have been 
counted. 

Figures 17-6 shows the structure of a 12-byte branch record in the BTS buffer. The 
fields in each record are as follows:
• Last branch from — Linear address of the instruction from which the branch, 

interrupt, or exception was taken.
• Last branch to — Linear address of the branch target or the first instruction in 

the interrupt or exception service routine.
• Branch predicted — Bit 4 of field indicates whether the branch that was taken 

was predicted (set) or not predicted (clear).

Figures 17-7 shows the structure of the 40-byte PEBS records. Nominally the register 
values are those at the beginning of the instruction that caused the event. However, 
there are cases where the registers may be logged in a partially modified state. The 
linear IP field shows the value in the EIP register translated from an offset into the 
current code segment to a linear address.

Figure 17-6.  32-bit Branch Trace Record Format

Last Branch From

Last Branch To

Branch Predicted

0H

4H

8H

031 4
17-24 Vol. 3B



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.4.9.1  DS Save Area and IA-32e Mode Operation
When IA-32e mode is active (IA32_EFER.LMA = 1), the structure of the DS save area 
is shown in Figure 17-8. The organization of each field in IA-32e mode operation is 
similar to that of non-IA-32e mode operation. However, each field now stores a 
64-bit address. The IA32_DS_AREA MSR holds the 64-bit linear address of the first 
byte of the DS buffer management area. 

Figure 17-7.  PEBS Record Format

EFLAGS 0H

4H

8H

031

Linear IP

10H

18H

14H

1CH

20H

24H

CH

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP
Vol. 3B 17-25



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
When IA-32e mode is active, the structure of a branch trace record is similar to that 
shown in Figure 17-6, but each field is 8 bytes in length. This makes each BTS record 
24 bytes (see Figure 17-9). The structure of a PEBS record is similar to that shown in 
Figure 17-7, but each field is 8 bytes in length and architectural states include 
register R8 through R15. This makes the size of a PEBS record in 64-bit mode 144 
bytes (see Figure 17-10).

Figure 17-8.  IA-32e Mode DS Save Area

BTS Buffer Base

BTS Index

BTS Absolute 

BTS Interrupt 

PEBS Absolute

PEBS Interrupt

PEBS 

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter Reset

Reserved

0H

8H

10H

18H

20H

28H

30H

38H

40H

48H

50H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n

BTS Buffer

PEBS Buffer

DS Buffer Management Area

IA32_DS_AREA MSR
17-26 Vol. 3B



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
Fields in the buffer management area of a DS save area are described in Section 
17.4.9. 

The format of a branch trace record and a PEBS record are the same as the 64-bit 
record formats shown in Figures 17-9 and Figures 17-10, with the exception that the 
branch predicted bit is not supported by Intel Core microarchitecture or Intel Atom 
microarchitecture. The 64-bit record formats for BTS and PEBS apply to DS save area 
for all operating modes. 

Figure 17-9.  64-bit Branch Trace Record Format

Figure 17-10.  64-bit PEBS Record Format

Last Branch From

Last Branch To

Branch Predicted

0H

8H

10H

063 4

RFLAGS 0H

8H

10H

063

RIP

20H

30H

28H

38H

40H

48H

18H

RAX

RBX

RCX

RDX

RSI

RDI

RBP

RSP

R8

...

R15

50H

...

88H
Vol. 3B 17-27



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
The procedures used to program IA32_DEBUG_CTRL MSR to set up a BTS buffer or a 
CPL-qualified BTS are described in Section 17.4.9.3 and Section 17.4.9.4.

Required elements for writing a DS interrupt service routine are largely the same on 
processors that support using DS Save area for BTS or PEBS records. However, on 
processors based on Intel NetBurst® microarchitecture, re-enabling counting 
requires writing to CCCRs. But a DS interrupt service routine on processors based on 
Intel Core or Intel Atom microarchitecture should:
• Re-enable the enable bits in IA32_PERF_GLOBAL_CTRL MSR if it is servicing an 

overflow PMI due to PEBS.
• Clear overflow indications by writing to IA32_PERF_GLOBAL_OVF_CTRL when a 

counting configuration is changed. This includes bit 62 (ClrOvfBuffer) and the 
overflow indication of counters used in either PEBS or general-purpose counting 
(specifically: bits 0 or 1; see Figures 18-3).

17.4.9.2  Setting Up the DS Save Area
To save branch records with the BTS buffer, the DS save area must first be set up in 
memory as described in the following procedure (See Section 18.4.4.1, “Setting up 
the PEBS Buffer,” for instructions for setting up a PEBS buffer, respectively, in the DS 
save area):

1. Create the DS buffer management information area in memory (see Section 
17.4.9, “BTS and DS Save Area,” and Section 17.4.9.1, “DS Save Area and IA-
32e Mode Operation”). Also see the additional notes in this section.

2. Write the base linear address of the DS buffer management area into the 
IA32_DS_AREA MSR. 

3. Set up the performance counter entry in the xAPIC LVT for fixed delivery and 
edge sensitive. See Section 10.5.1, “Local Vector Table.”

4. Establish an interrupt handler in the IDT for the vector associated with the 
performance counter entry in the xAPIC LVT.

5. Write an interrupt service routine to handle the interrupt. See Section 17.4.9.5, 
“Writing the DS Interrupt Service Routine.”

The following restrictions should be applied to the DS save area.
• The three DS save area sections should be allocated from a non-paged pool, and 

marked accessed and dirty. It is the responsibility of the operating system to 
keep the pages that contain the buffer present and to mark them accessed and 
dirty. The implication is that the operating system cannot do “lazy” page-table 
entry propagation for these pages.

• The DS save area can be larger than a page, but the pages must be mapped to 
contiguous linear addresses. The buffer may share a page, so it need not be 
aligned on a 4-KByte boundary. For performance reasons, the base of the buffer 
must be aligned on a doubleword boundary and should be aligned on a cache line 
boundary. 
17-28 Vol. 3B



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
• It is recommended that the buffer size for the BTS buffer and the PEBS buffer be 
an integer multiple of the corresponding record sizes.

• The precise event records buffer should be large enough to hold the number of 
precise event records that can occur while waiting for the interrupt to be 
serviced.

• The DS save area should be in kernel space. It must not be on the same page as 
code, to avoid triggering self-modifying code actions.

• There are no memory type restrictions on the buffers, although it is 
recommended that the buffers be designated as WB memory type for 
performance considerations.

• Either the system must be prevented from entering A20M mode while DS save 
area is active, or bit 20 of all addresses within buffer bounds must be 0.

• Pages that contain buffers must be mapped to the same physical addresses for all 
processes, such that any change to control register CR3 will not change the DS 
addresses. 

• The DS save area is expected to used only on systems with an enabled APIC. The 
LVT Performance Counter entry in the APCI must be initialized to use an interrupt 
gate instead of the trap gate.

17.4.9.3  Setting Up the BTS Buffer
Three flags in the MSR_DEBUGCTLA MSR (see Table 17-4), IA32_DEBUGCTL (see 
Figure 17-3), or MSR_DEBUGCTLB (see Figure 17-16) control the generation of 
branch records and storing of them in the BTS buffer; these are TR, BTS, and BTINT. 
The TR flag enables the generation of BTMs. The BTS flag determines whether the 
BTMs are sent out on the system bus (clear) or stored in the BTS buffer (set). BTMs 
cannot be simultaneously sent to the system bus and logged in the BTS buffer. The 
BTINT flag enables the generation of an interrupt when the BTS buffer is full. When 
this flag is clear, the BTS buffer is a circular buffer.

The following procedure describes how to set up a DS Save area to collect branch 
records in the BTS buffer:

1. Place values in the BTS buffer base, BTS index, BTS absolute maximum, and BTS 
interrupt threshold fields of the DS buffer management area to set up the BTS 
buffer in memory.

Table 17-4.   IA32_DEBUGCTL Flag Encodings 
TR BTS BTINT Description

0 X X Branch trace messages (BTMs) off

1 0 X Generate BTMs

1 1 0 Store BTMs in the BTS buffer, used here as a circular buffer

1 1 1 Store BTMs in the BTS buffer, and generate an interrupt when 
the buffer is nearly full
Vol. 3B 17-29



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
2. Set the TR and BTS flags in the IA32_DEBUGCTL for Intel Core Solo and Intel 
Core Duo processors or later processors (or MSR_DEBUGCTLA MSR for 
processors based on Intel NetBurst Microarchitecture; or MSR_DEBUGCTLB for 
Pentium M processors).

3. Clear the BTINT flag in the corresponding IA32_DEBUGCTL (or MSR_DEBUGCTLA 
MSR; or MSR_DEBUGCTLB) if a circular BTS buffer is desired.

NOTES
If the buffer size is set to less than the minimum allowable value (i.e. 
BTS absolute maximum < 1 + size of BTS record), the results of BTS 
is undefined.
In order to prevent generating an interrupt, when working with 
circular BTS buffer, SW need to set BTS interrupt threshold to a value 
greater than BTS absolute maximum (fields of the DS buffer 
management area). It's not enough to clear the BTINT flag itself only. 

17.4.9.4  Setting Up CPL-Qualified BTS 
If the processor supports CPL-qualified last branch recording mechanism, the gener-
ation of branch records and storing of them in the BTS buffer are determined by: TR, 
BTS, BTS_OFF_OS, BTS_OFF_USR, and BTINT. The encoding of these five bits are 
shown in Table 17-5.

Table 17-5.  CPL-Qualified Branch Trace Store Encodings 
TR BTS BTS_OFF_OS BTS_OFF_USR BTINT Description

0 X X X X Branch trace messages (BTMs) 
off

1 0 X X X Generates BTMs but do not 
store BTMs

1 1 0 0 0 Store all BTMs in the BTS buffer, 
used here as a circular buffer

1 1 1 0 0 Store BTMs with CPL > 0 in the 
BTS buffer

1 1 0 1 0 Store BTMs with CPL = 0 in the 
BTS buffer

1 1 1 1 X Generate BTMs but do not store 
BTMs

1 1 0 0 1 Store all BTMs in the BTS buffer; 
generate an interrupt when the 
buffer is nearly full
17-30 Vol. 3B



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.4.9.5  Writing the DS Interrupt Service Routine
The BTS, non-precise event-based sampling, and PEBS facilities share the same 
interrupt vector and interrupt service routine (called the debug store interrupt 
service routine or DS ISR). To handle BTS, non-precise event-based sampling, and 
PEBS interrupts: separate handler routines must be included in the DS ISR. Use the 
following guidelines when writing a DS ISR to handle BTS, non-precise event-based 
sampling, and/or PEBS interrupts.
• The DS interrupt service routine (ISR) must be part of a kernel driver and operate 

at a current privilege level of 0 to secure the buffer storage area.
• Because the BTS, non-precise event-based sampling, and PEBS facilities share 

the same interrupt vector, the DS ISR must check for all the possible causes of 
interrupts from these facilities and pass control on to the appropriate handler. 

BTS and PEBS buffer overflow would be the sources of the interrupt if the buffer 
index matches/exceeds the interrupt threshold specified. Detection of non-
precise event-based sampling as the source of the interrupt is accomplished by 
checking for counter overflow.

• There must be separate save areas, buffers, and state for each processor in an 
MP system.

• Upon entering the ISR, branch trace messages and PEBS should be disabled to 
prevent race conditions during access to the DS save area. This is done by 
clearing TR flag in the IA32_DEBUGCTL (or MSR_DEBUGCTLA MSR) and by 
clearing the precise event enable flag in the MSR_PEBS_ENABLE MSR. These 
settings should be restored to their original values when exiting the ISR. 

• The processor will not disable the DS save area when the buffer is full and the 
circular mode has not been selected. The current DS setting must be retained 
and restored by the ISR on exit.

• After reading the data in the appropriate buffer, up to but not including the 
current index into the buffer, the ISR must reset the buffer index to the beginning 
of the buffer. Otherwise, everything up to the index will look like new entries upon 
the next invocation of the ISR.

1 1 1 0 1 Store BTMs with CPL > 0 in the 
BTS buffer; generate an 
interrupt when the buffer is 
nearly full

1 1 0 1 1 Store BTMs with CPL = 0 in the 
BTS buffer; generate an 
interrupt when the buffer is 
nearly full

Table 17-5.  CPL-Qualified Branch Trace Store Encodings  (Contd.)
TR BTS BTS_OFF_OS BTS_OFF_USR BTINT Description
Vol. 3B 17-31



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
• The ISR must clear the mask bit in the performance counter LVT entry.
• The ISR must re-enable the counters to count via 

IA32_PERF_GLOBAL_CTRL/IA32_PERF_GLOBAL_OVF_CTRL if it is servicing an 
overflow PMI due to PEBS (or via CCCR's ENABLE bit on processor based on Intel 
NetBurst microarchitecture).

• The Pentium 4 Processor and Intel Xeon Processor mask PMIs upon receiving an 
interrupt. Clear this condition before leaving the interrupt handler.

17.5 LAST BRANCH, INTERRUPT, AND EXCEPTION 
RECORDING (INTEL® CORE™2 DUO AND INTEL® 
ATOM™ PROCESSOR FAMILY)

The Intel Core 2 Duo processor family and Intel Xeon processors based on Intel Core 
microarchitecture or enhanced Intel Core microarchitecture provide last branch 
interrupt and exception recording. The facilities described in this section also apply to 
Intel Atom processor family. These capabilities are similar to those found in Pentium 
4 processors, including support for the following facilities:
• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR 

provide bit fields for software to configure mechanisms related to debug trace, 
branch recording, branch trace store, and performance counter operations. See 
Section 17.4.1 for a description of the flags. See Figure 17-3 for the MSR layout.

• Last branch record (LBR) stack — There are a collection of MSR pairs that 
store the source and destination addresses related to recently executed 
branches. See Section 17.5.1. 

• Monitoring and single-stepping of branches, exceptions, and interrupts

— See Section 17.4.2 and Section 17.4.3. In addition, the ability to freeze the 
LBR stack on a PMI request is available.

— The Intel Atom processor family clears the TR flag when the 
FREEZE_LBRS_ON_PMI flag is set.

• Branch trace messages — See Section 17.4.4. 
• Last exception records — See Section 17.8.3. 
• Branch trace store and CPL-qualified BTS — See Section 17.4.5.
• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 17.4.7. 
• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 17.4.7. 
• FREEZE_WHILE_SMM_EN (bit 14) — FREEZE_WHILE_SMM_EN is supported 

if IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See 
Section 17.4.1.
17-32 Vol. 3B



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.5.1 LBR Stack 
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported 
across Intel Core 2, Intel Xeon and Intel Atom processor families. 

Four pairs of MSRs are supported in the LBR stack for Intel Core 2 and Intel Xeon 
processor families:
• Last Branch Record (LBR) Stack 

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through 
MSR_LASTBRANCH_3_FROM_IP (address 43H) store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through 
MSR_LASTBRANCH_3_TO_IP (address 63H) store destination addresses

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 2 
bits of the TOS Pointer MSR (MSR_LASTBRANCH_TOS, address 1C9H) contains a 
pointer to the MSR in the LBR stack that contains the most recent branch, 
interrupt, or exception recorded.

Eight pairs of MSRs are supported in the LBR stack for Intel Atom processors:
• Last Branch Record (LBR) Stack 

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through 
MSR_LASTBRANCH_7_FROM_IP (address 47H) store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through 
MSR_LASTBRANCH_7_TO_IP (address 67H) store destination addresses

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 3 
bits of the TOS Pointer MSR (MSR_LASTBRANCH_TOS, address 1C9H) contains a 
pointer to the MSR in the LBR stack that contains the most recent branch, 
interrupt, or exception recorded.

For compatibility, the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) dupli-
cate functions of the LastExceptionToIP and LastExceptionFromIP MSRs found in P6 
family processors.

17.6 LAST BRANCH, INTERRUPT, AND EXCEPTION 
RECORDING FOR PROCESSORS BASED ON INTEL® 
MICROARCHITECTURE CODE NAME NEHALEM

The processors based on Intel® microarchitecture code name Nehalem and Intel® 
microarchitecture code name Westmere support last branch interrupt and exception 
recording. These capabilities are similar to those found in Intel Core 2 processors and 
adds additional capabilities:
• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR 

provides bit fields for software to configure mechanisms related to debug trace, 
Vol. 3B 17-33



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
branch recording, branch trace store, and performance counter operations. See 
Section 17.4.1 for a description of the flags. See Figure 17-11 for the MSR layout. 

• Last branch record (LBR) stack — There are 16 MSR pairs that store the 
source and destination addresses related to recently executed branches. See 
Section 17.6.1.

• Monitoring and single-stepping of branches, exceptions, and interrupts 
— See Section 17.4.2 and Section 17.4.3. In addition, the ability to freeze the 
LBR stack on a PMI request is available.

• Branch trace messages — The IA32_DEBUGCTL MSR provides bit fields for 
software to enable each logical processor to generate branch trace messages. 
See Section 17.4.4. However, not all BTM messages are observable using the 
Intel® QPI link.

• Last exception records — See Section 17.8.3. 
• Branch trace store and CPL-qualified BTS — See Section 17.4.6 and Section 

17.4.5.
• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 17.4.7. 
• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 17.4.7. 
• UNCORE_PMI_EN (bit 13) — When set. this logical processor is enabled to 

receive an counter overflow interrupt form the uncore.
• FREEZE_WHILE_SMM_EN (bit 14) — FREEZE_WHILE_SMM_EN is supported 

if IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See 
Section 17.4.1.

Processors based on Intel microarchitecture code name Nehalem provide additional 
capabilities:
• Independent control of uncore PMI — The IA32_DEBUGCTL MSR provides a 

bit field (see Figure 17-11) for software to enable each logical processor to 
receive an uncore counter overflow interrupt.

• LBR filtering — Processors based on Intel microarchitecture code name 
Nehalem support filtering of LBR based on combination of CPL and branch type 
conditions. When LBR filtering is enabled, the LBR stack only captures the subset 
of branches that are specified by MSR_LBR_SELECT.
17-34 Vol. 3B



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.6.1 LBR Stack
Processors based on Intel microarchitecture code name Nehalem provide 16 pairs of 
MSR to record last branch record information. The layout of each MSR pair is shown 
in Table 17-6 and Table 17-7.

Figure 17-11.  IA32_DEBUGCTL MSR for Processors based 
on Intel microarchitecture code name Nehalem

Table 17-6.   IA32_LASTBRANCH_x_FROM_IP 
Bit Field Bit Offset Access Description

Data 47:0 R/O The linear address of the branch instruction itself, 
This is the “branch from“ address

SIGN_EXt 62:48 R/0 Signed extension of bit 47 of this register

MISPRED 63 R/O When set, indicates the branch was predicted; 
otherwise, the branch was mispredicted.

Table 17-7.   IA32_LASTBRANCH_x_TO_IP 
Bit Field Bit Offset Access Description

Data 47:0 R/O The linear address of the target of the branch 
instruction itself, This is the “branch to“ address

SIGN_EXt 63:48 R/0 Signed extension of bit 47 of this register

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1  0

BTS — Branch trace store

Reserved

910

BTS_OFF_OS — BTS off in OS
BTS_OFF_USR — BTS off in user code
FREEZE_LBRS_ON_PMI
FREEZE_PERFMON_ON_PMI

111214

FREEZE_WHILE_SMM_EN
UNCORE_PMI_EN

13
Vol. 3B 17-35



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
Processors based on Intel microarchitecture code name Nehalem have an LBR MSR 
Stack as shown in Table 17-8.

Table 17-8.  LBR Stack Size and TOS Pointer Range

17.6.2 Filtering of Last Branch Records
MSR_LBR_SELECT is cleared to zero at RESET, and LBR filtering is disabled, i.e. all 
branches will be captured. MSR_LBR_SELECT provides bit fields to specify the condi-
tions of subsets of branches that will not be captured in the LBR. The layout of 
MSR_LBR_SELECT is shown in Table 17-9.

17.7 LAST BRANCH, INTERRUPT, AND EXCEPTION 
RECORDING FOR PROCESSORS BASED ON INTEL® 
MICROARCHITECTURE CODE NAME SANDY BRIDGE

Generally, all of the last branch record, interrupt and exception recording facility 
described in Section 17.6, “Last Branch, Interrupt, and Exception Recording for 

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_1AH 16 0 to 15

Table 17-9.   MSR_LBR_SELECT for Intel microarchitecture code name Nehalem
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches occurring in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches occurring in ring 
>0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps 

FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero
17-36 Vol. 3B



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
Processors based on Intel® Microarchitecture code name Nehalem”, apply to proces-
sors based on Intel® microarchitecture code name Sandy Bridge.

One difference of note is that MSR_LBR_SELECT is shared between two logical 
processors in the same core. In Intel microarchitecture code name Sandy Bridge, 
each logical processor has its own MSR_LBR_SELECT. The filtering semantics for 
“Near_ind_jmp“ and “Near_rel_jmp“ has been enhanced, see Table 17-10.

17.8 LAST BRANCH, INTERRUPT, AND EXCEPTION 
RECORDING (PROCESSORS BASED ON INTEL 
NETBURST® MICROARCHITECTURE)

Pentium 4 and Intel Xeon processors based on Intel NetBurst microarchitecture 
provide the following methods for recording taken branches, interrupts and excep-
tions:
• Store branch records in the last branch record (LBR) stack MSRs for the most 

recent taken branches, interrupts, and/or exceptions in MSRs. A branch record 
consist of a branch-from and a branch-to instruction address. 

• Send the branch records out on the system bus as branch trace messages 
(BTMs).

• Log BTMs in a memory-resident branch trace store (BTS) buffer.

Table 17-10.   MSR_LBR_SELECT for Intel microarchitecture code name Sandy Bridge
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches occurring in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches occurring in ring 
>0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps except 
near indirect calls and near returns

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps except 
near relative calls.

FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero
Vol. 3B 17-37



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
To support these functions, the processor provides the following MSRs and related 
facilities:
• MSR_DEBUGCTLA MSR — Enables last branch, interrupt, and exception 

recording; single-stepping on taken branches; branch trace messages (BTMs); 
and branch trace store (BTS). This register is named DebugCtlMSR in the P6 
family processors.

• Debug store (DS) feature flag (CPUID.1:EDX.DS[bit 21]) — Indicates that 
the processor provides the debug store (DS) mechanism, which allows BTMs to 
be stored in a memory-resident BTS buffer.

• CPL-qualified debug store (DS) feature flag (CPUID.1:ECX.DS-CPL[bit 
4]) — Indicates that the processor provides a CPL-qualified debug store (DS) 
mechanism, which allows software to selectively skip sending and storing BTMs, 
according to specified current privilege level settings, into a memory-resident 
BTS buffer.

• IA32_MISC_ENABLE MSR — Indicates that the processor provides the BTS 
facilities.

• Last branch record (LBR) stack — The LBR stack is a circular stack that 
consists of four MSRs (MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3) for 
the Pentium 4 and Intel Xeon processor family [CPUID family 0FH, models 0H-
02H]. The LBR stack consists of 16 MSR pairs (MSR_LASTBRANCH_0_FROM_LIP 
through MSR_LASTBRANCH_15_FROM_LIP and MSR_LASTBRANCH_0_TO_LIP 
through MSR_LASTBRANCH_15_TO_LIP) for the Pentium 4 and Intel Xeon 
processor family [CPUID family 0FH, model 03H].

• Last branch record top-of-stack (TOS) pointer — The TOS Pointer MSR 
contains a 2-bit pointer (0-3) to the MSR in the LBR stack that contains the most 
recent branch, interrupt, or exception recorded for the Pentium 4 and Intel Xeon 
processor family [CPUID family 0FH, models 0H-02H]. This pointer becomes a 
4-bit pointer (0-15) for the Pentium 4 and Intel Xeon processor family [CPUID 
family 0FH, model 03H]. See also: Table 17-11, Figure 17-12, and Section 
17.8.2, “LBR Stack for Processors Based on Intel NetBurst® Microarchitecture.”

• Last exception record — See Section 17.8.3, “Last Exception Records.”

17.8.1 MSR_DEBUGCTLA MSR 
The MSR_DEBUGCTLA MSR enables and disables the various last branch recording 
mechanisms described in the previous section. This register can be written to using 
the WRMSR instruction, when operating at privilege level 0 or when in real-address 
mode. A protected-mode operating system procedure is required to provide user 
access to this register. Figure 17-12 shows the flags in the MSR_DEBUGCTLA MSR. 
The functions of these flags are as follows:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the 

processor records a running trace of the most recent branches, interrupts, and/or 
exceptions taken by the processor (prior to a debug exception being generated) 
in the last branch record (LBR) stack. Each branch, interrupt, or exception is 
17-38 Vol. 3B



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
recorded as a 64-bit branch record. The processor clears this flag whenever a 
debug exception is generated (for example, when an instruction or data 
breakpoint or a single-step trap occurs). See Section 17.8.2, “LBR Stack for 
Processors Based on Intel NetBurst® Microarchitecture.”

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats 
the TF flag in the EFLAGS register as a “single-step on branches” flag rather than 
a “single-step on instructions” flag. This mechanism allows single-stepping the 
processor on taken branches. See Section 17.4.3, “Single-Stepping on 
Branches.”

• TR (trace message enable) flag (bit 2) — When set, branch trace messages 
are enabled. Thereafter, when the processor detects a taken branch, interrupt, or 
exception, it sends the branch record out on the system bus as a branch trace 
message (BTM). See Section 17.4.4, “Branch Trace Messages.”

• BTS (branch trace store) flag (bit 3) — When set, enables the BTS facilities to 
log BTMs to a memory-resident BTS buffer that is part of the DS save area. See 
Section 17.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bits 4) — When set, the BTS facilities 
generate an interrupt when the BTS buffer is full. When clear, BTMs are logged to 
the BTS buffer in a circular fashion. See Section 17.4.5, “Branch Trace Store (BTS).”

• BTS_OFF_OS (disable ring 0 branch trace store) flag (bit 5) — When set, 
enables the BTS facilities to skip sending/logging CPL_0 BTMs to the memory-
resident BTS buffer. See Section 17.8.2, “LBR Stack for Processors Based on Intel 
NetBurst® Microarchitecture.”

• BTS_OFF_USR (disable ring 0 branch trace store) flag (bit 6) — When set, 
enables the BTS facilities to skip sending/logging non-CPL_0 BTMs to the 
memory-resident BTS buffer. See Section 17.8.2, “LBR Stack for Processors 
Based on Intel NetBurst® Microarchitecture.”

Figure 17-12.  MSR_DEBUGCTLA MSR for Pentium 4 and Intel Xeon Processors

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

5 4 3 2 1 0

BTS — Branch trace store

Reserved

67

BTS_OFF_OS — Disable storing CPL_0 BTS
BTS_OFF_USR — Disable storing non-CPL_0 BTS
Vol. 3B 17-39



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
The initial implementation of BTS_OFF_USR and BTS_OFF_OS in 
MSR_DEBUGCTLA is shown in Figure 17-12. The BTS_OFF_USR and 
BTS_OFF_OS fields may be implemented on other model-specific 
debug control register at different locations.

See Chapter 34, “Model-Specific Registers (MSRs),” for a detailed description of each 
of the last branch recording MSRs.

17.8.2 LBR Stack for Processors Based on Intel NetBurst® 
Microarchitecture

The LBR stack is made up of LBR MSRs that are treated by the processor as a circular 
stack. The TOS pointer (MSR_LASTBRANCH_TOS MSR) points to the LBR MSR (or 
LBR MSR pair) that contains the most recent (last) branch record placed on the stack. 
Prior to placing a new branch record on the stack, the TOS is incremented by 1. When 
the TOS pointer reaches it maximum value, it wraps around to 0. See Table 17-11 
and Figure 17-12.

Table 17-11.  LBR MSR Stack Size and TOS Pointer Range for the Pentium® 4 and the 
Intel® Xeon® Processor Family

The registers in the LBR MSR stack and the MSR_LASTBRANCH_TOS MSR are read-
only and can be read using the RDMSR instruction.

Figure 17-13 shows the layout of a branch record in an LBR MSR (or MSR pair). Each 
branch record consists of two linear addresses, which represent the “from” and “to” 
instruction pointers for a branch, interrupt, or exception. The contents of the from 
and to addresses differ, depending on the source of the branch:
• Taken branch — If the record is for a taken branch, the “from” address is the 

address of the branch instruction and the “to” address is the target instruction of 
the branch. 

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

Family 0FH, Models 0H-02H; 
MSRs at locations 1DBH-
1DEH.

4 0 to 3

Family 0FH, Models; MSRs at 
locations 680H-68FH.

16 0 to 15

Family 0FH, Model 03H; 
MSRs at locations 6C0H-
6CFH.

16 0 to 15
17-40 Vol. 3B



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
• Interrupt — If the record is for an interrupt, the “from” address the return 
instruction pointer (RIP) saved for the interrupt and the “to” address is the 
address of the first instruction in the interrupt handler routine. The RIP is the 
linear address of the next instruction to be executed upon returning from the 
interrupt handler.

• Exception — If the record is for an exception, the “from” address is the linear 
address of the instruction that caused the exception to be generated and the “to” 
address is the address of the first instruction in the exception handler routine.

Additional information is saved if an exception or interrupt occurs in conjunction with 
a branch instruction. If a branch instruction generates a trap type exception, two 
branch records are stored in the LBR stack: a branch record for the branch instruction 
followed by a branch record for the exception.

If a branch instruction is immediately followed by an interrupt, a branch record is 
stored in the LBR stack for the branch instruction followed by a record for the 
interrupt. 

17.8.3 Last Exception Records
The Pentium 4, Intel Xeon, Pentium M, Intel® Core™ Solo, Intel® Core™ Duo, Intel® 
Core™2 Duo, Intel® Core™ i7 and Intel® Atom™ processors provide two MSRs (the 
MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate the functions 
of the LastExceptionToIP and LastExceptionFromIP MSRs found in the P6 family 
processors. The MSR_LER_TO_LIP and MSR_LER_FROM_LIP MSRs contain a branch 

Figure 17-13.  LBR MSR Branch Record Layout for the Pentium 4 
and Intel Xeon Processor Family

63

From Linear Address

0

To Linear Address

63

From Linear Address

0

063

To Linear Address

32 - 31

MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3 
CPUID Family 0FH, Models 0H-02H

Reserved

CPUID Family 0FH, Model 03H-04H

Reserved

MSR_LASTBRANCH_0_FROM_LIP through MSR_LASTBRANCH_15_FROM_LIP

32 - 31

32 - 31

MSR_LASTBRANCH_0_TO_LIP through MSR_LASTBRANCH_15_TO_LIP
Vol. 3B 17-41



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
record for the last branch that the processor took prior to an exception or interrupt 
being generated.

17.9 LAST BRANCH, INTERRUPT, AND EXCEPTION 
RECORDING (INTEL® CORE™ SOLO AND INTEL® 
CORE™ DUO PROCESSORS)

Intel Core Solo and Intel Core Duo processors provide last branch interrupt and 
exception recording. This capability is almost identical to that found in Pentium 4 and 
Intel Xeon processors. There are differences in the stack and in some MSR names 
and locations. 

Note the following:
• IA32_DEBUGCTL MSR — Enables debug trace interrupt, debug trace store, 

trace messages enable, performance monitoring breakpoint flags, single 
stepping on branches, and last branch. IA32_DEBUGCTL MSR is located at 
register address 01D9H. 
See Figure 17-14 for the layout and the entries below for a description of the 
flags:

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the 
processor records a running trace of the most recent branches, interrupts, 
and/or exceptions taken by the processor (prior to a debug exception being 
generated) in the last branch record (LBR) stack. For more information, see 
the “Last Branch Record (LBR) Stack” below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor 
treats the TF flag in the EFLAGS register as a “single-step on branches” flag 
rather than a “single-step on instructions” flag. This mechanism allows 
single-stepping the processor on taken branches. See Section 17.4.3, 
“Single-Stepping on Branches,” for more information about the BTF flag.

— TR (trace message enable) flag (bit 6) — When set, branch trace 
messages are enabled. When the processor detects a taken branch, 
interrupt, or exception; it sends the branch record out on the system bus as 
a branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages,” 
for more information about the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS 
facilities to log BTMs to a memory-resident BTS buffer that is part of the DS 
save area. See Section 17.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS 
facilities generate an interrupt when the BTS buffer is full. When clear, BTMs are 
logged to the BTS buffer in a circular fashion. See Section 17.4.5, “Branch Trace 
Store (BTS),” for a description of this mechanism.
17-42 Vol. 3B



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
• Debug store (DS) feature flag (bit 21), returned by the CPUID 
instruction — Indicates that the processor provides the debug store (DS) 
mechanism, which allows BTMs to be stored in a memory-resident BTS buffer. 
See Section 17.4.5, “Branch Trace Store (BTS).”

• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs 
(MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’ 
address, bits 63-32 hold the ‘to’ address (MSR addresses start at 40H). See 
Figure 17-15.

• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR 
contains a 3-bit pointer (bits 2-0) to the MSR in the LBR stack that contains the 
most recent branch, interrupt, or exception recorded. For Intel Core Solo and 
Intel Core Duo processors, this MSR is located at register address 01C9H.

For compatibility, the Intel Core Solo and Intel Core Duo processors provide two 32-
bit MSRs (the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate 
functions of the LastExceptionToIP and LastExceptionFromIP MSRs found in P6 family 
processors.

For details, see Section 17.8, “Last Branch, Interrupt, and Exception Recording 
(Processors based on Intel NetBurst® Microarchitecture),” and Section 34.10, “MSRs 
In Intel® Core™ Solo and Intel® Core™ Duo Processors”

Figure 17-14.  IA32_DEBUGCTL MSR for Intel Core Solo 
and Intel Core Duo Processors

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1  0

BTS — Branch trace store

Reserved
Vol. 3B 17-43



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.10 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (PENTIUM M PROCESSORS)

Like the Pentium 4 and Intel Xeon processor family, Pentium M processors provide 
last branch interrupt and exception recording. The capability operates almost identi-
cally to that found in Pentium 4 and Intel Xeon processors. There are differences in 
the shape of the stack and in some MSR names and locations. Note the following:
• MSR_DEBUGCTLB MSR — Enables debug trace interrupt, debug trace store, 

trace messages enable, performance monitoring breakpoint flags, single 
stepping on branches, and last branch. For Pentium M processors, this MSR is 
located at register address 01D9H. See Figure 17-16 and the entries below for a 
description of the flags.

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the 
processor records a running trace of the most recent branches, interrupts, 
and/or exceptions taken by the processor (prior to a debug exception being 
generated) in the last branch record (LBR) stack. For more information, see 
the “Last Branch Record (LBR) Stack” bullet below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor 
treats the TF flag in the EFLAGS register as a “single-step on branches” flag 
rather than a “single-step on instructions” flag. This mechanism allows 
single-stepping the processor on taken branches. See Section 17.4.3, 
“Single-Stepping on Branches,” for more information about the BTF flag.

— PBi (performance monitoring/breakpoint pins) flags (bits 5-2) — 
When these flags are set, the performance monitoring/breakpoint pins on the 
processor (BP0#, BP1#, BP2#, and BP3#) report breakpoint matches in the 
corresponding breakpoint-address registers (DR0 through DR3). The 
processor asserts then deasserts the corresponding BPi# pin when a 
breakpoint match occurs. When a PBi flag is clear, the performance 
monitoring/breakpoint pins report performance events. Processor execution 
is not affected by reporting performance events.

Figure 17-15.  LBR Branch Record Layout for the Intel Core Solo 
and Intel Core Duo Processor

063

From Linear AddressTo Linear Address

32 - 31

MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7
17-44 Vol. 3B



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
— TR (trace message enable) flag (bit 6) — When set, branch trace 
messages are enabled. When the processor detects a taken branch, 
interrupt, or exception, it sends the branch record out on the system bus as a 
branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages,” 
for more information about the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, enables the BTS 
facilities to log BTMs to a memory-resident BTS buffer that is part of the DS 
save area. See Section 17.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS 
facilities generate an interrupt when the BTS buffer is full. When clear, BTMs are 
logged to the BTS buffer in a circular fashion. See Section 17.4.5, “Branch Trace 
Store (BTS),” for a description of this mechanism.

• Debug store (DS) feature flag (bit 21), returned by the CPUID 
instruction — Indicates that the processor provides the debug store (DS) 
mechanism, which allows BTMs to be stored in a memory-resident BTS buffer. 
See Section 17.4.5, “Branch Trace Store (BTS).”

• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs 
(MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’ 
address, bits 63-32 hold the ‘to’ address. For Pentium M Processors, these pairs 
are located at register addresses 040H-047H. See Figure 17-17.

• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR 
contains a 3-bit pointer (bits 2-0) to the MSR in the LBR stack that contains the 
most recent branch, interrupt, or exception recorded. For Pentium M Processors, 
this MSR is located at register address 01C9H.

Figure 17-16.  MSR_DEBUGCTLB MSR for Pentium M Processors

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1  0

BTS — Branch trace store

PB3/2/1/0 — Performance monitoring breakpoint flags
Vol. 3B 17-45



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
For more detail on these capabilities, see Section 17.8.3, “Last Exception Records,” 
and Section 34.11, “MSRs In the Pentium M Processor.”

17.11 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (P6 FAMILY PROCESSORS)

The P6 family processors provide five MSRs for recording the last branch, interrupt, 
or exception taken by the processor: DEBUGCTLMSR, LastBranchToIP, LastBranch-
FromIP, LastExceptionToIP, and LastExceptionFromIP. These registers can be used to 
collect last branch records, to set breakpoints on branches, interrupts, and excep-
tions, and to single-step from one branch to the next.

See Chapter 34, “Model-Specific Registers (MSRs),” for a detailed description of each 
of the last branch recording MSRs.

17.11.1 DEBUGCTLMSR Register
The version of the DEBUGCTLMSR register found in the P6 family processors enables 
last branch, interrupt, and exception recording; taken branch breakpoints; the 
breakpoint reporting pins; and trace messages. This register can be written to using 
the WRMSR instruction, when operating at privilege level 0 or when in real-address 
mode. A protected-mode operating system procedure is required to provide user 
access to this register. Figure 17-18 shows the flags in the DEBUGCTLMSR register 
for the P6 family processors. The functions of these flags are as follows:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the 

processor records the source and target addresses (in the LastBranchToIP, 
LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP MSRs) for the 
last branch and the last exception or interrupt taken by the processor prior to a 
debug exception being generated. The processor clears this flag whenever a 
debug exception, such as an instruction or data breakpoint or single-step trap 
occurs.

Figure 17-17.  LBR Branch Record Layout for the Pentium M Processor

063

From Linear AddressTo Linear Address

32 - 31

MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7
17-46 Vol. 3B



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
• BTF (single-step on branches) flag (bit 1) — When set, the processor treats 
the TF flag in the EFLAGS register as a “single-step on branches” flag. See 
Section 17.4.3, “Single-Stepping on Branches.”

• PBi (performance monitoring/breakpoint pins) flags (bits 2 through 5) 
— When these flags are set, the performance monitoring/breakpoint pins on the 
processor (BP0#, BP1#, BP2#, and BP3#) report breakpoint matches in the 
corresponding breakpoint-address registers (DR0 through DR3). The processor 
asserts then deasserts the corresponding BPi# pin when a breakpoint match 
occurs. When a PBi flag is clear, the performance monitoring/breakpoint pins 
report performance events. Processor execution is not affected by reporting 
performance events.

• TR (trace message enable) flag (bit 6) — When set, trace messages are 
enabled as described in Section 17.4.4, “Branch Trace Messages.” Setting this 
flag greatly reduces the performance of the processor. When trace messages are 
enabled, the values stored in the LastBranchToIP, LastBranchFromIP, LastExcep-
tionToIP, and LastExceptionFromIP MSRs are undefined.

17.11.2 Last Branch and Last Exception MSRs
The LastBranchToIP and LastBranchFromIP MSRs are 32-bit registers for recording 
the instruction pointers for the last branch, interrupt, or exception that the processor 
took prior to a debug exception being generated. When a branch occurs, the 
processor loads the address of the branch instruction into the LastBranchFromIP MSR 
and loads the target address for the branch into the LastBranchToIP MSR. 

When an interrupt or exception occurs (other than a debug exception), the address 
of the instruction that was interrupted by the exception or interrupt is loaded into the 
LastBranchFromIP MSR and the address of the exception or interrupt handler that is 
called is loaded into the LastBranchToIP MSR.

The LastExceptionToIP and LastExceptionFromIP MSRs (also 32-bit registers) record 
the instruction pointers for the last branch that the processor took prior to an excep-

Figure 17-18.  DEBUGCTLMSR Register (P6 Family Processors)

31

TR — Trace messages enable
PBi — Performance monitoring/breakpoint pins
BTF — Single-step on branches
LBR — Last branch/interrupt/exception

7 6 5 4 3 2 1 0

P
B
2

P
B
1

P
B
0

B
T
F

T
R

L
B
R

P
B
3

Reserved
Vol. 3B 17-47



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
tion or interrupt being generated. When an exception or interrupt occurs, the 
contents of the LastBranchToIP and LastBranchFromIP MSRs are copied into these 
registers before the to and from addresses of the exception or interrupt are recorded 
in the LastBranchToIP and LastBranchFromIP MSRs.

These registers can be read using the RDMSR instruction.

Note that the values stored in the LastBranchToIP, LastBranchFromIP, LastException-
ToIP, and LastExceptionFromIP MSRs are offsets into the current code segment, as 
opposed to linear addresses, which are saved in last branch records for the Pentium 
4 and Intel Xeon processors.

17.11.3 Monitoring Branches, Exceptions, and Interrupts
When the LBR flag in the DEBUGCTLMSR register is set, the processor automatically 
begins recording branches that it takes, exceptions that are generated (except for 
debug exceptions), and interrupts that are serviced. Each time a branch, exception, 
or interrupt occurs, the processor records the to and from instruction pointers in the 
LastBranchToIP and LastBranchFromIP MSRs. In addition, for interrupts and excep-
tions, the processor copies the contents of the LastBranchToIP and LastBranch-
FromIP MSRs into the LastExceptionToIP and LastExceptionFromIP MSRs prior to 
recording the to and from addresses of the interrupt or exception.

When the processor generates a debug exception (#DB), it automatically clears the 
LBR flag before executing the exception handler, but does not touch the last branch 
and last exception MSRs. The addresses for the last branch, interrupt, or exception 
taken are thus retained in the LastBranchToIP and LastBranchFromIP MSRs and the 
addresses of the last branch prior to an interrupt or exception are retained in the 
LastExceptionToIP, and LastExceptionFromIP MSRs.

The debugger can use the last branch, interrupt, and/or exception addresses in 
combination with code-segment selectors retrieved from the stack to reset break-
points in the breakpoint-address registers (DR0 through DR3), allowing a backward 
trace from the manifestation of a particular bug toward its source. Because the 
instruction pointers recorded in the LastBranchToIP, LastBranchFromIP, LastExcepti-
onToIP, and LastExceptionFromIP MSRs are offsets into a code segment, software 
must determine the segment base address of the code segment associated with the 
control transfer to calculate the linear address to be placed in the breakpoint-address 
registers. The segment base address can be determined by reading the segment 
selector for the code segment from the stack and using it to locate the segment 
descriptor for the segment in the GDT or LDT. The segment base address can then be 
read from the segment descriptor.

Before resuming program execution from a debug-exception handler, the handler 
must set the LBR flag again to re-enable last branch and last exception/interrupt 
recording.
17-48 Vol. 3B



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.12 TIME-STAMP COUNTER
The Intel 64 and IA-32 architectures (beginning with the Pentium processor) define a 
time-stamp counter mechanism that can be used to monitor and identify the relative 
time occurrence of processor events. The counter’s architecture includes the 
following components:
• TSC flag — A feature bit that indicates the availability of the time-stamp counter. 

The counter is available in an if the function CPUID.1:EDX.TSC[bit 4] = 1.
• IA32_TIME_STAMP_COUNTER MSR (called TSC MSR in P6 family and 

Pentium processors) — The MSR used as the counter.
• RDTSC instruction — An instruction used to read the time-stamp counter.
• TSD flag — A control register flag is used to enable or disable the time-stamp 

counter (enabled if CR4.TSD[bit 2] = 1).

The time-stamp counter (as implemented in the P6 family, Pentium, Pentium M, 
Pentium 4, Intel Xeon, Intel Core Solo and Intel Core Duo processors and later 
processors) is a 64-bit counter that is set to 0 following a RESET of the processor. 
Following a RESET, the counter increments even when the processor is halted by the 
HLT instruction or the external STPCLK# pin. Note that the assertion of the external 
DPSLP# pin may cause the time-stamp counter to stop.

Processor families increment the time-stamp counter differently:
• For Pentium M processors (family [06H], models [09H, 0DH]); for Pentium 4 

processors, Intel Xeon processors (family [0FH], models [00H, 01H, or 02H]); 
and for P6 family processors: the time-stamp counter increments with every 
internal processor clock cycle. 
The internal processor clock cycle is determined by the current core-clock to bus-
clock ratio. Intel® SpeedStep® technology transitions may also impact the 
processor clock.

• For Pentium 4 processors, Intel Xeon processors (family [0FH], models [03H and 
higher]); for Intel Core Solo and Intel Core Duo processors (family [06H], model 
[0EH]); for the Intel Xeon processor 5100 series and Intel Core 2 Duo processors 
(family [06H], model [0FH]); for Intel Core 2 and Intel Xeon processors (family 
[06H], DisplayModel [17H]); for Intel Atom processors (family [06H], 
DisplayModel [1CH]): the time-stamp counter increments at a constant rate. 
That rate may be set by the maximum core-clock to bus-clock ratio of the 
processor or may be set by the maximum resolved frequency at which the 
processor is booted. The maximum resolved frequency may differ from the 
maximum qualified frequency of the processor, see Section 18.12.5 for more 
detail.
The specific processor configuration determines the behavior. Constant TSC 
behavior ensures that the duration of each clock tick is uniform and supports the 
use of the TSC as a wall clock timer even if the processor core changes frequency. 
This is the architectural behavior moving forward.
Vol. 3B 17-49



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
NOTE
To determine average processor clock frequency, Intel recommends 
the use of EMON logic to count processor core clocks over the period 
of time for which the average is required. See Section 18.12, 
“Counting Clocks,” and Chapter 19, “Performance-
Monitoring Events,” for more information.

The RDTSC instruction reads the time-stamp counter and is guaranteed to return a 
monotonically increasing unique value whenever executed, except for a 64-bit 
counter wraparound. Intel guarantees that the time-stamp counter will not wrap-
around within 10 years after being reset. The period for counter wrap is longer for 
Pentium 4, Intel Xeon, P6 family, and Pentium processors.

Normally, the RDTSC instruction can be executed by programs and procedures 
running at any privilege level and in virtual-8086 mode. The TSD flag allows use of 
this instruction to be restricted to programs and procedures running at privilege level 
0. A secure operating system would set the TSD flag during system initialization to 
disable user access to the time-stamp counter. An operating system that disables 
user access to the time-stamp counter should emulate the instruction through a 
user-accessible programming interface.

The RDTSC instruction is not serializing or ordered with other instructions. It does not 
necessarily wait until all previous instructions have been executed before reading the 
counter. Similarly, subsequent instructions may begin execution before the RDTSC 
instruction operation is performed.

The RDMSR and WRMSR instructions read and write the time-stamp counter, treating 
the time-stamp counter as an ordinary MSR (address 10H). In the Pentium 4, Intel 
Xeon, and P6 family processors, all 64-bits of the time-stamp counter are read using 
RDMSR (just as with RDTSC). When WRMSR is used to write the time-stamp counter 
on processors before family [0FH], models [03H, 04H]: only the low-order 32-bits of 
the time-stamp counter can be written (the high-order 32 bits are cleared to 0). For 
family [0FH], models [03H, 04H, 06H]; for family [06H]], model [0EH, 0FH]; for 
family [06H]], DisplayModel [17H, 1AH, 1CH, 1DH]: all 64 bits are writable.

17.12.1 Invariant TSC
The time stamp counter in newer processors may support an enhancement, referred 
to as invariant TSC. Processor’s support for invariant TSC is indicated by 
CPUID.80000007H:EDX[8]. 

The invariant TSC will run at a constant rate in all ACPI P-, C-. and T-states. This is 
the architectural behavior moving forward. On processors with invariant TSC 
support, the OS may use the TSC for wall clock timer services (instead of ACPI or 
HPET timers). TSC reads are much more efficient and do not incur the overhead 
associated with a ring transition or access to a platform resource.
17-50 Vol. 3B



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.12.2 IA32_TSC_AUX Register and RDTSCP Support
Processors based on Intel microarchitecture code name Nehalem provide an auxiliary 
TSC register, IA32_TSC_AUX that is designed to be used in conjunction with 
IA32_TSC. IA32_TSC_AUX provides a 32-bit field that is initialized by privileged soft-
ware with a signature value (for example, a logical processor ID). 

The primary usage of IA32_TSC_AUX in conjunction with IA32_TSC is to allow soft-
ware to read the 64-bit time stamp in IA32_TSC and signature value in 
IA32_TSC_AUX with the instruction RDTSCP in an atomic operation. RDTSCP returns 
the 64-bit time stamp in EDX:EAX and the 32-bit TSC_AUX signature value in ECX. 
The atomicity of RDTSCP ensures that no context switch can occur between the reads 
of the TSC and TSC_AUX values.

Support for RDTSCP is indicated by CPUID.80000001H:EDX[27]. As with RDTSC 
instruction, non-ring 0 access is controlled by CR4.TSD (Time Stamp Disable flag).

User mode software can use RDTSCP to detect if CPU migration has occurred 
between successive reads of the TSC. It can also be used to adjust for per-CPU differ-
ences in TSC values in a NUMA system.
Vol. 3B 17-51



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17-52 Vol. 3B



CHAPTER 18
PERFORMANCE MONITORING

Intel 64 and IA-32 architectures provide facilities for monitoring performance.

18.1 PERFORMANCE MONITORING OVERVIEW
Performance monitoring was introduced in the Pentium processor with a set of 
model-specific performance-monitoring counter MSRs. These counters permit selec-
tion of processor performance parameters to be monitored and measured. The infor-
mation obtained from these counters can be used for tuning system and compiler 
performance. 

In Intel P6 family of processors, the performance monitoring mechanism was 
enhanced to permit a wider selection of events to be monitored and to allow greater 
control events to be monitored. Next, Pentium 4 and Intel Xeon processors intro-
duced a new performance monitoring mechanism and new set of performance 
events.

The performance monitoring mechanisms and performance events defined for the 
Pentium, P6 family, Pentium 4, and Intel Xeon processors are not architectural. They 
are all model specific (not compatible among processor families). Intel Core Solo and 
Intel Core Duo processors support a set of architectural performance events and a 
set of non-architectural performance events. Processors based on Intel Core 
microarchitecture and Intel® Atom™ microarchitecture support enhanced architec-
tural performance events and non-architectural performance events.

Starting with Intel Core Solo and Intel Core Duo processors, there are two classes of 
performance monitoring capabilities. The first class supports events for monitoring 
performance using counting or sampling usage. These events are non-architectural 
and vary from one processor model to another. They are similar to those available in 
Pentium M processors. These non-architectural performance monitoring events are 
specific to the microarchitecture and may change with enhancements. They are 
discussed in Section 18.3, “Performance Monitoring (Intel® Core™ Solo and Intel® 

Core™ Duo Processors).” Non-architectural events for a given microarchitecture can 
not be enumerated using CPUID; and they are listed in Chapter 19, “Performance-
Monitoring Events.”

The second class of performance monitoring capabilities is referred to as architec-
tural performance monitoring. This class supports the same counting and sampling 
usages, with a smaller set of available events. The visible behavior of architectural 
performance events is consistent across processor implementations. Availability of 
architectural performance monitoring capabilities is enumerated using the 
CPUID.0AH. These events are discussed in Section 18.2.

See also:
Vol. 3B 18-1



PERFORMANCE MONITORING
— Section 18.2, “Architectural Performance Monitoring”

— Section 18.3, “Performance Monitoring (Intel® Core™ Solo and Intel® Core™ 

Duo Processors)”

— Section 18.4, “Performance Monitoring (Processors Based on Intel® Core™ 
Microarchitecture)”

— Section 18.5, “Performance Monitoring (Processors Based on Intel® Atom™ 
Microarchitecture)”

— Section 18.6, “Performance Monitoring for Processors Based on Intel® 

Microarchitecture Code Name Nehalem”

— Section 18.7, “Performance Monitoring for Processors Based on Intel® 

Microarchitecture Code Name Westmere”

— Section 18.8, “Performance Monitoring for Processors Based on Intel® 

Microarchitecture Code Name Sandy Bridge”

— Section 18.9, “Next Generation Intel Core Processor Performance Monitoring 
Facility”

— Section 18.10, “Performance Monitoring (Processors Based on Intel 
NetBurst® Microarchitecture)”

— Section 18.11, “Performance Monitoring and Intel Hyper-Threading 
Technology in Processors Based on Intel NetBurst® Microarchitecture”

— Section 18.14, “Performance Monitoring and Dual-Core Technology”

— Section 18.15, “Performance Monitoring on 64-bit Intel Xeon Processor MP 
with Up to 8-MByte L3 Cache”

— Section 18.17, “Performance Monitoring (P6 Family Processor)”

— Section 18.18, “Performance Monitoring (Pentium Processors)”

18.2 ARCHITECTURAL PERFORMANCE MONITORING
Performance monitoring events are architectural when they behave consistently 
across microarchitectures. Intel Core Solo and Intel Core Duo processors introduced 
architectural performance monitoring. The feature provides a mechanism for soft-
ware to enumerate performance events and provides configuration and counting 
facilities for events.

Architectural performance monitoring does allow for enhancement across processor 
implementations. The CPUID.0AH leaf provides version ID for each enhancement. 
Intel Core Solo and Intel Core Duo processors support base level functionality identi-
fied by version ID of 1. Processors based on Intel Core microarchitecture support, at 
a minimum, the base level functionality of architectural performance monitoring. 
Intel Core 2 Duo processor T 7700 and newer processors based on Intel Core 
18-2 Vol. 3B



PERFORMANCE MONITORING
microarchitecture support both the base level functionality and enhanced architec-
tural performance monitoring identified by version ID of 2.

Intel Atom processor family supports the base level functionality, enhanced architec-
tural performance monitoring identified by version ID of 2 and version ID of 3 
(including two general-purpose performance counters, IA32_PMC0, IA32_PMC1). 
Intel Core i7 processor family supports the base level functionality, enhanced archi-
tectural performance monitoring identified by version ID of 2 and version ID of 3, 
(including four general-purpose performance counters, IA32_PMC0-IA32_PMC3). 

18.2.1 Architectural Performance Monitoring Version 1
Configuring an architectural performance monitoring event involves programming 
performance event select registers. There are a finite number of performance event 
select MSRs (IA32_PERFEVTSELx MSRs). The result of a performance monitoring 
event is reported in a performance monitoring counter (IA32_PMCx MSR). Perfor-
mance monitoring counters are paired with performance monitoring select registers.

Performance monitoring select registers and counters are architectural in the 
following respects:
• Bit field layout of IA32_PERFEVTSELx is consistent across microarchitectures.
• Addresses of IA32_PERFEVTSELx MSRs remain the same across microarchitec-

tures.
• Addresses of IA32_PMC MSRs remain the same across microarchitectures.
• Each logical processor has its own set of IA32_PERFEVTSELx and IA32_PMCx 

MSRs. Configuration facilities and counters are not shared between logical 
processors sharing a processor core.

Architectural performance monitoring provides a CPUID mechanism for enumerating 
the following information:
• Number of performance monitoring counters available in a logical processor 

(each IA32_PERFEVTSELx MSR is paired to the corresponding IA32_PMCx MSR)
• Number of bits supported in each IA32_PMCx 
• Number of architectural performance monitoring events supported in a logical 

processor

Software can use CPUID to discover architectural performance monitoring availability 
(CPUID.0AH). The architectural performance monitoring leaf provides an identifier 
corresponding to the version number of architectural performance monitoring avail-
able in the processor.

The version identifier is retrieved by querying CPUID.0AH:EAX[bits 7:0] (see 
Chapter 3, “Instruction Set Reference, A-L,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2A). If the version identifier is greater than 
zero, architectural performance monitoring capability is supported. Software queries 
the CPUID.0AH for the version identifier first; it then analyzes the value returned in 
CPUID.0AH.EAX, CPUID.0AH.EBX to determine the facilities available.
Vol. 3B 18-3



PERFORMANCE MONITORING
In the initial implementation of architectural performance monitoring; software can 
determine how many IA32_PERFEVTSELx/ IA32_PMCx MSR pairs are supported per 
core, the bit-width of PMC, and the number of architectural performance monitoring 
events available.

18.2.1.1  Architectural Performance Monitoring Version 1 Facilities
Architectural performance monitoring facilities include a set of performance moni-
toring counters and performance event select registers. These MSRs have the 
following properties:
• IA32_PMCx MSRs start at address 0C1H and occupy a contiguous block of MSR 

address space; the number of MSRs per logical processor is reported using 
CPUID.0AH:EAX[15:8].

• IA32_PERFEVTSELx MSRs start at address 186H and occupy a contiguous block 
of MSR address space. Each performance event select register is paired with a 
corresponding performance counter in the 0C1H address block.

• The bit width of an IA32_PMCx MSR is reported using the 
CPUID.0AH:EAX[23:16]. This the number of valid bits for read operation. On 
write operations, the lower-order 32 bits of the MSR may be written with any 
value, and the high-order bits are sign-extended from the value of bit 31. 

• Bit field layout of IA32_PERFEVTSELx MSRs is defined architecturally.

See Figure 18-1 for the bit field layout of IA32_PERFEVTSELx MSRs. The bit fields 
are:
• Event select field (bits 0 through 7) — Selects the event logic unit used to 

detect microarchitectural conditions (see Table 18-1, for a list of architectural 
events and their 8-bit codes). The set of values for this field is defined architec-
turally; each value corresponds to an event logic unit for use with an architectural 
performance event. The number of architectural events is queried using 
CPUID.0AH:EAX. A processor may support only a subset of pre-defined values.
18-4 Vol. 3B



PERFORMANCE MONITORING
• Unit mask (UMASK) field (bits 8 through 15) — These bits qualify the 
condition that the selected event logic unit detects. Valid UMASK values for each 
event logic unit are specific to the unit. For each architectural performance event, 
its corresponding UMASK value defines a specific microarchitectural condition. 
A pre-defined microarchitectural condition associated with an architectural event 
may not be applicable to a given processor. The processor then reports only a 
subset of pre-defined architectural events. Pre-defined architectural events are 
listed in Table 18-1; support for pre-defined architectural events is enumerated 
using CPUID.0AH:EBX. Architectural performance events available in the initial 
implementation are listed in Table 19-1.

• USR (user mode) flag (bit 16) — Specifies that the selected microarchitectural 
condition is counted only when the logical processor is operating at privilege 
levels 1, 2 or 3. This flag can be used with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that the selected 
microarchitectural condition is counted only when the logical processor is 
operating at privilege level 0. This flag can be used with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of the 
selected microarchitectural condition. The logical processor counts the number of 
deasserted to asserted transitions for any condition that can be expressed by the 
other fields. The mechanism does not permit back-to-back assertions to be 
distinguished. 
This mechanism allows software to measure not only the fraction of time spent in 
a particular state, but also the average length of time spent in such a state (for 
example, the time spent waiting for an interrupt to be serviced).

Figure 18-1.  Layout of IA32_PERFEVTSELx MSRs

31

INV—Invert counter mask
EN—Enable counters
INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

Counter Mask 
EE

N

I
N
T

19 1618 15172021222324

Reserved

I
N
V

P
C

U
S
R

O
S

Unit Mask (UMASK)(CMASK)

63
Vol. 3B 18-5



PERFORMANCE MONITORING
• PC (pin control) flag (bit 19) — When set, the logical processor toggles the 
PMi pins and increments the counter when performance-monitoring events 
occur; when clear, the processor toggles the PMi pins when the counter 
overflows. The toggling of a pin is defined as assertion of the pin for a single bus 
clock followed by deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the logical processor 
generates an exception through its local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — When set, performance counting is 
enabled in the corresponding performance-monitoring counter; when clear, the 
corresponding counter is disabled. The event logic unit for a UMASK must be 
disabled by setting IA32_PERFEVTSELx[bit 22] = 0, before writing to 
IA32_PMCx.

• INV (invert) flag (bit 23) — Inverts the result of the counter-mask comparison 
when set, so that both greater than and less than comparisons can be made.

• Counter mask (CMASK) field (bits 24 through 31) — When this field is not 
zero, a logical processor compares this mask to the events count of the detected 
microarchitectural condition during a single cycle. If the event count is greater 
than or equal to this mask, the counter is incremented by one. Otherwise the 
counter is not incremented. 
This mask is intended for software to characterize microarchitectural conditions 
that can count multiple occurrences per cycle (for example, two or more instruc-
tions retired per clock; or bus queue occupations). If the counter-mask field is 0, 
then the counter is incremented each cycle by the event count associated with 
multiple occurrences.

18.2.2 Additional Architectural Performance Monitoring Extensions
The enhanced features provided by architectural performance monitoring version 2 
include the following:
• Fixed-function performance counter register and associated control 

register — Three of the architectural performance events are counted using 
three fixed-function MSRs (IA32_FIXED_CTR0 through IA32_FIXED_CTR2). Each 
of the fixed-function PMC can count only one architectural performance event. 
Configuring the fixed-function PMCs is done by writing to bit fields in the MSR 
(IA32_FIXED_CTR_CTRL) located at address 38DH. Unlike configuring 
performance events for general-purpose PMCs (IA32_PMCx) via UMASK field in 
(IA32_PERFEVTSELx), configuring, programming IA32_FIXED_CTR_CTRL for 
fixed-function PMCs do not require any UMASK.

• Simplified event programming — Most frequent operation in programming 
performance events are enabling/disabling event counting and checking the 
status of counter overflows. Architectural performance event version 2 provides 
three architectural MSRs:
18-6 Vol. 3B



PERFORMANCE MONITORING
— IA32_PERF_GLOBAL_CTRL allows software to enable/disable event counting 
of all or any combination of fixed-function PMCs (IA32_FIXED_CTRx) or any 
general-purpose PMCs via a single WRMSR.

— IA32_PERF_GLOBAL_STATUS allows software to query counter overflow 
conditions on any combination of fixed-function PMCs or general-purpose 
PMCs via a single RDMSR.

— IA32_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow 
conditions on any combination of fixed-function PMCs or general-purpose 
PMCs via a single WRMSR.

18.2.2.1  Architectural Performance Monitoring Version 2 Facilities
The facilities provided by architectural performance monitoring version 2 can be 
queried from CPUID leaf 0AH by examining the content of register EDX:
• Bits 0 through 4 of CPUID.0AH.EDX indicates the number of fixed-function 

performance counters available per core,
• Bits 5 through 12 of CPUID.0AH.EDX indicates the bit-width of fixed-function 

performance counters. Bits beyond the width of the fixed-function counter are 
reserved and must be written as zeros.

NOTE
Early generation of processors based on Intel Core microarchitecture 
may report in CPUID.0AH:EDX of support for version 2 but indicating 
incorrect information of version 2 facilities.

The IA32_FIXED_CTR_CTRL MSR include multiple sets of 4-bit field, each 4 bit 
field controls the operation of a fixed-function performance counter. Figure 18-2 
shows the layout of 4-bit controls for each fixed-function PMC. Two sub-fields are 
currently defined within each control. The definitions of the bit fields are:

Figure 18-2.  Layout of IA32_FIXED_CTR_CTRL MSR

Cntr2 — Controls for IA32_FIXED_CTR2
Cntr1 — Controls for IA32_FIXED_CTR1
PMI — Enable PMI on overflow
Cntr0 — Controls for IA32_FIXED_CTR0

8 7 0

ENABLE — 0: disable; 1: OS; 2: User; 3: All ring levels

E
N

P
M
I

11 312 1

Reserved

63 2

E
N

E
N

49 5

PP
MM
II
Vol. 3B 18-7



PERFORMANCE MONITORING
• Enable field (lowest 2 bits within each 4-bit control) — When bit 0 is set, 
performance counting is enabled in the corresponding fixed-function 
performance counter to increment while the target condition associated with the 
architecture performance event occurred at ring 0. When bit 1 is set, 
performance counting is enabled in the corresponding fixed-function 
performance counter to increment while the target condition associated with the 
architecture performance event occurred at ring greater than 0. Writing 0 to both 
bits stops the performance counter. Writing a value of 11B enables the counter to 
increment irrespective of privilege levels.

• PMI field (the fourth bit within each 4-bit control) — When set, the logical 
processor generates an exception through its local APIC on overflow condition of 
the respective fixed-function counter.

IA32_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting of 
each performance counter. Figure 18-3 shows the layout of 
IA32_PERF_GLOBAL_CTRL. Each enable bit in IA32_PERF_GLOBAL_CTRL is AND’ed 
with the enable bits for all privilege levels in the respective IA32_PERFEVTSELx or 
IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective 
counters. Counting is enabled if the AND’ed results is true; counting is disabled when 
the result is false.

The fixed-function performance counters supported by architectural performance 
version 2 is listed in Table 18-8, the pairing between each fixed-function perfor-
mance counter to an architectural performance event is also shown.

IA32_PERF_GLOBAL_STATUS MSR provides single-bit status for software to query 
the overflow condition of each performance counter. The MSR also provides addi-
tional status bit to indicate overflow conditions when counters are programmed for 
precise-event-based sampling (PEBS). IA32_PERF_GLOBAL_STATUS MSR also 
provides a sticky bit to indicate changes to the state of performance monitoring hard-

Figure 18-3.  Layout of IA32_PERF_GLOBAL_CTRL MSR

IA32_FIXED_CTR2 enable
IA32_FIXED_CTR1 enable
IA32_FIXED_CTR0 enable
IA32_PMC1 enable

2 1 0

IA32_PMC0 enable

3132333435

Reserved

63
18-8 Vol. 3B



PERFORMANCE MONITORING
ware. Figure 18-4 shows the layout of IA32_PERF_GLOBAL_STATUS. A value of 1 in 
bits 0, 1, 32 through 34 indicates a counter overflow condition has occurred in the 
associated counter.

When a performance counter is configured for PEBS, overflow condition in the 
counter generates a performance-monitoring interrupt signaling a PEBS event. On a 
PEBS event, the processor stores data records into the buffer area (see Section 
18.15.5), clears the counter overflow status., and sets the “OvfBuffer” bit in 
IA32_PERF_GLOBAL_STATUS. 

IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow indicator(s) of 
any general-purpose or fixed-function counters via a single WRMSR. Software should 
clear overflow indications when
• Setting up new values in the event select and/or UMASK field for counting or 

sampling
• Reloading counter values to continue sampling
• Disabling event counting or sampling.

The layout of IA32_PERF_GLOBAL_OVF_CTL is shown in Figure 18-5.

Figure 18-4.  Layout of IA32_PERF_GLOBAL_STATUS MSR

62

IA32_FIXED_CTR2 Overflow
IA32_FIXED_CTR1 Overflow
IA32_FIXED_CTR0 Overflow
IA32_PMC1 Overflow

2 1 0

IA32_PMC0 Overflow

3132333435

Reserved

63

CondChgd
OvfBuffer
Vol. 3B 18-9



PERFORMANCE MONITORING
18.2.2.2  Architectural Performance Monitoring Version 3 Facilities
The facilities provided by architectural performance monitoring version 1 and 2 are 
also supported by architectural performance monitoring version 3. Additionally 
version 3 provides enhancements to support a processor core comprising of more 
than one logical processor, i.e. a processor core supporting Intel Hyper-Threading 
Technology or simultaneous multi-threading capability. Specifically,
• CPUID leaf 0AH provides enumeration mechanisms to query:

— The number of general-purpose performance counters (IA32_PMCx) is 
reported in CPUID.0AH:EAX[15:8], the bit width of general-purpose 
performance counters (see also Section 18.2.1.1) is reported in 
CPUID.0AH:EAX[23:16].

— The bit vector representing the set of architectural performance monitoring 
events supported (see Section 18.2.3)

— The number of fixed-function performance counters, the bit width of fixed-
function performance counters (see also Section 18.2.2.1).

• Each general-purpose performance counter IA32_PMCx (starting at MSR address 
0C1H) is associated with a corresponding IA32_PERFEVTSELx MSR (starting at 
MSR address 186H). The Bit field layout of IA32_PERFEVTSELx MSRs is defined 
architecturally in Figure 18-6.

Figure 18-5.  Layout of IA32_PERF_GLOBAL_OVF_CTRL MSR

62

IA32_FIXED_CTR2 ClrOverflow
IA32_FIXED_CTR1 ClrOverflow
IA32_FIXED_CTR0 ClrOverflow
IA32_PMC1 ClrOverflow

2 1 0

IA32_PMC0 ClrOverflow

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer
18-10 Vol. 3B



PERFORMANCE MONITORING
Bit 21 (AnyThread) of IA32_PERFEVTSELx is supported in architectural 
performance monitoring version 3. When set to 1, it enables counting the 
associated event conditions (including matching the thread’s CPL with the 
OS/USR setting of IA32_PERFEVTSELx) occurring across all logical processors 
sharing a processor core. When bit 21 is 0, the counter only increments the 
associated event conditions (including matching the thread’s CPL with the 
OS/USR setting of IA32_PERFEVTSELx) occurring in the logical processor which 
programmed the IA32_PERFEVTSELx MSR.

• Each fixed-function performance counter IA32_FIXED_CTRx (starting at MSR 
address 309H) is configured by a 4-bit control block in the 
IA32_PERF_FIXED_CTR_CTRL MSR. The control block also allow thread-
specificity configuration using an AnyThread bit. The layout of 
IA32_PERF_FIXED_CTR_CTRL MSR is shown. 

Figure 18-6.  Layout of IA32_PERFEVTSELx MSRs Supporting Architectural 
Performance Monitoring Version 3

31

INV—Invert counter mask
EN—Enable counters

INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

Counter Mask 
EE

N

I
N
T

19 1618 15172021222324

Reserved

I
N
V

P
C

U
S
R

O
S

Unit Mask (UMASK)(CMASK)

63

ANY—Any Thread

A
N
Y

Vol. 3B 18-11



PERFORMANCE MONITORING
Each control block for a fixed-function performance counter provides a 
AnyThread (bit position 2 + 4*N, N= 0, 1, etc.) bit. When set to 1, it enables 
counting the associated event conditions (including matching the thread’s CPL 
with the ENABLE setting of the corresponding control block of 
IA32_PERF_FIXED_CTR_CTRL) occurring across all logical processors sharing a 
processor core. When an AnyThread bit is 0 in IA32_PERF_FIXED_CTR_CTRL, 
the corresponding fixed counter only increments the associated event conditions 
occurring in the logical processor which programmed the 
IA32_PERF_FIXED_CTR_CTRL MSR.

• The IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS, 
IA32_PERF_GLOBAL_OVF_CTRL MSRs provide single-bit controls/status for each 
general-purpose and fixed-function performance counter. Figure 18-8 shows the 
layout of these MSR for N general-purpose performance counters (where N is 
reported by CPUID.0AH:EAX[15:8] ) and three fixed-function counters.
Note: Intel Atom processor family supports two general-purpose performance 
monitoring counters (i.e. N =2 in Figure 18-8), other processor families in Intel 
64 architecture may support a different value of N in Figure 18-8. The number N 
is reported by CPUID.0AH:EAX[15:8]. Intel Core i7 processor family supports 
four general-purpose performance monitoring counters (i.e. N =4 in Figure 18-8)

Figure 18-7.  Layout of IA32_FIXED_CTR_CTRL MSR Supporting Architectural 
Performance Monitoring Version 3

Cntr2 — Controls for IA32_FIXED_CTR2
Cntr1 — Controls for IA32_FIXED_CTR1
PMI — Enable PMI on overflow on IA32_FIXED_CTR0
AnyThread — AnyThread for IA32_FIXED_CTR0

8 7 0

ENABLE — IA32_FIXED_CTR0. 0: disable; 1: OS; 2: User; 3: All ring levels

E
N

P
M
I

11 312 1

Reserved

63 2

E
N

E
N

49 5

PP
MM
II

A
N
Y

A
N
Y

A
N
Y

18-12 Vol. 3B



PERFORMANCE MONITORING
18.2.2.3  Full-Width Writes to Performance Counter Registers
The general-purpose performance counter registers IA32_PMCx are writable via 
WRMSR instruction. However, the value written into IA32_PMCx by WRMSR is the 
signed extended 64-bit value of the EAX[31:0] input of WRMSR.

A processor that supports full-width writes to the general-purpose performance 
counters enumerated by CPUID.0AH:EAX[15:8] will set 

Figure 18-8.  Layout of Global Performance Monitoring Control MSR

IA32_FIXED_CTR2 enable
IA32_FIXED_CTR1 enable
IA32_FIXED_CTR0 enable
IA32_PMC(N-1) enable

.. 1 0

.................... enable

3132333435

Reserved

63 ..N

IA32_PMC1 enable
IA32_PMC0 enable

62

IA32_FIXED_CTR2 Overflow
IA32_FIXED_CTR1 Overflow
IA32_FIXED_CTR0 Overflow
IA32_PMC1 Overflow

.. 1 0

IA32_PMC0 Overflow

313233343563

CondChgd
OvfBuffer

..N

...................... Overflow
IA32_PMC(N-1) Overflow

Global Enable Controls IA32_PERF_GLOBAL_CTRL

Global Overflow Status IA32_PERF_GLOBAL_STATUS

62

IA32_FIXED_CTR2 ClrOverflow
IA32_FIXED_CTR1 ClrOverflow
IA32_FIXED_CTR0 ClrOverflow
IA32_PMC1 ClrOverflow

.. 1 0

IA32_PMC0 ClrOverflow

313233343563

ClrCondChgd
ClrOvfBuffer

Global Overflow Status IA32_PERF_GLOBAL_OVF_CTRL

........................ ClrOverflow
IA32_PMC(N-1) ClrOverflow

N ..
Vol. 3B 18-13



PERFORMANCE MONITORING
IA32_PERF_CAPABILITIES[13] to enumerate its full-width-write capability See 
Figure 18-39. 

If IA32_PERF_CAPABILITIES.FW_WRITE[bit 13] =1, each IA32_PMCi is accompa-
nied by a corresponding alias address starting at 4C1H for IA32_A_PMC0. 

If IA32_A_PMCi is present, the 64-bit input value (EDX:EAX) of WRMSR to 
IA32_A_PMCi will cause IA32_PMCi to be updated by:

IA32_PMCi[63:32] ← SignExtend(EDX[N-32:0]);

IA32_PMCi[31:0] ← EAX[31:0];

18.2.3 Pre-defined Architectural Performance Events
Table 18-1 lists architecturally defined events.

A processor that supports architectural performance monitoring may not support all 
the predefined architectural performance events (Table 18-1). The non-zero bits in 
CPUID.0AH:EBX indicate the events that are not available. 

The behavior of each architectural performance event is expected to be consistent on 
all processors that support that event. Minor variations between microarchitectures 
are noted below:
• UnHalted Core Cycles — Event select 3CH, Umask 00H 

This event counts core clock cycles when the clock signal on a specific core is 
running (not halted). The counter does not advance in the following conditions: 

— an ACPI C-state other than C0 for normal operation

— HLT

— STPCLK# pin asserted 

— being throttled by TM1

Table 18-1.  UMask and Event Select Encodings for Pre-Defined 
Architectural Performance Events

Bit Position 
CPUID.AH.EBX

Event Name UMask Event Select

0 UnHalted Core Cycles 00H 3CH

1 Instruction Retired 00H C0H

2 UnHalted Reference Cycles 01H 3CH

3 LLC Reference 4FH 2EH

4 LLC Misses 41H 2EH

5 Branch Instruction Retired 00H C4H

6 Branch Misses Retired 00H C5H
18-14 Vol. 3B



PERFORMANCE MONITORING
— during the frequency switching phase of a performance state transition (see 
Chapter 14, “Power and Thermal Management”)

The performance counter for this event counts across performance state 
transitions using different core clock frequencies

• Instructions Retired — Event select C0H, Umask 00H 
This event counts the number of instructions at retirement. For instructions that 
consist of multiple micro-ops, this event counts the retirement of the last micro-
op of the instruction. An instruction with a REP prefix counts as one instruction 
(not per iteration). Faults before the retirement of the last micro-op of a multi-
ops instruction are not counted.
This event does not increment under VM-exit conditions. Counters continue 
counting during hardware interrupts, traps, and inside interrupt handlers. 

• UnHalted Reference Cycles — Event select 3CH, Umask 01H 
This event counts reference clock cycles while the clock signal on the core is 
running. The reference clock operates at a fixed frequency, irrespective of core 
frequency changes due to performance state transitions. Processors may 
implement this behavior differently. See Table 19-13 and Table 19-15 in Chapter 
19, “Performance-Monitoring Events.”

• Last Level Cache References — Event select 2EH, Umask 4FH 
This event counts requests originating from the core that reference a cache line 
in the last level cache. The event count includes speculation and cache line fills 
due to the first-level cache hardware prefetcher, but may exclude cache line fills 
due to other hardware-prefetchers. 
Because cache hierarchy, cache sizes and other implementation-specific charac-
teristics; value comparison to estimate performance differences is not recom-
mended. 

• Last Level Cache Misses — Event select 2EH, Umask 41H
This event counts each cache miss condition for references to the last level cache. 
The event count may include speculation and cache line fills due to the first-level 
cache hardware prefetcher, but may exclude cache line fills due to other 
hardware-prefetchers. 
Because cache hierarchy, cache sizes and other implementation-specific charac-
teristics; value comparison to estimate performance differences is not recom-
mended. 

• Branch Instructions Retired — Event select C4H, Umask 00H
This event counts branch instructions at retirement. It counts the retirement of 
the last micro-op of a branch instruction. 

• All Branch Mispredict Retired — Event select C5H, Umask 00H
This event counts mispredicted branch instructions at retirement. It counts the 
retirement of the last micro-op of a branch instruction in the architectural path of 
execution and experienced misprediction in the branch prediction hardware. 
Vol. 3B 18-15



PERFORMANCE MONITORING
Branch prediction hardware is implementation-specific across microarchitec-
tures; value comparison to estimate performance differences is not recom-
mended. 

NOTE
Programming decisions or software precisians on functionality should 
not be based on the event values or dependent on the existence of 
performance monitoring events.

18.3 PERFORMANCE MONITORING (INTEL® CORE™ SOLO 
AND INTEL® CORE™ DUO PROCESSORS)

In Intel Core Solo and Intel Core Duo processors, non-architectural performance 
monitoring events are programmed using the same facilities (see Figure 18-1) used 
for architectural performance events.

Non-architectural performance events use event select values that are model-
specific. Event mask (Umask) values are also specific to event logic units. Some 
microarchitectural conditions detectable by a Umask value may have specificity 
related to processor topology (see Section 8.6, “Detecting Hardware Multi-Threading 
Support and Topology,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A). As a result, the unit mask field (for example, 
IA32_PERFEVTSELx[bits 15:8]) may contain sub-fields that specify topology infor-
mation of processor cores.

The sub-field layout within the Umask field may support two-bit encoding that quali-
fies the relationship between a microarchitectural condition and the originating core. 
This data is shown in Table 18-2. The two-bit encoding for core-specificity is only 
supported for a subset of Umask values (see Chapter 19, “Performance Monitoring 
Events”) and for Intel Core Duo processors. Such events are referred to as core-
specific events.

Some microarchitectural conditions allow detection specificity only at the boundary 
of physical processors. Some bus events belong to this category, providing specificity 
between the originating physical processor (a bus agent) versus other agents on the 
bus. Sub-field encoding for agent specificity is shown in Table 18-3.

Table 18-2.  Core Specificity Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 15:14 Encoding Description

11B All cores

10B Reserved

01B This core

00B Reserved
18-16 Vol. 3B



PERFORMANCE MONITORING
Some microarchitectural conditions are detectable only from the originating core. In 
such cases, unit mask does not support core-specificity or agent-specificity encod-
ings. These are referred to as core-only conditions.

Some microarchitectural conditions allow detection specificity that includes or 
excludes the action of hardware prefetches. A two-bit encoding may be supported to 
qualify hardware prefetch actions. Typically, this applies only to some L2 or bus 
events. The sub-field encoding for hardware prefetch qualification is shown in 
Table 18-4.

Some performance events may (a) support none of the three event-specific qualifica-
tion encodings (b) may support core-specificity and agent specificity simultaneously 
(c) or may support core-specificity and hardware prefetch qualification simulta-
neously. Agent-specificity and hardware prefetch qualification are mutually exclu-
sive.

In addition, some L2 events permit qualifications that distinguish cache coherent 
states. The sub-field definition for cache coherency state qualification is shown in 
Table 18-5. If no bits in the MESI qualification sub-field are set for an event that 
requires setting MESI qualification bits, the event count will not increment.

Table 18-3.  Agent Specificity Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 13 Encoding Description

0 This agent

1 Include all agents

Table 18-4.  HW Prefetch Qualification Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 13:12 Encoding Description

11B All inclusive

10B Reserved

01B Hardware prefetch only 

00B Exclude hardware prefetch

Table 18-5.  MESI Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description

Bit 11 Counts modified state

Bit 10 Counts exclusive state
Vol. 3B 18-17



PERFORMANCE MONITORING
18.4 PERFORMANCE MONITORING (PROCESSORS BASED 
ON INTEL® CORE™ MICROARCHITECTURE)

In addition to architectural performance monitoring, processors based on the Intel 
Core microarchitecture support non-architectural performance monitoring events.

Architectural performance events can be collected using general-purpose perfor-
mance counters. Non-architectural performance events can be collected using 
general-purpose performance counters (coupled with two IA32_PERFEVTSELx MSRs 
for detailed event configurations), or fixed-function performance counters (see 
Section 18.4.1). IA32_PERFEVTSELx MSRs are architectural; their layout is shown in 
Figure 18-1. Starting with Intel Core 2 processor T 7700, fixed-function performance 
counters and associated counter control and status MSR becomes part of architec-
tural performance monitoring version 2 facilities (see also Section 18.2.2). 

Non-architectural performance events in processors based on Intel Core microarchi-
tecture use event select values that are model-specific. Valid event mask (Umask) 
bits are listed in Chapter 19. The UMASK field may contain sub-fields identical to 
those listed in Table 18-2, Table 18-3, Table 18-4, and Table 18-5. One or more of 
these sub-fields may apply to specific events on an event-by-event basis. Details are 
listed in Table 19-13 in Chapter 19, “Performance-Monitoring Events.”

In addition, the UMASK filed may also contain a sub-field that allows detection spec-
ificity related to snoop responses. Bits of the snoop response qualification sub-field 
are defined in Table 18-6.

Bit 9 Counts shared state

Bit 8 Counts Invalid state

Table 18-6.  Bus Snoop Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description

Bit 11 HITM response

Bit 10 Reserved 

Bit 9 HIT response

Bit 8 CLEAN response

Table 18-5.  MESI Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description
18-18 Vol. 3B



PERFORMANCE MONITORING
There are also non-architectural events that support qualification of different types of 
snoop operation. The corresponding bit field for snoop type qualification are listed in 
Table 18-7.

No more than one sub-field of MESI, snoop response, and snoop type qualification 
sub-fields can be supported in a performance event.

NOTE
Software must write known values to the performance counters prior 
to enabling the counters. The content of general-purpose counters 
and fixed-function counters are undefined after INIT or RESET.

18.4.1 Fixed-function Performance Counters
Processors based on Intel Core microarchitecture provide three fixed-function perfor-
mance counters. Bits beyond the width of the fixed counter are reserved and must be 
written as zeros. Model-specific fixed-function performance counters on processors 
that support Architectural Perfmon version 1 are 40 bits wide.

Each of the fixed-function counter is dedicated to count a pre-defined performance 
monitoring events. The performance monitoring events associated with fixed-func-
tion counters and the addresses of these counters are listed in Table 18-8. 

Programming the fixed-function performance counters does not involve any of the 

Table 18-7.  Snoop Type Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 9:8 Description

Bit 9 CMP2I snoops

Bit 8 CMP2S snoops

Table 18-8.  Association of Fixed-Function Performance Counters with 
Architectural Performance Events

Event Name Fixed-Function PMC PMC Address

INST_RETIRED.ANY MSR_PERF_FIXED_CTR0/I
A32_FIXED_CTR0

309H

CPU_CLK_UNHALTED.CORE MSR_PERF_FIXED_CTR1//
IA32_FIXED_CTR1

30AH

CPU_CLK_UNHALTED.REF MSR_PERF_FIXED_CTR2//
IA32_FIXED_CTR2

30BH
Vol. 3B 18-19



PERFORMANCE MONITORING
IA32_PERFEVTSELx MSRs, and does not require specifying any event masks. 
Instead, the MSR MSR_PERF_FIXED_CTR_CTRL provides multiple sets of 4-bit fields; 
each 4-bit field controls the operation of a fixed-function performance counter (PMC). 
See Figures 18-9. Two sub-fields are defined for each control. See Figure 18-9; bit 
fields are:
• Enable field (low 2 bits in each 4-bit control) — When bit 0 is set, 

performance counting is enabled in the corresponding fixed-function 
performance counter to increment when the target condition associated with the 
architecture performance event occurs at ring 0. 
When bit 1 is set, performance counting is enabled in the corresponding fixed-
function performance counter to increment when the target condition associated 
with the architecture performance event occurs at ring greater than 0. 
Writing 0 to both bits stops the performance counter. Writing 11B causes the 
counter to increment irrespective of privilege levels.

• PMI field (fourth bit in each 4-bit control) — When set, the logical processor 
generates an exception through its local APIC on overflow condition of the 
respective fixed-function counter.

18.4.2 Global Counter Control Facilities
Processors based on Intel Core microarchitecture provides simplified performance 
counter control that simplifies the most frequent operations in programming perfor-
mance events, i.e. enabling/disabling event counting and checking the status of 
counter overflows. This is done by the following three MSRs:
• MSR_PERF_GLOBAL_CTRL enables/disables event counting for all or any 

combination of fixed-function PMCs (MSR_PERF_FIXED_CTRx) or general-
purpose PMCs via a single WRMSR.

Figure 18-9.  Layout of MSR_PERF_FIXED_CTR_CTRL MSR

Cntr2 — Controls for MSR_PERF_FIXED_CTR2
Cntr1 — Controls for MSR_PERF_FIXED_CTR1
PMI — Enable PMI on overflow
Cntr0 — Controls for MSR_PERF_FIXED_CTR0

8 7 0

ENABLE — 0: disable; 1: OS; 2: User; 3: All ring levels

E
N

P
M
I

11 312 1

Reserved

63 2

E
N

E
N

49 5

PP
MM
II
18-20 Vol. 3B



PERFORMANCE MONITORING
• MSR_PERF_GLOBAL_STATUS allows software to query counter overflow 
conditions on any combination of fixed-function PMCs (MSR_PERF_FIXED_CTRx) 
or general-purpose PMCs via a single RDMSR.

• MSR_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow 
conditions on any combination of fixed-function PMCs (MSR_PERF_FIXED_CTRx) 
or general-purpose PMCs via a single WRMSR.

MSR_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting in 
each performance counter (see Figure 18-10). Each enable bit in 
MSR_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all privilege levels in the 
respective IA32_PERFEVTSELx or MSR_PERF_FIXED_CTR_CTRL MSRs to start/stop 
the counting of respective counters. Counting is enabled if the AND’ed results is true; 
counting is disabled when the result is false.

MSR_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to 
query the overflow condition of each performance counter. The MSR also provides 
additional status bit to indicate overflow conditions when counters are programmed 
for precise-event-based sampling (PEBS). The MSR_PERF_GLOBAL_STATUS MSR 
also provides a ‘sticky bit’ to indicate changes to the state of performance monitoring 
hardware (see Figure 18-11). A value of 1 in bits 34:32, 1, 0 indicates an overflow 
condition has occurred in the associated counter. 

Figure 18-10.  Layout of MSR_PERF_GLOBAL_CTRL MSR

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable
PMC1 enable

2 1 0

PMC0 enable

3132333435

Reserved

63
Vol. 3B 18-21



PERFORMANCE MONITORING
When a performance counter is configured for PEBS, an overflow condition in the 
counter generates a performance-monitoring interrupt this signals a PEBS event. On 
a PEBS event, the processor stores data records in the buffer area (see Section 
17.4.9), clears the counter overflow status, and sets the OvfBuffer bit in 
MSR_PERF_GLOBAL_STATUS.

MSR_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators 
for general-purpose or fixed-function counters via a single WRMSR (see 
Figure 18-12). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or 

sampling
• Reloading counter values to continue sampling
• Disabling event counting or sampling

Figure 18-11.  Layout of MSR_PERF_GLOBAL_STATUS MSR

Figure 18-12.  Layout of MSR_PERF_GLOBAL_OVF_CTRL MSR

62

FIXED_CTR2 Overflow
FIXED_CTR1 Overflow
FIXED_CTR0 Overflow
PMC1 Overflow

2 1 0

PMC0 Overflow

3132333435

Reserved

63

CondChgd
OvfBuffer

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC1 ClrOverflow

2 1 0

PMC0 ClrOverflow

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer
18-22 Vol. 3B



PERFORMANCE MONITORING
18.4.3 At-Retirement Events
Many non-architectural performance events are impacted by the speculative nature 
of out-of-order execution. A subset of non-architectural performance events on 
processors based on Intel Core microarchitecture are enhanced with a tagging mech-
anism (similar to that found in Intel NetBurst® microarchitecture) that exclude 
contributions that arise from speculative execution. The at-retirement events avail-
able in processors based on Intel Core microarchitecture does not require special 
MSR programming control (see Section 18.10.6, “At-Retirement Counting”), but is 
limited to IA32_PMC0. See Table 18-9 for a list of events available to processors 
based on Intel Core microarchitecture.

18.4.4 Precise Event Based Sampling (PEBS)
Processors based on Intel Core microarchitecture also support precise event based 
sampling (PEBS). This feature was introduced by processors based on Intel NetBurst 
microarchitecture.

PEBS uses a debug store mechanism and a performance monitoring interrupt to 
store a set of architectural state information for the processor. The information 
provides architectural state of the instruction executed after the instruction that 
caused the event (See Section 18.4.4.2). 

In cases where the same instruction causes BTS and PEBS to be activated, PEBS is 
processed before BTS are processed. The PMI request is held until the processor 
completes processing of PEBS and BTS.

For processors based on Intel Core microarchitecture, events that support precise 
sampling are listed in Table 18-10. The procedure for detecting availability of PEBS is 
the same as described in Section 18.10.7.1.

Table 18-9.  At-Retirement Performance Events for Intel Core Microarchitecture

Event Name UMask Event Select

ITLB_MISS_RETIRED 00H C9H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH

Table 18-10.  PEBS Performance Events for Intel Core Microarchitecture
Event Name UMask Event Select

INSTR_RETIRED.ANY_P 00H C0H

X87_OPS_RETIRED.ANY FEH C1H
Vol. 3B 18-23



PERFORMANCE MONITORING
18.4.4.1  Setting up the PEBS Buffer
For processors based on Intel Core microarchitecture, PEBS is available using 
IA32_PMC0 only. Use the following procedure to set up the processor and 
IA32_PMC0 counter for PEBS: 

1. Set up the precise event buffering facilities. Place values in the precise event 
buffer base, precise event index, precise event absolute maximum, precise event 
interrupt threshold, and precise event counter reset fields of the DS buffer 
management area. In processors based on Intel Core microarchitecture, PEBS 
records consist of 64-bit address entries. See Figure 17-8 to set up the precise 
event records buffer in memory.

2. Enable PEBS. Set the Enable PEBS on PMC0 flag (bit 0) in IA32_PEBS_ENABLE 
MSR.

3. Set up the IA32_PMC0 performance counter and IA32_PERFEVTSEL0 for an 
event listed in Table 18-10.

18.4.4.2  PEBS Record Format
The PEBS record format may be extended across different processor implementa-
tions. The IA32_PERF_CAPABILITES MSR defines a mechanism for software to 
handle the evolution of PEBS record format in processors that support architectural 
performance monitoring with version id equals 2 or higher. The bit fields of 
IA32_PERF_CAPABILITES are defined in Table 34-2 of Chapter 34, “Model-Specific 
Registers (MSRs)”. The relevant bit fields that governs PEBS are:
• PEBSTrap [bit 6]: When set, PEBS recording is trap-like. After the PEBS-enabled 

counter has overflowed, PEBS record is recorded for the next PEBS-able event at 
the completion of the sampled instruction causing the PEBS event. When clear, 
PEBS recording is fault-like. The PEBS record is recorded before the sampled 
instruction causing the PEBS event.

• PEBSSaveArchRegs [bit 7]: When set, PEBS will save architectural register and 
state information according to the encoded value of the PEBSRecordFormat field. 
On processors based on Intel Core microarchitecture, this bit is always 1

BR_INST_RETIRED.MISPRED 00H C5H

SIMD_INST_RETIRED.ANY 1FH C7H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH

Table 18-10.  PEBS Performance Events for Intel Core Microarchitecture (Contd.)
Event Name UMask Event Select
18-24 Vol. 3B



PERFORMANCE MONITORING
• PEBSRecordFormat [bits 11:8]: Valid encodings are:

— 0000B: Only general-purpose registers, instruction pointer and RFLAGS 
registers are saved in each PEBS record (seeSection 18.10.7). 

18.4.4.3  Writing a PEBS Interrupt Service Routine
The PEBS facilities share the same interrupt vector and interrupt service routine 
(called the DS ISR) with the non-precise event-based sampling and BTS facilities. To 
handle PEBS interrupts, PEBS handler code must be included in the DS ISR. See 
Section 17.4.9.1, “DS Save Area and IA-32e Mode Operation,” for guidelines when 
writing the DS ISR.

The service routine can query MSR_PERF_GLOBAL_STATUS to determine which 
counter(s) caused of overflow condition. The service routine should clear overflow 
indicator by writing to MSR_PERF_GLOBAL_OVF_CTL. 

A comparison of the sequence of requirements to program PEBS for processors based 
on Intel Core and Intel NetBurst microarchitectures is listed in Table 18-11.

Table 18-11.  Requirements to Program PEBS

For Processors based on Intel 
Core microarchitecture

For Processors based on Intel 
NetBurst microarchitecture

Verify PEBS support of 
processor/OS 

• IA32_MISC_ENABLE.EMON_AVAILABE (bit 7) is set.
• IA32_MISC_ENABLE.PEBS_UNAVAILABE (bit 12) is clear.

Ensure counters are in 
disabled

On initial set up or changing event 
configurations, write 
MSR_PERF_GLOBAL_CTRL MSR 
(0x38F) with 0. 

On subsequent entries:

• Clear all counters if “Counter 
Freeze on PMI“ is not enabled.

• If IA32_DebugCTL.Freeze is 
enabled, counters are 
automatically disabled.

Counters MUST be stopped before 
writing.1

Optional

Disable PEBS. Clear ENABLE PMC0 bit in 
IA32_PEBS_ENABLE MSR 
(0x3F1).

Optional

Check overflow 
conditions.

Check 
MSR_PERF_GLOBAL_STATUS MSR 
(0x 38E) handle any overflow 
conditions.

Check OVF flag of each CCCR for 
overflow condition
Vol. 3B 18-25



PERFORMANCE MONITORING
18.4.4.4  Re-configuring PEBS Facilities
When software needs to reconfigure PEBS facilities, it should allow a quiescent period 
between stopping the prior event counting and setting up a new PEBS event. The 
quiescent period is to allow any latent residual PEBS records to complete its capture 
at their previously specified buffer address (provided by IA32_DS_AREA).

Clear overflow status. Clear 
MSR_PERF_GLOBAL_STATUS MSR 
(0x 38E) using 
IA32_PERF_GLOBAL_OVF_CTRL 
MSR (0x390).

Clear OVF flag of each CCCR.

Write “sample-after“ 
values.

Configure the counter(s) with the sample after value.

Configure specific counter 
configuration MSR.

• Set local enable bit 22 - 1.
• Do NOT set local counter 

PMI/INT bit, bit 20 - 0.
• Event programmed must be 

PEBS capable. 

• Set appropriate OVF_PMI bits - 
1.

• Only CCCR for 
MSR_IQ_COUNTER4 support 
PEBS.

Allocate buffer for PEBS 
states.

Allocate a buffer in memory for the precise information.

Program the 
IA32_DS_AREA MSR.

Program the IA32_DS_AREA MSR.

Configure the PEBS buffer 
management records.

Configure the PEBS buffer management records in the DS buffer 
management area.

Configure/Enable PEBS. Set Enable PMC0 bit in 
IA32_PEBS_ENABLE MSR 
(0x3F1).

Configure MSR_PEBS_ENABLE, 
MSR_PEBS_MATRIX_VERT and 
MSR_PEBS_MATRIX_HORZ as 
needed.

Enable counters. Set Enable bits in 
MSR_PERF_GLOBAL_CTRL MSR 
(0x38F).

Set each CCCR enable bit 12 - 1.

NOTES:
1. Counters read while enabled are not guaranteed to be precise with event counts that occur in tim-

ing proximity to the RDMSR.

Table 18-11.  Requirements to Program PEBS (Contd.)

For Processors based on Intel 
Core microarchitecture

For Processors based on Intel 
NetBurst microarchitecture
18-26 Vol. 3B



PERFORMANCE MONITORING
18.5 PERFORMANCE MONITORING (PROCESSORS BASED 
ON INTEL® ATOM™ MICROARCHITECTURE)

Intel Atom processor family supports architectural performance monitoring capa-
bility with version ID 3 (see Section 18.2.2.2) and a host of non-architectural moni-
toring capabilities. The initial implementation of Intel Atom processor family provides 
two general-purpose performance counters (IA32_PMC0, IA32_PMC1) and three 
fixed-function performance counters (IA32_FIXED_CTR0, IA32_FIXED_CTR1, 
IA32_FIXED_CTR2). 

Non-architectural performance monitoring in Intel Atom processor family uses the 
IA32_PERFEVTSELx MSR to configure a set of non-architecture performance moni-
toring events to be counted by the corresponding general-purpose performance 
counter. The list of non-architectural performance monitoring events is listed in Table 
19-14.

Architectural and non-architectural performance monitoring events in Intel Atom 
processor family support thread qualification using bit 21 of IA32_PERFEVTSELx 
MSR. 

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and 
described in Section 18.2.1.1 and Section 18.2.2.2. 

Valid event mask (Umask) bits are listed in Chapter 19. The UMASK field may contain 
sub-fields that provide the same qualifying actions like those listed in Table 18-2, 
Table 18-3, Table 18-4, and Table 18-5. One or more of these sub-fields may apply to 
specific events on an event-by-event basis. Details are listed in Table 19-14 in 
Chapter 19, “Performance-Monitoring Events.” Precise Event Based Monitoring is 
supported using IA32_PMC0 (see also Section 17.4.9, “BTS and DS Save Area”).

18.6 PERFORMANCE MONITORING FOR PROCESSORS 
BASED ON INTEL® MICROARCHITECTURE CODE 
NAME NEHALEM

Intel Core i7 processor family1 supports architectural performance monitoring capa-
bility with version ID 3 (see Section 18.2.2.2) and a host of non-architectural moni-
toring capabilities. The Intel Core i7 processor family is based on Intel® 
microarchitecture code name Nehalem, and provides four general-purpose perfor-
mance counters (IA32_PMC0, IA32_PMC1, IA32_PMC2, IA32_PMC3) and three 
fixed-function performance counters (IA32_FIXED_CTR0, IA32_FIXED_CTR1, 
IA32_FIXED_CTR2) in the processor core. 

1. Intel Xeon processor 5500 series and 3400 series are also based on Intel microarchitecture code 
name Nehalem, so the performance monitoring facilities described in this section generally also 
apply.
Vol. 3B 18-27



PERFORMANCE MONITORING
Non-architectural performance monitoring in Intel Core i7 processor family uses the 
IA32_PERFEVTSELx MSR to configure a set of non-architecture performance moni-
toring events to be counted by the corresponding general-purpose performance 
counter. The list of non-architectural performance monitoring events is listed in Table 
19-14. Non-architectural performance monitoring events fall into two broad catego-
ries:
• Performance monitoring events in the processor core: These include many 

events that are similar to performance monitoring events available to processor 
based on Intel Core microarchitecture. Additionally, there are several enhance-
ments in the performance monitoring capability for detecting microarchitectural 
conditions in the processor core or in the interaction of the processor core to the 
off-core sub-systems in the physical processor package. The off-core sub-
systems in the physical processor package is loosely referred to as “uncore“.

• Performance monitoring events in the uncore: The uncore sub-system is shared 
by more than one processor cores in the physical processor package. It provides 
additional performance monitoring facility outside of IA32_PMCx and 
performance monitoring events that are specific to the uncore sub-system.

Architectural and non-architectural performance monitoring events in Intel Core i7 
processor family support thread qualification using bit 21 of IA32_PERFEVTSELx 
MSR. 

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and 
described in Section 18.2.1.1 and Section 18.2.2.2. 

Figure 18-13.  IA32_PERF_GLOBAL_STATUS MSR 

CHG (R/W)
OVF_PMI (R/W)

8 7 032 3 1

Reserved

63 2431 5662 6061

OVF_PC7 (R/O), if CCNT>7
OVF_PC6 (R/O), if CCNT>6
OVF_PC5 (R/O), if CCNT>5
OVF_PC4 (R/O), if CCNT>4
OVF_PC3 (R/O)
OVF_PC2 (R/O)
OVF_PC1 (R/O)
OVF_PC0 (R/O)

RESET Value — 0x00000000_00000000

OVF_FC2 (R/O)
OVF_FC1 (R/O)

353433

OVF_FC0 (R/O)

CCNT: CPUID.AH:EAX[15:8]
18-28 Vol. 3B



PERFORMANCE MONITORING
18.6.1 Enhancements of Performance Monitoring in the Processor 
Core

The notable enhancements in the monitoring of performance events in the processor 
core include:
• Four general purpose performance counters, IA32_PMCx, associated counter 

configuration MSRs, IA32_PERFEVTSELx, and global counter control MSR 
supporting simplified control of four counters. Each of the four performance 
counter can support precise event based sampling (PEBS) and thread-qualifi-
cation of architectural and non-architectural performance events. Width of 
IA32_PMCx supported by hardware has been increased. The width of counter 
reported by CPUID.0AH:EAX[23:16] is 48 bits. The PEBS facility in Intel microar-
chitecture code name Nehalem has been enhanced to include new data format to 
capture additional information, such as load latency.

• Load latency sampling facility. Average latency of memory load operation can be 
sampled using load-latency facility in processors based on Intel microarchi-
tecture code name Nehalem. The facility can measure average latency of load 
micro-operations from dispatch to when data is globally observable (GO). This 
facility is used in conjunction with the PEBS facility.

• Off-core response counting facility. This facility in the processor core allows 
software to count certain transaction responses between the processor core to 
sub-systems outside the processor core (uncore). Counting off-core response 
requires additional event qualification configuration facility in conjunction with 
IA32_PERFEVTSELx. Two off-core response MSRs are provided to use in 
conjunction with specific event codes that must be specified with 
IA32_PERFEVTSELx.

18.6.1.1  Precise Event Based Sampling (PEBS)
All four general-purpose performance counters, IA32_PMCx, can be used for PEBS if 
the performance event supports PEBS. Software uses IA32_MISC_ENABLE[7] and 
IA32_MISC_ENABLE[12] to detect whether the performance monitoring facility and 
PEBS functionality are supported in the processor. The MSR IA32_PEBS_ENABLE 
provides 4 bits that software must use to enable which IA32_PMCx overflow condi-
tion will cause the PEBS record to be captured. 

Additionally, the PEBS record is expanded to allow latency information to be 
captured. The MSR IA32_PEBS_ENABLE provides 4 additional bits that software must 
use to enable latency data recording in the PEBS record upon the respective 
IA32_PMCx overflow condition. The layout of IA32_PEBS_ENABLE for processors 
based on Intel microarchitecture code name Nehalem is shown in Figure 18-14.

When a counter is enabled to capture machine state (PEBS_EN_PMCx = 1), the 
processor will write machine state information to a memory buffer specified by soft-
ware as detailed below. When the counter IA32_PMCx overflows from maximum 
count to zero, the PEBS hardware is armed. 
Vol. 3B 18-29



PERFORMANCE MONITORING
Upon occurrence of the next PEBS event, the PEBS hardware triggers an assist and 
causes a PEBS record to be written. The format of the PEBS record is indicated by the 
bit field IA32_PERF_CAPABILITIES[11:8] (see Figure 18-39).

The behavior of PEBS assists is reported by IA32_PERF_CAPABILITIES[6] (see 
Figure 18-39). The return instruction pointer (RIP) reported in the PEBS record will 
point to the instruction after (+1) the instruction that causes the PEBS assist. The 
machine state reported in the PEBS record is the machine state after the instruction 
that causes the PEBS assist is retired. For instance, if the instructions:

mov eax, [eax] ; causes PEBS assist

nop

are executed, the PEBS record will report the address of the nop, and the value of 
EAX in the PEBS record will show the value read from memory, not the target address 
of the read operation.

The PEBS record format is shown in Table 18-12, and each field in the PEBS record is 
64 bits long. The PEBS record format, along with debug/store area storage format, 
does not change regardless of IA-32e mode is active or not. 
CPUID.01H:ECX.DTES64[bit 2] reports the processor’s support for 64-bit 
debug/store area storage format is invariant to IA-32e mode.

Figure 18-14.  Layout of IA32_PEBS_ENABLE MSR 

Table 18-12.  PEBS Record Format for Intel Core i7 Processor Family

Byte Offset Field Byte Offset Field

0x0 R/EFLAGS 0x58 R9

LL_EN_PMC3 (R/W)
LL_EN_PMC2 (R/W)

8 7 0

LL_EN_PMC1 (R/W)

32 333 1

Reserved

63 2431 56343536

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

LL_EN_PMC0 (R/W)

RESET Value — 0x00000000_00000000
18-30 Vol. 3B



PERFORMANCE MONITORING
In IA-32e mode, the full 64-bit value is written to the register. If the processor is not 
operating in IA-32e mode, 32-bit value is written to registers with bits 63:32 zeroed.  
Registers not defined when the processor is not in IA-32e mode are written to zero. 

Bytes 0xAF:0x90 are enhancement to the PEBS record format. Support for this 
enhanced PEBS record format is indicated by IA32_PERF_CAPABILITIES[11:8] 
encoding of 0001B.

The value written to bytes 0x97:0x90 is the state of the 
IA32_PERF_GLOBAL_STATUS register before the PEBS assist occurred. This value is 
written so software can determine which counters overflowed when this PEBS record 
was written. Note that this field indicates the overflow status for all counters, regard-
less of whether they were programmed for PEBS or not.

Programming PEBS Facility

Only a subset of non-architectural performance events in the processor support 
PEBS. The subset of precise events are listed in Table 18-10. In addition to using 
IA32_PERFEVTSELx to specify event unit/mask settings and setting the EN_PMCx bit 
in the IA32_PEBS_ENABLE register for the respective counter, the software must also 
initialize the DS_BUFFER_MANAGEMENT_AREA data structure in memory to support 
capturing PEBS records for precise events. 

NOTE
PEBS events are only valid when the following fields of 
IA32_PERFEVTSELx are all zero: AnyThread, Edge, Invert, CMask.

The beginning linear address of the DS_BUFFER_MANAGEMENT_AREA data structure 
must be programmed into the IA32_DS_AREA register. The layout of the 
DS_BUFFER_MANAGEMENT_AREA is shown in Figure 18-15.

0x8 R/EIP 0x60 R10

0x10 R/EAX 0x68 R11

0x18 R/EBX 0x70 R12

0x20 R/ECX 0x78 R13

0x28 R/EDX 0x80 R14

0x30 R/ESI 0x88 R15

0x38 R/EDI 0x90 IA32_PERF_GLOBAL_STATUS

0x40 R/EBP 0x98 Data Linear Address

0x48 R/ESP 0xA0 Data Source Encoding

0x50 R8 0xA8 Latency value (core cycles)

Table 18-12.  PEBS Record Format for Intel Core i7 Processor Family

Byte Offset Field Byte Offset Field
Vol. 3B 18-31



PERFORMANCE MONITORING
• PEBS Buffer Base: This field is programmed with the linear address of the first 
byte of the PEBS buffer allocated by software. The processor reads this field to 
determine the base address of the PEBS buffer. Software should allocate this 
memory from the non-paged pool.

• PEBS Index: This field is initially programmed with the same value as the PEBS 
Buffer Base field, or the beginning linear address of the PEBS buffer. The 
processor reads this field to determine the location of the next PEBS record to 
write to. After a PEBS record has been written, the processor also updates this 
field with the address of the next PEBS record to be written. The figure above 
illustrates the state of PEBS Index after the first PEBS record is written.

Figure 18-15.  PEBS Programming Environment

BTS Buffer Base

BTS Index

BTS Absolute 

BTS Interrupt 

PEBS Absolute

PEBS Interrupt

PEBS 

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter0 Reset

Reserved

0H

8H

10H

18H

20H

28H

30H

38H

40H

48H

50H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n

BTS Buffer

PEBS Buffer

DS Buffer Management Area

IA32_DS_AREA MSR

58H

60H

PEBS 
Counter1 Reset

PEBS 
Counter2 Reset

PEBS 
Counter3 Reset
18-32 Vol. 3B



PERFORMANCE MONITORING
• PEBS Absolute Maximum: This field represents the absolute address of the 
maximum length of the allocated PEBS buffer plus the starting address of the 
PEBS buffer. The processor will not write any PEBS record beyond the end of 
PEBS buffer, when PEBS Index equals PEBS Absolute Maximum. No signaling 
is generated when PEBS buffer is full. Software must reset the PEBS Index field 
to the beginning of the PEBS buffer address to continue capturing PEBS records.

• PEBS Interrupt Threshold: This field specifies the threshold value to trigger a 
performance interrupt and notify software that the PEBS buffer is nearly full. This 
field is programmed with the linear address of the first byte of the PEBS record 
within the PEBS buffer that represents the threshold record. After the processor 
writes a PEBS record and updates PEBS Index, if the PEBS Index reaches the 
threshold value of this field, the processor will generate a performance interrupt. 
This is the same interrupt that is generated by a performance counter overflow, 
as programmed in the Performance Monitoring Counters vector in the Local 
Vector Table of the Local APIC. When a performance interrupt due to PEBS buffer 
full is generated, the IA32_PERF_GLOBAL_STATUS.PEBS_Ovf bit will be set.

• PEBS CounterX Reset: This field allows software to set up PEBS counter 
overflow condition to occur at a rate useful for profiling workload, thereby 
generating multiple PEBS records to facilitate characterizing the profile the 
execution of test code. After each PEBS record is written, the processor checks 
each counter to see if it overflowed and was enabled for PEBS (the corresponding 
bit in IA32_PEBS_ENABLED was set). If these conditions are met, then the reset 
value for each overflowed counter is loaded from the DS Buffer Management 
Area. For example, if counter IA32_PMC0 caused a PEBS record to be written, 
then the value of “PEBS Counter 0 Reset” would be written to counter 
IA32_PMC0. If a counter is not enabled for PEBS, its value will not be modified by 
the PEBS assist.

Performance Counter Prioritization

Performance monitoring interrupts are triggered by a counter transitioning from 
maximum count to zero (assuming IA32_PerfEvtSelX.INT is set). This same transi-
tion will cause PEBS hardware to arm, but not trigger. PEBS hardware triggers upon 
detection of the first PEBS event after the PEBS hardware has been armed (a 0 to 1 
transition of the counter). At this point, a PEBS assist will be undertaken by the 
processor.

Performance counters (fixed and general-purpose) are prioritized in index order. That 
is, counter IA32_PMC0 takes precedence over all other counters. Counter 
IA32_PMC1 takes precedence over counters IA32_PMC2 and IA32_PMC3, and so on. 
This means that if simultaneous overflows or PEBS assists occur, the appropriate 
action will be taken for the highest priority performance counter. For example, if 
IA32_PMC1 cause an overflow interrupt and IA32_PMC2 causes an PEBS assist 
simultaneously, then the overflow interrupt will be serviced first. 

The PEBS threshold interrupt is triggered by the PEBS assist, and is by definition 
prioritized lower than the PEBS assist. Hardware will not generate separate interrupts 
for each counter that simultaneously overflows. General-purpose performance 
counters are prioritized over fixed counters.
Vol. 3B 18-33



PERFORMANCE MONITORING
If a counter is programmed with a precise (PEBS-enabled) event and programmed to 
generate a counter overflow interrupt, the PEBS assist is serviced before the counter 
overflow interrupt is serviced. If in addition the PEBS interrupt threshold is met, the

threshold interrupt is generated after the PEBS assist completes, followed by the 
counter overflow interrupt (two separate interrupts are generated).

Uncore counters may be programmed to interrupt one or more processor cores (see 
Section 18.6.2). It is possible for interrupts posted from the uncore facility to occur 
coincident with counter overflow interrupts from the processor core. Software must 
check core and uncore status registers to determine the exact origin of counter over-
flow interrupts.

18.6.1.2  Load Latency Performance Monitoring Facility
The load latency facility provides software a means to characterize the average load 
latency to different levels of cache/memory hierarchy. This facility requires processor 
supporting enhanced PEBS record format in the PEBS buffer, see Table 18-12. The 
facility measures latency from micro-operation (uop) dispatch to when data is 
globally observable (GO).

To use this feature software must assure:
• One of the IA32_PERFEVTSELx MSR is programmed to specify the event unit 

MEM_INST_RETIRED, and the LATENCY_ABOVE_THRESHOLD event mask must 
be specified (IA32_PerfEvtSelX[15:0] = 0x100H). The corresponding counter 
IA32_PMCx will accumulate event counts for architecturally visible loads which 
exceed the programmed latency threshold specified separately in a MSR. Stores 
are ignored when this event is programmed. The CMASK or INV fields of the 
IA32_PerfEvtSelX register used for counting load latency must be 0. Writing 
other values will result in undefined behavior. 

• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired 
latency threshold in core clock cycles. Loads with latencies greater than this 
value are eligible for counting and latency data reporting. The minimum value 
that may be programmed in this register is 3 (the minimum detectable load 
latency is 4 core clock cycles).

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corre-
sponding IA32_PMCx counter register. This means that both the PEBS_EN_CTRX 
and LL_EN_CTRX bits must be set for the counter(s) of interest. For example, to 
enable load latency on counter IA32_PMC0, the IA32_PEBS_ENABLE register 
must be programmed with the 64-bit value 0x00000001.00000001.

When the load-latency facility is enabled, load operations are randomly selected by 
hardware and tagged to carry information related to data source locality and latency. 
Latency and data source information of tagged loads are updated internally. 

When a PEBS assist occurs, the last update of latency and data source information 
are captured by the assist and written as part of the PEBS record. The PEBS sample 
after value (SAV), specified in PEBS CounterX Reset, operates orthogonally to the 
tagging mechanism. Loads are randomly tagged to collect latency data. The SAV 
18-34 Vol. 3B



PERFORMANCE MONITORING
controls the number of tagged loads with latency information that will be written into 
the PEBS record field by the PEBS assists. The load latency data written to the PEBS 
record will be for the last tagged load operation which retired just before the PEBS 
assist was invoked.

The load-latency information written into a PEBS record (see Table 18-12, bytes 
AFH:98H) consists of:
• Data Linear Address: This is the linear address of the target of the load 

operation.
• Latency Value: This is the elapsed cycles of the tagged load operation between 

dispatch to GO, measured in processor core clock domain.
• Data Source : The encoded value indicates the origin of the data obtained by the 

load instruction. The encoding is shown in Table 18-13. In the descriptions local 
memory refers to system memory physically attached to a processor package, 
and remote memory referrals to system memory physically attached to another 
processor package. 

Table 18-13.  Data Source Encoding for Load Latency Record

Encoding Description

0x0 Unknown L3 cache miss

0x1 Minimal latency core cache hit. This request was satisfied by the L1 data cache.

0x2 Pending core cache HIT. Outstanding core cache miss to same cache-line address 
was already underway.

0x3 This data request was satisfied by the L2.

0x4 L3 HIT. Local or Remote home requests that hit L3 cache in the uncore with no 
coherency actions required (snooping).

0x5 L3 HIT. Local or Remote home requests that hit the L3 cache and was serviced by 
another processor core with a cross core snoop where no modified copies were 
found. (clean).

0x6 L3 HIT. Local or Remote home requests that hit the L3 cache and was serviced by 
another processor core with a cross core snoop where modified copies were found. 
(HITM).

0x7 Reserved

0x8 L3 MISS. Local homed requests that missed the L3 cache and was serviced by 
forwarded data following a cross package snoop where no modified copies found. 
(Remote home requests are not counted).

0x9 Reserved

0xA L3 MISS. Local home requests that missed the L3 cache and was serviced by local 
DRAM (go to shared state).
Vol. 3B 18-35



PERFORMANCE MONITORING
The layout of MSR_PEBS_LD_LAT_THRESHOLD is shown in Figure 18-16.

Bits 15:0 specifies the threshold load latency in core clock cycles. Performance 
events with latencies greater than this value are counted in IA32_PMCx and their 
latency information is reported in the PEBS record. Otherwise, they are ignored. The 
minimum value that may be programmed in this field is 3.

18.6.1.3  Off-core Response Performance Monitoring in the Processor Core
Performance an event using off-core response facility can program any of the four 
IA32_PERFEVTSELx MSR with specific event codes and predefine mask bit value. 
Each event code for off-core response monitoring requires programming an associ-
ated configuration MSR, MSR_OFFCORE_RSP_0. There is only one off-core response 
configuration MSR. Table 18-14 lists the event code, mask value and additional off-
core configuration MSR that must be programmed to count off-core response events 
using IA32_PMCx. 

0xB L3 MISS. Remote home requests that missed the L3 cache and was serviced by 
remote DRAM (go to shared state).

0xC L3 MISS. Local home requests that missed the L3 cache and was serviced by local 
DRAM (go to exclusive state).

0xD L3 MISS. Remote home requests that missed the L3 cache and was serviced by 
remote DRAM (go to exclusive state).

0xE I/O, Request of input/output operation

0xF The request was to un-cacheable memory.

Figure 18-16.  Layout of MSR_PEBS_LD_LAT MSR 

Table 18-13.  Data Source Encoding for Load Latency Record (Contd.)

Encoding Description

1615 0

Reserved

63

THRHLD - Load latency threshold

RESET Value — 0x00000000_00000000
18-36 Vol. 3B



PERFORMANCE MONITORING
The layout of MSR_OFFCORE_RSP_0 is shown in Figure 18-17. Bits 7:0 specifies the 
request type of a transaction request to the uncore. Bits 15:8 specifies the response 
of the uncore subsystem.

Table 18-14.  Off-Core Response Event Encoding

Event code in 
IA32_PERFEVTSELx

Mask Value in 
IA32_PERFEVTSELx Required Off-core Response MSR

0xB7 0x01 MSR_OFFCORE_RSP_0 (address 0x1A6)

Figure 18-17.  Layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 to 
Configure Off-core Response Events

Table 18-15.  MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand and DCU prefetch data reads 
of full and partial cachelines as well as demand data page table 
entry cacheline reads. Does not count L2 data read prefetches or 
instruction fetches.

RESPONSE TYPE — NON_DRAM (R/W)
RESPONSE TYPE — LOCAL_DRAM (R/W)
RESPONSE TYPE — REMOTE_DRAM (R/W)
RESPONSE TYPE — REMOTE_CACHE_FWD (R/W)

8 7 0

RESPONSE TYPE — RESERVED

11 312 1

Reserved

63 249 5610131415

RESPONSE TYPE — OTHER_CORE_HITM (R/W)
RESPONSE TYPE — OTHER_CORE_HIT_SNP (R/W)
RESPONSE TYPE — UNCORE_HIT (R/W)
REQUEST TYPE — OTHER (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 0x00000000_00000000
Vol. 3B 18-37



PERFORMANCE MONITORING
DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for 
ownership (RFO) requests generated by a write to data cacheline. 
Does not count L2 RFO.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction 
cacheline reads. Does not count L2 code read prefetches.

WB 3 (R/W). Counts the number of writeback (modified to exclusive) 
transactions.

PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2 
prefetchers.

PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2 
prefetchers.

PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2 
prefetchers.

OTHER 7 (R/W). Counts one of the following transaction types, including L3 
invalidate, I/O, full or partial writes, WC or non-temporal stores, 
CLFLUSH, Fences, lock, unlock, split lock.

UNCORE_HIT 8 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the 
uncore with no coherency actions required (snooping).

OTHER_CORE_HI
T_SNP

9 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the 
uncore and was serviced by another core with a cross core snoop 
where no modified copies were found (clean).

OTHER_CORE_HI
TM

10 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the 
uncore and was serviced by another core with a cross core snoop 
where modified copies were found (HITM).

Reserved 11 Reserved

REMOTE_CACHE_
FWD

12 (R/W). L3 Miss: local homed requests that missed the L3 cache and 
was serviced by forwarded data following a cross package snoop 
where no modified copies found. (Remote home requests are not 
counted)

REMOTE_DRAM 13 (R/W). L3 Miss: remote home requests that missed the L3 cache and 
were serviced by remote DRAM.

LOCAL_DRAM 14 (R/W). L3 Miss: local home requests that missed the L3 cache and 
were serviced by local DRAM.

NON_DRAM 15 (R/W). Non-DRAM requests that were serviced by IOH.

Table 18-15.  MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition 

Bit Name Offset Description
18-38 Vol. 3B



PERFORMANCE MONITORING
18.6.2 Performance Monitoring Facility in the Uncore
The “uncore” in Intel microarchitecture code name Nehalem refers to subsystems in 
the physical processor package that are shared by multiple processor cores. Some of 
the sub-systems in the uncore include the L3 cache, Intel QuickPath Interconnect link 
logic, and integrated memory controller. The performance monitoring facilities inside 
the uncore operates in the same clock domain as the uncore (U-clock domain), which 
is usually different from the processor core clock domain. The uncore performance 
monitoring facilities described in this section apply to Intel Xeon processor 5500 
series and processors with the following CPUID signatures: 06_1AH, 06_1EH, 
06_1FH (see Chapter 34). An overview of the uncore performance monitoring facili-
ties is described separately. 

The performance monitoring facilities available in the U-clock domain consist of:
• Eight General-purpose counters (MSR_UNCORE_PerfCntr0 through 

MSR_UNCORE_PerfCntr7). The counters are 48 bits wide. Each counter is 
associated with a configuration MSR, MSR_UNCORE_PerfEvtSelx, to specify 
event code, event mask and other event qualification fields. A set of global 
uncore performance counter enabling/overflow/status control MSRs are also 
provided for software.

• Performance monitoring in the uncore provides an address/opcode match MSR 
that provides event qualification control based on address value or QPI command 
opcode.

• One fixed-function counter, MSR_UNCORE_FixedCntr0. The fixed-function 
uncore counter increments at the rate of the U-clock when enabled.
The frequency of the uncore clock domain can be determined from the uncore 
clock ratio which is available in the PCI configuration space register at offset C0H 
under device number 0 and Function 0. 

18.6.2.1  Uncore Performance Monitoring Management Facility
MSR_UNCORE_PERF_GLOBAL_CTRL provides bit fields to enable/disable general-
purpose and fixed-function counters in the uncore. Figure 18-18 shows the layout of 
MSR_UNCORE_PERF_GLOBAL_CTRL for an uncore that is shared by four processor 
cores in a physical package. 
• EN_PCn (bit n, n = 0, 7): When set, enables counting for the general-purpose 

uncore counter MSR_UNCORE_PerfCntr n.
• EN_FC0 (bit 32): When set, enables counting for the fixed-function uncore 

counter MSR_UNCORE_FixedCntr0.
• EN_PMI_COREn (bit n, n = 0, 3 if four cores are present): When set, processor 

core n is programmed to receive an interrupt signal from any interrupt enabled 
uncore counter. PMI delivery due to an uncore counter overflow is enabled by 
setting IA32_DEBUG_CTL.Offcore_PMI_EN to 1.

• PMI_FRZ (bit 63): When set, all U-clock uncore counters are disabled when any 
one of them signals a performance interrupt. Software must explicitly re-enable 
Vol. 3B 18-39



PERFORMANCE MONITORING
the counter by setting the enable bits in MSR_UNCORE_PERF_GLOBAL_CTRL 
upon exit from the ISR.

MSR_UNCORE_PERF_GLOBAL_STATUS provides overflow status of the U-clock 
performance counters in the uncore. This is a read-only register. If an overflow status 
bit is set the corresponding counter has overflowed. The register provides a condition 
change bit (bit 63) which can be quickly checked by software to determine if a signif-
icant change has occurred since the last time the condition change status was 
cleared. Figure 18-19 shows the layout of MSR_UNCORE_PERF_GLOBAL_STATUS.
• OVF_PCn (bit n, n = 0, 7): When set, indicates general-purpose uncore counter 

MSR_UNCORE_PerfCntr n has overflowed.
• OVF_FC0 (bit 32): When set, indicates the fixed-function uncore counter 

MSR_UNCORE_FixedCntr0 has overflowed.
• OVF_PMI (bit 61): When set indicates that an uncore counter overflowed and 

generated an interrupt request. 
• CHG (bit 63): When set indicates that at least one status bit in 

MSR_UNCORE_PERF_GLOBAL_STATUS register has changed state.

MSR_UNCORE_PERF_GLOBAL_OVF_CTRL allows software to clear the status bits in 
the UNCORE_PERF_GLOBAL_STATUS register. This is a write-only register, and indi-
vidual status bits in the global status register are cleared by writing a binary one to 
the corresponding bit in this register. Writing zero to any bit position in this register 
has no effect on the uncore PMU hardware. 

Figure 18-18.  Layout of MSR_UNCORE_PERF_GLOBAL_CTRL MSR 

PMI_FRZ (R/W)
EN_PMI_CORE3 (R/W)
EN_PMI_CORE2 (R/W)
EN_PMI_CORE1 (R/W)

8 7 0

EN_PMI_CORE0 (R/W)

32 348 1

Reserved

63 2431 5662 495051

EN_PC7 (R/W)
EN_PC6 (R/W)
EN_PC5 (R/W)
EN_PC4 (R/W)
EN_PC3 (R/W)
EN_PC2 (R/W)
EN_PC1 (R/W)
EN_PC0 (R/W)

EN_FC0 (R/W)

RESET Value — 0x00000000_00000000
18-40 Vol. 3B



PERFORMANCE MONITORING
Figure 18-20 shows the layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL.

Figure 18-19.  Layout of MSR_UNCORE_PERF_GLOBAL_STATUS MSR 

Figure 18-20.  Layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL MSR 

CHG (R/W)
OVF_PMI (R/W)

8 7 032 3 1

Reserved

63 2431 5662 6061

OVF_PC7 (R/O)
OVF_PC6 (R/O)
OVF_PC5 (R/O)
OVF_PC4 (R/O)
OVF_PC3 (R/O)

OVF_PC2 (R/O)
OVF_PC1 (R/O)
OVF_PC0 (R/O)

OVF_FC0 (R/O)

RESET Value — 0x00000000_00000000

CLR_CHG (WO1)
CLR_OVF_PMI (WO1)

8 7 032 3 1

Reserved

63 2431 5662 6061

CLR_OVF_PC7 (WO1)
CLR_OVF_PC6 (WO1)
CLR_OVF_PC5 (WO1)
CLR_OVF_PC4 (WO1)
CLR_OVF_PC3 (WO1)

CLR_OVF_PC2 (WO1)
CLR_OVF_PC1 (WO1)
CLR_OVF_PC0 (WO1)

CLR_OVF_FC0 (WO1)

RESET Value — 0x00000000_00000000
Vol. 3B 18-41



PERFORMANCE MONITORING
• CLR_OVF_PCn (bit n, n = 0, 7): Set this bit to clear the overflow status for 
general-purpose uncore counter MSR_UNCORE_PerfCntr n. Writing a value other 
than 1 is ignored.

• CLR_OVF_FC0 (bit 32): Set this bit to clear the overflow status for the fixed-
function uncore counter MSR_UNCORE_FixedCntr0. Writing a value other than 1 
is ignored.

• CLR_OVF_PMI (bit 61): Set this bit to clear the OVF_PMI flag in 
MSR_UNCORE_PERF_GLOBAL_STATUS. Writing a value other than 1 is ignored.

• CLR_CHG (bit 63): Set this bit to clear the CHG flag in 
MSR_UNCORE_PERF_GLOBAL_STATUS register. Writing a value other than 1 is 
ignored.

18.6.2.2  Uncore Performance Event Configuration Facility
MSR_UNCORE_PerfEvtSel0 through MSR_UNCORE_PerfEvtSel7 are used to select 
performance event and configure the counting behavior of the respective uncore 
performance counter. Each uncore PerfEvtSel MSR is paired with an uncore perfor-
mance counter. Each uncore counter must be locally configured using the corre-
sponding MSR_UNCORE_PerfEvtSelx and counting must be enabled using the 
respective EN_PCx bit in MSR_UNCORE_PERF_GLOBAL_CTRL. Figure 18-21 shows 
the layout of MSR_UNCORE_PERFEVTSELx.

• Event Select (bits 7:0): Selects the event logic unit used to detect uncore events.
• Unit Mask (bits 15:8) : Condition qualifiers for the event selection logic specified 

in the Event Select field.
• OCC_CTR_RST (bit17): When set causes the queue occupancy counter 

associated with this event to be cleared (zeroed). Writing a zero to this bit will be 
ignored. It will always read as a zero. 

Figure 18-21.  Layout of MSR_UNCORE_PERFEVTSELx MSRs 

31

INV—Invert counter mask
EN—Enable counters

E—Edge detect
OCC_CTR_RST—Rest Queue Occ

8 7 0

Event Select
Counter Mask 

19 1618 15172021222324

Reserved

Unit Mask (UMASK)(CMASK)

63

PMI—Enable PMI on overflow

RESET Value — 0x00000000_00000000
18-42 Vol. 3B



PERFORMANCE MONITORING
• Edge Detect (bit 18): When set causes the counter to increment when a 
deasserted to asserted transition occurs for the conditions that can be expressed 
by any of the fields in this register.

• PMI (bit 20): When set, the uncore will generate an interrupt request when this 
counter overflowed. This request will be routed to the logical processors as 
enabled in the PMI enable bits (EN_PMI_COREx) in the register 
MSR_UNCORE_PERF_GLOBAL_CTRL.

• EN (bit 22): When clear, this counter is locally disabled. When set, this counter is 
locally enabled and counting starts when the corresponding EN_PCx bit in 
MSR_UNCORE_PERF_GLOBAL_CTRL is set.

• INV (bit 23): When clear, the Counter Mask field is interpreted as greater than or 
equal to. When set, the Counter Mask field is interpreted as less than.

• Counter Mask (bits 31:24): When this field is clear, it has no effect on counting. 
When set to a value other than zero, the logical processor compares this field to 
the event counts on each core clock cycle. If INV is clear and the event counts are 
greater than or equal to this field, the counter is incremented by one. If INV is set 
and the event counts are less than this field, the counter is incremented by one. 
Otherwise the counter is not incremented.

Figure 18-22 shows the layout of MSR_UNCORE_FIXED_CTR_CTRL.

• EN (bit 0): When clear, the uncore fixed-function counter is locally disabled. 
When set, it is locally enabled and counting starts when the EN_FC0 bit in 
MSR_UNCORE_PERF_GLOBAL_CTRL is set.

• PMI (bit 2): When set, the uncore will generate an interrupt request when the 
uncore fixed-function counter overflowed. This request will be routed to the 
logical processors as enabled in the PMI enable bits (EN_PMI_COREx) in the 
register MSR_UNCORE_PERF_GLOBAL_CTRL.

Both the general-purpose counters (MSR_UNCORE_PerfCntr) and the fixed-function 
counter (MSR_UNCORE_FixedCntr0) are 48 bits wide. They support both counting 

Figure 18-22.  Layout of MSR_UNCORE_FIXED_CTR_CTRL MSR 

8 7 03 1

Reserved

63 2456

PMI - Generate PMI on overflow
EN - Enable

RESET Value — 0x00000000_00000000
Vol. 3B 18-43



PERFORMANCE MONITORING
and sampling usages. The event logic unit can filter event counts to specific regions 
of code or transaction types incoming to the home node logic.

18.6.2.3  Uncore Address/Opcode Match MSR
The Event Select field [7:0] of MSR_UNCORE_PERFEVTSELx is used to select 
different uncore event logic unit. When the event “ADDR_OPCODE_MATCH“ is 
selected in the Event Select field, software can filter uncore performance events 
according to transaction address and certain transaction responses. The address 
filter and transaction response filtering requires the use of 
MSR_UNCORE_ADDR_OPCODE_MATCH register. The layout is shown in 
Figure 18-23. 

• Addr (bits 39:3): The physical address to match if “MatchSel“ field is set to select 
address match. The uncore performance counter will increment if the lowest 40-
bit incoming physical address (excluding bits 2:0) for a transaction request 
matches bits 39:3.

• Opcode (bits 47:40) : Bits 47:40 allow software to filter uncore transactions 
based on QPI link message class/packed header opcode. These bits are consists 
two sub-fields:

— Bits 43:40 specify the QPI packet header opcode,

— Bits 47:44 specify the QPI message classes.
Table 18-16 lists the encodings supported in the opcode field.

Figure 18-23.  Layout of MSR_UNCORE_ADDR_OPCODE_MATCH MSR 

Table 18-16.  Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCH 

Opcode [43:40] QPI Message Class

Home Request

[47:44] = 0000B

Snoop Response

[47:44] = 0001B

Data Response

[47:44] = 1110B

60

MatchSel—Select addr/Opcode
Opcode—Opcode and Message

3 2 040 394748

Reserved

ADDR

63

ADDR—Bits 39:4 of physical address

RESET Value — 0x00000000_00000000

Opcode
18-44 Vol. 3B



PERFORMANCE MONITORING
• MatchSel (bits 63:61): Software specifies the match criteria according to the 
following encoding:

— 000B: Disable addr_opcode match hardware

— 100B: Count if only the address field matches,

— 010B: Count if only the opcode field matches

— 110B: Count if either opcode field matches or the address field matches

— 001B: Count only if both opcode and address field match

— Other encoding are reserved

18.6.3 Intel Xeon Processor 7500 Series Performance Monitoring 
Facility

The performance monitoring facility in the processor core of Intel Xeon processor 
7500 series are the same as those supported in Intel Xeon processor 5500 series. 
The uncore subsystem in Intel Xeon processor 7500 series are significantly different 
The uncore performance monitoring facility consist of many distributed units associ-
ated with individual logic control units (referred to as boxes) within the uncore 
subsystem. A high level block diagram of the various box units of the uncore is shown 
in Figure 18-24.

Uncore PMUs are programmed via MSR interfaces. Each of the distributed uncore 
PMU units have several general-purpose counters. Each counter requires an associ-
ated event select MSR, and may require additional MSRs to configure sub-event 
conditions. The uncore PMU MSRs associated with each box can be categorized based 
on its functional scope: per-counter, per-box, or global across the uncore. The 
number counters available in each box type are different. Each box generally 
provides a set of MSRs to enable/disable, check status/overflow of multiple counters 
within each box. 

1

DMND_IFETCH 2 2

WB 3 3

PF_DATA_RD 4 4

PF_RFO 5 5

PF_IFETCH 6 6

OTHER 7 7

NON_DRAM 15 15

Table 18-16.  Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCH  

Opcode [43:40] QPI Message Class
Vol. 3B 18-45



PERFORMANCE MONITORING
Table 18-17 summarizes the number MSRs for uncore PMU for each box.

Figure 18-24.  Distributed Units of the Uncore of Intel Xeon Processor 7500 Series

Table 18-17.  Uncore PMU MSR Summary

Box
# of 
Boxes Counters per Box

Counter 
Width

General 
Purpose

Global 
Enable Sub-control MSRs

C-Box 8 6 48 Yes per-box None

S-Box 2 4 48 Yes per-box Match/Mask

B-Box 2 4 48 Yes per-box Match/Mask

M-Box 2 6 48 Yes per-box Yes

R-Box 1 16 ( 2 port, 8 per 
port)

48 Yes per-box Yes

W-Box 1 4 48 Yes per-box None

1 48 No per-box None

U-Box 1 1 48 Yes uncore None

PBox

L3 Cache

PBoxPBox PBox UBoxWBox

RBox BBoxBBoxMBox MBox PBoxPBox

SBox SBox

CBox CBoxCBoxCBox CBoxCBox CBoxCBox

4 Intel QPI Links

SMI Channels

SMI Channels
18-46 Vol. 3B



PERFORMANCE MONITORING
The W-Box provides 4 general-purpose counters, each requiring an event select 
configuration MSR, similar to the general-purpose counters in other boxes. There is 
also a fixed-function counter that increments clockticks in the uncore clock domain. 

For C,S,B,M,R, and W boxes, each box provides an MSR to enable/disable counting, 
configuring PMI of multiple counters within the same box, this is somewhat similar 
the “global control“ programming interface, IA32_PERF_GLOBAL_CTRL, offered in 
the core PMU. Similarly status information and counter overflow control for multiple 
counters within the same box are also provided in C,S,B,M,R, and W boxes.

In the U-Box, MSR_U_PMON_GLOBAL_CTL provides overall uncore PMU 
enable/disable and PMI configuration control. The scope of status information in the 
U-box is at per-box granularity, in contrast to the per-box status information MSR (in 
the C,S,B,M,R, and W boxes) providing status information of individual counter over-
flow. The difference in scope also apply to the overflow control MSR in the U-Box 
versus those in the other Boxes.

The individual MSRs that provide uncore PMU interfaces are listed in Chapter 34, 
Table 34-7 under the general naming style of 
MSR_%box#%_PMON_%scope_function%, where %box#% designates the type of 
box and zero-based index if there are more the one box of the same type, 
%scope_function% follows the examples below:
• Multi-counter enabling MSRs: MSR_U_PMON_GLOBAL_CTL, 

MSR_S0_PMON_BOX_CTL, MSR_C7_PMON_BOX_CTL, etc.
• Multi-counter status MSRs: MSR_U_PMON_GLOBAL_STATUS, 

MSR_S0_PMON_BOX_STATUS, MSR_C7_PMON_BOX_STATUS, etc.
• Multi-counter overflow control MSRs: MSR_U_PMON_GLOBAL_OVF_CTL, 

MSR_S0_PMON_BOX_OVF_CTL, MSR_C7_PMON_BOX_OVF_CTL, etc.
• Performance counters MSRs: the scope is implicitly per counter, e.g. 

MSR_U_PMON_CTR, MSR_S0_PMON_CTR0, MSR_C7_PMON_CTR5, etc
• Event select MSRs: the scope is implicitly per counter, e.g. 

MSR_U_PMON_EVNT_SEL, MSR_S0_PMON_EVNT_SEL0, 
MSR_C7_PMON_EVNT_SEL5, etc

• Sub-control MSRs: the scope is implicitly per-box granularity, e.g. 
MSR_M0_PMON_TIMESTAMP, MSR_R0_PMON_IPERF0_P1, MSR_S1_PMON_MATCH.

Details of uncore PMU MSR bit field definitions can be found in a separate document 
“Intel Xeon Processor 7500 Series Uncore Performance Monitoring Guide“.
Vol. 3B 18-47



PERFORMANCE MONITORING
18.7 PERFORMANCE MONITORING FOR PROCESSORS 
BASED ON INTEL® MICROARCHITECTURE CODE 
NAME WESTMERE

All of the performance monitoring programming interfaces (architectural and non-
architectural core PMU facilities, and uncore PMU) described in Section 18.6 also 
apply to processors based on Intel® microarchitecture code name Westmere. 

Table 18-14 describes a non-architectural performance monitoring event (event code 
0B7H) and associated MSR_OFFCORE_RSP_0 (address 1A6H) in the core PMU. This 
event and a second functionally equivalent offcore response event using event code 
0BBH and MSR_OFFCORE_RSP_1 (address 1A7H) are supported in processors based 
on Intel microarchitecture code name Westmere. The event code and event mask 
definitions of Non-architectural performance monitoring events are listed in Table 
19-14. 

The load latency facility is the same as described in Section 18.6.1.2, but added 
enhancement to provide more information in the data source encoding field of each 
load latency record. The additional information relates to STLB_MISS and LOCK, see 
Table 18-22.

18.7.1 Intel Xeon Processor E7 Family Performance Monitoring 
Facility

The performance monitoring facility in the processor core of the Intel Xeon processor 
E7 family is the same as those supported in the Intel Xeon processor 5600 series2. 
The uncore subsystem in the Intel Xeon processor E7 family is similar to those of the 
Intel Xeon processor 7500 series. The high level construction of the uncore sub-
system is similar to that shown in Figure 18-24, with the additional capability that up 
to 10 C-Box units are supported. 

Table 18-18 summarizes the number MSRs for uncore PMU for each box.

2. Exceptions are indicated for event code 0FH in .Table 19-9; and valid bits of data source 
encoding field of each load latency record is limited to bits 5:4 of Table 18-22.

Table 18-18.  Uncore PMU MSR Summary for Intel Xeon Processor E7 Family

Box
# of 
Boxes Counters per Box

Counter 
Width

General 
Purpose

Global 
Enable Sub-control MSRs

C-Box 10 6 48 Yes per-box None

S-Box 2 4 48 Yes per-box Match/Mask

B-Box 2 4 48 Yes per-box Match/Mask

M-Box 2 6 48 Yes per-box Yes
18-48 Vol. 3B



PERFORMANCE MONITORING
18.8 PERFORMANCE MONITORING FOR PROCESSORS 
BASED ON INTEL® MICROARCHITECTURE CODE 
NAME SANDY BRIDGE

Intel Core i7, i5, i3 processors 2xxx series are based on Intel microarchitecture code 
name Sandy Bridge, this section describes the performance monitoring facilities 
provided in the processor core. The core PMU supports architectural performance 
monitoring capability with version ID 3 (see Section 18.2.2.2) and a host of non-
architectural monitoring capabilities. 

Architectural performance monitoring events and non-architectural monitoring 
events are programmed using fixed counters and programmable counters/event 
select MSRS described in Section 18.2.2.2. 

The core PMU’s capability is similar to those described in Section 18.6.1 and Section 
18.7, with some differences and enhancements relative to Intel microarchitecture 
code name Westmere summarized in Table 18-19.

R-Box 1 16 ( 2 port, 8 per 
port)

48 Yes per-box Yes

W-Box 1 4 48 Yes per-box None

1 48 No per-box None

U-Box 1 1 48 Yes uncore None

Table 18-19.  Core PMU Comparison

Box Sandy Bridge Westmere Comment

# of Fixed counters 
per thread

3 3 Use CPUID to enumerate 
# of counters.

# of general-purpose 
counters per core

8 8

Counter width (R,W) R:48 , W: 32/48 R:48, W:32 See Section 18.2.2.3.

# of programmable 
counters per thread

4 or (8 if a core not shared 
by two threads)

4 Use CPUID to enumerate 
# of counters.

Precise Event Based 
Sampling (PEBS) 
Events

See Table 18-21 See Table 18-10 IA32_PMC4-IA32_PMC7 
do not support PEBS.

Table 18-18.  Uncore PMU MSR Summary for Intel Xeon Processor E7 Family

Box
# of 
Boxes Counters per Box

Counter 
Width

General 
Purpose

Global 
Enable Sub-control MSRs
Vol. 3B 18-49



PERFORMANCE MONITORING
18.8.1 Global Counter Control Facilities In Intel® Microarchitecture 
Code Name Sandy Bridge

The number of general-purpose performance counters visible to a logical processor 
can vary across Processors based on Intel microarchitecture code name Sandy 
Bridge. Software must use CPUID to determine the number performance 
counters/event select registers (See Section 18.2.1.1). 

PEBS-Load Latency See Section 18.8.4.2;
Data source encoding,

STLB miss encoding,

Lock transaction encoding

Data source 
encoding 

PEBS-Precise Store Section 18.8.4.3 No

PEBS-PDIR yes (using precise 
INST_RETIRED.ALL)

No

Off-core Response 
Event

MSR 1A6H and 1A7H; 
Extended request and 
response types

MSR 1A6H and 
1A7H, limited 
response types

Nehalem supports 1A6H 
only.

Figure 18-25.  IA32_PERF_GLOBAL_CTRL MSR in Intel microarchitecture code name 
Sandy Bridge

Table 18-19.  Core PMU Comparison

Box Sandy Bridge Westmere Comment

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable

PMC7_EN (if PMC7 present)

2 1 0

PMC6_EN (if PMC6 present)

3132333435

Reserved

63

PMC5_EN (if PMC5 present)
PMC4_EN (if PMC4 present)
PMC3_EN
PMC2_EN
PMC1_EN

Valid if CPUID.0AH:EAX[15:8] = 8, else reserved.

PMC0_EN

8 7 6 5 4 3
18-50 Vol. 3B



PERFORMANCE MONITORING
Figure 18-10 depicts the layout of IA32_PERF_GLOBAL_CTRL MSR. The enable bits 
(PMC4_EN, PMC5_EN, PMC6_EN, PMC7_EN) corresponding to IA32_PMC4-
IA32_PMC7 are valid only if CPUID.0AH:EAX[15:8] reports a value of ‘8’. If 
CPUID.0AH:EAX[15:8] = 4, attempts to set the invalid bits will cause #GP. 

Each enable bit in IA32_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all 
privilege levels in the respective IA32_PERFEVTSELx or 
IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective 
counters. Counting is enabled if the AND’ed results is true; counting is disabled when 
the result is false.
IA32_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to 
query the overflow condition of each performance counter. The MSR also provides 
additional status bit to indicate overflow conditions when counters are programmed 
for precise-event-based sampling (PEBS). The IA32_PERF_GLOBAL_STATUS MSR 
also provides a ‘sticky bit’ to indicate changes to the state of performance monitoring 
hardware (see Figure 18-26). A value of 1 in each bit of the PMCx_OVF field indicates 
an overflow condition has occurred in the associated counter. 

When a performance counter is configured for PEBS, an overflow condition in the 
counter generates a performance-monitoring interrupt this signals a PEBS event. On 
a PEBS event, the processor stores data records in the buffer area (see Section 
17.4.9), clears the counter overflow status, and sets the OvfBuffer bit in 
IA32_PERF_GLOBAL_STATUS.

Figure 18-26.  IA32_PERF_GLOBAL_STATUS MSR in Intel microarchitecture code 
name Sandy Bridge

62

FIXED_CTR2 Overflow (RO)
FIXED_CTR1 Overflow (RO)
FIXED_CTR0 Overflow (RO)
PMC7_OVF (RO, If PMC7 present)

2 1 0

PMC6_OVF (RO, If PMC6 present)

3132333435

Reserved

63

CondChgd
OvfBuffer

8 7 6 5 4 3

PMC5_OVF (R), If PMC5 present)
PMC4_OVF (RO, If PMC4 present)
PMC3_OVF (RO)
PMC2_OVF (RO)
PMC1_OVF (RO)
PMC0_OVF (RO)

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved
Vol. 3B 18-51



PERFORMANCE MONITORING
IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators 
for general-purpose or fixed-function counters via a single WRMSR (see 
Figure 18-27). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or 

sampling
• Reloading counter values to continue sampling
• Disabling event counting or sampling

18.8.2 Counter Coalescence
In processors based on Intel microarchitecture code name Sandy Bridge, each 
processor core implements eight general-purpose counters. CPUID.0AH:EAX[15:8] 
will report either 4 or 8 depending specific processor’s product features. 

If a processor core is shared by two logical processors, each logical processors can 
access 4 counters (IA32_PMC0-IA32_PMC3). This is the same as in the prior genera-
tion for processors based on Intel microarchitecture code name Nehalem.

If a processor core is not shared by two logical processors, all eight general-purpose 
counters are visible, and CPUID.0AH:EAX[15:8] reports 8. IA32_PMC4-IA32_PMC7 
occupy MSR addresses 0C5H through 0C8H. Each counter is accompanied by an 
event select MSR (IA32_PERFEVTSEL4-IA32_PERFEVTSEL7).

Figure 18-27.  IA32_PERF_GLOBAL_OVF_CTRL MSR in Intel microarchitecture code 
name Sandy Bridge

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC7_ClrOvf (if PMC7 present)

2 1 0

PMC6_ClrOvf (if PMC6 present)

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer

8 7 6 5 4 3

PMC5_ClrOvf (if PMC5 present)
PMC4_ClrOvf (if PMC4 present)
PMC3_ClrOvf
PMC2_ClrOvf
PMC1_ClrOvf
PMC0_ClrOvf

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved
18-52 Vol. 3B



PERFORMANCE MONITORING
If CPUID.0AH:EAX[15:8] report 4, access to IA32_PMC4-IA32_PMC7, IA32_PMC4-
IA32_PMC7 will cause #GP. Writing 1’s to bit position 7:4 of 
IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS, or 
IA32_PERF_GLOBAL_OVF_CTL will also cause #GP.

18.8.3 Full Width Writes to Performance Counters
Processors based on Intel microarchitecture code name Sandy Bridge support full-
width writes to the general-purpose counters, IA32_PMCx. Support of full-width 
writes are enumerated by IA32_PERF_CAPABILITIES.FW_WRITES[13] (see Section 
18.2.2.3).

The default behavior of IA32_PMCx is unchanged, i.e. WRMSR to IA32_PMCx results 
in a sign-extended 32-bit value of the input EAX written into IA32_PMCx. Full-width 
writes must issue WRMSR to a dedicated alias MSR address for each IA32_PMCx.

Software must check the presence of full-width write capability and the presence of 
the alias address IA32_A_PMCx by testing IA32_PERF_CAPABILITIES[13].

18.8.4 PEBS Support in Intel® microarchitecture code name Sandy 
Bridge

Processors based on Intel microarchitecture code name Sandy Bridge support PEBS, 
similar to those offered in prior generation, with several enhanced features. The key 
components and differences of PEBS facility relative to Intel microarchitecture code 
name Westmere is summarized in Table 18-20.

Table 18-20.  PEBS Facility Comparison

Box Sandy Bridge Westmere Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7 

PEBS Buffer 
Programming

 Section 18.6.1.1 Section 18.6.1.1 Unchanged

IA32_PEBS_ENABLE 
Layout

 Figure 18-28 Figure 18-14

PEBS record layout Physical Layout same 
as Table 18-12

Table 18-12 Enhanced fields at 
offsets 98H, A0H, A8H

PEBS Events See Table 18-21 See Table 18-10 IA32_PMC4-IA32_PMC7 
do not support PEBS.

PEBS-Load Latency See Table 18-22 Table 18-13

PEBS-Precise Store yes; see Section 
18.8.4.3

No IA32_PMC3 only

PEBS-PDIR yes No IA32_PMC1 only
Vol. 3B 18-53



PERFORMANCE MONITORING
Only IA32_PMC0 through IA32_PMC3 support PEBS. 

NOTE
PEBS events are only valid when the following fields of 
IA32_PERFEVTSELx are all zero: AnyThread, Edge, Invert, CMask.

In IA32_PEBS_ENABLE MSR, bit 63 is defined as PS_ENABLE: When set, this enables 
IA32_PMC3 to capture precise store information. Only IA32_PMC3 supports the 
precise store facility. In typical usage of PEBS, the bit fields in IA32_PEBS_ENABLE 
are written to when the agent software starts PEBS operation; the enabled bit fields 
should be modified only when re-programming another PEBS event or cleared when 
the agent uses the performance counters for non-PEBS operations. 

18.8.4.1  PEBS Record Format
The layout of PEBS records physically identical to those shown in Table 18-12, but the 
fields at offset 98H, A0H and A8H have been enhanced to support additional PEBS 
capabilities.
• Load/Store Data Linear Address (Offset 98H): This field will contain the linear 

address of the source of the load, or linear address of the destination of the store.

SAMPLING 
Restriction

Small SAV(CountDown) value incur higher 
overhead than prior generation.

Figure 18-28.  Layout of IA32_PEBS_ENABLE MSR 

Table 18-20.  PEBS Facility Comparison

Box Sandy Bridge Westmere Comment

LL_EN_PMC3 (R/W)
LL_EN_PMC2 (R/W)

8 7 0

LL_EN_PMC1 (R/W)

32 333 1

Reserved

63 2431 56343536

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

LL_EN_PMC0 (R/W)

RESET Value — 0x00000000_00000000

62

PS_EN (R/W)
18-54 Vol. 3B



PERFORMANCE MONITORING
• Data Source /Store Status (Offset A0H):When load latency is enabled, this field 
will contain three piece of information (including an encoded value indicating the 
source which satisfied the load operation). The source field encodings are 
detailed in Table 18-13. When precise store is enabled, this field will contain 
information indicating the status of the store, as detailed in Table 19.

• Latency Value/0 (Offset A8H): When load latency is enabled, this field contains 
the latency in cycles to service the load. This field is not meaningful when precise 
store is enabled and will be written to zero in that case. Upon writing the PEBS 
record, microcode clears the overflow status bits in the 
IA32_PERF_GLOBAL_STATUS corresponding to those counters that both 
overflowed and were enabled in the IA32_PEBS_ENABLE register. The status bits 
of other counters remain unaffected.

The number PEBS events has expanded. The list of PEBS events supported in Intel 
microarchitecture code name Sandy Bridge is shown in Table 18-21.

Table 18-21.  PEBS Performance Events for Intel microarchitecture code name Sandy 
Bridge

Event Name Event Select Sub-event UMask

INST_RETIRED C0H PREC_DIST 01H1

UOPS_RETIRED C2H All 01H

Retire_Slots 02H

BR_INST_RETIRED C4H Conditional 01H

Near_Call 02H

All_branches 04H

Near_Return 08H

Not_Taken 10H

Near_Taken 20H

Far_Branches 40H

BR_MISP_RETIRED C5H Conditional 01H

Near_Call 02H

All_branches 04H

Not_Taken 10H

Taken 20H

MEM_TRANS_RETIRED CDH Load_Latency 01H

Precise_Store 02H
Vol. 3B 18-55



PERFORMANCE MONITORING
18.8.4.2  Load Latency Performance Monitoring Facility
The load latency facility in Intel microarchitecture code name Sandy Bridge is similar 
to that in prior microarchitecture. It provides software a means to characterize the 
average load latency to different levels of cache/memory hierarchy. This facility 
requires processor supporting enhanced PEBS record format in the PEBS buffer, see 
Table 18-12 and Section 18.8.4.1. The facility measures latency from micro-opera-
tion (uop) dispatch to when data is globally observable (GO).

To use this feature software must assure:
• One of the IA32_PERFEVTSELx MSR is programmed to specify the event unit 

MEM_TRANS_RETIRED, and the LATENCY_ABOVE_THRESHOLD event mask must be 
specified (IA32_PerfEvtSelX[15:0] = 0x1CDH). The corresponding counter 
IA32_PMCx will accumulate event counts for architecturally visible loads which 
exceed the programmed latency threshold specified separately in a MSR. Stores 
are ignored when this event is programmed. The CMASK or INV fields of the 
IA32_PerfEvtSelX register used for counting load latency must be 0. Writing 
other values will result in undefined behavior. 

MEM_UOP_RETIRED D0H Load 01H

Store 02H

STLB_Miss 10H

Lock 20H

SPLIT 40H

ALL 80H

MEM_LOAD_UOPS_RETIRED D1H L1_Hit 01H

L2_Hit 02H

L3_Hit 04H

Hit_LFB 40H

MEM_LOAD_UOPS_LLC_HIT_RETIRED D2H XSNP_Miss 01H

XSNP_Hit 02H

XSNP_Hitm 04H

XSNP_None 08H

MEM_LOAD_UOPS_MISC_RETIRED D4H LLC_Miss 02H

NOTES:
1. Only available on IA32_PMC1.

Table 18-21.  PEBS Performance Events for Intel microarchitecture (Contd.)code name 
Sandy Bridge

Event Name Event Select Sub-event UMask
18-56 Vol. 3B



PERFORMANCE MONITORING
• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired 
latency threshold in core clock cycles. Loads with latencies greater than this 
value are eligible for counting and latency data reporting. The minimum value 
that may be programmed in this register is 3 (the minimum detectable load 
latency is 4 core clock cycles).

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corre-
sponding IA32_PMCx counter register. This means that both the PEBS_EN_CTRX 
and LL_EN_CTRX bits must be set for the counter(s) of interest. For example, to 
enable load latency on counter IA32_PMC0, the IA32_PEBS_ENABLE register 
must be programmed with the 64-bit value 0x00000001.00000001.

• When Load latency event is enabled, no other PEBS event can be configured with 
other counters.

When the load-latency facility is enabled, load operations are randomly selected by 
hardware and tagged to carry information related to data source locality and latency. 
Latency and data source information of tagged loads are updated internally. The 
MEM_TRANS_RETIRED event for load latency counts only tagged retired loads. If a 
load is cancelled it will not be counted and the internal state of the load latency 
facility will not be updated. In this case the hardware will tag the next available load.

When a PEBS assist occurs, the last update of latency and data source information 
are captured by the assist and written as part of the PEBS record. The PEBS sample 
after value (SAV), specified in PEBS CounterX Reset, operates orthogonally to the 
tagging mechanism. Loads are randomly tagged to collect latency data. The SAV 
controls the number of tagged loads with latency information that will be written into 
the PEBS record field by the PEBS assists. The load latency data written to the PEBS 
record will be for the last tagged load operation which retired just before the PEBS 
assist was invoked.

The physical layout of the PEBS records is the same as shown in Table 18-12. The 
specificity of Data Source entry at offset A0H has been enhanced to report three 
piece of information. 

The layout of MSR_PEBS_LD_LAT_THRESHOLD is the same as shown in 
Figure 18-16.

Table 18-22.  Layout of Data Source Field of Load Latency Record

Field Position Description

Source 3:0 See Table 18-13

STLB_MISS 4 0: The load did not miss the STLB (hit the DTLB or STLB).

1: The load missed the STLB.

Lock 5 0: The load was not part of a locked transaction.

1: The load was part of a locked transaction.

Reserved 63:6
Vol. 3B 18-57



PERFORMANCE MONITORING
18.8.4.3  Precise Store Facility
Processors based on Intel microarchitecture code name Sandy Bridge offer a precise 
store capability that complements the load latency facility. It provides a means to 
profile store memory references in the system.

Precise stores leverage the PEBS facility and provide additional information about 
sampled stores. Having precise memory reference events with linear address infor-
mation for both loads and stores can help programmers improve data structure 
layout, eliminate remote node references, and identify cache-line conflicts in NUMA 
systems.

Only IA32_PMC3 can be used to capture precise store information. After enabling this 
facility, counter overflows will initiate the generation of PEBS records as previously 
described in PEBS. Upon counter overflow hardware captures the linear address and 
other status information of the next store that retires. This information is then 
written to the PEBS record.

To enable the precise store facility, software must complete the following steps. 
Please note that the precise store facility relies on the PEBS facility, so the PEBS 
configuration requirements must be completed before attempting to capture precise 
store information.
• Complete the PEBS configuration steps.
• Program the MEM_TRANS_RETIRED.PRECISE_STORE event in 

IA32_PERFEVTSEL3. Only counter 3 (IA32_PMC3) supports collection of precise 
store information. 

• Set IA32_PEBS_ENABLE[3] and IA32_PEBS_ENABLE[63]. This enables 
IA32_PMC3 as a PEBS counter and enables the precise store facility, respectively.

The precise store information written into a PEBS record affects entries at offset 98H, 
A0H and A8H of Table 18-12. The specificity of Data Source entry at offset A0H has 
been enhanced to report three piece of information. 

Table 18-23.  Layout of Precise Store Information In PEBS Record

Field Offset Description

Store Data 
Linear Address

98H The linear address of the destination of the store.

Store Status A0H DCU Hit (Bit 0): The store hit the data cache closest to the core (lowest 
latency cache) if this bit is set, otherwise the store missed the data 
cache.

STLB Miss (bit 4): The store missed the STLB if set, otherwise the store 
hit the STLB

Locked Access (bit 5): The store was part of a locked access if set, 
otherwise the store was not part of a locked access.

Reserved A8H Reserved
18-58 Vol. 3B



PERFORMANCE MONITORING
18.8.4.4  Precise Distribution of Instructions Retired (PDIR) 
Upon triggering a PEBS assist, there will be a finite delay between the time the 
counter overflows and when the microcode starts to carry out its data collection obli-
gations. INST_RETIRED is a very common event that is used to sample where perfor-
mance bottleneck happened and to help identify its location in instruction address 
space. Even if the delay is constant in core clock space, it invariably manifest as vari-
able “skids” in instruction address space. This creates a challenge for programmers 
to profile a workload and pinpoint the location of bottlenecks.

The core PMU in processors based on Intel microarchitecture code name Sandy 
Bridge include a facility referred to as precise distribution of Instruction Retired 
(PDIR). 

The PDIR facility mitigates the “skid“ problem by providing an early indication of 
when the INST_RETIRED counter is about to overflow, allowing the machine to more 
precisely trap on the instruction that actually caused the counter overflow thus elim-
inating skid.

PDIR applies only to the INST_RETIRED.PREC_DIST precise event, and must use 
IA32_PMC1 with PerfEvtSel1 property configured and bit 1 in the 
IA32_PEBS_ENABLE set to 1. INST_RETIRED.PREC_DIST is a non-architectural 
performance event, it is not supported in prior generation microarchitectures. Addi-
tionally, current implementation of PDIR limits tool to quiesce the rest of the 
programmable counters in the core when PDIR is active. 

18.8.5 Off-core Response Performance Monitoring 
The core PMU in processors based on Intel microarchitecture code name Sandy 
Bridge provides off-core response facility similar to prior generation. Off-core 
response can be programed only with a specific pair of event select and counter MSR, 
and with specific event codes and predefine mask bit value in a dedicated MSR to 
specify attributes of the off-core transaction. Two event codes are dedicated for off-
core response event programming. Each event code for off-core response monitoring 
requires programming an associated configuration MSR, MSR_OFFCORE_RSP_x. 
Table 18-24 lists the event code, mask value and additional off-core configuration 
MSR that must be programmed to count off-core response events using IA32_PMCx. 

The layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 are shown in 
Figure 18-29 and Figure 18-30. Bits 15:0 specifies the request type of a transaction 

Table 18-24.  Off-Core Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0 0xB7 0x01 MSR_OFFCORE_RSP_0 (address 0x1A6)

PMC3 0xBB 0x01 MSR_OFFCORE_RSP_1 (address 0x1A7)
Vol. 3B 18-59



PERFORMANCE MONITORING
request to the uncore. Bits 30:16 specifies supplier information, bits 37:31 specifies 
snoop response information.

Figure 18-29.  Request_Type Fields for MSR_OFFCORE_RSP_x 

Table 18-25.  MSR_OFFCORE_RSP_x Request_Type Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand and DCU prefetch data reads of 
full and partial cachelines as well as demand data page table entry 
cacheline reads. Does not count L2 data read prefetches or 
instruction fetches.

DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for 
ownership (RFO) requests generated by a write to data cacheline. 
Does not count L2 RFO prefetches.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction 
cacheline reads. Does not count L2 code read prefetches.

WB 3 (R/W). Counts the number of writeback (modified to exclusive) 
transactions.

PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2 
prefetchers.

PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2 
prefetchers.

RESPONSE TYPE — Other (R/W)
RESERVED 

8 7 0

REQUEST TYPE — STRM_ST (R/W)

11 312 1

Reserved

63 249 5610131415

REQUEST TYPE — BUS_LOCKS (R/W)
REQUEST TYPE — PF_LLC_IFETCH (R/W)
REQUEST TYPE — PF_LLC_RFO (R/W)
REQUEST TYPE — PF_LLC_DATA_RD (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 0x00000000_00000000

37

See Figure 18-30
18-60 Vol. 3B



PERFORMANCE MONITORING
To properly program this extra register, software must set at least one request type 
bit and a valid response type pattern.  Otherwise, the event count reported will be 
zero.  It is permissible and useful to set multiple request and response type bits in 
order to obtain various classes of off-core response events. Although 
MSR_OFFCORE_RSP_x allow an agent software to program numerous combinations 
that meet the above guideline, not all combinations produce meaningful data.

PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2 prefetchers.

PF_LLC_DATA_RD 7 (R/W). L2 prefetcher to L3 for loads.

PF_LLC_RFO 8 (R/W). RFO requests generated by L2 prefetcher 

PF_LLC_IFETCH 9 (R/W). L2 prefetcher to L3 for instruction fetches.

BUS_LOCKS 10 (R/W). Bus lock and split lock requests

STRM_ST 11 (R/W). Streaming store requests

OTHER 15 (R/W). Any other request that crosses IDI, including I/O.

Figure 18-30.  Response_Supplier and Snoop Info Fields for MSR_OFFCORE_RSP_x 

Table 18-25.  MSR_OFFCORE_RSP_x Request_Type Field Definition (Contd.)

Bit Name Offset Description

RESPONSE TYPE — NON_DRAM (R/W)
RSPNS_SNOOP — HITM (R/W)

16

RSPNS_SNOOP — HIT_FWD

33 1934 17

Reserved

63 182031 212232353637

RSPNS_SNOOP — HIT_NO_FWD (R/W)
RSPNS_SNOOP — SNP_MISS (R/W)
RSPNS_SNOOP — SNP_NOT_NEEDED (R/W)
RSPNS_SNOOP — SNPl_NONE (R/W)
RSPNS_SUPPLIER — RESERVED

RSPNS_SUPPLIER — LLC_HITF (R/W)
RSPNS_SUPPLIER — LLC_HITS (R/W)
RSPNS_SUPPLIER — LLC_HITE (R/W)
RSPNS_SUPPLIER — LLC_HITM (R/W)
RSPNS_SUPPLIER — No_SUPP (R/W)
RSPNS_SUPPLIER — ANY (R/W)

RESET Value — 0x00000000_00000000

RSPNS_SUPPLIER — Local
Vol. 3B 18-61



PERFORMANCE MONITORING
To specify a complete offcore response filter, software must properly program bits in 
the request and response type fields. A valid request type must have at least one bit 
set in the non-reserved bits of 15:0. A valid response type must be a non-zero value 
of the following expression:

ANY | [(‘OR’ of Supplier Info Bits) & (‘OR’ of Snoop Info Bits)]

If “ANY“ bit is set, the supplier and snoop info bits are ignored.

Table 18-26.  MSR_OFFCORE_RSP_x Response Supplier Info Field Definition

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier 
Info

NO_SUPP 17 (R/W). No Supplier Information available

LLC_HITM 18 (R/W). M-state initial lookup stat in L3.

LLC_HITE 19 (R/W). E-state

LLC_HITS 20 (R/W). S-state

LLC_HITF 21 (R/W). F-state

LOCAL 22 (R/W). Local DRAM Controller

Reserved 30:23 Reserved

Table 18-27.  MSR_OFFCORE_RSP_x Snoop Info Field Definition

Subtype Bit Name Offset Description

Snoop 
Info

SNP_NONE 31 (R/W). No details on snoop-related information

SNP_NOT_NEEDED 32 (R/W). No snoop was needed to satisfy the request.

SNP_MISS 33 (R/W). A snoop was needed and it missed all snooped 
caches:

-For LLC Hit, ReslHitl was returned by all cores

-For LLC Miss, Rspl was returned by all sockets and data 
was returned from DRAM.
18-62 Vol. 3B



PERFORMANCE MONITORING
18.8.6 Uncore Performance Monitoring Facilities In Intel® Core i7, i5, 
i3 Processors 2xxx Series

The uncore sub-system in Intel Core i7, i5, i3 processors 2xxx Series provides a 
unified L3 that can support up to four processor cores. The L3 cache consists multiple 
slices, each slice interface with a processor via a coherence engine, referred to as a 
C-Box. Each C-Box provides dedicated facility of MSRs to select uncore performance 
monitoring events and each C-Box event select MSR is paired with a counter register, 
similar in style as those described in Section 18.6.2.2. The layout of the event select 
MSRs in the C-Boxes are shown in Figure 18-31.

SNP_NO_FWD 34 (R/W). A snoop was needed and it hits in at least one 
snooped cache. Hit denotes a cache-line was valid before 
snoop effect. This includes:

-Snoop Hit w/ Invalidation (LLC Hit, RFO)

-Snoop Hit, Left Shared (LLC Hit/Miss, IFetch/Data_RD)

-Snoop Hit w/ Invalidation and No Forward (LLC Miss, RFO 
Hit S)

In the LLC Miss case, data is returned from DRAM.

SNP_FWD 35 (R/W). A snoop was needed and data was forwarded 
from a remote socket. This includes:

-Snoop Forward Clean, Left Shared (LLC Hit/Miss, 
IFetch/Data_RD/RFT).

HITM 36 (R/W). A snoop was needed and it HitM-ed in local or 
remote cache. HitM denotes a cache-line was in modified 
state before effect as a results of snoop. This includes:

-Snoop HitM w/ WB (LLC miss, IFetch/Data_RD)

-Snoop Forward Modified w/ Invalidation (LLC Hit/Miss, 
RFO)

-Snoop MtoS (LLC Hit, IFetch/Data_RD).

NON_DRAM 37 (R/W). Target was non-DRAM system address. This 
includes MMIO transactions.

Table 18-27.  MSR_OFFCORE_RSP_x Snoop Info Field Definition (Contd.)

Subtype Bit Name Offset Description
Vol. 3B 18-63



PERFORMANCE MONITORING
At the uncore domain level, there is a master set of control MSRs that centrally 
manages all the performance monitoring facility of uncore units. Figure 18-32 shows 
the layout of the uncore domain global control 

MSR bit 31 of MSR_UNC_PERF_GLOBAL_CTRL provides the capability to freeze all 
uncore counters when an overflow condition in a unit counter. When set and upon a 
counter overflow, the uncore PMU logic will clear the global enable bit, bit 29.

Additionally, there is also a fixed counter, counting uncore clockticks, for the uncore 
domain. Table 18-28 summarizes the number MSRs for uncore PMU for each box.

Figure 18-31.  Layout of MSR_UNC_CBO_N_PERFEVTSELx MSR for C-Box N

Figure 18-32.  Layout of MSR_UNC_PERF_GLOBAL_CTRL MSR for Uncore

28

INV—Invert counter mask
EN—Enable counters

E—Edge detect

8 7 0

Event Select
Counter Mask 

19 1618 15172021222324

Reserved

Unit Mask (UMASK)(CMASK)

63

PMI—Enable PMI on overflow

RESET Value — 0x00000000_00000000

FREEZE—Freeze counters

EN—Enable all uncore counters

02829303132

Reserved

63

PMI—Wake cores on PMI

RESET Value — 0x00000000_00000000

4 3 2 1

Core Select — core 3 select
Core Select — core 2 select
Core Select — core 1select
Core Select — core 0 select
18-64 Vol. 3B



PERFORMANCE MONITORING
18.8.6.1  Uncore Performance Monitoring Events
There are certain restrictions on the uncore performance counters in each C-Box. 
Specifically,
• Occupancy events are supported only with counter 0 but not counter 1.

Other uncore C-Box events can be programmed with either counter 0 or 1.

The C-Box uncore performance events described in Table 19-6 can collect perfor-
mance characteristics of transactions initiated by processor core. In that respect, 
they are similar to various sub-events in the OFFCORE_RESPONSE family of perfor-
mance events in the core PMU. Information such as data supplier locality (LLC 
HIT/MISS) and snoop responses can be collected via OFFCORE_RESPONSE and qual-
ified on a per-thread basis. 

On the other hand, uncore performance event logic can not associate its counts with 
the same level of per-thread qualification attributes as the core PMU events can. 
Therefore, whenever similar event programming capabilities are available from both 
core PMU and uncore PMU, the recommendation is that utilizing the core PMU events 
may be less affected by artifacts, complex interactions and other factors.

18.8.7 Next Generation Intel Xeon Processor Performance 
Monitoring Facility

The Next Generation Intel Xeon processor is based on Intel microarchitecture code 
name Sandy Bridge. The performance monitoring facilities in the processor core 
generally are the same as those described in Section 18.8 through Section 18.8.5. 
However, the MSR_OFFCORE_RSP_0/MSR_OFFCORE_RSP_1 Response Supplier Info 
field shown in Table 18-26 applies to Intel Core Processors with CPUID signature of 
DisplayFamily_DisplayModel encoding of 06_2AH; next generation Intel Xeon 
processor with CPUID signature of DisplayFamily_DisplayModel encoding of 06_2DH 
supports an additional field for remote DRAM controller shown in Table 18-29. Addi-
tionally, the are some small differences in the non-architectural performance moni-
toring events (see Table 19-4).

Table 18-28.  Uncore PMU MSR Summary

Box
# of 
Boxes Counters per Box

Counter 
Width

General 
Purpose

Global 
Enable Comment

C-Box Up to 4 2 44 Yes Per-box

NCU 1 48 No Uncore
Vol. 3B 18-65



PERFORMANCE MONITORING
18.9 NEXT GENERATION INTEL CORE PROCESSOR 
PERFORMANCE MONITORING FACILITY

The Next Generation Intel Core processor is based on Intel microarchitecture code 
name Ivy Bridge. The performance monitoring facilities in the processor core gener-
ally are the same as those described in Section 18.8 through Section 18.8.5. The 
non-architectural performance monitoring events supported by the processor core 
are listed in Table 19-4.

18.10 PERFORMANCE MONITORING (PROCESSORS 
BASED ON INTEL NETBURST® 
MICROARCHITECTURE)

The performance monitoring mechanism provided in Pentium 4 and Intel Xeon 
processors is different from that provided in the P6 family and Pentium processors. 
While the general concept of selecting, filtering, counting, and reading performance 
events through the WRMSR, RDMSR, and RDPMC instructions is unchanged, the 
setup mechanism and MSR layouts are incompatible with the P6 family and Pentium 
processor mechanisms. Also, the RDPMC instruction has been enhanced to read the 
the additional performance counters provided in the Pentium 4 and Intel Xeon 
processors and to allow faster reading of counters.

The event monitoring mechanism provided with the Pentium 4 and Intel Xeon 
processors (based on Intel NetBurst microarchitecture) consists of the following facil-
ities:

Table 18-29.  MSR_OFFCORE_RSP_x Supplier Info Field Definition for Next Generation 
Intel Xeon Processor

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier 
Info

NO_SUPP 17 (R/W). No Supplier Information available

LLC_HITM 18 (R/W). M-state initial lookup stat in L3.

LLC_HITE 19 (R/W). E-state

LLC_HITS 20 (R/W). S-state

LLC_HITF 21 (R/W). F-state

LOCAL 22 (R/W). Local DRAM Controller

Remote 30:23 (R/W): Remote DRAM Controller (either all 0s or all 1s)
18-66 Vol. 3B



PERFORMANCE MONITORING
• The IA32_MISC_ENABLE MSR, which indicates the availability in an Intel 64 or 
IA-32 processor of the performance monitoring and precise event-based 
sampling (PEBS) facilities.

• Event selection control (ESCR) MSRs for selecting events to be monitored with 
specific performance counters. The number available differs by family and model 
(43 to 45).

• 18 performance counter MSRs for counting events.
• 18 counter configuration control (CCCR) MSRs, with one CCCR associated with 

each performance counter. CCCRs sets up an associated performance counter for 
a specific method of counting.

• A debug store (DS) save area in memory for storing PEBS records.
• The IA32_DS_AREA MSR, which establishes the location of the DS save area.
• The debug store (DS) feature flag (bit 21) returned by the CPUID instruction, 

which indicates the availability of the DS mechanism.
• The MSR_PEBS_ENABLE MSR, which enables the PEBS facilities and replay 

tagging used in at-retirement event counting.
• A set of predefined events and event metrics that simplify the setting up of the 

performance counters to count specific events.

Table 18-30 lists the performance counters and their associated CCCRs, along with 
the ESCRs that select events to be counted for each performance counter. Predefined 
event metrics and events are listed in Chapter 19, “Performance-Monitoring Events.”

Table 18-30.  Performance Counter MSRs and Associated CCCR and 
ESCR MSRs (Pentium 4 and Intel Xeon Processors)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr

MSR_BPU_COUNTER0 0 300H MSR_BPU_CCCR0 360H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H

MSR_BPU_COUNTER1 1 301H MSR_BPU_CCCR1 361H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H
Vol. 3B 18-67



PERFORMANCE MONITORING
MSR_BPU_COUNTER2 2 302H MSR_BPU_CCCR2 362H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H

MSR_BPU_COUNTER3 3 303H MSR_BPU_CCCR3 363H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H

MSR_MS_COUNTER0 4 304H MSR_MS_CCCR0 364H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H

MSR_MS_COUNTER1 5 305H MSR_MS_CCCR1 365H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H

MSR_MS_COUNTER2 6 306H MSR_MS_CCCR2 366H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H

MSR_MS_COUNTER3 7 307H MSR_MS_CCCR3 367H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H

MSR_FLAME_
COUNTER0

8 308H MSR_FLAME_CCCR0 368H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

MSR_FLAME_
COUNTER1

9 309H MSR_FLAME_CCCR1 369H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

MSR_FLAME_
COUNTER2

10 30AH MSR_FLAME_CCCR2 36AH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

MSR_FLAME_
COUNTER3

11 30BH MSR_FLAME_CCCR3 36BH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

Table 18-30.  Performance Counter MSRs and Associated CCCR and 
ESCR MSRs (Pentium 4 and Intel Xeon Processors) (Contd.)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr
18-68 Vol. 3B



PERFORMANCE MONITORING
The types of events that can be counted with these performance monitoring facilities 
are divided into two classes: non-retirement events and at-retirement events.
• Non-retirement events (see Table 19-16) are events that occur any time during 

instruction execution (such as bus transactions or cache transactions).

MSR_IQ_COUNTER0 12 30CH MSR_IQ_CCCR0 36CH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER1 13 30DH MSR_IQ_CCCR1 36DH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER2 14 30EH MSR_IQ_CCCR2 36EH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

MSR_IQ_COUNTER3 15 30FH MSR_IQ_CCCR3 36FH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6

 0
2
1

3B9H
3CDH
3E1H

3BBH
3BDH
3CBH

MSR_IQ_COUNTER4 16 310H MSR_IQ_CCCR4 370H MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER5 17 311H MSR_IQ_CCCR5 371H MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

NOTES:
1. MSR_IQ_ESCR0 and MSR_IQ_ESCR1 are available only on early processor builds (family 0FH, mod-

els 01H-02H). These MSRs are not available on later versions.

Table 18-30.  Performance Counter MSRs and Associated CCCR and 
ESCR MSRs (Pentium 4 and Intel Xeon Processors) (Contd.)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr
Vol. 3B 18-69



PERFORMANCE MONITORING
• At-retirement events (see Table 19-17) are events that are counted at the 
retirement stage of instruction execution, which allows finer granularity in 
counting events and capturing machine state. 
The at-retirement counting mechanism includes facilities for tagging μops that 
have encountered a particular performance event during instruction execution. 
Tagging allows events to be sorted between those that occurred on an execution 
path that resulted in architectural state being committed at retirement as well as 
events that occurred on an execution path where the results were eventually 
cancelled and never committed to architectural state (such as, the execution of a 
mispredicted branch).

The Pentium 4 and Intel Xeon processor performance monitoring facilities support 
the three usage models described below. The first two models can be used to count 
both non-retirement and at-retirement events; the third model is used to count a 
subset of at-retirement events:
• Event counting — A performance counter is configured to count one or more 

types of events. While the counter is counting, software reads the counter at 
selected intervals to determine the number of events that have been counted 
between the intervals.

• Non-precise event-based sampling — A performance counter is configured to 
count one or more types of events and to generate an interrupt when it 
overflows. To trigger an overflow, the counter is preset to a modulus value that 
will cause the counter to overflow after a specific number of events have been 
counted. 
When the counter overflows, the processor generates a performance monitoring 
interrupt (PMI). The interrupt service routine for the PMI then records the return 
instruction pointer (RIP), resets the modulus, and restarts the counter. Code 
performance can be analyzed by examining the distribution of RIPs with a tool 
like the VTune™ Performance Analyzer.

• Precise event-based sampling (PEBS) — This type of performance 
monitoring is similar to non-precise event-based sampling, except that a 
memory buffer is used to save a record of the architectural state of the processor 
whenever the counter overflows. The records of architectural state provide 
additional information for use in performance tuning. Precise event-based 
sampling can be used to count only a subset of at-retirement events.

The following sections describe the MSRs and data structures used for performance 
monitoring in the Pentium 4 and Intel Xeon processors.

18.10.1 ESCR MSRs
The 45 ESCR MSRs (see Table 18-30) allow software to select specific events to be 
countered. Each ESCR is usually associated with a pair of performance counters (see 
Table 18-30) and each performance counter has several ESCRs associated with it 
(allowing the events counted to be selected from a variety of events).
18-70 Vol. 3B



PERFORMANCE MONITORING
Figure 18-33 shows the layout of an ESCR MSR. The functions of the flags and fields 
are:
• USR flag, bit 2 — When set, events are counted when the processor is operating 

at a current privilege level (CPL) of 1, 2, or 3. These privilege levels are generally 
used by application code and unprotected operating system code.

• OS flag, bit 3 — When set, events are counted when the processor is operating 
at CPL of 0. This privilege level is generally reserved for protected operating 
system code. (When both the OS and USR flags are set, events are counted at all 
privilege levels.)

• Tag enable, bit 4 — When set, enables tagging of μops to assist in at-retirement 
event counting; when clear, disables tagging. See Section 18.10.6, “At-
Retirement Counting.”

• Tag value field, bits 5 through 8 — Selects a tag value to associate with a μop 
to assist in at-retirement event counting.

• Event mask field, bits 9 through 24 — Selects events to be counted from the 
event class selected with the event select field.

• Event select field, bits 25 through 30) — Selects a class of events to be 
counted. The events within this class that are counted are selected with the event 
mask field.

When setting up an ESCR, the event select field is used to select a specific class of 
events to count, such as retired branches. The event mask field is then used to select 
one or more of the specific events within the class to be counted. For example, when 
counting retired branches, four different events can be counted: branch not taken 
predicted, branch not taken mispredicted, branch taken predicted, and branch taken 
mispredicted. The OS and USR flags allow counts to be enabled for events that occur 

Figure 18-33.  Event Selection Control Register (ESCR) for Pentium 4 
and Intel Xeon Processors without Intel HT Technology Support

31 24 8 0123492530

63 32

Reserved

Event Mask
Event
Select

USR
OS

5

Tag Enable

Tag 
Value

Reserved
Vol. 3B 18-71



PERFORMANCE MONITORING
when operating system code and/or application code are being executed. If neither 
the OS nor USR flag is set, no events will be counted.

The ESCRs are initialized to all 0s on reset. The flags and fields of an ESCR are config-
ured by writing to the ESCR using the WRMSR instruction. Table 18-30 gives the 
addresses of the ESCR MSRs. 

Writing to an ESCR MSR does not enable counting with its associated performance 
counter; it only selects the event or events to be counted. The CCCR for the selected 
performance counter must also be configured. Configuration of the CCCR includes 
selecting the ESCR and enabling the counter.

18.10.2 Performance Counters
The performance counters in conjunction with the counter configuration control 
registers (CCCRs) are used for filtering and counting the events selected by the 
ESCRs. The Pentium 4 and Intel Xeon processors provide 18 performance counters 
organized into 9 pairs. A pair of performance counters is associated with a particular 
subset of events and ESCR’s (see Table 18-30). The counter pairs are partitioned into 
four groups:
• The BPU group, includes two performance counter pairs:

— MSR_BPU_COUNTER0 and MSR_BPU_COUNTER1.

— MSR_BPU_COUNTER2 and MSR_BPU_COUNTER3.
• The MS group, includes two performance counter pairs:

— MSR_MS_COUNTER0 and MSR_MS_COUNTER1.

— MSR_MS_COUNTER2 and MSR_MS_COUNTER3.
• The FLAME group, includes two performance counter pairs:

— MSR_FLAME_COUNTER0 and MSR_FLAME_COUNTER1.

— MSR_FLAME_COUNTER2 and MSR_FLAME_COUNTER3.
• The IQ group, includes three performance counter pairs:

— MSR_IQ_COUNTER0 and MSR_IQ_COUNTER1.

— MSR_IQ_COUNTER2 and MSR_IQ_COUNTER3.

— MSR_IQ_COUNTER4 and MSR_IQ_COUNTER5.

The MSR_IQ_COUNTER4 counter in the IQ group provides support for the PEBS. 

Alternate counters in each group can be cascaded: the first counter in one pair can 
start the first counter in the second pair and vice versa. A similar cascading is 
possible for the second counters in each pair. For example, within the BPU group of 
counters, MSR_BPU_COUNTER0 can start MSR_BPU_COUNTER2 and vice versa, and 
MSR_BPU_COUNTER1 can start MSR_BPU_COUNTER3 and vice versa (see Section 
18.10.5.6, “Cascading Counters”). The cascade flag in the CCCR register for the 
performance counter enables the cascading of counters.
18-72 Vol. 3B



PERFORMANCE MONITORING
Each performance counter is 40-bits wide (see Figure 18-34). The RDPMC instruction 
has been enhanced in the Pentium 4 and Intel Xeon processors to allow reading of 
either the full counter-width (40-bits) or the low 32-bits of the counter. Reading the 
low 32-bits is faster than reading the full counter width and is appropriate in situa-
tions where the count is small enough to be contained in 32 bits.

The RDPMC instruction can be used by programs or procedures running at any privi-
lege level and in virtual-8086 mode to read these counters. The PCE flag in control 
register CR4 (bit 8) allows the use of this instruction to be restricted to only programs 
and procedures running at privilege level 0.

The RDPMC instruction is not serializing or ordered with other instructions. Thus, it 
does not necessarily wait until all previous instructions have been executed before 
reading the counter. Similarly, subsequent instructions may begin execution before 
the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the 
performance counters, using the RDMSR and WRMSR instructions. A secure oper-
ating system would clear the PCE flag during system initialization to disable direct 
user access to the performance-monitoring counters, but provide a user-accessible 
programming interface that emulates the RDPMC instruction.

Some uses of the performance counters require the counters to be preset before 
counting begins (that is, before the counter is enabled). This can be accomplished by 
writing to the counter using the WRMSR instruction. To set a counter to a specified 
number of counts before overflow, enter a 2s complement negative integer in the 
counter. The counter will then count from the preset value up to -1 and overflow. 
Writing to a performance counter in a Pentium 4 or Intel Xeon processor with the 
WRMSR instruction causes all 40 bits of the counter to be written.

18.10.3 CCCR MSRs
Each of the 18 performance counters in a Pentium 4 or Intel Xeon processor has one 
CCCR MSR associated with it (see Table 18-30). The CCCRs control the filtering and 
counting of events as well as interrupt generation. Figure 18-35 shows the layout of 
an CCCR MSR. The functions of the flags and fields are as follows:

Figure 18-34.  Performance Counter (Pentium 4 and Intel Xeon Processors)

63 32

Reserved

31 0

Counter

39

Counter
Vol. 3B 18-73



PERFORMANCE MONITORING
• Enable flag, bit 12 — When set, enables counting; when clear, the counter is 
disabled. This flag is cleared on reset.

• ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to 
select events to be counted with the counter associated with the CCCR.

• Compare flag, bit 18 — When set, enables filtering of the event count; when 
clear, disables filtering. The filtering method is selected with the threshold, 
complement, and edge flags.

• Complement flag, bit 19 — Selects how the incoming event count is compared 
with the threshold value. When set, event counts that are less than or equal to 
the threshold value result in a single count being delivered to the performance 
counter; when clear, counts greater than the threshold value result in a count 
being delivered to the performance counter (see Section 18.10.5.2, “Filtering 
Events”). The complement flag is not active unless the compare flag is set.

• Threshold field, bits 20 through 23 — Selects the threshold value to be used 
for comparisons. The processor examines this field only when the compare flag is 
set, and uses the complement flag setting to determine the type of threshold 
comparison to be made. The useful range of values that can be entered in this 
field depend on the type of event being counted (see Section 18.10.5.2, “Filtering 
Events”).

• Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge 
detection of the threshold comparison output for filtering event counts; when 
clear, rising edge detection is disabled. This flag is active only when the compare 
flag is set.
18-74 Vol. 3B



PERFORMANCE MONITORING
• FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every 
counter increment; when clear, overflow only occurs when the counter actually 
overflows.

• OVF_PMI flag, bit 26 — When set, causes a performance monitor interrupt 
(PMI) to be generated when the counter overflows occurs; when clear, disables 
PMI generation. Note that the PMI is generated on the next event count after the 
counter has overflowed.

• Cascade flag, bit 30 — When set, enables counting on one counter of a counter 
pair when its alternate counter in the other the counter pair in the same counter 
group overflows (see Section 18.10.2, “Performance Counters,” for further 
details); when clear, disables cascading of counters.

• OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag 
is a sticky flag that must be explicitly cleared by software.

The CCCRs are initialized to all 0s on reset. 

The events that an enabled performance counter actually counts are selected and 
filtered by the following flags and fields in the ESCR and CCCR registers and in the 
qualification order given:

1. The event select and event mask fields in the ESCR select a class of events to be 
counted and one or more event types within the class, respectively.

Figure 18-35.  Counter Configuration Control Register (CCCR)

63 32

Reserved

Reserved

Reserved: Must be set to 11B
Compare

Enable

31 24 23 20 19 16 15 12 11 017182526272930

Edge
FORCE_OVF

OVF_PMI

Threshold

Cascade
OVF

Complement

Reserved

13

ESCR
Select

Reserved
Vol. 3B 18-75



PERFORMANCE MONITORING
2. The OS and USR flags in the ESCR selected the privilege levels at which events 
will be counted.

3. The ESCR select field of the CCCR selects the ESCR. Since each counter has 
several ESCRs associated with it, one ESCR must be chosen to select the classes 
of events that may be counted.

4. The compare and complement flags and the threshold field of the CCCR select an 
optional threshold to be used in qualifying an event count.

5. The edge flag in the CCCR allows events to be counted only on rising-edge transi-
tions.

The qualification order in the above list implies that the filtered output of one “stage” 
forms the input for the next. For instance, events filtered using the privilege level 
flags can be further qualified by the compare and complement flags and the 
threshold field, and an event that matched the threshold criteria, can be further qual-
ified by edge detection.

The uses of the flags and fields in the CCCRs are discussed in greater detail in Section 
18.10.5, “Programming the Performance Counters for Non-Retirement Events.”

18.10.4 Debug Store (DS) Mechanism
The debug store (DS) mechanism was introduced in the Pentium 4 and Intel Xeon 
processors to allow various types of information to be collected in memory-resident 
buffers for use in debugging and tuning programs. For the Pentium 4 and Intel Xeon 
processors, the DS mechanism is used to collect two types of information: branch 
records and precise event-based sampling (PEBS) records. The availability of the DS 
mechanism in a processor is indicated with the DS feature flag (bit 21) returned by 
the CPUID instruction. 

See Section 17.4.5, “Branch Trace Store (BTS),” and Section 18.10.7, “Precise Event-
Based Sampling (PEBS),” for a description of these facilities. Records collected with 
the DS mechanism are saved in the DS save area. See Section 17.4.9, “BTS and DS 
Save Area.”

18.10.5 Programming the Performance Counters 
for Non-Retirement Events

The basic steps to program a performance counter and to count events include the 
following:

1. Select the event or events to be counted.

2. For each event, select an ESCR that supports the event using the values in the 
ESCR restrictions row in Table 19-16, Chapter 19.

3. Match the CCCR Select value and ESCR name in Table 19-16 to a value listed in 
Table 18-30; select a CCCR and performance counter.
18-76 Vol. 3B



PERFORMANCE MONITORING
4. Set up an ESCR for the specific event or events to be counted and the privilege 
levels at which the are to be counted.

5. Set up the CCCR for the performance counter by selecting the ESCR and the 
desired event filters.

6. Set up the CCCR for optional cascading of event counts, so that when the 
selected counter overflows its alternate counter starts.

7. Set up the CCCR to generate an optional performance monitor interrupt (PMI) 
when the counter overflows. If PMI generation is enabled, the local APIC must be 
set up to deliver the interrupt to the processor and a handler for the interrupt 
must be in place.

8. Enable the counter to begin counting.

18.10.5.1  Selecting Events to Count
Table 19-17 in Chapter 19 lists a set of at-retirement events for the Pentium 4 and 
Intel Xeon processors. For each event listed in Table 19-17, setup information is 
provided. Table 18-31 gives an example of one of the events.

Table 18-31.  Event Example 
Event Name Event Parameters  Parameter Value Description

branch_retired Counts the retirement of a branch. 
Specify one or more mask bits to 
select any combination of branch 
taken, not-taken, predicted and 
mispredicted. 

ESCR restrictions MSR_CRU_ESCR2
MSR_CRU_ESCR3

See Table 15-3 for the addresses of 
the ESCR MSRs

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

The counter numbers associated 
with each ESCR are provided. The 
performance counters and 
corresponding CCCRs can be obtained 
from Table 15-3.

ESCR Event Select 06H ESCR[31:25]

ESCR Event Mask

Bit 0: MMNP

     1: MMNM

     2: MMTP

     3: MMTM

ESCR[24:9],

Branch Not-taken Predicted, 

Branch Not-taken Mispredicted,

Branch Taken Predicted,

Branch Taken Mispredicted.

CCCR Select 05H CCCR[15:13]
Vol. 3B 18-77



PERFORMANCE MONITORING
For Table 19-16 and Table 19-17, Chapter 19, the name of the event is listed in the 
Event Name column and parameters that define the event and other information are 
listed in the Event Parameters column. The Parameter Value and Description columns 
give specific parameters for the event and additional description information. Entries 
in the Event Parameters column are described below.
• ESCR restrictions — Lists the ESCRs that can be used to program the event. 

Typically only one ESCR is needed to count an event. 
• Counter numbers per ESCR — Lists which performance counters are 

associated with each ESCR. Table 18-30 gives the name of the counter and CCCR 
for each counter number. Typically only one counter is needed to count the event.

• ESCR event select — Gives the value to be placed in the event select field of the 
ESCR to select the event.

• ESCR event mask — Gives the value to be placed in the Event Mask field of the 
ESCR to select sub-events to be counted. The parameter value column defines 
the documented bits with relative bit position offset starting from 0, where the 
absolute bit position of relative offset 0 is bit 9 of the ESCR. All undocumented 
bits are reserved and should be set to 0.

• CCCR select — Gives the value to be placed in the ESCR select field of the CCCR 
associated with the counter to select the ESCR to be used to define the event. 
This value is not the address of the ESCR; it is the number of the ESCR from the 
Number column in Table 18-30.

• Event specific notes — Gives additional information about the event, such as 
the name of the same or a similar event defined for the P6 family processors.

• Can support PEBS — Indicates if PEBS is supported for the event (only supplied 
for at-retirement events listed in Table 19-17.)

• Requires additional MSR for tagging — Indicates which if any additional 
MSRs must be programmed to count the events (only supplied for the at-
retirement events listed in Table 19-17.)

NOTE
The performance-monitoring events listed in Chapter 19, “Perfor-
mance-Monitoring Events,” are intended to be used as guides for 
performance tuning. The counter values reported are not guaranteed 

Event Specific 
Notes

P6: EMON_BR_INST_RETIRED

Can Support PEBS No

Requires Additional 
MSRs for Tagging

No

Table 18-31.  Event Example  (Contd.)
Event Name Event Parameters  Parameter Value Description
18-78 Vol. 3B



PERFORMANCE MONITORING
to be absolutely accurate and should be used as a relative guide for 
tuning. Known discrepancies are documented where applicable.

The following procedure shows how to set up a performance counter for basic 
counting; that is, the counter is set up to count a specified event indefinitely, wrap-
ping around whenever it reaches its maximum count. This procedure is continued 
through the following four sections.

Using information in Table 19-16, Chapter 19, an event to be counted can be selected 
as follows:

1. Select the event to be counted.

2. Select the ESCR to be used to select events to be counted from the ESCRs field.

3. Select the number of the counter to be used to count the event from the Counter 
Numbers Per ESCR field.

4. Determine the name of the counter and the CCCR associated with the counter, 
and determine the MSR addresses of the counter, CCCR, and ESCR from Table 
18-30.

5. Use the WRMSR instruction to write the ESCR Event Select and ESCR Event Mask 
values into the appropriate fields in the ESCR. At the same time set or clear the 
USR and OS flags in the ESCR as desired.

6. Use the WRMSR instruction to write the CCCR Select value into the appropriate 
field in the CCCR.

NOTE
Typically all the fields and flags of the CCCR will be written with one 
WRMSR instruction; however, in this procedure, several WRMSR 
writes are used to more clearly demonstrate the uses of the various 
CCCR fields and flags.

This setup procedure is continued in the next section, Section 18.10.5.2, “Filtering 
Events.”

18.10.5.2  Filtering Events
Each counter receives up to 4 input lines from the processor hardware from which it 
is counting events. The counter treats these inputs as binary inputs (input 0 has a 
value of 1, input 1 has a value of 2, input 3 has a value of 4, and input 3 has a value 
of 8). When a counter is enabled, it adds this binary input value to the counter value 
on each clock cycle. For each clock cycle, the value added to the counter can then 
range from 0 (no event) to 15. 

For many events, only the 0 input line is active, so the counter is merely counting the 
clock cycles during which the 0 input is asserted. However, for some events two or 
more input lines are used. Here, the counters threshold setting can be used to filter 
Vol. 3B 18-79



PERFORMANCE MONITORING
events. The compare, complement, threshold, and edge fields control the filtering of 
counter increments by input value.

If the compare flag is set, then a “greater than” or a “less than or equal to” compar-
ison of the input value vs. a threshold value can be made. The complement flag 
selects “less than or equal to” (flag set) or “greater than” (flag clear). The threshold 
field selects a threshold value of from 0 to 15. For example, if the complement flag is 
cleared and the threshold field is set to 6, than any input value of 7 or greater on the 
4 inputs to the counter will cause the counter to be incremented by 1, and any value 
less than 7 will cause an increment of 0 (or no increment) of the counter. Conversely, 
if the complement flag is set, any value from 0 to 6 will increment the counter and 
any value from 7 to 15 will not increment the counter. Note that when a threshold 
condition has been satisfied, the input to the counter is always 1, not the input value 
that is presented to the threshold filter. 

The edge flag provides further filtering of the counter inputs when a threshold 
comparison is being made. The edge flag is only active when the compare flag is set. 
When the edge flag is set, the resulting output from the threshold filter (a value of 0 
or 1) is used as an input to the edge filter. Each clock cycle, the edge filter examines 
the last and current input values and sends a count to the counter only when it 
detects a “rising edge” event; that is, a false-to-true transition. Figure 18-36 illus-
trates rising edge filtering.

The following procedure shows how to configure a CCCR to filter events using the 
threshold filter and the edge filter. This procedure is a continuation of the setup 
procedure introduced in Section 18.10.5.1, “Selecting Events to Count.”

7. (Optional) To set up the counter for threshold filtering, use the WRMSR 
instruction to write values in the CCCR compare and complement flags and the 
threshold field:

— Set the compare flag.

— Set or clear the complement flag for less than or equal to or greater than 
comparisons, respectively.

— Enter a value from 0 to 15 in the threshold field.

8. (Optional) Select rising edge filtering by setting the CCCR edge flag.

This setup procedure is continued in the next section, Section 18.10.5.3, “Starting 
Event Counting.”
18-80 Vol. 3B



PERFORMANCE MONITORING
18.10.5.3  Starting Event Counting
Event counting by a performance counter can be initiated in either of two ways. The 
typical way is to set the enable flag in the counter’s CCCR. Following the instruction 
to set the enable flag, event counting begins and continues until it is stopped (see 
Section 18.10.5.5, “Halting Event Counting”). 

The following procedural step shows how to start event counting. This step is a 
continuation of the setup procedure introduced in Section 18.10.5.2, “Filtering 
Events.”

9. To start event counting, use the WRMSR instruction to set the CCCR enable flag 
for the performance counter.

This setup procedure is continued in the next section, Section 18.10.5.4, “Reading a 
Performance Counter’s Count.”

The second way that a counter can be started by using the cascade feature. Here, the 
overflow of one counter automatically starts its alternate counter (see Section 
18.10.5.6, “Cascading Counters”).

18.10.5.4  Reading a Performance Counter’s Count
The Pentium 4 and Intel Xeon processors’ performance counters can be read using 
either the RDPMC or RDMSR instructions. The enhanced functions of the RDPMC 
instruction (including fast read) are described in Section 18.10.2, “Performance 
Counters.” These instructions can be used to read a performance counter while it is 
counting or when it is stopped.

The following procedural step shows how to read the event counter. This step is a 
continuation of the setup procedure introduced in Section 18.10.5.3, “Starting Event 
Counting.”

10. To read a performance counters current event count, execute the RDPMC 
instruction with the counter number obtained from Table 18-30 used as an 
operand.

Figure 18-36.  Effects of Edge Filtering

Output from
Threshold Filter

Counter Increments
On Rising Edge
(False-to-True)

Processor Clock
Vol. 3B 18-81



PERFORMANCE MONITORING
This setup procedure is continued in the next section, Section 18.10.5.5, “Halting 
Event Counting.”

18.10.5.5  Halting Event Counting
After a performance counter has been started (enabled), it continues counting indef-
initely. If the counter overflows (goes one count past its maximum count), it wraps 
around and continues counting. When the counter wraps around, it sets its OVF flag 
to indicate that the counter has overflowed. The OVF flag is a sticky flag that indi-
cates that the counter has overflowed at least once since the OVF bit was last 
cleared. 

To halt counting, the CCCR enable flag for the counter must be cleared.

The following procedural step shows how to stop event counting. This step is a 
continuation of the setup procedure introduced in Section 18.10.5.4, “Reading a 
Performance Counter’s Count.”

11. To stop event counting, execute a WRMSR instruction to clear the CCCR enable 
flag for the performance counter.

To halt a cascaded counter (a counter that was started when its alternate counter 
overflowed), either clear the Cascade flag in the cascaded counter’s CCCR MSR or 
clear the OVF flag in the alternate counter’s CCCR MSR.

18.10.5.6  Cascading Counters
As described in Section 18.10.2, “Performance Counters,” eighteen performance 
counters are implemented in pairs. Nine pairs of counters and associated CCCRs are 
further organized as four blocks: BPU, MS, FLAME, and IQ (see Table 18-30). The first 
three blocks contain two pairs each. The IQ block contains three pairs of counters (12 
through 17) with associated CCCRs (MSR_IQ_CCCR0 through MSR_IQ_CCCR5).

The first 8 counter pairs (0 through 15) can be programmed using ESCRs to detect 
performance monitoring events. Pairs of ESCRs in each of the four blocks allow many 
different types of events to be counted. The cascade flag in the CCCR MSR allows 
nested monitoring of events to be performed by cascading one counter to a second 
counter located in another pair in the same block (see Figure 18-35 for the location 
of the flag).

Counters 0 and 1 form the first pair in the BPU block. Either counter 0 or 1 can be 
programmed to detect an event via MSR_MO B_ESCR0. Counters 0 and 2 can be 
cascaded in any order, as can counters 1 and 3. It’s possible to set up 4 counters in 
the same block to cascade on two pairs of independent events. The pairing described 
also applies to subsequent blocks. Since the IQ PUB has two extra counters, 
cascading operates somewhat differently if 16 and 17 are involved. In the IQ block, 
counter 16 can only be cascaded from counter 14 (not from 12); counter 14 cannot 
be cascaded from counter 16 using the CCCR cascade bit mechanism. Similar restric-
tions apply to counter 17.
18-82 Vol. 3B



PERFORMANCE MONITORING
Example 18-1.  Counting Events

Assume a scenario where counter X is set up to count 200 occurrences of event A; 
then counter Y is set up to count 400 occurrences of event B. Each counter is set up 
to count a specific event and overflow to the next counter. In the above example, 
counter X is preset for a count of -200 and counter Y for a count of -400; this setup 
causes the counters to overflow on the 200th and 400th counts respectively.

Continuing this scenario, counter X is set up to count indefinitely and wraparound on 
overflow. This is described in the basic performance counter setup procedure that 
begins in Section 18.10.5.1, “Selecting Events to Count.” Counter Y is set up with the 
cascade flag in its associated CCCR MSR set to 1 and its enable flag set to 0.

To begin the nested counting, the enable bit for the counter X is set. Once enabled, 
counter X counts until it overflows. At this point, counter Y is automatically enabled 
and begins counting. Thus counter X overflows after 200 occurrences of event A. 
Counter Y then starts, counting 400 occurrences of event B before overflowing. When 
performance counters are cascaded, the counter Y would typically be set up to 
generate an interrupt on overflow. This is described in Section 18.10.5.8, “Gener-
ating an Interrupt on Overflow.” 

The cascading counters mechanism can be used to count a single event. The 
counting begins on one counter then continues on the second counter after the first 
counter overflows. This technique doubles the number of event counts that can be 
recorded, since the contents of the two counters can be added together.

18.10.5.7  EXTENDED CASCADING 
Extended cascading is a model-specific feature in the Intel NetBurst microarchitec-
ture. The feature is available to Pentium 4 and Xeon processor family with family 
encoding of 15 and model encoding greater than or equal to 2. This feature uses bit 
11 in CCCRs associated with the IQ block. See Table 18-32. 

Table 18-32.  CCR Names and Bit Positions 

CCCR Name:Bit Position Bit Name Description

MSR_IQ_CCCR1|2:11 Reserved

MSR_IQ_CCCR0:11 CASCNT4INTO0 Allow counter 4 to cascade into 
counter 0

MSR_IQ_CCCR3:11 CASCNT5INTO3 Allow counter 5 to cascade into 
counter 3

MSR_IQ_CCCR4:11 CASCNT5INTO4 Allow counter 5 to cascade into 
counter 4

MSR_IQ_CCCR5:11 CASCNT4INTO5 Allow counter 4 to cascade into 
counter 5
Vol. 3B 18-83



PERFORMANCE MONITORING
The extended cascading feature can be adapted to the sampling usage model for 
performance monitoring. However, it is known that performance counters do not 
generate PMI in cascade mode or extended cascade mode due to an erratum. This 
erratum applies to Pentium 4 and Intel Xeon processors with model encoding of 2. 
For Pentium 4 and Intel Xeon processors with model encoding of 0 and 1, the erratum 
applies to processors with stepping encoding greater than 09H. 

Counters 16 and 17 in the IQ block are frequently used in precise event-based 
sampling or at-retirement counting of events indicating a stalled condition in the 
pipeline. Neither counter 16 or 17 can initiate the cascading of counter pairs using 
the cascade bit in a CCCR.

Extended cascading permits performance monitoring tools to use counters 16 and 17 
to initiate cascading of two counters in the IQ block. Extended cascading from 
counter 16 and 17 is conceptually similar to cascading other counters, but instead of 
using CASCADE bit of a CCCR, one of the four CASCNTxINTOy bits is used. 

Example 18-2.  Scenario for Extended Cascading

A usage scenario for extended cascading is to sample instructions retired on logical 
processor 1 after the first 4096 instructions retired on logical processor 0. A proce-
dure to program extended cascading in this scenario is outlined below:

1. Write the value 0 to counter 12. 

2. Write the value 04000603H to MSR_CRU_ESCR0 (corresponding to selecting the 
NBOGNTAG and NBOGTAG event masks with qualification restricted to logical 
processor 1).

3. Write the value 04038800H to MSR_IQ_CCCR0. This enables CASCNT4INTO0 
and OVF_PMI. An ISR can sample on instruction addresses in this case (do not 
set ENABLE, or CASCADE).

4. Write the value FFFFF000H into counter 16.1.

5. Write the value 0400060CH to MSR_CRU_ESCR2 (corresponding to selecting the 
NBOGNTAG and NBOGTAG event masks with qualification restricted to logical 
processor 0).

6. Write the value 00039000H to MSR_IQ_CCCR4 (set ENABLE bit, but not 
OVF_PMI).

Another use for cascading is to locate stalled execution in a multithreaded applica-
tion. Assume MOB replays in thread B cause thread A to stall. Getting a sample of the 
stalled execution in this scenario could be accomplished by:

1. Set up counter B to count MOB replays on thread B.

2. Set up counter A to count resource stalls on thread A; set its force overflow bit 
and the appropriate CASCNTxINTOy bit.

3. Use the performance monitoring interrupt to capture the program execution data 
of the stalled thread.
18-84 Vol. 3B



PERFORMANCE MONITORING
18.10.5.8  Generating an Interrupt on Overflow
Any performance counter can be configured to generate a performance monitor 
interrupt (PMI) if the counter overflows. The PMI interrupt service routine can then 
collect information about the state of the processor or program when overflow 
occurred. This information can then be used with a tool like the Intel® VTune™ 
Performance Analyzer to analyze and tune program performance.

To enable an interrupt on counter overflow, the OVR_PMI flag in the counter’s associ-
ated CCCR MSR must be set. When overflow occurs, a PMI is generated through the 
local APIC. (Here, the performance counter entry in the local vector table [LVT] is set 
up to deliver the interrupt generated by the PMI to the processor.)

The PMI service routine can use the OVF flag to determine which counter overflowed 
when multiple counters have been configured to generate PMIs. Also, note that these 
processors mask PMIs upon receiving an interrupt. Clear this condition before leaving 
the interrupt handler.

When generating interrupts on overflow, the performance counter being used should 
be preset to value that will cause an overflow after a specified number of events are 
counted plus 1. The simplest way to select the preset value is to write a negative 
number into the counter, as described in Section 18.10.5.6, “Cascading Counters.” 
Here, however, if an interrupt is to be generated after 100 event counts, the counter 
should be preset to minus 100 plus 1 (-100 + 1), or -99. The counter will then over-
flow after it counts 99 events and generate an interrupt on the next (100th) event 
counted. The difference of 1 for this count enables the interrupt to be generated 
immediately after the selected event count has been reached, instead of waiting for 
the overflow to be propagation through the counter.

Because of latency in the microarchitecture between the generation of events and 
the generation of interrupts on overflow, it is sometimes difficult to generate an 
interrupt close to an event that caused it. In these situations, the FORCE_OVF flag in 
the CCCR can be used to improve reporting. Setting this flag causes the counter to 
overflow on every counter increment, which in turn triggers an interrupt after every 
counter increment.

18.10.5.9  Counter Usage Guideline
There are some instances where the user must take care to configure counting logic 
properly, so that it is not powered down. To use any ESCR, even when it is being used 
just for tagging, (any) one of the counters that the particular ESCR (or its paired 
ESCR) can be connected to should be enabled. If this is not done, 0 counts may 
result. Likewise, to use any counter, there must be some event selected in a corre-
sponding ESCR (other than no_event, which generally has a select value of 0). 
Vol. 3B 18-85



PERFORMANCE MONITORING
18.10.6 At-Retirement Counting
At-retirement counting provides a means counting only events that represent work 
committed to architectural state and ignoring work that was performed speculatively 
and later discarded.

The Intel NetBurst microarchitecture used in the Pentium 4 and Intel Xeon proces-
sors performs many speculative activities in an attempt to increase effective 
processing speeds. One example of this speculative activity is branch prediction. The 
Pentium 4 and Intel Xeon processors typically predict the direction of branches and 
then decode and execute instructions down the predicted path in anticipation of the 
actual branch decision. When a branch misprediction occurs, the results of instruc-
tions that were decoded and executed down the mispredicted path are canceled. If a 
performance counter was set up to count all executed instructions, the count would 
include instructions whose results were canceled as well as those whose results 
committed to architectural state.

To provide finer granularity in event counting in these situations, the performance 
monitoring facilities provided in the Pentium 4 and Intel Xeon processors provide a 
mechanism for tagging events and then counting only those tagged events that 
represent committed results. This mechanism is called “at-retirement counting.” 

Tables 19-17 through 19-21 list predefined at-retirement events and event metrics 
that can be used to for tagging events when using at retirement counting. The 
following terminology is used in describing at-retirement counting:
• Bogus, non-bogus, retire — In at-retirement event descriptions, the term 

“bogus” refers to instructions or μops that must be canceled because they are on 
a path taken from a mispredicted branch. The terms “retired” and “non-bogus” 
refer to instructions or μops along the path that results in committed architec-
tural state changes as required by the program being executed. Thus instructions 
and μops are either bogus or non-bogus, but not both. Several of the Pentium 4 
and Intel Xeon processors’ performance monitoring events (such as, 
Instruction_Retired and Uops_Retired in Table 19-17) can count instructions or 
μops that are retired based on the characterization of bogus” versus non-bogus.

• Tagging — Tagging is a means of marking μops that have encountered a 
particular performance event so they can be counted at retirement. During the 
course of execution, the same event can happen more than once per μop and a 
direct count of the event would not provide an indication of how many μops 
encountered that event. 
The tagging mechanisms allow a μop to be tagged once during its lifetime and 
thus counted once at retirement. The retired suffix is used for performance 
metrics that increment a count once per μop, rather than once per event. For 
example, a μop may encounter a cache miss more than once during its life time, 
but a “Miss Retired” metric (that counts the number of retired μops that 
encountered a cache miss) will increment only once for that μop. A “Miss Retired” 
metric would be useful for characterizing the performance of the cache hierarchy 
for a particular instruction sequence. Details of various performance metrics and 
how these can be constructed using the Pentium 4 and Intel Xeon processors 
18-86 Vol. 3B



PERFORMANCE MONITORING
performance events are provided in the Intel Pentium 4 Processor Optimization 
Reference Manual (see Section 1.4, “Related Literature”). 

• Replay — To maximize performance for the common case, the Intel NetBurst 
microarchitecture aggressively schedules μops for execution before all the 
conditions for correct execution are guaranteed to be satisfied. In the event that 
all of these conditions are not satisfied, μops must be reissued. The mechanism 
that the Pentium 4 and Intel Xeon processors use for this reissuing of μops is 
called replay. Some examples of replay causes are cache misses, dependence 
violations, and unforeseen resource constraints. In normal operation, some 
number of replays is common and unavoidable. An excessive number of replays 
is an indication of a performance problem.

• Assist — When the hardware needs the assistance of microcode to deal with 
some event, the machine takes an assist. One example of this is an underflow 
condition in the input operands of a floating-point operation. The hardware must 
internally modify the format of the operands in order to perform the computation. 
Assists clear the entire machine of μops before they begin and are costly.

18.10.6.1  Using At-Retirement Counting
The Pentium 4 and Intel Xeon processors allow counting both events and μops that 
encountered a specified event. For a subset of the at-retirement events listed in Table 
19-17, a μop may be tagged when it encounters that event. The tagging mechanisms 
can be used in non-precise event-based sampling, and a subset of these mechanisms 
can be used in PEBS. There are four independent tagging mechanisms, and each 
mechanism uses a different event to count μops tagged with that mechanism: 
• Front-end tagging — This mechanism pertains to the tagging of μops that 

encountered front-end events (for example, trace cache and instruction counts) 
and are counted with the Front_end_event event

• Execution tagging — This mechanism pertains to the tagging of μops that 
encountered execution events (for example, instruction types) and are counted 
with the Execution_Event event.

• Replay tagging — This mechanism pertains to tagging of μops whose 
retirement is replayed (for example, a cache miss) and are counted with the 
Replay_event event. Branch mispredictions are also tagged with this mechanism.

• No tags — This mechanism does not use tags. It uses the Instr_retired and the 
Uops_ retired events.

Each tagging mechanism is independent from all others; that is, a μop that has been 
tagged using one mechanism will not be detected with another mechanism’s tagged-
μop detector. For example, if μops are tagged using the front-end tagging mecha-
nisms, the Replay_event will not count those as tagged μops unless they are also 
tagged using the replay tagging mechanism. However, execution tags allow up to 
four different types of μops to be counted at retirement through execution tagging.

The independence of tagging mechanisms does not hold when using PEBS. When 
using PEBS, only one tagging mechanism should be used at a time. 
Vol. 3B 18-87



PERFORMANCE MONITORING
Certain kinds of μops that cannot be tagged, including I/O, uncacheable and locked 
accesses, returns, and far transfers.

Table 19-17 lists the performance monitoring events that support at-retirement 
counting: specifically the Front_end_event, Execution_event, Replay_event, 
Inst_retired and Uops_retired events. The following sections describe the tagging 
mechanisms for using these events to tag μop and count tagged μops.

18.10.6.2  Tagging Mechanism for Front_end_event
The Front_end_event counts μops that have been tagged as encountering any of the 
following events:
• μop decode events — Tagging μops for μop decode events requires specifying 

bits in the ESCR associated with the performance-monitoring event, Uop_type. 
• Trace cache events — Tagging μops for trace cache events may require 

specifying certain bits in the MSR_TC_PRECISE_EVENT MSR (see Table 19-19).

Table 19-17 describes the Front_end_event and Table 19-19 describes metrics that 
are used to set up a Front_end_event count.

The MSRs specified in the Table 19-17 that are supported by the front-end tagging 
mechanism must be set and one or both of the NBOGUS and BOGUS bits in the 
Front_end_event event mask must be set to count events. None of the events 
currently supported requires the use of the MSR_TC_PRECISE_EVENT MSR. 

18.10.6.3  Tagging Mechanism For Execution_event
Table 19-17 describes the Execution_event and Table 19-20 describes metrics that 
are used to set up an Execution_event count.

The execution tagging mechanism differs from other tagging mechanisms in how it 
causes tagging. One upstream ESCR is used to specify an event to detect and to 
specify a tag value (bits 5 through 8) to identify that event. A second downstream 
ESCR is used to detect μops that have been tagged with that tag value identifier using 
Execution_event for the event selection. 

The upstream ESCR that counts the event must have its tag enable flag (bit 4) set 
and must have an appropriate tag value mask entered in its tag value field. The 4-bit 
tag value mask specifies which of tag bits should be set for a particular μop. The 
value selected for the tag value should coincide with the event mask selected in the 
downstream ESCR. For example, if a tag value of 1 is set, then the event mask of 
NBOGUS0 should be enabled, correspondingly in the downstream ESCR. The down-
stream ESCR detects and counts tagged μops. The normal (not tag value) mask bits 
in the downstream ESCR specify which tag bits to count. If any one of the tag bits 
selected by the mask is set, the related counter is incremented by one. This mecha-
nism is summarized in the Table 19-20 metrics that are supported by the execution 
tagging mechanism. The tag enable and tag value bits are irrelevant for the down-
stream ESCR used to select the Execution_event.
18-88 Vol. 3B



PERFORMANCE MONITORING
The four separate tag bits allow the user to simultaneously but distinctly count up to 
four execution events at retirement. (This applies for non-precise event-based 
sampling. There are additional restrictions for PEBS as noted in Section 18.10.7.3, 
“Setting Up the PEBS Buffer.”) It is also possible to detect or count combinations of 
events by setting multiple tag value bits in the upstream ESCR or multiple mask bits 
in the downstream ESCR. For example, use a tag value of 3H in the upstream ESCR 
and use NBOGUS0/NBOGUS1 in the downstream ESCR event mask.

18.10.6.4  Tagging Mechanism for Replay_event
Table 19-17 describes the Replay_event and Table 19-21 describes metrics that are 
used to set up an Replay_event count.

The replay mechanism enables tagging of μops for a subset of all replays before 
retirement. Use of the replay mechanism requires selecting the type of μop that may 
experience the replay in the MSR_PEBS_MATRIX_VERT MSR and selecting the type of 
event in the MSR_PEBS_ENABLE MSR. Replay tagging must also be enabled with the 
UOP_Tag flag (bit 24) in the MSR_PEBS_ENABLE MSR. 

The Table 19-21 lists the metrics that are support the replay tagging mechanism and 
the at-retirement events that use the replay tagging mechanism, and specifies how 
the appropriate MSRs need to be configured. The replay tags defined in Table A-5 
also enable Precise Event-Based Sampling (PEBS, see Section 15.9.8). Each of these 
replay tags can also be used in normal sampling by not setting Bit 24 nor Bit 25 in 
IA_32_PEBS_ENABLE_MSR. Each of these metrics requires that the Replay_Event 
(see Table 19-17) be used to count the tagged μops.

18.10.7 Precise Event-Based Sampling (PEBS)
The debug store (DS) mechanism in processors based on Intel NetBurst microarchi-
tecture allow two types of information to be collected for use in debugging and tuning 
programs: PEBS records and BTS records. See Section 17.4.5, “Branch Trace Store 
(BTS),” for a description of the BTS mechanism.

PEBS permits the saving of precise architectural information associated with one or 
more performance events in the precise event records buffer, which is part of the DS 
save area (see Section 17.4.9, “BTS and DS Save Area”). To use this mechanism, a 
counter is configured to overflow after it has counted a preset number of events. 
After the counter overflows, the processor copies the current state of the general-
purpose and EFLAGS registers and instruction pointer into a record in the precise 
event records buffer. The processor then resets the count in the performance counter 
and restarts the counter. When the precise event records buffer is nearly full, an 
interrupt is generated, allowing the precise event records to be saved. A circular 
buffer is not supported for precise event records.

PEBS is supported only for a subset of the at-retirement events: Execution_event, 
Front_end_event, and Replay_event. Also, PEBS can only be carried out using the 
one performance counter, the MSR_IQ_COUNTER4 MSR.
Vol. 3B 18-89



PERFORMANCE MONITORING
In processors based on Intel Core microarchitecture, a similar PEBS mechanism is 
also supported using IA32_PMC0 and IA32_PERFEVTSEL0 MSRs (See Section 
18.4.4).

18.10.7.1  Detection of the Availability of the PEBS Facilities
The DS feature flag (bit 21) returned by the CPUID instruction indicates (when set) 
the availability of the DS mechanism in the processor, which supports the PEBS (and 
BTS) facilities. When this bit is set, the following PEBS facilities are available:
• The PEBS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates (when 

clear) the availability of the PEBS facilities, including the MSR_PEBS_ENABLE 
MSR. 

• The enable PEBS flag (bit 24) in the MSR_PEBS_ENABLE MSR allows PEBS to be 
enabled (set) or disabled (clear).

• The IA32_DS_AREA MSR can be programmed to point to the DS save area. 

18.10.7.2  Setting Up the DS Save Area
Section 17.4.9.2, “Setting Up the DS Save Area,” describes how to set up and enable 
the DS save area. This procedure is common for PEBS and BTS.

18.10.7.3  Setting Up the PEBS Buffer
Only the MSR_IQ_COUNTER4 performance counter can be used for PEBS. Use the 
following procedure to set up the processor and this counter for PEBS: 

1. Set up the precise event buffering facilities. Place values in the precise event 
buffer base, precise event index, precise event absolute maximum, and precise 
event interrupt threshold, and precise event counter reset fields of the DS buffer 
management area (see Figure 17-5) to set up the precise event records buffer in 
memory.

2. Enable PEBS. Set the Enable PEBS flag (bit 24) in MSR_PEBS_ENABLE MSR.

3. Set up the MSR_IQ_COUNTER4 performance counter and its associated CCCR 
and one or more ESCRs for PEBS as described in Tables 19-17 through 19-21.

18.10.7.4  Writing a PEBS Interrupt Service Routine 
The PEBS facilities share the same interrupt vector and interrupt service routine 
(called the DS ISR) with the non-precise event-based sampling and BTS facilities. To 
handle PEBS interrupts, PEBS handler code must be included in the DS ISR. See 
Section 17.4.9.5, “Writing the DS Interrupt Service Routine,” for guidelines for 
writing the DS ISR.
18-90 Vol. 3B



PERFORMANCE MONITORING
18.10.7.5  Other DS Mechanism Implications
The DS mechanism is not available in the SMM. It is disabled on transition to the SMM 
mode. Similarly the DS mechanism is disabled on the generation of a machine check 
exception and is cleared on processor RESET and INIT. 

The DS mechanism is available in real address mode.

18.10.8 Operating System Implications
The DS mechanism can be used by the operating system as a debugging extension to 
facilitate failure analysis. When using this facility, a 25 to 30 times slowdown can be 
expected due to the effects of the trace store occurring on every taken branch. 

Depending upon intended usage, the instruction pointers that are part of the branch 
records or the PEBS records need to have an association with the corresponding 
process. One solution requires the ability for the DS specific operating system 
module to be chained to the context switch. A separate buffer can then be main-
tained for each process of interest and the MSR pointing to the configuration area 
saved and setup appropriately on each context switch. 

If the BTS facility has been enabled, then it must be disabled and state stored on 
transition of the system to a sleep state in which processor context is lost. The state 
must be restored on return from the sleep state.

It is required that an interrupt gate be used for the DS interrupt as opposed to a trap 
gate to prevent the generation of an endless interrupt loop.

Pages that contain buffers must have mappings to the same physical address for all 
processes/logical processors, such that any change to CR3 will not change DS 
addresses. If this requirement cannot be satisfied (that is, the feature is enabled on 
a per thread/process basis), then the operating system must ensure that the feature 
is enabled/disabled appropriately in the context switch code.

18.11 PERFORMANCE MONITORING AND INTEL HYPER-
THREADING TECHNOLOGY IN PROCESSORS BASED 
ON INTEL NETBURST® MICROARCHITECTURE

The performance monitoring capability of processors based on Intel NetBurst 
microarchitecture and supporting Intel Hyper-Threading Technology is similar to that 
described in Section 18.10. However, the capability is extended so that:
• Performance counters can be programmed to select events qualified by logical 

processor IDs. 
• Performance monitoring interrupts can be directed to a specific logical processor 

within the physical processor. 
Vol. 3B 18-91



PERFORMANCE MONITORING
The sections below describe performance counters, event qualification by logical 
processor ID, and special purpose bits in ESCRs/CCCRs. They also describe 
MSR_PEBS_ENABLE, MSR_PEBS_MATRIX_VERT, and MSR_TC_PRECISE_EVENT. 

18.11.1 ESCR MSRs 
Figure 18-37 shows the layout of an ESCR MSR in processors supporting Intel Hyper-
Threading Technology. 

The functions of the flags and fields are as follows:
• T1_USR flag, bit 0 — When set, events are counted when thread 1 (logical 

processor 1) is executing at a current privilege level (CPL) of 1, 2, or 3. These 
privilege levels are generally used by application code and unprotected operating 
system code.

• T1_OS flag, bit 1 — When set, events are counted when thread 1 (logical 
processor 1) is executing at CPL of 0. This privilege level is generally reserved for 
protected operating system code. (When both the T1_OS and T1_USR flags are 
set, thread 1 events are counted at all privilege levels.)

• T0_USR flag, bit 2 — When set, events are counted when thread 0 (logical 
processor 0) is executing at a CPL of 1, 2, or 3. 

• T0_OS flag, bit 3 — When set, events are counted when thread 0 (logical 
processor 0) is executing at CPL of 0. (When both the T0_OS and T0_USR flags 
are set, thread 0 events are counted at all privilege levels.)

Figure 18-37.  Event Selection Control Register (ESCR) for the Pentium 4 Processor, 
Intel Xeon Processor and Intel Xeon Processor MP Supporting Hyper-Threading 

Technology

31 24 8 0123492530

63 32

Reserved

Event Mask
Event
Select

T0_USR
T0_OS

5

Tag Enable

Tag 
Value

T1_USR
T1_OS

Reserved
18-92 Vol. 3B



PERFORMANCE MONITORING
• Tag enable, bit 4 — When set, enables tagging of μops to assist in at-retirement 
event counting; when clear, disables tagging. See Section 18.10.6, “At-
Retirement Counting.”

• Tag value field, bits 5 through 8 — Selects a tag value to associate with a μop 
to assist in at-retirement event counting.

• Event mask field, bits 9 through 24 — Selects events to be counted from the 
event class selected with the event select field.

• Event select field, bits 25 through 30) — Selects a class of events to be 
counted. The events within this class that are counted are selected with the event 
mask field.

The T0_OS and T0_USR flags and the T1_OS and T1_USR flags allow event counting 
and sampling to be specified for a specific logical processor (0 or 1) within an Intel 
Xeon processor MP (See also: Section 8.4.5, “Identifying Logical Processors in an MP 
System,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A).

Not all performance monitoring events can be detected within an Intel Xeon 
processor MP on a per logical processor basis (see Section 18.11.4, “Performance 
Monitoring Events”). Some sub-events (specified by an event mask bits) are counted 
or sampled without regard to which logical processor is associated with the detected 
event. 

18.11.2 CCCR MSRs
Figure 18-38 shows the layout of a CCCR MSR in processors supporting Intel Hyper-
Threading Technology. The functions of the flags and fields are as follows:
• Enable flag, bit 12 — When set, enables counting; when clear, the counter is 

disabled. This flag is cleared on reset
• ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to 

select events to be counted with the counter associated with the CCCR.
• Active thread field, bits 16 and 17 — Enables counting depending on which 

logical processors are active (executing a thread). This field enables filtering of 
events based on the state (active or inactive) of the logical processors. The 
encodings of this field are as follows:
00 — None. Count only when neither logical processor is active.
01 — Single. Count only when one logical processor is active (either 0 or 1).
10 — Both. Count only when both logical processors are active.
11 — Any. Count when either logical processor is active.
A halted logical processor or a logical processor in the “wait for SIPI” state is 
considered inactive. 
Vol. 3B 18-93



PERFORMANCE MONITORING
• Compare flag, bit 18 — When set, enables filtering of the event count; when 
clear, disables filtering. The filtering method is selected with the threshold, 
complement, and edge flags.

• Complement flag, bit 19 — Selects how the incoming event count is compared 
with the threshold value. When set, event counts that are less than or equal to 
the threshold value result in a single count being delivered to the performance 
counter; when clear, counts greater than the threshold value result in a count 
being delivered to the performance counter (see Section 18.10.5.2, “Filtering 
Events”). The compare flag is not active unless the compare flag is set.

• Threshold field, bits 20 through 23 — Selects the threshold value to be used 
for comparisons. The processor examines this field only when the compare flag is 
set, and uses the complement flag setting to determine the type of threshold 
comparison to be made. The useful range of values that can be entered in this 
field depend on the type of event being counted (see Section 18.10.5.2, “Filtering 
Events”).

• Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge 
detection of the threshold comparison output for filtering event counts; when 
clear, rising edge detection is disabled. This flag is active only when the compare 
flag is set.

Figure 18-38.  Counter Configuration Control Register (CCCR)

63 32

Reserved

Reserved

Active Thread
Compare

Enable

31 24 23 20 19 16 15 12 11 017182526272930

Edge
FORCE_OVF

OVF_PMI_T0

Threshold

Cascade
OVF

Complement

Reserved

13

ESCR
Select

OVF_PMI_T1

Reserved
18-94 Vol. 3B



PERFORMANCE MONITORING
• FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every 
counter increment; when clear, overflow only occurs when the counter actually 
overflows.

• OVF_PMI_T0 flag, bit 26 — When set, causes a performance monitor interrupt 
(PMI) to be sent to logical processor 0 when the counter overflows occurs; when 
clear, disables PMI generation for logical processor 0. Note that the PMI is 
generate on the next event count after the counter has overflowed.

• OVF_PMI_T1 flag, bit 27 — When set, causes a performance monitor interrupt 
(PMI) to be sent to logical processor 1 when the counter overflows occurs; when 
clear, disables PMI generation for logical processor 1. Note that the PMI is 
generate on the next event count after the counter has overflowed.

• Cascade flag, bit 30 — When set, enables counting on one counter of a counter 
pair when its alternate counter in the other the counter pair in the same counter 
group overflows (see Section 18.10.2, “Performance Counters,” for further 
details); when clear, disables cascading of counters.

• OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag 
is a sticky flag that must be explicitly cleared by software.

18.11.3 IA32_PEBS_ENABLE MSR
In a processor supporting Intel Hyper-Threading Technology and based on the Intel 
NetBurst microarchitecture, PEBS is enabled and qualified with two bits in the 
MSR_PEBS_ENABLE MSR: bit 25 (ENABLE_PEBS_MY_THR) and 26 
(ENABLE_PEBS_OTH_THR) respectively. These bits do not explicitly identify a 
specific logical processor by logic processor ID(T0 or T1); instead, they allow a soft-
ware agent to enable PEBS for subsequent threads of execution on the same logical 
processor on which the agent is running (“my thread”) or for the other logical 
processor in the physical package on which the agent is not running (“other thread”).

PEBS is supported for only a subset of the at-retirement events: Execution_event, 
Front_end_event, and Replay_event. Also, PEBS can be carried out only with two 
performance counters: MSR_IQ_CCCR4 (MSR address 370H) for logical processor 0 
and MSR_IQ_CCCR5 (MSR address 371H) for logical processor 1.

Performance monitoring tools should use a processor affinity mask to bind the kernel 
mode components that need to modify the ENABLE_PEBS_MY_THR and 
ENABLE_PEBS_OTH_THR bits in the MSR_PEBS_ENABLE MSR to a specific logical 
processor. This is to prevent these kernel mode components from migrating between 
different logical processors due to OS scheduling.   

18.11.4 Performance Monitoring Events
All of the events listed in Table 19-16 and 19-17 are available in an Intel Xeon 
processor MP. When Intel Hyper-Threading Technology is active, many performance 
monitoring events can be can be qualified by the logical processor ID, which corre-
Vol. 3B 18-95



PERFORMANCE MONITORING
sponds to bit 0 of the initial APIC ID. This allows for counting an event in any or all of 
the logical processors. However, not all the events have this logic processor speci-
ficity, or thread specificity. 

Here, each event falls into one of two categories: 
• Thread specific (TS) — The event can be qualified as occurring on a specific 

logical processor.
• Thread independent (TI) — The event cannot be qualified as being associated 

with a specific logical processor. 

Table 19-22 gives logical processor specific information (TS or TI) for each of the 
events described in Tables 19-16 and 19-17. If for example, a TS event occurred in 
logical processor T0, the counting of the event (as shown in Table 18-33) depends 
only on the setting of the T0_USR and T0_OS flags in the ESCR being used to set up 
the event counter. The T1_USR and T1_OS flags have no effect on the count.

When a bit in the event mask field is TI, the effect of specifying bit-0-3 of the associ-
ated ESCR are described in Table 15-6. For events that are marked as TI in Chapter 
19, the effect of selectively specifying T0_USR, T0_OS, T1_USR, T1_OS bits is shown 
in Table 18-34. 

Table 18-33.  Effect of Logical Processor and CPL Qualification 
for Logical-Processor-Specific (TS) Events

T1_OS/T1_USR = 
00

T1_OS/T1_USR = 
01

T1_OS/T1_USR = 
11

T1_OS/T1_USR = 
10

T0_OS/T0_USR 
= 00

Zero count Counts while T1 
in USR

Counts while T1 
in OS or USR

Counts while T1 
in OS

T0_OS/T0_USR 
= 01

Counts while T0 
in USR

Counts while T0 
in USR or T1 in 
USR

Counts while (a) 
T0 in USR or (b) 
T1 in OS or (c) T1 
in USR

Counts while (a) 
T0 in OS or (b) T1 
in OS

T0_OS/T0_USR 
= 11

Counts while T0 
in OS or USR

Counts while (a) 
T0 in OS or (b) T0 
in USR or (c) T1 in 
USR

Counts 
irrespective of 
CPL, T0, T1

Counts while (a) 
T0 in OS or (b) or 
T0 in USR or (c) 
T1 in OS

T0_OS/T0_USR 
= 10

Counts T0 in OS Counts T0 in OS 
or T1 in USR

Counts while 
(a)T0 in Os or (b) 
T1 in OS or (c) T1 
in USR

Counts while (a) 
T0 in OS or (b) T1 
in OS
18-96 Vol. 3B



PERFORMANCE MONITORING
18.12 COUNTING CLOCKS
The count of cycles, also known as clockticks, forms a the basis for measuring how 
long a program takes to execute. Clockticks are also used as part of efficiency ratios 
like cycles per instruction (CPI). Processor clocks may stop ticking under circum-
stances like the following:
• The processor is halted when there is nothing for the CPU to do. For example, the 

processor may halt to save power while the computer is servicing an I/O request. 
When Intel Hyper-Threading Technology is enabled, both logical processors must 
be halted for performance-monitoring counters to be powered down.

• The processor is asleep as a result of being halted or because of a power-
management scheme. There are different levels of sleep. In the some deep sleep 
levels, the time-stamp counter stops counting.

In addition, processor core clocks may undergo transitions at different ratios relative 
to the processor’s bus clock frequency. Some of the situations that can cause 
processor core clock to undergo frequency transitions include:
• TM2 transitions
• Enhanced Intel SpeedStep Technology transitions (P-state transitions)

For Intel processors that support Intel Dynamic Acceleration or XE operation, the 
processor core clocks may operate at a frequency that differs from the maximum 
qualified frequency (as indicated by brand string information reported by CPUID 
instruction). See Section 18.12.5 for more detail.

Table 18-34.  Effect of Logical Processor and CPL Qualification 
for Non-logical-Processor-specific (TI) Events

T1_OS/T1_USR = 
00

T1_OS/T1_USR = 
01

T1_OS/T1_USR = 
11

T1_OS/T1_USR = 
10 

T0_OS/T0_USR = 
00

Zero count Counts while (a) 
T0 in USR or (b) 
T1 in USR

Counts 
irrespective of 
CPL, T0, T1

Counts while (a) 
T0 in OS or (b) T1 
in OS 

T0_OS/T0_USR = 
01

Counts while (a) 
T0 in USR or (b) 
T1 in USR

Counts while (a) 
T0 in USR or (b) 
T1 in USR

Counts 
irrespective of 
CPL, T0, T1

Counts 
irrespective of 
CPL, T0, T1 

T0_OS/T0_USR = 
11

Counts 
irrespective of 
CPL, T0, T1

Counts 
irrespective of 
CPL, T0, T1

Counts 
irrespective of 
CPL, T0, T1

Counts 
irrespective of 
CPL, T0, T1 

T0_OS/T0_USR = 
0

Counts while (a) 
T0 in OS or (b) T1 
in OS

Counts 
irrespective of 
CPL, T0, T1

Counts 
irrespective of 
CPL, T0, T1

Counts while (a) 
T0 in OS or (b) T1 
in OS
Vol. 3B 18-97



PERFORMANCE MONITORING
There are several ways to count processor clock cycles to monitor performance. 
These are:
• Non-halted clockticks — Measures clock cycles in which the specified logical 

processor is not halted and is not in any power-saving state. When Intel Hyper-
Threading Technology is enabled, ticks can be measured on a per-logical-
processor basis. There are also performance events on dual-core processors that 
measure clockticks per logical processor when the processor is not halted.

• Non-sleep clockticks — Measures clock cycles in which the specified physical 
processor is not in a sleep mode or in a power-saving state. These ticks cannot be 
measured on a logical-processor basis.

• Time-stamp counter — Measures clock cycles in which the physical processor is 
not in deep sleep. These ticks cannot be measured on a logical-processor basis.

• Reference clockticks — TM2 or Enhanced Intel SpeedStep technology are two 
examples of processor features that can cause processor core clockticks to 
represent non-uniform tick intervals due to change of bus ratios. Performance 
events that counts clockticks of a constant reference frequency was introduced 
Intel Core Duo and Intel Core Solo processors. The mechanism is further 
enhanced on processors based on Intel Core microarchitecture.

Some processor models permit clock cycles to be measured when the physical 
processor is not in deep sleep (by using the time-stamp counter and the RDTSC 
instruction). Note that such ticks cannot be measured on a per-logical-processor 
basis. See Section 17.12, “Time-Stamp Counter,” for detail on processor capabilities.

The first two methods use performance counters and can be set up to cause an inter-
rupt upon overflow (for sampling). They may also be useful where it is easier for a 
tool to read a performance counter than to use a time stamp counter (the timestamp 
counter is accessed using the RDTSC instruction). 

For applications with a significant amount of I/O, there are two ratios of interest:
• Non-halted CPI — Non-halted clockticks/instructions retired measures the CPI 

for phases where the CPU was being used. This ratio can be measured on a 
logical-processor basis when Intel Hyper-Threading Technology is enabled.

• Nominal CPI — Time-stamp counter ticks/instructions retired measures the CPI 
over the duration of a program, including those periods when the machine halts 
while waiting for I/O.

18.12.1 Non-Halted Clockticks
Use the following procedure to program ESCRs and CCCRs to obtain non-halted 
clockticks on processors based on Intel NetBurst microarchitecture: 

1. Select an ESCR for the global_power_events and specify the RUNNING sub-event 
mask and the desired T0_OS/T0_USR/T1_OS/T1_USR bits for the targeted 
processor.
18-98 Vol. 3B



PERFORMANCE MONITORING
2. Select an appropriate counter.

3. Enable counting in the CCCR for that counter by setting the enable bit.

18.12.2 Non-Sleep Clockticks
Performance monitoring counters can be configured to count clockticks whenever the 
performance monitoring hardware is not powered-down. To count Non-sleep Clock-
ticks with a performance-monitoring counter, do the following:

1. Select one of the 18 counters.

2. Select any of the ESCRs whose events the selected counter can count. Set its 
event select to anything other than no_event. This may not seem necessary, but 
the counter may be disabled if this is not done.

3. Turn threshold comparison on in the CCCR by setting the compare bit to 1.

4. Set the threshold to 15 and the complement to 1 in the CCCR. Since no event can 
exceed this threshold, the threshold condition is met every cycle and the counter 
counts every cycle. Note that this overrides any qualification (e.g. by CPL) 
specified in the ESCR.

5. Enable counting in the CCCR for the counter by setting the enable bit.

In most cases, the counts produced by the non-halted and non-sleep metrics are 
equivalent if the physical package supports one logical processor and is not placed in 
a power-saving state. Operating systems may execute an HLT instruction and place a 
physical processor in a power-saving state.

On processors that support Intel Hyper-Threading Technology (Intel HT Technology), 
each physical package can support two or more logical processors. Current imple-
mentation of Intel HT Technology provides two logical processors for each physical 
processor. While both logical processors can execute two threads simultaneously, 
one logical processor may halt to allow the other logical processor to execute without 
sharing execution resources between two logical processors. 

Non-halted Clockticks can be set up to count the number of processor clock cycles for 
each logical processor whenever the logical processor is not halted (the count may 
include some portion of the clock cycles for that logical processor to complete a tran-
sition to a halted state). Physical processors that support Intel HT Technology enter 
into a power-saving state if all logical processors halt.

The Non-sleep Clockticks mechanism uses a filtering mechanism in CCCRs. The 
mechanism will continue to increment as long as one logical processor is not halted 
or in a power-saving state. Applications may cause a processor to enter into a power-
saving state by using an OS service that transfers control to an OS’s idle loop. The 
idle loop then may place the processor into a power-saving state after an implemen-
tation-dependent period if there is no work for the processor.
Vol. 3B 18-99



PERFORMANCE MONITORING
18.12.3 Incrementing the Time-Stamp Counter
The time-stamp counter increments when the clock signal on the system bus is 
active and when the sleep pin is not asserted. The counter value can be read with the 
RDTSC instruction.

The time-stamp counter and the non-sleep clockticks count may not agree in all 
cases and for all processors. See Section 17.12, “Time-Stamp Counter,” for more 
information on counter operation.

18.12.4 Non-Halted Reference Clockticks
Software can use either processor-specific performance monitor events (for 
example: CPU_CLK_UNHALTED.BUS on processors based on the Intel Core microar-
chitecture, and equivalent event specifications on the Intel Core Duo and Intel Core 
Solo processors) to count non-halted reference clockticks.

These events count reference clock cycles whenever the specified processor is not 
halted. The counter counts reference cycles associated with a fixed-frequency clock 
source irrespective of P-state, TM2, or frequency transitions that may occur to the 
processor.

18.12.5 Cycle Counting and Opportunistic Processor Operation
As a result of the state transitions due to opportunistic processor performance oper-
ation (see Chapter 14, “Power and Thermal Management”), a logical processor or a 
processor core can operate at frequency different from that indicated by the 
processor’s maximum qualified frequency. 

The following items are expected to hold true irrespective of when opportunistic 
processor operation causes state transitions:
• The time stamp counter operates at a fixed-rate frequency of the processor.
• The IA32_MPERF counter increments at the same TSC frequency irrespective of 

any transitions caused by opportunistic processor operation.
• The IA32_FIXED_CTR2 counter increments at the same TSC frequency 

irrespective of any transitions caused by opportunistic processor operation.
• The Local APIC timer operation is unaffected by opportunistic processor 

operation.
• The TSC, IA32_MPERF, and IA32_FIXED_CTR2 operate at the same, maximum-

resolved frequency of the platform, which is equal to the product of scalable bus 
frequency and maximum resolved bus ratio. 

For processors based on Intel Core microarchitecture, the scalable bus frequency is 
encoded in the bit field MSR_FSB_FREQ[2:0] at (0CDH), see Chapter 34, “Model-
18-100 Vol. 3B



PERFORMANCE MONITORING
Specific Registers (MSRs)”. The maximum resolved bus ratio can be read from the 
following bit field:
• If XE operation is disabled, the maximum resolved bus ratio can be read in 

MSR_PLATFORM_ID[12:8]. It corresponds to the maximum qualified frequency.
• IF XE operation is enabled, the maximum resolved bus ratio is given in 

MSR_PERF_STAT[44:40], it corresponds to the maximum XE operation 
frequency configured by BIOS.

XE operation of an Intel 64 processor is implementation specific. XE operation can be 
enabled only by BIOS. If MSR_PERF_STAT[31] is set, XE operation is enabled. The 
MSR_PERF_STAT[31] field is read-only.

18.13 PERFORMANCE MONITORING, BRANCH PROFILING 
AND SYSTEM EVENTS

When performance monitoring facilities and/or branch profiling facilities (see Section 
17.5, “Last Branch, Interrupt, and Exception Recording (Intel® Core™2 Duo and 
Intel® Atom™ Processor Family)”) are enabled, these facilities capture event counts, 
branch records and branch trace messages occurring in a logical processor. The 
occurrence of interrupts, instruction streams due to various interrupt handlers all 
contribute to the results recorded by these facilities.

If CPUID.01H:ECX.PDCM[bit 15] is 1, the processor supports the 
IA32_PERF_CAPABILITIES MSR. If 
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is 1, the processor supports 
the ability for system software using performance monitoring and/or branch profiling 
facilities to filter out the effects of servicing system management interrupts. 

If the FREEZE_WHILE_SMM capability is enabled on a logical processor and after an 
SMI is delivered, the processor will clear all the enable bits of 
IA32_PERF_GLOBAL_CTRL, save a copy of the content of IA32_DEBUGCTL and 
disable LBR, BTF, TR, and BTS fields of IA32_DEBUGCTL before transferring control to 
the SMI handler. 

The enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved copy of 
IA32_DEBUGCTL prior to SMI delivery will be restored , after the SMI handler issues 
RSM to complete its servicing. 

It is the responsibility of the SMM code to ensure the state of the performance moni-
toring and branch profiling facilities are preserved upon entry or until prior to exiting 
the SMM. If any of this state is modified due to actions by the SMM code, the SMM 
code is required to restore such state to the values present at entry to the SMM 
handler.

System software is allowed to set IA32_DEBUGCTL.FREEZE_WHILE_SMM_EN[bit 14] 
to 1 only supported as indicated by 
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] reporting 1.
Vol. 3B 18-101



PERFORMANCE MONITORING
18.14 PERFORMANCE MONITORING AND DUAL-CORE 
TECHNOLOGY

The performance monitoring capability of dual-core processors duplicates the 
microarchitectural resources of a single-core processor implementation. Each 
processor core has dedicated performance monitoring resources.

In the case of Pentium D processor, each logical processor is associated with dedi-
cated resources for performance monitoring. In the case of Pentium processor 
Extreme edition, each processor core has dedicated resources, but two logical 
processors in the same core share performance monitoring resources (see Section 
18.11, “Performance Monitoring and Intel Hyper-Threading Technology in Processors 
Based on Intel NetBurst® Microarchitecture”). 

18.15 PERFORMANCE MONITORING ON 64-BIT INTEL XEON 
PROCESSOR MP WITH UP TO 8-MBYTE L3 CACHE

The 64-bit Intel Xeon processor MP with up to 8-MByte L3 cache has a CPUID signa-
ture of family [0FH], model [03H or 04H]. Performance monitoring capabilities avail-
able to Pentium 4 and Intel Xeon processors with the same values (see Section 18.1 
and Section 18.11) apply to the 64-bit Intel Xeon processor MP with an L3 cache. 

The level 3 cache is connected between the system bus and IOQ through additional 
control logic. See Figure 18-40.

Figure 18-39.  Layout of IA32_PERF_CAPABILITIES MSR 

SMM_FREEZE (R/O)
PEBS_REC_FMT (R/O) 

8 7 012 3 1

Reserved

63 2411 56

PEBS_TRAP (R/O)
LBR_FMT (R/O) - 0: 32bit, 1: 64-bit LIP, 2: 64bit EIP

PEBS_ARCH_REG (R/O)

13

FW_WRITE (R/O)
18-102 Vol. 3B



PERFORMANCE MONITORING
Additional performance monitoring capabilities and facilities unique to 64-bit Intel 
Xeon processor MP with an L3 cache are described in this section. The facility for 
monitoring events consists of a set of dedicated model-specific registers (MSRs), 
each dedicated to a specific event. Programming of these MSRs requires using 
RDMSR/WRMSR instructions with 64-bit values.

The lower 32-bits of the MSRs at addresses 107CC through 107D3 are treated as 32 
bit performance counter registers. These performance counters can be accessed 
using RDPMC instruction with the index starting from 18 through 25. The EDX 
register returns zero when reading these 8 PMCs.

The performance monitoring capabilities consist of four events. These are:
• IBUSQ event — This event detects the occurrence of micro-architectural 

conditions related to the iBUSQ unit. It provides two MSRs: MSR_IFSB_IBUSQ0 
and MSR_IFSB_IBUSQ1. Configure sub-event qualification and enable/disable 
functions using the high 32 bits of these MSRs. The low 32 bits act as a 32-bit 
event counter. Counting starts after software writes a non-zero value to one or 
more of the upper 32 bits. See Figure 18-41.

Figure 18-40.  Block Diagram of 64-bit Intel Xeon Processor MP with 8-MByte L3
Vol. 3B 18-103



PERFORMANCE MONITORING
• ISNPQ event — This event detects the occurrence of microarchitectural 
conditions related to the iSNPQ unit. It provides two MSRs: MSR_IFSB_ISNPQ0 
and MSR_IFSB_ISNPQ1. Configure sub-event qualifications and enable/disable 
functions using the high 32 bits of the MSRs. The low 32-bits act as a 32-bit event 
counter. Counting starts after software writes a non-zero value to one or more of 
the upper 32-bits. See Figure 18-42.

Figure 18-41.  MSR_IFSB_IBUSQx, Addresses: 107CCH and 107CDH

L3_state_match

46 3845 37 36 3334

Saturate
Fill_match
Eviction_match

Snoop_match
Type_match
T1_match
T0_match

Reserved

63 56 55 48 324957585960 35

1 1

32 bit event count

031

MSR_IFSB_IBUSQx, Addresses: 107CCH and 107CDH
18-104 Vol. 3B



PERFORMANCE MONITORING
• EFSB event — This event can detect the occurrence of micro-architectural 
conditions related to the iFSB unit or system bus. It provides two MSRs: 
MSR_EFSB_DRDY0 and MSR_EFSB_DRDY1. Configure sub-event qualifications 
and enable/disable functions using the high 32 bits of the 64-bit MSR. The low 
32-bit act as a 32-bit event counter. Counting starts after software writes a non-
zero value to one or more of the qualification bits in the upper 32-bits of the MSR. 
See Figure 18-43.

Figure 18-42.  MSR_IFSB_ISNPQx, Addresses: 107CEH and 107CFH

L3_state_match

46 3845 37 36 3334

Saturate

Snoop_match
Type_match

T1_match
T0_match

Reserved

63 56 55 48 3257585960 3539

Agent_match

31 0

32 bit event count

MSR_IFSB_ISNPQx, Addresses: 107CEH and 107CFH
Vol. 3B 18-105



PERFORMANCE MONITORING
• IBUSQ Latency event — This event accumulates weighted cycle counts for 
latency measurement of transactions in the iBUSQ unit. The count is enabled by 
setting MSR_IFSB_CTRL6[bit 26] to 1; the count freezes after software sets 
MSR_IFSB_CTRL6[bit 26] to 0. MSR_IFSB_CNTR7 acts as a 64-bit event 
counter for this event. See Figure 18-44.

Figure 18-43.  MSR_EFSB_DRDYx, Addresses: 107D0H and 107D1H

Other

49 3850 37 36 3334

Saturate

Own

Reserved

63 56 55 48 3257585960 3539

31 0

32 bit event count

MSR_EFSB_DRDYx, Addresses: 107D0H and 107D1H
18-106 Vol. 3B



PERFORMANCE MONITORING
18.16 PERFORMANCE MONITORING ON L3 AND CACHING 
BUS CONTROLLER SUB-SYSTEMS

The Intel Xeon processor 7400 series and Dual-Core Intel Xeon processor 7100 
series employ a distinct L3/caching bus controller sub-system. These sub-system 
have a unique set of performance monitoring capability and programming interfaces 
that are largely common between these two processor families. 

Intel Xeon processor 7400 series are based on 45nm enhanced Intel Core microar-
chitecture. The CPUID signature is indicated by DisplayFamily_DisplayModel value of 
06_1DH (see CPUID instruction in Chapter 3, “Instruction Set Reference, A-L” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). Intel 
Xeon processor 7400 series have six processor cores that share an L3 cache. 

Dual-Core Intel Xeon processor 7100 series are based on Intel NetBurst microarchi-
tecture, have a CPUID signature of family [0FH], model [06H] and a unified L3 cache 
shared between two cores. Each core in an Intel Xeon processor 7100 series supports 
Intel Hyper-Threading Technology, providing two logical processors per core. 

Both Intel Xeon processor 7400 series and Intel Xeon processor 7100 series support 
multi-processor configurations using system bus interfaces. In Intel Xeon processor 
7400 series, the L3/caching bus controller sub-system provides three Simple Direct 
Interface (SDI) to service transactions originated the XQ-replacement SDI logic in 
each dual-core modules. In Intel Xeon processor 7100 series, the IOQ logic in each 
processor core is replaced with a Simple Direct Interface (SDI) logic. The L3 cache is 

Figure 18-44.  MSR_IFSB_CTL6, Address: 107D2H; 
MSR_IFSB_CNTR7, Address: 107D3H

Reserved

MSR_IFSB_CTL6 Address: 107D2H

MSR_IFSB_CNTR7 Address: 107D3H

Enable

63 05759

63 0

64 bit event count
Vol. 3B 18-107



PERFORMANCE MONITORING
connected between the system bus and the SDI through additional control logic. See 
Figure 18-45 for the block configuration of six processor cores and the L3/Caching 
bus controller sub-system in Intel Xeon processor 7400 series. Figure 18-45 shows 
the block configuration of two processor cores (four logical processors) and the 
L3/Caching bus controller sub-system in Intel Xeon processor 7100 series.

Almost all of the performance monitoring capabilities available to processor cores 
with the same CPUID signatures (see Section 18.1 and Section 18.11) apply to Intel 
Xeon processor 7100 series. The MSRs used by performance monitoring interface are 
shared between two logical processors in the same processor core.

The performance monitoring capabilities available to processor with 
DisplayFamily_DisplayModel signature 06_17H also apply to Intel Xeon processor 
7400 series. Each processor core provides its own set of MSRs for performance moni-
toring interface.

The IOQ_allocation and IOQ_active_entries events are not supported in Intel Xeon 
processor 7100 series and 7400 series. Additional performance monitoring capabili-
ties applicable to the L3/caching bus controller sub-system are described in this 
section. 

Figure 18-45.  Block Diagram of Intel Xeon Processor 7400 Series

SDI interface

L2

SDI interface

L2

L3
GBSQ, GSNPQ,
GINTQ, ...

FSB

SDI

SDI interface

L2

Core Core Core Core Core Core
18-108 Vol. 3B



PERFORMANCE MONITORING
18.16.1 Overview of Performance Monitoring with L3/Caching Bus 
Controller 

The facility for monitoring events consists of a set of dedicated model-specific 
registers (MSRs). There are eight event select/counting MSRs that are dedicated to 
counting events associated with specified microarchitectural conditions. Program-
ming of these MSRs requires using RDMSR/WRMSR instructions with 64-bit values. 
In addition, an MSR MSR_EMON_L3_GL_CTL provides simplified interface to control 
freezing, resetting, re-enabling operation of any combination of these event 
select/counting MSRs. 

The eight MSRs dedicated to count occurrences of specific conditions are further 
divided to count three sub-classes of microarchitectural conditions:
• Two MSRs (MSR_EMON_L3_CTR_CTL0 and MSR_EMON_L3_CTR_CTL1) are 

dedicated to counting GBSQ events. Up to two GBSQ events can be programmed 
and counted simultaneously. 

• Two MSRs (MSR_EMON_L3_CTR_CTL2 and MSR_EMON_L3_CTR_CTL3) are 
dedicated to counting GSNPQ events. Up to two GBSQ events can be 
programmed and counted simultaneously. 

Figure 18-46.  Block Diagram of Intel Xeon Processor 7100 Series

SDI interface

Processor core

SDI interface

Processor core

L3
GBSQ, GSNPQ,
GINTQ, ...

FSB

SDI

Logical
processor

Logical
processor

Logical
processor

Logical
processor
Vol. 3B 18-109



PERFORMANCE MONITORING
• Four MSRs (MSR_EMON_L3_CTR_CTL4, MSR_EMON_L3_CTR_CTL5, 
MSR_EMON_L3_CTR_CTL6, and MSR_EMON_L3_CTR_CTL7) are dedicated to 
counting external bus operations.

The bit fields in each of eight MSRs share the following common characteristics:
• Bits 63:32 is the event control field that includes an event mask and other bit 

fields that control counter operation. The event mask field specifies details of the 
microarchitectural condition, and its definition differs across GBSQ, GSNPQ, FSB. 

• Bits 31:0 is the event count field. If the specified condition is met during each 
relevant clock domain of the event logic, the matched condition signals the 
counter logic to increment the associated event count field. The lower 32-bits of 
these 8 MSRs at addresses 107CC through 107D3 are treated as 32 bit 
performance counter registers. 

In Dual-Core Intel Xeon processor 7100 series, the uncore performance counters can 
be accessed using RDPMC instruction with the index starting from 18 through 25. The 
EDX register returns zero when reading these 8 PMCs. 

In Intel Xeon processor 7400 series, RDPMC with ECX between 2 and 9 can be used 
to access the eight uncore performance counter/control registers. 

18.16.2 GBSQ Event Interface
The layout of MSR_EMON_L3_CTR_CTL0 and MSR_EMON_L3_CTR_CTL1 is given in 
Figure 18-47. Counting starts after software writes a non-zero value to one or more 
of the upper 32 bits. 

The event mask field (bits 58:32) consists of the following eight attributes:
• Agent_Select (bits 35:32): The definition of this field differs slightly between 

Intel Xeon processor 7100 and 7400. 
For Intel Xeon processor 7100 series, each bit specifies a logical processor in the 
physical package. The lower two bits corresponds to two logical processors in the 
first processor core, the upper two bits corresponds to two logical processors in 
the second processor core. 0FH encoding matches transactions from any logical 
processor.
For Intel Xeon processor 7400 series, each bit of [34:32] specifies the SDI logic 
of a dual-core module as the originator of the transaction. A value of 0111B in 
bits [35:32] specifies transaction from any processor core.
18-110 Vol. 3B



PERFORMANCE MONITORING
• Data_Flow (bits 37:36): Bit 36 specifies demand transactions, bit 37 specifies 
prefetch transactions.

• Type_Match (bits 43:38): Specifies transaction types. If all six bits are set, event 
count will include all transaction types.

• Snoop_Match: (bits 46:44): The three bits specify (in ascending bit position) 
clean snoop result, HIT snoop result, and HITM snoop results respectively.

• L3_State (bits 53:47): Each bit specifies an L2 coherency state. 
• Core_Module_Select (bits 55:54): The valid encodings for L3 lookup differ 

slightly between Intel Xeon processor 7100 and 7400. 
For Intel Xeon processor 7100 series, 

— 00B: Match transactions from any core in the physical package

— 01B: Match transactions from this core only

— 10B: Match transactions from the other core in the physical package

— 11B: Match transaction from both cores in the physical package
For Intel Xeon processor 7400 series, 

— 00B: Match transactions from any dual-core module in the physical package

Figure 18-47.  MSR_EMON_L3_CTR_CTL0/1, Addresses: 107CCH/107CDH

Core_module_select

44 3843 37 3654 53

Saturate
Cross_snoop
Fill_eviction

Snoop_match
Type_match
Data_flow
Agent_select

Reserved

63 56 55 46 324757585960 35

32 bit event count

031

MSR_EMON_L3_CTR_CTL0/1, Addresses: 107CCH/107CDH

L3_state
Vol. 3B 18-111



PERFORMANCE MONITORING
— 01B: Match transactions from this dual-core module only

— 10B: Match transactions from either one of the other two dual-core modules 
in the physical package

— 11B: Match transaction from more than one dual-core modules in the 
physical package

• Fill_Eviction (bits 57:56): The valid encodings are

— 00B: Match any transactions 

— 01B: Match transactions that fill L3

— 10B: Match transactions that fill L3 without an eviction

— 11B: Match transaction fill L3 with an eviction
• Cross_Snoop (bit 58): The encodings are \

— 0B: Match any transactions 

— 1B: Match cross snoop transactions

For each counting clock domain, if all eight attributes match, event logic signals to 
increment the event count field.

18.16.3 GSNPQ Event Interface
The layout of MSR_EMON_L3_CTR_CTL2 and MSR_EMON_L3_CTR_CTL3 is given in 
Figure 18-48. Counting starts after software writes a non-zero value to one or more 
of the upper 32 bits. 

The event mask field (bits 58:32) consists of the following six attributes:
• Agent_Select (bits 37:32): The definition of this field differs slightly between 

Intel Xeon processor 7100 and 7400. 
• For Intel Xeon processor 7100 series, each of the lowest 4 bits specifies a logical 

processor in the physical package. The lowest two bits corresponds to two logical 
processors in the first processor core, the next two bits corresponds to two logical 
processors in the second processor core. Bit 36 specifies other symmetric agent 
transactions. Bit 37 specifies central agent transactions. 3FH encoding matches 
transactions from any logical processor.
For Intel Xeon processor 7400 series, each of the lowest 3 bits specifies a dual-
core module in the physical package. Bit 37 specifies central agent transactions. 

• Type_Match (bits 43:38): Specifies transaction types. If all six bits are set, event 
count will include any transaction types.

• Snoop_Match: (bits 46:44): The three bits specify (in ascending bit position) 
clean snoop result, HIT snoop result, and HITM snoop results respectively.

• L2_State (bits 53:47): Each bit specifies an L3 coherency state. 
• Core_Module_Select (bits 56:54): Bit 56 enables Core_Module_Select matching. 

If bit 56 is clear, Core_Module_Select encoding is ignored. The valid encodings for 
18-112 Vol. 3B



PERFORMANCE MONITORING
the lower two bits (bit 55, 54) differ slightly between Intel Xeon processor 7100 
and 7400.
For Intel Xeon processor 7100 series, if bit 56 is set, the valid encodings for the 
lower two bits (bit 55, 54) are

— 00B: Match transactions from only one core (irrespective which core) in the 
physical package

— 01B: Match transactions from this core and not the other core

— 10B: Match transactions from the other core in the physical package, but not 
this core

— 11B: Match transaction from both cores in the physical package
For Intel Xeon processor 7400 series, if bit 56 is set, the valid encodings for the 
lower two bits (bit 55, 54) are

— 00B: Match transactions from only one dual-core module (irrespective which 
module) in the physical package

— 01B: Match transactions from one or more dual-core modules.

— 10B: Match transactions from two or more dual-core modules.

— 11B: Match transaction from all three dual-core modules in the physical 
package

• Block_Snoop (bit 57): specifies blocked snoop.

For each counting clock domain, if all six attributes match, event logic signals to 
increment the event count field.
Vol. 3B 18-113



PERFORMANCE MONITORING
18.16.4 FSB Event Interface
The layout of MSR_EMON_L3_CTR_CTL4 through MSR_EMON_L3_CTR_CTL7 is given 
in Figure 18-49. Counting starts after software writes a non-zero value to one or 
more of the upper 32 bits. 

The event mask field (bits 58:32) is organized as follows:
• Bit 58: must set to 1.
• FSB_Submask (bits 57:32): Specifies FSB-specific sub-event mask.

The FSB sub-event mask defines a set of independent attributes. The event logic 
signals to increment the associated event count field if one of the attribute matches. 
Some of the sub-event mask bit counts durations. A duration event increments at 
most once per cycle.

Figure 18-48.  MSR_EMON_L3_CTR_CTL2/3, Addresses: 107CEH/107CFH

L2_state

46 3844 37 364354

Saturate

Snoop_match
Type_match

Reserved

63 56 55 47 3257585960 53 39

Agent_match

31 0

32 bit event count

MSR_EMON_L3_CTR_CTL2/3, Addresses: 107CEH/107CFH

Block_snoop
Core_select
18-114 Vol. 3B



PERFORMANCE MONITORING
18.16.4.1  FSB Sub-Event Mask Interface
• FSB_type (bit 37:32): Specifies different FSB transaction types originated from 

this physical package
• FSB_L_clear (bit 38): Count clean snoop results from any source for transaction 

originated from this physical package
• FSB_L_hit (bit 39): Count HIT snoop results from any source for transaction 

originated from this physical package
• FSB_L_hitm (bit 40): Count HITM snoop results from any source for transaction 

originated from this physical package
• FSB_L_defer (bit 41): Count DEFER responses to this processor’s transactions
• FSB_L_retry (bit 42): Count RETRY responses to this processor’s transactions
• FSB_L_snoop_stall (bit 43): Count snoop stalls to this processor’s transactions
• FSB_DBSY (bit 44): Count DBSY assertions by this processor (without a 

concurrent DRDY)
• FSB_DRDY (bit 45): Count DRDY assertions by this processor
• FSB_BNR (bit 46): Count BNR assertions by this processor
• FSB_IOQ_empty (bit 47): Counts each bus clocks when the IOQ is empty
• FSB_IOQ_full (bit 48): Counts each bus clocks when the IOQ is full
• FSB_IOQ_active (bit 49): Counts each bus clocks when there is at least one entry 

in the IOQ

Figure 18-49.  MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: 107D0H-107D3H

1

49 3850 37 36 3334

Saturate

FSB submask

Reserved

63 56 55 48 3257585960 3539

31 0

32 bit event count

MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: 107D0H-107D3H
Vol. 3B 18-115



PERFORMANCE MONITORING
• FSB_WW_data (bit 50): Counts back-to-back write transaction’s data phase.
• FSB_WW_issue (bit 51): Counts back-to-back write transaction request pairs 

issued by this processor.
• FSB_WR_issue (bit 52): Counts back-to-back write-read transaction request 

pairs issued by this processor.
• FSB_RW_issue (bit 53): Counts back-to-back read-write transaction request 

pairs issued by this processor.
• FSB_other_DBSY (bit 54): Count DBSY assertions by another agent (without a 

concurrent DRDY)
• FSB_other_DRDY (bit 55): Count DRDY assertions by another agent
• FSB_other_snoop_stall (bit 56): Count snoop stalls on the FSB due to another 

agent
• FSB_other_BNR (bit 57): Count BNR assertions from another agent

18.16.5 Common Event Control Interface
The MSR_EMON_L3_GL_CTL MSR provides simplified access to query overflow status 
of the GBSQ, GSNPQ, FSB event counters. It also provides control bit fields to freeze, 
unfreeze, or reset those counters. The following bit fields are supported:
• GL_freeze_cmd (bit 0): Freeze the event counters specified by the 

GL_event_select field.
• GL_unfreeze_cmd (bit 1): Unfreeze the event counters specified by the 

GL_event_select field.
• GL_reset_cmd (bit 2): Clear the event count field of the event counters specified 

by the GL_event_select field. The event select field is not affected.
• GL_event_select (bit 23:16): Selects one or more event counters to subject to 

specified command operations indicated by bits 2:0. Bit 16 corresponds to 
MSR_EMON_L3_CTR_CTL0, bit 23 corresponds to MSR_EMON_L3_CTR_CTL7.

• GL_event_status (bit 55:48): Indicates the overflow status of each event 
counters. Bit 48 corresponds to MSR_EMON_L3_CTR_CTL0, bit 55 corresponds 
to MSR_EMON_L3_CTR_CTL7.

In the event control field (bits 63:32) of each MSR, if the saturate control (bit 59, see 
Figure 18-47 for example) is set, the event logic forces the value FFFF_FFFFH into 
the event count field instead of incrementing it. 

18.17 PERFORMANCE MONITORING (P6 FAMILY 
PROCESSOR)

The P6 family processors provide two 40-bit performance counters, allowing two 
types of events to be monitored simultaneously. These can either count events or 
18-116 Vol. 3B



PERFORMANCE MONITORING
measure duration. When counting events, a counter increments each time a speci-
fied event takes place or a specified number of events takes place. When measuring 
duration, it counts the number of processor clocks that occur while a specified condi-
tion is true. The counters can count events or measure durations that occur at any 
privilege level. 

Table 19-25, Chapter 19, lists the events that can be counted with the P6 family 
performance monitoring counters.

NOTE
The performance-monitoring events listed in Chapter 19 are intended 
to be used as guides for performance tuning. Counter values reported 
are not guaranteed to be accurate and should be used as a relative 
guide for tuning. Known discrepancies are documented where 
applicable.

The performance-monitoring counters are supported by four MSRs: the performance 
event select MSRs (PerfEvtSel0 and PerfEvtSel1) and the performance counter MSRs 
(PerfCtr0 and PerfCtr1). These registers can be read from and written to using the 
RDMSR and WRMSR instructions, respectively. They can be accessed using these 
instructions only when operating at privilege level 0. The PerfCtr0 and PerfCtr1 MSRs 
can be read from any privilege level using the RDPMC (read performance-monitoring 
counters) instruction.

NOTE
The PerfEvtSel0, PerfEvtSel1, PerfCtr0, and PerfCtr1 MSRs and the 
events listed in Table 19-25 are model-specific for P6 family 
processors. They are not guaranteed to be available in other IA-32 
processors.

18.17.1 PerfEvtSel0 and PerfEvtSel1 MSRs
The PerfEvtSel0 and PerfEvtSel1 MSRs control the operation of the performance-
monitoring counters, with one register used to set up each counter. They specify the 
events to be counted, how they should be counted, and the privilege levels at which 
counting should take place. Figure 18-50 shows the flags and fields in these MSRs.

The functions of the flags and fields in the PerfEvtSel0 and PerfEvtSel1 MSRs are as 
follows:
• Event select field (bits 0 through 7) — Selects the event logic unit to detect 

certain microarchitectural conditions (see Table 19-25, for a list of events and 
their 8-bit codes).

• Unit mask (UMASK) field (bits 8 through 15) — Further qualifies the event 
logic unit selected in the event select field to detect a specific microarchitectural 
condition. For example, for some cache events, the mask is used as a MESI-
protocol qualifier of cache states (see Table 19-25).
Vol. 3B 18-117



PERFORMANCE MONITORING
• USR (user mode) flag (bit 16) — Specifies that events are counted only when 
the processor is operating at privilege levels 1, 2 or 3. This flag can be used in 
conjunction with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that events are 
counted only when the processor is operating at privilege level 0. This flag can be 
used in conjunction with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of events. 
The processor counts the number of deasserted to asserted transitions of any 
condition that can be expressed by the other fields. The mechanism is limited in 
that it does not permit back-to-back assertions to be distinguished. This 
mechanism allows software to measure not only the fraction of time spent in a 
particular state, but also the average length of time spent in such a state (for 
example, the time spent waiting for an interrupt to be serviced).

• PC (pin control) flag (bit 19) — When set, the processor toggles the PMi pins 
and increments the counter when performance-monitoring events occur; when 
clear, the processor toggles the PMi pins when the counter overflows. The 
toggling of a pin is defined as assertion of the pin for a single bus clock followed 
by deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the processor 
generates an exception through its local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — This flag is only present in the 
PerfEvtSel0 MSR. When set, performance counting is enabled in both 
performance-monitoring counters; when clear, both counters are disabled.

• INV (invert) flag (bit 23) — Inverts the result of the counter-mask comparison 
when set, so that both greater than and less than comparisons can be made.

Figure 18-50.  PerfEvtSel0 and PerfEvtSel1 MSRs

31

INV—Invert counter mask
EN—Enable counters*
INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

* Only available in PerfEvtSel0.

Counter Mask 
EE

N

I
N
T

19 1618 15172021222324

Reserved

I
N
V

P
C

U
S
R

O
S

Unit Mask (UMASK)(CMASK)
18-118 Vol. 3B



PERFORMANCE MONITORING
• Counter mask (CMASK) field (bits 24 through 31) — When nonzero, the 
processor compares this mask to the number of events counted during a single 
cycle. If the event count is greater than or equal to this mask, the counter is 
incremented by one. Otherwise the counter is not incremented. This mask can be 
used to count events only if multiple occurrences happen per clock (for example, 
two or more instructions retired per clock). If the counter-mask field is 0, then 
the counter is incremented each cycle by the number of events that occurred that 
cycle.

18.17.2 PerfCtr0 and PerfCtr1 MSRs
The performance-counter MSRs (PerfCtr0 and PerfCtr1) contain the event or duration 
counts for the selected events being counted. The RDPMC instruction can be used by 
programs or procedures running at any privilege level and in virtual-8086 mode to 
read these counters. The PCE flag in control register CR4 (bit 8) allows the use of this 
instruction to be restricted to only programs and procedures running at privilege 
level 0.

The RDPMC instruction is not serializing or ordered with other instructions. Thus, it 
does not necessarily wait until all previous instructions have been executed before 
reading the counter. Similarly, subsequent instructions may begin execution before 
the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the 
performance counters, using the RDMSR and WRMSR instructions. A secure oper-
ating system would clear the PCE flag during system initialization to disable direct 
user access to the performance-monitoring counters, but provide a user-accessible 
programming interface that emulates the RDPMC instruction.

The WRMSR instruction cannot arbitrarily write to the performance-monitoring 
counter MSRs (PerfCtr0 and PerfCtr1). Instead, the lower-order 32 bits of each MSR 
may be written with any value, and the high-order 8 bits are sign-extended according 
to the value of bit 31. This operation allows writing both positive and negative values 
to the performance counters.

18.17.3 Starting and Stopping the Performance-Monitoring Counters
The performance-monitoring counters are started by writing valid setup information 
in the PerfEvtSel0 and/or PerfEvtSel1 MSRs and setting the enable counters flag in 
the PerfEvtSel0 MSR. If the setup is valid, the counters begin counting following the 
execution of a WRMSR instruction that sets the enable counter flag. The counters can 
be stopped by clearing the enable counters flag or by clearing all the bits in the 
PerfEvtSel0 and PerfEvtSel1 MSRs. Counter 1 alone can be stopped by clearing the 
PerfEvtSel1 MSR.
Vol. 3B 18-119



PERFORMANCE MONITORING
18.17.4 Event and Time-Stamp Monitoring Software
To use the performance-monitoring counters and time-stamp counter, the operating 
system needs to provide an event-monitoring device driver. This driver should 
include procedures for handling the following operations:
• Feature checking
• Initialize and start counters
• Stop counters
• Read the event counters
• Read the time-stamp counter

The event monitor feature determination procedure must check whether the current 
processor supports the performance-monitoring counters and time-stamp counter. 
This procedure compares the family and model of the processor returned by the 
CPUID instruction with those of processors known to support performance moni-
toring. (The Pentium and P6 family processors support performance counters.) The 
procedure also checks the MSR and TSC flags returned to register EDX by the CPUID 
instruction to determine if the MSRs and the RDTSC instruction are supported.

The initialize and start counters procedure sets the PerfEvtSel0 and/or PerfEvtSel1 
MSRs for the events to be counted and the method used to count them and initializes 
the counter MSRs (PerfCtr0 and PerfCtr1) to starting counts. The stop counters 
procedure stops the performance counters (see Section 18.17.3, “Starting and Stop-
ping the Performance-Monitoring Counters”).

The read counters procedure reads the values in the PerfCtr0 and PerfCtr1 MSRs, and 
a read time-stamp counter procedure reads the time-stamp counter. These proce-
dures would be provided in lieu of enabling the RDTSC and RDPMC instructions that 
allow application code to read the counters. 

18.17.5 Monitoring Counter Overflow
The P6 family processors provide the option of generating a local APIC interrupt when 
a performance-monitoring counter overflows. This mechanism is enabled by setting 
the interrupt enable flag in either the PerfEvtSel0 or the PerfEvtSel1 MSR. The 
primary use of this option is for statistical performance sampling. 

To use this option, the operating system should do the following things on the 
processor for which performance events are required to be monitored:
• Provide an interrupt vector for handling the counter-overflow interrupt.
• Initialize the APIC PERF local vector entry to enable handling of performance-

monitor counter overflow events.
• Provide an entry in the IDT that points to a stub exception handler that returns 

without executing any instructions.
• Provide an event monitor driver that provides the actual interrupt handler and 

modifies the reserved IDT entry to point to its interrupt routine.
18-120 Vol. 3B



PERFORMANCE MONITORING
When interrupted by a counter overflow, the interrupt handler needs to perform the 
following actions:
• Save the instruction pointer (EIP register), code-segment selector, TSS segment 

selector, counter values and other relevant information at the time of the 
interrupt.

• Reset the counter to its initial setting and return from the interrupt.

An event monitor application utility or another application program can read the 
information collected for analysis of the performance of the profiled application.

18.18 PERFORMANCE MONITORING (PENTIUM 
PROCESSORS)

The Pentium processor provides two 40-bit performance counters, which can be used 
to count events or measure duration. The counters are supported by three MSRs: the 
control and event select MSR (CESR) and the performance counter MSRs (CTR0 and 
CTR1). These can be read from and written to using the RDMSR and WRMSR instruc-
tions, respectively. They can be accessed using these instructions only when oper-
ating at privilege level 0. 

Each counter has an associated external pin (PM0/BP0 and PM1/BP1), which can be 
used to indicate the state of the counter to external hardware.

NOTES
The CESR, CTR0, and CTR1 MSRs and the events listed in Table 19-26 
are model-specific for the Pentium processor.
The performance-monitoring events listed in Chapter 19 are intended 
to be used as guides for performance tuning. Counter values reported 
are not guaranteed to be accurate and should be used as a relative 
guide for tuning. Known discrepancies are documented where 
applicable.

18.18.1 Control and Event Select Register (CESR)
The 32-bit control and event select MSR (CESR) controls the operation of perfor-
mance-monitoring counters CTR0 and CTR1 and the associated pins (see 
Figure 18-51). To control each counter, the CESR register contains a 6-bit event 
select field (ES0 and ES1), a pin control flag (PC0 and PC1), and a 3-bit counter 
control field (CC0 and CC1). The functions of these fields are as follows:
• ES0 and ES1 (event select) fields (bits 0-5, bits 16-21) — Selects (by 

entering an event code in the field) up to two events to be monitored. See Table 
19-26 for a list of available event codes.
Vol. 3B 18-121



PERFORMANCE MONITORING
• CC0 and CC1 (counter control) fields (bits 6-8, bits 22-24) — Controls the 
operation of the counter. Control codes are as follows:

000 — Count nothing (counter disabled)

001 — Count the selected event while CPL is 0, 1, or 2

010 — Count the selected event while CPL is 3

011 — Count the selected event regardless of CPL

100 — Count nothing (counter disabled)

101 — Count clocks (duration) while CPL is 0, 1, or 2

110 — Count clocks (duration) while CPL is 3

111 — Count clocks (duration) regardless of CPL
The highest order bit selects between counting events and counting clocks 
(duration); the middle bit enables counting when the CPL is 3; and the low-order 
bit enables counting when the CPL is 0, 1, or 2.

• PC0 and PC1 (pin control) flags (bits 9, 25) — Selects the function of the 
external performance-monitoring counter pin (PM0/BP0 and PM1/BP1). Setting 
one of these flags to 1 causes the processor to assert its associated pin when the 
counter has overflowed; setting the flag to 0 causes the pin to be asserted when 
the counter has been incremented. These flags permit the pins to be individually 
programmed to indicate the overflow or incremented condition. The external 
signalling of the event on the pins will lag the internal event by a few clocks as the 
signals are latched and buffered.

While a counter need not be stopped to sample its contents, it must be stopped and 
cleared or preset before switching to a new event. It is not possible to set one 
counter separately. If only one event needs to be changed, the CESR register must 

Figure 18-51.  CESR MSR (Pentium Processor Only)

31

PC1—Pin control 1
CC1—Counter control 1
ES1—Event select 1
PC0—Pin control 0

8 0

CC0—Counter control 0
ES0—Event select 0

16 15212224

Reserved

9 56

ESOCC0
P
C
0

ES1CC1
P
C
1

2526 10
18-122 Vol. 3B



PERFORMANCE MONITORING
be read, the appropriate bits modified, and all bits must then be written back to 
CESR. At reset, all bits in the CESR register are cleared.

18.18.2 Use of the Performance-Monitoring Pins
When performance-monitor pins PM0/BP0 and/or PM1/BP1 are configured to indicate 
when the performance-monitor counter has incremented and an “occurrence event” 
is being counted, the associated pin is asserted (high) each time the event occurs. 
When a “duration event” is being counted, the associated PM pin is asserted for the 
entire duration of the event. When the performance-monitor pins are configured to 
indicate when the counter has overflowed, the associated PM pin is asserted when 
the counter has overflowed.

When the PM0/BP0 and/or PM1/BP1 pins are configured to signal that a counter has 
incremented, it should be noted that although the counters may increment by 1 or 2 
in a single clock, the pins can only indicate that the event occurred. Moreover, since 
the internal clock frequency may be higher than the external clock frequency, a 
single external clock may correspond to multiple internal clocks.

A “count up to” function may be provided when the event pin is programmed to 
signal an overflow of the counter. Because the counters are 40 bits, a carry out of bit 
39 indicates an overflow. A counter may be preset to a specific value less then 240 − 
1. After the counter has been enabled and the prescribed number of events has tran-
spired, the counter will overflow. 

Approximately 5 clocks later, the overflow is indicated externally and appropriate 
action, such as signaling an interrupt, may then be taken.

The PM0/BP0 and PM1/BP1 pins also serve to indicate breakpoint matches during in-
circuit emulation, during which time the counter increment or overflow function of 
these pins is not available. After RESET, the PM0/BP0 and PM1/BP1 pins are config-
ured for performance monitoring, however a hardware debugger may reconfigure 
these pins to indicate breakpoint matches.

18.18.3 Events Counted
Events that performance-monitoring counters can be set to count and record (using 
CTR0 and CTR1) are divided in two categories: occurrence and duration:
• Occurrence events — Counts are incremented each time an event takes place. 

If PM0/BP0 or PM1/BP1 pins are used to indicate when a counter increments, the 
pins are asserted each clock counters increment. But if an event happens twice in 
one clock, the counter increments by 2 (the pins are asserted only once).

• Duration events — Counters increment the total number of clocks that the 
condition is true. When used to indicate when counters increment, PM0/BP0 
and/or PM1/BP1 pins are asserted for the duration.
Vol. 3B 18-123



PERFORMANCE MONITORING
18-124 Vol. 3B



CHAPTER 19
PERFORMANCE-MONITORING EVENTS

This chapter lists the performance-monitoring events that can be monitored with the 
Intel 64 or IA-32 processors. The ability to monitor performance events and the 
events that can be monitored in these processors are mostly model-specific, except 
for architectural performance events, described in Section 19.1. 

Non-architectural performance events (i.e. model-specific events) are listed for each 
generation of microarchitecture:
• Section 19.2 - Processors based on Intel® microarchitecture code name Ivy 

Bridge
• Section 19.3 - Processors based on Intel® microarchitecture code name Sandy 

Bridge
• Section 19.4 - Processors based on Intel® microarchitecture code name Nehalem
• Section 19.5 - Processors based on Intel® microarchitecture code name 

Westmere
• Section 19.6 - Processors based on Enhanced Intel® Core™ microarchitecture
• Section 19.7 - Processors based on Intel® Core™ microarchitecture
• Section 19.8 - Processors based on Intel® Atom™ microarchitecture
• Section 19.9 - Intel® Core™ Solo and Intel® Core™ Duo processors
• Section 19.10 - Processors based on Intel NetBurst® microarchitecture
• Section 19.11 - Pentium® M family processors
• Section 19.12 - P6 family processors
• Section 19.13 - Pentium® processors

NOTE
These performance-monitoring events are intended to be used as 
guides for performance tuning. The counter values reported by the 
performance-monitoring events are approximate and believed to be 
useful as relative guides for tuning software. Known discrepancies 
are documented where applicable.

19.1 ARCHITECTURAL PERFORMANCE-MONITORING 
EVENTS

Architectural performance events are introduced in Intel Core Solo and Intel Core 
Duo processors. They are also supported on processors based on Intel Core microar-
Vol. 3B 19-1



PERFORMANCE-MONITORING EVENTS
chitecture. Table 19-1 lists pre-defined architectural performance events that can be 
configured using general-purpose performance counters and associated event-select 
registers.

19.2 PERFORMANCE MONITORING EVENTS FOR  NEXT 
GENERATION INTEL® CORE™ PROCESSORS 

Next generation Intel® Core™ Processors are based on the Intel microarchitecture 
code name Ivy Bridge. They support architectural performance-monitoring events 
listed in Table 19-1. Non-architectural performance-monitoring events in the 
processor core are listed in Table 19-2. The events in Table 19-2 apply to processors 
with CPUID signature of DisplayFamily_DisplayModel encoding with the following 
values: 06_3AH. 

Table 19-1.  Architectural Performance Events
Event
Num. Event Mask Mnemonic

Umask
Value Description Comment

3CH UnHalted Core Cycles 00H Unhalted core cycles

3CH UnHalted Reference 
Cycles

01H Unhalted reference cycles Measures 
bus cycle1

NOTES:
1. Implementation of this event in Intel Core 2 processor family, Intel Core Duo, and Intel Core Solo pro-

cessors measures bus clocks.

C0H Instruction Retired 00H Instruction retired

2EH LLC Reference 4FH Last level cache references

2EH LLC Misses 41H Last level cache misses

C4H Branch Instruction Retired 00H Branch instruction at retirement

C5H Branch Misses Retired 00H Mispredicted Branch Instruction at 
retirement

Table 19-2.  Non-Architectural Performance Events In the Processor Core of Next 
Generation Intel Core i7, i5, i3 Processors 

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_F
ORWARD

loads blocked by overlapping with 
store buffer that cannot be 
forwarded .

05H 01H MISALIGN_MEM_REF.
LOADS

Speculative cache-line split load 
uops dispatched to L1D.
19-2 Vol. 3B



PERFORMANCE-MONITORING EVENTS
05H 02H MISALIGN_MEM_REF.
STORES

Speculative cache-line split Store-
address uops dispatched to L1D.

07H 01H LD_BLOCKS_PARTIA
L.ADDRESS_ALIAS

False dependencies in MOB due to 
partial compare on address.

08H 81H DTLB_LOAD_MISSES.
DEMAND_LD_MISS_C
AUSES_A_WALK

Misses in all TLB levels that cause a 
page walk of any page size from 
demand loads.

08H 82H DTLB_LOAD_MISSES.
DEMAND_LD_WALK_
COMPLETED

Misses in all TLB levels that caused 
page walk completed of any size by 
demand loads.

08H 84H DTLB_LOAD_MISSES.
DEMAND_LD_WALK_
DURATION

Cycle PMH is busy with a walk due 
to demand loads.

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops 
issued by the RAT to RS. 

Set Cmask = 1, Inv = 1, Any= 1to 
count stalled cycles of this core.

Set Cmask = 1, 
Inv = 1to count 
stalled cycles

14H 01H ARITH.FPU_DIV_ACT
IVE

Cycles that the divider is active, 
includes INT and FP. Set 'edge =1, 
cmask=1' to count the number of 
divides.

24H 01H L2_RQSTS.DEMAND_
DATA_RD_HIT

Demand Data Read requests that 
hit L2 cache

24H 03H L2_RQSTS.ALL_DEM
AND_DATA_RD

Counts any demand and L1 HW 
prefetch data load requests to L2. 

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO 
requests that hit the L2 cache. 

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO 
requests that miss the L2 cache. 

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests. 

24H 10H L2_RQSTS.CODE_RD
_HIT

Number of instruction fetches that 
hit the L2 cache. 

24H 20H L2_RQSTS.CODE_RD
_MISS

Number of instruction fetches that 
missed the L2 cache. 

24H 30H L2_RQSTS.ALL_COD
E_RD

Counts all L2 code requests.

Table 19-2.  Non-Architectural Performance Events In the Processor Core of Next 
Generation Intel Core i7, i5, i3 Processors 

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-3



PERFORMANCE-MONITORING EVENTS
27H 01H L2_STORE_LOCK_RQ
STS.MISS

RFOs that miss cache lines 

27H 08H L2_STORE_LOCK_RQ
STS.HIT_M

RFOs that hit cache lines in M state

27H 0FH L2_STORE_LOCK_RQ
STS.ALL

RFOs that access cache lines in any 
state

28H 01H L2_L1D_WB_RQSTS.
MISS

Not rejected writebacks that missed 
LLC.

28H 04H L2_L1D_WB_RQSTS.
HIT_E

Not rejected writebacks from L1D 
to L2 cache lines in E state.

28H 08H L2_L1D_WB_RQSTS.
HIT_M

Not rejected writebacks from L1D 
to L2 cache lines in M state.

2EH 4FH LONGEST_LAT_CACH
E.REFERENCE

This event counts requests 
originating from the core that 
reference a cache line in the last 
level cache. 

see Table 19-1

2EH 41H LONGEST_LAT_CACH
E.MISS

This event counts each cache miss 
condition for references to the last 
level cache. 

see Table 19-1

3CH 00H CPU_CLK_UNHALTED
.THREAD_P

Counts the number of thread cycles 
while the thread is not in a halt 
state. The thread enters the halt 
state when it is running the HLT 
instruction. The core frequency may 
change from time to time due to 
power or thermal throttling. 

see Table 19-1

3CH 01H CPU_CLK_THREAD_
UNHALTED.REF_XCL
K

Increments at the frequency of 
XCLK (100 MHz) when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PE
NDING

Increments the number of 
outstanding L1D misses every cycle. 
Set Cmaks = 1 and Edge =1 to count 
occurrences.

Counter 2 only;

Set Cmask = 1 to 
count cycles. 

49H 01H DTLB_STORE_MISSE
S.MISS_CAUSES_A_
WALK

Miss in all TLB levels causes an page 
walk of any page size 
(4K/2M/4M/1G).

Table 19-2.  Non-Architectural Performance Events In the Processor Core of Next 
Generation Intel Core i7, i5, i3 Processors 

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-4 Vol. 3B



PERFORMANCE-MONITORING EVENTS
49H 02H DTLB_STORE_MISSE
S.WALK_COMPLETED

Miss in all TLB levels causes a page 
walk that completes of any page 
size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSE
S.WALK_DURATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSE
S.STLB_HIT

Store operations that miss the first 
TLB level but hit the second and do 
not cause page walks

4CH 01H LOAD_HIT_PRE.SW_
PF

Not SW-prefetch load dispatches 
that hit fill buffer allocated for S/W 
prefetch.

51H 01H L1D.REPLACEMENT Counts the number of lines brought 
into the L1 data cache.

58H 01H MOVE_ELIMINATION.I
NT_NOT_ELIMINATE
D

Number of integer Move Elimination 
candidate uops that were not 
eliminated.

58H 02H MOVE_ELIMINATION.
SIMD_NOT_ELIMINAT
ED

Number of SIMD Move Elimination 
candidate uops that were not 
eliminated.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the 
thread is in ring 0

Use Edge to 
count transition

5CH 02H CPL_CYCLES.RING12
3

Unhalted core cycles when the 
thread is not in ring 0

5EH 01H RS_EVENTS.EMPTY_
CYCLES

Cycles the RS is empty for the 
thread.

5FH 01H TLB_ACCESS.LOAD_S
TLB_HIT

Counts load operations that missed 
1st level DTLB but hit the 2nd level.

60H 01H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_DATA_RD

Offcore outstanding Demand Data 
Read transactions in SQ to uncore. 
Set Cmask=1 to count cycles.

60H 04H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_RFO

Offcore outstanding RFO store 
transactions in SQ to uncore. Set 
Cmask=1 to count cycles.

60H 08H OFFCORE_REQUEST
S_OUTSTANDING.AL
L_DATA_RD

Offcore outstanding cacheable data 
read transactions in SQ to uncore. 
Set Cmask=1 to count cycles.

Table 19-2.  Non-Architectural Performance Events In the Processor Core of Next 
Generation Intel Core i7, i5, i3 Processors 

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-5



PERFORMANCE-MONITORING EVENTS
63H 01H LOCK_CYCLES.SPLIT_
LOCK_UC_LOCK_DUR
ATION

Cycles in which the L1D and L2  are 
locked, due to a UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE
_LOCK_DURATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops 
delivered to IDQ from MITE path. 

Set Cmask = 1 to count cycles.

Can combine 
Umask 04H and 
20H 

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops 
delivered to IDQ from DSB path. 

Set Cmask = 1 to count cycles.

Can combine 
Umask 08H and 
10H 

79H 30H IDQ.MS_UOPS Increment each cycle # of uops 
delivered to IDQ from MS by either 
DSB or MITE. Set Cmask = 1 to count 
cycles.

Can combine 
Umask 04H, 08H 
and 30H 

80H 02H ICACHE.MISSES Number of Instruction Cache, 
Streaming Buffer and Victim Cache 
Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_C
AUSES_A_WALK

Misses in all ITLB levels that cause 
page walks

85H 02H ITLB_MISSES.WALK_
COMPLETED

Misses in all ITLB levels that cause 
completed page walks

85H 04H ITLB_MISSES.WALK_
DURATION

Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_H
IT

Number of cache load STLB hits. No 
page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix 
length of the instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch 
instructions executed, but not 
necessarily retired.

Must combine 
with umask 40H, 
80H

88H 02H BR_INST_EXEC.DIRE
CT_JMP

Qualify all unconditional near branch 
instructions excluding calls and 
indirect branches.

Must combine 
with umask 80H

Table 19-2.  Non-Architectural Performance Events In the Processor Core of Next 
Generation Intel Core i7, i5, i3 Processors 

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-6 Vol. 3B



PERFORMANCE-MONITORING EVENTS
88H 04H BR_INST_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify executed indirect near 
branch instructions that are not 
calls nor returns.

Must combine 
with umask 80H

88H 08H BR_INST_EXEC.RETU
RN_NEAR

Qualify indirect near branches that 
have a return mnemonic.

Must combine 
with umask 80H

88H 10H BR_INST_EXEC.DIRE
CT_NEAR_CALL

Qualify unconditional near call 
branch instructions, excluding non 
call branch, executed. 

Must combine 
with umask 80H

88H 20H BR_INST_EXEC.INDIR
ECT_NEAR_CALL

Qualify indirect near calls, including 
both register and memory indirect, 
executed.

Must combine 
with umask 80H

88H 40H BR_INST_EXEC.NON
TAKEN

Qualify non-taken near branches 
executed. 

Applicable to 
umask 01H only

88H 80H BR_INST_EXEC.TAKE
N

Qualify taken near branches 
executed. Must combine with 
01H,02H, 04H, 08H, 10H, 20H

88H FFH BR_INST_EXEC.ALL_
BRANCHES

Counts all near executed branches 
(not necessarily retired). 

89H 01H BR_MISP_EXEC.CON
D

Qualify conditional near branch 
instructions mispredicted.

Must combine 
with umask 40H, 
80H

89H 04H BR_MISP_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify mispredicted indirect near 
branch instructions that are not 
calls nor returns.

Must combine 
with umask 80H

89H 08H BR_MISP_EXEC.RETU
RN_NEAR

Qualify mispredicted indirect near 
branches that have a return 
mnemonic.

Must combine 
with umask 80H

89H 10H BR_MISP_EXEC.DIRE
CT_NEAR_CALL

Qualify mispredicted unconditional 
near call branch instructions, 
excluding non call branch, executed. 

Must combine 
with umask 80H

89H 20H BR_MISP_EXEC.INDIR
ECT_NEAR_CALL

Qualify mispredicted indirect near 
calls, including both register and 
memory indirect, executed.

Must combine 
with umask 80H

89H 40H BR_MISP_EXEC.NON
TAKEN

Qualify mispredicted non-taken 
near branches executed,. 

Applicable to 
umask 01H only

89H 80H BR_MISP_EXEC.TAKE
N

Qualify mispredicted taken near 
branches executed. Must combine 
with 01H,02H, 04H, 08H, 10H, 20H

Table 19-2.  Non-Architectural Performance Events In the Processor Core of Next 
Generation Intel Core i7, i5, i3 Processors 

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-7



PERFORMANCE-MONITORING EVENTS
89H FFH BR_MISP_EXEC.ALL_
BRANCHES

Counts all near executed branches 
(not necessarily retired). 

9CH 01H IDQ_UOPS_NOT_DEL
IVERED.CORE

Count number of non-delivered 
uops to RAT per thread. 

Use Cmask to 
qualify uop b/w

A1H 01H UOPS_DISPATCHED_
PORT.PORT_0

Cycles which a Uop is dispatched on 
port 0.

A1H 02H UOPS_DISPATCHED_
PORT.PORT_1

Cycles which a Uop is dispatched on 
port 1.

A1H 04H UOPS_DISPATCHED_
PORT.PORT_2_LD

Cycles which a load uop is 
dispatched on port 2.

A1H 08H UOPS_DISPATCHED_
PORT.PORT_2_STA

Cycles which a store address uop is 
dispatched on port 2.

A1H 0CH UOPS_DISPATCHED_
PORT.PORT_2

Cycles which a Uop is dispatched on 
port 2.

A1H 10H UOPS_DISPATCHED_
PORT.PORT_3_LD

Cycles which a load uop is 
dispatched on port 3.

A1H 20H UOPS_DISPATCHED_
PORT.PORT_3_STA

Cycles which a store address uop is 
dispatched on port 3.

A1H 30H UOPS_DISPATCHED_
PORT.PORT_3

Cycles which a Uop is dispatched on 
port 3.

A1H 40H UOPS_DISPATCHED_
PORT.PORT_4

Cycles which a Uop is dispatched on 
port 4.

A1H 80H UOPS_DISPATCHED_
PORT.PORT_5

Cycles which a Uop is dispatched on 
port 5.

A2H 01H RESOURCE_STALLS.
ANY

Cycles Allocation is stalled due to 
Resource Related reason. 

A2H 04H RESOURCE_STALLS.R
S

Cycles stalled due to no eligible RS 
entry available. 

A2H 08H RESOURCE_STALLS.S
B

Cycles stalled due to no store 
buffers available. (not including 
draining form sync).

A2H 10H RESOURCE_STALLS.R
OB

Cycles stalled due to re-order buffer 
full.

ABH 01H DSB2MITE_SWITCHE
S.COUNT

Number of DSB to MITE switches.

Table 19-2.  Non-Architectural Performance Events In the Processor Core of Next 
Generation Intel Core i7, i5, i3 Processors 

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-8 Vol. 3B



PERFORMANCE-MONITORING EVENTS
ABH 02H DSB2MITE_SWITCHE
S.PENALTY_CYCLES

Cycles DSB to MITE switches caused 
delay.

ACH 08H DSB_FILL.EXCEED_D
SB_LINES

DSB Fill encountered > 3 DSB lines.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, 
includes 4k/2M/4M pages.

B0H 01H OFFCORE_REQUEST
S.DEMAND_DATA_RD

Demand data read requests sent to 
uncore. 

B0H 02H OFFCORE_REQUEST
S.DEMAND_CODE_RD

Demand code read requests sent to 
uncore. 

B0H 04H OFFCORE_REQUEST
S.DEMAND_RFO

Demand RFO read requests sent to 
uncore., including regular RFOs, 
locks, ItoM

B0H 08H OFFCORE_REQUEST
S.ALL_DATA_RD

Data read requests sent to uncore 
(demand and prefetch).

B1H 01H UOPS_DISPATCHED.T
HREAD

Counts total number of uops to be 
dispatched per-thread each cycle. 
Set Cmask = 1, INV =1 to count stall 
cycles.

B1H 02H UOPS_DISPATCHED.C
ORE

Counts total number of uops to be 
dispatched per-core each cycle.

Do not need to 
set ANY

B7H 01H OFF_CORE_RESPONS
E_0

see Section 18.8.5, “Off-core 
Response Performance Monitoring”; 
PMC0 only.

Requires 
programming 
MSR 01A6H

BBH 01H OFF_CORE_RESPONS
E_1

See Section 18.8.5, “Off-core 
Response Performance Monitoring”. 
PMC3 only.

Requires 
programming 
MSR 01A7H

C0H 00H INST_RETIRED.ANY_
P

Number of instructions at 
retirement

See Table 19-1

C0H 01H INST_RETIRED.PREC
_DIST

Precise instruction retired event 
with HW to reduce effect of PEBS 
shadow in IP distribution

PMC1 only; Must 
quiesce other 
PMCs.

C1H 08H OTHER_ASSISTS.AVX
_STORE

Number of assists associated with 
256-bit AVX store operations.

C1H 10H OTHER_ASSISTS.AVX
_TO_SSE

Number of transitions from AVX-
256 to legacy SSE when penalty 
applicable.

Table 19-2.  Non-Architectural Performance Events In the Processor Core of Next 
Generation Intel Core i7, i5, i3 Processors 

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-9



PERFORMANCE-MONITORING EVENTS
C1H 20H OTHER_ASSISTS.SSE
_TO_AVX

Number of transitions from SSE to 
AVX-256 when penalty applicable.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops 
retired, Use cmask=1 and invert to 
count active cycles or stalled cycles.

Supports PEBS

C2H 02H UOPS_RETIRED.RETI
RE_SLOTS

Counts the number of retirement 
slots used each cycle.

C3H 02H MACHINE_CLEARS.M
EMORY_ORDERING

Counts the number of machine 
clears due to memory order 
conflicts.

C3H 20H MACHINE_CLEARS.M
ASKMOV

Counts the number of executed 
AVX masked load operations that 
refer to an illegal address range 
with the mask bits set to 0. 

C4H 00H BR_INST_RETIRED.A
LL_BRANCHES

Branch instructions at retirement See Table 19-1 

C4H 01H BR_INST_RETIRED.C
ONDITIONAL

Counts the number of conditional 
branch instructions retired. 

Supports PEBS

C4H 02H BR_INST_RETIRED.N
EAR_CALL

Direct and indirect near call 
instructions retired.

C4H 04H BR_INST_RETIRED.A
LL_BRANCHES

Counts the number of branch 
instructions retired.

C4H 08H BR_INST_RETIRED.N
EAR_RETURN

Counts the number of near return 
instructions retired.

C4H 10H BR_INST_RETIRED.N
OT_TAKEN

Counts the number of not taken 
branch instructions retired. 

C4H 20H BR_INST_RETIRED.N
EAR_TAKEN

Number of near taken branches 
retired.

C4H 40H BR_INST_RETIRED.F
AR_BRANCH

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted branch instructions at 
retirement

See Table 19-1 

C5H 01H BR_MISP_RETIRED.C
ONDITIONAL

Mispredicted conditional branch 
instructions retired. 

Supports PEBS

C5H 02H BR_MISP_RETIRED.N
EAR_CALL

Direct and indirect mispredicted 
near call instructions retired. 

Table 19-2.  Non-Architectural Performance Events In the Processor Core of Next 
Generation Intel Core i7, i5, i3 Processors 

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-10 Vol. 3B



PERFORMANCE-MONITORING EVENTS
C5H 04H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted macro branch 
instructions retired.

C5H 10H BR_MISP_RETIRED.N
OT_TAKEN

Mispredicted not taken branch 
instructions retired.

C5H 20H BR_MISP_RETIRED.T
AKEN

Mispredicted taken branch 
instructions retired.

CAH 08H FP_ASSIST.SIMD_OU
TPUT

Number of SIMD FP assists due to 
Output values

CAH 10H FP_ASSIST.SIMD_INP
UT

Number of SIMD FP assists due to 
input values

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* 
or FP assists

CCH 20H ROB_MISC_EVENTS.L
BR_INSERTS

Count cases of saving new LBR 
records by hardware. 

CDH 01H MEM_TRANS_RETIR
ED.LOAD_LATENCY

Sample loads with specified latency 
threshold. PMC3 only.

Specify threshold 
in MSR 0x3F6

CDH 02H MEM_TRANS_RETIR
ED.PRECISE_STORE

Sample stores and collect precise 
store operation via PEBS record. 
PMC3 only.

See Section 
18.8.4.3

D0H 01H MEM_UOP_RETIRED.
LOADS

Qualify retired memory uops that 
are loads. Combine with umask 10H, 
20H, 40H, 80H.

Supports PEBS

D0H 02H MEM_UOP_RETIRED.
STORES

Qualify retired memory uops that 
are stores. Combine with umask 
10H, 20H, 40H, 80H.

D0H 10H MEM_UOP_RETIRED.
STLB_MISS

Qualify retired memory uops with 
STLB miss. Must combine with 
umask 01H, 02H, to produce counts.

D0H 20H MEM_UOP_RETIRED.
LOCK

Qualify retired memory uops with 
lock. Must combine with umask 01H, 
02H, to produce counts.

D0H 40H MEM_UOP_RETIRED.
SPLIT

Qualify retired memory uops with 
line split. Must combine with umask 
01H, 02H, to produce counts.

D0H 80H MEM_UOP_RETIRED.
ALL

Qualify any retired memory uops. 
Must combine with umask 01H, 
02H, to produce counts.

Table 19-2.  Non-Architectural Performance Events In the Processor Core of Next 
Generation Intel Core i7, i5, i3 Processors 

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-11



PERFORMANCE-MONITORING EVENTS
D1H 01H MEM_LOAD_UOPS_R
ETIRED.L1_HIT

Retired load uops with L1 cache hits 
as data sources.

Supports PEBS

D1H 02H MEM_LOAD_UOPS_R
ETIRED.L2_HIT

Retired load uops with L2 cache hits 
as data sources.

D1H 04H MEM_LOAD_UOPS_R
ETIRED.LLC_HIT

Retired load uops with LLC cache 
hits as data sources.

D1H 40H MEM_LOAD_UOPS_R
ETIRED.HIT_LFB

Retired load uops which data 
sources were load uops missed L1 
but hit FB due to preceding miss to 
the same cache line with data not 
ready.

D2H 02H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HIT

Retired load uops which data 
sources were LLC and cross-core 
snoop hits in on-pkg core cache.

Supports PEBS

D2H 04H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HITM

Retired load uops which data 
sources were HitM responses from 
shared LLC.

D2H 08H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_NONE

Retired load uops which data 
sources were hits in LLC without 
snoops required.

D3H 01H MEM_LOAD_UOPS_L
LC_MISS_RETIRED.LO
CAL_DRAM

Retired load uops which data 
sources missed LLC but serviced 
from local dram. 

Supports PEBS.

F0H 01H L2_TRANS.DEMAND_
DATA_RD

Demand Data Read requests that 
access L2 cache

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching 
instructions

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 
cache

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache

F0H 80H L2_TRANS.ALL_REQ
UESTS

Transactions accessing L2 pipe

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2 Counting does 
not cover rejects.

Table 19-2.  Non-Architectural Performance Events In the Processor Core of Next 
Generation Intel Core i7, i5, i3 Processors 

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-12 Vol. 3B



PERFORMANCE-MONITORING EVENTS
19.3 PERFORMANCE MONITORING EVENTS FOR  
INTEL® CORE™ PROCESSOR 2XXX SERIES

Second generation Intel® Core™ Processor 2xxx Series are based on the Intel 
microarchitecture code name Sandy Bridge. They support architectural performance-
monitoring events listed in Table 19-1. Non-architectural performance-monitoring 
events in the processor core are listed in Table 19-3, Table 19-4, and Table 19-5. The 
events in Table 19-3 apply to processors with CPUID signature of 
DisplayFamily_DisplayModel encoding with the following values: 06_2AH and 
06_2DH. The events in Table 19-4 apply to processors with CPUID signature 06_2AH. 
The events in Table 19-5 apply to processors with CPUID signature 06_2DH.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2 Counting does 
not cover rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2 Counting does 
not cover rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2 Counting does 
not cover rejects.

F2H 01H L2_LINES_OUT.DEMA
ND_CLEAN

Clean L2 cache lines evicted by 
demand

F2H 02H L2_LINES_OUT.DEMA
ND_DIRTY

Dirty L2 cache lines evicted by 
demand

F2H 0AH L2_LINES_OUT.DIRT
Y_ALL

Dirty L2 cache lines filling the L2 Counting does 
not cover rejects.

Table 19-3.  Non-Architectural Performance Events In the Processor Core common to 
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

03H 01H LD_BLOCKS.DATA_U
NKNOWN

blocked loads due to store buffer 
blocks with unknown data. 

03H 02H LD_BLOCKS.STORE_F
ORWARD

loads blocked by overlapping with 
store buffer that cannot be 
forwarded .

03H 08H LD_BLOCKS.NO_SR # of Split loads blocked due to 
resource not available. 

Table 19-2.  Non-Architectural Performance Events In the Processor Core of Next 
Generation Intel Core i7, i5, i3 Processors 

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-13



PERFORMANCE-MONITORING EVENTS
03H 10H LD_BLOCKS.ALL_BLO
CK

Number of cases where any load is 
blocked but has no DCU miss.

05H 01H MISALIGN_MEM_REF.
LOADS

Speculative cache-line split load 
uops dispatched to L1D.

05H 02H MISALIGN_MEM_REF.
STORES

Speculative cache-line split Store-
address uops dispatched to L1D.

07H 01H LD_BLOCKS_PARTIA
L.ADDRESS_ALIAS

False dependencies in MOB due to 
partial compare on address.

07H 08H LD_BLOCKS_PARTIA
L.ALL_STA_BLOCK

The number of times that load 
operations are temporarily blocked 
because of older stores, with 
addresses that are not yet known. A 
load operation may incur more than 
one block of this type. 

08H 01H DTLB_LOAD_MISSES.
MISS_CAUSES_A_WA
LK

Misses in all TLB levels that cause a 
page walk of any page size.

08H 02H DTLB_LOAD_MISSES.
WALK_COMPLETED

Misses in all TLB levels that caused 
page walk completed of any size.

08H 04H DTLB_LOAD_MISSES.
WALK_DURATION

Cycle PMH is busy with a walk.

08H 10H DTLB_LOAD_MISSES.
STLB_HIT

Number of cache load STLB hits. No 
page walk.

0DH 03H INT_MISC.RECOVERY
_CYCLES

Cycles waiting to recover after 
Machine Clears or JEClear. Set 
Cmask= 1.

Set Edge to 
count 
occurrences

0DH 40H INT_MISC.RAT_STALL
_CYCLES

Cycles RAT external stall is sent to 
IDQ for this thread. 

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops 
issued by the RAT to RS. 

Set Cmask = 1, Inv = 1, Any= 1to 
count stalled cycles of this core.

Set Cmask = 1, 
Inv = 1to count 
stalled cycles

10H 01H FP_COMP_OPS_EXE.
X87

Counts number of X87 uops 
executed.

10H 10H FP_COMP_OPS_EXE.
SSE_FP_PACKED_DO
UBLE

Counts number of SSE* double 
precision FP packed uops executed.

Table 19-3.  Non-Architectural Performance Events In the Processor Core common to 
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-14 Vol. 3B



PERFORMANCE-MONITORING EVENTS
10H 20H FP_COMP_OPS_EXE.
SSE_FP_SCALAR_SIN
GLE

Counts number of SSE* single 
precision FP scalar uops executed.

10H 40H FP_COMP_OPS_EXE.
SSE_PACKED SINGLE

Counts number of SSE* single 
precision FP packed uops executed.

10H 80H FP_COMP_OPS_EXE.
SSE_SCALAR_DOUBL
E

Counts number of SSE* double 
precision FP scalar uops executed.

11H 01H SIMD_FP_256.PACKE
D_SINGLE

Counts 256-bit packed single-
precision floating-point instructions

11H 02H SIMD_FP_256.PACKE
D_DOUBLE

Counts 256-bit packed double-
precision floating-point instructions

14H 01H ARITH.FPU_DIV_ACT
IVE

Cycles that the divider is active, 
includes INT and FP. Set 'edge =1, 
cmask=1' to count the number of 
divides.

17H 01H INSTS_WRITTEN_TO
_IQ.INSTS

Counts the number of instructions 
written into the IQ every cycle. 

24H 01H L2_RQSTS.DEMAND_
DATA_RD_HIT

Demand Data Read requests that 
hit L2 cache

24H 03H L2_RQSTS.ALL_DEM
AND_DATA_RD

Counts any demand and L1 HW 
prefetch data load requests to L2. 

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO 
requests that hit the L2 cache. 

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO 
requests that miss the L2 cache. 

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests. 

24H 10H L2_RQSTS.CODE_RD
_HIT

Number of instruction fetches that 
hit the L2 cache. 

24H 20H L2_RQSTS.CODE_RD
_MISS

Number of instruction fetches that 
missed the L2 cache. 

24H 30H L2_RQSTS.ALL_COD
E_RD

Counts all L2 code requests.

24H 40H L2_RQSTS.PF_HIT Requests from L2 Hardware 
prefetcher that hit L2.

24H 80H L2_RQSTS.PF_MISS Requests from L2 Hardware 
prefetcher that missed L2.

Table 19-3.  Non-Architectural Performance Events In the Processor Core common to 
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-15



PERFORMANCE-MONITORING EVENTS
24H C0H L2_RQSTS.ALL_PF Any requests from L2 Hardware 
prefetchers 

27H 01H L2_STORE_LOCK_RQ
STS.MISS

RFOs that miss cache lines 

27H 04H L2_STORE_LOCK_RQ
STS.HIT_E

RFOs that hit cache lines in E state

27H 08H L2_STORE_LOCK_RQ
STS.HIT_M

RFOs that hit cache lines in M state

27H 0FH L2_STORE_LOCK_RQ
STS.ALL

RFOs that access cache lines in any 
state

28H 04H L2_L1D_WB_RQSTS.
HIT_E

Not rejected writebacks from L1D 
to L2 cache lines in E state.

28H 08H L2_L1D_WB_RQSTS.
HIT_M

Not rejected writebacks from L1D 
to L2 cache lines in M state.

2EH 4FH LONGEST_LAT_CACH
E.REFERENCE

This event counts requests 
originating from the core that 
reference a cache line in the last 
level cache. 

see Table 19-1

2EH 41H LONGEST_LAT_CACH
E.MISS

This event counts each cache miss 
condition for references to the last 
level cache. 

see Table 19-1

3CH 00H CPU_CLK_UNHALTED
.THREAD_P

Counts the number of thread cycles 
while the thread is not in a halt 
state. The thread enters the halt 
state when it is running the HLT 
instruction. The core frequency may 
change from time to time due to 
power or thermal throttling. 

see Table 19-1

3CH 01H CPU_CLK_THREAD_
UNHALTED.REF_XCL
K

Increments at the frequency of 
XCLK (100 MHz) when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PE
NDING

Increments the number of 
outstanding L1D misses every cycle. 
Set Cmaks = 1 and Edge =1 to count 
occurrences.

Counter 2 only;

Set Cmask = 1 to 
count cycles. 

49H 01H DTLB_STORE_MISSE
S.MISS_CAUSES_A_
WALK

Miss in all TLB levels causes an page 
walk of any page size 
(4K/2M/4M/1G).

Table 19-3.  Non-Architectural Performance Events In the Processor Core common to 
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-16 Vol. 3B



PERFORMANCE-MONITORING EVENTS
49H 02H DTLB_STORE_MISSE
S.WALK_COMPLETED

Miss in all TLB levels causes a page 
walk that completes of any page 
size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSE
S.WALK_DURATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSE
S.STLB_HIT

Store operations that miss the first 
TLB level but hit the second and do 
not cause page walks

4CH 01H LOAD_HIT_PRE.SW_
PF

Not SW-prefetch load dispatches 
that hit fill buffer allocated for S/W 
prefetch.

4CH 02H LOAD_HIT_PRE.HW_
PF

Not SW-prefetch load  dispatches 
that hit fill buffer allocated for H/W 
prefetch.

4EH 02H HW_PRE_REQ.DL1_
MISS

Hardware Prefetch requests that 
miss the L1D cache. A request is 
being counted each time it access 
the cache & miss it, including if a 
block is applicable or if hit the Fill 
Buffer for example.

This accounts for 
both L1 streamer 
and IP-based 
(IPP) HW 
prefetchers. 

51H 01H L1D.REPLACEMENT Counts the number of lines brought 
into the L1 data cache.

51H 02H L1D.ALLOCATED_IN_
M

Counts the number of allocations of 
modified L1D cache lines. 

51H 04H L1D.EVICTION Counts the number of modified lines 
evicted from the L1 data cache  due 
to replacement. 

51H 08H L1D.ALL_M_REPLAC
EMENT

Cache lines in M state evicted out of 
L1D due to Snoop HitM or dirty line 
replacement

59H 20H PARTIAL_RAT_STALL
S.FLAGS_MERGE_UO
P

Increments the number of flags-
merge uops in flight each cycle.

Set Cmask = 1 to count cycles.

59H 40H PARTIAL_RAT_STALL
S.SLOW_LEA_WINDO
W

Cycles with at least one slow LEA 
uop allocated.

59H 80H PARTIAL_RAT_STALL
S.MUL_SINGLE_UOP

Number of Multiply packed/scalar 
single precision uops allocated.

Table 19-3.  Non-Architectural Performance Events In the Processor Core common to 
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-17



PERFORMANCE-MONITORING EVENTS
5BH 0CH RESOURCE_STALLS2.
ALL_FL_EMPTY

Cycles stalled due to free list empty

5BH 0FH RESOURCE_STALLS2.
ALL_PRF_CONTROL

Cycles stalled due to control 
structures full for physical registers

5BH 40H RESOURCE_STALLS2.
BOB_FULL

Cycles Allocator is stalled due 
Branch Order Buffer. 

5BH 4FH RESOURCE_STALLS2.
OOO_RSRC

Cycles stalled due to out of order 
resources full

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the 
thread is in ring 0

Use Edge to 
count transition

5CH 02H CPL_CYCLES.RING12
3

Unhalted core cycles when the 
thread is not in ring 0

5EH 01H RS_EVENTS.EMPTY_
CYCLES

Cycles the RS is empty for the 
thread.

60H 01H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_DATA_RD

Offcore outstanding Demand Data 
Read transactions in SQ to uncore. 
Set Cmask=1 to count cycles.

60H 04H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_RFO

Offcore outstanding RFO store 
transactions in SQ to uncore. Set 
Cmask=1 to count cycles.

60H 08H OFFCORE_REQUEST
S_OUTSTANDING.AL
L_DATA_RD

Offcore outstanding cacheable data 
read transactions in SQ to uncore. 
Set Cmask=1 to count cycles.

63H 01H LOCK_CYCLES.SPLIT_
LOCK_UC_LOCK_DUR
ATION

Cycles in which the L1D and L2  are 
locked, due to a UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE
_LOCK_DURATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops 
delivered to IDQ from MITE path. 

Set Cmask = 1 to count cycles.

Can combine 
Umask 04H and 
20H 

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops 
delivered to IDQ from DSB path. 

Set Cmask = 1 to count cycles.

Can combine 
Umask 08H and 
10H 

Table 19-3.  Non-Architectural Performance Events In the Processor Core common to 
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-18 Vol. 3B



PERFORMANCE-MONITORING EVENTS
79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops 
delivered to IDQ when MS busy by 
DSB. Set Cmask = 1 to count cycles 
MS is busy. Set Cmask=1 and Edge 
=1 to count MS activations.

Can combine 
Umask 08H and 
10H 

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops 
delivered to IDQ when MS is busy by 
MITE. Set Cmask = 1 to count cycles.

Can combine 
Umask 04H and 
20H 

79H 30H IDQ.MS_UOPS Increment each cycle # of uops 
delivered to IDQ from MS by either 
DSB or MITE. Set Cmask = 1 to count 
cycles.

Can combine 
Umask 04H, 08H 
and 30H 

80H 02H ICACHE.MISSES Number of Instruction Cache, 
Streaming Buffer and Victim Cache 
Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_C
AUSES_A_WALK

Misses in all ITLB levels that cause 
page walks

85H 02H ITLB_MISSES.WALK_
COMPLETED

Misses in all ITLB levels that cause 
completed page walks

85H 04H ITLB_MISSES.WALK_
DURATION

Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_H
IT

Number of cache load STLB hits. No 
page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix 
length of the instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch 
instructions executed, but not 
necessarily retired.

Must combine 
with umask 40H, 
80H

88H 02H BR_INST_EXEC.DIRE
CT_JMP

Qualify all unconditional near branch 
instructions excluding calls and 
indirect branches.

Must combine 
with umask 80H

88H 04H BR_INST_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify executed indirect near 
branch instructions that are not 
calls nor returns.

Must combine 
with umask 80H

88H 08H BR_INST_EXEC.RETU
RN_NEAR

Qualify indirect near branches that 
have a return mnemonic.

Must combine 
with umask 80H

Table 19-3.  Non-Architectural Performance Events In the Processor Core common to 
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-19



PERFORMANCE-MONITORING EVENTS
88H 10H BR_INST_EXEC.DIRE
CT_NEAR_CALL

Qualify unconditional near call 
branch instructions, excluding non 
call branch, executed. 

Must combine 
with umask 80H

88H 20H BR_INST_EXEC.INDIR
ECT_NEAR_CALL

Qualify indirect near calls, including 
both register and memory indirect, 
executed.

Must combine 
with umask 80H

88H 40H BR_INST_EXEC.NON
TAKEN

Qualify non-taken near branches 
executed. 

Applicable to 
umask 01H only

88H 80H BR_INST_EXEC.TAKE
N

Qualify taken near branches 
executed. Must combine with 
01H,02H, 04H, 08H, 10H, 20H

88H FFH BR_INST_EXEC.ALL_
BRANCHES

Counts all near executed branches 
(not necessarily retired). 

89H 01H BR_MISP_EXEC.CON
D

Qualify conditional near branch 
instructions mispredicted.

Must combine 
with umask 40H, 
80H

89H 04H BR_MISP_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify mispredicted indirect near 
branch instructions that are not 
calls nor returns.

Must combine 
with umask 80H

89H 08H BR_MISP_EXEC.RETU
RN_NEAR

Qualify mispredicted indirect near 
branches that have a return 
mnemonic.

Must combine 
with umask 80H

89H 10H BR_MISP_EXEC.DIRE
CT_NEAR_CALL

Qualify mispredicted unconditional 
near call branch instructions, 
excluding non call branch, executed. 

Must combine 
with umask 80H

89H 20H BR_MISP_EXEC.INDIR
ECT_NEAR_CALL

Qualify mispredicted indirect near 
calls, including both register and 
memory indirect, executed.

Must combine 
with umask 80H

89H 40H BR_MISP_EXEC.NON
TAKEN

Qualify mispredicted non-taken 
near branches executed,. 

Applicable to 
umask 01H only

89H 80H BR_MISP_EXEC.TAKE
N

Qualify mispredicted taken near 
branches executed. Must combine 
with 01H,02H, 04H, 08H, 10H, 20H

89H FFH BR_MISP_EXEC.ALL_
BRANCHES

Counts all near executed branches 
(not necessarily retired). 

9CH 01H IDQ_UOPS_NOT_DEL
IVERED.CORE

Count number of non-delivered 
uops to RAT per thread. 

Use Cmask to 
qualify uop b/w

Table 19-3.  Non-Architectural Performance Events In the Processor Core common to 
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-20 Vol. 3B



PERFORMANCE-MONITORING EVENTS
A1H 01H UOPS_DISPATCHED_
PORT.PORT_0

Cycles which a Uop is dispatched on 
port 0.

A1H 02H UOPS_DISPATCHED_
PORT.PORT_1

Cycles which a Uop is dispatched on 
port 1.

A1H 04H UOPS_DISPATCHED_
PORT.PORT_2_LD

Cycles which a load uop is 
dispatched on port 2.

A1H 08H UOPS_DISPATCHED_
PORT.PORT_2_STA

Cycles which a store address uop is 
dispatched on port 2.

A1H 0CH UOPS_DISPATCHED_
PORT.PORT_2

Cycles which a Uop is dispatched on 
port 2.

A1H 10H UOPS_DISPATCHED_
PORT.PORT_3_LD

Cycles which a load uop is 
dispatched on port 3.

A1H 20H UOPS_DISPATCHED_
PORT.PORT_3_STA

Cycles which a store address uop is 
dispatched on port 3.

A1H 30H UOPS_DISPATCHED_
PORT.PORT_3

Cycles which a Uop is dispatched on 
port 3.

A1H 40H UOPS_DISPATCHED_
PORT.PORT_4

Cycles which a Uop is dispatched on 
port 4.

A1H 80H UOPS_DISPATCHED_
PORT.PORT_5

Cycles which a Uop is dispatched on 
port 5.

A2H 01H RESOURCE_STALLS.
ANY

Cycles Allocation is stalled due to 
Resource Related reason. 

A2H 02H RESOURCE_STALLS.L
B

Counts the cycles of stall due to lack 
of load buffers.

A2H 04H RESOURCE_STALLS.R
S

Cycles stalled due to no eligible RS 
entry available. 

A2H 08H RESOURCE_STALLS.S
B

Cycles stalled due to no store 
buffers available. (not including 
draining form sync).

A2H 10H RESOURCE_STALLS.R
OB

Cycles stalled due to re-order buffer 
full.

A2H 20H RESOURCE_STALLS.F
CSW

Cycles stalled due to writing the 
FPU control word.

A2H 40H RESOURCE_STALLS.
MXCSR

Cycles stalled due to the MXCSR 
register rename occurring to close 
to a previous MXCSR rename. 

Table 19-3.  Non-Architectural Performance Events In the Processor Core common to 
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-21



PERFORMANCE-MONITORING EVENTS
A2H 80H RESOURCE_STALLS.
OTHER

Cycles stalled while execution was 
stalled due to other resource issues.

ABH 01H DSB2MITE_SWITCHE
S.COUNT

Number of DSB to MITE switches.

ABH 02H DSB2MITE_SWITCHE
S.PENALTY_CYCLES

Cycles DSB to MITE switches caused 
delay.

ACH 02H DSB_FILL.OTHER_CA
NCEL

Cases of cancelling valid DSB fill not 
because of exceeding way limit

ACH 08H DSB_FILL.EXCEED_D
SB_LINES

DSB Fill encountered > 3 DSB lines.

ACH 0AH DSB_FILL.ALL_CANC
EL

Cases of cancelling valid Decode 
Stream Buffer (DSB) fill not because 
of exceeding way limit

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, 
includes 4k/2M/4M pages.

B0H 01H OFFCORE_REQUEST
S.DEMAND_DATA_RD

Demand data read requests sent to 
uncore. 

B0H 04H OFFCORE_REQUEST
S.DEMAND_RFO

Demand RFO read requests sent to 
uncore., including regular RFOs, 
locks, ItoM

B0H 08H OFFCORE_REQUEST
S.ALL_DATA_RD

Data read requests sent to uncore 
(demand and prefetch).

B1H 01H UOPS_DISPATCHED.T
HREAD

Counts total number of uops to be 
dispatched per-thread each cycle. 
Set Cmask = 1, INV =1 to count stall 
cycles.

B1H 02H UOPS_DISPATCHED.C
ORE

Counts total number of uops to be 
dispatched per-core each cycle.

Do not need to 
set ANY

B2H 01H OFFCORE_REQUEST
S_BUFFER.SQ_FULL

Offcore requests buffer cannot take 
more entries for this thread core.

B6H 01H AGU_BYPASS_CANCE
L.COUNT

Counts executed load operations 
with all the following traits: 1. 
addressing of the format [base + 
offset], 2. the offset is between 1 
and 2047, 3. the address specified 
in the base register is in one page 
and the address [base+offset] is in 
another page.

Table 19-3.  Non-Architectural Performance Events In the Processor Core common to 
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-22 Vol. 3B



PERFORMANCE-MONITORING EVENTS
B7H 01H OFF_CORE_RESPONS
E_0

see Section 18.8.5, “Off-core 
Response Performance Monitoring”; 
PMC0 only.

Requires 
programming 
MSR 01A6H

BBH 01H OFF_CORE_RESPONS
E_1

See Section 18.8.5, “Off-core 
Response Performance Monitoring”. 
PMC3 only.

Requires 
programming 
MSR 01A7H

BDH 01H TLB_FLUSH.DTLB_T
HREAD

DTLB flush attempts of the thread-
specific entries

BDH 20H TLB_FLUSH.STLB_A
NY

Count number of STLB flush 
attempts

BFH 05H L1D_BLOCKS.BANK_
CONFLICT_CYCLES

Cycles when dispatched loads are 
cancelled due to L1D bank conflicts 
with other load ports

cmask=1 

C0H 00H INST_RETIRED.ANY_
P

Number of instructions at 
retirement

See Table 19-1

C0H 01H INST_RETIRED.PREC
_DIST

Precise instruction retired event 
with HW to reduce effect of PEBS 
shadow in IP distribution

PMC1 only; Must 
quiesce other 
PMCs.

C0H 02H INST_RETIRED.X87 X87 instruction retired event 

C1H 02H OTHER_ASSISTS.ITL
B_MISS_RETIRED

Instructions that experienced an 
ITLB miss.

C1H 08H OTHER_ASSISTS.AVX
_STORE

Number of assists associated with 
256-bit AVX store operations.

C1H 10H OTHER_ASSISTS.AVX
_TO_SSE

Number of transitions from AVX-
256 to legacy SSE when penalty 
applicable.

C1H 20H OTHER_ASSISTS.SSE
_TO_AVX

Number of transitions from SSE to 
AVX-256 when penalty applicable.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops 
retired, Use cmask=1 and invert to 
count active cycles or stalled cycles.

Supports PEBS

C2H 02H UOPS_RETIRED.RETI
RE_SLOTS

Counts the number of retirement 
slots used each cycle.

C3H 02H MACHINE_CLEARS.M
EMORY_ORDERING

Counts the number of machine 
clears due to memory order 
conflicts.

Table 19-3.  Non-Architectural Performance Events In the Processor Core common to 
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-23



PERFORMANCE-MONITORING EVENTS
C3H 04H MACHINE_CLEARS.S
MC

Counts the number of times that a 
program writes to a code section. 

C3H 20H MACHINE_CLEARS.M
ASKMOV

Counts the number of executed 
AVX masked load operations that 
refer to an illegal address range 
with the mask bits set to 0. 

C4H 00H BR_INST_RETIRED.A
LL_BRANCHES

Branch instructions at retirement See Table 19-1 

C4H 01H BR_INST_RETIRED.C
ONDITIONAL

Counts the number of conditional 
branch instructions retired. 

Supports PEBS

C4H 02H BR_INST_RETIRED.N
EAR_CALL

Direct and indirect near call 
instructions retired.

C4H 04H BR_INST_RETIRED.A
LL_BRANCHES

Counts the number of branch 
instructions retired.

C4H 08H BR_INST_RETIRED.N
EAR_RETURN

Counts the number of near return 
instructions retired.

C4H 10H BR_INST_RETIRED.N
OT_TAKEN

Counts the number of not taken 
branch instructions retired. 

C4H 20H BR_INST_RETIRED.N
EAR_TAKEN

Number of near taken branches 
retired.

C4H 40H BR_INST_RETIRED.F
AR_BRANCH

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted branch instructions at 
retirement

See Table 19-1 

C5H 01H BR_MISP_RETIRED.C
ONDITIONAL

Mispredicted conditional branch 
instructions retired. 

Supports PEBS

C5H 02H BR_MISP_RETIRED.N
EAR_CALL

Direct and indirect mispredicted 
near call instructions retired. 

C5H 04H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted macro branch 
instructions retired.

C5H 10H BR_MISP_RETIRED.N
OT_TAKEN

Mispredicted not taken branch 
instructions retired.

C5H 20H BR_MISP_RETIRED.T
AKEN

Mispredicted taken branch 
instructions retired.

CAH 02H FP_ASSIST.X87_OUT
PUT

Number of X87 assists due to 
output value.

Table 19-3.  Non-Architectural Performance Events In the Processor Core common to 
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-24 Vol. 3B



PERFORMANCE-MONITORING EVENTS
CAH 04H FP_ASSIST.X87_INP
UT

Number of X87 assists due to input 
value.

CAH 08H FP_ASSIST.SIMD_OU
TPUT

Number of SIMD FP assists due to 
Output values

CAH 10H FP_ASSIST.SIMD_INP
UT

Number of SIMD FP assists due to 
input values

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* 
or FP assists

CCH 20H ROB_MISC_EVENTS.L
BR_INSERTS

Count cases of saving new LBR 
records by hardware. 

CDH 01H MEM_TRANS_RETIR
ED.LOAD_LATENCY

Sample loads with specified latency 
threshold. PMC3 only.

Specify threshold 
in MSR 0x3F6

CDH 02H MEM_TRANS_RETIR
ED.PRECISE_STORE

Sample stores and collect precise 
store operation via PEBS record. 
PMC3 only.

See Section 
18.8.4.3

D0H 01H MEM_UOP_RETIRED.
LOADS

Qualify retired memory uops that 
are loads. Combine with umask 10H, 
20H, 40H, 80H.

Supports PEBS

D0H 02H MEM_UOP_RETIRED.
STORES

Qualify retired memory uops that 
are stores. Combine with umask 
10H, 20H, 40H, 80H.

D0H 10H MEM_UOP_RETIRED.
STLB_MISS

Qualify retired memory uops with 
STLB miss. Must combine with 
umask 01H, 02H, to produce counts.

D0H 20H MEM_UOP_RETIRED.
LOCK

Qualify retired memory uops with 
lock. Must combine with umask 01H, 
02H, to produce counts.

D0H 40H MEM_UOP_RETIRED.
SPLIT

Qualify retired memory uops with 
line split. Must combine with umask 
01H, 02H, to produce counts.

D0H 80H MEM_UOP_RETIRED.
ALL

Qualify any retired memory uops. 
Must combine with umask 01H, 
02H, to produce counts.

D1H 01H MEM_LOAD_UOPS_R
ETIRED.L1_HIT

Retired load uops with L1 cache hits 
as data sources.

Supports PEBS

D1H 02H MEM_LOAD_UOPS_R
ETIRED.L2_HIT

Retired load uops with L2 cache hits 
as data sources.

Table 19-3.  Non-Architectural Performance Events In the Processor Core common to 
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-25



PERFORMANCE-MONITORING EVENTS
D1H 40H MEM_LOAD_UOPS_R
ETIRED.HIT_LFB

Retired load uops which data 
sources were load uops missed L1 
but hit FB due to preceding miss to 
the same cache line with data not 
ready.

D2H 01H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_MISS

Retired load uops which data 
sources were LLC hit and cross-core 
snoop missed in on-pkg core cache.

Supports PEBS

D2H 02H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HIT

Retired load uops which data 
sources were LLC and cross-core 
snoop hits in on-pkg core cache.

D2H 04H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HITM

Retired load uops which data 
sources were HitM responses from 
shared LLC.

D2H 08H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_NONE

Retired load uops which data 
sources were hits in LLC without 
snoops required.

D4H 02H MEM_LOAD_UOPS_M
ISC_RETIRED.LLC_MI
SS

Retired load uops with unknown 
information as data source in cache 
serviced the load. 

Supports PEBS.

F0H 01H L2_TRANS.DEMAND_
DATA_RD

Demand Data Read requests that 
access L2 cache

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching 
instructions

F0H 08H L2_TRANS.ALL_PF L2 or LLC HW prefetches that 
access L2 cache 

including rejects. 

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 
cache

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache

F0H 80H L2_TRANS.ALL_REQ
UESTS

Transactions accessing L2 pipe

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2 Counting does 
not cover rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2 Counting does 
not cover rejects.

Table 19-3.  Non-Architectural Performance Events In the Processor Core common to 
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-26 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Non-architecture performance monitoring events in the processor core that are 
applicable only to Intel processor with CPUID signature of 
DisplayFamily_DisplayModel 06_2AH are listed in Table 19-4.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2 Counting does 
not cover rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2 Counting does 
not cover rejects.

F2H 01H L2_LINES_OUT.DEMA
ND_CLEAN

Clean L2 cache lines evicted by 
demand

F2H 02H L2_LINES_OUT.DEMA
ND_DIRTY

Dirty L2 cache lines evicted by 
demand

F2H 04H L2_LINES_OUT.PF_C
LEAN

Clean L2 cache lines evicted by L2 
prefetch

F2H 08H L2_LINES_OUT.PF_DI
RTY

Dirty L2 cache lines evicted by L2 
prefetch

F2H 0AH L2_LINES_OUT.DIRT
Y_ALL

Dirty L2 cache lines filling the L2 Counting does 
not cover rejects.

F4H 10H SQ_MISC.SPLIT_LOCK Split locks in SQ

Table 19-4.  Non-Architectural Performance Events applicable only to the Processor 
core for Intel Core i7, i5, i3 Processor 2xxx Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

D1H 04H MEM_LOAD_UOPS_R
ETIRED.LLC_HIT

Retired load uops which data sources 
were data hits in LLC without snoops 
required.

Supports PEBS

B7H/BB
H

01H OFF_CORE_RESPONS
E_N

Sub-events of 
OFF_CORE_RESPONSE_N (suffix N = 
0, 1) programmed using MSR 
01A6H/01A7H with values shown in 
the comment column.

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT_N 0x10003C024
4

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.NO_SNOOP_NE
EDED_N

0x1003C0244

Table 19-3.  Non-Architectural Performance Events In the Processor Core common to 
Intel Core i7, i5, i3 Processors 2xxx Series and Next Generation Intel Xeon Processors
Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-27



PERFORMANCE-MONITORING EVENTS
OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.SNOOP_MISS_
N

0x2003C0244

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.MISS_DRAM_N 0x300400244

OFFCORE_RESPONSE.ALL_DATA_RD.LLC_HIT.ANY_RESPONS
E_N

0x3F803C009
1

OFFCORE_RESPONSE.ALL_DATA_RD.LLC_MISS.DRAM_N 0x300400091

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.ANY_RESP
ONSE_N

0x3F803C024
0

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.HIT_OTHER
_CORE_NO_FWD_N

0x4003C0240

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.HITM_OTH
ER_CORE_N

0x10003C024
0

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.NO_SNOOP
_NEEDED_N

0x1003C0240

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.SNOOP_MIS
S_N

0x2003C0240

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_MISS.DRAM_N 0x300400240

OFFCORE_RESPONSE.ALL_PF_DATA_RD.LLC_MISS.DRAM_N 0x300400090

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.ANY_RESPONSE
_N

0x3F803C012
0

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.HIT_OTHER_COR
E_NO_FWD_N

0x4003C0120

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.HITM_OTHER_C
ORE_N

0x10003C012
0

OFFCORE_RESPONSE.ALL_PF_RfO.LLC_HIT.NO_SNOOP_NEE
DED_N

0x1003C0120

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.SNOOP_MISS_N 0x2003C0120

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_MISS.DRAM_N 0x300400120

OFFCORE_RESPONSE.ALL_READS.LLC_MISS.DRAM_N 0x3004003F7

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.ANY_RESPONSE_N 0x3F803C012
2

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.HIT_OTHER_CORE_N
O_FWD_N

0x4003C0122

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.HITM_OTHER_CORE
_N

0x10003C012
2

Table 19-4.  Non-Architectural Performance Events applicable only to the Processor 
core for Intel Core i7, i5, i3 Processor 2xxx Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-28 Vol. 3B



PERFORMANCE-MONITORING EVENTS
OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.NO_SNOOP_NEEDED
_N

0x1003C0122

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.SNOOP_MISS_N 0x2003C0122

OFFCORE_RESPONSE.ALL_RFO.LLC_MISS.DRAM_N 0x300400122

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.HIT_OTHE
R_CORE_NO_FWD_N

0x4003C0004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.HITM_OT
HER_CORE_N

0x10003C000
4

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.NO_SNOO
P_NEEDED_N

0x1003C0004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.SNOOP_M
ISS_N

0x2003C0004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.DRAM_N 0x300400004

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.DRAM_N 0x300400001

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.ANY_RESPONS
E_N

0x3F803C000
2

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.HIT_OTHER_CO
RE_NO_FWD_N

0x4003C0002

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.HITM_OTHER_C
ORE_N

0x10003C000
2

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.NO_SNOOP_NE
EDED_N

0x1003C0002

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.SNOOP_MISS_N 0x2003C0002

OFFCORE_RESPONSE.DEMAND_RFO.LLC_MISS.DRAM_N 0x300400002

OFFCORE_RESPONSE.OTHER.ANY_RESPONSE_N 0x18000

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.HIT_OTHER_
CORE_NO_FWD_N

0x4003C0040

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.HITM_OTHE
R_CORE_N

0x10003C004
0

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.NO_SNOOP_
NEEDED_N

0x1003C0040

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.SNOOP_MISS
_N

0x2003C0040

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_MISS.DRAM_N 0x300400040

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.DRAM_N 0x300400010

Table 19-4.  Non-Architectural Performance Events applicable only to the Processor 
core for Intel Core i7, i5, i3 Processor 2xxx Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-29



PERFORMANCE-MONITORING EVENTS
Non-architecture performance monitoring events in the processor core that are 
applicable only to next generation Intel Xeon processor with CPUID signature of 
DisplayFamily_DisplayModel 06_2DH are listed in Table 19-5.

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.ANY_RESPONSE_
N

0x3F803C002
0

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.HIT_OTHER_CORE
_NO_FWD_N

0x4003C0020

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.HITM_OTHER_CO
RE_N

0x10003C002
0

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.NO_SNOOP_NEED
ED_N

0x1003C0020

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.SNOOP_MISS_N 0x2003C0020

OFFCORE_RESPONSE.PF_L2_RFO.LLC_MISS.DRAM_N 0x300400020

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.HIT_OTHER
_CORE_NO_FWD_N

0x4003C0200

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.HITM_OTHE
R_CORE_N

0x10003C020
0

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.NO_SNOOP
_NEEDED_N

0x1003C0200

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.SNOOP_MIS
S_N

0x2003C0200

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_MISS.DRAM_N 0x300400200

OFFCORE_RESPONSE.PF_LLC_DATA_RD.LLC_MISS.DRAM_N 0x300400080

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.ANY_RESPONSE
_N

0x3F803C010
0

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.HIT_OTHER_COR
E_NO_FWD_N

0x4003C0100

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.HITM_OTHER_CO
RE_N

0x10003C010
0

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.NO_SNOOP_NEE
DED_N

0x1003C0100

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.SNOOP_MISS_N 0x2003C0100

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_MISS.DRAM_N 0x300400100

Table 19-4.  Non-Architectural Performance Events applicable only to the Processor 
core for Intel Core i7, i5, i3 Processor 2xxx Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-30 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Table 19-5.  Non-Architectural Performance Events Applicable only to the processor 
core of Next Generation Intel Xeon processor

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

B7H/BB
H

01H OFF_CORE_RESPONS
E_N

Sub-events of 
OFF_CORE_RESPONSE_N (suffix N = 
0, 1) programmed using MSR 
01A6H/01A7H with values shown in 
the comment column.

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.ANY_RE
SPONSE_N

0x3FFFC0000
4

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.LOCAL_D
RAM_N

0x600400004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE
_DRAM_N

0x67F800004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE
_HIT_FWD_N

0x87F800004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE
_HITM_N

0x107FC0000
4

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.ANY_DR
AM_N

0x67FC00001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.ANY_RE
SPONSE_N

0x3F803C000
1

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.LOCAL_D
RAM_N

0x600400001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE
_DRAM_N

0x67F800001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE
_HIT_FWD_N

0x87F800001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE
_HITM_N

0x107FC0000
1

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_MISS.ANY_RESP
ONSE_N

0x3F803C004
0

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.ANY_DRAM
_N

0x67FC00010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.ANY_RESP
ONSE_N

0x3F803C001
0

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.LOCAL_DR
AM_N

0x600400010
Vol. 3B 19-31



PERFORMANCE-MONITORING EVENTS
Non-architectural Performance monitoring events that are located in the uncore sub-
system are implementation specific between different platforms using processors 
based on Intel microarchitecture Sandy Bridge. Processors with CPUID signature of 
DisplayFamily_DisplayModel 06_2AH support performance events listed in Table 
19-6.

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_D
RAM_N

0x67F800010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_HI
T_FWD_N

0x87F800010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_HI
TM_N

0x107FC0001
0

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_MISS.ANY_RES
PONSE_N

0x3FFFC0020
0

OFFCORE_RESPONSE.PF_LLC_DATA_RD.LLC_MISS.ANY_RES
PONSE_N

0x3FFFC0008
0

Table 19-6.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7, i5, i3 Processor 2xxx Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

22H 01H UNC_CBO_XSNP_RE
SPONSE.RSPIHITI

Snoop responses received from 
processor cores to requests initiated 
by this Cbox.

Must combine 
with one of the 
umask values 
of 20H, 40H, 
80H

22H 02H UNC_CBO_XSNP_RE
SPONSE.RSPIHITFSE

22H 04H UNC_CBO_XSNP_RE
SPONSE.RSPSHITFSE

22H 08H UNC_CBO_XSNP_RE
SPONSE.RSPSFWDM

22H 01H UNC_CBO_XSNP_RE
SPONSE.RSPIFWDM

22H 20H UNC_CBO_XSNP_RE
SPONSE.AND_EXTER
NAL

Filter on cross-core snoops resulted in 
external snoop request. Must combine 
with at least one of 01H, 02H, 04H, 
08H, 10H

Table 19-5.  Non-Architectural Performance Events Applicable only to the processor 
core of Next Generation Intel Xeon processor

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-32 Vol. 3B



PERFORMANCE-MONITORING EVENTS
22H 40H UNC_CBO_XSNP_RE
SPONSE.AND_XCORE

Filter on cross-core snoops resulted in 
core request. Must combine with at 
least one of 01H, 02H, 04H, 08H, 10H

22H 80H UNC_CBO_XSNP_RE
SPONSE.AND_XCORE

Filter on cross-core snoops resulted in 
LLC evictions. Must combine with at 
least one of 01H, 02H, 04H, 08H, 10H

34H 01H UNC_CBO_CACHE_LO
OKUP.M

LLC lookup request that access cache 
and found line in M-state.

Must combine 
with one of the 
umask values 
of 10H, 20H, 
40H, 80H

34H 02H UNC_CBO_CACHE_LO
OKUP.E

LLC lookup request that access cache 
and found line in E-state.

34H 04H UNC_CBO_CACHE_LO
OKUP.S

LLC lookup request that access cache 
and found line in S-state.

34H 08H UNC_CBO_CACHE_LO
OKUP.I

LLC lookup request that access cache 
and found line in I-state.

34H 10H UNC_CBO_CACHE_LO
OKUP.AND_READ

Filter on processor core initiated 
cacheable read requests. Must 
combine with at least one of 01H, 
02H, 04H, 08H

34H 20H UNC_CBO_CACHE_LO
OKUP.AND_READ

Filter on processor core initiated 
cacheable write requests. Must 
combine with at least one of 01H, 
02H, 04H, 08H

34H 40H UNC_CBO_CACHE_LO
OKUP.AND_EXTSNP

Filter on external snoop requests. 
Must combine with at least one of 
01H, 02H, 04H, 08H

34H 80H UNC_CBO_CACHE_LO
OKUP.AND_ANY

Filter on any IRQ or IPQ initiated 
requests including uncacheable, non-
coherent requests. Must combine with 
at least one of 01H, 02H, 04H, 08H

80H 01H UNC_IMPH_CBO_TRK
_OCCUPANCY.ALL

Counts cycles weighted by the 
number of core-outgoing valid entries. 
Valid entries are between allocation 
to the first of IDIO or DRSO messages. 
Accounts for coherent and in-
coherent traffic

Counter 0 only

81H 01H UNC_IMPH_CBO_TRK
_REQUEST.ALL

Counts the number of core-outgoing 
entries. Accounts for coherent and in-
coherent traffic

Table 19-6.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7, i5, i3 Processor 2xxx Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-33



PERFORMANCE-MONITORING EVENTS
19.4 PERFORMANCE MONITORING EVENTS FOR  
INTEL® CORE™I7 PROCESSOR FAMILY AND XEON 
PROCESSOR FAMILY

Processors based on the Intel microarchitecture code name Nehalem support the 
architectural and non-architectural performance-monitoring events listed in Table 
19-1 and Table 19-7. The events in Table 19-7 generally applies to processors with 
CPUID signature of DisplayFamily_DisplayModel encoding with the following values: 
06_1AH, 06_1EH, 06_1FH, and 06_2EH. However, Intel Xeon processors with CPUID 
signature of DisplayFamily_DisplayModel 06_2EH have a small number of events that 
are not supported in processors with CPUID signature 06_1AH, 06_1EH, and 
06_1FH. These events are noted in the comment column.

In addition, these processors (CPUID signature of DisplayFamily_DisplayModel 
06_1AH, 06_1EH, 06_1FH) also support the following non-architectural, product-
specific uncore performance-monitoring events listed in Table 19-8. 

Fixed counters in the core PMU support the architecture events defined in Table 
19-12.

81H 20H UNC_IMPH_CBO_TRK
_REQUEST.WRITES

Counts the number of allocated write 
entries, include full, partial, and 
evictions. 

81H 80H UNC_IMPH_CBO_TRK
_REQUEST.EVICTION
S

Counts the number of evictions 
allocated. 

83H 01H UNC_IMPH_COH_TR
K_OCCUPANCY.ALL

Counts cycles weighted by the 
number of core-outgoing valid entries 
in the coherent tracker queue.

Counter 0 only

84H 01H UNC_IMPH_COH_TR
K_REQUEST.ALL

Counts the number of core-outgoing 
entries in the coherent tracker queue. 

Table 19-6.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7, i5, i3 Processor 2xxx Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-34 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

04H 07H SB_DRAIN.ANY Counts the number of store buffer 
drains.

06H 04H STORE_BLOCKS.AT_
RET

Counts number of loads delayed 
with at-Retirement block code. The 
following loads need to be executed 
at retirement and wait for all senior 
stores on the same thread to be 
drained: load splitting across 4K 
boundary (page split), load 
accessing uncacheable (UC or 
USWC) memory, load lock, and load 
with page table in UC or USWC 
memory region.

06H 08H STORE_BLOCKS.L1D
_BLOCK

Cacheable  loads delayed with L1D 
block code.

07H 01H PARTIAL_ADDRESS_
ALIAS

Counts false dependency due to 
partial address aliasing.

08H 01H DTLB_LOAD_MISSES.
ANY

Counts all load misses that cause a 
page walk.

08H 02H DTLB_LOAD_MISSES.
WALK_COMPLETED

Counts number of completed page 
walks due to load miss in the STLB.

08H 10H DTLB_LOAD_MISSES.
STLB_HIT

Number of cache load STLB hits.

08H 20H DTLB_LOAD_MISSES.
PDE_MISS

Number of DTLB cache load misses 
where the low part of the linear to 
physical address translation was 
missed.

08H 80H DTLB_LOAD_MISSES.
LARGE_WALK_COMP
LETED

Counts number of completed large 
page walks due to load miss in the 
STLB.

0BH 01H MEM_INST_RETIRED.
LOADS

Counts the number of instructions 
with an architecturally-visible load 
retired on the architected path.

0BH 02H MEM_INST_RETIRED.
STORES

Counts the number of instructions 
with an architecturally-visible store 
retired on the architected path.
Vol. 3B 19-35



PERFORMANCE-MONITORING EVENTS
0BH 10H MEM_INST_RETIRED.
LATENCY_ABOVE_T
HRESHOLD

Counts the number of instructions 
exceeding the latency specified 
with ld_lat facility.

In conjunction 
with ld_lat 
facility

0CH 01H MEM_STORE_RETIRE
D.DTLB_MISS

The event counts the number of 
retired stores that missed the DTLB. 
The DTLB miss is not counted if the 
store operation causes a fault. Does 
not counter prefetches. Counts both 
primary and secondary misses to 
the TLB.

0EH 01H UOPS_ISSUED.ANY Counts the number of Uops issued 
by the Register Allocation Table to 
the Reservation Station, i.e. the 
UOPs issued from the front end to 
the back end. 

0EH 01H UOPS_ISSUED.STALL
ED_CYCLES

Counts the number of cycles no 
Uops issued by the Register 
Allocation Table to the Reservation 
Station, i.e. the UOPs issued from 
the front end to the back end. 

set “invert=1, 
cmask = 1“

0EH 02H UOPS_ISSUED.FUSED Counts the number of fused Uops 
that were issued from the Register 
Allocation Table to the Reservation 
Station.

0FH 01H MEM_UNCORE_RETI
RED.L3_DATA_MISS_
UNKNOWN

Counts number of memory load 
instructions retired where the 
memory reference missed L3 and 
data source is unknown. 

Available only for 
CPUID signature 
06_2EH

0FH 02H MEM_UNCORE_RETI
RED.OTHER_CORE_L
2_HITM

Counts number of memory load 
instructions retired where the 
memory reference hit modified data 
in a sibling core residing on the 
same socket. 

0FH 08H MEM_UNCORE_RETI
RED.REMOTE_CACHE
_LOCAL_HOME_HIT

Counts number of memory load 
instructions retired where the 
memory reference missed the L1, 
L2 and L3 caches and HIT in a 
remote socket's cache. Only counts 
locally homed lines.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-36 Vol. 3B



PERFORMANCE-MONITORING EVENTS
0FH 10H MEM_UNCORE_RETI
RED.REMOTE_DRAM

Counts number of memory load 
instructions retired where the 
memory reference missed the L1, 
L2 and L3 caches and was remotely 
homed. This includes both DRAM 
access and HITM in a remote 
socket's cache for remotely homed 
lines.

0FH 20H MEM_UNCORE_RETI
RED.LOCAL_DRAM

Counts number of memory load 
instructions retired where the 
memory reference missed the L1, 
L2 and L3 caches and required a 
local socket memory reference. This 
includes locally homed cachelines 
that were in a modified state in 
another socket.

0FH 80H MEM_UNCORE_RETI
RED.UNCACHEABLE

Counts number of memory load 
instructions retired where the 
memory reference missed the L1, 
L2 and L3 caches and to perform 
I/O. 

Available only for 
CPUID signature 
06_2EH

10H 01H FP_COMP_OPS_EXE.
X87

Counts the number of FP 
Computational Uops Executed. The 
number of FADD, FSUB, FCOM, 
FMULs, integer MULsand IMULs, 
FDIVs, FPREMs, FSQRTS, integer 
DIVs, and IDIVs. This event does not 
distinguish an FADD used in the 
middle of a transcendental flow 
from a separate FADD instruction.

10H 02H FP_COMP_OPS_EXE.
MMX

Counts number of MMX Uops 
executed.

10H 04H FP_COMP_OPS_EXE.
SSE_FP

Counts number of SSE and SSE2 FP 
uops executed.

10H 08H FP_COMP_OPS_EXE.
SSE2_INTEGER

Counts number of SSE2 integer 
uops executed.

10H 10H FP_COMP_OPS_EXE.
SSE_FP_PACKED

Counts number of SSE FP packed 
uops executed.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-37



PERFORMANCE-MONITORING EVENTS
10H 20H FP_COMP_OPS_EXE.
SSE_FP_SCALAR

Counts number of SSE FP scalar 
uops executed.

10H 40H FP_COMP_OPS_EXE.
SSE_SINGLE_PRECISI
ON

Counts number of SSE* FP single 
precision uops executed.

10H 80H FP_COMP_OPS_EXE.
SSE_DOUBLE_PRECI
SION

Counts number of SSE* FP double 
precision uops executed.

12H 01H SIMD_INT_128.PACK
ED_MPY

Counts number of 128 bit SIMD 
integer multiply operations.

12H 02H SIMD_INT_128.PACK
ED_SHIFT

Counts number of 128 bit SIMD 
integer shift operations.

12H 04H SIMD_INT_128.PACK Counts number of 128 bit SIMD 
integer pack operations.

12H 08H SIMD_INT_128.UNPA
CK

Counts number of 128 bit SIMD 
integer unpack operations.

12H 10H SIMD_INT_128.PACK
ED_LOGICAL

Counts number of 128 bit SIMD 
integer logical  operations.

12H 20H SIMD_INT_128.PACK
ED_ARITH

Counts number of 128 bit SIMD 
integer arithmetic operations.

12H 40H SIMD_INT_128.SHUF
FLE_MOVE

Counts number of 128 bit SIMD 
integer shuffle and move 
operations.

13H 01H LOAD_DISPATCH.RS Counts number of loads dispatched 
from the Reservation Station that 
bypass the Memory Order Buffer.

13H 02H LOAD_DISPATCH.RS_
DELAYED

Counts the number of delayed RS 
dispatches at the stage latch. If an 
RS dispatch can not bypass to LB, it 
has another chance to dispatch 
from the one-cycle delayed staging 
latch before it is written into the LB.

13H 04H LOAD_DISPATCH.MO
B

Counts the number of loads 
dispatched from the Reservation 
Station to the Memory Order Buffer.

13H 07H LOAD_DISPATCH.ANY Counts all loads dispatched from the 
Reservation Station.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-38 Vol. 3B



PERFORMANCE-MONITORING EVENTS
14H 01H ARITH.CYCLES_DIV_
BUSY

Counts the number of cycles the 
divider is busy executing divide or 
square root operations. The divide 
can be integer, X87 or Streaming 
SIMD Extensions (SSE). The square 
root operation can be either X87 or 
SSE. 

Set 'edge =1, invert=1, cmask=1' to 
count the number of divides.

Count may be 
incorrect When 
SMT is on.

14H 02H ARITH.MUL Counts the number of multiply 
operations executed. This includes 
integer as well as floating point 
multiply operations but excludes 
DPPS mul and MPSAD.

Count may be 
incorrect When 
SMT is on

17H 01H INST_QUEUE_WRITE
S

Counts the number of instructions 
written into the instruction queue 
every cycle. 

18H 01H INST_DECODED.DEC0 Counts number of instructions that 
require  decoder 0 to be decoded.  
Usually, this means that the 
instruction maps to more than 1 
uop.

19H 01H TWO_UOP_INSTS_D
ECODED

An instruction that generates two 
uops was decoded.

1EH 01H INST_QUEUE_WRITE
_CYCLES

This event counts the number of 
cycles during which instructions are 
written to the instruction queue.  
Dividing this counter by the number 
of instructions written to the 
instruction queue 
(INST_QUEUE_WRITES) yields the 
average number of instructions 
decoded each cycle. If this number is  
less than four and the pipe stalls, 
this indicates that the decoder is 
failing to decode enough 
instructions per cycle to sustain the 
4-wide pipeline. 

If SSE* 
instructions that 
are 6 bytes or 
longer arrive one 
after another, 
then front end 
throughput may 
limit execution 
speed.  In such 
case, 

20H 01H LSD_OVERFLOW Counts number of loops that can’t 
stream from the instruction queue.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-39



PERFORMANCE-MONITORING EVENTS
24H 01H L2_RQSTS.LD_HIT Counts number of loads that hit the 
L2 cache. L2 loads include both L1D 
demand misses as well as L1D 
prefetches.  L2 loads can be 
rejected for various reasons.  Only 
non rejected loads are counted.

24H 02H L2_RQSTS.LD_MISS Counts the number of loads that 
miss the L2 cache. L2 loads include 
both L1D demand misses as well as 
L1D prefetches. 

24H 03H L2_RQSTS.LOADS Counts all L2 load requests. L2 loads 
include both L1D demand misses as 
well as L1D prefetches. 

24H 04H L2_RQSTS.RFO_HIT Counts the number of store RFO 
requests that hit the L2 cache. L2 
RFO requests include both L1D 
demand RFO misses as well as L1D 
RFO prefetches. Count includes WC 
memory requests, where the data is 
not fetched but the permission to 
write the line is required.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO 
requests that miss the L2 cache. L2 
RFO requests include both L1D 
demand RFO misses as well as L1D 
RFO prefetches.

24H 0CH L2_RQSTS.RFOS Counts all L2 store RFO requests. L2 
RFO requests include both L1D 
demand RFO misses as well as L1D 
RFO prefetches.

24H 10H L2_RQSTS.IFETCH_H
IT

Counts number of instruction 
fetches that hit the L2 cache. L2 
instruction fetches include both L1I 
demand misses as well as L1I 
instruction prefetches.

24H 20H L2_RQSTS.IFETCH_M
ISS

Counts number of instruction 
fetches that miss the L2 cache. L2 
instruction fetches include both L1I 
demand misses as well as L1I 
instruction prefetches.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-40 Vol. 3B



PERFORMANCE-MONITORING EVENTS
24H 30H L2_RQSTS.IFETCHES Counts all instruction fetches. L2 
instruction fetches include both L1I 
demand misses as well as L1I 
instruction prefetches.

24H 40H L2_RQSTS.PREFETC
H_HIT

Counts L2 prefetch hits for both 
code and data.

24H 80H L2_RQSTS.PREFETC
H_MISS

Counts L2 prefetch misses for both 
code and data.

24H C0H L2_RQSTS.PREFETC
HES

Counts all L2 prefetches for both 
code and data.

24H AAH L2_RQSTS.MISS Counts all L2 misses for both code 
and data.

24H FFH L2_RQSTS.REFEREN
CES

Counts all L2 requests for both code 
and data.

26H 01H L2_DATA_RQSTS.DE
MAND.I_STATE

Counts number of L2 data demand 
loads where the cache line to be 
loaded is in the I (invalid) state, i.e. a 
cache miss. L2 demand loads are 
both L1D demand misses and L1D 
prefetches.

26H 02H L2_DATA_RQSTS.DE
MAND.S_STATE

Counts number of L2 data demand 
loads where the cache line to be 
loaded is in the S (shared) state. L2 
demand loads are both L1D demand 
misses and L1D prefetches.

26H 04H L2_DATA_RQSTS.DE
MAND.E_STATE

Counts number of L2 data demand 
loads where the cache line to be 
loaded is in the E (exclusive) state. 
L2 demand loads are both L1D 
demand misses and L1D prefetches.

26H 08H L2_DATA_RQSTS.DE
MAND.M_STATE

Counts number of L2 data demand 
loads where the cache line to be 
loaded is in the M (modified) state. 
L2 demand loads are both L1D 
demand misses and L1D prefetches.

26H 0FH L2_DATA_RQSTS.DE
MAND.MESI

Counts all L2 data demand requests. 
L2 demand loads are both L1D 
demand misses and L1D prefetches.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-41



PERFORMANCE-MONITORING EVENTS
26H 10H L2_DATA_RQSTS.PR
EFETCH.I_STATE

Counts number of L2 prefetch data 
loads where the cache line to be 
loaded is in the I (invalid) state, i.e. a 
cache miss.

26H 20H L2_DATA_RQSTS.PR
EFETCH.S_STATE

Counts number of L2 prefetch data 
loads where the cache line to be 
loaded is in the S (shared) state. A 
prefetch RFO will miss on an S state 
line, while a prefetch read will hit on 
an S state line.

26H 40H L2_DATA_RQSTS.PR
EFETCH.E_STATE

Counts number of L2 prefetch data 
loads where the cache line to be 
loaded is in the E (exclusive) state.

26H 80H L2_DATA_RQSTS.PR
EFETCH.M_STATE

Counts number of L2 prefetch data 
loads where the cache line to be 
loaded is in the M (modified) state.

26H F0H L2_DATA_RQSTS.PR
EFETCH.MESI

Counts all L2 prefetch requests.

26H FFH L2_DATA_RQSTS.AN
Y

Counts all L2 data requests.

27H 01H L2_WRITE.RFO.I_STA
TE

Counts number of L2 demand store 
RFO requests where the cache line 
to be loaded is in the I (invalid) state, 
i.e, a cache miss. The L1D prefetcher 
does not issue a RFO prefetch.

This is a demand 
RFO request

27H 02H L2_WRITE.RFO.S_ST
ATE

Counts number of L2 store RFO 
requests where the cache line to be 
loaded is in the S (shared) state. The 
L1D prefetcher does not issue a 
RFO prefetch,.

This is a demand 
RFO request

27H 08H L2_WRITE.RFO.M_ST
ATE

Counts number of L2 store RFO 
requests where the cache line to be 
loaded is in the M (modified) state. 
The L1D prefetcher does not issue a 
RFO prefetch.

This is a demand 
RFO request

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-42 Vol. 3B



PERFORMANCE-MONITORING EVENTS
27H 0EH L2_WRITE.RFO.HIT Counts number of L2 store RFO 
requests where the cache line to be 
loaded is in either the S, E or M 
states. The L1D prefetcher does not 
issue a RFO prefetch.

This is a demand 
RFO request

27H 0FH L2_WRITE.RFO.MESI Counts all L2 store RFO 
requests.The L1D prefetcher does 
not issue a RFO prefetch.

This is a demand 
RFO request

27H 10H L2_WRITE.LOCK.I_ST
ATE

Counts number of L2 demand lock 
RFO requests where the cache line 
to be loaded is in the I (invalid) state, 
i.e. a cache miss. 

27H 20H L2_WRITE.LOCK.S_S
TATE

Counts number of L2 lock RFO 
requests where the cache line to be 
loaded is in the S (shared) state.

27H 40H L2_WRITE.LOCK.E_S
TATE

Counts number of L2 demand lock 
RFO requests where the cache line 
to be loaded is in the E (exclusive) 
state.

27H 80H L2_WRITE.LOCK.M_S
TATE

Counts number of L2 demand lock 
RFO requests where the cache line 
to be loaded is in the M (modified) 
state.

27H E0H L2_WRITE.LOCK.HIT Counts number of L2 demand lock 
RFO requests where the cache line 
to be loaded is in either the S, E, or 
M state.

27H F0H L2_WRITE.LOCK.MESI Counts all L2 demand lock RFO 
requests.

28H 01H L1D_WB_L2.I_STATE Counts number of L1 writebacks to 
the L2 where the cache line to be 
written is in the I (invalid) state, i.e. 
a cache miss.

28H 02H L1D_WB_L2.S_STAT
E

Counts number of L1 writebacks to 
the L2 where the cache line to be 
written is in the S state.

28H 04H L1D_WB_L2.E_STAT
E

Counts number of L1 writebacks to 
the L2 where the cache line to be 
written is in the E (exclusive) state.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-43



PERFORMANCE-MONITORING EVENTS
28H 08H L1D_WB_L2.M_STAT
E

Counts number of L1 writebacks to 
the L2 where the cache line to be 
written is in the M (modified) state.

28H 0FH L1D_WB_L2.MESI Counts all L1 writebacks to the L2 .

2EH 4FH L3_LAT_CACHE.REFE
RENCE

This event counts requests 
originating from the core that 
reference a cache line in the last 
level cache. The event count 
includes speculative traffic but 
excludes cache line fills due to a L2 
hardware-prefetch. Because cache 
hierarchy, cache sizes and other 
implementation-specific 
characteristics; value comparison to 
estimate performance differences is 
not recommended. 

see Table 19-1

2EH 41H L3_LAT_CACHE.MISS This event counts each cache miss 
condition for references to the last 
level cache. The event count may 
include speculative traffic but 
excludes cache line fills due to L2 
hardware-prefetches. Because 
cache hierarchy, cache sizes and 
other implementation-specific 
characteristics; value comparison to 
estimate performance differences is 
not recommended. 

see Table 19-1

3CH 00H CPU_CLK_UNHALTED
.THREAD_P

Counts the number of thread cycles 
while the thread is not in a halt 
state. The thread enters the halt 
state when it is running the HLT 
instruction. The core frequency may 
change from time to time due to 
power or thermal throttling. 

see Table 19-1

3CH 01H CPU_CLK_UNHALTED
.REF_P

Increments at the frequency of TSC 
when not halted.

see Table 19-1

40H 01H L1D_CACHE_LD.I_ST
ATE

Counts L1 data cache read requests 
where the cache line to be loaded is 
in the I (invalid) state, i.e. the read 
request missed the cache.

Counter 0, 1 only

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-44 Vol. 3B



PERFORMANCE-MONITORING EVENTS
40H 02H L1D_CACHE_LD.S_ST
ATE

Counts L1 data cache read requests 
where the cache line to be loaded is 
in the S (shared) state.

Counter 0, 1 only

40H 04H L1D_CACHE_LD.E_ST
ATE

Counts L1 data cache read requests 
where the cache line to be loaded is 
in the E (exclusive) state.

Counter 0, 1 only

40H 08H L1D_CACHE_LD.M_S
TATE

Counts L1 data cache read requests 
where the cache line to be loaded is 
in the M (modified) state.

Counter 0, 1 only

40H 0FH L1D_CACHE_LD.MESI Counts L1 data cache read requests. Counter 0, 1 only

41H 02H L1D_CACHE_ST.S_ST
ATE

Counts L1 data cache store RFO 
requests where the cache line to be 
loaded is in the S (shared) state.

Counter 0, 1 only

41H 04H L1D_CACHE_ST.E_ST
ATE

Counts L1 data cache store RFO 
requests where the cache line to be 
loaded is in the E (exclusive) state.

Counter 0, 1 only

41H 08H L1D_CACHE_ST.M_S
TATE

Counts L1 data cache store RFO 
requests where cache line to be 
loaded is in the M (modified) state.

Counter 0, 1 only

42H 01H L1D_CACHE_LOCK.HI
T

Counts retired load locks that hit in 
the L1 data cache or hit in an 
already allocated fill buffer.   The 
lock portion of the load lock 
transaction must hit in the L1D. 

The initial load 
will pull the lock 
into the L1 data 
cache. Counter 0, 
1 only

42H 02H L1D_CACHE_LOCK.S_
STATE

Counts L1 data cache retired load 
locks that hit the target cache line in 
the shared state. 

Counter 0, 1 only

42H 04H L1D_CACHE_LOCK.E_
STATE

Counts L1 data cache retired load 
locks that hit the target cache line in 
the exclusive state. 

Counter 0, 1 only

42H 08H L1D_CACHE_LOCK.M
_STATE

Counts L1 data cache retired load 
locks that hit the target cache line in 
the modified state. 

Counter 0, 1 only

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-45



PERFORMANCE-MONITORING EVENTS
43H 01H L1D_ALL_REF.ANY Counts all references (uncached, 
speculated and retired) to the L1 
data cache, including all loads and 
stores with any memory types. The 
event counts memory accesses only 
when they are actually performed. 
For example, a load blocked by 
unknown store address and later 
performed is only counted once. 

The event does 
not include non-
memory 
accesses, such as 
I/O accesses. 
Counter 0, 1 only

43H 02H L1D_ALL_REF.CACHE
ABLE

Counts all data reads and writes 
(speculated and retired) from 
cacheable memory, including locked 
operations.

Counter 0, 1 only

49H 01H DTLB_MISSES.ANY Counts the number of misses in the 
STLB which causes a page walk.

49H 02H DTLB_MISSES.WALK_
COMPLETED

Counts number of misses in the 
STLB which resulted in a completed 
page walk.

49H 10H DTLB_MISSES.STLB_
HIT

Counts the number of DTLB first 
level misses that hit in the second 
level TLB.  This event is only 
relevant if the core contains 
multiple DTLB levels.

49H 20H DTLB_MISSES.PDE_M
ISS

Number of DTLB misses caused by 
low part of address, includes 
references to 2M pages because 2M 
pages do not use the PDE. 

49H 80H DTLB_MISSES.LARGE
_WALK_COMPLETED

Counts number of misses in the 
STLB which resulted in a completed 
page walk for large pages.

4CH 01H LOAD_HIT_PRE Counts load operations sent to the 
L1 data cache while a previous SSE 
prefetch instruction to the same 
cache line has started prefetching 
but has not yet finished.

4EH 01H L1D_PREFETCH.REQ
UESTS

Counts number of hardware 
prefetch requests dispatched out of 
the prefetch FIFO.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-46 Vol. 3B



PERFORMANCE-MONITORING EVENTS
4EH 02H L1D_PREFETCH.MISS Counts number of hardware 
prefetch requests that miss the 
L1D.  There are two prefetchers in 
the L1D.  A streamer, which predicts 
lines sequentially after this one 
should be fetched, and the IP 
prefetcher that remembers access 
patterns for the current instruction.  
The streamer prefetcher stops on 
an L1D hit,  while the IP prefetcher 
does not.

4EH 04H L1D_PREFETCH.TRIG
GERS

Counts number of prefetch requests 
triggered by the Finite State 
Machine and pushed into the 
prefetch FIFO. Some of the prefetch 
requests are dropped due to 
overwrites or competition between 
the IP index prefetcher and 
streamer prefetcher.  The prefetch 
FIFO contains 4 entries.

51H 01H L1D.REPL Counts the number of lines brought 
into the L1 data cache.

Counter 0, 1 only

51H 02H L1D.M_REPL Counts the number of modified lines 
brought into the L1 data cache. 

Counter 0, 1 only

51H 04H L1D.M_EVICT Counts the number of modified lines 
evicted from the L1 data cache  due 
to replacement. 

Counter 0, 1 only

51H 08H L1D.M_SNOOP_EVIC
T

Counts the number of modified lines 
evicted from the L1 data cache due 
to snoop HITM intervention.

Counter 0, 1 only

52H 01H L1D_CACHE_PREFET
CH_LOCK_FB_HIT

Counts the number of cacheable 
load lock speculated instructions 
accepted into the fill buffer.

53H 01H L1D_CACHE_LOCK_F
B_HIT

Counts the number of cacheable 
load lock speculated or retired 
instructions accepted into the fill 
buffer.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-47



PERFORMANCE-MONITORING EVENTS
63H 01H CACHE_LOCK_CYCLE
S.L1D_L2

Cycle count during which the L1D 
and L2 are locked.  A lock is 
asserted when there is a locked 
memory access, due to uncacheable 
memory, a locked operation that 
spans two cache lines, or a page 
walk from an uncacheable page 
table.

Counter 0, 1 only. 
L1D and L2 locks 
have a very high 
performance 
penalty and it is 
highly 
recommended to 
avoid such 
accesses.

63H 02H CACHE_LOCK_CYCLE
S.L1D

Counts the number of cycles that 
cacheline in the L1 data cache unit 
is locked.

Counter 0, 1 only.

6CH 01H IO_TRANSACTIONS Counts the number of completed I/O 
transactions.

80H 01H L1I.HITS Counts all instruction fetches that 
hit the L1 instruction cache.

80H 02H L1I.MISSES Counts all instruction fetches that 
miss the L1I cache. This includes 
instruction cache misses,  streaming 
buffer misses, victim cache misses 
and uncacheable fetches.  An 
instruction fetch miss is counted 
only once and not once for every 
cycle it is outstanding.

80H 03H L1I.READS Counts all instruction fetches, 
including uncacheable fetches that 
bypass the L1I.

80H 04H L1I.CYCLES_STALLED Cycle counts for which an 
instruction fetch stalls due to a L1I 
cache miss, ITLB miss or ITLB fault.

82H 01H LARGE_ITLB.HIT Counts number of large ITLB hits.

85H 01H ITLB_MISSES.ANY Counts the number of misses in all 
levels of the ITLB which causes a 
page walk.

85H 02H ITLB_MISSES.WALK_
COMPLETED

Counts number of misses in all 
levels of the ITLB which resulted in 
a completed page walk.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-48 Vol. 3B



PERFORMANCE-MONITORING EVENTS
87H 01H ILD_STALL.LCP Cycles Instruction Length Decoder 
stalls due to length changing 
prefixes: 66, 67 or REX.W (for 
EM64T) instructions which change 
the length of the decoded 
instruction.

87H 02H ILD_STALL.MRU Instruction Length Decoder stall 
cycles due to Brand Prediction Unit 
(PBU) Most Recently Used (MRU) 
bypass.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to a full instruction 
queue.

87H 08H ILD_STALL.REGEN Counts the number of regen stalls.

87H 0FH ILD_STALL.ANY Counts any cycles the Instruction 
Length Decoder is stalled.

88H 01H BR_INST_EXEC.COND Counts the number of conditional 
near branch instructions executed, 
but not necessarily retired.

88H 02H BR_INST_EXEC.DIRE
CT

Counts all unconditional near branch 
instructions excluding calls and 
indirect branches.

88H 04H BR_INST_EXEC.INDIR
ECT_NON_CALL

Counts the number of executed 
indirect near branch instructions 
that are not calls.

88H 07H BR_INST_EXEC.NON
_CALLS

Counts all non call near branch 
instructions executed, but not 
necessarily retired.

88H 08H BR_INST_EXEC.RETU
RN_NEAR

Counts indirect near branches that 
have a return mnemonic.

88H 10H BR_INST_EXEC.DIRE
CT_NEAR_CALL

Counts unconditional near call 
branch instructions, excluding non 
call branch, executed. 

88H 20H BR_INST_EXEC.INDIR
ECT_NEAR_CALL

Counts indirect near calls, including 
both register and memory indirect, 
executed.

88H 30H BR_INST_EXEC.NEAR
_CALLS

Counts all near call branches 
executed,  but not necessarily 
retired.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-49



PERFORMANCE-MONITORING EVENTS
88H 40H BR_INST_EXEC.TAKE
N

Counts taken near branches 
executed, but not necessarily 
retired.

88H 7FH BR_INST_EXEC.ANY Counts all near executed branches 
(not necessarily retired). This 
includes only instructions and not 
micro-op branches. Frequent 
branching is not necessarily a major 
performance issue. However 
frequent branch mispredictions may 
be a problem.

89H 01H BR_MISP_EXEC.CON
D

Counts the number of mispredicted 
conditional near branch instructions 
executed, but not necessarily 
retired.

89H 02H BR_MISP_EXEC.DIRE
CT

Counts mispredicted macro 
unconditional near branch 
instructions, excluding calls and 
indirect branches (should always be 
0).

89H 04H BR_MISP_EXEC.INDIR
ECT_NON_CALL

Counts the number of executed 
mispredicted indirect near branch 
instructions that are not calls.

89H 07H BR_MISP_EXEC.NON
_CALLS

Counts mispredicted non call near 
branches executed,  but not 
necessarily retired.

89H 08H BR_MISP_EXEC.RETU
RN_NEAR

Counts mispredicted indirect 
branches that have a rear return 
mnemonic.

89H 10H BR_MISP_EXEC.DIRE
CT_NEAR_CALL

Counts mispredicted non-indirect 
near calls executed, (should always 
be 0).

89H 20H BR_MISP_EXEC.INDIR
ECT_NEAR_CALL

Counts mispredicted indirect near 
calls exeucted, including both 
register and memory indirect.

89H 30H BR_MISP_EXEC.NEA
R_CALLS

Counts all mispredicted near call 
branches executed, but not 
necessarily retired.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-50 Vol. 3B



PERFORMANCE-MONITORING EVENTS
89H 40H BR_MISP_EXEC.TAKE
N

Counts executed mispredicted near 
branches that are taken, but not 
necessarily retired.

89H 7FH BR_MISP_EXEC.ANY Counts the number of mispredicted 
near branch instructions that were 
executed, but not necessarily 
retired.

A2H 01H RESOURCE_STALLS.
ANY

Counts the number of Allocator 
resource related stalls. Includes 
register renaming buffer entries, 
memory buffer entries. In addition 
to resource related stalls, this event 
counts some other events. Includes 
stalls arising during branch 
misprediction recovery, such as if 
retirement of the mispredicted 
branch is delayed and stalls arising 
while store buffer is draining from 
synchronizing operations.

Does not include 
stalls due to 
SuperQ (off core) 
queue full, too 
many cache 
misses, etc.

A2H 02H RESOURCE_STALLS.L
OAD

Counts the cycles of stall due to lack 
of load buffer for load operation.

A2H 04H RESOURCE_STALLS.R
S_FULL

This event counts the number of 
cycles when the number of 
instructions in the pipeline waiting 
for execution reaches the limit the 
processor can handle. A high count 
of this event indicates that there 
are long latency operations in the 
pipe (possibly load and store 
operations that miss the L2 cache, 
or instructions dependent upon 
instructions further down the 
pipeline that have yet to retire. 

When RS is full, 
new instructions 
can not enter the 
reservation 
station and start 
execution.

A2H 08H RESOURCE_STALLS.S
TORE

This event counts the number of 
cycles that a resource related stall 
will occur due to the number of 
store instructions reaching the limit 
of the pipeline, (i.e. all store buffers 
are used). The stall ends when a 
store instruction commits its data to 
the cache or memory.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-51



PERFORMANCE-MONITORING EVENTS
A2H 10H RESOURCE_STALLS.R
OB_FULL

Counts the cycles of stall due to re-
order buffer full.

A2H 20H RESOURCE_STALLS.F
PCW

Counts the number of cycles while 
execution was stalled due to writing 
the floating-point unit (FPU) control 
word.

A2H 40H RESOURCE_STALLS.
MXCSR

Stalls due to the MXCSR register 
rename occurring to close to a 
previous MXCSR rename.  The 
MXCSR provides control and status 
for the MMX registers.

A2H 80H RESOURCE_STALLS.
OTHER

Counts the number of cycles while 
execution was stalled due to other 
resource issues.

A6H 01H MACRO_INSTS.FUSIO
NS_DECODED

Counts the number of instructions 
decoded that are macro-fused but 
not necessarily executed or retired.

A7H 01H BACLEAR_FORCE_IQ Counts number of times a BACLEAR 
was forced by the Instruction 
Queue.  The IQ is also responsible 
for providing conditional branch 
prediciton direction based on a 
static scheme and dynamic data 
provided by the L2 Branch 
Prediction Unit. If the conditional 
branch target is not found in the 
Target Array and the IQ predicts 
that the branch is taken, then the IQ 
will force the Branch Address 
Calculator to issue a BACLEAR. Each 
BACLEAR asserted by the BAC 
generates approximately an 8 cycle 
bubble in the instruction fetch 
pipeline.

A8H 01H LSD.UOPS Counts the number of micro-ops 
delivered by loop stream detector.

Use cmask=1 and 
invert to count 
cycles

AEH 01H ITLB_FLUSH Counts the number of ITLB flushes.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-52 Vol. 3B



PERFORMANCE-MONITORING EVENTS
B0H 40H OFFCORE_REQUEST
S.L1D_WRITEBACK

Counts number of L1D writebacks 
to the uncore. 

B1H 01H UOPS_EXECUTED.PO
RT0

Counts number of Uops executed 
that were issued on port 0.  Port 0 
handles integer arithmetic, SIMD 
and FP add Uops.

B1H 02H UOPS_EXECUTED.PO
RT1

Counts number of Uops executed 
that were issued on port 1. Port 1 
handles integer arithmetic, SIMD, 
integer shift, FP multiply and FP 
divide Uops.

B1H 04H UOPS_EXECUTED.PO
RT2_CORE

Counts number of Uops executed 
that were issued on port 2.  Port 2 
handles the load Uops. This is a core 
count only and can not be collected 
per thread.

B1H 08H UOPS_EXECUTED.PO
RT3_CORE

Counts number of Uops executed 
that were issued on port 3. Port 3 
handles store Uops.  This is a core 
count only and can not be collected 
per thread.

B1H 10H UOPS_EXECUTED.PO
RT4_CORE

Counts number of Uops executed 
that where issued on port  4.  Port 4 
handles the value to be stored for 
the store Uops issued on port 3. 
This is a core count only and can not 
be collected per thread.

B1H 1FH UOPS_EXECUTED.CO
RE_ACTIVE_CYCLES_
NO_PORT5

Counts cycles when the Uops 
executed were issued from any 
ports except port 5. Use Cmask=1 
for active cycles; Cmask=0 for 
weighted cycles; Use CMask=1, 
Invert=1 to count P0-4 stalled 
cycles Use Cmask=1, Edge=1, 
Invert=1 to count P0-4 stalls.

B1H 20H UOPS_EXECUTED.PO
RT5

Counts number of Uops executed 
that where issued on port 5. 

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-53



PERFORMANCE-MONITORING EVENTS
B1H 3FH UOPS_EXECUTED.CO
RE_ACTIVE_CYCLES

Counts cycles when the Uops are 
executing . Use Cmask=1 for active 
cycles; Cmask=0 for weighted 
cycles; Use CMask=1, Invert=1 to 
count P0-4 stalled cycles Use 
Cmask=1, Edge=1, Invert=1 to 
count P0-4 stalls.

B1H 40H UOPS_EXECUTED.PO
RT015

Counts number of Uops executed 
that where issued on port  0, 1, or 5.

use cmask=1, 
invert=1 to count 
stall cycles

B1H 80H UOPS_EXECUTED.PO
RT234

Counts number of Uops executed 
that where issued on port 2, 3, or 4.

B2H 01H OFFCORE_REQUEST
S_SQ_FULL

Counts number of cycles the SQ is 
full to handle off-core requests. 

B7H 01H OFF_CORE_RESPONS
E_0

see Section 18.6.1.3, “Off-core 
Response Performance Monitoring 
in the Processor Core”.

Requires 
programming 
MSR 01A6H

B8H 01H SNOOP_RESPONSE.H
IT

Counts HIT snoop response sent by 
this thread in response to a snoop 
request.

B8H 02H SNOOP_RESPONSE.H
ITE

Counts HIT E snoop response sent 
by this thread in response to a 
snoop request.

B8H 04H SNOOP_RESPONSE.H
ITM

Counts HIT M snoop response sent 
by this thread in response to a 
snoop request.

BBH 01H OFF_CORE_RESPONS
E_1

See Section 18.7, “Performance 
Monitoring for Processors Based on 
Intel® Microarchitecture Code 
Name Westmere”.

Requires 
programming 
MSR 01A7H

C0H 01H INST_RETIRED.ANY_
P

See Table 19-1
Notes: INST_RETIRED.ANY is 
counted by a designated fixed 
counter. INST_RETIRED.ANY_P is 
counted by a programmable counter 
and is an architectural performance 
event.  Event is supported if 
CPUID.A.EBX[1] = 0.

Counting: 
Faulting 
executions of 
GETSEC/VM 
entry/VM 
Exit/MWait will 
not count as 
retired 
instructions. 

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-54 Vol. 3B



PERFORMANCE-MONITORING EVENTS
C0H 02H INST_RETIRED.X87 Counts the number of MMX 
instructions retired.

C0H 04H INST_RETIRED.MMX Counts the number of floating point 
computational operations retired: 
floating point computational 
operations executed by the assist 
handler and sub-operations of 
complex floating point instructions 
like transcendental instructions.

C2H 01H UOPS_RETIRED.ANY Counts the number of micro-ops 
retired, (macro-fused=1, micro-
fused=2, others=1; maximum count 
of 8 per cycle). Most instructions are 
composed of one or two micro-ops. 
Some instructions are decoded into 
longer sequences such as repeat 
instructions, floating point 
transcendental instructions, and 
assists.

Use cmask=1 and 
invert to count 
active cycles or 
stalled cycles

C2H 02H UOPS_RETIRED.RETI
RE_SLOTS

Counts the number of retirement 
slots used each cycle.

C2H 04H UOPS_RETIRED.MAC
RO_FUSED

Counts number of macro-fused uops 
retired.

C3H 01H MACHINE_CLEARS.CY
CLES

Counts the cycles machine clear is 
asserted.

C3H 02H MACHINE_CLEARS.M
EM_ORDER

Counts the number of machine 
clears due to memory order 
conflicts.

C3H 04H MACHINE_CLEARS.S
MC

Counts the number of times that a 
program writes to a code section. 
Self-modifying code causes a sever 
penalty in all Intel 64 and IA-32 
processors.  The modified cache line 
is written back to the L2 and 
L3caches.

C4H 00H BR_INST_RETIRED.A
LL_BRANCHES

 Branch instructions at retirement See Table 19-1 

C4H 01H BR_INST_RETIRED.C
ONDITIONAL

Counts the number of conditional 
branch instructions retired. 

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-55



PERFORMANCE-MONITORING EVENTS
C4H 02H BR_INST_RETIRED.N
EAR_CALL

Counts the number of direct & 
indirect near unconditional calls 
retired.

C4H 04H BR_INST_RETIRED.A
LL_BRANCHES

Counts the number of branch 
instructions retired.

C5H 00H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted branch instructions at 
retirement

See Table 19-1 

C5H 02H BR_MISP_RETIRED.N
EAR_CALL

Counts mispredicted direct & 
indirect near unconditional retired 
calls. 

C7H 01H SSEX_UOPS_RETIRE
D.PACKED_SINGLE

Counts SIMD packed single-precision 
floating point Uops retired.

C7H 02H SSEX_UOPS_RETIRE
D.SCALAR_SINGLE

Counts SIMD calar single-precision 
floating point Uops retired.

C7H 04H SSEX_UOPS_RETIRE
D.PACKED_DOUBLE

Counts SIMD packed double-
precision floating point Uops retired.

C7H 08H SSEX_UOPS_RETIRE
D.SCALAR_DOUBLE

Counts SIMD scalar double-precision 
floating point Uops retired.

C7H 10H SSEX_UOPS_RETIRE
D.VECTOR_INTEGER

Counts 128-bit SIMD vector integer 
Uops retired.

C8H 20H ITLB_MISS_RETIRED Counts the number of retired 
instructions that missed the ITLB 
when the instruction was fetched.

CBH 01H MEM_LOAD_RETIRED
.L1D_HIT

Counts number of retired loads that 
hit the L1 data cache. 

CBH 02H MEM_LOAD_RETIRED
.L2_HIT

Counts number of retired loads that 
hit the L2 data cache.

CBH 04H MEM_LOAD_RETIRED
.L3_UNSHARED_HIT

Counts number of retired loads that 
hit their own, unshared lines in the 
L3 cache.

CBH 08H MEM_LOAD_RETIRED
.OTHER_CORE_L2_HI
T_HITM

Counts number of retired loads that 
hit in a sibling core's L2 (on die core).  
Since the L3 is inclusive of all cores 
on the package, this is an L3 hit. 
This counts both clean or modified 
hits.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-56 Vol. 3B



PERFORMANCE-MONITORING EVENTS
CBH 10H MEM_LOAD_RETIRED
.L3_MISS

Counts number of retired loads that 
miss the L3 cache.  The load was 
satisfied by a remote socket, local 
memory or an IOH.

CBH 40H MEM_LOAD_RETIRED
.HIT_LFB

Counts number of retired loads that 
miss the L1D and the address is 
located in an allocated line fill buffer 
and will soon be committed to 
cache.  This is counting secondary 
L1D misses.

CBH 80H MEM_LOAD_RETIRED
.DTLB_MISS

Counts the number of retired loads 
that missed the DTLB. The DTLB 
miss is not counted if the load 
operation causes a fault.  This event 
counts loads from cacheable 
memory only. The event does not 
count loads by software prefetches. 
Counts both primary and secondary 
misses to the TLB.

CCH 01H FP_MMX_TRANS.TO
_FP

Counts the first floating-point 
instruction following any MMX 
instruction. You can use this event 
to estimate the penalties for the 
transitions between floating-point 
and MMX technology states.

CCH 02H FP_MMX_TRANS.TO
_MMX

Counts the first MMX instruction 
following a floating-point 
instruction. You can use this event 
to estimate the penalties for the 
transitions between floating-point 
and MMX technology states.

CCH 03H FP_MMX_TRANS.AN
Y

Counts all transitions from floating 
point to MMX instructions and from 
MMX instructions to floating point 
instructions.  You can use this event 
to estimate the penalties for the 
transitions between floating-point 
and MMX technology states.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-57



PERFORMANCE-MONITORING EVENTS
D0H 01H MACRO_INSTS.DECO
DED

Counts the number of instructions 
decoded, (but not necessarily 
executed or retired).

D1H 02H UOPS_DECODED.MS Counts the number of Uops decoded 
by the Microcode Sequencer, MS.  
The MS delivers uops when the 
instruction is more than 4 uops long 
or a microcode assist is occurring. 

D1H 04H UOPS_DECODED.ESP
_FOLDING

Counts number of stack pointer 
(ESP) instructions decoded: push , 
pop , call , ret, etc.  ESP instructions 
do not generate a Uop to increment 
or decrement ESP.  Instead, they 
update an ESP_Offset register that 
keeps track of the delta to the 
current value of the ESP register.

D1H 08H UOPS_DECODED.ESP
_SYNC

Counts number of stack pointer 
(ESP) sync operations where an ESP 
instruction is corrected  by adding 
the ESP offset register to the 
current value of the ESP register.

D2H 01H RAT_STALLS.FLAGS Counts the number of cycles during 
which execution stalled due to 
several reasons, one of which is a 
partial flag register stall. A partial 
register stall may occur when two 
conditions are met: 1) an instruction 
modifies some, but not all, of the 
flags in the flag register and 2) the 
next instruction, which depends on 
flags, depends on flags that were 
not modified by this instruction.

D2H 02H RAT_STALLS.REGIST
ERS

This event counts the number of 
cycles instruction execution latency 
became longer than the defined 
latency because the instruction 
used a register that was partially 
written by previous instruction.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-58 Vol. 3B



PERFORMANCE-MONITORING EVENTS
D2H 04H RAT_STALLS.ROB_RE
AD_PORT

Counts the number of cycles when 
ROB read port stalls occurred, which 
did not allow new micro-ops to 
enter the out-of-order pipeline. 
Note that, at this stage in the 
pipeline, additional stalls may occur 
at the same cycle and prevent the 
stalled micro-ops from entering the 
pipe. In such a case, micro-ops retry 
entering the execution pipe in the 
next cycle and the ROB-read port 
stall is counted again.

D2H 08H RAT_STALLS.SCOREB
OARD

Counts the cycles where we stall 
due to microarchitecturally required 
serialization. Microcode 
scoreboarding stalls.

D2H 0FH RAT_STALLS.ANY Counts all Register Allocation Table 
stall cycles due to:  Cycles when 
ROB read port stalls occurred, which 
did not allow new micro-ops to 
enter the execution pipe.  Cycles 
when partial register stalls occurred  
Cycles when flag stalls occurred  
Cycles floating-point unit (FPU) 
status word stalls occurred. To 
count each of these conditions 
separately use the events: 
RAT_STALLS.ROB_READ_PORT, 
RAT_STALLS.PARTIAL, 
RAT_STALLS.FLAGS, and 
RAT_STALLS.FPSW.

D4H 01H SEG_RENAME_STALL
S

Counts the number of stall cycles 
due to the lack of renaming 
resources for the ES, DS, FS, and GS 
segment registers. If a segment is 
renamed but not retired and a 
second update to the same 
segment occurs, a stall occurs in the 
front-end of the pipeline until the 
renamed segment retires.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-59



PERFORMANCE-MONITORING EVENTS
D5H 01H ES_REG_RENAMES Counts the number of times the ES 
segment register is renamed.

DBH 01H UOP_UNFUSION Counts unfusion events due to 
floating point exception to a fused 
uop.

E0H 01H BR_INST_DECODED Counts the number of branch 
instructions decoded. 

E5H 01H BPU_MISSED_CALL_
RET

Counts number of times the Branch 
Prediciton Unit missed predicting a 
call or return branch.

E6H 01H BACLEAR.CLEAR Counts the number of times the 
front end is resteered, mainly when 
the Branch Prediction Unit cannot 
provide a correct prediction and this 
is corrected by the Branch Address 
Calculator at the front end. This can 
occur if the code has many branches 
such that they cannot be consumed 
by the BPU. Each BACLEAR asserted 
by the BAC generates 
approximately an 8 cycle bubble in 
the instruction fetch pipeline. The 
effect on total execution time 
depends on the surrounding code.

E6H 02H BACLEAR.BAD_TARG
ET

Counts number of Branch Address 
Calculator clears (BACLEAR) 
asserted due to conditional branch 
instructions in which there was a 
target hit but the direction was 
wrong.  Each BACLEAR asserted by 
the BAC generates approximately 
an 8 cycle bubble in the instruction 
fetch pipeline.

E8H 01H BPU_CLEARS.EARLY Counts early (normal) Branch 
Prediction Unit clears: BPU 
predicted a taken branch after 
incorrectly assuming that it was not 
taken. 

The BPU clear 
leads to 2 cycle 
bubble in the 
Front End.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-60 Vol. 3B



PERFORMANCE-MONITORING EVENTS
E8H 02H BPU_CLEARS.LATE Counts late Branch Prediction Unit 
clears due to Most Recently Used 
conflicts.  The PBU clear leads to a 3 
cycle bubble in the Front End.

F0H 01H L2_TRANSACTIONS.L
OAD

Counts L2 load operations due to 
HW prefetch or demand loads.

F0H 02H L2_TRANSACTIONS.
RFO

Counts L2 RFO operations due to 
HW prefetch or demand RFOs.

F0H 04H L2_TRANSACTIONS.I
FETCH

Counts L2 instruction fetch 
operations due to HW prefetch or 
demand ifetch.

F0H 08H L2_TRANSACTIONS.
PREFETCH

Counts L2 prefetch operations.

F0H 10H L2_TRANSACTIONS.L
1D_WB

Counts L1D writeback operations to 
the L2.

F0H 20H L2_TRANSACTIONS.
FILL

Counts L2 cache line fill operations 
due to load, RFO, L1D writeback or 
prefetch.

F0H 40H L2_TRANSACTIONS.
WB

Counts L2 writeback operations to 
the L3.

F0H 80H L2_TRANSACTIONS.
ANY

Counts all L2 cache operations.

F1H 02H L2_LINES_IN.S_STAT
E

Counts the number of cache lines 
allocated in the L2 cache in the S 
(shared) state. 

F1H 04H L2_LINES_IN.E_STAT
E

Counts the number of cache lines 
allocated in the L2 cache in the E 
(exclusive) state. 

F1H 07H L2_LINES_IN.ANY Counts the number of cache lines 
allocated in the L2 cache. 

F2H 01H L2_LINES_OUT.DEMA
ND_CLEAN

Counts L2 clean cache lines evicted 
by a demand request.

F2H 02H L2_LINES_OUT.DEMA
ND_DIRTY

Counts L2 dirty (modified) cache 
lines evicted by a demand request.

F2H 04H L2_LINES_OUT.PREF
ETCH_CLEAN

Counts L2 clean cache line evicted 
by a prefetch request.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-61



PERFORMANCE-MONITORING EVENTS
F2H 08H L2_LINES_OUT.PREF
ETCH_DIRTY

Counts L2 modified cache line 
evicted by a prefetch request.

F2H 0FH L2_LINES_OUT.ANY Counts all L2 cache lines evicted for 
any reason.

F4H 10H SQ_MISC.SPLIT_LOCK Counts the number of SQ lock splits 
across a cache line.

F6H 01H SQ_FULL_STALL_CY
CLES

Counts cycles the Super Queue is 
full.  Neither of the threads on this 
core will be able to access the 
uncore.

F7H 01H FP_ASSIST.ALL Counts the number of floating point 
operations executed that required 
micro-code assist intervention. 
Assists are required in the following 
cases: SSE instructions, (Denormal 
input when the DAZ flag is off or 
Underflow result when the FTZ flag 
is off): x87 instructions, (NaN or 
denormal are loaded to a register or 
used as input from memory, Division 
by 0 or Underflow output).

F7H 02H FP_ASSIST.OUTPUT Counts number of floating point 
micro-code assist when the output 
value (destination register) is 
invalid.

F7H 04H FP_ASSIST.INPUT Counts number of floating point 
micro-code assist when the input 
value (one of the source operands 
to an FP instruction) is invalid.

FDH 01H SIMD_INT_64.PACKE
D_MPY

Counts number of SID integer 64 bit 
packed multiply operations.

FDH 02H SIMD_INT_64.PACKE
D_SHIFT

Counts number of SID integer 64 bit 
packed shift operations.

FDH 04H SIMD_INT_64.PACK Counts number of SID integer 64 bit 
pack operations.

FDH 08H SIMD_INT_64.UNPAC
K

Counts number of SID integer 64 bit 
unpack operations.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-62 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Non-architectural Performance monitoring events that are located in the uncore sub-
system are implementation specific between different platforms using processors 
based on Intel microarchitecture code name Nehalem. Processors with CPUID signa-
ture of DisplayFamily_DisplayModel 06_1AH, 06_1EH, and 06_1FH support perfor-
mance events listed in Table 19-8.

FDH 10H SIMD_INT_64.PACKE
D_LOGICAL

Counts number of SID integer 64 bit 
logical operations.

FDH 20H SIMD_INT_64.PACKE
D_ARITH

Counts number of SID integer 64 bit 
arithmetic operations.

FDH 40H SIMD_INT_64.SHUFF
LE_MOVE

Counts number of SID integer 64 bit 
shift or move operations.

Table 19-8.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

00H 01H UNC_GQ_CYCLES_FU
LL.READ_TRACKER

Uncore cycles Global Queue read 
tracker is full.

00H 02H UNC_GQ_CYCLES_FU
LL.WRITE_TRACKER

Uncore cycles Global Queue write 
tracker is full.

00H 04H UNC_GQ_CYCLES_FU
LL.PEER_PROBE_TR
ACKER

Uncore cycles Global Queue peer 
probe tracker is full. The peer probe 
tracker queue tracks snoops from the 
IOH and remote sockets.

01H 01H UNC_GQ_CYCLES_NO
T_EMPTY.READ_TRA
CKER

Uncore cycles were Global Queue read 
tracker has at least one valid entry.

01H 02H UNC_GQ_CYCLES_NO
T_EMPTY.WRITE_TR
ACKER

Uncore cycles were Global Queue 
write tracker has at least one valid 
entry.

01H 04H UNC_GQ_CYCLES_NO
T_EMPTY.PEER_PRO
BE_TRACKER

Uncore cycles were Global Queue peer 
probe tracker has at least one valid 
entry. The peer probe tracker queue 
tracks IOH and remote socket snoops.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-63



PERFORMANCE-MONITORING EVENTS
03H 01H UNC_GQ_ALLOC.REA
D_TRACKER

Counts the number of tread tracker 
allocate to deallocate entries. The GQ 
read tracker allocate to deallocate 
occupancy count is divided by the 
count to obtain the average read 
tracker latency. 

03H 02H UNC_GQ_ALLOC.RT_
L3_MISS

Counts the number GQ read tracker 
entries for which a full cache line read 
has missed the L3. The GQ read 
tracker L3 miss to fill occupancy count 
is divided by this count to obtain the 
average cache line read L3 miss 
latency. The latency represents the 
time after which the L3 has 
determined that the cache line has 
missed.  The time between a GQ read 
tracker allocation and the L3 
determining that the cache line has 
missed is the average L3 hit latency. 
The total L3 cache line read miss 
latency is the hit latency + L3 miss 
latency.

03H 04H UNC_GQ_ALLOC.RT_
TO_L3_RESP

Counts the number of GQ read tracker 
entries that are allocated in the read 
tracker queue that hit or miss the L3.  
The GQ read tracker L3 hit occupancy 
count is divided by this count to 
obtain the average L3 hit latency. 

03H 08H UNC_GQ_ALLOC.RT_
TO_RTID_ACQUIRED

Counts the number of GQ read tracker 
entries that are allocated in the read 
tracker, have missed in the L3 and 
have not acquired a Request 
Transaction ID.   The GQ  read tracker 
L3 miss to RTID acquired occupancy 
count is divided by this count to 
obtain the average latency for a read 
L3 miss to acquire an RTID.

Table 19-8.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-64 Vol. 3B



PERFORMANCE-MONITORING EVENTS
03H 10H UNC_GQ_ALLOC.WT_
TO_RTID_ACQUIRED

Counts the number of GQ write 
tracker entries that are allocated in 
the write tracker, have missed in the 
L3 and have not acquired a Request 
Transaction ID.   The GQ write tracker 
L3 miss to RTID occupancy count is 
divided by this count to obtain the 
average latency for a write L3 miss to 
acquire an RTID.

03H 20H UNC_GQ_ALLOC.WRI
TE_TRACKER

Counts the number of GQ write 
tracker entries that are allocated in 
the write tracker queue that miss the 
L3.  The GQ write tracker occupancy 
count is divided by the this count to 
obtain the average L3 write miss 
latency. 

03H 40H UNC_GQ_ALLOC.PEE
R_PROBE_TRACKER

Counts the number of GQ peer probe 
tracker (snoop) entries that are 
allocated in the peer probe tracker 
queue that miss the L3.  The GQ peer 
probe occupancy count is divided by 
this count to obtain the average L3 
peer probe miss latency. 

04H 01H UNC_GQ_DATA.FROM
_QPI

Cycles Global Queue Quickpath 
Interface input data port is busy 
importing data from the Quickpath 
Interface.  Each cycle the input port 
can transfer 8  or 16 bytes of data.

04H 02H UNC_GQ_DATA.FROM
_QMC

Cycles Global Queue Quickpath 
Memory Interface input data port is 
busy importing data from the 
Quickpath Memory Interface. Each 
cycle the input port can transfer 8  or 
16 bytes of data.

04H 04H UNC_GQ_DATA.FROM
_L3

Cycles GQ L3 input data port is busy 
importing data from the Last Level 
Cache. Each cycle the input port can 
transfer 32 bytes of data.

Table 19-8.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-65



PERFORMANCE-MONITORING EVENTS
04H 08H UNC_GQ_DATA.FROM
_CORES_02

Cycles GQ Core 0 and 2 input data 
port is busy importing data from 
processor cores 0 and 2. Each cycle 
the input port can transfer 32 bytes 
of data.

04H 10H UNC_GQ_DATA.FROM
_CORES_13

Cycles GQ Core 1 and 3 input data 
port is busy importing data from 
processor cores 1 and 3. Each cycle 
the input port can transfer 32 bytes 
of data.

05H 01H UNC_GQ_DATA.TO_Q
PI_QMC

Cycles GQ QPI and QMC output data 
port is busy sending data to the 
Quickpath Interface or Quickpath 
Memory Interface. Each cycle the 
output port can transfer 32 bytes of 
data.

05H 02H UNC_GQ_DATA.TO_L
3

Cycles GQ L3 output data port is busy 
sending data to the Last Level Cache. 
Each cycle the output port can 
transfer 32 bytes of data.

05H 04H UNC_GQ_DATA.TO_C
ORES

Cycles GQ Core output data port is 
busy sending data to the Cores. Each 
cycle the output port can transfer 32 
bytes of data.

06H 01H UNC_SNP_RESP_TO_
LOCAL_HOME.I_STAT
E

Number of snoop responses to the 
local home that L3 does not have the 
referenced cache line. 

06H 02H UNC_SNP_RESP_TO_
LOCAL_HOME.S_STA
TE

Number of snoop responses to the 
local home that L3 has the referenced 
line cached in the S state.

06H 04H UNC_SNP_RESP_TO_
LOCAL_HOME.FWD_S
_STATE

Number of responses to code or data 
read snoops to the local home that 
the L3 has the referenced cache line 
in the E state. The L3 cache line state 
is changed to the S state and the line 
is forwarded to the local home in the 
S state.

Table 19-8.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-66 Vol. 3B



PERFORMANCE-MONITORING EVENTS
06H 08H UNC_SNP_RESP_TO_
LOCAL_HOME.FWD_I
_STATE

Number of responses to read 
invalidate snoops to the local home 
that the L3 has the referenced cache 
line in the M state. The L3 cache line 
state is invalidated and the line is 
forwarded to the local home in the M 
state.

06H 10H UNC_SNP_RESP_TO_
LOCAL_HOME.CONFLI
CT

Number of conflict snoop responses 
sent to the local home.

06H 20H UNC_SNP_RESP_TO_
LOCAL_HOME.WB

Number of responses to code or data 
read snoops to the local home that 
the L3 has the referenced line cached 
in the M state. 

07H 01H UNC_SNP_RESP_TO_
REMOTE_HOME.I_ST
ATE

Number of snoop responses to a 
remote home that L3 does not have 
the referenced cache line. 

07H 02H UNC_SNP_RESP_TO_
REMOTE_HOME.S_ST
ATE

Number of snoop responses to a 
remote home that L3 has the 
referenced line cached in the S state.

07H 04H UNC_SNP_RESP_TO_
REMOTE_HOME.FWD
_S_STATE

Number of responses to code or data 
read snoops to a remote home that 
the L3 has the referenced cache line 
in the E state. The L3 cache line state 
is changed to the S state and the line 
is forwarded to the remote home in 
the S state.

07H 08H UNC_SNP_RESP_TO_
REMOTE_HOME.FWD
_I_STATE

Number of responses to read 
invalidate snoops to a remote home 
that the L3 has the referenced cache 
line in the M state. The L3 cache line 
state is invalidated and the line is 
forwarded to the remote home in the 
M state.

07H 10H UNC_SNP_RESP_TO_
REMOTE_HOME.CON
FLICT

Number of conflict snoop responses 
sent to the local home.

Table 19-8.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-67



PERFORMANCE-MONITORING EVENTS
07H 20H UNC_SNP_RESP_TO_
REMOTE_HOME.WB

Number of responses to code or data 
read snoops to a remote home that 
the L3 has the referenced line cached 
in the M state. 

07H 24H UNC_SNP_RESP_TO_
REMOTE_HOME.HITM

Number of HITM snoop responses to a 
remote home

08H 01H UNC_L3_HITS.READ Number of code read, data read and 
RFO requests that hit in the L3

08H 02H UNC_L3_HITS.WRITE Number of writeback requests that 
hit in the L3. Writebacks from the 
cores will always result in L3 hits due 
to the inclusive property of the L3.

08H 04H UNC_L3_HITS.PROBE Number of snoops from IOH or remote 
sockets that hit in the L3.

08H 03H UNC_L3_HITS.ANY Number of reads and writes that hit 
the L3. 

09H 01H UNC_L3_MISS.READ Number of code read, data read and 
RFO requests that miss the L3.

09H 02H UNC_L3_MISS.WRITE Number of writeback requests that 
miss the L3. Should always be zero as 
writebacks from the cores will always 
result in L3 hits due to the inclusive 
property of the L3.

09H 04H UNC_L3_MISS.PROBE Number of snoops from IOH or remote 
sockets that miss the L3.

09H 03H UNC_L3_MISS.ANY Number of reads and writes that miss 
the L3. 

0AH 01H UNC_L3_LINES_IN.M
_STATE

Counts the number of L3 lines 
allocated in M state.  The only time a 
cache line is allocated in the M state is 
when the line was forwarded in M 
state is forwarded due to a Snoop 
Read Invalidate Own request.

0AH 02H UNC_L3_LINES_IN.E_
STATE

Counts the number of L3 lines 
allocated in E state.

0AH 04H UNC_L3_LINES_IN.S_
STATE

Counts the number of L3 lines 
allocated in S state.

Table 19-8.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-68 Vol. 3B



PERFORMANCE-MONITORING EVENTS
0AH 08H UNC_L3_LINES_IN.F_
STATE

Counts the number of L3 lines 
allocated in F state.

0AH 0FH UNC_L3_LINES_IN.A
NY

Counts the number of L3 lines 
allocated in any state. 

0BH 01H UNC_L3_LINES_OUT.
M_STATE

Counts the number of L3 lines 
victimized that were in the M state. 
When the victim cache line is in M 
state, the line is written to its home 
cache agent which can be either local 
or remote.

0BH 02H UNC_L3_LINES_OUT.
E_STATE

Counts the number of L3 lines 
victimized that were in the E state.

0BH 04H UNC_L3_LINES_OUT.
S_STATE

Counts the number of L3 lines 
victimized that were in the S state.

0BH 08H UNC_L3_LINES_OUT.
I_STATE

Counts the number of L3 lines 
victimized that were in the I state.

0BH 10H UNC_L3_LINES_OUT.
F_STATE

Counts the number of L3 lines 
victimized that were in the F state.

0BH 1FH UNC_L3_LINES_OUT.
ANY

Counts the number of L3 lines 
victimized in any state.

20H 01H UNC_QHL_REQUEST
S.IOH_READS

Counts number of Quickpath Home 
Logic read requests from the IOH.

20H 02H UNC_QHL_REQUEST
S.IOH_WRITES

Counts number of Quickpath Home 
Logic write requests from the IOH.

20H 04H UNC_QHL_REQUEST
S.REMOTE_READS

Counts number of Quickpath Home 
Logic read requests from  a remote 
socket.

20H 08H UNC_QHL_REQUEST
S.REMOTE_WRITES

Counts number of Quickpath Home 
Logic write requests from a remote 
socket.

20H 10H UNC_QHL_REQUEST
S.LOCAL_READS

Counts number of Quickpath Home 
Logic read requests from  the local 
socket.

20H 20H UNC_QHL_REQUEST
S.LOCAL_WRITES

Counts number of Quickpath Home 
Logic write requests from  the local 
socket.

Table 19-8.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-69



PERFORMANCE-MONITORING EVENTS
21H 01H UNC_QHL_CYCLES_F
ULL.IOH

Counts uclk cycles all entries in the 
Quickpath Home Logic IOH are full.

21H 02H UNC_QHL_CYCLES_F
ULL.REMOTE

Counts uclk cycles all entries in the 
Quickpath Home Logic remote tracker 
are full.

21H 04H UNC_QHL_CYCLES_F
ULL.LOCAL

Counts uclk cycles all entries in the 
Quickpath Home Logic local tracker 
are full.

22H 01H UNC_QHL_CYCLES_N
OT_EMPTY.IOH

Counts uclk cycles all entries in the 
Quickpath Home Logic IOH is busy.

22H 02H UNC_QHL_CYCLES_N
OT_EMPTY.REMOTE

Counts uclk cycles all entries in the 
Quickpath Home Logic remote tracker 
is busy.

22H 04H UNC_QHL_CYCLES_N
OT_EMPTY.LOCAL

Counts uclk cycles all entries in the 
Quickpath Home Logic local tracker is 
busy.

23H 01H UNC_QHL_OCCUPAN
CY.IOH

QHL IOH tracker allocate to deallocate 
read occupancy.

23H 02H UNC_QHL_OCCUPAN
CY.REMOTE

QHL remote tracker allocate to 
deallocate read occupancy.

23H 04H UNC_QHL_OCCUPAN
CY.LOCAL

QHL local tracker allocate to 
deallocate read occupancy.

24H 02H UNC_QHL_ADDRESS
_CONFLICTS.2WAY

Counts number of QHL Active Address 
Table (AAT) entries that saw a max of 
2 conflicts. The AAT is a structure that 
tracks requests that are in conflict. 
The requests themselves are in the 
home tracker entries. The count is 
reported when an AAT entry 
deallocates.

24H 04H UNC_QHL_ADDRESS
_CONFLICTS.3WAY

Counts number of QHL Active Address 
Table (AAT) entries that saw a max of 
3 conflicts. The AAT is a structure that 
tracks requests that are in conflict. 
The requests themselves are in the 
home tracker entries. The count is 
reported when an AAT entry 
deallocates.

Table 19-8.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-70 Vol. 3B



PERFORMANCE-MONITORING EVENTS
25H 01H UNC_QHL_CONFLICT
_CYCLES.IOH

Counts cycles the Quickpath Home 
Logic IOH Tracker contains two or 
more requests with an address 
conflict. A max of 3 requests can be in 
conflict.

25H 02H UNC_QHL_CONFLICT
_CYCLES.REMOTE

Counts cycles the Quickpath Home 
Logic Remote Tracker contains two or 
more requests with an address 
conflict. A max of 3 requests can be in 
conflict.

25H 04H UNC_QHL_CONFLICT
_CYCLES.LOCAL

Counts cycles the Quickpath Home 
Logic Local Tracker contains two or 
more requests with an address 
conflict.  A max of 3 requests can be 
in conflict.

26H 01H UNC_QHL_TO_QMC_
BYPASS

Counts number or requests to the 
Quickpath Memory Controller that 
bypass the Quickpath Home Logic. All 
local accesses can be bypassed. For 
remote requests, only read requests 
can be bypassed.

27H 01H UNC_QMC_NORMAL_
FULL.READ.CH0

Uncore cycles all the entries in the 
DRAM channel 0 medium or low 
priority queue are occupied with read 
requests.

27H 02H UNC_QMC_NORMAL_
FULL.READ.CH1

Uncore cycles all the entries in the 
DRAM channel 1 medium or low 
priority queue are occupied with read 
requests.

27H 04H UNC_QMC_NORMAL_
FULL.READ.CH2

Uncore cycles all the entries in the 
DRAM channel 2 medium or low 
priority queue are occupied with read 
requests.

27H 08H UNC_QMC_NORMAL_
FULL.WRITE.CH0

Uncore cycles all the entries in the 
DRAM channel 0 medium or low 
priority queue are occupied with write 
requests.

Table 19-8.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-71



PERFORMANCE-MONITORING EVENTS
27H 10H UNC_QMC_NORMAL_
FULL.WRITE.CH1

Counts cycles all the entries in the 
DRAM channel 1 medium or low 
priority queue are occupied with write 
requests.

27H 20H UNC_QMC_NORMAL_
FULL.WRITE.CH2

Uncore cycles all the entries in the 
DRAM channel 2 medium or low 
priority queue are occupied with write 
requests.

28H 01H UNC_QMC_ISOC_FUL
L.READ.CH0

Counts cycles all the entries in the 
DRAM channel 0 high priority queue 
are occupied with isochronous read 
requests.

28H 02H UNC_QMC_ISOC_FUL
L.READ.CH1

Counts cycles all the entries in the 
DRAM channel 1high priority queue 
are occupied with isochronous read 
requests.

28H 04H UNC_QMC_ISOC_FUL
L.READ.CH2

Counts cycles all the entries in the 
DRAM channel 2 high priority queue 
are occupied with isochronous read 
requests.

28H 08H UNC_QMC_ISOC_FUL
L.WRITE.CH0

Counts cycles all the entries in the 
DRAM channel 0 high priority queue 
are occupied with isochronous write 
requests.

28H 10H UNC_QMC_ISOC_FUL
L.WRITE.CH1

Counts cycles all the entries in the 
DRAM channel 1 high priority queue 
are occupied with isochronous write 
requests.

28H 20H UNC_QMC_ISOC_FUL
L.WRITE.CH2

Counts cycles all the entries in the 
DRAM channel 2 high priority queue 
are occupied with isochronous write 
requests.

29H 01H UNC_QMC_BUSY.REA
D.CH0

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding read request to  DRAM 
channel 0.

Table 19-8.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-72 Vol. 3B



PERFORMANCE-MONITORING EVENTS
29H 02H UNC_QMC_BUSY.REA
D.CH1

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding read request to  DRAM 
channel 1.

29H 04H UNC_QMC_BUSY.REA
D.CH2

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding read request to  DRAM 
channel 2.

29H 08H UNC_QMC_BUSY.WRI
TE.CH0

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding write request to  DRAM 
channel 0.

29H 10H UNC_QMC_BUSY.WRI
TE.CH1

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding write request to  DRAM 
channel 1.

29H 20H UNC_QMC_BUSY.WRI
TE.CH2

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding write request to  DRAM 
channel 2.

2AH 01H UNC_QMC_OCCUPAN
CY.CH0

IMC channel 0 normal read request 
occupancy.

2AH 02H UNC_QMC_OCCUPAN
CY.CH1

IMC channel 1 normal read request 
occupancy.

2AH 04H UNC_QMC_OCCUPAN
CY.CH2

IMC channel 2 normal read request 
occupancy.

2BH 01H UNC_QMC_ISSOC_OC
CUPANCY.CH0

IMC channel 0 issoc read request 
occupancy.

2BH 02H UNC_QMC_ISSOC_OC
CUPANCY.CH1

IMC channel 1 issoc read request 
occupancy.

2BH 04H UNC_QMC_ISSOC_OC
CUPANCY.CH2

IMC channel 2 issoc read request 
occupancy.

2BH 07H UNC_QMC_ISSOC_RE
ADS.ANY

IMC issoc read request occupancy.

Table 19-8.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-73



PERFORMANCE-MONITORING EVENTS
2CH 01H UNC_QMC_NORMAL_
READS.CH0

Counts the number of Quickpath 
Memory Controller channel 0 medium 
and low priority read requests. The 
QMC channel 0 normal read 
occupancy divided by this count 
provides the average QMC channel 0 
read latency. 

2CH 02H UNC_QMC_NORMAL_
READS.CH1

Counts the number of Quickpath 
Memory Controller channel 1 medium 
and low priority read requests. The 
QMC channel 1 normal read 
occupancy divided by this count 
provides the average QMC channel 1 
read latency. 

2CH 04H UNC_QMC_NORMAL_
READS.CH2

Counts the number of Quickpath 
Memory Controller channel 2 medium 
and low priority read requests. The 
QMC channel 2 normal read 
occupancy divided by this count 
provides the average QMC channel 2 
read latency. 

2CH 07H UNC_QMC_NORMAL_
READS.ANY

Counts the number of Quickpath 
Memory Controller medium and low 
priority read requests. The QMC 
normal read occupancy divided by this 
count provides the average QMC read 
latency. 

2DH 01H UNC_QMC_HIGH_PRI
ORITY_READS.CH0

Counts the number of Quickpath 
Memory Controller channel 0 high 
priority isochronous read requests. 

2DH 02H UNC_QMC_HIGH_PRI
ORITY_READS.CH1

Counts the number of Quickpath 
Memory Controller channel 1 high 
priority isochronous read requests. 

2DH 04H UNC_QMC_HIGH_PRI
ORITY_READS.CH2

Counts the number of Quickpath 
Memory Controller channel 2 high 
priority isochronous read requests. 

2DH 07H UNC_QMC_HIGH_PRI
ORITY_READS.ANY

Counts the number of Quickpath 
Memory Controller high priority 
isochronous read requests. 

Table 19-8.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-74 Vol. 3B



PERFORMANCE-MONITORING EVENTS
2EH 01H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
0

Counts the number of Quickpath 
Memory Controller channel 0 critical 
priority isochronous read requests. 

2EH 02H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
1

Counts the number of Quickpath 
Memory Controller channel 1 critical 
priority isochronous read requests. 

2EH 04H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
2

Counts the number of Quickpath 
Memory Controller channel 2 critical 
priority isochronous read requests. 

2EH 07H UNC_QMC_CRITICAL_
PRIORITY_READS.AN
Y

Counts the number of Quickpath 
Memory Controller critical priority 
isochronous read requests. 

2FH 01H UNC_QMC_WRITES.F
ULL.CH0

Counts number of full cache line 
writes to DRAM channel 0.

2FH 02H UNC_QMC_WRITES.F
ULL.CH1

Counts number of full cache line 
writes to DRAM channel 1.

2FH 04H UNC_QMC_WRITES.F
ULL.CH2

Counts number of full cache line 
writes to DRAM channel 2.

2FH 07H UNC_QMC_WRITES.F
ULL.ANY

Counts number of full cache line 
writes to DRAM.

2FH 08H UNC_QMC_WRITES.P
ARTIAL.CH0

Counts number of partial cache line 
writes to DRAM channel 0.

2FH 10H UNC_QMC_WRITES.P
ARTIAL.CH1

Counts number of partial cache line 
writes to DRAM channel 1.

2FH 20H UNC_QMC_WRITES.P
ARTIAL.CH2

Counts number of partial cache line 
writes to DRAM channel 2.

2FH 38H UNC_QMC_WRITES.P
ARTIAL.ANY

Counts number of partial cache line 
writes to DRAM.

30H 01H UNC_QMC_CANCEL.C
H0

Counts number of DRAM channel 0 
cancel requests.

30H 02H UNC_QMC_CANCEL.C
H1

Counts number of DRAM channel 1 
cancel requests.

30H 04H UNC_QMC_CANCEL.C
H2

Counts number of DRAM channel 2 
cancel requests.

30H 07H UNC_QMC_CANCEL.A
NY

Counts number of DRAM cancel 
requests.

Table 19-8.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-75



PERFORMANCE-MONITORING EVENTS
31H 01H UNC_QMC_PRIORITY
_UPDATES.CH0

Counts number of DRAM channel 0 
priority updates. A priority update 
occurs when an ISOC high or critical 
request is received by the QHL and 
there is a matching request with 
normal priority that has already been 
issued to the QMC.  In this instance, 
the QHL will send a priority update to 
QMC to expedite the request.

31H 02H UNC_QMC_PRIORITY
_UPDATES.CH1

Counts number of DRAM channel 1 
priority updates. A priority update 
occurs when an ISOC high or critical 
request is received by the QHL and 
there is a matching request with 
normal priority that has already been 
issued to the QMC.  In this instance, 
the QHL will send a priority update to 
QMC to expedite the request.

31H 04H UNC_QMC_PRIORITY
_UPDATES.CH2

Counts number of DRAM channel 2 
priority updates. A priority update 
occurs when an ISOC high or critical 
request is received by the QHL and 
there is a matching request with 
normal priority that has already been 
issued to the QMC.  In this instance, 
the QHL will send a priority update to 
QMC to expedite the request.

31H 07H UNC_QMC_PRIORITY
_UPDATES.ANY

Counts number of DRAM priority 
updates. A priority update occurs 
when an ISOC high or critical request 
is received by the QHL and there is a 
matching request with normal priority 
that has already been issued to the 
QMC.  In this instance, the QHL will 
send a priority update to QMC to 
expedite the request.

33H 04H UNC_QHL_FRC_ACK_
CNFLTS.LOCAL

Counts number of Force Acknowledge 
Conflict messages sent by the 
Quickpath Home Logic to the local 
home.

Table 19-8.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-76 Vol. 3B



PERFORMANCE-MONITORING EVENTS
40H 01H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.HO
ME.LINK_0

Counts cycles the Quickpath outbound 
link 0 HOME virtual channel is stalled 
due to lack of a VNA and VN0 credit. 
Note that this event does not filter 
out when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

40H 02H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.SNO
OP.LINK_0

Counts cycles the Quickpath outbound 
link 0 SNOOP virtual channel is stalled 
due to lack of a VNA and VN0 credit. 
Note that this event does not filter 
out when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

40H 04H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.NDR
.LINK_0

Counts cycles the Quickpath outbound 
link 0 non-data response virtual 
channel is stalled due to lack of a VNA 
and VN0 credit. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

40H 08H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.HO
ME.LINK_1

Counts cycles the Quickpath outbound 
link 1 HOME virtual channel is stalled 
due to lack of a VNA and VN0 credit. 
Note that this event does not filter 
out when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

40H 10H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.SNO
OP.LINK_1

Counts cycles the Quickpath outbound 
link 1 SNOOP virtual channel is stalled 
due to lack of a VNA and VN0 credit. 
Note that this event does not filter 
out when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

Table 19-8.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-77



PERFORMANCE-MONITORING EVENTS
40H 20H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.NDR
.LINK_1

Counts cycles the Quickpath outbound 
link 1 non-data response virtual 
channel is stalled due to lack of a VNA 
and VN0 credit. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

40H 07H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.LIN
K_0

Counts cycles the Quickpath outbound 
link 0 virtual channels are stalled due 
to lack of a VNA and VN0 credit. Note 
that this event does not filter out 
when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

40H 38H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.LIN
K_1

Counts cycles the Quickpath outbound 
link 1 virtual channels are stalled due 
to lack of a VNA and VN0 credit. Note 
that this event does not filter out 
when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

41H 01H UNC_QPI_TX_STALL
ED_MULTI_FLIT.DRS.
LINK_0

Counts cycles the Quickpath outbound 
link 0 Data ResponSe virtual channel 
is stalled due to lack of VNA and VN0 
credits. Note that this event does not 
filter out when a flit would not have 
been selected for arbitration because 
another virtual channel is getting 
arbitrated.

41H 02H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCB.
LINK_0

Counts cycles the Quickpath outbound 
link 0 Non-Coherent Bypass virtual 
channel is stalled due to lack of VNA 
and VN0 credits. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

Table 19-8.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-78 Vol. 3B



PERFORMANCE-MONITORING EVENTS
41H 04H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCS.
LINK_0

Counts cycles the Quickpath outbound 
link 0 Non-Coherent Standard virtual 
channel is stalled due to lack of VNA 
and VN0 credits. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

41H 08H UNC_QPI_TX_STALL
ED_MULTI_FLIT.DRS.
LINK_1

Counts cycles the Quickpath outbound 
link 1 Data ResponSe virtual channel 
is stalled due to lack of VNA and VN0 
credits. Note that this event does not 
filter out when a flit would not have 
been selected for arbitration because 
another virtual channel is getting 
arbitrated.

41H 10H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCB.
LINK_1

Counts cycles the Quickpath outbound 
link 1 Non-Coherent Bypass virtual 
channel is stalled due to lack of VNA 
and VN0 credits. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

41H 20H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCS.
LINK_1

Counts cycles the Quickpath outbound 
link 1 Non-Coherent Standard virtual 
channel is stalled due to lack of VNA 
and VN0 credits. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

41H 07H UNC_QPI_TX_STALL
ED_MULTI_FLIT.LINK
_0

Counts cycles the Quickpath outbound 
link 0 virtual channels are stalled due 
to lack of VNA and VN0 credits. Note 
that this event does not filter out 
when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

Table 19-8.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-79



PERFORMANCE-MONITORING EVENTS
41H 38H UNC_QPI_TX_STALL
ED_MULTI_FLIT.LINK
_1

Counts cycles the Quickpath outbound 
link 1 virtual channels are stalled due 
to lack of VNA and VN0 credits. Note 
that this event does not filter out 
when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

42H 02H UNC_QPI_TX_HEADE
R.BUSY.LINK_0

Number of cycles that the header 
buffer in the Quickpath Interface 
outbound link 0 is busy.

42H 08H UNC_QPI_TX_HEADE
R.BUSY.LINK_1

Number of cycles that the header 
buffer in the Quickpath Interface 
outbound link 1 is busy.

43H 01H UNC_QPI_RX_NO_PP
T_CREDIT.STALLS.LIN
K_0

Number of cycles that snoop packets 
incoming to the Quickpath Interface 
link 0 are stalled and not sent to the 
GQ because the GQ Peer Probe 
Tracker (PPT) does not have any 
available entries.

43H 02H UNC_QPI_RX_NO_PP
T_CREDIT.STALLS.LIN
K_1

Number of cycles that snoop packets 
incoming to the Quickpath Interface 
link 1 are stalled and not sent to the 
GQ because the GQ Peer Probe 
Tracker (PPT) does not have any 
available entries.

60H 01H UNC_DRAM_OPEN.C
H0

Counts number of DRAM Channel 0 
open commands issued either for read 
or write. To read or write data, the 
referenced DRAM page must first be 
opened.

60H 02H UNC_DRAM_OPEN.C
H1

Counts number of DRAM Channel 1 
open commands issued either for read 
or write. To read or write data, the 
referenced DRAM page must first be 
opened.

Table 19-8.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-80 Vol. 3B



PERFORMANCE-MONITORING EVENTS
60H 04H UNC_DRAM_OPEN.C
H2

Counts number of DRAM Channel 2 
open commands issued either for read 
or write. To read or write data, the 
referenced DRAM page must first be 
opened.

61H 01H UNC_DRAM_PAGE_C
LOSE.CH0

DRAM channel 0 command issued to 
CLOSE a page due to page idle timer 
expiration. Closing a page is done by 
issuing a precharge.

61H 02H UNC_DRAM_PAGE_C
LOSE.CH1

DRAM channel 1 command issued to 
CLOSE a page due to page idle timer 
expiration. Closing a page is done by 
issuing a precharge.

61H 04H UNC_DRAM_PAGE_C
LOSE.CH2

DRAM channel 2 command issued to 
CLOSE a page due to page idle timer 
expiration. Closing a page is done by 
issuing a precharge.

62H 01H UNC_DRAM_PAGE_M
ISS.CH0

Counts the number of precharges 
(PRE) that were issued to DRAM 
channel 0 because there was a page 
miss. A page miss refers to a situation 
in which a page is currently open and 
another page from the same bank 
needs to be opened. The new page 
experiences a page miss. Closing of 
the old page is done by issuing a 
precharge.

62H 02H UNC_DRAM_PAGE_M
ISS.CH1

Counts the number of precharges 
(PRE) that were issued to DRAM 
channel 1 because there was a page 
miss. A page miss refers to a situation 
in which a page is currently open and 
another page from the same bank 
needs to be opened. The new page 
experiences a page miss. Closing of 
the old page is done by issuing a 
precharge.

Table 19-8.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-81



PERFORMANCE-MONITORING EVENTS
62H 04H UNC_DRAM_PAGE_M
ISS.CH2

Counts the number of precharges 
(PRE) that were issued to DRAM 
channel 2 because there was a page 
miss. A page miss refers to a situation 
in which a page is currently open and 
another page from the same bank 
needs to be opened. The new page 
experiences a page miss. Closing of 
the old page is done by issuing a 
precharge.

63H 01H UNC_DRAM_READ_C
AS.CH0

Counts the number of times a read 
CAS command was issued on DRAM 
channel 0.

63H 02H UNC_DRAM_READ_C
AS.AUTOPRE_CH0

Counts the number of times a read 
CAS command was issued on DRAM 
channel 0 where the command issued 
used the auto-precharge (auto page 
close) mode.

63H 04H UNC_DRAM_READ_C
AS.CH1

Counts the number of times a read 
CAS command was issued on DRAM 
channel 1.

63H 08H UNC_DRAM_READ_C
AS.AUTOPRE_CH1

Counts the number of times a read 
CAS command was issued on DRAM 
channel 1 where the command issued 
used the auto-precharge (auto page 
close) mode.

63H 10H UNC_DRAM_READ_C
AS.CH2

Counts the number of times a read 
CAS command was issued on DRAM 
channel 2.

63H 20H UNC_DRAM_READ_C
AS.AUTOPRE_CH2

Counts the number of times a read 
CAS command was issued on DRAM 
channel 2 where the command issued 
used the auto-precharge (auto page 
close) mode.

64H 01H UNC_DRAM_WRITE_
CAS.CH0

Counts the number of times a write 
CAS command was issued on DRAM 
channel 0.

Table 19-8.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-82 Vol. 3B



PERFORMANCE-MONITORING EVENTS
64H 02H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH0

Counts the number of times a write 
CAS command was issued on DRAM 
channel 0 where the command issued 
used the auto-precharge (auto page 
close) mode.

64H 04H UNC_DRAM_WRITE_
CAS.CH1

Counts the number of times a write 
CAS command was issued on DRAM 
channel 1.

64H 08H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH1

Counts the number of times a write 
CAS command was issued on DRAM 
channel 1 where the command issued 
used the auto-precharge (auto page 
close) mode.

64H 10H UNC_DRAM_WRITE_
CAS.CH2

Counts the number of times a write 
CAS command was issued on DRAM 
channel 2.

64H 20H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH2

Counts the number of times a write 
CAS command was issued on DRAM 
channel 2 where the command issued 
used the auto-precharge (auto page 
close) mode.

65H 01H UNC_DRAM_REFRES
H.CH0

Counts number of DRAM channel 0 
refresh commands. DRAM loses data 
content over time. In order to keep 
correct data content, the data values 
have to be refreshed periodically.

65H 02H UNC_DRAM_REFRES
H.CH1

Counts number of DRAM channel 1 
refresh commands. DRAM loses data 
content over time. In order to keep 
correct data content, the data values 
have to be refreshed periodically.

65H 04H UNC_DRAM_REFRES
H.CH2

Counts number of DRAM channel 2 
refresh commands. DRAM loses data 
content over time. In order to keep 
correct data content, the data values 
have to be refreshed periodically.

Table 19-8.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-83



PERFORMANCE-MONITORING EVENTS
Intel Xeon processors with CPUID signature of DisplayFamily_DisplayModel 06_2EH 
have a distinct uncore sub-system that is significantly different from the uncore 
found in processors with CPUID signature 06_1AH, 06_1EH, and 06_1FH. Non-archi-
tectural Performance monitoring events for its uncore will be available in future docu-
mentation.

19.5 PERFORMANCE MONITORING EVENTS FOR 
PROCESSORS BASED ON 
INTEL® MICROARCHITECTURE CODE NAME 
WESTMERE

Intel 64 processors based on Intel® microarchitecture code name Westmere support 
the architectural and non-architectural performance-monitoring events listed in 
Table 19-1 and Table 19-9. Table 19-9 applies to processors with CPUID signature of 
DisplayFamily_DisplayModel encoding with the following values: 06_25H, 06_2CH. 
In addition, these processors (CPUID signature of DisplayFamily_DisplayModel 
06_25H, 06_2CH) also support the following non-architectural, product-specific 
uncore performance-monitoring events listed in Table 19-10. Fixed counters support 
the architecture events defined in Table 19-12.

66H 01H UNC_DRAM_PRE_AL
L.CH0

Counts number of DRAM Channel 0 
precharge-all (PREALL) commands 
that close all open pages in a rank. 
PREALL is issued when the DRAM 
needs to be refreshed or needs to go 
into a power down mode.

66H 02H UNC_DRAM_PRE_AL
L.CH1

Counts number of DRAM Channel 1 
precharge-all (PREALL) commands 
that close all open pages in a rank. 
PREALL is issued when the DRAM 
needs to be refreshed or needs to go 
into a power down mode.

66H 04H UNC_DRAM_PRE_AL
L.CH2

Counts number of DRAM Channel 2 
precharge-all (PREALL) commands 
that close all open pages in a rank. 
PREALL is issued when the DRAM 
needs to be refreshed or needs to go 
into a power down mode.

Table 19-8.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-84 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

03H 02H LOAD_BLOCK.OVERL
AP_STORE

Loads that partially overlap an 
earlier store.

04H 07H SB_DRAIN.ANY All Store buffer stall cycles.

05H 02H MISALIGN_MEMORY.S
TORE

All store referenced with misaligned 
address.

06H 04H STORE_BLOCKS.AT_
RET

Counts number of loads delayed 
with at-Retirement block code. The 
following loads need to be executed 
at retirement and wait for all senior 
stores on the same thread to be 
drained: load splitting across 4K 
boundary (page split), load accessing 
uncacheable (UC or USWC) memory, 
load lock, and load with page table in 
UC or USWC memory region.

06H 08H STORE_BLOCKS.L1D
_BLOCK

Cacheable  loads delayed with L1D 
block code.

07H 01H PARTIAL_ADDRESS_
ALIAS

Counts false dependency due to 
partial address aliasing.

08H 01H DTLB_LOAD_MISSES.
ANY

Counts all load misses that cause a 
page walk.

08H 02H DTLB_LOAD_MISSES.
WALK_COMPLETED

Counts number of completed page 
walks due to load miss in the STLB.

08H 04H DTLB_LOAD_MISSES.
WALK_CYCLES

Cycles PMH is busy with a page walk 
due to a load miss in the STLB. 

08H 10H DTLB_LOAD_MISSES.
STLB_HIT

Number of cache load STLB hits.

08H 20H DTLB_LOAD_MISSES.
PDE_MISS

Number of DTLB cache load misses 
where the low part of the linear to 
physical address translation was 
missed.

0BH 01H MEM_INST_RETIRED.
LOADS

Counts the number of instructions 
with an architecturally-visible load 
retired on the architected path.

0BH 02H MEM_INST_RETIRED.
STORES

Counts the number of instructions 
with an architecturally-visible store 
retired on the architected path.
Vol. 3B 19-85



PERFORMANCE-MONITORING EVENTS
0BH 10H MEM_INST_RETIRED.
LATENCY_ABOVE_T
HRESHOLD

Counts the number of instructions 
exceeding the latency specified with 
ld_lat facility.

In conjunction 
with ld_lat 
facility

0CH 01H MEM_STORE_RETIRE
D.DTLB_MISS

The event counts the number of 
retired stores that missed the DTLB. 
The DTLB miss is not counted if the 
store operation causes a fault. Does 
not counter prefetches. Counts both 
primary and secondary misses to 
the TLB.

0EH 01H UOPS_ISSUED.ANY Counts the number of Uops issued 
by the Register Allocation Table to 
the Reservation Station, i.e. the 
UOPs issued from the front end to 
the back end. 

0EH 01H UOPS_ISSUED.STALL
ED_CYCLES

Counts the number of cycles no 
Uops issued by the Register 
Allocation Table to the Reservation 
Station, i.e. the UOPs issued from 
the front end to the back end. 

set “invert=1, 
cmask = 1“

0EH 02H UOPS_ISSUED.FUSED Counts the number of fused Uops 
that were issued from the Register 
Allocation Table to the Reservation 
Station.

0FH 01H MEM_UNCORE_RETI
RED.UNKNOWN_SOU
RCE

Load instructions retired with 
unknown LLC miss (Precise Event).

Applicable to one 
and two sockets

0FH 02H MEM_UNCORE_RETI
RED.OHTER_CORE_L
2_HIT

Load instructions retired that HIT 
modified data in sibling core (Precise 
Event).

Applicable to one 
and two sockets

0FH 04H MEM_UNCORE_RETI
RED.REMOTE_HITM

Load instructions retired that HIT 
modified data in remote socket 
(Precise Event).

Applicable to two 
sockets only

0FH 08H MEM_UNCORE_RETI
RED.LOCAL_DRAM_A
ND_REMOTE_CACHE
_HIT

Load instructions retired local dram 
and remote cache HIT data sources 
(Precise Event).

Applicable to one 
and two sockets

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-86 Vol. 3B



PERFORMANCE-MONITORING EVENTS
0FH 10H MEM_UNCORE_RETI
RED.REMOTE_DRAM

Load instructions retired remote 
DRAM and remote home-remote 
cache HITM (Precise Event).

Applicable to two 
sockets only

0FH 20H MEM_UNCORE_RETI
RED.OTHER_LLC_MIS
S

Load instructions retired other LLC 
miss (Precise Event).

Applicable to two 
sockets only

0FH 80H MEM_UNCORE_RETI
RED.UNCACHEABLE

Load instructions retired I/O (Precise 
Event).

Applicable to one 
and two sockets

10H 01H FP_COMP_OPS_EXE.
X87

Counts the number of FP 
Computational Uops Executed. The 
number of FADD, FSUB, FCOM, 
FMULs, integer MULsand IMULs, 
FDIVs, FPREMs, FSQRTS, integer 
DIVs, and IDIVs. This event does not 
distinguish an FADD used in the 
middle of a transcendental flow 
from a separate FADD instruction.

10H 02H FP_COMP_OPS_EXE.
MMX

Counts number of MMX Uops 
executed.

10H 04H FP_COMP_OPS_EXE.
SSE_FP

Counts number of SSE and SSE2 FP 
uops executed.

10H 08H FP_COMP_OPS_EXE.
SSE2_INTEGER

Counts number of SSE2 integer uops 
executed.

10H 10H FP_COMP_OPS_EXE.
SSE_FP_PACKED

Counts number of SSE FP packed 
uops executed.

10H 20H FP_COMP_OPS_EXE.
SSE_FP_SCALAR

Counts number of SSE FP scalar 
uops executed.

10H 40H FP_COMP_OPS_EXE.
SSE_SINGLE_PRECISI
ON

Counts number of SSE* FP single 
precision uops executed.

10H 80H FP_COMP_OPS_EXE.
SSE_DOUBLE_PRECI
SION

Counts number of SSE* FP double 
precision uops executed.

12H 01H SIMD_INT_128.PACK
ED_MPY

Counts number of 128 bit SIMD 
integer multiply operations.

12H 02H SIMD_INT_128.PACK
ED_SHIFT

Counts number of 128 bit SIMD 
integer shift operations.

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-87



PERFORMANCE-MONITORING EVENTS
12H 04H SIMD_INT_128.PACK Counts number of 128 bit SIMD 
integer pack operations.

12H 08H SIMD_INT_128.UNPA
CK

Counts number of 128 bit SIMD 
integer unpack operations.

12H 10H SIMD_INT_128.PACK
ED_LOGICAL

Counts number of 128 bit SIMD 
integer logical  operations.

12H 20H SIMD_INT_128.PACK
ED_ARITH

Counts number of 128 bit SIMD 
integer arithmetic operations.

12H 40H SIMD_INT_128.SHUF
FLE_MOVE

Counts number of 128 bit SIMD 
integer shuffle and move 
operations.

13H 01H LOAD_DISPATCH.RS Counts number of loads dispatched 
from the Reservation Station that 
bypass the Memory Order Buffer.

13H 02H LOAD_DISPATCH.RS_
DELAYED

Counts the number of delayed RS 
dispatches at the stage latch. If an 
RS dispatch can not bypass to LB, it 
has another chance to dispatch from 
the one-cycle delayed staging latch 
before it is written into the LB.

13H 04H LOAD_DISPATCH.MO
B

Counts the number of loads 
dispatched from the Reservation 
Station to the Memory Order Buffer.

13H 07H LOAD_DISPATCH.ANY Counts all loads dispatched from the 
Reservation Station.

14H 01H ARITH.CYCLES_DIV_
BUSY

Counts the number of cycles the 
divider is busy executing divide or 
square root operations. The divide 
can be integer, X87 or Streaming 
SIMD Extensions (SSE). The square 
root operation can be either X87 or 
SSE. 

Set 'edge =1, invert=1, cmask=1' to 
count the number of divides.

Count may be 
incorrect When 
SMT is on

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-88 Vol. 3B



PERFORMANCE-MONITORING EVENTS
14H 02H ARITH.MUL Counts the number of multiply 
operations executed. This includes 
integer as well as floating point 
multiply operations but excludes 
DPPS mul and MPSAD.

Count may be 
incorrect When 
SMT is on

17H 01H INST_QUEUE_WRITE
S

Counts the number of instructions 
written into the instruction queue 
every cycle. 

18H 01H INST_DECODED.DEC0 Counts number of instructions that 
require  decoder 0 to be decoded.  
Usually, this means that the 
instruction maps to more than 1 
uop.

19H 01H TWO_UOP_INSTS_D
ECODED

An instruction that generates two 
uops was decoded.

1EH 01H INST_QUEUE_WRITE
_CYCLES

This event counts the number of 
cycles during which instructions are 
written to the instruction queue.  
Dividing this counter by the number 
of instructions written to the 
instruction queue 
(INST_QUEUE_WRITES) yields the 
average number of instructions 
decoded each cycle. If this number is  
less than four and the pipe stalls, 
this indicates that the decoder is 
failing to decode enough 
instructions per cycle to sustain the 
4-wide pipeline. 

If SSE* 
instructions that 
are 6 bytes or 
longer arrive one 
after another, 
then front end 
throughput may 
limit execution 
speed. 

20H 01H LSD_OVERFLOW Number of loops that can not stream 
from the instruction queue.

24H 01H L2_RQSTS.LD_HIT Counts number of loads that hit the 
L2 cache. L2 loads include both L1D 
demand misses as well as L1D 
prefetches.  L2 loads can be rejected 
for various reasons.  Only non 
rejected loads are counted.

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-89



PERFORMANCE-MONITORING EVENTS
24H 02H L2_RQSTS.LD_MISS Counts the number of loads that 
miss the L2 cache. L2 loads include 
both L1D demand misses as well as 
L1D prefetches. 

24H 03H L2_RQSTS.LOADS Counts all L2 load requests. L2 loads 
include both L1D demand misses as 
well as L1D prefetches. 

24H 04H L2_RQSTS.RFO_HIT Counts the number of store RFO 
requests that hit the L2 cache. L2 
RFO requests include both L1D 
demand RFO misses as well as L1D 
RFO prefetches. Count includes WC 
memory requests, where the data is 
not fetched but the permission to 
write the line is required.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO 
requests that miss the L2 cache. L2 
RFO requests include both L1D 
demand RFO misses as well as L1D 
RFO prefetches.

24H 0CH L2_RQSTS.RFOS Counts all L2 store RFO requests. L2 
RFO requests include both L1D 
demand RFO misses as well as L1D 
RFO prefetches..

24H 10H L2_RQSTS.IFETCH_H
IT

Counts number of instruction 
fetches that hit the L2 cache. L2 
instruction fetches include both L1I 
demand misses as well as L1I 
instruction prefetches.

24H 20H L2_RQSTS.IFETCH_M
ISS

Counts number of instruction 
fetches that miss the L2 cache. L2 
instruction fetches include both L1I 
demand misses as well as L1I 
instruction prefetches.

24H 30H L2_RQSTS.IFETCHES Counts all instruction fetches. L2 
instruction fetches include both L1I 
demand misses as well as L1I 
instruction prefetches.

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-90 Vol. 3B



PERFORMANCE-MONITORING EVENTS
24H 40H L2_RQSTS.PREFETC
H_HIT

Counts L2 prefetch hits for both 
code and data.

24H 80H L2_RQSTS.PREFETC
H_MISS

Counts L2 prefetch misses for both 
code and data.

24H C0H L2_RQSTS.PREFETC
HES

Counts all L2 prefetches for both 
code and data.

24H AAH L2_RQSTS.MISS Counts all L2 misses for both code 
and data.

24H FFH L2_RQSTS.REFEREN
CES

Counts all L2 requests for both code 
and data.

26H 01H L2_DATA_RQSTS.DE
MAND.I_STATE

Counts number of L2 data demand 
loads where the cache line to be 
loaded is in the I (invalid) state, i.e. a 
cache miss. L2 demand loads are 
both L1D demand misses and L1D 
prefetches.

26H 02H L2_DATA_RQSTS.DE
MAND.S_STATE

Counts number of L2 data demand 
loads where the cache line to be 
loaded is in the S (shared) state. L2 
demand loads are both L1D demand 
misses and L1D prefetches.

26H 04H L2_DATA_RQSTS.DE
MAND.E_STATE

Counts number of L2 data demand 
loads where the cache line to be 
loaded is in the E (exclusive) state. 
L2 demand loads are both L1D 
demand misses and L1D prefetches.

26H 08H L2_DATA_RQSTS.DE
MAND.M_STATE

Counts number of L2 data demand 
loads where the cache line to be 
loaded is in the M (modified) state. 
L2 demand loads are both L1D 
demand misses and L1D prefetches.

26H 0FH L2_DATA_RQSTS.DE
MAND.MESI

Counts all L2 data demand requests. 
L2 demand loads are both L1D 
demand misses and L1D prefetches.

26H 10H L2_DATA_RQSTS.PR
EFETCH.I_STATE

Counts number of L2 prefetch data 
loads where the cache line to be 
loaded is in the I (invalid) state, i.e. a 
cache miss.

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-91



PERFORMANCE-MONITORING EVENTS
26H 20H L2_DATA_RQSTS.PR
EFETCH.S_STATE

Counts number of L2 prefetch data 
loads where the cache line to be 
loaded is in the S (shared) state. A 
prefetch RFO will miss on an S state 
line, while a prefetch read will hit on 
an S state line.

26H 40H L2_DATA_RQSTS.PR
EFETCH.E_STATE

Counts number of L2 prefetch data 
loads where the cache line to be 
loaded is in the E (exclusive) state.

26H 80H L2_DATA_RQSTS.PR
EFETCH.M_STATE

Counts number of L2 prefetch data 
loads where the cache line to be 
loaded is in the M (modified) state.

26H F0H L2_DATA_RQSTS.PR
EFETCH.MESI

Counts all L2 prefetch requests.

26H FFH L2_DATA_RQSTS.AN
Y

Counts all L2 data requests.

27H 01H L2_WRITE.RFO.I_STA
TE

Counts number of L2 demand store 
RFO requests where the cache line 
to be loaded is in the I (invalid) state, 
i.e, a cache miss. The L1D prefetcher 
does not issue a RFO prefetch.

This is a demand 
RFO request

27H 02H L2_WRITE.RFO.S_ST
ATE

Counts number of L2 store RFO 
requests where the cache line to be 
loaded is in the S (shared) state. The 
L1D prefetcher does not issue a RFO 
prefetch,.

This is a demand 
RFO request

27H 08H L2_WRITE.RFO.M_ST
ATE

Counts number of L2 store RFO 
requests where the cache line to be 
loaded is in the M (modified) state. 
The L1D prefetcher does not issue a 
RFO prefetch.

This is a demand 
RFO request

27H 0EH L2_WRITE.RFO.HIT Counts number of L2 store RFO 
requests where the cache line to be 
loaded is in either the S, E or M 
states. The L1D prefetcher does not 
issue a RFO prefetch.

This is a demand 
RFO request

27H 0FH L2_WRITE.RFO.MESI Counts all L2 store RFO 
requests.The L1D prefetcher does 
not issue a RFO prefetch.

This is a demand 
RFO request

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-92 Vol. 3B



PERFORMANCE-MONITORING EVENTS
27H 10H L2_WRITE.LOCK.I_ST
ATE

Counts number of L2 demand lock 
RFO requests where the cache line 
to be loaded is in the I (invalid) state, 
i.e. a cache miss. 

27H 20H L2_WRITE.LOCK.S_S
TATE

Counts number of L2 lock RFO 
requests where the cache line to be 
loaded is in the S (shared) state.

27H 40H L2_WRITE.LOCK.E_S
TATE

Counts number of L2 demand lock 
RFO requests where the cache line 
to be loaded is in the E (exclusive) 
state.

27H 80H L2_WRITE.LOCK.M_S
TATE

Counts number of L2 demand lock 
RFO requests where the cache line 
to be loaded is in the M (modified) 
state.

27H E0H L2_WRITE.LOCK.HIT Counts number of L2 demand lock 
RFO requests where the cache line 
to be loaded is in either the S, E, or 
M state.

27H F0H L2_WRITE.LOCK.MESI Counts all L2 demand lock RFO 
requests.

28H 01H L1D_WB_L2.I_STATE Counts number of L1 writebacks to 
the L2 where the cache line to be 
written is in the I (invalid) state, i.e. a 
cache miss.

28H 02H L1D_WB_L2.S_STAT
E

Counts number of L1 writebacks to 
the L2 where the cache line to be 
written is in the S state.

28H 04H L1D_WB_L2.E_STAT
E

Counts number of L1 writebacks to 
the L2 where the cache line to be 
written is in the E (exclusive) state.

28H 08H L1D_WB_L2.M_STAT
E

Counts number of L1 writebacks to 
the L2 where the cache line to be 
written is in the M (modified) state.

28H 0FH L1D_WB_L2.MESI Counts all L1 writebacks to the L2 .

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-93



PERFORMANCE-MONITORING EVENTS
2EH 02H L3_LAT_CACHE.REFE
RENCE

Counts uncore Last Level Cache 
references. Because cache 
hierarchy, cache sizes and other 
implementation-specific 
characteristics; value comparison to 
estimate performance differences is 
not recommended. 

see Table 19-1

2EH 01H L3_LAT_CACHE.MISS Counts uncore Last Level Cache 
misses. Because cache hierarchy, 
cache sizes and other 
implementation-specific 
characteristics; value comparison to 
estimate performance differences is 
not recommended. 

see Table 19-1

3CH 00H CPU_CLK_UNHALTED
.THREAD_P

Counts the number of thread cycles 
while the thread is not in a halt 
state. The thread enters the halt 
state when it is running the HLT 
instruction. The core frequency may 
change from time to time due to 
power or thermal throttling. 

see Table 19-1

3CH 01H CPU_CLK_UNHALTED
.REF_P

Increments at the frequency of TSC 
when not halted.

see Table 19-1

49H 01H DTLB_MISSES.ANY Counts the number of misses in the 
STLB which causes a page walk.

49H 02H DTLB_MISSES.WALK_
COMPLETED

Counts number of misses in the 
STLB which resulted in a completed 
page walk.

49H 04H DTLB_MISSES.WALK_
CYCLES

Counts cycles of page walk due to 
misses in the STLB.

49H 10H DTLB_MISSES.STLB_
HIT

Counts the number of DTLB first 
level misses that hit in the second 
level TLB.  This event is only 
relevant if the core contains multiple 
DTLB levels.

49H 20H DTLB_MISSES.PDE_M
ISS

Number of DTLB misses caused by 
low part of address, includes 
references to 2M pages because 2M 
pages do not use the PDE. 

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-94 Vol. 3B



PERFORMANCE-MONITORING EVENTS
49H 80H DTLB_MISSES.LARGE
_WALK_COMPLETED

Counts number of completed large 
page walks due to misses in the 
STLB.

4CH 01H LOAD_HIT_PRE Counts load operations sent to the 
L1 data cache while a previous SSE 
prefetch instruction to the same 
cache line has started prefetching 
but has not yet finished.

Counter 0, 1 only

4EH 01H L1D_PREFETCH.REQ
UESTS

Counts number of hardware 
prefetch requests dispatched out of 
the prefetch FIFO.

Counter 0, 1 only

4EH 02H L1D_PREFETCH.MISS Counts number of hardware 
prefetch requests that miss the L1D.  
There are two prefetchers in the 
L1D.  A streamer, which predicts 
lines sequentially after this one 
should be fetched, and the IP 
prefetcher that remembers access 
patterns for the current instruction.  
The streamer prefetcher stops on an 
L1D hit,  while the IP prefetcher 
does not.

Counter 0, 1 only

4EH 04H L1D_PREFETCH.TRIG
GERS

Counts number of prefetch requests 
triggered by the Finite State 
Machine and pushed into the 
prefetch FIFO. Some of the prefetch 
requests are dropped due to 
overwrites or competition between 
the IP index prefetcher and 
streamer prefetcher.  The prefetch 
FIFO contains 4 entries.

Counter 0, 1 only

4FH 10H EPT.WALK_CYCLES Counts Extended Page walk cycles.

51H 01H L1D.REPL Counts the number of lines brought 
into the L1 data cache.

Counter 0, 1 only

51H 02H L1D.M_REPL Counts the number of modified lines 
brought into the L1 data cache. 

Counter 0, 1 only

51H 04H L1D.M_EVICT Counts the number of modified lines 
evicted from the L1 data cache  due 
to replacement. 

Counter 0, 1 only

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-95



PERFORMANCE-MONITORING EVENTS
51H 08H L1D.M_SNOOP_EVIC
T

Counts the number of modified lines 
evicted from the L1 data cache due 
to snoop HITM intervention.

Counter 0, 1 only

52H 01H L1D_CACHE_PREFET
CH_LOCK_FB_HIT

Counts the number of cacheable 
load lock speculated instructions 
accepted into the fill buffer.

60H 01H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND.READ_DATA

Counts weighted cycles of offcore 
demand data read requests. Does 
not include L2 prefetch requests.

counter 0

60H 02H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND.READ_CODE

Counts weighted cycles of offcore 
demand code read requests. Does 
not include L2 prefetch requests.

counter 0

60H 04H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND.RFO

Counts weighted cycles of offcore 
demand RFO requests. Does not 
include L2 prefetch requests.

counter 0

60H 08H OFFCORE_REQUEST
S_OUTSTANDING.AN
Y.READ

Counts weighted cycles of offcore 
read requests of any kind. Include L2 
prefetch requests.

counter 0

63H 01H CACHE_LOCK_CYCLE
S.L1D_L2

Cycle count during which the L1D 
and L2 are locked.  A lock is asserted 
when there is a locked memory 
access, due to uncacheable memory, 
a locked operation that spans two 
cache lines, or a page walk from an 
uncacheable page table. This event 
does not cause locks, it merely 
detects them.

Counter 0, 1 only. 
L1D and L2 locks 
have a very high 
performance 
penalty and it is 
highly 
recommended to 
avoid such 
accesses.

63H 02H CACHE_LOCK_CYCLE
S.L1D

Counts the number of cycles that 
cacheline in the L1 data cache unit is 
locked.

Counter 0, 1 only.

6CH 01H IO_TRANSACTIONS Counts the number of completed I/O 
transactions.

80H 01H L1I.HITS Counts all instruction fetches that 
hit the L1 instruction cache.

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-96 Vol. 3B



PERFORMANCE-MONITORING EVENTS
80H 02H L1I.MISSES Counts all instruction fetches that 
miss the L1I cache. This includes 
instruction cache misses,  streaming 
buffer misses, victim cache misses 
and uncacheable fetches.  An 
instruction fetch miss is counted 
only once and not once for every 
cycle it is outstanding.

80H 03H L1I.READS Counts all instruction fetches, 
including uncacheable fetches that 
bypass the L1I.

80H 04H L1I.CYCLES_STALLED Cycle counts for which an instruction 
fetch stalls due to a L1I cache miss, 
ITLB miss or ITLB fault.

82H 01H LARGE_ITLB.HIT Counts number of large ITLB hits.

85H 01H ITLB_MISSES.ANY Counts the number of misses in all 
levels of the ITLB which causes a 
page walk.

85H 02H ITLB_MISSES.WALK_
COMPLETED

Counts number of misses in all levels 
of the ITLB which resulted in a 
completed page walk.

85H 04H ITLB_MISSES.WALK_
CYCLES

Counts ITLB miss page walk cycles.

85H 80H ITLB_MISSES.LARGE_
WALK_COMPLETED

Counts number of completed large 
page walks due to misses in the 
STLB.

87H 01H ILD_STALL.LCP Cycles Instruction Length Decoder 
stalls due to length changing 
prefixes: 66, 67 or REX.W (for 
EM64T) instructions which change 
the length of the decoded 
instruction.

87H 02H ILD_STALL.MRU Instruction Length Decoder stall 
cycles due to Brand Prediction Unit 
(PBU) Most Recently Used (MRU) 
bypass.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to a full instruction 
queue.

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-97



PERFORMANCE-MONITORING EVENTS
87H 08H ILD_STALL.REGEN Counts the number of regen stalls.

87H 0FH ILD_STALL.ANY Counts any cycles the Instruction 
Length Decoder is stalled.

88H 01H BR_INST_EXEC.COND Counts the number of conditional 
near branch instructions executed, 
but not necessarily retired.

88H 02H BR_INST_EXEC.DIRE
CT

Counts all unconditional near branch 
instructions excluding calls and 
indirect branches.

88H 04H BR_INST_EXEC.INDIR
ECT_NON_CALL

Counts the number of executed 
indirect near branch instructions 
that are not calls.

88H 07H BR_INST_EXEC.NON
_CALLS

Counts all non call near branch 
instructions executed, but not 
necessarily retired.

88H 08H BR_INST_EXEC.RETU
RN_NEAR

Counts indirect near branches that 
have a return mnemonic.

88H 10H BR_INST_EXEC.DIRE
CT_NEAR_CALL

Counts unconditional near call 
branch instructions, excluding non 
call branch, executed. 

88H 20H BR_INST_EXEC.INDIR
ECT_NEAR_CALL

Counts indirect near calls, including 
both register and memory indirect, 
executed.

88H 30H BR_INST_EXEC.NEAR
_CALLS

Counts all near call branches 
executed,  but not necessarily 
retired.

88H 40H BR_INST_EXEC.TAKE
N

Counts taken near branches 
executed, but not necessarily 
retired.

88H 7FH BR_INST_EXEC.ANY Counts all near executed branches 
(not necessarily retired). This 
includes only instructions and not 
micro-op branches. Frequent 
branching is not necessarily a major 
performance issue. However 
frequent branch mispredictions may 
be a problem.

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-98 Vol. 3B



PERFORMANCE-MONITORING EVENTS
89H 01H BR_MISP_EXEC.CON
D

Counts the number of mispredicted 
conditional near branch instructions 
executed, but not necessarily 
retired.

89H 02H BR_MISP_EXEC.DIRE
CT

Counts mispredicted macro 
unconditional near branch 
instructions, excluding calls and 
indirect branches (should always be 
0).

89H 04H BR_MISP_EXEC.INDIR
ECT_NON_CALL

Counts the number of executed 
mispredicted indirect near branch 
instructions that are not calls.

89H 07H BR_MISP_EXEC.NON
_CALLS

Counts mispredicted non call near 
branches executed,  but not 
necessarily retired.

89H 08H BR_MISP_EXEC.RETU
RN_NEAR

Counts mispredicted indirect 
branches that have a rear return 
mnemonic.

89H 10H BR_MISP_EXEC.DIRE
CT_NEAR_CALL

Counts mispredicted non-indirect 
near calls executed, (should always 
be 0).

89H 20H BR_MISP_EXEC.INDIR
ECT_NEAR_CALL

Counts mispredicted indirect near 
calls exeucted, including both 
register and memory indirect.

89H 30H BR_MISP_EXEC.NEA
R_CALLS

Counts all mispredicted near call 
branches executed, but not 
necessarily retired.

89H 40H BR_MISP_EXEC.TAKE
N

Counts executed mispredicted near 
branches that are taken, but not 
necessarily retired.

89H 7FH BR_MISP_EXEC.ANY Counts the number of mispredicted 
near branch instructions that were 
executed, but not necessarily 
retired.

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-99



PERFORMANCE-MONITORING EVENTS
A2H 01H RESOURCE_STALLS.
ANY

Counts the number of Allocator 
resource related stalls. Includes 
register renaming buffer entries, 
memory buffer entries. In addition 
to resource related stalls, this event 
counts some other events. Includes 
stalls arising during branch 
misprediction recovery, such as if 
retirement of the mispredicted 
branch is delayed and stalls arising 
while store buffer is draining from 
synchronizing operations.

Does not include 
stalls due to 
SuperQ (off core) 
queue full, too 
many cache 
misses, etc.

A2H 02H RESOURCE_STALLS.L
OAD

Counts the cycles of stall due to lack 
of load buffer for load operation.

A2H 04H RESOURCE_STALLS.R
S_FULL

This event counts the number of 
cycles when the number of 
instructions in the pipeline waiting 
for execution reaches the limit the 
processor can handle. A high count 
of this event indicates that there are 
long latency operations in the pipe 
(possibly load and store operations 
that miss the L2 cache, or 
instructions dependent upon 
instructions further down the 
pipeline that have yet to retire. 

When RS is full, 
new instructions 
can not enter the 
reservation 
station and start 
execution.

A2H 08H RESOURCE_STALLS.S
TORE

This event counts the number of 
cycles that a resource related stall 
will occur due to the number of 
store instructions reaching the limit 
of the pipeline, (i.e. all store buffers 
are used). The stall ends when a 
store instruction commits its data to 
the cache or memory.

A2H 10H RESOURCE_STALLS.R
OB_FULL

Counts the cycles of stall due to re-
order buffer full.

A2H 20H RESOURCE_STALLS.F
PCW

Counts the number of cycles while 
execution was stalled due to writing 
the floating-point unit (FPU) control 
word.

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-100 Vol. 3B



PERFORMANCE-MONITORING EVENTS
A2H 40H RESOURCE_STALLS.
MXCSR

Stalls due to the MXCSR register 
rename occurring to close to a 
previous MXCSR rename.  The 
MXCSR provides control and status 
for the MMX registers.

A2H 80H RESOURCE_STALLS.
OTHER

Counts the number of cycles while 
execution was stalled due to other 
resource issues.

A6H 01H MACRO_INSTS.FUSIO
NS_DECODED

Counts the number of instructions 
decoded that are macro-fused but 
not necessarily executed or retired.

A7H 01H BACLEAR_FORCE_IQ Counts number of times a BACLEAR 
was forced by the Instruction 
Queue.  The IQ is also responsible 
for providing conditional branch 
prediciton direction based on a static 
scheme and dynamic data provided 
by the L2 Branch Prediction Unit. If 
the conditional branch target is not 
found in the Target Array and the IQ 
predicts that the branch is taken, 
then the IQ will force the Branch 
Address Calculator to issue a 
BACLEAR. Each BACLEAR asserted 
by the BAC generates approximately 
an 8 cycle bubble in the instruction 
fetch pipeline.

A8H 01H LSD.UOPS Counts the number of micro-ops 
delivered by loop stream detector.

Use cmask=1 and 
invert to count 
cycles

AEH 01H ITLB_FLUSH Counts the number of ITLB flushes.

B0H 01H OFFCORE_REQUEST
S.DEMAND.READ_DA
TA

Counts number of offcore demand 
data read requests.  Does not count 
L2 prefetch requests.

B0H 02H OFFCORE_REQUEST
S.DEMAND.READ_CO
DE

Counts number of offcore demand 
code read requests.  Does not count 
L2 prefetch requests.

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-101



PERFORMANCE-MONITORING EVENTS
B0H 04H OFFCORE_REQUEST
S.DEMAND.RFO

Counts number of offcore demand 
RFO requests. Does not count L2 
prefetch requests.

B0H 08H OFFCORE_REQUEST
S.ANY.READ

Counts number of offcore read 
requests. Includes L2 prefetch 
requests.

B0H 10H OFFCORE_REQUEST
S.ANY.RFO

Counts number of offcore RFO 
requests. Includes L2 prefetch 
requests.

B0H 40H OFFCORE_REQUEST
S.L1D_WRITEBACK

Counts number of L1D writebacks to 
the uncore. 

B0H 80H OFFCORE_REQUEST
S.ANY

Counts all offcore requests.

B1H 01H UOPS_EXECUTED.PO
RT0

Counts number of Uops executed 
that were issued on port 0.  Port 0 
handles integer arithmetic, SIMD and 
FP add Uops.

B1H 02H UOPS_EXECUTED.PO
RT1

Counts number of Uops executed 
that were issued on port 1. Port 1 
handles integer arithmetic, SIMD, 
integer shift, FP multiply and FP 
divide Uops.

B1H 04H UOPS_EXECUTED.PO
RT2_CORE

Counts number of Uops executed 
that were issued on port 2.  Port 2 
handles the load Uops. This is a core 
count only and can not be collected 
per thread.

B1H 08H UOPS_EXECUTED.PO
RT3_CORE

Counts number of Uops executed 
that were issued on port 3. Port 3 
handles store Uops.  This is a core 
count only and can not be collected 
per thread.

B1H 10H UOPS_EXECUTED.PO
RT4_CORE

Counts number of Uops executed 
that where issued on port  4.  Port 4 
handles the value to be stored for 
the store Uops issued on port 3. This 
is a core count only and can not be 
collected per thread.

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-102 Vol. 3B



PERFORMANCE-MONITORING EVENTS
B1H 1FH UOPS_EXECUTED.CO
RE_ACTIVE_CYCLES_
NO_PORT5

Counts number of cycles there are 
one or more uops being executed 
and were issued on ports 0-4. This is 
a core count only and can not be 
collected per thread.

B1H 20H UOPS_EXECUTED.PO
RT5

Counts number of Uops executed 
that where issued on port 5. 

B1H 3FH UOPS_EXECUTED.CO
RE_ACTIVE_CYCLES

Counts number of cycles there are 
one or more uops being executed on 
any ports. This is a core count only 
and can not be collected per thread.

B1H 40H UOPS_EXECUTED.PO
RT015

Counts number of Uops executed 
that where issued on port  0, 1, or 5.

use cmask=1, 
invert=1 to count 
stall cycles

B1H 80H UOPS_EXECUTED.PO
RT234

Counts number of Uops executed 
that where issued on port 2, 3, or 4.

B2H 01H OFFCORE_REQUEST
S_SQ_FULL

Counts number of cycles the SQ is 
full to handle off-core requests. 

B3H 01H SNOOPQ_REQUESTS
_OUTSTANDING.DAT
A

Counts weighted cycles of snoopq 
requests for data. Counter 0 only.

Use cmask=1 to 
count cycles not 
empty. 

B3H 02H SNOOPQ_REQUESTS
_OUTSTANDING.INVA
LIDATE

Counts weighted cycles of snoopq 
invalidate requests. Counter 0 only.

Use cmask=1 to 
count cycles not 
empty. 

B3H 04H SNOOPQ_REQUESTS
_OUTSTANDING.COD
E

Counts weighted cycles of snoopq 
requests for code. Counter 0 only.

Use cmask=1 to 
count cycles not 
empty. 

B4H 01H SNOOPQ_REQUESTS.
CODE

Counts the number of snoop code 
requests.

B4H 02H SNOOPQ_REQUESTS.
DATA

Counts the number of snoop data 
requests.

B4H 04H SNOOPQ_REQUESTS.
INVALIDATE

Counts the number of snoop 
invalidate requests.

B7H 01H OFF_CORE_RESPONS
E_0

see Section 18.6.1.3, “Off-core 
Response Performance Monitoring 
in the Processor Core”

Requires 
programming 
MSR 01A6H

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-103



PERFORMANCE-MONITORING EVENTS
B8H 01H SNOOP_RESPONSE.H
IT

Counts HIT snoop response sent by 
this thread in response to a snoop 
request.

B8H 02H SNOOP_RESPONSE.H
ITE

Counts HIT E snoop response sent 
by this thread in response to a 
snoop request.

B8H 04H SNOOP_RESPONSE.H
ITM

Counts HIT M snoop response sent 
by this thread in response to a 
snoop request.

BBH 01H OFF_CORE_RESPONS
E_1

see Section 18.6.1.3, “Off-core 
Response Performance Monitoring 
in the Processor Core”

Use MSR 01A7H

C0H 01H INST_RETIRED.ANY_
P

See Table 19-1
Notes: INST_RETIRED.ANY is 
counted by a designated fixed 
counter. INST_RETIRED.ANY_P is 
counted by a programmable counter 
and is an architectural performance 
event.  Event is supported if 
CPUID.A.EBX[1] = 0.

Counting: 
Faulting 
executions of 
GETSEC/VM 
entry/VM 
Exit/MWait will 
not count as 
retired 
instructions. 

C0H 02H INST_RETIRED.X87 Counts the number of floating point 
computational operations retired: 
floating point computational 
operations executed by the assist 
handler and sub-operations of 
complex floating point instructions 
like transcendental instructions.

C0H 04H INST_RETIRED.MMX Counts the number of retired: MMX 
instructions.

C2H 01H UOPS_RETIRED.ANY Counts the number of micro-ops 
retired, (macro-fused=1, micro-
fused=2, others=1; maximum count 
of 8 per cycle). Most instructions are 
composed of one or two micro-ops. 
Some instructions are decoded into 
longer sequences such as repeat 
instructions, floating point 
transcendental instructions, and 
assists.

Use cmask=1 and 
invert to count 
active cycles or 
stalled cycles

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-104 Vol. 3B



PERFORMANCE-MONITORING EVENTS
C2H 02H UOPS_RETIRED.RETI
RE_SLOTS

Counts the number of retirement 
slots used each cycle

C2H 04H UOPS_RETIRED.MAC
RO_FUSED

Counts number of macro-fused uops 
retired.

C3H 01H MACHINE_CLEARS.CY
CLES

Counts the cycles machine clear is 
asserted.

C3H 02H MACHINE_CLEARS.M
EM_ORDER

Counts the number of machine 
clears due to memory order 
conflicts.

C3H 04H MACHINE_CLEARS.S
MC

Counts the number of times that a 
program writes to a code section. 
Self-modifying code causes a sever 
penalty in all Intel 64 and IA-32 
processors.  The modified cache line 
is written back to the L2 and 
L3caches.

C4H 00H BR_INST_RETIRED.A
LL_BRANCHES

Branch instructions at retirement See Table 19-1 

C4H 01H BR_INST_RETIRED.C
ONDITIONAL

Counts the number of conditional 
branch instructions retired. 

C4H 02H BR_INST_RETIRED.N
EAR_CALL

Counts the number of direct & 
indirect near unconditional calls 
retired.

C4H 04H BR_INST_RETIRED.A
LL_BRANCHES

Counts the number of branch 
instructions retired.

C5H 00H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted branch instructions at 
retirement

See Table 19-1 

C5H 01H BR_MISP_RETIRED.C
ONDITIONAL

Counts mispredicted conditional 
retired calls. 

C5H 02H BR_MISP_RETIRED.N
EAR_CALL

Counts mispredicted direct & 
indirect near unconditional retired 
calls. 

C5H 04H BR_MISP_RETIRED.A
LL_BRANCHES

Counts all mispredicted retired calls. 

C7H 01H SSEX_UOPS_RETIRE
D.PACKED_SINGLE

Counts SIMD packed single-precision 
floating point Uops retired.

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-105



PERFORMANCE-MONITORING EVENTS
C7H 02H SSEX_UOPS_RETIRE
D.SCALAR_SINGLE

Counts SIMD calar single-precision 
floating point Uops retired.

C7H 04H SSEX_UOPS_RETIRE
D.PACKED_DOUBLE

Counts SIMD packed double-
precision floating point Uops retired.

C7H 08H SSEX_UOPS_RETIRE
D.SCALAR_DOUBLE

Counts SIMD scalar double-precision 
floating point Uops retired.

C7H 10H SSEX_UOPS_RETIRE
D.VECTOR_INTEGER

Counts 128-bit SIMD vector integer 
Uops retired.

C8H 20H ITLB_MISS_RETIRED Counts the number of retired 
instructions that missed the ITLB 
when the instruction was fetched.

CBH 01H MEM_LOAD_RETIRED
.L1D_HIT

Counts number of retired loads that 
hit the L1 data cache. 

CBH 02H MEM_LOAD_RETIRED
.L2_HIT

Counts number of retired loads that 
hit the L2 data cache.

CBH 04H MEM_LOAD_RETIRED
.L3_UNSHARED_HIT

Counts number of retired loads that 
hit their own, unshared lines in the 
L3 cache.

CBH 08H MEM_LOAD_RETIRED
.OTHER_CORE_L2_HI
T_HITM

Counts number of retired loads that 
hit in a sibling core's L2 (on die core).  
Since the L3 is inclusive of all cores 
on the package, this is an L3 hit. This 
counts both clean or modified hits.

CBH 10H MEM_LOAD_RETIRED
.L3_MISS

Counts number of retired loads that 
miss the L3 cache.  The load was 
satisfied by a remote socket, local 
memory or an IOH.

CBH 40H MEM_LOAD_RETIRED
.HIT_LFB

Counts number of retired loads that 
miss the L1D and the address is 
located in an allocated line fill buffer 
and will soon be committed to cache.  
This is counting secondary L1D 
misses.

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-106 Vol. 3B



PERFORMANCE-MONITORING EVENTS
CBH 80H MEM_LOAD_RETIRED
.DTLB_MISS

Counts the number of retired loads 
that missed the DTLB. The DTLB 
miss is not counted if the load 
operation causes a fault.  This event 
counts loads from cacheable 
memory only. The event does not 
count loads by software prefetches. 
Counts both primary and secondary 
misses to the TLB.

CCH 01H FP_MMX_TRANS.TO
_FP

Counts the first floating-point 
instruction following any MMX 
instruction. You can use this event 
to estimate the penalties for the 
transitions between floating-point 
and MMX technology states.

CCH 02H FP_MMX_TRANS.TO
_MMX

Counts the first MMX instruction 
following a floating-point 
instruction. You can use this event 
to estimate the penalties for the 
transitions between floating-point 
and MMX technology states.

CCH 03H FP_MMX_TRANS.AN
Y

Counts all transitions from floating 
point to MMX instructions and from 
MMX instructions to floating point 
instructions.  You can use this event 
to estimate the penalties for the 
transitions between floating-point 
and MMX technology states.

D0H 01H MACRO_INSTS.DECO
DED

Counts the number of instructions 
decoded, (but not necessarily 
executed or retired).

D1H 01H UOPS_DECODED.STA
LL_CYCLES

Counts the cycles of decoder stalls. 
INV=1, Cmask= 1

D1H 02H UOPS_DECODED.MS Counts the number of Uops decoded 
by the Microcode Sequencer, MS.  
The MS delivers uops when the 
instruction is more than 4 uops long 
or a microcode assist is occurring. 

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-107



PERFORMANCE-MONITORING EVENTS
D1H 04H UOPS_DECODED.ESP
_FOLDING

Counts number of stack pointer 
(ESP) instructions decoded: push , 
pop , call , ret, etc.  ESP instructions 
do not generate a Uop to increment 
or decrement ESP.  Instead, they 
update an ESP_Offset register that 
keeps track of the delta to the 
current value of the ESP register.

D1H 08H UOPS_DECODED.ESP
_SYNC

Counts number of stack pointer 
(ESP) sync operations where an ESP 
instruction is corrected  by adding 
the ESP offset register to the 
current value of the ESP register.

D2H 01H RAT_STALLS.FLAGS Counts the number of cycles during 
which execution stalled due to 
several reasons, one of which is a 
partial flag register stall. A partial 
register stall may occur when two 
conditions are met: 1) an instruction 
modifies some, but not all, of the 
flags in the flag register and 2) the 
next instruction, which depends on 
flags, depends on flags that were 
not modified by this instruction.

D2H 02H RAT_STALLS.REGIST
ERS

This event counts the number of 
cycles instruction execution latency 
became longer than the defined 
latency because the instruction 
used a register that was partially 
written by previous instruction.

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-108 Vol. 3B



PERFORMANCE-MONITORING EVENTS
D2H 04H RAT_STALLS.ROB_RE
AD_PORT

Counts the number of cycles when 
ROB read port stalls occurred, which 
did not allow new micro-ops to enter 
the out-of-order pipeline. Note that, 
at this stage in the pipeline, 
additional stalls may occur at the 
same cycle and prevent the stalled 
micro-ops from entering the pipe. In 
such a case, micro-ops retry 
entering the execution pipe in the 
next cycle and the ROB-read port 
stall is counted again.

D2H 08H RAT_STALLS.SCOREB
OARD

Counts the cycles where we stall 
due to microarchitecturally required 
serialization. Microcode 
scoreboarding stalls.

D2H 0FH RAT_STALLS.ANY Counts all Register Allocation Table 
stall cycles due to:  Cycles when ROB 
read port stalls occurred, which did 
not allow new micro-ops to enter 
the execution pipe.  Cycles when 
partial register stalls occurred  
Cycles when flag stalls occurred  
Cycles floating-point unit (FPU) 
status word stalls occurred. To count 
each of these conditions separately 
use the events: 
RAT_STALLS.ROB_READ_PORT, 
RAT_STALLS.PARTIAL, 
RAT_STALLS.FLAGS, and 
RAT_STALLS.FPSW.

D4H 01H SEG_RENAME_STALL
S

Counts the number of stall cycles 
due to the lack of renaming 
resources for the ES, DS, FS, and GS 
segment registers. If a segment is 
renamed but not retired and a 
second update to the same segment 
occurs, a stall occurs in the front-
end of the pipeline until the 
renamed segment retires.

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-109



PERFORMANCE-MONITORING EVENTS
D5H 01H ES_REG_RENAMES Counts the number of times the ES 
segment register is renamed.

DBH 01H UOP_UNFUSION Counts unfusion events due to 
floating point exception to a fused 
uop.

E0H 01H BR_INST_DECODED Counts the number of branch 
instructions decoded. 

E5H 01H BPU_MISSED_CALL_
RET

Counts number of times the Branch 
Prediciton Unit missed predicting a 
call or return branch.

E6H 01H BACLEAR.CLEAR Counts the number of times the 
front end is resteered, mainly when 
the Branch Prediction Unit cannot 
provide a correct prediction and this 
is corrected by the Branch Address 
Calculator at the front end. This can 
occur if the code has many branches 
such that they cannot be consumed 
by the BPU. Each BACLEAR asserted 
by the BAC generates approximately 
an 8 cycle bubble in the instruction 
fetch pipeline. The effect on total 
execution time depends on the 
surrounding code.

E6H 02H BACLEAR.BAD_TARG
ET

Counts number of Branch Address 
Calculator clears (BACLEAR) 
asserted due to conditional branch 
instructions in which there was a 
target hit but the direction was 
wrong.  Each BACLEAR asserted by 
the BAC generates approximately an 
8 cycle bubble in the instruction 
fetch pipeline.

E8H 01H BPU_CLEARS.EARLY Counts early (normal) Branch 
Prediction Unit clears: BPU predicted 
a taken branch after incorrectly 
assuming that it was not taken. 

The BPU clear 
leads to 2 cycle 
bubble in the 
Front End.

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-110 Vol. 3B



PERFORMANCE-MONITORING EVENTS
E8H 02H BPU_CLEARS.LATE Counts late Branch Prediction Unit 
clears due to Most Recently Used 
conflicts.  The PBU clear leads to a 3 
cycle bubble in the Front End.

ECH 01H THREAD_ACTIVE Counts cycles threads are active.

F0H 01H L2_TRANSACTIONS.L
OAD

Counts L2 load operations due to 
HW prefetch or demand loads.

F0H 02H L2_TRANSACTIONS.
RFO

Counts L2 RFO operations due to 
HW prefetch or demand RFOs.

F0H 04H L2_TRANSACTIONS.I
FETCH

Counts L2 instruction fetch 
operations due to HW prefetch or 
demand ifetch.

F0H 08H L2_TRANSACTIONS.
PREFETCH

Counts L2 prefetch operations.

F0H 10H L2_TRANSACTIONS.L
1D_WB

Counts L1D writeback operations to 
the L2.

F0H 20H L2_TRANSACTIONS.
FILL

Counts L2 cache line fill operations 
due to load, RFO, L1D writeback or 
prefetch.

F0H 40H L2_TRANSACTIONS.
WB

Counts L2 writeback operations to 
the L3.

F0H 80H L2_TRANSACTIONS.
ANY

Counts all L2 cache operations.

F1H 02H L2_LINES_IN.S_STAT
E

Counts the number of cache lines 
allocated in the L2 cache in the S 
(shared) state. 

F1H 04H L2_LINES_IN.E_STAT
E

Counts the number of cache lines 
allocated in the L2 cache in the E 
(exclusive) state. 

F1H 07H L2_LINES_IN.ANY Counts the number of cache lines 
allocated in the L2 cache. 

F2H 01H L2_LINES_OUT.DEMA
ND_CLEAN

Counts L2 clean cache lines evicted 
by a demand request.

F2H 02H L2_LINES_OUT.DEMA
ND_DIRTY

Counts L2 dirty (modified) cache 
lines evicted by a demand request.

F2H 04H L2_LINES_OUT.PREF
ETCH_CLEAN

Counts L2 clean cache line evicted 
by a prefetch request.

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-111



PERFORMANCE-MONITORING EVENTS
F2H 08H L2_LINES_OUT.PREF
ETCH_DIRTY

Counts L2 modified cache line 
evicted by a prefetch request.

F2H 0FH L2_LINES_OUT.ANY Counts all L2 cache lines evicted for 
any reason.

F4H 04H SQ_MISC.LRU_HINTS Counts number of Super Queue LRU 
hints sent to L3.

F4H 10H SQ_MISC.SPLIT_LOCK Counts the number of SQ lock splits 
across a cache line.

F6H 01H SQ_FULL_STALL_CY
CLES

Counts cycles the Super Queue is 
full.  Neither of the threads on this 
core will be able to access the 
uncore.

F7H 01H FP_ASSIST.ALL Counts the number of floating point 
operations executed that required 
micro-code assist intervention. 
Assists are required in the following 
cases: SSE instructions, (Denormal 
input when the DAZ flag is off or 
Underflow result when the FTZ flag 
is off): x87 instructions, (NaN or 
denormal are loaded to a register or 
used as input from memory, Division 
by 0 or Underflow output).

F7H 02H FP_ASSIST.OUTPUT Counts number of floating point 
micro-code assist when the output 
value (destination register) is invalid.

F7H 04H FP_ASSIST.INPUT Counts number of floating point 
micro-code assist when the input 
value (one of the source operands to 
an FP instruction) is invalid.

FDH 01H SIMD_INT_64.PACKE
D_MPY

Counts number of SID integer 64 bit 
packed multiply operations.

FDH 02H SIMD_INT_64.PACKE
D_SHIFT

Counts number of SID integer 64 bit 
packed shift operations.

FDH 04H SIMD_INT_64.PACK Counts number of SID integer 64 bit 
pack operations.

FDH 08H SIMD_INT_64.UNPAC
K

Counts number of SID integer 64 bit 
unpack operations.

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-112 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Non-architectural Performance monitoring events of the uncore sub-system for 
Processors with CPUID signature of DisplayFamily_DisplayModel 06_25H, 06_2CH, 
and 06_1FH support performance events listed in Table 19-10.

FDH 10H SIMD_INT_64.PACKE
D_LOGICAL

Counts number of SID integer 64 bit 
logical operations.

FDH 20H SIMD_INT_64.PACKE
D_ARITH

Counts number of SID integer 64 bit 
arithmetic operations.

FDH 40H SIMD_INT_64.SHUFF
LE_MOVE

Counts number of SID integer 64 bit 
shift or move operations.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

00H 01H UNC_GQ_CYCLES_FU
LL.READ_TRACKER

Uncore cycles Global Queue read 
tracker is full.

00H 02H UNC_GQ_CYCLES_FU
LL.WRITE_TRACKER

Uncore cycles Global Queue write 
tracker is full.

00H 04H UNC_GQ_CYCLES_FU
LL.PEER_PROBE_TR
ACKER

Uncore cycles Global Queue peer 
probe tracker is full. The peer probe 
tracker queue tracks snoops from the 
IOH and remote sockets.

01H 01H UNC_GQ_CYCLES_NO
T_EMPTY.READ_TRA
CKER

Uncore cycles were Global Queue read 
tracker has at least one valid entry.

01H 02H UNC_GQ_CYCLES_NO
T_EMPTY.WRITE_TR
ACKER

Uncore cycles were Global Queue 
write tracker has at least one valid 
entry.

01H 04H UNC_GQ_CYCLES_NO
T_EMPTY.PEER_PRO
BE_TRACKER

Uncore cycles were Global Queue peer 
probe tracker has at least one valid 
entry. The peer probe tracker queue 
tracks IOH and remote socket snoops.

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-113



PERFORMANCE-MONITORING EVENTS
02H 01H UNC_GQ_OCCUPANC
Y.READ_TRACKER

Increments the number of queue 
entries (code read, data read, and 
RFOs) in the tread tracker. The GQ 
read tracker allocate to deallocate 
occupancy count is divided by the 
count to obtain the average read 
tracker latency. 

03H 01H UNC_GQ_ALLOC.REA
D_TRACKER

Counts the number of tread tracker 
allocate to deallocate entries. The GQ 
read tracker allocate to deallocate 
occupancy count is divided by the 
count to obtain the average read 
tracker latency. 

03H 02H UNC_GQ_ALLOC.RT_
L3_MISS

Counts the number GQ read tracker 
entries for which a full cache line read 
has missed the L3. The GQ read 
tracker L3 miss to fill occupancy count 
is divided by this count to obtain the 
average cache line read L3 miss 
latency. The latency represents the 
time after which the L3 has 
determined that the cache line has 
missed.  The time between a GQ read 
tracker allocation and the L3 
determining that the cache line has 
missed is the average L3 hit latency. 
The total L3 cache line read miss 
latency is the hit latency + L3 miss 
latency.

03H 04H UNC_GQ_ALLOC.RT_
TO_L3_RESP

Counts the number of GQ read tracker 
entries that are allocated in the read 
tracker queue that hit or miss the L3.  
The GQ read tracker L3 hit occupancy 
count is divided by this count to 
obtain the average L3 hit latency. 

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-114 Vol. 3B



PERFORMANCE-MONITORING EVENTS
03H 08H UNC_GQ_ALLOC.RT_
TO_RTID_ACQUIRED

Counts the number of GQ read tracker 
entries that are allocated in the read 
tracker, have missed in the L3 and 
have not acquired a Request 
Transaction ID.   The GQ  read tracker 
L3 miss to RTID acquired occupancy 
count is divided by this count to 
obtain the average latency for a read 
L3 miss to acquire an RTID.

03H 10H UNC_GQ_ALLOC.WT_
TO_RTID_ACQUIRED

Counts the number of GQ write 
tracker entries that are allocated in 
the write tracker, have missed in the 
L3 and have not acquired a Request 
Transaction ID.   The GQ write tracker 
L3 miss to RTID occupancy count is 
divided by this count to obtain the 
average latency for a write L3 miss to 
acquire an RTID.

03H 20H UNC_GQ_ALLOC.WRI
TE_TRACKER

Counts the number of GQ write 
tracker entries that are allocated in 
the write tracker queue that miss the 
L3.  The GQ write tracker occupancy 
count is divided by the this count to 
obtain the average L3 write miss 
latency. 

03H 40H UNC_GQ_ALLOC.PEE
R_PROBE_TRACKER

Counts the number of GQ peer probe 
tracker (snoop) entries that are 
allocated in the peer probe tracker 
queue that miss the L3.  The GQ peer 
probe occupancy count is divided by 
this count to obtain the average L3 
peer probe miss latency. 

04H 01H UNC_GQ_DATA.FROM
_QPI

Cycles Global Queue Quickpath 
Interface input data port is busy 
importing data from the Quickpath 
Interface.  Each cycle the input port 
can transfer 8  or 16 bytes of data.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-115



PERFORMANCE-MONITORING EVENTS
04H 02H UNC_GQ_DATA.FROM
_QMC

Cycles Global Queue Quickpath 
Memory Interface input data port is 
busy importing data from the 
Quickpath Memory Interface. Each 
cycle the input port can transfer 8  or 
16 bytes of data.

04H 04H UNC_GQ_DATA.FROM
_L3

Cycles GQ L3 input data port is busy 
importing data from the Last Level 
Cache. Each cycle the input port can 
transfer 32 bytes of data.

04H 08H UNC_GQ_DATA.FROM
_CORES_02

Cycles GQ Core 0 and 2 input data 
port is busy importing data from 
processor cores 0 and 2. Each cycle 
the input port can transfer 32 bytes 
of data.

04H 10H UNC_GQ_DATA.FROM
_CORES_13

Cycles GQ Core 1 and 3 input data 
port is busy importing data from 
processor cores 1 and 3. Each cycle 
the input port can transfer 32 bytes 
of data.

05H 01H UNC_GQ_DATA.TO_Q
PI_QMC

Cycles GQ QPI and QMC output data 
port is busy sending data to the 
Quickpath Interface or Quickpath 
Memory Interface. Each cycle the 
output port can transfer 32 bytes of 
data.

05H 02H UNC_GQ_DATA.TO_L
3

Cycles GQ L3 output data port is busy 
sending data to the Last Level Cache. 
Each cycle the output port can 
transfer 32 bytes of data.

05H 04H UNC_GQ_DATA.TO_C
ORES

Cycles GQ Core output data port is 
busy sending data to the Cores. Each 
cycle the output port can transfer 32 
bytes of data.

06H 01H UNC_SNP_RESP_TO_
LOCAL_HOME.I_STAT
E

Number of snoop responses to the 
local home that L3 does not have the 
referenced cache line. 

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-116 Vol. 3B



PERFORMANCE-MONITORING EVENTS
06H 02H UNC_SNP_RESP_TO_
LOCAL_HOME.S_STA
TE

Number of snoop responses to the 
local home that L3 has the referenced 
line cached in the S state.

06H 04H UNC_SNP_RESP_TO_
LOCAL_HOME.FWD_S
_STATE

Number of responses to code or data 
read snoops to the local home that 
the L3 has the referenced cache line 
in the E state. The L3 cache line state 
is changed to the S state and the line 
is forwarded to the local home in the 
S state.

06H 08H UNC_SNP_RESP_TO_
LOCAL_HOME.FWD_I
_STATE

Number of responses to read 
invalidate snoops to the local home 
that the L3 has the referenced cache 
line in the M state. The L3 cache line 
state is invalidated and the line is 
forwarded to the local home in the M 
state.

06H 10H UNC_SNP_RESP_TO_
LOCAL_HOME.CONFLI
CT

Number of conflict snoop responses 
sent to the local home.

06H 20H UNC_SNP_RESP_TO_
LOCAL_HOME.WB

Number of responses to code or data 
read snoops to the local home that 
the L3 has the referenced line cached 
in the M state. 

07H 01H UNC_SNP_RESP_TO_
REMOTE_HOME.I_ST
ATE

Number of snoop responses to a 
remote home that L3 does not have 
the referenced cache line. 

07H 02H UNC_SNP_RESP_TO_
REMOTE_HOME.S_ST
ATE

Number of snoop responses to a 
remote home that L3 has the 
referenced line cached in the S state.

07H 04H UNC_SNP_RESP_TO_
REMOTE_HOME.FWD
_S_STATE

Number of responses to code or data 
read snoops to a remote home that 
the L3 has the referenced cache line 
in the E state. The L3 cache line state 
is changed to the S state and the line 
is forwarded to the remote home in 
the S state.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-117



PERFORMANCE-MONITORING EVENTS
07H 08H UNC_SNP_RESP_TO_
REMOTE_HOME.FWD
_I_STATE

Number of responses to read 
invalidate snoops to a remote home 
that the L3 has the referenced cache 
line in the M state. The L3 cache line 
state is invalidated and the line is 
forwarded to the remote home in the 
M state.

07H 10H UNC_SNP_RESP_TO_
REMOTE_HOME.CON
FLICT

Number of conflict snoop responses 
sent to the local home.

07H 20H UNC_SNP_RESP_TO_
REMOTE_HOME.WB

Number of responses to code or data 
read snoops to a remote home that 
the L3 has the referenced line cached 
in the M state. 

07H 24H UNC_SNP_RESP_TO_
REMOTE_HOME.HITM

Number of HITM snoop responses to a 
remote home

08H 01H UNC_L3_HITS.READ Number of code read, data read and 
RFO requests that hit in the L3

08H 02H UNC_L3_HITS.WRITE Number of writeback requests that 
hit in the L3. Writebacks from the 
cores will always result in L3 hits due 
to the inclusive property of the L3.

08H 04H UNC_L3_HITS.PROBE Number of snoops from IOH or remote 
sockets that hit in the L3.

08H 03H UNC_L3_HITS.ANY Number of reads and writes that hit 
the L3. 

09H 01H UNC_L3_MISS.READ Number of code read, data read and 
RFO requests that miss the L3.

09H 02H UNC_L3_MISS.WRITE Number of writeback requests that 
miss the L3. Should always be zero as 
writebacks from the cores will always 
result in L3 hits due to the inclusive 
property of the L3.

09H 04H UNC_L3_MISS.PROBE Number of snoops from IOH or remote 
sockets that miss the L3.

09H 03H UNC_L3_MISS.ANY Number of reads and writes that miss 
the L3. 

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-118 Vol. 3B



PERFORMANCE-MONITORING EVENTS
0AH 01H UNC_L3_LINES_IN.M
_STATE

Counts the number of L3 lines 
allocated in M state.  The only time a 
cache line is allocated in the M state is 
when the line was forwarded in M 
state is forwarded due to a Snoop 
Read Invalidate Own request.

0AH 02H UNC_L3_LINES_IN.E_
STATE

Counts the number of L3 lines 
allocated in E state.

0AH 04H UNC_L3_LINES_IN.S_
STATE

Counts the number of L3 lines 
allocated in S state.

0AH 08H UNC_L3_LINES_IN.F_
STATE

Counts the number of L3 lines 
allocated in F state.

0AH 0FH UNC_L3_LINES_IN.A
NY

Counts the number of L3 lines 
allocated in any state. 

0BH 01H UNC_L3_LINES_OUT.
M_STATE

Counts the number of L3 lines 
victimized that were in the M state. 
When the victim cache line is in M 
state, the line is written to its home 
cache agent which can be either local 
or remote.

0BH 02H UNC_L3_LINES_OUT.
E_STATE

Counts the number of L3 lines 
victimized that were in the E state.

0BH 04H UNC_L3_LINES_OUT.
S_STATE

Counts the number of L3 lines 
victimized that were in the S state.

0BH 08H UNC_L3_LINES_OUT.
I_STATE

Counts the number of L3 lines 
victimized that were in the I state.

0BH 10H UNC_L3_LINES_OUT.
F_STATE

Counts the number of L3 lines 
victimized that were in the F state.

0BH 1FH UNC_L3_LINES_OUT.
ANY

Counts the number of L3 lines 
victimized in any state.

0CH 01H UNC_GQ_SNOOP.GOT
O_S

Counts the number of remote snoops 
that have requested a cache line be 
set to the S state.

0CH 02H UNC_GQ_SNOOP.GOT
O_I

Counts the number of remote snoops 
that have requested a cache line be 
set to the I state.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-119



PERFORMANCE-MONITORING EVENTS
0CH 04H UNC_GQ_SNOOP.GOT
O_S_HIT_E

Counts the number of remote snoops 
that have requested a cache line be 
set to the S state from E state.

Requires 
writing MSR 
301H with 
mask = 2H

0CH 04H UNC_GQ_SNOOP.GOT
O_S_HIT_F

Counts the number of remote snoops 
that have requested a cache line be 
set to the S state from F (forward) 
state.

Requires 
writing MSR 
301H with 
mask = 8H

0CH 04H UNC_GQ_SNOOP.GOT
O_S_HIT_M

Counts the number of remote snoops 
that have requested a cache line be 
set to the S state from M state.

Requires 
writing MSR 
301H with 
mask = 1H

0CH 04H UNC_GQ_SNOOP.GOT
O_S_HIT_S

Counts the number of remote snoops 
that have requested a cache line be 
set to the S state from S state.

Requires 
writing MSR 
301H with 
mask = 4H

0CH 08H UNC_GQ_SNOOP.GOT
O_I_HIT_E

Counts the number of remote snoops 
that have requested a cache line be 
set to the I state from E state.

Requires 
writing MSR 
301H with 
mask = 2H

0CH 08H UNC_GQ_SNOOP.GOT
O_I_HIT_F

Counts the number of remote snoops 
that have requested a cache line be 
set to the I state from F (forward) 
state.

Requires 
writing MSR 
301H with 
mask = 8H

0CH 08H UNC_GQ_SNOOP.GOT
O_I_HIT_M

Counts the number of remote snoops 
that have requested a cache line be 
set to the I state from M state.

Requires 
writing MSR 
301H with 
mask = 1H

0CH 08H UNC_GQ_SNOOP.GOT
O_I_HIT_S

Counts the number of remote snoops 
that have requested a cache line be 
set to the I state from S state.

Requires 
writing MSR 
301H with 
mask = 4H

20H 01H UNC_QHL_REQUEST
S.IOH_READS

Counts number of Quickpath Home 
Logic read requests from the IOH.

20H 02H UNC_QHL_REQUEST
S.IOH_WRITES

Counts number of Quickpath Home 
Logic write requests from the IOH.

20H 04H UNC_QHL_REQUEST
S.REMOTE_READS

Counts number of Quickpath Home 
Logic read requests from  a remote 
socket.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-120 Vol. 3B



PERFORMANCE-MONITORING EVENTS
20H 08H UNC_QHL_REQUEST
S.REMOTE_WRITES

Counts number of Quickpath Home 
Logic write requests from a remote 
socket.

20H 10H UNC_QHL_REQUEST
S.LOCAL_READS

Counts number of Quickpath Home 
Logic read requests from  the local 
socket.

20H 20H UNC_QHL_REQUEST
S.LOCAL_WRITES

Counts number of Quickpath Home 
Logic write requests from  the local 
socket.

21H 01H UNC_QHL_CYCLES_F
ULL.IOH

Counts uclk cycles all entries in the 
Quickpath Home Logic IOH are full.

21H 02H UNC_QHL_CYCLES_F
ULL.REMOTE

Counts uclk cycles all entries in the 
Quickpath Home Logic remote tracker 
are full.

21H 04H UNC_QHL_CYCLES_F
ULL.LOCAL

Counts uclk cycles all entries in the 
Quickpath Home Logic local tracker 
are full.

22H 01H UNC_QHL_CYCLES_N
OT_EMPTY.IOH

Counts uclk cycles all entries in the 
Quickpath Home Logic IOH is busy.

22H 02H UNC_QHL_CYCLES_N
OT_EMPTY.REMOTE

Counts uclk cycles all entries in the 
Quickpath Home Logic remote tracker 
is busy.

22H 04H UNC_QHL_CYCLES_N
OT_EMPTY.LOCAL

Counts uclk cycles all entries in the 
Quickpath Home Logic local tracker is 
busy.

23H 01H UNC_QHL_OCCUPAN
CY.IOH

QHL IOH tracker allocate to deallocate 
read occupancy.

23H 02H UNC_QHL_OCCUPAN
CY.REMOTE

QHL remote tracker allocate to 
deallocate read occupancy.

23H 04H UNC_QHL_OCCUPAN
CY.LOCAL

QHL local tracker allocate to 
deallocate read occupancy.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-121



PERFORMANCE-MONITORING EVENTS
24H 02H UNC_QHL_ADDRESS
_CONFLICTS.2WAY

Counts number of QHL Active Address 
Table (AAT) entries that saw a max of 
2 conflicts. The AAT is a structure that 
tracks requests that are in conflict. 
The requests themselves are in the 
home tracker entries. The count is 
reported when an AAT entry 
deallocates.

24H 04H UNC_QHL_ADDRESS
_CONFLICTS.3WAY

Counts number of QHL Active Address 
Table (AAT) entries that saw a max of 
3 conflicts. The AAT is a structure that 
tracks requests that are in conflict. 
The requests themselves are in the 
home tracker entries. The count is 
reported when an AAT entry 
deallocates.

25H 01H UNC_QHL_CONFLICT
_CYCLES.IOH

Counts cycles the Quickpath Home 
Logic IOH Tracker contains two or 
more requests with an address 
conflict. A max of 3 requests can be in 
conflict.

25H 02H UNC_QHL_CONFLICT
_CYCLES.REMOTE

Counts cycles the Quickpath Home 
Logic Remote Tracker contains two or 
more requests with an address 
conflict. A max of 3 requests can be in 
conflict.

25H 04H UNC_QHL_CONFLICT
_CYCLES.LOCAL

Counts cycles the Quickpath Home 
Logic Local Tracker contains two or 
more requests with an address 
conflict.  A max of 3 requests can be 
in conflict.

26H 01H UNC_QHL_TO_QMC_
BYPASS

Counts number or requests to the 
Quickpath Memory Controller that 
bypass the Quickpath Home Logic. All 
local accesses can be bypassed. For 
remote requests, only read requests 
can be bypassed.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-122 Vol. 3B



PERFORMANCE-MONITORING EVENTS
28H 01H UNC_QMC_ISOC_FUL
L.READ.CH0

Counts cycles all the entries in the 
DRAM channel 0 high priority queue 
are occupied with isochronous read 
requests.

28H 02H UNC_QMC_ISOC_FUL
L.READ.CH1

Counts cycles all the entries in the 
DRAM channel 1high priority queue 
are occupied with isochronous read 
requests.

28H 04H UNC_QMC_ISOC_FUL
L.READ.CH2

Counts cycles all the entries in the 
DRAM channel 2 high priority queue 
are occupied with isochronous read 
requests.

28H 08H UNC_QMC_ISOC_FUL
L.WRITE.CH0

Counts cycles all the entries in the 
DRAM channel 0 high priority queue 
are occupied with isochronous write 
requests.

28H 10H UNC_QMC_ISOC_FUL
L.WRITE.CH1

Counts cycles all the entries in the 
DRAM channel 1 high priority queue 
are occupied with isochronous write 
requests.

28H 20H UNC_QMC_ISOC_FUL
L.WRITE.CH2

Counts cycles all the entries in the 
DRAM channel 2 high priority queue 
are occupied with isochronous write 
requests.

29H 01H UNC_QMC_BUSY.REA
D.CH0

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding read request to  DRAM 
channel 0.

29H 02H UNC_QMC_BUSY.REA
D.CH1

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding read request to  DRAM 
channel 1.

29H 04H UNC_QMC_BUSY.REA
D.CH2

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding read request to  DRAM 
channel 2.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-123



PERFORMANCE-MONITORING EVENTS
29H 08H UNC_QMC_BUSY.WRI
TE.CH0

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding write request to  DRAM 
channel 0.

29H 10H UNC_QMC_BUSY.WRI
TE.CH1

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding write request to  DRAM 
channel 1.

29H 20H UNC_QMC_BUSY.WRI
TE.CH2

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding write request to  DRAM 
channel 2.

2AH 01H UNC_QMC_OCCUPAN
CY.CH0

IMC channel 0 normal read request 
occupancy.

2AH 02H UNC_QMC_OCCUPAN
CY.CH1

IMC channel 1 normal read request 
occupancy.

2AH 04H UNC_QMC_OCCUPAN
CY.CH2

IMC channel 2 normal read request 
occupancy.

2AH 07H UNC_QMC_OCCUPAN
CY.ANY

Normal read request occupancy for 
any channel.

2BH 01H UNC_QMC_ISSOC_OC
CUPANCY.CH0

IMC channel 0 issoc read request 
occupancy.

2BH 02H UNC_QMC_ISSOC_OC
CUPANCY.CH1

IMC channel 1 issoc read request 
occupancy.

2BH 04H UNC_QMC_ISSOC_OC
CUPANCY.CH2

IMC channel 2 issoc read request 
occupancy.

2BH 07H UNC_QMC_ISSOC_RE
ADS.ANY

IMC issoc read request occupancy.

2CH 01H UNC_QMC_NORMAL_
READS.CH0

Counts the number of Quickpath 
Memory Controller channel 0 medium 
and low priority read requests. The 
QMC channel 0 normal read 
occupancy divided by this count 
provides the average QMC channel 0 
read latency. 

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-124 Vol. 3B



PERFORMANCE-MONITORING EVENTS
2CH 02H UNC_QMC_NORMAL_
READS.CH1

Counts the number of Quickpath 
Memory Controller channel 1 medium 
and low priority read requests. The 
QMC channel 1 normal read 
occupancy divided by this count 
provides the average QMC channel 1 
read latency. 

2CH 04H UNC_QMC_NORMAL_
READS.CH2

Counts the number of Quickpath 
Memory Controller channel 2 medium 
and low priority read requests. The 
QMC channel 2 normal read 
occupancy divided by this count 
provides the average QMC channel 2 
read latency. 

2CH 07H UNC_QMC_NORMAL_
READS.ANY

Counts the number of Quickpath 
Memory Controller medium and low 
priority read requests. The QMC 
normal read occupancy divided by this 
count provides the average QMC read 
latency. 

2DH 01H UNC_QMC_HIGH_PRI
ORITY_READS.CH0

Counts the number of Quickpath 
Memory Controller channel 0 high 
priority isochronous read requests. 

2DH 02H UNC_QMC_HIGH_PRI
ORITY_READS.CH1

Counts the number of Quickpath 
Memory Controller channel 1 high 
priority isochronous read requests. 

2DH 04H UNC_QMC_HIGH_PRI
ORITY_READS.CH2

Counts the number of Quickpath 
Memory Controller channel 2 high 
priority isochronous read requests. 

2DH 07H UNC_QMC_HIGH_PRI
ORITY_READS.ANY

Counts the number of Quickpath 
Memory Controller high priority 
isochronous read requests. 

2EH 01H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
0

Counts the number of Quickpath 
Memory Controller channel 0 critical 
priority isochronous read requests. 

2EH 02H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
1

Counts the number of Quickpath 
Memory Controller channel 1 critical 
priority isochronous read requests. 

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-125



PERFORMANCE-MONITORING EVENTS
2EH 04H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
2

Counts the number of Quickpath 
Memory Controller channel 2 critical 
priority isochronous read requests. 

2EH 07H UNC_QMC_CRITICAL_
PRIORITY_READS.AN
Y

Counts the number of Quickpath 
Memory Controller critical priority 
isochronous read requests. 

2FH 01H UNC_QMC_WRITES.F
ULL.CH0

Counts number of full cache line 
writes to DRAM channel 0.

2FH 02H UNC_QMC_WRITES.F
ULL.CH1

Counts number of full cache line 
writes to DRAM channel 1.

2FH 04H UNC_QMC_WRITES.F
ULL.CH2

Counts number of full cache line 
writes to DRAM channel 2.

2FH 07H UNC_QMC_WRITES.F
ULL.ANY

Counts number of full cache line 
writes to DRAM.

2FH 08H UNC_QMC_WRITES.P
ARTIAL.CH0

Counts number of partial cache line 
writes to DRAM channel 0.

2FH 10H UNC_QMC_WRITES.P
ARTIAL.CH1

Counts number of partial cache line 
writes to DRAM channel 1.

2FH 20H UNC_QMC_WRITES.P
ARTIAL.CH2

Counts number of partial cache line 
writes to DRAM channel 2.

2FH 38H UNC_QMC_WRITES.P
ARTIAL.ANY

Counts number of partial cache line 
writes to DRAM.

30H 01H UNC_QMC_CANCEL.C
H0

Counts number of DRAM channel 0 
cancel requests.

30H 02H UNC_QMC_CANCEL.C
H1

Counts number of DRAM channel 1 
cancel requests.

30H 04H UNC_QMC_CANCEL.C
H2

Counts number of DRAM channel 2 
cancel requests.

30H 07H UNC_QMC_CANCEL.A
NY

Counts number of DRAM cancel 
requests.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-126 Vol. 3B



PERFORMANCE-MONITORING EVENTS
31H 01H UNC_QMC_PRIORITY
_UPDATES.CH0

Counts number of DRAM channel 0 
priority updates. A priority update 
occurs when an ISOC high or critical 
request is received by the QHL and 
there is a matching request with 
normal priority that has already been 
issued to the QMC.  In this instance, 
the QHL will send a priority update to 
QMC to expedite the request.

31H 02H UNC_QMC_PRIORITY
_UPDATES.CH1

Counts number of DRAM channel 1 
priority updates. A priority update 
occurs when an ISOC high or critical 
request is received by the QHL and 
there is a matching request with 
normal priority that has already been 
issued to the QMC.  In this instance, 
the QHL will send a priority update to 
QMC to expedite the request.

31H 04H UNC_QMC_PRIORITY
_UPDATES.CH2

Counts number of DRAM channel 2 
priority updates. A priority update 
occurs when an ISOC high or critical 
request is received by the QHL and 
there is a matching request with 
normal priority that has already been 
issued to the QMC.  In this instance, 
the QHL will send a priority update to 
QMC to expedite the request.

31H 07H UNC_QMC_PRIORITY
_UPDATES.ANY

Counts number of DRAM priority 
updates. A priority update occurs 
when an ISOC high or critical request 
is received by the QHL and there is a 
matching request with normal priority 
that has already been issued to the 
QMC.  In this instance, the QHL will 
send a priority update to QMC to 
expedite the request.

32H 01H UNC_IMC_RETRY.CH
0

Counts number of IMC DRAM channel 
0 retries. DRAM retry only occurs 
when configured in RAS mode.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-127



PERFORMANCE-MONITORING EVENTS
32H 02H UNC_IMC_RETRY.CH
1

Counts number of IMC DRAM channel 
1 retries. DRAM retry only occurs 
when configured in RAS mode.

32H 04H UNC_IMC_RETRY.CH
2

Counts number of IMC DRAM channel 
2 retries. DRAM retry only occurs 
when configured in RAS mode.

32H 07H UNC_IMC_RETRY.AN
Y

Counts number of IMC DRAM retries 
from any channel. DRAM retry only 
occurs when configured in RAS mode.

33H 01H UNC_QHL_FRC_ACK_
CNFLTS.IOH

Counts number of Force Acknowledge 
Conflict messages sent by the 
Quickpath Home Logic to the IOH.

33H 02H UNC_QHL_FRC_ACK_
CNFLTS.REMOTE

Counts number of Force Acknowledge 
Conflict messages sent by the 
Quickpath Home Logic to the remote 
home.

33H 04H UNC_QHL_FRC_ACK_
CNFLTS.LOCAL

Counts number of Force Acknowledge 
Conflict messages sent by the 
Quickpath Home Logic to the local 
home.

33H 07H UNC_QHL_FRC_ACK_
CNFLTS.ANY

Counts number of Force Acknowledge 
Conflict messages sent by the 
Quickpath Home Logic.

34H 01H UNC_QHL_SLEEPS.IO
H_ORDER

Counts number of occurrences a 
request was put to sleep due to IOH 
ordering (write after read) conflicts. 
While in the sleep state, the request is 
not eligible to be scheduled to the 
QMC.

34H 02H UNC_QHL_SLEEPS.R
EMOTE_ORDER

Counts number of occurrences a 
request was put to sleep due to 
remote socket ordering (write after 
read) conflicts. While in the sleep 
state, the request is not eligible to be 
scheduled to the QMC.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-128 Vol. 3B



PERFORMANCE-MONITORING EVENTS
34H 04H UNC_QHL_SLEEPS.L
OCAL_ORDER

Counts number of occurrences a 
request was put to sleep due to local 
socket ordering (write after read) 
conflicts. While in the sleep state, the 
request is not eligible to be scheduled 
to the QMC.

34H 08H UNC_QHL_SLEEPS.IO
H_CONFLICT

Counts number of occurrences a 
request was put to sleep due to IOH 
address conflicts. While in the sleep 
state, the request is not eligible to be 
scheduled to the QMC.

34H 10H UNC_QHL_SLEEPS.R
EMOTE_CONFLICT

Counts number of occurrences a 
request was put to sleep due to 
remote socket address conflicts. While 
in the sleep state, the request is not 
eligible to be scheduled to the QMC.

34H 20H UNC_QHL_SLEEPS.L
OCAL_CONFLICT

Counts number of occurrences a 
request was put to sleep due to local 
socket address conflicts. While in the 
sleep state, the request is not eligible 
to be scheduled to the QMC.

35H 01H UNC_ADDR_OPCODE
_MATCH.IOH

Counts number of requests from the 
IOH, address/opcode of request is 
qualified by mask value written to 
MSR 396H. The following mask values 
are supported:

0: NONE

40000000_00000000H:RSPFWDI

40001A00_00000000H:RSPFWDS

40001D00_00000000H:RSPIWB

Match 
opcode/addres
s by writing 
MSR 396H 
with mask 
supported 
mask value

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-129



PERFORMANCE-MONITORING EVENTS
35H 02H UNC_ADDR_OPCODE
_MATCH.REMOTE

Counts number of requests from the 
remote socket, address/opcode of 
request is qualified by mask value 
written to MSR 396H. The following 
mask values are supported:

0: NONE

40000000_00000000H:RSPFWDI

40001A00_00000000H:RSPFWDS

40001D00_00000000H:RSPIWB

Match 
opcode/addres
s by writing 
MSR 396H 
with mask 
supported 
mask value

35H 04H UNC_ADDR_OPCODE
_MATCH.LOCAL

Counts number of requests from the 
local socket, address/opcode of 
request is qualified by mask value 
written to MSR 396H. The following 
mask values are supported:

0: NONE

40000000_00000000H:RSPFWDI

40001A00_00000000H:RSPFWDS

40001D00_00000000H:RSPIWB

Match 
opcode/addres
s by writing 
MSR 396H 
with mask 
supported 
mask value

40H 01H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.HO
ME.LINK_0

Counts cycles the Quickpath outbound 
link 0 HOME virtual channel is stalled 
due to lack of a VNA and VN0 credit. 
Note that this event does not filter 
out when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

40H 02H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.SNO
OP.LINK_0

Counts cycles the Quickpath outbound 
link 0 SNOOP virtual channel is stalled 
due to lack of a VNA and VN0 credit. 
Note that this event does not filter 
out when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-130 Vol. 3B



PERFORMANCE-MONITORING EVENTS
40H 04H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.NDR
.LINK_0

Counts cycles the Quickpath outbound 
link 0 non-data response virtual 
channel is stalled due to lack of a VNA 
and VN0 credit. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

40H 08H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.HO
ME.LINK_1

Counts cycles the Quickpath outbound 
link 1 HOME virtual channel is stalled 
due to lack of a VNA and VN0 credit. 
Note that this event does not filter 
out when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

40H 10H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.SNO
OP.LINK_1

Counts cycles the Quickpath outbound 
link 1 SNOOP virtual channel is stalled 
due to lack of a VNA and VN0 credit. 
Note that this event does not filter 
out when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

40H 20H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.NDR
.LINK_1

Counts cycles the Quickpath outbound 
link 1 non-data response virtual 
channel is stalled due to lack of a VNA 
and VN0 credit. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

40H 07H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.LIN
K_0

Counts cycles the Quickpath outbound 
link 0 virtual channels are stalled due 
to lack of a VNA and VN0 credit. Note 
that this event does not filter out 
when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-131



PERFORMANCE-MONITORING EVENTS
40H 38H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.LIN
K_1

Counts cycles the Quickpath outbound 
link 1 virtual channels are stalled due 
to lack of a VNA and VN0 credit. Note 
that this event does not filter out 
when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

41H 01H UNC_QPI_TX_STALL
ED_MULTI_FLIT.DRS.
LINK_0

Counts cycles the Quickpath outbound 
link 0 Data ResponSe virtual channel 
is stalled due to lack of VNA and VN0 
credits. Note that this event does not 
filter out when a flit would not have 
been selected for arbitration because 
another virtual channel is getting 
arbitrated.

41H 02H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCB.
LINK_0

Counts cycles the Quickpath outbound 
link 0 Non-Coherent Bypass virtual 
channel is stalled due to lack of VNA 
and VN0 credits. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

41H 04H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCS.
LINK_0

Counts cycles the Quickpath outbound 
link 0 Non-Coherent Standard virtual 
channel is stalled due to lack of VNA 
and VN0 credits. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

41H 08H UNC_QPI_TX_STALL
ED_MULTI_FLIT.DRS.
LINK_1

Counts cycles the Quickpath outbound 
link 1 Data ResponSe virtual channel 
is stalled due to lack of VNA and VN0 
credits. Note that this event does not 
filter out when a flit would not have 
been selected for arbitration because 
another virtual channel is getting 
arbitrated.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-132 Vol. 3B



PERFORMANCE-MONITORING EVENTS
41H 10H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCB.
LINK_1

Counts cycles the Quickpath outbound 
link 1 Non-Coherent Bypass virtual 
channel is stalled due to lack of VNA 
and VN0 credits. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

41H 20H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCS.
LINK_1

Counts cycles the Quickpath outbound 
link 1 Non-Coherent Standard virtual 
channel is stalled due to lack of VNA 
and VN0 credits. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

41H 07H UNC_QPI_TX_STALL
ED_MULTI_FLIT.LINK
_0

Counts cycles the Quickpath outbound 
link 0 virtual channels are stalled due 
to lack of VNA and VN0 credits. Note 
that this event does not filter out 
when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

41H 38H UNC_QPI_TX_STALL
ED_MULTI_FLIT.LINK
_1

Counts cycles the Quickpath outbound 
link 1 virtual channels are stalled due 
to lack of VNA and VN0 credits. Note 
that this event does not filter out 
when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

42H 01H UNC_QPI_TX_HEADE
R.FULL.LINK_0

Number of cycles that the header 
buffer in the Quickpath Interface 
outbound link 0 is full.

42H 02H UNC_QPI_TX_HEADE
R.BUSY.LINK_0

Number of cycles that the header 
buffer in the Quickpath Interface 
outbound link 0 is busy.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-133



PERFORMANCE-MONITORING EVENTS
42H 04H UNC_QPI_TX_HEADE
R.FULL.LINK_1

Number of cycles that the header 
buffer in the Quickpath Interface 
outbound link 1 is full.

42H 08H UNC_QPI_TX_HEADE
R.BUSY.LINK_1

Number of cycles that the header 
buffer in the Quickpath Interface 
outbound link 1 is busy.

43H 01H UNC_QPI_RX_NO_PP
T_CREDIT.STALLS.LIN
K_0

Number of cycles that snoop packets 
incoming to the Quickpath Interface 
link 0 are stalled and not sent to the 
GQ because the GQ Peer Probe 
Tracker (PPT) does not have any 
available entries.

43H 02H UNC_QPI_RX_NO_PP
T_CREDIT.STALLS.LIN
K_1

Number of cycles that snoop packets 
incoming to the Quickpath Interface 
link 1 are stalled and not sent to the 
GQ because the GQ Peer Probe 
Tracker (PPT) does not have any 
available entries.

60H 01H UNC_DRAM_OPEN.C
H0

Counts number of DRAM Channel 0 
open commands issued either for read 
or write. To read or write data, the 
referenced DRAM page must first be 
opened.

60H 02H UNC_DRAM_OPEN.C
H1

Counts number of DRAM Channel 1 
open commands issued either for read 
or write. To read or write data, the 
referenced DRAM page must first be 
opened.

60H 04H UNC_DRAM_OPEN.C
H2

Counts number of DRAM Channel 2 
open commands issued either for read 
or write. To read or write data, the 
referenced DRAM page must first be 
opened.

61H 01H UNC_DRAM_PAGE_C
LOSE.CH0

DRAM channel 0 command issued to 
CLOSE a page due to page idle timer 
expiration. Closing a page is done by 
issuing a precharge.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-134 Vol. 3B



PERFORMANCE-MONITORING EVENTS
61H 02H UNC_DRAM_PAGE_C
LOSE.CH1

DRAM channel 1 command issued to 
CLOSE a page due to page idle timer 
expiration. Closing a page is done by 
issuing a precharge.

61H 04H UNC_DRAM_PAGE_C
LOSE.CH2

DRAM channel 2 command issued to 
CLOSE a page due to page idle timer 
expiration. Closing a page is done by 
issuing a precharge.

62H 01H UNC_DRAM_PAGE_M
ISS.CH0

Counts the number of precharges 
(PRE) that were issued to DRAM 
channel 0 because there was a page 
miss. A page miss refers to a situation 
in which a page is currently open and 
another page from the same bank 
needs to be opened. The new page 
experiences a page miss. Closing of 
the old page is done by issuing a 
precharge.

62H 02H UNC_DRAM_PAGE_M
ISS.CH1

Counts the number of precharges 
(PRE) that were issued to DRAM 
channel 1 because there was a page 
miss. A page miss refers to a situation 
in which a page is currently open and 
another page from the same bank 
needs to be opened. The new page 
experiences a page miss. Closing of 
the old page is done by issuing a 
precharge.

62H 04H UNC_DRAM_PAGE_M
ISS.CH2

Counts the number of precharges 
(PRE) that were issued to DRAM 
channel 2 because there was a page 
miss. A page miss refers to a situation 
in which a page is currently open and 
another page from the same bank 
needs to be opened. The new page 
experiences a page miss. Closing of 
the old page is done by issuing a 
precharge.

63H 01H UNC_DRAM_READ_C
AS.CH0

Counts the number of times a read 
CAS command was issued on DRAM 
channel 0.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-135



PERFORMANCE-MONITORING EVENTS
63H 02H UNC_DRAM_READ_C
AS.AUTOPRE_CH0

Counts the number of times a read 
CAS command was issued on DRAM 
channel 0 where the command issued 
used the auto-precharge (auto page 
close) mode.

63H 04H UNC_DRAM_READ_C
AS.CH1

Counts the number of times a read 
CAS command was issued on DRAM 
channel 1.

63H 08H UNC_DRAM_READ_C
AS.AUTOPRE_CH1

Counts the number of times a read 
CAS command was issued on DRAM 
channel 1 where the command issued 
used the auto-precharge (auto page 
close) mode.

63H 10H UNC_DRAM_READ_C
AS.CH2

Counts the number of times a read 
CAS command was issued on DRAM 
channel 2.

63H 20H UNC_DRAM_READ_C
AS.AUTOPRE_CH2

Counts the number of times a read 
CAS command was issued on DRAM 
channel 2 where the command issued 
used the auto-precharge (auto page 
close) mode.

64H 01H UNC_DRAM_WRITE_
CAS.CH0

Counts the number of times a write 
CAS command was issued on DRAM 
channel 0.

64H 02H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH0

Counts the number of times a write 
CAS command was issued on DRAM 
channel 0 where the command issued 
used the auto-precharge (auto page 
close) mode.

64H 04H UNC_DRAM_WRITE_
CAS.CH1

Counts the number of times a write 
CAS command was issued on DRAM 
channel 1.

64H 08H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH1

Counts the number of times a write 
CAS command was issued on DRAM 
channel 1 where the command issued 
used the auto-precharge (auto page 
close) mode.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-136 Vol. 3B



PERFORMANCE-MONITORING EVENTS
64H 10H UNC_DRAM_WRITE_
CAS.CH2

Counts the number of times a write 
CAS command was issued on DRAM 
channel 2.

64H 20H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH2

Counts the number of times a write 
CAS command was issued on DRAM 
channel 2 where the command issued 
used the auto-precharge (auto page 
close) mode.

65H 01H UNC_DRAM_REFRES
H.CH0

Counts number of DRAM channel 0 
refresh commands. DRAM loses data 
content over time. In order to keep 
correct data content, the data values 
have to be refreshed periodically.

65H 02H UNC_DRAM_REFRES
H.CH1

Counts number of DRAM channel 1 
refresh commands. DRAM loses data 
content over time. In order to keep 
correct data content, the data values 
have to be refreshed periodically.

65H 04H UNC_DRAM_REFRES
H.CH2

Counts number of DRAM channel 2 
refresh commands. DRAM loses data 
content over time. In order to keep 
correct data content, the data values 
have to be refreshed periodically.

66H 01H UNC_DRAM_PRE_AL
L.CH0

Counts number of DRAM Channel 0 
precharge-all (PREALL) commands 
that close all open pages in a rank. 
PREALL is issued when the DRAM 
needs to be refreshed or needs to go 
into a power down mode.

66H 02H UNC_DRAM_PRE_AL
L.CH1

Counts number of DRAM Channel 1 
precharge-all (PREALL) commands 
that close all open pages in a rank. 
PREALL is issued when the DRAM 
needs to be refreshed or needs to go 
into a power down mode.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-137



PERFORMANCE-MONITORING EVENTS
66H 04H UNC_DRAM_PRE_AL
L.CH2

Counts number of DRAM Channel 2 
precharge-all (PREALL) commands 
that close all open pages in a rank. 
PREALL is issued when the DRAM 
needs to be refreshed or needs to go 
into a power down mode.

67H 01H UNC_DRAM_THERM
AL_THROTTLED

Uncore cycles DRAM was throttled 
due to its temperature being above 
the thermal throttling threshold.

80H 01H UNC_THERMAL_THR
OTTLING_TEMP.CORE
_0

Cycles that the PCU records that core 
0 is above the thermal throttling 
threshold temperature.

80H 02H UNC_THERMAL_THR
OTTLING_TEMP.CORE
_1

Cycles that the PCU records that core 
1 is above the thermal throttling 
threshold temperature.

80H 04H UNC_THERMAL_THR
OTTLING_TEMP.CORE
_2

Cycles that the PCU records that core 
2 is above the thermal throttling 
threshold temperature.

80H 08H UNC_THERMAL_THR
OTTLING_TEMP.CORE
_3

Cycles that the PCU records that core 
3 is above the thermal throttling 
threshold temperature.

81H 01H UNC_THERMAL_THR
OTTLED_TEMP.CORE
_0

Cycles that the PCU records that core 
0 is in the power throttled state due 
to core’s temperature being above the 
thermal throttling threshold.

81H 02H UNC_THERMAL_THR
OTTLED_TEMP.CORE
_1

Cycles that the PCU records that core 
1 is in the power throttled state due 
to core’s temperature being above the 
thermal throttling threshold.

81H 04H UNC_THERMAL_THR
OTTLED_TEMP.CORE
_2

Cycles that the PCU records that core 
2 is in the power throttled state due 
to core’s temperature being above the 
thermal throttling threshold.

81H 08H UNC_THERMAL_THR
OTTLED_TEMP.CORE
_3

Cycles that the PCU records that core 
3 is in the power throttled state due 
to core’s temperature being above the 
thermal throttling threshold.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-138 Vol. 3B



PERFORMANCE-MONITORING EVENTS
82H 01H UNC_PROCHOT_ASS
ERTION

Number of system assertions of 
PROCHOT indicating the entire 
processor has exceeded the thermal 
limit.

83H 01H UNC_THERMAL_THR
OTTLING_PROCHOT.C
ORE_0

Cycles that the PCU records that core 
0 is a low power state due to the 
system asserting PROCHOT the entire 
processor has exceeded the thermal 
limit.

83H 02H UNC_THERMAL_THR
OTTLING_PROCHOT.C
ORE_1

Cycles that the PCU records that core 
1 is a low power state due to the 
system asserting PROCHOT the entire 
processor has exceeded the thermal 
limit.

83H 04H UNC_THERMAL_THR
OTTLING_PROCHOT.C
ORE_2

Cycles that the PCU records that core 
2 is a low power state due to the 
system asserting PROCHOT the entire 
processor has exceeded the thermal 
limit.

83H 08H UNC_THERMAL_THR
OTTLING_PROCHOT.C
ORE_3

Cycles that the PCU records that core 
3 is a low power state due to the 
system asserting PROCHOT the entire 
processor has exceeded the thermal 
limit.

84H 01H UNC_TURBO_MODE.
CORE_0

Uncore cycles that core 0 is operating 
in turbo mode.

84H 02H UNC_TURBO_MODE.
CORE_1

Uncore cycles that core 1 is operating 
in turbo mode.

84H 04H UNC_TURBO_MODE.
CORE_2

Uncore cycles that core 2 is operating 
in turbo mode.

84H 08H UNC_TURBO_MODE.
CORE_3

Uncore cycles that core 3 is operating 
in turbo mode.

85H 02H UNC_CYCLES_UNHAL
TED_L3_FLL_ENABL
E

Uncore cycles that at least one core is 
unhalted and all L3 ways are enabled.

86H 01H UNC_CYCLES_UNHAL
TED_L3_FLL_DISABL
E

Uncore cycles that at least one core is 
unhalted and all L3 ways are disabled.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-139



PERFORMANCE-MONITORING EVENTS
19.6 PERFORMANCE MONITORING EVENTS FOR 
INTEL® XEON® PROCESSOR 5200, 5400 SERIES 
AND INTEL® CORE™2 EXTREME PROCESSORS QX 
9000 SERIES

Processors based on the Enhanced Intel Core microarchitecture support the architec-
tural and non-architectural performance-monitoring events listed in Table 19-1 and 
Table 19-13. In addition, they also support the following non-architectural perfor-
mance-monitoring events listed in Table 19-11. Fixed counters support the architec-
ture events defined in Table 19-12.

19.7 PERFORMANCE MONITORING EVENTS FOR 
INTEL® XEON® PROCESSOR 3000, 3200, 5100, 
5300 SERIES AND INTEL® CORE™2 DUO 
PROCESSORS

Processors based on the Intel Core microarchitecture support architectural and non-
architectural performance-monitoring events. 

Fixed-function performance counters are introduced first on processors based on 
Intel Core microarchitecture. Table 19-12 lists pre-defined performance events that 
can be counted using fixed-function performance counters.

Table 19-11.  Non-Architectural Performance Events for Processors Based on 
Enhanced Intel Core Microarchitecture

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

C0H 08H INST_RETIRED.VM_H
OST

Instruction retired while in VMX 
root operations.

D2H 10H RAT_STAALS.OTHER
_SERIALIZATION_ST
ALLS

This events counts the number of 
stalls due to other RAT resource 
serialization not counted by Umask 
value 0FH. 
19-140 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Table 19-13 lists general-purpose non-architectural performance-monitoring events 
supported in processors based on Intel Core microarchitecture. For convenience, 

Table 19-12.  Fixed-Function Performance Counter
and Pre-defined Performance Events

Fixed-Function 
Performance 
Counter Address

Event Mask 
Mnemonic Description

MSR_PERF_FIXED_
CTR0/IA32_PERF_FIX
ED_CTR0

309H Inst_Retired.Any This event counts the number of 
instructions that retire execution. For 
instructions that consist of multiple micro-
ops, this event counts the retirement of 
the last micro-op of the instruction. The 
counter continue counting during 
hardware interrupts, traps, and inside 
interrupt handlers.

MSR_PERF_FIXED_
CTR1/IA32_PERF_FIX
ED_CTR1

30AH CPU_CLK_UNHALT
ED.CORE

This event counts the number of core 
cycles while the core is not in a halt state. 
The core enters the halt state when it is 
running the HLT instruction. This event is a 
component in many key event ratios. 

The core frequency may change from time 
to time due to transitions associated with 
Enhanced Intel SpeedStep Technology or 
TM2. For this reason this event may have 
a changing ratio with regards to time. 

When the core frequency is constant, this 
event can approximate elapsed time while 
the core was not in halt state. 

MSR_PERF_FIXED_
CTR2/IA32_PERF_FIX
ED_CTR2

30BH CPU_CLK_UNHALT
ED.REF

This event counts the number of 
reference cycles when the core is not in a 
halt state and not in a TM stop-clock state. 
The core enters the halt state when it is 
running the HLT instruction or the MWAIT 
instruction. 

This event is not affected by core 
frequency changes (e.g., P states) but 
counts at the same frequency as the time 
stamp counter. This event can 
approximate elapsed time while the core 
was not in halt state and not in a TM stop-
clock state. 

This event has a constant ratio with the 
CPU_CLK_UNHALTED.BUS event. 
Vol. 3B 19-141



PERFORMANCE-MONITORING EVENTS
Table 19-13 also includes architectural events and describes minor model-specific 
behavior where applicable. Software must use a general-purpose performance 
counter to count events listed in Table 19-13.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture

Event 
Num

Umask
Value Event Name Definition

Description and
Comment

03H 02H LOAD_BLOCK.STA Loads blocked 
by a preceding 
store with 
unknown 
address 

This event indicates that loads are blocked 
by preceding stores. A load is blocked 
when there is a preceding store to an 
address that is not yet calculated. The 
number of events is greater or equal to 
the number of load operations that were 
blocked. 

If the load and the store are always to 
different addresses, check why the 
memory disambiguation mechanism is not 
working. To avoid such blocks, increase the 
distance between the store and the 
following load so that the store address is 
known at the time the load is dispatched.

03H 04H LOAD_BLOCK.STD Loads blocked 
by a preceding 
store with 
unknown data

This event indicates that loads are blocked 
by preceding stores. A load is blocked 
when there is a preceding store to the 
same address and the stored data value is 
not yet known. The number of events is 
greater or equal to the number of load 
operations that were blocked. 

To avoid such blocks, increase the distance 
between the store and the dependant 
load, so that the store data is known at 
the time the load is dispatched.

03H 08H LOAD_BLOCK.
OVERLAP_STORE

Loads that 
partially 
overlap an 
earlier store, or 
4-Kbyte aliased 
with a previous 
store

This event indicates that loads are blocked 
due to a variety of reasons. Some of the 
triggers for this event are when a load is 
blocked by a preceding store, in one of the 
following:  

• Some of the loaded byte locations are 
written by the preceding store and 
some are not.  

• The load is from bytes written by the 
preceding store, the store is aligned to 
its size and either:
19-142 Vol. 3B



PERFORMANCE-MONITORING EVENTS
• The load’s data size is one or two bytes 
and it is not aligned to the store.  

• The load’s data size is of four or eight 
bytes and the load is misaligned. 

• The load is from bytes written by the 
preceding store, the store is misaligned 
and the load is not aligned on the 
beginning of the store.  

• The load is split over an eight byte 
boundary (excluding 16-byte loads). 

• The load and store have the same 
offset relative to the beginning of 
different 4-KByte pages. This case is 
also called 4-KByte aliasing. 

• In all these cases the load is blocked 
until after the blocking store retires and 
the stored data is committed to the 
cache hierarchy.

03H 10H LOAD_BLOCK.
UNTIL_RETIRE

Loads blocked 
until retirement

This event indicates that load operations 
were blocked until retirement. The number 
of events is greater or equal to the 
number of load operations that were 
blocked. 
This includes mainly uncacheable loads 
and split loads (loads that cross the cache 
line boundary) but may include other cases 
where loads are blocked until retirement.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-143



PERFORMANCE-MONITORING EVENTS
03H 20H LOAD_BLOCK.L1D Loads blocked 
by the L1 data 
cache

This event indicates that loads are blocked 
due to one or more reasons.  Some 
triggers for this event are:  

• The number of L1 data cache misses 
exceeds the maximum number of 
outstanding misses supported by the 
processor. This includes misses 
generated as result of demand fetches, 
software prefetches or hardware 
prefetches.  

• Cache line split loads. 
• Partial reads, such as reads to un-

cacheable memory, I/O instructions and 
more. 

• A locked load operation is in progress. 
The number of events is greater or 
equal to the number of load operations 
that were blocked.

04H 01H SB_DRAIN_
CYCLES

Cycles while 
stores are 
blocked due to 
store buffer 
drain

This event counts every cycle during 
which the store buffer is draining. This 
includes: 

• Serializing operations such as CPUID 
• Synchronizing operations such as XCHG 
• Interrupt acknowledgment 
• Other conditions, such as cache flushing

04H 02H STORE_BLOCK.
ORDER

Cycles while 
store is waiting 
for a preceding 
store to be 
globally 
observed

This event counts the total duration, in 
number of cycles, which stores are waiting 
for a preceding stored cache line to be 
observed by other cores. 
This situation happens as a result of the 
strong store ordering behavior, as defined 
in “Memory Ordering,” Chapter 8, Intel® 64 
and IA-32 Architectures Software 
Developer’s Manual, Volume 3A. 

The stall may occur and be noticeable if 
there are many cases when a store either 
misses the L1 data cache or hits a cache 
line in the Shared state. If the store 
requires a bus transaction to read the 
cache line then the stall ends when snoop 
response for the bus transaction arrives.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
19-144 Vol. 3B



PERFORMANCE-MONITORING EVENTS
04H 08H STORE_BLOCK.
SNOOP

A store is 
blocked due to 
a conflict with 
an external or 
internal snoop.

This event counts the number of cycles 
the store port was used for snooping the 
L1 data cache and a store was stalled by 
the snoop. The store is typically 
resubmitted one cycle later.

06H 00H SEGMENT_REG_
LOADS

Number of 
segment 
register loads

This event counts the number of segment 
register load operations. Instructions that 
load new values into segment registers 
cause a penalty. 

This event indicates performance issues in 
16-bit code. If this event occurs 
frequently, it may be useful to calculate 
the number of instructions retired per 
segment register load. If the resulting 
calculation is low (on average a small 
number of instructions are executed 
between segment register loads), then the 
code’s segment register usage should be 
optimized. 

As a result of branch misprediction, this 
event is speculative and may include 
segment register loads that do not 
actually occur. However, most segment 
register loads are internally serialized and 
such speculative effects are minimized.

07H 00H SSE_PRE_EXEC.
NTA

Streaming SIMD 
Extensions 
(SSE) Prefetch 
NTA 
instructions 
executed

This event counts the number of times the 
SSE instruction prefetchNTA is executed. 

This instruction prefetches the data to the 
L1 data cache.

07H 01H SSE_PRE_EXEC.L1 Streaming SIMD 
Extensions 
(SSE) 
PrefetchT0 
instructions 
executed

This event counts the number of times the 
SSE instruction prefetchT0 is executed. 
This instruction prefetches the data to the 
L1 data cache and L2 cache.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-145



PERFORMANCE-MONITORING EVENTS
07H 02H SSE_PRE_EXEC.L2  Streaming 
SIMD 
Extensions 
(SSE) 
PrefetchT1 and 
PrefetchT2 
instructions 
executed

This event counts the number of times the 
SSE instructions prefetchT1 and 
prefetchT2 are executed. These 
instructions prefetch the data to the L2 
cache.

07H 03H SSE_PRE_
EXEC.STORES

Streaming SIMD 
Extensions 
(SSE) Weakly-
ordered store 
instructions 
executed

This event counts the number of times 
SSE non-temporal store instructions are 
executed.

08H 01H DTLB_MISSES.
ANY

Memory 
accesses that 
missed the 
DTLB

This event counts the number of Data 
Table Lookaside Buffer (DTLB) misses. The 
count includes misses detected as a result 
of speculative accesses. 

Typically a high count for this event 
indicates that the code accesses a large 
number of data pages.

08H 02H DTLB_MISSES
.MISS_LD

DTLB misses 
due to load 
operations

This event counts the number of Data 
Table Lookaside Buffer (DTLB) misses due 
to load operations. 

This count includes misses detected as a 
result of speculative accesses.

08H 04H DTLB_MISSES.L0_
MISS_LD

L0 DTLB misses 
due to load 
operations

This event counts the number of level 0 
Data Table Lookaside Buffer (DTLB0) 
misses due to load operations. 

This count includes misses detected as a 
result of speculative accesses. Loads that 
miss that DTLB0 and hit the DTLB1 can 
incur two-cycle penalty.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
19-146 Vol. 3B



PERFORMANCE-MONITORING EVENTS
08H 08H DTLB_MISSES.
MISS_ST

TLB misses due 
to store 
operations

This event counts the number of Data 
Table Lookaside Buffer (DTLB) misses due 
to store operations. 

This count includes misses detected as a 
result of speculative accesses. Address 
translation for store operations is 
performed in the DTLB1.

09H 01H MEMORY_
DISAMBIGUATION.
RESET

Memory 
disambiguation 
reset cycles

This event counts the number of cycles 
during which memory disambiguation 
misprediction occurs. As a result the 
execution pipeline is cleaned and 
execution of the mispredicted load 
instruction and all succeeding instructions 
restarts. 

This event occurs when the data address 
accessed by a load instruction, collides 
infrequently with preceding stores, but 
usually there is no collision. It happens 
rarely, and may have a penalty of about 20 
cycles.

09H 02H MEMORY_DISAMBI
GUATION.SUCCESS

Number of 
loads 
successfully 
disambiguated.

This event counts the number of load 
operations that were successfully 
disambiguated. Loads are preceded by a 
store with an unknown address, but they 
are not blocked.

0CH 01H PAGE_WALKS
.COUNT

Number of 
page-walks 
executed

This event counts the number of page-
walks executed due to either a DTLB or 
ITLB miss. 

The page walk duration, 
PAGE_WALKS.CYCLES, divided by number 
of page walks is the average duration of a 
page walk. The average can hint whether 
most of the page-walks are satisfied by 
the caches or cause an L2 cache miss.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-147



PERFORMANCE-MONITORING EVENTS
0CH 02H PAGE_WALKS.
CYCLES

Duration of 
page-walks in 
core cycles 

This event counts the duration of page-
walks in core cycles. The paging mode in 
use typically affects the duration of page 
walks. 

Page walk duration divided by number of 
page walks is the average duration of 
page-walks. The average can hint at 
whether most of the page-walks are 
satisfied by the caches or cause an L2 
cache miss.

10H 00H FP_COMP_OPS
_EXE

Floating point 
computational 
micro-ops 
executed

This event counts the number of floating 
point computational micro-ops executed.

Use IA32_PMC0 only.

11H 00H FP_ASSIST Floating point 
assists

This event counts the number of floating 
point operations executed that required 
micro-code assist intervention. Assists are 
required in the following cases:  

• Streaming SIMD Extensions (SSE) 
instructions: 

• Denormal input when the DAZ 
(Denormals Are Zeros) flag is off 

• Underflow result when the FTZ (Flush 
To Zero) flag is off 

• X87 instructions: 
• NaN or denormal are loaded to a 

register or used as input from memory 
• Division by 0  
• Underflow output
Use IA32_PMC1 only.

12H 00H MUL Multiply 
operations 
executed

This event counts the number of multiply 
operations executed. This includes integer 
as well as floating point multiply 
operations.

Use IA32_PMC1 only.

13H 00H DIV Divide 
operations 
executed

This event counts the number of divide 
operations executed. This includes integer 
divides, floating point divides and square-
root operations executed.

Use IA32_PMC1 only.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
19-148 Vol. 3B



PERFORMANCE-MONITORING EVENTS
14H 00H CYCLES_DIV
_BUSY

Cycles the 
divider busy

This event counts the number of cycles 
the divider is busy executing divide or 
square root operations. The divide can be 
integer, X87 or Streaming SIMD 
Extensions (SSE). The square root 
operation can be either X87 or SSE.

Use IA32_PMC0 only.

18H 00H IDLE_DURING
_DIV

Cycles the 
divider is busy 
and all other 
execution units 
are idle.

This event counts the number of cycles 
the divider is busy (with a divide or a 
square root operation) and no other 
execution unit or load operation is in 
progress. 

Load operations are assumed to hit the L1 
data cache. This event considers only 
micro-ops dispatched after the divider 
started operating.

Use IA32_PMC0 only.

19H 00H DELAYED_
BYPASS.FP

Delayed bypass 
to FP operation

This event counts the number of times 
floating point operations use data 
immediately after the data was generated 
by a non-floating point execution unit. 
Such cases result in one penalty cycle due 
to data bypass between the units.

Use IA32_PMC1 only.

19H 01H DELAYED_
BYPASS.SIMD

Delayed bypass 
to SIMD 
operation

This event counts the number of times 
SIMD operations use data immediately 
after the data was generated by a non-
SIMD execution unit. Such cases result in 
one penalty cycle due to data bypass 
between the units.

Use IA32_PMC1 only.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-149



PERFORMANCE-MONITORING EVENTS
19H 02H DELAYED_
BYPASS.LOAD

Delayed bypass 
to load 
operation

This event counts the number of delayed 
bypass penalty cycles that a load 
operation incurred. 

When load operations use data 
immediately after the data was generated 
by an integer execution unit, they may 
(pending on certain dynamic internal 
conditions) incur one penalty cycle due to 
delayed data bypass between the units.

Use IA32_PMC1 only.

21H See 
Table 
18-2

L2_ADS.(Core) Cycles L2 
address bus is 
in use

This event counts the number of cycles 
the L2 address bus is being used for 
accesses to the L2 cache or bus queue. It 
can count occurrences for this core or both 
cores.

23H See 
Table 
18-2

L2_DBUS_BUSY
_RD.(Core)

Cycles the L2 
transfers data 
to the core

This event counts the number of cycles 
during which the L2 data bus is busy 
transferring data from the L2 cache to the 
core. It counts for all L1 cache misses (data 
and instruction) that hit the L2 cache. 

This event can count occurrences for this 
core or both cores.

24H Com-
bined 
mask 
from 
Table 
18-2 
and 
Table 
18-4

L2_LINES_IN.
(Core, Prefetch)

L2 cache 
misses

This event counts the number of cache 
lines allocated in the L2 cache. Cache lines 
are allocated in the L2 cache as a result of 
requests from the L1 data and instruction 
caches and the L2 hardware prefetchers 
to cache lines that are missing in the L2 
cache. 

This event can count occurrences for this 
core or both cores. It can also count 
demand requests and L2 hardware 
prefetch requests together or separately.

25H See 
Table 
18-2

L2_M_LINES_IN.
(Core)

L2 cache line 
modifications

This event counts whenever a modified 
cache line is written back from the L1 data 
cache to the L2 cache. 

This event can count occurrences for this 
core or both cores.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
19-150 Vol. 3B



PERFORMANCE-MONITORING EVENTS
26H See 
Table 
18-2 
and 
Table 
18-4

L2_LINES_OUT.
(Core, Prefetch)

L2 cache lines 
evicted

This event counts the number of L2 cache 
lines evicted. 

This event can count occurrences for this 
core or both cores. It can also count 
evictions due to demand requests and L2 
hardware prefetch requests together or 
separately.

27H See 
Table 
18-2 
and 
Table 
18-4

L2_M_LINES_OUT.(
Core, Prefetch)

Modified lines 
evicted from 
the L2 cache

This event counts the number of L2 
modified cache lines evicted. These lines 
are written back to memory unless they 
also exist in a modified-state in one of the 
L1 data caches. 

This event can count occurrences for this 
core or both cores. It can also count 
evictions due to demand requests and L2 
hardware prefetch requests together or 
separately.

28H Com-
bined 
mask 
from 
Table 
18-2 
and 
Table 
18-5

L2_IFETCH.(Core, 
Cache Line State)

L2 cacheable 
instruction 
fetch requests

This event counts the number of 
instruction cache line requests from the 
IFU. It does not include fetch requests 
from uncacheable memory. It does not 
include ITLB miss accesses.  

This event can count occurrences for this 
core or both cores. It can also count 
accesses to cache lines at different MESI 
states.

29H Combin
ed mask 
from 
Table 
18-2, 
Table 
18-4, 
and 
Table 
18-5

L2_LD.(Core, 
Prefetch, Cache 
Line State)

L2 cache reads This event counts L2 cache read requests 
coming from the L1 data cache and L2 
prefetchers.  

The event can count occurrences:

• for this core or both cores
• due to demand requests and L2 

hardware prefetch requests together or 
separately

• of accesses to cache lines at different 
MESI states

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-151



PERFORMANCE-MONITORING EVENTS
2AH See 
Table 
18-2 
and 
Table 
18-5

L2_ST.(Core, Cache 
Line State)

L2 store 
requests

This event counts all store operations that 
miss the L1 data cache and request the 
data from the L2 cache.  

The event can count occurrences for this 
core or both cores. It can also count 
accesses to cache lines at different MESI 
states.

2BH See 
Table 
18-2 
and 
Table 
18-5

L2_LOCK.(Core, 
Cache Line State)

L2 locked 
accesses

This event counts all locked accesses to 
cache lines that miss the L1 data cache. 

The event can count occurrences for this 
core or both cores. It can also count 
accesses to cache lines at different MESI 
states.

2EH See 
Table 
18-2, 
Table 
18-4, 
and 
Table 
18-5

L2_RQSTS.(Core, 
Prefetch, Cache 
Line State)

L2 cache 
requests

This event counts all completed L2 cache 
requests. This includes L1 data cache 
reads, writes, and locked accesses, L1 data 
prefetch requests, instruction fetches, and 
all L2 hardware prefetch requests.  

This event can count occurrences:

• for this core or both cores.
• due to demand requests and L2 

hardware prefetch requests together, 
or separately

• of accesses to cache lines at different 
MESI states

2EH 41H L2_RQSTS.SELF.
DEMAND.I_STATE

L2 cache 
demand 
requests from 
this core that 
missed the L2

This event counts all completed L2 cache 
demand requests from this core that miss 
the L2 cache. This includes L1 data cache 
reads, writes, and locked accesses, L1 data 
prefetch requests, and instruction fetches. 

This is an architectural performance event.

2EH 4FH L2_RQSTS.SELF.
DEMAND.MESI

L2 cache 
demand 
requests from 
this core

This event counts all completed L2 cache 
demand requests from this core. This 
includes L1 data cache reads, writes, and 
locked accesses, L1 data prefetch 
requests, and instruction fetches. 

This is an architectural performance event.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
19-152 Vol. 3B



PERFORMANCE-MONITORING EVENTS
30H See 
Table 
18-2, 
Table 
18-4, 
and 
Table 
18-5

L2_REJECT_BUSQ.(
Core, Prefetch, 
Cache Line State)

Rejected L2 
cache requests

This event indicates that a pending L2 
cache request that requires a bus 
transaction is delayed from moving to the 
bus queue. Some of the reasons for this 
event are: 

• The bus queue is full. 
• The bus queue already holds an entry 

for a cache line in the same set. 
The number of events is greater or equal 
to the number of requests that were 
rejected. 

• for this core or both cores. 
• due to demand requests and L2 

hardware prefetch requests together, 
or separately. 

• of accesses to cache lines at different 
MESI states.

32H See 
Table 
18-2

L2_NO_REQ.(Core) Cycles no L2 
cache requests 
are pending

This event counts the number of cycles 
that no L2 cache requests were pending 
from a core. When using the BOTH_CORE 
modifier, the event counts only if none of 
the cores have a pending request. The 
event counts also when one core is halted 
and the other is not halted. 

The event can count occurrences for this 
core or both cores.

3AH 00H EIST_TRANS Number of 
Enhanced Intel 
SpeedStep 
Technology 
(EIST) 
transitions

This event counts the number of 
transitions that include a frequency 
change, either with or without voltage 
change. This includes Enhanced Intel 
SpeedStep Technology (EIST) and TM2 
transitions.

The event is incremented only while the 
counting core is in C0 state. Since 
transitions to higher-numbered CxE states 
and TM2 transitions include a frequency 
change or voltage transition, the event is 
incremented accordingly. 

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-153



PERFORMANCE-MONITORING EVENTS
3BH C0H THERMAL_TRIP Number of 
thermal trips

This event counts the number of thermal 
trips. A thermal trip occurs whenever the 
processor temperature exceeds the 
thermal trip threshold temperature.

Following a thermal trip, the processor 
automatically reduces frequency and 
voltage. The processor checks the 
temperature every millisecond and returns 
to normal when the temperature falls 
below the thermal trip threshold 
temperature. 

3CH 00H CPU_CLK_
UNHALTED.
CORE_P

Core cycles 
when core is 
not halted

This event counts the number of core 
cycles while the core is not in a halt state. 
The core enters the halt state when it is 
running the HLT instruction. This event is a 
component in many key event ratios.  

The core frequency may change due to 
transitions associated with Enhanced Intel 
SpeedStep Technology or TM2. For this 
reason, this event may have a changing 
ratio in regard to time. 

When the core frequency is constant, this 
event can give approximate elapsed time 
while the core not in halt state.

This is an architectural performance event. 

3CH 01H CPU_CLK_
UNHALTED.BUS

Bus cycles 
when core is 
not halted

This event counts the number of bus 
cycles while the core is not in the halt 
state. This event can give a measurement 
of the elapsed time while the core was not 
in the halt state. The core enters the halt 
state when it is running the HLT 
instruction. 

The event also has a constant ratio with 
CPU_CLK_UNHALTED.REF event, which is 
the maximum bus to processor frequency 
ratio.  

Non-halted bus cycles are a component in 
many key event ratios.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
19-154 Vol. 3B



PERFORMANCE-MONITORING EVENTS
3CH 02H CPU_CLK_
UNHALTED.NO
_OTHER

Bus cycles 
when core is 
active and the 
other is halted

This event counts the number of bus 
cycles during which the core remains non-
halted and the other core on the processor 
is halted. 

This event can be used to determine the 
amount of parallelism exploited by an 
application or a system. Divide this event 
count by the bus frequency to determine 
the amount of time that only one core was 
in use.

40H See 
Table 
18-5 

L1D_CACHE_LD.
(Cache Line State)

L1 cacheable 
data reads

This event counts the number of data 
reads from cacheable memory. Locked 
reads are not counted.

41H See 
Table 
18-5

L1D_CACHE_ST.
(Cache Line State)

L1 cacheable 
data writes

This event counts the number of data 
writes to cacheable memory. Locked 
writes are not counted.

42H See 
Table 
18-5

L1D_CACHE_
LOCK.(Cache Line 
State)

L1 data 
cacheable 
locked reads

This event counts the number of locked 
data reads from cacheable memory.

42H 10H L1D_CACHE_
LOCK_DURATION

Duration of L1 
data cacheable 
locked 
operation

This event counts the number of cycles 
during which any cache line is locked by 
any locking instruction. 

Locking happens at retirement and 
therefore the event does not occur for 
instructions that are speculatively 
executed. Locking duration is shorter than 
locked instruction execution duration.

43H 01H L1D_ALL_REF All references 
to the L1 data 
cache

This event counts all references to the L1 
data cache, including all loads and stores 
with any memory types. 

The event counts memory accesses only 
when they are actually performed. For 
example, a load blocked by unknown store 
address and later performed is only 
counted once. 

The event includes non-cacheable 
accesses, such as I/O accesses.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-155



PERFORMANCE-MONITORING EVENTS
43H 02H L1D_ALL_
CACHE_REF

L1 Data 
cacheable 
reads and 
writes

This event counts the number of data 
reads and writes from cacheable memory, 
including locked operations. 

This event is a sum of:

• L1D_CACHE_LD.MESI
• L1D_CACHE_ST.MESI
• L1D_CACHE_LOCK.MESI

45H 0FH L1D_REPL Cache lines 
allocated in the 
L1 data cache

This event counts the number of lines 
brought into the L1 data cache.

46H 00H L1D_M_REPL Modified cache 
lines allocated 
in the L1 data 
cache

This event counts the number of modified 
lines brought into the L1 data cache. 

47H 00H L1D_M_EVICT Modified cache 
lines evicted 
from the L1 
data cache

This event counts the number of modified 
lines evicted from the L1 data cache, 
whether due to replacement or by snoop 
HITM intervention.

48H 00H L1D_PEND_
MISS

Total number of 
outstanding L1 
data cache 
misses at any 
cycle

This event counts the number of 
outstanding L1 data cache misses at any 
cycle. An L1 data cache miss is 
outstanding from the cycle on which the 
miss is determined until the first chunk of 
data is available. This event counts: 

• all cacheable demand requests
• L1 data cache hardware prefetch 

requests
• requests to write through memory
• requests to write combine memory 
Uncacheable requests are not counted. 
The count of this event divided by the 
number of L1 data cache misses, 
L1D_REPL, is the average duration in core 
cycles of an L1 data cache miss.

49H 01H L1D_SPLIT.LOADS Cache line split 
loads from the 
L1 data cache

This event counts the number of load 
operations that span two cache lines. Such 
load operations are also called split loads. 
Split load operations are executed at 
retirement. 

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
19-156 Vol. 3B



PERFORMANCE-MONITORING EVENTS
49H 02H L1D_SPLIT.
STORES

Cache line split 
stores to the 
L1 data cache

This event counts the number of store 
operations that span two cache lines.

4BH 00H SSE_PRE_
MISS.NTA

Streaming SIMD 
Extensions 
(SSE) Prefetch 
NTA 
instructions 
missing all 
cache levels

This event counts the number of times the 
SSE instructions prefetchNTA were 
executed and missed all cache levels. 

Due to speculation an executed instruction 
might not retire. This instruction 
prefetches the data to the L1 data cache.

4BH 01H SSE_PRE_
MISS.L1

Streaming SIMD 
Extensions 
(SSE) 
PrefetchT0 
instructions 
missing all 
cache levels

This event counts the number of times the 
SSE instructions prefetchT0 were 
executed and missed all cache levels. 

Due to speculation executed instruction 
might not retire. The prefetchT0 
instruction prefetches data to the L2 
cache and L1 data cache.

4BH 02H SSE_PRE_
MISS.L2

Streaming SIMD 
Extensions 
(SSE) 
PrefetchT1 and 
PrefetchT2 
instructions 
missing all 
cache levels

This event counts the number of times the 
SSE instructions prefetchT1 and 
prefetchT2 were executed and missed all 
cache levels. 

Due to speculation, an executed 
instruction might not retire. The 
prefetchT1 and PrefetchNT2 instructions 
prefetch data to the L2 cache.

4CH 00H LOAD_HIT_PRE Load 
operations 
conflicting with 
a software 
prefetch to the 
same address

This event counts load operations sent to 
the L1 data cache while a previous 
Streaming SIMD Extensions (SSE) prefetch 
instruction to the same cache line has 
started prefetching but has not yet 
finished.

4EH 10H L1D_PREFETCH.
REQUESTS

L1 data cache 
prefetch 
requests

This event counts the number of times the 
L1 data cache requested to prefetch a 
data cache line. Requests can be rejected 
when the L2 cache is busy and 
resubmitted later or lost. 

All requests are counted, including those 
that are rejected.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-157



PERFORMANCE-MONITORING EVENTS
60H See 
Table 
18-2 
and 
Table 
18-3

BUS_REQUEST_
OUTSTANDING.
(Core and Bus 
Agents)

Outstanding 
cacheable data 
read bus 
requests 
duration

This event counts the number of pending 
full cache line read transactions on the bus 
occurring in each cycle. A read transaction 
is pending from the cycle it is sent on the 
bus until the full cache line is received by 
the processor.

The event counts only full-line cacheable 
read requests from either the L1 data 
cache or the L2 prefetchers. It does not 
count Read for Ownership transactions, 
instruction byte fetch transactions, or any 
other bus transaction. 

61H See 
Table 
18-3.

BUS_BNR_DRV.
(Bus Agents)

Number of Bus 
Not Ready 
signals 
asserted

This event counts the number of Bus Not 
Ready (BNR) signals that the processor 
asserts on the bus to suspend additional 
bus requests by other bus agents. 

A bus agent asserts the BNR signal when 
the number of data and snoop 
transactions is close to the maximum that 
the bus can handle. To obtain the number 
of bus cycles during which the BNR signal 
is asserted, multiply the event count by 
two. 

While this signal is asserted, new 
transactions cannot be submitted on the 
bus. As a result, transaction latency may 
have higher impact on program 
performance.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
19-158 Vol. 3B



PERFORMANCE-MONITORING EVENTS
62H See 
Table 
18-3

BUS_DRDY_
CLOCKS.(Bus 
Agents)

Bus cycles 
when data is 
sent on the bus

This event counts the number of bus 
cycles during which the DRDY (Data 
Ready) signal is asserted on the bus. The 
DRDY signal is asserted when data is sent 
on the bus. With the 'THIS_AGENT' mask 
this event counts the number of bus 
cycles during which this agent (the 
processor) writes data on the bus back to 
memory or to other bus agents. This 
includes all explicit and implicit data 
writebacks, as well as partial writes. 

With the 'ALL_AGENTS' mask, this event 
counts the number of bus cycles during 
which any bus agent sends data on the 
bus. This includes all data reads and writes 
on the bus.

63H See 
Table 
18-2 
and 
Table 
18-3

BUS_LOCK_
CLOCKS.(Core and 
Bus Agents)

Bus cycles 
when a LOCK 
signal asserted

This event counts the number of bus 
cycles, during which the LOCK signal is 
asserted on the bus. A LOCK signal is 
asserted when there is a locked memory 
access, due to: 

• uncacheable memory 
• locked operation that spans two cache 

lines 
• page-walk from an uncacheable page 

table
Bus locks have a very high performance 
penalty and it is highly recommended to 
avoid such accesses.

64H See 
Table 
18-2

BUS_DATA_
RCV.(Core)

Bus cycles 
while processor 
receives data

This event counts the number of bus 
cycles during which the processor is busy 
receiving data. 

65H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_BRD.(
Core and Bus 
Agents)

Burst read bus 
transactions

This event counts the number of burst 
read transactions including: 

• L1 data cache read misses (and L1 data 
cache hardware prefetches) 

• L2 hardware prefetches by the DPL and 
L2 streamer 

• IFU read misses of cacheable lines. 
It does not include RFO transactions.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-159



PERFORMANCE-MONITORING EVENTS
66H See 
Table 
18-2 
and 
Table 
18-3.

BUS_TRANS_RFO.(
Core and Bus 
Agents)

RFO bus 
transactions

This event counts the number of Read For 
Ownership (RFO) bus transactions, due to 
store operations that miss the L1 data 
cache and the L2 cache. It also counts RFO 
bus transactions due to locked operations.

67H See 
Table 
18-2 
and 
Table 
18-3.

BUS_TRANS_WB.
(Core and Bus 
Agents)

Explicit 
writeback bus 
transactions

This event counts all explicit writeback bus 
transactions due to dirty line evictions. It 
does not count implicit writebacks due to 
invalidation by a snoop request.

68H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
IFETCH.(Core and 
Bus Agents)

Instruction-
fetch bus 
transactions

This event counts all instruction fetch full 
cache line bus transactions.

69H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
INVAL.(Core and 
Bus Agents)

Invalidate bus 
transactions

This event counts all invalidate 
transactions. Invalidate transactions are 
generated when: 

• A store operation hits a shared line in 
the L2 cache. 

• A full cache line write misses the L2 
cache or hits a shared line in the L2 
cache.

6AH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
PWR.(Core and Bus 
Agents)

Partial write 
bus transaction

This event counts partial write bus 
transactions.

6BH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS
_P.(Core and Bus 
Agents)

Partial bus 
transactions

This event counts all (read and write) 
partial bus transactions.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
19-160 Vol. 3B



PERFORMANCE-MONITORING EVENTS
6CH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_IO.(C
ore and Bus 
Agents)

IO bus 
transactions

This event counts the number of 
completed I/O bus transactions as a result 
of IN and OUT instructions. The count does 
not include memory mapped IO.

6DH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
DEF.(Core and Bus 
Agents)

Deferred bus 
transactions

This event counts the number of deferred 
transactions. 

6EH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
BURST.(Core and 
Bus Agents)

Burst (full 
cache-line) bus 
transactions

This event counts burst (full cache line) 
transactions including: 

• Burst reads 
• RFOs 
• Explicit writebacks 
• Write combine lines

6FH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
MEM.(Core and Bus 
Agents)

Memory bus 
transactions

This event counts all memory bus 
transactions including: 

• Burst transactions
• Partial reads and writes - invalidate 

transactions 
The BUS_TRANS_MEM count is the sum of 
BUS_TRANS_BURST, BUS_TRANS_P and 
BUS_TRANS_IVAL.

70H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
ANY.(Core and Bus 
Agents)

All bus 
transactions

This event counts all bus transactions. This 
includes: 

• Memory transactions 
• IO transactions (non memory-mapped) 
• Deferred transaction completion 
• Other less frequent transactions, such 

as interrupts

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-161



PERFORMANCE-MONITORING EVENTS
77H See 
Table 
18-2 
and 
Table 
18-6

EXT_SNOOP.
(Bus Agents, Snoop 
Response)

External 
snoops

This event counts the snoop responses to 
bus transactions. Responses can be 
counted separately by type and by bus 
agent. 

With the 'THIS_AGENT' mask, the event 
counts snoop responses from this 
processor to bus transactions sent by this 
processor. With the 'ALL_AGENTS' mask 
the event counts all snoop responses seen 
on the bus.

78H See 
Table 
18-2 
and 
Table 
18-7

CMP_SNOOP.(Core, 
Snoop Type)

L1 data cache 
snooped by 
other core

This event counts the number of times the 
L1 data cache is snooped for a cache line 
that is needed by the other core in the 
same processor. The cache line is either 
missing in the L1 instruction or data 
caches of the other core, or is available for 
reading only and the other core wishes to 
write the cache line. 

The snoop operation may change the 
cache line state. If the other core issued a 
read request that hit this core in E state, 
typically the state changes to S state in 
this core. If the other core issued a read 
for ownership request (due a write miss or 
hit to S state) that hits this core's cache 
line in E or S state, this typically results in 
invalidation of the cache line in this core.  If 
the snoop hits a line in M state, the state is 
changed at a later opportunity. 

These snoops are performed through the 
L1 data cache store port. Therefore, 
frequent snoops may conflict with 
extensive stores to the L1 data cache, 
which may increase store latency and 
impact performance.

7AH See 
Table 
18-3 

BUS_HIT_DRV.

(Bus Agents)

HIT signal 
asserted

This event counts the number of bus 
cycles during which the processor drives 
the HIT# pin to signal HIT snoop response. 

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
19-162 Vol. 3B



PERFORMANCE-MONITORING EVENTS
7BH See 
Table 
18-3

BUS_HITM_DRV.

(Bus Agents)

HITM signal 
asserted

This event counts the number of bus 
cycles during which the processor drives 
the HITM# pin to signal HITM snoop 
response.

7DH See 
Table 
18-2

BUSQ_EMPTY.

(Core)

Bus queue 
empty

This event counts the number of cycles 
during which the core did not have any 
pending transactions in the bus queue. It 
also counts when the core is halted and 
the other core is not halted. 

This event can count occurrences for this 
core or both cores.

7EH See 
Table 
18-2 
and 
Table 
18-3

SNOOP_STALL_
DRV.(Core and Bus 
Agents)

Bus stalled for 
snoops

This event counts the number of times 
that the bus snoop stall signal is asserted. 
To obtain the number of bus cycles during 
which snoops on the bus are prohibited, 
multiply the event count by two. 

During the snoop stall cycles, no new bus 
transactions requiring a snoop response 
can be initiated on the bus. A bus agent 
asserts a snoop stall signal if it cannot 
response to a snoop request within three 
bus cycles.

7FH See 
Table 
18-2 

BUS_IO_WAIT.
(Core)

IO requests 
waiting in the 
bus queue

This event counts the number of core 
cycles during which IO requests wait in the 
bus queue. With the SELF modifier this 
event counts IO requests per core.

With the BOTH_CORE modifier, this event 
increments by one for any cycle for which 
there is a request from either core.

80H 00H L1I_READS Instruction 
fetches

This event counts all instruction fetches, 
including uncacheable fetches that bypass 
the Instruction Fetch Unit (IFU).

81H 00H L1I_MISSES Instruction 
Fetch Unit 
misses

This event counts all instruction fetches 
that miss the Instruction Fetch Unit (IFU) 
or produce memory requests. This 
includes uncacheable fetches. 

An instruction fetch miss is counted only 
once and not once for every cycle it is 
outstanding.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-163



PERFORMANCE-MONITORING EVENTS
82H 02H ITLB.SMALL_MISS ITLB small page 
misses

This event counts the number of 
instruction fetches from small pages that 
miss the ITLB.

82H 10H ITLB.LARGE_MISS ITLB large page 
misses

This event counts the number of 
instruction fetches from large pages that 
miss the ITLB.

82H 40H ITLB.FLUSH ITLB flushes This event counts the number of ITLB 
flushes. This usually happens upon CR3 or 
CR0 writes, which are executed by the 
operating system during process switches.

82H 12H ITLB.MISSES ITLB misses This event counts the number of 
instruction fetches from either small or 
large pages that miss the ITLB.

83H 02H INST_QUEUE.FULL Cycles during 
which the 
instruction 
queue is full

This event counts the number of cycles 
during which the instruction queue is full. 
In this situation, the core front-end stops 
fetching more instructions. This is an 
indication of very long stalls in the back-
end pipeline stages.

86H 00H CYCLES_L1I_
MEM_STALLED

Cycles during 
which 
instruction 
fetches stalled

This event counts the number of cycles for 
which an instruction fetch stalls, including 
stalls due to any of the following reasons: 

• instruction Fetch Unit cache misses 
• instruction TLB misses 
• instruction TLB faults

87H 00H ILD_STALL Instruction 
Length Decoder 
stall cycles due 
to a length 
changing prefix

This event counts the number of cycles 
during which the instruction length 
decoder uses the slow length decoder. 
Usually, instruction length decoding is 
done in one cycle. When the slow decoder 
is used, instruction decoding requires 6 
cycles. 

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
19-164 Vol. 3B



PERFORMANCE-MONITORING EVENTS
The slow decoder is used in the following 
cases: 

• operand override prefix (66H) 
preceding an instruction with 
immediate data 

• address override prefix (67H) preceding 
an instruction with a modr/m in real, big 
real, 16-bit protected or 32-bit 
protected modes

To avoid instruction length decoding stalls, 
generate code using imm8 or imm32 
values instead of imm16 values. If you 
must use an imm16 value, store the value 
in a register using “mov reg, imm32” and 
use the register format of the instruction.

88H 00H BR_INST_EXEC Branch 
instructions 
executed

This event counts all executed branches 
(not necessarily retired). This includes only 
instructions and not micro-op branches. 

Frequent branching is not necessarily a 
major performance issue. However 
frequent branch mispredictions may be a 
problem.

89H 00H BR_MISSP_EXEC Mispredicted 
branch 
instructions 
executed

This event counts the number of 
mispredicted branch instructions that 
were executed.

8AH 00H BR_BAC_
MISSP_EXEC

Branch 
instructions 
mispredicted at 
decoding

This event counts the number of branch 
instructions that were mispredicted at 
decoding.

8BH 00H BR_CND_EXEC Conditional 
branch 
instructions 
executed.

This event counts the number of 
conditional branch instructions executed, 
but not necessarily retired. 

8CH 00H BR_CND_
MISSP_EXEC

Mispredicted 
conditional 
branch 
instructions 
executed

This event counts the number of 
mispredicted conditional branch 
instructions that were executed.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-165



PERFORMANCE-MONITORING EVENTS
8DH 00H BR_IND_EXEC Indirect branch 
instructions 
executed

This event counts the number of indirect 
branch instructions that were executed.

8EH 00H BR_IND_MISSP
_EXEC

Mispredicted 
indirect branch 
instructions 
executed

This event counts the number of 
mispredicted indirect branch instructions 
that were executed.

8FH 00H BR_RET_EXEC RET 
instructions 
executed

This event counts the number of RET 
instructions that were executed.

90H 00H BR_RET_
MISSP_EXEC

Mispredicted 
RET 
instructions 
executed

This event counts the number of 
mispredicted RET instructions that were 
executed.

91H 00H BR_RET_BAC_
MISSP_EXEC

RET 
instructions 
executed 
mispredicted at 
decoding

This event counts the number of RET 
instructions that were executed and were 
mispredicted at decoding.

92H 00H BR_CALL_EXEC CALL 
instructions 
executed

This event counts the number of CALL 
instructions executed.

93H 00H BR_CALL_
MISSP_EXEC

Mispredicted 
CALL 
instructions 
executed

This event counts the number of 
mispredicted CALL instructions that were 
executed.

94H 00H BR_IND_CALL_
EXEC

Indirect CALL 
instructions 
executed

This event counts the number of indirect 
CALL instructions that were executed.

97H 00H BR_TKN_
BUBBLE_1

Branch 
predicted taken 
with bubble 1

The events BR_TKN_BUBBLE_1 and 
BR_TKN_BUBBLE_2 together count the 
number of times a taken branch prediction 
incurred a one-cycle penalty. The penalty 
incurs when: 

• Too many taken branches are placed 
together. To avoid this, unroll loops and 
add a non-taken branch in the middle of 
the taken sequence. 

• The branch target is unaligned. To avoid 
this, align the branch target.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
19-166 Vol. 3B



PERFORMANCE-MONITORING EVENTS
98H 00H BR_TKN_
BUBBLE_2

Branch 
predicted taken 
with bubble 2

The events BR_TKN_BUBBLE_1 and 
BR_TKN_BUBBLE_2 together count the 
number of times a taken branch prediction 
incurred a one-cycle penalty. The penalty 
incurs when: 

• Too many taken branches are placed 
together. To avoid this, unroll loops and 
add a non-taken branch in the middle of 
the taken sequence. 

• The branch target is unaligned. To avoid 
this, align the branch target.

A0H 00H RS_UOPS_
DISPATCHED

Micro-ops 
dispatched for 
execution

This event counts the number of micro-
ops dispatched for execution. Up to six 
micro-ops can be dispatched in each cycle. 

A1H 01H RS_UOPS_
DISPATCHED.PORT
0

Cycles micro-
ops dispatched 
for execution 
on port 0

This event counts the number of cycles for 
which micro-ops dispatched for execution. 
Each cycle, at most one micro-op can be 
dispatched on the port. Issue Ports are 
described in Intel® 64 and IA-32 
Architectures Optimization Reference 
Manual. Use IA32_PMC0 only.

A1H 02H RS_UOPS_
DISPATCHED.PORT
1

Cycles micro-
ops dispatched 
for execution 
on port 1

This event counts the number of cycles for 
which micro-ops dispatched for execution. 
Each cycle, at most one micro-op can be 
dispatched on the port. Use IA32_PMC0 
only.

A1H 04H RS_UOPS_
DISPATCHED.PORT
2

Cycles micro-
ops dispatched 
for execution 
on port 2

This event counts the number of cycles for 
which micro-ops dispatched for execution. 
Each cycle, at most one micro-op can be 
dispatched on the port. Use IA32_PMC0 
only.

A1H 08H RS_UOPS_
DISPATCHED.PORT
3

Cycles micro-
ops dispatched 
for execution 
on port 3

This event counts the number of cycles for 
which micro-ops dispatched for execution. 
Each cycle, at most one micro-op can be 
dispatched on the port. Use IA32_PMC0 
only.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-167



PERFORMANCE-MONITORING EVENTS
A1H 10H RS_UOPS_
DISPATCHED.PORT
4

Cycles micro-
ops dispatched 
for execution 
on port 4

This event counts the number of cycles for 
which micro-ops dispatched for execution. 
Each cycle, at most one micro-op can be 
dispatched on the port. Use IA32_PMC0 
only.

A1H 20H RS_UOPS_
DISPATCHED.PORT
5

Cycles micro-
ops dispatched 
for execution 
on port 5

This event counts the number of cycles for 
which micro-ops dispatched for execution. 
Each cycle, at most one micro-op can be 
dispatched on the port. Use IA32_PMC0 
only.

AAH 01H MACRO_INSTS.
DECODED

Instructions 
decoded

This event counts the number of 
instructions decoded (but not necessarily 
executed or retired). 

AAH 08H MACRO_INSTS.
CISC_DECODED

CISC 
Instructions 
decoded

This event counts the number of complex 
instructions decoded. Complex instructions 
usually have more than four micro-ops. 
Only one complex instruction can be 
decoded at a time. 

ABH 01H ESP.SYNCH ESP register 
content 
synchron-
ization

This event counts the number of times 
that the ESP register is explicitly used in 
the address expression of a load or store 
operation, after it is implicitly used, for 
example by a push or a pop instruction.

ESP synch micro-op uses resources from 
the rename pipe-stage and up to 
retirement.  The expected ratio of this 
event divided by the number of ESP 
implicit changes is 0,2. If the ratio is 
higher, consider rearranging your code to 
avoid ESP synchronization events.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
19-168 Vol. 3B



PERFORMANCE-MONITORING EVENTS
ABH 02H ESP.ADDITIONS ESP register 
automatic 
additions

This event counts the number of ESP 
additions performed automatically by the 
decoder. A high count of this event is good, 
since each automatic addition performed 
by the decoder saves a micro-op from the 
execution units. 

To maximize the number of ESP additions 
performed automatically by the decoder, 
choose instructions that implicitly use the 
ESP, such as PUSH, POP, CALL, and RET 
instructions whenever possible.

B0H 00H SIMD_UOPS_EXEC SIMD micro-ops 
executed 
(excluding 
stores)

This event counts all the SIMD micro-ops 
executed. It does not count MOVQ and 
MOVD stores from register to memory.

B1H 00H SIMD_SAT_UOP_
EXEC

SIMD saturated 
arithmetic 
micro-ops 
executed

This event counts the number of SIMD 
saturated arithmetic micro-ops executed.

B3H 01H SIMD_UOP_
TYPE_EXEC.MUL

SIMD packed 
multiply micro-
ops executed

This event counts the number of SIMD 
packed multiply micro-ops executed.

B3H 02H SIMD_UOP_TYPE_
EXEC.SHIFT

SIMD packed 
shift micro-ops 
executed

This event counts the number of SIMD 
packed shift micro-ops executed.

B3H 04H SIMD_UOP_TYPE_
EXEC.PACK

SIMD pack 
micro-ops 
executed

This event counts the number of SIMD 
pack micro-ops executed.

B3H 08H SIMD_UOP_TYPE_
EXEC.UNPACK

SIMD unpack 
micro-ops 
executed

This event counts the number of SIMD 
unpack micro-ops executed.

B3H 10H SIMD_UOP_TYPE_
EXEC.LOGICAL

SIMD packed 
logical micro-
ops executed

This event counts the number of SIMD 
packed logical micro-ops executed.

B3H 20H SIMD_UOP_TYPE_
EXEC.ARITHMETIC

SIMD packed 
arithmetic 
micro-ops 
executed

This event counts the number of SIMD 
packed arithmetic micro-ops executed.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-169



PERFORMANCE-MONITORING EVENTS
C0H 00H INST_RETIRED.
ANY_P

Instructions 
retired

This event counts the number of 
instructions that retire execution. For 
instructions that consist of multiple micro-
ops, this event counts the retirement of 
the last micro-op of the instruction. The 
counter continue counting during 
hardware interrupts, traps, and inside 
interrupt handlers. 

INST_RETIRED.ANY_P is an architectural 
performance event. 

C0H 01H INST_RETIRED.
LOADS

Instructions 
retired, which 
contain a load

This event counts the number of 
instructions retired that contain a load 
operation.

C0H 02H INST_RETIRED.
STORES

Instructions 
retired, which 
contain a store

This event counts the number of 
instructions retired that contain a store 
operation.

C0H 04H INST_RETIRED.
OTHER

Instructions 
retired, with no 
load or store 
operation

This event counts the number of 
instructions retired that do not contain a 
load or a store operation.

C1H 01H X87_OPS_
RETIRED.FXCH

FXCH 
instructions 
retired

This event counts the number of FXCH 
instructions retired. Modern compilers 
generate more efficient code and are less 
likely to use this instruction. If you obtain a 
high count for this event consider 
recompiling the code.

C1H FEH X87_OPS_
RETIRED.ANY

Retired 
floating-point 
computational 
operations 
(precise event)

This event counts the number of floating-
point computational operations retired. It 
counts: 

• floating point computational operations 
executed by the assist handler 

• sub-operations of complex floating-
point instructions like transcendental 
instructions 

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
19-170 Vol. 3B



PERFORMANCE-MONITORING EVENTS
This event does not count: 

• floating-point computational operations 
that cause traps or assists. 

• floating-point loads and stores. 
When this event is captured with the 
precise event mechanism, the collected 
samples contain the address of the 
instruction that was executed immediately 
after the instruction that caused the 
event.

C2H 01H UOPS_RETIRED.
LD_IND_BR

Fused load+op 
or load+indirect 
branch retired

This event counts the number of retired 
micro-ops that fused a load with another 
operation. This includes: 

• Fusion of a load and an arithmetic 
operation, such as with the following 
instruction: ADD EAX, [EBX] where the 
content of the memory location 
specified by EBX register is loaded, 
added to EXA register, and the result is 
stored in EAX.

• Fusion of a load and a branch in an 
indirect branch operation, such as with 
the following instructions:

• JMP [RDI+200] 
• RET 
• Fusion decreases the number of micro-

ops in the processor pipeline. A high 
value for this event count indicates that 
the code is using the processor 
resources effectively.

C2H 02H UOPS_RETIRED.
STD_STA

Fused store 
address + data 
retired

This event counts the number of store 
address calculations that are fused with 
store data emission into one micro-op. 
Traditionally, each store operation 
required two micro-ops. 

This event counts fusion of retired micro-
ops only. Fusion decreases the number of 
micro-ops in the processor pipeline. A high 
value for this event count indicates that 
the code is using the processor resources 
effectively.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-171



PERFORMANCE-MONITORING EVENTS
C2H 04H UOPS_RETIRED.
MACRO_FUSION

Retired 
instruction 
pairs fused into 
one micro-op

This event counts the number of times 
CMP or TEST instructions were fused with 
a conditional branch instruction into one 
micro-op. It counts fusion by retired micro-
ops only. 

Fusion decreases the number of micro-ops 
in the processor pipeline. A high value for 
this event count indicates that the code 
uses the processor resources more 
effectively.

C2H 07H UOPS_RETIRED.
FUSED

Fused micro-
ops retired

This event counts the total number of 
retired fused micro-ops. The counts 
include the following fusion types: 

• Fusion of load operation with an 
arithmetic operation or with an indirect 
branch (counted by event 
UOPS_RETIRED.LD_IND_BR) 

• Fusion of store address and data 
(counted by event 
UOPS_RETIRED.STD_STA) 

• Fusion of CMP or TEST instruction with 
a conditional branch instruction 
(counted by event 
UOPS_RETIRED.MACRO_FUSION) 

Fusion decreases the number of micro-ops 
in the processor pipeline. A high value for 
this event count indicates that the code is 
using the processor resources effectively.

C2H 08H UOPS_RETIRED.
NON_FUSED

Non-fused 
micro-ops 
retired

This event counts the number of micro-
ops retired that were not fused.

C2H 0FH UOPS_RETIRED.
ANY

Micro-ops 
retired

This event counts the number of micro-
ops retired. The processor decodes 
complex macro instructions into a 
sequence of simpler micro-ops. Most 
instructions are composed of one or two 
micro-ops. 

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
19-172 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Some instructions are decoded into longer 
sequences such as repeat instructions, 
floating point transcendental instructions, 
and assists. In some cases micro-op 
sequences are fused or whole instructions 
are fused into one micro-op.

See other UOPS_RETIRED events for 
differentiating retired fused and non-
fused micro-ops. 

C3H 01H MACHINE_
NUKES.SMC

Self-Modifying 
Code detected

This event counts the number of times 
that a program writes to a code section. 
Self-modifying code causes a sever 
penalty in all Intel 64 and IA-32 
processors.

C3H 04H MACHINE_NUKES.
MEM_ORDER

Execution 
pipeline restart 
due to memory 
ordering 
conflict or 
memory 
disambiguation 
misprediction

This event counts the number of times the 
pipeline is restarted due to either multi-
threaded memory ordering conflicts or 
memory disambiguation misprediction.

A multi-threaded memory ordering conflict 
occurs when a store, which is executed in 
another core, hits a load that is executed 
out of order in this core but not yet retired. 
As a result, the load needs to be restarted 
to satisfy the memory ordering model. 

See Chapter 8, “Multiple-Processor 
Management” in the Intel® 64 and IA-32 
Architectures Software Developer’s 
Manual, Volume 3A.

To count memory disambiguation 
mispredictions, use the event 
MEMORY_DISAMBIGUATION.RESET.

C4H 00H BR_INST_RETIRED.
ANY

Retired branch 
instructions

This event counts the number of branch 
instructions retired. This is an architectural 
performance event.

C4H 01H BR_INST_RETIRED.
PRED_NOT_
TAKEN

Retired branch 
instructions 
that were 
predicted not-
taken

This event counts the number of branch 
instructions retired that were correctly 
predicted to be not-taken.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-173



PERFORMANCE-MONITORING EVENTS
C4H 02H BR_INST_RETIRED.
MISPRED_NOT_
TAKEN

Retired branch 
instructions 
that were 
mispredicted 
not-taken

This event counts the number of branch 
instructions retired that were 
mispredicted and not-taken.

C4H 04H BR_INST_RETIRED.
PRED_TAKEN

Retired branch 
instructions 
that were 
predicted taken

This event counts the number of branch 
instructions retired that were correctly 
predicted to be taken.

C4H 08H BR_INST_RETIRED.
MISPRED_TAKEN

Retired branch 
instructions 
that were 
mispredicted 
taken

This event counts the number of branch 
instructions retired that were 
mispredicted and taken.

C4H 0CH BR_INST_RETIRED.
TAKEN

Retired taken 
branch 
instructions

This event counts the number of branches 
retired that were taken.

C5H 00H BR_INST_RETIRED.
MISPRED

Retired 
mispredicted 
branch 
instructions. 
(precise event)

This event counts the number of retired 
branch instructions that were 
mispredicted by the processor. A branch 
misprediction occurs when the processor 
predicts that the branch would be taken, 
but it is not, or vice-versa. 

This is an architectural performance event.

C6H 01H CYCLES_INT_
MASKED

Cycles during 
which 
interrupts are 
disabled

This event counts the number of cycles 
during which interrupts are disabled.

C6H 02H CYCLES_INT_
PENDING_AND
_MASKED

Cycles during 
which 
interrupts are 
pending and 
disabled

This event counts the number of cycles 
during which there are pending interrupts 
but interrupts are disabled.

C7H 01H SIMD_INST_
RETIRED.PACKED_
SINGLE

Retired SSE 
packed-single 
instructions

This event counts the number of SSE 
packed-single instructions retired.

C7H 02H SIMD_INST_
RETIRED.SCALAR_
SINGLE

Retired SSE 
scalar-single 
instructions

This event counts the number of SSE 
scalar-single instructions retired.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
19-174 Vol. 3B



PERFORMANCE-MONITORING EVENTS
C7H 04H SIMD_INST_
RETIRED.PACKED_
DOUBLE

Retired SSE2 
packed-double 
instructions

This event counts the number of SSE2 
packed-double instructions retired. 

C7H 08H SIMD_INST_
RETIRED.SCALAR_
DOUBLE

Retired SSE2 
scalar-double 
instructions

This event counts the number of SSE2 
scalar-double instructions retired.

C7H 10H SIMD_INST_
RETIRED.VECTOR

Retired SSE2 
vector integer 
instructions

This event counts the number of SSE2 
vector integer instructions retired.

C7H 1FH SIMD_INST_
RETIRED.ANY

Retired 
Streaming SIMD 
instructions  
(precise event)

This event counts the overall number of 
retired SIMD instructions that use XMM 
registers. To count each type of SIMD 
instruction separately, use the following 
events:

• SIMD_INST_RETIRED.PACKED_SINGLE
• SIMD_INST_RETIRED.SCALAR_SINGLE
• SIMD_INST_RETIRED.PACKED_DOUBLE
• SIMD_INST_RETIRED.SCALAR_DOUBLE
• and SIMD_INST_RETIRED.VECTOR
When this event is captured with the 
precise event mechanism, the collected 
samples contain the address of the 
instruction that was executed immediately 
after the instruction that caused the 
event.

C8H 00H HW_INT_RCV Hardware 
interrupts 
received

This event counts the number of hardware 
interrupts received by the processor.

C9H 00H ITLB_MISS_
RETIRED

Retired 
instructions 
that missed the 
ITLB

This event counts the number of retired 
instructions that missed the ITLB when 
they were fetched.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-175



PERFORMANCE-MONITORING EVENTS
CAH 01H SIMD_COMP_
INST_RETIRED.
PACKED_SINGLE

Retired 
computational 
SSE packed-
single 
instructions

This event counts the number of 
computational SSE packed-single 
instructions retired. Computational 
instructions perform arithmetic 
computations (for example: add, multiply 
and divide).

Instructions that perform load and store 
operations or logical operations, like XOR, 
OR, and AND are not counted by this 
event.

CAH 02H SIMD_COMP_
INST_RETIRED.
SCALAR_SINGLE

Retired 
computational 
SSE scalar-
single 
instructions

This event counts the number of 
computational SSE scalar-single 
instructions retired. Computational 
instructions perform arithmetic 
computations (for example: add, multiply 
and divide). 

Instructions that perform load and store 
operations or logical operations, like XOR, 
OR, and AND are not counted by this 
event.

CAH 04H SIMD_COMP_
INST_RETIRED.
PACKED_DOUBLE

Retired 
computational 
SSE2 packed-
double 
instructions

This event counts the number of 
computational SSE2 packed-double 
instructions retired. Computational 
instructions perform arithmetic 
computations (for example: add, multiply 
and divide). 

Instructions that perform load and store 
operations or logical operations, like XOR, 
OR, and AND are not counted by this 
event.

CAH 08H SIMD_COMP_INST_
RETIRED.SCALAR_
DOUBLE

Retired 
computational 
SSE2 scalar-
double 
instructions

This event counts the number of 
computational SSE2 scalar-double 
instructions retired. Computational 
instructions perform arithmetic 
computations (for example: add, multiply 
and divide). 

Instructions that perform load and store 
operations or logical operations, like XOR, 
OR, and AND are not counted by this 
event.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
19-176 Vol. 3B



PERFORMANCE-MONITORING EVENTS
CBH 01H MEM_LOAD_
RETIRED.L1D
_MISS

Retired loads 
that miss the 
L1 data cache 
(precise event)

This event counts the number of retired 
load operations that missed the L1 data 
cache. This includes loads from cache lines 
that are currently being fetched, due to a 
previous L1 data cache miss to the same 
cache line.  

This event counts loads from cacheable 
memory only. The event does not count 
loads by software prefetches. 

When this event is captured with the 
precise event mechanism, the collected 
samples contain the address of the 
instruction that was executed immediately 
after the instruction that caused the 
event.

Use IA32_PMC0 only.

CBH 02H MEM_LOAD_
RETIRED.L1D_
LINE_MISS

L1 data cache 
line missed by 
retired loads 
(precise event)

This event counts the number of load 
operations that miss the L1 data cache 
and send a request to the L2 cache to 
fetch the missing cache line. That is the 
missing cache line fetching has not yet 
started. 

The event count is equal to the number of 
cache lines fetched from the L2 cache by 
retired loads. 

This event counts loads from cacheable 
memory only. The event does not count 
loads by software prefetches. 

The event might not be counted if the load 
is blocked (see LOAD_BLOCK events).

When this event is captured with the 
precise event mechanism, the collected 
samples contain the address of the 
instruction that was executed immediately 
after the instruction that caused the 
event.

Use IA32_PMC0 only.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-177



PERFORMANCE-MONITORING EVENTS
CBH 04H MEM_LOAD_
RETIRED.L2_MISS

Retired loads 
that miss the 
L2 cache 
(precise event)

This event counts the number of retired 
load operations that missed the L2 cache.   

This event counts loads from cacheable 
memory only. It does not count loads by 
software prefetches.

When this event is captured with the 
precise event mechanism, the collected 
samples contain the address of the 
instruction that was executed immediately 
after the instruction that caused the 
event.

Use IA32_PMC0 only.

CBH 08H MEM_LOAD_
RETIRED.L2_LINE_
MISS

L2 cache line 
missed by 
retired loads 
(precise event)

This event counts the number of load 
operations that miss the L2 cache and 
result in a bus request to fetch the missing 
cache line. That is the missing cache line 
fetching has not yet started.

This event count is equal to the number of 
cache lines fetched from memory by 
retired loads. 

This event counts loads from cacheable 
memory only. The event does not count 
loads by software prefetches. 

The event might not be counted if the load 
is blocked (see LOAD_BLOCK events).

When this event is captured with the 
precise event mechanism, the collected 
samples contain the address of the 
instruction that was executed immediately 
after the instruction that caused the 
event.

Use IA32_PMC0 only.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
19-178 Vol. 3B



PERFORMANCE-MONITORING EVENTS
CBH 10H MEM_LOAD_
RETIRED.DTLB_
MISS

Retired loads 
that miss the 
DTLB (precise 
event)

This event counts the number of retired 
loads that missed the DTLB. The DTLB 
miss is not counted if the load operation 
causes a fault.

This event counts loads from cacheable 
memory only. The event does not count 
loads by software prefetches. 

When this event is captured with the 
precise event mechanism, the collected 
samples contain the address of the 
instruction that was executed immediately 
after the instruction that caused the 
event. 

Use IA32_PMC0 only.

CCH 01H FP_MMX_TRANS_
TO_MMX

Transitions 
from Floating 
Point to MMX 
Instructions

This event counts the first MMX 
instructions following a floating-point 
instruction. Use this event to estimate the 
penalties for the transitions between 
floating-point and MMX states.

CCH 02H FP_MMX_TRANS_
TO_FP

Transitions 
from MMX 
Instructions to 
Floating Point 
Instructions

This event counts the first floating-point 
instructions following any MMX 
instruction. Use this event to estimate the 
penalties for the transitions between 
floating-point and MMX states.

CDH 00H SIMD_ASSIST SIMD assists 
invoked

This event counts the number of SIMD 
assists invoked. SIMD assists are invoked 
when an EMMS instruction is executed, 
changing the MMX state in the floating 
point stack.

CEH 00H SIMD_INSTR_
RETIRED

SIMD 
Instructions 
retired

This event counts the number of retired 
SIMD instructions that use MMX registers.

CFH 00H SIMD_SAT_INSTR_
RETIRED

Saturated 
arithmetic 
instructions 
retired

This event counts the number of saturated 
arithmetic SIMD instructions that retired.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-179



PERFORMANCE-MONITORING EVENTS
D2H 01H RAT_STALLS.
ROB_READ_PORT

ROB read port 
stalls cycles

This event counts the number of cycles 
when ROB read port stalls occurred, which 
did not allow new micro-ops to enter the 
out-of-order pipeline. 

Note that, at this stage in the pipeline, 
additional stalls may occur at the same 
cycle and prevent the stalled micro-ops 
from entering the pipe. In such a case, 
micro-ops retry entering the execution 
pipe in the next cycle and the ROB-read-
port stall is counted again.

D2H 02H RAT_STALLS.
PARTIAL_CYCLES

Partial register 
stall cycles

This event counts the number of cycles 
instruction execution latency became 
longer than the defined latency because 
the instruction uses a register that was 
partially written by previous instructions. 

D2H 04H RAT_STALLS.
FLAGS

Flag stall cycles This event counts the number of cycles 
during which execution stalled due to 
several reasons, one of which is a partial 
flag register stall. 

A partial register stall may occur when 
two conditions are met: 

• an instruction modifies some, but not 
all, of the flags in the flag register

• the next instruction, which depends on 
flags, depends on flags that were not 
modified by this instruction

D2H 08H RAT_STALLS.
FPSW

FPU status 
word stall

This event indicates that the FPU status 
word (FPSW) is written. To obtain the 
number of times the FPSW is written 
divide the event count by 2.

The FPSW is written by instructions with 
long latency; a small count may indicate a 
high penalty.

D2H 0FH RAT_STALLS.
ANY

All RAT stall 
cycles

This event counts the number of stall 
cycles due to conditions described by: 

• RAT_STALLS.ROB_READ_PORT
• RAT_STALLS.PARTIAL
• RAT_STALLS.FLAGS
• RAT_STALLS.FPSW.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
19-180 Vol. 3B



PERFORMANCE-MONITORING EVENTS
D4H 01H SEG_RENAME_
STALLS.ES

Segment 
rename stalls - 
ES

This event counts the number of stalls due 
to the lack of renaming resources for the 
ES segment register. If a segment is 
renamed, but not retired and a second 
update to the same segment occurs, a stall 
occurs in the front-end of the pipeline until 
the renamed segment retires. 

D4H 02H SEG_RENAME_
STALLS.DS

Segment 
rename stalls - 
DS

This event counts the number of stalls due 
to the lack of renaming resources for the 
DS segment register. If a segment is 
renamed, but not retired and a second 
update to the same segment occurs, a stall 
occurs in the front-end of the pipeline until 
the renamed segment retires. 

D4H 04H SEG_RENAME_
STALLS.FS

Segment 
rename stalls - 
FS

This event counts the number of stalls due 
to the lack of renaming resources for the 
FS segment register. 

If a segment is renamed, but not retired 
and a second update to the same segment 
occurs, a stall occurs in the front-end of 
the pipeline until the renamed segment 
retires. 

D4H 08H SEG_RENAME_
STALLS.GS

Segment 
rename stalls - 
GS

This event counts the number of stalls due 
to the lack of renaming resources for the 
GS segment register. 

If a segment is renamed, but not retired 
and a second update to the same segment 
occurs, a stall occurs in the front-end of 
the pipeline until the renamed segment 
retires. 

D4H 0FH SEG_RENAME_
STALLS.ANY

Any 
(ES/DS/FS/GS) 
segment 
rename stall

This event counts the number of stalls due 
to the lack of renaming resources for the 
ES, DS, FS, and GS segment registers.

If a segment is renamed but not retired 
and a second update to the same segment 
occurs, a stall occurs in the front-end of 
the pipeline until the renamed segment 
retires. 

D5H 01H SEG_REG_
RENAMES.ES

Segment 
renames - ES

This event counts the number of times the 
ES segment register is renamed.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-181



PERFORMANCE-MONITORING EVENTS
D5H 02H SEG_REG_
RENAMES.DS

Segment 
renames - DS

This event counts the number of times the 
DS segment register is renamed.

D5H 04H SEG_REG_
RENAMES.FS

Segment 
renames - FS

This event counts the number of times the 
FS segment register is renamed.

D5H 08H SEG_REG_
RENAMES.GS

Segment 
renames - GS

This event counts the number of times the 
GS segment register is renamed.

D5H 0FH SEG_REG_
RENAMES.ANY

Any 
(ES/DS/FS/GS) 
segment 
rename

This event counts the number of times 
any of the four segment registers 
(ES/DS/FS/GS) is renamed.

DCH 01H RESOURCE_
STALLS.ROB_FULL

Cycles during 
which the ROB 
full

This event counts the number of cycles 
when the number of instructions in the 
pipeline waiting for retirement reaches 
the limit the processor can handle. 

A high count for this event indicates that 
there are long latency operations in the 
pipe (possibly load and store operations 
that miss the L2 cache, and other 
instructions that depend on these cannot 
execute until the former instructions 
complete execution). In this situation new 
instructions can not enter the pipe and 
start execution.

DCH 02H RESOURCE_
STALLS.RS_FULL

Cycles during 
which the RS 
full

This event counts the number of cycles 
when the number of instructions in the 
pipeline waiting for execution reaches the 
limit the processor can handle. 

A high count of this event indicates that 
there are long latency operations in the 
pipe (possibly load and store operations 
that miss the L2 cache, and other 
instructions that depend on these cannot 
execute until the former instructions 
complete execution). In this situation new 
instructions can not enter the pipe and 
start execution.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
19-182 Vol. 3B



PERFORMANCE-MONITORING EVENTS
DCH 04 RESOURCE_
STALLS.LD_ST

Cycles during 
which the 
pipeline has 
exceeded load 
or store limit or 
waiting to 
commit all 
stores

This event counts the number of cycles 
while resource-related stalls occur due to:  

• The number of load instructions in the 
pipeline reached the limit the processor 
can handle. The stall ends when a 
loading instruction retires. 

• The number of store instructions in the 
pipeline reached the limit the processor 
can handle. The stall ends when a 
storing instruction commits its data to 
the cache or memory. 

• There is an instruction in the pipe that 
can be executed only when all previous 
stores complete and their data is 
committed in the caches or memory. 
For example, the SFENCE and MFENCE 
instructions require this behavior.

DCH 08H RESOURCE_
STALLS.FPCW

Cycles stalled 
due to FPU 
control word 
write

This event counts the number of cycles 
while execution was stalled due to writing 
the floating-point unit (FPU) control word.

DCH 10H RESOURCE_
STALLS.BR_MISS_C
LEAR

Cycles stalled 
due to branch 
misprediction

This event counts the number of cycles 
after a branch misprediction is detected at 
execution until the branch and all older 
micro-ops retire. During this time new 
micro-ops cannot enter the out-of-order 
pipeline.

DCH 1FH RESOURCE_
STALLS.ANY

Resource 
related stalls

This event counts the number of cycles 
while resource-related stalls occurs for 
any conditions described by the following 
events:

• RESOURCE_STALLS.ROB_FULL
• RESOURCE_STALLS.RS_FULL
• RESOURCE_STALLS.LD_ST
• RESOURCE_STALLS.FPCW
• RESOURCE_STALLS.BR_MISS_CLEAR

E0H 00H BR_INST_
DECODED

Branch 
instructions 
decoded

This event counts the number of branch 
instructions decoded.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-183



PERFORMANCE-MONITORING EVENTS
19.8 PERFORMANCE MONITORING EVENTS FOR 
INTEL® ATOM™ PROCESSORS

Processors based on the Intel Atom microarchitecture support the architectural 
performance-monitoring events listed in Table 19-1 and fixed-function performance 
events using fixed counter listed in Table 19-12. In addition, they also support the 
following non-architectural performance-monitoring events listed in Table 19-14. 

E4H 00H BOGUS_BR Bogus branches This event counts the number of byte 
sequences that were mistakenly detected 
as taken branch instructions.

This results in a BACLEAR event. This 
occurs mainly after task switches.

E6H 00H BACLEARS BACLEARS 
asserted

This event counts the number of times the 
front end is resteered, mainly when the 
BPU cannot provide a correct prediction 
and this is corrected by other branch 
handling mechanisms at the front and. 
This can occur if the code has many 
branches such that they cannot be 
consumed by the BPU. 

Each BACLEAR asserted costs 
approximately 7 cycles of instruction 
fetch. The effect on total execution time 
depends on the surrounding code.

F0 00H PREF_RQSTS_UP Upward 
prefetches 
issued from 
DPL

This event counts the number of upward 
prefetches issued from the Data Prefetch 
Logic (DPL) to the L2 cache. A prefetch 
request issued to the L2 cache cannot be 
cancelled and the requested cache line is 
fetched to the L2 cache. 

F8 00H PREF_RQSTS_DN Downward 
prefetches 
issued from 
DPL.

This event counts the number of 
downward prefetches issued from the 
Data Prefetch Logic (DPL) to the L2 cache. 
A prefetch request issued to the L2 cache 
cannot be cancelled and the requested 
cache line is fetched to the L2 cache.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
19-184 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment

02H 81H STORe_FORWA
RDS.GOOD

Good store 
forwards

This event counts the number of times store 
data was forwarded directly to a load.

06H 00H SEGMENT_REG_
LOADS.ANY

Number of 
segment 
register loads

This event counts the number of segment 
register load operations. Instructions that 
load new values into segment registers cause 
a penalty. This event indicates performance 
issues in 16-bit code. If this event occurs 
frequently, it may be useful to calculate the 
number of instructions retired per segment 
register load. If the resulting calculation is low 
(on average a small number of instructions 
are executed between segment register 
loads), then the code’s segment register 
usage should be optimized. 

As a result of branch misprediction, this event 
is speculative and may include segment 
register loads that do not actually occur. 
However, most segment register loads are 
internally serialized and such speculative 
effects are minimized. 

07H 01H PREFETCH.PREF
ETCHT0

Streaming SIMD 
Extensions 
(SSE) 
PrefetchT0 
instructions 
executed.

This event counts the number of times the 
SSE instruction prefetchT0 is executed. This 
instruction prefetches the data to the L1 
data cache and L2 cache.

07H 06H PREFETCH.SW_
L2

Streaming SIMD 
Extensions 
(SSE) 
PrefetchT1 and 
PrefetchT2 
instructions 
executed

This event counts the number of times the 
SSE instructions prefetchT1 and prefetchT2 
are executed. These instructions prefetch the 
data to the L2 cache.

07H 08H PREFETCH.PREF
ETCHNTA

Streaming SIMD 
Extensions 
(SSE) Prefetch 
NTA 
instructions 
executed

This event counts the number of times the 
SSE instruction prefetchNTA is executed. This 
instruction prefetches the data to the L1 
data cache. 
Vol. 3B 19-185



PERFORMANCE-MONITORING EVENTS
08H 07H DATA_TLB_MIS
SES.DTLB_MISS

Memory 
accesses that 
missed the 
DTLB

This event counts the number of Data Table 
Lookaside Buffer (DTLB) misses. The count 
includes misses detected as a result of 
speculative accesses. Typically a high count 
for this event indicates that the code 
accesses a large number of data pages.

08H 05H DATA_TLB_MIS
SES.DTLB_MISS
_LD

DTLB misses 
due to load 
operations

This event counts the number of Data Table 
Lookaside Buffer (DTLB) misses due to load 
operations. This count includes misses 
detected as a result of speculative accesses.

08H 09H DATA_TLB_MIS
SES.L0_DTLB_M
ISS_LD

L0_DTLB misses 
due to load 
operations

This event counts the number of L0_DTLB 
misses due to load operations. This count 
includes misses detected as a result of 
speculative accesses.

08H 06H DATA_TLB_MIS
SES.DTLB_MISS
_ST

DTLB misses 
due to store 
operations

This event counts the number of Data Table 
Lookaside Buffer (DTLB) misses due to store 
operations. This count includes misses 
detected as a result of speculative accesses. 

0CH 03H PAGE_WALKS.W
ALKS

Number of 
page-walks 
executed

This event counts the number of page-walks 
executed due to either a DTLB or ITLB miss. 
The page walk duration, 
PAGE_WALKS.CYCLES, divided by number of 
page walks is the average duration of a page 
walk. This can hint to whether most of the 
page-walks are satisfied by the caches or 
cause an L2 cache miss.

Edge trigger bit must be set.

0CH 03H PAGE_WALKS.C
YCLES

Duration of 
page-walks in 
core cycles

This event counts the duration of page-walks 
in core cycles. The paging mode in use 
typically affects the duration of page walks. 
Page walk duration divided by number of 
page walks is the average duration of page-
walks. This can hint at whether most of the 
page-walks are satisfied by the caches or 
cause an L2 cache miss. 

Edge trigger bit must be cleared.

10H 01H X87_COMP_OP
S_EXE.ANY.S

Floating point 
computational 
micro-ops 
executed

This event counts the number of x87 floating 
point computational micro-ops executed.

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
19-186 Vol. 3B



PERFORMANCE-MONITORING EVENTS
10H 81H X87_COMP_OP
S_EXE.ANY.AR

Floating point 
computational 
micro-ops 
retired

This event counts the number of x87 floating 
point computational micro-ops retired.

11H 01H FP_ASSIST Floating point 
assists

This event counts the number of floating 
point operations executed that required 
micro-code assist intervention. These assists 
are required in the following cases: 

X87 instructions:

1. NaN or denormal are loaded to a register or 
used as input from memory

2. Division by 0 

3. Underflow output

11H 81H FP_ASSIST.AR Floating point 
assists

This event counts the number of floating 
point operations executed that required 
micro-code assist intervention. These assists 
are required in the following cases: 

X87 instructions:

1. NaN or denormal are loaded to a register or 
used as input from memory

2. Division by 0 

3. Underflow output

12H 01H MUL.S Multiply 
operations 
executed

This event counts the number of multiply 
operations executed. This includes integer as 
well as floating point multiply operations.

12H 81H MUL.AR Multiply 
operations 
retired

This event counts the number of multiply 
operations retired. This includes integer as 
well as floating point multiply operations.

13H 01H DIV.S Divide 
operations 
executed

This event counts the number of divide 
operations executed. This includes integer 
divides, floating point divides and square-root 
operations executed.

13H 81H DIV.AR Divide 
operations 
retired

This event counts the number of divide 
operations retired. This includes integer 
divides, floating point divides and square-root 
operations executed.

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B 19-187



PERFORMANCE-MONITORING EVENTS
14H 01H CYCLES_DIV_BU
SY

Cycles the 
driver is busy

This event counts the number of cycles the 
divider is busy executing divide or square 
root operations. The divide can be integer, 
X87 or Streaming SIMD Extensions (SSE). The 
square root operation can be either X87 or 
SSE. 

21H See 
Table 
18-2

L2_ADS Cycles L2 
address bus is in 
use

This event counts the number of cycles the 
L2 address bus is being used for accesses to 
the L2 cache or bus queue. 

This event can count occurrences for this 
core or both cores. 

22H See 
Table 
18-2

L2_DBUS_BUSY Cycles the L2 
cache data bus 
is busy

This event counts core cycles during which 
the L2 cache data bus is busy transferring 
data from the L2 cache to the core.   It counts 
for all L1 cache misses (data and instruction) 
that hit the L2 cache.   The count will 
increment by two for a full cache-line 
request. 

24H See 
Table 
18-2 
and 
Table 
18-4

L2_LINES_IN L2 cache misses This event counts the number of cache lines 
allocated in the L2 cache. Cache lines are 
allocated in the L2 cache as a result of 
requests from the L1 data and instruction 
caches and the L2 hardware prefetchers to 
cache lines that are missing in the L2 cache.

This event can count occurrences for this 
core or both cores. This event can also count 
demand requests and L2 hardware prefetch 
requests together or separately.

25H See 
Table 
18-2

L2_M_LINES_IN L2 cache line 
modifications

This event counts whenever a modified 
cache line is written back from the L1 data 
cache to the L2 cache.

This event can count occurrences for this 
core or both cores.

26H See 
Table 
18-2 
and 
Table 
18-4

L2_LINES_OUT L2 cache lines 
evicted

This event counts the number of L2 cache 
lines evicted.

This event can count occurrences for this 
core or both cores. This event can also count 
evictions due to demand requests and L2 
hardware prefetch requests together or 
separately.

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
19-188 Vol. 3B



PERFORMANCE-MONITORING EVENTS
27H See 
Table 
18-2 
and 
Table 
18-4

L2_M_LINES_O
UT

Modified lines 
evicted from 
the L2 cache

This event counts the number of L2 modified 
cache lines evicted. These lines are written 
back to memory unless they also exist in a 
shared-state in one of the L1 data caches.

This event can count occurrences for this 
core or both cores. This event can also count 
evictions due to demand requests and L2 
hardware prefetch requests together or 
separately.

28H See 
Table 
18-2 
and 
Table 
18-5

L2_IFETCH L2 cacheable 
instruction 
fetch requests

This event counts the number of instruction 
cache line requests from the ICache. It does 
not include fetch requests from uncacheable 
memory. It does not include ITLB miss 
accesses. 

This event can count occurrences for this 
core or both cores. This event can also count 
accesses to cache lines at different MESI 
states.

29H See 
Table 
18-2, 
Table 
18-4 
and 
Table 
18-5

L2_LD L2 cache reads This event counts L2 cache read requests 
coming from the L1 data cache and L2 
prefetchers. 

This event can count occurrences for this 
core or both cores. This event can count 
occurrences

- for this core or both cores.

- due to demand requests and L2 hardware 
prefetch requests together or separately.

- of accesses to cache lines at different MESI 
states.

2AH See 
Table 
18-2 
and 
Table 
18-5

L2_ST L2 store 
requests

This event counts all store operations that 
miss the L1 data cache and request the data 

from the L2 cache. 

This event can count occurrences for this 
core or both cores. This event can also count 
accesses to cache lines at different MESI 
states.

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B 19-189



PERFORMANCE-MONITORING EVENTS
2BH See 
Table 
18-2 
and 
Table 
18-5

L2_LOCK L2 locked 
accesses

This event counts all locked accesses to 
cache lines that miss the L1 data cache.

This event can count occurrences for this 
core or both cores. This event can also count 
accesses to cache lines at different MESI 
states.

2EH See 
Table 
18-2, 
Table 
18-4 
and 
Table 
18-5

L2_RQSTS L2 cache 
requests

This event counts all completed L2 cache 
requests. This includes L1 data cache reads, 
writes, and locked accesses, L1 data prefetch 
requests, instruction fetches, and all L2 
hardware prefetch requests. 

This event can count occurrences

- for this core or both cores.

- due to demand requests and L2 hardware 
prefetch requests together, or separately.

- of accesses to cache lines at different MESI 
states.

2EH 41H L2_RQSTS.SELF.
DEMAND.I_STAT
E

L2 cache 
demand 
requests from 
this core that 
missed the L2

This event counts all completed L2 cache 
demand requests from this core that miss the 
L2 cache. This includes L1 data cache reads, 
writes, and locked accesses, L1 data prefetch 
requests, and instruction fetches. 

This is an architectural performance event.

2EH 4FH L2_RQSTS.SELF.
DEMAND.MESI

L2 cache 
demand 
requests from 
this core

This event counts all completed L2 cache 
demand requests from this core. This includes 
L1 data cache reads, writes, and locked 
accesses, L1 data prefetch requests, and 
instruction fetches. 

This is an architectural performance event.

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
19-190 Vol. 3B



PERFORMANCE-MONITORING EVENTS
30H See 
Table 
18-2, 
Table 
18-4 
and 
Table 
18-5

L2_REJECT_BUS
Q

Rejected L2 
cache requests

This event indicates that a pending L2 cache 
request that requires a bus transaction is 
delayed from moving to the bus queue. Some 
of the reasons for this event are:

- The bus queue is full.

- The bus queue already holds an entry for a 
cache line in the same set.

The number of events is greater or equal to 
the number of requests that were rejected.

- for this core or both cores.

- due to demand requests and L2 hardware 
prefetch requests together, or separately.

- of accesses to cache lines at different MESI 
states.

32H See 
Table 
18-2

L2_NO_REQ Cycles no L2 
cache requests 
are pending

This event counts the number of cycles that 
no L2 cache requests are pending.

3AH 00H EIST_TRANS Number of 
Enhanced Intel 
SpeedStep(R) 
Technology 
(EIST) 
transitions

This event counts the number of Enhanced 
Intel SpeedStep(R) Technology (EIST) 
transitions that include a frequency change, 
either with or without VID change. This event 
is incremented only while the counting core is 
in C0 state. Since the CxE states include an 
EIST transition, the event will be incremented 
accordingly.

EIST transitions are commonly initiated by 
OS, but can be initiated by HW internally. For 
example: CxE states are C-states (C1,C2,C3…) 
which not only place the CPU into a sleep 
state by turning off the clock and other 
components, but also lower the voltage 
(which reduces the leakage power 
consumption). The same is true for thermal 
throttling transition which uses EIST 
internally.

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B 19-191



PERFORMANCE-MONITORING EVENTS
3BH C0H THERMAL_TRIP Number of 
thermal trips

This event counts the number of thermal 
trips. A thermal trip occurs whenever the 
processor temperature exceeds the thermal 
trip threshold temperature. Following a 
thermal trip, the processor automatically 
reduces frequency and voltage. The 
processor checks the temperature every 
millisecond, and returns to normal when the 
temperature falls below the thermal trip 
threshold temperature.

3CH 00H CPU_CLK_UNH
ALTED.CORE_P

Core cycles 
when core is not 
halted

This event counts the number of core cycles 
while the core is not in a halt state. The core 
enters the halt state when it is running the 
HLT instruction. This event is a component in 
many key event ratios. 

In mobile systems the core frequency may 
change from time to time. For this reason this 
event may have a changing ratio with regards 
to time. In systems with a constant core 
frequency, this event can give you a 
measurement of the elapsed time while the 
core was not in halt state by dividing the 
event count by the core frequency.

-This is an architectural performance event.

- The event CPU_CLK_UNHALTED.CORE_P is 
counted by a programmable counter.

- The event CPU_CLK_UNHALTED.CORE is 
counted by a designated fixed counter, 
leaving the two programmable counters 
available for other events.

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
19-192 Vol. 3B



PERFORMANCE-MONITORING EVENTS
3CH 01H CPU_CLK_UNH
ALTED.BUS

Bus cycles 
when core is not 
halted

This event counts the number of bus cycles 
while the core is not in the halt state. This 
event can give you a measurement of the 
elapsed time while the core was not in the 
halt state, by dividing the event count by the 
bus frequency. The core enters the halt state 
when it is running the HLT instruction.

The event also has a constant ratio with 
CPU_CLK_UNHALTED.REF event, which is the 
maximum bus to processor frequency ratio. 

Non-halted bus cycles are a component in 
many key event ratios. 

3CH 02H CPU_CLK_UNH
ALTED.NO_OTH
ER

Bus cycles 
when core is 
active and the 
other is halted

This event counts the number of bus cycles 
during which the core remains non-halted, 
and the other core on the processor is halted. 

This event can be used to determine the 
amount of parallelism exploited by an 
application or a system. Divide this event 
count by the bus frequency to determine the 
amount of time that only one core was in use.

40H 21H L1D_CACHE.LD L1 Cacheable 
Data Reads

This event counts the number of data reads 
from cacheable memory.

40H 22H L1D_CACHE.ST L1 Cacheable 
Data Writes

This event counts the number of data writes 
to cacheable memory.

60H See 
Table 
18-2 
and 
Table 
18-3

BUS_REQUEST_
OUTSTANDING

Outstanding 
cacheable data 
read bus 
requests 
duration

This event counts the number of pending full 
cache line read transactions on the bus 
occurring in each cycle. A read transaction is 
pending from the cycle it is sent on the bus 
until the full cache line is received by the 
processor. NOTE: This event is thread-
independent and will not provide a count per 
logical processor when AnyThr is disabled.

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B 19-193



PERFORMANCE-MONITORING EVENTS
61H See 
Table 
18-3

BUS_BNR_DRV Number of Bus 
Not Ready 
signals asserted

This event counts the number of Bus Not 
Ready (BNR) signals that the processor 
asserts on the bus to suspend additional bus 
requests by other bus agents. A bus agent 
asserts the BNR signal when the number of 
data and snoop transactions is close to the 
maximum that the bus can handle. 

While this signal is asserted, new 
transactions cannot be submitted on the bus. 
As a result, transaction latency may have 
higher impact on program performance. 
NOTE: This event is thread-independent and 
will not provide a count per logical processor 
when AnyThr is disabled.

62H See 
Table 
18-3

BUS_DRDY_CLO
CKS

Bus cycles 
when data is 
sent on the bus

This event counts the number of bus cycles 
during which the DRDY (Data Ready) signal is 
asserted on the bus. The DRDY signal is 
asserted when data is sent on the bus.

This event counts the number of bus cycles 
during which this agent (the processor) 
writes data on the bus back to memory or to 
other bus agents. This includes all explicit and 
implicit data writebacks, as well as partial 
writes.
NOTE: This event is thread-independent and 
will not provide a count per logical processor 
when AnyThr is disabled.

63H See 
Table 
18-2 
and 
Table 
18-3

BUS_LOCK_CLO
CKS

Bus cycles 
when a LOCK 
signal is 
asserted.

This event counts the number of bus cycles, 
during which the LOCK signal is asserted on 
the bus. A LOCK signal is asserted when 
there is a locked memory access, due to:

- Uncacheable memory

- Locked operation that spans two cache lines

- Page-walk from an uncacheable page table.

Bus locks have a very high performance 
penalty and it is highly recommended to avoid 
such accesses. NOTE: This event is thread-
independent and will not provide a count per 
logical processor when AnyThr is disabled.

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
19-194 Vol. 3B



PERFORMANCE-MONITORING EVENTS
64H See 
Table 
18-2

BUS_DATA_RCV Bus cycles while 
processor 
receives data

This event counts the number of cycles 
during which the processor is busy receiving 
data. NOTE: This event is thread-independent 
and will not provide a count per logical 
processor when AnyThr is disabled.

65H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_B
RD

Burst read bus 
transactions

This event counts the number of burst read 
transactions including:

- L1 data cache read misses (and L1 data 
cache hardware prefetches)

- L2 hardware prefetches by the DPL and L2 
streamer

- IFU read misses of cacheable lines.

It does not include RFO transactions.

66H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_RF
O

RFO bus 
transactions

This event counts the number of Read For 
Ownership (RFO) bus transactions, due to 
store operations that miss the L1 data cache 
and the L2 cache. This event also counts RFO 
bus transactions due to locked operations.

67H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_W
B

Explicit 
writeback bus 
transactions

This event counts all explicit writeback bus 
transactions due to dirty line evictions. It 
does not count implicit writebacks due to 
invalidation by a snoop request.

68H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_IF
ETCH

Instruction-
fetch bus 
transactions.

This event counts all instruction fetch full 
cache line bus transactions.

69H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_IN
VAL

Invalidate bus 
transactions

This event counts all invalidate transactions. 
Invalidate transactions are generated when:

- A store operation hits a shared line in the L2 
cache.

- A full cache line write misses the L2 cache 
or hits a shared line in the L2 cache.

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B 19-195



PERFORMANCE-MONITORING EVENTS
6AH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_P
WR

Partial write bus 
transaction.

This event counts partial write bus 
transactions.

6BH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_P Partial bus 
transactions

This event counts all (read and write) partial 
bus transactions.

6CH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_IO IO bus 
transactions

This event counts the number of completed 
I/O bus transactions as a result of IN and OUT 
instructions. The count does not include 
memory mapped IO.

6DH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_D
EF

Deferred bus 
transactions

This event counts the number of deferred 
transactions. 

6EH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_B
URST

Burst (full 
cache-line) bus 
transactions.

This event counts burst (full cache line) 
transactions including:

- Burst reads

- RFOs

- Explicit writebacks

- Write combine lines

6FH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_M
EM

Memory bus 
transactions

This event counts all memory bus 
transactions including:

- burst transactions

- partial reads and writes

- invalidate transactions

The BUS_TRANS_MEM count is the sum of 
BUS_TRANS_BURST, BUS_TRANS_P and 
BUS_TRANS_INVAL.

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
19-196 Vol. 3B



PERFORMANCE-MONITORING EVENTS
70H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_A
NY

All bus 
transactions

This event counts all bus transactions. This 
includes:

- Memory transactions

- IO transactions (non memory-mapped)

- Deferred transaction completion

- Other less frequent transactions, such as 
interrupts

77H See 
Table 
18-2 
and 
Table 
18-5

EXT_SNOOP External snoops This event counts the snoop responses to 
bus transactions. Responses can be counted 
separately by type and by bus agent. NOTE: 
This event is thread-independent and will not 
provide a count per logical processor when 
AnyThr is disabled.

7AH See 
Table 
18-3

BUS_HIT_DRV HIT signal 
asserted

This event counts the number of bus cycles 
during which the processor drives the HIT# 
pin to signal HIT snoop response. NOTE: This 
event is thread-independent and will not 
provide a count per logical processor when 
AnyThr is disabled.

7BH See 
Table 
18-3

BUS_HITM_DRV HITM signal 
asserted

This event counts the number of bus cycles 
during which the processor drives the HITM# 
pin to signal HITM snoop response. NOTE: 
This event is thread-independent and will not 
provide a count per logical processor when 
AnyThr is disabled.

7DH See 
Table 
18-2

BUSQ_EMPTY Bus queue is 
empty

This event counts the number of cycles 
during which the core did not have any 
pending transactions in the bus queue. 

NOTE: This event is thread-independent and 
will not provide a count per logical processor 
when AnyThr is disabled.

7EH See 
Table 
18-2 
and 
Table 
18-3

SNOOP_STALL_
DRV

Bus stalled for 
snoops

This event counts the number of times that 
the bus snoop stall signal is asserted. During 
the snoop stall cycles no new bus 
transactions requiring a snoop response can 
be initiated on the bus. NOTE: This event is 
thread-independent and will not provide a 
count per logical processor when AnyThr is 
disabled.

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B 19-197



PERFORMANCE-MONITORING EVENTS
7FH See 
Table 
18-2

BUS_IO_WAIT IO requests 
waiting in the 
bus queue

This event counts the number of core cycles 
during which IO requests wait in the bus 
queue. This event counts IO requests from 
the core.

80H 03H ICACHE.ACCESS
ES

Instruction 
fetches

This event counts all instruction fetches, 
including uncacheable fetches.

80H 02H ICACHE.MISSES Icache miss This event counts all instruction fetches that 
miss the Instruction cache or produce 
memory requests. This includes uncacheable 
fetches. An instruction fetch miss is counted 
only once and not once for every cycle it is 
outstanding.

82H 04H ITLB.FLUSH ITLB flushes This event counts the number of ITLB 
flushes.

82H 02H ITLB.MISSES ITLB misses This event counts the number of instruction 
fetches that miss the ITLB. 

AAH 02H MACRO_INSTS.C
ISC_DECODED

CISC macro 
instructions 
decoded

This event counts the number of complex 
instructions decoded, but not necessarily 
executed or retired. Only one complex 
instruction can be decoded at a time.

AAH 03H MACRO_INSTS.
ALL_DECODED

All Instructions 
decoded

This event counts the number of instructions 
decoded.

B0H 00H SIMD_UOPS_EX
EC.S

SIMD micro-ops 
executed 
(excluding 
stores)

This event counts all the SIMD micro-ops 
executed. This event does not count MOVQ 
and MOVD stores from register to memory.

B0H 80H SIMD_UOPS_EX
EC.AR

SIMD micro-ops 
retired 
(excluding 
stores)

This event counts the number of SIMD 
saturated arithmetic micro-ops executed.

B1H 00H SIMD_SAT_UOP
_EXEC.S

SIMD saturated 
arithmetic 
micro-ops 
executed

This event counts the number of SIMD 
saturated arithmetic micro-ops executed.

B1H 80H SIMD_SAT_UOP
_EXEC.AR

SIMD saturated 
arithmetic 
micro-ops 
retired

This event counts the number of SIMD 
saturated arithmetic micro-ops retired.

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
19-198 Vol. 3B



PERFORMANCE-MONITORING EVENTS
B3H 01H SIMD_UOP_TYP
E_EXEC.MUL.S

SIMD packed 
multiply micro-
ops executed

This event counts the number of SIMD packed 
multiply micro-ops executed.

B3H 81H SIMD_UOP_TYP
E_EXEC.MUL.AR

SIMD packed 
multiply micro-
ops retired

This event counts the number of SIMD packed 
multiply micro-ops retired.

B3H 02H SIMD_UOP_TYP
E_EXEC.SHIFT.S

SIMD packed 
shift micro-ops 
executed

This event counts the number of SIMD packed 
shift micro-ops executed.

B3H 82H SIMD_UOP_TYP
E_EXEC.SHIFT.A
R

SIMD packed 
shift micro-ops 
retired

This event counts the number of SIMD packed 
shift micro-ops retired.

B3H 04H SIMD_UOP_TYP
E_EXEC.PACK.S

SIMD pack 
micro-ops 
executed

This event counts the number of SIMD pack 
micro-ops executed.

B3H 84H SIMD_UOP_TYP
E_EXEC.PACK.A
R

SIMD pack 
micro-ops 
retired

This event counts the number of SIMD pack 
micro-ops retired.

B3H 08H SIMD_UOP_TYP
E_EXEC.UNPAC
K.S

SIMD unpack 
micro-ops 
executed

This event counts the number of SIMD 
unpack micro-ops executed.

B3H 88H SIMD_UOP_TYP
E_EXEC.UNPAC
K.AR

SIMD unpack 
micro-ops 
retired

This event counts the number of SIMD 
unpack micro-ops retired.

B3H 10H SIMD_UOP_TYP
E_EXEC.LOGICA
L.S

SIMD packed 
logical micro-
ops executed

This event counts the number of SIMD packed 
logical micro-ops executed.

B3H 90H SIMD_UOP_TYP
E_EXEC.LOGICA
L.AR

SIMD packed 
logical micro-
ops retired

This event counts the number of SIMD packed 
logical micro-ops retired.

B3H 20H SIMD_UOP_TYP
E_EXEC.ARITHM
ETIC.S

SIMD packed 
arithmetic 
micro-ops 
executed

This event counts the number of SIMD packed 
arithmetic micro-ops executed.

B3H A0H SIMD_UOP_TYP
E_EXEC.ARITHM
ETIC.AR

SIMD packed 
arithmetic 
micro-ops 
retired

This event counts the number of SIMD packed 
arithmetic micro-ops retired.

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B 19-199



PERFORMANCE-MONITORING EVENTS
C0H 00H INST_RETIRED.
ANY_P

Instructions 
retired (precise 
event).

This event counts the number of instructions 
that retire execution. For instructions that 
consist of multiple micro-ops, this event 
counts the retirement of the last micro-op of 
the instruction. The counter continues 
counting during hardware interrupts, traps, 
and inside interrupt handlers.

N/A 00H INST_RETIRED.
ANY

Instructions 
retired

This event counts the number of instructions 
that retire execution. For instructions that 
consist of multiple micro-ops, this event 
counts the retirement of the last micro-op of 
the instruction. The counter continues 
counting during hardware interrupts, traps, 
and inside interrupt handlers.

C2H 10H UOPS_RETIRED.
ANY

Micro-ops 
retired

This event counts the number of micro-ops 
retired. The processor decodes complex 
macro instructions into a sequence of simpler 
micro-ops. Most instructions are composed of 
one or two micro-ops. Some instructions are 
decoded into longer sequences such as 
repeat instructions, floating point 
transcendental instructions, and assists. In 
some cases micro-op sequences are fused or 
whole instructions are fused into one micro-
op. See other UOPS_RETIRED events for 
differentiating retired fused and non-fused 
micro-ops.

C3H 01H MACHINE_CLEA
RS.SMC

Self-Modifying 
Code detected

This event counts the number of times that a 
program writes to a code section. Self-
modifying code causes a severe penalty in all 
Intel® architecture processors.

C4H 00H BR_INST_RETIR
ED.ANY

Retired branch 
instructions

This event counts the number of branch 
instructions retired. 

This is an architectural performance event. 

C4H 01H BR_INST_RETIR
ED.PRED_NOT_
TAKEN

Retired branch 
instructions 
that were 
predicted not-
taken

This event counts the number of branch 
instructions retired that were correctly 
predicted to be not-taken.

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
19-200 Vol. 3B



PERFORMANCE-MONITORING EVENTS
C4H 02H BR_INST_RETIR
ED.MISPRED_N
OT_TAKEN

Retired branch 
instructions 
that were 
mispredicted 
not-taken

This event counts the number of branch 
instructions retired that were mispredicted 
and not-taken.

C4H 04H BR_INST_RETIR
ED.PRED_TAKE
N

Retired branch 
instructions 
that were 
predicted taken

This event counts the number of branch 
instructions retired that were correctly 
predicted to be taken.

C4H 08H BR_INST_RETIR
ED.MISPRED_TA
KEN

Retired branch 
instructions 
that were 
mispredicted 
taken

This event counts the number of branch 
instructions retired that were mispredicted 
and taken.

C4H 0AH BR_INST_RETIR
ED.MISPRED

Retired 
mispredicted 
branch 
instructions 
(precise event)

This event counts the number of retired 
branch instructions that were mispredicted 
by the processor. A branch misprediction 
occurs when the processor predicts that the 
branch would be taken, but it is not, or vice-
versa. Mispredicted branches degrade the 
performance because the processor starts 
executing instructions along a wrong path it 
predicts. When the misprediction is 
discovered, all the instructions executed in 
the wrong path must be discarded, and the 
processor must start again on the correct 
path. 

Using the Profile-Guided Optimization (PGO) 
features of the Intel® C++ compiler may help 
reduce branch mispredictions. See the 
compiler documentation for more information 
on this feature. 

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B 19-201



PERFORMANCE-MONITORING EVENTS
To determine the branch misprediction ratio, 
divide the BR_INST_RETIRED.MISPRED event 
count by the number of 
BR_INST_RETIRED.ANY event count. To 
determine the number of mispredicted 
branches per instruction, divide the number 
of mispredicted branches by the 
INST_RETIRED.ANY event count. To measure 
the impact of the branch mispredictions use 
the event 
RESOURCE_STALLS.BR_MISS_CLEAR. 

Tips

- See the optimization guide for tips on 
reducing branch mispredictions.

- PGO's purpose is to have straight line code 
for the most frequent execution paths, 
reducing branches taken and increasing the 
"basic block" size, possibly also reducing the 
code footprint or working-set.

C4H 0CH BR_INST_RETIR
ED.TAKEN

Retired taken 
branch 
instructions

This event counts the number of branches 
retired that were taken.

C4H 0FH BR_INST_RETIR
ED.ANY1

Retired branch 
instructions

This event counts the number of branch 
instructions retired that were mispredicted. 
This event is a duplicate of 
BR_INST_RETIRED.MISPRED.

C5H 00H BR_INST_RETIR
ED.MISPRED

Retired 
mispredicted 
branch 
instructions 
(precise event).

This event counts the number of retired 
branch instructions that were mispredicted 
by the processor. A branch misprediction 
occurs when the processor predicts that the 
branch would be taken, but it is not, or vice-
versa. Mispredicted branches degrade the 
performance because the processor starts 
executing instructions along a wrong path it 
predicts. When the misprediction is 
discovered, all the instructions executed in 
the wrong path must be discarded, and the 
processor must start again on the correct 
path. 

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
19-202 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Using the Profile-Guided Optimization (PGO) 
features of the Intel® C++ compiler may help 
reduce branch mispredictions. See the 
compiler documentation for more information 
on this feature. 

To determine the branch misprediction ratio, 
divide the BR_INST_RETIRED.MISPRED event 
count by the number of 
BR_INST_RETIRED.ANY event count. To 
determine the number of mispredicted 
branches per instruction, divide the number 
of mispredicted branches by the 
INST_RETIRED.ANY event count. To measure 
the impact of the branch mispredictions use 
the event 
RESOURCE_STALLS.BR_MISS_CLEAR. 

Tips

- See the optimization guide for tips on 
reducing branch mispredictions.

- PGO's purpose is to have straight line code 
for the most frequent execution paths, 
reducing branches taken and increasing the 
"basic block" size, possibly also reducing the 
code footprint or working-set.

C6H 01H CYCLES_INT_M
ASKED.CYCLES_I
NT_MASKED

Cycles during 
which interrupts 
are disabled

This event counts the number of cycles 
during which interrupts are disabled.

C6H 02H CYCLES_INT_M
ASKED.CYCLES_I
NT_PENDING_A
ND_MASKED

Cycles during 
which interrupts 
are pending and 
disabled

This event counts the number of cycles 
during which there are pending interrupts but 
interrupts are disabled.

C7H 01H SIMD_INST_RET
IRED.PACKED_SI
NGLE

Retired 
Streaming SIMD 
Extensions 
(SSE) packed-
single 
instructions

This event counts the number of SSE packed-
single instructions retired.

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B 19-203



PERFORMANCE-MONITORING EVENTS
C7H 02H SIMD_INST_RET
IRED.SCALAR_SI
NGLE

Retired 
Streaming SIMD 
Extensions 
(SSE) scalar-
single 
instructions

This event counts the number of SSE scalar-
single instructions retired.

C7H 04H SIMD_INST_RET
IRED.PACKED_D
OUBLE

Retired 
Streaming SIMD 
Extensions 2 
(SSE2) packed-
double 
instructions

This event counts the number of SSE2 
packed-double instructions retired.

C7H 08H SIMD_INST_RET
IRED.SCALAR_D
OUBLE

Retired 
Streaming SIMD 
Extensions 2 
(SSE2) scalar-
double 
instructions.

This event counts the number of SSE2 scalar-
double instructions retired.

C7H 10H SIMD_INST_RET
IRED.VECTOR

Retired 
Streaming SIMD 
Extensions 2 
(SSE2) vector 
instructions.

This event counts the number of SSE2 vector 
instructions retired.

C7H 1FH SIMD_INST_RET
IRED.ANY

Retired 
Streaming SIMD 
instructions

This event counts the overall number of SIMD 
instructions retired. To count each type of 
SIMD instruction separately, use the following 
events:

SIMD_INST_RETIRED.PACKED_SINGLE, 
SIMD_INST_RETIRED.SCALAR_SINGLE, 
SIMD_INST_RETIRED.PACKED_DOUBLE, 
SIMD_INST_RETIRED.SCALAR_DOUBLE, and 
SIMD_INST_RETIRED.VECTOR.

C8H 00H HW_INT_RCV Hardware 
interrupts 
received

This event counts the number of hardware 
interrupts received by the processor. This 
event will count twice for dual-pipe micro-
ops.

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
19-204 Vol. 3B



PERFORMANCE-MONITORING EVENTS
CAH 01H SIMD_COMP_IN
ST_RETIRED.PA
CKED_SINGLE

Retired 
computational 
Streaming SIMD 
Extensions 
(SSE) packed-
single 
instructions.

This event counts the number of 
computational SSE packed-single instructions 
retired. Computational instructions perform 
arithmetic computations, like add, multiply 
and divide. Instructions that perform load and 
store operations or logical operations, like 
XOR, OR, and AND are not counted by this 
event.

CAH 02H SIMD_COMP_IN
ST_RETIRED.SC
ALAR_SINGLE

Retired 
computational 
Streaming SIMD 
Extensions 
(SSE) scalar-
single 
instructions.

This event counts the number of 
computational SSE scalar-single instructions 
retired. Computational instructions perform 
arithmetic computations, like add, multiply 
and divide. Instructions that perform load and 
store operations or logical operations, like 
XOR, OR, and AND are not counted by this 
event.

CAH 04H SIMD_COMP_IN
ST_RETIRED.PA
CKED_DOUBLE

Retired 
computational 
Streaming SIMD 
Extensions 2 
(SSE2) packed-
double 
instructions.

This event counts the number of 
computational SSE2 packed-double 
instructions retired. Computational 
instructions perform arithmetic 
computations, like add, multiply and divide. 
Instructions that perform load and store 
operations or logical operations, like XOR, OR, 
and AND are not counted by this event.

CAH 08H SIMD_COMP_IN
ST_RETIRED.SC
ALAR_DOUBLE

Retired 
computational 
Streaming SIMD 
Extensions 2 
(SSE2) scalar-
double 
instructions

This event counts the number of 
computational SSE2 scalar-double 
instructions retired. Computational 
instructions perform arithmetic 
computations, like add, multiply and divide. 
Instructions that perform load and store 
operations or logical operations, like XOR, OR, 
and AND are not counted by this event.

CBH 01H MEM_LOAD_RE
TIRED.L2_HIT

Retired loads 
that hit the L2 
cache (precise 
event)

This event counts the number of retired load 
operations that missed the L1 data cache and 
hit the L2 cache.

CBH 02H MEM_LOAD_RE
TIRED.L2_MISS

Retired loads 
that miss the L2 
cache (precise 
event)

This event counts the number of retired load 
operations that missed the L2 cache.

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B 19-205



PERFORMANCE-MONITORING EVENTS
CBH 04H MEM_LOAD_RE
TIRED.DTLB_MI
SS

Retired loads 
that miss the 
DTLB (precise 
event)

This event counts the number of retired loads 
that missed the DTLB. The DTLB miss is not 
counted if the load operation causes a fault. 

CDH 00H SIMD_ASSIST SIMD assists 
invoked

This event counts the number of SIMD assists 
invoked. SIMD assists are invoked when an 
EMMS instruction is executed after MMX™ 
technology code has changed the MMX state 
in the floating point stack. For example, these 
assists are required in the following cases: 

Streaming SIMD Extensions (SSE) 
instructions: 

1. Denormal input when the DAZ (Denormals 
Are Zeros) flag is off 

2. Underflow result when the FTZ (Flush To 
Zero) flag is off 

CEH 00H SIMD_INSTR_RE
TIRED

SIMD 
Instructions 
retired

This event counts the number of SIMD 
instructions that retired.

CFH 00H SIMD_SAT_INST
R_RETIRED

Saturated 
arithmetic 
instructions 
retired

This event counts the number of saturated 
arithmetic SIMD instructions that retired.

E0H 01H BR_INST_DECO
DED

Branch 
instructions 
decoded

This event counts the number of branch 
instructions decoded.

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
19-206 Vol. 3B



PERFORMANCE-MONITORING EVENTS
19.9 PERFORMANCE MONITORING EVENTS FOR INTEL® 
CORE™ SOLO AND INTEL® CORE™ DUO PROCESSORS

Table 19-15 lists non-architectural performance events for Intel Core Duo proces-
sors. If a non-architectural event requires qualification in core specificity, it is indi-
cated in the comment column. Table 19-15 also applies to Intel Core Solo processors; 
bits in the unit mask corresponding to core-specificity are reserved and should be 
00B.

E4H 01H BOGUS_BR Bogus branches This event counts the number of byte 
sequences that were mistakenly detected as 
taken branch instructions. This results in a 
BACLEAR event and the BTB is flushed. This 
occurs mainly after task switches.

E6H 01H BACLEARS.ANY BACLEARS 
asserted

This event counts the number of times the 
front end is redirected for a branch 
prediction, mainly when an early branch 
prediction is corrected by other branch 
handling mechanisms in the front-end. This 
can occur if the code has many branches such 
that they cannot be consumed by the branch 
predictor.   Each Baclear asserted costs 
approximately 7 cycles. The effect on total 
execution time depends on the surrounding 
code.

Table 19-15.  Non-Architectural Performance Events 
in Intel Core Solo and Intel Core Duo Processors

Event
Num.

Event Mask 
Mnemonic

Umask
Value Description Comment

03H LD_Blocks 00H Load operations delayed due to 
store buffer blocks. 

The preceding store may be 
blocked due to unknown address, 
unknown data, or conflict due to 
partial overlap between the load 
and store. 

04H SD_Drains 00H Cycles while draining store buffers.

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B 19-207



PERFORMANCE-MONITORING EVENTS
05H Misalign_Mem_Ref 00H Misaligned data memory 
references (MOB splits of loads 
and stores).

06H Seg_Reg_Loads 00H Segment register loads.

07H SSE_PrefNta_Ret 00H SSE software prefetch instruction 
PREFETCHNTA retired.

07H SSE_PrefT1_Ret 01H SSE software prefetch instruction 
PREFETCHT1 retired.

07H SSE_PrefT2_Ret 02H SSE software prefetch instruction 
PREFETCHT2 retired.

07H SSE_NTStores_Ret 03H SSE streaming store instruction  
retired.

10H FP_Comps_Op_Exe 00H FP computational Instruction 
executed. FADD, FSUB, FCOM, 
FMULs, MUL, IMUL, FDIVs, DIV, IDIV, 
FPREMs, FSQRT are included; but 
exclude FADD or FMUL used in the 
middle of a transcendental 
instruction.

11H FP_Assist 00H FP exceptions experienced 
microcode assists.

IA32_PMC1 
only.

12H Mul 00H Multiply operations (a speculative 
count, including FP and integer 
multiplies).

IA32_PMC1 
only.

13H Div 00H Divide operations (a speculative 
count, including FP and integer 
divisions).

IA32_PMC1 
only.

14H Cycles_Div_Busy 00H Cycles the divider is busy. IA32_PMC0 
only.

21H L2_ADS 00H L2 Address strobes. Requires core-
specificity

22H Dbus_Busy 00H Core cycle during which data bus 
was busy (increments by 4).

Requires core-
specificity

23H Dbus_Busy_Rd 00H Cycles data bus is busy 
transferring data to a core 
(increments by 4).

Requires core-
specificity

Table 19-15.  Non-Architectural Performance Events 
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask 
Mnemonic

Umask
Value Description Comment
19-208 Vol. 3B



PERFORMANCE-MONITORING EVENTS
24H L2_Lines_In 00H L2 cache lines allocated. Requires core-
specificity and 
HW prefetch 
qualification

25H L2_M_Lines_In 00H L2 Modified-state cache lines 
allocated.

Requires core-
specificity

26H L2_Lines_Out 00H L2 cache lines evicted. Requires core-
specificity and 
HW prefetch 
qualification

27H L2_M_Lines_Out 00H L2 Modified-state cache lines 
evicted.

28H L2_IFetch Requires 
MESI 
qualification

L2 instruction fetches from 
instruction fetch unit (includes 
speculative fetches).

Requires core-
specificity

29H L2_LD Requires 
MESI 
qualification

L2 cache reads. Requires core-
specificity

2AH L2_ST Requires 
MESI 
qualification

L2 cache writes (includes 
speculation).

Requires core-
specificity

2EH L2_Rqsts Requires 
MESI 
qualification

L2 cache reference requests. Requires core-
specificity, HW 
prefetch 
qualification30H L2_Reject_Cycles Requires 

MESI 
qualification

Cycles L2 is busy and rejecting 
new requests.

32H L2_No_Request_
Cycles

Requires 
MESI 
qualification

Cycles there is no request to 
access L2.

3AH EST_Trans_All 00H Any Intel Enhanced SpeedStep(R) 
Technology transitions.

3AH EST_Trans_All 10H Intel Enhanced SpeedStep 
Technology frequency transitions.

3BH Thermal_Trip C0H Duration in a thermal trip based on 
the current core clock.

Use edge 
trigger to count 
occurrence

3CH NonHlt_Ref_Cycles 01H Non-halted bus cycles.

Table 19-15.  Non-Architectural Performance Events 
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask 
Mnemonic

Umask
Value Description Comment
Vol. 3B 19-209



PERFORMANCE-MONITORING EVENTS
3CH Serial_Execution_
Cycles

02H Non-halted bus cycles of this core 
executing code while the other 
core is halted.

40H DCache_Cache_LD Requires 
MESI 
qualification

L1 cacheable data read operations.

41H DCache_Cache_ST Requires 
MESI 
qualification

L1 cacheable data write 
operations.

42H DCache_Cache_
Lock

Requires 
MESI 
qualification

L1 cacheable lock read operations 
to invalid state.

43H Data_Mem_Ref 01H L1 data read and writes of 
cacheable and non-cacheable 
types.

44H Data_Mem_Cache_
Ref

02H L1 data cacheable read and write 
operations.

45H DCache_Repl 0FH L1 data cache line replacements.

46H DCache_M_Repl 00H L1 data M-state cache line 
allocated.

47H DCache_M_Evict 00H L1 data M-state cache line evicted.

48H DCache_Pend_Miss 00H Weighted cycles of L1 miss 
outstanding.

Use Cmask =1 
to count 
duration.

49H Dtlb_Miss 00H Data references that missed TLB.

4BH SSE_PrefNta_Miss 00H PREFETCHNTA missed all caches.

4BH SSE_PrefT1_Miss 01H PREFETCHT1 missed all caches.

4BH SSE_PrefT2_Miss 02H PREFETCHT2 missed all caches.

4BH SSE_NTStores_
Miss

03H SSE streaming store instruction  
missed all caches.

4FH L1_Pref_Req 00H L1 prefetch requests due to DCU 
cache misses.

May overcount 
if request re-
submitted

Table 19-15.  Non-Architectural Performance Events 
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask 
Mnemonic

Umask
Value Description Comment
19-210 Vol. 3B



PERFORMANCE-MONITORING EVENTS
60H Bus_Req_
Outstanding

00; Requires 
core-
specificity, 
and agent 
specificity

Weighted cycles of cacheable bus 
data read requests. This event 
counts full-line read request from 
DCU or HW prefetcher, but not 
RFO, write, instruction fetches, or 
others.

Use Cmask =1 
to count 
duration.

Use Umask bit 
12 to include 
HWP or exclude 
HWP separately.

61H Bus_BNR_Clocks 00H External bus cycles while BNR 
asserted.

62H Bus_DRDY_Clocks 00H External bus cycles while DRDY 
asserted.

Requires agent 
specificity

63H Bus_Locks_Clocks 00H External bus cycles while bus lock 
signal asserted.

Requires core 
specificity 

64H Bus_Data_Rcv 40H Number of data chunks received 
by this processor.

65H Bus_Trans_Brd See comment. Burst read bus transactions (data 
or code).

Requires core 
specificity 

66H Bus_Trans_RFO See comment. Completed read for ownership 
(RFO) transactions.

Requires agent 
specificity

Requires core 
specificity

Each 
transaction 
counts its 
address strobe

Retried  
transaction may 
be counted 
more than once

68H Bus_Trans_Ifetch See comment. Completed instruction fetch 
transactions.

69H Bus_Trans_Inval See comment. Completed invalidate transactions.

6AH Bus_Trans_Pwr See comment. Completed partial write 
transactions.

6BH Bus_Trans_P See comment. Completed partial transactions 
(include partial read + partial write 
+ line write).

6CH Bus_Trans_IO See comment. Completed I/O transactions (read 
and write).

6DH Bus_Trans_Def 20H Completed defer transactions. Requires core 
specificity

Retried  
transaction may 
be counted 
more than once

Table 19-15.  Non-Architectural Performance Events 
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask 
Mnemonic

Umask
Value Description Comment
Vol. 3B 19-211



PERFORMANCE-MONITORING EVENTS
67H Bus_Trans_WB C0H Completed writeback transactions 
from DCU (does not include L2 
writebacks).

Requires agent 
specificity

Each 
transaction 
counts its 
address strobe

Retried  
transaction may 
be counted 
more than once

6EH Bus_Trans_Burst C0H Completed burst transactions (full 
line transactions include reads, 
write, RFO, and writebacks).

6FH Bus_Trans_Mem C0H Completed memory transactions. 
This includes Bus_Trans_Burst + 
Bus_Trans_P+Bus_Trans_Inval.

70H Bus_Trans_Any C0H Any completed bus transactions.

77H Bus_Snoops 00H Counts any snoop on the bus. Requires MESI 
qualification

Requires agent 
specificity

78H DCU_Snoop_To_
Share

01H DCU snoops to share-state L1 
cache line due to L1 misses.

Requires core 
specificity

7DH Bus_Not_In_Use 00H Number of cycles there is no 
transaction from the core.

Requires core 
specificity

7EH Bus_Snoop_Stall 00H Number of bus cycles while bus 
snoop is stalled.

80H ICache_Reads 00H Number of instruction fetches 
from ICache, streaming buffers 
(both cacheable and uncacheable 
fetches).

81H ICache_Misses 00H Number of instruction fetch misses 
from ICache, streaming buffers.

85H ITLB_Misses 00H Number of iITLB misses.

86H IFU_Mem_Stall 00H Cycles IFU is stalled while waiting 
for data from memory.

87H ILD_Stall 00H Number of instruction length 
decoder stalls (Counts number of 
LCP stalls).

88H Br_Inst_Exec 00H Branch instruction executed 
(includes speculation).

Table 19-15.  Non-Architectural Performance Events 
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask 
Mnemonic

Umask
Value Description Comment
19-212 Vol. 3B



PERFORMANCE-MONITORING EVENTS
89H Br_Missp_Exec 00H Branch instructions executed and 
mispredicted at execution  
(includes branches that do not 
have prediction or mispredicted).

8AH Br_BAC_Missp_
Exec

00H Branch instructions executed that 
were mispredicted at front end.

8BH Br_Cnd_Exec 00H Conditional branch instructions 
executed.

8CH Br_Cnd_Missp_
Exec

00H Conditional branch instructions 
executed that were mispredicted.

8DH Br_Ind_Exec 00H Indirect branch instructions 
executed.

8EH Br_Ind_Missp_Exec 00H Indirect branch instructions 
executed that were mispredicted.

8FH Br_Ret_Exec 00H Return branch instructions 
executed.

90H Br_Ret_Missp_Exec 00H Return branch instructions 
executed that were mispredicted.

91H Br_Ret_BAC_Missp_
Exec

00H Return branch instructions 
executed that were mispredicted 
at the front end.

92H Br_Call_Exec 00H Return call instructions executed.

93H Br_Call_Missp_Exec 00H Return call instructions executed 
that were mispredicted.

94H Br_Ind_Call_Exec 00H Indirect call branch instructions 
executed.

A2H Resource_Stall 00H Cycles while there is a resource 
related stall (renaming, buffer 
entries) as seen by allocator.

B0H MMX_Instr_Exec 00H Number of MMX instructions 
executed (does not include MOVQ 
and MOVD stores).

B1H SIMD_Int_Sat_Exec 00H Number of SIMD Integer saturating 
instructions executed.

B3H SIMD_Int_Pmul_
Exec

01H Number of SIMD Integer packed 
multiply instructions executed.

Table 19-15.  Non-Architectural Performance Events 
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask 
Mnemonic

Umask
Value Description Comment
Vol. 3B 19-213



PERFORMANCE-MONITORING EVENTS
B3H SIMD_Int_Psft_Exec 02H Number of SIMD Integer packed 
shift instructions executed.

B3H SIMD_Int_Pck_Exec 04H Number of SIMD Integer pack 
operations instruction executed.

B3H SIMD_Int_Upck_
Exec

08H Number of SIMD Integer unpack 
instructions executed.

B3H SIMD_Int_Plog_
Exec

10H Number of SIMD Integer packed 
logical instructions executed.

B3H SIMD_Int_Pari_Exec 20H Number of SIMD Integer packed 
arithmetic instructions executed.

C0H Instr_Ret 00H Number of instruction retired 
(Macro fused instruction count 
as 2).

C1H FP_Comp_Instr_Ret 00H Number of FP compute 
instructions retired (X87 
instruction or instruction that 
contain X87 operations).

Use IA32_PMC0 
only.

C2H Uops_Ret 00H Number of micro-ops retired 
(include fused uops).

C3H SMC_Detected 00H Number of times self-modifying 
code condition detected.

C4H Br_Instr_Ret 00H Number of branch instructions 
retired.

C5H Br_MisPred_Ret 00H Number of mispredicted branch 
instructions retired.

C6H Cycles_Int_Masked 00H Cycles while interrupt is disabled.

C7H Cycles_Int_Pedning_
Masked

00H Cycles while interrupt is disabled 
and interrupts are pending.

C8H HW_Int_Rx 00H Number of hardware interrupts 
received.

C9H Br_Taken_Ret 00H Number of taken branch 
instruction retired.

CAH Br_MisPred_Taken_
Ret

00H Number of taken and mispredicted 
branch instructions retired.

CCH MMX_FP_Trans 00H Number of transitions from MMX 
to X87.

Table 19-15.  Non-Architectural Performance Events 
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask 
Mnemonic

Umask
Value Description Comment
19-214 Vol. 3B



PERFORMANCE-MONITORING EVENTS
CCH FP_MMX_Trans 01H Number of transitions from X87 to 
MMX.

CDH MMX_Assist 00H Number of EMMS executed.

CEH MMX_Instr_Ret 00H Number of MMX instruction 
retired.

D0H Instr_Decoded 00H Number of instruction decoded.

D7H ESP_Uops 00H Number of ESP folding instruction 
decoded.

D8H SIMD_FP_SP_Ret 00H Number of SSE/SSE2 single 
precision instructions retired 
(packed and scalar).

D8H SIMD_FP_SP_S_
Ret

01H Number of SSE/SSE2 scalar single 
precision instructions retired.

D8H SIMD_FP_DP_P_
Ret

02H Number of SSE/SSE2 packed 
double precision instructions 
retired.

D8H SIMD_FP_DP_S_
Ret

03H Number of SSE/SSE2 scalar double 
precision instructions retired.

D8H SIMD_Int_128_Ret 04H Number of SSE2 128 bit integer  
instructions retired.

D9H SIMD_FP_SP_P_
Comp_Ret

00H Number of SSE/SSE2 packed single 
precision compute instructions 
retired (does not include AND, OR, 
XOR).

D9H SIMD_FP_SP_S_
Comp_Ret

01H Number of SSE/SSE2 scalar single 
precision compute instructions 
retired (does not include AND, OR, 
XOR).

D9H SIMD_FP_DP_P_
Comp_Ret

02H Number of SSE/SSE2 packed 
double precision compute 
instructions retired (does not 
include AND, OR, XOR).

D9H SIMD_FP_DP_S_
Comp_Ret

03H Number of SSE/SSE2 scalar double 
precision compute instructions 
retired (does not include AND, OR, 
XOR).

DAH Fused_Uops_Ret 00H All fused uops retired.

Table 19-15.  Non-Architectural Performance Events 
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask 
Mnemonic

Umask
Value Description Comment
Vol. 3B 19-215



PERFORMANCE-MONITORING EVENTS
19.10 PENTIUM 4 AND INTEL XEON PROCESSOR 
PERFORMANCE-MONITORING EVENTS

Tables 19-16, 19-17 and  list performance-monitoring events that can be counted or 
sampled on processors based on Intel NetBurst® microarchitecture. Table 19-16 lists 
the non-retirement events, and Table 19-17 lists the at-retirement events. Tables 
19-19, 19-20, and 19-21 describes three sets of parameters that are available for 
three of the at-retirement counting events defined in Table 19-17. Table 19-22 shows 
which of the non-retirement and at retirement events are logical processor specific 
(TS) (see Section 18.11.4, “Performance Monitoring Events”) and which are non-
logical processor specific (TI).

Some of the Pentium 4 and Intel Xeon processor performance-monitoring events 
may be available only to specific models. The performance-monitoring events listed 
in Tables 19-16 and 19-17 apply to processors with CPUID signature that matches 
family encoding 15, model encoding 0, 1, 2 3, 4, or 6. Table  applies to processors 
with a CPUID signature that matches family encoding 15, model encoding 3, 4 or 6.

The functionality of performance-monitoring events in Pentium 4 and Intel Xeon 
processors is also available when IA-32e mode is enabled. 

DAH Fused_Ld_Uops_
Ret

01H Fused load uops retired.

DAH Fused_St_Uops_Ret 02H Fused store uops retired.

DBH Unfusion 00H Number of unfusion events in the 
ROB (due to exception).

E0H Br_Instr_Decoded 00H Branch instructions decoded.

E2H BTB_Misses 00H Number of branches the BTB did 
not produce a prediction.

E4H Br_Bogus 00H Number of bogus branches.

E6H BAClears 00H Number of BAClears asserted.

F0H Pref_Rqsts_Up 00H Number of hardware prefetch 
requests issued in forward 
streams.

F8H Pref_Rqsts_Dn 00H Number of hardware prefetch 
requests issued in backward 
streams.

Table 19-15.  Non-Architectural Performance Events 
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask 
Mnemonic

Umask
Value Description Comment
19-216 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting

Event Name Event Parameters  Parameter Value Description

TC_deliver_mode This event counts the duration (in 
clock cycles) of the operating 
modes of the trace cache and 
decode engine in the processor 
package. The mode is specified by 
one or more of the event mask 
bits.

ESCR restrictions MSR_TC_ESCR0

MSR_TC_ESCR1

Counter numbers 
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 01H ESCR[31:25]

ESCR Event Mask

Bit 

0: DD

1: DB

2: DI

ESCR[24:9]

Both logical processors are in 
deliver mode.

Logical processor 0 is in deliver 
mode and logical processor 1 is in 
build mode.

Logical processor 0 is in deliver 
mode and logical processor 1 is 
either halted, under a machine 
clear condition or transitioning to 
a long microcode flow. 

3: BD

4: BB

Logical processor 0 is in build 
mode and logical processor 1 is in 
deliver mode.

Both logical processors are in build 
mode. 

5: BI Logical processor 0 is in build 
mode and logical processor 1 is 
either halted, under a machine 
clear condition or transitioning to 
a long microcode flow.
Vol. 3B 19-217



PERFORMANCE-MONITORING EVENTS
6: ID

7: IB

Logical processor 0 is either 
halted, under a machine clear 
condition or transitioning to a long 
microcode flow. Logical processor 
1 is in deliver mode.

Logical processor 0 is either 
halted, under a machine clear 
condition or transitioning to a long 
microcode flow. Logical processor 
1 is in build mode. 

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

If only one logical processor is 
available from a physical 
processor package, the event 
mask should be interpreted as 
logical processor 1 is halted. Event 
mask bit 2 was previously known 
as “DELIVER”, bit 5 was previously 
known as “BUILD”.

BPU_fetch_
request 

This event counts instruction 
fetch requests of specified 
request type by the Branch 
Prediction unit. Specify one or 
more mask bits to qualify the 
request type(s).

ESCR restrictions MSR_BPU_ESCR0
MSR_BPU_ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 0: TCMISS

ESCR[24:9]

Trace cache lookup miss

CCCR Select 00H CCCR[15:13]

ITLB_reference This event counts translations 
using the Instruction Translation 
Look-aside Buffer (ITLB). 

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
19-218 Vol. 3B



PERFORMANCE-MONITORING EVENTS
ESCR restrictions MSR_ITLB_ESCR0

MSR_ITLB_ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 18H ESCR[31:25]

ESCR Event Mask

Bit 

0: HIT

1: MISS

2: HIT_UC 

ESCR[24:9]

ITLB hit

ITLB miss

Uncacheable ITLB hit

CCCR Select 03H CCCR[15:13]

Event Specific 
Notes

All page references regardless of 
the page size are looked up as 
actual 4-KByte pages. Use the 
page_walk_type event with the 
ITMISS mask for a more 
conservative count.

memory_cancel This event counts the canceling of 
various type of request in the 
Data cache Address Control unit 
(DAC). Specify one or more mask 
bits to select the type of requests 
that are canceled.

ESCR restrictions MSR_DAC_ESCR0

MSR_DAC_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit 

2: ST_RB_FULL

3: 64K_CONF

ESCR[24:9]

Replayed because no store 
request buffer is available

Conflicts due to 64-KByte aliasing

CCCR Select 05H CCCR[15:13]

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
Vol. 3B 19-219



PERFORMANCE-MONITORING EVENTS
Event Specific 
Notes

All_CACHE_MISS includes 
uncacheable memory in count.

memory_
complete 

This event counts the completion 
of a load split, store split, 
uncacheable (UC) split, or UC load. 
Specify one or more mask bits to 
select the operations to be 
counted.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 08H ESCR[31:25]

ESCR Event Mask

Bit 

0: LSC

1: SSC

ESCR[24:9]

Load split completed, excluding 
UC/WC loads

Any split stores completed

CCCR Select 02H CCCR[15:13]

load_port_replay This event counts replayed events 
at the load port. Specify one or 
more mask bits to select the 
cause of the replay.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 04H ESCR[31:25]

ESCR Event Mask

Bit 1: SPLIT_LD

ESCR[24:9]

Split load.

CCCR Select 02H CCCR[15:13]

Event Specific 
Notes

Must use ESCR1 for at-retirement 
counting.

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
19-220 Vol. 3B



PERFORMANCE-MONITORING EVENTS
store_port_replay This event counts replayed events 
at the store port. Specify one or 
more mask bits to select the 
cause of the replay.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 05H ESCR[31:25]

ESCR Event Mask

Bit 1: SPLIT_ST

ESCR[24:9]

Split store

CCCR Select 02H CCCR[15:13]

Event Specific 
Notes

Must use ESCR1 for at-retirement 
counting.

MOB_load_replay This event triggers if the memory 
order buffer (MOB) caused a load 
operation to be replayed. Specify 
one or more mask bits to select 
the cause of the replay.

ESCR restrictions MSR_MOB_ESCR0

MSR_MOB_ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 

1: NO_STA

3: NO_STD

ESCR[24:9]

Replayed because of unknown 
store address.

Replayed because of unknown 
store data.

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
Vol. 3B 19-221



PERFORMANCE-MONITORING EVENTS
4: PARTIAL_DATA

5: UNALGN_ADDR 

Replayed because of partially 
overlapped data access between 
the load and store operations.

Replayed because the lower 4 bits 
of the linear address do not match 
between the load and store 
operations.

CCCR Select 02H CCCR[15:13]

page_walk_type This event counts various types 
of page walks that the page miss 
handler (PMH) performs.

ESCR restrictions MSR_PMH_
ESCR0

MSR_PMH_
ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 01H ESCR[31:25]

ESCR Event Mask

Bit 

0: DTMISS

1: ITMISS

ESCR[24:9]

Page walk for a data TLB miss 
(either load or store).

Page walk for an instruction TLB 
miss.

CCCR Select 04H CCCR[15:13]

BSQ_cache
_reference 

This event counts cache 
references (2nd level cache or 3rd 
level cache) as seen by the bus 
unit. 

Specify one or more mask bit to 
select an access according to the 
access type (read type includes 
both load and RFO, write type 
includes writebacks and evictions) 
and the access result (hit, misses).

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
19-222 Vol. 3B



PERFORMANCE-MONITORING EVENTS
ESCR restrictions MSR_BSU_
ESCR0

MSR_BSU_
ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 0CH ESCR[31:25]

Bit

0: RD_2ndL_HITS 

1: RD_2ndL_HITE

2: RD_2ndL_HITM

3: RD_3rdL_HITS

ESCR[24:9]

Read 2nd level cache hit Shared 
(includes load and RFO)

Read 2nd level cache hit Exclusive 
(includes load and RFO)

Read 2nd level cache hit Modified 
(includes load and RFO)

Read 3rd level cache hit Shared 
(includes load and RFO)

4: RD_3rdL_HITE

5: RD_3rdL_HITM

Read 3rd level cache hit Exclusive 
(includes load and RFO)

Read 3rd level cache hit Modified 
(includes load and RFO)

ESCR Event Mask 8: RD_2ndL_MISS

9: RD_3rdL_MISS

10: WR_2ndL_MISS

Read 2nd level cache miss 
(includes load and RFO)

Read 3rd level cache miss 
(includes load and RFO)

A Writeback lookup from DAC 
misses the 2nd level cache 
(unlikely to happen)

CCCR Select 07H CCCR[15:13]

Event Specific 
Notes

1: The implementation of this 
event in current Pentium 4 and 
Xeon processors treats either 
a load operation or a request 
for ownership (RFO) request as 
a “read” type operation. 

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
Vol. 3B 19-223



PERFORMANCE-MONITORING EVENTS
2: Currently this event causes 
both over and undercounting 
by as much as a factor of two 
due to an erratum.

3:  It is possible for a transaction 
that is started as a prefetch to 
change the transaction's 
internal status, making it no 
longer a prefetch. or change 
the access result status (hit, 
miss) as seen by this event. 

IOQ_allocation This event counts the various 
types of transactions on the bus. 
A count is generated each time a 
transaction is allocated into the 
IOQ that matches the specified 
mask bits. An allocated entry can 
be a sector (64 bytes) or a chunks 
of 8 bytes. 

Requests are counted once per 
retry. The event mask bits 
constitute 4 bit fields. A 
transaction type is specified by 
interpreting the values of each bit 
field. 

Specify one or more event mask 
bits in a bit field to select the 
value of the bit field.

Each field (bits 0-4 are one field) 
are independent of and can be 
ORed with the others. The 
request type field is further 
combined with bit 5 and 6 to form 
a binary expression. Bits 7 and 8 
form a bit field to specify the 
memory type of the target 
address. 

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
19-224 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Bits 13 and 14 form a bit field to 
specify the source agent of the 
request. Bit 15 affects read 
operation only. The event is 
triggered by evaluating the logical 
expression: (((Request type) OR 
Bit 5 OR Bit 6) OR (Memory type)) 
AND (Source agent).

ESCR restrictions MSR_FSB_ESCR0, 
MSR_FSB_ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1;

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bits 

0-4 (single field)

 5:  ALL_READ

 6:  ALL_WRITE

 7:  MEM_UC

 8:  MEM_WC

ESCR[24:9]

Bus request type (use 00001 for 
invalid or default)

Count read entries

Count write entries

Count UC memory access entries

Count WC memory access entries

 9:  MEM_WT

10: MEM_WP

Count write-through (WT) 
memory access entries.

Count write-protected (WP) 
memory access entries 

11: MEM_WB 

13: OWN

Count WB memory access entries. 

Count all store requests driven by 
processor, as opposed to other 
processor or DMA.

14: OTHER

15: PREFETCH

Count all requests driven by other 
processors or DMA.

Include HW and SW prefetch 
requests in the count.

CCCR Select 06H CCCR[15:13]

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
Vol. 3B 19-225



PERFORMANCE-MONITORING EVENTS
Event Specific 
Notes

1: If PREFETCH bit is cleared, 
sectors fetched using prefetch 
are excluded in the counts. If 
PREFETCH bit is set, all sectors 
or chunks read are counted. 

2: Specify the edge trigger in 
CCCR to avoid double counting.

3: The mapping of interpreted bit 
field values to transaction 
types may differ with different 
processor model 
implementations of the 
Pentium 4 processor family. 
Applications that program 
performance monitoring 
events should use CPUID to 
determine processor models 
when using this event. The 
logic equations that trigger the 
event are model-specific (see 
4a and 4b below).

4a:For Pentium 4 and Xeon 
Processors starting with CPUID 
Model field encoding equal to 2 
or greater, this event is 
triggered by evaluating the 
logical expression ((Request 
type) and (Bit 5 or Bit 6) and 
(Memory type) and (Source 
agent)).

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
19-226 Vol. 3B



PERFORMANCE-MONITORING EVENTS
4b:For Pentium 4 and Xeon 
Processors with CPUID Model 
field encoding less than 2, this 
event is triggered by 
evaluating the logical 
expression [((Request type) or 
Bit 5 or Bit 6) or (Memory 
type)] and (Source agent). Note 
that event mask bits for 
memory type are ignored if 
either ALL_READ or 
ALL_WRITE is specified.

5: This event is known to ignore 
CPL in early implementations 
of Pentium 4 and Xeon 
Processors. Both user requests 
and OS requests are included in 
the count. This behavior is 
fixed starting with Pentium 4 
and Xeon Processors with 
CPUID signature 0xF27 (Family 
15, Model 2, Stepping 7). 

6: For write-through (WT) and 
write-protected (WP) memory 
types, this event counts reads 
as the number of 64-byte 
sectors. Writes are counted by 
individual chunks.

7: For uncacheable (UC) memory 
types, this events counts the 
number of 8-byte chunks 
allocated.

8: For Pentium 4 and Xeon 
Processors with CPUID 
Signature less than 0xf27, only 
MSR_FSB_ESCR0 is available.

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
Vol. 3B 19-227



PERFORMANCE-MONITORING EVENTS
IOQ_active_
entries

This event counts the number of 
entries (clipped at 15) in the IOQ 
that are active. An allocated entry 
can be a sector (64 bytes) or a 
chunks of 8 bytes.

The event must be programmed in 
conjunction with IOQ_allocation. 
Specify one or more event mask 
bits to select the transactions 
that is counted. 

ESCR restrictions MSR_FSB_ESCR1

Counter numbers 
per ESCR

ESCR1: 2, 3 

ESCR Event Select 01AH ESCR[30:25]

ESCR Event Mask

Bits 

0-4 (single field)

5:  ALL_READ

6:  ALL_WRITE

7:  MEM_UC

8:  MEM_WC

ESCR[24:9]

Bus request type (use 00001 for 
invalid or default).

Count read entries.

Count write entries.

Count UC memory access entries.

Count WC memory access entries.

9:  MEM_WT

10: MEM_WP

Count write-through (WT) 
memory access entries.

Count write-protected (WP) 
memory access entries.

11: MEM_WB 

13: OWN

Count WB memory access entries. 

Count all store requests driven by 
processor, as opposed to other 
processor or DMA.

14: OTHER

15: PREFETCH

Count all requests driven by other 
processors or DMA.

Include HW and SW prefetch 
requests in the count.

CCCR Select 06H CCCR[15:13]

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
19-228 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Event Specific 
Notes

1: Specified desired mask bits in 
ESCR0 and ESCR1. 

2: See the ioq_allocation event 
for descriptions of the mask 
bits.

3: Edge triggering should not be 
used when counting cycles. 

4: The mapping of interpreted bit 
field values to transaction 
types may differ across 
different processor model 
implementations of the 
Pentium 4 processor family. 
Applications that programs 
performance monitoring 
events should use the CPUID 
instruction to detect processor 
models when using this event. 
The logical expression that 
triggers this event as describe 
below:

5a:For Pentium 4 and Xeon 
Processors starting with CPUID 
MODEL field encoding equal to 
2 or greater, this event is 
triggered by evaluating the 
logical expression ((Request 
type) and (Bit 5 or Bit 6) and 
(Memory type) and (Source 
agent)). 

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
Vol. 3B 19-229



PERFORMANCE-MONITORING EVENTS
5b:For Pentium 4 and Xeon 
Processors starting with CPUID 
MODEL field encoding less than 
2, this event is triggered by 
evaluating the logical 
expression [((Request type) or 
Bit 5 or Bit 6) or (Memory 
type)] and (Source agent). 
Event mask bits for memory 
type are ignored if either 
ALL_READ or ALL_WRITE is 
specified. 

5c:This event is known to ignore 
CPL in the current 
implementations of Pentium 4 
and Xeon Processors Both user 
requests and OS requests are 
included in the count.

6: An allocated entry can be a full 
line (64 bytes) or in individual 
chunks of 8 bytes.

FSB_data_
activity 

This event increments once for 
each DRDY or DBSY event that 
occurs on the front side bus. The 
event allows selection of a 
specific DRDY or DBSY event.

ESCR restrictions MSR_FSB_ESCR0
MSR_FSB_ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 17H ESCR[31:25]

ESCR Event Mask

Bit 0: 

ESCR[24:9]

DRDY_DRV Count when this processor drives 
data onto the bus - includes 
writes and implicit writebacks.

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
19-230 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Asserted two processor clock 
cycles for partial writes and 4 
processor clocks (usually in 
consecutive bus clocks) for full 
line writes. 

1: DRDY_OWN Count when this processor reads 
data from the bus - includes loads 
and some PIC transactions. 
Asserted two processor clock 
cycles for partial reads and 4 
processor clocks (usually in 
consecutive bus clocks) for full 
line reads.

Count DRDY events that we drive.

Count DRDY events sampled that 
we own.

2: DRDY_OTHER Count when data is on the bus but 
not being sampled by the 
processor. It may or may not be 
being driven by this processor.

Asserted two processor clock 
cycles for partial transactions and 
4 processor clocks (usually in 
consecutive bus clocks) for full 
line transactions. 

3: DBSY_DRV Count when this processor 
reserves the bus for use in the 
next bus cycle in order to drive 
data. Asserted for two processor 
clock cycles for full line writes and 
not at all for partial line writes.

May be asserted multiple times (in 
consecutive bus clocks) if we stall 
the bus waiting for a cache lock to 
complete.

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
Vol. 3B 19-231



PERFORMANCE-MONITORING EVENTS
4: DBSY_OWN Count when some agent reserves 
the bus for use in the next bus 
cycle to drive data that this 
processor will sample. 

Asserted for two processor clock 
cycles for full line writes and not 
at all for partial line writes. May be 
asserted multiple times (all one 
bus clock apart) if we stall the bus 
for some reason. 

5:DBSY_OTHER Count when some agent reserves 
the bus for use in the next bus 
cycle to drive data that this 
processor will NOT sample. It may 
or may not be being driven by this 
processor. 

Asserted two processor clock 
cycles for partial transactions and 
4 processor clocks (usually in 
consecutive bus clocks) for full 
line transactions. 

CCCR Select 06H CCCR[15:13]

Event Specific 
Notes

Specify edge trigger in the CCCR 
MSR to avoid double counting.

DRDY_OWN and DRDY_OTHER are 
mutually exclusive; similarly for 
DBSY_OWN and DBSY_OTHER.

BSQ_allocation This event counts allocations in 
the Bus Sequence Unit (BSQ) 
according to the specified mask 
bit encoding. The event mask bits 
consist of four sub-groups: 

• request type, 
• request length
• memory type
• and sub-group consisting 

mostly of independent bits 
(bits 5, 6, 7, 8, 9, and 10) 

Specify an encoding for each sub-
group.

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
19-232 Vol. 3B



PERFORMANCE-MONITORING EVENTS
ESCR restrictions MSR_BSU_ESCR0 

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR Event Select 05H ESCR[31:25]

ESCR Event Mask Bit 

0: REQ_TYPE0
1: REQ_TYPE1

ESCR[24:9]

Request type encoding (bit 0 and 
1) are: 

0 – Read (excludes read 
invalidate)
1 – Read invalidate
2 – Write (other than 
writebacks)
3 – Writeback (evicted from 
cache). (public)

2: REQ_LEN0
3: REQ_LEN1

Request length encoding (bit 2, 3) 
are: 

0 – 0 chunks
1 – 1 chunks
3 – 8 chunks

5: REQ_IO_TYPE

6: REQ_LOCK_
     TYPE

7: REQ_CACHE_
     TYPE

Request type is input or output.

Request type is bus lock.

Request type is cacheable.

8: REQ_SPLIT_
    TYPE

9: REQ_DEM_TYPE

10: REQ_ORD_
       TYPE

Request type is a bus 8-byte 
chunk split across 8-byte 
boundary.

Request type is a demand if set. 
Request type is HW.SW prefetch 
if 0.

Request is an ordered type.

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
Vol. 3B 19-233



PERFORMANCE-MONITORING EVENTS
11: MEM_TYPE0
12: MEM_TYPE1
13: MEM_TYPE2

Memory type encodings (bit 
11-13) are: 

0 – UC
1 – WC
4 – WT
5 – WP
6 – WB

CCCR Select 07H CCCR[15:13]

Event Specific 
Notes

1: Specify edge trigger in CCCR to 
avoid double counting.

2: A writebacks to 3rd level cache 
from 2nd level cache counts as 
a separate entry, this is in 
additional to the entry 
allocated for a request to the 
bus. 

3: A read request to WB memory 
type results in a request to the 
64-byte sector, containing the 
target address, followed by a 
prefetch request to an 
adjacent sector. 

4: For Pentium 4 and Xeon 
processors with CPUID model 
encoding value equals to 0 and 
1, an allocated BSQ entry 
includes both the demand 
sector and prefetched 2nd 
sector.

5: An allocated BSQ entry for a 
data chunk is any request less 
than 64 bytes. 

6a:This event may undercount for 
requests of split type 
transactions if the data 
address straddled across 
modulo-64 byte boundary.

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
19-234 Vol. 3B



PERFORMANCE-MONITORING EVENTS
6b:This event may undercount for 
requests of read request of 
16-byte operands from WC or 
UC address.

6c: This event may undercount WC 
partial requests originated 
from store operands that are 
dwords. 

bsq_active_
entries 

This event represents the number 
of BSQ entries (clipped at 15) 
currently active (valid) which meet 
the subevent mask criteria during 
allocation in the BSQ. Active 
request entries are allocated on 
the BSQ until de-allocated. 

De-allocation of an entry does not 
necessarily imply the request is 
filled. This event must be 
programmed in conjunction with 
BSQ_allocation. Specify one or 
more event mask bits to select 
the transactions that is counted.

ESCR restrictions ESCR1

Counter numbers 
per ESCR

ESCR1: 2, 3 

ESCR Event Select 06H ESCR[30:25]

ESCR Event Mask ESCR[24:9]

CCCR Select 07H CCCR[15:13]

Event Specific 
Notes

1: Specified desired mask bits in 
ESCR0 and ESCR1. 

2: See the BSQ_allocation event 
for descriptions of the mask 
bits. 

3: Edge triggering should not be 
used when counting cycles.

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
Vol. 3B 19-235



PERFORMANCE-MONITORING EVENTS
4: This event can be used to 
estimate the latency of a 
transaction from allocation to 
de-allocation in the BSQ. The 
latency observed by 
BSQ_allocation includes the 
latency of FSB, plus additional 
overhead. 

5: Additional overhead may 
include the time it takes to 
issue two requests (the sector 
by demand and the adjacent 
sector via prefetch). Since 
adjacent sector prefetches 
have lower priority that 
demand fetches, on a heavily 
used system there is a high 
probability that the adjacent 
sector prefetch will have to 
wait until the next bus 
arbitration.

6: For Pentium 4 and Xeon 
processors with CPUID model 
encoding value less than 3, this 
event is updated every clock. 

7: For Pentium 4 and Xeon 
processors with CPUID model 
encoding value equals to 3 or 4, 
this event is updated every 
other clock. 

SSE_input_assist This event counts the number of 
times an assist is requested to 
handle problems with input 
operands for SSE/SSE2/SSE3 
operations; most notably 
denormal source operands when 
the DAZ bit is not set. Set bit 15 
of the event mask to use this 
event.

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
19-236 Vol. 3B



PERFORMANCE-MONITORING EVENTS
ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 34H ESCR[31:25]

ESCR Event Mask

15: ALL 

ESCR[24:9]

Count assists for SSE/SSE2/SSE3 
μops.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

1: Not all requests for assists are 
actually taken. This event is 
known to overcount in that it 
counts requests for assists 
from instructions on the non-
retired path that do not incur a 
performance penalty. An assist 
is actually taken only for non-
bogus μops. Any appreciable 
counts for this event are an 
indication that the DAZ or FTZ 
bit should be set and/or the 
source code should be changed 
to eliminate the condition.

2: Two common situations for an 
SSE/SSE2/SSE3 operation 
needing an assist are: (1) when 
a denormal constant is used as 
an input and the Denormals-
Are-Zero (DAZ) mode is not 
set, (2) when the input operand 
uses the underflowed result of 
a previous SSE/SSE2/SSE3 
operation and neither the DAZ 
nor Flush-To-Zero (FTZ) modes 
are set.

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
Vol. 3B 19-237



PERFORMANCE-MONITORING EVENTS
3: Enabling the DAZ mode 
prevents SSE/SSE2/SSE3 
operations from needing 
assists in the first situation. 
Enabling the FTZ mode 
prevents SSE/SSE2/SSE3 
operations from needing 
assists in the second situation.

packed_SP_uop This event increments for each 
packed single-precision μop, 
specified through the event mask 
for detection. 

ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 08H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all μops operating on 
packed single-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

1: If an instruction contains more 
than one packed SP μops, each 
packed SP μop that is specified 
by the event mask will be 
counted. 

2: This metric counts instances of 
packed memory μops in a 
repeat move string.

packed_DP_uop This event increments for each 
packed double-precision μop, 
specified through the event mask 
for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
19-238 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0CH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all μops operating on 
packed double-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

If an instruction contains more 
than one packed DP μops, each 
packed DP μop that is specified by 
the event mask will be counted.

scalar_SP_uop This event increments for each 
scalar single-precision μop, 
specified through the event mask 
for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0AH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all μops operating on scalar 
single-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

If an instruction contains more 
than one scalar SP μops, each 
scalar SP μop that is specified by 
the event mask will be counted.

scalar_DP_uop This event increments for each 
scalar double-precision μop, 
specified through the event mask 
for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
Vol. 3B 19-239



PERFORMANCE-MONITORING EVENTS
Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0EH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all μops operating on scalar 
double-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

If an instruction contains more 
than one scalar DP μops, each 
scalar DP μop that is specified by 
the event mask is counted.

64bit_MMX_uop This event increments for each 
MMX instruction, which operate 
on 64-bit SIMD operands. 

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all μops operating on 64- 
bit SIMD integer operands in 
memory or MMX registers.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

If an instruction contains more 
than one 64-bit MMX μops, each 
64-bit MMX μop that is specified 
by the event mask will be 
counted.

128bit_MMX_uop This event increments for each 
integer SIMD SSE2 instruction, 
which operate on 128-bit SIMD 
operands. 

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
19-240 Vol. 3B



PERFORMANCE-MONITORING EVENTS
ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 1AH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all μops operating on 128-
bit SIMD integer operands in 
memory or XMM registers.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

If an instruction contains more 
than one 128-bit MMX μops, each 
128-bit MMX μop that is specified 
by the event mask will be 
counted.

x87_FP_uop This event increments for each 
x87 floating-point μop, specified 
through the event mask for 
detection. 

ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 04H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all x87 FP μops.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

1: If an instruction contains more 
than one x87 FP μops, each 
x87 FP μop that is specified by 
the event mask will be counted. 

2: This event does not count x87 
FP μop for load, store, move 
between registers.

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
Vol. 3B 19-241



PERFORMANCE-MONITORING EVENTS
TC_misc This event counts miscellaneous 
events detected by the TC. The 
counter will count twice for each 
occurrence. 

ESCR restrictions MSR_TC_ESCR0
MSR_TC_ESCR1

Counter numbers 
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 06H ESCR[31:25]

CCCR Select 01H CCCR[15:13]

ESCR Event Mask

Bit 4: FLUSH

ESCR[24:9]

Number of flushes

global_power
_events 

This event accumulates the time 
during which a processor is not 
stopped.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 013H ESCR[31:25]

ESCR Event Mask Bit 0: Running ESCR[24:9]

The processor is active (includes 
the handling of HLT STPCLK and 
throttling.

CCCR Select 06H CCCR[15:13]

tc_ms_xfer This event counts the number of 
times that uop delivery changed 
from TC to MS ROM.

ESCR restrictions MSR_MS_ESCR0

MSR_MS_ESCR1

Counter numbers 
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 05H ESCR[31:25]

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
19-242 Vol. 3B



PERFORMANCE-MONITORING EVENTS
ESCR Event Mask

Bit 0: CISC

ESCR[24:9]

A TC to MS transfer occurred.

CCCR Select 0H CCCR[15:13]

uop_queue_
writes 

This event counts the number of 
valid uops written to the uop 
queue. Specify one or more mask 
bits to select the source type of 
writes.

ESCR restrictions MSR_MS_ESCR0

MSR_MS_ESCR1

Counter numbers 
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 09H ESCR[31:25]

ESCR Event Mask

Bit 

0: FROM_TC_
BUILD

ESCR[24:9]

The uops being written are from 
TC build mode.

1: FROM_TC_
DELIVER

2: FROM_ROM

The uops being written are from 
TC deliver mode.

The uops being written are from 
microcode ROM.

CCCR Select 0H CCCR[15:13]

retired_mispred

_branch_type

This event counts retiring 
mispredicted branches by type.

ESCR restrictions MSR_TBPU_ESCR0

MSR_TBPU_ESCR1 

Counter numbers 
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 05H ESCR[30:25]

ESCR Event Mask

Bit

1: CONDITIONAL

2: CALL

ESCR[24:9]

Conditional jumps.

Indirect call branches.

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
Vol. 3B 19-243



PERFORMANCE-MONITORING EVENTS
3: RETURN

4: INDIRECT

Return branches.

Returns, indirect calls, or indirect 
jumps.

CCCR Select 02H CCCR[15:13]

Event Specific 
Notes

This event may overcount 
conditional branches if:

• Mispredictions cause the trace 
cache and delivery engine to 
build new traces.

• When the processor's pipeline 
is being cleared. 

retired_branch

_type

This event counts retiring 
branches by type. Specify one or 
more mask bits to qualify the 
branch by its type.

ESCR restrictions MSR_TBPU_ESCR0

MSR_TBPU_ESCR1 

Counter numbers 
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 04H ESCR[30:25]

ESCR Event Mask

Bit

1: CONDITIONAL

2: CALL

ESCR[24:9]

Conditional jumps.

Direct or indirect calls.

3: RETURN

4: INDIRECT

Return branches.

Returns, indirect calls, or indirect 
jumps.

CCCR Select 02H CCCR[15:13]

Event Specific 
Notes

This event may overcount 
conditional branches if :

• Mispredictions cause the trace 
cache and delivery engine to 
build new traces.

• When the processor's pipeline 
is being cleared. 

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
19-244 Vol. 3B



PERFORMANCE-MONITORING EVENTS
resource_stall This event monitors the 
occurrence or latency of stalls in 
the Allocator.

ESCR restrictions MSR_ALF_ESCR0

MSR_ALF_ESCR1 

Counter numbers 
per ESCR

ESCR0: 12, 13, 16 
ESCR1: 14, 15, 17 

ESCR Event Select 01H ESCR[30:25]

Event Masks

Bit

ESCR[24:9]

5: SBFULL A Stall due to lack of store buffers.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

This event may not be supported 
in all models of the processor 
family.

WC_Buffer This event counts Write 
Combining Buffer operations that 
are selected by the event mask.

ESCR restrictions MSR_DAC_ESCR0

MSR_DAC_ESCR1 

Counter numbers 
per ESCR

ESCR0: 8, 9 

ESCR1: 10, 11 

ESCR Event Select 05H ESCR[30:25]

Event Masks

Bit

ESCR[24:9]

0: WCB_EVICTS WC Buffer evictions of all causes.

1: WCB_FULL_
    EVICT

WC Buffer eviction: no WC buffer 
is available.

CCCR Select 05H CCCR[15:13]

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
Vol. 3B 19-245



PERFORMANCE-MONITORING EVENTS
Event Specific 
Notes

This event is useful for detecting 
the subset of 64K aliasing cases 
that are more costly (i.e. 64K 
aliasing cases involving stores) as 
long as there are no significant 
contributions due to write 
combining buffer full or hit-
modified conditions.

b2b_cycles This event can be configured to 
count the number back-to-back 
bus cycles using sub-event mask 
bits 1 through 6.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1 

Counter numbers 
per ESCR

ESCR0: 0, 1 

ESCR1: 2, 3 

ESCR Event Select 016H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific 
Notes

This event may not be supported 
in all models of the processor 
family.

bnr This event can be configured to 
count bus not ready conditions 
using sub-event mask bits 0 
through 2.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1 

Counter numbers 
per ESCR

ESCR0: 0, 1 

ESCR1: 2, 3 

ESCR Event Select 08H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific 
Notes

This event may not be supported 
in all models of the processor 
family.

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
19-246 Vol. 3B



PERFORMANCE-MONITORING EVENTS
snoop This event can be configured to 
count snoop hit modified bus 
traffic using sub-event mask bits 
2, 6 and 7.

ESCR restrictions MSR_FSB_ESCR0 
MSR_FSB_ESCR1 

Counter numbers 
per ESCR

ESCR0: 0, 1 

ESCR1: 2, 3 

ESCR Event Select 06H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific 
Notes

This event may not be supported 
in all models of the processor 
family.

Response This event can be configured to 
count different types of 
responses using sub-event mask 
bits 1,2, 8, and 9.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1 

Counter numbers 
per ESCR

ESCR0: 0, 1 

ESCR1: 2, 3 

ESCR Event Select 04H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific 
Notes

This event may not be supported 
in all models of the processor 
family.

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
Vol. 3B 19-247



PERFORMANCE-MONITORING EVENTS
Table 19-17.  Performance Monitoring Events For Intel NetBurst 
Microarchitecture for At-Retirement Counting

Event Name Event Parameters  Parameter Value Description

front_end_event This event counts the retirement 
of tagged μops, which are 
specified through the front-end 
tagging mechanism. The event 
mask specifies bogus or non-bogus 
μops.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 08H ESCR[31:25]

ESCR Event Mask

Bit 

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked μops are not bogus.

The marked μops are bogus.

CCCR Select 05H CCCR[15:13]

Can Support PEBS Yes

Require Additional 
MSRs for tagging

Selected ESCRs 
and/or MSR_TC_
PRECISE_EVENT

See list of metrics supported by 
Front_end tagging in Table A-3

execution_event This event counts the retirement 
of tagged μops, which are 
specified through the execution 
tagging mechanism. 

The event mask allows from one 
to four types of μops to be 
specified as either bogus or non-
bogus μops to be tagged. 

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 0CH ESCR[31:25]
19-248 Vol. 3B



PERFORMANCE-MONITORING EVENTS
ESCR Event Mask

Bit 

0: NBOGUS0

1: NBOGUS1

2: NBOGUS2

3: NBOGUS3

4: BOGUS0

5: BOGUS1

6: BOGUS2

7: BOGUS3

ESCR[24:9]

The marked μops are not bogus.

The marked μops are not bogus.

The marked μops are not bogus.

The marked μops are not bogus.

The marked μops are bogus.

The marked μops are bogus.

The marked μops are bogus.

The marked μops are bogus.

CCCR Select 05H CCCR[15:13]

Event Specific 
Notes

Each of the 4 slots to specify the 
bogus/non-bogus μops must be 
coordinated with the 4 TagValue 
bits in the ESCR (for example, 
NBOGUS0 must accompany a ‘1’ in 
the lowest bit of the TagValue 
field in ESCR, NBOGUS1 must 
accompany a ‘1’ in the next but 
lowest bit of the TagValue field).

Can Support PEBS Yes

Require Additional 
MSRs for tagging

An ESCR for an 
upstream event

See list of metrics supported by 
execution tagging in Table A-4.

replay_event This event counts the retirement 
of tagged μops, which are 
specified through the replay 
tagging mechanism. The event 
mask specifies bogus or non-bogus 
μops.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 09H ESCR[31:25]

Table 19-17.  Performance Monitoring Events For Intel NetBurst 
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
Vol. 3B 19-249



PERFORMANCE-MONITORING EVENTS
ESCR Event Mask

Bit 

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked μops are not bogus.

The marked μops are bogus.

CCCR Select 05H CCCR[15:13]

Event Specific 
Notes

Supports counting tagged μops 
with additional MSRs.

Can Support PEBS Yes

Require Additional 
MSRs for tagging

IA32_PEBS_
ENABLE

MSR_PEBS_
MATRIX_VERT

Selected ESCR

See list of metrics supported by 
replay tagging in Table A-5.

instr_retired This event counts instructions that 
are retired during a clock cycle.

Mask bits specify bogus or non-
bogus (and whether they are 
tagged using the front-end 
tagging mechanism).

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers 
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit 

0: NBOGUSNTAG

1: NBOGUSTAG

ESCR[24:9]

Non-bogus instructions that are 
not tagged.

Non-bogus instructions that are 
tagged. 

2: BOGUSNTAG

3: BOGUSTAG

Bogus instructions that are not 
tagged.

Bogus instructions that are 
tagged.

CCCR Select 04H CCCR[15:13]

Table 19-17.  Performance Monitoring Events For Intel NetBurst 
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
19-250 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Event Specific 
Notes

1: The event count may vary 
depending on the 
microarchitectural states of the 
processor when the event 
detection is enabled. 

2: The event may count more 
than once for some instructions 
with complex uop flows and 
were interrupted before 
retirement.

Can Support PEBS No

uops_retired This event counts μops that are 
retired during a clock cycle. Mask 
bits specify bogus or non-bogus.

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers 
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 01H ESCR[31:25]

ESCR Event Mask

Bit 

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked μops are not bogus.

The marked μops are bogus.

CCCR Select 04H CCCR[15:13]

Event Specific 
Notes

P6: EMON_UOPS_RETIRED

Can Support PEBS No

uop_type This event is used in conjunction 
with the front-end at-retirement 
mechanism to tag load and store 
μops.

ESCR restrictions MSR_RAT_ESCR0

MSR_RAT_ESCR1

Counter numbers 
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

Table 19-17.  Performance Monitoring Events For Intel NetBurst 
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
Vol. 3B 19-251



PERFORMANCE-MONITORING EVENTS
ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit 

1: TAGLOADS

2: TAGSTORES

ESCR[24:9]

The μop is a load operation.

The μop is a store operation.

CCCR Select 02H CCCR[15:13]

Event Specific 
Notes

Setting the TAGLOADS and 
TAGSTORES mask bits does not 
cause a counter to increment. 
They are only used to tag uops.

Can Support PEBS No

branch_retired This event counts the retirement 
of a branch. Specify one or more 
mask bits to select any 
combination of taken, not-taken, 
predicted and mispredicted. 

ESCR restrictions MSR_CRU_ESCR2
MSR_CRU_ESCR3

See Table 18-30 for the addresses 
of the ESCR MSRs

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

The counter numbers associated 
with each ESCR are provided. The 
performance counters and 
corresponding CCCRs can be 
obtained from Table 18-30.

ESCR Event Select 06H ESCR[31:25]

ESCR Event Mask

Bit 

0: MMNP

1: MMNM

2: MMTP

3: MMTM

ESCR[24:9]

Branch not-taken predicted

Branch not-taken mispredicted

Branch taken predicted

Branch taken mispredicted

CCCR Select 05H CCCR[15:13]

Event Specific 
Notes

P6: EMON_BR_INST_RETIRED

Can Support PEBS No

Table 19-17.  Performance Monitoring Events For Intel NetBurst 
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
19-252 Vol. 3B



PERFORMANCE-MONITORING EVENTS
mispred_branch_
retired 

This event represents the 
retirement of mispredicted branch 
instructions. 

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers 
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 0: NBOGUS

ESCR[24:9]

The retired instruction is not 
bogus.

CCCR Select 04H CCCR[15:13]

Can Support PEBS No

x87_assist This event counts the retirement 
of x87 instructions that required 
special handling. 

Specifies one or more event mask 
bits to select the type of 
assistance.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 

0: FPSU

1: FPSO

ESCR[24:9]

Handle FP stack underflow

Handle FP stack overflow

2: POAO

3: POAU

4: PREA

Handle x87 output overflow

Handle x87 output underflow

Handle x87 input assist

CCCR Select 05H CCCR[15:13]

Can Support PEBS No

Table 19-17.  Performance Monitoring Events For Intel NetBurst 
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
Vol. 3B 19-253



PERFORMANCE-MONITORING EVENTS
machine_clear This event increments according to 
the mask bit specified while the 
entire pipeline of the machine is 
cleared. Specify one of the mask 
bit to select the cause.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit 

0: CLEAR

ESCR[24:9]

Counts for a portion of the many 
cycles while the machine is cleared 
for any cause. Use Edge triggering 
for this bit only to get a count of 
occurrence versus a duration.

2:  MOCLEAR

6: SMCLEAR

Increments each time the machine 
is cleared due to memory ordering 
issues.

Increments each time the machine 
is cleared due to self-modifying 
code issues.

CCCR Select 05H CCCR[15:13]

Can Support PEBS No

Table 19-17.  Performance Monitoring Events For Intel NetBurst 
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
19-254 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Table 19-18.  Intel NetBurst Microarchitecture Model-Specific Performance 
Monitoring Events (For Model Encoding 3, 4 or 6)

Event Name Event Parameters  Parameter Value Description

instr_completed This event counts instructions that 
have completed and retired during 
a clock cycle. Mask bits specify 
whether the instruction is bogus 
or non-bogus and whether they 
are:

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers 
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 07H ESCR[31:25]

ESCR Event Mask

Bit 

0: NBOGUS

1: BOGUS

ESCR[24:9]

Non-bogus instructions

Bogus instructions

CCCR Select 04H CCCR[15:13]

Event Specific 
Notes

This metric differs from 
instr_retired, since it counts 
instructions completed, rather 
than the number of times that 
instructions started.

Can Support PEBS No
Vol. 3B 19-255



PERFORMANCE-MONITORING EVENTS
Table 19-19.  List of Metrics Available for Front_end Tagging 
(For Front_end Event Only)

Front-end 
metric1

MSR_ 
TC_PRECISE_EVEN
T MSR Bit field

 Additional MSR Event mask value for 
Front_end_event

memory_loads None Set TAGLOADS bit 
in ESCR 
corresponding to 
event Uop_Type.

NBOGUS

memory_stores None Set TAGSTORES bit 
in the ESCR 
corresponding to 
event Uop_Type.

NBOGUS

NOTES:
1. There may be some undercounting of front end events when there is an overflow or underflow of 

the floating point stack.

Table 19-20.  List of Metrics Available for Execution Tagging 
(For Execution Event Only)

Execution metric Upstream ESCR TagValue in 
Upstream ESCR

Event mask value for 
execution_event 

packed_SP_retired Set ALL bit in event 
mask, TagUop bit in 
ESCR of 
packed_SP_uop.

1 NBOGUS0

packed_DP_retired Set ALL bit in event 
mask, TagUop bit in 
ESCR of 
packed_DP_uop.

1 NBOGUS0

scalar_SP_retired Set ALL bit in event 
mask, TagUop bit in 
ESCR of 
scalar_SP_uop.

1 NBOGUS0

scalar_DP_retired Set ALL bit in event 
mask, TagUop bit in 
ESCR of 
scalar_DP_uop.

1 NBOGUS0

128_bit_MMX_retired Set ALL bit in event 
mask, TagUop bit in 
ESCR of 
128_bit_MMX_uop.

1 NBOGUS0
19-256 Vol. 3B



PERFORMANCE-MONITORING EVENTS
64_bit_MMX_retired Set ALL bit in event 
mask, TagUop bit in 
ESCR of 
64_bit_MMX_uop.

1 NBOGUS0

X87_FP_retired Set ALL bit in event 
mask, TagUop bit in 
ESCR of 
x87_FP_uop.

1 NBOGUS0

X87_SIMD_memory_m
oves_retired

Set ALLP0, ALLP2 
bits in event mask, 
TagUop bit in ESCR 
of X87_SIMD_ 
moves_uop. 

1 NBOGUS0

Table 19-21.  List of Metrics Available for Replay Tagging 
(For Replay Event Only)

Replay metric1

IA32_PEBS_
ENABLE Field 
to Set

MSR_PEBS_
MATRIX_VERT 
Bit Field to Set

Additional MSR/ 
Event 

Event Mask 
Value for 
Replay_event

1stL_cache_load
_miss_retired

Bit 0, Bit 24, 
Bit 25

Bit 0 None NBOGUS

2ndL_cache_load
_miss_retired2

Bit 1, Bit 24, 
Bit 25

Bit 0 None NBOGUS

DTLB_load_miss
_retired

Bit 2, Bit 24, 
Bit 25

Bit 0 None NBOGUS

DTLB_store_miss
_retired

Bit 2, Bit 24, 
Bit 25

Bit 1 None NBOGUS

DTLB_all_miss
_retired

Bit 2, Bit 24, 
Bit 25

Bit 0, Bit 1 None NBOGUS

Tagged_mispred_
branch

Bit 15, Bit 16, 
Bit 24, Bit 25

Bit 4 None NBOGUS

MOB_load
_replay_retired3

Bit 9, Bit 24, 
Bit 25

Bit 0 Select 
MOB_load_replay 
event and set 
PARTIAL_DATA and 
UNALGN_ADDR bit. 

NBOGUS

Table 19-20.  List of Metrics Available for Execution Tagging 
(For Execution Event Only) (Contd.)

Execution metric Upstream ESCR TagValue in 
Upstream ESCR

Event mask value for 
execution_event 
Vol. 3B 19-257



PERFORMANCE-MONITORING EVENTS
split_load_retired Bit 10, Bit 24, 
Bit 25

Bit 0 Select 
load_port_replay 
event with the 
MSR_SAAT_ESCR1 
MSR and set the 
SPLIT_LD mask bit.

NBOGUS

split_store_retired Bit 10, Bit 24, 
Bit 25

Bit 1 Select 
store_port_replay 
event with the 
MSR_SAAT_ESCR0 
MSR and set the 
SPLIT_ST mask bit.

NBOGUS

NOTES:
1. Certain kinds of μops cannot be tagged. These include I/O operations, UC and locked accesses, 

returns, and far transfers.
2. 2nd-level misses retired does not count all 2nd-level misses. It only includes those references that 

are found to be misses by the fast detection logic and not those that are later found to be misses.
3. While there are several causes for a MOB replay, the event counted with this event mask setting is 

the case where the data from a load that would otherwise be forwarded is not an aligned subset of 
the data from a preceding store.

Table 19-21.  List of Metrics Available for Replay Tagging 
(For Replay Event Only) (Contd.)

Replay metric1

IA32_PEBS_
ENABLE Field 
to Set

MSR_PEBS_
MATRIX_VERT 
Bit Field to Set

Additional MSR/ 
Event 

Event Mask 
Value for 
Replay_event
19-258 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Table 19-22.  Event Mask Qualification for Logical Processors

Event Type Event Name Event Masks, ESCR[24:9] TS or TI

Non-Retirement BPU_fetch_request Bit 0: TCMISS TS

Non-Retirement BSQ_allocation Bit

0: REQ_TYPE0 TS

1: REQ_TYPE1 TS

2: REQ_LEN0 TS

3: REQ_LEN1 TS

5: REQ_IO_TYPE TS

6: REQ_LOCK_TYPE TS

7: REQ_CACHE_TYPE TS

8: REQ_SPLIT_TYPE TS

9: REQ_DEM_TYPE TS

10: REQ_ORD_TYPE TS

11: MEM_TYPE0 TS

12: MEM_TYPE1 TS

13: MEM_TYPE2 TS

Non-Retirement BSQ_cache_reference Bit

0: RD_2ndL_HITS TS

1: RD_2ndL_HITE TS

2: RD_2ndL_HITM TS

3: RD_3rdL_HITS TS

4: RD_3rdL_HITE TS

5: RD_3rdL_HITM TS

6: WR_2ndL_HIT TS

7: WR_3rdL_HIT TS

8: RD_2ndL_MISS TS

9: RD_3rdL_MISS TS

10: WR_2ndL_MISS TS

11: WR_3rdL_MISS TS
Vol. 3B 19-259



PERFORMANCE-MONITORING EVENTS
Non-Retirement memory_cancel Bit

2: ST_RB_FULL TS

3: 64K_CONF TS

Non-Retirement SSE_input_assist Bit 15: ALL TI

Non-Retirement 64bit_MMX_uop Bit 15: ALL TI

Non-Retirement packed_DP_uop Bit 15: ALL TI

Non-Retirement packed_SP_uop Bit 15: ALL TI

Non-Retirement scalar_DP_uop Bit 15: ALL TI

Non-Retirement scalar_SP_uop Bit 15: ALL TI

Non-Retirement 128bit_MMX_uop Bit 15: ALL TI

Non-Retirement x87_FP_uop Bit 15: ALL TI

Non-Retirement x87_SIMD_moves_uop Bit

3: ALLP0 TI

4: ALLP2 TI

Non-Retirement FSB_data_activity Bit

0: DRDY_DRV TI

1: DRDY_OWN TI

2: DRDY_OTHER TI

3: DBSY_DRV TI

4: DBSY_OWN TI

5: DBSY_OTHER TI

Non-Retirement IOQ_allocation Bit

0: ReqA0 TS

1: ReqA1 TS

2: ReqA2 TS

3: ReqA3 TS

4: ReqA4 TS

5: ALL_READ TS

6: ALL_WRITE TS

7: MEM_UC TS

8: MEM_WC TS

Table 19-22.  Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
19-260 Vol. 3B



PERFORMANCE-MONITORING EVENTS
9: MEM_WT TS

10: MEM_WP TS

11: MEM_WB TS

13: OWN TS

14: OTHER TS

15: PREFETCH TS

Non-Retirement IOQ_active_entries Bit

0: ReqA0

TS

1:ReqA1 TS

2: ReqA2 TS

3: ReqA3 TS

4: ReqA4 TS

5: ALL_READ TS

6: ALL_WRITE TS

7: MEM_UC TS

8: MEM_WC TS

9: MEM_WT TS

10: MEM_WP TS

11: MEM_WB TS

13: OWN TS

14: OTHER TS

15: PREFETCH TS

Non-Retirement global_power_events Bit 0: RUNNING TS

Non-Retirement ITLB_reference Bit

0: HIT TS

1: MISS TS

2: HIT_UC TS

Table 19-22.  Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
Vol. 3B 19-261



PERFORMANCE-MONITORING EVENTS
Non-Retirement MOB_load_replay Bit

1: NO_STA TS

3: NO_STD TS

4: PARTIAL_DATA TS

5: UNALGN_ADDR TS

Non-Retirement page_walk_type Bit

0: DTMISS TI

1: ITMISS TI

Non-Retirement uop_type Bit

1: TAGLOADS TS

2: TAGSTORES TS

Non-Retirement load_port_replay Bit 1: SPLIT_LD TS

Non-Retirement store_port_replay Bit 1: SPLIT_ST TS

Non-Retirement memory_complete Bit

0: LSC TS

1: SSC TS

2: USC TS

3: ULC TS

Non-Retirement retired_mispred_branch_
type

Bit

0: UNCONDITIONAL TS

1: CONDITIONAL TS

2: CALL TS

3: RETURN TS

4: INDIRECT TS

Non-Retirement retired_branch_type Bit 

0: UNCONDITIONAL TS

1: CONDITIONAL TS

2: CALL TS

3: RETURN TS

4: INDIRECT TS

Table 19-22.  Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
19-262 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Non-Retirement tc_ms_xfer Bit

0: CISC TS

Non-Retirement tc_misc Bit

4: FLUSH TS

Non-Retirement TC_deliver_mode Bit

0: DD TI

1: DB TI

2: DI TI

3: BD TI

4: BB TI

5: BI TI

6: ID TI

7: IB TI

Non-Retirement uop_queue_writes Bit

0: FROM_TC_BUILD TS

1: FROM_TC_DELIVER TS

2: FROM_ROM TS

Non-Retirement resource_stall Bit 5: SBFULL TS

Non-Retirement WC_Buffer Bit TI

0: WCB_EVICTS TI

1: WCB_FULL_EVICT TI

2: WCB_HITM_EVICT TI

At Retirement instr_retired Bit

0: NBOGUSNTAG TS

1: NBOGUSTAG TS

2: BOGUSNTAG TS

3: BOGUSTAG TS

Table 19-22.  Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
Vol. 3B 19-263



PERFORMANCE-MONITORING EVENTS
At Retirement machine_clear Bit

0: CLEAR TS

2: MOCLEAR TS

6: SMCCLEAR TS

At Retirement front_end_event Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement replay_event Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement execution_event Bit

0: NONBOGUS0 TS

1: NONBOGUS1 TS

2: NONBOGUS2 TS

3: NONBOGUS3 TS

4: BOGUS0 TS

5: BOGUS1 TS

6: BOGUS2 TS

7: BOGUS3 TS

At Retirement x87_assist Bit

0: FPSU TS

1: FPSO TS

2: POAO TS

3: POAU TS

4: PREA TS

At Retirement branch_retired Bit

0: MMNP TS

1: MMNM TS

2: MMTP TS

3: MMTM TS

At Retirement mispred_branch_retired Bit 0: NBOGUS TS

Table 19-22.  Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
19-264 Vol. 3B



PERFORMANCE-MONITORING EVENTS
19.11 PERFORMANCE MONITORING EVENTS FOR 
INTEL® PENTIUM® M PROCESSORS

The Pentium M processor’s performance-monitoring events are based on monitoring 
events for the P6 family of processors. All of these performance events are model 
specific for the Pentium M processor and are not available in this form in other 
processors. Table 19-23 lists the Performance-Monitoring events that were added in 
the Pentium M processor.

At Retirement uops_retired Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement instr_completed Bit

0: NBOGUS TS

1: BOGUS TS

Table 19-23.  Performance Monitoring Events on Intel® Pentium® M
Processors

Name Hex Values Descriptions

Power Management

EMON_EST_TRANS 58H Number of Enhanced Intel SpeedStep 
technology transitions:

Mask = 00H - All transitions

Mask = 02H - Only Frequency 
transitions

EMON_THERMAL_TRIP 59H Duration/Occurrences in thermal trip; to 
count number of thermal trips: bit 22 in 
PerfEvtSel0/1 needs to be set to enable 
edge detect.

BPU

BR_INST_EXEC 88H Branch instructions that were executed 
(not necessarily retired).

BR_MISSP_EXEC 89H Branch instructions executed that were 
mispredicted at execution.

Table 19-22.  Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
Vol. 3B 19-265



PERFORMANCE-MONITORING EVENTS
BR_BAC_MISSP_EXEC 8AH Branch instructions executed that were 
mispredicted at front end (BAC).

BR_CND_EXEC 8BH Conditional branch instructions that 
were executed.

BR_CND_MISSP_EXEC 8CH Conditional branch instructions 
executed that were mispredicted.

BR_IND_EXEC 8DH Indirect branch instructions executed.

BR_IND_MISSP_EXEC 8EH Indirect branch instructions executed 
that were mispredicted.

BR_RET_EXEC 8FH Return branch instructions executed.

BR_RET_MISSP_EXEC 90H Return branch instructions executed 
that were mispredicted at execution.

BR_RET_BAC_MISSP_EXEC 91H Return branch instructions executed 
that were mispredicted at front end 
(BAC).

BR_CALL_EXEC 92H CALL instruction executed.

BR_CALL_MISSP_EXEC 93H CALL instruction executed and miss 
predicted.

BR_IND_CALL_EXEC 94H Indirect CALL instructions executed.

Decoder

EMON_SIMD_INSTR_RETIRED CEH Number of retired MMX instructions.

EMON_SYNCH_UOPS D3H Sync micro-ops

EMON_ESP_UOPS D7H Total number of micro-ops

EMON_FUSED_UOPS_RET DAH Number of retired fused micro-ops:

Mask = 0   - Fused micro-ops

Mask = 1   -  Only load+Op micro-ops

Mask = 2   -  Only std+sta micro-ops

EMON_UNFUSION DBH Number of unfusion events in the ROB, 
happened on a FP exception to a fused 
µop.

Table 19-23.  Performance Monitoring Events on Intel® Pentium® M
Processors (Contd.)

Name Hex Values Descriptions
19-266 Vol. 3B



PERFORMANCE-MONITORING EVENTS
A number of P6 family processor performance monitoring events are modified for the 
Pentium M processor. Table 19-24 lists the performance monitoring events that were 
changed in the Pentium M processor, and differ from performance monitoring events 
for the P6 family of processors.

Prefetcher

EMON_PREF_RQSTS_UP F0H Number of upward prefetches issued

EMON_PREF_RQSTS_DN F8H Number of downward prefetches issued

Table 19-24.  Performance Monitoring Events Modified on Intel® Pentium® M 
Processors

Name Hex 
Values

Descriptions

CPU_CLK_UNHALTED 79H Number of cycles during which the processor is not 
halted, and not in a thermal trip.

EMON_SSE_SSE2_INST_
RETIRED

D8H Streaming SIMD Extensions Instructions Retired:

Mask = 0  –  SSE packed single and scalar single

Mask = 1  –  SSE scalar-single

Mask = 2  –  SSE2 packed-double

Mask = 3  –  SSE2 scalar-double

EMON_SSE_SSE2_COMP_INST_
RETIRED

D9H Computational SSE Instructions Retired:

Mask = 0 – SSE packed single

Mask = 1 – SSE Scalar-single

Mask = 2 – SSE2 packed-double

Mask = 3 – SSE2 scalar-double

Table 19-23.  Performance Monitoring Events on Intel® Pentium® M
Processors (Contd.)

Name Hex Values Descriptions
Vol. 3B 19-267



PERFORMANCE-MONITORING EVENTS
19.12 P6 FAMILY PROCESSOR PERFORMANCE-
MONITORING EVENTS

Table 19-25 lists the events that can be counted with the performance-monitoring 
counters and read with the RDPMC instruction for the P6 family processors. The unit 
column gives the microarchitecture or bus unit that produces the event; the event 
number column gives the hexadecimal number identifying the event; the mnemonic 
event name column gives the name of the event; the unit mask column gives the unit 
mask required (if any); the description column describes the event; and the 
comments column gives additional information about the event.

All of these performance events are model specific for the P6 family processors and 
are not available in this form in the Pentium 4 processors or the Pentium processors. 
Some events (such as those added in later generations of the P6 family processors) 
are only available in specific processors in the P6 family. All performance event 
encodings not listed in Table 19-25 are reserved and their use will result in undefined 
counter results.

See the end of the table for notes related to certain entries in the table.

L2_LD 29H L2 data loads Mask[0] = 1  –  count I state lines

Mask[1] = 1  –  count S state 
lines

Mask[2] = 1  –  count E state 
lines

Mask[3] = 1  –  count M state 
lines

Mask[5:4]:

00H – Excluding hardware-
prefetched lines

01H - Hardware-prefetched 
lines only

02H/03H – All (HW-prefetched 
lines and non HW --Prefetched 
lines)

L2_LINES_IN 24H L2 lines 
allocated

L2_LINES_OUT 26H L2 lines evicted

L2_M_LINES_OUT 27H Lw M-state lines 
evicted

Table 19-24.  Performance Monitoring Events Modified on Intel® Pentium® M 
Processors (Contd.)

Name Hex 
Values

Descriptions
19-268 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments

Data Cache 
Unit (DCU)

43H DATA_MEM_REFS 00H All loads from any 
memory type. All stores 
to any memory type. 
Each part of a split is 
counted separately. The 
internal logic counts not 
only memory loads and 
stores, but also internal 
retries.

80-bit floating-point 
accesses are double 
counted, since they are 
decomposed into a 16-bit 
exponent load and a 
64-bit mantissa load. 
Memory accesses are 
only counted when they 
are actually performed 
(such as a load that gets 
squashed because a 
previous cache miss is 
outstanding to the same 
address, and which finally 
gets performed, is only 
counted once).

Does not include I/O 
accesses, or other 
nonmemory accesses.

45H DCU_LINES_IN 00H Total lines allocated in 
DCU.

46H DCU_M_LINES_IN 00H Number of M state lines 
allocated in DCU.

47H DCU_M_LINES_
OUT

00H Number of M state lines 
evicted from DCU.

This includes evictions 
via snoop HITM, 
intervention or 
replacement.
Vol. 3B 19-269



PERFORMANCE-MONITORING EVENTS
48H DCU_MISS_
OUTSTANDING

00H Weighted number of 
cycles while a DCU miss is 
outstanding, incremented 
by the number of 
outstanding cache 
misses at any particular 
time.

Cacheable read requests 
only are considered.

Uncacheable requests 
are excluded.

Read-for-ownerships are 
counted, as well as line 
fills, invalidates, and 
stores.

An access that also 
misses the L2 is 
short-changed by 2 
cycles (i.e., if counts 
N cycles, should be 
N+2 cycles).

Subsequent loads 
to the same cache 
line will not result in 
any additional 
counts.

Count value not 
precise, but still 
useful.

Instruction 
Fetch Unit 
(IFU)

80H IFU_IFETCH 00H Number of instruction 
fetches, both cacheable 
and noncacheable, 
including UC fetches.

81H IFU_IFETCH_
MISS

00H Number of instruction 
fetch misses

All instruction fetches 
that do not hit the IFU 
(i.e., that produce 
memory requests). This 
includes UC accesses.

85H ITLB_MISS 00H Number of ITLB misses.

86H IFU_MEM_STALL 00H Number of cycles 
instruction fetch is 
stalled, for any reason.

Includes IFU cache 
misses, ITLB misses, ITLB 
faults, and other minor 
stalls.

87H ILD_STALL 00H Number of cycles that 
the instruction length 
decoder is stalled.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
19-270 Vol. 3B



PERFORMANCE-MONITORING EVENTS
L2 Cache1 28H L2_IFETCH MESI
0FH

Number of L2 instruction 
fetches.

This event indicates that 
a normal instruction 
fetch was received by 
the L2.

The count includes only 
L2 cacheable instruction 
fetches; it does not 
include UC instruction 
fetches.

It does not include ITLB 
miss accesses.

29H L2_LD MESI
0FH

Number of L2 data loads.

This event indicates that 
a normal, unlocked, load 
memory access was 
received by the L2.

It includes only L2 
cacheable memory 
accesses; it does not 
include I/O accesses, 
other nonmemory 
accesses, or memory 
accesses such as UC/WT 
memory accesses.

It does include L2 
cacheable TLB miss 
memory accesses.

2AH L2_ST MESI
0FH

Number of L2 data 
stores.

This event indicates that 
a normal, unlocked, store 
memory access was 
received by the L2.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
Vol. 3B 19-271



PERFORMANCE-MONITORING EVENTS
it indicates that the DCU 
sent a read-for-
ownership request to the 
L2. It also includes Invalid 
to Modified requests sent 
by the DCU to the L2.

It includes only L2 
cacheable memory 
accesses; it does not 
include I/O accesses, 
other nonmemory 
accesses, or memory 
accesses such as UC/WT 
memory accesses.

It includes TLB miss 
memory accesses.

24H L2_LINES_IN 00H Number of lines allocated 
in the L2.

26H L2_LINES_OUT 00H Number of lines removed 
from the L2 for any 
reason.

25H L2_M_LINES_INM 00H Number of modified lines 
allocated in the L2.

27H L2_M_LINES_
OUTM

00H Number of modified lines 
removed from the L2 for 
any reason.

2EH L2_RQSTS MESI
0FH

Total number of L2 
requests.

21H L2_ADS 00H Number of L2 address 
strobes.

22H L2_DBUS_BUSY 00H Number of cycles during 
which the L2 cache data 
bus was busy.

23H L2_DBUS_BUSY_
RD

00H Number of cycles during 
which the data bus was 
busy transferring read 
data from L2 to the 
processor.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
19-272 Vol. 3B



PERFORMANCE-MONITORING EVENTS
External 
Bus Logic 
(EBL)2

62H BUS_DRDY_
CLOCKS

00H 
(Self)

20H 
(Any)

Number of clocks during 
which DRDY# is asserted.

Utilization of the external 
system data bus during 
data transfers.

Unit Mask = 00H 
counts bus clocks 
when the processor 
is driving DRDY#.

Unit Mask = 20H 
counts in processor 
clocks when any 
agent is driving 
DRDY#.

63H BUS_LOCK_
CLOCKS

00H 
(Self)

20H 
(Any)

Number of clocks during 
which LOCK# is asserted 
on the external system 
bus.3

Always counts in 
processor clocks.

60H BUS_REQ_
OUTSTANDING

00H 
(Self)

Number of bus requests 
outstanding.

This counter is 
incremented by the 
number of cacheable 
read bus requests 
outstanding in any given 
cycle.

Counts only DCU 
full-line cacheable 
reads, not RFOs, 
writes, instruction 
fetches, or anything 
else. Counts 
“waiting for bus to 
complete” (last data 
chunk received).

65H BUS_TRAN_BRD 00H 
(Self)

20H 
(Any)

Number of burst read 
transactions. 

66H BUS_TRAN_RFO 00H 
(Self)

20H 
(Any)

Number of completed 
read for ownership 
transactions.

67H BUS_TRANS_WB 00H 
(Self)

20H 
(Any)

Number of completed 
write back transactions.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
Vol. 3B 19-273



PERFORMANCE-MONITORING EVENTS
68H BUS_TRAN_
IFETCH

00H 
(Self)

20H 
(Any)

Number of completed 
instruction fetch 
transactions.

69H BUS_TRAN_INVA
L

00H 
(Self)

20H 
(Any)

Number of completed 
invalidate transactions.

6AH BUS_TRAN_PWR 00H 
(Self)

20H 
(Any)

Number of completed 
partial write 
transactions.

6BH BUS_TRANS_P 00H 
(Self)

20H 
(Any)

Number of completed 
partial transactions.

6CH BUS_TRANS_IO 00H 
(Self)

20H 
(Any)

Number of completed I/O 
transactions.

6DH BUS_TRAN_DEF 00H 
(Self)

20H 
(Any)

Number of completed 
deferred transactions.

6EH BUS_TRAN_
BURST

00H 
(Self)

20H 
(Any)

Number of completed 
burst transactions.

70H BUS_TRAN_ANY 00H 
(Self)

20H 
(Any)

Number of all completed 
bus transactions.

Address bus utilization 
can be calculated 
knowing the minimum 
address bus occupancy.

Includes special cycles, 
etc.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
19-274 Vol. 3B



PERFORMANCE-MONITORING EVENTS
6FH BUS_TRAN_MEM 00H 
(Self)

20H 
(Any)

Number of completed 
memory transactions.

64H BUS_DATA_RCV 00H 
(Self)

Number of bus clock 
cycles during which this 
processor is receiving 
data.

61H BUS_BNR_DRV 00H 
(Self)

Number of bus clock 
cycles during which this 
processor is driving the 
BNR# pin.

7AH BUS_HIT_DRV 00H 
(Self)

Number of bus clock 
cycles during which this 
processor is driving the 
HIT# pin.

Includes cycles due 
to snoop stalls.

The event counts 
correctly, but BPMi 
(breakpoint 
monitor) pins 
function as follows 
based on the 
setting of the PC 
bits (bit 19 in the 
PerfEvtSel0 and 
PerfEvtSel1 
registers):

• If the core-clock-
to- bus-clock 
ratio is 2:1 or 3:1, 
and a PC bit is 
set, the BPMi 
pins will be 
asserted for a 
single clock when 
the counters 
overflow.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
Vol. 3B 19-275



PERFORMANCE-MONITORING EVENTS
• If the PC bit is 
clear, the 
processor 
toggles the BPMi 
pins when the 
counter 
overflows.

• If the clock ratio 
is not 2:1 or 3:1, 
the BPMi pins 
will not function 
for these 
performance-
monitoring 
counter events.

7BH BUS_HITM_DRV 00H 
(Self)

Number of bus clock 
cycles during which this 
processor is driving the 
HITM# pin.

Includes cycles due 
to snoop stalls.

The event counts 
correctly, but BPMi 
(breakpoint 
monitor) pins 
function as follows 
based on the 
setting of the PC 
bits (bit 19 in the 
PerfEvtSel0 and 
PerfEvtSel1 
registers):

• If the core-clock-
to- bus-clock 
ratio is 2:1 or 3:1, 
and a PC bit is 
set, the BPMi 
pins will be 
asserted for a 
single clock when 
the counters 
overflow.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
19-276 Vol. 3B



PERFORMANCE-MONITORING EVENTS
• If the PC bit is 
clear, the 
processor 
toggles the 
BPMipins when 
the counter 
overflows.

• If the clock ratio 
is not 2:1 or 3:1, 
the BPMi pins 
will not function 
for these 
performance-
monitoring 
counter events.

7EH BUS_SNOOP_
STALL

00H 
(Self)

Number of clock cycles 
during which the bus is 
snoop stalled.

Floating- 
Point Unit

C1H FLOPS 00H Number of computational 
floating-point operations 
retired.

Excludes floating-point 
computational operations 
that cause traps or 
assists.

Includes floating-point 
computational operations 
executed by the assist 
handler.

Includes internal sub-
operations for complex 
floating-point 
instructions like 
transcendentals.

Excludes floating-point 
loads and stores.

Counter 0 only.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
Vol. 3B 19-277



PERFORMANCE-MONITORING EVENTS
10H FP_COMP_OPS_
EXE

00H Number of computational 
floating-point operations 
executed.

The number of FADD, 
FSUB, FCOM, FMULs, 
integer MULs and IMULs, 
FDIVs, FPREMs, FSQRTS, 
integer DIVs, and IDIVs.

This number does not 
include the number of 
cycles, but the number of 
operations.

This event does not 
distinguish an FADD used 
in the middle of a 
transcendental flow from 
a separate FADD 
instruction.

Counter 0 only.

11H FP_ASSIST 00H Number of floating-point 
exception cases handled 
by microcode.

Counter 1 only.

This event includes 
counts due to 
speculative 
execution.

12H MUL 00H Number of multiplies.

This count includes 
integer as well as FP 
multiplies and is 
speculative.

Counter 1 only.

13H DIV 00H Number of divides.

This count includes 
integer as well as FP 
divides and is 
speculative.

Counter 1 only.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
19-278 Vol. 3B



PERFORMANCE-MONITORING EVENTS
14H CYCLES_DIV_
BUSY

00H Number of cycles during 
which the divider is busy, 
and cannot accept new 
divides.

This includes integer and 
FP divides, FPREM, 
FPSQRT, etc. and is 
speculative.

Counter 0 only.

Memory 
Ordering

03H LD_BLOCKS 00H Number of load 
operations delayed due 
to store buffer blocks.

Includes counts caused 
by preceding stores 
whose addresses are 
unknown, preceding 
stores whose addresses 
are known but whose 
data is unknown, and 
preceding stores that 
conflicts with the load 
but which incompletely 
overlap the load.

04H SB_DRAINS 00H Number of store buffer 
drain cycles.

Incremented every cycle 
the store buffer is 
draining.

Draining is caused by 
serializing operations like 
CPUID, synchronizing 
operations like XCHG, 
interrupt 
acknowledgment, as well 
as other conditions (such 
as cache flushing).

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
Vol. 3B 19-279



PERFORMANCE-MONITORING EVENTS
05H MISALIGN_
MEM_REF

00H Number of misaligned 
data memory references.

Incremented by 1 every 
cycle, during which either 
the processor’s load or 
store pipeline dispatches 
a misaligned μop.

Counting is performed if 
it is the first or second 
half, or if it is blocked, 
squashed, or missed.

In this context, 
misaligned means 
crossing a 64-bit 
boundary.

MISALIGN_MEM_
REF is only an 
approximation to 
the true number of 
misaligned memory 
references.

The value returned 
is roughly 
proportional to the 
number of 
misaligned memory 
accesses (the size 
of the problem).

07H EMON_KNI_PREF
_DISPATCHED

Number of Streaming 
SIMD extensions 
prefetch/weakly-ordered 
instructions dispatched 
(speculative prefetches 
are included in counting):

Counters 0 and 1. 
Pentium III 
processor only.

00H

01H

02H

03H

0: prefetch NTA

1: prefetch T1

2: prefetch T2

3: weakly ordered stores

4BH EMON_KNI_PREF
_MISS

Number of 
prefetch/weakly-ordered 
instructions that miss all 
caches:

Counters 0 and 1. 
Pentium III 
processor only.

00H

01H

02H

03H

0: prefetch NTA

1: prefetch T1

2: prefetch T2

3: weakly ordered stores

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
19-280 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Instruction 
Decoding 
and 
Retirement

C0H INST_RETIRED 00H Number of instructions 
retired.

A hardware 
interrupt received 
during/after the 
last iteration of the 
REP STOS flow 
causes the counter 
to undercount by 1 
instruction.

An SMI received 
while executing a 
HLT instruction will 
cause the 
performance 
counter to not 
count the RSM 
instruction and 
undercount by 1.

C2H UOPS_RETIRED 00H Number of μops retired.

D0H INST_DECODED 00H Number of instructions 
decoded.

D8H EMON_KNI_INST_
RETIRED

00H

01H

Number of Streaming 
SIMD extensions retired:

0: packed & scalar

1: scalar

Counters 0 and 1. 
Pentium III 
processor only.

D9H EMON_KNI_
COMP_
INST_RET

00H

01H

Number of Streaming 
SIMD extensions 
computation instructions 
retired:

0: packed and scalar

1: scalar

Counters 0 and 1. 
Pentium III 
processor only.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
Vol. 3B 19-281



PERFORMANCE-MONITORING EVENTS
Interrupts C8H HW_INT_RX 00H Number of hardware 
interrupts received.

C6H CYCLES_INT_
MASKED

00H Number of processor 
cycles for which 
interrupts are disabled.

C7H CYCLES_INT_
PENDING_
AND_MASKED

00H Number of processor 
cycles for which 
interrupts are disabled 
and interrupts are 
pending.

Branches C4H BR_INST_
RETIRED

00H Number of branch 
instructions retired.

C5H BR_MISS_PRED_
RETIRED

00H Number of mispredicted 
branches retired.

C9H BR_TAKEN_
RETIRED

00H Number of taken 
branches retired.

CAH BR_MISS_PRED_
TAKEN_RET

00H Number of taken 
mispredictions branches 
retired.

E0H BR_INST_
DECODED

00H Number of branch 
instructions decoded.

E2H BTB_MISSES 00H Number of branches for 
which the BTB did not 
produce a prediction.

E4H BR_BOGUS 00H Number of bogus 
branches. 

E6H BACLEARS 00H Number of times 
BACLEAR is asserted.

This is the number of 
times that a static branch 
prediction was made, in 
which the branch 
decoder decided to make 
a branch prediction 
because the BTB did not.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
19-282 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Stalls A2H RESOURCE_
STALLS

00H Incremented by 1 during 
every cycle for which 
there is a resource 
related stall.

Includes register 
renaming buffer entries, 
memory buffer entries.

Does not include stalls 
due to bus queue full, too 
many cache misses, etc.

In addition to resource 
related stalls, this event 
counts some other 
events.

Includes stalls arising 
during branch 
misprediction recovery, 
such as if retirement of 
the mispredicted branch 
is delayed and stalls 
arising while store buffer 
is draining from 
synchronizing operations.

D2H PARTIAL_RAT_
STALLS

00H Number of cycles or 
events for partial stalls. 
This includes flag partial 
stalls.

Segment 
Register 
Loads

06H SEGMENT_REG_
LOADS

00H Number of segment 
register loads.

Clocks 79H CPU_CLK_
UNHALTED

00H Number of cycles during 
which the processor is 
not halted.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
Vol. 3B 19-283



PERFORMANCE-MONITORING EVENTS
MMX Unit B0H MMX_INSTR_
EXEC

00H Number of MMX 
Instructions Executed.

Available in Intel 
Celeron, Pentium II 
and Pentium II Xeon 
processors only.

Does not account 
for MOVQ and 
MOVD stores from 
register to memory.

B1H MMX_SAT_
INSTR_EXEC

00H Number of MMX 
Saturating Instructions 
Executed.

Available in Pentium 

II and Pentium III 
processors only.

B2H MMX_UOPS_
EXEC

0FH Number of MMX μops 
Executed.

Available in Pentium 

II and Pentium III 
processors only.

B3H MMX_INSTR_
TYPE_EXEC

01H

02H

04H

MMX packed multiply 
instructions executed.

MMX packed shift 
instructions executed.

MMX pack operation 
instructions executed.

Available in Pentium 

II and Pentium III 
processors only.

08H

10H

20H

MMX unpack operation 
instructions executed.

MMX packed logical 
instructions executed.

MMX packed arithmetic 
instructions executed.

CCH FP_MMX_TRANS 00H

01H

Transitions from MMX 
instruction to floating-
point instructions.

Transitions from floating-
point instructions to 
MMX instructions.

Available in Pentium 

II and Pentium III 
processors only.

CDH MMX_ASSIST 00H Number of MMX Assists 
(that is, the number of 
EMMS instructions 
executed).

Available in Pentium 

II and Pentium III 
processors only.

CEH MMX_INSTR_RET 00H Number of MMX 
Instructions Retired.

Available in Pentium 

II processors only.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
19-284 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Segment 
Register 
Renaming

D4H SEG_RENAME_
STALLS

Number of Segment 
Register Renaming Stalls:

Available in Pentium 

II and Pentium III 
processors only.

02H

04H

08H

0FH

Segment register ES

Segment register DS

Segment register FS

Segment register FS

Segment registers 
ES + DS + FS + GS

D5H SEG_REG_
RENAMES

Number of Segment 
Register Renames:

Available in Pentium 

II and Pentium III 
processors only.

01H

02H

04H

08H

0FH

Segment register ES

Segment register DS

Segment register FS

Segment register FS

Segment registers 
ES + DS + FS + GS

D6H RET_SEG_
RENAMES

00H Number of segment 
register rename events 
retired.

Available in Pentium 

II and Pentium III 
processors only.

NOTES:
1. Several L2 cache events, where noted, can be further qualified using the Unit Mask (UMSK) field 

in the PerfEvtSel0 and PerfEvtSel1 registers. The lower 4 bits of the Unit Mask field are used in 
conjunction with L2 events to indicate the cache state or cache states involved. 
The P6 family processors identify cache states using the “MESI” protocol and consequently each 
bit in the Unit Mask field represents one of the four states: UMSK[3] = M (8H) state, UMSK[2] = E 
(4H) state, UMSK[1] = S (2H) state, and UMSK[0] = I (1H) state. UMSK[3:0] = MESI” (FH) should be 
used to collect data for all states; UMSK = 0H, for the applicable events, will result in nothing 
being counted.

2. All of the external bus logic (EBL) events, except where noted, can be further qualified using the 
Unit Mask (UMSK) field in the PerfEvtSel0 and PerfEvtSel1 registers. 
Bit 5 of the UMSK field is used in conjunction with the EBL events to indicate whether the pro-
cessor should count transactions that are self- generated (UMSK[5] = 0) or transactions that 
result from any processor on the bus (UMSK[5] = 1). 

3. L2 cache locks, so it is possible to have a zero count. 

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
Vol. 3B 19-285



PERFORMANCE-MONITORING EVENTS
19.13 PENTIUM PROCESSOR PERFORMANCE-
MONITORING EVENTS

Table 19-26 lists the events that can be counted with the performance-monitoring 
counters for the Pentium processor. The Event Number column gives the hexadec-
imal code that identifies the event and that is entered in the ES0 or ES1 (event 
select) fields of the CESR MSR. The Mnemonic Event Name column gives the name of 
the event, and the Description and Comments columns give detailed descriptions of 
the events. Most events can be counted with either counter 0 or counter 1; however, 
some events can only be counted with only counter 0 or only counter 1 (as noted).

NOTE
The events in the table that are shaded are implemented only in the 
Pentium processor with MMX technology.

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters

Event
Num.

Mnemonic Event 
Name Description Comments

00H DATA_READ Number of memory data 
reads (internal data 
cache hit and miss 
combined).

Split cycle reads are counted 
individually. Data Memory Reads that 
are part of TLB miss processing are 
not included. These events may 
occur at a maximum of two per clock. 
I/O is not included.

01H DATA_WRITE Number of memory data 
writes (internal data 
cache hit and miss 
combined); I/O not 
included.

Split cycle writes are counted 
individually. These events may occur 
at a maximum of two per clock. I/O is 
not included.

0H2 DATA_TLB_MISS Number of misses to the 
data cache translation 
look-aside buffer.
19-286 Vol. 3B



PERFORMANCE-MONITORING EVENTS
03H DATA_READ_MISS Number of memory read 
accesses that miss the 
internal data cache 
whether or not the 
access is cacheable or 
noncacheable.

Additional reads to the same cache 
line after the first BRDY# of the 
burst line fill is returned but before 
the final (fourth) BRDY# has been 
returned, will not cause the counter 
to be incremented additional times.

Data accesses that are part of TLB 
miss processing are not included. 
Accesses directed to I/O space are 
not included.

04H DATA WRITE MISS Number of memory 
write accesses that miss 
the internal data cache 
whether or not the 
access is cacheable or 
noncacheable.

Data accesses that are part of TLB 
miss processing are not included. 
Accesses directed to I/O space are 
not included.

05H WRITE_HIT_TO_
M-_OR_E-
STATE_LINES

Number of write hits to 
exclusive or modified 
lines in the data cache.

These are the writes that may be 
held up if EWBE# is inactive. These 
events may occur a maximum of two 
per clock.

06H DATA_CACHE_
LINES_ 
WRITTEN_BACK

Number of dirty lines 
(all) that are written 
back, regardless of the 
cause.

Replacements and internal and 
external snoops can all cause 
writeback and are counted.

07H EXTERNAL_ 
SNOOPS

Number of accepted 
external snoops 
whether they hit in the 
code cache or data 
cache or neither.

Assertions of EADS# outside of the 
sampling interval are not counted, 
and no internal snoops are counted.

08H EXTERNAL_DATA_
CACHE_SNOOP_
HITS

Number of external 
snoops to the data 
cache.

Snoop hits to a valid line in either the 
data cache, the data line fill buffer, or 
one of the write back buffers are all 
counted as hits.

09H MEMORY ACCESSES 
IN BOTH PIPES

Number of data memory 
reads or writes that are 
paired in both pipes of 
the pipeline.

These accesses are not necessarily 
run in parallel due to cache misses, 
bank conflicts, etc.

0AH BANK CONFLICTS Number of actual bank 
conflicts.

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
Vol. 3B 19-287



PERFORMANCE-MONITORING EVENTS
0BH MISALIGNED DATA 
MEMORY OR I/O 
REFERENCES

Number of memory or 
I/O reads or writes that 
are misaligned.

A 2- or 4-byte access is misaligned 
when it crosses a 4-byte boundary; 
an 8-byte access is misaligned when 
it crosses an 8-byte boundary. Ten 
byte accesses are treated as two 
separate accesses of 8 and 2 bytes 
each.

0CH CODE READ Number of instruction 
reads; whether the read 
is cacheable or 
noncacheable.

Individual 8-byte noncacheable 
instruction reads are counted.

0DH CODE TLB MISS Number of instruction 
reads that miss the code 
TLB whether the read is 
cacheable or 
noncacheable.

Individual 8-byte noncacheable 
instruction reads are counted.

0EH CODE CACHE MISS Number of instruction 
reads that miss the 
internal code cache; 
whether the read is 
cacheable or 
noncacheable.

Individual 8-byte noncacheable 
instruction reads are counted.

0FH ANY SEGMENT 
REGISTER LOADED

Number of writes into 
any segment register in 
real or protected mode 
including the LDTR, 
GDTR, IDTR, and TR.

Segment loads are caused by explicit 
segment register load instructions, 
far control transfers, and task 
switches. Far control transfers and 
task switches causing a privilege 
level change will signal this event 
twice. Interrupts and exceptions may 
initiate a far control transfer.

10H Reserved

11H Reserved

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
19-288 Vol. 3B



PERFORMANCE-MONITORING EVENTS
12H Branches Number of taken and 
not taken branches, 
including: conditional 
branches, jumps, calls, 
returns, software 
interrupts, and interrupt 
returns.

 Also counted as taken branches are 
serializing instructions, VERR and 
VERW instructions, some segment 
descriptor loads, hardware interrupts 
(including FLUSH#), and 
programmatic exceptions that invoke 
a trap or fault handler. The pipe is 
not necessarily flushed. 

The number of branches actually 
executed is measured, not the 
number of predicted branches.

13H BTB_HITS Number of BTB hits that 
occur.

Hits are counted only for those 
instructions that are actually 
executed.

14H TAKEN_BRANCH_
OR_BTB_HIT

Number of taken 
branches or BTB hits 
that occur.

This event type is a logical OR of 
taken branches and BTB hits. It 
represents an event that may cause 
a hit in the BTB. Specifically, it is 
either a candidate for a space in the 
BTB or it is already in the BTB.

15H PIPELINE FLUSHES Number of pipeline 
flushes that occur

Pipeline flushes are 
caused by BTB misses 
on taken branches, 
mispredictions, 
exceptions, interrupts, 
and some segment 
descriptor loads. 

The counter will not be incremented 
for serializing instructions (serializing 
instructions cause the prefetch 
queue to be flushed but will not 
trigger the Pipeline Flushed event 
counter) and software interrupts 
(software interrupts do not flush the 
pipeline).

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
Vol. 3B 19-289



PERFORMANCE-MONITORING EVENTS
16H INSTRUCTIONS_
EXECUTED

Number of instructions 
executed (up to two per 
clock).

Invocations of a fault handler are 
considered instructions. All hardware 
and software interrupts and 
exceptions will also cause the count 
to be incremented. Repeat prefixed 
string instructions will only 
increment this counter once despite 
the fact that the repeat loop 
executes the same instruction 
multiple times until the loop criteria 
is satisfied. 

This applies to all the Repeat string 
instruction prefixes (i.e., REP, REPE, 
REPZ, REPNE, and REPNZ). This 
counter will also only increment once 
per each HLT instruction executed 
regardless of how many cycles the 
processor remains in the HALT state.

17H INSTRUCTIONS_ 
EXECUTED_ V PIPE

Number of instructions 
executed in the V_pipe.

The event indicates the 
number of instructions 
that were paired.

This event is the same as the 16H 
event except it only counts the 
number of instructions actually 
executed in the V-pipe.

18H BUS_CYCLE_
DURATION

Number of clocks while 
a bus cycle is in 
progress.

This event measures 
bus use.

The count includes HLDA, AHOLD, 
and BOFF# clocks.

19H WRITE_BUFFER_
FULL_STALL_
DURATION

Number of clocks while 
the pipeline is stalled 
due to full write buffers.

Full write buffers stall data memory 
read misses, data memory write 
misses, and data memory write hits 
to S-state lines. Stalls on I/O 
accesses are not included.

1AH WAITING_FOR_
DATA_MEMORY_
READ_STALL_
DURATION

Number of clocks while 
the pipeline is stalled 
while waiting for data 
memory reads.

Data TLB Miss processing is also 
included in the count. The pipeline 
stalls while a data memory read is in 
progress including attempts to read 
that are not bypassed while a line is 
being filled.

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
19-290 Vol. 3B



PERFORMANCE-MONITORING EVENTS
1BH STALL ON WRITE 
TO AN E- OR M-
STATE LINE

Number of stalls on 
writes to E- or M-state 
lines.

1CH LOCKED BUS CYCLE Number of locked bus 
cycles that occur as the 
result of the LOCK prefix 
or LOCK instruction, 
page-table updates, and 
descriptor table 
updates.

Only the read portion of the locked 
read-modify-write is counted. Split 
locked cycles (SCYC active) count as 
two separate accesses. Cycles 
restarted due to BOFF# are not re-
counted.

1DH I/O READ OR WRITE 
CYCLE 

Number of bus cycles 
directed to I/O space.

Misaligned I/O accesses will generate 
two bus cycles. Bus cycles restarted 
due to BOFF# are not re-counted.

1EH NONCACHEABLE_
MEMORY_READS

Number of 
noncacheable 
instruction or data 
memory read bus cycles.

The count includes read 
cycles caused by TLB 
misses, but does not 
include read cycles to 
I/O space. 

Cycles restarted due to BOFF# are 
not re-counted.

1FH PIPELINE_AGI_
STALLS

Number of address 
generation interlock 
(AGI) stalls.

An AGI occurring in both 
the U- and V- pipelines 
in the same clock signals 
this event twice.

An AGI occurs when the instruction 
in the execute stage of either of U- 
or V-pipelines is writing to either the 
index or base address register of an 
instruction in the D2 (address 
generation) stage of either the U- or 
V- pipelines.

20H Reserved

21H Reserved

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
Vol. 3B 19-291



PERFORMANCE-MONITORING EVENTS
22H FLOPS Number of floating-
point operations that 
occur.

Number of floating-point adds, 
subtracts, multiplies, divides, 
remainders, and square roots are 
counted. The transcendental 
instructions consist of multiple adds 
and multiplies and will signal this 
event multiple times. Instructions 
generating the divide-by-zero, 
negative square root, special 
operand, or stack exceptions will not 
be counted.

Instructions generating all other 
floating-point exceptions will be 
counted. The integer multiply 
instructions and other instructions 
which use the x87 FPU will be 
counted.

23H BREAKPOINT 
MATCH ON DR0 
REGISTER

Number of matches on 
register DR0 breakpoint.

The counters is incremented 
regardless if the breakpoints are 
enabled or not. However, if 
breakpoints are not enabled, code 
breakpoint matches will not be 
checked for instructions executed in 
the V-pipe and will not cause this 
counter to be incremented. (They are 
checked on instruction executed in 
the U-pipe only when breakpoints 
are not enabled.) 

These events correspond to the 
signals driven on the BP[3:0] pins. 
Refer to Chapter 17, “Debugging, 
Branch Profiling, and Time-Stamp 
Counter” for more information.

24H BREAKPOINT 
MATCH ON DR1 
REGISTER

Number of matches on 
register DR1 breakpoint.

See comment for 23H event.

25H BREAKPOINT 
MATCH ON DR2 
REGISTER

Number of matches on 
register DR2 breakpoint.

See comment for 23H event.

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
19-292 Vol. 3B



PERFORMANCE-MONITORING EVENTS
26H BREAKPOINT 
MATCH ON DR3 
REGISTER

Number of matches on 
register DR3 breakpoint.

See comment for 23H event.

27H HARDWARE 
INTERRUPTS 

Number of taken INTR 
and NMI interrupts.

28H DATA_READ_OR_
WRITE

Number of memory data 
reads and/or writes 
(internal data cache hit 
and miss combined).

Split cycle reads and writes are 
counted individually. Data Memory 
Reads that are part of TLB miss 
processing are not included. These 
events may occur at a maximum of 
two per clock. I/O is not included.

29H DATA_READ_MISS 
OR_WRITE MISS

Number of memory read 
and/or write accesses 
that miss the internal 
data cache, whether or 
not the access is 
cacheable or 
noncacheable.

Additional reads to the same cache 
line after the first BRDY# of the 
burst line fill is returned but before 
the final (fourth) BRDY# has been 
returned, will not cause the counter 
to be incremented additional times.

Data accesses that are part of TLB 
miss processing are not included. 
Accesses directed to I/O space are 
not included.

2AH BUS_OWNERSHIP_
LATENCY 
(Counter 0)

The time from LRM bus 
ownership request to 
bus ownership granted 
(that is, the time from 
the earlier of a PBREQ 
(0), PHITM# or HITM# 
assertion to a PBGNT 
assertion)

The ratio of the 2AH events counted 
on counter 0 and counter 1 is the 
average stall time due to bus 
ownership conflict.

2AH BUS OWNERSHIP 
TRANSFERS 
(Counter 1)

The number of buss 
ownership transfers 
(that is, the number of 
PBREQ (0) assertions

The ratio of the 2AH events counted 
on counter 0 and counter 1 is the 
average stall time due to bus 
ownership conflict.

2BH MMX_
INSTRUCTIONS_
EXECUTED_
U-PIPE (Counter 0)

Number of MMX 
instructions executed in 
the U-pipe

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
Vol. 3B 19-293



PERFORMANCE-MONITORING EVENTS
2BH MMX_
INSTRUCTIONS_
EXECUTED_
V-PIPE (Counter 1)

Number of MMX 
instructions executed in 
the V-pipe

2CH CACHE_M-
STATE_LINE_
SHARING 
(Counter 0)

Number of times a 
processor identified a 
hit to a modified line due 
to a memory access in 
the other processor 
(PHITM (O))

If the average memory latencies of 
the system are known, this event 
enables the user to count the Write 
Backs on PHITM(O) penalty and the 
Latency on Hit Modified(I) penalty.

2CH CACHE_LINE_
SHARING 
(Counter 1)

Number of shared data 
lines in the L1 cache 
(PHIT (O))

2DH EMMS_
INSTRUCTIONS_
EXECUTED (Counter 
0)

Number of EMMS 
instructions executed

2DH TRANSITIONS_
BETWEEN_MMX_ 
AND_FP_
INSTRUCTIONS 
(Counter 1)

Number of transitions 
between MMX and 
floating-point 
instructions or vice 
versa

An even count indicates 
the processor is in MMX 
state. an odd count 
indicates it is in FP state.

This event counts the first floating-
point instruction following an MMX 
instruction or first MMX instruction 
following a floating-point instruction.

The count may be used to estimate 
the penalty in transitions between 
floating-point state and MMX state.

2EH BUS_UTILIZATION_ 
DUE_TO_ 
PROCESSOR_ 
ACTIVITY 
(Counter 0)

Number of clocks the 
bus is busy due to the 
processor’s own activity 
(the bus activity that is 
caused by the 
processor)

2EH WRITES_TO_
NONCACHEABLE_
MEMORY 
(Counter 1)

Number of write 
accesses to 
noncacheable memory

The count includes write cycles 
caused by TLB misses and I/O write 
cycles. 

Cycles restarted due to BOFF# are 
not re-counted.

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
19-294 Vol. 3B



PERFORMANCE-MONITORING EVENTS
2FH SATURATING_
MMX_
INSTRUCTIONS_
EXECUTED (Counter 
0)

Number of saturating 
MMX instructions 
executed, 
independently of 
whether they actually 
saturated.

2FH SATURATIONS_
PERFORMED 
(Counter 1)

Number of MMX 
instructions that used 
saturating arithmetic 
when at least one of its 
results actually 
saturated

If an MMX instruction operating on 4 
doublewords saturated in three out 
of the four results, the counter will 
be incremented by one only.

30H NUMBER_OF_
CYCLES_NOT_IN_ 
HALT_STATE 
(Counter 0)

Number of cycles the 
processor is not idle due 
to HLT instruction

This event will enable the user to 
calculate “net CPI”. Note that during 
the time that the processor is 
executing the HLT instruction, the 
Time-Stamp Counter is not disabled. 
Since this event is controlled by the 
Counter Controls CC0, CC1 it can be 
used to calculate the CPI at CPL=3, 
which the TSC cannot provide.

30H DATA_CACHE_
TLB_MISS_
STALL_DURATION
(Counter 1)

Number of clocks the 
pipeline is stalled due to 
a data cache translation 
look-aside buffer (TLB) 
miss

31H MMX_
INSTRUCTION_
DATA_READS
(Counter 0)

Number of MMX 
instruction data reads

31H MMX_
INSTRUCTION_
DATA_READ_
MISSES 
(Counter 1)

Number of MMX 
instruction data read 
misses

32H FLOATING_POINT_S
TALLS_DURATION
(Counter 0)

Number of clocks while 
pipe is stalled due to a 
floating-point freeze

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
Vol. 3B 19-295



PERFORMANCE-MONITORING EVENTS
32H TAKEN_BRANCHES 
(Counter 1)

Number of taken 
branches

33H D1_STARVATION_
AND_FIFO_IS_
EMPTY 
(Counter 0)

Number of times D1 
stage cannot issue ANY 
instructions since the 
FIFO buffer is empty

The D1 stage can issue 0, 1, or 2 
instructions per clock if those are 
available in an instructions FIFO 
buffer. 

33H D1_STARVATION_
AND_ONLY_ONE_
INSTRUCTION_IN_
FIFO
(Counter 1)

Number of times the D1 
stage issues a single 
instruction (since the 
FIFO buffer had just one 
instruction ready) 

The D1 stage can issue 0, 1, or 2 
instructions per clock if those are 
available in an instructions FIFO 
buffer. 

When combined with the previously 
defined events, Instruction Executed 
(16H) and Instruction Executed in 
the V-pipe (17H), this event enables 
the user to calculate the numbers of 
time pairing rules prevented issuing 
of two instructions.

34H MMX_
INSTRUCTION_
DATA_WRITES 
(Counter 0)

Number of data writes 
caused by MMX 
instructions

34H MMX_
INSTRUCTION_
DATA_WRITE_
MISSES 
(Counter 1)

Number of data write 
misses caused by MMX 
instructions

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
19-296 Vol. 3B



PERFORMANCE-MONITORING EVENTS
35H PIPELINE_ 
FLUSHES_DUE_
TO_WRONG_
BRANCH_
PREDICTIONS 
(Counter 0)

Number of pipeline 
flushes due to wrong 
branch predictions 
resolved in either the E-
stage or the WB-stage

The count includes any pipeline flush 
due to a branch that the pipeline did 
not follow correctly. It includes cases 
where a branch was not in the BTB, 
cases where a branch was in the BTB 
but was mispredicted, and cases 
where a branch was correctly 
predicted but to the wrong address.

Branches are resolved in either the 
Execute stage (E-stage) or the 
Writeback stage (WB-stage). In the 
later case, the misprediction penalty 
is larger by one clock. The difference 
between the 35H event count in 
counter 0 and counter 1 is the 
number of E-stage resolved 
branches.

35H PIPELINE_ 
FLUSHES_DUE_
TO_WRONG_
BRANCH_
PREDICTIONS_
RESOLVED_IN_
WB-STAGE 
(Counter 1)

Number of pipeline 
flushes due to wrong 
branch predictions 
resolved in the WB-
stage

See note for event 35H (Counter 0).

36H MISALIGNED_
DATA_MEMORY_
REFERENCE_ON_
MMX_
INSTRUCTIONS 
(Counter 0)

Number of misaligned 
data memory references 
when executing MMX 
instructions

36H PIPELINE_
ISTALL_FOR_MMX_
INSTRUCTION_
DATA_MEMORY_
READS
(Counter 1)

Number clocks during 
pipeline stalls caused by 
waits form MMX 
instruction data memory 
reads

T3:

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
Vol. 3B 19-297



PERFORMANCE-MONITORING EVENTS
37H MISPREDICTED_
OR_
UNPREDICTED_
RETURNS
(Counter 1)

Number of returns 
predicted incorrectly or 
not predicted at all

The count is the difference between 
the total number of executed returns 
and the number of returns that were 
correctly predicted. Only RET 
instructions are counted (for 
example, IRET instructions are not 
counted).

37H PREDICTED_
RETURNS
(Counter 1)

Number of predicted 
returns (whether they 
are predicted correctly 
and incorrectly

Only RET instructions are counted 
(for example, IRET instructions are 
not counted).

38H MMX_MULTIPLY_
UNIT_INTERLOCK 
(Counter 0)

Number of clocks the 
pipe is stalled since the 
destination of previous 
MMX multiply 
instruction is not ready 
yet

The counter will not be incremented 
if there is another cause for a stall. 
For each occurrence of a multiply 
interlock, this event will be counted 
twice (if the stalled instruction 
comes on the next clock after the 
multiply) or by once (if the stalled 
instruction comes two clocks after 
the multiply).

38H MOVD/MOVQ_
STORE_STALL_
DUE_TO_
PREVIOUS_MMX_
OPERATION 
(Counter 1)

Number of clocks a 
MOVD/MOVQ instruction 
store is stalled in D2 
stage due to a previous 
MMX operation with a 
destination to be used in 
the store instruction.

39H RETURNS 
(Counter 0)

Number or returns 
executed. 

Only RET instructions are counted; 
IRET instructions are not counted. 
Any exception taken on a RET 
instruction and any interrupt 
recognized by the processor on the 
instruction boundary prior to the 
execution of the RET instruction will 
also cause this counter to be 
incremented.

39H Reserved

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
19-298 Vol. 3B



PERFORMANCE-MONITORING EVENTS
3AH BTB_FALSE_
ENTRIES 
(Counter 0)

Number of false entries 
in the Branch Target 
Buffer

False entries are causes for 
misprediction other than a wrong 
prediction.

3AH BTB_MISS_
PREDICTION_ON_
NOT-TAKEN_
BRANCH 
(Counter 1)

Number of times the 
BTB predicted a not-
taken branch as taken

3BH FULL_WRITE_
BUFFER_STALL_
DURATION_
WHILE_
EXECUTING_MMX_I
NSTRUCTIONS 
(Counter 0)

Number of clocks while 
the pipeline is stalled 
due to full write buffers 
while executing MMX 
instructions

3BH STALL_ON_MMX_
INSTRUCTION_
WRITE_TO E-_OR_
M-STATE_LINE 
(Counter 1)

Number of clocks during 
stalls on MMX 
instructions writing to 
E- or M-state lines

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
Vol. 3B 19-299



PERFORMANCE-MONITORING EVENTS
19-300 Vol. 3B



CHAPTER 20
8086 EMULATION

IA-32 processors (beginning with the Intel386 processor) provide two ways to 
execute new or legacy programs that are assembled and/or compiled to run on an 
Intel 8086 processor: 
• Real-address mode.
• Virtual-8086 mode.

Figure 2-3 shows the relationship of these operating modes to protected mode and 
system management mode (SMM). 

When the processor is powered up or reset, it is placed in the real-address mode. 
This operating mode almost exactly duplicates the execution environment of the 
Intel 8086 processor, with some extensions. Virtually any program assembled and/or 
compiled to run on an Intel 8086 processor will run on an IA-32 processor in this 
mode.

When running in protected mode, the processor can be switched to virtual-8086 
mode to run 8086 programs. This mode also duplicates the execution environment of 
the Intel 8086 processor, with extensions. In virtual-8086 mode, an 8086 program 
runs as a separate protected-mode task. Legacy 8086 programs are thus able to run 
under an operating system (such as Microsoft Windows*) that takes advantage of 
protected mode and to use protected-mode facilities, such as the protected-mode 
interrupt- and exception-handling facilities. Protected-mode multitasking permits 
multiple virtual-8086 mode tasks (with each task running a separate 8086 program) 
to be run on the processor along with other non-virtual-8086 mode tasks.

This section describes both the basic real-address mode execution environment and 
the virtual-8086-mode execution environment, available on the IA-32 processors 
beginning with the Intel386 processor. 

20.1 REAL-ADDRESS MODE
The IA-32 architecture’s real-address mode runs programs written for the Intel 8086, 
Intel 8088, Intel 80186, and Intel 80188 processors, or for the real-address mode of 
the Intel 286, Intel386, Intel486, Pentium, P6 family, Pentium 4, and Intel Xeon 
processors.

The execution environment of the processor in real-address mode is designed to 
duplicate the execution environment of the Intel 8086 processor. To an 8086 
program, a processor operating in real-address mode behaves like a high-speed 
8086 processor. The principal features of this architecture are defined in Chapter 3, 
“Basic Execution Environment”, of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.
Vol. 3B 20-1



8086 EMULATION
The following is a summary of the core features of the real-address mode execution 
environment as would be seen by a program written for the 8086:
• The processor supports a nominal 1-MByte physical address space (see Section 

20.1.1, “Address Translation in Real-Address Mode”, for specific details). This 
address space is divided into segments, each of which can be up to 64 KBytes in 
length. The base of a segment is specified with a 16-bit segment selector, which 
is zero extended to form a 20-bit offset from address 0 in the address space. An 
operand within a segment is addressed with a 16-bit offset from the base of the 
segment. A physical address is thus formed by adding the offset to the 20-bit 
segment base (see Section 20.1.1, “Address Translation in Real-Address Mode”).

• All operands in “native 8086 code” are 8-bit or 16-bit values. (Operand size 
override prefixes can be used to access 32-bit operands.)

• Eight 16-bit general-purpose registers are provided: AX, BX, CX, DX, SP, BP, SI, 
and DI. The extended 32 bit registers (EAX, EBX, ECX, EDX, ESP, EBP, ESI, and 
EDI) are accessible to programs that explicitly perform a size override operation.

• Four segment registers are provided: CS, DS, SS, and ES. (The FS and GS 
registers are accessible to programs that explicitly access them.) The CS register 
contains the segment selector for the code segment; the DS and ES registers 
contain segment selectors for data segments; and the SS register contains the 
segment selector for the stack segment.

• The 8086 16-bit instruction pointer (IP) is mapped to the lower 16-bits of the EIP 
register. Note this register is a 32-bit register and unintentional address wrapping 
may occur.

• The 16-bit FLAGS register contains status and control flags. (This register is 
mapped to the 16 least significant bits of the 32-bit EFLAGS register.)

• All of the Intel 8086 instructions are supported (see Section 20.1.3, “Instructions 
Supported in Real-Address Mode”).

• A single, 16-bit-wide stack is provided for handling procedure calls and 
invocations of interrupt and exception handlers. This stack is contained in the 
stack segment identified with the SS register. The SP (stack pointer) register 
contains an offset into the stack segment. The stack grows down (toward lower 
segment offsets) from the stack pointer. The BP (base pointer) register also 
contains an offset into the stack segment that can be used as a pointer to a 
parameter list. When a CALL instruction is executed, the processor pushes the 
current instruction pointer (the 16 least-significant bits of the EIP register and, 
on far calls, the current value of the CS register) onto the stack. On a return, 
initiated with a RET instruction, the processor pops the saved instruction pointer 
from the stack into the EIP register (and CS register on far returns). When an 
implicit call to an interrupt or exception handler is executed, the processor 
pushes the EIP, CS, and EFLAGS (low-order 16-bits only) registers onto the 
stack. On a return from an interrupt or exception handler, initiated with an IRET 
instruction, the processor pops the saved instruction pointer and EFLAGS image 
from the stack into the EIP, CS, and EFLAGS registers.
20-2 Vol. 3B



8086 EMULATION
• A single interrupt table, called the “interrupt vector table” or “interrupt table,” is 
provided for handling interrupts and exceptions (see Figure 20-2). The interrupt 
table (which has 4-byte entries) takes the place of the interrupt descriptor table 
(IDT, with 8-byte entries) used when handling protected-mode interrupts and 
exceptions. Interrupt and exception vector numbers provide an index to entries 
in the interrupt table. Each entry provides a pointer (called a “vector”) to an 
interrupt- or exception-handling procedure. See Section 20.1.4, “Interrupt and 
Exception Handling”, for more details. It is possible for software to relocate the 
IDT by means of the LIDT instruction on IA-32 processors beginning with the 
Intel386 processor.

• The x87 FPU is active and available to execute x87 FPU instructions in real-
address mode. Programs written to run on the Intel 8087 and Intel 287 math 
coprocessors can be run in real-address mode without modification.

The following extensions to the Intel 8086 execution environment are available in the 
IA-32 architecture’s real-address mode. If backwards compatibility to Intel 286 and 
Intel 8086 processors is required, these features should not be used in new programs 
written to run in real-address mode.
• Two additional segment registers (FS and GS) are available.
• Many of the integer and system instructions that have been added to later IA-32 

processors can be executed in real-address mode (see Section 20.1.3, “Instruc-
tions Supported in Real-Address Mode”). 

• The 32-bit operand prefix can be used in real-address mode programs to execute 
the 32-bit forms of instructions. This prefix also allows real-address mode 
programs to use the processor’s 32-bit general-purpose registers.

• The 32-bit address prefix can be used in real-address mode programs, allowing 
32-bit offsets.

The following sections describe address formation, registers, available instructions, 
and interrupt and exception handling in real-address mode. For information on I/O in 
real-address mode, see Chapter 13, “Input/Output”, of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1. 

20.1.1 Address Translation in Real-Address Mode
In real-address mode, the processor does not interpret segment selectors as indexes 
into a descriptor table; instead, it uses them directly to form linear addresses as the 
8086 processor does. It shifts the segment selector left by 4 bits to form a 20-bit 
base address (see Figure 20-1). The offset into a segment is added to the base 
address to create a linear address that maps directly to the physical address space. 

When using 8086-style address translation, it is possible to specify addresses larger 
than 1 MByte. For example, with a segment selector value of FFFFH and an offset of 
FFFFH, the linear (and physical) address would be 10FFEFH (1 megabyte plus 64 
KBytes). The 8086 processor, which can form addresses only up to 20 bits long, trun-
cates the high-order bit, thereby “wrapping” this address to FFEFH. When operating 
Vol. 3B 20-3



8086 EMULATION
in real-address mode, however, the processor does not truncate such an address and 
uses it as a physical address. (Note, however, that for IA-32 processors beginning 
with the Intel486 processor, the A20M# signal can be used in real-address mode to 
mask address line A20, thereby mimicking the 20-bit wrap-around behavior of the 
8086 processor.) Care should be take to ensure that A20M# based address wrapping 
is handled correctly in multiprocessor based system.

The IA-32 processors beginning with the Intel386 processor can generate 32-bit 
offsets using an address override prefix; however, in real-address mode, the value of 
a 32-bit offset may not exceed FFFFH without causing an exception. 

For full compatibility with Intel 286 real-address mode, pseudo-protection faults 
(interrupt 12 or 13) occur if a 32-bit offset is generated outside the range 0 through 
FFFFH.

20.1.2 Registers Supported in Real-Address Mode
The register set available in real-address mode includes all the registers defined for 
the 8086 processor plus the new registers introduced in later IA-32 processors, such 
as the FS and GS segment registers, the debug registers, the control registers, and 
the floating-point unit registers. The 32-bit operand prefix allows a real-address 
mode program to use the 32-bit general-purpose registers (EAX, EBX, ECX, EDX, 
ESP, EBP, ESI, and EDI).

20.1.3 Instructions Supported in Real-Address Mode
The following instructions make up the core instruction set for the 8086 processor. If 
backwards compatibility to the Intel 286 and Intel 8086 processors is required, only 
these instructions should be used in a new program written to run in real-address 
mode.

Figure 20-1.  Real-Address Mode Address Translation

19 0

16-bit Segment Selector

3

0  0  0  0Base

19 0

16-bit Effective Address

15

0  0  0  0Offset

0

20-bit Linear AddressLinear
Address

+

=

4

16

19
20-4 Vol. 3B



8086 EMULATION
• Move (MOV) instructions that move operands between general-purpose 
registers, segment registers, and between memory and general-purpose 
registers.

• The exchange (XCHG) instruction.
• Load segment register instructions LDS and LES.
• Arithmetic instructions ADD, ADC, SUB, SBB, MUL, IMUL, DIV, IDIV, INC, DEC, 

CMP, and NEG.
• Logical instructions AND, OR, XOR, and NOT.
• Decimal instructions DAA, DAS, AAA, AAS, AAM, and AAD.
• Stack instructions PUSH and POP (to general-purpose registers and segment 

registers).
• Type conversion instructions CWD, CDQ, CBW, and CWDE.
• Shift and rotate instructions SAL, SHL, SHR, SAR, ROL, ROR, RCL, and RCR.
• TEST instruction.
• Control instructions JMP, Jcc, CALL, RET, LOOP, LOOPE, and LOOPNE.
• Interrupt instructions INT n, INTO, and IRET.
• EFLAGS control instructions STC, CLC, CMC, CLD, STD, LAHF, SAHF, PUSHF, and 

POPF.
• I/O instructions IN, INS, OUT, and OUTS.
• Load effective address (LEA) instruction, and translate (XLATB) instruction.
• LOCK prefix.
• Repeat prefixes REP, REPE, REPZ, REPNE, and REPNZ.
• Processor halt (HLT) instruction.
• No operation (NOP) instruction.

The following instructions, added to later IA-32 processors (some in the Intel 286 
processor and the remainder in the Intel386 processor), can be executed in real-
address mode, if backwards compatibility to the Intel 8086 processor is not required.
• Move (MOV) instructions that operate on the control and debug registers.
• Load segment register instructions LSS, LFS, and LGS.
• Generalized multiply instructions and multiply immediate data.
• Shift and rotate by immediate counts.
• Stack instructions PUSHA, PUSHAD, POPA and POPAD, and PUSH immediate 

data.
• Move with sign extension instructions MOVSX and MOVZX.
• Long-displacement Jcc instructions.
• Exchange instructions CMPXCHG, CMPXCHG8B, and XADD. 
• String instructions MOVS, CMPS, SCAS, LODS, and STOS. 
Vol. 3B 20-5



8086 EMULATION
• Bit test and bit scan instructions BT, BTS, BTR, BTC, BSF, and BSR; the byte-set-
on condition instruction SETcc; and the byte swap (BSWAP) instruction.

• Double shift instructions SHLD and SHRD.
• EFLAGS control instructions PUSHF and POPF.
• ENTER and LEAVE control instructions.
• BOUND instruction.
• CPU identification (CPUID) instruction.
• System instructions CLTS, INVD, WINVD, INVLPG, LGDT, SGDT, LIDT, SIDT, 

LMSW, SMSW, RDMSR, WRMSR, RDTSC, and RDPMC.

Execution of any of the other IA-32 architecture instructions (not given in the 
previous two lists) in real-address mode result in an invalid-opcode exception (#UD) 
being generated.

20.1.4 Interrupt and Exception Handling
When operating in real-address mode, software must provide interrupt and excep-
tion-handling facilities that are separate from those provided in protected mode. 
Even during the early stages of processor initialization when the processor is still in 
real-address mode, elementary real-address mode interrupt and exception-handling 
facilities must be provided to insure reliable operation of the processor, or the initial-
ization code must insure that no interrupts or exceptions will occur.

The IA-32 processors handle interrupts and exceptions in real-address mode similar 
to the way they handle them in protected mode. When a processor receives an inter-
rupt or generates an exception, it uses the vector number of the interrupt or excep-
tion as an index into the interrupt table. (In protected mode, the interrupt table is 
called the interrupt descriptor table (IDT), but in real-address mode, the table is 
usually called the interrupt vector table, or simply the interrupt table.) The entry 
in the interrupt vector table provides a pointer to an interrupt- or exception-handler 
procedure. (The pointer consists of a segment selector for a code segment and a 16-
bit offset into the segment.) The processor performs the following actions to make an 
implicit call to the selected handler:

1. Pushes the current values of the CS and EIP registers onto the stack. (Only the 16 
least-significant bits of the EIP register are pushed.)

2. Pushes the low-order 16 bits of the EFLAGS register onto the stack.

3. Clears the IF flag in the EFLAGS register to disable interrupts.

4. Clears the TF, RC, and AC flags, in the EFLAGS register.

5. Transfers program control to the location specified in the interrupt vector table.

An IRET instruction at the end of the handler procedure reverses these steps to 
return program control to the interrupted program. Exceptions do not return error 
codes in real-address mode.
20-6 Vol. 3B



8086 EMULATION
The interrupt vector table is an array of 4-byte entries (see Figure 20-2). Each entry 
consists of a far pointer to a handler procedure, made up of a segment selector and 
an offset. The processor scales the interrupt or exception vector by 4 to obtain an 
offset into the interrupt table. Following reset, the base of the interrupt vector table 
is located at physical address 0 and its limit is set to 3FFH. In the Intel 8086 
processor, the base address and limit of the interrupt vector table cannot be 
changed. In the later IA-32 processors, the base address and limit of the interrupt 
vector table are contained in the IDTR register and can be changed using the LIDT 
instruction. 

(For backward compatibility to Intel 8086 processors, the default base address and 
limit of the interrupt vector table should not be changed.)

Table 20-1 shows the interrupt and exception vectors that can be generated in real-
address mode and virtual-8086 mode, and in the Intel 8086 processor. See Chapter 
6, “Interrupt and Exception Handling”, for a description of the exception conditions.

Figure 20-2.  Interrupt Vector Table in Real-Address Mode

0

2

4

8

12

015

Segment Selector

Offset

* Interrupt vector number 0 selects entry 0

Interrupt Vector 0*

Entry 1

Entry 2

Entry 3

Up to Entry 255

IDTR(called “interrupt vector 0”) in the interrupt
vector table. Interrupt vector 0 in turn
points to the start of the interrupt handler
for interrupt 0.
Vol. 3B 20-7



8086 EMULATION
20.2 VIRTUAL-8086 MODE
Virtual-8086 mode is actually a special type of a task that runs in protected mode. 
When the operating-system or executive switches to a virtual-8086-mode task, the 
processor emulates an Intel 8086 processor. The execution environment of the 
processor while in the 8086-emulation state is the same as is described in Section 
20.1, “Real-Address Mode” for real-address mode, including the extensions. The 
major difference between the two modes is that in virtual-8086 mode the 8086 
emulator uses some protected-mode services (such as the protected-mode interrupt 
and exception-handling and paging facilities).

As in real-address mode, any new or legacy program that has been assembled 
and/or compiled to run on an Intel 8086 processor will run in a virtual-8086-mode 
task. And several 8086 programs can be run as virtual-8086-mode tasks concur-
rently with normal protected-mode tasks, using the processor’s multitasking 
facilities.

Table 20-1.  Real-Address Mode Exceptions and Interrupts

Vector 
No.

Description Real-Address 
Mode

Virtual-8086 
Mode

Intel 8086 
Processor

 0 Divide Error (#DE) Yes Yes Yes

 1 Debug Exception (#DB) Yes Yes No

 2 NMI Interrupt Yes Yes Yes

 3 Breakpoint (#BP) Yes Yes Yes

 4 Overflow (#OF) Yes Yes Yes

 5 BOUND Range Exceeded (#BR) Yes Yes Reserved

 6 Invalid Opcode (#UD) Yes Yes Reserved

 7 Device Not Available (#NM) Yes Yes Reserved

 8 Double Fault (#DF) Yes Yes Reserved

 9 (Intel reserved. Do not use.) Reserved Reserved Reserved

10 Invalid TSS (#TS) Reserved Yes Reserved

11 Segment Not Present (#NP) Reserved Yes Reserved

12 Stack Fault (#SS) Yes Yes Reserved

13 General Protection (#GP)* Yes Yes Reserved

14 Page Fault (#PF) Reserved Yes Reserved

15 (Intel reserved. Do not use.) Reserved Reserved Reserved

16 Floating-Point Error (#MF) Yes Yes Reserved

17 Alignment Check (#AC) Reserved Yes Reserved

18 Machine Check (#MC) Yes Yes Reserved
20-8 Vol. 3B



8086 EMULATION
20.2.1 Enabling Virtual-8086 Mode
The processor runs in virtual-8086 mode when the VM (virtual machine) flag in the 
EFLAGS register is set. This flag can only be set when the processor switches to a 
new protected-mode task or resumes virtual-8086 mode via an IRET instruction.

System software cannot change the state of the VM flag directly in the EFLAGS 
register (for example, by using the POPFD instruction). Instead it changes the flag in 
the image of the EFLAGS register stored in the TSS or on the stack following a call to 
an interrupt- or exception-handler procedure. For example, software sets the VM flag 
in the EFLAGS image in the TSS when first creating a virtual-8086 task.

The processor tests the VM flag under three general conditions:
• When loading segment registers, to determine whether to use 8086-style 

address translation.
• When decoding instructions, to determine which instructions are not supported in 

virtual-8086 mode and which instructions are sensitive to IOPL.
• When checking privileged instructions, on page accesses, or when performing 

other permission checks. (Virtual-8086 mode always executes at CPL 3.)

20.2.2 Structure of a Virtual-8086 Task
A virtual-8086-mode task consists of the following items:
• A 32-bit TSS for the task.
• The 8086 program.
• A virtual-8086 monitor.
• 8086 operating-system services.

The TSS of the new task must be a 32-bit TSS, not a 16-bit TSS, because the 16-bit 
TSS does not load the most-significant word of the EFLAGS register, which contains 
the VM flag. All TSS’s, stacks, data, and code used to handle exceptions when in 
virtual-8086 mode must also be 32-bit segments.

19-31 (Intel reserved. Do not use.) Reserved Reserved Reserved

32-
255

User Defined Interrupts Yes Yes Yes

NOTE:
* In the real-address mode, vector 13 is the segment overrun exception. In protected and vir-

tual-8086 modes, this exception covers all general-protection error conditions, including traps 
to the virtual-8086 monitor from virtual-8086 mode.

Table 20-1.  Real-Address Mode Exceptions and Interrupts (Contd.)

Vector 
No.

Description Real-Address 
Mode

Virtual-8086 
Mode

Intel 8086 
Processor
Vol. 3B 20-9



8086 EMULATION
The processor enters virtual-8086 mode to run the 8086 program and returns to 
protected mode to run the virtual-8086 monitor.

The virtual-8086 monitor is a 32-bit protected-mode code module that runs at a CPL 
of 0. The monitor consists of initialization, interrupt- and exception-handling, and I/O 
emulation procedures that emulate a personal computer or other 8086-based plat-
form. Typically, the monitor is either part of or closely associated with the protected-
mode general-protection (#GP) exception handler, which also runs at a CPL of 0. As 
with any protected-mode code module, code-segment descriptors for the virtual-
8086 monitor must exist in the GDT or in the task’s LDT. The virtual-8086 monitor 
also may need data-segment descriptors so it can examine the IDT or other parts of 
the 8086 program in the first 1 MByte of the address space. The linear addresses 
above 10FFEFH are available for the monitor, the operating system, and other system 
software.

The 8086 operating-system services consists of a kernel and/or operating-system 
procedures that the 8086 program makes calls to. These services can be imple-
mented in either of the following two ways:
• They can be included in the 8086 program. This approach is desirable for either 

of the following reasons:

— The 8086 program code modifies the 8086 operating-system services.

— There is not sufficient development time to merge the 8086 operating-
system services into main operating system or executive.

• They can be implemented or emulated in the virtual-8086 monitor. This approach 
is desirable for any of the following reasons:

— The 8086 operating-system procedures can be more easily coordinated 
among several virtual-8086 tasks.

— Memory can be saved by not duplicating 8086 operating-system procedure 
code for several virtual-8086 tasks.

— The 8086 operating-system procedures can be easily emulated by calls to the 
main operating system or executive.

The approach chosen for implementing the 8086 operating-system services may 
result in different virtual-8086-mode tasks using different 8086 operating-system 
services.

20.2.3 Paging of Virtual-8086 Tasks
Even though a program running in virtual-8086 mode can use only 20-bit linear 
addresses, the processor converts these addresses into 32-bit linear addresses 
before mapping them to the physical address space. If paging is being used, the 
8086 address space for a program running in virtual-8086 mode can be paged and 
located in a set of pages in physical address space. If paging is used, it is transparent 
to the program running in virtual-8086 mode just as it is for any task running on the 
processor.
20-10 Vol. 3B



8086 EMULATION
Paging is not necessary for a single virtual-8086-mode task, but paging is useful or 
necessary in the following situations:
• When running multiple virtual-8086-mode tasks. Here, paging allows the lower 1 

MByte of the linear address space for each virtual-8086-mode task to be mapped 
to a different physical address location.

• When emulating the 8086 address-wraparound that occurs at 1 MByte. When 
using 8086-style address translation, it is possible to specify addresses larger 
than 1 MByte. These addresses automatically wraparound in the Intel 8086 
processor (see Section 20.1.1, “Address Translation in Real-Address Mode”). If 
any 8086 programs depend on address wraparound, the same effect can be 
achieved in a virtual-8086-mode task by mapping the linear addresses between 
100000H and 110000H and linear addresses between 0 and 10000H to the same 
physical addresses.

• When sharing the 8086 operating-system services or ROM code that is common 
to several 8086 programs running as different 8086-mode tasks.

• When redirecting or trapping references to memory-mapped I/O devices.

20.2.4 Protection within a Virtual-8086 Task
Protection is not enforced between the segments of an 8086 program. Either of the 
following techniques can be used to protect the system software running in a virtual-
8086-mode task from the 8086 program:
• Reserve the first 1 MByte plus 64 KBytes of each task’s linear address space for 

the 8086 program. An 8086 processor task cannot generate addresses outside 
this range.

• Use the U/S flag of page-table entries to protect the virtual-8086 monitor and 
other system software in the virtual-8086 mode task space. When the processor 
is in virtual-8086 mode, the CPL is 3. Therefore, an 8086 processor program has 
only user privileges. If the pages of the virtual-8086 monitor have supervisor 
privilege, they cannot be accessed by the 8086 program.

20.2.5 Entering Virtual-8086 Mode
Figure 20-3 summarizes the methods of entering and leaving virtual-8086 mode. 
The processor switches to virtual-8086 mode in either of the following situations:
• Task switch when the VM flag is set to 1 in the EFLAGS register image stored in 

the TSS for the task. Here the task switch can be initiated in either of two ways:

— A CALL or JMP instruction.

— An IRET instruction, where the NT flag in the EFLAGS image is set to 1.
• Return from a protected-mode interrupt or exception handler when the VM flag is 

set to 1 in the EFLAGS register image on the stack.
Vol. 3B 20-11



8086 EMULATION
When a task switch is used to enter virtual-8086 mode, the TSS for the virtual-8086-
mode task must be a 32-bit TSS. (If the new TSS is a 16-bit TSS, the upper word of 
the EFLAGS register is not in the TSS, causing the processor to clear the VM flag 
when it loads the EFLAGS register.) The processor updates the VM flag prior to 
loading the segment registers from their images in the new TSS. The new setting of 
the VM flag determines whether the processor interprets the contents of the segment 
registers as 8086-style segment selectors or protected-mode segment selectors. 
When the VM flag is set, the segment registers are loaded from the TSS, using 8086-
style address translation to form base addresses. 

See Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode”, for infor-
mation on entering virtual-8086 mode on a return from an interrupt or exception 
handler.
20-12 Vol. 3B



8086 EMULATION
Figure 20-3.  Entering and Leaving Virtual-8086 Mode

Monitor
Virtual-8086

Real Mode
Code

Protected-
Mode Tasks

Virtual-8086
Mode Tasks

(8086
Programs)

Protected-
Mode Interrupt
and Exception

Handlers

Task Switch1

VM = 1

Protected
Mode

Virtual-8086
Mode

Real-Address
Mode

RESET

PE=1
PE=0 or
RESET

#GP Exception3

CALL

RET

Task Switch
VM=0

Redirect Interrupt to 8086 Program
Interrupt or Exception Handler6

IRET4

Interrupt or
Exception2

VM = 0

NOTES:

- CALL or JMP where the VM flag in the EFLAGS image is 1.
- IRET where VM is 1 and NT is 1.

4. Normal return from protected-mode interrupt or exception handler.

3. General-protection exception caused by software interrupt (INT n), IRET,
POPF, PUSHF, IN, or OUT when IOPL is less than 3.

2. Hardware interrupt or exception; software interrupt (INT n) when IOPL is 3.

5. A return from the 8086 monitor to redirect an interrupt or exception back
 to an interrupt or exception handler in the 8086 program running in virtual-

6. Internal redirection of a software interrupt (INT n) when VME is 1,
IOPL is <3, and the redirection bit is 1.

IRET5

8086 mode.

1. Task switch carried out in either of two ways:
Vol. 3B 20-13



8086 EMULATION
20.2.6 Leaving Virtual-8086 Mode
The processor can leave the virtual-8086 mode only through an interrupt or excep-
tion. The following are situations where an interrupt or exception will lead to the 
processor leaving virtual-8086 mode (see Figure 20-3):
• The processor services a hardware interrupt generated to signal the suspension 

of execution of the virtual-8086 application. This hardware interrupt may be 
generated by a timer or other external mechanism. Upon receiving the hardware 
interrupt, the processor enters protected mode and switches to a protected-
mode (or another virtual-8086 mode) task either through a task gate in the 
protected-mode IDT or through a trap or interrupt gate that points to a handler 
that initiates a task switch. A task switch from a virtual-8086 task to another task 
loads the EFLAGS register from the TSS of the new task. The value of the VM flag 
in the new EFLAGS determines if the new task executes in virtual-8086 mode or 
not.

• The processor services an exception caused by code executing the virtual-8086 
task or services a hardware interrupt that “belongs to” the virtual-8086 task. 
Here, the processor enters protected mode and services the exception or 
hardware interrupt through the protected-mode IDT (normally through an 
interrupt or trap gate) and the protected-mode exception- and interrupt-
handlers. The processor may handle the exception or interrupt within the context 
of the virtual 8086 task and return to virtual-8086 mode on a return from the 
handler procedure. The processor may also execute a task switch and handle the 
exception or interrupt in the context of another task.

• The processor services a software interrupt generated by code executing in the 
virtual-8086 task (such as a software interrupt to call a MS-DOS* operating 
system routine). The processor provides several methods of handling these 
software interrupts, which are discussed in detail in Section 20.3.3, “Class 
3—Software Interrupt Handling in Virtual-8086 Mode”. Most of them involve the 
processor entering protected mode, often by means of a general-protection 
(#GP) exception. In protected mode, the processor can send the interrupt to the 
virtual-8086 monitor for handling and/or redirect the interrupt back to the 
application program running in virtual-8086 mode task for handling.
IA-32 processors that incorporate the virtual mode extension (enabled with the 
VME flag in control register CR4) are capable of redirecting software-generated 
interrupts back to the program’s interrupt handlers without leaving virtual-8086 
mode. See Section 20.3.3.4, “Method 5: Software Interrupt Handling”, for more 
information on this mechanism.

• A hardware reset initiated by asserting the RESET or INIT pin is a special kind of 
interrupt. When a RESET or INIT is signaled while the processor is in virtual-8086 
mode, the processor leaves virtual-8086 mode and enters real-address mode.

• Execution of the HLT instruction in virtual-8086 mode will cause a general-
protection (GP#) fault, which the protected-mode handler generally sends to the 
virtual-8086 monitor. The virtual-8086 monitor then determines the correct 
20-14 Vol. 3B



8086 EMULATION
execution sequence after verifying that it was entered as a result of a HLT 
execution.

See Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode”, for infor-
mation on leaving virtual-8086 mode to handle an interrupt or exception generated 
in virtual-8086 mode.

20.2.7 Sensitive Instructions
When an IA-32 processor is running in virtual-8086 mode, the CLI, STI, PUSHF, POPF, 
INT n, and IRET instructions are sensitive to IOPL. The IN, INS, OUT, and OUTS 
instructions, which are sensitive to IOPL in protected mode, are not sensitive in 
virtual-8086 mode.

The CPL is always 3 while running in virtual-8086 mode; if the IOPL is less than 3, an 
attempt to use the IOPL-sensitive instructions listed above triggers a general-protec-
tion exception (#GP). These instructions are sensitive to IOPL to give the virtual-
8086 monitor a chance to emulate the facilities they affect.

20.2.8 Virtual-8086 Mode I/O
Many 8086 programs written for non-multitasking systems directly access I/O ports. 
This practice may cause problems in a multitasking environment. If more than one 
program accesses the same port, they may interfere with each other. Most multi-
tasking systems require application programs to access I/O ports through the oper-
ating system. This results in simplified, centralized control.

The processor provides I/O protection for creating I/O that is compatible with the 
environment and transparent to 8086 programs. Designers may take any of several 
possible approaches to protecting I/O ports:
• Protect the I/O address space and generate exceptions for all attempts to 

perform I/O directly.
• Let the 8086 program perform I/O directly.
• Generate exceptions on attempts to access specific I/O ports.
• Generate exceptions on attempts to access specific memory-mapped I/O ports.

The method of controlling access to I/O ports depends upon whether they are 
I/O-port mapped or memory mapped.

20.2.8.1  I/O-Port-Mapped I/O
The I/O permission bit map in the TSS can be used to generate exceptions on 
attempts to access specific I/O port addresses. The I/O permission bit map of each 
virtual-8086-mode task determines which I/O addresses generate exceptions for 
that task. Because each task may have a different I/O permission bit map, the 
addresses that generate exceptions for one task may be different from the addresses 
Vol. 3B 20-15



8086 EMULATION
for another task. This differs from protected mode in which, if the CPL is less than or 
equal to the IOPL, I/O access is allowed without checking the I/O permission bit map. 
See Chapter 13, “Input/Output”, in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for more information about the I/O permission bit 
map.

20.2.8.2  Memory-Mapped I/O
In systems which use memory-mapped I/O, the paging facilities of the processor can 
be used to generate exceptions for attempts to access I/O ports. The virtual-8086 
monitor may use paging to control memory-mapped I/O in these ways:
• Map part of the linear address space of each task that needs to perform I/O to the 

physical address space where I/O ports are placed. By putting the I/O ports at 
different addresses (in different pages), the paging mechanism can enforce 
isolation between tasks.

• Map part of the linear address space to pages that are not-present. This 
generates an exception whenever a task attempts to perform I/O to those pages. 
System software then can interpret the I/O operation being attempted.

Software emulation of the I/O space may require too much operating system inter-
vention under some conditions. In these cases, it may be possible to generate an 
exception for only the first attempt to access I/O. The system software then may 
determine whether a program can be given exclusive control of I/O temporarily, the 
protection of the I/O space may be lifted, and the program allowed to run at full 
speed.

20.2.8.3  Special I/O Buffers
Buffers of intelligent controllers (for example, a bit-mapped frame buffer) also can be 
emulated using page mapping. The linear space for the buffer can be mapped to a 
different physical space for each virtual-8086-mode task. The virtual-8086 monitor 
then can control which virtual buffer to copy onto the real buffer in the physical 
address space.

20.3 INTERRUPT AND EXCEPTION HANDLING 
IN VIRTUAL-8086 MODE

When the processor receives an interrupt or detects an exception condition while in 
virtual-8086 mode, it invokes an interrupt or exception handler, just as it does in 
protected or real-address mode. The interrupt or exception handler that is invoked 
and the mechanism used to invoke it depends on the class of interrupt or exception 
that has been detected or generated and the state of various system flags and fields.
20-16 Vol. 3B



8086 EMULATION
In virtual-8086 mode, the interrupts and exceptions are divided into three classes for 
the purposes of handling:
• Class 1 — All processor-generated exceptions and all hardware interrupts, 

including the NMI interrupt and the hardware interrupts sent to the processor’s 
external interrupt delivery pins. All class 1 exceptions and interrupts are handled 
by the protected-mode exception and interrupt handlers.

• Class 2 — Special case for maskable hardware interrupts (Section 6.3.2, 
“Maskable Hardware Interrupts”) when the virtual mode extensions are enabled.

• Class 3 — All software-generated interrupts, that is interrupts generated with 
the INT n instruction1.

The method the processor uses to handle class 2 and 3 interrupts depends on the 
setting of the following flags and fields:
• IOPL field (bits 12 and 13 in the EFLAGS register) — Controls how class 3 

software interrupts are handled when the processor is in virtual-8086 mode (see 
Section 2.3, “System Flags and Fields in the EFLAGS Register”). This field also 
controls the enabling of the VIF and VIP flags in the EFLAGS register when the 
VME flag is set. The VIF and VIP flags are provided to assist in the handling of 
class 2 maskable hardware interrupts.

• VME flag (bit 0 in control register CR4) — Enables the virtual mode extension 
for the processor when set (see Section 2.5, “Control Registers”).

• Software interrupt redirection bit map (32 bytes in the TSS, see 
Figure 20-5) — Contains 256 flags that indicates how class 3 software 
interrupts should be handled when they occur in virtual-8086 mode. A software 
interrupt can be directed either to the interrupt and exception handlers in the 
currently running 8086 program or to the protected-mode interrupt and 
exception handlers.

• The virtual interrupt flag (VIF) and virtual interrupt pending flag (VIP) 
in the EFLAGS register — Provides virtual interrupt support for the handling 
of class 2 maskable hardware interrupts (see Section 20.3.2, “Class 2—Maskable 
Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt 
Mechanism”). 

NOTE
The VME flag, software interrupt redirection bit map, and VIF and VIP 
flags are only available in IA-32 processors that support the virtual 
mode extensions. These extensions were introduced in the IA-32 
architecture with the Pentium processor.

The following sections describe the actions that processor takes and the possible 
actions of interrupt and exception handlers for the two classes of interrupts described 

1. The INT 3 instruction is a special case (see the description of the INT n instruction in Chapter 3, 
“Instruction Set Reference, A-L”, of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A).
Vol. 3B 20-17



8086 EMULATION
in the previous paragraphs. These sections describe three possible types of interrupt 
and exception handlers:
• Protected-mode interrupt and exceptions handlers — These are the 

standard handlers that the processor calls through the protected-mode IDT.
• Virtual-8086 monitor interrupt and exception handlers — These handlers 

are resident in the virtual-8086 monitor, and they are commonly accessed 
through a general-protection exception (#GP, interrupt 13) that is directed to the 
protected-mode general-protection exception handler.

• 8086 program interrupt and exception handlers — These handlers are part 
of the 8086 program that is running in virtual-8086 mode.

The following sections describe how these handlers are used, depending on the 
selected class and method of interrupt and exception handling.

20.3.1 Class 1—Hardware Interrupt and Exception Handling in 
Virtual-8086 Mode

In virtual-8086 mode, the Pentium, P6 family, Pentium 4, and Intel Xeon processors 
handle hardware interrupts and exceptions in the same manner as they are handled 
by the Intel486 and Intel386 processors. They invoke the protected-mode interrupt 
or exception handler that the interrupt or exception vector points to in the IDT. Here, 
the IDT entry must contain either a 32-bit trap or interrupt gate or a task gate. The 
following sections describe various ways that a virtual-8086 mode interrupt or excep-
tion can be handled after the protected-mode handler has been invoked.

See Section 20.3.2, “Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 
Mode Using the Virtual Interrupt Mechanism”, for a description of the virtual interrupt 
mechanism that is available for handling maskable hardware interrupts while in 
virtual-8086 mode. When this mechanism is either not available or not enabled, 
maskable hardware interrupts are handled in the same manner as exceptions, as 
described in the following sections.

20.3.1.1  Handling an Interrupt or Exception Through a Protected-Mode 
Trap or Interrupt Gate

When an interrupt or exception vector points to a 32-bit trap or interrupt gate in the 
IDT, the gate must in turn point to a nonconforming, privilege-level 0, code segment. 
When accessing this code segment, processor performs the following steps.

1. Switches to 32-bit protected mode and privilege level 0.

2. Saves the state of the processor on the privilege-level 0 stack. The states of the 
EIP, CS, EFLAGS, ESP, SS, ES, DS, FS, and GS registers are saved (see 
Figure 20-4).

3. Clears the segment registers. Saving the DS, ES, FS, and GS registers on the 
stack and then clearing the registers lets the interrupt or exception handler safely 
20-18 Vol. 3B



8086 EMULATION
save and restore these registers regardless of the type segment selectors they 
contain (protected-mode or 8086-style). The interrupt and exception handlers, 
which may be called in the context of either a protected-mode task or a virtual-
8086-mode task, can use the same code sequences for saving and restoring the 
registers for any task. Clearing these registers before execution of the IRET 
instruction does not cause a trap in the interrupt handler. Interrupt procedures 
that expect values in the segment registers or that return values in the segment 
registers must use the register images saved on the stack for privilege level 0.

4. Clears VM, NT, RF and TF flags (in the EFLAGS register). If the gate is an interrupt 
gate, clears the IF flag.

5. Begins executing the selected interrupt or exception handler.

If the trap or interrupt gate references a procedure in a conforming segment or in a 
segment at a privilege level other than 0, the processor generates a general-protec-
tion exception (#GP). Here, the error code is the segment selector of the code 
segment to which a call was attempted.

Figure 20-4.  Privilege Level 0 Stack After Interrupt or 
Exception in Virtual-8086 Mode

Unused

Old GS

Old ESP

With Error Code

ESP from

Old FS

Old DS

Old ES

Old SS

Old EFLAGS

Old CS

Old EIP

Error Code New ESP

TSS
Unused

Old GS

Old ESP

Without Error Code

ESP from

Old FS

Old DS

Old ES

Old SS

Old EFLAGS

Old CS

Old EIP New ESP

TSS
Vol. 3B 20-19



8086 EMULATION
Interrupt and exception handlers can examine the VM flag on the stack to determine 
if the interrupted procedure was running in virtual-8086 mode. If so, the interrupt or 
exception can be handled in one of three ways:
• The protected-mode interrupt or exception handler that was called can handle 

the interrupt or exception.
• The protected-mode interrupt or exception handler can call the virtual-8086 

monitor to handle the interrupt or exception.
• The virtual-8086 monitor (if called) can in turn pass control back to the 8086 

program’s interrupt and exception handler.

If the interrupt or exception is handled with a protected-mode handler, the handler 
can return to the interrupted program in virtual-8086 mode by executing an IRET 
instruction. This instruction loads the EFLAGS and segment registers from the 
images saved in the privilege level 0 stack (see Figure 20-4). A set VM flag in the 
EFLAGS image causes the processor to switch back to virtual-8086 mode. The CPL at 
the time the IRET instruction is executed must be 0, otherwise the processor does 
not change the state of the VM flag.

The virtual-8086 monitor runs at privilege level 0, like the protected-mode interrupt 
and exception handlers. It is commonly closely tied to the protected-mode general-
protection exception (#GP, vector 13) handler. If the protected-mode interrupt or 
exception handler calls the virtual-8086 monitor to handle the interrupt or exception, 
the return from the virtual-8086 monitor to the interrupted virtual-8086 mode 
program requires two return instructions: a RET instruction to return to the 
protected-mode handler and an IRET instruction to return to the interrupted 
program.

The virtual-8086 monitor has the option of directing the interrupt and exception back 
to an interrupt or exception handler that is part of the interrupted 8086 program, as 
described in Section 20.3.1.2, “Handling an Interrupt or Exception With an 8086 
Program Interrupt or Exception Handler”.

20.3.1.2  Handling an Interrupt or Exception With an 8086 Program 
Interrupt or Exception Handler

Because it was designed to run on an 8086 processor, an 8086 program running in a 
virtual-8086-mode task contains an 8086-style interrupt vector table, which starts at 
linear address 0. If the virtual-8086 monitor correctly directs an interrupt or excep-
tion vector back to the virtual-8086-mode task it came from, the handlers in the 
8086 program can handle the interrupt or exception. The virtual-8086 monitor must 
carry out the following steps to send an interrupt or exception back to the 8086 
program:

1. Use the 8086 interrupt vector to locate the appropriate handler procedure in the 
8086 program interrupt table.
20-20 Vol. 3B



8086 EMULATION
2. Store the EFLAGS (low-order 16 bits only), CS and EIP values of the 8086 
program on the privilege-level 3 stack. This is the stack that the virtual-8086-
mode task is using. (The 8086 handler may use or modify this information.)

3. Change the return link on the privilege-level 0 stack to point to the privilege-level 
3 handler procedure.

4. Execute an IRET instruction to pass control to the 8086 program handler.

5. When the IRET instruction from the privilege-level 3 handler triggers a general-
protection exception (#GP) and thus effectively again calls the virtual-8086 
monitor, restore the return link on the privilege-level 0 stack to point to the 
original, interrupted, privilege-level 3 procedure.

6. Copy the low order 16 bits of the EFLAGS image from the privilege-level 3 stack 
to the privilege-level 0 stack (because some 8086 handlers modify these flags to 
return information to the code that caused the interrupt). 

7. Execute an IRET instruction to pass control back to the interrupted 8086 
program.

Note that if an operating system intends to support all 8086 MS-DOS-based 
programs, it is necessary to use the actual 8086 interrupt and exception handlers 
supplied with the program. The reason for this is that some programs modify their 
own interrupt vector table to substitute (or hook in series) their own specialized 
interrupt and exception handlers.

20.3.1.3  Handling an Interrupt or Exception Through a Task Gate
When an interrupt or exception vector points to a task gate in the IDT, the processor 
performs a task switch to the selected interrupt- or exception-handling task. The 
following actions are carried out as part of this task switch:

1. The EFLAGS register with the VM flag set is saved in the current TSS.

2. The link field in the TSS of the called task is loaded with the segment selector of 
the TSS for the interrupted virtual-8086-mode task.

3. The EFLAGS register is loaded from the image in the new TSS, which clears the 
VM flag and causes the processor to switch to protected mode.

4. The NT flag in the EFLAGS register is set.

5. The processor begins executing the selected interrupt- or exception-handler 
task.

When an IRET instruction is executed in the handler task and the NT flag in the 
EFLAGS register is set, the processors switches from a protected-mode interrupt- or 
exception-handler task back to a virtual-8086-mode task. Here, the EFLAGS and 
segment registers are loaded from images saved in the TSS for the virtual-8086-
mode task. If the VM flag is set in the EFLAGS image, the processor switches back to 
virtual-8086 mode on the task switch. The CPL at the time the IRET instruction is 
Vol. 3B 20-21



8086 EMULATION
executed must be 0, otherwise the processor does not change the state of the VM 
flag. 

20.3.2 Class 2—Maskable Hardware Interrupt Handling in 
Virtual-8086 Mode Using the Virtual Interrupt Mechanism

Maskable hardware interrupts are those interrupts that are delivered through the 
INTR# pin or through an interrupt request to the local APIC (see Section 6.3.2, 
“Maskable Hardware Interrupts”). These interrupts can be inhibited (masked) from 
interrupting an executing program or task by clearing the IF flag in the EFLAGS 
register.

When the VME flag in control register CR4 is set and the IOPL field in the EFLAGS 
register is less than 3, two additional flags are activated in the EFLAGS register:
• VIF (virtual interrupt) flag, bit 19 of the EFLAGS register.
• VIP (virtual interrupt pending) flag, bit 20 of the EFLAGS register.

These flags provide the virtual-8086 monitor with more efficient control over 
handling maskable hardware interrupts that occur during virtual-8086 mode tasks. 
They also reduce interrupt-handling overhead, by eliminating the need for all IF 
related operations (such as PUSHF, POPF, CLI, and STI instructions) to trap to the 
virtual-8086 monitor. The purpose and use of these flags are as follows.

NOTE
The VIF and VIP flags are only available in IA-32 processors that 
support the virtual mode extensions. These extensions were 
introduced in the IA-32 architecture with the Pentium processor. 
When this mechanism is either not available or not enabled, 
maskable hardware interrupts are handled as class 1 interrupts. 
Here, if VIF and VIP flags are needed, the virtual-8086 monitor can 
implement them in software.

Existing 8086 programs commonly set and clear the IF flag in the EFLAGS register to 
enable and disable maskable hardware interrupts, respectively; for example, to 
disable interrupts while handling another interrupt or an exception. This practice 
works well in single task environments, but can cause problems in multitasking and 
multiple-processor environments, where it is often desirable to prevent an applica-
tion program from having direct control over the handling of hardware interrupts. 
When using earlier IA-32 processors, this problem was often solved by creating a 
virtual IF flag in software. The IA-32 processors (beginning with the Pentium 
processor) provide hardware support for this virtual IF flag through the VIF and VIP 
flags.

The VIF flag is a virtualized version of the IF flag, which an application program 
running from within a virtual-8086 task can used to control the handling of maskable 
hardware interrupts. When the VIF flag is enabled, the CLI and STI instructions 
operate on the VIF flag instead of the IF flag. When an 8086 program executes the 
20-22 Vol. 3B



8086 EMULATION
CLI instruction, the processor clears the VIF flag to request that the virtual-8086 
monitor inhibit maskable hardware interrupts from interrupting program execution; 
when it executes the STI instruction, the processor sets the VIF flag requesting that 
the virtual-8086 monitor enable maskable hardware interrupts for the 8086 
program. But actually the IF flag, managed by the operating system, always controls 
whether maskable hardware interrupts are enabled. Also, if under these circum-
stances an 8086 program tries to read or change the IF flag using the PUSHF or POPF 
instructions, the processor will change the VIF flag instead, leaving IF unchanged.

The VIP flag provides software a means of recording the existence of a deferred (or 
pending) maskable hardware interrupt. This flag is read by the processor but never 
explicitly written by the processor; it can only be written by software. 

If the IF flag is set and the VIF and VIP flags are enabled, and the processor receives 
a maskable hardware interrupt (interrupt vector 0 through 255), the processor 
performs and the interrupt handler software should perform the following 
operations:

1. The processor invokes the protected-mode interrupt handler for the interrupt 
received, as described in the following steps. These steps are almost identical to 
those described for method 1 interrupt and exception handling in Section 
20.3.1.1, “Handling an Interrupt or Exception Through a Protected-Mode Trap or 
Interrupt Gate”:

a. Switches to 32-bit protected mode and privilege level 0.

b. Saves the state of the processor on the privilege-level 0 stack. The states of 
the EIP, CS, EFLAGS, ESP, SS, ES, DS, FS, and GS registers are saved (see 
Figure 20-4).

c. Clears the segment registers.

d. Clears the VM flag in the EFLAGS register.

e. Begins executing the selected protected-mode interrupt handler.

2. The recommended action of the protected-mode interrupt handler is to read the 
VM flag from the EFLAGS image on the stack. If this flag is set, the handler makes 
a call to the virtual-8086 monitor.

3. The virtual-8086 monitor should read the VIF flag in the EFLAGS register. 

— If the VIF flag is clear, the virtual-8086 monitor sets the VIP flag in the 
EFLAGS image on the stack to indicate that there is a deferred interrupt 
pending and returns to the protected-mode handler.

— If the VIF flag is set, the virtual-8086 monitor can handle the interrupt if it 
“belongs” to the 8086 program running in the interrupted virtual-8086 task; 
otherwise, it can call the protected-mode interrupt handler to handle the 
interrupt.

4. The protected-mode handler executes a return to the program executing in 
virtual-8086 mode.
Vol. 3B 20-23



8086 EMULATION
5. Upon returning to virtual-8086 mode, the processor continues execution of the 
8086 program.

When the 8086 program is ready to receive maskable hardware interrupts, it 
executes the STI instruction to set the VIF flag (enabling maskable hardware 
interrupts). Prior to setting the VIF flag, the processor automatically checks the VIP 
flag and does one of the following, depending on the state of the flag:
• If the VIP flag is clear (indicating no pending interrupts), the processor sets the 

VIF flag. 
• If the VIP flag is set (indicating a pending interrupt), the processor generates a 

general-protection exception (#GP).

The recommended action of the protected-mode general-protection exception 
handler is to then call the virtual-8086 monitor and let it handle the pending inter-
rupt. After handling the pending interrupt, the typical action of the virtual-8086 
monitor is to clear the VIP flag and set the VIF flag in the EFLAGS image on the stack, 
and then execute a return to the virtual-8086 mode. The next time the processor 
receives a maskable hardware interrupt, it will then handle it as described in steps 1 
through 5 earlier in this section.

If the processor finds that both the VIF and VIP flags are set at the beginning of an 
instruction, it generates a general-protection exception. This action allows the 
virtual-8086 monitor to handle the pending interrupt for the virtual-8086 mode task 
for which the VIF flag is enabled. Note that this situation can only occur immediately 
following execution of a POPF or IRET instruction or upon entering a virtual-8086 
mode task through a task switch.

Note that the states of the VIF and VIP flags are not modified in real-address mode or 
during transitions between real-address and protected modes.

NOTE
The virtual interrupt mechanism described in this section is also 
available for use in protected mode, see Section 20.4, “Protected-
Mode Virtual Interrupts”.

20.3.3 Class 3—Software Interrupt Handling in Virtual-8086 Mode
When the processor receives a software interrupt (an interrupt generated with the 
INT n instruction) while in virtual-8086 mode, it can use any of six different methods 
to handle the interrupt. The method selected depends on the settings of the VME flag 
in control register CR4, the IOPL field in the EFLAGS register, and the software inter-
rupt redirection bit map in the TSS. Table 20-2 lists the six methods of handling soft-
ware interrupts in virtual-8086 mode and the respective settings of the VME flag, 
IOPL field, and the bits in the interrupt redirection bit map for each method. The table 
also summarizes the various actions the processor takes for each method. 

The VME flag enables the virtual mode extensions for the Pentium and later IA-32 
processors. When this flag is clear, the processor responds to interrupts and excep-
20-24 Vol. 3B



8086 EMULATION
tions in virtual-8086 mode in the same manner as an Intel386 or Intel486 processor 
does. When this flag is set, the virtual mode extension provides the following 
enhancements to virtual-8086 mode:
• Speeds up the handling of software-generated interrupts in virtual-8086 mode by 

allowing the processor to bypass the virtual-8086 monitor and redirect software 
interrupts back to the interrupt handlers that are part of the currently running 
8086 program.

• Supports virtual interrupts for software written to run on the 8086 processor.

The IOPL value interacts with the VME flag and the bits in the interrupt redirection bit 
map to determine how specific software interrupts should be handled.

The software interrupt redirection bit map (see Figure 20-5) is a 32-byte field in the 
TSS. This map is located directly below the I/O permission bit map in the TSS. Each 
bit in the interrupt redirection bit map is mapped to an interrupt vector. Bit 0 in the 
interrupt redirection bit map (which maps to vector zero in the interrupt table) is 
located at the I/O base map address in the TSS minus 32 bytes. When a bit in this bit 
map is set, it indicates that the associated software interrupt (interrupt generated 
with an INT n instruction) should be handled through the protected-mode IDT and 
interrupt and exception handlers. When a bit in this bit map is clear, the processor 
redirects the associated software interrupt back to the interrupt table in the 8086 
program (located at linear address 0 in the program’s address space). 

NOTE
The software interrupt redirection bit map does not affect hardware 
generated interrupts and exceptions. Hardware generated interrupts 
and exceptions are always handled by the protected-mode interrupt 
and exception handlers.
Vol. 3B 20-25



8086 EMULATION
Table 20-2.  Software Interrupt Handling Methods While in Virtual-8086 Mode

Method VME IOPL

Bit in 
Redir. 

Bitmap* Processor Action

1 0 3 X Interrupt directed to a protected-mode interrupt handler:

• Switches to privilege-level 0 stack
• Pushes GS, FS, DS and ES onto privilege-level 0 stack
• Pushes SS, ESP, EFLAGS, CS and EIP of interrupted task onto 

privilege-level 0 stack
• Clears VM, RF, NT, and TF flags
• If serviced through interrupt gate, clears IF flag
• Clears GS, FS, DS and ES to 0
• Sets CS and EIP from interrupt gate

2 0  < 3 X Interrupt directed to protected-mode general-protection 
exception (#GP) handler.

3 1 < 3 1 Interrupt directed to a protected-mode general-protection 
exception (#GP) handler; VIF and VIP flag support for handling 
class 2 maskable hardware interrupts.

4 1 3 1 Interrupt directed to protected-mode interrupt handler: (see 
method 1 processor action).

5 1 3 0 Interrupt redirected to 8086 program interrupt handler:

• Pushes EFLAGS 
• Pushes CS and EIP (lower 16 bits only)
• Clears IF flag
• Clears TF flag
• Loads CS and EIP (lower 16 bits only) from selected entry in 

the interrupt vector table of the current virtual-8086 task

6 1 < 3 0 Interrupt redirected to 8086 program interrupt handler; VIF and 
VIP flag support for handling class 2 maskable hardware 
interrupts:

• Pushes EFLAGS with IOPL set to 3 and VIF copied to IF
• Pushes CS and EIP (lower 16 bits only)
• Clears the VIF flag
• Clears TF flag
• Loads CS and EIP (lower 16 bits only) from selected entry in 

the interrupt vector table of the current virtual-8086 task

NOTE:
* When set to 0, software interrupt is redirected back to the 8086 program interrupt handler; 

when set to 1, interrupt is directed to protected-mode handler.
20-26 Vol. 3B



8086 EMULATION
Redirecting software interrupts back to the 8086 program potentially speeds up 
interrupt handling because a switch back and forth between virtual-8086 mode and 
protected mode is not required. This latter interrupt-handling technique is particu-
larly useful for 8086 operating systems (such as MS-DOS) that use the INT n instruc-
tion to call operating system procedures.

The CPUID instruction can be used to verify that the virtual mode extension is imple-
mented on the processor. Bit 1 of the feature flags register (EDX) indicates the avail-
ability of the virtual mode extension (see “CPUID—CPU Identification” in Chapter 3, 
“Instruction Set Reference, A-L”, of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A).

The following sections describe the six methods (or mechanisms) for handling soft-
ware interrupts in virtual-8086 mode. See Section 20.3.2, “Class 2—Maskable Hard-
ware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt 
Mechanism”, for a description of the use of the VIF and VIP flags in the EFLAGS 
register for handling maskable hardware interrupts.

20.3.3.1  Method 1: Software Interrupt Handling
When the VME flag in control register CR4 is clear and the IOPL field is 3, a Pentium 
or later IA-32 processor handles software interrupts in the same manner as they are 
handled by an Intel386 or Intel486 processor. It executes an implicit call to the inter-

Figure 20-5.  Software Interrupt Redirection Bit Map in TSS

I/O Map Base

Task-State Segment (TSS)

64H

31 24 23 0

1 1111111

I/O Permission Bit Map

0

I/O map 
base must 
not exceed 
DFFFH.

Last byte of 
bit

map must be

Software Interrupt Redirection Bit Map (32 Bytes)
Vol. 3B 20-27



8086 EMULATION
rupt handler in the protected-mode IDT pointed to by the interrupt vector. See 
Section 20.3.1, “Class 1—Hardware Interrupt and Exception Handling in Virtual-8086 
Mode”, for a complete description of this mechanism and its possible uses.

20.3.3.2  Methods 2 and 3: Software Interrupt Handling
When a software interrupt occurs in virtual-8086 mode and the method 2 or 3 condi-
tions are present, the processor generates a general-protection exception (#GP). 
Method 2 is enabled when the VME flag is set to 0 and the IOPL value is less than 3. 
Here the IOPL value is used to bypass the protected-mode interrupt handlers and 
cause any software interrupt that occurs in virtual-8086 mode to be treated as a 
protected-mode general-protection exception (#GP). The general-protection excep-
tion handler calls the virtual-8086 monitor, which can then emulate an 8086-
program interrupt handler or pass control back to the 8086 program’s handler, as 
described in Section 20.3.1.2, “Handling an Interrupt or Exception With an 8086 
Program Interrupt or Exception Handler”.

Method 3 is enabled when the VME flag is set to 1, the IOPL value is less than 3, and 
the corresponding bit for the software interrupt in the software interrupt redirection 
bit map is set to 1. Here, the processor performs the same operation as it does for 
method 2 software interrupt handling. If the corresponding bit for the software inter-
rupt in the software interrupt redirection bit map is set to 0, the interrupt is handled 
using method 6 (see Section 20.3.3.5, “Method 6: Software Interrupt Handling”).

20.3.3.3  Method 4: Software Interrupt Handling
Method 4 handling is enabled when the VME flag is set to 1, the IOPL value is 3, and 
the bit for the interrupt vector in the redirection bit map is set to 1. Method 4 soft-
ware interrupt handling allows method 1 style handling when the virtual mode exten-
sion is enabled; that is, the interrupt is directed to a protected-mode handler (see 
Section 20.3.3.1, “Method 1: Software Interrupt Handling”).

20.3.3.4  Method 5: Software Interrupt Handling
Method 5 software interrupt handling provides a streamlined method of redirecting 
software interrupts (invoked with the INT n instruction) that occur in virtual 8086 
mode back to the 8086 program’s interrupt vector table and its interrupt handlers. 
Method 5 handling is enabled when the VME flag is set to 1, the IOPL value is 3, and 
the bit for the interrupt vector in the redirection bit map is set to 0. The processor 
performs the following actions to make an implicit call to the selected 8086 program 
interrupt handler:

1. Pushes the low-order 16 bits of the EFLAGS register onto the stack.

2. Pushes the current values of the CS and EIP registers onto the current stack. 
(Only the 16 least-significant bits of the EIP register are pushed and no stack 
switch occurs.)
20-28 Vol. 3B



8086 EMULATION
3. Clears the IF flag in the EFLAGS register to disable interrupts.

4. Clears the TF flag, in the EFLAGS register.

5. Locates the 8086 program interrupt vector table at linear address 0 for the 8086-
mode task.

6. Loads the CS and EIP registers with values from the interrupt vector table entry 
pointed to by the interrupt vector number. Only the 16 low-order bits of the EIP 
are loaded and the 16 high-order bits are set to 0. The interrupt vector table is 
assumed to be at linear address 0 of the current virtual-8086 task.

7. Begins executing the selected interrupt handler.

An IRET instruction at the end of the handler procedure reverses these steps to 
return program control to the interrupted 8086 program.

Note that with method 5 handling, a mode switch from virtual-8086 mode to 
protected mode does not occur. The processor remains in virtual-8086 mode 
throughout the interrupt-handling operation.

The method 5 handling actions are virtually identical to the actions the processor 
takes when handling software interrupts in real-address mode. The benefit of using 
method 5 handling to access the 8086 program handlers is that it avoids the over-
head of methods 2 and 3 handling, which requires first going to the virtual-8086 
monitor, then to the 8086 program handler, then back again to the virtual-8086 
monitor, before returning to the interrupted 8086 program (see Section 20.3.1.2, 
“Handling an Interrupt or Exception With an 8086 Program Interrupt or Exception 
Handler”). 

NOTE
Methods 1 and 4 handling can handle a software interrupt in a virtual-
8086 task with a regular protected-mode handler, but this approach 
requires all virtual-8086 tasks to use the same software interrupt 
handlers, which generally does not give sufficient latitude to the 
programs running in the virtual-8086 tasks, particularly MS-DOS 
programs.

20.3.3.5  Method 6: Software Interrupt Handling
Method 6 handling is enabled when the VME flag is set to 1, the IOPL value is less 
than 3, and the bit for the interrupt or exception vector in the redirection bit map is 
set to 0. With method 6 interrupt handling, software interrupts are handled in the 
same manner as was described for method 5 handling (see Section 20.3.3.4, 
“Method 5: Software Interrupt Handling”).

Method 6 differs from method 5 in that with the IOPL value set to less than 3, the VIF 
and VIP flags in the EFLAGS register are enabled, providing virtual interrupt support 
for handling class 2 maskable hardware interrupts (see Section 20.3.2, “Class 
2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual 
Interrupt Mechanism”). These flags provide the virtual-8086 monitor with an effi-
Vol. 3B 20-29



8086 EMULATION
cient means of handling maskable hardware interrupts that occur during a virtual-
8086 mode task. Also, because the IOPL value is less than 3 and the VIF flag is 
enabled, the information pushed on the stack by the processor when invoking the 
interrupt handler is slightly different between methods 5 and 6 (see Table 20-2).

20.4 PROTECTED-MODE VIRTUAL INTERRUPTS
The IA-32 processors (beginning with the Pentium processor) also support the VIF 
and VIP flags in the EFLAGS register in protected mode by setting the PVI (protected-
mode virtual interrupt) flag in the CR4 register. Setting the PVI flag allows applica-
tions running at privilege level 3 to execute the CLI and STI instructions without 
causing a general-protection exception (#GP) or affecting hardware interrupts. 

When the PVI flag is set to 1, the CPL is 3, and the IOPL is less than 3, the STI and 
CLI instructions set and clear the VIF flag in the EFLAGS register, leaving IF unaf-
fected. In this mode of operation, an application running in protected mode and at a 
CPL of 3 can inhibit interrupts in the same manner as is described in Section 20.3.2, 
“Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the 
Virtual Interrupt Mechanism”, for a virtual-8086 mode task. When the application 
executes the CLI instruction, the processor clears the VIF flag. If the processor 
receives a maskable hardware interrupt, the processor invokes the protected-mode 
interrupt handler. This handler checks the state of the VIF flag in the EFLAGS register. 
If the VIF flag is clear (indicating that the active task does not want to have interrupts 
handled now), the handler sets the VIP flag in the EFLAGS image on the stack and 
returns to the privilege-level 3 application, which continues program execution. 
When the application executes a STI instruction to set the VIF flag, the processor 
automatically invokes the general-protection exception handler, which can then 
handle the pending interrupt. After handing the pending interrupt, the handler typi-
cally sets the VIF flag and clears the VIP flag in the EFLAGS image on the stack and 
executes a return to the application program. The next time the processor receives a 
maskable hardware interrupt, the processor will handle it in the normal manner for 
interrupts received while the processor is operating at a CPL of 3.

As with the virtual mode extension (enabled with the VME flag in the CR4 register), 
the protected-mode virtual interrupt extension only affects maskable hardware 
interrupts (interrupt vectors 32 through 255). NMI interrupts and exceptions are 
handled in the normal manner.

When protected-mode virtual interrupts are disabled (that is, when the PVI flag in 
control register CR4 is set to 0, the CPL is less than 3, or the IOPL value is 3), then 
the CLI and STI instructions execute in a manner compatible with the Intel486 
processor. That is, if the CPL is greater (less privileged) than the I/O privilege level 
(IOPL), a general-protection exception occurs. If the IOPL value is 3, CLI and STI 
clear or set the IF flag, respectively.

PUSHF, POPF, IRET and INT are executed like in the Intel486 processor, regardless of 
whether protected-mode virtual interrupts are enabled.
20-30 Vol. 3B



8086 EMULATION
It is only possible to enter virtual-8086 mode through a task switch or the execution 
of an IRET instruction, and it is only possible to leave virtual-8086 mode by faulting 
to a protected-mode interrupt handler (typically the general-protection exception 
handler, which in turn calls the virtual 8086-mode monitor). In both cases, the 
EFLAGS register is saved and restored. This is not true, however, in protected mode 
when the PVI flag is set and the processor is not in virtual-8086 mode. Here, it is 
possible to call a procedure at a different privilege level, in which case the EFLAGS 
register is not saved or modified. However, the states of VIF and VIP flags are never 
examined by the processor when the CPL is not 3.
Vol. 3B 20-31



8086 EMULATION
20-32 Vol. 3B



CHAPTER 21
MIXING 16-BIT AND 32-BIT CODE

Program modules written to run on IA-32 processors can be either 16-bit modules or 
32-bit modules. Table 21-1 shows the characteristic of 16-bit and 32-bit modules.

The IA-32 processors function most efficiently when executing 32-bit program 
modules. They can, however, also execute 16-bit program modules, in any of the 
following ways:
• In real-address mode.
• In virtual-8086 mode.
• System management mode (SMM).
• As a protected-mode task, when the code, data, and stack segments for the task 

are all configured as a 16-bit segments.
• By integrating 16-bit and 32-bit segments into a single protected-mode task.
• By integrating 16-bit operations into 32-bit code segments.

Real-address mode, virtual-8086 mode, and SMM are native 16-bit modes. A legacy 
program assembled and/or compiled to run on an Intel 8086 or Intel 286 processor 
should run in real-address mode or virtual-8086 mode without modification. Sixteen-
bit program modules can also be written to run in real-address mode for handling 
system initialization or to run in SMM for handling system management functions. 
See Chapter 20, “8086 Emulation,” for detailed information on real-address mode 
and virtual-8086 mode; see Chapter 29, “System Management Mode,” for informa-
tion on SMM.

This chapter describes how to integrate 16-bit program modules with 32-bit program 
modules when operating in protected mode and how to mix 16-bit and 32-bit code 
within 32-bit code segments.

Table 21-1.  Characteristics of 16-Bit and 32-Bit Program Modules

Characteristic 16-Bit Program Modules 32-Bit Program Modules

Segment Size 0 to 64 KBytes 0 to 4 GBytes

Operand Sizes 8 bits and 16 bits 8 bits and 32 bits

Pointer Offset Size (Address 
Size)

16 bits 32 bits

Stack Pointer Size 16 Bits 32 Bits

Control Transfers Allowed to 
Code Segments of This Size

16 Bits 32 Bits
Vol. 3B 21-1



MIXING 16-BIT AND 32-BIT CODE
21.1 DEFINING 16-BIT AND 32-BIT PROGRAM MODULES
The following IA-32 architecture mechanisms are used to distinguish between and 
support 16-bit and 32-bit segments and operations:
• The D (default operand and address size) flag in code-segment descriptors.
• The B (default stack size) flag in stack-segment descriptors.
• 16-bit and 32-bit call gates, interrupt gates, and trap gates.
• Operand-size and address-size instruction prefixes.
• 16-bit and 32-bit general-purpose registers.

The D flag in a code-segment descriptor determines the default operand-size and 
address-size for the instructions of a code segment. (In real-address mode and 
virtual-8086 mode, which do not use segment descriptors, the default is 16 bits.) A 
code segment with its D flag set is a 32-bit segment; a code segment with its D flag 
clear is a 16-bit segment.

The B flag in the stack-segment descriptor specifies the size of stack pointer (the 
32-bit ESP register or the 16-bit SP register) used by the processor for implicit stack 
references. The B flag for all data descriptors also controls upper address range for 
expand down segments.

When transferring program control to another code segment through a call gate, 
interrupt gate, or trap gate, the operand size used during the transfer is determined 
by the type of gate used (16-bit or 32-bit), (not by the D-flag or prefix of the transfer 
instruction). The gate type determines how return information is saved on the stack 
(or stacks).

For most efficient and trouble-free operation of the processor, 32-bit programs or 
tasks should have the D flag in the code-segment descriptor and the B flag in the 
stack-segment descriptor set, and 16-bit programs or tasks should have these flags 
clear. Program control transfers from 16-bit segments to 32-bit segments (and vice 
versa) are handled most efficiently through call, interrupt, or trap gates.

Instruction prefixes can be used to override the default operand size and address size 
of a code segment. These prefixes can be used in real-address mode as well as in 
protected mode and virtual-8086 mode. An operand-size or address-size prefix only 
changes the size for the duration of the instruction.

21.2 MIXING 16-BIT AND 32-BIT OPERATIONS WITHIN A 
CODE SEGMENT

The following two instruction prefixes allow mixing of 32-bit and 16-bit operations 
within one segment:
• The operand-size prefix (66H)
• The address-size prefix (67H)
21-2 Vol. 3B



MIXING 16-BIT AND 32-BIT CODE
These prefixes reverse the default size selected by the D flag in the code-segment 
descriptor. For example, the processor can interpret the (MOV mem, reg) instruction 
in any of four ways:
• In a 32-bit code segment:

— Moves 32 bits from a 32-bit register to memory using a 32-bit effective 
address.

— If preceded by an operand-size prefix, moves 16 bits from a 16-bit register to 
memory using a 32-bit effective address.

— If preceded by an address-size prefix, moves 32 bits from a 32-bit register to 
memory using a 16-bit effective address.

— If preceded by both an address-size prefix and an operand-size prefix, moves 
16 bits from a 16-bit register to memory using a 16-bit effective address.

• In a 16-bit code segment:

— Moves 16 bits from a 16-bit register to memory using a 16-bit effective 
address.

— If preceded by an operand-size prefix, moves 32 bits from a 32-bit register to 
memory using a 16-bit effective address.

— If preceded by an address-size prefix, moves 16 bits from a 16-bit register to 
memory using a 32-bit effective address.

— If preceded by both an address-size prefix and an operand-size prefix, moves 
32 bits from a 32-bit register to memory using a 32-bit effective address.

The previous examples show that any instruction can generate any combination of 
operand size and address size regardless of whether the instruction is in a 16- or 
32-bit segment. The choice of the 16- or 32-bit default for a code segment is 
normally based on the following criteria:
• Performance — Always use 32-bit code segments when possible. They run 

much faster than 16-bit code segments on P6 family processors, and somewhat 
faster on earlier IA-32 processors.

• The operating system the code segment will be running on — If the 
operating system is a 16-bit operating system, it may not support 32-bit program 
modules.

• Mode of operation — If the code segment is being designed to run in real-
address mode, virtual-8086 mode, or SMM, it must be a 16-bit code segment.

• Backward compatibility to earlier IA-32 processors — If a code segment 
must be able to run on an Intel 8086 or Intel 286 processor, it must be a 16-bit 
code segment.
Vol. 3B 21-3



MIXING 16-BIT AND 32-BIT CODE
21.3 SHARING DATA AMONG MIXED-SIZE CODE 
SEGMENTS

Data segments can be accessed from both 16-bit and 32-bit code segments. When a 
data segment that is larger than 64 KBytes is to be shared among 16- and 32-bit 
code segments, the data that is to be accessed from the 16-bit code segments must 
be located within the first 64 KBytes of the data segment. The reason for this is that 
16-bit pointers by definition can only point to the first 64 KBytes of a segment. 

A stack that spans less than 64 KBytes can be shared by both 16- and 32-bit code 
segments. This class of stacks includes:
• Stacks in expand-up segments with the G (granularity) and B (big) flags in the 

stack-segment descriptor clear.
• Stacks in expand-down segments with the G and B flags clear.
• Stacks in expand-up segments with the G flag set and the B flag clear and where 

the stack is contained completely within the lower 64 KBytes. (Offsets greater 
than FFFFH can be used for data, other than the stack, which is not shared.)

See Section 3.4.5, “Segment Descriptors,” for a description of the G and B flags and 
the expand-down stack type.

The B flag cannot, in general, be used to change the size of stack used by a 16-bit 
code segment. This flag controls the size of the stack pointer only for implicit stack 
references such as those caused by interrupts, exceptions, and the PUSH, POP, CALL, 
and RET instructions. It does not control explicit stack references, such as accesses 
to parameters or local variables. A 16-bit code segment can use a 32-bit stack only if 
the code is modified so that all explicit references to the stack are preceded by the 
32-bit address-size prefix, causing those references to use 32-bit addressing and 
explicit writes to the stack pointer are preceded by a 32-bit operand-size prefix.

In 32-bit, expand-down segments, all offsets may be greater than 64 KBytes; there-
fore, 16-bit code cannot use this kind of stack segment unless the code segment is 
modified to use 32-bit addressing.

21.4 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE 
SEGMENTS

There are three ways for a procedure in a 16-bit code segment to safely make a call 
to a 32-bit code segment:
• Make the call through a 32-bit call gate.
• Make a 16-bit call to a 32-bit interface procedure. The interface procedure then 

makes a 32-bit call to the intended destination.
• Modify the 16-bit procedure, inserting an operand-size prefix before the call, to 

change it to a 32-bit call.
21-4 Vol. 3B



MIXING 16-BIT AND 32-BIT CODE
Likewise, there are three ways for procedure in a 32-bit code segment to safely make 
a call to a 16-bit code segment:
• Make the call through a 16-bit call gate. Here, the EIP value at the CALL 

instruction cannot exceed FFFFH.
• Make a 32-bit call to a 16-bit interface procedure. The interface procedure then 

makes a 16-bit call to the intended destination.
• Modify the 32-bit procedure, inserting an operand-size prefix before the call, 

changing it to a 16-bit call. Be certain that the return offset does not exceed 
FFFFH.

These methods of transferring program control overcome the following architectural 
limitations imposed on calls between 16-bit and 32-bit code segments:
• Pointers from 16-bit code segments (which by default can only be 16 bits) cannot 

be used to address data or code located beyond FFFFH in a 32-bit segment.
• The operand-size attributes for a CALL and its companion RETURN instruction 

must be the same to maintain stack coherency. This is also true for implicit calls 
to interrupt and exception handlers and their companion IRET instructions.

• A 32-bit parameters (particularly a pointer parameter) greater than FFFFH 
cannot be squeezed into a 16-bit parameter location on a stack.

• The size of the stack pointer (SP or ESP) changes when switching between 16-bit 
and 32-bit code segments.

These limitations are discussed in greater detail in the following sections.

21.4.1 Code-Segment Pointer Size
For control-transfer instructions that use a pointer to identify the next instruction 
(that is, those that do not use gates), the operand-size attribute determines the size 
of the offset portion of the pointer. The implications of this rule are as follows:
• A JMP, CALL, or RET instruction from a 32-bit segment to a 16-bit segment is 

always possible using a 32-bit operand size, providing the 32-bit pointer does not 
exceed FFFFH.

• A JMP, CALL, or RET instruction from a 16-bit segment to a 32-bit segment 
cannot address a destination greater than FFFFH, unless the instruction is given 
an operand-size prefix.

See Section 21.4.5, “Writing Interface Procedures,” for an interface procedure that 
can transfer program control from 16-bit segments to destinations in 32-bit 
segments beyond FFFFH.

21.4.2 Stack Management for Control Transfer
Because the stack is managed differently for 16-bit procedure calls than for 32-bit 
calls, the operand-size attribute of the RET instruction must match that of the CALL 
Vol. 3B 21-5



MIXING 16-BIT AND 32-BIT CODE
instruction (see Figure 21-1). On a 16-bit call, the processor pushes the contents of 
the 16-bit IP register and (for calls between privilege levels) the 16-bit SP register. 
The matching RET instruction must also use a 16-bit operand size to pop these 16-bit 
values from the stack into the 16-bit registers. 

A 32-bit CALL instruction pushes the contents of the 32-bit EIP register and (for 
inter-privilege-level calls) the 32-bit ESP register. Here, the matching RET instruction 
must use a 32-bit operand size to pop these 32-bit values from the stack into the 
32-bit registers. If the two parts of a CALL/RET instruction pair do not have matching 
operand sizes, the stack will not be managed correctly and the values of the instruc-
tion pointer and stack pointer will not be restored to correct values. 

Figure 21-1.  Stack after Far 16- and 32-Bit Calls

SP

After 16-bit Call

PARM 1

IP SP

SS

PARM 2

CS

031

SS

EIP

After 32-bit Call

CS

ESP

ESP

PARM 2

PARM 1

031

With Privilege Transition

Stack
Growth

After 16-bit Call

PARM 1

IP SP

PARM 2

CS

031

Without Privilege Transition

Stack
Growth

After 32-bit Call

PARM 1

ESP

PARM 2

CS

031

EIP

Undefined
21-6 Vol. 3B



MIXING 16-BIT AND 32-BIT CODE
While executing 32-bit code, if a call is made to a 16-bit code segment which is at the 
same or a more privileged level (that is, the DPL of the called code segment is less 
than or equal to the CPL of the calling code segment) through a 16-bit call gate, then 
the upper 16-bits of the ESP register may be unreliable upon returning to the 32-bit 
code segment (that is, after executing a RET in the 16-bit code segment).

When the CALL instruction and its matching RET instruction are in code segments 
that have D flags with the same values (that is, both are 32-bit code segments or 
both are 16-bit code segments), the default settings may be used. When the CALL 
instruction and its matching RET instruction are in segments which have different 
D-flag settings, an operand-size prefix must be used.

21.4.2.1  Controlling the Operand-Size Attribute For a Call
Three things can determine the operand-size of a call:
• The D flag in the segment descriptor for the calling code segment.
• An operand-size instruction prefix.
• The type of call gate (16-bit or 32-bit), if a call is made through a call gate.

When a call is made with a pointer (rather than a call gate), the D flag for the calling 
code segment determines the operand-size for the CALL instruction. This operand-
size attribute can be overridden by prepending an operand-size prefix to the CALL 
instruction. So, for example, if the D flag for a code segment is set for 16 bits and the 
operand-size prefix is used with a CALL instruction, the processor will cause the infor-
mation stored on the stack to be stored in 32-bit format. If the call is to a 32-bit code 
segment, the instructions in that code segment will be able to read the stack coher-
ently. Also, a RET instruction from the 32-bit code segment without an operand-size 
prefix will maintain stack coherency with the 16-bit code segment being returned to.

When a CALL instruction references a call-gate descriptor, the type of call is deter-
mined by the type of call gate (16-bit or 32-bit). The offset to the destination in the 
code segment being called is taken from the gate descriptor; therefore, if a 32-bit call 
gate is used, a procedure in a 16-bit code segment can call a procedure located more 
than 64 KBytes from the base of a 32-bit code segment, because a 32-bit call gate 
uses a 32-bit offset.

Note that regardless of the operand size of the call and how it is determined, the size 
of the stack pointer used (SP or ESP) is always controlled by the B flag in the stack-
segment descriptor currently in use (that is, when B is clear, SP is used, and when B 
is set, ESP is used).

An unmodified 16-bit code segment that has run successfully on an 8086 processor 
or in real-mode on a later IA-32 architecture processor will have its D flag clear and 
will not use operand-size override prefixes. As a result, all CALL instructions in this 
code segment will use the 16-bit operand-size attribute. Procedures in these code 
Vol. 3B 21-7



MIXING 16-BIT AND 32-BIT CODE
segments can be modified to safely call procedures to 32-bit code segments in either 
of two ways:
• Relink the CALL instruction to point to 32-bit call gates (see Section 21.4.2.2, 

“Passing Parameters With a Gate”).
• Add a 32-bit operand-size prefix to each CALL instruction.

21.4.2.2  Passing Parameters With a Gate
When referencing 32-bit gates with 16-bit procedures, it is important to consider the 
number of parameters passed in each procedure call. The count field of the gate 
descriptor specifies the size of the parameter string to copy from the current stack to 
the stack of a more privileged (numerically lower privilege level) procedure. The 
count field of a 16-bit gate specifies the number of 16-bit words to be copied, 
whereas the count field of a 32-bit gate specifies the number of 32-bit doublewords 
to be copied. The count field for a 32-bit gate must thus be half the size of the 
number of words being placed on the stack by a 16-bit procedure. Also, the 16-bit 
procedure must use an even number of words as parameters.

21.4.3 Interrupt Control Transfers
A program-control transfer caused by an exception or interrupt is always carried out 
through an interrupt or trap gate (located in the IDT). Here, the type of the gate 
(16-bit or 32-bit) determines the operand-size attribute used in the implicit call to 
the exception or interrupt handler procedure in another code segment.

A 32-bit interrupt or trap gate provides a safe interface to a 32-bit exception or inter-
rupt handler when the exception or interrupt occurs in either a 32-bit or a 16-bit code 
segment. It is sometimes impractical, however, to place exception or interrupt 
handlers in 16-bit code segments, because only 16-bit return addresses are saved on 
the stack. If an exception or interrupt occurs in a 32-bit code segment when the EIP 
was greater than FFFFH, the 16-bit handler procedure cannot provide the correct 
return address.

21.4.4 Parameter Translation
When segment offsets or pointers (which contain segment offsets) are passed as 
parameters between 16-bit and 32-bit procedures, some translation is required. If a 
32-bit procedure passes a pointer to data located beyond 64 KBytes to a 16-bit 
procedure, the 16-bit procedure cannot use it. Except for this limitation, interface 
code can perform any format conversion between 32-bit and 16-bit pointers that 
may be needed.

Parameters passed by value between 32-bit and 16-bit code also may require trans-
lation between 32-bit and 16-bit formats. The form of the translation is application-
dependent.
21-8 Vol. 3B



MIXING 16-BIT AND 32-BIT CODE
21.4.5 Writing Interface Procedures
Placing interface code between 32-bit and 16-bit procedures can be the solution to 
the following interface problems:
• Allowing procedures in 16-bit code segments to call procedures with offsets 

greater than FFFFH in 32-bit code segments.
• Matching operand-size attributes between companion CALL and RET instructions.
• Translating parameters (data), including managing parameter strings with a 

variable count or an odd number of 16-bit words.
• The possible invalidation of the upper bits of the ESP register.

The interface procedure is simplified where these rules are followed.

1. The interface procedure must reside in a 32-bit code segment (the D flag for the 
code-segment descriptor is set).

2. All procedures that may be called by 16-bit procedures must have offsets not 
greater than FFFFH.

3. All return addresses saved by 16-bit procedures must have offsets not greater 
than FFFFH.

The interface procedure becomes more complex if any of these rules are violated. For 
example, if a 16-bit procedure calls a 32-bit procedure with an entry point beyond 
FFFFH, the interface procedure will need to provide the offset to the entry point. The 
mapping between 16- and 32-bit addresses is only performed automatically when a 
call gate is used, because the gate descriptor for a call gate contains a 32-bit 
address. When a call gate is not used, the interface code must provide the 32-bit 
address.

The structure of the interface procedure depends on the types of calls it is going to 
support, as follows:
• Calls from 16-bit procedures to 32-bit procedures — Calls to the interface 

procedure from a 16-bit code segment are made with 16-bit CALL instructions 
(by default, because the D flag for the calling code-segment descriptor is clear), 
and 16-bit operand-size prefixes are used with RET instructions to return from 
the interface procedure to the calling procedure. Calls from the interface 
procedure to 32-bit procedures are performed with 32-bit CALL instructions (by 
default, because the D flag for the interface procedure’s code segment is set), 
and returns from the called procedures to the interface procedure are performed 
with 32-bit RET instructions (also by default).

• Calls from 32-bit procedures to 16-bit procedures — Calls to the interface 
procedure from a 32-bit code segment are made with 32-bit CALL instructions 
(by default), and returns to the calling procedure from the interface procedure 
are made with 32-bit RET instructions (also by default). Calls from the interface 
procedure to 16-bit procedures require the CALL instructions to have the 
operand-size prefixes, and returns from the called procedures to the interface 
procedure are performed with 16-bit RET instructions (by default).
Vol. 3B 21-9



MIXING 16-BIT AND 32-BIT CODE
21-10 Vol. 3B



CHAPTER 22
ARCHITECTURE COMPATIBILITY

Intel 64 and IA-32 processors are binary compatible. Compatibility means that, 
within limited constraints, programs that execute on previous generations of proces-
sors will produce identical results when executed on later processors. The compati-
bility constraints and any implementation differences between the Intel 64 and IA-32 
processors are described in this chapter.

Each new processor has enhanced the software visible architecture from that found 
in earlier Intel 64 and IA-32 processors. Those enhancements have been defined 
with consideration for compatibility with previous and future processors. This chapter 
also summarizes the compatibility considerations for those extensions.

22.1 PROCESSOR FAMILIES AND CATEGORIES
IA-32 processors are referred to in several different ways in this chapter, depending 
on the type of compatibility information being related, as described in the following:
• IA-32 Processors — All the Intel processors based on the Intel IA-32 Archi-

tecture, which include the 8086/88, Intel 286, Intel386, Intel486, Pentium, 
Pentium Pro, Pentium II, Pentium III, Pentium 4, and Intel Xeon processors.

• 32-bit Processors — All the IA-32 processors that use a 32-bit architecture, 
which include the Intel386, Intel486, Pentium, Pentium Pro, Pentium II, 
Pentium III, Pentium 4, and Intel Xeon processors.

• 16-bit Processors — All the IA-32 processors that use a 16-bit architecture, 
which include the 8086/88 and Intel 286 processors.

• P6 Family Processors — All the IA-32 processors that are based on the P6 
microarchitecture, which include the Pentium Pro, Pentium II, and Pentium III 
processors.

• Pentium® 4 Processors — A family of IA-32 and Intel 64 processors that are 
based on the Intel NetBurst® microarchitecture.

• Intel® Pentium® M Processors — A family of IA-32 processors that are based 
on the Intel Pentium M processor microarchitecture.

• Intel® Core™ Duo and Solo Processors — Families of IA-32 processors that 
are based on an improved Intel Pentium M processor microarchitecture.

• Intel® Xeon® Processors — A family of IA-32 and Intel 64 processors that are 
based on the Intel NetBurst microarchitecture. This family includes the Intel Xeon 
processor and the Intel Xeon processor MP based on the Intel NetBurst microar-
chitecture. Intel Xeon processors 3000, 3100, 3200, 3300, 3200, 5100, 5200, 
5300, 5400, 7200, 7300 series are based on Intel Core microarchitectures and 
support Intel 64 architecture.
Vol. 3B 22-1



ARCHITECTURE COMPATIBILITY
• Pentium® D Processors — A family of dual-core Intel 64 processors that 
provides two processor cores in a physical package. Each core is based on the 
Intel NetBurst microarchitecture.

• Pentium® Processor Extreme Editions — A family of dual-core Intel 64 
processors that provides two processor cores in a physical package. Each core is 
based on the Intel NetBurst microarchitecture and supports Intel Hyper-
Threading Technology.

• Intel® Core™ 2 Processor family— A family of Intel 64 processors that are 
based on the Intel Core microarchitecture. Intel Pentium Dual-Core processors 
are also based on the Intel Core microarchitecture.

• Intel® Atom™ Processors — A family of IA-32 and Intel 64 processors that are 
based on the Intel Atom microarchitecture. 

22.2 RESERVED BITS
Throughout this manual, certain bits are marked as reserved in many register and 
memory layout descriptions. When bits are marked as undefined or reserved, it is 
essential for compatibility with future processors that software treat these bits as 
having a future, though unknown effect. Software should follow these guidelines in 
dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of 

registers or memory locations that contain such bits. Mask out the reserved bits 
before testing.

• Do not depend on the states of any reserved bits when storing them to memory 
or to a register.

• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated 

in the documentation, if any, or reload them with values previously read from the 
same register.

Software written for existing IA-32 processor that handles reserved bits correctly will 
port to future IA-32 processors without generating protection exceptions.

22.3 ENABLING NEW FUNCTIONS AND MODES
Most of the new control functions defined for the P6 family and Pentium processors 
are enabled by new mode flags in the control registers (primarily register CR4). This 
register is undefined for IA-32 processors earlier than the Pentium processor. 
Attempting to access this register with an Intel486 or earlier IA-32 processor results 
in an invalid-opcode exception (#UD). Consequently, programs that execute 
correctly on the Intel486 or earlier IA-32 processor cannot erroneously enable these 
functions. Attempting to set a reserved bit in register CR4 to a value other than its 
22-2 Vol. 3B



ARCHITECTURE COMPATIBILITY
original value results in a general-protection exception (#GP). So, programs that 
execute on the P6 family and Pentium processors cannot erroneously enable func-
tions that may be implemented in future IA-32 processors. 

The P6 family and Pentium processors do not check for attempts to set reserved bits 
in model-specific registers; however these bits may be checked on more recent 
processors. It is the obligation of the software writer to enforce this discipline. These 
reserved bits may be used in future Intel processors.

22.4 DETECTING THE PRESENCE OF NEW FEATURES 
THROUGH SOFTWARE

Software can check for the presence of new architectural features and extensions in 
either of two ways:

1. Test for the presence of the feature or extension. Software can test for the 
presence of new flags in the EFLAGS register and control registers. If these flags 
are reserved (meaning not present in the processor executing the test), an 
exception is generated. Likewise, software can attempt to execute a new 
instruction, which results in an invalid-opcode exception (#UD) being generated 
if it is not supported.

2. Execute the CPUID instruction. The CPUID instruction (added to the IA-32 in the 
Pentium processor) indicates the presence of new features directly.

See Chapter 14, “Processor Identification and Feature Determination,” in the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for detailed 
information on detecting new processor features and extensions.

22.5 INTEL MMX TECHNOLOGY
The Pentium processor with MMX technology introduced the MMX technology and a 
set of MMX instructions to the IA-32. The MMX instructions are described in Chapter 
9, “Programming with Intel® MMX™ Technology,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, and in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volumes 2A, 2B & 2C. The MMX tech-
nology and MMX instructions are also included in the Pentium II, Pentium III, Pentium 
4, and Intel Xeon processors.

22.6 STREAMING SIMD EXTENSIONS (SSE)
The Streaming SIMD Extensions (SSE) were introduced in the Pentium III processor. 
The SSE extensions consist of a new set of instructions and a new set of registers. 
The new registers include the eight 128-bit XMM registers and the 32-bit MXCSR 
Vol. 3B 22-3



ARCHITECTURE COMPATIBILITY
control and status register. These instructions and registers are designed to allow 
SIMD computations to be made on single-precision floating-point numbers. Several 
of these new instructions also operate in the MMX registers. SSE instructions and 
registers are described in Section 10, “Programming with Streaming SIMD Exten-
sions (SSE),” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1, and in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volumes 2A, 2B & 2C. 

22.7 STREAMING SIMD EXTENSIONS 2 (SSE2)
The Streaming SIMD Extensions 2 (SSE2) were introduced in the Pentium 4 and Intel 
Xeon processors. They consist of a new set of instructions that operate on the XMM 
and MXCSR registers and perform SIMD operations on double-precision floating-
point values and on integer values. Several of these new instructions also operate in 
the MMX registers. SSE2 instructions and registers are described in Chapter 11, 
“Programming with Streaming SIMD Extensions 2 (SSE2),” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1, and in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B & 2C.

22.8 STREAMING SIMD EXTENSIONS 3 (SSE3)
The Streaming SIMD Extensions 3 (SSE3) were introduced in Pentium 4 processors 
supporting Intel Hyper-Threading Technology and Intel Xeon processors. SSE3 
extensions include 13 instructions. Ten of these 13 instructions support the single 
instruction multiple data (SIMD) execution model used with SSE/SSE2 extensions. 
One SSE3 instruction accelerates x87 style programming for conversion to integer. 
The remaining two instructions (MONITOR and MWAIT) accelerate synchronization 
of threads. SSE3 instructions are described in Chapter 12, “Programming with SSE3, 
SSSE3 and SSE4,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, and in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volumes 2A, 2B & 2C.

22.9 ADDITIONAL STREAMING SIMD EXTENSIONS
The Supplemental Streaming SIMD Extensions 3 (SSSE3) were introduced in the 
Intel Core 2 processor and Intel Xeon processor 5100 series. Streaming SIMD Exten-
sions 4 provided 54 new instructions introduced in 45nm Intel Xeon processors and 
Intel Core 2 processors. SSSE3, SSE4.1 and SSE4.2 instructions are described in 
Chapter 12, “Programming with SSE3, SSSE3 and SSE4,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, and in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B & 2C.
22-4 Vol. 3B



ARCHITECTURE COMPATIBILITY
22.10 INTEL HYPER-THREADING TECHNOLOGY
Intel Hyper-Threading Technology provides two logical processors that can execute 
two separate code streams (called threads) concurrently by using shared resources 
in a single processor core or in a physical package. 

This feature was introduced in the Intel Xeon processor MP and later steppings of the 
Intel Xeon processor, and Pentium 4 processors supporting Intel Hyper-Threading 
Technology. The feature is also found in the Pentium processor Extreme Edition. See 
also: Section 8.7, “Intel® Hyper-Threading Technology Architecture.”

Intel Atom processors also support Intel Hyper-Threading Technology.

22.11 MULTI-CORE TECHNOLOGY
The Pentium D processor and Pentium processor Extreme Edition provide two 
processor cores in each physical processor package. See also: Section 8.5, “Intel® 
Hyper-Threading Technology and Intel® Multi-Core Technology,” and Section 8.8, 
“Multi-Core Architecture.” Intel Core 2 Duo, Intel Pentium Dual-Core processors, 
Intel Xeon processors 3000, 3100, 5100, 5200 series provide two processor cores in 
each physical processor package. Intel Core 2 Extreme, Intel Core 2 Quad proces-
sors, Intel Xeon processors 3200, 3300, 5300, 5400, 7300 series provide two 
processor cores in each physical processor package.

22.12 SPECIFIC FEATURES OF DUAL-CORE PROCESSOR 
Dual-core processors may have some processor-specific features. Use CPUID feature 
flags to detect the availability features. Note the following:
• CPUID Brand String — On Pentium processor Extreme Edition, the process will 

report the correct brand string only after the correct microcode updates are 
loaded.

• Enhanced Intel SpeedStep Technology — This feature is supported in 
Pentium D processor but not in Pentium processor Extreme Edition. 

22.13 NEW INSTRUCTIONS IN THE PENTIUM AND LATER 
IA-32 PROCESSORS

Table 22-1 identifies the instructions introduced into the IA-32 in the Pentium 
processor and later IA-32 processors.
Vol. 3B 22-5



ARCHITECTURE COMPATIBILITY
22.13.1 Instructions Added Prior to the Pentium Processor
The following instructions were added in the Intel486 processor:
• BSWAP (byte swap) instruction.
• XADD (exchange and add) instruction.
• CMPXCHG (compare and exchange) instruction.
• ΙNVD (invalidate cache) instruction.
• WBINVD (write-back and invalidate cache) instruction.
• INVLPG (invalidate TLB entry) instruction.

The following instructions were added in the Intel386 processor:
• LSS, LFS, and LGS (load SS, FS, and GS registers).
• Long-displacement conditional jumps.

Table 22-1.  New Instruction in the Pentium Processor and 
Later IA-32 Processors

Instruction CPUID Identification Bits Introduced In

CMOVcc (conditional move) EDX, Bit 15 Pentium Pro processor

FCMOVcc (floating-point conditional 
move)

EDX, Bits 0 and 15

FCOMI (floating-point compare and set 
EFLAGS)

EDX, Bits 0 and 15

RDPMC (read performance monitoring 
counters)

EAX, Bits 8-11, set to 6H; 
see Note 1

UD2 (undefined) EAX, Bits 8-11, set to 6H

CMPXCHG8B (compare and exchange 8 
bytes)

EDX, Bit 8 Pentium processor

CPUID (CPU identification) None; see Note 2

RDTSC (read time-stamp counter) EDX, Bit 4

RDMSR (read model-specific register) EDX, Bit 5

WRMSR (write model-specific register) EDX, Bit 5

MMX Instructions EDX, Bit 23

NOTES:
1. The RDPMC instruction was introduced in the P6 family of processors and added to later model 

Pentium processors. This instruction is model specific in nature and not architectural.
2. The CPUID instruction is available in all Pentium and P6 family processors and in later models of 

the Intel486 processors. The ability to set and clear the ID flag (bit 21) in the EFLAGS register 
indicates the availability of the CPUID instruction.
22-6 Vol. 3B



ARCHITECTURE COMPATIBILITY
• Single-bit instructions.
• Bit scan instructions.
• Double-shift instructions.
• Byte set on condition instruction.
• Move with sign/zero extension.
• Generalized multiply instruction.
• MOV to and from control registers.
• MOV to and from test registers (now obsolete).
• MOV to and from debug registers.
• RSM (resume from SMM). This instruction was introduced in the Intel386 SL and 

Intel486 SL processors.

The following instructions were added in the Intel 387 math coprocessor:
• FPREM1.
• FUCOM, FUCOMP, and FUCOMPP.

22.14 OBSOLETE INSTRUCTIONS
The MOV to and from test registers instructions were removed from the Pentium 
processor and future IA-32 processors. Execution of these instructions generates an 
invalid-opcode exception (#UD).

22.15 UNDEFINED OPCODES
All new instructions defined for IA-32 processors use binary encodings that were 
reserved on earlier-generation processors. Attempting to execute a reserved opcode 
always results in an invalid-opcode (#UD) exception being generated. Consequently, 
programs that execute correctly on earlier-generation processors cannot erroneously 
execute these instructions and thereby produce unexpected results when executed 
on later IA-32 processors.

22.16 NEW FLAGS IN THE EFLAGS REGISTER
The section titled “EFLAGS Register” in Chapter 3, “Basic Execution Environment,” of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 
shows the configuration of flags in the EFLAGS register for the P6 family processors. 
No new flags have been added to this register in the P6 family processors. The flags 
added to this register in the Pentium and Intel486 processors are described in the 
following sections.
Vol. 3B 22-7



ARCHITECTURE COMPATIBILITY
The following flags were added to the EFLAGS register in the Pentium processor:
• VIF (virtual interrupt flag), bit 19.
• VIP (virtual interrupt pending), bit 20. 
• ID (identification flag), bit 21. 

The AC flag (bit 18) was added to the EFLAGS register in the Intel486 processor.

22.16.1 Using EFLAGS Flags to Distinguish Between 32-Bit IA-32 
Processors

The following bits in the EFLAGS register that can be used to differentiate between 
the 32-bit IA-32 processors:
• Bit 18 (the AC flag) can be used to distinguish an Intel386 processor from the P6 

family, Pentium, and Intel486 processors. Since it is not implemented on the 
Intel386 processor, it will always be clear.

• Bit 21 (the ID flag) indicates whether an application can execute the CPUID 
instruction. The ability to set and clear this bit indicates that the processor is a P6 
family or Pentium processor. The CPUID instruction can then be used to 
determine which processor. 

• Bits 19 (the VIF flag) and 20 (the VIP flag) will always be zero on processors that 
do not support virtual mode extensions, which includes all 32-bit processors prior 
to the Pentium processor.

See Chapter 14, “Processor Identification and Feature Determination,” in the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more infor-
mation on identifying processors.

22.17 STACK OPERATIONS
This section identifies the differences in stack implementation between the various 
IA-32 processors.

22.17.1 PUSH SP
The P6 family, Pentium, Intel486, Intel386, and Intel 286 processors push a different 
value on the stack for a PUSH SP instruction than the 8086 processor. The 32-bit 
processors push the value of the SP register before it is decremented as part of the 
push operation; the 8086 processor pushes the value of the SP register after it is 
decremented. If the value pushed is important, replace PUSH SP instructions with the 
following three instructions:

PUSH BP
MOV  BP, SP
22-8 Vol. 3B



ARCHITECTURE COMPATIBILITY
XCHG BP, [BP] 

This code functions as the 8086 processor PUSH SP instruction on the P6 family, 
Pentium, Intel486, Intel386, and Intel 286 processors.

22.17.2 EFLAGS Pushed on the Stack
The setting of the stored values of bits 12 through 15 (which includes the IOPL field 
and the NT flag) in the EFLAGS register by the PUSHF instruction, by interrupts, and 
by exceptions is different with the 32-bit IA-32 processors than with the 8086 and 
Intel 286 processors. The differences are as follows:
• 8086 processor—bits 12 through 15 are always set.
• Intel 286 processor—bits 12 through 15 are always cleared in real-address mode. 
• 32-bit processors in real-address mode—bit 15 (reserved) is always cleared, and 

bits 12 through 14 have the last value loaded into them.

22.18 X87 FPU
This section addresses the issues that must be faced when porting floating-point 
software designed to run on earlier IA-32 processors and math coprocessors to a 
Pentium 4, Intel Xeon, P6 family, or Pentium processor with integrated x87 FPU. To 
software, a Pentium 4, Intel Xeon, or P6 family processor looks very much like a 
Pentium processor. Floating-point software which runs on a Pentium or Intel486 DX 
processor, or on an Intel486 SX processor/Intel 487 SX math coprocessor system or 
an Intel386 processor/Intel 387 math coprocessor system, will run with at most 
minor modifications on a Pentium 4, Intel Xeon, or P6 family processor. To port code 
directly from an Intel 286 processor/Intel 287 math coprocessor system or an 
Intel 8086 processor/8087 math coprocessor system to a Pentium 4, Intel Xeon, P6 
family, or Pentium processor, certain additional issues must be addressed. 

In the following sections, the term “32-bit x87 FPUs” refers to the P6 family, Pentium, 
and Intel486 DX processors, and to the Intel 487 SX and Intel 387 math coproces-
sors; the term “16-bit IA-32 math coprocessors” refers to the Intel 287 and 8087 
math coprocessors.

22.18.1 Control Register CR0 Flags
The ET, NE, and MP flags in control register CR0 control the interface between the 
integer unit of an IA-32 processor and either its internal x87 FPU or an external math 
coprocessor. The effect of these flags in the various IA-32 processors are described in 
the following paragraphs.

The ET (extension type) flag (bit 4 of the CR0 register) is used in the Intel386 
processor to indicate whether the math coprocessor in the system is an Intel 287 
Vol. 3B 22-9



ARCHITECTURE COMPATIBILITY
math coprocessor (flag is clear) or an Intel 387 DX math coprocessor (flag is set). 
This bit is hardwired to 1 in the P6 family, Pentium, and Intel486 processors.

The NE (Numeric Exception) flag (bit 5 of the CR0 register) is used in the P6 family, 
Pentium, and Intel486 processors to determine whether unmasked floating-point 
exceptions are reported internally through interrupt vector 16 (flag is set) or exter-
nally through an external interrupt (flag is clear). On a hardware reset, the NE flag is 
initialized to 0, so software using the automatic internal error-reporting mechanism 
must set this flag to 1. This flag is nonexistent on the Intel386 processor.

As on the Intel 286 and Intel386 processors, the MP (monitor coprocessor) flag (bit 1 
of register CR0) determines whether the WAIT/FWAIT instructions or waiting-type 
floating-point instructions trap when the context of the x87 FPU is different from that 
of the currently-executing task. If the MP and TS flag are set, then a WAIT/FWAIT 
instruction and waiting instructions will cause a device-not-available exception 
(interrupt vector 7). The MP flag is used on the Intel 286 and Intel386 processors to 
support the use of a WAIT/FWAIT instruction to wait on a device other than a math 
coprocessor. The device reports its status through the BUSY# pin. Since the P6 
family, Pentium, and Intel486 processors do not have such a pin, the MP flag has no 
relevant use and should be set to 1 for normal operation.

22.18.2 x87 FPU Status Word
This section identifies differences to the x87 FPU status word for the different IA-32 
processors and math coprocessors, the reason for the differences, and their impact 
on software.

22.18.2.1  Condition Code Flags (C0 through C3)
The following information pertains to differences in the use of the condition code 
flags (C0 through C3) located in bits 8, 9, 10, and 14 of the x87 FPU status word.

After execution of an FINIT instruction or a hardware reset on a 32-bit x87 FPU, the 
condition code flags are set to 0. The same operations on a 16-bit IA-32 math copro-
cessor leave these flags intact (they contain their prior value). This difference in 
operation has no impact on software and provides a consistent state after reset.

Transcendental instruction results in the core range of the P6 family and Pentium 
processors may differ from the Intel486 DX processor and Intel 487 SX math copro-
cessor by 2 to 3 units in the last place (ulps)—(see “Transcendental Instruction Accu-
racy” in Chapter 8, “Programming with the x87 FPU,” of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1). As a result, the value saved 
in the C1 flag may also differ.

After an incomplete FPREM/FPREM1 instruction, the C0, C1, and C3 flags are set to 0 
on the 32-bit x87 FPUs. After the same operation on a 16-bit IA-32 math copro-
cessor, these flags are left intact. 
22-10 Vol. 3B



ARCHITECTURE COMPATIBILITY
On the 32-bit x87 FPUs, the C2 flag serves as an incomplete flag for the FTAN instruc-
tion. On the 16-bit IA-32 math coprocessors, the C2 flag is undefined for the FPTAN 
instruction. This difference has no impact on software, because Intel 287 or 8087 
programs do not check C2 after an FPTAN instruction. The use of this flag on later 
processors allows fast checking of operand range.

22.18.2.2  Stack Fault Flag
When unmasked stack overflow or underflow occurs on a 32-bit x87 FPU, the IE flag 
(bit 0) and the SF flag (bit 6) of the x87 FPU status word are set to indicate a stack 
fault and condition code flag C1 is set or cleared to indicate overflow or underflow, 
respectively. When unmasked stack overflow or underflow occurs on a 16-bit IA-32 
math coprocessor, only the IE flag is set. Bit 6 is reserved on these processors. The 
addition of the SF flag on a 32-bit x87 FPU has no impact on software. Existing excep-
tion handlers need not change, but may be upgraded to take advantage of the addi-
tional information.

22.18.3 x87 FPU Control Word
Only affine closure is supported for infinity control on a 32-bit x87 FPU. The infinity 
control flag (bit 12 of the x87 FPU control word) remains programmable on these 
processors, but has no effect. This change was made to conform to the IEEE Stan-
dard 754 for Binary Floating-Point Arithmetic. On a 16-bit IA-32 math coprocessor, 
both affine and projective closures are supported, as determined by the setting of bit 
12. After a hardware reset, the default value of bit 12 is projective. Software that 
requires projective infinity arithmetic may give different results.

22.18.4 x87 FPU Tag Word
When loading the tag word of a 32-bit x87 FPU, using an FLDENV, FRSTOR, or 
FXRSTOR (Pentium III processor only) instruction, the processor examines the 
incoming tag and classifies the location only as empty or non-empty. Thus, tag 
values of 00, 01, and 10 are interpreted by the processor to indicate a non-empty 
location. The tag value of 11 is interpreted by the processor to indicate an empty 
location. Subsequent operations on a non-empty register always examine the value 
in the register, not the value in its tag. The FSTENV, FSAVE, and FXSAVE (Pentium III 
processor only) instructions examine the non-empty registers and put the correct 
values in the tags before storing the tag word.

The corresponding tag for a 16-bit IA-32 math coprocessor is checked before each 
register access to determine the class of operand in the register; the tag is updated 
after every change to a register so that the tag always reflects the most recent status 
of the register. Software can load a tag with a value that disagrees with the contents 
of a register (for example, the register contains a valid value, but the tag says 
special). Here, the 16-bit IA-32 math coprocessors honor the tag and do not examine 
the register. 
Vol. 3B 22-11



ARCHITECTURE COMPATIBILITY
Software written to run on a 16-bit IA-32 math coprocessor may not operate 
correctly on a 16-bit x87 FPU, if it uses the FLDENV, FRSTOR, or FXRSTOR instruc-
tions to change tags to values (other than to empty) that are different from actual 
register contents.

The encoding in the tag word for the 32-bit x87 FPUs for unsupported data formats 
(including pseudo-zero and unnormal) is special (10B), to comply with IEEE Standard 
754. The encoding in the 16-bit IA-32 math coprocessors for pseudo-zero and 
unnormal is valid (00B) and the encoding for other unsupported data formats is 
special (10B). Code that recognizes the pseudo-zero or unnormal format as valid 
must therefore be changed if it is ported to a 32-bit x87 FPU.

22.18.5 Data Types
This section discusses the differences of data types for the various x87 FPUs and 
math coprocessors.

22.18.5.1  NaNs
The 32-bit x87 FPUs distinguish between signaling NaNs (SNaNs) and quiet NaNs 
(QNaNs). These x87 FPUs only generate QNaNs and normally do not generate an 
exception upon encountering a QNaN. An invalid-operation exception (#I) is gener-
ated only upon encountering a SNaN, except for the FCOM, FIST, and FBSTP instruc-
tions, which also generates an invalid-operation exceptions for a QNaNs. This 
behavior matches IEEE Standard 754.

The 16-bit IA-32 math coprocessors only generate one kind of NaN (the equivalent of 
a QNaN), but the raise an invalid-operation exception upon encountering any kind of 
NaN.

When porting software written to run on a 16-bit IA-32 math coprocessor to a 32-bit 
x87 FPU, uninitialized memory locations that contain QNaNs should be changed to 
SNaNs to cause the x87 FPU or math coprocessor to fault when uninitialized memory 
locations are referenced.

22.18.5.2  Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal 
Formats

The 32-bit x87 FPUs neither generate nor support the pseudo-zero, pseudo-NaN, 
pseudo-infinity, and unnormal formats. Whenever they encounter them in an arith-
metic operation, they raise an invalid-operation exception. The 16-bit IA-32 math 
coprocessors define and support special handling for these formats. Support for 
these formats was dropped to conform with IEEE Standard 754 for Binary Floating-
Point Arithmetic.

This change should not impact software ported from 16-bit IA-32 math coprocessors 
to 32-bit x87 FPUs. The 32-bit x87 FPUs do not generate these formats, and there-
fore will not encounter them unless software explicitly loads them in the data regis-
22-12 Vol. 3B



ARCHITECTURE COMPATIBILITY
ters. The only affect may be in how software handles the tags in the tag word (see 
also: Section 22.18.4, “x87 FPU Tag Word”).

22.18.6 Floating-Point Exceptions
This section identifies the implementation differences in exception handling for 
floating-point instructions in the various x87 FPUs and math coprocessors.

22.18.6.1  Denormal Operand Exception (#D)
When the denormal operand exception is masked, the 32-bit x87 FPUs automatically 
normalize denormalized numbers when possible; whereas, the 16-bit IA-32 math 
coprocessors return a denormal result. A program written to run on a 16-bit IA-32 
math coprocessor that uses the denormal exception solely to normalize denormal-
ized operands is redundant when run on the 32-bit x87 FPUs. If such a program is run 
on 32-bit x87 FPUs, performance can be improved by masking the denormal excep-
tion. Floating-point programs run faster when the FPU performs normalization of 
denormalized operands.

The denormal operand exception is not raised for transcendental instructions and the 
FXTRACT instruction on the 16-bit IA-32 math coprocessors. This exception is raised 
for these instructions on the 32-bit x87 FPUs. The exception handlers ported to these 
latter processors need to be changed only if the handlers gives special treatment to 
different opcodes.

22.18.6.2  Numeric Overflow Exception (#O)
On the 32-bit x87 FPUs, when the numeric overflow exception is masked and the 
rounding mode is set to chop (toward 0), the result is the largest positive or smallest 
negative number. The 16-bit IA-32 math coprocessors do not signal the overflow 
exception when the masked response is not ∞; that is, they signal overflow only 
when the rounding control is not set to round to 0. If rounding is set to chop (toward 
0), the result is positive or negative ∞. Under the most common rounding modes, this 
difference has no impact on existing software. 

If rounding is toward 0 (chop), a program on a 32-bit x87 FPU produces, under over-
flow conditions, a result that is different in the least significant bit of the significand, 
compared to the result on a 16-bit IA-32 math coprocessor. The reason for this differ-
ence is IEEE Standard 754 compatibility.

When the overflow exception is not masked, the precision exception is flagged on the 
32-bit x87 FPUs. When the result is stored in the stack, the significand is rounded 
according to the precision control (PC) field of the FPU control word or according to 
the opcode. On the 16-bit IA-32 math coprocessors, the precision exception is not 
flagged and the significand is not rounded. The impact on existing software is that if 
the result is stored on the stack, a program running on a 32-bit x87 FPU produces a 
different result under overflow conditions than on a 16-bit IA-32 math coprocessor. 
Vol. 3B 22-13



ARCHITECTURE COMPATIBILITY
The difference is apparent only to the exception handler. This difference is for IEEE 
Standard 754 compatibility.

22.18.6.3  Numeric Underflow Exception (#U)
When the underflow exception is masked on the 32-bit x87 FPUs, the underflow 
exception is signaled when both the result is tiny and denormalization results in a 
loss of accuracy. When the underflow exception is unmasked and the instruction is 
supposed to store the result on the stack, the significand is rounded to the appro-
priate precision (according to the PC flag in the FPU control word, for those instruc-
tions controlled by PC, otherwise to extended precision), after adjusting the 
exponent.

When the underflow exception is masked on the 16-bit IA-32 math coprocessors and 
rounding is toward 0, the underflow exception flag is raised on a tiny result, regard-
less of loss of accuracy. When the underflow exception is not masked and the desti-
nation is the stack, the significand is not rounded, but instead is left as is. 

When the underflow exception is masked, this difference has no impact on existing 
software. The underflow exception occurs less often when rounding is toward 0.

When the underflow exception not masked. A program running on a 32-bit x87 FPU 
produces a different result during underflow conditions than on a 16-bit IA-32 math 
coprocessor if the result is stored on the stack. The difference is only in the least 
significant bit of the significand and is apparent only to the exception handler.

22.18.6.4  Exception Precedence
There is no difference in the precedence of the denormal-operand exception on the 
32-bit x87 FPUs, whether it be masked or not. When the denormal-operand excep-
tion is not masked on the 16-bit IA-32 math coprocessors, it takes precedence over 
all other exceptions. This difference causes no impact on existing software, but some 
unneeded normalization of denormalized operands is prevented on the Intel486 
processor and Intel 387 math coprocessor.

22.18.6.5  CS and EIP For FPU Exceptions
On the Intel 32-bit x87 FPUs, the values from the CS and EIP registers saved for 
floating-point exceptions point to any prefixes that come before the floating-point 
instruction. On the 8087 math coprocessor, the saved CS and IP registers points to 
the floating-point instruction.

22.18.6.6  FPU Error Signals
The floating-point error signals to the P6 family, Pentium, and Intel486 processors do 
not pass through an interrupt controller; an INT# signal from an Intel 387, Intel 287 
or 8087 math coprocessors does. If an 8086 processor uses another exception for 
22-14 Vol. 3B



ARCHITECTURE COMPATIBILITY
the 8087 interrupt, both exception vectors should call the floating-point-error excep-
tion handler. Some instructions in a floating-point-error exception handler may need 
to be deleted if they use the interrupt controller. The P6 family, Pentium, and Intel486 
processors have signals that, with the addition of external logic, support reporting for 
emulation of the interrupt mechanism used in many personal computers.

On the P6 family, Pentium, and Intel486 processors, an undefined floating-point 
opcode will cause an invalid-opcode exception (#UD, interrupt vector 6). Undefined 
floating-point opcodes, like legal floating-point opcodes, cause a device not available 
exception (#NM, interrupt vector 7) when either the TS or EM flag in control register 
CR0 is set. The P6 family, Pentium, and Intel486 processors do not check for floating-
point error conditions on encountering an undefined floating-point opcode.

22.18.6.7  Assertion of the FERR# Pin
When using the MS-DOS compatibility mode for handing floating-point exceptions, 
the FERR# pin must be connected to an input to an external interrupt controller. An 
external interrupt is then generated when the FERR# output drives the input to the 
interrupt controller and the interrupt controller in turn drives the INTR pin on the 
processor. 

For the P6 family and Intel386 processors, an unmasked floating-point exception 
always causes the FERR# pin to be asserted upon completion of the instruction that 
caused the exception. For the Pentium and Intel486 processors, an unmasked 
floating-point exception may cause the FERR# pin to be asserted either at the end of 
the instruction causing the exception or immediately before execution of the next 
floating-point instruction. (Note that the next floating-point instruction would not be 
executed until the pending unmasked exception has been handled.) See Appendix D, 
“Guidelines for Writing x87 FPU Extension Handlers,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, for a complete description of 
the required mechanism for handling floating-point exceptions using the MS-DOS 
compatibility mode.

Using FERR# and IGNNE# to handle floating-point exception is deprecated by 
modern operating systems; this approach also limits newer processors to operate 
with one logical processor active.

22.18.6.8  Invalid Operation Exception On Denormals 
An invalid-operation exception is not generated on the 32-bit x87 FPUs upon encoun-
tering a denormal value when executing a FSQRT, FDIV, or FPREM instruction or upon 
conversion to BCD or to integer. The operation proceeds by first normalizing the 
value. On the 16-bit IA-32 math coprocessors, upon encountering this situation, the 
invalid-operation exception is generated. This difference has no impact on existing 
software. Software running on the 32-bit x87 FPUs continues to execute in cases 
where the 16-bit IA-32 math coprocessors trap. The reason for this change was to 
eliminate an exception from being raised.
Vol. 3B 22-15



ARCHITECTURE COMPATIBILITY
22.18.6.9  Alignment Check Exceptions (#AC)
If alignment checking is enabled, a misaligned data operand on the P6 family, 
Pentium, and Intel486 processors causes an alignment check exception (#AC) when 
a program or procedure is running at privilege-level 3, except for the stack portion of 
the FSAVE/FNSAVE, FXSAVE, FRSTOR, and FXRSTOR instructions.

22.18.6.10  Segment Not Present Exception During FLDENV
On the Intel486 processor, when a segment not present exception (#NP) occurs in 
the middle of an FLDENV instruction, it can happen that part of the environment is 
loaded and part not. In such cases, the FPU control word is left with a value of 007FH. 
The P6 family and Pentium processors ensure the internal state is correct at all times 
by attempting to read the first and last bytes of the environment before updating the 
internal state.

22.18.6.11  Device Not Available Exception (#NM)
The device-not-available exception (#NM, interrupt 7) will occur in the P6 family, 
Pentium, and Intel486 processors as described in Section 2.5, “Control Registers,” 
Table 2-1, and Chapter 6, “Interrupt 7—Device Not Available Exception (#NM).”

22.18.6.12  Coprocessor Segment Overrun Exception
The coprocessor segment overrun exception (interrupt 9) does not occur in the P6 
family, Pentium, and Intel486 processors. In situations where the Intel 387 math 
coprocessor would cause an interrupt 9, the P6 family, Pentium, and Intel486 proces-
sors simply abort the instruction. To avoid undetected segment overruns, it is recom-
mended that the floating-point save area be placed in the same page as the TSS. This 
placement will prevent the FPU environment from being lost if a page fault occurs 
during the execution of an FLDENV, FRSTOR, or FXRSTOR instruction while the oper-
ating system is performing a task switch.

22.18.6.13  General Protection Exception (#GP)
A general-protection exception (#GP, interrupt 13) occurs if the starting address of a 
floating-point operand falls outside a segment’s size. An exception handler should be 
included to report these programming errors.

22.18.6.14  Floating-Point Error Exception (#MF)
In real mode and protected mode (not including virtual-8086 mode), interrupt vector 
16 must point to the floating-point exception handler. In virtual 8086 mode, the 
virtual-8086 monitor can be programmed to accommodate a different location of the 
interrupt vector for floating-point exceptions.
22-16 Vol. 3B



ARCHITECTURE COMPATIBILITY
22.18.7 Changes to Floating-Point Instructions
This section identifies the differences in floating-point instructions for the various 
Intel FPU and math coprocessor architectures, the reason for the differences, and 
their impact on software.

22.18.7.1  FDIV, FPREM, and FSQRT Instructions
The 32-bit x87 FPUs support operations on denormalized operands and, when 
detected, an underflow exception can occur, for compatibility with the IEEE Standard 
754. The 16-bit IA-32 math coprocessors do not operate on denormalized operands 
or return underflow results. Instead, they generate an invalid-operation exception 
when they detect an underflow condition. An existing underflow exception handler 
will require change only if it gives different treatment to different opcodes. Also, it is 
possible that fewer invalid-operation exceptions will occur.

22.18.7.2  FSCALE Instruction
With the 32-bit x87 FPUs, the range of the scaling operand is not restricted. If (0 < | 
ST(1) < 1), the scaling factor is 0; therefore, ST(0) remains unchanged. If the 
rounded result is not exact or if there was a loss of accuracy (masked underflow), the 
precision exception is signaled. With the 16-bit IA-32 math coprocessors, the range 
of the scaling operand is restricted. If (0 < | ST(1) | < 1), the result is undefined and 
no exception is signaled. The impact of this difference on exiting software is that 
different results are delivered on the 32-bit and 16-bit FPUs and math coprocessors 
when (0 < | ST(1) | < 1).

22.18.7.3  FPREM1 Instruction
The 32-bit x87 FPUs compute a partial remainder according to IEEE Standard 754. 
This instruction does not exist on the 16-bit IA-32 math coprocessors. The avail-
ability of the FPREM1 instruction has is no impact on existing software.

22.18.7.4  FPREM Instruction
On the 32-bit x87 FPUs, the condition code flags C0, C3, C1 in the status word 
correctly reflect the three low-order bits of the quotient following execution of the 
FPREM instruction. On the 16-bit IA-32 math coprocessors, the quotient bits are 
incorrect when performing a reduction of (64N + M) when (N ≥ 1) and M is 1 or 2. This 
difference does not affect existing software; software that works around the bug 
should not be affected.

22.18.7.5  FUCOM, FUCOMP, and FUCOMPP Instructions
When executing the FUCOM, FUCOMP, and FUCOMPP instructions, the 32-bit x87 
FPUs perform unordered compare according to IEEE Standard 754. These instruc-
Vol. 3B 22-17



ARCHITECTURE COMPATIBILITY
tions do not exist on the 16-bit IA-32 math coprocessors. The availability of these 
new instructions has no impact on existing software.

22.18.7.6  FPTAN Instruction
On the 32-bit x87 FPUs, the range of the operand for the FPTAN instruction is much 
less restricted (| ST(0) | < 263) than on earlier math coprocessors. The instruction 
reduces the operand internally using an internal π/4 constant that is more accurate. 
The range of the operand is restricted to (| ST(0) | < π/4) on the 16-bit IA-32 math 
coprocessors; the operand must be reduced to this range using FPREM. This change 
has no impact on existing software.

22.18.7.7  Stack Overflow
On the 32-bit x87 FPUs, if an FPU stack overflow occurs when the invalid-operation 
exception is masked, the FPU returns the real, integer, or BCD-integer indefinite 
value to the destination operand, depending on the instruction being executed. On 
the 16-bit IA-32 math coprocessors, the original operand remains unchanged 
following a stack overflow, but it is loaded into register ST(1). This difference has no 
impact on existing software.

22.18.7.8  FSIN, FCOS, and FSINCOS Instructions
On the 32-bit x87 FPUs, these instructions perform three common trigonometric 
functions. These instructions do not exist on the 16-bit IA-32 math coprocessors. The 
availability of these instructions has no impact on existing software, but using them 
provides a performance upgrade.

22.18.7.9  FPATAN Instruction
On the 32-bit x87 FPUs, the range of operands for the FPATAN instruction is unre-
stricted. On the 16-bit IA-32 math coprocessors, the absolute value of the operand in 
register ST(0) must be smaller than the absolute value of the operand in register 
ST(1). This difference has impact on existing software.

22.18.7.10  F2XM1 Instruction
The 32-bit x87 FPUs support a wider range of operands (–1 < ST (0) < + 1) for the 
F2XM1 instruction. The supported operand range for the 16-bit IA-32 math coproces-
sors is (0 ≤ ST(0) ≤ 0.5). This difference has no impact on existing software.

22.18.7.11  FLD Instruction
On the 32-bit x87 FPUs, when using the FLD instruction to load an extended-real 
value, a denormal-operand exception is not generated because the instruction is not 
22-18 Vol. 3B



ARCHITECTURE COMPATIBILITY
arithmetic. The 16-bit IA-32 math coprocessors do report a denormal-operand 
exception in this situation. This difference does not affect existing software.

On the 32-bit x87 FPUs, loading a denormal value that is in single- or double-real 
format causes the value to be converted to extended-real format. Loading a 
denormal value on the 16-bit IA-32 math coprocessors causes the value to be 
converted to an unnormal. If the next instruction is FXTRACT or FXAM, the 32-bit x87 
FPUs will give a different result than the 16-bit IA-32 math coprocessors. This change 
was made for IEEE Standard 754 compatibility.

On the 32-bit x87 FPUs, loading an SNaN that is in single- or double-real format 
causes the FPU to generate an invalid-operation exception. The 16-bit IA-32 math 
coprocessors do not raise an exception when loading a signaling NaN. The invalid-
operation exception handler for 16-bit math coprocessor software needs to be 
updated to handle this condition when porting software to 32-bit FPUs. This change 
was made for IEEE Standard 754 compatibility.

22.18.7.12  FXTRACT Instruction
On the 32-bit x87 FPUs, if the operand is 0 for the FXTRACT instruction, the divide-
by-zero exception is reported and –∞ is delivered to register ST(1). If the operand is 
+∞, no exception is reported. If the operand is 0 on the 16-bit IA-32 math coproces-
sors, 0 is delivered to register ST(1) and no exception is reported. If the operand is 
+∞, the invalid-operation exception is reported. These differences have no impact on 
existing software. Software usually bypasses 0 and ∞. This change is due to the IEEE 
Standard 754 recommendation to fully support the “logb” function.

22.18.7.13  Load Constant Instructions
On 32-bit x87 FPUs, rounding control is in effect for the load constant instructions. 
Rounding control is not in effect for the 16-bit IA-32 math coprocessors. Results for 
the FLDPI, FLDLN2, FLDLG2, and FLDL2E instructions are the same as for the 16-bit 
IA-32 math coprocessors when rounding control is set to round to nearest or round 
to +∞. They are the same for the FLDL2T instruction when rounding control is set to 
round to nearest, round to –∞, or round to zero. Results are different from the 16-bit 
IA-32 math coprocessors in the least significant bit of the mantissa if rounding 
control is set to round to –∞ or round to 0 for the FLDPI, FLDLN2, FLDLG2, and 
FLDL2E instructions; they are different for the FLDL2T instruction if round to +∞ is 
specified. These changes were implemented for compatibility with IEEE Standard 
754 for Floating-Point Arithmetic recommendations.

22.18.7.14  FSETPM Instruction
With the 32-bit x87 FPUs, the FSETPM instruction is treated as NOP (no operation). 
This instruction informs the Intel 287 math coprocessor that the processor is in 
protected mode. This change has no impact on existing software. The 32-bit x87 
Vol. 3B 22-19



ARCHITECTURE COMPATIBILITY
FPUs handle all addressing and exception-pointer information, whether in protected 
mode or not.

22.18.7.15  FXAM Instruction
With the 32-bit x87 FPUs, if the FPU encounters an empty register when executing 
the FXAM instruction, it not generate combinations of C0 through C3 equal to 1101 or 
1111. The 16-bit IA-32 math coprocessors may generate these combinations, among 
others. This difference has no impact on existing software; it provides a performance 
upgrade to provide repeatable results.

22.18.7.16  FSAVE and FSTENV Instructions
With the 32-bit x87 FPUs, the address of a memory operand pointer stored by FSAVE 
or FSTENV is undefined if the previous floating-point instruction did not refer to 
memory

22.18.8 Transcendental Instructions
The floating-point results of the P6 family and Pentium processors for transcendental 
instructions in the core range may differ from the Intel486 processors by about 2 or 
3 ulps (see “Transcendental Instruction Accuracy” in Chapter 8, “Programming with 
the x87 FPU,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1). Condition code flag C1 of the status word may differ as a result. The exact 
threshold for underflow and overflow will vary by a few ulps. The P6 family and 
Pentium processors’ results will have a worst case error of less than 1 ulp when 
rounding to the nearest-even and less than 1.5 ulps when rounding in other modes. 
The transcendental instructions are guaranteed to be monotonic, with respect to the 
input operands, throughout the domain supported by the instruction.

Transcendental instructions may generate different results in the round-up flag (C1) 
on the 32-bit x87 FPUs. The round-up flag is undefined for these instructions on the 
16-bit IA-32 math coprocessors. This difference has no impact on existing software.

22.18.9 Obsolete Instructions
The 8087 math coprocessor instructions FENI and FDISI and the Intel 287 math 
coprocessor instruction FSETPM are treated as integer NOP instructions in the 32-bit 
x87 FPUs. If these opcodes are detected in the instruction stream, no specific opera-
tion is performed and no internal states are affected.
22-20 Vol. 3B



ARCHITECTURE COMPATIBILITY
22.18.10 WAIT/FWAIT Prefix Differences
On the Intel486 processor, when a WAIT/FWAIT instruction precedes a floating-point 
instruction (one which itself automatically synchronizes with the previous floating-
point instruction), the WAIT/FWAIT instruction is treated as a no-op. Pending 
floating-point exceptions from a previous floating-point instruction are processed not 
on the WAIT/FWAIT instruction but on the floating-point instruction following the 
WAIT/FWAIT instruction. In such a case, the report of a floating-point exception may 
appear one instruction later on the Intel486 processor than on a P6 family or Pentium 
FPU, or on Intel 387 math coprocessor.

22.18.11 Operands Split Across Segments and/or Pages
On the P6 family, Pentium, and Intel486 processor FPUs, when the first half of an 
operand to be written is inside a page or segment and the second half is outside, a 
memory fault can cause the first half to be stored but not the second half. In this situ-
ation, the Intel 387 math coprocessor stores nothing.

22.18.12 FPU Instruction Synchronization
On the 32-bit x87 FPUs, all floating-point instructions are automatically synchro-
nized; that is, the processor automatically waits until the previous floating-point 
instruction has completed before completing the next floating-point instruction. No 
explicit WAIT/FWAIT instructions are required to assure this synchronization. For the 
8087 math coprocessors, explicit waits are required before each floating-point 
instruction to ensure synchronization. Although 8087 programs having explicit WAIT 
instructions execute perfectly on the 32-bit IA-32 processors without reassembly, 
these WAIT instructions are unnecessary.

22.19 SERIALIZING INSTRUCTIONS
Certain instructions have been defined to serialize instruction execution to ensure 
that modifications to flags, registers and memory are completed before the next 
instruction is executed (or in P6 family processor terminology “committed to machine 
state”). Because the P6 family processors use branch-prediction and out-of-order 
execution techniques to improve performance, instruction execution is not generally 
serialized until the results of an executed instruction are committed to machine state 
(see Chapter 2, “Intel® 64 and IA-32 Architectures,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1). 

As a result, at places in a program or task where it is critical to have execution 
completed for all previous instructions before executing the next instruction (for 
example, at a branch, at the end of a procedure, or in multiprocessor dependent 
code), it is useful to add a serializing instruction. See Section 8.3, “Serializing 
Instructions,” for more information on serializing instructions.
Vol. 3B 22-21



ARCHITECTURE COMPATIBILITY
22.20 FPU AND MATH COPROCESSOR INITIALIZATION
Table 9-1 shows the states of the FPUs in the P6 family, Pentium, Intel486 processors 
and of the Intel 387 math coprocessor and Intel 287 coprocessor following a power-
up, reset, or INIT, or following the execution of an FINIT/FNINIT instruction. The 
following is some additional compatibility information concerning the initialization of 
x87 FPUs and math coprocessors.

22.20.1 Intel® 387 and Intel® 287 Math Coprocessor Initialization
Following an Intel386 processor reset, the processor identifies its coprocessor type 
(Intel® 287 or Intel® 387 DX math coprocessor) by sampling its ERROR# input some 
time after the falling edge of RESET# signal and before execution of the first floating-
point instruction. The Intel 287 coprocessor keeps its ERROR# output in inactive 
state after hardware reset; the Intel 387 coprocessor keeps its ERROR# output in 
active state after hardware reset. 

Upon hardware reset or execution of the FINIT/FNINIT instruction, the Intel 387 
math coprocessor signals an error condition. The P6 family, Pentium, and Intel486 
processors, like the Intel 287 coprocessor, do not.

22.20.2 Intel486 SX Processor and Intel 487 SX Math Coprocessor 
Initialization

When initializing an Intel486 SX processor and an Intel 487 SX math coprocessor, 
the initialization routine should check the presence of the math coprocessor and 
should set the FPU related flags (EM, MP, and NE) in control register CR0 accordingly 
(see Section 2.5, “Control Registers,” for a complete description of these flags). Table 
22-2 gives the recommended settings for these flags when the math coprocessor is 
present. The FSTCW instruction will give a value of FFFFH for the Intel486 SX micro-
processor and 037FH for the Intel 487 SX math coprocessor.

The EM and MP flags in register CR0 are interpreted as shown in Table 22-3. 

Table 22-2.  Recommended Values of the EM, MP, and NE Flags for Intel486 SX 
Microprocessor/Intel 487 SX Math Coprocessor System

CR0 Flags Intel486 SX Processor Only Intel 487 SX Math Coprocessor Present

EM 1 0

MP 0 1

NE 1 0, for MS-DOS* systems
1, for user-defined exception handler
22-22 Vol. 3B



ARCHITECTURE COMPATIBILITY
Following is an example code sequence to initialize the system and check for the 
presence of Intel486 SX processor/Intel 487 SX math coprocessor.

fninit
fstcw mem_loc
mov ax, mem_loc
cmp ax, 037fh
jz Intel487_SX_Math_CoProcessor_present ;ax=037fh
jmp Intel486_SX_microprocessor_present ;ax=ffffh

If the Intel 487 SX math coprocessor is not present, the following code can be run to 
set the CR0 register for the Intel486 SX processor.

mov eax, cr0
and eax, fffffffdh ;make MP=0
or eax, 0024h ;make EM=1, NE=1
mov cr0, eax

This initialization will cause any floating-point instruction to generate a device not 
available exception (#NH), interrupt 7. The software emulation will then take control 
to execute these instructions. This code is not required if an Intel 487 SX math 
coprocessor is present in the system. In that case, the typical initialization routine for 
the Intel486 SX microprocessor will be adequate.

Also, when designing an Intel486 SX processor based system with an Intel 487 SX 
math coprocessor, timing loops should be independent of clock speed and clocks per 
instruction. One way to attain this is to implement these loops in hardware and not in 
software (for example, BIOS).

Table 22-3.  EM and MP Flag Interpretation

EM MP Interpretation

0 0 Floating-point instructions are passed to FPU; WAIT/FWAIT 
and other waiting-type instructions ignore TS.

0 1 Floating-point instructions are passed to FPU; WAIT/FWAIT 
and other waiting-type instructions test TS.

1 0 Floating-point instructions trap to emulator; WAIT/FWAIT and 
other waiting-type instructions ignore TS.

1 1 Floating-point instructions trap to emulator; WAIT/FWAIT and 
other waiting-type instructions test TS.
Vol. 3B 22-23



ARCHITECTURE COMPATIBILITY
22.21 CONTROL REGISTERS
The following sections identify the new control registers and control register flags 
and fields that were introduced to the 32-bit IA-32 in various processor families. See 
Figure 2-6 for the location of these flags and fields in the control registers.

The Pentium III processor introduced one new control flag in control register CR4:
• OSXMMEXCPT (bit 10) — The OS will set this bit if it supports unmasked SIMD 

floating-point exceptions.

The Pentium II processor introduced one new control flag in control register CR4:
• OSFXSR (bit 9) — The OS supports saving and restoring the Pentium III processor 

state during context switches.

The Pentium Pro processor introduced three new control flags in control register CR4:
• PAE (bit 5) — Physical address extension. Enables paging mechanism to 

reference extended physical addresses when set; restricts physical addresses to 
32 bits when clear (see also: Section 22.22.1.1, “Physical Memory Addressing 
Extension”).

• PGE (bit 7) — Page global enable. Inhibits flushing of frequently-used or shared 
pages on CR3 writes (see also: Section 22.22.1.2, “Global Pages”). 

• PCE (bit 8) — Performance-monitoring counter enable. Enables execution of the 
RDPMC instruction at any protection level.

The content of CR4 is 0H following a hardware reset.

Control register CR4 was introduced in the Pentium processor. This register contains 
flags that enable certain new extensions provided in the Pentium processor:
• VME — Virtual-8086 mode extensions. Enables support for a virtual interrupt flag 

in virtual-8086 mode (see Section 20.3, “Interrupt and Exception Handling in 
Virtual-8086 Mode”).

• PVI — Protected-mode virtual interrupts. Enables support for a virtual interrupt 
flag in protected mode (see Section 20.4, “Protected-Mode Virtual Interrupts”).

• TSD — Time-stamp disable. Restricts the execution of the RDTSC instruction to 
procedures running at privileged level 0.

• DE — Debugging extensions. Causes an undefined opcode (#UD) exception to be 
generated when debug registers DR4 and DR5 are references for improved 
performance (see Section 22.23.3, “Debug Registers DR4 and DR5”).

• PSE — Page size extensions. Enables 4-MByte pages with 32-bit paging when set 
(see Section 4.3, “32-Bit Paging”).

• MCE — Machine-check enable. Enables the machine-check exception, allowing 
exception handling for certain hardware error conditions (see Chapter 15, 
“Machine-Check Architecture”). 

The Intel486 processor introduced five new flags in control register CR0:
22-24 Vol. 3B



ARCHITECTURE COMPATIBILITY
• NE — Numeric error. Enables the normal mechanism for reporting floating-point 
numeric errors.

• WP — Write protect. Write-protects read-only pages against supervisor-mode 
accesses.

• AM — Alignment mask. Controls whether alignment checking is performed. 
Operates in conjunction with the AC (Alignment Check) flag.

• NW — Not write-through. Enables write-throughs and cache invalidation cycles 
when clear and disables invalidation cycles and write-throughs that hit in the 
cache when set. 

• CD — Cache disable. Enables the internal cache when clear and disables the 
cache when set.

The Intel486 processor introduced two new flags in control register CR3:
• PCD — Page-level cache disable. The state of this flag is driven on the PCD# pin 

during bus cycles that are not paged, such as interrupt acknowledge cycles, when 
paging is enabled.   The PCD# pin is used to control caching in an external cache 
on a cycle-by-cycle basis.

• PWT — Page-level write-through. The state of this flag is driven on the PWT# pin 
during bus cycles that are not paged, such as interrupt acknowledge cycles, when 
paging is enabled. The PWT# pin is used to control write through in an external 
cache on a cycle-by-cycle basis. 

22.22 MEMORY MANAGEMENT FACILITIES
The following sections describe the new memory management facilities available in 
the various IA-32 processors and some compatibility differences.

22.22.1 New Memory Management Control Flags
The Pentium Pro processor introduced three new memory management features: 
physical memory addressing extension, the global bit in page-table entries, and 
general support for larger page sizes. These features are only available when oper-
ating in protected mode.

22.22.1.1  Physical Memory Addressing Extension
The new PAE (physical address extension) flag in control register CR4, bit 5, may 
enable additional address lines on the processor, allowing extended physical 
addresses. This option can only be used when paging is enabled, using a new page-
table mechanism provided to support the larger physical address range (see Section 
4.1, “Paging Modes and Control Bits”).
Vol. 3B 22-25



ARCHITECTURE COMPATIBILITY
22.22.1.2  Global Pages
The new PGE (page global enable) flag in control register CR4, bit 7, provides a 
mechanism for preventing frequently used pages from being flushed from the trans-
lation lookaside buffer (TLB). When this flag is set, frequently used pages (such as 
pages containing kernel procedures or common data tables) can be marked global by 
setting the global flag in a page-directory or page-table entry. 

On a task switch or a write to control register CR3 (which normally causes the TLBs 
to be flushed), the entries in the TLB marked global are not flushed. Marking pages 
global in this manner prevents unnecessary reloading of the TLB due to TLB misses 
on frequently used pages. See Section 4.10, “Caching Translation Information” for a 
detailed description of this mechanism.

22.22.1.3  Larger Page Sizes
The P6 family processors support large page sizes. For 32-bit paging, this facility is 
enabled with the PSE (page size extension) flag in control register CR4, bit 4. When 
this flag is set, the processor supports either 4-KByte or 4-MByte page sizes. PAE 
paging and IA-32e paging support 2-MByte pages regardless of the value of CR4.PSE 
(see Section 4.4, “PAE Paging” and Section 4.5, “IA-32e Paging”). See Chapter 4, 
“Paging,” for more information about large page sizes.

22.22.2 CD and NW Cache Control Flags
The CD and NW flags in control register CR0 were introduced in the Intel486 
processor. In the P6 family and Pentium processors, these flags are used to imple-
ment a writeback strategy for the data cache; in the Intel486 processor, they imple-
ment a write-through strategy. See Table 11-5 for a comparison of these bits on the 
P6 family, Pentium, and Intel486 processors. For complete information on caching, 
see Chapter 11, “Memory Cache Control.”

22.22.3 Descriptor Types and Contents
Operating-system code that manages space in descriptor tables often contains an 
invalid value in the access-rights field of descriptor-table entries to identify unused 
entries. Access rights values of 80H and 00H remain invalid for the P6 family, 
Pentium, Intel486, Intel386, and Intel 286 processors. Other values that were invalid 
on the Intel 286 processor may be valid on the 32-bit processors because uses for 
these bits have been defined.
22-26 Vol. 3B



ARCHITECTURE COMPATIBILITY
22.22.4 Changes in Segment Descriptor Loads
On the Intel386 processor, loading a segment descriptor always causes a locked read 
and write to set the accessed bit of the descriptor. On the P6 family, Pentium, and 
Intel486 processors, the locked read and write occur only if the bit is not already set.

22.23 DEBUG FACILITIES
The P6 family and Pentium processors include extensions to the Intel486 processor 
debugging support for breakpoints. To use the new breakpoint features, it is neces-
sary to set the DE flag in control register CR4.

22.23.1 Differences in Debug Register DR6
It is not possible to write a 1 to reserved bit 12 in debug status register DR6 on the 
P6 family and Pentium processors; however, it is possible to write a 1 in this bit on the 
Intel486 processor. See Table 9-1 for the different setting of this register following a 
power-up or hardware reset.

22.23.2 Differences in Debug Register DR7
The P6 family and Pentium processors determines the type of breakpoint access by 
the R/W0 through R/W3 fields in debug control register DR7 as follows: 

00 Break on instruction execution only.

01 Break on data writes only.

10 Undefined if the DE flag in control register CR4 is cleared; break on I/O reads 
or writes but not instruction fetches if the DE flag in control register CR4 is 
set.

11 Break on data reads or writes but not instruction fetches.

On the P6 family and Pentium processors, reserved bits 11, 12, 14 and 15 are hard-
wired to 0. On the Intel486 processor, however, bit 12 can be set. See Table 9-1 for 
the different settings of this register following a power-up or hardware reset.

22.23.3 Debug Registers DR4 and DR5
Although the DR4 and DR5 registers are documented as reserved, previous genera-
tions of processors aliased references to these registers to debug registers DR6 and 
DR7, respectively. When debug extensions are not enabled (the DE flag in control 
register CR4 is cleared), the P6 family and Pentium processors remain compatible 
with existing software by allowing these aliased references. When debug extensions 
Vol. 3B 22-27



ARCHITECTURE COMPATIBILITY
are enabled (the DE flag is set), attempts to reference registers DR4 or DR5 will 
result in an invalid-opcode exception (#UD).

22.24 RECOGNITION OF BREAKPOINTS
For the Pentium processor, it is recommended that debuggers execute the LGDT 
instruction before returning to the program being debugged to ensure that break-
points are detected. This operation does not need to be performed on the P6 family, 
Intel486, or Intel386 processors. 

The implementation of test registers on the Intel486 processor used for testing the 
cache and TLB has been redesigned using MSRs on the P6 family and Pentium 
processors. (Note that MSRs used for this function are different on the P6 family and 
Pentium processors.) The MOV to and from test register instructions generate 
invalid-opcode exceptions (#UD) on the P6 family processors.

22.25 EXCEPTIONS AND/OR EXCEPTION CONDITIONS
This section describes the new exceptions and exception conditions added to the 32-
bit IA-32 processors and implementation differences in existing exception handling. 
See Chapter 6, “Interrupt and Exception Handling,” for a detailed description of the 
IA-32 exceptions.

The Pentium III processor introduced new state with the XMM registers. Computations 
involving data in these registers can produce exceptions. A new MXCSR 
control/status register is used to determine which exception or exceptions have 
occurred. When an exception associated with the XMM registers occurs, an interrupt 
is generated.
• SIMD floating-point exception (#XF, interrupt 19) — New exceptions associated 

with the SIMD floating-point registers and resulting computations.

No new exceptions were added with the Pentium Pro and Pentium II processors. The 
set of available exceptions is the same as for the Pentium processor. However, the 
following exception condition was added to the IA-32 with the Pentium Pro 
processor:
• Machine-check exception (#MC, interrupt 18) — New exception conditions. Many 

exception conditions have been added to the machine-check exception and a new 
architecture has been added for handling and reporting on hardware errors. See 
Chapter 15, “Machine-Check Architecture,” for a detailed description of the new 
conditions.

The following exceptions and/or exception conditions were added to the IA-32 with 
the Pentium processor:
• Machine-check exception (#MC, interrupt 18) — New exception. This exception 

reports parity and other hardware errors. It is a model-specific exception and 
22-28 Vol. 3B



ARCHITECTURE COMPATIBILITY
may not be implemented or implemented differently in future processors. The 
MCE flag in control register CR4 enables the machine-check exception. When this 
bit is clear (which it is at reset), the processor inhibits generation of the machine-
check exception.

• General-protection exception (#GP, interrupt 13) — New exception condition 
added. An attempt to write a 1 to a reserved bit position of a special register 
causes a general-protection exception to be generated.

• Page-fault exception (#PF, interrupt 14) — New exception condition added. When 
a 1 is detected in any of the reserved bit positions of a page-table entry, page-
directory entry, or page-directory pointer during address translation, a page-fault 
exception is generated. 

The following exception was added to the Intel486 processor:
• Alignment-check exception (#AC, interrupt 17) — New exception. Reports 

unaligned memory references when alignment checking is being performed. 

The following exceptions and/or exception conditions were added to the Intel386 
processor:
• Divide-error exception (#DE, interrupt 0)

— Change in exception handling. Divide-error exceptions on the Intel386 
processors always leave the saved CS:IP value pointing to the instruction that 
failed. On the 8086 processor, the CS:IP value points to the next instruction.

— Change in exception handling. The Intel386 processors can generate the 
largest negative number as a quotient for the IDIV instruction (80H and 
8000H). The 8086 processor generates a divide-error exception instead.

• Invalid-opcode exception (#UD, interrupt 6) — New exception condition added. 
Improper use of the LOCK instruction prefix can generate an invalid-opcode 
exception.

• Page-fault exception (#PF, interrupt 14) — New exception condition added. If 
paging is enabled in a 16-bit program, a page-fault exception can be generated 
as follows. Paging can be used in a system with 16-bit tasks if all tasks use the 
same page directory. Because there is no place in a 16-bit TSS to store the PDBR 
register, switching to a 16-bit task does not change the value of the PDBR 
register. Tasks ported from the Intel 286 processor should be given 32-bit TSSs 
so they can make full use of paging.

• General-protection exception (#GP, interrupt 13) — New exception condition 
added. The Intel386 processor sets a limit of 15 bytes on instruction length. The 
only way to violate this limit is by putting redundant prefixes before an 
instruction. A general-protection exception is generated if the limit on instruction 
length is violated. The 8086 processor has no instruction length limit.
Vol. 3B 22-29



ARCHITECTURE COMPATIBILITY
22.25.1 Machine-Check Architecture
The Pentium Pro processor introduced a new architecture to the IA-32 for handling 
and reporting on machine-check exceptions. This machine-check architecture 
(described in detail in Chapter 15, “Machine-Check Architecture”) greatly expands 
the ability of the processor to report on internal hardware errors.

22.25.2 Priority of Exceptions
The priority of exceptions are broken down into several major categories:

1. Traps on the previous instruction

2. External interrupts

3. Faults on fetching the next instruction

4. Faults in decoding the next instruction

5. Faults on executing an instruction

There are no changes in the priority of these major categories between the different 
processors, however, exceptions within these categories are implementation depen-
dent and may change from processor to processor.

22.25.3 Exception Conditions of Legacy SIMD Instructions Operating 
on MMX Registers

MMX instructions and a subset of SSE, SSE2, SSSE3 instructions operate on MMX 
registers. The exception conditions of these instructions are described in the 
following tables.
22-30 Vol. 3B



ARCHITECTURE COMPATIBILITY
Table 22-4.  Exception Conditions for Legacy SIMD/MMX Instructions with FP 
Exception and 16-Byte Alignment

Exception
R

ea
l

V
ir

tu
al

 8
0

8
6

P
ro

te
ct

ed
 a

nd
 

Co
m

pa
ti

bi
lit

y

6
4

-b
it

 

Cause of Exception

Invalid Opcode, 
#UD

X X X X
If an unmasked SIMD floating-point exception and 
CR4.OSXMMEXCPT[bit 10] = 0. 

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)

X For an illegal address in the SS segment

X
If a memory address referencing the SS segment is 
in a non-canonical form

General Protec-
tion, #GP(0)

X X X X Legacy SSE: Memory operand is not 16-byte aligned

X
For an illegal memory operand effective address in 
the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective 
address space from 0 to FFFFH

#PF(fault-code) X X X For a page fault

#XM X X X X
If an unmasked SIMD floating-point exception and 
CR4.OSXMMEXCPT[bit 10] = 1

Applicable 
Instructions

CVTPD2PI, CVTTPD2PI
Vol. 3B 22-31



ARCHITECTURE COMPATIBILITY
Table 22-5.  Exception Conditions for Legacy SIMD/MMX Instructions with XMM and FP 
Exception

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd
 

Co
m

pa
ti

bi
lit

y

6
4

-b
it

 

Cause of Exception

Invalid Opcode, #UD

X X X X
If an unmasked SIMD floating-point exception 
and CR4.OSXMMEXCPT[bit 10] = 0. 

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)

X For an illegal address in the SS segment

X
If a memory address referencing the SS segment 
is in a non-canonical form

General Protection, 
#GP(0)

X
For an illegal memory operand effective address 
in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical 
form.

X X
If any part of the operand lies outside the effec-
tive address space from 0 to FFFFH

#PF(fault-code) X X X For a page fault

Alignment Check 
#AC(0)

X X X
If alignment checking is enabled and an 
unaligned memory reference is made while the 
current privilege level is 3.

SIMD Floating-point 
Exception, #XM

X X X X
If an unmasked SIMD floating-point exception 
and CR4.OSXMMEXCPT[bit 10] = 1

Applicable Instruc-
tions

CVTPI2PS, CVTPS2PI, CVTTPS2PI
22-32 Vol. 3B



ARCHITECTURE COMPATIBILITY
Table 22-6.  Exception Conditions for Legacy SIMD/MMX Instructions with XMM and 
without FP Exception

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd
 

Co
m

pa
ti

bi
lit

y

6
4

-b
it

 

Cause of Exception

Invalid Opcode, #UD

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF1

NOTES:
1. Applies to “CVTPI2PD xmm, mm” but not “CVTPI2PD xmm, m64”.

X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)

X For an illegal address in the SS segment

X
If a memory address referencing the SS seg-
ment is in a non-canonical form

General Protection, 
#GP(0)

X
For an illegal memory operand effective 
address in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical 
form.

X X
If any part of the operand lies outside the 
effective address space from 0 to FFFFH

 #PF(fault-code) X X X For a page fault

Alignment Check 
#AC(0)

X X X
If alignment checking is enabled and an 
unaligned memory reference is made while the 
current privilege level is 3.

Applicable Instruc-
tions

CVTPI2PD
Vol. 3B 22-33



ARCHITECTURE COMPATIBILITY
Table 22-7.  Exception Conditions for SIMD/MMX Instructions with Memory Reference

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd
 

Co
m

pa
ti

bi
lit

y

6
4

-b
it

 

Cause of Exception

Invalid Opcode, #UD

X X X X If CR0.EM[bit 2] = 1.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)

X For an illegal address in the SS segment

X
If a memory address referencing the SS seg-
ment is in a non-canonical form

General Protection, 
#GP(0)

X
For an illegal memory operand effective address 
in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical 
form.

X X
If any part of the operand lies outside the effec-
tive address space from 0 to FFFFH

 #PF(fault-code) X X X For a page fault

Alignment Check 
#AC(0)

X X X
If alignment checking is enabled and an 
unaligned memory reference is made while the 
current privilege level is 3.

Applicable Instruc-
tions

PABSB, PABSD, PABSW, PACKSSWB, PACKSSDW, PACKUSWB, 
PADDB, PADDD, PADDQ, PADDW, PADDSB, PADDSW, 
PADDUSB, PADDUSW, PALIGNR, PAND, PANDN, PAVGB, 
PAVGW, PCMPEQB, PCMPEQD, PCMPEQW, PCMPGTB, PCMPGTD, 
PCMPGTW, PHADDD, PHADDW, PHADDSW, PHSUBD, PHSUBW, 
PHSUBSW, PINSRW, PMADDUBSW, PMADDWD, PMAXSW, 
PMAXUB, PMINSW, PMINUB, PMULHRSW, PMULHUW, PMULHW, 
PMULLW, PMULUDQ, PSADBW, PSHUFB, PSHUFW, PSIGNB 
PSIGND PSIGNW, PSLLW, PSLLD, PSLLQ, PSRAD, PSRAW, 
PSRLW, PSRLD, PSRLQ, PSUBB, PSUBD, PSUBQ, PSUBW, 
PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, PUNPCKHBW, 
PUNPCKHWD, PUNPCKHDQ, PUNPCKLBW, PUNPCKLWD, 
PUNPCKLDQ, PXOR
22-34 Vol. 3B



ARCHITECTURE COMPATIBILITY
Table 22-8.  Exception Conditions for Legacy SIMD/MMX Instructions without FP 
Exception

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd
 

Co
m

pa
ti

bi
lit

y

6
4

-b
it

 

Cause of Exception

Invalid Opcode, #UD

X X X X
If CR0.EM[bit 2] = 1.
If ModR/M.mod != 11b1

NOTES:
1. Applies to MASKMOVQ only.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)

X For an illegal address in the SS segment

X
If a memory address referencing the SS segment 
is in a non-canonical form

#GP(0)

X

For an illegal memory operand effective address in 
the CS, DS, ES, FS or GS segments.
If the destination operand is in a non-writable seg-
ment.2

If the DS, ES, FS, or GS register contains a NULL 
segment selector.3

2. Applies to MASKMOVQ and MOVQ (mmreg) only.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effec-
tive address space from 0 to FFFFH

 #PF(fault-code) X X X For a page fault

#AC(0) X X X
If alignment checking is enabled and an unaligned 
memory reference is made while the current privi-
lege level is 3.

Applicable Instruc-
tions

MASKMOVQ, MOVNTQ, “MOVQ (mmreg)”
Vol. 3B 22-35



ARCHITECTURE COMPATIBILITY
22.26 INTERRUPTS
The following differences in handling interrupts are found among the IA-32 
processors.

22.26.1 Interrupt Propagation Delay
External hardware interrupts may be recognized on different instruction boundaries 
on the P6 family, Pentium, Intel486, and Intel386 processors, due to the superscaler 
designs of the P6 family and Pentium processors. Therefore, the EIP pushed onto the 
stack when servicing an interrupt may be different for the P6 family, Pentium, 
Intel486, and Intel386 processors.   

22.26.2 NMI Interrupts
After an NMI interrupt is recognized by the P6 family, Pentium, Intel486, Intel386, 
and Intel 286 processors, the NMI interrupt is masked until the first IRET instruction 
is executed, unlike the 8086 processor.

3. Applies to MASKMOVQ only.

Table 22-9.  Exception Conditions for Legacy SIMD/MMX Instructions without 
Memory Reference

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

Pr
ot

ec
te

d 
an

d 
Co

m
pa

ti
bi

lit
y

6
4

-b
it

 

Cause of Exception

Invalid Opcode, #UD

X X X X If CR0.EM[bit 2] = 1.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X If CR0.TS[bit 3]=1

Applicable Instruc-
tions

PEXTRW, PMOVMSKB
22-36 Vol. 3B



ARCHITECTURE COMPATIBILITY
22.26.3 IDT Limit
The LIDT instruction can be used to set a limit on the size of the IDT. A double-fault 
exception (#DF) is generated if an interrupt or exception attempts to read a vector 
beyond the limit. Shutdown then occurs on the 32-bit IA-32 processors if the double-
fault handler vector is beyond the limit. (The 8086 processor does not have a shut-
down mode nor a limit.)

22.27 ADVANCED PROGRAMMABLE INTERRUPT 
CONTROLLER (APIC)

The Advanced Programmable Interrupt Controller (APIC), referred to in this book as 
the local APIC, was introduced into the IA-32 processors with the Pentium 
processor (beginning with the 735/90 and 815/100 models) and is included in the 
Pentium 4, Intel Xeon, and P6 family processors. The features and functions of the 
local APIC are derived from the Intel 82489DX external APIC, which was used with 
the Intel486 and early Pentium processors. Additional refinements of the local APIC 
architecture were incorporated in the Pentium 4 and Intel Xeon processors.

22.27.1 Software Visible Differences Between the Local APIC and 
the 82489DX

The following features in the local APIC features differ from those found in the 
82489DX external APIC:
• When the local APIC is disabled by clearing the APIC software enable/disable flag 

in the spurious-interrupt vector MSR, the state of its internal registers are 
unaffected, except that the mask bits in the LVT are all set to block local 
interrupts to the processor. Also, the local APIC ceases accepting IPIs except for 
INIT, SMI, NMI, and start-up IPIs. In the 82489DX, when the local unit is 
disabled, all the internal registers including the IRR, ISR and TMR are cleared and 
the mask bits in the LVT are set. In this state, the 82489DX local unit will accept 
only the reset deassert message.

• In the local APIC, NMI and INIT (except for INIT deassert) are always treated as 
edge triggered interrupts, even if programmed otherwise. In the 82489DX, these 
interrupts are always level triggered. 

• In the local APIC, IPIs generated through the ICR are always treated as edge 
triggered (except INIT Deassert). In the 82489DX, the ICR can be used to 
generate either edge or level triggered IPIs. 

• In the local APIC, the logical destination register supports 8 bits; in the 82489DX, 
it supports 32 bits. 

• In the local APIC, the APIC ID register is 4 bits wide; in the 82489DX, it is 8 bits 
wide.
Vol. 3B 22-37



ARCHITECTURE COMPATIBILITY
• The remote read delivery mode provided in the 82489DX and local APIC for 
Pentium processors is not supported in the local APIC in the Pentium 4, Intel 
Xeon, and P6 family processors.

• For the 82489DX, in the lowest priority delivery mode, all the target local APICs 
specified by the destination field participate in the lowest priority arbitration. For 
the local APIC, only those local APICs which have free interrupt slots will 
participate in the lowest priority arbitration.

22.27.2 New Features Incorporated in the Local APIC for the P6 
Family and Pentium Processors

The local APIC in the Pentium and P6 family processors have the following new 
features not found in the 82489DX external APIC.
• Cluster addressing is supported in logical destination mode.
• Focus processor checking can be enabled/disabled.
• Interrupt input signal polarity can be programmed for the LINT0 and LINT1 pins.
• An SMI IPI is supported through the ICR and I/O redirection table.
• An error status register is incorporated into the LVT to log and report APIC errors.

In the P6 family processors, the local APIC incorporates an additional LVT register to 
handle performance monitoring counter interrupts.

22.27.3 New Features Incorporated in the Local APIC of the Pentium 
4 and Intel Xeon Processors

The local APIC in the Pentium 4 and Intel Xeon processors has the following new 
features not found in the P6 family and Pentium processors and in the 82489DX.
• The local APIC ID is extended to 8 bits.
• An thermal sensor register is incorporated into the LVT to handle thermal sensor 

interrupts. 
• The the ability to deliver lowest-priority interrupts to a focus processor is no 

longer supported.
• The flat cluster logical destination mode is not supported.

22.28 TASK SWITCHING AND TSS
This section identifies the implementation differences of task switching, additions to 
the TSS and the handling of TSSs and TSS segment selectors.
22-38 Vol. 3B



ARCHITECTURE COMPATIBILITY
22.28.1 P6 Family and Pentium Processor TSS
When the virtual mode extensions are enabled (by setting the VME flag in control 
register CR4), the TSS in the P6 family and Pentium processors contain an interrupt 
redirection bit map, which is used in virtual-8086 mode to redirect interrupts back to 
an 8086 program.

22.28.2 TSS Selector Writes
During task state saves, the Intel486 processor writes 2-byte segment selectors into 
a 32-bit TSS, leaving the upper 16 bits undefined. For performance reasons, the P6 
family and Pentium processors write 4-byte segment selectors into the TSS, with the 
upper 2 bytes being 0. For compatibility reasons, code should not depend on the 
value of the upper 16 bits of the selector in the TSS.

22.28.3 Order of Reads/Writes to the TSS
The order of reads and writes into the TSS is processor dependent. The P6 family and 
Pentium processors may generate different page-fault addresses in control register 
CR2 in the same TSS area than the Intel486 and Intel386 processors, if a TSS 
crosses a page boundary (which is not recommended).

22.28.4 Using A 16-Bit TSS with 32-Bit Constructs
Task switches using 16-bit TSSs should be used only for pure 16-bit code. Any new 
code written using 32-bit constructs (operands, addressing, or the upper word of the 
EFLAGS register) should use only 32-bit TSSs. This is due to the fact that the 32-bit 
processors do not save the upper 16 bits of EFLAGS to a 16-bit TSS. A task switch 
back to a 16-bit task that was executing in virtual mode will never re-enable the 
virtual mode, as this flag was not saved in the upper half of the EFLAGS value in the 
TSS. Therefore, it is strongly recommended that any code using 32-bit constructs 
use a 32-bit TSS to ensure correct behavior in a multitasking environment.

22.28.5 Differences in I/O Map Base Addresses
The Intel486 processor considers the TSS segment to be a 16-bit segment and wraps 
around the 64K boundary. Any I/O accesses check for permission to access this I/O 
address at the I/O base address plus the I/O offset. If the I/O map base address 
exceeds the specified limit of 0DFFFH, an I/O access will wrap around and obtain the 
permission for the I/O address at an incorrect location within the TSS. A TSS limit 
violation does not occur in this situation on the Intel486 processor. However, the P6 
family and Pentium processors consider the TSS to be a 32-bit segment and a limit 
violation occurs when the I/O base address plus the I/O offset is greater than the TSS 
limit. By following the recommended specification for the I/O base address to be less 
Vol. 3B 22-39



ARCHITECTURE COMPATIBILITY
than 0DFFFH, the Intel486 processor will not wrap around and access incorrect loca-
tions within the TSS for I/O port validation and the P6 family and Pentium processors 
will not experience general-protection exceptions (#GP). Figure 22-1 demonstrates 
the different areas accessed by the Intel486 and the P6 family and Pentium 
processors. 

22.29 CACHE MANAGEMENT
The P6 family processors include two levels of internal caches: L1 (level 1) and L2 
(level 2). The L1 cache is divided into an instruction cache and a data cache; the L2 
cache is a general-purpose cache. See Section 11.1, “Internal Caches, TLBs, and 
Buffers,” for a description of these caches. (Note that although the Pentium II 
processor L2 cache is physically located on a separate chip in the cassette, it is 
considered an internal cache.)

The Pentium processor includes separate level 1 instruction and data caches. The 
data cache supports a writeback (or alternatively write-through, on a line by line 
basis) policy for memory updates.

The Intel486 processor includes a single level 1 cache for both instructions and data. 

The meaning of the CD and NW flags in control register CR0 have been redefined for 
the P6 family and Pentium processors. For these processors, the recommended value 
(00B) enables writeback for the data cache of the Pentium processor and for the L1 

Figure 22-1.  I/O Map Base Address Differences

Intel486 Processor

FFFFHI/O Map
Base Addres

FFFFH

FFFFH + 10H = FH
for I/O Validation

0H

FFFFH

FFFFH

I/O access at port 10H checks

0H

FFFFH + 10H = Outside Segment
for I/O Validation

bitmap at I/O address FFFFH + 10H,
which exceeds segment limit.
Wrap around does not occur,
general-protection exception (#GP) 

I/O access at port 10H checks
bitmap at I/O map base address
FFFFH + 10H = offset 10H.
Offset FH from beginning of
TSS segment results because

P6 family and Pentium Processors

I/O Map
Base Addres

occurs. wraparound occurs.
22-40 Vol. 3B



ARCHITECTURE COMPATIBILITY
data cache and L2 cache of the P6 family processors. In the Intel486 processor, 
setting these flags to (00B) enables write-through for the cache.

External system hardware can force the Pentium processor to disable caching or to 
use the write-through cache policy should that be required. In the P6 family proces-
sors, the MTRRs can be used to override the CD and NW flags (see Table 11-6).

The P6 family and Pentium processors support page-level cache management in the 
same manner as the Intel486 processor by using the PCD and PWT flags in control 
register CR3, the page-directory entries, and the page-table entries. The Intel486 
processor, however, is not affected by the state of the PWT flag since the internal 
cache of the Intel486 processor is a write-through cache.

22.29.1 Self-Modifying Code with Cache Enabled
On the Intel486 processor, a write to an instruction in the cache will modify it in both 
the cache and memory. If the instruction was prefetched before the write, however, 
the old version of the instruction could be the one executed. To prevent this problem, 
it is necessary to flush the instruction prefetch unit of the Intel486 processor by 
coding a jump instruction immediately after any write that modifies an instruction. 
The P6 family and Pentium processors, however, check whether a write may modify 
an instruction that has been prefetched for execution. This check is based on the 
linear address of the instruction. If the linear address of an instruction is found to be 
present in the prefetch queue, the P6 family and Pentium processors flush the 
prefetch queue, eliminating the need to code a jump instruction after any writes that 
modify an instruction. 

Because the linear address of the write is checked against the linear address of the 
instructions that have been prefetched, special care must be taken for self-modifying 
code to work correctly when the physical addresses of the instruction and the written 
data are the same, but the linear addresses differ. In such cases, it is necessary to 
execute a serializing operation to flush the prefetch queue after the write and before 
executing the modified instruction. See Section 8.3, “Serializing Instructions,” for 
more information on serializing instructions.

NOTE
The check on linear addresses described above is not in practice a 
concern for compatibility. Applications that include self-modifying 
code use the same linear address for modifying and fetching the 
instruction. System software, such as a debugger, that might 
possibly modify an instruction using a different linear address than 
that used to fetch the instruction must execute a serializing 
operation, such as IRET, before the modified instruction is executed.
Vol. 3B 22-41



ARCHITECTURE COMPATIBILITY
22.29.2 Disabling the L3 Cache
A unified third-level (L3) cache in processors based on Intel NetBurst microarchitec-
ture (see Section 11.1, “Internal Caches, TLBs, and Buffers”) provides the third-level 
cache disable flag, bit 6 of the IA32_MISC_ENABLE MSR. The third-level cache 
disable flag allows the L3 cache to be disabled and enabled, independently of the L1 
and L2 caches (see Section 11.5.4, “Disabling and Enabling the L3 Cache”). The 
third-level cache disable flag applies only to processors based on Intel NetBurst 
microarchitecture. Processors with L3 and based on other microarchitectures do not 
support the third-level cache disable flag. 

22.30 PAGING
This section identifies enhancements made to the paging mechanism and implemen-
tation differences in the paging mechanism for various IA-32 processors.

22.30.1 Large Pages
The Pentium processor extended the memory management/paging facilities of the 
IA-32 to allow large (4 MBytes) pages sizes (see Section 4.3, “32-Bit Paging”). The 
first P6 family processor (the Pentium Pro processor) added a 2 MByte page size to 
the IA-32 in conjunction with the physical address extension (PAE) feature (see 
Section 4.4, “PAE Paging”). 

The availability of large pages with 32-bit paging on any IA-32 processor can be 
determined via feature bit 3 (PSE) of register EDX after the CPUID instruction has 
been execution with an argument of 1. (Large pages are always available with PAE 
paging and IA-32e paging.) Intel processors that do not support the CPUID instruc-
tion support only 32-bit paging and do not support page size enhancements. (See 
“CPUID—CPU Identification” in Chapter 3, “Instruction Set Reference, A-L,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, and AP-
485, Intel Processor Identification and the CPUID Instruction, for more information 
on the CPUID instruction.)

22.30.2 PCD and PWT Flags
The PCD and PWT flags were introduced to the IA-32 in the Intel486 processor to 
control the caching of pages:
• PCD (page-level cache disable) flag—Controls caching on a page-by-page basis.
• PWT (page-level write-through) flag—Controls the write-through/writeback 

caching policy on a page-by-page basis. Since the internal cache of the Intel486 
processor is a write-through cache, it is not affected by the state of the PWT flag.   
22-42 Vol. 3B



ARCHITECTURE COMPATIBILITY
22.30.3 Enabling and Disabling Paging
Paging is enabled and disabled by loading a value into control register CR0 that modi-
fies the PG flag. For backward and forward compatibility with all IA-32 processors, 
Intel recommends that the following operations be performed when enabling or 
disabling paging:

1. Execute a MOV CR0, REG instruction to either set (enable paging) or clear 
(disable paging) the PG flag. 

2. Execute a near JMP instruction.

The sequence bounded by the MOV and JMP instructions should be identity mapped 
(that is, the instructions should reside on a page whose linear and physical addresses 
are identical).

For the P6 family processors, the MOV CR0, REG instruction is serializing, so the 
jump operation is not required. However, for backwards compatibility, the JMP 
instruction should still be included.

22.31 STACK OPERATIONS
This section identifies the differences in the stack mechanism for the various IA-32 
processors.

22.31.1 Selector Pushes and Pops
When pushing a segment selector onto the stack, the Pentium 4, Intel Xeon, P6 
family, and Intel486 processors decrement the ESP register by the operand size and 
then write 2 bytes. If the operand size is 32-bits, the upper two bytes of the write are 
not modified. The Pentium processor decrements the ESP register by the operand 
size and determines the size of the write by the operand size. If the operand size is 
32-bits, the upper two bytes are written as 0s. 

When popping a segment selector from the stack, the Pentium 4, Intel Xeon, P6 
family, and Intel486 processors read 2 bytes and increment the ESP register by the 
operand size of the instruction. The Pentium processor determines the size of the 
read from the operand size and increments the ESP register by the operand size.

It is possible to align a 32-bit selector push or pop such that the operation generates 
an exception on a Pentium processor and not on an Pentium 4, Intel Xeon, P6 family, 
or Intel486 processor. This could occur if the third and/or fourth byte of the operation 
lies beyond the limit of the segment or if the third and/or fourth byte of the operation 
is locate on a non-present or inaccessible page.

For a POP-to-memory instruction that meets the following conditions:
• The stack segment size is 16-bit.
• Any 32-bit addressing form with the SIB byte specifying ESP as the base register.
Vol. 3B 22-43



ARCHITECTURE COMPATIBILITY
• The initial stack pointer is FFFCH (32-bit operand) or FFFEH (16-bit operand) and 
will wrap around to 0H as a result of the POP operation.

The result of the memory write is implementation-specific. For example, in P6 family 
processors, the result of the memory write is SS:0H plus any scaled index and 
displacement. In Pentium processors, the result of the memory write may be either a 
stack fault (real mode or protected mode with stack segment size of 64 KByte), or 
write to SS:10000H plus any scaled index and displacement (protected mode and 
stack segment size exceeds 64 KByte).

22.31.2 Error Code Pushes
The Intel486 processor implements the error code pushed on the stack as a 16-bit 
value. When pushed onto a 32-bit stack, the Intel486 processor only pushes 2 bytes 
and updates ESP by 4. The P6 family and Pentium processors’ error code is a full 32 
bits with the upper 16 bits set to zero. The P6 family and Pentium processors, there-
fore, push 4 bytes and update ESP by 4. Any code that relies on the state of the upper 
16 bits may produce inconsistent results.

22.31.3 Fault Handling Effects on the Stack 
During the handling of certain instructions, such as CALL and PUSHA, faults may 
occur in different sequences for the different processors. For example, during far 
calls, the Intel486 processor pushes the old CS and EIP before a possible branch fault 
is resolved. A branch fault is a fault from a branch instruction occurring from a 
segment limit or access rights violation. If a branch fault is taken, the Intel486 and 
P6 family processors will have corrupted memory below the stack pointer. However, 
the ESP register is backed up to make the instruction restartable. The P6 family 
processors issue the branch before the pushes. Therefore, if a branch fault does 
occur, these processors do not corrupt memory below the stack pointer. This imple-
mentation difference, however, does not constitute a compatibility problem, as only 
values at or above the stack pointer are considered to be valid. Other operations that 
encounter faults may also corrupt memory below the stack pointer and this behavior 
may vary on different implementations.

22.31.4 Interlevel RET/IRET From a 16-Bit Interrupt or Call Gate
If a call or interrupt is made from a 32-bit stack environment through a 16-bit gate, 
only 16 bits of the old ESP can be pushed onto the stack. On the subsequent 
RET/IRET, the 16-bit ESP is popped but the full 32-bit ESP is updated since control is 
being resumed in a 32-bit stack environment. The Intel486 processor writes the SS 
selector into the upper 16 bits of ESP. The P6 family and Pentium processors write 
zeros into the upper 16 bits.     
22-44 Vol. 3B



ARCHITECTURE COMPATIBILITY
22.32 MIXING 16- AND 32-BIT SEGMENTS
The features of the 16-bit Intel 286 processor are an object-code compatible subset 
of those of the 32-bit IA-32 processors. The D (default operation size) flag in 
segment descriptors indicates whether the processor treats a code or data segment 
as a 16-bit or 32-bit segment; the B (default stack size) flag in segment descriptors 
indicates whether the processor treats a stack segment as a 16-bit or 32-bit 
segment.

The segment descriptors used by the Intel 286 processor are supported by the 32-bit 
IA-32 processors if the Intel-reserved word (highest word) of the descriptor is clear. 
On the 32-bit IA-32 processors, this word includes the upper bits of the base address 
and the segment limit.

The segment descriptors for data segments, code segments, local descriptor tables 
(there are no descriptors for global descriptor tables), and task gates are the same 
for the 16- and 32-bit processors. Other 16-bit descriptors (TSS segment, call gate, 
interrupt gate, and trap gate) are supported by the 32-bit processors. 

The 32-bit processors also have descriptors for TSS segments, call gates, interrupt 
gates, and trap gates that support the 32-bit architecture. Both kinds of descriptors 
can be used in the same system.

For those segment descriptors common to both 16- and 32-bit processors, clear bits 
in the reserved word cause the 32-bit processors to interpret these descriptors 
exactly as an Intel 286 processor does, that is:
• Base Address — The upper 8 bits of the 32-bit base address are clear, which limits 

base addresses to 24 bits.
• Limit — The upper 4 bits of the limit field are clear, restricting the value of the 

limit field to 64 KBytes.
• Granularity bit — The G (granularity) flag is clear, indicating the value of the 

16-bit limit is interpreted in units of 1 byte.
• Big bit — In a data-segment descriptor, the B flag is clear in the segment 

descriptor used by the 32-bit processors, indicating the segment is no larger than 
64 KBytes.

• Default bit — In a code-segment descriptor, the D flag is clear, indicating 16-bit 
addressing and operands are the default. In a stack-segment descriptor, the D 
flag is clear, indicating use of the SP register (instead of the ESP register) and a 
64-KByte maximum segment limit.

For information on mixing 16- and 32-bit code in applications, see Chapter 21, 
“Mixing 16-Bit and 32-Bit Code.”

22.33 SEGMENT AND ADDRESS WRAPAROUND
This section discusses differences in segment and address wraparound between the 
P6 family, Pentium, Intel486, Intel386, Intel 286, and 8086 processors.
Vol. 3B 22-45



ARCHITECTURE COMPATIBILITY
22.33.1 Segment Wraparound
On the 8086 processor, an attempt to access a memory operand that crosses offset 
65,535 or 0FFFFH or offset 0 (for example, moving a word to offset 65,535 or 
pushing a word when the stack pointer is set to 1) causes the offset to wrap around 
modulo 65,536 or 010000H. With the Intel 286 processor, any base and offset combi-
nation that addresses beyond 16 MBytes wraps around to the 1 MByte of the address 
space. The P6 family, Pentium, Intel486, and Intel386 processors in real-address 
mode generate an exception in these cases: 
• A general-protection exception (#GP) if the segment is a data segment (that is, 

if the CS, DS, ES, FS, or GS register is being used to address the segment).
• A stack-fault exception (#SS) if the segment is a stack segment (that is, if the SS 

register is being used). 

An exception to this behavior occurs when a stack access is data aligned, and the 
stack pointer is pointing to the last aligned piece of data that size at the top of the 
stack (ESP is FFFFFFFCH). When this data is popped, no segment limit violation 
occurs and the stack pointer will wrap around to 0. 

The address space of the P6 family, Pentium, and Intel486 processors may wrap-
around at 1 MByte in real-address mode. An external A20M# pin forces wraparound 
if enabled. On Intel 8086 processors, it is possible to specify addresses greater than 
1 MByte. For example, with a selector value FFFFH and an offset of FFFFH, the effec-
tive address would be 10FFEFH (1 MByte plus 65519 bytes). The 8086 processor, 
which can form addresses up to 20 bits long, truncates the uppermost bit, which 
“wraps” this address to FFEFH. However, the P6 family, Pentium, and Intel486 
processors do not truncate this bit if A20M# is not enabled. 

If a stack operation wraps around the address limit, shutdown occurs. (The 8086 
processor does not have a shutdown mode or a limit.) 

The behavior when executing near the limit of a 4-GByte selector (limit=0xFFFFFFFF) 
is different between the Pentium Pro and the Pentium 4 family of processors. On the 
Pentium Pro, instructions which cross the limit -- for example, a two byte instruction 
such as INC EAX that is encoded as 0xFF 0xC0 starting exactly at the limit faults for 
a segment violation (a one byte instruction at 0xFFFFFFFF does not cause an excep-
tion). Using the Pentium 4 microprocessor family, neither of these situations causes 
a fault.

Segment wraparound and the functionality of A20M# is used primarily by older oper-
ating systems and not used by modern operating systems. On newer Intel 64 proces-
sors, A20M# may be absent. 

22.34 STORE BUFFERS AND MEMORY ORDERING
The Pentium 4, Intel Xeon, and P6 family processors provide a store buffer for 
temporary storage of writes (stores) to memory (see Section 11.10, “Store Buffer”). 
Writes stored in the store buffer(s) are always written to memory in program order, 
22-46 Vol. 3B



ARCHITECTURE COMPATIBILITY
with the exception of “fast string” store operations (see Section 8.2.4, “Fast-String 
Operation and Out-of-Order Stores”).

The Pentium processor has two store buffers, one corresponding to each of the pipe-
lines. Writes in these buffers are always written to memory in the order they were 
generated by the processor core.

It should be noted that only memory writes are buffered and I/O writes are not. The 
Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486 processors do not synchro-
nize the completion of memory writes on the bus and instruction execution after a 
write. An I/O, locked, or serializing instruction needs to be executed to synchronize 
writes with the next instruction (see Section 8.3, “Serializing Instructions”).

The Pentium 4, Intel Xeon, and P6 family processors use processor ordering to main-
tain consistency in the order that data is read (loaded) and written (stored) in a 
program and the order the processor actually carries out the reads and writes. With 
this type of ordering, reads can be carried out speculatively and in any order, reads 
can pass buffered writes, and writes to memory are always carried out in program 
order. (See Section 8.2, “Memory Ordering,” for more information about processor 
ordering.) The Pentium III processor introduced a new instruction to serialize writes 
and make them globally visible. Memory ordering issues can arise between a 
producer and a consumer of data. The SFENCE instruction provides a performance-
efficient way of ensuring ordering between routines that produce weakly-ordered 
results and routines that consume this data.

No re-ordering of reads occurs on the Pentium processor, except under the condition 
noted in Section 8.2.1, “Memory Ordering in the Intel® Pentium® and Intel486™ 
Processors,” and in the following paragraph describing the Intel486 processor. 

Specifically, the store buffers are flushed before the IN instruction is executed. No 
reads (as a result of cache miss) are reordered around previously generated writes 
sitting in the store buffers. The implication of this is that the store buffers will be 
flushed or emptied before a subsequent bus cycle is run on the external bus.

On both the Intel486 and Pentium processors, under certain conditions, a memory 
read will go onto the external bus before the pending memory writes in the buffer 
even though the writes occurred earlier in the program execution. A memory read 
will only be reordered in front of all writes pending in the buffers if all writes pending 
in the buffers are cache hits and the read is a cache miss. Under these conditions, the 
Intel486 and Pentium processors will not read from an external memory location that 
needs to be updated by one of the pending writes. 

During a locked bus cycle, the Intel486 processor will always access external 
memory, it will never look for the location in the on-chip cache. All data pending in 
the Intel486 processor's store buffers will be written to memory before a locked cycle 
is allowed to proceed to the external bus. Thus, the locked bus cycle can be used for 
eliminating the possibility of reordering read cycles on the Intel486 processor. The 
Pentium processor does check its cache on a read-modify-write access and, if the 
cache line has been modified, writes the contents back to memory before locking the 
bus. The P6 family processors write to their cache on a read-modify-write operation 
(if the access does not split across a cache line) and does not write back to system 
Vol. 3B 22-47



ARCHITECTURE COMPATIBILITY
memory. If the access does split across a cache line, it locks the bus and accesses 
system memory.

I/O reads are never reordered in front of buffered memory writes on an IA-32 
processor. This ensures an update of all memory locations before reading the status 
from an I/O device.

22.35 BUS LOCKING
The Intel 286 processor performs the bus locking differently than the Intel P6 family, 
Pentium, Intel486, and Intel386 processors. Programs that use forms of memory 
locking specific to the Intel 286 processor may not run properly when run on later 
processors.

A locked instruction is guaranteed to lock only the area of memory defined by the 
destination operand, but may lock a larger memory area. For example, typical 8086 
and Intel 286 configurations lock the entire physical memory space. Programmers 
should not depend on this.

On the Intel 286 processor, the LOCK prefix is sensitive to IOPL. If the CPL is greater 
than the IOPL, a general-protection exception (#GP) is generated. On the Intel386 
DX, Intel486, and Pentium, and P6 family processors, no check against IOPL is 
performed.

The Pentium processor automatically asserts the LOCK# signal when acknowledging 
external interrupts. After signaling an interrupt request, an external interrupt 
controller may use the data bus to send the interrupt vector to the processor. After 
receiving the interrupt request signal, the processor asserts LOCK# to insure that no 
other data appears on the data bus until the interrupt vector is received. This bus 
locking does not occur on the P6 family processors.

22.36 BUS HOLD
Unlike the 8086 and Intel 286 processors, but like the Intel386 and Intel486 proces-
sors, the P6 family and Pentium processors respond to requests for control of the bus 
from other potential bus masters, such as DMA controllers, between transfers of 
parts of an unaligned operand, such as two words which form a doubleword. Unlike 
the Intel386 processor, the P6 family, Pentium and Intel486 processors respond to 
bus hold during reset initialization.

22.37 MODEL-SPECIFIC EXTENSIONS TO THE IA-32
Certain extensions to the IA-32 are specific to a processor or family of IA-32 proces-
sors and may not be implemented or implemented in the same way in future proces-
22-48 Vol. 3B



ARCHITECTURE COMPATIBILITY
sors. The following sections describe these model-specific extensions. The CPUID 
instruction indicates the availability of some of the model-specific features.

22.37.1 Model-Specific Registers
The Pentium processor introduced a set of model-specific registers (MSRs) for use in 
controlling hardware functions and performance monitoring. To access these MSRs, 
two new instructions were added to the IA-32 architecture: read MSR (RDMSR) and 
write MSR (WRMSR). The MSRs in the Pentium processor are not guaranteed to be 
duplicated or provided in the next generation IA-32 processors.

The P6 family processors greatly increased the number of MSRs available to soft-
ware. See Chapter 34, “Model-Specific Registers (MSRs),” for a complete list of the 
available MSRs. The new registers control the debug extensions, the performance 
counters, the machine-check exception capability, the machine-check architecture, 
and the MTRRs. These registers are accessible using the RDMSR and WRMSR instruc-
tions. Specific information on some of these new MSRs is provided in the following 
sections. As with the Pentium processor MSR, the P6 family processor MSRs are not 
guaranteed to be duplicated or provided in the next generation IA-32 processors.

22.37.2 RDMSR and WRMSR Instructions
The RDMSR (read model-specific register) and WRMSR (write model-specific 
register) instructions recognize a much larger number of model-specific registers in 
the P6 family processors. (See “RDMSR—Read from Model Specific Register” and 
“WRMSR—Write to Model Specific Register” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volumes 2A, 2B & 2C for more information.)

22.37.3 Memory Type Range Registers
Memory type range registers (MTRRs) are a new feature introduced into the IA-32 in 
the Pentium Pro processor. MTRRs allow the processor to optimize memory opera-
tions for different types of memory, such as RAM, ROM, frame buffer memory, and 
memory-mapped I/O.

MTRRs are MSRs that contain an internal map of how physical address ranges are 
mapped to various types of memory. The processor uses this internal memory map 
to determine the cacheability of various physical memory locations and the optimal 
method of accessing memory locations. For example, if a memory location is speci-
fied in an MTRR as write-through memory, the processor handles accesses to this 
location as follows. It reads data from that location in lines and caches the read data 
or maps all writes to that location to the bus and updates the cache to maintain cache 
coherency. In mapping the physical address space with MTRRs, the processor recog-
nizes five types of memory: uncacheable (UC), uncacheable, speculatable, write-
combining (WC), write-through (WT), write-protected (WP), and writeback (WB).
Vol. 3B 22-49



ARCHITECTURE COMPATIBILITY
Earlier IA-32 processors (such as the Intel486 and Pentium processors) used the 
KEN# (cache enable) pin and external logic to maintain an external memory map and 
signal cacheable accesses to the processor. The MTRR mechanism simplifies hard-
ware designs by eliminating the KEN# pin and the external logic required to drive it.

See Chapter 9, “Processor Management and Initialization,” and Chapter 34, “Model-
Specific Registers (MSRs),” for more information on the MTRRs.

22.37.4 Machine-Check Exception and Architecture
The Pentium processor introduced a new exception called the machine-check excep-
tion (#MC, interrupt 18). This exception is used to detect hardware-related errors, 
such as a parity error on a read cycle. 

The P6 family processors extend the types of errors that can be detected and that 
generate a machine-check exception. It also provides a new machine-check architec-
ture for recording information about a machine-check error and provides extended 
recovery capability.

The machine-check architecture provides several banks of reporting registers for 
recording machine-check errors. Each bank of registers is associated with a specific 
hardware unit in the processor. The primary focus of the machine checks is on bus 
and interconnect operations; however, checks are also made of translation lookaside 
buffer (TLB) and cache operations.

The machine-check architecture can correct some errors automatically and allow for 
reliable restart of instruction execution. It also collects sufficient information for soft-
ware to use in correcting other machine errors not corrected by hardware.

See Chapter 15, “Machine-Check Architecture,” for more information on the 
machine-check exception and the machine-check architecture.

22.37.5 Performance-Monitoring Counters
The P6 family and Pentium processors provide two performance-monitoring counters 
for use in monitoring internal hardware operations. The number of performance 
monitoring counters and associated programming interfaces may be implementation 
specific for Pentium 4 processors, Pentium M processors. Later processors may have 
implemented these as part of an architectural performance monitoring feature. The 
architectural and non-architectural performance monitoring interfaces for different 
processor families are described in Chapter 18, “Performance Monitoring,”. Chapter 
19, “Performance-Monitoring Events.” lists all the events that can be counted for 
architectural performance monitoring events and non-architectural events. The 
counters are set up, started, and stopped using two MSRs and the RDMSR and 
WRMSR instructions. For the P6 family processors, the current count for a particular 
counter can be read using the new RDPMC instruction.
22-50 Vol. 3B



ARCHITECTURE COMPATIBILITY
The performance-monitoring counters are useful for debugging programs, optimizing 
code, diagnosing system failures, or refining hardware designs. See Chapter 18, 
“Performance Monitoring,” for more information on these counters.

22.38 TWO WAYS TO RUN INTEL 286 PROCESSOR TASKS
When porting 16-bit programs to run on 32-bit IA-32 processors, there are two 
approaches to consider:
• Porting an entire 16-bit software system to a 32-bit processor, complete with the 

old operating system, loader, and system builder. Here, all tasks will have 16-bit 
TSSs. The 32-bit processor is being used as if it were a faster version of the 16-bit 
processor.

• Porting selected 16-bit applications to run in a 32-bit processor environment with 
a 32-bit operating system, loader, and system builder. Here, the TSSs used to 
represent 286 tasks should be changed to 32-bit TSSs. It is possible to mix 16 
and 32-bit TSSs, but the benefits are small and the problems are great. All tasks 
in a 32-bit software system should have 32-bit TSSs. It is not necessary to 
change the 16-bit object modules themselves; TSSs are usually constructed by 
the operating system, by the loader, or by the system builder. See Chapter 21, 
“Mixing 16-Bit and 32-Bit Code,” for more detailed information about mixing 
16-bit and 32-bit code.

Because the 32-bit processors use the contents of the reserved word of 16-bit 
segment descriptors, 16-bit programs that place values in this word may not run 
correctly on the 32-bit processors.
Vol. 3B 22-51



ARCHITECTURE COMPATIBILITY
22-52 Vol. 3B


	Chapter 14 Power and Thermal Management
	14.1 Enhanced Intel Speedstep® Technology
	14.1.1 Software Interface For Initiating Performance State Transitions

	14.2 P-State Hardware Coordination
	14.3 System Software Considerations and Opportunistic processor Performance operation
	14.3.1 Intel Dynamic Acceleration
	14.3.2 System Software Interfaces for Opportunistic Processor Performance Operation
	14.3.2.1 Discover Hardware Support and Enabling of Opportunistic Processor Operation
	14.3.2.2 OS Control of Opportunistic Processor Performance Operation
	14.3.2.3 Required Changes to OS Power Management P-state Policy
	14.3.2.4 Application Awareness of Opportunistic Processor Operation (Optional)

	14.3.3 Intel Turbo Boost Technology
	14.3.4 Performance and Energy Bias Hint support

	14.4 MWAIT Extensions for Advanced Power Management
	14.5 Thermal Monitoring and Protection
	14.5.1 Catastrophic Shutdown Detector
	14.5.2 Thermal Monitor
	14.5.2.1 Thermal Monitor 1
	14.5.2.2 Thermal Monitor 2
	14.5.2.3 Two Methods for Enabling TM2
	14.5.2.4 Performance State Transitions and Thermal Monitoring
	14.5.2.5 Thermal Status Information
	14.5.2.6 Adaptive Thermal Monitor

	14.5.3 Software Controlled Clock Modulation
	14.5.3.1 Extension of Software Controlled Clock Modulation

	14.5.4 Detection of Thermal Monitor and Software Controlled Clock Modulation Facilities
	14.5.4.1 Detection of Software Controlled Clock Modulation Extension

	14.5.5 On Die Digital Thermal Sensors
	14.5.5.1 Digital Thermal Sensor Enumeration
	14.5.5.2 Reading the Digital Sensor

	14.5.6 Power Limit Notification

	14.6 Package Level Thermal Management
	14.6.1 Support for Passive and Active cooling

	14.7 Platform Specific Power Management Support
	14.7.1 RAPL Interfaces
	14.7.2 RAPL Domains and Platform Specificity
	14.7.3 Package RAPL Domain
	14.7.4 PP0/PP1 RAPL Domains
	14.7.5 DRAM RAPL Domain


	Chapter 15 Machine-Check Architecture
	15.1 Machine-Check Architecture
	15.2 Compatibility with Pentium Processor
	15.3 Machine-Check MSRs
	15.3.1 Machine-Check Global Control MSRs
	15.3.1.1 IA32_MCG_CAP MSR
	15.3.1.2 IA32_MCG_STATUS MSR
	15.3.1.3 IA32_MCG_CTL MSR

	15.3.2 Error-Reporting Register Banks
	15.3.2.1 IA32_MCi_CTL MSRs
	15.3.2.2 IA32_MCi_STATUS MSRS
	15.3.2.3 IA32_MCi_ADDR MSRs
	15.3.2.4 IA32_MCi_MISC MSRs
	15.3.2.5 IA32_MCi_CTL2 MSRs
	15.3.2.6 IA32_MCG Extended Machine Check State MSRs

	15.3.3 Mapping of the Pentium Processor Machine-Check Errors to the Machine-Check Architecture

	15.4 Enhanced Cache Error reporting
	15.5 Corrected Machine Check Error Interrupt
	15.5.1 CMCI Local APIC Interface
	15.5.2 System Software Recommendation for Managing CMCI and Machine Check Resources
	15.5.2.1 CMCI Initialization
	15.5.2.2 CMCI Threshold Management
	15.5.2.3 CMCI Interrupt Handler


	15.6 Recovery of Uncorrected Recoverable (UCR) Errors
	15.6.1 Detection of Software Error Recovery Support
	15.6.2 UCR Error Reporting and Logging
	15.6.3 UCR Error Classification
	15.6.4 UCR Error Overwrite Rules

	15.7 Machine-Check Availability
	15.8 Machine-Check Initialization
	15.9 Interpreting the MCA Error Codes
	15.9.1 Simple Error Codes
	15.9.2 Compound Error Codes
	15.9.2.1 Correction Report Filtering (F) Bit
	15.9.2.2 Transaction Type (TT) Sub-Field
	15.9.2.3 Level (LL) Sub-Field
	15.9.2.4 Request (RRRR) Sub-Field
	15.9.2.5 Bus and Interconnect Errors
	15.9.2.6 Memory Controller Errors

	15.9.3 Architecturally Defined UCR Errors
	15.9.3.1 Architecturally Defined SRAO Errors
	15.9.3.2 Architecturally Defined SRAR Errors

	15.9.4 Multiple MCA Errors
	15.9.5 Machine-Check Error Codes Interpretation

	15.10 Guidelines for Writing Machine-Check Software
	15.10.1 Machine-Check Exception Handler
	15.10.2 Pentium Processor Machine-Check Exception Handling
	15.10.3 Logging Correctable Machine-Check Errors
	15.10.4 Machine-Check Software Handler Guidelines for Error Recovery
	15.10.4.1 Machine-Check Exception Handler for Error Recovery
	15.10.4.2 Corrected Machine-Check Handler for Error Recovery



	Chapter 16 Interpreting Machine-Check Error Codes
	16.1 Incremental Decoding Information: Processor Family 06H Machine Error Codes For Machine Check
	16.2 Incremental Decoding Information: Intel Core 2 Processor Family Machine Error Codes For Machine Check
	16.2.1 Model-Specific Machine Check Error Codes for Intel Xeon Processor 7400 Series
	16.2.1.1 Processor Machine Check Status Register Incremental MCA Error Code Definition

	16.2.2 Intel Xeon Processor 7400 Model Specific Error Code Field
	16.2.2.1 Processor Model Specific Error Code Field Type B: Bus and Interconnect Error
	16.2.2.2 Processor Model Specific Error Code Field Type C: Cache Bus Controller Error


	16.3 Incremental Decoding Information: Processor Family with CPUID DisplayFamily_DisplayModel Signature 06_1AH, Machine Error Codes For Machine Check
	16.3.1 Intel QPI Machine Check Errors
	16.3.2 Internal Machine Check Errors
	16.3.3 Memory Controller Errors

	16.4 Incremental Decoding Information: Processor Family with CPUID DisplayFamily_DisplayModel Signature 06_2DH, Machine Error Codes For Machine Check
	16.4.1 Internal Machine Check Errors
	16.4.2 Intel QPI Machine Check Errors
	16.4.3 Integrated Memory Controller Machine Check Errors

	16.5 Incremental Decoding Information: Processor Family 0FH Machine Error Codes For Machine Check
	16.5.1 Model-Specific Machine Check Error Codes for Intel Xeon Processor MP 7100 Series
	16.5.1.1 Processor Machine Check Status Register MCA Error Code Definition

	16.5.2 Other_Info Field (all MCA Error Types)
	16.5.3 Processor Model Specific Error Code Field
	16.5.3.1 MCA Error Type A: L3 Error
	16.5.3.2 Processor Model Specific Error Code Field Type B: Bus and Interconnect Error
	16.5.3.3 Processor Model Specific Error Code Field Type C: Cache Bus Controller Error



	Chapter 17 Debugging, Branch Profiling, and Time-Stamp Counter
	17.1 Overview of Debug Support Facilities
	17.2 Debug Registers
	17.2.1 Debug Address Registers (DR0-DR3)
	17.2.2 Debug Registers DR4 and DR5
	17.2.3 Debug Status Register (DR6)
	17.2.4 Debug Control Register (DR7)
	17.2.5 Breakpoint Field Recognition
	17.2.6 Debug Registers and Intel® 64 Processors

	17.3 Debug Exceptions
	17.3.1 Debug Exception (#DB)-Interrupt Vector 1
	17.3.1.1 Instruction-Breakpoint Exception Condition
	17.3.1.2 Data Memory and I/O Breakpoint Exception Conditions
	17.3.1.3 General-Detect Exception Condition
	17.3.1.4 Single-Step Exception Condition
	17.3.1.5 Task-Switch Exception Condition

	17.3.2 Breakpoint Exception (#BP)-Interrupt Vector 3

	17.4 Last Branch, Interrupt, and Exception Recording Overview
	17.4.1 IA32_DEBUGCTL MSR
	17.4.2 Monitoring Branches, Exceptions, and Interrupts
	17.4.3 Single-Stepping on Branches
	17.4.4 Branch Trace Messages
	17.4.4.1 Branch Trace Message Visibility

	17.4.5 Branch Trace Store (BTS)
	17.4.6 CPL-Qualified Branch Trace Mechanism
	17.4.7 Freezing LBR and Performance Counters on PMI
	17.4.8 LBR Stack
	17.4.8.1 LBR Stack and Intel® 64 Processors
	17.4.8.2 LBR Stack and IA-32 Processors
	17.4.8.3 Last Exception Records and Intel 64 Architecture

	17.4.9 BTS and DS Save Area
	17.4.9.1 DS Save Area and IA-32e Mode Operation
	17.4.9.2 Setting Up the DS Save Area
	17.4.9.3 Setting Up the BTS Buffer
	17.4.9.4 Setting Up CPL-Qualified BTS
	17.4.9.5 Writing the DS Interrupt Service Routine


	17.5 Last Branch, Interrupt, and Exception Recording (Intel® Core™2 Duo and Intel® Atom™ Processor Family)
	17.5.1 LBR Stack

	17.6 Last Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchitecture code name Nehalem
	17.6.1 LBR Stack
	17.6.2 Filtering of Last Branch Records

	17.7 Last Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchitecture code name Sandy Bridge
	17.8 Last Branch, Interrupt, and Exception Recording (Processors based on Intel NetBurst® Microarchitecture)
	17.8.1 MSR_DEBUGCTLA MSR
	17.8.2 LBR Stack for Processors Based on Intel NetBurst® Microarchitecture
	17.8.3 Last Exception Records

	17.9 Last Branch, Interrupt, and Exception Recording (Intel® Core™ Solo and Intel® Core™ Duo Processors)
	17.10 Last Branch, Interrupt, and Exception Recording (Pentium M Processors)
	17.11 Last Branch, Interrupt, and Exception Recording (P6 Family Processors)
	17.11.1 DEBUGCTLMSR Register
	17.11.2 Last Branch and Last Exception MSRs
	17.11.3 Monitoring Branches, Exceptions, and Interrupts

	17.12 Time-Stamp Counter
	17.12.1 Invariant TSC
	17.12.2 IA32_TSC_AUX Register and RDTSCP Support


	Chapter 18 Performance Monitoring
	18.1 Performance Monitoring Overview
	18.2 Architectural Performance Monitoring
	18.2.1 Architectural Performance Monitoring Version 1
	18.2.1.1 Architectural Performance Monitoring Version 1 Facilities

	18.2.2 Additional Architectural Performance Monitoring Extensions
	18.2.2.1 Architectural Performance Monitoring Version 2 Facilities
	18.2.2.2 Architectural Performance Monitoring Version 3 Facilities
	18.2.2.3 Full-Width Writes to Performance Counter Registers

	18.2.3 Pre-defined Architectural Performance Events

	18.3 Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo Processors)
	18.4 Performance Monitoring (Processors Based on Intel® Core™ Microarchitecture)
	18.4.1 Fixed-function Performance Counters
	18.4.2 Global Counter Control Facilities
	18.4.3 At-Retirement Events
	18.4.4 Precise Event Based Sampling (PEBS)
	18.4.4.1 Setting up the PEBS Buffer
	18.4.4.2 PEBS Record Format
	18.4.4.3 Writing a PEBS Interrupt Service Routine
	18.4.4.4 Re-configuring PEBS Facilities


	18.5 Performance Monitoring (Processors Based on Intel® Atom™ Microarchitecture)
	18.6 Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name Nehalem
	18.6.1 Enhancements of Performance Monitoring in the Processor Core
	18.6.1.1 Precise Event Based Sampling (PEBS)
	18.6.1.2 Load Latency Performance Monitoring Facility
	18.6.1.3 Off-core Response Performance Monitoring in the Processor Core

	18.6.2 Performance Monitoring Facility in the Uncore
	18.6.2.1 Uncore Performance Monitoring Management Facility
	18.6.2.2 Uncore Performance Event Configuration Facility
	18.6.2.3 Uncore Address/Opcode Match MSR

	18.6.3 Intel Xeon Processor 7500 Series Performance Monitoring Facility

	18.7 Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name Westmere
	18.7.1 Intel Xeon Processor E7 Family Performance Monitoring Facility

	18.8 Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name Sandy Bridge
	18.8.1 Global Counter Control Facilities In Intel® Microarchitecture Code Name Sandy Bridge
	18.8.2 Counter Coalescence
	18.8.3 Full Width Writes to Performance Counters
	18.8.4 PEBS Support in Intel® microarchitecture code name Sandy Bridge
	18.8.4.1 PEBS Record Format
	18.8.4.2 Load Latency Performance Monitoring Facility
	18.8.4.3 Precise Store Facility
	18.8.4.4 Precise Distribution of Instructions Retired (PDIR)

	18.8.5 Off-core Response Performance Monitoring
	18.8.6 Uncore Performance Monitoring Facilities In Intel® Core i7, i5, i3 Processors 2xxx Series
	18.8.6.1 Uncore Performance Monitoring Events

	18.8.7 Next Generation Intel Xeon Processor Performance Monitoring Facility

	18.9 Next Generation Intel Core Processor Performance Monitoring Facility
	18.10 Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture)
	18.10.1 ESCR MSRs
	18.10.2 Performance Counters
	18.10.3 CCCR MSRs
	18.10.4 Debug Store (DS) Mechanism
	18.10.5 Programming the Performance Counters for Non-Retirement Events
	18.10.5.1 Selecting Events to Count
	18.10.5.2 Filtering Events
	18.10.5.3 Starting Event Counting
	18.10.5.4 Reading a Performance Counter’s Count
	18.10.5.5 Halting Event Counting
	18.10.5.6 Cascading Counters
	18.10.5.7 EXTENDED CASCADING
	18.10.5.8 Generating an Interrupt on Overflow
	18.10.5.9 Counter Usage Guideline

	18.10.6 At-Retirement Counting
	18.10.6.1 Using At-Retirement Counting
	18.10.6.2 Tagging Mechanism for Front_end_event
	18.10.6.3 Tagging Mechanism For Execution_event
	18.10.6.4 Tagging Mechanism for Replay_event

	18.10.7 Precise Event-Based Sampling (PEBS)
	18.10.7.1 Detection of the Availability of the PEBS Facilities
	18.10.7.2 Setting Up the DS Save Area
	18.10.7.3 Setting Up the PEBS Buffer
	18.10.7.4 Writing a PEBS Interrupt Service Routine
	18.10.7.5 Other DS Mechanism Implications

	18.10.8 Operating System Implications

	18.11 Performance Monitoring and Intel Hyper- Threading Technology in Processors Based on Intel NetBurst® Microarchitecture
	18.11.1 ESCR MSRs
	18.11.2 CCCR MSRs
	18.11.3 IA32_PEBS_ENABLE MSR
	18.11.4 Performance Monitoring Events

	18.12 Counting Clocks
	18.12.1 Non-Halted Clockticks
	18.12.2 Non-Sleep Clockticks
	18.12.3 Incrementing the Time-Stamp Counter
	18.12.4 Non-Halted Reference Clockticks
	18.12.5 Cycle Counting and Opportunistic Processor Operation

	18.13 Performance Monitoring, Branch Profiling and System Events
	18.14 Performance Monitoring and Dual-Core Technology
	18.15 Performance Monitoring on 64-bit Intel Xeon Processor MP with Up to 8-MByte L3 Cache
	18.16 Performance Monitoring on L3 and Caching Bus Controller sub-systems
	18.16.1 Overview of Performance Monitoring with L3/Caching Bus Controller
	18.16.2 GBSQ Event Interface
	18.16.3 GSNPQ Event Interface
	18.16.4 FSB Event Interface
	18.16.4.1 FSB Sub-Event Mask Interface

	18.16.5 Common Event Control Interface

	18.17 Performance Monitoring (P6 Family Processor)
	18.17.1 PerfEvtSel0 and PerfEvtSel1 MSRs
	18.17.2 PerfCtr0 and PerfCtr1 MSRs
	18.17.3 Starting and Stopping the Performance-Monitoring Counters
	18.17.4 Event and Time-Stamp Monitoring Software
	18.17.5 Monitoring Counter Overflow

	18.18 Performance Monitoring (Pentium Processors)
	18.18.1 Control and Event Select Register (CESR)
	18.18.2 Use of the Performance-Monitoring Pins
	18.18.3 Events Counted


	Chapter 19 Performance-Monitoring Events
	19.1 Architectural Performance-Monitoring Events
	19.2 Performance Monitoring Events for Next Generation Intel® Core™ ProcessorS
	19.3 Performance Monitoring Events for Intel® Core™ Processor 2xxx Series
	19.4 Performance Monitoring Events for Intel® Core™i7 Processor Family and Xeon Processor Family
	19.5 Performance Monitoring Events for processors based on Intel® microarchitecture Code Name Westmere
	19.6 Performance Monitoring Events for Intel® Xeon® Processor 5200, 5400 Series and Intel® Core™2 Extreme Processors QX 9000 Series
	19.7 Performance Monitoring Events for Intel® Xeon® Processor 3000, 3200, 5100, 5300 Series and Intel® Core™2 Duo ProcessorS
	19.8 Performance Monitoring Events for Intel® Atom™ Processors
	19.9 Performance Monitoring Events for Intel® Core™ Solo and Intel® Core™ Duo Processors
	19.10 Pentium 4 and Intel Xeon Processor Performance-Monitoring Events
	19.11 Performance Monitoring Events for Intel® Pentium® M Processors
	19.12 P6 Family Processor Performance- Monitoring Events
	19.13 Pentium Processor Performance- Monitoring Events

	Chapter 20 8086 Emulation
	20.1 Real-Address Mode
	20.1.1 Address Translation in Real-Address Mode
	20.1.2 Registers Supported in Real-Address Mode
	20.1.3 Instructions Supported in Real-Address Mode
	20.1.4 Interrupt and Exception Handling

	20.2 Virtual-8086 Mode
	20.2.1 Enabling Virtual-8086 Mode
	20.2.2 Structure of a Virtual-8086 Task
	20.2.3 Paging of Virtual-8086 Tasks
	20.2.4 Protection within a Virtual-8086 Task
	20.2.5 Entering Virtual-8086 Mode
	20.2.6 Leaving Virtual-8086 Mode
	20.2.7 Sensitive Instructions
	20.2.8 Virtual-8086 Mode I/O
	20.2.8.1 I/O-Port-Mapped I/O
	20.2.8.2 Memory-Mapped I/O
	20.2.8.3 Special I/O Buffers


	20.3 Interrupt and Exception Handling in Virtual-8086 Mode
	20.3.1 Class 1-Hardware Interrupt and Exception Handling in Virtual-8086 Mode
	20.3.1.1 Handling an Interrupt or Exception Through a Protected-Mode Trap or Interrupt Gate
	20.3.1.2 Handling an Interrupt or Exception With an 8086 Program Interrupt or Exception Handler
	20.3.1.3 Handling an Interrupt or Exception Through a Task Gate

	20.3.2 Class 2-Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt Mechanism
	20.3.3 Class 3-Software Interrupt Handling in Virtual-8086 Mode
	20.3.3.1 Method 1: Software Interrupt Handling
	20.3.3.2 Methods 2 and 3: Software Interrupt Handling
	20.3.3.3 Method 4: Software Interrupt Handling
	20.3.3.4 Method 5: Software Interrupt Handling
	20.3.3.5 Method 6: Software Interrupt Handling


	20.4 Protected-Mode Virtual Interrupts

	Chapter 21 Mixing 16-Bit and 32-Bit Code
	21.1 Defining 16-Bit and 32-Bit Program Modules
	21.2 Mixing 16-Bit and 32-Bit Operations Within a Code Segment
	21.3 Sharing Data Among Mixed-Size Code Segments
	21.4 Transferring Control Among Mixed-Size Code Segments
	21.4.1 Code-Segment Pointer Size
	21.4.2 Stack Management for Control Transfer
	21.4.2.1 Controlling the Operand-Size Attribute For a Call
	21.4.2.2 Passing Parameters With a Gate

	21.4.3 Interrupt Control Transfers
	21.4.4 Parameter Translation
	21.4.5 Writing Interface Procedures


	Chapter 22 Architecture Compatibility
	22.1 Processor Families and Categories
	22.2 Reserved Bits
	22.3 Enabling New Functions and Modes
	22.4 Detecting the Presence of New Features Through Software
	22.5 Intel MMX Technology
	22.6 Streaming SIMD Extensions (SSE)
	22.7 Streaming SIMD Extensions 2 (SSE2)
	22.8 Streaming SIMD Extensions 3 (SSE3)
	22.9 Additional Streaming SIMD Extensions
	22.10 Intel Hyper-Threading Technology
	22.11 Multi-Core Technology
	22.12 Specific Features of Dual-Core Processor
	22.13 New Instructions In the Pentium and Later IA-32 Processors
	22.13.1 Instructions Added Prior to the Pentium Processor

	22.14 Obsolete Instructions
	22.15 Undefined Opcodes
	22.16 New Flags in the EFLAGS Register
	22.16.1 Using EFLAGS Flags to Distinguish Between 32-Bit IA-32 Processors

	22.17 Stack Operations
	22.17.1 PUSH SP
	22.17.2 EFLAGS Pushed on the Stack

	22.18 x87 FPU
	22.18.1 Control Register CR0 Flags
	22.18.2 x87 FPU Status Word
	22.18.2.1 Condition Code Flags (C0 through C3)
	22.18.2.2 Stack Fault Flag

	22.18.3 x87 FPU Control Word
	22.18.4 x87 FPU Tag Word
	22.18.5 Data Types
	22.18.5.1 NaNs
	22.18.5.2 Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal Formats

	22.18.6 Floating-Point Exceptions
	22.18.6.1 Denormal Operand Exception (#D)
	22.18.6.2 Numeric Overflow Exception (#O)
	22.18.6.3 Numeric Underflow Exception (#U)
	22.18.6.4 Exception Precedence
	22.18.6.5 CS and EIP For FPU Exceptions
	22.18.6.6 FPU Error Signals
	22.18.6.7 Assertion of the FERR# Pin
	22.18.6.8 Invalid Operation Exception On Denormals
	22.18.6.9 Alignment Check Exceptions (#AC)
	22.18.6.10 Segment Not Present Exception During FLDENV
	22.18.6.11 Device Not Available Exception (#NM)
	22.18.6.12 Coprocessor Segment Overrun Exception
	22.18.6.13 General Protection Exception (#GP)
	22.18.6.14 Floating-Point Error Exception (#MF)

	22.18.7 Changes to Floating-Point Instructions
	22.18.7.1 FDIV, FPREM, and FSQRT Instructions
	22.18.7.2 FSCALE Instruction
	22.18.7.3 FPREM1 Instruction
	22.18.7.4 FPREM Instruction
	22.18.7.5 FUCOM, FUCOMP, and FUCOMPP Instructions
	22.18.7.6 FPTAN Instruction
	22.18.7.7 Stack Overflow
	22.18.7.8 FSIN, FCOS, and FSINCOS Instructions
	22.18.7.9 FPATAN Instruction
	22.18.7.10 F2XM1 Instruction
	22.18.7.11 FLD Instruction
	22.18.7.12 FXTRACT Instruction
	22.18.7.13 Load Constant Instructions
	22.18.7.14 FSETPM Instruction
	22.18.7.15 FXAM Instruction
	22.18.7.16 FSAVE and FSTENV Instructions

	22.18.8 Transcendental Instructions
	22.18.9 Obsolete Instructions
	22.18.10 WAIT/FWAIT Prefix Differences
	22.18.11 Operands Split Across Segments and/or Pages
	22.18.12 FPU Instruction Synchronization

	22.19 Serializing Instructions
	22.20 FPU and Math Coprocessor Initialization
	22.20.1 Intel® 387 and Intel® 287 Math Coprocessor Initialization
	22.20.2 Intel486 SX Processor and Intel 487 SX Math Coprocessor Initialization

	22.21 Control Registers
	22.22 Memory Management Facilities
	22.22.1 New Memory Management Control Flags
	22.22.1.1 Physical Memory Addressing Extension
	22.22.1.2 Global Pages
	22.22.1.3 Larger Page Sizes

	22.22.2 CD and NW Cache Control Flags
	22.22.3 Descriptor Types and Contents
	22.22.4 Changes in Segment Descriptor Loads

	22.23 Debug Facilities
	22.23.1 Differences in Debug Register DR6
	22.23.2 Differences in Debug Register DR7
	22.23.3 Debug Registers DR4 and DR5

	22.24 Recognition of Breakpoints
	22.25 Exceptions and/or Exception Conditions
	22.25.1 Machine-Check Architecture
	22.25.2 Priority of Exceptions
	22.25.3 Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers

	22.26 Interrupts
	22.26.1 Interrupt Propagation Delay
	22.26.2 NMI Interrupts
	22.26.3 IDT Limit

	22.27 Advanced Programmable Interrupt Controller (APIC)
	22.27.1 Software Visible Differences Between the Local APIC and the 82489DX
	22.27.2 New Features Incorporated in the Local APIC for the P6 Family and Pentium Processors
	22.27.3 New Features Incorporated in the Local APIC of the Pentium 4 and Intel Xeon Processors

	22.28 Task Switching and TSs
	22.28.1 P6 Family and Pentium Processor TSS
	22.28.2 TSS Selector Writes
	22.28.3 Order of Reads/Writes to the TSS
	22.28.4 Using A 16-Bit TSS with 32-Bit Constructs
	22.28.5 Differences in I/O Map Base Addresses

	22.29 Cache Management
	22.29.1 Self-Modifying Code with Cache Enabled
	22.29.2 Disabling the L3 Cache

	22.30 Paging
	22.30.1 Large Pages
	22.30.2 PCD and PWT Flags
	22.30.3 Enabling and Disabling Paging

	22.31 Stack Operations
	22.31.1 Selector Pushes and Pops
	22.31.2 Error Code Pushes
	22.31.3 Fault Handling Effects on the Stack
	22.31.4 Interlevel RET/IRET From a 16-Bit Interrupt or Call Gate

	22.32 Mixing 16- and 32-Bit Segments
	22.33 Segment and Address Wraparound
	22.33.1 Segment Wraparound

	22.34 Store Buffers and Memory Ordering
	22.35 Bus Locking
	22.36 Bus Hold
	22.37 Model-Specific Extensions to the IA-32
	22.37.1 Model-Specific Registers
	22.37.2 RDMSR and WRMSR Instructions
	22.37.3 Memory Type Range Registers
	22.37.4 Machine-Check Exception and Architecture
	22.37.5 Performance-Monitoring Counters

	22.38 Two Ways to Run Intel 286 Processor Tasks


