intel.

Intel® 64 and IA-32 Architectures
Software Developer's Manual

Volume 3B:
System Programming Guide, Part 2

NOTE: The Intef® 64 and IA-32 Architectures Software Developer's Manual consists of ten volumes:
Basic Architecture, Order Number 253665; Instruction Set Reference A-L, Order Number 253666;
Instruction Set Reference M-U, Order Number 253667; Instruction Set Reference V-Z, Order Number
326018; Instruction Set Reference, Order Number 334569; System Programming Guide, Part 1, Order
Number 253668; System Programming Guide, Part 2, Order Number 253669; System Programming
Guide, Part 3, Order Number 326019; System Programming Guide, Part 4, Order Number 332831;
Model-Specific Registers, Order Number 335592. Refer to all ten volumes when evaluating your design
needs.

Order Number: 253669-065US
December 2017

Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Learn
more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting
from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products
described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject
matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifica-
tions. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is subject to change
without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-
800-548-4725, or by visiting http://www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation in the U.S.
and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 1997-2017, Intel Corporation. All Rights Reserved.

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

CHAPTER 14
POWER AND THERMAL MANAGEMENT

This chapter describes facilities of Intel 64 and IA-32 architecture used for power management and thermal moni-
toring.

14.1 ENHANCED INTEL SPEEDSTEP® TECHNOLOGY

Enhanced Intel SpeedStep® Technology was introduced in the Pentium M processor. The technology enables the
management of processor power consumption via performance state transitions. These states are defined as
discrete operating points associated with different voltages and frequencies.

Enhanced Intel SpeedStep Technology differs from previous generations of Intel SpeedStep Technology in two
ways:

®* Centralization of the control mechanism and software interface in the processor by using model-specific
registers.

® Reduced hardware overhead; this permits more frequent performance state transitions.

Previous generations of the Intel SpeedStep Technology require processors to be a deep sleep state, holding off bus
master transfers for the duration of a performance state transition. Performance state transitions under the
Enhanced Intel SpeedStep Technology are discrete transitions to a new target frequency.

Support is indicated by CPUID, using ECX feature bit 07. Enhanced Intel SpeedStep Technology is enabled by
setting IA32_MISC_ENABLE MSR, bit 16. On reset, bit 16 of IA32_MISC_ENABLE MSR is cleared.

14.1.1 Software Interface For Initiating Performance State Transitions

State transitions are initiated by writing a 16-bit value to the IA32_PERF_CTL register, see Figure 14-2. If a transi-
tion is already in progress, transition to a new value will subsequently take effect.

Reads of IA32_PERF_CTL determine the last targeted operating point. The current operating point can be read from
IA32_PERF_STATUS. IA32_PERF_STATUS is updated dynamically.

The 16-bit encoding that defines valid operating points is model-specific. Applications and performance tools are
not expected to use either IA32_PERF_CTL or IA32_PERF_STATUS and should treat both as reserved. Performance
monitoring tools can access model-specific events and report the occurrences of state transitions.

14.2 P-STATE HARDWARE COORDINATION

The Advanced Configuration and Power Interface (ACPI) defines performance states (P-states) that are used to
facilitate system software’s ability to manage processor power consumption. Different P-states correspond to
different performance levels that are applied while the processor is actively executing instructions. Enhanced Intel
SpeedStep Technology supports P-states by providing software interfaces that control the operating frequency and
voltage of a processor.

With multiple processor cores residing in the same physical package, hardware dependencies may exist for a
subset of logical processors on a platform. These dependencies may impose requirements that impact the coordi-
nation of P-state transitions. As a result, multi-core processors may require an OS to provide additional software
support for coordinating P-state transitions for those subsets of logical processors.

ACPI firmware can choose to expose P-states as dependent and hardware-coordinated to OS power management
(OSPM) policy. To support OSPMs, multi-core processors must have additional built-in support for P-state hardware
coordination and feedback.

Intel 64 and IA-32 processors with dependent P-states amongst a subset of logical processors permit hardware
coordination of P-states and provide a hardware-coordination feedback mechanism using IA32_MPERF MSR and

Vol.3B 14-1

POWER AND THERMAL MANAGEMENT

IA32_APERF MSR. See Figure 14-1 for an overview of the two 64-bit MSRs and the bullets below for a detailed
description:

63 0 63 0

IA32_MPERF (Addr: E7H) IA32_APERF (Addr: E8H)

Figure 14-1. IA32_MPERF MSR and IA32_APERF MSR for P-state Coordination

® Use CPUID to check the P-State hardware coordination feedback capability bit. CPUID.06H.ECX[Bit 0] = 1
indicates IA32_MPERF MSR and IA32_APERF MSR are present.

®* IA32_MPERF MSR (E7H) increments in proportion to a fixed frequency, which is configured when the processor
is booted.

®* IA32_APERF MSR (E8H) increments in proportion to actual performance, while accounting for hardware coordi-
nation of P-state and TM1/TM2; or software initiated throttling.

® The MSRs are per logical processor; they measure performance only when the targeted processor is in the CO
state.

®* Only the IA32_APERF/IA32_MPERF ratio is architecturally defined; software should not attach meaning to the
content of the individual of IA32_APERF or IA32_MPERF MSRs.

®* When either MSR overflows, both MSRs are reset to zero and continue to increment.

®* Both MSRs are full 64-bits counters. Each MSR can be written to independently. However, software should
follow the guidelines illustrated in Example 14-1.

If P-states are exposed by the BIOS as hardware coordinated, software is expected to confirm processor support
for P-state hardware coordination feedback and use the feedback mechanism to make P-state decisions. The OSPM
is expected to either save away the current MSR values (for determination of the delta of the counter ratio at a later
time) or reset both MSRs (execute WRMSR with 0 to these MSRs individually) at the start of the time window used
for making the P-state decision. When not resetting the values, overflow of the MSRs can be detected by checking
whether the new values read are less than the previously saved values.

Example 14-1 demonstrates steps for using the hardware feedback mechanism provided by IA32_APERF MSR and
IA32_MPERF MSR to determine a target P-state.

Example 14-1. Determine Target P-state From Hardware Coordinated Feedback

DWORD PercentBusy; // Percentage of processor time not idle.
// Measure “PercentBusy” during previous sampling window.
// Typically, “PercentBusy” is measure over a time scale suitable for
// power management decisions
/!
// RDMSR of MCNT and ACNT should be performed without delay.
// Software needs to exercise care to avoid delays between
// the two RDMSRs (for example, interrupts).
MCNT = RDMSR(IA32_MPERF);
ACNT = RDMSR(IA32_APERF);

// PercentPerformance indicates the percentage of the processor
// that is in use. The calculation is based on the PercentBusy,

// that is the percentage of processor time not idle and the P-state
// hardware coordinated feedback using the ACNT/MCNT ratio.

// Note that both values need to be calculated over the same

14-2 Vol. 3B

POWER AND THERMAL MANAGEMENT

/I time window.
PercentPerformance = PercentBusy * (ACNT/MCNT);

// This example does not cover the additional logic or algorithms
// necessary to coordinate multiple logical processors to a target P-state.

TargetPstate = FindPstate(PercentPerformance);

if (TargetPstate # currentPstate) {
SetPState(TargetPstate);
}
// WRMSR of MCNT and ACNT should be performed without delay.
// Software needs to exercise care to avoid delays between
/1 the two WRMSRs (for example, interrupts).
WRMSR(IA32_MPEREF, 0);
WRMSR(IA32_APERF, 0);

14.3 SYSTEM SOFTWARE CONSIDERATIONS AND OPPORTUNISTIC PROCESSOR
PERFORMANCE OPERATION

An Intel 64 processor may support a form of processor operation that takes advantage of design headroom to
opportunistically increase performance. The Intel Turbo Boost Technology can convert thermal headroom into
higher performance across multi-threaded and single-threaded workloads. The Intel Dynamic Acceleration feature
can convert thermal headroom into higher performance if only one thread is active.

14.3.1 Intel Dynamic Acceleration

Intel Core 2 Duo processor T 7700 introduces Intel Dynamic Acceleration (IDA). IDA takes advantage of thermal
design headroom and opportunistically allows a single core to operate at a higher performance level when the
operating system requests increased performance.

14.3.2 System Software Interfaces for Opportunistic Processor Performance Operation

Opportunistic processor performance operation, applicable to Intel Dynamic Acceleration and Intel Turbo Boost
Technology, has the following characteristics:

®* A transition from a normal state of operation (e.g. IDA/Turbo mode disengaged) to a target state is not
guaranteed, but may occur opportunistically after the corresponding enable mechanism is activated, the
headroom is available and certain criteria are met.

®* The opportunistic processor performance operation is generally transparent to most application software.

* System software (BIOS and Operating system) must be aware of hardware support for opportunistic processor
performance operation and may need to temporarily disengage opportunistic processor performance operation
when it requires more predictable processor operation.

®* When opportunistic processor performance operation is engaged, the OS should use hardware coordination
feedback mechanisms to prevent un-intended policy effects if it is activated during inappropriate situations.

14.3.2.1 Discover Hardware Support and Enabling of Opportunistic Processor Performance Operation

If an Intel 64 processor has hardware support for opportunistic processor performance operation, the power-on
default state of IA32_MISC_ENABLE[38] indicates the presence of such hardware support. For Intel 64 processors
that support opportunistic processor performance operation, the default value is 1, indicating its presence. For
processors that do not support opportunistic processor performance operation, the default value is 0. The power-

Vol.3B 14-3

POWER AND THERMAL MANAGEMENT

on default value of IA32_MISC_ENABLE[38] allows BIOS to detect the presence of hardware support of opportu-
nistic processor performance operation.

IA32_MISC_ENABLE[38] is shared across all logical processors in a physical package. It is written by BIOS during
platform initiation to enable/disable opportunistic processor performance operation in conjunction of OS power
management capabilities, see Section 14.3.2.2. BIOS can set IA32_MISC_ENABLE[38] with 1 to disable opportu-
nistic processor performance operation; it must clear the default value of IA32_MISC_ENABLE[38] to 0 to enable
opportunistic processor performance operation. OS and applications must use CPUID leaf 06H if it needs to detect
processors that have opportunistic processor performance operation enabled.

When CPUID is executed with EAX = 06H on input, Bit 1 of EAX in Leaf 06H (i.e. CPUID.06H:EAX[1]) indicates
opportunistic processor performance operation, such as IDA, has been enabled by BIOS.

Opportunistic processor performance operation can be disabled by setting bit 38 of IA32_MISC_ENABLE. This
mechanism is intended for BIOS only. If IA32_MISC_ENABLE[38] is set, CPUID.06H:EAX[1] will return 0.

14.3.2.2 0S Control of Opportunistic Processor Performance Operation

There may be phases of software execution in which system software cannot tolerate the non-deterministic aspects
of opportunistic processor performance operation. For example, when calibrating a real-time workload to make a
CPU reservation request to the OS, it may be undesirable to allow the possibility of the processor delivering
increased performance that cannot be sustained after the calibration phase.

System software can temporarily disengage opportunistic processor performance operation by setting bit 32 of the
IA32_PERF_CTL MSR (0199H), using a read-modify-write sequence on the MSR. The opportunistic processor
performance operation can be re-engaged by clearing bit 32 in IA32_PERF_CTL MSR, using a read-modify-write
sequence. The DISENAGE bit in IA32_PERF_CTL is not reflected in bit 32 of the IA32_PERF_STATUS MSR (0198H),
and it is not shared between logical processors in a physical package. In order for OS to engage IDA/Turbo mode,
the BIOS must

® enable opportunistic processor performance operation, as described in Section 14.3.2.1,
® expose the operating points associated with IDA/Turbo mode to the OS.

63 3332 31 16 15 0

Reserved

IDA/Turbo DISENGAGE4

Enhanced Intel Speedstep Technology Transition Target

Figure 14-2. IA32_PERF_CTL Register

14.3.2.3 Required Changes to OS Power Management P-state Policy

Intel Dynamic Acceleration (IDA) and Intel Turbo Boost Technology can provide opportunistic performance greater
than the performance level corresponding to the Processor Base frequency of the processor (see CPUID’s processor
frequency information). System software can use a pair of MSRs to observe performance feedback. Software must
query for the presence of IA32_APERF and IA32_MPERF (see Section 14.2). The ratio between IA32_APERF and
IA32_MPEREF is architecturally defined and a value greater than unity indicates performance increase occurred
during the observation period due to IDA. Without incorporating such performance feedback, the target P-state
evaluation algorithm can result in a non-optimal P-state target.

There are other scenarios under which OS power management may want to disable IDA, some of these are listed
below:

®* When engaging ACPI defined passive thermal management, it may be more effective to disable IDA for the
duration of passive thermal management.

14-4 Vol.3B

POWER AND THERMAL MANAGEMENT

®* When the user has indicated a policy preference of power savings over performance, OS power management
may want to disable IDA while that policy is in effect.

14.3.3 Intel Turbo Boost Technology

Intel Turbo Boost Technology is supported in Intel Core i7 processors and Intel Xeon processors based on Intel®
microarchitecture code name Nehalem. It uses the same principle of leveraging thermal headroom to dynamically
increase processor performance for single-threaded and multi-threaded/multi-tasking environment. The program-
ming interface described in Section 14.3.2 also applies to Intel Turbo Boost Technology.

14.3.4 Performance and Energy Bias Hint support

Intel 64 processors may support additional software hint to guide the hardware heuristic of power management
features to favor increasing dynamic performance or conserve energy consumption.

Software can detect the processor's capability to support the performance-energy bias preference hint by exam-
ining bit 3 of ECX in CPUID leaf 6. The processor supports this capability if CPUID.06H:ECX.SETBH[bit 3] is set and
it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0OH).

Software can program the lowest four bits of IA32_ENERGY_PERF_BIAS MSR with a value from 0 - 15. The values
represent a sliding scale, where a value of 0 (the default reset value) corresponds to a hint preference for highest
performance and a value of 15 corresponds to the maximum energy savings. A value of 7 roughly translates into a
hint to balance performance with energy consumption.

63 43 0

Reserved

Energy Policy Preference Hint

Figure 14-3. IA32_ENERGY_PERF_BIAS Register

The layout of IA32_ENERGY_PERF_BIAS is shown in Figure 14-3. The scope of IA32_ENERGY_PERF_BIAS is per
logical processor, which means that each of the logical processors in the package can be programmed with a
different value. This may be especially important in virtualization scenarios, where the performance / energy
requirements of one logical processor may differ from the other. Conflicting “hints” from various logical processors
at higher hierarchy level will be resolved in favor of performance over energy savings.

Software can use whatever criteria it sees fit to program the MSR with an appropriate value. However, the value
only serves as a hint to the hardware and the actual impact on performance and energy savings is model specific.

144 HARDWARE-CONTROLLED PERFORMANCE STATES (HWP)

Intel processors may contain support for Hardware-Controlled Performance States (HWP), which autonomously
selects performance states while utilizing OS supplied performance guidance hints. The Enhanced Intel Speed-
Step® Technology provides a means for the OS to control and monitor discrete frequency-based operating points
via the IA32_PERF_CTL and IA32_PERF_STATUS MSRs.

In contrast, HWP is an implementation of the ACPI-defined Collaborative Processor Performance Control (CPPC),
which specifies that the platform enumerate a continuous, abstract unit-less, performance value scale that is not
tied to a specific performance state / frequency by definition. While the enumerated scale is roughly linear in terms
of a delivered integer workload performance result, the OS is required to characterize the performance value range
to comprehend the delivered performance for an applied workload.

Vol.3B 14-5

POWER AND THERMAL MANAGEMENT

When HWP is enabled, the processor autonomously selects performance states as deemed appropriate for the

applied

workload and with consideration of constraining hints that are programmed by the OS. These OS-provided

hints include minimum and maximum performance limits, preference towards energy efficiency or performance,
and the specification of a relevant workload history observation time window. The means for the OS to override
HWP's autonomous selection of performance state with a specific desired performance target is also provided,
however, the effective frequency delivered is subject to the result of energy efficiency and performance optimiza-

tions.

14.4.1

HWP Programming Interfaces

The programming interfaces provided by HWP include the following:

® The CPUID instruction allows software to discover the presence of HWP support in an Intel processor. Specifi-
cally, execute CPUID instruction with EAX=06H as input will return 5 bit flags covering the following aspects in
bits 7 through 11 of CPUID.06H:EAX:

Availability of HWP baseline resource and capability, CPUID.06H:EAX[bit 7]: If this bit is set, HWP provides
several new architectural MSRs: IA32_PM_ENABLE, IA32_HWP_CAPABILITIES, IA32_HWP_REQUEST,
IA32_HWP_STATUS.

Availability of HWP Notification upon dynamic Guaranteed Performance change, CPUID.06H:EAX[bit 8]: If
this bit is set, HWP provides IA32_HWP_INTERRUPT MSR to enable interrupt generation due to dynamic
Performance changes and excursions.

Availability of HWP Activity window control, CPUID.06H:EAX[bit 9]: If this bit is set, HWP allows software to
program activity window in the IA32_HWP_REQUEST MSR.

Availability of HWP energy/performance preference control, CPUID.06H:EAX[bit 10]: If this bit is set, HWP
allows software to set an energy/performance preference hint in the IA32_HWP_REQUEST MSR.

Availability of HWP package level control, CPUID.06H:EAX[bit 11]:If this bit is set, HWP provides the
IA32_HWP_REQUEST_PKG MSR to convey OS Power Management’s control hints for all logical processors
in the physical package.

Table 14-1. Architectural and Non-Architectural MSRs Related to HWP

Address | Archite Register Name Description
ctural

770H Y IA32_PM_ENABLE Enable/Disable HWP.

771H Y IA32_HWP_CAPABILITIES Enumerates the HWP performance range (static and dynamic).

772H Y IA32_HWP_REQUEST_PKG Conveys OSPM's control hints (Min, Max, Activity Window, Energy
Performance Preference, Desired) for all logical processor in the physical
package.

773H Y IA32_HWP_INTERRUPT Controls HWP native interrupt generation (Guaranteed Performance
changes, excursions).

774H Y IA32_HWP_REQUEST Conveys OSPM's control hints (Min, Max, Activity Window, Energy
Performance Preference, Desired) for a single logical processor.

777H Y IA32_HWP_STATUS Status bits indicating changes to Guaranteed Performance and
excursions to Minimum Performance.

19CH Y IA32_THERM_STATUS|bits 15:12] | Conveys reasons for performance excursions

64€EH N MSR_PPERF Productive Performance Count.

* Additionally, HWP may provide a non-architectural MSR, MSR_PPERF, which provides a quantitative metric to
software of hardware’s view of workload scalability. This hardware’s view of workload scalability is implemen-
tation specific.

14-6 Vol. 3B

POWER AND THERMAL MANAGEMENT

14.4.2 Enabling HWP
The layout of the IA32_PM_ENABLE MSR is shown in Figure 14-4. The bit fields are described below:

63 10

Reserved

HWP_ENABLE

|:| Reserved

Figure 14-4. IA32_PM_ENABLE MSR

* HWP_ENABLE (bit 0, R/ZW10nce) — Software sets this bit to enable HWP with autonomous selection. When
set, the processor will disregard input from the legacy performance control interface (IA32_PERF_CTL). Note
this bit can only be enabled once from the default value. Once set, writes to the HWP_ENABLE bit are ignored.
Only RESET will clear this bit. Default = zero (0).

® Bits 63:1 are reserved and must be zero.

After software queries CPUID and verifies the processor’s support of HWP, system software can write 1 to
IA32_PM_ENABLE.HWP_ENABLE (bit 0) to enable hardware controlled performance states. The default value of
IA32_PM_ENABLE MSR at power-on is 0, i.e. HWP is disabled.

Additional MSRs associated with HWP may only be accessed after HWP is enabled, with the exception of
IA32_HWP_INTERRUPT and MSR_PPERF. Accessing the IA32_HWP_INTERRUPT MSR requires only HWP is present
as enumerated by CPUID but does not require enabling HWP.

IA32_PM_ENABLE is a package level MSR, i.e. writing to it from any logical processor within a package affects all
logical processors within that package.

14.4.3 HWP Performance Range and Dynamic Capabilities

The OS reads the IA32_HWP_CAPABILITIES MSR to comprehend the limits of the HWP-managed performance
range as well as the dynamic capability, which may change during processor operation. The enumerated perfor-
mance range values reported by IA32_HWP_CAPABILITIES directly map to initial frequency targets (prior to work-
load-specific frequency optimizations of HWP). However the mapping is processor family specific.

The layout of the IA32_HWP_CAPABILITIES MSR is shown in Figure 14-5. The bit fields are described below:

63 23 248 16 15 8 7 0

Reserved

Lowest_Performance

Most_Efficient_Performance
Guaranteed_Performance
Highest_Performance

Figure 14-5. IA32_HWP_CAPABILITIES Register

®* Highest_Performance (bits 7:0, RO) — Value for the maximum non-guaranteed performance level.

® Guaranteed_Performance (bits 15:8, RO) — Current value for the guaranteed performance level. This
value can change dynamically as a result of internal or external constraints, e.g. thermal or power limits.

®* Most_Efficient_Performance (bits 23:16, RO) — Current value of the most efficient performance level.
This value can change dynamically as a result of workload characteristics.

Vol.3B 14-7

POWER AND THERMAL MANAGEMENT

®* Lowest_Performance (bits 31:24, RO) — Value for the lowest performance level that software can program
to IA32_HWP_REQUEST.

® Bits 63:32 are reserved and must be zero.

The value returned in the Guaranteed_Performance field is hardware's best-effort approximation of the avail-
able performance given current operating constraints. Changes to the Guaranteed_Performance value will
primarily occur due to a shift in operational mode. This includes a power or other limit applied by an external agent,
e.g. RAPL (see Figure 14.9.1), or the setting of a Configurable TDP level (see model-specific controls related to
Programmable TDP Limit in Chapter 2, "Model-Specific Registers (MSRs)” in the Intel® 64 and 1A-32 Architectures
Software Developer’s Manual, Volume 4.). Notification of a change to the Guaranteed_Performance occurs via
interrupt (if configured) and the IA32_HWP_Status MSR. Changes to Guaranteed_Performance are indicated when
a macroscopically meaningful change in performance occurs i.e. sustained for greater than one second. Conse-
quently, notification of a change in Guaranteed Performance will typically occur no more frequently than once per
second. Rapid changes in platform configuration, e.g. docking / undocking, with corresponding changes to a
Configurable TDP level could potentially cause more frequent notifications.

The value returned by the Most_Efficient_Performance field provides the OS with an indication of the practical
lower limit for the IA32_HWP_REQUEST. The processor may not honor IA32_HWP_REQUEST.Maximum Perfor-
mance settings below this value.

14.4.4 Managing HWP

Typically, the OS controls HWP operation for each logical processor via the writing of control hints / constraints to
the IA32_HWP_REQUEST MSR. The layout of the IA32_HWP_REQUEST MSR is shown in Figure 14-6. The bit fields
are described below:

63 824 23 %48 16 15 8 7 0

Reserved

Package_Control Q

Activity_Window
Energy_Performance_Preference
Desired_Performance

Maximum_Performance
Minimum_Performance

Figure 14-6. IA32_HWP_REQUEST Register

® Minimum_Performance (bits 7:0, RW) — Conveys a hint to the HWP hardware. The OS programs the
minimum performance hint to achieve the required quality of service (QOS) or to meet a service level
agreement (SLA) as needed. Note that an excursion below the level specified is possible due to hardware
constraints. The default value of this field is IA32_HWP_CAPABILITIES.Lowest_Performance.

* Maximum_Performance (bits 15:8, RW) — Conveys a hint to the HWP hardware. The OS programs this
field to limit the maximum performance that is expected to be supplied by the HWP hardware. Excursions above
the limit requested by OS are possible due to hardware coordination between the processor cores and other
components in the package. The default value of this field is IA32_HWP_CAPABILITIES.Highest_Performance.

® Desired_Performance (bits 23:16, RW) — Conveys a hint to the HWP hardware. When set to zero,
hardware autonomous selection determines the performance target. When set to a non-zero value (between
the range of Lowest_Performance and Highest_Performance of IA32_HWP_CAPABILITIES) conveys an explicit
performance request hint to the hardware; effectively disabling HW Autonomous selection. The
Desired_Performance input is non-constraining in terms of Performance and Energy Efficiency optimizations,
which are independently controlled. The default value of this field is 0.

®* Energy_Performance_Preference (bits 31:24, RW) — Conveys a hint to the HWP hardware. The OS may
write a range of values from 0 (performance preference) to OFFH (energy efficiency preference) to influence the
rate of performance increase /decrease and the result of the hardware's energy efficiency and performance

14-8 Vol.3B

POWER AND THERMAL MANAGEMENT

optimizations. The default value of this field is 80H. Note: If CPUID.06H:EAX[bit 10] indicates that this field is
not supported, HWP uses the value of the IA32_ENERGY_PERF_BIAS MSR to determine the energy efficiency /
performance preference.

® Activity_Window (bits 41:32, RW) — Conveys a hint to the HWP hardware specifying a moving workload
history observation window for performance/frequency optimizations. If 0, the hardware will determine the
appropriate window size. When writing a non-zero value to this field, this field is encoded in the format of bits
38:32 as a 7-bit mantissa and bits 41:39 as a 3-bit exponent value in powers of 10. The resultant value is in
microseconds. Thus, the minimal/maximum activity window size is 1 microsecond/1270 seconds. Combined
with the Energy_Performance_Preference input, Activity_Window influences the rate of performance increase
/ decrease. This non-zero hint only has meaning when Desired_Performance = 0. The default value of this field
is 0.

®* Package_Control (bit 42, RW) — When set causes this logical processor's IA32_HWP_REQUEST control
inputs to be derived from IA32_HWP_REQUEST_PKG

® Bits 63:43 are reserved and must be zero.

The HWP hardware clips and resolves the field values as necessary to the valid range. Reads return the last value
written not the clipped values.

Processors may support a subset of IA32_HWP_REQUEST fields as indicated by CPUID. Reads of non-supported
fields will return 0. Writes to non-supported fields are ignored.

The OS may override HWP's autonomous selection of performance state with a specific performance target by
setting the Desired_Performance field to a non zero value, however, the effective frequency delivered is subject to
the result of energy efficiency and performance optimizations, which are influenced by the Energy Performance
Preference field.

Software may disable all hardware optimizations by setting Minimum_Performance = Maximum_Performance
(subject to package coordination).

Note: The processor may run below the Minimum_Performance level due to hardware constraints including: power,
thermal, and package coordination constraints. The processor may also run below the Minimum_Performance level
for short durations (few milliseconds) following C-state exit, and when Hardware Duty Cycling (see Section 14.5)
is enabled.

63 2 4 K un 16 15 8 7 0

Reserved

Activity_Window
Energy_Performance_Preference
Desired_Performance

Maximum_Performance
Minimum_Performance

Figure 14-7. IA32_HWP_REQUEST_PKG Register

The structure of the IA32_HWP_REQUEST_PKG MSR (package-level) is identical to the IA32_HWP_REQUEST MSR
with the exception of the Package Control field, which does not exist. Field values written to this MSR apply to all
logical processors within the physical package with the exception of logical processors whose
IA32_HWP_REQUEST.Package Control field is clear (zero). Single P-state Control mode is only supported when
IA32_HWP_REQUEST_PKG is not supported.

14.4.5 HWP Feedback

The processor provides several types of feedback to the OS during HWP operation.

Vol.3B 14-9

POWER AND THERMAL MANAGEMENT

The IA32_MPERF MSR and IA32_APERF MSR mechanism (see Section 14.2) allows the OS to calculate the resultant
effective frequency delivered over a time period. Energy efficiency and performance optimizations directly impact
the resultant effective frequency delivered.

The layout of the IA32_HWP_STATUS MSR is shown in Figure 14-8. It provides feedback regarding changes to
IA32_HWP_CAPABILITIES.Guaranteed_Performance and excursions to
IA32_HWP_CAPABILITIES.Minimum_Performance. The bit fields are described below:

® Guaranteed_Performance_Change (bit O, RWCO0) — If set (1), a change to Guaranteed_Performance has
occurred. Software should query IA32_HWP_CAPABILITIES.Guaranteed_Performance value to ascertain the
new Guaranteed Performance value and to assess whether to re-adjust HWP hints via IA32_HWP_REQUEST.
Software must clear this bit by writing a zero (0).

® Excursion_To_Minimum (bit 2, RWCO0) — If set (1), an excursion to Minimum_Performance of
IA32_HWP_REQUEST has occurred. Software must clear this bit by writing a zero (0).

® Bits 63:3, and bit 1 are reserved and must be zero.

63 3210

Reserved

Excursion_To_Minimum
Reserved
Guaranteed_Performance_Change

Figure 14-8. IA32_HWP_STATUS MSR

The status bits of IA32_HWP_STATUS must be cleared (0) by software so that a new status condition change will
cause the hardware to set the bit again and issue the notification. Status bits are not set for “normal” excursions
e.g. running below Minimum Performance for short durations during C-state exit. Changes to
Guaranteed_Performance and excursions to Minimum_Performance will occur no more than once per second.

The OS can determine the specific reasons for a Guaranteed_Performance change or an excursion to
Minimum_Performance in IA32_HWP_REQUEST by examining the associated status and log bits reported in the
IA32_THERM_STATUS MSR. The layout of the IA32_HWP_STATUS MSR that HWP uses to support software query of
HWP feedback is shown in Figure 14-9. The bit fields of IA32_THERM_STATUS associated with HWP feedback are
described below (Bit fields of IA32_THERM_STATUS unrelated to HWP can be found in Section 14.7.5.2).

63 32 31 27 2322 16151413121 10 9 8 7 6 5 4 3 2 10

Reserved

Reading Valid é

Resolution in Deg. Celsius
Digital Readout
Cross-domain Limit Log
Cross-domain Limit Status
Current Limit Log
Current Limit Status
Power Limit Notification Log
Power Limit Notification Status
Thermal Threshold #2 Log
Thermal Threshold #2 Status
Thermal Threshold #1 Log
Thermal Threshold #1 Status
Critical Temperature Log
Critical Temperature Status
PROCHOT# or FORCEPR# Log
PROCHOT# or FORCEPR# Event

Thermal Status Log
Thermal Status

Figure 14-9. IA32_THERM_STATUS Register With HWP Feedback

14-10 Vol. 3B

POWER AND THERMAL MANAGEMENT

® Bits 11:0, See Section 14.7.5.2.

® Current Limit Status (bit 12, RO) — If set (1), indicates an electrical current limit (e.g. Electrical Design
Point/IccMax) is being exceeded and is adversely impacting energy efficiency optimizations.

® Current Limit Log (bit 13, RWCO0) — If set (1), an electrical current limit has been exceeded that has
adversely impacted energy efficiency optimizations since the last clearing of this bit or a reset. This bit is sticky,
software may clear this bit by writing a zero (0).

® Cross-domain Limit Status (bit 14, RO) — If set (1), indicates another hardware domain (e.g. processor
graphics) is currently limiting energy efficiency optimizations in the processor core domain.

®* Cross-domain Limit Log (bit 15, RWCO) — If set (1), indicates another hardware domain (e.g. processor
graphics) has limited energy efficiency optimizations in the processor core domain since the last clearing of this
bit or a reset. This bit is sticky, software may clear this bit by writing a zero (0).

® Bits 63:16, See Section 14.7.5.2.

14.4.5.1 Non-Architectural HWP Feedback

The Productive Performance (MSR_PPERF) MSR (non-architectural) provides hardware's view of workload scal-
ability, which is a rough assessment of the relationship between frequency and workload performance, to software.
The layout of the MSR_PPERF is shown in Figure 14-10.

63 0

PCNT - Productive Performance Count

Figure 14-10. MSR_PPERF MSR

® PCNT (bits 63:0, RO) — Similar to IA32_APERF but only counts cycles perceived by hardware as contributing
to instruction execution (e.g. unhalted and unstalled cycles). This counter increments at the same rate as
IA32_APERF, where the ratio of (APCNT/AACNT) is an indicator of workload scalability (0% to 100%). Note that
values in this register are valid even when HWP is not enabled.

14.4.6 HWP Notifications

Processors may support interrupt-based notification of changes to HWP status as indicated by CPUID. If supported,
the IA32_HWP_INTERRUPT MSR is used to enable interrupt-based notifications. Notification events, when enabled,
are delivered using the existing thermal LVT entry. The layout of the IA32_HWP_INTERRUPT is shown in

Figure 14-11. The bit fields are described below:

63 210

Reserved

EN_Excursion_Minimum
EN_Guaranteed_Performance_Change

Figure 14-11. IA32_HWP_INTERRUPT MSR

® EN_Guaranteed_Performance_Change (bit O, RW) — When set (1), an HWP Interrupt will be generated
whenever a change to the IA32_HWP_CAPABILITIES.Guaranteed_Performance occurs. The default value is 0
(Interrupt generation is disabled).

Vol.3B 14-11

POWER AND THERMAL MANAGEMENT

® EN_Excursion_Minimum (bit 1, RW) — When set (1), an HWP Interrupt will be generated whenever the
HWP hardware is unable to meet the IA32_HWP_REQUEST.Minimum_Performance setting. The default value is
0 (Interrupt generation is disabled).

® Bits 63:2, and bit 1 are reserved and must be zero.

14.4.7 Recommendations for OS use of HWP Controls

Common Cases of Using HWP

The default HWP control field values are expected to be suitable for many applications. The OS can enable autono-

mous HWP for these common cases by

® Setting IA32_HWP_REQUEST.Desired Performance = 0 (hardware autonomous selection determines the
performance target). Set IA32_ HWP_REQUEST.Activity Window = 0 (enable HW dynamic selection of window
size).

To maximize HWP benefit for the common cases, the OS should set
* IA32_HWP_REQUEST.Minimum_Performance = IA32_HWP_CAPABILITIES.Lowest_Performance and
®* IA32_HWP_REQUEST.Maximum_Performance = IA32_HWP_CAPABILITIES.Highest_Performance.

Setting IA32_HWP_REQUEST.Minimum_Performance = IA32_HWP_REQUEST.Maximum_Performance is function-
ally equivalent to using of the IA32_PERF_CTL interface and is therefore not recommended (bypassing HWP).

Calibrating HWP for Application-Specific HWP Optimization

In some applications, the OS may have Quality of Service requirements that may not be met by the default values.
The OS can characterize HWP by:

® keeping IA32_HWP_REQUEST.Minimum_Performance = IA32_HWP_REQUEST.Maximum_Performance to
prevent non-linearity in the characterization process,

® utilizing the range values enumerated from the IA32_HWP_CAPABILITIES MSR to program
IA32_HWP_REQUEST while executing workloads of interest and observing the power and performance result.

The power and performance result of characterization is also influenced by the IA32_ HWP_REQUEST.Energy
Performance Preference field, which must also be characterized.

Characterization can be used to set IA32_HWP_REQUEST.Minimum_Performance to achieve the required QOS in
terms of performance. If IA32_HWP_REQUEST.Minimum_Performance is set higher than
IA32_HWP_CAPABILITIES.Guaranteed Performance then notification of excursions to Minimum Performance may
be continuous.

If autonomous selection does not deliver the required workload performance, the OS should assess the current
delivered effective frequency and for the duration of the specific performance requirement set
IA32_HWP_REQUEST.Desired_Performance # 0 and adjust IA32_HWP_REQUEST.Energy_Performance_Preference
as necessary to achieve the required workload performance. The MSR_PPERF.PCNT value can be used to better
comprehend the potential performance result from adjustments to IA32_HWP_REQUEST.Desired_Performance.
The OS should set IA32_HWP_REQUEST.Desired_Performance = 0 to re-enable autonomous selection.

Tuning for Maximum Performance or Lowest Power Consumption

Maximum performance will be delivered by setting IA32_HWP_REQUEST.Minimum_Performance =
IA32_HWP_REQUEST.Maximum_Performance = IA32_HWP_CAPABILITIES.Highest_Performance and setting
IA32_HWP_REQUEST.Energy_Performance_Preference = 0 (performance preference).

Lowest power will be achieved by setting IA32_ HWP_REQUEST.Minimum_Performance =
IA32_HWP_REQUEST.Maximum_Performance = IA32_HWP_CAPABILITIES.Lowest_Performance and setting
IA32_HWP_REQUEST.Energy_Performance_Preference = OFFH (energy efficiency preference).

14-12 Vol. 3B

POWER AND THERMAL MANAGEMENT

Additional Guidelines

Set IA32_ HWP_REQUEST.Energy_Performance_Preference as appropriate for the platform's current mode of oper-
ation. For example, a mobile platforms' setting may be towards performance preference when on AC power and
more towards energy efficiency when on DC power.

The use of the Running Average Power Limit (RAPL) processor capability (see section 14.7.1) is highly recom-
mended when HWP is enabled. Use of IA32_HWP_Request.Maximum_Performance for thermal control is subject to
limitations and can adversely impact the performance of other processor components e.g. Graphics

If default values deliver undesirable performance latency in response to events, the OS should set
IA32_HWP_REQUEST. Activity_Window to a low (non zero) value and
IA32_HWP_REQUEST.Energy_Performance_Preference towards performance (0) for the event duration.

Similarly, for “real-time” threads, set IA32_HWP_REQUEST.Energy_Performance_Preference towards performance
(0) and IA32_HWP_REQUEST. Activity_Window to a low value, e.g. 01H, for the duration of their execution.

When executing low priority work that may otherwise cause the hardware to deliver high performance, set
IA32_HWP_REQUEST. Activity_Window to a longer value and reduce the
IA32_HWP_Request.Maximum_Performance value as appropriate to control energy efficiency. Adjustments to
IA32_HWP_REQUEST.Energy_Performance_Preference may also be necessary.

145 HARDWARE DUTY CYCLING (HDC)

Intel processors may contain support for Hardware Duty Cycling (HDC), which enables the processor to autono-
mously force its components inside the physical package into idle state. For example, the processor may selectively
force only the processor cores into an idle state.

HDC is disabled by default on processors that support it. System software can dynamically enable or disable HDC
to force one or more components into an idle state or wake up those components previously forced into an idle
state. Forced Idling (and waking up) of multiple components in a physical package can be done with one WRMSR
to a packaged-scope MSR from any logical processor within the same package.

HDC does not delay events such as timer expiration, but it may affect the latency of short (less than 1 msec) soft-
ware threads, e.qg. if a thread is forced to idle state just before completion and entering a “natural idle”.

HDC forced idle operation can be thought of as operating at a lower effective frequency. The effective average
frequency computed by software will include the impact of HDC forced idle.

The primary use of HDC is enable system software to manage low active workloads to increase the package level
C6 residency. Additionally, HDC can lower the effective average frequency in case or power or thermal limitation.

When HDC forces a logical processor, a processor core or a physical package to enter an idle state, its C-State is set
to C3 or deeper. The deep “C-states” referred to in this section are processor-specific C-states.

14.5.1 Hardware Duty Cycling Programming Interfaces

The programming interfaces provided by HDC include the following:

® The CPUID instruction allows software to discover the presence of HDC support in an Intel processor. Specifi-
cally, execute CPUID instruction with EAX=06H as input, bit 13 of EAX indicates the processor’s support of the
following aspects of HDC.

— Availability of HDC baseline resource, CPUID.06H:EAX[bit 13]: If this bit is set, HDC provides the following
architectural MSRs: IA32_PKG_HDC_CTL, IA32_PM_CTL1, and the IA32_THREAD_STALL MSRs.

®* Additionally, HDC may provide several non-architectural MSR.

Table 14-2. Architectural and non-Architecture MSRs Related to HDC

Address | Architec Register Name Description
tural

Vol. 3B 14-13

POWER AND THERMAL MANAGEMENT

Table 14-2. Architectural and non-Architecture MSRs Related to HDC

DBOH Y IA32_PKG_HDC_CTL Package Enable/Disable HDC.

DB1H Y IA32_PM_CTL1 Per-logical-processor select control to allow/block HDC forced idling.

DB2H Y IA32_THREAD_STALL Accumulate stalled cycles on this logical processor due to HDC forced idling.

653H N MSR_CORE_HDC_RESIDENCY | Core level stalled cycle counter due to HDC forced idling on one or more
logical processor.

655H N MSR_PKG_HDC_SHALLOW_RE | Accumulate the cycles the package was in C2' state and at least one logical

SIDENCY processor was in forced idle
656H N MSR_PKG_HDC_DEEP_RESIDE | Accumulate the cycles the package was in the software specified Cx' state
NCY and at least one logical processor was in forced idle. Cx is specified in

MSR_PKG_HDC_CONFIG_CTL.

652H N MSR_PKG_HDC_CONFIG_CTL | HDC configuration controls

NOTES:

1. The package “C-states” referred to in this section are processor-specific C-states.

14.5.2 Package level Enabling HDC

The layout of the IA32_PKG_HDC_CTL MSR is shown in Figure 14-12. IA32_PKG_HDC_CTL is a writable MSR from
any logical processor in a package. The bit fields are described below:

63 10

Reserved

[| Reserved HDC_PKG_Enable

Figure 14-12. IA32_PKG_HDC_CTL MSR

* HDC_PKG_Enable (bit O, R/W) — Software sets this bit to enable HDC operation by allowing the processor
to force to idle all "HDC-allowed” (see Figure 14.5.3) logical processors in the package. Clearing this bit
disables HDC operation in the package by waking up all the processor cores that were forced into idle by a
previous ‘0’-to-"1’ transition in IA32_PKG_HDC_CTL.HDC_PKG_Enable. This bit is writable only if
CPUID.06H:EAX[bit 13] = 1. Default = zero (0).

® Bits 63:1 are reserved and must be zero.

After processor support is determined via CPUID, system software can enable HDC operation by setting
IA32_PKG_HDC_CTL.HDC_PKG_Enable to 1. At reset, IA32_PKG_HDC_CTL.HDC_PKG_Enable is cleared to 0. A
'0'-to-"1" transition in HDC_PKG_Enable allows the processor to force to idle all HDC-allowed (indicated by the non-
zero state of IA32_PM_CTL1[bit 0]) logical processors in the package. A ‘1’-to-'0’ transition wakes up those HDC
force-idled logical processors.

Software can enable or disable HDC using this package level control multiple times from any logical processor in the
package. Note the latency of writing a value to the package-visible IA32_PKG_HDC_CTL.HDC_PKG_Enable is
longer than the latency of a WRMSR operation to a Logical Processor MSR (as opposed to package level MSR) such
as: IA32_PM_CTL1 (described in Section 14.5.3). Propagation of the change in
IA32_PKG_HDC_CTL.HDC_PKG_Enable and reaching all HDC idled logical processor to be woken up may take on
the order of core C6 exit latency.

14.5.3 Logical-Processor Level HDC Control

The layout of the IA32_PM_CTL1 MSR is shown in Figure 14-13. Each logical processor in a package has its own
IA32_PM_CTL1 MSR. The bit fields are described below:

14-14 Vol. 3B

POWER AND THERMAL MANAGEMENT

63 10

Reserved

HDC_Allow_Block

D Reserved

Figure 14-13. I1A32_PM_CTL1 MSR

® HDC_Allow_Block (bit 0, R/W) — Software sets this bit to allow this logical processors to honor the
package-level IA32_PKG_HDC_CTL.HDC_PKG_Enable control. Clearing this bit prevents this logical processor
from using the HDC. This bit is writable only if CPUID.06H:EAX[bit 13] = 1. Default = one (1).

® Bits 63:1 are reserved and must be zero.

Fine-grain OS control of HDC operation at the granularity of per-logical-processor is provided by IA32_PM_CTL1.
At RESET, all logical processors are allowed to participate in HDC operation such that OS can manage HDC using
the package-level IA32_PKG_HDC_CTL.

Writes to IA32_PM_CTL1 complete with the latency that is typical to WRMSR to a Logical Processor level MSR.
When the OS chooses to manage HDC operation at per-logical-processor granularity, it can write to IA32_PM_CTL1
on one or more logical processors as desired. Each write to IA32_PM_CTL1 must be done by code that executes on
the logical processor targeted to be allowed into or blocked from HDC operation.

Blocking one logical processor for HDC operation may have package level impact. For example, the processor may
decide to stop duty cycling of all other Logical Processors as well.

The propagation of IA32_PKG_HDC_CTL.HDC_PKG_Enable in a package takes longer than a WRMSR to
IA32_PM_CTL1. The last completed write to IA32_PM_CTL1 on a logical processor will be honored when a ‘0’-to-"1’
transition of IA32_PKG_HDC_CTL.HDC_PKG_Enable arrives to a logical processor.

14.5.4 HDC Residency Counters

There is a collection of counters available for software to track various residency metrics related to HDC operation.
In general, HDC residency time is defined as the time in HDC forced idle state at the granularity of per-logical-
processor, per-core, or package. At the granularity of per-core/package-level HDC residency, at least one of the
logical processor in a core/package must be in the HDC forced idle state.

14.5.4.1 1A32_THREAD_STALL

Software can track per-logical-processor HDC residency using the architectural MSR IA32_THREAD_STALL.The
layout of the IA32_THREAD_STALL MSR is shown in Figure 14-14. Each logical processor in a package has its own
IA32_THREAD_STALL MSR. The bit fields are described below:

63 0

Stall_cycle_cnt

Figure 14-14. IA32_THREAD_STALL MSR

® Stall_Cycle_Cnt (bits 63:0, R/0) — Stores accumulated HDC forced-idle cycle count of this processor core
since last RESET. This counter increments at the same rate of the TSC. The count is updated only after the
logical processor exits from the forced idled C-state. At each update, the number of cycles that the logical
processor was stalled due to forced-idle will be added to the counter. This counter is available only if
CPUID.06H:EAX[bit 13] = 1. Default = zero (0).

Vol. 3B 14-15

POWER AND THERMAL MANAGEMENT

A value of zero in IA32_THREAD_STALL indicates either HDC is not supported or the logical processor never
serviced any forced HDC idle. A non-zero value in IA32_THREAD_STALL indicates the HDC forced-idle residency
times of the logical processor. It also indicates the forced-idle cycles due to HDC that could appear as CO time to
traditional OS accounting mechanisms (e.g. time-stamping OS idle/exit events).

Software can read IA32_THREAD_STALL irrespective of the state of IA32_PKG_HDC_CTL and IA32_PM_CTL1, as
long as CPUID.06H:EAX[bit 13] = 1.

14.5.4.2 Non-Architectural HDC Residency Counters

Processors that support HDC operation may provide the following model-specific HDC residency counters.

MSR_CORE_HDC_RESIDENCY

Software can track per-core HDC residency using the counter MSR_CORE_HDC_RESIDENCY. This counter incre-
ments when the core is in C3 state or deeper (all logical processors in this core are idle due to either HDC or other
mechanisms) and at least one of the logical processors is in HDC forced idle state. The layout of the
MSR_CORE_HDC_RESIDENCY is shown in Figure 14-15. Each processor core in a package has its own
MSR_CORE_HDC_RESIDENCY MSR. The bit fields are described below:

63 0

Core_Cx_duty _cycle_cnt

Figure 14-15. MSR_CORE_HDC_RESIDENCY MSR

® Core_Cx_Duty_Cycle_Cnt (bits 63:0, R/0O) — Stores accumulated HDC forced-idle cycle count of this
processor core since last RESET. This counter increments at the same rate of the TSC. The count is updated only
after core C-state exit from a forced idled C-state. At each update, the increment counts cycles when the core
is in a Cx state (all its logical processor are idle) and at least one logical processor in this core was forced into
idle state due to HDC. If CPUID.06H:EAX[bit 13] = 0, attempt to access this MSR will cause a #GP fault. Default
= zero (0).

A value of zero in MSR_CORE_HDC_RESIDENCY indicates either HDC is not supported or this processor core never
serviced any forced HDC idle.

MSR_PKG_HDC_SHALLOW_RESIDENCY

The counter MSR_PKG_HDC_SHALLOW_RESIDENCY allows software to track HDC residency time when the
package is in C2 state, all processor cores in the package are not active and at least one logical processor was
forced into idle state due to HDC. The layout of the MSR_PKG_HDC_SHALLOW_RESIDENCY is shown in

Figure 14-16. There is one MSR_PKG_HDC_SHALLOW_RESIDENCY per package. The bit fields are described
below:

63 0

Pkg_Duty_cycle_cnt

Figure 14-16. MSR_PKG_HDC_SHALLOW_RESIDENCY MSR

® Pkg_Duty_ Cycle_Cnt (bits 63:0, R/0) — Stores accumulated HDC forced-idle cycle count of this processor
core since last RESET. This counter increments at the same rate of the TSC. Package shallow residency may be
implementation specific. In the initial implementation, the threshold is package C2-state. The count is
updated only after package C2-state exit from a forced idled C-state. At each update, the increment counts

14-16 Vol. 3B

POWER AND THERMAL MANAGEMENT

cycles when the package is in C2 state and at least one processor core in this package was forced into idle state
due to HDC. If CPUID.06H:EAX[bit 13] = 0, attempt to access this MSR may cause a #GP fault. Default = zero

(0).
A value of zero in MSR_PKG_HDC_SHALLOW_RESIDENCY indicates either HDC is not supported or this processor
package never serviced any forced HDC idle.

MSR_PKG_HDC_DEEP_RESIDENCY

The counter MSR_PKG_HDC_DEEP_RESIDENCY allows software to track HDC residency time when the package is
in a software-specified package Cx state, all processor cores in the package are not active and at least one logical
processor was forced into idle state due to HDC. Selection of a specific package Cx state can be configured using

MSR_PKG_HDC_CONFIG. The layout of the MSR_PKG_HDC_DEEP_RESIDENCY is shown in Figure 14-17. There is
one MSR_PKG_HDC_DEEP_RESIDENCY per package. The bit fields are described below:

63 0

Pkg_Cx_duty_cycle_cnt

Figure 14-17. MSR_PKG_HDC_DEEP_RESIDENCY MSR

® Pkg_Cx_Duty_ Cycle_Cnt (bits 63:0, R/0) — Stores accumulated HDC forced-idle cycle count of this
processor core since last RESET. This counter increments at the same rate of the TSC. The count is updated
only after package C-state exit from a forced idle state. At each update, the increment counts cycles when the
package is in the software-configured Cx state and at least one processor core in this package was forced into
idle state due to HDC. If CPUID.06H:EAX[bit 13] = 0, attempt to access this MSR may cause a #GP fault.
Default = zero (0).

A value of zero in MSR_PKG_HDC_SHALLOW_RESIDENCY indicates either HDC is not supported or this processor
package never serviced any forced HDC idle.

MSR_PKG_HDC_CONFIG

MSR_PKG_HDC_CONFIG allows software to configure the package Cx state that the counter
MSR_PKG_HDC_DEEP_RESIDENCY monitors. The layout of the MSR_PKG_HDC_CONFIG is shown in Figure 14-18.
There is one MSR_PKG_HDC_CONFIG per package. The bit fields are described below:

63 2 0

Reserved

HDC_Cx_Monitor

l:l Reserved

Figure 14-18. MSR_PKG_HDC_CONFIG MSR

® Pkg_Cx_Monitor (bits 2:0, R/W) — Selects which package C-state the MSR_HDC_DEEP_RESIDENCY
counter will monitor. The encoding of the HDC_Cx_Monitor field are: 0O: no-counting; 1: count package C2 only,
2: count package C3 and deeper; 3: count package C6 and deeper; 4: count package C7 and deeper; other
encodings are reserved. If CPUID.06H:EAX[bit 13] = 0, attempt to access this MSR may cause a #GP fault.
Default = zero (0).

® Bits 63:3 are reserved and must be zero.

Vol. 3B 14-17

POWER AND THERMAL MANAGEMENT

14.5.5 MPERF and APERF Counters Under HDC

HDC operation can be thought of as an average effective frequency drop due to all or some of the Logical Proces-
sors enter an idle state period.

1600 MHz: 25% Utilization /75% Forced Idle

1] UL
| |

Effective Frequency @ 100% Utilization: 400 MHz

Figure 14-19. Example of Effective Frequency Reduction and Forced Idle Period of HDC

By default, the IA32_MPERF counter counts during forced idle periods as if the logical processor was active. The
IA32_APERF counter does not count during forced idle state. This counting convention allows the OS to compute
the average effective frequency of the Logical Processor between the last MWAIT exit and the next MWAIT entry
(OS visible C0) by AACNT/AMCNT * TSC Frequency.

14.6 MWAIT EXTENSIONS FOR ADVANCED POWER MANAGEMENT

IA-32 processors may support a number of C-states! that reduce power consumption for inactive states. Intel Core
Solo and Intel Core Duo processors support both deeper C-state and MWAIT extensions that can be used by OS to
implement power management policy.

Software should use CPUID to discover if a target processor supports the enumeration of MWAIT extensions. If
CPUID.0O5H.ECX[Bit 0] = 1, the target processor supports MWAIT extensions and their enumeration (see Chapter
4, “Instruction Set Reference, M-U,” of Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume
2B).

If CPUID.O5H.ECX[Bit 1] = 1, the target processor supports using interrupts as break-events for MWAIT, even
when interrupts are disabled. Use this feature to measure C-state residency as follows:

® Software can write to bit 0 in the MWAIT Extensions register (ECX) when issuing an MWAIT to enter into a
processor-specific C-state or sub C-state.

®* When a processor comes out of an inactive C-state or sub C-state, software can read a timestamp before an
interrupt service routine (ISR) is potentially executed.

CPUID.05H.EDX allows software to enumerate processor-specific C-states and sub C-states available for use with
MWAIT extensions. IA-32 processors may support more than one C-state of a given C-state type. These are called
sub C-states. Numerically higher C-state have higher power savings and latency (upon entering and exiting) than
lower-numbered C-state.

At CPL = 0, system software can specify desired C-state and sub C-state by using the MWAIT hints register (EAX).
Processors will not go to C-state and sub C-state deeper than what is specified by the hint register. If CPL > 0 and
if MONITOR/MWAIT is supported at CPL > 0, the processor will only enter C1-state (regardless of the C-state
request in the hints register).

Executing MWAIT generates an exception on processors operating at a privilege level where MONITOR/MWAIT are
not supported.

1. The processor-specific C-states defined in MWAIT extensions can map to ACPI defined C-state types (CO, C1, C2, C3). The mapping
relationship depends on the definition of a C-state by processor implementation and is exposed to OSPM by the BIOS using the ACPI
defined _CST table.

14-18 Vol. 3B

POWER AND THERMAL MANAGEMENT

NOTE

If MWAIT is used to enter a C-state (including sub C-state) that is numerically higher than C1, a
store to the address range armed by MONITOR instruction will cause the processor to exit MWAIT if
the store was originated by other processor agents. A store from non-processor agent may not
cause the processor to exit MWAIT.

14.7 THERMAL MONITORING AND PROTECTION

The IA-32 architecture provides the following mechanisms for monitoring temperature and controlling thermal
power:

1. The catastrophic shutdown detector forces processor execution to stop if the processor’s core temperature
rises above a preset limit.

2. Automatic and adaptive thermal monitoring mechanisms force the processor to reduce it's power
consumption in order to operate within predetermined temperature limits.

3. The software controlled clock modulation mechanism permits operating systems to implement power
management policies that reduce power consumption; this is in addition to the reduction offered by automatic
thermal monitoring mechanisms.

4. On-die digital thermal sensor and interrupt mechanisms permit the OS to manage thermal conditions
natively without relying on BIOS or other system board components.

The first mechanism is not visible to software. The other three mechanisms are visible to software using processor
feature information returned by executing CPUID with EAX = 1.

The second mechanism includes:

®* Automatic thermal monitoring provides two modes of operation. One mode modulates the clock duty cycle;
the second mode changes the processor’s frequency. Both modes are used to control the core temperature of
the processor.

®* Adaptive thermal monitoring can provide flexible thermal management on processors made of multiple
cores.

The third mechanism modulates the clock duty cycle of the processor. As shown in Figure 14-20, the phrase ‘duty
cycle’ does not refer to the actual duty cycle of the clock signal. Instead it refers to the time period during which
the clock signal is allowed to drive the processor chip. By using the stop clock mechanism to control how often the
processor is clocked, processor power consumption can be modulated.

Clock Applied to Processor

I JHTTT -

Stop-Clock Duty Cycle

25% Duty Cycle (example only)

Figure 14-20. Processor Modulation Through Stop-Clock Mechanism

For previous automatic thermal monitoring mechanisms, software controlled mechanisms that changed processor
operating parameters to impact changes in thermal conditions. Software did not have native access to the native
thermal condition of the processor; nor could software alter the trigger condition that initiated software program

control.

The fourth mechanism (listed above) provides access to an on-die digital thermal sensor using a model-specific
register and uses an interrupt mechanism to alert software to initiate digital thermal monitoring.

Vol. 3B 14-19

POWER AND THERMAL MANAGEMENT

14.7.1 Catastrophic Shutdown Detector

P6 family processors introduced a thermal sensor that acts as a catastrophic shutdown detector. This catastrophic
shutdown detector was also implemented in Pentium 4, Intel Xeon and Pentium M processors. It is always enabled.
When processor core temperature reaches a factory preset level, the sensor trips and processor execution is halted
until after the next reset cycle.

14.7.2 Thermal Monitor

Pentium 4, Intel Xeon and Pentium M processors introduced a second temperature sensor that is factory-calibrated
to trip when the processor’s core temperature crosses a level corresponding to the recommended thermal design
envelop. The trip-temperature of the second sensor is calibrated below the temperature assigned to the cata-
strophic shutdown detector.

14.7.2.1 Thermal Monitor 1

The Pentium 4 processor uses the second temperature sensor in conjunction with a mechanism called Thermal
Monitor 1 (TM1) to control the core temperature of the processor. TM1 controls the processor’s temperature by
modulating the duty cycle of the processor clock. Modulation of duty cycles is processor model specific. Note that
the processors STPCLK# pin is not used here; the stop-clock circuitry is controlled internally.

Support for TM1 is indicated by CPUID.1:EDX.TM[bit 29] = 1.

TM1 is enabled by setting the thermal-monitor enable flag (bit 3) in IA32_MISC_ENABLE [see Chapter 2, “*Model-
Specific Registers (MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4].
Following a power-up or reset, the flag is cleared, disabling TM1. BIOS is required to enable only one automatic
thermal monitoring modes. Operating systems and applications must not disable the operation of these mecha-
nisms.

14.7.2.2 Thermal Monitor 2

An additional automatic thermal protection mechanism, called Thermal Monitor 2 (TM2), was introduced in the
Intel Pentium M processor and also incorporated in newer models of the Pentium 4 processor family. Intel Core Duo
and Solo processors, and Intel Core 2 Duo processor family all support TM1 and TM2. TM2 controls the core
temperature of the processor by reducing the operating frequency and voltage of the processor and offers a higher
performance level for a given level of power reduction than TM1.

TM2 is triggered by the same temperature sensor as TM1. The mechanism to enable TM2 may be implemented
differently across various IA-32 processor families with different CPUID signatures in the family encoding value, but
will be uniform within an IA-32 processor family.

Support for TM2 is indicated by CPUID.1:ECX.TM2[bit 8] = 1.

14.7.2.3 Two Methods for Enabling TM2

On processors with CPUID family/model/stepping signature encoded as 0x69n or 0x6Dn (early Pentium M proces-
sors), TM2 is enabled if the TM_SELECT flag (bit 16) of the MSR_THERM2_CTL register is set to 1 (Figure 14-21)
and bit 3 of the IA32_MISC_ENABLE register is set to 1.

Following a power-up or reset, the TM_SELECT flag may be cleared. BIOS is required to enable either TM1 or TM2.
Operating systems and applications must not disable mechanisms that enable TM1 or TM2. If bit 3 of the
IA32_MISC_ENABLE register is set and TM_SELECT flag of the MSR_THERM2_CTL register is cleared, TM1 is
enabled.

14-20 Vol. 3B

POWER AND THERMAL MANAGEMENT

31 16 0
Reserved Reserved

TM_SELECT

Figure 14-21. MSR_THERMZ2_CTL Register On Processors with CPUID Family/Model/Stepping Signature Encoded
as 0x69n or 0x6Dn

On processors introduced after the Pentium 4 processor (this includes most Pentium M processors), the method
used to enable TM2 is different. TM2 is enable by setting bit 13 of IA32_MISC_ENABLE register to 1. This applies to
Intel Core Duo, Core Solo, and Intel Core 2 processor family.

The target operating frequency and voltage for the TM2 transition after TM2 is triggered is specified by the value

written to MSR_THERM2_CTL, bits 15:0 (Figure 14-22). Following a power-up or reset, BIOS is required to enable
at least one of these two thermal monitoring mechanisms. If both TM1 and TM2 are supported, BIOS may choose
to enable TM2 instead of TM1. Operating systems and applications must not disable the mechanisms that enable

TM1lor TM2; and they must not alter the value in bits 15:0 of the MSR_THERM2_CTL register.

63 15 0

Reserved

TM2 Transition Target

Figure 14-22. MSR_THERM2_CTL Register for Supporting TM2

14.7.2.4 Performance State Transitions and Thermal Monitoring

If the thermal control circuitry (TCC) for thermal monitor (TM1/TM2) is active, writes to the IA32_PERF_CTL will

effect a new target operating point as follows:

®* IfTM1 is enabled and the TCC is engaged, the performance state transition can commence before the TCC is
disengaged.

* If TM2 is enabled and the TCC is engaged, the performance state transition specified by a write to the
IA32_PERF_CTL will commence after the TCC has disengaged.

14.7.2.5 Thermal Status Information

The status of the temperature sensor that triggers the thermal monitor (TM1/TM2) is indicated through the thermal
status flag and thermal status log flag in the IA32_THERM_STATUS MSR (see Figure 14-23).

The functions of these flags are:

®* Thermal Status flag, bit 0 — When set, indicates that the processor core temperature is currently at the trip
temperature of the thermal monitor and that the processor power consumption is being reduced via either TM1
or TM2, depending on which is enabled. When clear, the flag indicates that the core temperature is below the
thermal monitor trip temperature. This flag is read only.

®* Thermal Status Log flag, bit 1 — When set, indicates that the thermal sensor has tripped since the last
power-up or reset or since the last time that software cleared this flag. This flag is a sticky bit; once set it
remains set until cleared by software or until a power-up or reset of the processor. The default state is clear.

Vol. 3B 14-21

POWER AND THERMAL MANAGEMENT

63 210

Reserved

|

Thermal Status Log
Thermal Status

Figure 14-23. IA32_THERM_STATUS MSR

After the second temperature sensor has been tripped, the thermal monitor (TM1/TM2) will remain engaged for a
minimum time period (on the order of 1 ms). The thermal monitor will remain engaged until the processor core
temperature drops below the preset trip temperature of the temperature sensor, taking hysteresis into account.

While the processor is in a stop-clock state, interrupts will be blocked from interrupting the processor. This holding
off of interrupts increases the interrupt latency, but does not cause interrupts to be lost. Outstanding interrupts
remain pending until clock modulation is complete.

The thermal monitor can be programmed to generate an interrupt to the processor when the thermal sensor is
tripped. The delivery mode, mask and vector for this interrupt can be programmed through the thermal entry in the
local APIC’s LVT (see Section 10.5.1, “Local Vector Table”). The low-temperature interrupt enable and high-temper-
ature interrupt enable flags in the IA32_THERM_INTERRUPT MSR (see Figure 14-24) control when the interrupt is
generated; that is, on a transition from a temperature below the trip point to above and/or vice-versa.

63

Reserved

210
Low-Temperature Interrupt Enable 4
High-Temperature Interrupt Enable

Figure 14-24. IA32_THERM_INTERRUPT MSR

®* High-Temperature Interrupt Enable flag, bit O — Enables an interrupt to be generated on the transition
from a low-temperature to a high-temperature when set; disables the interrupt when clear.(R/W).

®* Low-Temperature Interrupt Enable flag, bit 1 — Enables an interrupt to be generated on the transition
from a high-temperature to a low-temperature when set; disables the interrupt when clear.

The thermal monitor interrupt can be masked by the thermal LVT entry. After a power-up or reset, the low-temper-
ature interrupt enable and high-temperature interrupt enable flags in the IA32_THERM_INTERRUPT MSR are
cleared (interrupts are disabled) and the thermal LVT entry is set to mask interrupts. This interrupt should be
handled either by the operating system or system management mode (SMM) code.

Note that the operation of the thermal monitoring mechanism has no effect upon the clock rate of the processor's
internal high-resolution timer (time stamp counter).

14.7.2.6 Adaptive Thermal Monitor

The Intel Core 2 Duo processor family supports enhanced thermal management mechanism, referred to as Adap-
tive Thermal Monitor (Adaptive TM).

Unlike TM2, Adaptive TM is not limited to one TM2 transition target. During a thermal trip event, Adaptive TM (if
enabled) selects an optimal target operating point based on whether or not the current operating point has effec-
tively cooled the processor.

Similar to TM2, Adaptive TM is enable by BIOS. The BIOS is required to test the TM1 and TM2 feature flags and
enable all available thermal control mechanisms (including Adaptive TM) at platform initiation.

Adaptive TM is available only to a subset of processors that support TM2.

14-22 Vol. 3B

POWER AND THERMAL MANAGEMENT

In each chip-multiprocessing (CMP) silicon die, each core has a unique thermal sensor that triggers independently.
These thermal sensor can trigger TM1 or TM2 transitions in the same manner as described in Section 14.7.2.1 and
Section 14.7.2.2. The trip point of the thermal sensor is not programmable by software since it is set during the
fabrication of the processor.

Each thermal sensor in a processor core may be triggered independently to engage thermal management features.
In Adaptive TM, both cores will transition to a lower frequency and/or lower voltage level if one sensor is triggered.

Triggering of this sensor is visible to software via the thermal interrupt LVT entry in the local APIC of a given core.

14.7.3 Software Controlled Clock Modulation

Pentium 4, Intel Xeon and Pentium M processors also support software-controlled clock modulation. This provides
a means for operating systems to implement a power management policy to reduce the power consumption of the
processor. Here, the stop-clock duty cycle is controlled by software through the IA32_CLOCK_MODULATION MSR
(see Figure 14-25).

63 543 10

Reserved

On-Demand Clock Modulation Enable J
On-Demand Clock Modulation Duty Cycle ——

|:| Reserved
Figure 14-25. IA32_CLOCK_MODULATION MSR

The IA32_CLOCK_MODULATION MSR contains the following flag and field used to enable software-controlled clock
modulation and to select the clock modulation duty cycle:

®* On-Demand Clock Modulation Enable, bit 4 — Enables on-demand software controlled clock modulation
when set; disables software-controlled clock modulation when clear.

®* On-Demand Clock Modulation Duty Cycle, bits 1 through 3 — Selects the on-demand clock modulation
duty cycle (see Table 14-3). This field is only active when the on-demand clock modulation enable flag is set.

Note that the on-demand clock modulation mechanism (like the thermal monitor) controls the processor’s stop-
clock circuitry internally to modulate the clock signal. The STPCLK# pin is not used in this mechanism.

Table 14-3. On-Demand Clock Modulation Duty Cycle Field Encoding

Duty Cycle Field Encoding Duty Cycle
000B Reserved
001B 12.5% (Default)
010B 25.0%
011B 37.5%
100B 50.0%
101B 63.5%
110B 75%
111B 87.5%

The on-demand clock modulation mechanism can be used to control processor power consumption. Power
management software can write to the IA32_CLOCK_MODULATION MSR to enable clock modulation and to select
a modulation duty cycle. If on-demand clock modulation and TM1 are both enabled and the thermal status of the
processor is hot (bit 0 of the IA32_THERM_STATUS MSR is set), clock modulation at the duty cycle specified by TM1
takes precedence, regardless of the setting of the on-demand clock modulation duty cycle.

Vol. 3B 14-23

POWER AND THERMAL MANAGEMENT

For Hyper-Threading Technology enabled processors, the IA32_CLOCK_MODULATION register is duplicated for
each logical processor. In order for the On-demand clock modulation feature to work properly, the feature must be
enabled on all the logical processors within a physical processor. If the programmed duty cycle is not identical for
all the logical processors, the processor core clock will modulate to the highest duty cycle programmed for proces-
sors with any of the following CPUID DisplayFamily_DisplayModel signatures (see CPUID instruction in Chapter3,
“Instruction Set Reference, A-L” in the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume
2A): 06_1A, 06_1C, 06_1E, 06_1F, 06_25, 06_26, 06_27, 06_2C, 06_2E, 06_2F, 06_35, 06_36, and OF_xx. For all
other processors, if the programmed duty cycle is not identical for all logical processors in the same core, the
processor core will modulate at the lowest programmed duty cycle.

For multiple processor cores in a physical package, each processor core can modulate to a programmed duty cycle
independently.

For the P6 family processors, on-demand clock modulation was implemented through the chipset, which controlled
clock modulation through the processor’s STPCLK# pin.

14.7.3.1 Extension of Software Controlled Clock Modulation

Extension of the software controlled clock modulation facility supports on-demand clock modulation duty cycle with
4-bit dynamic range (increased from 3-bit range). Granularity of clock modulation duty cycle is increased to 6.25%
(compared to 12.5%).

Four bit dynamic range control is provided by using bit 0 in conjunction with bits 3:1 of the
IA32_CLOCK_MODULATION MSR (see Figure 14-26).

63 543 0

Reserved

On-Demand Clock Modulation Enable J
Extended On-Demand Clock Modulation Duty Cycle ———

|:| Reserved
Figure 14-26. IA32_CLOCK_MODULATION MSR with Clock Modulation Extension

Extension to software controlled clock modulation is supported only if CPUID.06H:EAX[Bit 5] = 1. If
CPUID.06H:EAX[Bit 5] = 0, then bit 0 of IA32_CLOCK_MODULATION is reserved.

14.7.4 Detection of Thermal Monitor and Software Controlled
Clock Modulation Facilities

The ACPI flag (bit 22) of the CPUID feature flags indicates the presence of the IA32_THERM_STATUS,
IA32_THERM_INTERRUPT, IA32_CLOCK_MODULATION MSRs, and the xAPIC thermal LVT entry.

The TM1 flag (bit 29) of the CPUID feature flags indicates the presence of the automatic thermal monitoring facili-
ties that modulate clock duty cycles.

14.7.4.1 Detection of Software Controlled Clock Modulation Extension

Processor’s support of software controlled clock modulation extension is indicated by CPUID.06H:EAX[Bit 5] = 1.

14.7.5 On Die Digital Thermal Sensors

On die digital thermal sensor can be read using an MSR (no I/0O interface). In Intel Core Duo processors, each core
has a unique digital sensor whose temperature is accessible using an MSR. The digital thermal sensor is the
preferred method for reading the die temperature because (a) it is located closer to the hottest portions of the die,
(b) it enables software to accurately track the die temperature and the potential activation of thermal throttling.

14-24 Vol. 3B

POWER AND THERMAL MANAGEMENT

14.7.5.1 Digital Thermal Sensor Enumeration

The processor supports a digital thermal sensor if CPUID.06H.EAX[0] = 1. If the processor supports digital thermal
sensor, EBX[bits 3:0] determine the number of thermal thresholds that are available for use.

Software sets thermal thresholds by using the IA32_THERM_INTERRUPT MSR. Software reads output of the digital
thermal sensor using the IA32_THERM_STATUS MSR.

14.7.5.2 Reading the Digital Sensor

Unlike traditional analog thermal devices, the output of the digital thermal sensor is a temperature relative to the
maximum supported operating temperature of the processor.

Temperature measurements returned by digital thermal sensors are always at or below TCC activation tempera-
ture. Critical temperature conditions are detected using the “Critical Temperature Status” bit. When this bit is set,
the processor is operating at a critical temperature and immediate shutdown of the system should occur. Once the
“Critical Temperature Status” bit is set, reliable operation is not guaranteed.

See Figure 14-27 for the layout of IA32_THERM_STATUS MSR. Bit fields include:

®* Thermal Status (bit O, RO) — This bit indicates whether the digital thermal sensor high-temperature output
signal (PROCHOT#) is currently active. Bit 0 = 1 indicates the feature is active. This bit may not be written by
software; it reflects the state of the digital thermal sensor.

® Thermal Status Log (bit 1, R/ZWC0) — This is a sticky bit that indicates the history of the thermal sensor
high temperature output signal (PROCHOT#). Bit 1 = 1 if PROCHOT# has been asserted since a previous
RESET or the last time software cleared the bit. Software may clear this bit by writing a zero.

®* PROCHOT# or FORCEPR# Event (bit 2, RO) — Indicates whether PROCHOT# or FORCEPR# is being
asserted by another agent on the platform.

63 32 31 27 2322 1615 10987 6543 210

Reserved

Reading Valid
Resolution in Deg. Celsius
Digital Readout
Power Limit Notification Log
Power Limit Notification Status
Thermal Threshold #2 Log
Thermal Threshold #2 Status
Thermal Threshold #1 Log

Thermal Threshold #1 Status
Critical Temperature Log
Critical Temperature Status
PROCHOT# or FORCEPR# Log
PROCHOT# or FORCEPR# Event
Thermal Status Log
Thermal Status

Figure 14-27. IA32_THERM_STATUS Register

®* PROCHOT# or FORCEPR# Log (bit 3, R/WCO0) — Sticky bit that indicates whether PROCHOT# or
FORCEPR# has been asserted by another agent on the platform since the last clearing of this bit or a reset. If
bit 3 = 1, PROCHOT# or FORCEPR# has been externally asserted. Software may clear this bit by writing a zero.
External PROCHOT# assertions are only acknowledged if the Bidirectional Prochot feature is enabled.

® Critical Temperature Status (bit 4, RO) — Indicates whether the critical temperature detector output signal
is currently active. If bit 4 = 1, the critical temperature detector output signal is currently active.

Vol. 3B 14-25

POWER AND THERMAL MANAGEMENT

® Critical Temperature Log (bit 5, RZ/WCO0) — Sticky bit that indicates whether the critical temperature
detector output signal has been asserted since the last clearing of this bit or reset. If bit 5 = 1, the output
signal has been asserted. Software may clear this bit by writing a zero.

® Thermal Threshold #1 Status (bit 6, RO) — Indicates whether the actual temperature is currently higher
than or equal to the value set in Thermal Threshold #1. If bit 6 = 0, the actual temperature is lower. If
bit 6 = 1, the actual temperature is greater than or equal to TT#1. Quantitative information of actual
temperature can be inferred from Digital Readout, bits 22:16.

® Thermal Threshold #1 Log (bit 7, RZWC0) — Sticky bit that indicates whether the Thermal Threshold #1
has been reached since the last clearing of this bit or a reset. If bit 7 = 1, the Threshold #1 has been reached.
Software may clear this bit by writing a zero.

®* Thermal Threshold #2 Status (bit 8, RO) — Indicates whether actual temperature is currently higher than
or equal to the value set in Thermal Threshold #2. If bit 8 = 0, the actual temperature is lower. If bit 8 = 1, the
actual temperature is greater than or equal to TT#2. Quantitative information of actual temperature can be
inferred from Digital Readout, bits 22:16.

®* Thermal Threshold #2 Log (bit 9, R/WCO0) — Sticky bit that indicates whether the Thermal Threshold #2
has been reached since the last clearing of this bit or a reset. If bit 9 = 1, the Thermal Threshold #2 has been
reached. Software may clear this bit by writing a zero.

® Power Limitation Status (bit 10, RO) — Indicates whether the processor is currently operating below OS-
requested P-state (specified in IA32_PERF_CTL) or OS-requested clock modulation duty cycle (specified in
IA32_CLOCK_MODULATION). This field is supported only if CPUID.06H:EAX[bit 4] = 1. Package level power
limit notification can be delivered independently to IA32_PACKAGE_THERM_STATUS MSR.

®* Power Notification Log (bit 11, R/ZWCQO) — Sticky bit that indicates the processor went below OS-requested
P-state or OS-requested clock modulation duty cycle since the last clearing of this or RESET. This field is
supported only if CPUID.06H:EAX[bit 4] = 1. Package level power limit notification is indicated independently
in IA32_PACKAGE_THERM_STATUS MSR.

®* Digital Readout (bits 22:16, RO) — Digital temperature reading in 1 degree Celsius relative to the TCC
activation temperature.

0: TCC Activation temperature,
1: (TCC Activation - 1) , etc. See the processor’s data sheet for details regarding TCC activation.
A lower reading in the Digital Readout field (bits 22:16) indicates a higher actual temperature.

®* Resolution in Degrees Celsius (bits 30:27, RO) — Specifies the resolution (or tolerance) of the digital
thermal sensor. The value is in degrees Celsius. It is recommended that new threshold values be offset from the
current temperature by at least the resolution + 1 in order to avoid hysteresis of interrupt generation.

®* Reading Valid (bit 31, RO) — Indicates if the digital readout in bits 22:16 is valid. The readout is valid if
bit 31 = 1.

Changes to temperature can be detected using two thresholds (see Figure 14-28); one is set above and the other

below the current temperature. These thresholds have the capability of generating interrupts using the core's local

APIC which software must then service. Note that the local APIC entries used by these thresholds are also used by
the Intel® Thermal Monitor; it is up to software to determine the source of a specific interrupt.

14-26 Vol. 3B

POWER AND THERMAL MANAGEMENT

63 % U B N 16 15 14 8 5 4 3210

Reserved

Power Limit Notification EnableA

Threshold #2 Interrupt Enable |
Threshold #2 Value
Threshold #1 Interrupt Enable
Threshold #1 Value
Overheat Interrupt Enable
FORCPR# Interrupt Enable
PROCHOT# Interrupt Enable
Low Temp. Interrupt Enable
High Temp. Interrupt Enable

Figure 14-28. IA32_THERM_INTERRUPT Register

See Figure 14-28 for the layout of IA32_THERM_INTERRUPT MSR. Bit fields include:

High-Temperature Interrupt Enable (bit O, R/W) — This bit allows the BIOS to enable the generation of
an interrupt on the transition from low-temperature to a high-temperature threshold. Bit 0 = 0 (default)
disables interrupts; bit 0 = 1 enables interrupts.

Low-Temperature Interrupt Enable (bit 1, R/W) — This bit allows the BIOS to enable the generation of an
interrupt on the transition from high-temperature to a low-temperature (TCC de-activation). Bit 1 = 0 (default)
disables interrupts; bit 1 = 1 enables interrupts.

PROCHOT# Interrupt Enable (bit 2, R/W) — This bit allows the BIOS or OS to enable the generation of an
interrupt when PROCHOT# has been asserted by another agent on the platform and the Bidirectional Prochot
feature is enabled. Bit 2 = 0 disables the interrupt; bit 2 = 1 enables the interrupt.

FORCEPR# Interrupt Enable (bit 3, R/W) — This bit allows the BIOS or OS to enable the generation of an
interrupt when FORCEPR# has been asserted by another agent on the platform. Bit 3 = 0 disables the
interrupt; bit 3 = 1 enables the interrupt.

Critical Temperature Interrupt Enable (bit 4, R/W) — Enables the generation of an interrupt when the
Critical Temperature Detector has detected a critical thermal condition. The recommended response to this
condition is a system shutdown. Bit 4 = 0 disables the interrupt; bit 4 = 1 enables the interrupt.

Threshold #1 Value (bits 14:8, R/W) — A temperature threshold, encoded relative to the TCC Activation
temperature (using the same format as the Digital Readout). This threshold is compared against the Digital
Readout and is used to generate the Thermal Threshold #1 Status and Log bits as well as the Threshold #1
thermal interrupt delivery.

Threshold #1 Interrupt Enable (bit 15, R/W) — Enables the generation of an interrupt when the actual
temperature crosses the Threshold #1 setting in any direction. Bit 15 = 1 enables the interrupt; bit 15 =10
disables the interrupt.

Threshold #2 Value (bits 22:16, R/W) —A temperature threshold, encoded relative to the TCC Activation
temperature (using the same format as the Digital Readout). This threshold is compared against the Digital
Readout and is used to generate the Thermal Threshold #2 Status and Log bits as well as the Threshold #2
thermal interrupt delivery.

Threshold #2 Interrupt Enable (bit 23, R/W) — Enables the generation of an interrupt when the actual
temperature crosses the Threshold #2 setting in any direction. Bit 23 = lenables the interrupt; bit 23 = 0
disables the interrupt.

Power Limit Notification Enable (bit 24, R/W) — Enables the generation of power notification events when
the processor went below OS-requested P-state or OS-requested clock modulation duty cycle. This field is
supported only if CPUID.06H:EAX[bit 4] = 1. Package level power limit notification can be enabled indepen-
dently by IA32_PACKAGE_THERM_INTERRUPT MSR.

Vol. 3B 14-27

POWER AND THERMAL MANAGEMENT

14.7.6 Power Limit Notification

Platform firmware may be capable of specifying a power limit to restrict power delivered to a platform component,
such as a physical processor package. This constraint imposed by platform firmware may occasionally cause the
processor to operate below OS-requested P or T-state. A power limit notification event can be delivered using the
existing thermal LVT entry in the local APIC.

Software can enumerate the presence of the processor’s support for power limit notification by verifying
CPUID.06H:EAX[bit 4] = 1.

If CPUID.0O6H:EAX[bit 4] = 1, then IA32_THERM_INTERRUPT and IA32_THERM_STATUS provides the following
facility to manage power limit notification:

® Bits 10 and 11 in IA32_THERM_STATUS informs software of the occurrence of processor operating below OS-
requested P-state or clock modulation duty cycle setting (see Figure 14-27).

® Bit 24 in IA32_THERM_INTERRUPT enables the local APIC to deliver a thermal event when the processor went
below OS-requested P-state or clock modulation duty cycle setting (see Figure 14-28).

14.8 PACKAGE LEVEL THERMAL MANAGEMENT

The thermal management facilities like IA32_THERM_INTERRUPT and IA32_THERM_STATUS are often imple-
mented with a processor core granularity. To facilitate software manage thermal events from a package level gran-
ularity, two architectural MSR is provided for package level thermal management. The
TIA32_PACKAGE_THERM_STATUS and IA32_PACKAGE_THERM_INTERRUPT MSRs use similar interfaces as
IA32_THERM_STATUS and IA32_THERM_INTERRUPT, but are shared in each physical processor package.

Software can enumerate the presence of the processor’s support for package level thermal management facility
(IA32_PACKAGE_THERM_STATUS and IA32_PACKAGE_THERM_INTERRUPT) by verifying CPUID.06H:EAX[bit 6] =
1.

The layout of IA32_PACKAGE_THERM_STATUS MSR is shown in Figure 14-29.

63 32 31 27 2322 1615 10987 6543 210

Reserved

PKG Digital Readout
PKG Power Limit Notification Log
PKG Power Limit Notification Status
PKG Thermal Threshold #2 Log
PKG Thermal Threshold #2 Status
PKG Thermal Threshold #1 Log
PKG Thermal Threshold #1 Status
PKG Critical Temperature Log
PKG Critical Temperature Status
PKG PROCHOT# or FORCEPR# Log
PKG PROCHOT# or FORCEPR# Event
PKG Thermal Status Log
PKG Thermal Status

Figure 14-29. IA32_PACKAGE_THERM_STATUS Register

®* Package Thermal Status (bit O, RO) — This bit indicates whether the digital thermal sensor high-
temperature output signal (PROCHOT#) for the package is currently active. Bit 0 = 1 indicates the feature is
active. This bit may not be written by software; it reflects the state of the digital thermal sensor.

14-28 Vol. 3B

POWER AND THERMAL MANAGEMENT

®* Package Thermal Status Log (bit 1, R/ZWCO0) — This is a sticky bit that indicates the history of the thermal
sensor high temperature output signal (PROCHOT#) of the package. Bit 1 = 1 if package PROCHOT# has been
asserted since a previous RESET or the last time software cleared the bit. Software may clear this bit by writing
a zero.

®* Package PROCHOT# Event (bit 2, RO) — Indicates whether package PROCHOT# is being asserted by
another agent on the platform.

®* Package PROCHOT# Log (bit 3, R/ZWCO0) — Sticky bit that indicates whether package PROCHOT# has been
asserted by another agent on the platform since the last clearing of this bit or a reset. If bit 3 = 1, package
PROCHOT# has been externally asserted. Software may clear this bit by writing a zero.

®* Package Critical Temperature Status (bit 4, RO) — Indicates whether the package critical temperature
detector output signal is currently active. If bit 4 = 1, the package critical temperature detector output signal
is currently active.

®* Package Critical Temperature Log (bit 5, R/WCO0) — Sticky bit that indicates whether the package critical
temperature detector output signal has been asserted since the last clearing of this bit or reset. If bit 5 = 1, the
output signal has been asserted. Software may clear this bit by writing a zero.

®* Package Thermal Threshold #1 Status (bit 6, RO) — Indicates whether the actual package temperature is
currently higher than or equal to the value set in Package Thermal Threshold #1. If bit 6 = 0, the actual
temperature is lower. If bit 6 = 1, the actual temperature is greater than or equal to PTT#1. Quantitative
information of actual package temperature can be inferred from Package Digital Readout, bits 22:16.

®* Package Thermal Threshold #1 Log (bit 7, R/ZWCOQ0) — Sticky bit that indicates whether the Package
Thermal Threshold #1 has been reached since the last clearing of this bit or a reset. If bit 7 = 1, the Package
Threshold #1 has been reached. Software may clear this bit by writing a zero.

®* Package Thermal Threshold #2 Status (bit 8, RO) — Indicates whether actual package temperature is
currently higher than or equal to the value set in Package Thermal Threshold #2. If bit 8 = 0, the actual
temperature is lower. If bit 8 = 1, the actual temperature is greater than or equal to PTT#2. Quantitative
information of actual temperature can be inferred from Package Digital Readout, bits 22:16.

®* Package Thermal Threshold #2 Log (bit 9, R/ZWCQ0) — Sticky bit that indicates whether the Package
Thermal Threshold #2 has been reached since the last clearing of this bit or a reset. If bit 9 = 1, the Package
Thermal Threshold #2 has been reached. Software may clear this bit by writing a zero.

®* Package Power Limitation Status (bit 10, RO) — Indicates package power limit is forcing one ore more
processors to operate below OS-requested P-state. Note that package power limit violation may be caused by
processor cores or by devices residing in the uncore. Software can examine IA32_THERM_STATUS to
determine if the cause originates from a processor core (see Figure 14-27).

®* Package Power Notification Log (bit 11, R/WCO) — Sticky bit that indicates any processor in the package
went below OS-requested P-state or OS-requested clock modulation duty cycle since the last clearing of this or
RESET.

®* Package Digital Readout (bits 22:16, RO) — Package digital temperature reading in 1 degree Celsius
relative to the package TCC activation temperature.

0: Package TCC Activation temperature,

1: (PTCC Activation - 1) , etc. See the processor’s data sheet for details regarding PTCC activation.

A lower reading in the Package Digital Readout field (bits 22:16) indicates a higher actual temperature.
The layout of IA32_PACKAGE_THERM_INTERRUPT MSR is shown in Figure 14-30.

Vol. 3B 14-29

POWER AND THERMAL MANAGEMENT

63 5 U B 0 16 15 14 8 5 4 3210

Reserved

Pkg Power Limit Notification EnableJ
Pkg Threshold #2 Interrupt Enable
Pkg Threshold #2 Value
Pkg Threshold #1 Interrupt Enable —M—«———
Pkg Threshold #1 Value
Pkg Overheat Interrupt Enable
Pkg PROCHOT# Interrupt Enable
Pkg Low Temp. Interrupt Enable
Pkg High Temp. Interrupt Enable

Figure 14-30. IA32_PACKAGE_THERM_INTERRUPT Register

* Package High-Temperature Interrupt Enable (bit 0, R/W) — This bit allows the BIOS to enable the
generation of an interrupt on the transition from low-temperature to a package high-temperature threshold.
Bit 0 = 0 (default) disables interrupts; bit 0 = 1 enables interrupts.

®* Package Low-Temperature Interrupt Enable (bit 1, R/W) — This bit allows the BIOS to enable the
generation of an interrupt on the transition from high-temperature to a low-temperature (TCC de-activation).
Bit 1 = 0 (default) disables interrupts; bit 1 = 1 enables interrupts.

®* Package PROCHOT# Interrupt Enable (bit 2, R/W) — This bit allows the BIOS or OS to enable the
generation of an interrupt when Package PROCHOT# has been asserted by another agent on the platform and
the Bidirectional Prochot feature is enabled. Bit 2 = 0 disables the interrupt; bit 2 = 1 enables the interrupt.

® Package Critical Temperature Interrupt Enable (bit 4, R/W) — Enables the generation of an interrupt
when the Package Critical Temperature Detector has detected a critical thermal condition. The recommended
response to this condition is a system shutdown. Bit 4 = 0 disables the interrupt; bit 4 = 1 enables the
interrupt.

®* Package Threshold #1 Value (bits 14:8, R/W) — A temperature threshold, encoded relative to the
Package TCC Activation temperature (using the same format as the Digital Readout). This threshold is
compared against the Package Digital Readout and is used to generate the Package Thermal Threshold #1
Status and Log bits as well as the Package Threshold #1 thermal interrupt delivery.

® Package Threshold #1 Interrupt Enable (bit 15, R/W) — Enables the generation of an interrupt when the
actual temperature crosses the Package Threshold #1 setting in any direction. Bit 15 = 1 enables the interrupt;
bit 15 = 0 disables the interrupt.

®* Package Threshold #2 Value (bits 22:16, R/W) —A temperature threshold, encoded relative to the PTCC
Activation temperature (using the same format as the Package Digital Readout). This threshold is compared
against the Package Digital Readout and is used to generate the Package Thermal Threshold #2 Status and Log
bits as well as the Package Threshold #2 thermal interrupt delivery.

®* Package Threshold #2 Interrupt Enable (bit 23, R/W) — Enables the generation of an interrupt when the
actual temperature crosses the Package Threshold #2 setting in any direction. Bit 23 = 1 enables the interrupt;
bit 23 = 0 disables the interrupt.

®* Package Power Limit Notification Enable (bit 24, R/W) — Enables the generation of package power
notification events.

14.8.1 Support for Passive and Active cooling

Passive and active cooling may be controlled by the OS power management agent through ACPI control methods.
On platforms providing package level thermal management facility described in the previous section, it is recom-
mended that active cooling (FAN control) should be driven by measuring the package temperature using the
IA32_PACKAGE_THERM_INTERRUPT MSR.

14-30 Vol. 3B

POWER AND THERMAL MANAGEMENT

Passive cooling (frequency throttling) should be driven by measuring (a) the core and package temperatures, or
(b) only the package temperature. If measured package temperature led the power management agent to choose
which core to execute passive cooling, then all cores need to execute passive cooling. Core temperature is
measured using the IA32_THERMAL_STATUS and IA32_THERMAL_INTERRUPT MSRs. The exact implementation
details depend on the platform firmware and possible solutions include defining two different thermal zones (one
for core temperature and passive cooling and the other for package temperature and active cooling).

149 PLATFORM SPECIFIC POWER MANAGEMENT SUPPORT

This section covers power management interfaces that are not architectural but addresses the power management
needs of several platform specific components. Specifically, RAPL (Running Average Power Limit) interfaces provide
mechanisms to enforce power consumption limit. Power limiting usages have specific usages in client and server
platforms.

For client platform power limit control and for server platforms used in a data center, the following power and
thermal related usages are desirable:

® Platform Thermal Management: Robust mechanisms to manage component, platform, and group-level
thermals, either proactively or reactively (e.g., in response to a platform-level thermal trip point).

®* Platform Power Limiting: More deterministic control over the system's power consumption, for example to
meet battery life targets on rack-level or container-level power consumption goals within a datacenter.

®* Power/Performance Budgeting: Efficient means to control the power consumed (and therefore the sustained
performance delivered) within and across platforms.

The server and client usage models are addressed by RAPL interfaces, which expose multiple domains of power
rationing within each processor socket. Generally, these RAPL domains may be viewed to include hierarchically:

®* Package domain is the processor die.

® Memory domain includes the directly-attached DRAM; an additional power plane may constitute a separate
domain.

In order to manage the power consumed across multiple sockets via RAPL, individual limits must be programmed
for each processor complex. Programming specific RAPL domain across multiple sockets is not supported.

14.9.1 RAPL Interfaces

RAPL interfaces consist of non-architectural MSRs. Each RAPL domain supports the following set of capabilities,
some of which are optional as stated below.

® Power limit - MSR interfaces to specify power limit, time window; lock bit, clamp bit etc.
®* Energy Status - Power metering interface providing energy consumption information.

®* Perf Status (Optional) - Interface providing information on the performance effects (regression) due to power
limits. It is defined as a duration metric that measures the power limit effect in the respective domain. The
meaning of duration is domain specific.

®* Power Info (Optional) - Interface providing information on the range of parameters for a given domain,
minimum power, maximum power etc.

®* Policy (Optional) - 4-bit priority information that is a hint to hardware for dividing budget between sub-domains
in a parent domain.

Each of the above capabilities requires specific units in order to describe them. Power is expressed in Watts, Time
is expressed in Seconds, and Energy is expressed in Joules. Scaling factors are supplied to each unit to make the
information presented meaningful in a finite number of bits. Units for power, energy, and time are exposed in the
read-only MSR_RAPL_POWER_UNIT MSR.

Vol. 3B 14-31

POWER AND THERMAL MANAGEMENT

63 2019 1615 13 12 8 7 43 0

Reserved
Time units
Energy status units
Power units

Figure 14-31. MSR_RAPL_POWER_UNIT Register

MSR_RAPL_POWER_UNIT (Figure 14-31) provides the following information across all RAPL domains:

® Power Units (bits 3:0): Power related information (in Watts) is based on the multiplier, 1/ 2”~PU; where PU is
an unsigned integer represented by bits 3:0. Default value is 0011b, indicating power unit is in 1/8 Watts
increment.

®* Energy Status Units (bits 12:8): Energy related information (in Joules) is based on the multiplier, 1/2~ESU;
where ESU is an unsigned integer represented by bits 12:8. Default value is 10000b, indicating energy status
unit is in 15.3 micro-Joules increment.

® Time Units (bits 19:16): Time related information (in Seconds) is based on the multiplier, 1/ 2~TU; where TU
is an unsigned integer represented by bits 19:16. Default value is 1010b, indicating time unit is in 976 micro-
seconds increment.

14.9.2 RAPL Domains and Platform Specificity

The specific RAPL domains available in a platform vary across product segments. Platforms targeting the client
segment support the following RAPL domain hierarchy:

®* Package
®* Two power planes: PP0O and PP1 (PP1 may reflect to uncore devices)
Platforms targeting the server segment support the following RAPL domain hierarchy:

®* Package
®* Power plane: PPO
* DRAM

Each level of the RAPL hierarchy provides a respective set of RAPL interface MSRs. Table 14-4 lists the RAPL MSR
interfaces available for each RAPL domain. The power limit MSR of each RAPL domain is located at offset O relative
to an MSR base address which is non-architectural (see Chapter 2, "Model-Specific Registers (MSRs)” in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 4). The energy status MSR of each domain is
located at offset 1 relative to the MSR base address of respective domain.

Table 14-4. RAPL MSR Interfaces and RAPL Domains

Domain Power Limit Energy Status (Offset Policy Perf Status Power Info
(Offset 0) 1) (Offset 2) (Offset 3) (Offset 4)
PKG MSR_PKG_POWER_ | MSR_PKG_ENERGY_STA | RESERVED MSR_PKG_PERF_STATUS MSR_PKG_POWER_|
uMmIT TUS NFO
DRAM MSR_DRAM_POWER | MSR_DRAM_ENERGY_S | RESERVED MSR_DRAM_PERF_STATUS | MSR_DRAM_POWER
_uMmIT TATUS _INFO
PPO MSR_PPO_POWER_ | MSR_PPO_ENERGY_STA | MSR_PPO_POLICY | MSR_PPO_PERF_STATUS | RESERVED
uMmIT TUS

14-32 Vol. 3B

POWER AND THERMAL MANAGEMENT

Table 14-4. RAPL MSR Interfaces and RAPL Domains

’ PP ‘MSR_PPLPO\/\IER_ MSR_PP1_ENERGY_STA’MSR_PP1_POLICY ‘RESERVED RESERVED
LMIT TUS

The presence of the optional MSR interfaces (the three right-most columns of Table 14-4) may be model-specific.
See Chapter 2, "Model-Specific Registers (MSRs)” in the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 4 for details.

14.9.3 Package RAPL Domain

The MSR interfaces defined for the package RAPL domain are:

® MSR_PKG_POWER_LIMIT allows software to set power limits for the package and measurement attributes
associated with each limit,

® MSR_PKG_ENERGY_STATUS reports measured actual energy usage,
® MSR_PKG_POWER_INFO reports the package power range information for RAPL usage.

MSR_PKG_PERF_STATUS can report the performance impact of power limiting, but its availability may be model-
specific.

6362 5655 4948 4746 3231 24 23 171615 14 0
L

(0] Time window . Time window .

c Power Limit #2 Pkg Power Limit #2 Power Limit #1 Pkg Power Limit #1
K

L Enable limit #1

Pkg clamping limit #1
Enable limit #2
Pkg clamping limit #2

Figure 14-32. MSR_PKG_POWER_LIMIT Register

MSR_PKG_POWER_LIMIT allows a software agent to define power limitation for the package domain. Power limita-
tion is defined in terms of average power usage (Watts) over a time window specified in MSR_PKG_POWER_LIMIT.
Two power limits can be specified, corresponding to time windows of different sizes. Each power limit provides
independent clamping control that would permit the processor cores to go below OS-requested state to meet the
power limits. A lock mechanism allow the software agent to enforce power limit settings. Once the lock bit is set,
the power limit settings are static and un-modifiable until next RESET.

The bit fields of MSR_PKG_POWER_LIMIT (Figure 14-32) are:

®* Package Power Limit #1(bits 14:0): Sets the average power usage limit of the package domain corre-
sponding to time window # 1. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

®* Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.

®* Package Clamping Limitation #1 (bit 16): Allow going below OS-requested P/T state setting during time
window specified by bits 23:17.

® Time Window for Power Limit #1 (bits 23:17): Indicates the time window for power limit #1
Time limit = 22Y * (1.0 + Z/4.0) * Time_Unit

Here “Y” is the unsigned integer value represented. by bits 21:17, *Z" is an unsigned integer represented by
bits 23:22. “Time_Unit” is specified by the “Time Units” field of MSR