
Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Volume 3B:
System Programming Guide, Part 2

NOTE: The Intel® 64 and IA-32 Architectures Software Developer's Manual consists of ten volumes:
Basic Architecture, Order Number 253665; Instruction Set Reference, A-L, Order Number 253666;
Instruction Set Reference, M-U, Order Number 253667; Instruction Set Reference, V, Order Number
326018; Instruction Set Reference, W-Z, Order Number 334569; System Programming Guide, Part 1,
Order Number 253668; System Programming Guide, Part 2, Order Number 253669; System
Programming Guide, Part 3, Order Number 326019; System Programming Guide, Part 4, Order Number
332831; Model-Specific Registers, Order Number 335592. Refer to all ten volumes when evaluating
your design needs.

Order Number: 253669-082US
December 2023

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability,
fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of
dealing, or usage in trade.

Code names are used by Intel to identify products, technologies, or services that are in development and not publicly
available. These are not “commercial” names and not intended to function as trademarks.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document, with
the sole exception that a) you may publish an unmodified copy and b) code included in this document is licensed subject to
the Zero-Clause BSD open source license (0BSD), https://opensource.org/licenses/0BSD. You may create software
implementations based on this document and in compliance with the foregoing that are intended to execute on the Intel
product(s) referenced in this document. No rights are granted to create modifications or derivatives of this document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other
names and brands may be claimed as the property of others.

https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD

CHAPTER 15
POWER AND THERMAL MANAGEMENT

This chapter describes facilities of Intel 64 and IA-32 architecture used for power management and thermal moni-
toring.

15.1 ENHANCED INTEL SPEEDSTEP® TECHNOLOGY
Enhanced Intel SpeedStep® Technology was introduced in the Pentium M processor. The technology enables the
management of processor power consumption via performance state transitions. These states are defined as
discrete operating points associated with different voltages and frequencies.

Enhanced Intel SpeedStep Technology differs from previous generations of Intel SpeedStep® Technology in two
ways:
• Centralization of the control mechanism and software interface in the processor by using model-specific

registers.
• Reduced hardware overhead; this permits more frequent performance state transitions.

Previous generations of the Intel SpeedStep Technology require processors to be a deep sleep state, holding off bus
master transfers for the duration of a performance state transition. Performance state transitions under the
Enhanced Intel SpeedStep Technology are discrete transitions to a new target frequency.

Support is indicated by CPUID, using ECX feature bit 07. Enhanced Intel SpeedStep Technology is enabled by
setting IA32_MISC_ENABLE MSR, bit 16. On reset, bit 16 of IA32_MISC_ENABLE MSR is cleared.

15.1.1 Software Interface For Initiating Performance State Transitions
State transitions are initiated by writing a 16-bit value to the IA32_PERF_CTL register, see Figure 15-2. If a transi-
tion is already in progress, transition to a new value will subsequently take effect.

Reads of IA32_PERF_CTL determine the last targeted operating point. The current operating point can be read from
IA32_PERF_STATUS. IA32_PERF_STATUS is updated dynamically.

The 16-bit encoding that defines valid operating points is model-specific. Applications and performance tools are
not expected to use either IA32_PERF_CTL or IA32_PERF_STATUS and should treat both as reserved. Performance
monitoring tools can access model-specific events and report the occurrences of state transitions.

15.2 P-STATE HARDWARE COORDINATION
The Advanced Configuration and Power Interface (ACPI) defines performance states (P-states) that are used to
facilitate system software’s ability to manage processor power consumption. Different P-states correspond to
different performance levels that are applied while the processor is actively executing instructions. Enhanced Intel
SpeedStep Technology supports P-states by providing software interfaces that control the operating frequency and
voltage of a processor.

With multiple processor cores residing in the same physical package, hardware dependencies may exist for a
subset of logical processors on a platform. These dependencies may impose requirements that impact the coordi-
nation of P-state transitions. As a result, multi-core processors may require an OS to provide additional software
support for coordinating P-state transitions for those subsets of logical processors.

ACPI firmware can choose to expose P-states as dependent and hardware-coordinated to OS power management
(OSPM) policy. To support OSPMs, multi-core processors must have additional built-in support for P-state hardware
coordination and feedback.

Intel 64 and IA-32 processors with dependent P-states amongst a subset of logical processors permit hardware
coordination of P-states and provide a hardware-coordination feedback mechanism using IA32_MPERF MSR and
Vol. 3B 15-1

POWER AND THERMAL MANAGEMENT
IA32_APERF MSR. See Figure 15-1 for an overview of the two 64-bit MSRs and the bullets below for a detailed
description.

• Use CPUID to check the P-State hardware coordination feedback capability bit. CPUID.06H.ECX[Bit 0] = 1
indicates IA32_MPERF MSR and IA32_APERF MSR are present.

• IA32_MPERF MSR (E7H) increments in proportion to a fixed frequency, which is configured when the processor
is booted.

• IA32_APERF MSR (E8H) increments in proportion to actual performance, while accounting for hardware coordi-
nation of P-state and TM1/TM2; or software initiated throttling.

• The MSRs are per logical processor; they measure performance only when the targeted processor is in the C0
state.

• Only the IA32_APERF/IA32_MPERF ratio is architecturally defined; software should not attach meaning to the
content of the individual of IA32_APERF or IA32_MPERF MSRs.

• When either MSR overflows, both MSRs are reset to zero and continue to increment.
• Both MSRs are full 64-bits counters. Each MSR can be written to independently. However, software should

follow the guidelines illustrated in Example 15-1.

If P-states are exposed by the BIOS as hardware coordinated, software is expected to confirm processor support
for P-state hardware coordination feedback and use the feedback mechanism to make P-state decisions. The OSPM
is expected to either save away the current MSR values (for determination of the delta of the counter ratio at a later
time) or reset both MSRs (execute WRMSR with 0 to these MSRs individually) at the start of the time window used
for making the P-state decision. When not resetting the values, overflow of the MSRs can be detected by checking
whether the new values read are less than the previously saved values.

Example 15-1 demonstrates steps for using the hardware feedback mechanism provided by IA32_APERF MSR and
IA32_MPERF MSR to determine a target P-state.

Example 15-1. Determine Target P-state From Hardware Coordinated Feedback

DWORD PercentBusy; // Percentage of processor time not idle.
// Measure “PercentBusy“ during previous sampling window.
// Typically, “PercentBusy“ is measure over a time scale suitable for
// power management decisions
//
// RDMSR of MCNT and ACNT should be performed without delay.
// Software needs to exercise care to avoid delays between
// the two RDMSRs (for example, interrupts).
MCNT = RDMSR(IA32_MPERF);
ACNT = RDMSR(IA32_APERF);

// PercentPerformance indicates the percentage of the processor
// that is in use. The calculation is based on the PercentBusy,
// that is the percentage of processor time not idle and the P-state
// hardware coordinated feedback using the ACNT/MCNT ratio.
// Note that both values need to be calculated over the same

Figure 15-1. IA32_MPERF MSR and IA32_APERF MSR for P-state Coordination

63 0

IA32_MPERF (Addr: E7H)

630

IA32_APERF (Addr: E8H)
15-2 Vol. 3B

POWER AND THERMAL MANAGEMENT
// time window.
PercentPerformance = PercentBusy * (ACNT/MCNT);

// This example does not cover the additional logic or algorithms
// necessary to coordinate multiple logical processors to a target P-state.

TargetPstate = FindPstate(PercentPerformance);

if (TargetPstate ≠ currentPstate) {
SetPState(TargetPstate);

}
// WRMSR of MCNT and ACNT should be performed without delay.

 // Software needs to exercise care to avoid delays between
 // the two WRMSRs (for example, interrupts).
 WRMSR(IA32_MPERF, 0);
 WRMSR(IA32_APERF, 0);

15.3 SYSTEM SOFTWARE CONSIDERATIONS AND OPPORTUNISTIC PROCESSOR
PERFORMANCE OPERATION

An Intel 64 processor may support a form of processor operation that takes advantage of design headroom to
opportunistically increase performance. The Intel® Turbo Boost Technology can convert thermal headroom into
higher performance across multi-threaded and single-threaded workloads. The Intel® Dynamic Acceleration Tech-
nology feature can convert thermal headroom into higher performance if only one thread is active.

15.3.1 Intel® Dynamic Acceleration Technology
The Intel Core 2 Duo processor T 7700 introduces Intel Dynamic Acceleration Technology. Intel Dynamic Accelera-
tion Technology takes advantage of thermal design headroom and opportunistically allows a single core to operate
at a higher performance level when the operating system requests increased performance.

15.3.2 System Software Interfaces for Opportunistic Processor Performance Operation
Opportunistic processor performance operation, applicable to Intel Dynamic Acceleration Technology and Intel®
Turbo Boost Technology, has the following characteristics:
• A transition from a normal state of operation (e.g., Intel Dynamic Acceleration Technology/Turbo mode

disengaged) to a target state is not guaranteed, but may occur opportunistically after the corresponding enable
mechanism is activated, the headroom is available and certain criteria are met.

• The opportunistic processor performance operation is generally transparent to most application software.
• System software (BIOS and Operating system) must be aware of hardware support for opportunistic processor

performance operation and may need to temporarily disengage opportunistic processor performance operation
when it requires more predictable processor operation.

• When opportunistic processor performance operation is engaged, the OS should use hardware coordination
feedback mechanisms to prevent un-intended policy effects if it is activated during inappropriate situations.

15.3.2.1 Discover Hardware Support and Enabling of Opportunistic Processor Performance Operation
If an Intel 64 processor has hardware support for opportunistic processor performance operation, the power-on
default state of IA32_MISC_ENABLE[38] indicates the presence of such hardware support. For Intel 64 processors
that support opportunistic processor performance operation, the default value is 1, indicating its presence. For
processors that do not support opportunistic processor performance operation, the default value is 0. The power-
Vol. 3B 15-3

POWER AND THERMAL MANAGEMENT
on default value of IA32_MISC_ENABLE[38] allows BIOS to detect the presence of hardware support of opportu-
nistic processor performance operation.

IA32_MISC_ENABLE[38] is shared across all logical processors in a physical package. It is written by BIOS during
platform initiation to enable/disable opportunistic processor performance operation in conjunction of OS power
management capabilities, see Section 15.3.2.2. BIOS can set IA32_MISC_ENABLE[38] with 1 to disable opportu-
nistic processor performance operation; it must clear the default value of IA32_MISC_ENABLE[38] to 0 to enable
opportunistic processor performance operation. OS and applications must use CPUID leaf 06H if it needs to detect
processors that have opportunistic processor performance operation enabled.

When CPUID is executed with EAX = 06H on input, Bit 1 of EAX in Leaf 06H (i.e., CPUID.06H:EAX[1]) indicates
opportunistic processor performance operation, such as Intel Dynamic Acceleration Technology, has been enabled
by BIOS.

Opportunistic processor performance operation can be disabled by setting bit 38 of IA32_MISC_ENABLE. This
mechanism is intended for BIOS only. If IA32_MISC_ENABLE[38] is set, CPUID.06H:EAX[1] will return 0.

15.3.2.2 OS Control of Opportunistic Processor Performance Operation
There may be phases of software execution in which system software cannot tolerate the non-deterministic aspects
of opportunistic processor performance operation. For example, when calibrating a real-time workload to make a
CPU reservation request to the OS, it may be undesirable to allow the possibility of the processor delivering
increased performance that cannot be sustained after the calibration phase.

System software can temporarily disengage opportunistic processor performance operation by setting bit 32 of the
IA32_PERF_CTL MSR (0199H), using a read-modify-write sequence on the MSR. The opportunistic processor
performance operation can be re-engaged by clearing bit 32 in IA32_PERF_CTL MSR, using a read-modify-write
sequence. The DISENGAGE bit in IA32_PERF_CTL is not reflected in bit 32 of the IA32_PERF_STATUS MSR
(0198H), and it is not shared between logical processors in a physical package. In order for OS to engage Intel
Dynamic Acceleration Technology/Turbo mode, the BIOS must:
• Enable opportunistic processor performance operation, as described in Section 15.3.2.1.
• Expose the operating points associated with Intel Dynamic Acceleration Technology/Turbo mode to the OS.

15.3.2.3 Required Changes to OS Power Management P-State Policy
Intel Dynamic Acceleration Technology and Intel Turbo Boost Technology can provide opportunistic performance
greater than the performance level corresponding to the Processor Base frequency of the processor (see CPUID’s
processor frequency information). System software can use a pair of MSRs to observe performance feedback. Soft-
ware must query for the presence of IA32_APERF and IA32_MPERF (see Section 15.2). The ratio between
IA32_APERF and IA32_MPERF is architecturally defined and a value greater than unity indicates performance
increase occurred during the observation period due to Intel Dynamic Acceleration Technology. Without incorpo-
rating such performance feedback, the target P-state evaluation algorithm can result in a non-optimal P-state
target.

Figure 15-2. IA32_PERF_CTL Register

063 16 1533 32 31

Reserved

Enhanced Intel Speedstep® Technology Transition Target

Intel® Dynamic Acceleration Technology / Turbo Engage Bit
(Used to Disengage Feature)

Reserved
15-4 Vol. 3B

POWER AND THERMAL MANAGEMENT
There are other scenarios under which OS power management may want to disable Intel Dynamic Acceleration
Technology, some of these are listed below:
• When engaging ACPI defined passive thermal management, it may be more effective to disable Intel Dynamic

Acceleration Technology for the duration of passive thermal management.
• When the user has indicated a policy preference of power savings over performance, OS power management

may want to disable Intel Dynamic Acceleration Technology while that policy is in effect.

15.3.3 Intel® Turbo Boost Technology
Intel Turbo Boost Technology is supported in Intel Core i7 processors and Intel Xeon processors based on Nehalem
microarchitecture. It uses the same principle of leveraging thermal headroom to dynamically increase processor
performance for single-threaded and multi-threaded/multi-tasking environment. The programming interface
described in Section 15.3.2 also applies to Intel Turbo Boost Technology.

15.3.4 Performance and Energy Bias Hint Support
Intel 64 processors may support additional software hint to guide the hardware heuristic of power management
features to favor increasing dynamic performance or conserve energy consumption.

Software can detect the processor's capability to support the performance-energy bias preference hint by exam-
ining bit 3 of ECX in CPUID leaf 6. The processor supports this capability if CPUID.06H:ECX.SETBH[bit 3] is set and
it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H).

Software can program the lowest four bits of IA32_ENERGY_PERF_BIAS MSR with a value from 0 - 15. The values
represent a sliding scale, where a value of 0 (the default reset value) corresponds to a hint preference for highest
performance and a value of 15 corresponds to the maximum energy savings. A value of 7 roughly translates into a
hint to balance performance with energy consumption.

The layout of IA32_ENERGY_PERF_BIAS is shown in Figure 15-3. The scope of IA32_ENERGY_PERF_BIAS is per
logical processor, which means that each of the logical processors in the package can be programmed with a
different value. This may be especially important in virtualization scenarios, where the performance / energy
requirements of one logical processor may differ from the other. Conflicting “hints” from various logical processors
at higher hierarchy level will be resolved in favor of performance over energy savings.

Software can use whatever criteria it sees fit to program the MSR with an appropriate value. However, the value
only serves as a hint to the hardware and the actual impact on performance and energy savings is model specific.

15.4 HARDWARE-CONTROLLED PERFORMANCE STATES (HWP)
Intel processors may contain support for Hardware-Controlled Performance States (HWP), which autonomously
selects performance states while utilizing OS supplied performance guidance hints. The Enhanced Intel Speed-
Step® Technology provides a means for the OS to control and monitor discrete frequency-based operating points
via the IA32_PERF_CTL and IA32_PERF_STATUS MSRs.

Figure 15-3. IA32_ENERGY_PERF_BIAS Register

4 3 063

Reserved

Energy Policy Preference Hint
Vol. 3B 15-5

POWER AND THERMAL MANAGEMENT
In contrast, HWP is an implementation of the ACPI-defined Collaborative Processor Performance Control (CPPC),
which specifies that the platform enumerates a continuous, abstract unit-less, performance value scale that is not
tied to a specific performance state / frequency by definition. While the enumerated scale is roughly linear in terms
of a delivered integer workload performance result, the OS is required to characterize the performance value range
to comprehend the delivered performance for an applied workload.

When HWP is enabled, the processor autonomously selects performance states as deemed appropriate for the
applied workload and with consideration of constraining hints that are programmed by the OS. These OS-provided
hints include minimum and maximum performance limits, preference towards energy efficiency or performance,
and the specification of a relevant workload history observation time window. The means for the OS to override
HWP's autonomous selection of performance state with a specific desired performance target is also provided,
however, the effective frequency delivered is subject to the result of energy efficiency and performance optimiza-
tions.

15.4.1 HWP Programming Interfaces
The programming interfaces provided by HWP include the following:
• The CPUID instruction allows software to discover the presence of HWP support in an Intel processor. Specifi-

cally, execute CPUID instruction with EAX=06H as input will return 5 bit flags covering the following aspects in
bits 7 through 11 of CPUID.06H:EAX:

— Availability of HWP baseline resource and capability, CPUID.06H:EAX[bit 7]: If this bit is set, HWP provides
several new architectural MSRs: IA32_PM_ENABLE, IA32_HWP_CAPABILITIES, IA32_HWP_REQUEST,
IA32_HWP_STATUS.

— Availability of HWP Notification upon dynamic Guaranteed Performance change, CPUID.06H:EAX[bit 8]: If
this bit is set, HWP provides IA32_HWP_INTERRUPT MSR to enable interrupt generation due to dynamic
Performance changes and excursions.

— Availability of HWP Activity window control, CPUID.06H:EAX[bit 9]: If this bit is set, HWP allows software to
program activity window in the IA32_HWP_REQUEST MSR.

— Availability of HWP energy/performance preference control, CPUID.06H:EAX[bit 10]: If this bit is set, HWP
allows software to set an energy/performance preference hint in the IA32_HWP_REQUEST MSR.

— Availability of HWP package level control, CPUID.06H:EAX[bit 11]:If this bit is set, HWP provides the
IA32_HWP_REQUEST_PKG MSR to convey OS Power Management’s control hints for all logical processors
in the physical package.

Table 15-1. Architectural and Non-Architectural MSRs Related to HWP

Address Architectural Register Name Description

770H Y IA32_PM_ENABLE Enable/Disable HWP.

771H Y IA32_HWP_CAPABILITIES Enumerates the HWP performance range (static and dynamic).

772H Y IA32_HWP_REQUEST_PKG Conveys OSPM's control hints (Min, Max, Activity Window, Energy
Performance Preference, Desired) for all logical processor in the
physical package.

773H Y IA32_HWP_INTERRUPT Controls HWP native interrupt generation (Guaranteed Performance
changes, excursions).

774H Y IA32_HWP_REQUEST Conveys OSPM's control hints (Min, Max, Activity Window, Energy
Performance Preference, Desired) for a single logical processor.

775H Y IA32_HWP_PECI_REQUEST_INFO Conveys embedded system controller requests to override some of
the OS HWP Request settings via the PECI mechanism.

777H Y IA32_HWP_STATUS Status bits indicating changes to Guaranteed Performance and
excursions to Minimum Performance.

19CH Y IA32_THERM_STATUS[bits 15:12] Conveys reasons for performance excursions.

64EH N MSR_PPERF Productive Performance Count.
15-6 Vol. 3B

POWER AND THERMAL MANAGEMENT
• Additionally, HWP may provide a non-architectural MSR, MSR_PPERF, which provides a quantitative metric to
software of hardware’s view of workload scalability. This hardware’s view of workload scalability is implemen-
tation specific.

15.4.2 Enabling HWP
The layout of the IA32_PM_ENABLE MSR is shown in Figure 15-4. The bit fields are described below:

• HWP_ENABLE (bit 0, R/W1Once) — Software sets this bit to enable HWP with autonomous selection of
processor P-States. When set, the processor will disregard input from the legacy performance control interface
(IA32_PERF_CTL). Note this bit can only be enabled once from the default value. Once set, writes to the
HWP_ENABLE bit are ignored. Only RESET will clear this bit. Default = zero (0).

• Bits 63:1 are reserved and must be zero.

After software queries CPUID and verifies the processor’s support of HWP, system software can write 1 to IA32_P-
M_ENABLE.HWP_ENABLE (bit 0) to enable hardware controlled performance states. The default value of IA32_P-
M_ENABLE MSR at power-on is 0, i.e., HWP is disabled.

Additional MSRs associated with HWP may only be accessed after HWP is enabled, with the exception of
IA32_HWP_INTERRUPT and MSR_PPERF. Accessing the IA32_HWP_INTERRUPT MSR requires only HWP is present
as enumerated by CPUID but does not require enabling HWP.

IA32_PM_ENABLE is a package level MSR, i.e., writing to it from any logical processor within a package affects all
logical processors within that package.

15.4.3 HWP Performance Range and Dynamic Capabilities
The OS reads the IA32_HWP_CAPABILITIES MSR to comprehend the limits of the HWP-managed performance
range as well as the dynamic capability, which may change during processor operation. The enumerated perfor-
mance range values reported by IA32_HWP_CAPABILITIES directly map to initial frequency targets (prior to work-
load-specific frequency optimizations of HWP). However the mapping is processor family specific.

The layout of the IA32_HWP_CAPABILITIES MSR is shown in Figure 15-5. The bit fields are described below:

Figure 15-4. IA32_PM_ENABLE MSR

1 063

Reserved

HWP_ENABLE
Vol. 3B 15-7

POWER AND THERMAL MANAGEMENT
• Highest_Performance (bits 7:0, RO) — Value for the maximum non-guaranteed performance level.
• Guaranteed_Performance (bits 15:8, RO) — Current value for the guaranteed performance level. This

value can change dynamically as a result of internal or external constraints, e.g., thermal or power limits.
• Most_Efficient_Performance (bits 23:16, RO) — Current value of the most efficient performance level.

This value can change dynamically as a result of workload characteristics.
• Lowest_Performance (bits 31:24, RO) — Value for the lowest performance level that software can program

to IA32_HWP_REQUEST.
• Bits 63:32 are reserved and must be zero.

The value returned in the Guaranteed_Performance field is hardware's best-effort approximation of the avail-
able performance given current operating constraints. Changes to the Guaranteed_Performance value will
primarily occur due to a shift in operational mode. This includes a power or other limit applied by an external agent,
e.g., RAPL (see Figure 15.10.1), or the setting of a Configurable TDP level (see model-specific controls related to
Programmable TDP Limit in Chapter 2, “Model-Specific Registers (MSRs),” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 4.). Notification of a change to the Guaranteed_Performance occurs via
interrupt (if configured) and the IA32_HWP_Status MSR. Changes to Guaranteed_Performance are indicated when
a macroscopically meaningful change in performance occurs i.e., sustained for greater than one second. Conse-
quently, notification of a change in Guaranteed Performance will typically occur no more frequently than once per
second. Rapid changes in platform configuration, e.g., docking/undocking, with corresponding changes to a Config-
urable TDP level could potentially cause more frequent notifications.

The value returned by the Most_Efficient_Performance field provides the OS with an indication of the practical
lower limit for the IA32_HWP_REQUEST. The processor may not honor IA32_HWP_REQUEST.Maximum Perfor-
mance settings below this value.

15.4.4 Managing HWP

15.4.4.1 IA32_HWP_REQUEST MSR (Address: 774H Logical Processor Scope)
Typically, the operating system controls HWP operation for each logical processor via the writing of control hints /
constraints to the IA32_HWP_REQUEST MSR. The layout of the IA32_HWP_REQUEST MSR is shown in Figure 15-6.
The bit fields are described below Figure 15-6.

Operating systems can control HWP by writing both IA32_HWP_REQUEST and IA32_HWP_REQUEST_PKG MSRs
(see Section 15.4.4.2). Five valid bits within the IA32_HWP_REQUEST MSR let the operating system flexibly select
which of its five hint / constraint fields should be derived by the processor from the IA32_HWP_REQUEST MSR and
which should be derived from the IA32_HWP_REQUEST_PKG MSR. These five valid bits are supported if
CPUID[6].EAX[17] is set.

Figure 15-5. IA32_HWP_CAPABILITIES Register

063 8 716 1524 2332 31

Reserved

Most_Efficient_Performance

Guaranteed_Performance

Highest_Performance

Lowest_Performance
15-8 Vol. 3B

POWER AND THERMAL MANAGEMENT
When the IA32_HWP_REQUEST MSR Package Control bit is set, any valid bit that is NOT set indicates to the
processor to use the respective field value from the IA32_HWP_REQUEST_PKG MSR. Otherwise, the values are
derived from the IA32_HWP_REQUEST MSR. The valid bits are ignored when the IA32_HWP_REQUEST MSR
Package Control bit is zero.

• Minimum_Performance (bits 7:0, RW) — Conveys a hint to the HWP hardware. The OS programs the
minimum performance hint to achieve the required quality of service (QOS) or to meet a service level
agreement (SLA) as needed. Note that an excursion below the level specified is possible due to hardware
constraints. The default value of this field is IA32_HWP_CAPABILITIES.Lowest_Performance.

• Maximum_Performance (bits 15:8, RW) — Conveys a hint to the HWP hardware. The OS programs this
field to limit the maximum performance that is expected to be supplied by the HWP hardware. Excursions
above the limit requested by OS are possible due to hardware coordination between the processor cores and
other components in the package. The default value of this field is IA32_HWP_CAPABILITIES.Highest_Perfor-
mance.

• Desired_Performance (bits 23:16, RW) — Conveys a hint to the HWP hardware. When set to zero,
hardware autonomous selection determines the performance target. When set to a non-zero value (between
the range of Lowest_Performance and Highest_Performance of IA32_HWP_CAPABILITIES) conveys an explicit
performance request hint to the hardware; effectively disabling HW Autonomous selection. The Desired_Per-
formance input is non-constraining in terms of Performance and Energy Efficiency optimizations, which are
independently controlled. The default value of this field is 0.

• Energy_Performance_Preference (bits 31:24, RW) — Conveys a hint to the HWP hardware. The OS may
write a range of values from 0 (performance preference) to 0FFH (energy efficiency preference) to influence
the rate of performance increase /decrease and the result of the hardware's energy efficiency and performance
optimizations. The default value of this field is 80H. Note: If CPUID.06H:EAX[bit 10] indicates that this field is
not supported, HWP uses the value of the IA32_ENERGY_PERF_BIAS MSR to determine the energy efficiency /
performance preference.

• Activity_Window (bits 41:32, RW) — Conveys a hint to the HWP hardware specifying a moving workload
history observation window for performance/frequency optimizations. If 0, the hardware will determine the
appropriate window size. When writing a non-zero value to this field, this field is encoded in the format of bits
38:32 as a 7-bit mantissa and bits 41:39 as a 3-bit exponent value in powers of 10. The resultant value is in
microseconds. Thus, the minimal/maximum activity window size is 1 microsecond/1270 seconds. Combined
with the Energy_Performance_Preference input, Activity_Window influences the rate of performance increase

Figure 15-6. IA32_HWP_REQUEST Register

063 62 61 60 59 8 716 1524 2332 3143 42 41

Reserved

Energy_Performance_Preference

Activity_Window

Desired_Performance

Maximum_Performance

Minimum_Performance

Activity_Window Valid
EPP Valid
Desired Valid
Maximum Valid
Minimum Valid

Package_Control
Vol. 3B 15-9

POWER AND THERMAL MANAGEMENT
/ decrease. This non-zero hint only has meaning when Desired_Performance = 0. The default value of this field
is 0.

• Package_Control (bit 42, RW) — When set, causes this logical processor's IA32_HWP_REQUEST control
inputs to be derived from the IA32_HWP_REQUEST_PKG MSR.

• Bits 58:43 are reserved and must be zero.
• Activity_Window Valid (bit 59, RW) — When set, indicates to the processor to derive the Activity Window

field value from the IA32_HWP_REQUEST MSR even if the package control bit is set. Otherwise, derive it from
the IA32_HWP_REQUEST_PKG MSR. The default value of this field is 0.

• EPP Valid (bit 60, RW) — When set, indicates to the processor to derive the EPP field value from the
IA32_HWP_REQUEST MSR even if the package control bit is set. Otherwise, derive it from the IA32_HWP_RE-
QUEST_PKG MSR. The default value of this field is 0.

• Desired Valid (bit 61, RW) — When set, indicates to the processor to derive the Desired Performance field
value from the IA32_HWP_REQUEST MSR even if the package control bit is set. Otherwise, derive it from the
IA32_HWP_REQUEST_PKG MSR. The default value of this field is 0.

• Maximum Valid (bit 62, RW) — When set, indicates to the processor to derive the Maximum Performance
field value from the IA32_HWP_REQUEST MSR even if the package control bit is set. Otherwise, derive it from
the IA32_HWP_REQUEST_PKG MSR. The default value of this field is 0.

• Minimum Valid (bit 63, RW) — When set, indicates to the processor to derive the Minimum Performance field
value from the IA32_HWP_REQUEST MSR even if the package control bit is set. Otherwise, derive it from the
IA32_HWP_REQUEST_PKG MSR. The default value of this field is 0.

The HWP hardware clips and resolves the field values as necessary to the valid range. Reads return the last value
written not the clipped values.

Processors may support a subset of IA32_HWP_REQUEST fields as indicated by CPUID. Reads of non-supported
fields will return 0. Writes to non-supported fields are ignored.

The OS may override HWP's autonomous selection of performance state with a specific performance target by
setting the Desired_Performance field to a non-zero value, however, the effective frequency delivered is subject to
the result of energy efficiency and performance optimizations, which are influenced by the Energy Performance
Preference field.

Software may disable all hardware optimizations by setting Minimum_Performance = Maximum_Performance
(subject to package coordination).

Note: The processor may run below the Minimum_Performance level due to hardware constraints including: power,
thermal, and package coordination constraints. The processor may also run below the Minimum_Performance level
for short durations (few milliseconds) following C-state exit, and when Hardware Duty Cycling (see Section 15.5) is
enabled.

When the IA32_HWP_REQUEST MSR is set to fast access mode, writes of this MSR are posted, i.e., the WRMSR
instruction retires before the data reaches its destination within the processor. It may retire even before all
preceding IA stores are globally visible, i.e., it is not an architecturally serializing instruction anymore (no store
fence). A new CPUID bit indicates this new characteristic of the IA32_HWP_REQUEST MSR (see Section 15.4.8 for
additional details).
15-10 Vol. 3B

POWER AND THERMAL MANAGEMENT
15.4.4.2 IA32_HWP_REQUEST_PKG MSR (Address: 772H Package Scope)

The structure of the IA32_HWP_REQUEST_PKG MSR (package-level) is identical to the IA32_HWP_REQUEST MSR
with the exception of the the Package Control bit field and the five valid bit fields, which do not exist in the
IA32_HWP_REQUEST_PKG MSR. Field values written to this MSR apply to all logical processors within the physical
package with the exception of logical processors whose IA32_HWP_REQUEST.Package Control field is clear (zero).
Single P-state Control mode is only supported when IA32_HWP_REQUEST_PKG is not supported.

15.4.4.3 IA32_HWP_PECI_REQUEST_INFO MSR (Address 775H Package Scope)
When an embedded system controller is integrated in the platform, it can override some of the OS HWP Request
settings via the PECI mechanism. PECI initiated settings take precedence over the relevant fields in the
IA32_HWP_REQUEST MSR and in the IA32_HWP_REQUEST_PKG MSR, irrespective of the Package Control bit or
the Valid Bit values described above. PECI can independently control each of: Minimum Performance, Maximum
Performance and EPP fields. This MSR contains both the PECI induced values and the control bits that indicate
whether the embedded controller actually set the processor to use the respective value.

PECI override is supported if CPUID[6].EAX[16] is set.

Figure 15-7. IA32_HWP_REQUEST_PKG Register

Figure 15-8. IA32_HWP_PECI_REQUEST_INFO MSR

063 8 716 1524 2332 3142 41

Reserved

Energy_Performance_Preference
Activity_Window

Desired_Performance
Maximum_Performance

Minimum_Performance

063 62 61 60 59 8 716 1524 2332 31

Reserved

Energy_Performance_Preference

Maximum_Performance

Minimum_Performance

EPP PECI Override
Reserved
Max PECI Override
Min PECI Override

Reserved
Vol. 3B 15-11

POWER AND THERMAL MANAGEMENT
The layout of the IA32_HWP_PECI_REQUEST_INFO MSR is shown in Figure 15-8. This MSR is writable by the
embedded controller but is read-only by software executing on the CPU. This MSR has Package scope. The bit fields
are described below:
• Minimum_Performance (bits 7:0, RO) — Used by the OS to read the latest value of PECI minimum

performance input.
• Maximum_Performance (bits 15:8, RO) — Used by the OS to read the latest value of PECI maximum

performance input.
• Bits 23:16 are reserved and must be zero.
• Energy_Performance_Preference (bits 31:24, RO) — Used by the OS to read the latest value of PECI

energy performance preference input.
• Bits 59:32 are reserved and must be zero.
• EPP_PECI_Override (bit 60, RO) — Indicates whether PECI if currently overriding the Energy Performance

Preference input. If set(1), PECI is overriding the Energy Performance Preference input. If clear(0), OS has
control over Energy Performance Preference input.

• Bit 61 is reserved and must be zero.
• Max_PECI_Override (bit 62, RO) — Indicates whether PECI if currently overriding the Maximum

Performance input. If set(1), PECI is overriding the Maximum Performance input. If clear(0), OS has control
over Maximum Performance input.

• Min_PECI_Override (bit 63, RO) — Indicates whether PECI if currently overriding the Minimum Performance
input. If set(1), PECI is overriding the Minimum Performance input. If clear(0), OS has control over Minimum
Performance input.

HWP Request Field Hierarchical Resolution

HWP Request field resolution is fed by three MSRs: IA32_HWP_REQUEST, IA32_HWP_REQUEST_PKG, and
IA32_HWP_PECI_REQUEST_INFO. The flow that the processor goes through to resolve which field value is chosen
is shown below.

For each of the two HWP Request fields; Desired and Activity Window:
If IA32_HWP_REQUEST.PACKAGE_CONTROL = 1 and IA32_HWP_REQUEST.<field> valid bit = 0

Resolved Field Value = IA32_HWP_REQUEST_PKG.<field>
Else

Resolved Field Value = IA32_HWP_REQUEST.<field>
For each of the three HWP Request fields; Min, Max, and EPP:

If IA32_HWP_PECI_REQUEST_INFO.<field> PECI Override bit = 1
Resolved Field Value = IA32_HWP_PECI_REQUEST_INFO.<field>

Else if IA32_HWP_REQUEST.PACKAGE_CONTROL = 1 and IA32_HWP_REQUEST.<field> valid bit = 0
Resolved Field Value = IA32_HWP_REQUEST_PKG.<field>

Else
Resolved Field Value = IA32_HWP_REQUEST.<field>

15.4.4.4 IA32_HWP_CTL MSR (Address: 776H Logical Processor Scope)
IA32_HWP_CTL[0] controls the behavior of IA32_HWP_REQUEST Package Control [bit 42]. This control bit allows
the IA32_HWP_REQUEST MSR to stay in INIT mode most of the time (Control Bit is equal to its RESET value of 0)
thus avoiding actual saving/restoring of the MSR contents when the OS adds it to the register set saved and
restored by XSAVES/XRSTORS.
• When IA32_HWP_CTL[0] = 0:

— If IA32_HWP_REQUEST[42] = 0, the processor ignores all fields of the IA32_HWP_REQUEST_PKG MSR and
selects all HWP values (Min, Max, EPP, Desired, Activity Window) from the IA32_HWP_REQUEST MSR.

— If IA32_HWP_REQUEST[42] = 1, the processor selects the HWP values (Min, Max, EPP, Desired, Activity
Window) either from the IA32_HWP_REQUEST MSR or from the IA32_HWP_REQUEST_PKG MSR according
15-12 Vol. 3B

POWER AND THERMAL MANAGEMENT
to the values contained in the IA32_HWP_REQUEST MSR bit fields [bits 63:59]. See Section 15.4.4.1 for
additional details.

• When IA32_HWP_CTL[0] = 1, the behavior is reversed:

— If IA32_HWP_REQUEST[42] = 1, the processor ignores all fields of the IA32_HWP_REQUEST_PKG MSR and
selects all HWP values (Min, Max, EPP, Desired, Activity Window) from the IA32_HWP_REQUEST MSR.

— If IA32_HWP_REQUEST[42] = 0, the processor selects the HWP values (Min, Max, EPP, Desired, Activity
Window) either from the IA32_HWP_REQUEST MSR or from the IA32_HWP_REQUEST_PKG MSR according
to the values contained in the IA32_HWP_REQUEST MSR bit fields [bits 63:59]. See Section 15.4.4.1 for
additional details.

Section 15-2 summarizes the IA32_HWP_CTL MSR bit 0 control behavior.

This MSR is supported if CPUID[6].EAX[22] is set.

If the IA32_PM_ENABLE[HWP_ENABLE] (bit 0) is not set, access to this MSR will generate a #GP fault.

15.4.5 HWP Feedback
The processor provides several types of feedback to the OS during HWP operation.

The IA32_MPERF MSR and IA32_APERF MSR mechanism (see Section 15.2) allows the OS to calculate the resultant
effective frequency delivered over a time period. Energy efficiency and performance optimizations directly impact
the resultant effective frequency delivered.

The layout of the IA32_HWP_STATUS MSR is shown in Figure 15-9. It provides feedback regarding changes to
IA32_HWP_CAPABILITIES.Guaranteed_Performance, IA32_HWP_CAPABILITIES.Highest_Performance, excur-
sions to IA32_HWP_CAPABILITIES.Minimum_Performance, and PECI_Override entry/exit events. The bit fields are
described below:
• Guaranteed_Performance_Change (bit 0, RWC0) — If set (1), a change to Guaranteed_Performance has

occurred. Software should query IA32_HWP_CAPABILITIES.Guaranteed_Performance value to ascertain the
new Guaranteed Performance value and to assess whether to re-adjust HWP hints via IA32_HWP_REQUEST.
Software must clear this bit by writing a zero (0).

• Bit 1 is reserved and must be zero.
• Excursion_To_Minimum (bit 2, RWC0) — If set (1), an excursion to Minimum_Performance of

IA32_HWP_REQUEST has occurred. Software must clear this bit by writing a zero (0).
• Highest_Change (bit 3, RWC0) — If set (1), a change to Highest Performance has occurred. Software

should query IA32_HWP_CAPABILITIES to ascertain the new Highest Performance value. Software must clear
this bit by writing a zero (0). Interrupts upon Highest Performance change are supported if CPUID[6].EAX[15]
is set.

• PECI_Override_Entry (bit 4, RWC0) — If set (1), an embedded/management controller has started a PECI
override of one or more OS control hints (Min, Max, EPP) specified in IA32_HWP_REQUEST or IA32_HWP_RE-
QUEST_PKG. Software may query IA32_HWP_PECI_REQUEST_INFO MSR to ascertain which fields are now
overridden via the PECI mechanism and what their values are (see Section 15.4.4.3 for additional details).

Table 15-2. IA32_HWP_CTL MSR Bit 0 Behavior

Field Description

Thread request
PKG CTL
meaning

Defines which HWP Request MSR is used, whether thread level or package level. When the package MSR is used, the
thread MSR valid bits define which thread MSR fields override the package (default 0).

IA32_HWP_CTL[PKG_CTL_PLR] IA32_HWP_REQUEST[PKG_CTL] HWP Request MSR Used

0 0 IA32_HWP_REQUEST MSR

0 1 IA32_HWP_REQUEST_PKG MSR

1 0 IA32_HWP_REQUEST_PKG MSR

1 1 IA32_HWP_REQUEST MSR
Vol. 3B 15-13

POWER AND THERMAL MANAGEMENT
Software must clear this bit by writing a zero (0). Interrupts upon PECI override entry are supported if
CPUID[6].EAX[16] is set.

• PECI_Override_Exit (bit 5, RWC0) — If set (1), an embedded/management controller has stopped
overriding one or more OS control hints (Min, Max, EPP) specified in IA32_HWP_REQUEST or IA32_HWP_RE-
QUEST_PKG. Software may query IA32_HWP_PECI_REQUEST_INFO MSR to ascertain which fields are still
overridden via the PECI mechanism and which fields are now back under software control (see Section 15.4.4.3
for additional details). Software must clear this bit by writing a zero (0). Interrupts upon PECI override exit are
supported if CPUID[6].EAX[16] is set.

• Bits 63:6 are reserved and must be zero.

The status bits of IA32_HWP_STATUS must be cleared (0) by software so that a new status condition change will
cause the hardware to set the bit again and issue the notification. Status bits are not set for “normal” excursions,
e.g., running below Minimum Performance for short durations during C-state exit. Changes to Guaranteed_Perfor-
mance, Highest_Performance, excursions to Minimum_Performance, or PECI_Override entry/exit will occur no
more than once per second.

The OS can determine the specific reasons for a Guaranteed_Performance change or an excursion to Mini-
mum_Performance in IA32_HWP_REQUEST by examining the associated status and log bits reported in the
IA32_THERM_STATUS MSR. The layout of the IA32_HWP_STATUS MSR that HWP uses to support software query of
HWP feedback is shown in Figure 15-10. The bit fields of IA32_THERM_STATUS associated with HWP feedback are
described below (Bit fields of IA32_THERM_STATUS unrelated to HWP can be found in Section 15.8.5.2).

Figure 15-9. IA32_HWP_STATUS MSR

6 5 4 3 2 1 063

Reserved

Highest_Change

Excursion_To_Minimum

Reserved

Guaranteed_Performance_Change

PECI_Override_Entry

PECI_Override_Exit
15-14 Vol. 3B

POWER AND THERMAL MANAGEMENT
• Bits 11:0, See Section 15.8.5.2.
• Current Limit Status (bit 12, RO) — If set (1), indicates an electrical current limit (e.g., Electrical Design

Point/IccMax) is being exceeded and is adversely impacting energy efficiency optimizations.
• Current Limit Log (bit 13, RWC0) — If set (1), an electrical current limit has been exceeded that has

adversely impacted energy efficiency optimizations since the last clearing of this bit or a reset. This bit is sticky,
software may clear this bit by writing a zero (0).

• Cross-domain Limit Status (bit 14, RO) — If set (1), indicates another hardware domain (e.g., processor
graphics) is currently limiting energy efficiency optimizations in the processor core domain.

• Cross-domain Limit Log (bit 15, RWC0) — If set (1), indicates another hardware domain (e.g., processor
graphics) has limited energy efficiency optimizations in the processor core domain since the last clearing of this
bit or a reset. This bit is sticky, software may clear this bit by writing a zero (0).

• Bits 63:16, See Section 15.8.5.2.

15.4.5.1 Non-Architectural HWP Feedback
The Productive Performance (MSR_PPERF) MSR (non-architectural) provides hardware's view of workload scal-
ability, which is a rough assessment of the relationship between frequency and workload performance, to software.
The layout of the MSR_PPERF is shown in Figure 15-11.

• PCNT (bits 63:0, RO) — Similar to IA32_APERF but only counts cycles perceived by hardware as contributing
to instruction execution (e.g., unhalted and unstalled cycles). This counter increments at the same rate as
IA32_APERF, where the ratio of (ΔPCNT/ΔACNT) is an indicator of workload scalability (0% to 100%). Note that
values in this register are valid even when HWP is not enabled.

Figure 15-10. IA32_THERM_STATUS Register With HWP Feedback

Figure 15-11. MSR_PPERF MSR

63 0

Reserved

15

Reading Valid

1234581016222327

Resolution in Deg. Celsius
Digital Readout

Thermal Threshold #2 Log
Thermal Threshold #2 Status
Thermal Threshold #1 Log
Thermal Threshold #1 Status
Critical Temperature Log

6793132

Critical Temperature Status
PROCHOT# or FORCEPR# Log
PROCHOT# or FORCEPR# Event
Thermal Status Log
Thermal Status

11

Power Limit Notification Log
Power Limit Notification Status

14 13 12

Cross-domain Limit Log
Cross-domain Limit Status
Current Limit Log
Current Limit Status

63 0

PCNT - Productive Performance Count
Vol. 3B 15-15

POWER AND THERMAL MANAGEMENT
15.4.6 HWP Notifications
Processors may support interrupt-based notification of changes to HWP status as indicated by CPUID. If supported,
the IA32_HWP_INTERRUPT MSR is used to enable interrupt-based notifications. Notification events, when enabled,
are delivered using the existing thermal LVT entry. The layout of the IA32_HWP_INTERRUPT is shown in
Figure 15-12. The bit fields are described below:

• EN_Guaranteed_Performance_Change (bit 0, RW) — When set (1), an HWP Interrupt will be generated
whenever a change to the IA32_HWP_CAPABILITIES.Guaranteed_Performance occurs. The default value is 0
(Interrupt generation is disabled).

• EN_Excursion_Minimum (bit 1, RW) — When set (1), an HWP Interrupt will be generated whenever the
HWP hardware is unable to meet the IA32_HWP_REQUEST.Minimum_Performance setting. The default value is
0 (Interrupt generation is disabled).

• EN_Highest_Change (bit 2, RW) — When set (1), an HWP Interrupt will be generated whenever a change to
the IA32_HWP_CAPABILITIES.Highest_Performance occurs. The default value is 0 (interrupt generation is
disabled). Interrupts upon Highest Performance change are supported if CPUID[6].EAX[15] is set.

• EN_PECI_OVERRIDE (bit 3, RW) — When set (1), an HWP Interrupt will be generated whenever PECI starts
or stops overriding any of the three HWP fields described in Section 15.4.4.3. The default value is 0 (interrupt
generation is disabled). See Section 15.4.5 and Section 15.4.4.3 for details on how the OS learns what is the
current set of HWP fields that are overridden by PECI. Interrupts upon PECI override change are supported if
CPUID[6].EAX[16] is set.

• Bits 63:4 are reserved and must be zero.

15.4.7 Idle Logical Processor Impact on Core Frequency
Intel processors use one of two schemes for setting core frequency:

1. All cores share same frequency.

2. Each physical core is set to a frequency of its own.

In both cases the two logical processors that share a single physical core are set to the same frequency, so the
processor accounts for the IA32_HWP_REQUEST MSR fields of both logical processors when defining the core
frequency or the whole package frequency.

When CPUID[6].EAX[20] is set and only one logical processor of the two is active, while the other is idle (in any
C1 sub-state or in a deeper sleep state), only the active logical processor's IA32_HWP_REQUEST MSR fields
are considered, i.e., the HWP Request fields of a logical processor in the C1E sub-state or in a deeper sleep state
are ignored.

Note: when a logical processor is in C1 state its HWP Request fields are accounted for.

Figure 15-12. IA32_HWP_INTERRUPT MSR

4 3 2 1 063

Reserved

EN_PECI_OVERRIDE

EN_Highest_Change

EN_Excursion_Minimum

EN_Guaranteed_Performance_Change
15-16 Vol. 3B

POWER AND THERMAL MANAGEMENT
15.4.8 Fast Write of Uncore MSR (Model Specific Feature)
There are a few logical processor scope MSRs whose values need to be observed outside the logical processor. The
WRMSR instruction takes over 1000 cycles to complete (retire) for those MSRs. This overhead forces operating
systems to avoid writing them too often whereas in many cases it is preferable that the OS writes them quite
frequently for optimal power/performance operation of the processor.

The model specific “Fast Write MSR” feature reduces this overhead by an order of magnitude to a level of 100 cycles
for a selected subset of MSRs.

Note: Writes to Fast Write MSRs are posted, i.e., when the WRMSR instruction completes, the data may still be “in
transit” within the processor. Software can check the status by querying the processor to ensure data is already
visible outside the logical processor (see Section 15.4.8.3 for additional details). Once the data is visible outside
the logical processor, software is ensured that later writes by the same logical processor to the same MSR will be
visible later (will not bypass the earlier writes).

MSRs that are selected for Fast Write are specified in a special capability MSR (see Section 15.4.8.1). Architectural
MSRs that existed prior to the introduction of this feature and are selected for Fast Write, thus turning from slow to
fast write MSRs, will be noted as such via a new CPUID bit. New MSRs that are fast upon introduction will be docu-
mented as such without an additional CPUID bit.

Three model specific MSRs are associated with the feature itself. They enable enumerating, controlling, and moni-
toring it. All three are logical processor scope.

15.4.8.1 FAST_UNCORE_MSRS_CAPABILITY (Address: 0x65F, Logical Processor Scope)
Operating systems or BIOS can read the FAST_UNCORE_MSRS_CAPABILITY MSR to enumerate those MSRs that
are Fast Write MSRs.

• FAST_IA32_HWP_REQUEST MSR (bit 0, RO) — When set (1), indicates that the IA32_HWP_REQUEST MSR
is supported as a Fast Write MSR. A value of 0 indicates the IA32_HWP_REQUEST MSR is not supported as a
Fast Write MSR.

• Bits 63:1 are reserved and must be zero.

15.4.8.2 FAST_UNCORE_MSRS_CTL (Address: 0x657, Logical Processor Scope)
Operating Systems or BIOS can use the FAST_UNCORE_MSRS_CTL MSR to opt-in or opt-out for fast write of
specific MSRs that are enabled for Fast Write by the processor.

Note: Not all MSRs that are selected for this feature will necessarily have this opt-in/opt-out option. They may be
supported in fast write mode only.

Figure 15-13. FAST_UNCORE_MSRS_CAPABILITY MSR

1 063

Reserved

FAST_IA32_HWP_REQUEST MSR
Vol. 3B 15-17

POWER AND THERMAL MANAGEMENT
• FAST_IA32_HWP_REQUEST_MSR_ENABLE (bit 0, RW) — When set (1), enables fast access mode for the
IA32_HWP_REQUEST MSR and sets the low latency, posted IA32_HWP_REQUESRT MSR' CPUID[6].EAX[18].
The default value is 0. Note that this bit can only be enabled once from the default value. Once set, writes to
this bit are ignored. Only RESET will clear this bit.

• Bits 63:1 are reserved and must be zero.

15.4.8.3 FAST_UNCORE_MSRS_STATUS (Address: 0x65E, Logical Processor Scope)
Software that executes the WRMSR instruction of a Fast Write MSR can check whether the data is already visible
outside the logical processor by reading the FAST_UNCORE_MSRS_STATUS MSR. For each Fast Write MSR there is
a status bit that indicates whether the data is already visible outside the logical processor or is still in “transit”.

• FAST_IA32_HWP_REQUEST_WRITE_STATUS (bit 0, RO) — Indicates whether the CPU is still in the
middle of writing IA32_HWP_REQUEST MSR, even after the WRMSR instruction has retired. A value of 1
indicates the last write of IA32_HWP_REQUEST is still ongoing. A value of 0 indicates the last write of
IA32_HWP_REQUEST is visible outside the logical processor.

• Bits 63:1 are reserved and must be zero.

15.4.9 Fast_IA32_HWP_REQUEST CPUID
IA32_HWP_REQUEST is an architectural MSR that exists in processors whose CPUID[6].EAX[7] is set (HWP BASE
is enabled). This MSR has logical processor scope, but after its contents are written the contents become visible
outside the logical processor. When the FAST_IA32_HWP_REQUEST CPUID[6].EAX[18] bit is set, writes to the
IA32_HWP_REQUEST MSR are visible outside the logical processor via the “Fast Write” feature described in Section
15.4.8.

15.4.10 Recommendations for OS use of HWP Controls

Common Cases of Using HWP

The default HWP control field values are expected to be suitable for many applications. The OS can enable autono-
mous HWP for these common cases by

Figure 15-14. FAST_UNCORE_MSRS_CTL MSR

Figure 15-15. FAST_UNCORE_MSRS_STATUS MSR

1 063

Reserved

FAST_IA32_HWP_REQUEST_MSR_ENABLE

1 063

Reserved

FAST_IA32_HWP_REQUEST_WRITE_STATUS
15-18 Vol. 3B

POWER AND THERMAL MANAGEMENT
• Setting IA32_HWP_REQUEST.Desired Performance = 0 (hardware autonomous selection determines the
performance target). Set IA32_HWP_REQUEST.Activity Window = 0 (enable HW dynamic selection of window
size).

To maximize HWP benefit for the common cases, the OS should set
• IA32_HWP_REQUEST.Minimum_Performance = IA32_HWP_CAPABILITIES.Lowest_Performance and
• IA32_HWP_REQUEST.Maximum_Performance = IA32_HWP_CAPABILITIES.Highest_Performance.

Setting IA32_HWP_REQUEST.Minimum_Performance = IA32_HWP_REQUEST.Maximum_Performance is function-
ally equivalent to using of the IA32_PERF_CTL interface and is therefore not recommended (bypassing HWP).

Calibrating HWP for Application-Specific HWP Optimization

In some applications, the OS may have Quality of Service requirements that may not be met by the default values.
The OS can characterize HWP by:
• keeping IA32_HWP_REQUEST.Minimum_Performance = IA32_HWP_REQUEST.Maximum_Performance to

prevent non-linearity in the characterization process,
• utilizing the range values enumerated from the IA32_HWP_CAPABILITIES MSR to program IA32_HWP_RE-

QUEST while executing workloads of interest and observing the power and performance result.

The power and performance result of characterization is also influenced by the IA32_HWP_REQUEST.Energy
Performance Preference field, which must also be characterized.

Characterization can be used to set IA32_HWP_REQUEST.Minimum_Performance to achieve the required QOS in
terms of performance. If IA32_HWP_REQUEST.Minimum_Performance is set higher than IA32_HWP_CAPABILI-
TIES.Guaranteed Performance then notification of excursions to Minimum Performance may be continuous.

If autonomous selection does not deliver the required workload performance, the OS should assess the current
delivered effective frequency and for the duration of the specific performance requirement set IA32_HWP_RE-
QUEST.Desired_Performance ≠ 0 and adjust IA32_HWP_REQUEST.Energy_Performance_Preference as necessary
to achieve the required workload performance. The MSR_PPERF.PCNT value can be used to better comprehend the
potential performance result from adjustments to IA32_HWP_REQUEST.Desired_Performance. The OS should set
IA32_HWP_REQUEST.Desired_Performance = 0 to re-enable autonomous selection.

Tuning for Maximum Performance or Lowest Power Consumption

Maximum performance will be delivered by setting IA32_HWP_REQUEST.Minimum_Performance = IA32_HWP_RE-
QUEST.Maximum_Performance = IA32_HWP_CAPABILITIES.Highest_Performance and setting IA32_HWP_RE-
QUEST.Energy_Performance_Preference = 0 (performance preference).

Lowest power will be achieved by setting IA32_HWP_REQUEST.Minimum_Performance = IA32_HWP_RE-
QUEST.Maximum_Performance = IA32_HWP_CAPABILITIES.Lowest_Performance and setting IA32_HWP_RE-
QUEST.Energy_Performance_Preference = 0FFH (energy efficiency preference).

Mixing Logical Processor and Package Level HWP Field Settings

Using the IA32_HWP_REQUEST Package_Control bit and the five valid bits in that MSR, the OS can mix and match
between selecting the Logical Processor scope fields and the Package level fields. For example, the OS can set all
logical cores' IA32_HWP_REQUEST.Package_Control bit to ‘1’, and for those logical processors if it prefers a
different EPP value than the one set in the IA32_HWP_REQUEST_PKG MSR, the OS can set the desired EPP value
and the EPP valid bit. This overrides the package EPP value for only a subset of the logical processors in the
package.

Additional Guidelines

Set IA32_HWP_REQUEST.Energy_Performance_Preference as appropriate for the platform's current mode of oper-
ation. For example, a mobile platforms' setting may be towards performance preference when on AC power and
more towards energy efficiency when on DC power.

The use of the Running Average Power Limit (RAPL) processor capability (see section 14.7.1) is highly recom-
mended when HWP is enabled. Use of IA32_HWP_Request.Maximum_Performance for thermal control is subject to
limitations and can adversely impact the performance of other processor components, e.g., graphics
Vol. 3B 15-19

POWER AND THERMAL MANAGEMENT
If default values deliver undesirable performance latency in response to events, the OS should set IA32_HWP_RE-
QUEST. Activity_Window to a low (non-zero) value and IA32_HWP_REQUEST.Energy_Performance_Preference
towards performance (0) for the event duration.

Similarly, for “real-time” threads, set IA32_HWP_REQUEST.Energy_Performance_Preference towards performance
(0) and IA32_HWP_REQUEST. Activity_Window to a low value, e.g., 01H, for the duration of their execution.

When executing low priority work that may otherwise cause the hardware to deliver high performance, set
IA32_HWP_REQUEST. Activity_Window to a longer value and reduce the IA32_HWP_Request.Maximum_Perfor-
mance value as appropriate to control energy efficiency. Adjustments to IA32_HWP_REQUEST.Energy_Perfor-
mance_Preference may also be necessary.

15.5 HARDWARE DUTY CYCLING (HDC)
Intel processors may contain support for Hardware Duty Cycling (HDC), which enables the processor to autono-
mously force its components inside the physical package into idle state. For example, the processor may selectively
force only the processor cores into an idle state.

HDC is disabled by default on processors that support it. System software can dynamically enable or disable HDC
to force one or more components into an idle state or wake up those components previously forced into an idle
state. Forced Idling (and waking up) of multiple components in a physical package can be done with one WRMSR to
a packaged-scope MSR from any logical processor within the same package.

HDC does not delay events such as timer expiration, but it may affect the latency of short (less than 1 msec) soft-
ware threads, e.g., if a thread is forced to idle state just before completion and entering a “natural idle”.

HDC forced idle operation can be thought of as operating at a lower effective frequency. The effective average
frequency computed by software will include the impact of HDC forced idle.

The primary use of HDC is enable system software to manage low active workloads to increase the package level
C6 residency. Additionally, HDC can lower the effective average frequency in case or power or thermal limitation.

When HDC forces a logical processor, a processor core or a physical package to enter an idle state, its C-State is set
to C3 or deeper. The deep “C-states” referred to in this section are processor-specific C-states.

15.5.1 Hardware Duty Cycling Programming Interfaces
The programming interfaces provided by HDC include the following:
• The CPUID instruction allows software to discover the presence of HDC support in an Intel processor. Specifi-

cally, execute CPUID instruction with EAX=06H as input, bit 13 of EAX indicates the processor’s support of the
following aspects of HDC.

— Availability of HDC baseline resource, CPUID.06H:EAX[bit 13]: If this bit is set, HDC provides the following
architectural MSRs: IA32_PKG_HDC_CTL, IA32_PM_CTL1, and the IA32_THREAD_STALL MSRs.

• Additionally, HDC may provide several non-architectural MSR.
15-20 Vol. 3B

POWER AND THERMAL MANAGEMENT
15.5.2 Package level Enabling HDC
The layout of the IA32_PKG_HDC_CTL MSR is shown in Figure 15-16. IA32_PKG_HDC_CTL is a writable MSR from
any logical processor in a package. The bit fields are described below:

• HDC_PKG_Enable (bit 0, R/W) — Software sets this bit to enable HDC operation by allowing the processor
to force to idle all “HDC-allowed” (see Figure 15.5.3) logical processors in the package. Clearing this bit
disables HDC operation in the package by waking up all the processor cores that were forced into idle by a
previous ‘0’-to-’1’ transition in IA32_PKG_HDC_CTL.HDC_PKG_Enable. This bit is writable only if
CPUID.06H:EAX[bit 13] = 1. Default = zero (0).

• Bits 63:1 are reserved and must be zero.

After processor support is determined via CPUID, system software can enable HDC operation by setting IA32_PK-
G_HDC_CTL.HDC_PKG_Enable to 1. At reset, IA32_PKG_HDC_CTL.HDC_PKG_Enable is cleared to 0. A '0'-to-'1'
transition in HDC_PKG_Enable allows the processor to force to idle all HDC-allowed (indicated by the non-zero
state of IA32_PM_CTL1[bit 0]) logical processors in the package. A ‘1’-to-’0’ transition wakes up those HDC force-
idled logical processors.

Software can enable or disable HDC using this package level control multiple times from any logical processor in
the package. Note the latency of writing a value to the package-visible IA32_PKG_HDC_CTL.HDC_PKG_Enable is
longer than the latency of a WRMSR operation to a Logical Processor MSR (as opposed to package level MSR) such
as: IA32_PM_CTL1 (described in Section 15.5.3). Propagation of the change in IA32_PKG_HDC_CTL.HDC_PK-
G_Enable and reaching all HDC idled logical processor to be woken up may take on the order of core C6 exit
latency.

Table 15-3. Architectural and non-Architecture MSRs Related to HDC

Address Architec
tural

Register Name Description

DB0H Y IA32_PKG_HDC_CTL Package Enable/Disable HDC.

DB1H Y IA32_PM_CTL1 Per-logical-processor select control to allow/block HDC forced idling.

DB2H Y IA32_THREAD_STALL Accumulate stalled cycles on this logical processor due to HDC forced idling.

653H N MSR_CORE_HDC_RESIDENCY Core level stalled cycle counter due to HDC forced idling on one or more
logical processor.

655H N MSR_PKG_HDC_SHALLOW_RE
SIDENCY

Accumulate the cycles the package was in C21 state and at least one logical
processor was in forced idle

656H N MSR_PKG_HDC_DEEP_RESIDE
NCY

Accumulate the cycles the package was in the software specified Cx1 state
and at least one logical processor was in forced idle. Cx is specified in
MSR_PKG_HDC_CONFIG_CTL.

652H N MSR_PKG_HDC_CONFIG_CTL HDC configuration controls

NOTES:
1. The package “C-states” referred to in this section are processor-specific C-states.

Figure 15-16. IA32_PKG_HDC_CTL MSR

63 0

Reserved

1

HDC_PKG_EnableReserved
Vol. 3B 15-21

POWER AND THERMAL MANAGEMENT
15.5.3 Logical-Processor Level HDC Control
The layout of the IA32_PM_CTL1 MSR is shown in Figure 15-17. Each logical processor in a package has its own
IA32_PM_CTL1 MSR. The bit fields are described below:

• HDC_Allow_Block (bit 0, R/W) — Software sets this bit to allow this logical processors to honor the
package-level IA32_PKG_HDC_CTL.HDC_PKG_Enable control. Clearing this bit prevents this logical processor
from using the HDC. This bit is writable only if CPUID.06H:EAX[bit 13] = 1. Default = one (1).

• Bits 63:1 are reserved and must be zero.

Fine-grain OS control of HDC operation at the granularity of per-logical-processor is provided by IA32_PM_CTL1. At
RESET, all logical processors are allowed to participate in HDC operation such that OS can manage HDC using the
package-level IA32_PKG_HDC_CTL.

Writes to IA32_PM_CTL1 complete with the latency that is typical to WRMSR to a Logical Processor level MSR.
When the OS chooses to manage HDC operation at per-logical-processor granularity, it can write to IA32_PM_CTL1
on one or more logical processors as desired. Each write to IA32_PM_CTL1 must be done by code that executes on
the logical processor targeted to be allowed into or blocked from HDC operation.

Blocking one logical processor for HDC operation may have package level impact. For example, the processor may
decide to stop duty cycling of all other Logical Processors as well.

The propagation of IA32_PKG_HDC_CTL.HDC_PKG_Enable in a package takes longer than a WRMSR to IA32_P-
M_CTL1. The last completed write to IA32_PM_CTL1 on a logical processor will be honored when a ‘0’-to-’1’ transi-
tion of IA32_PKG_HDC_CTL.HDC_PKG_Enable arrives to a logical processor.

15.5.4 HDC Residency Counters
There is a collection of counters available for software to track various residency metrics related to HDC operation.
In general, HDC residency time is defined as the time in HDC forced idle state at the granularity of per-logical-
processor, per-core, or package. At the granularity of per-core/package-level HDC residency, at least one of the
logical processor in a core/package must be in the HDC forced idle state.

15.5.4.1 IA32_THREAD_STALL
Software can track per-logical-processor HDC residency using the architectural MSR IA32_THREAD_STALL.The
layout of the IA32_THREAD_STALL MSR is shown in Figure 15-18. Each logical processor in a package has its own
IA32_THREAD_STALL MSR. The bit fields are described below:

Figure 15-17. IA32_PM_CTL1 MSR

Figure 15-18. IA32_THREAD_STALL MSR

63 0

Reserved

1

HDC_Allow_Block
Reserved

63 0

Stall_cycle_cnt
15-22 Vol. 3B

POWER AND THERMAL MANAGEMENT
• Stall_Cycle_Cnt (bits 63:0, R/O) — Stores accumulated HDC forced-idle cycle count of this processor core
since last RESET. This counter increments at the same rate of the TSC. The count is updated only after the
logical processor exits from the forced idled C-state. At each update, the number of cycles that the logical
processor was stalled due to forced-idle will be added to the counter. This counter is available only if
CPUID.06H:EAX[bit 13] = 1. Default = zero (0).

A value of zero in IA32_THREAD_STALL indicates either HDC is not supported or the logical processor never
serviced any forced HDC idle. A non-zero value in IA32_THREAD_STALL indicates the HDC forced-idle residency
times of the logical processor. It also indicates the forced-idle cycles due to HDC that could appear as C0 time to
traditional OS accounting mechanisms (e.g., time-stamping OS idle/exit events).

Software can read IA32_THREAD_STALL irrespective of the state of IA32_PKG_HDC_CTL and IA32_PM_CTL1, as
long as CPUID.06H:EAX[bit 13] = 1.

15.5.4.2 Non-Architectural HDC Residency Counters
Processors that support HDC operation may provide the following model-specific HDC residency counters.

MSR_CORE_HDC_RESIDENCY

Software can track per-core HDC residency using the counter MSR_CORE_HDC_RESIDENCY. This counter incre-
ments when the core is in C3 state or deeper (all logical processors in this core are idle due to either HDC or other
mechanisms) and at least one of the logical processors is in HDC forced idle state. The layout of the MSR_CORE_H-
DC_RESIDENCY is shown in Figure 15-19. Each processor core in a package has its own MSR_CORE_HDC_RESI-
DENCY MSR. The bit fields are described below:

• Core_Cx_Duty_Cycle_Cnt (bits 63:0, R/O) — Stores accumulated HDC forced-idle cycle count of this
processor core since last RESET. This counter increments at the same rate of the TSC. The count is updated
only after core C-state exit from a forced idled C-state. At each update, the increment counts cycles when the
core is in a Cx state (all its logical processor are idle) and at least one logical processor in this core was forced
into idle state due to HDC. If CPUID.06H:EAX[bit 13] = 0, attempt to access this MSR will cause a #GP fault.
Default = zero (0).

A value of zero in MSR_CORE_HDC_RESIDENCY indicates either HDC is not supported or this processor core never
serviced any forced HDC idle.

MSR_PKG_HDC_SHALLOW_RESIDENCY

The counter MSR_PKG_HDC_SHALLOW_RESIDENCY allows software to track HDC residency time when the
package is in C2 state, all processor cores in the package are not active and at least one logical processor was
forced into idle state due to HDC. The layout of the MSR_PKG_HDC_SHALLOW_RESIDENCY is shown in
Figure 15-20. There is one MSR_PKG_HDC_SHALLOW_RESIDENCY per package. The bit fields are described
below:

Figure 15-19. MSR_CORE_HDC_RESIDENCY MSR

Figure 15-20. MSR_PKG_HDC_SHALLOW_RESIDENCY MSR

63 0

Core_Cx_duty_cycle_cnt

63 0

Pkg_Duty_cycle_cnt
Vol. 3B 15-23

POWER AND THERMAL MANAGEMENT
• Pkg_Duty_Cycle_Cnt (bits 63:0, R/O) — Stores accumulated HDC forced-idle cycle count of this processor
core since last RESET. This counter increments at the same rate of the TSC. Package shallow residency may be
implementation specific. In the initial implementation, the threshold is package C2-state. The count is updated
only after package C2-state exit from a forced idled C-state. At each update, the increment counts cycles when
the package is in C2 state and at least one processor core in this package was forced into idle state due to HDC.
If CPUID.06H:EAX[bit 13] = 0, attempt to access this MSR may cause a #GP fault. Default = zero (0).

A value of zero in MSR_PKG_HDC_SHALLOW_RESIDENCY indicates either HDC is not supported or this processor
package never serviced any forced HDC idle.

MSR_PKG_HDC_DEEP_RESIDENCY

The counter MSR_PKG_HDC_DEEP_RESIDENCY allows software to track HDC residency time when the package is
in a software-specified package Cx state, all processor cores in the package are not active and at least one logical
processor was forced into idle state due to HDC. Selection of a specific package Cx state can be configured using
MSR_PKG_HDC_CONFIG. The layout of the MSR_PKG_HDC_DEEP_RESIDENCY is shown in Figure 15-21. There is
one MSR_PKG_HDC_DEEP_RESIDENCY per package. The bit fields are described below:

• Pkg_Cx_Duty_Cycle_Cnt (bits 63:0, R/O) — Stores accumulated HDC forced-idle cycle count of this
processor core since last RESET. This counter increments at the same rate of the TSC. The count is updated only
after package C-state exit from a forced idle state. At each update, the increment counts cycles when the
package is in the software-configured Cx state and at least one processor core in this package was forced into
idle state due to HDC. If CPUID.06H:EAX[bit 13] = 0, attempt to access this MSR may cause a #GP fault.
Default = zero (0).

A value of zero in MSR_PKG_HDC_SHALLOW_RESIDENCY indicates either HDC is not supported or this processor
package never serviced any forced HDC idle.

MSR_PKG_HDC_CONFIG

MSR_PKG_HDC_CONFIG allows software to configure the package Cx state that the counter MSR_PKG_HD-
C_DEEP_RESIDENCY monitors. The layout of the MSR_PKG_HDC_CONFIG is shown in Figure 15-22. There is one
MSR_PKG_HDC_CONFIG per package. The bit fields are described below:

• Pkg_Cx_Monitor (bits 2:0, R/W) — Selects which package C-state the MSR_HDC_DEEP_RESIDENCY
counter will monitor. The encoding of the HDC_Cx_Monitor field are: 0: no-counting; 1: count package C2 only,
2: count package C3 and deeper; 3: count package C6 and deeper; 4: count package C7 and deeper; other
encodings are reserved. If CPUID.06H:EAX[bit 13] = 0, attempt to access this MSR may cause a #GP fault.
Default = zero (0).

• Bits 63:3 are reserved and must be zero.

Figure 15-21. MSR_PKG_HDC_DEEP_RESIDENCY MSR

Figure 15-22. MSR_PKG_HDC_CONFIG MSR

63 0

Pkg_Cx_duty_cycle_cnt

63 0

Reserved

2

HDC_Cx_Monitor
Reserved
15-24 Vol. 3B

POWER AND THERMAL MANAGEMENT
15.5.5 MPERF and APERF Counters Under HDC
HDC operation can be thought of as an average effective frequency drop due to all or some of the Logical Proces-
sors enter an idle state period.

By default, the IA32_MPERF counter counts during forced idle periods as if the logical processor was active. The
IA32_APERF counter does not count during forced idle state. This counting convention allows the OS to compute
the average effective frequency of the Logical Processor between the last MWAIT exit and the next MWAIT entry
(OS visible C0) by ΔACNT/ΔMCNT * TSC Frequency.

15.6 HARDWARE FEEDBACK INTERFACE AND INTEL® THREAD DIRECTOR
Intel processors that enumerate CPUID.06H.0H:EAX.HW_FEEDBACK[bit 19] as 1 support Hardware Feedback
Interface (HFI). Hardware provides guidance to the Operating System (OS) scheduler to perform optimal workload
scheduling through a hardware feedback interface structure in memory. Details on this table structure are
described in Section 15.6.1.

Intel processors that enumerate CPUID.06H.0H:EAX[bit 23] as 1 support Intel® Thread Director. Hardware
provides guidance to the Operating System (OS) scheduler to perform optimal workload scheduling through a
memory resident table and software thread specific index (Class ID) that points into that table and selects which
data to use for that software thread. Details on this table structure are described in Section 15.6.2.

15.6.1 Hardware Feedback Interface Table Structure
This structure has a global header that is 16 bytes in size. Following this global header, there is one 8 byte entry
per logical processor in the socket. The structure is designed as follows.

Figure 15-23. Example of Effective Frequency Reduction and Forced Idle Period of HDC

Table 15-4. Hardware Feedback Interface Structure

Byte Offset Size (Bytes) Description

0 16 Global Header

16 8 Per Logical Processor Entry

24 8 Per Logical Processor Entry

...

16 + n*8 8 Per Logical Processor Entry

1600 MHz: 25% Utilization /75% Forced Idle

Effective Frequency @ 100% Utilization: 400 MHz
Vol. 3B 15-25

POWER AND THERMAL MANAGEMENT
The global header is structured as shown in Table 15-5.

The per logical processor scheduler feedback entry is structured as follows. The operating system can determine
the index of the logical processor feedback entry for a logical processor using CPUID.06H.0H:EDX[31:16] by
executing CPUID on that logical processor.

Table 15-5. Hardware Feedback Interface Global Header Structure

Byte Offset Size (Bytes) Field Name Description

0 8 Timestamp Timestamp of when the table was last updated by hardware. This is a
timestamp in crystal clock units.
Initialized by the OS to 0.

8 1 Performance
Capability Flags

If bit 0 is set to 1, indicates the performance capability field for one or more
logical processors was updated in the table and/or another bit in this field is
updated.
If bit 1 is set to 1, indicates a force idle/inject idle request to the OS for one
or more logical processors.
Initialized by the OS to 0.

9 1 Energy Efficiency
Capability Changed

If bit 0 is set to 1, indicates the energy efficiency capability field for one or
more logical processors was updated in the table and/or another bit in this
field is updated.
If bit 1 is set to 1, indicates a force idle/inject idle request to the OS for one
or more logical processors.
Initialized by the OS to 0.

10 6 Reserved Initialized by the OS to 0.

Table 15-6. Hardware Feedback Interface Logical Processor Entry Structure

Byte Offset Size (Bytes) Field Name Description

0 1 Performance
Capability

Performance capability is an 8-bit value (0 ... 255) specifying the relative
performance level of a logical processor. Higher values indicate higher perfor-
mance; the lowest performance level of 0 indicates a recommendation to the OS to
not schedule any software threads on it for performance reasons. The OS
scheduler is expected to initialize the Hardware Feedback Interface Structure to 0
prior to enabling Hardware Feedback.
CPUID.06H.0H:EDX[0] enumerates support for Performance capability reporting.

1 1 Energy
Efficiency
Capability

Energy Efficiency capability is an 8-bit value (0 ... 255) specifying the relative
energy efficiency level of a logical processor. Higher values indicate higher energy
efficiency; the lowest energy efficiency capability of 0 indicates a recommendation
to the OS to not schedule any software threads on it for efficiency reasons. An
Energy Efficiency capability of 255 indicates which logical processors have the
highest relative energy efficiency capability. In addition, the value 255 is an
explicit recommendation for the OS to consolidate work on those logical
processors for energy efficiency reasons. The OS scheduler is expected to initialize
the Hardware Feedback Interface Structure to 0 prior to enabling Hardware
Feedback.
CPUID.06H.0H:EDX[1] enumerates support for Energy Efficiency capability
reporting.

2 6 Reserved The OS scheduler is expected to initialize the Hardware Feedback Interface
Structure to 0 prior to enabling Hardware Feedback.
15-26 Vol. 3B

POWER AND THERMAL MANAGEMENT
15.6.2 Intel® Thread Director Table Structure
This structure has a global header that is at least 16 bytes in size. Its size depends on the number of classes and
capabilities enumerated by the CPUID instruction (see notes below Table 15-7). Following this global header there
are multiple Logical Processor related entries. The structure is designed as follows.

The global header is structured as shown in Table 15-8.

Table 15-7. Intel® Thread Director Table Structure

Byte Offset1,2,3

NOTES:
1. Byte offset of Capabilitycp of Classcl change indication: 8 + CP * cl + cp.
2. Byte offset of LP Entryi : 8 + (i+1) * (CP * CL + R8).
3. Byte offset of capabilitycp of classcl of LP Entryi: 8 + (i+1) * (CP * CL + R8) + CP * cl + cp.

Size (Bytes) Description

0 8 + CP4*CL4 + R85

4. Both upper case CL and CP denote total number of classes and capabilities defined for the processor. Lower case cl and cp denote
one instance of a class or capability. cl and cp are counted starting at zero. See “CPUID—CPU Identification” in Chapter 3 of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 2A for the number of classes (CL) and the number of supported
capabilities (CP). CP (# of capabilities): number of enumerated bits in CPUID.06H.0H.EDX[7:0] and CL (# of classes):
CPUID.06H.0H.ECX[15:8].

5. R8 is the number of bytes necessary to round up the Capability Change Indication array and the Logical Processor Entry to whole
multiple of 8 bytes.

Global Header

8 + CP*CL + R8 CL*CP + R8 Per Logical Processor Entry0
6

6. Table size: 8 + (N+1)* (CP * CL + R8).

8 + 2*(CP*CL + R8) CL*CP + R8 Per Logical Processor Entry1

...

8 + (N7 -1)*(CP*CL + R8)

7. N is the number of Logical Processor Entries in the table. It is not greater than the number of Logical Processors on the socket, but
may be lower.

8. The Operating System can determine the index for the Logical Processor Entry within the Intel Thread Director table using
CPUID.06H.0H:EDX[31:16] by executing the CPUID instruction on that Logical Processor.

9. The Operating System should allocate space to accommodate for one such structure per socket in the system.
10. The Intel Thread Director table structure extends the Hardware Feedback Interface table structure without breaking backward

compatibility. The Hardware Feedback Interface can be viewed as having two capabilities and a single class.

CL*CP +R8 Logical Processor EntryN-1
Vol. 3B 15-27

POWER AND THERMAL MANAGEMENT
Table 15-8. Intel® Thread Director Global Header Structure

Byte Offset
Size
(Bytes)

Description

0 8 Time-stamp of when the table was last updated by hardware. This is a time-stamp in crystal clock units.
Initialized by the OS to 0.

8 1 Class 0 Performance
Capability Flags

If bit 0 is set to 1, indicates the performance capability field for one or
more logical processors was updated in the table and/or another bit in
this field is updated.
If bit 1 is set to 1, indicates a force idle/inject idle request to the OS for
one or more logical processors.
Initialized by the OS to 0.

8 + 1 1 Class 0 Energy Efficiency
Capability Flags

If bit 0 is set to 1, indicates the energy efficiency capability field for
one or more logical processors was updated in the table and/or
another bit in this field is updated.
If bit 1 is set to 1, indicates a force idle/inject idle request to the OS for
one or more logical processors.
Initialized by the OS to 0.

...

8 + CP - 1 1 Class 0 change indication for
Capability #(CP-1) if exists

Unavailable for capabilities that are not enumerated.

8 + CP 1 Class 1 Performance
Capability Flags

If bit 0 is set to 1, indicates the performance capability field for one or
more logical processors was updated in the table and/or another bit in
this field is updated.
If bit 1 is set to 1, indicates a force idle/inject idle request to the OS for
one or more logical processors.
Initialized by the OS to 0.

8 + CP + 1 1 Class 1 Energy Efficiency
Capability Flags

If bit 0 is set to 1, indicates the energy efficiency capability field for
one or more logical processors was updated in the table and/or
another bit in this field is updated.
If bit 1 is set to 1, indicates a force idle/inject idle request to the OS for
one or more logical processors.
Initialized by the OS to 0.

...

8 + 2*CP - 1 1 Class 1 change indication for
Capability #(CP-1) if exists

Unavailable for capabilities that are not enumerated.

... Change indication for Capabilities of additional Classes if exist.

8 + (CL-1)*CP 1 Class #(CL-1) Performance
Capability Flags

If bit 0 is set to 1, indicates the performance capability field for one or
more logical processors was updated in the table and/or another bit in
this field is updated.
If bit 1 is set to 1, indicates a force idle/inject idle request to the OS for
one or more logical processors.
Initialized by the OS to 0.

8 + (CL-1)*CP + 1 1 Class #(CL-1) Energy
Efficiency Capability Flags

If bit 0 is set to 1, indicates the energy efficiency capability field for
one or more logical processors was updated in the table and/or
another bit in this field is updated.
If bit 1 is set to 1, indicates a force idle/inject idle request to the OS for
one or more logical processors.
Initialized by the OS to 0.
15-28 Vol. 3B

POWER AND THERMAL MANAGEMENT
The logical processor capability entry in the Intel Thread Director table is structured as follows.

...

8 + CL*CP - 1 1 Class #(CL-1) change
indication for Capability #(CP-
1) if exists

Unavailable for capabilities that are not enumerated.

8 + CL*CP R8 Padding Padding to nearest multiple of 8 bytes. Initialized by the OS to 0 prior
to enabling Intel Thread Director.

Table 15-9. Intel® Thread Director Logical Processor Entry Structure

Byte Offset Size (Bytes) Field Name Description

0 1 Performance
Capability

Class 0 Performance capability is an 8-bit value (0 ... 255) specifying the relative
performance level of a single logical processor. Higher values indicate higher
performance; the lowest performance level of 0 indicates a recommendation to
the OS to not schedule any software threads on it for performance reasons.
Initialized by the OS to 0.

1 1 Energy
Efficiency
Capability

Class 0 Energy Efficiency capability is an 8-bit value (0 ... 255) specifying the
relative energy efficiency level of a logical processor. Higher values indicate higher
energy efficiency; the lowest energy efficiency capability of 0 indicates a recom-
mendation to the OS to not schedule any software threads on it for efficiency
reasons. An Energy Efficiency capability of 255 indicates which logical processors
have the highest relative energy efficiency capability. In addition, the value 255 is
an explicit recommendation for the OS to consolidate work on those logical
processors for energy efficiency reasons.
Initialized by the OS to 0.

...

CP - 1 1 Capability
#(CP-1)

Class 0 Capability #(CP-1) if exists. If the capability does not exist (is not
enumerated in the CPUID), the entry is unavailable (no space is reserved for future
use here).

CP R8 Padding Padding to nearest multiple of 8 bytes. Initialized by the OS to 0 prior to enabling
Intel Thread Director.

CP + R8 1 Performance
Capability

Class 1 Performance capability is an 8-bit value (0 ... 255) specifying the relative
performance level of a single logical processor. Higher values indicate higher
performance; the lowest performance level of 0 indicates a recommendation to
the OS to not schedule any software threads on it for performance reasons.
Initialized by the OS to 0.

CP + 1 1 Energy
Efficiency
Capability

Class 1 Energy Efficiency capability is an 8-bit value (0 ... 255) specifying the
relative energy efficiency level of a logical processor. Higher values indicate higher
energy efficiency; the lowest energy efficiency capability of 0 indicates a recom-
mendation to the OS to not schedule any software threads on it for efficiency
reasons. An Energy Efficiency capability of 255 indicates which logical processors
have the highest relative energy efficiency capability. In addition, the value 255 is
an explicit recommendation for the OS to consolidate work on those logical
processors for energy efficiency reasons.
Initialized by the OS to 0.

...

2*CP - 1 1 Capability
#(CP-1)

Class 1 Capability #(CP-1) if exists. If the capability does not exist (is not
enumerated in the CPUID), the entry is unavailable (no space is reserved for future
use here).

Table 15-8. Intel® Thread Director Global Header Structure (Contd.)

Byte Offset
Size
(Bytes)

Description
Vol. 3B 15-29

POWER AND THERMAL MANAGEMENT
15.6.3 Intel® Thread Director Usage Model
When the OS Scheduler needs to decide which one of multiple free logical processors to assign to a software
thread that is ready to execute, it can choose one of the following options:

1. The free logical processor with the highest performance value of that software thread class, if the system is
scheduling for performance.

2. The free logical processor with the highest energy efficiency value of that software thread class, if the system
is scheduling for energy efficiency.

When the OS Scheduler needs to decide which of two logical processors (i,j) to assign to which of two software
threads whose Class IDs are k1 and k2, it can compute the two performance ratios: Perf Ratio1 = Perfik1 / Perfjk1
and Perf Ratio2 = Perfik2 / Perfjk2, or two energy efficiency ratios: Energy Eff. Ratio1 = Energy Effik1 / Energy Effjk1
and Energy Eff. Ratio2 = Energy Effik2 / Energy Effjk2 between the two logical processors for each of the two classes,
depending on whether the OS is scheduling for performance or for energy efficiency.
For example, assume that the system is scheduling for performance and that Perf Ratio1 > Perf Ratio2. The OS
Scheduler will assign the software thread whose Class ID is k1 to logical processor i, and the one whose Class ID is
k2 to logical processor j.

When the two software threads in question belong to the same Class ID, the OS Scheduler can schedule to higher
performance logical processors within that class when scheduling for performance and to higher energy efficiency
logical processors within that class when scheduling for energy efficiency.
The highest to lowest ordering may be different between classes across cores and between the performance
column and the energy efficiency column of the same class across cores.

2*CP R8 Padding Padding to nearest multiple of 8 bytes. Initialized by the OS to 0 prior to enabling
Intel Thread Director.

...

(CL-1)*CP 1 Performance
Capability

Class #(CL-1) Performance capability is an 8-bit value (0 ... 255) specifying the
relative performance level of a single logical processor. Higher values indicate
higher performance; the lowest performance level of 0 indicates a recommen-
dation to the OS to not schedule any software threads on it for performance
reasons.
Initialized by the OS to 0.

(CL-1)*CP + 1 1 Energy
Efficiency
Capability

Class #(CL-1) Energy Efficiency capability is an 8-bit value (0 ... 255) specifying the
relative energy efficiency level of a logical processor. Higher values indicate higher
energy efficiency; the lowest energy efficiency capability of 0 indicates a recom-
mendation to the OS to not schedule any software threads on it for efficiency
reasons. An Energy Efficiency capability of 255 indicates which logical processors
have the highest relative energy efficiency capability. In addition, the value 255 is
an explicit recommendation for the OS to consolidate work on those logical
processors for energy efficiency reasons.
Initialized by the OS to 0.

...

CL*CP - 1 1 Capability
#(CP-1)

Class #(CL-1) Capability #(CP-1) if exists. If the capability does not exist (is not
enumerated in the CPUID), the entry is unavailable (no space is reserved for future
use here).

CL*CP R8 Padding Padding to nearest multiple of 8 bytes. Initialized by the OS to 0 prior to enabling
Intel Thread Director.

Table 15-9. Intel® Thread Director Logical Processor Entry Structure (Contd.)

Byte Offset Size (Bytes) Field Name Description
15-30 Vol. 3B

POWER AND THERMAL MANAGEMENT
15.6.4 Hardware Feedback Interface Pointer
The physical address of the HFI/Intel Thread Director structure is programmed by the OS into a package scoped
MSR named IA32_HW_FEEDBACK_PTR. The MSR is structured as follows:
• Bits 63:MAXPHYADDR1 – Reserved.
• Bits MAXPHYADDR-1:12 – ADDR. This is the physical address of the page frame of the first page of this

structure.
• Bits 11:1 – Reserved.
• Bit 0 – Valid. When set to 1, indicates a valid pointer is programmed into the ADDR field of the MSR.
The address of this MSR is 17D0H. This MSR is cleared on processor reset to its default value of 0. It retains its
value upon INIT.

CPUID.06H.0H:EDX[11:8] enumerates the size of memory that must be allocated by the OS for this structure.

15.6.5 Hardware Feedback Interface Configuration
The operating system enables HFI/Intel Thread Director using a package scoped MSR named IA32_HW_FEED-
BACK_CONFIG (address 17D1H). This MSR is cleared on processor reset to its default value of 0. It retains its value
upon INIT.
The MSR is structured as follows:
• Bits 63:2 – Reserved.
• Bit 1 – Enable Intel Thread Director (or multi-class support). Both bits 0 and 1 must be set for Intel Thread

Director to be enabled. The extra class columns in the Intel Thread Director table are updated by hardware
immediately following setting those two bits, as well as during run time as necessary.

• Bit 0 – Enable. When set to 1, enables HFI.
Before enabling HFI, the OS must set a valid hardware feedback interface structure using IA32_HW_FEED-
BACK_PTR.
When the OS sets bit 0 only, the hardware populates class 0 capabilities only in the HFI structure. When bit 1 is set
after or together with bit 0, the Intel Thread Director multi-class structure is populated.
When either the HFI structure or the Intel Thread Director structure are ready to use by the OS, the hardware sets
IA32_PACKAGE_THERM_STATUS[bit 26]. An interrupt is generated by the hardware if IA32_PACKAGE_THERM_IN-
TERRUPT[bit 25] is set.
When the OS clears bit 1 but leaves bit 0 set, Intel Thread Director is disabled, but HFI is kept operational.
IA32_PACKAGE_THERM_STATUS[bit 26] is NOT set in this case.
Clearing bit 0 disables both HFI and Intel Thread Director, independent of the bit 1 state. Setting bit 1 to '1' while
keeping bit 0 at '0' is an invalid combination which is quietly ignored.
When the OS clears bit 0, hardware sets the IA32_PACKAGE_THERM_STATUS[bit 26] to 1 to acknowledge
disabling of the interface. The OS should wait for this bit to be set to 1 to reclaim the memory of the Intel Thread
Director structure, as by setting IA32_PACKAGE_THERM_STATUS[bit 26] hardware guarantees not to write into
the Intel Thread Director structure anymore.
The OS may clear bit 0 only after receiving an indication from the hardware that the structure initialization is
complete via the same IA32_PACKAGE_THERM_STATUS[bit 26], following enabling of HFI/Intel Thread Director,
thus avoiding a race condition between OS and hardware.
Bit 1 is valid only if CPUID[6].EAX[bit 23] is set. When setting this bit while support is not enumerated, the hard-
ware generates #GP.
Table 15-10 summarizes the control options described above.
See Section 15.6.9 for details on scenarios where IA32_HW_FEEDBACK_CONFIG bits are implicitly reset by the
hardware.

1. MAXPHYADDR is reported in CPUID.80000008H:EAX[7:0].
Vol. 3B 15-31

POWER AND THERMAL MANAGEMENT
15.6.6 Hardware Feedback Interface Notifications
The IA32_PACKAGE_THERM_STATUS MSR is extended with a new bit, hardware feedback interface structure
change status (bit 26, R/WC0), to indicate that the hardware has updated the HFI/Intel Thread Director structure.
This is a sticky bit and once set, indicates that the OS should read the structure to determine the change and adjust
its scheduling decisions. Once set, the hardware will not generate any further updates to this structure until the OS
clears this bit by writing 0.
The OS can enable interrupt-based notifications when the structure is updated by hardware through a new enable
bit, hardware feedback interrupt enable (bit 25, R/W), in the IA32_PACKAGE_THERM_INTERRUPT MSR. When this
bit is set to 1, it enables the generation of an interrupt when the HFI/Intel Thread Director structure is updated by
hardware. When the enable bit transitions from 0 to 1, hardware will generate an initial notify, with the IA32_PACK-
AGE_THERM_STATUS bit 26 set to 1, to indicate that the OS should read the current HFI/Intel Thread Director
structure.

Table 15-10. IA32_HW_FEEDBACK_CONFIG Control Options

Pre-Bit 1 Pre-Bit 0 Post-Bit 1 Post-Bit 0 Action IA32_PACKAGE_THERM_STATUS [bit 26] and
Interrupt

0 0 0 0 Reset value. Both Hardware Feedback Interface and Intel
Thread Director are disabled, no status bit set, no
interrupt is generated.

0 0 0 1 Enable HFI structure. Set the status bit and generate interrupt if
enabled.

0 0 1 0 Invalid option; quietly
ignored by the hardware.

No action (no update in the table).

0 0 1 1 Enable HFI and Intel
Thread Director.

Set the status bit and generate interrupt if
enabled.

0 1 0 0 Disable HFI support. Set the status bit and generate interrupt if
enabled.

0 1 1 0 Disable HFI and Intel
Thread Director.

Set the status bit and generate interrupt if
enabled.

0 1 1 1 Enable Intel Thread
Director.

Set the status bit and generate interrupt if
enabled.

1 0 0 0 No action; keeps HFI and
Intel Thread Director
disabled.

No action (no update in the table).

1 0 0 1 Enable HFI. Set the status bit and generate interrupt if
enabled.

1 0 1 1 Enable HFI and Intel
Thread Director.

Set the status bit and generate interrupt if
enabled.

1 1 0 0 Disable HFI and Intel
Thread Director.

Set the status bit and generate interrupt if
enabled.

1 1 0 1 Disable Intel Thread
Director; keep HFI
enabled.

No action (no update in the table).

1 1 1 0 Disable HFI and Intel
Thread Director.

Set the status bit and generate interrupt if
enabled.
15-32 Vol. 3B

POWER AND THERMAL MANAGEMENT
15.6.7 Hardware Feedback Interface and Intel® Thread Director Structure Dynamic Update
The HFI/Intel Thread Director structure can be updated dynamically during run time. Changes to the structure may
occur to one or more of its cells. Such changes may occur for one or more logical processors. The hardware sets a
non-zero value in the “capability change” field of the HFI/Intel Thread Director structure as an indication for the OS
to read that capability for all logical processors. A thermal interrupt is delivered to indicate to the OS that the struc-
ture has just changed. Section 15.6.6 contains more details on this notification mechanism. The hardware clears
all “capability change” fields after the OS resets IA32_PACKAGE_THERM_STATUS[bit 26].
Zeroing a performance or energy efficiency cell hints to the OS that it is beneficial not to schedule software threads
of that class on the associated logical processor for performance or energy efficiency reasons, respectively. If SMT
is supported, it may be the case that the hardware zeroes one of the core's logical processors only. Zeroing the
performance and energy efficiency cells of all classes for a logical processor implies that the hardware provides a
hint to the OS to completely avoid scheduling work on that logical processor.
Zeroing a performance and energy efficiency cell hint of a logical processor across all classes along with Capability
Flag bit 1 set to 1 across all capabilities and classes, indicates to the OS to force idle logical processor(s), and if
affinitized activity occurs on those logical processor(s), the OS should inject idle periods such that overall utilization
of those idled cores has a minimal-to-no impact to power. Capability Flag bit 1 will be set to 1 while this hint
persists.
When EE=255 is set on one or more logical processors, it represents a request that the OS attempt to consolidate
work to those logical processors with EE=255. These requests are made when the SOC has knowledge that consol-
idating the work to a subset of cores will result in significantly better platform energy efficiency. Examples of
consolidating work would include, but not limited to, delaying less important work as needed to provide compute
bandwidth for more important work, and routing interrupts to the logical processors with EE=255. When the cumu-
lative workload requires performance greater than that which is available on the subset of cores with EE=255, it is
expected that the OS will scale the work out to additional logical processors.
A few example reasons for runtime changes in the HGS/Intel Thread Director Table:
• Over clocking run time update that changes the capability values.
• Change in run time physical constraints.
• Run time performance or energy efficiency optimization.
• Change in core frequency, voltage, or power budget.

15.6.8 Logical Processor Scope Intel® Thread Director Configuration

The operating system enables Intel Thread Director at the logical processor scope using a logical processor scope
MSR named IA32_HW_FEEDBACK_THREAD_CONFIG (address 17D4H).
The MSR is read/write and is structured as follows:
• Bits 63:1 – Reserved.
• Bit 0 – Enables Intel Thread Director. When set to 1, logical processor scope Intel Thread Director is enabled.

Default is 0 (disabled).

Bit 0 of the logical processor scope configuration MSR can be cleared or set regardless of the state of the
HFI/Intel Thread Director package configuration MSR state. Even when bit 0 of all logical processor configuration
MSRs is clear, the processor can still update the Intel Thread Director structure if it is still enabled in the
IA32_HW_FEEDBACK_CONFIG package scope MSR. When the operating system clears
IA32_HW_FEEDBACK_THREAD_CONFIG[bit 0], hardware clears the history accumulated on that logical processor
which otherwise drives assigning the Class ID to the software thread that executes on that logical processor. As
long as IA32_HW_FEEDBACK_THREAD_CONFIG[bit 0] is set, the Class ID is available for the operating system to
read, independent of the state of the package scope IA32_HW_FEEDBACK_CONFIG[1:0] bits.

See Section 15.6.9 for details on scenarios where IA32_HW_FEEDBACK_CONFIG bits are implicitly reset by the
hardware.
Vol. 3B 15-33

POWER AND THERMAL MANAGEMENT
15.6.9 Implicit Reset of Package and Logical Processor Scope Configuration MSRs
HFI/Intel Thread Director enable bits are reset by hardware in the following scenarios:

1. When GETSEC[SENTER] is executed:

a. The processor implicitly resets the HFI/Intel Thread Director enable bits in the IA32_HW_FEEDBACK_-
CONFIG MSR on all sockets (packages) in the system.

b. The processor implicitly resets the Intel Thread Director enable bit in the IA32_HW_FEEDBACK_THREAD_-
CONFIG MSR on all logical processors in the system across all sockets.

c. The processor implicitly clears the HFI/Intel Thread Director table structure pointer in the IA32_HW_FEED-
BACK_PTR package MSR across all sockets.

2. When GETSEC[ENTERACCS] is executed:

a. The processor implicitly resets the HFI/Intel Thread Director enable bits in the IA32_HW_FEEDBACK_-
CONFIG MSR on the socket where the GETSEC[ENTERACCS] instruction was executed.

b. The processor implicitly resets the Intel Thread Director enable bit in the IA32_HW_FEEDBACK_THREAD_-
CONFIG MSR on all logical processors on the socket where the GETSEC[ENTERACCS] instruction was
executed.

c. The processor implicitly clears the HFI/Intel Thread Director table structure pointer in the IA32_HW_FEED-
BACK_PTR package MSR on the socket where the GETSEC[ENTERACCS] instruction was executed.

3. When an INIT or a wait-for-SIPI state are processed by a logical processor:

a. The processor implicitly resets the Intel Thread Director enable bit in the IA32_HW_FEEDBACK_THREAD_-
CONFIG MSR on that logical processor, whether the signal was in the context of GETSEC[ENTERACCS] or
not.

If the OS requires HFI/Intel Thread Director to be active after exiting the measured environment or when
processing a SIPI event, it should re-enable HFI/Intel Thread Director.

15.6.10 Logical Processor Scope Intel® Thread Director Run Time Characteristics
The processor provides the operating system with run time feedback about the execution characteristics of the
software thread executing on logical processors whose IA32_HW_FEEDBACK_THREAD_CONFIG[bit 0] is set.
The run time feedback is communicated via a read-only MSR named IA32_THREAD_FEEDBACK_CHAR. This is a
logical processor scope MSR whose address is 17D2H. This MSR is structured as follows:
• Bit 63 – Valid bit. When set to 1 the OS Scheduler can use the Class ID (in bits 7:0) for its scheduling decisions.

If this bit is 0, the Class ID field should be ignored. It is recommended that the OS uses the last known Class ID
of the software thread for its scheduling decisions.

• Bits 62:8 – Reserved.
• Bits 7:0 – Application Class ID, pointing into the Intel Thread Director structure described in Table 15-8.

This MSR is valid only if CPUID.06H:EAX[bit 23] is set.
The valid bit is cleared by the hardware in the following cases:
• The hardware does not have enough information to provide the operating system with a reliable Class ID.
• The operating system cleared the logical processor’s IA32_HW_FEEDBACK_THREAD_CONFIG[bit 0] bit.

The HRESET instruction is executed while configured to reset the Intel Thread Director history.

15.6.11 Logical Processor Scope History
The operating system can reset the Intel Thread Director related history accumulated on the current logical pro-
cessor it is executing on by issuing the HRESET instruction. See “CPUID—CPU Identification” in Chapter 3 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, for enumeration of the HRESET
15-34 Vol. 3B

POWER AND THERMAL MANAGEMENT
instruction. See also the “HRESET—History Reset” instruction description in Chapter 3 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A.

15.6.11.1 Enabling Intel® Thread Director History Reset
The IA32_HRESET_ENABLE MSR is a read/write MSR and is structured as follows:
• Bits 63:32 – Reserved.
• Bits 31:1 – Reserved for other capabilities that can be reset by the HRESET instruction.
• Bit 0 – Enable reset of the Intel Thread Director history.
The operating system should set IA32_HRESET_ENABLE[bit 0] to enable Intel Thread Director history reset via
the HRESET instruction.

15.6.11.2 Implicit Intel® Thread Director History Reset
The Intel Thread Director history is implicitly reset in the following scenarios:
1. When the processor enters or exits SMM mode and IA32_DEBUGCTL MSR.FREEZE_WHILE_SMM (bit 14) is set,

the Intel Thread Director history is implicitly reset by the processor.

2. When GETSEC[SENTER] is executed, the processor resets the Intel Thread Director history on all logical
processors in the system, including logical processors on other sockets (other than the one GETSEC[SENTER]
is executed).

3. When GETSEC[ENTERACCS] is executed, the processor resets the Intel Thread Director history on the logical
processor it is executed on.

4. When an INIT or a wait-for-SIPI state are processed by a logical processor, the Intel Thread Director history is
reset whether the signal was a result of GETSEC[ENTERACCS] or not.

If the operating system requires HFI/Intel Thread Director to be active after exiting the measured environment or
when processing a SIPI event, it should re-enable HFI/Intel Thread Director.

15.7 MWAIT EXTENSIONS FOR ADVANCED POWER MANAGEMENT
IA-32 processors may support a number of C-states1 that reduce power consumption for inactive states. Intel Core
Solo and Intel Core Duo processors support both deeper C-state and MWAIT extensions that can be used by OS to
implement power management policy.

Software should use CPUID to discover if a target processor supports the enumeration of MWAIT extensions. If
CPUID.05H.ECX[Bit 0] = 1, the target processor supports MWAIT extensions and their enumeration (see Chapter
4, “Instruction Set Reference, M-U,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2B).

If CPUID.05H.ECX[Bit 1] = 1, the target processor supports using interrupts as break-events for MWAIT, even
when interrupts are disabled. Use this feature to measure C-state residency as follows:
• Software can write to bit 0 in the MWAIT Extensions register (ECX) when issuing an MWAIT to enter into a

processor-specific C-state or sub C-state.
• When a processor comes out of an inactive C-state or sub C-state, software can read a timestamp before an

interrupt service routine (ISR) is potentially executed.

CPUID.05H.EDX allows software to enumerate processor-specific C-states and sub C-states available for use with
MWAIT extensions. IA-32 processors may support more than one C-state of a given C-state type. These are called
sub C-states. Numerically higher C-state have higher power savings and latency (upon entering and exiting) than
lower-numbered C-state.

1. The processor-specific C-states defined in MWAIT extensions can map to ACPI defined C-state types (C0, C1, C2, C3). The mapping
relationship depends on the definition of a C-state by processor implementation and is exposed to OSPM by the BIOS using the ACPI
defined _CST table.
Vol. 3B 15-35

POWER AND THERMAL MANAGEMENT
At CPL = 0, system software can specify desired C-state and sub C-state by using the MWAIT hints register (EAX).
Processors will not go to C-state and sub C-state deeper than what is specified by the hint register. If CPL > 0 and
if MONITOR/MWAIT is supported at CPL > 0, the processor will only enter C1-state (regardless of the C-state
request in the hints register).

Executing MWAIT generates an exception on processors operating at a privilege level where MONITOR/MWAIT are
not supported.

NOTE
If MWAIT is used to enter a C-state (including sub C-state) that is numerically higher than C1, a
store to the address range armed by MONITOR instruction will cause the processor to exit MWAIT if
the store was originated by other processor agents. A store from non-processor agent may not
cause the processor to exit MWAIT.

15.8 THERMAL MONITORING AND PROTECTION
The IA-32 architecture provides the following mechanisms for monitoring temperature and controlling thermal
power:

1. The catastrophic shutdown detector forces processor execution to stop if the processor’s core temperature
rises above a preset limit.

2. Automatic and adaptive thermal monitoring mechanisms force the processor to reduce it’s power
consumption in order to operate within predetermined temperature limits.

3. The software controlled clock modulation mechanism permits operating systems to implement power
management policies that reduce power consumption; this is in addition to the reduction offered by automatic
thermal monitoring mechanisms.

4. On-die digital thermal sensor and interrupt mechanisms permit the OS to manage thermal conditions
natively without relying on BIOS or other system board components.

The first mechanism is not visible to software. The other three mechanisms are visible to software using processor
feature information returned by executing CPUID with EAX = 1.

The second mechanism includes:
• Automatic thermal monitoring provides two modes of operation. One mode modulates the clock duty cycle;

the second mode changes the processor’s frequency. Both modes are used to control the core temperature of
the processor.

• Adaptive thermal monitoring can provide flexible thermal management on processors made of multiple
cores.

The third mechanism modulates the clock duty cycle of the processor. As shown in Figure 15-24, the phrase ‘duty
cycle’ does not refer to the actual duty cycle of the clock signal. Instead it refers to the time period during which the
clock signal is allowed to drive the processor chip. By using the stop clock mechanism to control how often the
processor is clocked, processor power consumption can be modulated.

Figure 15-24. Processor Modulation Through Stop-Clock Mechanism

Clock Applied to Processor

Stop-Clock Duty Cycle

25% Duty Cycle (example only)
15-36 Vol. 3B

POWER AND THERMAL MANAGEMENT
For previous automatic thermal monitoring mechanisms, software controlled mechanisms that changed processor
operating parameters to impact changes in thermal conditions. Software did not have native access to the native
thermal condition of the processor; nor could software alter the trigger condition that initiated software program
control.

The fourth mechanism (listed above) provides access to an on-die digital thermal sensor using a model-specific
register and uses an interrupt mechanism to alert software to initiate digital thermal monitoring.

15.8.1 Catastrophic Shutdown Detector
P6 family processors introduced a thermal sensor that acts as a catastrophic shutdown detector. This catastrophic
shutdown detector was also implemented in Pentium 4, Intel Xeon and Pentium M processors. It is always enabled.
When processor core temperature reaches a factory preset level, the sensor trips and processor execution is halted
until after the next reset cycle.

15.8.2 Thermal Monitor
Pentium 4, Intel Xeon and Pentium M processors introduced a second temperature sensor that is factory-calibrated
to trip when the processor’s core temperature crosses a level corresponding to the recommended thermal design
envelop. The trip-temperature of the second sensor is calibrated below the temperature assigned to the cata-
strophic shutdown detector.

15.8.2.1 Thermal Monitor 1
The Pentium 4 processor uses the second temperature sensor in conjunction with a mechanism called Thermal
Monitor 1 (TM1) to control the core temperature of the processor. TM1 controls the processor’s temperature by
modulating the duty cycle of the processor clock. Modulation of duty cycles is processor model specific. Note that
the processors STPCLK# pin is not used here; the stop-clock circuitry is controlled internally.

Support for TM1 is indicated by CPUID.1:EDX.TM[bit 29] = 1.

TM1 is enabled by setting the thermal-monitor enable flag (bit 3) in IA32_MISC_ENABLE; see Chapter 2, “Model-
Specific Registers (MSRs)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.
Following a power-up or reset, the flag is cleared, disabling TM1. BIOS is required to enable only one automatic
thermal monitoring modes. Operating systems and applications must not disable the operation of these mecha-
nisms.

15.8.2.2 Thermal Monitor 2
An additional automatic thermal protection mechanism, called Thermal Monitor 2 (TM2), was introduced in the
Intel Pentium M processor and also incorporated in newer models of the Pentium 4 processor family. Intel Core Duo
and Solo processors, and Intel Core 2 Duo processor family all support TM1 and TM2. TM2 controls the core
temperature of the processor by reducing the operating frequency and voltage of the processor and offers a higher
performance level for a given level of power reduction than TM1.

TM2 is triggered by the same temperature sensor as TM1. The mechanism to enable TM2 may be implemented
differently across various IA-32 processor families with different CPUID signatures in the family encoding value,
but will be uniform within an IA-32 processor family.

Support for TM2 is indicated by CPUID.1:ECX.TM2[bit 8] = 1.

15.8.2.3 Two Methods for Enabling TM2
On processors with CPUID family/model/stepping signature encoded as 0x69n or 0x6Dn (early Pentium M proces-
sors), TM2 is enabled if the TM_SELECT flag (bit 16) of the MSR_THERM2_CTL register is set to 1 (Figure 15-25)
and bit 3 of the IA32_MISC_ENABLE register is set to 1.
Vol. 3B 15-37

POWER AND THERMAL MANAGEMENT
Following a power-up or reset, the TM_SELECT flag may be cleared. BIOS is required to enable either TM1 or TM2.
Operating systems and applications must not disable mechanisms that enable TM1 or TM2. If bit 3 of the IA32_-
MISC_ENABLE register is set and TM_SELECT flag of the MSR_THERM2_CTL register is cleared, TM1 is enabled.

On processors introduced after the Pentium 4 processor (this includes most Pentium M processors), the method
used to enable TM2 is different. TM2 is enable by setting bit 13 of IA32_MISC_ENABLE register to 1. This applies to
Intel Core Duo, Core Solo, and Intel Core 2 processor family.

The target operating frequency and voltage for the TM2 transition after TM2 is triggered is specified by the value
written to MSR_THERM2_CTL, bits 15:0 (Figure 15-26). Following a power-up or reset, BIOS is required to enable
at least one of these two thermal monitoring mechanisms. If both TM1 and TM2 are supported, BIOS may choose
to enable TM2 instead of TM1. Operating systems and applications must not disable the mechanisms that enable
TM1or TM2; and they must not alter the value in bits 15:0 of the MSR_THERM2_CTL register.

15.8.2.4 Performance State Transitions and Thermal Monitoring
If the thermal control circuitry (TCC) for thermal monitor (TM1/TM2) is active, writes to the IA32_PERF_CTL will
effect a new target operating point as follows:
• If TM1 is enabled and the TCC is engaged, the performance state transition can commence before the TCC is

disengaged.
• If TM2 is enabled and the TCC is engaged, the performance state transition specified by a write to the

IA32_PERF_CTL will commence after the TCC has disengaged.

15.8.2.5 Thermal Status Information
The status of the temperature sensor that triggers the thermal monitor (TM1/TM2) is indicated through the thermal
status flag and thermal status log flag in the IA32_THERM_STATUS MSR (see Figure 15-27).

The functions of these flags are:
• Thermal Status flag, bit 0 — When set, indicates that the processor core temperature is currently at the trip

temperature of the thermal monitor and that the processor power consumption is being reduced via either TM1
or TM2, depending on which is enabled. When clear, the flag indicates that the core temperature is below the
thermal monitor trip temperature. This flag is read only.

Figure 15-25. MSR_THERM2_CTL Register On Processors with CPUID Family/Model/Stepping Signature Encoded
as 0x69n or 0x6Dn

Figure 15-26. MSR_THERM2_CTL Register for Supporting TM2

TM_SELECT

Reserved
31 0

Reserved

16

63 0

Reserved

15

TM2 Transition Target
15-38 Vol. 3B

POWER AND THERMAL MANAGEMENT
• Thermal Status Log flag, bit 1 — When set, indicates that the thermal sensor has tripped since the last
power-up or reset or since the last time that software cleared this flag. This flag is a sticky bit; once set it
remains set until cleared by software or until a power-up or reset of the processor. The default state is clear.

After the second temperature sensor has been tripped, the thermal monitor (TM1/TM2) will remain engaged for a
minimum time period (on the order of 1 ms). The thermal monitor will remain engaged until the processor core
temperature drops below the preset trip temperature of the temperature sensor, taking hysteresis into account.

While the processor is in a stop-clock state, interrupts will be blocked from interrupting the processor. This holding
off of interrupts increases the interrupt latency, but does not cause interrupts to be lost. Outstanding interrupts
remain pending until clock modulation is complete.

The thermal monitor can be programmed to generate an interrupt to the processor when the thermal sensor is
tripped; this is called a thermal interrupt. The delivery mode, mask, and vector for this interrupt can be
programmed through the thermal entry in the local APIC’s LVT (see Section 11.5.1, “Local Vector Table”). The low-
temperature interrupt enable and high-temperature interrupt enable flags in the IA32_THERM_INTERRUPT MSR
(see Figure 15-28) control when the interrupt is generated; that is, on a transition from a temperature below the
trip point to above and/or vice-versa.

• High-Temperature Interrupt Enable flag, bit 0 — Enables an interrupt to be generated on the transition
from a low-temperature to a high-temperature when set; disables the interrupt when clear.(R/W).

• Low-Temperature Interrupt Enable flag, bit 1 — Enables an interrupt to be generated on the transition
from a high-temperature to a low-temperature when set; disables the interrupt when clear.

The thermal interrupt can be masked by the thermal LVT entry. After a power-up or reset, the low-temperature
interrupt enable and high-temperature interrupt enable flags in the IA32_THERM_INTERRUPT MSR are cleared
(interrupts are disabled) and the thermal LVT entry is set to mask interrupts. This interrupt should be handled
either by the operating system or system management mode (SMM) code.

Note that the operation of the thermal monitoring mechanism has no effect upon the clock rate of the processor's
internal high-resolution timer (time stamp counter).

15.8.2.6 Adaptive Thermal Monitor
The Intel Core 2 Duo processor family supports enhanced thermal management mechanism, referred to as Adap-
tive Thermal Monitor (Adaptive TM).

Unlike TM2, Adaptive TM is not limited to one TM2 transition target. During a thermal trip event, Adaptive TM (if
enabled) selects an optimal target operating point based on whether or not the current operating point has effec-
tively cooled the processor.

Figure 15-27. IA32_THERM_STATUS MSR

Figure 15-28. IA32_THERM_INTERRUPT MSR

63 0

Reserved

12

Thermal Status
Thermal Status Log

63 0

Reserved

12

High-Temperature Interrupt Enable
Low-Temperature Interrupt Enable
Vol. 3B 15-39

POWER AND THERMAL MANAGEMENT
Similar to TM2, Adaptive TM is enable by BIOS. The BIOS is required to test the TM1 and TM2 feature flags and
enable all available thermal control mechanisms (including Adaptive TM) at platform initiation.

Adaptive TM is available only to a subset of processors that support TM2.

In each chip-multiprocessing (CMP) silicon die, each core has a unique thermal sensor that triggers independently.
These thermal sensor can trigger TM1 or TM2 transitions in the same manner as described in Section 15.8.2.1 and
Section 15.8.2.2. The trip point of the thermal sensor is not programmable by software since it is set during the
fabrication of the processor.

Each thermal sensor in a processor core may be triggered independently to engage thermal management features.
In Adaptive TM, both cores will transition to a lower frequency and/or lower voltage level if one sensor is triggered.

Triggering of this sensor is visible to software via the thermal interrupt LVT entry in the local APIC of a given core.

15.8.3 Software Controlled Clock Modulation
Pentium 4, Intel Xeon and Pentium M processors also support software-controlled clock modulation. This provides
a means for operating systems to implement a power management policy to reduce the power consumption of the
processor. Here, the stop-clock duty cycle is controlled by software through the IA32_CLOCK_MODULATION MSR
(see Figure 15-29).

The IA32_CLOCK_MODULATION MSR contains the following flag and field used to enable software-controlled clock
modulation and to select the clock modulation duty cycle:
• On-Demand Clock Modulation Enable, bit 4 — Enables on-demand software controlled clock modulation

when set; disables software-controlled clock modulation when clear.
• On-Demand Clock Modulation Duty Cycle, bits 1 through 3 — Selects the on-demand clock modulation

duty cycle (see Table 15-11). This field is only active when the on-demand clock modulation enable flag is set.

Note that the on-demand clock modulation mechanism (like the thermal monitor) controls the processor’s stop-
clock circuitry internally to modulate the clock signal. The STPCLK# pin is not used in this mechanism.

Figure 15-29. IA32_CLOCK_MODULATION MSR

Table 15-11. On-Demand Clock Modulation Duty Cycle Field Encoding

Duty Cycle Field Encoding Duty Cycle

000B Reserved

001B 12.5% (Default)

010B 25.0%

011B 37.5%

100B 50.0%

101B 63.5%

110B 75%

111B 87.5%

63 0

Reserved

13

On-Demand Clock Modulation Duty Cycle
On-Demand Clock Modulation Enable

45

Reserved
15-40 Vol. 3B

POWER AND THERMAL MANAGEMENT
The on-demand clock modulation mechanism can be used to control processor power consumption. Power
management software can write to the IA32_CLOCK_MODULATION MSR to enable clock modulation and to select
a modulation duty cycle. If on-demand clock modulation and TM1 are both enabled and the thermal status of the
processor is hot (bit 0 of the IA32_THERM_STATUS MSR is set), clock modulation at the duty cycle specified by TM1
takes precedence, regardless of the setting of the on-demand clock modulation duty cycle.

For Hyper-Threading Technology enabled processors, the IA32_CLOCK_MODULATION register is duplicated for
each logical processor. In order for the On-demand clock modulation feature to work properly, the feature must be
enabled on all the logical processors within a physical processor. If the programmed duty cycle is not identical for
all the logical processors, the processor core clock will modulate to the highest duty cycle programmed for proces-
sors with any of the following CPUID DisplayFamily_DisplayModel signatures (see CPUID instruction in Chapter3,
“Instruction Set Reference, A-L” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A): 06_1A, 06_1C, 06_1E, 06_1F, 06_25, 06_26, 06_27, 06_2C, 06_2E, 06_2F, 06_35, 06_36, and 0F_xx. For all
other processors, if the programmed duty cycle is not identical for all logical processors in the same core, the
processor core will modulate at the lowest programmed duty cycle.

For multiple processor cores in a physical package, each processor core can modulate to a programmed duty cycle
independently.

For the P6 family processors, on-demand clock modulation was implemented through the chipset, which controlled
clock modulation through the processor’s STPCLK# pin.

15.8.3.1 Extension of Software Controlled Clock Modulation
Extension of the software controlled clock modulation facility supports on-demand clock modulation duty cycle with
4-bit dynamic range (increased from 3-bit range). Granularity of clock modulation duty cycle is increased to 6.25%
(compared to 12.5%).

Four bit dynamic range control is provided by using bit 0 in conjunction with bits 3:1 of the IA32_CLOCK_MODULA-
TION MSR (see Figure 15-30).

Extension to software controlled clock modulation is supported only if CPUID.06H:EAX[Bit 5] = 1. If
CPUID.06H:EAX[Bit 5] = 0, then bit 0 of IA32_CLOCK_MODULATION is reserved.

15.8.4 Detection of Thermal Monitor and Software Controlled Clock Modulation Facilities
The ACPI flag (bit 22) of the CPUID feature flags indicates the presence of the IA32_THERM_STATUS, IA32_THER-
M_INTERRUPT, IA32_CLOCK_MODULATION MSRs, and the xAPIC thermal LVT entry.

The TM1 flag (bit 29) of the CPUID feature flags indicates the presence of the automatic thermal monitoring facili-
ties that modulate clock duty cycles.

15.8.4.1 Detection of Software Controlled Clock Modulation Extension
Processor’s support of software controlled clock modulation extension is indicated by CPUID.06H:EAX[Bit 5] = 1.

Figure 15-30. IA32_CLOCK_MODULATION MSR with Clock Modulation Extension

63 0

Reserved

3

Extended On-Demand Clock Modulation Duty Cycle
On-Demand Clock Modulation Enable

45

Reserved
Vol. 3B 15-41

POWER AND THERMAL MANAGEMENT
15.8.5 On Die Digital Thermal Sensors
On die digital thermal sensor can be read using an MSR (no I/O interface). In Intel Core Duo processors, each core
has a unique digital sensor whose temperature is accessible using an MSR. The digital thermal sensor is the
preferred method for reading the die temperature because (a) it is located closer to the hottest portions of the die,
(b) it enables software to accurately track the die temperature and the potential activation of thermal throttling.

15.8.5.1 Digital Thermal Sensor Enumeration
The processor supports a digital thermal sensor if CPUID.06H.EAX[0] = 1. If the processor supports digital thermal
sensor, EBX[bits 3:0] determine the number of thermal thresholds that are available for use.

Software sets thermal thresholds by using the IA32_THERM_INTERRUPT MSR. Software reads output of the digital
thermal sensor using the IA32_THERM_STATUS MSR.

15.8.5.2 Reading the Digital Sensor
Unlike traditional analog thermal devices, the output of the digital thermal sensor is a temperature relative to the
maximum supported operating temperature of the processor.

Temperature measurements returned by digital thermal sensors are always at or below TCC activation tempera-
ture. Critical temperature conditions are detected using the “Critical Temperature Status” bit. When this bit is set,
the processor is operating at a critical temperature and immediate shutdown of the system should occur. Once the
“Critical Temperature Status” bit is set, reliable operation is not guaranteed.

See Figure 15-31 for the layout of IA32_THERM_STATUS MSR. Bit fields include:
• Thermal Status (bit 0, RO) — This bit indicates whether the digital thermal sensor high-temperature output

signal (PROCHOT#) is currently active. Bit 0 = 1 indicates the feature is active. This bit may not be written by
software; it reflects the state of the digital thermal sensor.

• Thermal Status Log (bit 1, R/WC0) — This is a sticky bit that indicates the history of the thermal sensor
high temperature output signal (PROCHOT#). Bit 1 = 1 if PROCHOT# has been asserted since a previous
RESET or the last time software cleared the bit. Software may clear this bit by writing a zero.

• PROCHOT# or FORCEPR# Event (bit 2, RO) — Indicates whether PROCHOT# or FORCEPR# is being
asserted by another agent on the platform.

Figure 15-31. IA32_THERM_STATUS Register

63 0

Reserved

15

Reading Valid

1234581016222327

Resolution in Deg. Celsius
Digital Readout

Thermal Threshold #2 Log
Thermal Threshold #2 Status
Thermal Threshold #1 Log
Thermal Threshold #1 Status
Critical Temperature Log

6793132

Critical Temperature Status
PROCHOT# or FORCEPR# Log
PROCHOT# or FORCEPR# Event
Thermal Status Log
Thermal Status

11

Power Limit Notification Log
Power Limit Notification Status
15-42 Vol. 3B

POWER AND THERMAL MANAGEMENT
• PROCHOT# or FORCEPR# Log (bit 3, R/WC0) — Sticky bit that indicates whether PROCHOT# or
FORCEPR# has been asserted by another agent on the platform since the last clearing of this bit or a reset. If
bit 3 = 1, PROCHOT# or FORCEPR# has been externally asserted. Software may clear this bit by writing a zero.
External PROCHOT# assertions are only acknowledged if the Bidirectional Prochot feature is enabled.

• Critical Temperature Status (bit 4, RO) — Indicates whether the critical temperature detector output signal
is currently active. If bit 4 = 1, the critical temperature detector output signal is currently active.

• Critical Temperature Log (bit 5, R/WC0) — Sticky bit that indicates whether the critical temperature
detector output signal has been asserted since the last clearing of this bit or reset. If bit 5 = 1, the output
signal has been asserted. Software may clear this bit by writing a zero.

• Thermal Threshold #1 Status (bit 6, RO) — Indicates whether the actual temperature is currently higher
than or equal to the value set in Thermal Threshold #1. If bit 6 = 0, the actual temperature is lower. If
bit 6 = 1, the actual temperature is greater than or equal to TT#1. Quantitative information of actual
temperature can be inferred from Digital Readout, bits 22:16.

• Thermal Threshold #1 Log (bit 7, R/WC0) — Sticky bit that indicates whether the Thermal Threshold #1
has been reached since the last clearing of this bit or a reset. If bit 7 = 1, the Threshold #1 has been reached.
Software may clear this bit by writing a zero.

• Thermal Threshold #2 Status (bit 8, RO) — Indicates whether actual temperature is currently higher than
or equal to the value set in Thermal Threshold #2. If bit 8 = 0, the actual temperature is lower. If bit 8 = 1, the
actual temperature is greater than or equal to TT#2. Quantitative information of actual temperature can be
inferred from Digital Readout, bits 22:16.

• Thermal Threshold #2 Log (bit 9, R/WC0) — Sticky bit that indicates whether the Thermal Threshold #2
has been reached since the last clearing of this bit or a reset. If bit 9 = 1, the Thermal Threshold #2 has been
reached. Software may clear this bit by writing a zero.

• Power Limitation Status (bit 10, RO) — Indicates whether the processor is currently operating below OS-
requested P-state (specified in IA32_PERF_CTL) or OS-requested clock modulation duty cycle (specified in
IA32_CLOCK_MODULATION). This field is supported only if CPUID.06H:EAX[bit 4] = 1. Package level power
limit notification can be delivered independently to IA32_PACKAGE_THERM_STATUS MSR.

• Power Notification Log (bit 11, R/WCO) — Sticky bit that indicates the processor went below OS-
requested P-state or OS-requested clock modulation duty cycle since the last clearing of this or RESET. This
field is supported only if CPUID.06H:EAX[bit 4] = 1. Package level power limit notification is indicated
independently in IA32_PACKAGE_THERM_STATUS MSR.

• Digital Readout (bits 22:16, RO) — Digital temperature reading in 1 degree Celsius relative to the TCC
activation temperature.
0: TCC Activation temperature,
1: (TCC Activation - 1) , etc. See the processor’s data sheet for details regarding TCC activation.
A lower reading in the Digital Readout field (bits 22:16) indicates a higher actual temperature.

• Resolution in Degrees Celsius (bits 30:27, RO) — Specifies the resolution (or tolerance) of the digital
thermal sensor. The value is in degrees Celsius. It is recommended that new threshold values be offset from the
current temperature by at least the resolution + 1 in order to avoid hysteresis of interrupt generation.

• Reading Valid (bit 31, RO) — Indicates if the digital readout in bits 22:16 is valid. The readout is valid if
bit 31 = 1.

Changes to temperature can be detected using two thresholds (see Figure 15-32); one is set above and the other
below the current temperature. These thresholds have the capability of generating interrupts using the core's local
APIC which software must then service. Note that the local APIC entries used by these thresholds are also used by
the Intel® Thermal Monitor; it is up to software to determine the source of a specific interrupt.
Vol. 3B 15-43

POWER AND THERMAL MANAGEMENT
See Figure 15-32 for the layout of IA32_THERM_INTERRUPT MSR. Bit fields include:
• High-Temperature Interrupt Enable (bit 0, R/W) — This bit allows the BIOS to enable the generation of

an interrupt on the transition from low-temperature to a high-temperature threshold. Bit 0 = 0 (default)
disables interrupts; bit 0 = 1 enables interrupts.

• Low-Temperature Interrupt Enable (bit 1, R/W) — This bit allows the BIOS to enable the generation of an
interrupt on the transition from high-temperature to a low-temperature (TCC de-activation). Bit 1 = 0 (default)
disables interrupts; bit 1 = 1 enables interrupts.

• PROCHOT# Interrupt Enable (bit 2, R/W) — This bit allows the BIOS or OS to enable the generation of an
interrupt when PROCHOT# has been asserted by another agent on the platform and the Bidirectional Prochot
feature is enabled. Bit 2 = 0 disables the interrupt; bit 2 = 1 enables the interrupt.

• FORCEPR# Interrupt Enable (bit 3, R/W) — This bit allows the BIOS or OS to enable the generation of an
interrupt when FORCEPR# has been asserted by another agent on the platform. Bit 3 = 0 disables the
interrupt; bit 3 = 1 enables the interrupt.

• Critical Temperature Interrupt Enable (bit 4, R/W) — Enables the generation of an interrupt when the
Critical Temperature Detector has detected a critical thermal condition. The recommended response to this
condition is a system shutdown. Bit 4 = 0 disables the interrupt; bit 4 = 1 enables the interrupt.

• Threshold #1 Value (bits 14:8, R/W) — A temperature threshold, encoded relative to the TCC Activation
temperature (using the same format as the Digital Readout). This threshold is compared against the Digital
Readout and is used to generate the Thermal Threshold #1 Status and Log bits as well as the Threshold #1
thermal interrupt delivery.

• Threshold #1 Interrupt Enable (bit 15, R/W) — Enables the generation of an interrupt when the actual
temperature crosses the Threshold #1 setting in any direction. Bit 15 = 1 enables the interrupt; bit 15 = 0
disables the interrupt.

• Threshold #2 Value (bits 22:16, R/W) —A temperature threshold, encoded relative to the TCC Activation
temperature (using the same format as the Digital Readout). This threshold is compared against the Digital
Readout and is used to generate the Thermal Threshold #2 Status and Log bits as well as the Threshold #2
thermal interrupt delivery.

• Threshold #2 Interrupt Enable (bit 23, R/W) — Enables the generation of an interrupt when the actual
temperature crosses the Threshold #2 setting in any direction. Bit 23 = 1enables the interrupt; bit 23 = 0
disables the interrupt.

• Power Limit Notification Enable (bit 24, R/W) — Enables the generation of power notification events when
the processor went below OS-requested P-state or OS-requested clock modulation duty cycle. This field is
supported only if CPUID.06H:EAX[bit 4] = 1. Package level power limit notification can be enabled
independently by IA32_PACKAGE_THERM_INTERRUPT MSR.

Figure 15-32. IA32_THERM_INTERRUPT Register

63 0

Reserved

15

Threshold #2 Interrupt Enable

1234581416222324

Threshold #2 Value
Threshold #1 Interrupt Enable
Threshold #1 Value
Overheat Interrupt Enable
FORCPR# Interrupt Enable
PROCHOT# Interrupt Enable
Low Temp. Interrupt Enable
High Temp. Interrupt Enable

25

Power Limit Notification Enable
15-44 Vol. 3B

POWER AND THERMAL MANAGEMENT
15.8.6 Power Limit Notification
Platform firmware may be capable of specifying a power limit to restrict power delivered to a platform component,
such as a physical processor package. This constraint imposed by platform firmware may occasionally cause the
processor to operate below OS-requested P or T-state. A power limit notification event can be delivered using the
existing thermal LVT entry in the local APIC.

Software can enumerate the presence of the processor’s support for power limit notification by verifying
CPUID.06H:EAX[bit 4] = 1.

If CPUID.06H:EAX[bit 4] = 1, then IA32_THERM_INTERRUPT and IA32_THERM_STATUS provides the following
facility to manage power limit notification:
• Bits 10 and 11 in IA32_THERM_STATUS informs software of the occurrence of processor operating below OS-

requested P-state or clock modulation duty cycle setting (see Figure 15-31).
• Bit 24 in IA32_THERM_INTERRUPT enables the local APIC to deliver a thermal event when the processor went

below OS-requested P-state or clock modulation duty cycle setting (see Figure 15-32).

15.9 PACKAGE LEVEL THERMAL MANAGEMENT
The thermal management facilities like IA32_THERM_INTERRUPT and IA32_THERM_STATUS are often imple-
mented with a processor core granularity. To facilitate software manage thermal events from a package level gran-
ularity, two architectural MSR is provided for package level thermal management. The
IA32_PACKAGE_THERM_STATUS and IA32_PACKAGE_THERM_INTERRUPT MSRs use similar interfaces as
IA32_THERM_STATUS and IA32_THERM_INTERRUPT, but are shared in each physical processor package.

Software can enumerate the presence of the processor’s support for package level thermal management facility
(IA32_PACKAGE_THERM_STATUS and IA32_PACKAGE_THERM_INTERRUPT) by verifying CPUID.06H:EAX[bit 6] =
1.

The layout of IA32_PACKAGE_THERM_STATUS MSR is shown in Figure 15-33.

• Package Thermal Status (bit 0, RO) — This bit indicates whether the digital thermal sensor high-
temperature output signal (PROCHOT#) for the package is currently active. Bit 0 = 1 indicates the feature is
active. This bit may not be written by software; it reflects the state of the digital thermal sensor.

Figure 15-33. IA32_PACKAGE_THERM_STATUS Register

63 0

Reserved

15 1234581016222327

PKG Digital Readout

PKG Thermal Threshold #2 Log
PKG Thermal Threshold #2 Status
PKG Thermal Threshold #1 Log
PKG Thermal Threshold #1 Status
PKG Critical Temperature Log

6793132

PKG Critical Temperature Status
PKG PROCHOT# or FORCEPR# Log
PKG PROCHOT# or FORCEPR# Event
PKG Thermal Status Log
PKG Thermal Status

11

PKG Power Limit Notification Log
PKG Power Limit Notification Status
Vol. 3B 15-45

POWER AND THERMAL MANAGEMENT
• Package Thermal Status Log (bit 1, R/WC0) — This is a sticky bit that indicates the history of the thermal
sensor high temperature output signal (PROCHOT#) of the package. Bit 1 = 1 if package PROCHOT# has been
asserted since a previous RESET or the last time software cleared the bit. Software may clear this bit by writing
a zero.

• Package PROCHOT# Event (bit 2, RO) — Indicates whether package PROCHOT# is being asserted by
another agent on the platform.

• Package PROCHOT# Log (bit 3, R/WC0) — Sticky bit that indicates whether package PROCHOT# has been
asserted by another agent on the platform since the last clearing of this bit or a reset. If bit 3 = 1, package
PROCHOT# has been externally asserted. Software may clear this bit by writing a zero.

• Package Critical Temperature Status (bit 4, RO) — Indicates whether the package critical temperature
detector output signal is currently active. If bit 4 = 1, the package critical temperature detector output signal
is currently active.

• Package Critical Temperature Log (bit 5, R/WC0) — Sticky bit that indicates whether the package critical
temperature detector output signal has been asserted since the last clearing of this bit or reset. If bit 5 = 1, the
output signal has been asserted. Software may clear this bit by writing a zero.

• Package Thermal Threshold #1 Status (bit 6, RO) — Indicates whether the actual package temperature is
currently higher than or equal to the value set in Package Thermal Threshold #1. If bit 6 = 0, the actual
temperature is lower. If bit 6 = 1, the actual temperature is greater than or equal to PTT#1. Quantitative
information of actual package temperature can be inferred from Package Digital Readout, bits 22:16.

• Package Thermal Threshold #1 Log (bit 7, R/WC0) — Sticky bit that indicates whether the Package
Thermal Threshold #1 has been reached since the last clearing of this bit or a reset. If bit 7 = 1, the Package
Threshold #1 has been reached. Software may clear this bit by writing a zero.

• Package Thermal Threshold #2 Status (bit 8, RO) — Indicates whether actual package temperature is
currently higher than or equal to the value set in Package Thermal Threshold #2. If bit 8 = 0, the actual
temperature is lower. If bit 8 = 1, the actual temperature is greater than or equal to PTT#2. Quantitative
information of actual temperature can be inferred from Package Digital Readout, bits 22:16.

• Package Thermal Threshold #2 Log (bit 9, R/WC0) — Sticky bit that indicates whether the Package
Thermal Threshold #2 has been reached since the last clearing of this bit or a reset. If bit 9 = 1, the Package
Thermal Threshold #2 has been reached. Software may clear this bit by writing a zero.

• Package Power Limitation Status (bit 10, RO) — Indicates package power limit is forcing one ore more
processors to operate below OS-requested P-state. Note that package power limit violation may be caused by
processor cores or by devices residing in the uncore. Software can examine IA32_THERM_STATUS to determine
if the cause originates from a processor core (see Figure 15-31).

• Package Power Notification Log (bit 11, R/WCO) — Sticky bit that indicates any processor in the package
went below OS-requested P-state or OS-requested clock modulation duty cycle since the last clearing of this or
RESET.

• Package Digital Readout (bits 22:16, RO) — Package digital temperature reading in 1 degree Celsius
relative to the package TCC activation temperature.
0: Package TCC Activation temperature,
1: (PTCC Activation - 1) , etc. See the processor’s data sheet for details regarding PTCC activation.
A lower reading in the Package Digital Readout field (bits 22:16) indicates a higher actual temperature.

The layout of IA32_PACKAGE_THERM_INTERRUPT MSR is shown in Figure 15-34.
15-46 Vol. 3B

POWER AND THERMAL MANAGEMENT
• Package High-Temperature Interrupt Enable (bit 0, R/W) — This bit allows the BIOS to enable the
generation of an interrupt on the transition from low-temperature to a package high-temperature threshold.
Bit 0 = 0 (default) disables interrupts; bit 0 = 1 enables interrupts.

• Package Low-Temperature Interrupt Enable (bit 1, R/W) — This bit allows the BIOS to enable the
generation of an interrupt on the transition from high-temperature to a low-temperature (TCC de-activation).
Bit 1 = 0 (default) disables interrupts; bit 1 = 1 enables interrupts.

• Package PROCHOT# Interrupt Enable (bit 2, R/W) — This bit allows the BIOS or OS to enable the
generation of an interrupt when Package PROCHOT# has been asserted by another agent on the platform and
the Bidirectional Prochot feature is enabled. Bit 2 = 0 disables the interrupt; bit 2 = 1 enables the interrupt.

• Package Critical Temperature Interrupt Enable (bit 4, R/W) — Enables the generation of an interrupt
when the Package Critical Temperature Detector has detected a critical thermal condition. The recommended
response to this condition is a system shutdown. Bit 4 = 0 disables the interrupt; bit 4 = 1 enables the
interrupt.

• Package Threshold #1 Value (bits 14:8, R/W) — A temperature threshold, encoded relative to the
Package TCC Activation temperature (using the same format as the Digital Readout). This threshold is
compared against the Package Digital Readout and is used to generate the Package Thermal Threshold #1
Status and Log bits as well as the Package Threshold #1 thermal interrupt delivery.

• Package Threshold #1 Interrupt Enable (bit 15, R/W) — Enables the generation of an interrupt when the
actual temperature crosses the Package Threshold #1 setting in any direction. Bit 15 = 1 enables the interrupt;
bit 15 = 0 disables the interrupt.

• Package Threshold #2 Value (bits 22:16, R/W) —A temperature threshold, encoded relative to the PTCC
Activation temperature (using the same format as the Package Digital Readout). This threshold is compared
against the Package Digital Readout and is used to generate the Package Thermal Threshold #2 Status and Log
bits as well as the Package Threshold #2 thermal interrupt delivery.

• Package Threshold #2 Interrupt Enable (bit 23, R/W) — Enables the generation of an interrupt when the
actual temperature crosses the Package Threshold #2 setting in any direction. Bit 23 = 1 enables the interrupt;
bit 23 = 0 disables the interrupt.

• Package Power Limit Notification Enable (bit 24, R/W) — Enables the generation of package power
notification events.

15.9.1 Support for Passive and Active cooling
Passive and active cooling may be controlled by the OS power management agent through ACPI control methods.
On platforms providing package level thermal management facility described in the previous section, it is recom-
mended that active cooling (FAN control) should be driven by measuring the package temperature using the
IA32_PACKAGE_THERM_INTERRUPT MSR.

Figure 15-34. IA32_PACKAGE_THERM_INTERRUPT Register

63 0

Reserved

15

Pkg Threshold #2 Interrupt Enable

1234581416222324

Pkg Threshold #2 Value
Pkg Threshold #1 Interrupt Enable
Pkg Threshold #1 Value
Pkg Overheat Interrupt Enable
Pkg PROCHOT# Interrupt Enable
Pkg Low Temp. Interrupt Enable
Pkg High Temp. Interrupt Enable

25

Pkg Power Limit Notification Enable
Vol. 3B 15-47

POWER AND THERMAL MANAGEMENT
Passive cooling (frequency throttling) should be driven by measuring (a) the core and package temperatures, or
(b) only the package temperature. If measured package temperature led the power management agent to choose
which core to execute passive cooling, then all cores need to execute passive cooling. Core temperature is
measured using the IA32_THERMAL_STATUS and IA32_THERMAL_INTERRUPT MSRs. The exact implementation
details depend on the platform firmware and possible solutions include defining two different thermal zones (one
for core temperature and passive cooling and the other for package temperature and active cooling).

15.10 PLATFORM SPECIFIC POWER MANAGEMENT SUPPORT
This section covers power management interfaces that are not architectural but addresses the power management
needs of several platform specific components. Specifically, RAPL (Running Average Power Limit) interfaces provide
mechanisms to enforce power consumption limit. Power limiting usages have specific usages in client and server
platforms.

For client platform power limit control and for server platforms used in a data center, the following power and
thermal related usages are desirable:
• Platform Thermal Management: Robust mechanisms to manage component, platform, and group-level

thermals, either proactively or reactively (e.g., in response to a platform-level thermal trip point).
• Platform Power Limiting: More deterministic control over the system's power consumption, for example to meet

battery life targets on rack-level or container-level power consumption goals within a datacenter.
• Power/Performance Budgeting: Efficient means to control the power consumed (and therefore the sustained

performance delivered) within and across platforms.

The server and client usage models are addressed by RAPL interfaces, which expose multiple domains of power
rationing within each processor socket. Generally, these RAPL domains may be viewed to include hierarchically:
• Package domain is the processor die.
• Memory domain includes the directly-attached DRAM; an additional power plane may constitute a separate

domain.

In order to manage the power consumed across multiple sockets via RAPL, individual limits must be programmed
for each processor complex. Programming specific RAPL domain across multiple sockets is not supported.

15.10.1 RAPL Interfaces
RAPL interfaces consist of non-architectural MSRs. Each RAPL domain supports the following set of capabilities,
some of which are optional as stated below.
• Power limit - MSR interfaces to specify power limit, time window; lock bit, clamp bit etc.
• Energy Status - Power metering interface providing energy consumption information.
• Perf Status (Optional) - Interface providing information on the performance effects (regression) due to power

limits. It is defined as a duration metric that measures the power limit effect in the respective domain. The
meaning of duration is domain specific.

• Power Info (Optional) - Interface providing information on the range of parameters for a given domain,
minimum power, maximum power etc.

• Policy (Optional) - 4-bit priority information that is a hint to hardware for dividing budget between sub-domains
in a parent domain.

Each of the above capabilities requires specific units in order to describe them. Power is expressed in Watts, Time
is expressed in Seconds, and Energy is expressed in Joules. Scaling factors are supplied to each unit to make the
information presented meaningful in a finite number of bits. Units for power, energy, and time are exposed in the
read-only MSR_RAPL_POWER_UNIT MSR.
15-48 Vol. 3B

POWER AND THERMAL MANAGEMENT
MSR_RAPL_POWER_UNIT (Figure 15-35) provides the following information across all RAPL domains:
• Power Units (bits 3:0): Power related information (in Watts) is based on the multiplier, 1/ 2^PU; where PU is

an unsigned integer represented by bits 3:0. Default value is 0011b, indicating power unit is in 1/8 Watts
increment.

• Energy Status Units (bits 12:8): Energy related information (in Joules) is based on the multiplier, 1/2^ESU;
where ESU is an unsigned integer represented by bits 12:8. Default value is 10000b, indicating energy status
unit is in 15.3 micro-Joules increment.

• Time Units (bits 19:16): Time related information (in Seconds) is based on the multiplier, 1/ 2^TU; where TU
is an unsigned integer represented by bits 19:16. Default value is 1010b, indicating time unit is in 976 micro-
seconds increment.

15.10.2 RAPL Domains and Platform Specificity
The specific RAPL domains available in a platform vary across product segments. Platforms targeting the client
segment support the following RAPL domain hierarchy:
• Package
• Two power planes: PP0 and PP1 (PP1 may reflect to uncore devices)

Platforms targeting the server segment support the following RAPL domain hierarchy:
• Package
• Power plane: PP0
• DRAM

Each level of the RAPL hierarchy provides a respective set of RAPL interface MSRs. Table 15-12 lists the RAPL MSR
interfaces available for each RAPL domain. The power limit MSR of each RAPL domain is located at offset 0 relative
to an MSR base address which is non-architectural; see Chapter 2, “Model-Specific Registers (MSRs)‚” in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 4. The energy status MSR of each domain is
located at offset 1 relative to the MSR base address of respective domain.

Figure 15-35. MSR_RAPL_POWER_UNIT Register

63 0

Reserved

13 347812151920

Time units
Energy status units
Power units

16
Vol. 3B 15-49

POWER AND THERMAL MANAGEMENT
The presence of the optional MSR interfaces (the three right-most columns of Table 15-12) may be model-specific.
See Chapter 2, “Model-Specific Registers (MSRs)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 4, for details.

15.10.3 Package RAPL Domain
The MSR interfaces defined for the package RAPL domain are:
• MSR_PKG_POWER_LIMIT allows software to set power limits for the package and measurement attributes

associated with each limit,
• MSR_PKG_ENERGY_STATUS reports measured actual energy usage,
• MSR_PKG_POWER_INFO reports the package power range information for RAPL usage.

MSR_PKG_PERF_STATUS can report the performance impact of power limiting, but its availability may be model-
specific.

MSR_PKG_POWER_LIMIT allows a software agent to define power limitation for the package domain. Power limita-
tion is defined in terms of average power usage (Watts) over a time window specified in MSR_PKG_POWER_LIMIT.
Two power limits can be specified, corresponding to time windows of different sizes. Each power limit provides inde-
pendent clamping control that would permit the processor cores to go below OS-requested state to meet the power
limits. A lock mechanism allow the software agent to enforce power limit settings. Once the lock bit is set, the
power limit settings are static and un-modifiable until next RESET.

The bit fields of MSR_PKG_POWER_LIMIT (Figure 15-36) are:
• Package Power Limit #1(bits 14:0): Sets the average power usage limit of the package domain corre-

sponding to time window # 1. The unit of this field is specified by the “Power Units” field of MSR_RAPL_POW-
ER_UNIT.

Table 15-12. RAPL MSR Interfaces and RAPL Domains

 Domain Power Limit
(Offset 0)

 Energy Status (Offset
1)

 Policy
(Offset 2)

 Perf Status
(Offset 3)

 Power Info
(Offset 4)

PKG MSR_PKG_POWER_
LIMIT

MSR_PKG_ENERGY_STA
TUS

RESERVED MSR_PKG_PERF_STATUS MSR_PKG_POWER_I
NFO

DRAM MSR_DRAM_POWER
_LIMIT

MSR_DRAM_ENERGY_S
TATUS

RESERVED MSR_DRAM_PERF_STATUS MSR_DRAM_POWER
_INFO

PP0 MSR_PP0_POWER_
LIMIT

MSR_PP0_ENERGY_STA
TUS

MSR_PP0_POLICY MSR_PP0_PERF_STATUS RESERVED

PP1 MSR_PP1_POWER_
LIMIT

MSR_PP1_ENERGY_STA
TUS

MSR_PP1_POLICY RESERVED RESERVED

Figure 15-36. MSR_PKG_POWER_LIMIT Register

63

Enable limit #1
Pkg clamping limit #1
Enable limit #2
Pkg clamping limit #2

31 24 23 15 0

Pkg Power Limit #1

48 47 3262 56 55 49 46 14
L
O
C Pkg Power Limit #2

1617

K

Time window
Power Limit #2

Time window
Power Limit #1
15-50 Vol. 3B

POWER AND THERMAL MANAGEMENT
• Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.
• Package Clamping Limitation #1 (bit 16): Allow going below OS-requested P/T state setting during time

window specified by bits 23:17.
• Time Window for Power Limit #1 (bits 23:17): Indicates the time window for power limit #1

Time limit = 2^Y * (1.0 + Z/4.0) * Time_Unit
Here “Y” is the unsigned integer value represented. by bits 21:17, “Z” is an unsigned integer represented by
bits 23:22. “Time_Unit” is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

• Package Power Limit #2(bits 46:32): Sets the average power usage limit of the package domain corre-
sponding to time window # 2. The unit of this field is specified by the “Power Units” field of MSR_RAPL_POW-
ER_UNIT.

• Enable Power Limit #2(bit 47): 0 = disabled; 1 = enabled.
• Package Clamping Limitation #2 (bit 48): Allow going below OS-requested P/T state setting during time

window specified by bits 23:17.
• Time Window for Power Limit #2 (bits 55:49): Indicates the time window for power limit #2

Time limit = 2^Y * (1.0 + Z/4.0) * Time_Unit
Here “Y” is the unsigned integer value represented. by bits 53:49, “Z” is an unsigned integer represented by
bits 55:54. “Time_Unit” is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT. This field may have
a hard-coded value in hardware and ignores values written by software.

• Lock (bit 63): If set, all write attempts to this MSR are ignored until next RESET.

MSR_PKG_ENERGY_STATUS is a read-only MSR. It reports the actual energy use for the package domain. This
MSR is updated every ~1msec. It has a wraparound time of around 60 secs when power consumption is high, and
may be longer otherwise.

• Total Energy Consumed (bits 31:0): The unsigned integer value represents the total amount of energy
consumed since that last time this register is cleared. The unit of this field is specified by the “Energy Status
Units” field of MSR_RAPL_POWER_UNIT.

MSR_PKG_POWER_INFO is a read-only MSR. It reports the package power range information for RAPL usage. This
MSR provides maximum/minimum values (derived from electrical specification), thermal specification power of the
package domain. It also provides the largest possible time window for software to program the RAPL interface.

• Thermal Spec Power (bits 14:0): The unsigned integer value is the equivalent of thermal specification power
of the package domain. The unit of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

Figure 15-37. MSR_PKG_ENERGY_STATUS MSR

Figure 15-38. MSR_PKG_POWER_INFO Register

63 0

Reserved

Total Energy Consumed

3132

Reserved

63 31 30 15 0

Thermal Spec Power

48 47 3254 53 46 14

Maximum Power

16

Maximum Time window Minimum Power
Vol. 3B 15-51

POWER AND THERMAL MANAGEMENT
• Minimum Power (bits 30:16): The unsigned integer value is the equivalent of minimum power derived from
electrical spec of the package domain. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

• Maximum Power (bits 46:32): The unsigned integer value is the equivalent of maximum power derived from
the electrical spec of the package domain. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

• Maximum Time Window (bits 53:48): The unsigned integer value is the equivalent of largest acceptable
value to program the time window of MSR_PKG_POWER_LIMIT. The unit of this field is specified by the “Time
Units” field of MSR_RAPL_POWER_UNIT.

MSR_PKG_PERF_STATUS is a read-only MSR. It reports the total time for which the package was throttled due to
the RAPL power limits. Throttling in this context is defined as going below the OS-requested P-state or T-state. It
has a wrap-around time of many hours. The availability of this MSR is platform specific; see Chapter 2, “Model-
Specific Registers (MSRs)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

• Accumulated Package Throttled Time (bits 31:0): The unsigned integer value represents the cumulative
time (since the last time this register is cleared) that the package has throttled. The unit of this field is specified
by the “Time Units” field of MSR_RAPL_POWER_UNIT.

15.10.4 PP0/PP1 RAPL Domains
The MSR interfaces defined for the PP0 and PP1 domains are identical in layout. Generally, PP0 refers to the
processor cores. The availability of PP1 RAPL domain interface is platform-specific. For a client platform, the PP1
domain refers to the power plane of a specific device in the uncore. For server platforms, the PP1 domain is not
supported, but its PP0 domain supports the MSR_PP0_PERF_STATUS interface.
• MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT allow software to set power limits for the respective power

plane domain.
• MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS report actual energy usage on a power plane.
• MSR_PP0_POLICY/MSR_PP1_POLICY allow software to adjust balance for respective power plane.

MSR_PP0_PERF_STATUS can report the performance impact of power limiting, but it is not available in client plat-
forms.

Figure 15-39. MSR_PKG_PERF_STATUS MSR

Figure 15-40. MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT Register

63 0

Reserved

Accumulated pkg throttled time

3132

Reserved

63

Enable limit
Clamping limit

30 24 23 15 0

Power Limit

3132 14
L
O
C

1617

K

Time window
Power Limit
15-52 Vol. 3B

POWER AND THERMAL MANAGEMENT
MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT allow a software agent to define power limitation for the
respective power plane domain. A lock mechanism in each power plane domain allows the software agent to
enforce power limit settings independently. Once a lock bit is set, the power limit settings in that power plane are
static and un-modifiable until next RESET.

The bit fields of MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT (Figure 15-40) are:
• Power Limit (bits 14:0): Sets the average power usage limit of the respective power plane domain. The unit

of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.
• Enable Power Limit (bit 15): 0 = disabled; 1 = enabled.
• Clamping Limitation (bit 16): Allow going below OS-requested P/T state setting during time window specified

by bits 23:17.
• Time Window for Power Limit (bits 23:17): Indicates the length of time window over which the power limit

#1 will be used by the processor. The numeric value encoded by bits 23:17 is represented by the product of
2^Y *F; where F is a single-digit decimal floating-point value between 1.0 and 1.3 with the fraction digit
represented by bits 23:22, Y is an unsigned integer represented by bits 21:17. The unit of this field is specified
by the “Time Units” field of MSR_RAPL_POWER_UNIT.

• Lock (bit 31): If set, all write attempts to the MSR and corresponding policy
MSR_PP0_POLICY/MSR_PP1_POLICY are ignored until next RESET.

MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS are read-only MSRs. They report the actual energy use
for the respective power plane domains. These MSRs are updated every ~1msec.

• Total Energy Consumed (bits 31:0): The unsigned integer value represents the total amount of energy
consumed since the last time this register was cleared. The unit of this field is specified by the “Energy Status
Units” field of MSR_RAPL_POWER_UNIT.

MSR_PP0_POLICY/MSR_PP1_POLICY provide balance power policy control for each power plane by providing
inputs to the power budgeting management algorithm. On platforms that support PP0 (IA cores) and PP1 (uncore
graphic device), the default values give priority to the non-IA power plane. These MSRs enable the PCU to balance
power consumption between the IA cores and uncore graphic device.

• Priority Level (bits 4:0): Priority level input to the PCU for respective power plane. PP0 covers the IA
processor cores, PP1 covers the uncore graphic device. The value 31 is considered highest priority.

MSR_PP0_PERF_STATUS is a read-only MSR. It reports the total time for which the PP0 domain was throttled due
to the power limits. This MSR is supported only in server platform. Throttling in this context is defined as going
below the OS-requested P-state or T-state.

Figure 15-41. MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS MSR

Figure 15-42. MSR_PP0_POLICY/MSR_PP1_POLICY Register

63 0

Reserved

Total Energy Consumed

3132

Reserved

63 4 0

Priority Level

5

Vol. 3B 15-53

POWER AND THERMAL MANAGEMENT
• Accumulated PP0 Throttled Time (bits 31:0): The unsigned integer value represents the cumulative time
(since the last time this register is cleared) that the PP0 domain has throttled. The unit of this field is specified
by the “Time Units” field of MSR_RAPL_POWER_UNIT.

15.10.5 DRAM RAPL Domain
The MSR interfaces defined for the DRAM domains are supported only in the server platform. The MSR interfaces
are:
• MSR_DRAM_POWER_LIMIT allows software to set power limits for the DRAM domain and measurement

attributes associated with each limit.
• MSR_DRAM_ENERGY_STATUS reports measured actual energy usage.
• MSR_DRAM_POWER_INFO reports the DRAM domain power range information for RAPL usage.
• MSR_DRAM_PERF_STATUS can report the performance impact of power limiting.

MSR_DRAM_POWER_LIMIT allows a software agent to define power limitation for the DRAM domain. Power limita-
tion is defined in terms of average power usage (Watts) over a time window specified in MSR_DRAM_POW-
ER_LIMIT. A power limit can be specified along with a time window. A lock mechanism allow the software agent to
enforce power limit settings. Once the lock bit is set, the power limit settings are static and un-modifiable until next
RESET.

The bit fields of MSR_DRAM_POWER_LIMIT (Figure 15-44) are:
• DRAM Power Limit #1(bits 14:0): Sets the average power usage limit of the DRAM domain corresponding to

time window # 1. The unit of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.
• Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.
• Time Window for Power Limit (bits 23:17): Indicates the length of time window over which the power limit

will be used by the processor. The numeric value encoded by bits 23:17 is represented by the product of 2^Y
*F; where F is a single-digit decimal floating-point value between 1.0 and 1.3 with the fraction digit represented
by bits 23:22, Y is an unsigned integer represented by bits 21:17. The unit of this field is specified by the “Time
Units” field of MSR_RAPL_POWER_UNIT.

• Lock (bit 31): If set, all write attempts to this MSR are ignored until next RESET.

Figure 15-43. MSR_PP0_PERF_STATUS MSR

Figure 15-44. MSR_DRAM_POWER_LIMIT Register

63 0

Reserved

Accumulated PP0 throttled time

3132

Reserved

63

Enable limit
Clamping limit

30 24 23 15 0

Power Limit

3132 14
L
O
C

1617

K

Time window
Power Limit
15-54 Vol. 3B

POWER AND THERMAL MANAGEMENT
MSR_DRAM_ENERGY_STATUS is a read-only MSR. It reports the actual energy use for the DRAM domain. This MSR
is updated every ~1msec.

• Total Energy Consumed (bits 31:0): The unsigned integer value represents the total amount of energy
consumed since that last time this register is cleared. The unit of this field is specified by the “Energy Status
Units” field of MSR_RAPL_POWER_UNIT.

MSR_DRAM_POWER_INFO is a read-only MSR. It reports the DRAM power range information for RAPL usage. This
MSR provides maximum/minimum values (derived from electrical specification), thermal specification power of the
DRAM domain. It also provides the largest possible time window for software to program the RAPL interface.

• Thermal Spec Power (bits 14:0): The unsigned integer value is the equivalent of thermal specification power
of the DRAM domain. The unit of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Minimum Power (bits 30:16): The unsigned integer value is the equivalent of minimum power derived from
electrical spec of the DRAM domain. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

• Maximum Power (bits 46:32): The unsigned integer value is the equivalent of maximum power derived from
the electrical spec of the DRAM domain. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

• Maximum Time Window (bits 53:48): The unsigned integer value is the equivalent of largest acceptable
value to program the time window of MSR_DRAM_POWER_LIMIT. The unit of this field is specified by the “Time
Units” field of MSR_RAPL_POWER_UNIT.

MSR_DRAM_PERF_STATUS is a read-only MSR. It reports the total time for which the package was throttled due to
the RAPL power limits. Throttling in this context is defined as going below the OS-requested P-state or T-state. It
has a wrap-around time of many hours. The availability of this MSR is platform specific; see Chapter 2, “Model-
Specific Registers (MSRs)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

Figure 15-45. MSR_DRAM_ENERGY_STATUS MSR

Figure 15-46. MSR_DRAM_POWER_INFO Register

Figure 15-47. MSR_DRAM_PERF_STATUS MSR

63 0

Reserved

Total Energy Consumed

3132

Reserved

63 31 30 15 0

Thermal Spec Power

48 47 3254 53 46 14

Maximum Power

16

Maximum Time window Minimum Power

63 0

Reserved

Accumulated DRAM throttled time

3132

Reserved
Vol. 3B 15-55

POWER AND THERMAL MANAGEMENT
• Accumulated Package Throttled Time (bits 31:0): The unsigned integer value represents the cumulative
time (since the last time this register is cleared) that the DRAM domain has throttled. The unit of this field is
specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.
15-56 Vol. 3B

CHAPTER 16
MACHINE-CHECK ARCHITECTURE

This chapter describes the machine-check architecture and machine-check exception mechanism found in the
Pentium 4, Intel Xeon, Intel Atom, and P6 family processors. See Chapter 6, “Interrupt 18—Machine-Check Excep-
tion (#MC),” for more information on machine-check exceptions. A brief description of the Pentium processor’s
machine check capability is also given.
Additionally, a signaling mechanism for software to respond to hardware corrected machine check error is covered.

16.1 MACHINE-CHECK ARCHITECTURE
The Pentium 4, Intel Xeon, Intel Atom, and P6 family processors implement a machine-check architecture that
provides a mechanism for detecting and reporting hardware (machine) errors, such as: system bus errors, ECC
errors, parity errors, cache errors, and TLB errors. It consists of a set of model-specific registers (MSRs) that are
used to set up machine checking and additional banks of MSRs used for recording errors that are detected.
The processor signals the detection of an uncorrected machine-check error by generating a machine-check excep-
tion (#MC), which is an abort class exception. The implementation of the machine-check architecture does not
ordinarily permit the processor to be restarted reliably after generating a machine-check exception. However, the
machine-check-exception handler can collect information about the machine-check error from the machine-check
MSRs.
Starting with 45 nm Intel 64 processor on which CPUID reports DisplayFamily_DisplayModel as 06H_1AH; see the
CPUID instruction in Chapter 3, “Instruction Set Reference, A-L,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A. The processor can report information on corrected machine-check errors and
deliver a programmable interrupt for software to respond to MC errors, referred to as corrected machine-check
error interrupt (CMCI). See Section 16.5 for details.
Intel 64 processors supporting machine-check architecture and CMCI may also support an additional enhance-
ment, namely, support for software recovery from certain uncorrected recoverable machine check errors. See
Section 16.6 for details.

16.2 COMPATIBILITY WITH PENTIUM PROCESSOR
The Pentium 4, Intel Xeon, Intel Atom, and P6 family processors support and extend the machine-check exception
mechanism introduced in the Pentium processor. The Pentium processor reports the following machine-check
errors:
• Data parity errors during read cycles.
• Unsuccessful completion of a bus cycle.
The above errors are reported using the P5_MC_TYPE and P5_MC_ADDR MSRs (implementation specific for the
Pentium processor). Use the RDMSR instruction to read these MSRs. See Chapter 2, “Model-Specific Registers
(MSRs)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, for the addresses.
The machine-check error reporting mechanism that Pentium processors use is similar to that used in Pentium 4,
Intel Xeon, Intel Atom, and P6 family processors. When an error is detected, it is recorded in P5_MC_TYPE and
P5_MC_ADDR; the processor then generates a machine-check exception (#MC).
See Section 16.3.3, “Mapping of the Pentium Processor Machine-Check Errors to the Machine-Check Architecture,”
and Section 16.10.2, “Pentium Processor Machine-Check Exception Handling,” for information on compatibility
between machine-check code written to run on the Pentium processors and code written to run on P6 family
processors.
Vol. 3B 16-1

MACHINE-CHECK ARCHITECTURE
16.3 MACHINE-CHECK MSRS
Machine check MSRs in the Pentium 4, Intel Atom, Intel Xeon, and P6 family processors consist of a set of global
control and status registers and several error-reporting register banks. See Figure 16-1.

Each error-reporting bank is associated with a specific hardware unit (or group of hardware units) in the processor.
Use RDMSR and WRMSR to read and to write these registers.

16.3.1 Machine-Check Global Control MSRs
The machine-check global control MSRs include the IA32_MCG_CAP, IA32_MCG_STATUS, and optionally IA32_MC-
G_CTL and IA32_MCG_EXT_CTL. See Chapter 2, “Model-Specific Registers (MSRs),” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 4, for the addresses of these registers.

16.3.1.1 IA32_MCG_CAP MSR
The IA32_MCG_CAP MSR is a read-only register that provides information about the machine-check architecture of
the processor. Figure 16-2 shows the layout of the register.

Figure 16-1. Machine-Check MSRs

0

63 0

63
IA32_MCG_CAP MSR

IA32_MCG_STATUS MSR

Error-Reporting Bank Registers

0

63 0

63
IA32_MCi_CTL MSR

IA32_MCi_STATUS MSR

0

63 0

63
IA32_MCi_ADDR MSR

IA32_MCi_MISC MSR

Global Control MSRs
(One Set for Each Hardware Unit)

063
IA32_MCG_CTL MSR

063
IA32_MCi_CTL2 MSR

063
IA32_MCG_EXT_CTL MSR
16-2 Vol. 3B

MACHINE-CHECK ARCHITECTURE
Where:
• Count field, bits 7:0 — Indicates the number of hardware unit error-reporting banks available in a particular

processor implementation.
• MCG_CTL_P (control MSR present) flag, bit 8 — Indicates that the processor implements the IA32_MC-

G_CTL MSR when set; this register is absent when clear.
• MCG_EXT_P (extended MSRs present) flag, bit 9 — Indicates that the processor implements the extended

machine-check state registers found starting at MSR address 180H; these registers are absent when clear.
• MCG_CMCI_P (Corrected MC error counting/signaling extension present) flag, bit 10 — Indicates

(when set) that extended state and associated MSRs necessary to support the reporting of an interrupt on a
corrected MC error event and/or count threshold of corrected MC errors, is present. When this bit is set, it does
not imply this feature is supported across all banks. Software should check the availability of the necessary
logic on a bank by bank basis when using this signaling capability (i.e., bit 30 settable in individual IA32_M-
Ci_CTL2 register).

• MCG_TES_P (threshold-based error status present) flag, bit 11 — Indicates (when set) that bits 56:53
of the IA32_MCi_STATUS MSR are part of the architectural space. Bits 56:55 are reserved, and bits 54:53 are
used to report threshold-based error status. Note that when MCG_TES_P is not set, bits 56:53 of the IA32_M-
Ci_STATUS MSR are model-specific.

• MCG_EXT_CNT, bits 23:16 — Indicates the number of extended machine-check state registers present. This
field is meaningful only when the MCG_EXT_P flag is set.

• MCG_SER_P (software error recovery support present) flag, bit 24 — Indicates (when set) that the
processor supports software error recovery (see Section 16.6), and IA32_MCi_STATUS MSR bits 56:55 are
used to report the signaling of uncorrected recoverable errors and whether software must take recovery
actions for uncorrected errors. Note that when MCG_TES_P is not set, bits 56:53 of the IA32_MCi_STATUS MSR
are model-specific. If MCG_TES_P is set but MCG_SER_P is not set, bits 56:55 are reserved.

• MCG_EMC_P (Enhanced Machine Check Capability) flag, bit 25 — Indicates (when set) that the
processor supports enhanced machine check capabilities for firmware first signaling.

• MCG_ELOG_P (extended error logging) flag, bit 26 — Indicates (when set) that the processor allows
platform firmware to be invoked when an error is detected so that it may provide additional platform specific
information in an ACPI format “Generic Error Data Entry” that augments the data included in machine check
bank registers.
For additional information about extended error logging interface, see
https://cdrdv2.intel.com/v1/dl/getContent/671064.

• MCG_LMCE_P (local machine check exception) flag, bit 27 — Indicates (when set) that the following
interfaces are present:

Figure 16-2. IA32_MCG_CAP Register

MCG_TES_P[11]
MCG_EXT_CNT[23:16]

63 9

Reserved

101112

MCG_CMCI_P[10]

08 7

Count

MCG_EXT_P[9]

15162324

MCG_CTL_P[8]

MCG_SER_P[24]

25

MCG_ELOG_P[26]

27 26

MCG_LMCE_P[27]

MCG_EMC_P[25]
Vol. 3B 16-3

https://cdrdv2.intel.com/v1/dl/getContent/671064
https://cdrdv2.intel.com/v1/dl/getContent/671064

MACHINE-CHECK ARCHITECTURE
— an extended state LMCE_S (located in bit 3 of IA32_MCG_STATUS), and

— the IA32_MCG_EXT_CTL MSR, necessary to support Local Machine Check Exception (LMCE).
A non-zero MCG_LMCE_P indicates that, when LMCE is enabled as described in Section 16.3.1.5, some machine
check errors may be delivered to only a single logical processor.

The effect of writing to the IA32_MCG_CAP MSR is undefined.

16.3.1.2 IA32_MCG_STATUS MSR
The IA32_MCG_STATUS MSR describes the current state of the processor after a machine-check exception has
occurred (see Figure 16-3).

Where:
• RIPV (restart IP valid) flag, bit 0 — Indicates (when set) that program execution can be restarted reliably

at the instruction pointed to by the instruction pointer pushed on the stack when the machine-check exception
is generated. When clear, the program cannot be reliably restarted at the pushed instruction pointer.

• EIPV (error IP valid) flag, bit 1 — Indicates (when set) that the instruction pointed to by the instruction
pointer pushed onto the stack when the machine-check exception is generated is directly associated with the
error. When this flag is cleared, the instruction pointed to may not be associated with the error.

• MCIP (machine check in progress) flag, bit 2 — Indicates (when set) that a machine-check exception was
generated. Software can set or clear this flag. The occurrence of a second Machine-Check Event while MCIP is
set will cause the processor to enter a shutdown state. For information on processor behavior in the shutdown
state, please refer to the description in Chapter 6, “Interrupt and Exception Handling”: “Interrupt 8—Double
Fault Exception (#DF)”.

• LMCE_S (local machine check exception signaled), bit 3 — Indicates (when set) that a local machine-
check exception was generated. This indicates that the current machine-check event was delivered to only this
logical processor.

Bits 63:04 in the IA32_MCG_STATUS MSR are reserved. An attempt to write to the IA32_MCG_STATUS MSR’s
reserved bits with any value other than 0 results in #GP.

16.3.1.3 IA32_MCG_CTL MSR
The IA32_MCG_CTL MSR is present if the capability flag MCG_CTL_P is set in the IA32_MCG_CAP MSR.
IA32_MCG_CTL controls the reporting of machine-check exceptions. If present, writing 1s to this register enables
machine-check features and writing all 0s disables machine-check features. All other values are undefined and/or
implementation specific.

16.3.1.4 IA32_MCG_EXT_CTL MSR
The IA32_MCG_EXT_CTL MSR is present if the capability flag MCG_LMCE_P is set in the IA32_MCG_CAP MSR.

Figure 16-3. IA32_MCG_STATUS Register

EIPV—Error IP valid flag
MCIP—Machine check in progress flag

63 0

Reserved

123
E
I
P
V

M
C
I
P

R
I
P
V

RIPV—Restart IP valid flag

LMCE_S—Local machine check exception signaled
16-4 Vol. 3B

MACHINE-CHECK ARCHITECTURE
IA32_MCG_EXT_CTL.LMCE_EN (bit 0) allows the processor to signal some MCEs to only a single logical processor
in the system.
If MCG_LMCE_P is not set in IA32_MCG_CAP, or platform software has not enabled LMCE by setting IA32_FEA-
TURE_CONTROL.LMCE_ENABLED (bit 20), any attempt to write or read IA32_MCG_EXT_CTL will result in #GP.
The IA32_MCG_EXT_CTL MSR is cleared on RESET.
Figure 16-4 shows the layout of the IA32_MCG_EXT_CTL register

where
• LMCE_EN (local machine check exception enable) flag, bit 0 - System software sets this to allow

hardware to signal some MCEs to only a single logical processor. System software can set LMCE_EN only if the
platform software has configured IA32_FEATURE_CONTROL as described in Section 16.3.1.5.

16.3.1.5 Enabling Local Machine Check
The intended usage of LMCE requires proper configuration by both platform software and system software. Plat-
form software can turn LMCE on by setting bit 20 (LMCE_ENABLED) in IA32_FEATURE_CONTROL MSR (MSR
address 3AH).
System software must ensure that both IA32_FEATURE_CONTROL.Lock (bit 0)and IA32_FEATURE_CON-
TROL.LMCE_ENABLED (bit 20) are set before attempting to set IA32_MCG_EXT_CTL.LMCE_EN (bit 0). When
system software has enabled LMCE, then hardware will determine if a particular error can be delivered only to a
single logical processor. Software should make no assumptions about the type of error that hardware can choose
to deliver as LMCE. The severity and override rules stay the same as described in Table 16-8 to determine the
recovery actions.

16.3.2 Error-Reporting Register Banks
Each error-reporting register bank can contain the IA32_MCi_CTL, IA32_MCi_STATUS, IA32_MCi_ADDR, and
IA32_MCi_MISC MSRs. The number of reporting banks is indicated by bits [7:0] of IA32_MCG_CAP MSR (address
0179H). The first error-reporting register (IA32_MC0_CTL) always starts at address 400H.
See Chapter 2, “Model-Specific Registers (MSRs),” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 4, for addresses of the error-reporting registers in the Pentium 4, Intel Atom, and Intel Xeon
processors; and for addresses of the error-reporting registers P6 family processors.

16.3.2.1 IA32_MCi_CTL MSRs
The IA32_MCi_CTL MSR controls signaling of #MC for errors produced by a particular hardware unit (or group of
hardware units). Each of the 64 flags (EEj) represents a potential error. Setting an EEj flag enables signaling #MC
of the associated error and clearing it disables signaling of the error. Error logging happens regardless of the setting
of these bits. The processor drops writes to bits that are not implemented. Figure 16-5 shows the bit fields of
IA32_MCi_CTL.

Figure 16-4. IA32_MCG_EXT_CTL Register

63 0

Reserved

1

LMCE_EN - system software control to enable/disable LMCE
Vol. 3B 16-5

MACHINE-CHECK ARCHITECTURE
NOTE
For P6 family processors, processors based on Intel Core microarchitecture (excluding those on
which CPUID reports DisplayFamily_DisplayModel as 06H_1AH and onward): the operating system
or executive software must not modify the contents of the IA32_MC0_CTL MSR. This MSR is
internally aliased to the EBL_CR_POWERON MSR and controls platform-specific error handling
features. System specific firmware (the BIOS) is responsible for the appropriate initialization of the
IA32_MC0_CTL MSR. P6 family processors only allow the writing of all 1s or all 0s to the IA32_M-
Ci_CTL MSR.

16.3.2.2 IA32_MCi_STATUS MSRS
Each IA32_MCi_STATUS MSR contains information related to a machine-check error if its VAL (valid) flag is set (see
Figure 16-6). Software is responsible for clearing IA32_MCi_STATUS MSRs by explicitly writing 0s to them; writing
1s to them causes a general-protection exception.

NOTE
Figure 16-6 depicts the IA32_MCi_STATUS MSR when IA32_MCG_CAP[24] = 1, IA32_MC-
G_CAP[11] = 1 and IA32_MCG_CAP[10] = 1. When IA32_MCG_CAP[24] = 0 and IA32_MC-
G_CAP[11] = 1, bits 56:55 is reserved and bits 54:53 for threshold-based error reporting. When
IA32_MCG_CAP[11] = 0, bits 56:53 are part of the “Other Information” field. The use of bits 54:53
for threshold-based error reporting began with Intel Core Duo processors, and is currently used for
cache memory. See Section 16.4, “Enhanced Cache Error reporting,” for more information. When
IA32_MCG_CAP[10] = 0, bits 52:38 are part of the “Other Information” field. The use of bits 52:38
for corrected MC error count is introduced with Intel 64 processor on which CPUID reports Display-
Family_DisplayModel as 06H_1AH.

Where:
• MCA (machine-check architecture) error code field, bits 15:0 — Specifies the machine-check archi-

tecture-defined error code for the machine-check error condition detected. The machine-check architecture-
defined error codes are guaranteed to be the same for all IA-32 processors that implement the machine-check
architecture. See Section 16.9, “Interpreting the MCA Error Codes,” and Chapter 17, “Interpreting Machine
Check Error Codes‚” for information on machine-check error codes.

• Model-specific error code field, bits 31:16 — Specifies the model-specific error code that uniquely
identifies the machine-check error condition detected. The model-specific error codes may differ among IA-32
processors for the same machine-check error condition. See Chapter 17, “Interpreting Machine Check Error
Codes‚” for information on model-specific error codes.

• Reserved, Error Status, and Other Information fields, bits 56:32 —

• If IA32_MCG_CAP.MCG_EMC_P[bit 25] is 0, bits 37:32 contain “Other Information” that is implemen-
tation-specific and is not part of the machine-check architecture.

• If IA32_MCG_CAP.MCG_EMC_P is 1, “Other Information” is in bits 36:32. If bit 37 is 0, system firmware
has not changed the contents of IA32_MCi_STATUS. If bit 37 is 1, system firmware may have edited the
contents of IA32_MCi_STATUS.

• If IA32_MCG_CAP.MCG_CMCI_P[bit 10] is 0, bits 52:38 also contain “Other Information” (in the same
sense as bits 37:32).

Figure 16-5. IA32_MCi_CTL Register

EEj—Error reporting enable flag

63 0123
E
E
0
1

E
E
0
2

E
E
0
0

E
E
6
1

E
E
6
2

E
E
6
3

62 61

.
 (where j is 00 through 63)
16-6 Vol. 3B

MACHINE-CHECK ARCHITECTURE
• If IA32_MCG_CAP[10] is 1, bits 52:38 are architectural (not model-specific). In this case, bits 52:38
reports the value of a 15 bit counter that increments each time a corrected error is observed by the MCA
recording bank. This count value will continue to increment until cleared by software. The most
significant bit, 52, is a sticky count overflow bit.

• If IA32_MCG_CAP[11] is 0, bits 56:53 also contain “Other Information” (in the same sense).

• If IA32_MCG_CAP[11] is 1, bits 56:53 are architectural (not model-specific). In this case, bits 56:53
have the following functionality:

• If IA32_MCG_CAP[24] is 0, bits 56:55 are reserved.

• If IA32_MCG_CAP[24] is 1, bits 56:55 are defined as follows:

• S (Signaling) flag, bit 56 - Signals the reporting of UCR errors in this MC bank. See Section 16.6.2
for additional details.

• AR (Action Required) flag, bit 55 - Indicates (when set) that MCA error code specific recovery
action must be performed by system software at the time this error was signaled. See Section
16.6.2 for additional details.

• If the UC bit (Figure 16-6) is 1, bits 54:53 are undefined.

• If the UC bit (Figure 16-6) is 0, bits 54:53 indicate the status of the hardware structure that
reported the threshold-based error. See Table 16-1.

Figure 16-6. IA32_MCi_STATUS Register

Table 16-1. Bits 54:53 in IA32_MCi_STATUS MSRs when IA32_MCG_CAP[11] = 1 and UC = 0
Bits 54:53 Meaning

00 No tracking - No hardware status tracking is provided for the structure reporting this event.

01 Green - Status tracking is provided for the structure posting the event; the current status is green (below threshold).
For more information, see Section 16.4, “Enhanced Cache Error reporting.”

10 Yellow - Status tracking is provided for the structure posting the event; the current status is yellow (above threshold).
For more information, see Section 16.4, “Enhanced Cache Error reporting.”

11 Reserved

63

Threshold-based error status (54:53)**
AR — Recovery action required for UCR error (55)***
S — Signaling an uncorrected recoverable (UCR) error (56)***
PCC — Processor context corrupted (57)

37 32 31 16 0
P
C

AE

ADDRV — MCi_ADDR register valid (58)
MISCV — MCi_MISC register valid (59)
EN — Error reporting enabled (60)
UC — Uncorrected error (61)
OVER — Error overflow (62)
VAL — MCi_STATUS register valid (63)

C
MCA Error CodeU S

R
 Other MSCOD Model

54 53 3862 61 60 59 58 57 56 55 52 15
V
A
L

O
V
E
R

C N Specific Error Code Info
Corrected Error
Count

** When IA32_MCG_CAP[11] (MCG_TES_P) is not set, these bits are model-specific
 (part of “Other Information”).
*** When IA32_MCG_CAP[11] or IA32_MCG_CAP[24] are not set, these bits are reserved, or
 model-specific (part of “Other Information”).

36

* When IA32_MCG_CAP[25] (MCG_EMC_P) is set, bit 37 is not part of “Other Information”.

Firmware updated error status indicator (37)*
Vol. 3B 16-7

MACHINE-CHECK ARCHITECTURE
• PCC (processor context corrupt) flag, bit 57 — Indicates (when set) that the state of the processor might
have been corrupted by the error condition detected and that reliable restarting of the processor may not be
possible. When clear, this flag indicates that the error did not affect the processor’s state, and software may be
able to restart. When system software supports recovery, consult Section 16.10.4, “Machine-Check Software
Handler Guidelines for Error Recovery,” for additional rules that apply.

• ADDRV (IA32_MCi_ADDR register valid) flag, bit 58 — Indicates (when set) that the IA32_MCi_ADDR
register contains the address where the error occurred (see Section 16.3.2.3, “IA32_MCi_ADDR MSRs”). When
clear, this flag indicates that the IA32_MCi_ADDR register is either not implemented or does not contain the
address where the error occurred. Do not read these registers if they are not implemented in the processor.

• MISCV (IA32_MCi_MISC register valid) flag, bit 59 — Indicates (when set) that the IA32_MCi_MISC
register contains additional information regarding the error. When clear, this flag indicates that the IA32_M-
Ci_MISC register is either not implemented or does not contain additional information regarding the error. Do
not read these registers if they are not implemented in the processor.

• EN (error enabled) flag, bit 60 — Indicates (when set) that the error was enabled by the associated EEj bit
of the IA32_MCi_CTL register.

• UC (error uncorrected) flag, bit 61 — Indicates (when set) that the processor did not or was not able to
correct the error condition. When clear, this flag indicates that the processor was able to correct the error
condition.

• OVER (machine check overflow) flag, bit 62 — Indicates (when set) that a machine-check error occurred
while the results of a previous error were still in the error-reporting register bank (that is, the VAL bit was
already set in the IA32_MCi_STATUS register). The processor sets the OVER flag and software is responsible for
clearing it. In general, enabled errors are written over disabled errors, and uncorrected errors are written over
corrected errors. Uncorrected errors are not written over previous valid uncorrected errors. When
MCG_CMCI_P is set, corrected errors may not set the OVER flag. Software can rely on corrected error count in
IA32_MCi_Status[52:38] to determine if any additional corrected errors may have occurred. For more infor-
mation, see Section 16.3.2.2.1, “Overwrite Rules for Machine Check Overflow.”

• VAL (IA32_MCi_STATUS register valid) flag, bit 63 — Indicates (when set) that the information within the
IA32_MCi_STATUS register is valid. When this flag is set, the processor follows the rules given for the OVER flag
in the IA32_MCi_STATUS register when overwriting previously valid entries. The processor sets the VAL flag
and software is responsible for clearing it.

16.3.2.2.1 Overwrite Rules for Machine Check Overflow

Table 16-2 shows the overwrite rules for how to treat a second event if the MC bank already contains a valid log
from an earlier event – that is, what to do if the valid bit for an MC bank already is set to 1. When more than one
structure posts events in a given bank, these rules specify whether a new event will overwrite a previous posting or
not. These rules define a priority for uncorrected (highest priority), yellow, and green/unmonitored (lowest
priority) status.
In Table 16-2, the values in the two left-most columns are IA32_MCi_STATUS[54:53].

If a second event overwrites a previously posted event, the information (as guarded by individual valid bits) in the
MCi bank is entirely from the second event. Similarly, if a first event is retained, all of the information previously
posted for that event is retained. In general, when the logged error or the recent error is a corrected error, the
OVER bit (MCi_Status[62]) may be set to indicate an overflow. When MCG_CMCI_P is set in IA32_MCG_CAP,
system software should consult IA32_MCi_STATUS[52:38] to determine if additional corrected errors may have

Table 16-2. Overwrite Rules for Enabled Errors
First Event Second Event UC bit Color MCA Info

00/green 00/green 0 00/green either

00/green yellow 0 yellow second error

yellow 00/green 0 yellow first error

yellow yellow 0 yellow either

00/green/yellow UC 1 undefined second

UC 00/green/yellow 1 undefined first
16-8 Vol. 3B

MACHINE-CHECK ARCHITECTURE
occurred. Software may re-read IA32_MCi_STATUS, IA32_MCi_ADDR, and IA32_MCi_MISC appropriately to
ensure data collected represent the last error logged.
After software polls a posting and clears the register, the valid bit is no longer set and therefore the meaning of the
rest of the bits, including the yellow/green/00 status field in bits 54:53, is undefined. The yellow/green indication
will only be posted for events associated with monitored structures – otherwise the unmonitored (00) code will be
posted in IA32_MCi_STATUS[54:53].

16.3.2.3 IA32_MCi_ADDR MSRs
The IA32_MCi_ADDR MSR contains the address of the code or data memory location that produced the machine-
check error if the ADDRV flag in the IA32_MCi_STATUS register is set (see Section 16-7, “IA32_MCi_ADDR MSR”).
The IA32_MCi_ADDR register is either not implemented or contains no address if the ADDRV flag in the IA32_M-
Ci_STATUS register is clear. When not implemented in the processor, all reads and writes to this MSR will cause a
general protection exception.
The address returned is an offset into a segment, linear address, or physical address. This depends on the error
encountered. When these registers are implemented, these registers can be cleared by explicitly writing 0s to
these registers. Writing 1s to these registers will cause a general-protection exception. See Figure 16-7.

16.3.2.4 IA32_MCi_MISC MSRs
The IA32_MCi_MISC MSR contains additional information describing the machine-check error if the MISCV flag in
the IA32_MCi_STATUS register is set. The IA32_MCi_MISC_MSR is either not implemented or does not contain
additional information if the MISCV flag in the IA32_MCi_STATUS register is clear.
When not implemented in the processor, all reads and writes to this MSR will cause a general protection exception.
When implemented in a processor, these registers can be cleared by explicitly writing all 0s to them; writing 1s to
them causes a general-protection exception to be generated. This register is not implemented in any of the error-
reporting register banks for the P6 or Intel Atom family processors.
If both MISCV and IA32_MCG_CAP[24] are set, the IA32_MCi_MISC_MSR is defined according to Figure 16-8 to
support software recovery of uncorrected errors (see Section 16.6).

Figure 16-7. IA32_MCi_ADDR MSR

Address

63 0

Reserved

3536

Address*

63 0

Processor Without Support For Intel 64 Architecture

Processor With Support for Intel 64 Architecture

* Useful bits in this field depend on the address methodology in use when the
the register state is saved.
Vol. 3B 16-9

MACHINE-CHECK ARCHITECTURE
• Recoverable Address LSB (bits 5:0): The lowest valid recoverable address bit. Indicates the position of the least
significant bit (LSB) of the recoverable error address. For example, if the processor logs bits [43:9] of the
address, the LSB sub-field in IA32_MCi_MISC is 01001b (9 decimal). For this example, bits [8:0] of the
recoverable error address in IA32_MCi_ADDR should be ignored.

• Address Mode (bits 8:6): Address mode for the address logged in IA32_MCi_ADDR. The supported address
modes are given in Table 16-3.

• Model Specific Information (bits 63:9): Not architecturally defined.

16.3.2.4.2 IOMCA
Logging and Signaling of errors from PCI Express domain is governed by PCI Express Advanced Error Reporting
(AER) architecture. PCI Express architecture divides errors in two categories: Uncorrectable errors and Correctable
errors. Uncorrectable errors can further be classified as Fatal or Non-Fatal. Uncorrected IO errors are signaled to
the system software either as AER Message Signaled Interrupt (MSI) or via platform specific mechanisms such as
NMI. Generally, the signaling mechanism is controlled by BIOS and/or platform firmware. Certain processors
support an error handling mode, called IOMCA mode, where Uncorrected PCI Express errors are signaled in the
form of machine check exception and logged in machine check banks.
When a processor is in this mode, Uncorrected PCI Express errors are logged in the MCACOD field of the IA32_M-
Ci_STATUS register as Generic I/O error. The corresponding MCA error code is defined in Table 15-8. IA32_M-
Ci_Status [15:0] Simple Error Code Encoding. Machine check logging complements and does not replace AER
logging that occurs inside the PCI Express hierarchy. The PCI Express Root Complex and Endpoints continue to log
the error in accordance with PCI Express AER mechanism. In IOMCA mode, MCi_MISC register in the bank that
logged IOMCA can optionally contain information that link the Machine Check logs with the AER logs or proprietary
logs. In such a scenario, the machine check handler can utilize the contents of MCi_MISC to locate the next level of
error logs corresponding to the same error. Specifically, if MCi_Status.MISCV is 1 and MCACOD is 0x0E0B, MCi_-
MISC contains the PCI Express address of the Root Complex device containing the AER Logs. Software can consult
the header type and class code registers in the Root Complex device's PCIe Configuration space to determine what
type of device it is. This Root Complex device can either be a PCI Express Root Port, PCI Express Root Complex
Event Collector or a proprietary device.

Figure 16-8. UCR Support in IA32_MCi_MISC Register

Table 16-3. Address Mode in IA32_MCi_MISC[8:6]
IA32_MCi_MISC[8:6] Encoding Definition

000 Segment Offset

001 Linear Address

010 Physical Address

011 Memory Address

100 to 110 Reserved

111 Generic

Address Mode

63 0

Model Specific Information

6 5

Recoverable Address LSB

89
16-10 Vol. 3B

MACHINE-CHECK ARCHITECTURE
Errors that originate from PCI Express or Legacy Endpoints are logged in the corresponding Root Port in addition to
the generating device. If MISCV=1 and MCi_MISC contains the address of the Root Port or a Root Complex Event
collector, software can parse the AER logs to learn more about the error.
If MISCV=1 and MCi_MISC points to a device that is neither a Root Complex Event Collector not a Root Port, soft-
ware must consult the Vendor ID/Device ID and use device specific knowledge to locate and interpret the error log
registers. In some cases, the Root Complex device configuration space may not be accessible to the software and
both the Vendor and Device ID read as 0xFFFF.
• The format of MCi_MISC for IOMCA errors is shown in Table 16-4.

Refer to PCI Express Specification 3.0 for definition of PCI Express Requestor ID and AER architecture. Refer to PCI
Firmware Specification 3.0 for an explanation of PCI Ex-press Segment number and how software can access
configuration space of a PCI Ex-press device given the segment number and Requestor ID.

16.3.2.5 IA32_MCi_CTL2 MSRs
The IA32_MCi_CTL2 MSR provides the programming interface to use corrected MC error signaling capability that is
indicated by IA32_MCG_CAP[10] = 1. Software must check for the presence of IA32_MCi_CTL2 on a per-bank
basis.
When IA32_MCG_CAP[10] = 1, the IA32_MCi_CTL2 MSR for each bank exists, i.e., reads and writes to these MSR
are supported. However, signaling interface for corrected MC errors may not be supported in all banks.
The layout of IA32_MCi_CTL2 is shown in Figure 16-9.

• Corrected error count threshold, bits 14:0 — Software must initialize this field. The value is compared with
the corrected error count field in IA32_MCi_STATUS, bits 38 through 52. An overflow event is signaled to the
CMCI LVT entry (see Table 11-1) in the APIC when the count value equals the threshold value. The new LVT
entry in the APIC is at 02F0H offset from the APIC_BASE. If CMCI interface is not supported for a particular
bank (but IA32_MCG_CAP[10] = 1), this field will always read 0.

• CMCI_EN (Corrected error interrupt enable/disable/indicator), bits 30 — Software sets this bit to
enable the generation of corrected machine-check error interrupt (CMCI). If CMCI interface is not supported for
a particular bank (but IA32_MCG_CAP[10] = 1), this bit is writeable but will always return 0 for that bank. This
bit also indicates CMCI is supported or not supported in the corresponding bank. See Section 16.5 for details of
software detection of CMCI facility.

Table 16-4. Address Mode in IA32_MCi_MISC[8:6]
63:40 39:32 31:16 15:9 8:6 5:0

RSVD PCI Express Segment
number

PCI Express
Requestor ID

RSVD ADDR MODE1

NOTES:
1. Not Applicable if ADDRV=0.

RECOV ADDR LSB1

Figure 16-9. IA32_MCi_CTL2 Register

CMCI_EN—Enable/disable CMCI

63 15

Reserved

29

Corrected error count threshold

01431 30

Reserved
Vol. 3B 16-11

MACHINE-CHECK ARCHITECTURE
Some microarchitectural sub-systems that are the source of corrected MC errors may be shared by more than one
logical processors. Consequently, the facilities for reporting MC errors and controlling mechanisms may be shared
by more than one logical processors. For example, the IA32_MCi_CTL2 MSR is shared between logical processors
sharing a processor core. Software is responsible to program IA32_MCi_CTL2 MSR in a consistent manner with
CMCI delivery and usage.
After processor reset, IA32_MCi_CTL2 MSRs are zeroed.

16.3.2.6 IA32_MCG Extended Machine Check State MSRs
The Pentium 4 and Intel Xeon processors implement a variable number of extended machine-check state MSRs.
The MCG_EXT_P flag in the IA32_MCG_CAP MSR indicates the presence of these extended registers, and the
MCG_EXT_CNT field indicates the number of these registers actually implemented. See Section 16.3.1.1,
“IA32_MCG_CAP MSR.” Also see Table 16-5.

In processors with support for Intel 64 architecture, 64-bit machine check state MSRs are aliased to the legacy
MSRs. In addition, there may be registers beyond IA32_MCG_MISC. These may include up to five reserved MSRs
(IA32_MCG_RESERVED[1:5]) and save-state MSRs for registers introduced in 64-bit mode. See Table 16-6.

Table 16-5. Extended Machine Check State MSRs in Processors Without Support for Intel® 64 Architecture
MSR Address Description

IA32_MCG_EAX 180H Contains state of the EAX register at the time of the machine-check error.

IA32_MCG_EBX 181H Contains state of the EBX register at the time of the machine-check error.

IA32_MCG_ECX 182H Contains state of the ECX register at the time of the machine-check error.

IA32_MCG_EDX 183H Contains state of the EDX register at the time of the machine-check error.

IA32_MCG_ESI 184H Contains state of the ESI register at the time of the machine-check error.

IA32_MCG_EDI 185H Contains state of the EDI register at the time of the machine-check error.

IA32_MCG_EBP 186H Contains state of the EBP register at the time of the machine-check error.

IA32_MCG_ESP 187H Contains state of the ESP register at the time of the machine-check error.

IA32_MCG_EFLAGS 188H Contains state of the EFLAGS register at the time of the machine-check error.

IA32_MCG_EIP 189H Contains state of the EIP register at the time of the machine-check error.

IA32_MCG_MISC 18AH When set, indicates that a page assist or page fault occurred during DS normal
operation.

Table 16-6. Extended Machine Check State MSRs In Processors With Support for Intel® 64 Architecture
MSR Address Description

IA32_MCG_RAX 180H Contains state of the RAX register at the time of the machine-check error.

IA32_MCG_RBX 181H Contains state of the RBX register at the time of the machine-check error.

IA32_MCG_RCX 182H Contains state of the RCX register at the time of the machine-check error.

IA32_MCG_RDX 183H Contains state of the RDX register at the time of the machine-check error.

IA32_MCG_RSI 184H Contains state of the RSI register at the time of the machine-check error.

IA32_MCG_RDI 185H Contains state of the RDI register at the time of the machine-check error.

IA32_MCG_RBP 186H Contains state of the RBP register at the time of the machine-check error.

IA32_MCG_RSP 187H Contains state of the RSP register at the time of the machine-check error.

IA32_MCG_RFLAGS 188H Contains state of the RFLAGS register at the time of the machine-check error.

IA32_MCG_RIP 189H Contains state of the RIP register at the time of the machine-check error.

IA32_MCG_MISC 18AH When set, indicates that a page assist or page fault occurred during DS normal
operation.
16-12 Vol. 3B

MACHINE-CHECK ARCHITECTURE
When a machine-check error is detected on a Pentium 4 or Intel Xeon processor, the processor saves the state of
the general-purpose registers, the R/EFLAGS register, and the R/EIP in these extended machine-check state MSRs.
This information can be used by a debugger to analyze the error.
These registers are read/write to zero registers. This means software can read them; but if software writes to
them, only all zeros is allowed. If software attempts to write a non-zero value into one of these registers, a general-
protection (#GP) exception is generated. These registers are cleared on a hardware reset (power-up or RESET),
but maintain their contents following a soft reset (INIT reset).

16.3.3 Mapping of the Pentium Processor Machine-Check Errors to the Machine-Check
Architecture

The Pentium processor reports machine-check errors using two registers: P5_MC_TYPE and P5_MC_ADDR. The
Pentium 4, Intel Xeon, Intel Atom, and P6 family processors map these registers to the IA32_MCi_STATUS and
IA32_MCi_ADDR in the error-reporting register bank. This bank reports on the same type of external bus errors
reported in P5_MC_TYPE and P5_MC_ADDR.
The information in these registers can then be accessed in two ways:
• By reading the IA32_MCi_STATUS and IA32_MCi_ADDR registers as part of a general machine-check exception

handler written for Pentium 4, Intel Atom and P6 family processors.
• By reading the P5_MC_TYPE and P5_MC_ADDR registers using the RDMSR instruction.
The second capability permits a machine-check exception handler written to run on a Pentium processor to be run
on a Pentium 4, Intel Xeon, Intel Atom, or P6 family processor. There is a limitation in that information returned by
the Pentium 4, Intel Xeon, Intel Atom, and P6 family processors is encoded differently than information returned
by the Pentium processor. To run a Pentium processor machine-check exception handler on a Pentium 4, Intel
Xeon, Intel Atom, or P6 family processor; the handler must be written to interpret P5_MC_TYPE encodings
correctly.

16.4 ENHANCED CACHE ERROR REPORTING
Starting with Intel Core Duo processors, cache error reporting was enhanced. In earlier Intel processors, cache
status was based on the number of correction events that occurred in a cache. In the new paradigm, called
“threshold-based error status”, cache status is based on the number of lines (ECC blocks) in a cache that incur
repeated corrections. The threshold is chosen by Intel, based on various factors. If a processor supports threshold-
based error status, it sets IA32_MCG_CAP[11] (MCG_TES_P) to 1; if not, to 0.
A processor that supports enhanced cache error reporting contains hardware that tracks the operating status of
certain caches and provides an indicator of their “health”. The hardware reports a “green” status when the number
of lines that incur repeated corrections is at or below a pre-defined threshold, and a “yellow” status when the

IA32_MCG_
RSERVED[1:5]

18BH-
18FH

These registers, if present, are reserved.

IA32_MCG_R8 190H Contains state of the R8 register at the time of the machine-check error.

IA32_MCG_R9 191H Contains state of the R9 register at the time of the machine-check error.

IA32_MCG_R10 192H Contains state of the R10 register at the time of the machine-check error.

IA32_MCG_R11 193H Contains state of the R11 register at the time of the machine-check error.

IA32_MCG_R12 194H Contains state of the R12 register at the time of the machine-check error.

IA32_MCG_R13 195H Contains state of the R13 register at the time of the machine-check error.

IA32_MCG_R14 196H Contains state of the R14 register at the time of the machine-check error.

IA32_MCG_R15 197H Contains state of the R15 register at the time of the machine-check error.

Table 16-6. Extended Machine Check State MSRs In Processors With Support for Intel® 64 Architecture (Contd.)
MSR Address Description
Vol. 3B 16-13

MACHINE-CHECK ARCHITECTURE
number of affected lines exceeds the threshold. Yellow status means that the cache reporting the event is operating
correctly, but you should schedule the system for servicing within a few weeks.
Intel recommends that you rely on this mechanism for structures supported by threshold-base error reporting.
The CPU/system/platform response to a yellow event should be less severe than its response to an uncorrected
error. An uncorrected error means that a serious error has actually occurred, whereas the yellow condition is a
warning that the number of affected lines has exceeded the threshold but is not, in itself, a serious event: the error
was corrected and system state was not compromised.
The green/yellow status indicator is not a foolproof early warning for an uncorrected error resulting from the failure
of two bits in the same ECC block. Such a failure can occur and cause an uncorrected error before the yellow
threshold is reached. However, the chance of an uncorrected error increases as the number of affected lines
increases.

16.5 CORRECTED MACHINE CHECK ERROR INTERRUPT
Corrected machine-check error interrupt (CMCI) is an architectural enhancement to the machine-check architec-
ture. It provides capabilities beyond those of threshold-based error reporting (Section 16.4). With threshold-based
error reporting, software is limited to use periodic polling to query the status of hardware corrected MC errors.
CMCI provides a signaling mechanism to deliver a local interrupt based on threshold values that software can
program using the IA32_MCi_CTL2 MSRs.
CMCI is disabled by default. System software is required to enable CMCI for each IA32_MCi bank that support the
reporting of hardware corrected errors if IA32_MCG_CAP[10] = 1.
System software use IA32_MCi_CTL2 MSR to enable/disable the CMCI capability for each bank and program
threshold values into IA32_MCi_CTL2 MSR. CMCI is not affected by the CR4.MCE bit, and it is not affected by the
IA32_MCi_CTL MSRs.
To detect the existence of thresholding for a given bank, software writes only bits 14:0 with the threshold value. If
the bits persist, then thresholding is available (and CMCI is available). If the bits are all 0's, then no thresholding
exists. To detect that CMCI signaling exists, software writes a 1 to bit 30 of the MCi_CTL2 register. Upon subsequent
read, if bit 30 = 0, no CMCI is available for this bank and no corrected or UCNA errors will be reported on this bank.
If bit 30 = 1, then CMCI is available and enabled.

16.5.1 CMCI Local APIC Interface
The operation of CMCI is depicted in Figure 16-10.

CMCI interrupt delivery is configured by writing to the LVT CMCI register entry in the local APIC register space at
default address of APIC_BASE + 2F0H. A CMCI interrupt can be delivered to more than one logical processors if
multiple logical processors are affected by the associated MC errors. For example, if a corrected bit error in a cache
shared by two logical processors caused a CMCI, the interrupt will be delivered to both logical processors sharing

Figure 16-10. CMCI Behavior

Error threshold

63 0

MCi_CTL2

3031

Error count

53 0

Software write 1 to enable

Count overflow threshold -> CMCI LVT in local APIC

29 14

37

MCi_STATUS

3852

?=
APIC_BASE + 2F0H
16-14 Vol. 3B

MACHINE-CHECK ARCHITECTURE
that microarchitectural sub-system. Similarly, package level errors may cause CMCI to be delivered to all logical
processors within the package. However, system level errors will not be handled by CMCI.
See Section 11.5.1, “Local Vector Table,” for details regarding the LVT CMCI register.

16.5.2 System Software Recommendation for Managing CMCI and Machine Check Resources
System software must enable and manage CMCI, set up interrupt handlers to service CMCI interrupts delivered to
affected logical processors, program CMCI LVT entry, and query machine check banks that are shared by more
than one logical processors.
This section describes techniques system software can implement to manage CMCI initialization, service CMCI
interrupts in a efficient manner to minimize contentions to access shared MSR resources.

16.5.2.1 CMCI Initialization
Although a CMCI interrupt may be delivered to more than one logical processors depending on the nature of the
corrected MC error, only one instance of the interrupt service routine needs to perform the necessary service and
make queries to the machine-check banks. The following steps describes a technique that limits the amount of
work the system has to do in response to a CMCI.
• To provide maximum flexibility, system software should define per-thread data structure for each logical

processor to allow equal-opportunity and efficient response to interrupt delivery. Specifically, the per-thread
data structure should include a set of per-bank fields to track which machine check bank it needs to access in
response to a delivered CMCI interrupt. The number of banks that needs to be tracked is determined by
IA32_MCG_CAP[7:0].

• Initialization of per-thread data structure. The initialization of per-thread data structure must be done serially
on each logical processor in the system. The sequencing order to start the per-thread initialization between
different logical processor is arbitrary. But it must observe the following specific detail to satisfy the shared
nature of specific MSR resources:

a. Each thread initializes its data structure to indicate that it does not own any MC bank registers.

b. Each thread examines IA32_MCi_CTL2[30] indicator for each bank to determine if another thread has
already claimed ownership of that bank.

• If IA32_MCi_CTL2[30] had been set by another thread. This thread can not own bank i and should
proceed to step b. and examine the next machine check bank until all of the machine check banks are
exhausted.

• If IA32_MCi_CTL2[30] = 0, proceed to step c.

c. Check whether writing a 1 into IA32_MCi_CTL2[30] can return with 1 on a subsequent read to determine
this bank can support CMCI.

• If IA32_MCi_CTL2[30] = 0, this bank does not support CMCI. This thread can not own bank i and should
proceed to step b. and examine the next machine check bank until all of the machine check banks are
exhausted.

• If IA32_MCi_CTL2[30] = 1, modify the per-thread data structure to indicate this thread claims
ownership to the MC bank; proceed to initialize the error threshold count (bits 15:0) of that bank as
described in Chapter 16, “CMCI Threshold Management”. Then proceed to step b. and examine the next
machine check bank until all of the machine check banks are exhausted.

• After the thread has examined all of the machine check banks, it sees if it owns any MC banks to service CMCI.
If any bank has been claimed by this thread:

— Ensure that the CMCI interrupt handler has been set up as described in Chapter 16, “CMCI Interrupt
Handler”.

— Initialize the CMCI LVT entry, as described in Section 16.5.1, “CMCI Local APIC Interface.”

— Log and clear all of IA32_MCi_Status registers for the banks that this thread owns. This will allow new
errors to be logged.
Vol. 3B 16-15

MACHINE-CHECK ARCHITECTURE
16.5.2.2 CMCI Threshold Management
The Corrected MC error threshold field, IA32_MCi_CTL2[14:0], is architecturally defined. Specifically, all these bits
are writable by software, but different processor implementations may choose to implement less than 15 bits as
threshold for the overflow comparison with IA32_MCi_STATUS[52:38]. The following describes techniques that
software can manage CMCI threshold to be compatible with changes in implementation characteristics:
• Software can set the initial threshold value to 1 by writing 1 to IA32_MCi_CTL2[14:0]. This will cause overflow

condition on every corrected MC error and generates a CMCI interrupt.
• To increase the threshold and reduce the frequency of CMCI servicing:

a. Find the maximum threshold value a given processor implementation supports. The steps are:

• Write 7FFFH to IA32_MCi_CTL2[14:0],

• Read back IA32_MCi_CTL2[14:0]; these 15 bits (14:0) contain the maximum threshold supported by
the processor.

b. Increase the threshold to a value below the maximum value discovered using step a.

16.5.2.3 CMCI Interrupt Handler
The following describes techniques system software may consider to implement a CMCI service routine:
• The service routine examines its private per-thread data structure to check which set of MC banks it has

ownership. If the thread does not have ownership of a given MC bank, proceed to the next MC bank. Ownership
is determined at initialization time which is described in Section 16.5.2.1.

If the thread had claimed ownership to an MC bank, this technique will allow each logical processors to handle
corrected MC errors independently and requires no synchronization to access shared MSR resources. Consult
Example 16-5 for guidelines on logging when processing CMCI.

16.6 RECOVERY OF UNCORRECTED RECOVERABLE (UCR) ERRORS
Recovery of uncorrected recoverable machine check errors is an enhancement in machine-check architecture. The
first processor that supports this feature is 45 nm Intel 64 processor on which CPUID reports DisplayFamily_Dis-
playModel as 06H_2EH; see the CPUID instruction in Chapter 3, “Instruction Set Reference, A-L‚” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 2A. This allows system software to perform recovery
action on a certain class of uncorrected errors and continue execution.

16.6.1 Detection of Software Error Recovery Support
Software must use bit 24 of IA32_MCG_CAP (MCG_SER_P) to detect the presence of software error recovery
support (see Figure 16-2). When IA32_MCG_CAP[24] is set, this indicates that the processor supports software
error recovery. When this bit is clear, this indicates that there is no support for error recovery from the processor
and the primary responsibility of the machine check handler is logging the machine check error information and
shutting down the system.
The new class of architectural MCA errors from which system software can attempt recovery is called Uncorrected
Recoverable (UCR) Errors. UCR errors are uncorrected errors that have been detected and signaled but have not
corrupted the processor context. For certain UCR errors, this means that once system software has performed a
certain recovery action, it is possible to continue execution on this processor. UCR error reporting provides an error
containment mechanism for data poisoning. The machine check handler will use the error log information from the
error reporting registers to analyze and implement specific error recovery actions for UCR errors.

16.6.2 UCR Error Reporting and Logging
IA32_MCi_STATUS MSR is used for reporting UCR errors and existing corrected or uncorrected errors. The defini-
tions of IA32_MCi_STATUS, including bit fields to identify UCR errors, is shown in Figure 16-6. UCR errors can be
16-16 Vol. 3B

MACHINE-CHECK ARCHITECTURE
signaled through either the corrected machine check interrupt (CMCI) or machine check exception (MCE) path
depending on the type of the UCR error.
When IA32_MCG_CAP[24] is set, a UCR error is indicated by the following bit settings in the IA32_MCi_STATUS
register:
• Valid (bit 63) = 1
• UC (bit 61) = 1
• PCC (bit 57) = 0
Additional information from the IA32_MCi_MISC and the IA32_MCi_ADDR registers for the UCR error are available
when the ADDRV and the MISCV flags in the IA32_MCi_STATUS register are set (see Section 16.3.2.4). The MCA
error code field of the IA32_MCi_STATUS register indicates the type of UCR error. System software can interpret
the MCA error code field to analyze and identify the necessary recovery action for the given UCR error.
In addition, the IA32_MCi_STATUS register bit fields, bits 56:55, are defined (see Figure 16-6) to provide addi-
tional information to help system software to properly identify the necessary recovery action for the UCR error:
• S (Signaling) flag, bit 56 - Indicates (when set) that a machine check exception was generated for the UCR

error reported in this MC bank and system software needs to check the AR flag and the MCA error code fields in
the IA32_MCi_STATUS register to identify the necessary recovery action for this error. When the S flag in the
IA32_MCi_STATUS register is clear, this UCR error was not signaled via a machine check exception and instead
was reported as a corrected machine check (CMC). System software is not required to take any recovery action
when the S flag in the IA32_MCi_STATUS register is clear.

• AR (Action Required) flag, bit 55 - Indicates (when set) that MCA error code specific recovery action must be
performed by system software at the time this error was signaled. This recovery action must be completed
successfully before any additional work is scheduled for this processor. When the RIPV flag in the IA32_MC-
G_STATUS is clear, an alternative execution stream needs to be provided; when the MCA error code specific
recovery specific recovery action cannot be successfully completed, system software must shut down the
system. When the AR flag in the IA32_MCi_STATUS register is clear, system software may still take MCA error
code specific recovery action but this is optional; system software can safely resume program execution at the
instruction pointer saved on the stack from the machine check exception when the RIPV flag in the IA32_MC-
G_STATUS register is set.

Both the S and the AR flags in the IA32_MCi_STATUS register are defined to be sticky bits, which mean that once
set, the processor does not clear them. Only software and good power-on reset can clear the S and the AR-flags.
Both the S and the AR flags are only set when the processor reports the UCR errors (MCG_CAP[24] is set).

16.6.3 UCR Error Classification
With the S and AR flag encoding in the IA32_MCi_STATUS register, UCR errors can be classified as:
• Uncorrected no action required (UCNA) - is a UCR error that is not signaled via a machine check exception and,

instead, is reported to system software as a corrected machine check error. UCNA errors indicate that some
data in the system is corrupted, but the data has not been consumed and the processor state is valid and you
may continue execution on this processor. UCNA errors require no action from system software to continue
execution. A UCNA error is indicated with UC=1, PCC=0, S=0 and AR=0 in the IA32_MCi_STATUS register.

• Software recoverable action optional (SRAO) - a UCR error is signaled either via a machine check exception or
CMCI. System software recovery action is optional and not required to continue execution from this machine
check exception. SRAO errors indicate that some data in the system is corrupt, but the data has not been
consumed and the processor state is valid. SRAO errors provide the additional error information for system
software to perform a recovery action. An SRAO error when signaled as a machine check is indicated with
UC=1, PCC=0, S=1, EN=1 and AR=0 in the IA32_MCi_STATUS register. In cases when SRAO is signaled via
CMCI the error signature is indicated via UC=1, PCC=0, S=0. Recovery actions for SRAO errors are MCA error
code specific. The MISCV and the ADDRV flags in the IA32_MCi_STATUS register are set when the additional
error information is available from the IA32_MCi_MISC and the IA32_MCi_ADDR registers. System software
needs to inspect the MCA error code fields in the IA32_MCi_STATUS register to identify the specific recovery
action for a given SRAO error. If MISCV and ADDRV are not set, it is recommended that no system software
error recovery be performed however, system software can resume execution.

• Software recoverable action required (SRAR) - a UCR error that requires system software to take a recovery
action on this processor before scheduling another stream of execution on this processor. SRAR errors indicate
Vol. 3B 16-17

MACHINE-CHECK ARCHITECTURE
that the error was detected and raised at the point of the consumption in the execution flow. An SRAR error is
indicated with UC=1, PCC=0, S=1, EN=1 and AR=1 in the IA32_MCi_STATUS register. Recovery actions are
MCA error code specific. The MISCV and the ADDRV flags in the IA32_MCi_STATUS register are set when the
additional error information is available from the IA32_MCi_MISC and the IA32_MCi_ADDR registers. System
software needs to inspect the MCA error code fields in the IA32_MCi_STATUS register to identify the specific
recovery action for a given SRAR error. If MISCV and ADDRV are not set, it is recommended that system
software shutdown the system.

Table 16-7 summarizes UCR, corrected, and uncorrected errors.

16.6.4 UCR Error Overwrite Rules
In general, the overwrite rules are as follows:
• UCR errors will overwrite corrected errors.
• Uncorrected (PCC=1) errors overwrite UCR (PCC=0) errors.
• UCR errors are not written over previous UCR errors.
• Corrected errors do not write over previous UCR errors.
Regardless of whether the 1st error is retained or the 2nd error is overwritten over the 1st error, the OVER flag in
the IA32_MCi_STATUS register will be set to indicate an overflow condition. As the S flag and AR flag in the
IA32_MCi_STATUS register are defined to be sticky flags, a second event cannot clear these 2 flags once set,
however the MC bank information may be filled in for the 2nd error. The table below shows the overwrite rules and
how to treat a second error if the first event is already logged in a MC bank along with the resulting bit setting of
the UC, PCC, and AR flags in the IA32_MCi_STATUS register. As UCNA and SRA0 errors do not require recovery
action from system software to continue program execution, a system reset by system software is not required
unless the AR flag or PCC flag is set for the UCR overflow case (OVER=1, VAL=1, UC=1, PCC=0).
Table 16-8 lists overwrite rules for uncorrected errors, corrected errors, and uncorrected recoverable errors.

Table 16-7. MC Error Classifications
Type of Error1

NOTES:
1. SRAR, SRAO and UCNA errors are supported by the processor only when IA32_MCG_CAP[24] (MCG_SER_P) is set.

UC EN PCC S AR Signaling Software Action Example

Uncorrected Error (UC) 1 1 1 x x MCE If EN=1, reset the system, else log
and OK to keep the system running.

SRAR 1 1 0 1 1 MCE For known MCACOD, take specific
recovery action;

For unknown MCACOD, must
bugcheck.

If OVER=1, reset system, else take
specific recovery action.

Cache to processor load
error.

SRAO 1 x2

2. EN=1, S=1 when signaled via MCE. EN=x, S=0 when signaled via CMC.

0 x2 0 MCE/CMC For known MCACOD, take specific
recovery action;

For unknown MCACOD, OK to keep
the system running.

Patrol scrub and explicit
writeback poison errors.

UCNA 1 x 0 0 0 CMC Log the error and Ok to keep the
system running.

Poison detection error.

Corrected Error (CE) 0 x x x x CMC Log the error and no corrective
action required.

ECC in caches and
memory.

Table 16-8. Overwrite Rules for UC, CE, and UCR Errors
First Event Second Event UC PCC S AR MCA Bank Reset System

CE UCR 1 0 0 if UCNA, else 1 1 if SRAR, else 0 second yes, if AR=1

UCR CE 1 0 0 if UCNA, else 1 1 if SRAR, else 0 first yes, if AR=1
16-18 Vol. 3B

MACHINE-CHECK ARCHITECTURE
16.7 MACHINE-CHECK AVAILABILITY
The machine-check architecture and machine-check exception (#MC) are model-specific features. Software can
execute the CPUID instruction to determine whether a processor implements these features. Following the execu-
tion of the CPUID instruction, the settings of the MCA flag (bit 14) and MCE flag (bit 7) in EDX indicate whether the
processor implements the machine-check architecture and machine-check exception.

16.8 MACHINE-CHECK INITIALIZATION
To use the processors machine-check architecture, software must initialize the processor to activate the machine-
check exception and the error-reporting mechanism.
Example 16-1 gives pseudocode for performing this initialization. This pseudocode checks for the existence of the
machine-check architecture and exception; it then enables machine-check exception and the error-reporting
register banks. The pseudocode shown is compatible with the Pentium 4, Intel Xeon, Intel Atom, P6 family, and
Pentium processors.
Following power up or power cycling, IA32_MCi_STATUS registers are not guaranteed to have valid data until after
they are initially cleared to zero by software (as shown in the initialization pseudocode in Example 16-1).

Example 16-1. Machine-Check Initialization Pseudocode

Check CPUID Feature Flags for MCE and MCA support
IF CPU supports MCE
THEN

IF CPU supports MCA
THEN

IF (IA32_MCG_CAP.MCG_CTL_P = 1)
(* IA32_MCG_CTL register is present *)
THEN

IA32_MCG_CTL ← FFFFFFFFFFFFFFFFH;
(* enables all MCA features *)

FI

IF (IA32_MCG_CAP.MCG_LMCE_P = 1 and IA32_FEATURE_CONTROL.LOCK = 1 and IA32_FEATURE_CONTROL.LMCE_ENABLED = 1)
(* IA32_MCG_EXT_CTL register is present and platform has enabled LMCE to permit system software to use LMCE *)
THEN

IA32_MCG_EXT_CTL ← IA32_MCG_EXT_CTL | 01H;
(* System software enables LMCE capability for hardware to signal MCE to a single logical processor*)

FI

UCNA UCNA 1 0 0 0 first no

UCNA SRAO 1 0 1 0 first no

UCNA SRAR 1 0 1 1 first yes

SRAO UCNA 1 0 1 0 first no

SRAO SRAO 1 0 1 0 first no

SRAO SRAR 1 0 1 1 first yes

SRAR UCNA 1 0 1 1 first yes

SRAR SRAO 1 0 1 1 first yes

SRAR SRAR 1 0 1 1 first yes

UCR UC 1 1 undefined undefined second yes

UC UCR 1 1 undefined undefined first yes

Table 16-8. Overwrite Rules for UC, CE, and UCR Errors
First Event Second Event UC PCC S AR MCA Bank Reset System
Vol. 3B 16-19

MACHINE-CHECK ARCHITECTURE
(* Determine number of error-reporting banks supported *)
COUNT← IA32_MCG_CAP.Count;
MAX_BANK_NUMBER ← COUNT - 1;

IF (Processor Family is 6H and Processor EXTMODEL:MODEL is less than 1AH)
THEN

(* Enable logging of all errors except for MC0_CTL register *)
FOR error-reporting banks (1 through MAX_BANK_NUMBER)
DO

IA32_MCi_CTL ← 0FFFFFFFFFFFFFFFFH;
OD

ELSE
(* Enable logging of all errors including MC0_CTL register *)
FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

IA32_MCi_CTL ← 0FFFFFFFFFFFFFFFFH;
OD

FI

(* BIOS clears all errors only on power-on reset *)
IF (BIOS detects Power-on reset)
THEN

FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

IA32_MCi_STATUS ← 0;
OD

ELSE
FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

(Optional for BIOS and OS) Log valid errors
(OS only) IA32_MCi_STATUS ← 0;

OD

FI
FI

Setup the Machine Check Exception (#MC) handler for vector 18 in IDT

Set the MCE bit (bit 6) in CR4 register to enable Machine-Check Exceptions
FI

16.9 INTERPRETING THE MCA ERROR CODES
When the processor detects a machine-check error condition, it writes a 16-bit error code to the MCA error code
field of one of the IA32_MCi_STATUS registers and sets the VAL (valid) flag in that register. The processor may also
write a 16-bit model-specific error code in the IA32_MCi_STATUS register depending on the implementation of the
machine-check architecture of the processor.
The MCA error codes are architecturally defined for Intel 64 and IA-32 processors. To determine the cause of a
machine-check exception, the machine-check exception handler must read the VAL flag for each IA32_M-
Ci_STATUS register. If the flag is set, the machine check-exception handler must then read the MCA error code field
of the register. It is the encoding of the MCA error code field [15:0] that determines the type of error being reported
and not the register bank reporting it.
There are two types of MCA error codes: simple error codes and compound error codes.

16.9.1 Simple Error Codes
Table 16-9 shows the simple error codes. These unique codes indicate global error information.
16-20 Vol. 3B

MACHINE-CHECK ARCHITECTURE
16.9.2 Compound Error Codes
Compound error codes describe errors related to the TLBs, memory, caches, bus and interconnect logic, and
internal timer. A set of sub-fields is common to all of compound errors. These sub-fields describe the type of
access, level in the cache hierarchy, and type of request. Table 16-10 shows the general form of the compound
error codes.

The “Interpretation” column in the table indicates the name of a compound error. The name is constructed by
substituting mnemonics for the sub-field names given within curly braces. For example, the error code
ICACHEL1_RD_ERR is constructed from the form:

{TT}CACHE{LL}_{RRRR}_ERR,
where {TT} is replaced by I, {LL} is replaced by L1, and {RRRR} is replaced by RD.

For more information on the “Form” and “Interpretation” columns, see Section 16.9.2.1, “Correction Report
Filtering (F) Bit,” through Section 16.9.2.5, “Bus and Interconnect Errors.”

16.9.2.1 Correction Report Filtering (F) Bit
Starting with Intel Core Duo processors, bit 12 in the “Form” column in Table 16-10 is used to indicate that a partic-
ular posting to a log may be the last posting for corrections in that line/entry, at least for some time:

Table 16-9. IA32_MCi_Status [15:0] Simple Error Code Encoding
Error Code Binary Encoding Meaning

No Error 0000 0000 0000 0000 No error has been reported to this bank of error-reporting
registers.

Unclassified 0000 0000 0000 0001 This error has not been classified into the MCA error classes.

Microcode ROM Parity Error 0000 0000 0000 0010 Parity error in internal microcode ROM

External Error 0000 0000 0000 0011 The BINIT# from another processor caused this processor to
enter machine check.1

FRC Error 0000 0000 0000 0100 FRC (functional redundancy check) main/secondary error.

Internal Parity Error 0000 0000 0000 0101 Internal parity error.

SMM Handler Code Access
Violation

0000 0000 0000 0110 An attempt was made by the SMM Handler to execute
outside the ranges specified by SMRR.

Internal Timer Error 0000 0100 0000 0000 Internal timer error.

I/O Error 0000 1110 0000 1011 generic I/O error.

Internal Unclassified 0000 01xx xxxx xxxx Internal unclassified errors. 2

NOTES:
1. BINIT# assertion will cause a machine check exception if the processor (or any processor on the same external bus) has BINIT#

observation enabled during power-on configuration (hardware strapping) and if machine check exceptions are enabled (by setting
CR4.MCE = 1).

2. At least one X must equal one. Internal unclassified errors have not been classified.

Table 16-10. IA32_MCi_Status [15:0] Compound Error Code Encoding
Type Form Interpretation

Generic Cache Hierarchy 000F 0000 0000 11LL Generic cache hierarchy error

TLB Errors 000F 0000 0001 TTLL {TT}TLB{LL}_ERR

Memory Controller Errors 000F 0000 1MMM CCCC {MMM}_CHANNEL{CCCC}_ERR

Cache Hierarchy Errors 000F 0001 RRRR TTLL {TT}CACHE{LL}_{RRRR}_ERR

Extended Memory Errors 000F 0010 1MMM CCCC {MMM}_CHANNEL{CCCC}_ERR

Bus and Interconnect Errors 000F 1PPT RRRR IILL BUS{LL}_{PP}_{RRRR}_{II}_{T}_ERR
Vol. 3B 16-21

MACHINE-CHECK ARCHITECTURE
• 0 in bit 12 indicates “normal” filtering (original P6/Pentium4/Atom/Xeon processor meaning).
• 1 in bit 12 indicates “corrected” filtering (filtering is activated for the line/entry in the posting). Filtering means

that some or all of the subsequent corrections to this entry (in this structure) will not be posted. The enhanced
error reporting introduced with the Intel Core Duo processors is based on tracking the lines affected by
repeated corrections (see Section 16.4, “Enhanced Cache Error reporting”). This capability is indicated by
IA32_MCG_CAP[11]. Only the first few correction events for a line are posted; subsequent redundant
correction events to the same line are not posted. Uncorrected events are always posted.

The behavior of error filtering after crossing the yellow threshold is model-specific. Filtering has meaning only for
corrected errors (UC=0 in IA32_MCi_STATUS MSR). System software must ignore filtering bit (12) for uncorrected
errors.

16.9.2.2 Transaction Type (TT) Sub-Field
The 2-bit TT sub-field (Table 16-11) indicates the type of transaction (data, instruction, or generic). The sub-field
applies to the TLB, cache, and interconnect error conditions. Note that interconnect error conditions are primarily
associated with P6 family and Pentium processors, which utilize an external APIC bus separate from the system
bus. The generic type is reported when the processor cannot determine the transaction type.

16.9.2.3 Level (LL) Sub-Field
The 2-bit LL sub-field (see Table 16-12) indicates the level in the memory hierarchy where the error occurred (level
0, level 1, level 2, or generic). The LL sub-field also applies to the TLB, cache, and interconnect error conditions.
The Pentium 4, Intel Xeon, Intel Atom, and P6 family processors support two levels in the cache hierarchy and one
level in the TLBs. Again, the generic type is reported when the processor cannot determine the hierarchy level.

16.9.2.4 Request (RRRR) Sub-Field
The 4-bit RRRR sub-field (see Table 16-13) indicates the type of action associated with the error. Actions include
read and write operations, prefetches, cache evictions, and snoops. Generic error is returned when the type of
error cannot be determined. Generic read and generic write are returned when the processor cannot determine the
type of instruction or data request that caused the error. Eviction and snoop requests apply only to the caches. All
of the other requests apply to TLBs, caches, and interconnects.

Table 16-11. Encoding for TT (Transaction Type) Sub-Field
Transaction Type Mnemonic Binary Encoding

Instruction I 00

Data D 01

Generic G 10

Table 16-12. Level Encoding for LL (Memory Hierarchy Level) Sub-Field
Hierarchy Level Mnemonic Binary Encoding

Level 0 L0 00

Level 1 L1 01

Level 2 L2 10

Generic LG 11
16-22 Vol. 3B

MACHINE-CHECK ARCHITECTURE
16.9.2.5 Bus and Interconnect Errors
The bus and interconnect errors are defined with the 2-bit PP (participation), 1-bit T (time-out), and 2-bit II
(memory or I/O) sub-fields, in addition to the LL and RRRR sub-fields (see Table 16-14). The bus error conditions
are implementation dependent and related to the type of bus implemented by the processor. Likewise, the inter-
connect error conditions are predicated on a specific implementation-dependent interconnect model that describes
the connections between the different levels of the storage hierarchy. The type of bus is implementation depen-
dent, and as such is not specified in this document. A bus or interconnect transaction consists of a request involving
an address and a response.

Table 16-13. Encoding of Request (RRRR) Sub-Field
Request Type Mnemonic Binary Encoding

Generic Error ERR 0000

Generic Read RD 0001

Generic Write WR 0010

Data Read DRD 0011

Data Write DWR 0100

Instruction Fetch IRD 0101

Prefetch PREFETCH 0110

Eviction EVICT 0111

Snoop SNOOP 1000

Table 16-14. Encodings of PP, T, and II Sub-Fields
Sub-Field Transaction Mnemonic Binary Encoding

PP (Participation) Local processor* originated request SRC 00

Local processor* responded to request RES 01

Local processor* observed error as third party OBS 10

Generic 11

T (Time-out) Request timed out TIMEOUT 1

Request did not time out NOTIMEOUT 0

II (Memory or I/O) Memory Access M 00

Reserved 01

I/O IO 10

Other transaction 11

NOTE:
* Local processor differentiates the processor reporting the error from other system components (including the APIC, other proces-

sors, etc.).
Vol. 3B 16-23

MACHINE-CHECK ARCHITECTURE
16.9.2.6 Memory Controller and Extended Memory Errors
The memory controller errors are defined with the 3-bit MMM (memory transaction type), and 4-bit CCCC (channel)
sub-fields. The encodings for MMM and CCCC are defined in Table 16-15. Extended Memory errors use the same
encodings and are used to report errors in memory used as a cache.

Note that the CCCC channel number may be enumerated from zero separately by each memory controller on a
system. On a multi-socket system, or a system with multiple memory controllers per socket, it is necessary to also
consider which machine check bank logged the error. See Chapter 17 for details on specific implementations.

16.9.3 Architecturally Defined UCR Errors
Software recoverable compound error code are defined in this section.

16.9.3.1 Architecturally Defined SRAO Errors
The following two SRAO errors are architecturally defined.
• UCR Errors detected by memory controller scrubbing; and
• UCR Errors detected during L3 cache (L3) explicit writebacks.
The MCA error code encodings for these two architecturally-defined UCR errors corresponds to sub-classes of
compound MCA error codes (see Table 16-10). Their values and compound encoding format are given in Table
16-16.

Table 16-15. Encodings of MMM and CCCC Sub-Fields
Sub-Field Transaction Mnemonic Binary Encoding

MMM Generic undefined request GEN 000

Memory read error RD 001

Memory write error WR 010

Address/Command Error AC 011

Memory Scrubbing Error MS 100

Reserved 101-111

CCCC Channel number CHN 0000-1110

Channel not specified 1111

Table 16-16. MCA Compound Error Code Encoding for SRAO Errors
Type MCACOD Value MCA Error Code Encoding1

NOTES:
1. Note that for both of these errors the correction report filtering (F) bit (bit 12) of the MCA error must be ignored.

Memory Scrubbing C0H - CFH 0000_0000_1100_CCCC

000F 0000 1MMM CCCC (Memory Controller Error), where

Memory subfield MMM = 100B (memory scrubbing)

Channel subfield CCCC = channel # or generic

L3 Explicit Writeback 17AH 0000_0001_0111_1010

000F 0001 RRRR TTLL (Cache Hierarchy Error) where

Request subfields RRRR = 0111B (Eviction)

Transaction Type subfields TT = 10B (Generic)

Level subfields LL = 10B
16-24 Vol. 3B

MACHINE-CHECK ARCHITECTURE
Table 16-17 lists values of relevant bit fields of IA32_MCi_STATUS for architecturally defined SRAO errors.

For both the memory scrubbing and L3 explicit writeback errors, the ADDRV and MISCV flags in the IA32_M-
Ci_STATUS register are set to indicate that the offending physical address information is available from the
IA32_MCi_MISC and the IA32_MCi_ADDR registers. For the memory scrubbing and L3 explicit writeback errors,
the address mode in the IA32_MCi_MISC register should be set as physical address mode (010b) and the address
LSB information in the IA32_MCi_MISC register should indicate the lowest valid address bit in the address informa-
tion provided from the IA32_MCi_ADDR register.
MCE signal is broadcast to all logical processors as outlined in Section 16.10.4.1. If LMCE is supported and enabled,
some errors (not limited to UCR errors) may be delivered to only a single logical processor. System software should
consult IA32_MCG_STATUS.LMCE_S to determine if the MCE signaled is only to this logical processor.
IA32_MCi_STATUS banks can be shared by logical processors within a core or within the same package. So several
logical processors may find an SRAO error in the shared IA32_MCi_STATUS bank but other processors do not find
it in any of the IA32_MCi_STATUS banks. Table 16-18 shows the RIPV and EIPV flag indication in the IA32_MC-
G_STATUS register for the memory scrubbing and L3 explicit writeback errors on both the reporting and non-
reporting logical processors.

16.9.3.2 Architecturally Defined SRAR Errors
The following two SRAR errors are architecturally defined.
• UCR Errors detected on data load; and
• UCR Errors detected on instruction fetch.
The MCA error code encodings for these two architecturally-defined UCR errors corresponds to sub-classes of
compound MCA error codes (see Table 16-10). Their values and compound encoding format are given in Table
16-19.

Table 16-17. IA32_MCi_STATUS Values for SRAO Errors
SRAO Error Valid OVER UC EN MISCV ADDRV PCC S AR MCACOD

Memory Scrubbing 1 0 1 x1

NOTES:
1. When signaled as MCE, EN=1 and S=1. If error was signaled via CMC, then EN=x, and S=0.

1 1 0 x1 0 C0H-CFH

L3 Explicit Writeback 1 0 1 x1 1 1 0 x1 0 17AH

Table 16-18. IA32_MCG_STATUS Flag Indication for SRAO Errors
SRAO Type Reporting Logical Processors Non-reporting Logical Processors

RIPV EIPV RIPV EIPV

Memory Scrubbing 1 0 1 0

L3 Explicit Writeback 1 0 1 0

Table 16-19. MCA Compound Error Code Encoding for SRAR Errors
Type MCACOD Value MCA Error Code Encoding1

Data Load 134H 0000_0001_0011_0100

000F 0001 RRRR TTLL (Cache Hierarchy Error), where

Request subfield RRRR = 0011B (Data Load)

Transaction Type subfield TT= 01B (Data)

Level subfield LL = 00B (Level 0)

Instruction Fetch 150H 0000_0001_0101_0000

000F 0001 RRRR TTLL (Cache Hierarchy Error), where

Request subfield RRRR = 0101B (Instruction Fetch)

Transaction Type subfield TT= 00B (Instruction)

Level subfield LL = 00B (Level 0)
Vol. 3B 16-25

MACHINE-CHECK ARCHITECTURE
Table 16-20 lists values of relevant bit fields of IA32_MCi_STATUS for architecturally defined SRAR errors.

For both the data load and instruction fetch errors, the ADDRV and MISCV flags in the IA32_MCi_STATUS register
are set to indicate that the offending physical address information is available from the IA32_MCi_MISC and the
IA32_MCi_ADDR registers. For the data load and instruction fetch errors, the address mode in the IA32_MCi_MISC
register should be set as physical address mode (010b) and the address LSB information in the IA32_MCi_MISC
register should indicate the lowest valid address bit in the address information provided from the IA32_MCi_ADDR
register.
MCE signal is broadcast to all logical processors on the system on which the UCR errors are supported, except when
the processor supports LMCE and LMCE is enabled by system software (see Section 16.3.1.5). The IA32_MC-
G_STATUS MSR allows system software to distinguish the affected logical processor of an SRAR error amongst
logical processors that observed SRAR via MCi_STATUS bank.
Table 16-21 shows the RIPV and EIPV flag indication in the IA32_MCG_STATUS register for the data load and
instruction fetch errors on both the reporting and non-reporting logical processors. The recoverable SRAR error
reported by a processor may be continuable, where the system software can interpret the context of continuable
as follows: the error was isolated, contained. If software can rectify the error condition in the current instruction
stream, the execution context on that logical processor can be continued without loss of information.

SRAR Error And Affected Logical Processors

The affected logical processor is the one that has detected and raised an SRAR error at the point of the consump-
tion in the execution flow. The affected logical processor should find the Data Load or the Instruction Fetch error
information in the IA32_MCi_STATUS register that is reporting the SRAR error.
Table 16-21 list the actionable scenarios that system software can respond to an SRAR error on an affected logical
processor according to RIPV and EIPV values:
• Recoverable-Continuable SRAR Error (RIPV=1, EIPV=1):

For Recoverable-Continuable SRAR errors, the affected logical processor should find that both the IA32_MC-
G_STATUS.RIPV and the IA32_MCG_STATUS.EIPV flags are set, indicating that system software may be able to
restart execution from the interrupted context if it is able to rectify the error condition. If system software
cannot rectify the error condition then it must treat the error as a recoverable error where restarting execution
with the interrupted context is not possible. Restarting without rectifying the error condition will result in most
cases with another SRAR error on the same instruction.

NOTES:
1. Note that for both of these errors the correction report filtering (F) bit (bit 12) of the MCA error must be ignored.

Table 16-20. IA32_MCi_STATUS Values for SRAR Errors
SRAR Error Valid OVER UC EN MISCV ADDRV PCC S AR MCACOD

Data Load 1 0 1 1 1 1 0 1 1 134H

Instruction Fetch 1 0 1 1 1 1 0 1 1 150H

Table 16-21. IA32_MCG_STATUS Flag Indication for SRAR Errors
SRAR Type Affected Logical Processor Non-Affected Logical Processors

RIPV EIPV Continuable RIPV EIPV Continuable

Recoverable-
continuable

1 1 Yes1

NOTES:
1. see the definition of the context of “continuable” above and additional detail below.

1 0 YesRecoverable-not-
continuable

0 x No
16-26 Vol. 3B

MACHINE-CHECK ARCHITECTURE
• Recoverable-not-continuable SRAR Error (RIPV=0, EIPV=x):
For Recoverable-not-continuable errors, the affected logical processor should find that either

— IA32_MCG_STATUS.RIPV= 0, IA32_MCG_STATUS.EIPV=1, or

— IA32_MCG_STATUS.RIPV= 0, IA32_MCG_STATUS.EIPV=0.
In either case, this indicates that the error is detected at the instruction pointer saved on the stack for this
machine check exception and restarting execution with the interrupted context is not possible. System
software may take the following recovery actions for the affected logical processor:

• The current executing thread cannot be continued. System software must terminate the interrupted
stream of execution and provide a new stream of execution on return from the machine check handler
for the affected logical processor.

SRAR Error And Non-Affected Logical Processors

The logical processors that observed but not affected by an SRAR error should find that the RIPV flag in the
IA32_MCG_STATUS register is set and the EIPV flag in the IA32_MCG_STATUS register is cleared, indicating that it
is safe to restart the execution at the instruction saved on the stack for the machine check exception on these
processors after the recovery action is successfully taken by system software.

16.9.4 Multiple MCA Errors
When multiple MCA errors are detected within a certain detection window, the processor may aggregate the
reporting of these errors together as a single event, i.e., a single machine exception condition. If this occurs,
system software may find multiple MCA errors logged in different MC banks on one logical processor or find
multiple MCA errors logged across different processors for a single machine check broadcast event. In order to
handle multiple UCR errors reported from a single machine check event and possibly recover from multiple errors,
system software may consider the following:
• Whether it can recover from multiple errors is determined by the most severe error reported on the system. If

the most severe error is found to be an unrecoverable error (VAL=1, UC=1, PCC=1 and EN=1) after system
software examines the MC banks of all processors to which the MCA signal is broadcast, recovery from the
multiple errors is not possible and system software needs to reset the system.

• When multiple recoverable errors are reported and no other fatal condition (e.g., overflowed condition for SRAR
error) is found for the reported recoverable errors, it is possible for system software to recover from the
multiple recoverable errors by taking necessary recovery action for each individual recoverable error. However,
system software can no longer expect one to one relationship with the error information recorded in the
IA32_MCi_STATUS register and the states of the RIPV and EIPV flags in the IA32_MCG_STATUS register as the
states of the RIPV and the EIPV flags in the IA32_MCG_STATUS register may indicate the information for the
most severe error recorded on the processor. System software is required to use the RIPV flag indication in the
IA32_MCG_STATUS register to make a final decision of recoverability of the errors and find the restart-ability
requirement after examining each IA32_MCi_STATUS register error information in the MC banks.
In certain cases where system software observes more than one SRAR error logged for a single logical
processor, it can no longer rely on affected threads as specified in Table 15-20 above. System software is
recommended to reset the system if this condition is observed.

16.9.5 Machine-Check Error Codes Interpretation
Chapter 17, “Interpreting Machine Check Error Codes,” provides information on interpreting the MCA error code,
model-specific error code, and other information error code fields. For P6 family processors, information has been
included on decoding external bus errors. For Pentium 4 and Intel Xeon processors; information is included on
external bus, internal timer and cache hierarchy errors.
Vol. 3B 16-27

MACHINE-CHECK ARCHITECTURE
16.10 GUIDELINES FOR WRITING MACHINE-CHECK SOFTWARE
The machine-check architecture and error logging can be used in three different ways:
• To detect machine errors during normal instruction execution, using the machine-check exception (#MC).
• To periodically check and log machine errors.
• To examine recoverable UCR errors, determine software recoverability and perform recovery actions via a

machine-check exception handler or a corrected machine-check interrupt handler.
To use the machine-check exception, the operating system or executive software must provide a machine-check
exception handler. This handler may need to be designed specifically for each family of processors.
A special program or utility is required to log machine errors.
Guidelines for writing a machine-check exception handler or a machine-error logging utility are given in the
following sections.

16.10.1 Machine-Check Exception Handler
The machine-check exception (#MC) corresponds to vector 18. To service machine-check exceptions, a trap gate
must be added to the IDT. The pointer in the trap gate must point to a machine-check exception handler. Two
approaches can be taken to designing the exception handler:

1. The handler can merely log all the machine status and error information, then call a debugger or shut down the
system.

2. The handler can analyze the reported error information and, in some cases, attempt to correct the error and
restart the processor.

For Pentium 4, Intel Xeon, Intel Atom, P6 family, and Pentium processors; virtually all machine-check conditions
cannot be corrected (they result in abort-type exceptions). The logging of status and error information is therefore
a baseline implementation requirement.
When IA32_MCG_CAP[24] is clear, consider the following when writing a machine-check exception handler:
• To determine the nature of the error, the handler must read each of the error-reporting register banks. The

count field in the IA32_MCG_CAP register gives number of register banks. The first register of register bank 0
is at address 400H.

• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the error information in the register
is valid. If this flag is clear, the registers in that bank do not contain valid error information and do not need to
be checked.

• To write a portable exception handler, only the MCA error code field in the IA32_MCi_STATUS register should be
checked. See Section 16.9, “Interpreting the MCA Error Codes,” for information that can be used to write an
algorithm to interpret this field.

• Correctable errors are corrected automatically by the processor. The UC flag in each IA32_MCi_STATUS reg-
ister indicates whether the processor automatically corrected an error.

• The RIPV, PCC, and OVER flags in each IA32_MCi_STATUS register indicate whether recovery from the error is
possible. If PCC or OVER are set, recovery is not possible. If RIPV is not set, program execution can not be
restarted reliably. When recovery is not possible, the handler typically records the error information and signals
an abort to the operating system.

• The RIPV flag in the IA32_MCG_STATUS register indicates whether the program can be restarted at the
instruction indicated by the instruction pointer (the address of the instruction pushed on the stack when the
exception was generated). If this flag is clear, the processor may still be able to be restarted (for debugging
purposes) but not without loss of program continuity.

• For unrecoverable errors, the EIPV flag in the IA32_MCG_STATUS register indicates whether the instruction
indicated by the instruction pointer pushed on the stack (when the exception was generated) is related to the
error. If the flag is clear, the pushed instruction may not be related to the error.

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-check exception was generated.
Before returning from the machine-check exception handler, software should clear this flag so that it can be
used reliably by an error logging utility. The MCIP flag also detects recursion. The machine-check architecture
16-28 Vol. 3B

MACHINE-CHECK ARCHITECTURE
does not support recursion. When the processor detects machine-check recursion, it enters the shutdown
state.

Example 16-2 gives typical steps carried out by a machine-check exception handler.

Example 16-2. Machine-Check Exception Handler Pseudocode

IF CPU supports MCE
THEN

IF CPU supports MCA
THEN

call errorlogging routine; (* returns restartability *)
FI;

ELSE (* Pentium(R) processor compatible *)
READ P5_MC_ADDR
READ P5_MC_TYPE;
report RESTARTABILITY to console;

FI;
IF error is not restartable

THEN
report RESTARTABILITY to console;
abort system;

FI;
CLEAR MCIP flag in IA32_MCG_STATUS;

16.10.2 Pentium Processor Machine-Check Exception Handling
Machine-check exception handler on P6 family, Intel Atom and later processor families, should follow the guidelines
described in Section 16.10.1 and Example 16-2 that check the processor’s support of MCA.

NOTE
On processors that support MCA (CPUID.1.EDX.MCA = 1) reading the P5_MC_TYPE and
P5_MC_ADDR registers may produce invalid data.

When machine-check exceptions are enabled for the Pentium processor (MCE flag is set in control register CR4),
the machine-check exception handler uses the RDMSR instruction to read the error type from the P5_MC_TYPE
register and the machine check address from the P5_MC_ADDR register. The handler then normally reports these
register values to the system console before aborting execution (see Example 16-2).

16.10.3 Logging Correctable Machine-Check Errors
The error handling routine for servicing the machine-check exceptions is responsible for logging uncorrected
errors.
If a machine-check error is correctable, the processor does not generate a machine-check exception for it. To
detect correctable machine-check errors, a utility program must be written that reads each of the machine-check
error-reporting register banks and logs the results in an accounting file or data structure. This utility can be imple-
mented in either of the following ways.
• A system daemon that polls the register banks on an infrequent basis, such as hourly or daily.
• A user-initiated application that polls the register banks and records the exceptions. Here, the actual polling

service is provided by an operating-system driver or through the system call interface.
• An interrupt service routine servicing CMCI can read the MC banks and log the error. Please refer to Section

16.10.4.2 for guidelines on logging correctable machine checks.
Example 16-3 gives pseudocode for an error logging utility.
Vol. 3B 16-29

MACHINE-CHECK ARCHITECTURE
Example 16-3. Machine-Check Error Logging Pseudocode

Assume that execution is restartable;
IF the processor supports MCA

THEN
FOR each bank of machine-check registers

DO
READ IA32_MCi_STATUS;
IF VAL flag in IA32_MCi_STATUS = 1

THEN
IF ADDRV flag in IA32_MCi_STATUS = 1

THEN READ IA32_MCi_ADDR;
FI;
IF MISCV flag in IA32_MCi_STATUS = 1

THEN READ IA32_MCi_MISC;
FI;
IF MCIP flag in IA32_MCG_STATUS = 1

(* Machine-check exception is in progress *)
AND PCC flag in IA32_MCi_STATUS = 1
OR RIPV flag in IA32_MCG_STATUS = 0
(* execution is not restartable *)

THEN
RESTARTABILITY = FALSE;
return RESTARTABILITY to calling procedure;

FI;
Save time-stamp counter and processor ID;
Set IA32_MCi_STATUS to all 0s;
Execute serializing instruction (i.e., CPUID);

FI;
OD;

FI;

If the processor supports the machine-check architecture, the utility reads through the banks of error-reporting
registers looking for valid register entries. It then saves the values of the IA32_MCi_STATUS, IA32_MCi_ADDR,
IA32_MCi_MISC, and IA32_MCG_STATUS registers for each bank that is valid. The routine minimizes processing
time by recording the raw data into a system data structure or file, reducing the overhead associated with polling.
User utilities analyze the collected data in an off-line environment.
When the MCIP flag is set in the IA32_MCG_STATUS register, a machine-check exception is in progress and the
machine-check exception handler has called the exception logging routine.
Once the logging process has been completed the exception-handling routine must determine whether execution
can be restarted, which is usually possible when damage has not occurred (The PCC flag is clear, in the IA32_M-
Ci_STATUS register) and when the processor can guarantee that execution is restartable (the RIPV flag is set in the
IA32_MCG_STATUS register). If execution cannot be restarted, the system is not recoverable and the exception-
handling routine should signal the console appropriately before returning the error status to the Operating System
kernel for subsequent shutdown.
The machine-check architecture allows buffering of exceptions from a given error-reporting bank although the
Pentium 4, Intel Xeon, Intel Atom, and P6 family processors do not implement this feature. The error logging
routine should provide compatibility with future processors by reading each hardware error-reporting bank's
IA32_MCi_STATUS register and then writing 0s to clear the OVER and VAL flags in this register. The error logging
utility should re-read the IA32_MCi_STATUS register for the bank ensuring that the valid bit is clear. The processor
will write the next error into the register bank and set the VAL flags.
Additional information that should be stored by the exception-logging routine includes the processor’s time-stamp
counter value, which provides a mechanism to indicate the frequency of exceptions. A multiprocessing operating
system stores the identity of the processor node incurring the exception using a unique identifier, such as the
processor’s APIC ID (see Section 11.8, “Handling Interrupts”).
The basic algorithm given in Example 16-3 can be modified to provide more robust recovery techniques. For
example, software has the flexibility to attempt recovery using information unavailable to the hardware. Specifi-
cally, the machine-check exception handler can, after logging carefully analyze the error-reporting registers when
the error-logging routine reports an error that does not allow execution to be restarted. These recovery techniques
16-30 Vol. 3B

MACHINE-CHECK ARCHITECTURE
can use external bus related model-specific information provided with the error report to localize the source of the
error within the system and determine the appropriate recovery strategy.

16.10.4 Machine-Check Software Handler Guidelines for Error Recovery

16.10.4.1 Machine-Check Exception Handler for Error Recovery
When writing a machine-check exception (MCE) handler to support software recovery from Uncorrected Recover-
able (UCR) errors, consider the following:
• When IA32_MCG_CAP [24] is zero, there are no recoverable errors supported and all machine-check are fatal

exceptions. The logging of status and error information is therefore a baseline implementation requirement.
• When IA32_MCG_CAP [24] is 1, certain uncorrected errors called uncorrected recoverable (UCR) errors may be

software recoverable. The handler can analyze the reported error information, and in some cases attempt to
recover from the uncorrected error and continue execution.

• For processors on which CPUID reports DisplayFamily_DisplayModel as 06H_0EH and onward, an MCA signal is
broadcast to all logical processors in the system; see the CPUID instruction in Chapter 3, “Instruction Set
Reference, A-L‚” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A. Due to the
potentially shared machine check MSR resources among the logical processors on the same package/core, the
MCE handler may be required to synchronize with the other processors that received a machine check error and
serialize access to the machine check registers when analyzing, logging, and clearing the information in the
machine check registers.

— On processors that indicate ability for local machine-check exception (MCG_LMCE_P), hardware can choose
to report the error to only a single logical processor if system software has enabled LMCE by setting
IA32_MCG_EXT_CTL[LMCE_EN] = 1 as outlined in Section 16.3.1.5.

• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the error information in the register
is valid. If this flag is clear, the registers in that bank do not contain valid error information and should not be
checked.

• The MCE handler is primarily responsible for processing uncorrected errors. The UC flag in each IA32_M-
Ci_Status register indicates whether the reported error was corrected (UC=0) or uncorrected (UC=1). The MCE
handler can optionally log and clear the corrected errors in the MC banks if it can implement software algorithm
to avoid the undesired race conditions with the CMCI or CMC polling handler.

• For uncorrectable errors, the EIPV flag in the IA32_MCG_STATUS register indicates (when set) that the
instruction pointed to by the instruction pointer pushed onto the stack when the machine-check exception is
generated is directly associated with the error. When this flag is cleared, the instruction pointed to may not be
associated with the error.

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-check exception was generated.
When a machine check exception is generated, it is expected that the MCIP flag in the IA32_MCG_STATUS
register is set to 1. If it is not set, this machine check was generated by either an INT 18 instruction or some
piece of hardware signaling an interrupt with vector 18.

When IA32_MCG_CAP [24] is 1, the following rules can apply when writing a machine check exception (MCE)
handler to support software recovery:
• The PCC flag in each IA32_MCi_STATUS register indicates whether recovery from the error is possible for

uncorrected errors (UC=1). If the PCC flag is set for enabled uncorrected errors (UC=1 and EN=1), recovery is
not possible. When recovery is not possible, the MCE handler typically records the error information and signals
the operating system to reset the system.

• The RIPV flag in the IA32_MCG_STATUS register indicates whether restarting the program execution from the
instruction pointer saved on the stack for the machine check exception is possible. When the RIPV is set,
program execution can be restarted reliably when recovery is possible. If the RIPV flag is not set, program
execution cannot be restarted reliably. In this case the recovery algorithm may involve terminating the current
program execution and resuming an alternate thread of execution upon return from the machine check handler
when recovery is possible. When recovery is not possible, the MCE handler signals the operating system to
reset the system.
Vol. 3B 16-31

MACHINE-CHECK ARCHITECTURE
• When the EN flag is zero but the VAL and UC flags are one in the IA32_MCi_STATUS register, the reported
uncorrected error in this bank is not enabled. As uncorrected errors with the EN flag = 0 are not the source of
machine check exceptions, the MCE handler should log and clear non-enabled errors when the S bit is set and
should continue searching for enabled errors from the other IA32_MCi_STATUS registers. Note that when
IA32_MCG_CAP [24] is 0, any uncorrected error condition (VAL =1 and UC=1) including the one with the EN
flag cleared are fatal and the handler must signal the operating system to reset the system. For the errors that
do not generate machine check exceptions, the EN flag has no meaning.

• When the VAL flag is one, the UC flag is one, the EN flag is one and the PCC flag is zero in the IA32_MCi_STATUS
register, the error in this bank is an uncorrected recoverable (UCR) error. The MCE handler needs to examine
the S flag and the AR flag to find the type of the UCR error for software recovery and determine if software error
recovery is possible.

• When both the S and the AR flags are clear in the IA32_MCi_STATUS register for the UCR error (VAL=1, UC=1,
EN=x and PCC=0), the error in this bank is an uncorrected no-action required error (UCNA). UCNA errors are
uncorrected but do not require any OS recovery action to continue execution. These errors indicate that some
data in the system is corrupt, but that data has not been consumed and may not be consumed. If that data is
consumed a non-UCNA machine check exception will be generated. UCNA errors are signaled in the same way
as corrected machine check errors and the CMCI and CMC polling handler is primarily responsible for handling
UCNA errors. Like corrected errors, the MCA handler can optionally log and clear UCNA errors as long as it can
avoid the undesired race condition with the CMCI or CMC polling handler. As UCNA errors are not the source of
machine check exceptions, the MCA handler should continue searching for uncorrected or software recoverable
errors in all other MC banks.

• When the S flag in the IA32_MCi_STATUS register is set for the UCR error ((VAL=1, UC=1, EN=1 and PCC=0),
the error in this bank is software recoverable and it was signaled through a machine-check exception. The AR
flag in the IA32_MCi_STATUS register further clarifies the type of the software recoverable errors.

• When the AR flag in the IA32_MCi_STATUS register is clear for the software recoverable error (VAL=1, UC=1,
EN=1, PCC=0 and S=1), the error in this bank is a software recoverable action optional (SRAO) error. The MCE
handler and the operating system can analyze the IA32_MCi_STATUS [15:0] to implement MCA error code
specific optional recovery action, but this recovery action is optional. System software can resume the program
execution from the instruction pointer saved on the stack for the machine check exception when the RIPV flag
in the IA32_MCG_STATUS register is set.

• Even if the OVER flag in the IA32_MCi_STATUS register is set for the SRAO error (VAL=1, UC=1, EN=1, PCC=0,
S=1 and AR=0), the MCE handler can take recovery action for the SRAO error logged in the IA32_MCi_STATUS
register. Since the recovery action for SRAO errors is optional, restarting the program execution from the
instruction pointer saved on the stack for the machine check exception is still possible for the overflowed SRAO
error if the RIPV flag in the IA32_MCG_STATUS is set.

• When the AR flag in the IA32_MCi_STATUS register is set for the software recoverable error (VAL=1, UC=1,
EN=1, PCC=0 and S=1), the error in this bank is a software recoverable action required (SRAR) error. The MCE
handler and the operating system must take recovery action in order to continue execution after the machine-
check exception. The MCA handler and the operating system need to analyze the IA32_MCi_STATUS [15:0] to
determine the MCA error code specific recovery action. If no recovery action can be performed, the operating
system must reset the system.

• When the OVER flag in the IA32_MCi_STATUS register is set for the SRAR error (VAL=1, UC=1, EN=1, PCC=0,
S=1 and AR=1), the MCE handler cannot take recovery action as the information of the SRAR error in the
IA32_MCi_STATUS register was potentially lost due to the overflow condition. Since the recovery action for
SRAR errors must be taken, the MCE handler must signal the operating system to reset the system.

• When the MCE handler cannot find any uncorrected (VAL=1, UC=1 and EN=1) or any software recoverable
errors (VAL=1, UC=1, EN=1, PCC=0 and S=1) in any of the IA32_MCi banks of the processors, this is an
unexpected condition for the MCE handler and the handler should signal the operating system to reset the
system.

• Before returning from the machine-check exception handler, software must clear the MCIP flag in the IA32_MC-
G_STATUS register. The MCIP flag is used to detect recursion. The machine-check architecture does not support
recursion. When the processor receives a machine check when MCIP is set, it automatically enters the
shutdown state.

Example 16-4 gives pseudocode for an MC exception handler that supports recovery of UCR.
16-32 Vol. 3B

MACHINE-CHECK ARCHITECTURE
Example 16-4. Machine-Check Error Handler Pseudocode Supporting UCR

MACHINE CHECK HANDLER: (* Called from INT 18 handler *)
NOERROR = TRUE;
ProcessorCount = 0;
IF CPU supports MCA

THEN
RESTARTABILITY = TRUE;
IF (Processor Family = 6 AND DisplayModel ≥ 0EH) OR (Processor Family > 6)

THEN
IF (MCG_LMCE = 1)

MCA_BROADCAST = FALSE;
ELSE

MCA_BROADCAST = TRUE;
FI;
Acquire SpinLock;
ProcessorCount++; (* Allowing one logical processor at a time to examine machine check registers *)
CALL MCA ERROR PROCESSING; (* returns RESTARTABILITY and NOERROR *)

ELSE
MCA_BROADCAST = FALSE;
(* Implement a rendezvous mechanism with the other processors if necessary *)
CALL MCA ERROR PROCESSING;

FI;
ELSE (* Pentium(R) processor compatible *)

READ P5_MC_ADDR
READ P5_MC_TYPE;
RESTARTABILITY = FALSE;

FI;

IF NOERROR = TRUE
 THEN

IF NOT (MCG_RIPV = 1 AND MCG_EIPV = 0)
THEN

RESTARTABILITY = FALSE;
FI

FI;

IF RESTARTABILITY = FALSE
THEN

Report RESTARTABILITY to console;
Reset system;

FI;

IF MCA_BROADCAST = TRUE
THEN

IF ProcessorCount = MAX_PROCESSORS
 AND NOERROR = TRUE

THEN
Report RESTARTABILITY to console;
Reset system;

FI;
Release SpinLock;
Wait till ProcessorCount = MAX_PROCESSRS on system;
(* implement a timeout and abort function if necessary *)

FI;
CLEAR IA32_MCG_STATUS;
RESUME Execution;
(* End of MACHINE CHECK HANDLER*)

MCA ERROR PROCESSING: (* MCA Error Processing Routine called from MCA Handler *)
IF MCIP flag in IA32_MCG_STATUS = 0

THEN (* MCIP=0 upon MCA is unexpected *)
RESTARTABILITY = FALSE;

FI;
Vol. 3B 16-33

MACHINE-CHECK ARCHITECTURE
FOR each bank of machine-check registers
DO

CLEAR_MC_BANK = FALSE;
READ IA32_MCi_STATUS;
IF VAL Flag in IA32_MCi_STATUS = 1

THEN
IF UC Flag in IA32_MCi_STATUS = 1

THEN
IF Bit 24 in IA32_MCG_CAP = 0

THEN (* the processor does not support software error recovery *)
RESTARTABILITY = FALSE;
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI;
(* the processor supports software error recovery *)
IF EN Flag in IA32_MCi_STATUS = 0 AND OVER Flag in IA32_MCi_STATUS=0

THEN (* It is a spurious MCA Log. Log and clear the register *)
CLEAR_MC_BANK = TRUE;
GOTO LOG MCA REGISTER;

FI;
IF PCC = 1 and EN = 1 in IA32_MCi_STATUS

THEN (* processor context might have been corrupted *)
RESTARTABILITY = FALSE;

ELSE (* It is a uncorrected recoverable (UCR) error *)
IF S Flag in IA32_MCi_STATUS = 0

THEN
IF AR Flag in IA32_MCi_STATUS = 0

THEN (* It is a uncorrected no action required (UCNA) error *)
GOTO CONTINUE; (* let CMCI and CMC polling handler to process *)

ELSE
RESTARTABILITY = FALSE; (* S=0, AR=1 is illegal *)

FI
FI;
IF RESTARTABILITY = FALSE

THEN (* no need to take recovery action if RESTARTABILITY is already false *)
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI;
(* S in IA32_MCi_STATUS = 1 *)
IF AR Flag in IA32_MCi_STATUS = 1

THEN (* It is a software recoverable and action required (SRAR) error *)
IF OVER Flag in IA32_MCi_STATUS = 1

THEN
RESTARTABILITY = FALSE;
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI
IF MCACOD Value in IA32_MCi_STATUS is recognized
 AND Current Processor is an Affected Processor

THEN
Implement MCACOD specific recovery action;
CLEAR_MC_BANK = TRUE;

ELSE
RESTARTABILITY = FALSE;

FI;
ELSE (* It is a software recoverable and action optional (SRAO) error *)

IF OVER Flag in IA32_MCi_STATUS = 0 AND
 MCACOD in IA32_MCi_STATUS is recognized

THEN
Implement MCACOD specific recovery action;

FI;
CLEAR_MC_BANK = TRUE;

FI; AR
FI; PCC
NOERROR = FALSE;
16-34 Vol. 3B

MACHINE-CHECK ARCHITECTURE
GOTO LOG MCA REGISTER;
ELSE (* It is a corrected error; continue to the next IA32_MCi_STATUS *)

GOTO CONTINUE;
FI; UC

FI; VAL
LOG MCA REGISTER:

SAVE IA32_MCi_STATUS;
If MISCV in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_MISC;

FI;
IF ADDRV in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_ADDR;

FI;
IF CLEAR_MC_BANK = TRUE

THEN
SET all 0 to IA32_MCi_STATUS;
If MISCV in IA32_MCi_STATUS

THEN
SET all 0 to IA32_MCi_MISC;

FI;
IF ADDRV in IA32_MCi_STATUS

THEN
SET all 0 to IA32_MCi_ADDR;

FI;
FI;
CONTINUE:

OD;
(*END FOR *)
RETURN;
(* End of MCA ERROR PROCESSING*)

16.10.4.2 Corrected Machine-Check Handler for Error Recovery
When writing a corrected machine check handler, which is invoked as a result of CMCI or called from an OS CMC
Polling dispatcher, consider the following:
• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the error information in the register

is valid. If this flag is clear, the registers in that bank does not contain valid error information and does not need
to be checked.

• The CMCI or CMC polling handler is responsible for logging and clearing corrected errors. The UC flag in each
IA32_MCi_Status register indicates whether the reported error was corrected (UC=0) or not (UC=1).

• When IA32_MCG_CAP [24] is one, the CMC handler is also responsible for logging and clearing uncorrected no-
action required (UCNA) errors. When the UC flag is one but the PCC, S, and AR flags are zero in the IA32_M-
Ci_STATUS register, the reported error in this bank is an uncorrected no-action required (UCNA) error. In cases
when SRAO error are signaled as UCNA error via CMCI, software can perform recovery for those errors
identified in Table 16-16.

• In addition to corrected errors and UCNA errors, the CMC handler optionally logs uncorrected (UC=1 and
PCC=1), software recoverable machine check errors (UC=1, PCC=0 and S=1), but should avoid clearing those
errors from the MC banks. Clearing these errors may result in accidentally removing these errors before these
errors are actually handled and processed by the MCE handler for attempted software error recovery.

Example 16-5 gives pseudocode for a CMCI handler with UCR support.
Vol. 3B 16-35

MACHINE-CHECK ARCHITECTURE
Example 16-5. Corrected Error Handler Pseudocode with UCR Support

Corrected Error HANDLER: (* Called from CMCI handler or OS CMC Polling Dispatcher*)
IF CPU supports MCA

THEN
FOR each bank of machine-check registers

DO
READ IA32_MCi_STATUS;
IF VAL flag in IA32_MCi_STATUS = 1

THEN
IF UC Flag in IA32_MCi_STATUS = 0 (* It is a corrected error *)

THEN
GOTO LOG CMC ERROR;

ELSE
IF Bit 24 in IA32_MCG_CAP = 0

THEN
GOTO CONTINUE;

FI;
IF S Flag in IA32_MCi_STATUS = 0 AND AR Flag in IA32_MCi_STATUS = 0

THEN (* It is a uncorrected no action required error *)
GOTO LOG CMC ERROR

FI
IF EN Flag in IA32_MCi_STATUS = 0

THEN (* It is a spurious MCA error *)
GOTO LOG CMC ERROR

FI;
FI;

FI;
GOTO CONTINUE;

LOG CMC ERROR:
SAVE IA32_MCi_STATUS;
If MISCV Flag in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_MISC;
SET all 0 to IA32_MCi_MISC;

FI;
IF ADDRV Flag in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_ADDR;
SET all 0 to IA32_MCi_ADDR

FI;
SET all 0 to IA32_MCi_STATUS;
CONTINUE:

OD;
(*END FOR *)

FI;
16-36 Vol. 3B

CHAPTER 17
INTERPRETING MACHINE CHECK ERROR CODES

Encoding of the model-specific and other information fields is different across processor families. The differences
are documented in the following sections.

17.1 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY 06H,
MACHINE ERROR CODES FOR MACHINE CHECK

This section provides information for interpreting additional model-specific fields for external bus errors relating to
processor family 06H. The references to processor family 06H refers to only IA-32 processors with CPUID signa-
tures listed in Table 17-1.

These errors are reported in the IA32_MCi_STATUS MSRs. They are reported architecturally as compound errors
with a general form of 0000 1PPT RRRR IILL in the MCA error code field. See Chapter 16 for information on the
interpretation of compound error codes. Incremental decoding information is listed in Table 17-2.

Table 17-1. CPUID DisplayFamily_DisplayModel Signatures for Processor Family 06H
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_0EH Intel® Core™ Duo processor, Intel® Core™ Solo processor

06_0DH Intel Pentium M processor

06_09H Intel Pentium M processor

06_7H, 06_08H, 06_0AH, 06_0BH Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor

06_01H Intel Pentium Pro Processor

Table 17-2. Incremental Decoding Information: Processor Family 06H Machine Error Codes for Machine Check
Type Bit No. Bit Function Bit Description

MCA Error
Codes1

15:0

Model Specific
Errors

18:16 Reserved Reserved

24:19 Bus Queue Request
Type

000000: BQ_DCU_READ_TYPE error.

000010: BQ_IFU_DEMAND_TYPE error.

000011: BQ_IFU_DEMAND_NC_TYPE error.

000100: BQ_DCU_RFO_TYPE error.

000101: BQ_DCU_RFO_LOCK_TYPE error.

000110: BQ_DCU_ITOM_TYPE error.

001000: BQ_DCU_WB_TYPE error.

001010: BQ_DCU_WCEVICT_TYPE error.

001011: BQ_DCU_WCLINE_TYPE error.

001100: BQ_DCU_BTM_TYPE error.
Vol. 3B 17-1

INTERPRETING MACHINE CHECK ERROR CODES
001101: BQ_DCU_INTACK_TYPE error.

001110: BQ_DCU_INVALL2_TYPE error.

001111: BQ_DCU_FLUSHL2_TYPE error.

010000: BQ_DCU_PART_RD_TYPE error.

010010: BQ_DCU_PART_WR_TYPE error.

010100: BQ_DCU_SPEC_CYC_TYPE error.

011000: BQ_DCU_IO_RD_TYPE error.

011001: BQ_DCU_IO_WR_TYPE error.

011100: BQ_DCU_LOCK_RD_TYPE error.

011110: BQ_DCU_SPLOCK_RD_TYPE error.

011101: BQ_DCU_LOCK_WR_TYPE error.

27:25 Bus Queue Error Type 000: BQ_ERR_HARD_TYPE error.

001: BQ_ERR_DOUBLE_TYPE error.

010: BQ_ERR_AERR2_TYPE error.

100: BQ_ERR_SINGLE_TYPE error.

101: BQ_ERR_AERR1_TYPE error.

28 FRC Error 1 if FRC error active.

29 BERR 1 if BERR is driven.

30 Internal BINIT 1 if BINIT driven for this processor.

31 Reserved Reserved

Other
Information

34:32 Reserved Reserved

35 External BINIT 1 if BINIT is received from external bus.

36 Response Parity Error This bit is asserted in IA32_MCi_STATUS if this component has received a parity
error on the RS[2:0]# pins for a response transaction. The RS signals are checked
by the RSP# external pin.

37 Bus BINIT This bit is asserted in IA32_MCi_STATUS if this component has received a hard
error response on a split transaction one access that has needed to be split across
the 64-bit external bus interface into two accesses).

38 Timeout BINIT This bit is asserted in IA32_MCi_STATUS if this component has experienced a ROB
time-out, which indicates that no micro-instruction has been retired for a
predetermined period of time.

A ROB time-out occurs when the 15-bit ROB time-out counter carries a 1 out of its
high order bit. 2 The timer is cleared when a micro-instruction retires, an exception
is detected by the core processor, RESET is asserted, or when a ROB BINIT occurs.

The ROB time-out counter is prescaled by the 8-bit PIC timer which is a divide by
128 of the bus clock (the bus clock is 1:2, 1:3, 1:4 of the core clock3). When a carry
out of the 8-bit PIC timer occurs, the ROB counter counts up by one. While this bit is
asserted, it cannot be overwritten by another error.

41:39 Reserved Reserved

42 Hard Error This bit is asserted in IA32_MCi_STATUS if this component has initiated a bus
transactions which has received a hard error response. While this bit is asserted, it
cannot be overwritten.

43 IERR This bit is asserted in IA32_MCi_STATUS if this component has experienced a
failure that causes the IERR pin to be asserted. While this bit is asserted, it cannot
be overwritten.

Table 17-2. Incremental Decoding Information: Processor Family 06H Machine Error Codes for Machine Check
Type Bit No. Bit Function Bit Description
17-2 Vol. 3B

INTERPRETING MACHINE CHECK ERROR CODES
17.2 INCREMENTAL DECODING INFORMATION: INTEL® CORE™ 2 PROCESSOR
FAMILY, MACHINE ERROR CODES FOR MACHINE CHECK

Table 17-4 provides information for interpreting additional model-specific fields for external bus errors relating to
processors based on Intel® Core™ microarchitecture, which implements the P4 bus specification. Table 17-3 lists
the CPUID signatures for Intel 64 processors that are covered by Table 17-4. These errors are reported in the
IA32_MCi_STATUS MSRs. They are reported architecturally as compound errors with a general form of
0000 1PPT RRRR IILL in the MCA error code field. See Chapter 16 for information on the interpretation of
compound error codes.

44 AERR This bit is asserted in IA32_MCi_STATUS if this component has initiated 2 failing
bus transactions which have failed due to Address Parity Errors AERR asserted).
While this bit is asserted, it cannot be overwritten.

45 UECC The Uncorrectable ECC error bit is asserted in IA32_MCi_STATUS for uncorrected
ECC errors. While this bit is asserted, the ECC syndrome field will not be
overwritten.

46 CECC The correctable ECC error bit is asserted in IA32_MCi_STATUS for corrected ECC
errors.

54:47 ECC Syndrome The ECC syndrome field in IA32_MCi_STATUS contains the 8-bit ECC syndrome only
if the error was a correctable/uncorrectable ECC error and there wasn't a previous
valid ECC error syndrome logged in IA32_MCi_STATUS.

A previous valid ECC error in IA32_MCi_STATUS is indicated by
IA32_MCi_STATUS.bit45 uncorrectable error occurred) being asserted. After
processing an ECC error, machine check handling software should clear
IA32_MCi_STATUS.bit45 so that future ECC error syndromes can be logged.

56:55 Reserved Reserved

Status Register
Validity
Indicators1

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.
2. For processors with a CPUID signature of 06_0EH, a ROB time-out occurs when the 23-bit ROB time-out counter carries a 1 out of its

high order bit.
3. For processors with a CPUID signature of 6_06_60H and later, the PIC timer will count crystal clock cycles.

Table 17-3. CPUID DisplayFamily_DisplayModel Signatures for Processors Based on Intel® Core™ Microarchitecture
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_1DH Intel® Xeon® Processor 7400 series

06_17H Intel® Xeon® Processor 5200, 5400 series, Intel® Core™ 2 Quad processor Q9650

06_0FH Intel® Xeon® Processor 3000, 3200, 5100, 5300, 7300 series, Intel® Core™ 2 Quad, Intel® Core™ 2
Extreme, Intel® Core™ 2 Duo processors, Intel Pentium dual-core processors

Table 17-2. Incremental Decoding Information: Processor Family 06H Machine Error Codes for Machine Check
Type Bit No. Bit Function Bit Description
Vol. 3B 17-3

INTERPRETING MACHINE CHECK ERROR CODES
Table 17-4. Incremental Bus Error Codes of Machine Check for Processors
Based on Intel® Core™ Microarchitecture

Type Bit No. Bit Function Bit Description

MCA Error
Codes1

15:0

Model Specific
Errors

18:16 Reserved Reserved

24:19 Bus Queue Request
Type

‘000001: BQ_PREF_READ_TYPE error.

000000: BQ_DCU_READ_TYPE error.

000010: BQ_IFU_DEMAND_TYPE error

000011: BQ_IFU_DEMAND_NC_TYPE error.

000100: BQ_DCU_RFO_TYPE error.

000101: BQ_DCU_RFO_LOCK_TYPE error.

000110: BQ_DCU_ITOM_TYPE error.

001000: BQ_DCU_WB_TYPE error.

001010: BQ_DCU_WCEVICT_TYPE error.

001011: BQ_DCU_WCLINE_TYPE error.

001100: BQ_DCU_BTM_TYPE error.

001101: BQ_DCU_INTACK_TYPE error.

001110: BQ_DCU_INVALL2_TYPE error.

001111: BQ_DCU_FLUSHL2_TYPE error.

010000: BQ_DCU_PART_RD_TYPE error.

010010: BQ_DCU_PART_WR_TYPE error.

010100: BQ_DCU_SPEC_CYC_TYPE error.

011000: BQ_DCU_IO_RD_TYPE error.

011001: BQ_DCU_IO_WR_TYPE error.

011100: BQ_DCU_LOCK_RD_TYPE error.

011110: BQ_DCU_SPLOCK_RD_TYPE error.

011101: BQ_DCU_LOCK_WR_TYPE error.

100100: BQ_L2_WI_RFO_TYPE error.

100110: BQ_L2_WI_ITOM_TYPE error.

27:25 Bus Queue Error Type ‘001: Address Parity Error.

‘010: Response Hard Error.

‘011: Response Parity Error.

28 MCE Driven 1 if MCE is driven.

29 MCE Observed 1 if MCE is observed.

30 Internal BINIT 1 if BINIT driven for this processor.

31 BINIT Observed 1 if BINIT is observed for this processor.

Other
Information

33:32 Reserved Reserved

34 PIC and FSB Data
Parity

Data Parity detected on either PIC or FSB access.

35 Reserved Reserved

36 Response Parity Error This bit is asserted in IA32_MCi_STATUS if this component has received a parity
error on the RS[2:0]# pins for a response transaction. The RS signals are checked
by the RSP# external pin.
17-4 Vol. 3B

INTERPRETING MACHINE CHECK ERROR CODES
17.2.1 Model-Specific Machine Check Error Codes for Intel® Xeon® Processor 7400 Series
The Intel® Xeon® processor 7400 series has machine check register banks that generally follow the description of
Chapter 16 and Section 17.2. Additional error codes specific to the Intel Xeon processor 7400 series are described
in this section.

MC4_STATUS[63:0] is the main error logging for the processor’s L3 and front side bus errors for the Intel Xeon
processor 7400 series. It supports the L3 Errors, Bus and Interconnect Errors Compound Error Codes in the MCA
Error Code Field.

37 FSB Address Parity Address parity error detected:

1: Address parity error detected.
0: No address parity error.

38 Timeout BINIT This bit is asserted in IA32_MCi_STATUS if this component has experienced a ROB
time-out, which indicates that no micro-instruction has been retired for a
predetermined period of time.

A ROB time-out occurs when the 23-bit ROB time-out counter carries a 1 out of its
high order bit. The timer is cleared when a micro-instruction retires, an exception is
detected by the core processor, RESET is asserted, or when a ROB BINIT occurs.

The ROB time-out counter is prescaled by the 8-bit PIC timer which is a divide by
128 of the bus clock the bus clock is 1:2, 1:3, 1:4 of the core clock). When a carry
out of the 8-bit PIC timer occurs, the ROB counter counts up by one. While this bit is
asserted, it cannot be overwritten by another error.

41:39 Reserved Reserved

42 Hard Error This bit is asserted in IA32_MCi_STATUS if this component has initiated a bus
transactions which has received a hard error response. While this bit is asserted, it
cannot be overwritten.

43 IERR This bit is asserted in IA32_MCi_STATUS if this component has experienced a
failure that causes the IERR pin to be asserted. While this bit is asserted, it cannot
be overwritten.

44 Reserved Reserved

45 Reserved Reserved

46 Reserved Reserved

54:47 Reserved Reserved

56:55 Reserved Reserved.

Status Register
Validity
Indicators1

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

Table 17-4. Incremental Bus Error Codes of Machine Check for Processors
Based on Intel® Core™ Microarchitecture (Contd.)

Type Bit No. Bit Function Bit Description
Vol. 3B 17-5

INTERPRETING MACHINE CHECK ERROR CODES
17.2.1.1 Processor Machine Check Status Register, Incremental MCA Error Code Definition

The Intel Xeon processor 7400 series uses compound MCA Error Codes for logging its Bus internal machine check
errors, L3 Errors, and Bus/Interconnect Errors. It defines incremental Machine Check error types
(IA32_MC6_STATUS[15:0]) beyond those defined in Chapter 16. Table 17-5 lists these incremental MCA error
code types that apply to IA32_MC6_STATUS. Error code details are specified in MC6_STATUS [31:16] (see
Section 17.2.2), the “Model Specific Error Code” field. The information in the “Other_Info” field
(MC4_STATUS[56:32]) is common to the three processor error types. It contains a correctable event count and
specifies the MC6_MISC register format.

The Bold faced binary encodings are the only encodings used by the processor for MC4_STATUS[15:0].

17.2.2 Intel® Xeon® Processor 7400 Model Specific Error Code Field

17.2.2.1 Processor Model Specific Error Code Field, Type B: Bus and Interconnect Error Codes
The Model Specific Error Code field in MC6_STATUS (bits 31:16) is defined in Table 17-6.

Table 17-5. Incremental MCA Error Code Types for Intel® Xeon® Processor 7400
Processor MCA_Error_Code (MC6_STATUS[15:0])

Type Error Code Binary Encoding Meaning

C Internal Error 0000 0100 0000 0000 Internal Error Type Code.

B Bus and
Interconnect
Error

0000 100x 0000 1111 Not used but this encoding is reserved for compatibility with other MCA
implementations.

0000 101x 0000 1111 Not used but this encoding is reserved for compatibility with other MCA
implementations.

0000 110x 0000 1111 Not used but this encoding is reserved for compatibility with other MCA
implementations.

0000 1110 0000 1111 Bus and Interconnection Error Type Code.

0000 1111 0000 1111 Not used but this encoding is reserved for compatibility with other MCA
implementations.

Table 17-6. Type B: Bus and Interconnect Error Codes
Bit Number Sub-Field Name Description

16 FSB Request Parity Parity error detected during FSB request phase.

19:17 Reserved Reserved

20 FSB Hard Fail Response “Hard Failure“ response received for a local transaction.

21 FSB Response Parity Parity error on FSB response field detected.

22 FSB Data Parity FSB data parity error on inbound data detected.

31:23 Reserved Reserved
17-6 Vol. 3B

INTERPRETING MACHINE CHECK ERROR CODES
17.2.2.2 Processor Model Specific Error Code Field, Type C: Cache Bus Controller Error Codes

17.3 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR
3400, 3500, 5500 SERIES, MACHINE ERROR CODES FOR MACHINE CHECK

Table 17-8 through Table 17-12 provide information for interpreting additional model-specific fields for memory
controller errors relating to the Intel® Xeon® processor 3400, 3500, 5500 series with CPUID DisplayFamily_Dis-
playSignature 06_1AH, which supports Intel® QuickPath Interconnect links. Incremental MC error codes related to
the Intel QPI links are reported in the register banks IA32_MC0 and IA32_MC1, incremental error codes for internal
machine check are reported in the register bank IA32_MC7, and incremental error codes for the memory controller
unit are reported in the register bank IA32_MC8.

Table 17-7. Type C: Cache Bus Controller Error Codes
MC4_STATUS[31:16] (MSCE) Value Error Description

0000_0000_0000_0001 0001H Inclusion Error from Core 0.

0000_0000_0000_0010 0002H Inclusion Error from Core 1.

0000_0000_0000_0011 0003H Write Exclusive Error from Core 0.

0000_0000_0000_0100 0004H Write Exclusive Error from Core 1.

0000_0000_0000_0101 0005H Inclusion Error from FSB.

0000_0000_0000_0110 0006H SNP Stall Error from FSB.

0000_0000_0000_0111 0007H Write Stall Error from FSB.

0000_0000_0000_1000 0008H FSB Arb Timeout Error.

0000_0000_0000_1010 000AH Inclusion Error from Core 2.

0000_0000_0000_1011 000BH Write Exclusive Error from Core 2.

0000_0010_0000_0000 0200H Internal Timeout Error.

0000_0011_0000_0000 0300H Internal Timeout Error.

0000_0100_0000_0000 0400H Intel® Cache Safe Technology Queue Full Error or Disabled-ways-in-a-set overflow.

0000_0101_0000_0000 0500H Quiet cycle Timeout Error (correctable).

1100_0000_0000_0010 C002H Correctable ECC event on outgoing Core 0 data.

1100_0000_0000_0100 C004H Correctable ECC event on outgoing Core 1 data.

1100_0000_0000_1000 C008H Correctable ECC event on outgoing Core 2 data.

1110_0000_0000_0010 E002H Uncorrectable ECC error on outgoing Core 0 data.

1110_0000_0000_0100 E004H Uncorrectable ECC error on outgoing Core 1 data.

1110_0000_0000_1000 E008H Uncorrectable ECC error on outgoing Core 2 data.

 — All other encodings — Reserved
Vol. 3B 17-7

INTERPRETING MACHINE CHECK ERROR CODES
17.3.1 Intel® QPI Machine Check Errors

Table 17-8. Intel® QPI Machine Check Error Codes for IA32_MC0_STATUS and IA32_MC1_STATUS
Type Bit No. Bit Function Bit Description

MCA Error Codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

15:0 MCACOD Bus error format: 1PPTRRRRIILL

Model Specific Errors 16 Header Parity If 1, QPI Header had bad parity.

17 Data Parity If 1, QPI Data packet had bad parity.

18 Retries Exceeded If 1, the number of QPI retries was exceeded.

19 Received Poison if 1, received a data packet that was marked as poisoned by the sender.

21:20 Reserved Reserved

22 Unsupported Message If 1, QPI received a message encoding it does not support.

23 Unsupported Credit If 1, QPI credit type is not supported.

24 Receive Flit Overrun If 1, sender sent too many QPI flits to the receiver.

25 Received Failed Response If 1, indicates that sender sent a failed response to receiver.

26 Receiver Clock Jitter If 1, clock jitter detected in the internal QPI clocking.

56:27 Reserved Reserved

Status Register
Validity Indicators1

63:57

Table 17-9. Intel® QPI Machine Check Error Codes for IA32_MC0_MISC and IA32_MC1_MISC
Type Bit No. Bit Function Bit Description

Model Specific
Errors1

NOTES:
1. Which of these fields are valid depends on the error type.

7:0 QPI Opcode Message class and opcode from the packet with the error.

13:8 RTID QPI Request Transaction ID.

15:14 Reserved Reserved

18:16 RHNID QPI Requestor/Home Node ID.

23:19 Reserved Reserved

24 IIB QPI Interleave/Head Indication Bit.
17-8 Vol. 3B

INTERPRETING MACHINE CHECK ERROR CODES
17.3.2 Internal Machine Check Errors

17.3.3 Memory Controller Errors

Table 17-10. Machine Check Error Codes for IA32_MC7_STATUS
Type Bit No. Bit Function Bit Description

MCA Error Codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

15:0 MCACOD

Model Specific Errors 23:16 Reserved Reserved

31:24 Reserved, except for the
following

00H: No error.

03H: Reset firmware did not complete.

08H: Received an invalid CMPD.

0AH: Invalid Power Management Request.

0DH: Invalid S-state transition.

11H: VID controller does not match POC controller selected.

1AH: MSID from POC does not match CPU MSID.

56:32 Reserved Reserved

Status Register
Validity Indicators1

63:57

Table 17-11. Incremental Memory Controller Error Codes of Machine Check for IA32_MC8_STATUS
Type Bit No. Bit Function Bit Description

MCA Error Codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

15:0 MCACOD Memory error format: 1MMMCCCC

Model Specific Errors 16 Read ECC Error If 1, ECC occurred on a read.

17 RAS ECC Error If 1, ECC occurred on a scrub.

18 Write Parity Error If 1, bad parity on a write.

19 Redundancy Loss if 1, error in half of redundant memory.

20 Reserved Reserved

21 Memory Range Error If 1, memory access out of range.

22 RTID Out of Range If 1, Internal ID invalid.

23 Address Parity Error If 1, bad address parity.

24 Byte Enable Parity
Error

If 1, bad enable parity.

Other Information 37:25 Reserved Reserved

52:38 CORE_ERR_CNT Corrected error count.

56:53 Reserved Reserved

Status Register Validity
Indicators1

63:57
Vol. 3B 17-9

INTERPRETING MACHINE CHECK ERROR CODES
17.4 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR E5
FAMILY, MACHINE ERROR CODES FOR MACHINE CHECK

Table 17-13 through Table 17-15 provide information for interpreting additional model-specific fields for memory
controller errors relating to the Intel® Xeon® processor E5 Family with CPUID DisplayFamily_DisplaySignature
06_2DH, which supports Intel QuickPath Interconnect links. Incremental MC error codes related to the Intel QPI
links are reported in the register banks IA32_MC6 and IA32_MC7, incremental error codes for internal machine
check error from PCU controller are reported in the register bank IA32_MC4, and incremental error codes for the
memory controller unit are reported in the register banks IA32_MC8—IA32_MC11.

17.4.1 Internal Machine Check Errors

Table 17-12. Incremental Memory Controller Error Codes of Machine Check for IA32_MC8_MISC
Type Bit No. Bit Function Bit Description

Model Specific
Errors1

NOTES:
1. Which of these fields are valid depends on the error type.

7:0 RTID Transaction Tracker ID.

15:8 Reserved Reserved

17:16 DIMM DIMM ID which received the error.

19:18 Channel Channel ID which received the error.

31:20 Reserved Reserved

63:32 Syndrome ECC Syndrome.

Table 17-13. Machine Check Error Codes for IA32_MC4_STATUS
Type Bit No. Bit Function Bit Description

MCA Error Codes1 15:0 MCACOD

Model Specific Errors 19:16 Reserved, except for the
following

0000b: No Error

0001b: Non_IMem_Sel

0010b: I_Parity_Error

0011b: Bad_OpCode

0100b: I_Stack_Underflow

0101b: I_Stack_Overflow

0110b: D_Stack_Underflow

0111b: D_Stack_Overflow

1000b: Non-DMem_Sel

1001b: D_Parity_Error
17-10 Vol. 3B

INTERPRETING MACHINE CHECK ERROR CODES
17.4.2 Intel® QPI Machine Check Errors

17.4.3 Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the IA32_MC8_STATUS−
IA32_MC11_STATUS MSRs. The supported error codes follow the architectural MCACOD definition type
1MMMCCCC; see Chapter 16, “Machine-Check Architecture.” MSR_ERROR_CONTROL.[bit 1] can enable additional
information logging of the IMC. The additional error information logged by the IMC is stored in the IA32_M-
Ci_STATUS and IA32_MCi_MISC, where i = 8, 11.

23:20 Reserved Reserved

31:24 Reserved, except for the
following

00H: No Error

0DH: MC_IMC_FORCE_SR_S3_TIMEOUT

0EH: MC_CPD_UNCPD_ST_TIMEOUT

0FH: MC_PKGS_SAFE_WP_TIMEOUT

43H: MC_PECI_MAILBOX_QUIESCE_TIMEOUT

5CH: MC_MORE_THAN_ONE_LT_AGENT

60H: MC_INVALID_PKGS_REQ_PCH

61H: MC_INVALID_PKGS_REQ_QPI

62H: MC_INVALID_PKGS_RES_QPI

63H: MC_INVALID_PKGC_RES_PCH

64H: MC_INVALID_PKG_STATE_CONFIG

70H: MC_WATCHDG_TIMEOUT_PKGC_SECONDARY

71H: MC_WATCHDG_TIMEOUT_PKGC_MAIN

72H: MC_WATCHDG_TIMEOUT_PKGS_MAIN

7AH: MC_HA_FAILSTS_CHANGE_DETECTED

81H: MC_RECOVERABLE_DIE_THERMAL_TOO_HOT

56:32 Reserved Reserved

Status Register
Validity Indicators1

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

Table 17-14. Intel® QPI MC Error Codes for IA32_MC6_STATUS and IA32_MC7_STATUS
Type Bit No. Bit Function Bit Description

MCA Error Codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

15:0 MCACOD Bus error format: 1PPTRRRRIILL

Model Specific Errors 56:16 Reserved Reserved

Status Register
Validity Indicators1

63:57

Table 17-13. Machine Check Error Codes for IA32_MC4_STATUS (Contd.)
Type Bit No. Bit Function Bit Description
Vol. 3B 17-11

INTERPRETING MACHINE CHECK ERROR CODES
Table 17-15. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 8, 11)
Type Bit No. Bit Function Bit Description

MCA Error Codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

15:0 MCACOD Bus error format: 1PPTRRRRIILL

Model Specific Errors 31:16 Reserved, except for the
following

001H: Address parity error.
002H: HA Wrt buffer Data parity error.
004H: HA Wrt byte enable parity error.
008H: Corrected patrol scrub error.
010H: Uncorrected patrol scrub error.
020H: Corrected spare error.
040H: Uncorrected spare error.

36:32 Other Info When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first device
error when corrected error is detected during normal read.

37 Reserved Reserved

56:38 See Chapter 16, “Machine-Check Architecture.”

Status Register
Validity Indicators1

63:57

Table 17-16. Intel IMC MC Error Codes for IA32_MCi_MISC (i= 8, 11)
Type Bit No. Bit Function Bit Description

MCA Addr Info1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

8:0 See Chapter 16, “Machine-Check Architecture.”

Model Specific Errors 13:9 • When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second
device error when corrected error is detected during normal read.

• Otherwise, contains parity error if MCi_Status indicates HA_WB_Data
or HA_W_BE parity error.

29:14 ErrMask_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device
error bit mask.

45:30 ErrMask_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-
device error bit mask.

50:46 FailRank_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device
error failing rank.

55:51 FailRank_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-
device error failing rank.

58:56 Reserved Reserved

61:59 Reserved Reserved

62 Valid_1stErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid
data from the first correctable error in a memory device.

63 Valid_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid
data due to a second correctable error in a memory device. Use this
information only after there is valid first error information indicated by bit
62.
17-12 Vol. 3B

INTERPRETING MACHINE CHECK ERROR CODES
17.5 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR E5
V2 AND INTEL® XEON® PROCESSOR E7 V2 FAMILIES, MACHINE ERROR
CODES FOR MACHINE CHECK

The Intel® Xeon® processor E5 v2 family and the Intel® Xeon® processor E7 v2 family are based on the Ivy
Bridge-EP microarchitecture and can be identified with CPUID DisplayFamily_DisplaySignature 06_3EH. Incre-
mental error codes for internal machine check error from the PCU controller is reported in the register bank
IA32_MC4; Table 17-17 lists model-specific fields to interpret error codes applicable to IA32_MC4_STATUS. Incre-
mental MC error codes related to the Intel QPI links are reported in the register bank IA32_MC5. Information listed
in Table 17-14 for QPI MC error codes apply to IA32_MC5_STATUS. Incremental error codes for the memory
controller unit are reported in the register banks IA32_MC9−IA32_MC16. Table 17-18 lists model-specific error
codes that apply to IA32_MCi_STATUS, where i = 9-16.

17.5.1 Internal Machine Check Errors

Table 17-17. Machine Check Error Codes for IA32_MC4_STATUS
Type Bit No. Bit Function Bit Description

MCA Error Codes1 15:0 MCACOD

Model Specific Errors 19:16 Reserved, except for the
following

0000b: No Error

0001b: Non_IMem_Sel

0010b: I_Parity_Error

0011b: Bad_OpCode

0100b: I_Stack_Underflow

0101b: I_Stack_Overflow

0110b: D_Stack_Underflow

0111b: D_Stack_Overflow

1000b: Non-DMem_Sel

1001b: D_Parity_Error

23:20 Reserved Reserved

31:24 Reserved, except for the
following

00H: No Error

0DH: MC_IMC_FORCE_SR_S3_TIMEOUT

0EH: MC_CPD_UNCPD_ST_TIMEOUT

0FH: MC_PKGS_SAFE_WP_TIMEOUT

43H: MC_PECI_MAILBOX_QUIESCE_TIMEOUT

44H: MC_CRITICAL_VR_FAILED

45H: MC_ICC_MAX-NOTSUPPORTED

5CH: MC_MORE_THAN_ONE_LT_AGENT

60H: MC_INVALID_PKGS_REQ_PCH

61H: MC_INVALID_PKGS_REQ_QPI

62H: MC_INVALID_PKGS_RES_QPI

63H: MC_INVALID_PKGC_RES_PCH

64H: MC_INVALID_PKG_STATE_CONFIG

70H: MC_WATCHDG_TIMEOUT_PKGC_SECONDARY

71H: MC_WATCHDG_TIMEOUT_PKGC_MAIN

72H: MC_WATCHDG_TIMEOUT_PKGS_MAIN
Vol. 3B 17-13

INTERPRETING MACHINE CHECK ERROR CODES
17.5.2 Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the IA32_MC9_STATUS−
IA32_MC16_STATUS MSRs. The supported error codes follow the architectural MCACOD definition type
1MMMCCCC; see Chapter 16, “Machine-Check Architecture.”

MSR_ERROR_CONTROL.[bit 1] can enable additional information logging of the IMC. The additional error informa-
tion logged by the IMC is stored in IA32_MCi_STATUS and IA32_MCi_MISC, where i = 9—16.

IA32_MCi_STATUS (i=9—12) logs errors from the first memory controller. The second memory controller logs
errors into IA32_MCi_STATUS (i=13—16).

7AH: MC_HA_FAILSTS_CHANGE_DETECTED

7BH: MC_PCIE_R2PCIE-RW_BLOCK_ACK_TIMEOUT

81H: MC_RECOVERABLE_DIE_THERMAL_TOO_HOT

56:32 Reserved Reserved

Status Register
Validity Indicators1

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

Table 17-18. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 9—16)
Type Bit No. Bit Function Bit Description

MCA Error Codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

15:0 MCACOD Memory Controller error format: 000F 0000 1MMM CCCC

Model Specific Errors 31:16 Reserved, except for the
following

001H: Address parity error.

002H: HA Wrt buffer data parity error.

004H: HA Wrt byte enable parity error.

008H: Corrected patrol scrub error.

010H: Uncorrected patrol scrub error.

020H: Corrected spare error.

040H: Uncorrected spare error.

080H: Corrected memory read error. (Only applicable with iMC’s
“Additional Error logging” Mode-1 enabled.)

100H - iMC, WDB, parity errors

36:32 Other Info When MSR_ERROR_CONTROL.[1] is set, logs an encoded value from the
first error device.

37 Reserved Reserved

56:38 See Chapter 16, “Machine-Check Architecture.”

Status Register
Validity Indicators1

63:57

Table 17-17. Machine Check Error Codes for IA32_MC4_STATUS (Contd.)
Type Bit No. Bit Function Bit Description
17-14 Vol. 3B

INTERPRETING MACHINE CHECK ERROR CODES
17.5.3 Home Agent Machine Check Errors
Memory errors from the first memory controller may be logged in the IA32_MC7_{STATUS,ADDR,MISC} registers,
while the second memory controller logs errors to the IA32_MC8_{STATUS,ADDR,MISC} registers.

17.6 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR E5
V3 FAMILY, MACHINE ERROR CODES FOR MACHINE CHECK

The Intel® Xeon® processor E5 v3 family is based on the Haswell-E microarchitecture and can be identified with
CPUID DisplayFamily_DisplaySignature 06_3FH. Incremental error codes for internal machine check errors from
the PCU controller are reported in the register bank IA32_MC4. Table 17-20 lists model-specific fields to interpret
error codes applicable to IA32_MC4_STATUS. Incremental MC error codes related to the Intel QPI links are
reported in the register banks IA32_MC5, IA32_MC20, and IA32_MC21. Table 17-21 contains information for QPI
MC error codes. Incremental error codes for the memory controller unit are reported in the register banks
IA32_MC9−IA32_MC16. Table 17-22 lists model-specific error codes that apply to IA32_MCi_STATUS, where i =
9—16.

Table 17-19. Intel IMC MC Error Codes for IA32_MCi_MISC (i= 9—16)
Type Bit No. Bit Function Bit Description

MCA Addr Info1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

8:0 See Chapter 16, “Machine-Check Architecture.”

Model Specific Errors 13:9 If the error logged is a MCWrDataPar error or a MCWrBEPar error, this field
is the WDB ID that has the parity error; OR if the second error logged is a
correctable read error, MC logs the second error device in this field.

29:14 ErrMask_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device
error bit mask.

45:30 ErrMask_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-
device error bit mask.

50:46 FailRank_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device
error failing rank.

55:51 FailRank_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-
device error failing rank.

61:56 Reserved

62 Valid_1stErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid
data from a correctable error from memory read associated with first
error device.

63 Valid_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid
data due to a second correctable error in a memory device. Use this
information only after there is valid first error info indicated by bit 62.
Vol. 3B 17-15

INTERPRETING MACHINE CHECK ERROR CODES
17.6.1 Internal Machine Check Errors

Table 17-20. Machine Check Error Codes for IA32_MC4_STATUS
Type Bit No. Bit Function Bit Description

MCA Error Codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

15:0 MCACOD

MCACOD2

2. The internal error codes may be model-specific.

15:0 Internal Errors 0402H: PCU internal errors.

0403H: PCU internal errors.

0406H: Intel TXT errors

0407H: Other UBOX internal errors.

An IERR caused by a core 3-strike the IA32_MC3_STATUS (MLC) is copied
to the IA32_MC4_STATUS. After a 3-strike, the core MCA banks will be
unavailable.

Model Specific Errors 19:16 Reserved, except for the
following

0000b: No error.

00xxb: PCU internal error.

23:20 Reserved Reserved

31:24 Reserved, except for the
following

00H: No Error

09H: MC_MESSAGE_CHANNEL_TIMEOUT

13H: MC_DMI_TRAINING_TIMEOUT

15H: MC_DMI_CPU_RESET_ACK_TIMEOUT

1EH: MC_VR_ICC_MAX_LT_FUSED_ICC_MAX

25H: MC_SVID_COMMAND_TIMEOUT

29H: MC_VR_VOUT_MAC_LT_FUSED_SVID

2BH: MC_PKGC_WATCHDOG_HANG_CBZ_DOWN

2CH: MC_PKGC_WATCHDOG_HANG_CBZ_UP

44H: MC_CRITICAL_VR_FAILED

46H: MC_VID_RAMP_DOWN_FAILED

49H: MC_SVID_WRITE_REG_VOUT_MAX_FAILED

4BH: MC_BOOT_VID_TIMEOUT; timeout setting boot VID for DRAM 0.

4FH: MC_SVID_COMMAND_ERROR

52H: MC_FIVR_CATAS_OVERVOL_FAULT

53H: MC_FIVR_CATAS_OVERCUR_FAULT

57H: MC_SVID_PKGC_REQUEST_FAILED

58H: MC_SVID_IMON_REQUEST_FAILED

59H: MC_SVID_ALERT_REQUEST_FAILED

62H: MC_INVALID_PKGS_RSP_QPI

64H: MC_INVALID_PKG_STATE_CONFIG

67H: MC_HA_IMC_RW_BLOCK_ACK_TIMEOUT

6AH: MC_MSGCH_PMREQ_CMP_TIMEOUT

72H: MC_WATCHDG_TIMEOUT_PKGS_MASTER

81H: MC_RECOVERABLE_DIE_THERMAL_TOO_HOT

56:32 Reserved Reserved

Status Register
Validity Indicators1

63:57
17-16 Vol. 3B

INTERPRETING MACHINE CHECK ERROR CODES
17.6.2 Intel® QPI Machine Check Errors
MC error codes associated with the Intel QPI agents are reported in the IA32_MC5_STATUS, IA32_MC20_STATUS,
and IA32_MC21_STATUS MSRs. The supported error codes follow the architectural MCACOD definition type
1PPTRRRRIILL; see Chapter 16, “Machine-Check Architecture.”

Table 17-21 lists model-specific fields to interpret error codes applicable to IA32_MC5_STATUS,
IA32_MC20_STATUS, and IA32_MC21_STATUS.

17.6.3 Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the
IA32_MC9_STATUS—IA32_MC16_STATUS MSRs. The supported error codes follow the architectural MCACOD defi-
nition type 1MMMCCCC; see Chapter 16, “Machine-Check Architecture.”

MSR_ERROR_CONTROL.[bit 1] can enable additional information logging of the IMC. The additional error informa-
tion logged by the IMC is stored in IA32_MCi_STATUS and IA32_MCi_MISC, where i = 9—16.

IA32_MCi_STATUS (i=9—12) logs errors from the first memory controller. The second memory controller logs
errors into IA32_MCi_STATUS (i=13—16).

Table 17-21. Intel® QPI MC Error Codes for IA32_MCi_STATUS (i = 5, 20, 21)
Type Bit No. Bit Function Bit Description

MCA Error Codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

15:0 MCACOD Bus error format: 1PPTRRRRIILL

Model Specific Errors 31:16 MSCOD 02H: Intel QPI physical layer detected drift buffer alarm.

03H: Intel QPI physical layer detected latency buffer rollover.

10H: Intel QPI link layer detected control error from R3QPI.

11H: Rx entered LLR abort state on CRC error.

12H: Unsupported or undefined packet.

13H: Intel QPI link layer control error.

15H: RBT used un-initialized value.

20H: Intel QPI physical layer detected a QPI in-band reset but aborted
initialization.

21H: Link failover data self-healing.

22H: Phy detected in-band reset (no width change).

23H: Link failover clock failover.

30H: Rx detected CRC error; successful LLR after Phy re-init.

31H: Rx detected CRC error; successful LLR without Phy re-init.

All other values are reserved.

37:32 Reserved Reserved

52:38 Corrected Error Cnt

56:53 Reserved Reserved

Status Register
Validity Indicators1

63:57
Vol. 3B 17-17

INTERPRETING MACHINE CHECK ERROR CODES
Table 17-22. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 9—16)
Type Bit No. Bit Function Bit Description

MCA Error Codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

15:0 MCACOD Memory Controller error format: 0000 0000 1MMM CCCC

Model Specific Errors 31:16 Reserved, except for
the following

0001H: DDR3 address parity error.

0002H: Uncorrected HA write data error.

0004H: Uncorrected HA data byte enable error.

0008H: Corrected patrol scrub error.

0010H: Uncorrected patrol scrub error.

0020H: Corrected spare error.

0040H: Uncorrected spare error.

0080H: Corrected memory read error. (Only applicable with iMC’s “Additional
Error logging” Mode-1 enabled.)

0100H: iMC, write data buffer parity errors.

0200H: DDR4 command address parity error.

36:32 Other Info When MSR_ERROR_CONTROL.[1] is set, logs an encoded value from the first
error device.

37 Reserved Reserved

56:38 See Chapter 16, “Machine-Check Architecture.”

Status Register
Validity Indicators1

63:57

Table 17-23. Intel IMC MC Error Codes for IA32_MCi_MISC (i= 9—16)
Type Bit No. Bit Function Bit Description

MCA Addr Info1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

8:0 See Chapter 16, “Machine-Check Architecture.”

Model Specific Errors 13:9 If the error logged is an MCWrDataPar error or an MCWrBEPar error, this field
is the WDB ID that has the parity error; OR if the second error logged is a
correctable read error, MC logs the second error device in this field.

29:14 ErrMask_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device
error bit mask.

45:30 ErrMask_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device
error bit mask.

50:46 FailRank_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device
error failing rank.

55:51 FailRank_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device
error failing rank.

61:56 Reserved Reserved

62 Valid_1stErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid
data from a correctable error from a memory read associated with first error
device.

63 Valid_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid
data due to a second correctable error in a memory device. Use this
information only after there is valid first error information indicated by bit 62.
17-18 Vol. 3B

INTERPRETING MACHINE CHECK ERROR CODES
17.6.4 Home Agent Machine Check Errors
Memory errors from the first memory controller may be logged in the IA32_MC7_{STATUS,ADDR,MISC} registers,
while the second memory controller logs errors in the IA32_MC8_{STATUS,ADDR,MISC} registers.

17.7 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR D
FAMILY, MACHINE ERROR CODES FOR MACHINE CHECK

The Intel® Xeon® processor D family is based on the Broadwell microarchitecture and can be identified with CPUID
DisplayFamily_DisplaySignature 06_56H. Incremental error codes for internal machine check error from the PCU
controller are reported in the register bank IA32_MC4. Table 17-24 lists model-specific fields to interpret error
codes applicable to IA32_MC4_STATUS. Incremental error codes for the memory controller unit are reported in the
register banks IA32_MC9−IA32_MC10. Table 17-18 lists model-specific error codes that apply to IA32_M-
Ci_STATUS, where i = 9—10.

17.7.1 Internal Machine Check Errors

Table 17-24. Machine Check Error Codes for IA32_MC4_STATUS
Type Bit No. Bit Function Bit Description

MCA Error Codes1 15:0 MCACOD

MCACOD2 15:0 Internal Errors 0402H: PCU internal errors.

0403H: Internal errors.

0406H: Intel TXT errors.

0407H: Other UBOX internal errors.

On an IERR caused by a core 3-strike, the IA32_MC3_STATUS (MLC) is
copied to the IA32_MC4_STATUS. After a 3-strike, the core MCA banks will
be unavailable.

Model Specific Errors 19:16 Reserved, except for the
following

0000b: No error.

00x1b: PCU internal error.

001xb: PCU internal error.

23:20 Reserved, except for the
following

x1xxb: UBOX error.

31:24 Reserved, except for the
following

00H: No Error

09H: MC_MESSAGE_CHANNEL_TIMEOUT

13H: MC_DMI_TRAINING_TIMEOUT

15H: MC_DMI_CPU_RESET_ACK_TIMEOUT

1EH: MC_VR_ICC_MAX_LT_FUSED_ICC_MAX

25H: MC_SVID_COMMAND_TIMEOUT

26H: MCA_PKGC_DIRECT_WAKE_RING_TIMEOUT

29H: MC_VR_VOUT_MAC_LT_FUSED_SVID

2BH: MC_PKGC_WATCHDOG_HANG_CBZ_DOWN

2CH: MC_PKGC_WATCHDOG_HANG_CBZ_UP

44H: MC_CRITICAL_VR_FAILED

46H: MC_VID_RAMP_DOWN_FAILED

49H: MC_SVID_WRITE_REG_VOUT_MAX_FAILED
Vol. 3B 17-19

INTERPRETING MACHINE CHECK ERROR CODES
17.7.2 Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the
IA32_MC9_STATUS—IA32_MC10_STATUS MSRs. The supported error codes follow the architectural MCACOD defi-
nition type 1MMMCCCC; see Chapter 16, “Machine-Check Architecture.”

MSR_ERROR_CONTROL.[bit 1] can enable additional information logging of the IMC. The additional error informa-
tion logged by the IMC is stored in IA32_MCi_STATUS and IA32_MCi_MISC, where i = 9—10.

4BH: MC_PP1_BOOT_VID_TIMEOUT. Timeout setting boot VID for DRAM 0.

4FH: MC_SVID_COMMAND_ERROR.

52H: MC_FIVR_CATAS_OVERVOL_FAULT.

53H: MC_FIVR_CATAS_OVERCUR_FAULT.

57H: MC_SVID_PKGC_REQUEST_FAILED

58H: MC_SVID_IMON_REQUEST_FAILED

59H: MC_SVID_ALERT_REQUEST_FAILED

62H: MC_INVALID_PKGS_RSP_QPI

64H: MC_INVALID_PKG_STATE_CONFIG

67H: MC_HA_IMC_RW_BLOCK_ACK_TIMEOUT

6AH: MC_MSGCH_PMREQ_CMP_TIMEOUT

72H: MC_WATCHDG_TIMEOUT_PKGS_MASTER

81H: MC_RECOVERABLE_DIE_THERMAL_TOO_HOT

56:32 Reserved Reserved

Status Register
Validity Indicators1

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.
2. The internal error codes may be model-specific.

Table 17-25. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 9—10)
Type Bit No. Bit Function Bit Description

MCA Error Codes1 15:0 MCACOD Memory Controller error format: 0000 0000 1MMM CCCC

Model Specific Errors 31:16 Reserved, except for the
following

0001H: DDR3 address parity error.

0002H: Uncorrected HA write data error.

0004H: Uncorrected HA data byte enable error.

0008H: Corrected patrol scrub error.

0010H: Uncorrected patrol scrub error.

0100H: iMC, write data buffer parity errors.

0200H: DDR4 command address parity error.

36:32 Other Info Reserved

37 Reserved Reserved

56:38 See Chapter 16, “Machine-Check Architecture.”

Status Register
Validity Indicators1

63:57

Table 17-24. Machine Check Error Codes for IA32_MC4_STATUS (Contd.)
Type Bit No. Bit Function Bit Description
17-20 Vol. 3B

INTERPRETING MACHINE CHECK ERROR CODES
17.8 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR E5
V4 FAMILY, MACHINE ERROR CODES FOR MACHINE CHECK

The Intel® Xeon® processor E5 v4 family is based on the Broadwell microarchitecture and can be identified with
CPUID DisplayFamily_DisplaySignature 06_4FH. Incremental error codes for internal machine check errors from
the PCU controller are reported in the register bank IA32_MC4. Table 17-20 in Section 17.6.1 lists model-specific
fields to interpret error codes applicable to IA32_MC4_STATUS.

Incremental MC error codes related to the Intel QPI links are reported in the register banks IA32_MC5,
IA32_MC20, and IA32_MC21. Information listed in Table 17-21 of Section 17.6.1 covers QPI MC error codes.

17.8.1 Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the
IA32_MC9_STATUS—IA32_MC16_STATUS MSRs. The supported error codes follow the architectural MCACOD defi-
nition type 1MMMCCCC; see Chapter 16, “Machine-Check Architecture.”

Table 17-26 lists model-specific error codes that apply to IA32_MCi_STATUS, where i = 9—16.

IA32_MCi_STATUS (i=9—12) logs errors from the first memory controller. The second memory controller logs
errors into IA32_MCi_STATUS (i=13—16).

17.8.2 Home Agent Machine Check Errors
MC error codes associated with mirrored memory corrections are reported in the IA32_MC7_MISC and
IA32_MC8_MISC MSRs. Table 17-27 lists model-specific error codes that apply to IA32_MCi_MISC, where i = 7, 8.

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

Table 17-26. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 9—16)
Type Bit No. Bit Function Bit Description

MCA Error Codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

15:0 MCACOD Memory Controller error format: 0000 0000 1MMM CCCC

Model Specific Errors 31:16 Reserved, except for the
following

0001H: DDR3 address parity error.

0002H: Uncorrected HA write data error.

0004H: Uncorrected HA data byte enable error.

0008H: Corrected patrol scrub error.

0010H: Uncorrected patrol scrub error.

0020H: Corrected spare error.

0040H: Uncorrected spare error.

0100H: iMC, write data buffer parity errors.

0200H: DDR4 command address parity error.

36:32 Other Info Reserved

37 Reserved Reserved

56:38 See Chapter 16, “Machine-Check Architecture.”

Status Register
Validity Indicators1

63:57
Vol. 3B 17-21

INTERPRETING MACHINE CHECK ERROR CODES
Memory errors from the first memory controller may be logged in the IA32_MC7_{STATUS,ADDR,MISC} registers,
while the second memory controller logs errors in the IA32_MC8_{STATUS,ADDR,MISC} registers.

17.9 INCREMENTAL DECODING INFORMATION: INTEL® XEON® SCALABLE
PROCESSOR FAMILY, MACHINE ERROR CODES FOR MACHINE CHECK

In the Intel® Xeon® Scalable Processor Family with CPUID DisplayFamily_DisplaySignature 06_55H, incremental
error codes for internal machine check errors from the PCU controller are reported in the register bank IA32_MC4.
Table 17-28 in Section 17.9.1 lists model-specific fields to interpret error codes applicable to IA32_MC4_STATUS.

17.9.1 Internal Machine Check Errors

Table 17-27. Intel HA MC Error Codes for IA32_MCi_MISC (i= 7, 8)
Bit No. Bit Function Bit Description

5:0 LSB See Figure 16-8.

8:6 Address Mode See Table 16-3.

40:9 Reserved Reserved

41 Failover Error occurred at a pair of mirrored memory channels. Error was corrected by mirroring with
channel failover.

42 Mirrorcorr Error was corrected by mirroring and primary channel scrubbed successfully.

63:43 Reserved Reserved

Table 17-28. Machine Check Error Codes for IA32_MC4_STATUS
Type Bit No. Bit Function Bit Description

MCA Error Codes1 15:0 MCACOD

MCACOD2 15:0 Internal Errors 0402H: PCU internal errors.

0403H: PCU internal errors.

0406H: Intel TXT errors.

0407H: Other UBOX internal errors.

On an IERR caused by a core 3-strike, the IA32_MC3_STATUS (MLC) is
copied to the IA32_MC4_STATUS. After a 3-strike, the core MCA banks will
be unavailable.

Model Specific Errors 19:16 Reserved, except for the
following

0000b: No error.

00xxb: PCU internal error.
17-22 Vol. 3B

INTERPRETING MACHINE CHECK ERROR CODES
23:20 Reserved Reserved

31:24 Reserved, except for the
following

00H: No Error

0DH: MCA_DMI_TRAINING_TIMEOUT

0FH: MCA_DMI_CPU_RESET_ACK_TIMEOUT

10H: MCA_MORE_THAN_ONE_LT_AGENT

1EH: MCA_BIOS_RST_CPL_INVALID_SEQ

1FH: MCA_BIOS_INVALID_PKG_STATE_CONFIG

25H: MCA_MESSAGE_CHANNEL_TIMEOUT

27H: MCA_MSGCH_PMREQ_CMP_TIMEOUT

30H: MCA_PKGC_DIRECT_WAKE_RING_TIMEOUT

31H: MCA_PKGC_INVALID_RSP_PCH

33H: MCA_PKGC_WATCHDOG_HANG_CBZ_DOWN

34H: MCA_PKGC_WATCHDOG_HANG_CBZ_UP

38H: MCA_PKGC_WATCHDOG_HANG_C3_UP_SF

40H: MCA_SVID_VCCIN_VR_ICC_MAX_FAILURE

41H: MCA_SVID_COMMAND_TIMEOUT

42H: MCA_SVID_VCCIN_VR_VOUT_MAX_FAILURE

43H: MCA_SVID_CPU_VR_CAPABILITY_ERROR

44H: MCA_SVID_CRITICAL_VR_FAILED

45H: MCA_SVID_SA_ITD_ERROR

46H: MCA_SVID_READ_REG_FAILED

47H: MCA_SVID_WRITE_REG_FAILED

48H: MCA_SVID_PKGC_INIT_FAILED

49H: MCA_SVID_PKGC_CONFIG_FAILED

4AH: MCA_SVID_PKGC_REQUEST_FAILED

4BH: MCA_SVID_IMON_REQUEST_FAILED

4CH: MCA_SVID_ALERT_REQUEST_FAILED

4DH: MCA_SVID_MCP_VP_ABSENT_OR_RAMP_ERROR

4EH: MCA_SVID_UNEXPECTED_MCP_VP_DETECTED

51H: MCA_FIVR_CATAS_OVERVOL_FAULT

52H: MCA_FIVR_CATAS_OVERCUR_FAULT

58H: MCA_WATCHDG_TIMEOUT_PKGC_SECONDARY

59H: MCA_WATCHDG_TIMEOUT_PKGC_MAIN

5AH: MCA_WATCHDG_TIMEOUT_PKGS_MAIN

61H: MCA_PKGS_CPD_UNPCD_TIMEOUT

63H: MCA_PKGS_INVALID_REQ_PCH

64H: MCA_PKGS_INVALID_REQ_INTERNAL

65H: MCA_PKGS_INVALID_RSP_INTERNAL

6BH: MCA_PKGS_SMBUS_VPP_PAUSE_TIMEOUT

81H: MC_RECOVERABLE_DIE_THERMAL_TOO_HOT

52:32 Reserved Reserved

54:53 CORR_ERR_STATUS Reserved

Table 17-28. Machine Check Error Codes for IA32_MC4_STATUS
Type Bit No. Bit Function Bit Description
Vol. 3B 17-23

INTERPRETING MACHINE CHECK ERROR CODES
17.9.2 Interconnect Machine Check Errors
MC error codes associated with the link interconnect agents are reported in the IA32_MC5_STATUS,
IA32_MC12_STATUS, and IA32_MC19_STATUS MSRs. The supported error codes follow the architectural MCACOD
definition type 1PPTRRRRIILL; see Chapter 16, “Machine-Check Architecture.”

Table 17-29 lists model-specific fields to interpret error codes applicable to IA32_MCi_STATUS, i= 5, 12, 19.

56:55 Reserved Reserved

Status Register
Validity Indicators1

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.
2. The internal error codes may be model-specific.

Table 17-29. Interconnect MC Error Codes for IA32_MCi_STATUS (i = 5, 12, 19)
Type Bit No. Bit Function Bit Description

MCA Error Codes1 15:0 MCACOD Bus error format: 1PPTRRRRIILL

The two supported compound error codes:

• 0x0C0F: Unsupported/Undefined Packet.
• 0x0E0F: For all other corrected and uncorrected errors.

Model Specific Errors 21:16 MSCOD The encoding of Uncorrectable (UC) errors are:

00H: UC Phy Initialization Failure.

01H: UC Phy detected drift buffer alarm.

02H: UC Phy detected latency buffer rollover.

10H: UC link layer Rx detected CRC error: unsuccessful LLR entered abort
state.

11H: UC LL Rx unsupported or undefined packet.

12H: UC LL or Phy control error.

13H: UC LL Rx parameter exchange exception.

1FH: UC LL detected control error from the link-mesh interface.

The encoding of correctable (COR) errors are:

20H: COR Phy initialization abort.

21H: COR Phy reset.

22H: COR Phy lane failure, recovery in x8 width.

23H: COR Phy L0c error corrected without Phy reset.

24H: COR Phy L0c error triggering Phy reset.

25H: COR Phy L0p exit error corrected with Phy reset.

30H: COR LL Rx detected CRC error; successful LLR without Phy re-init.

31H: COR LL Rx detected CRC error; successful LLR with Phy re-init.

All other values are reserved.

Table 17-28. Machine Check Error Codes for IA32_MC4_STATUS
Type Bit No. Bit Function Bit Description
17-24 Vol. 3B

INTERPRETING MACHINE CHECK ERROR CODES
17.9.3 Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the
IA32_MC13_STATUS—IA32_MC18_STATUS MSRs. The supported error codes follow the architectural MCACOD
definition type 1MMMCCCC; see Chapter 16, “Machine-Check Architecture.”

IA32_MCi_STATUS (i=13,14,17) logs errors from the first memory controller. The second memory controller logs
errors into IA32_MCi_STATUS (i=15,16,18).

31:22 MSCOD_SPARE The definition below applies to MSCOD 12h (UC LL or Phy Control Errors)

[Bit 22] : Phy Control Error.

[Bit 23] : Unexpected Retry.Ack flit.

[Bit 24] : Unexpected Retry.Req flit.

[Bit 25] : RF parity error.

[Bit 26] : Routeback Table error.

[Bit 27] : Unexpected Tx Protocol flit (EOP, Header or Data).

[Bit 28] : Rx Header-or-Credit BGF credit overflow/underflow.

[Bit 29] : Link Layer Reset still in progress when Phy enters L0 (Phy
training should not be enabled until after LL reset is complete as indicated
by KTILCL.LinkLayerReset going back to 0).

[Bit 30] : Link Layer reset initiated while protocol traffic not idle.

[Bit 31] : Link Layer Tx Parity Error.

37:32 Reserved Reserved

52:38 Corrected Error Cnt

56:53 Reserved Reserved

Status Register
Validity Indicators1

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

Table 17-29. Interconnect MC Error Codes for IA32_MCi_STATUS (i = 5, 12, 19)
Type Bit No. Bit Function Bit Description
Vol. 3B 17-25

INTERPRETING MACHINE CHECK ERROR CODES
17.9.4 M2M Machine Check Errors
MC error codes associated with M2M are reported in the IA32_MC7_STATUS and IA32_MC8_STATUS MSRs. The
supported error codes follow the architectural MCACOD definition type 1MMMCCCC; see Chapter 16, “Machine-
Check Architecture.”

Table 17-30. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 13—18)
Type Bit No. Bit Function Bit Description

MCA Error Codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

15:0 MCACOD Memory Controller error format: 0000 0000 1MMM CCCC

Model Specific Errors 31:16 Reserved, except for the
following

0001H: Address parity error.

0002H: HA write data parity error.

0004H: HA write byte enable parity error.

0008H: Corrected patrol scrub error.

0010H: Uncorrected patrol scrub error.

0020H: Corrected spare error.

0040H: Uncorrected spare error.

0080H: Any HA read error.

0100H: WDB read parity error.

0200H: DDR4 command address parity error.

0400H: Uncorrected address parity error.

0800H: Unrecognized request type.

0801H: Read response to an invalid scoreboard entry.

0802H: Unexpected read response.

0803H: DDR4 completion to an invalid scoreboard entry.

0804H: Completion to an invalid scoreboard entry.

0805H: Completion FIFO overflow.

0806H: Correctable parity error.

0807H: Uncorrectable error.

0808H: Interrupt received while outstanding interrupt was not ACKed.

0809H: ERID FIFO overflow.

080AH: Error on Write credits.

080BH: Error on Read credits.

080CH: Scheduler error.

080DH: Error event.

36:32 Other Info MC logs the first error device. This is an encoded 5-bit value of the device.

37 Reserved Reserved

56:38 See Chapter 16, “Machine-Check Architecture.”

Status Register
Validity Indicators1

63:57
17-26 Vol. 3B

INTERPRETING MACHINE CHECK ERROR CODES
17.9.5 Home Agent Machine Check Errors
MC error codes associated with mirrored memory corrections are reported in the IA32_MC7_MISC and
IA32_MC8_MISC MSRs. Table 17-32 lists model-specific error codes that apply to IA32_MCi_MISC, where i = 7, 8.

Memory errors from the first memory controller may be logged in the IA32_MC7_{STATUS,ADDR,MISC} registers,
while the second memory controller logs errors in the IA32_MC8_{STATUS,ADDR,MISC} registers.

Table 17-31. M2M MC Error Codes for IA32_MCi_STATUS (i= 7, 8)
Type Bit No. Bit Function Bit Description

MCA Error Codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

15:0 MCACOD Compound error format: 0000 0000 1MMM CCCC

Model Specific Errors 16 MscodDataRdErr Logged an MC read data error.

17 Reserved Reserved

18 MscodPtlWrErr Logged an MC partial write data error.

19 MscodFullWrErr Logged a full write data error.

20 MscodBgfErr Logged an M2M clock-domain-crossing buffer (BGF) error.

21 MscodTimeOut Logged an M2M time out.

22 MscodParErr Logged an M2M tracker parity error.

23 MscodBucket1Err Logged a fatal Bucket1 error.

31:24 Reserved Reserved

36:32 Other Info MC logs the first error device. This is an encoded 5-bit value of the device.

37 Reserved Reserved

56:38 See Chapter 16, “Machine-Check Architecture.”

Status Register
Validity Indicators1

63:57

Table 17-32. Intel HA MC Error Codes for IA32_MCi_MISC (i= 7, 8)
Bit No. Bit Function Bit Description

5:0 LSB See Figure 16-8.

8:6 Address Mode See Table 16-3.

40:9 Reserved Reserved

61:41 Reserved Reserved

62 Mirrorcorr Error was corrected by mirroring and primary channel scrubbed successfully.

63 Failover Error occurred at a pair of mirrored memory channels. Error was corrected by mirroring with
channel failover.
Vol. 3B 17-27

INTERPRETING MACHINE CHECK ERROR CODES
17.10 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH CPUID
DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_5FH, MACHINE ERROR
CODES FOR MACHINE CHECK

In Intel Atom® processors based on Goldmont Microarchitecture with CPUID DisplayFamily_DisplaySignature
06_5FH (Denverton), incremental error codes for the memory controller unit are reported in the register banks
IA32_MC6 and IA32_MC7. Table 17-33 in Section 17.10.1 lists model-specific fields to interpret error codes appli-
cable to IA32_MCi_STATUS, where i = 6, 7.

17.10.1 Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the IA32_MC6_STATUS and
IA32_MC7_STATUS MSRs. The supported error codes follow the architectural MCACOD definition type
1MMMCCCC; see Chapter 16, “Machine-Check Architecture.”

17.11 INCREMENTAL DECODING INFORMATION: 3RD GENERATION INTEL® XEON®
SCALABLE PROCESSOR FAMILY, MACHINE ERROR CODES FOR MACHINE
CHECK

In the 3rd generation Intel® Xeon® Scalable Processor Family with CPUID DisplayFamily_DisplaySignatures of
06_6AH and 06_6CH, incremental error codes for internal machine check errors from the PCU controller are
reported in the register bank IA32_MC4. Table 17-34 in Section 17.11.1 lists model-specific fields to interpret error
codes applicable to IA32_MC4_STATUS.

Table 17-33. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 6, 7)
Type Bit No. Bit Function Bit Description

MCA Error Codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

15:0 MCACOD

Model Specific Errors 31:16 Reserved, except for the
following

01H: Cmd/Addr parity.

02H: Corrected Demand/Patrol Scrub error.

04H: Uncorrected patrol scrub error.

08H: Uncorrected demand read error.

10H: WDB read ECC.

36:32 Other Info

37 Reserved Reserved

56:38 See Chapter 16, “Machine-Check Architecture.”

Status Register
Validity Indicators1

63:57
17-28 Vol. 3B

INTERPRETING MACHINE CHECK ERROR CODES
17.11.1 Internal Machine Check Errors

Table 17-34. Machine Check Error Codes for IA32_MC4_STATUS
Type Bit No. Bit Function Bit Description

Machine Check Error
Codes1

15:0 MCCOD

MCCOD 15:0 Internal Errors The value of this field will be 0402H for the PCU and 0406H for internal
firmware errors.

This applies for any logged error.

Model Specific Errors 19:16 Reserved, except for the
following

Model specific error code bits 19:16.

This logs the type of HW UC (PCU/VCU) error that has occurred. There are
7 errors defined.

01H: Instruction address out of valid space.

02H: Double bit RAM error on Instruction Fetch.

03H: Invalid OpCode seen.

04H: Stack Underflow.

05H: Stack Overflow.

06H: Data address out of valid space.

07H: Double bit RAM error on Data Fetch.

23:20 Reserved, except for the
following

Model specific error code bits 23:20.

This logs the type of HW FSM error that has occurred. There are 3 errors
defined.

04H: Clock/power IP response timeout.

05H: SMBus controller raised SMI.

09H: PM controller received invalid transaction.

31:24 Reserved, except for the
following

0DH: MCA_LLC_BIST_ACTIVE_TIMEOUT

0EH: MCA_DMI_TRAINING_TIMEOUT

0FH: MCA_DMI_STRAP_SET_ARRIVAL_TIMEOUT

10H: MCA_DMI_CPU_RESET_ACK_TIMEOUT

11H: MCA_MORE_THAN_ONE_LT_AGENT

14H: MCA_INCOMPATIBLE_PCH_TYPE

1EH: MCA_BIOS_RST_CPL_INVALID_SEQ

1FH: MCA_BIOS_INVALID_PKG_STATE_CONFIG

2DH: MCA_PCU_PMAX_CALIB_ERROR

2EH: MCA_TSC100_SYNC_TIMEOUT

3AH: MCA_GPSB_TIMEOUT

3BH: MCA_PMSB_TIMEOUT

3EH: MCA_IOSFSB_PMREQ_CMP_TIMEOUT

40H: MCA_SVID_VCCIN_VR_ICC_MAX_FAILURE

42H: MCA_SVID_VCCIN_VR_VOUT_FAILURE

43H: MCA_SVID_CPU_VR_CAPABILITY_ERROR

44H: MCA_SVID_CRITICAL_VR_FAILED

45H: MCA_SVID_SA_ITD_ERROR

46H: MCA_SVID_READ_REG_FAILED

47H: MCA_SVID_WRITE_REG_FAILED

4AH: MCA_SVID_PKGC_REQUEST_FAILED
Vol. 3B 17-29

INTERPRETING MACHINE CHECK ERROR CODES
4BH: MCA_SVID_IMON_REQUEST_FAILED

4CH: MCA_SVID_ALERT_REQUEST_FAILED

4DH: MCA_SVID_MCP_VR_RAMP_ERROR

56H: MCA_FIVR_PD_HARDERR

58H: MCA_WATCHDOG_TIMEOUT_PKGC_SECONDARY

59H: MCA_WATCHDOG_TIMEOUT_PKGC_MAIN

5AH: MCA_WATCHDOG_TIMEOUT_PKGS_MAIN

5BH: MCA_WATCHDOG_TIMEOUT_MSG_CH_FSM

5CH: MCA_WATCHDOG_TIMEOUT_BULK_CR_FSM

5DH: MCA_WATCHDOG_TIMEOUT_IOSFSB_FSM

60H: MCA_PKGS_SAFE_WP_TIMEOUT

61H: MCA_PKGS_CPD_UNCPD_TIMEOUT

62H: MCA_PKGS_INVALID_REQ_PCH

63H: MCA_PKGS_INVALID_REQ_INTERNAL

64H: MCA_PKGS_INVALID_RSP_INTERNAL

65H-7AH: MCA_PKGS_RESET_PREP_TIMEOUT

7BH: MCA_PKGS_SMBUS_VPP_PAUSE_TIMEOUT

7CH: MCA_PKGS_SMBUS_MCP_PAUSE_TIMEOUT

7DH: MCA_PKGS_SMBUS_SPD_PAUSE_TIMEOUT

80H: MCA_PKGC_DISP_BUSY_TIMEOUT

81H: MCA_PKGC_INVALID_RSP_PCH

83H: MCA_PKGC_WATCHDOG_HANG_CBZ_DOWN

84H: MCA_PKGC_WATCHDOG_HANG_CBZ_UP

87H: MCA_PKGC_WATCHDOG_HANG_C2_BLKMASTER

88H: MCA_PKGC_WATCHDOG_HANG_C2_PSLIMIT

89H: MCA_PKGC_WATCHDOG_HANG_SETDISP

8BH: MCA_PKGC_ALLOW_L1_ERROR

90H: MCA_RECOVERABLE_DIE_THERMAL_TOO_HOT

A0H: MCA_ADR_SIGNAL_TIMEOUT

A1H: MCA_BCLK_FREQ_OC_ABOVE_THRESHOLD

B0H: MCA_DISPATCHER_RUN_BUSY_TIMEOUT

37:32 ENH_MCA_AVAIL0 Available when Enhanced MCA is in use.

52:38 CORR_ERR_COUNT Correctable error count.

54:53 CORRERRORSTATUSIND These bits are used to indicate when the number of corrected errors has
exceeded the safe threshold to the point where an uncorrected error has
become more likely to happen.

Table 3 shows the encoding of these bits.

56:55 ENH_MCA_AVAIL1 Available when Enhanced MCA is in use.

Status Register
Validity Indicators1

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

Table 17-34. Machine Check Error Codes for IA32_MC4_STATUS (Contd.)
Type Bit No. Bit Function Bit Description
17-30 Vol. 3B

INTERPRETING MACHINE CHECK ERROR CODES
17.11.2 Interconnect Machine Check Errors
MC error codes associated with the link interconnect agents are reported in the IA32_MC5_STATUS,
IA32_MC7_STATUS, and IA32_MC8_STATUS MSRs. The supported error codes follow the architectural MCACOD
definition type 1PPTRRRRIILL; see Chapter 16, “Machine-Check Architecture.”

NOTE
The interconnect machine check errors in this section apply only to the 3rd generation Intel Xeon
Scalable Processor Family with a CPUID DisplayFamily_DisplaySignature of 06_6AH. These do not
apply to the 3rd generation Intel Xeon Scalable Processor Family with a CPUID
DisplayFamily_DisplaySignature of 06_6CH.

Table 17-35 lists model-specific fields to interpret error codes applicable to IA32_MCi_STATUS, where i= 5, 7, 8.

Table 17-35. Interconnect MC Error Codes for IA32_MCi_STATUS (i = 5, 7, 8)
Type Bit No. Bit Function Bit Description

MCA Error Codes1 15:0 MCACOD Bus error format: 1PPTRRRRIILL

The two supported compound error codes:

• 0x0C0F: Unsupported/Undefined Packet.
• 0x0E0F: For all other corrected and uncorrected errors.

Model Specific Errors 21:16 MSCOD The encoding of Uncorrectable (UC) errors are:

00H: Phy Initialization Failure (NumInit).

01H: Phy Detected Drift Buffer Alarm.

02H: Phy Detected Latency Buffer Rollover.

10H: LL Rx detected CRC error: unsuccessful LLR (entered Abort state).

11H: LL Rx Unsupported/Undefined packet.

12H: LL or Phy Control Error.

13H: LL Rx Parameter Exception.

1FH: LL Detected Control Error.

The encoding of correctable (COR) errors are:

20H: Phy Initialization Abort.

21H: Phy Inband Reset.

22H: Phy Lane failure, recovery in x8 width.

23H: Phy L0c error corrected without Phy reset.

24H: Phy L0c error triggering Phy reset.

25H: Phy L0p exit error corrected with reset.

30H: LL Rx detected CRC error: successful LLR without Phy Re-init.

31H: LL Rx detected CRC error: successful LLR with Phy Re-init.

32H: Tx received LLR.

All other values are reserved.
Vol. 3B 17-31

INTERPRETING MACHINE CHECK ERROR CODES
17.11.3 Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers for the 3rd generation Intel® Xeon® Scalable
Processor Family based on Ice Lake microarchitecture are defined in Table 17-37.

The MSRs reporting MC error codes differ depending on the CPUID DisplayFamily_DisplaySignature of the
processor. See Table 17-36 for details.

31:22 MSCOD_SPARE The definition below applies to MSCOD 12h (UC LL or Phy Control Errors).

[Bit 22] : Phy Control Error.

[Bit 23] : Unexpected Retry.Ack flit.

[Bit 24] : Unexpected Retry.Req flit.

[Bit 25] : RF parity error.

[Bit 26] : Routeback Table error.

[Bit 27] : Unexpected Tx Protocol flit (EOP, Header or Data).

[Bit 28] : Rx Header-or-Credit BGF credit overflow/underflow.

[Bit 29] : Link Layer Reset still in progress when Phy enters L0 (Phy
training should not be enabled until after LL reset is complete as indicated
by KTILCL.LinkLayerReset going back to 0).

[Bit 30] : Link Layer reset initiated while protocol traffic not idle.

[Bit 31] : Link Layer Tx Parity Error.

37:32 OTHER_INFO Other Info.

56:38 Corrected Error Cnt See Chapter 16, “Machine-Check Architecture.”

Status Register
Validity Indicators1

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

Table 17-36. MSRs Reporting MC Error Codes by CPUID DisplayFamily_DisplaySignature
Processor CPUID

DisplayFamily_DisplaySignature
MSRs Reporting MC Error Codes

3rd generation Intel® Xeon® Scalable Processor
Family based on Ice Lake microarchitecture

06_6AH IA32_MC13_STATUS−IA32_MC14_STATUS

IA32_MC17_STATUS−IA32_MC18_STATUS

IA32_MC21_STATUS−IA32_MC22_STATUS

IA32_MC25_STATUS−IA32_MC26_STATUS

3rd generation Intel® Xeon® Scalable Processor
Family based on Ice Lake microarchitecture

06_6CH IA32_MC13_STATUS−IA32_MC14_STATUS

IA32_MC17_STATUS−IA32_MC18_STATUS

Table 17-35. Interconnect MC Error Codes for IA32_MCi_STATUS (i = 5, 7, 8) (Contd.)
Type Bit No. Bit Function Bit Description
17-32 Vol. 3B

INTERPRETING MACHINE CHECK ERROR CODES
The supported error codes follow the architectural MCACOD definition type 1MMMCCCC; see Chapter 16,
“Machine-Check Architecture.”

Table 17-37. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 13—14, 17—18, 21—22, 25—26)
Type Bit No. Bit Function Bit Description

MCA Error Codes1 15:0 MCACOD Memory Controller error format: 0000 0000 1MMM CCCC

Model Specific Errors 27:16 Error Codes 0000H: Uncorrectable spare error.

0001H: End to End address parity error.

0002H: Write data parity error.

0003H: End to End uncorrectable/correctable write data ECC error.

0004H: Write byte enable parity error.

0007H: Transaction ID parity error.

0008H: Correctable patrol scrub error.

0010H: Uncorrectable patrol scrub error.

0020H: Correctable spare error.

0080H: Transient or correctable error for demand or underfill reads or
read 2LM metadata error.

00A0H: Uncorrectable error for demand or underfill reads.

0100H: WDB read parity error.

0108H: DDR/DDRT link failure.

0111H: PCLS address CSR parity error.

0112H: PCLS illegal ADDDC configuration error.

0200H: DDR4 command / address parity error.

0400H: RPQ scheduler address parity error.

0800H: 2LM unrecognized request type.

0801H: 2LM read response to an invalid scoreboard entry.

0802H: 2LM unexpected read response.

0803H: 2LM DDR4 completion to an invalid scoreboard entry.

0804H: 2LM DDRT completion to an invalid scoreboard entry.

0805H: 2LM completion FIFO overflow.

0806H: DDRT link parity error.

0807H: DDRT RID uncorrectable error.

0809H: DDRT RID FIFO overflow.

080AH: DDRT error on FNV write credits.

080BH: DDRT error on FNV read credits.

080CH: DDRT scheduler error.

080DH: DDRT FNV error.

080EH: DDRT FNV thermal error.

080FH: DDRT unexpected data packet during CMI idle.

0810H: DDRT RPQ request parity error.

0811H: DDRT WPQ request parity error.

0812H: 2LM NmFillWr CAM multiple hit error.

0813H: CMI credit oversubscription error.

0814H: CMI total credit count error.

0815H: CMI reserved credit pool error.

0816H: DDRT link ECC error.
Vol. 3B 17-33

INTERPRETING MACHINE CHECK ERROR CODES
0817H: WDB FIFO overflow or underflow errors.

0818H: CMI request FIFO overflow error.

0819H: CMI request FIFO underflow error.

081AH: CMI response FIFO overflow error.

081BH: CMI response FIFO underflow error.

081CH: CMI miscellaneous credit errors.

081DH: CMI MC arbiter errors.

081EH: DDRT write completion FIFO overflow error.

081FH: DDRT write completion FIFO underflow error.

0820H: CMI read completion FIFO overflow error.

0821H: CMI read completion FIFO underflow error.

0822H: TME key RF parity error.

0823H: TME miscellaneous CMI errors.

0824H: TME CMI overflow error.

0825H: TME CMI underflow error.

0826H: Intel® SGX TEM secure bit mismatch detected on demand read.

0827H: TME detected underfill read completion data parity error.

0828H: 2LM Scoreboard Overflow Error.

1008H: Correctable patrol scrub error (mirror secondary example).

28 Mirror secondary error. Mirror secondary error.

31:29 Reserved Reserved

37:32 Other Info Other Info.

56:38 See Chapter 16, “Machine-Check Architecture.”

Status Register
Validity Indicators1

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

Table 17-37. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 13—14, 17—18, 21—22, 25—26) (Contd.)
Type Bit No. Bit Function Bit Description
17-34 Vol. 3B

INTERPRETING MACHINE CHECK ERROR CODES
Additional information is reported in the IA32_MC13_MISC−IA32_MC14_MISC, IA32_MC17_MISC−
IA32_MC18_MISC, IA32_MC21_MISC−IA32_MC22_MISC, and IA32_MC25_MISC−IA32_MC26_MISC MSRs. Table
17-38 lists the information reported in IA32_MCi_MISC, where i = 13−14, 17−18, 21−22, and 25−26.

Table 17-38. Additional Information Reported in IA32_MCi_MISC (i= 13—14, 17—18, 21—22, 25—26)
Bit No. Bit Function Bit Description

5:0 LSB See Figure 16-8.

8:6 Address Mode See Table 16-3.

18:9 Column Component of sub-DIMM address.

Bits 18-17: Reserved.

Bit 16: Column 9.

Bit 15: Column 8.

Bit 14: Column 7.

Bit 13: Column 6.

Bit 12: Column 5.

Bit 11: Column 4.

Bit 10: Column 3.

Bit 9: Reserved.

39:19 Row Component of sub-DIMM address.

45:40 Bank Component of sub-DIMM address.

Bit 45: Reserved.

Bit 44: Bank group 2.

Bit 43: Bank address 1.

Bit 42: Bank address 0.

Bit 41: Bank group 1.

Bit 40: Bank group 0.

51:46 Failed Device Failing device for correctable error (not valid for uncorrectable or transient errors).

55:52 CBit CBit

58:56 Chip Select Chip Select

62:59 ECC Mode 0000b: SDDC 2LM.

0001b: SDDC 1LM.

0010b: SDDC + 1 2LM.

0011b: SDDC + 1 1LM.

0100b: ADDDC 2LM.

0101b: ADDDC 1LM.

0110b: ADDDC + 1 2LM.

0111b: ADDDC + 1 1LM.

1000b: Read from DDRT.

1001b: x8 SDDC.

1010b: x8 SDDC + 1.

1011b: Not a valid ECC mode.

Other values: Reserved.

63 Transient 0b:

1b: Error was transient.
Vol. 3B 17-35

INTERPRETING MACHINE CHECK ERROR CODES
17.11.4 M2M Machine Check Errors
MC error codes associated with M2M for the 3rd generation Intel Xeon Scalable Processor Family with a CPUID
DisplayFamily_DisplaySignature of 06_6AH are reported in the IA32_MC12_STATUS, IA32_MC16_STATUS,
IA32_MC20_STATUS, and IA32_MC24_STATUS MSRs.

MC error codes associated with M2M for the 3rd generation Intel Xeon Scalable Processor Family with a CPUID
DisplayFamily_DisplaySignature of 06_6CH are reported in the IA32_MC12_STATUS and IA32_MC16_STATUS
MSRs.

The supported error codes follow the architectural MCACOD definition type 1MMMCCCC; see Chapter 16,
“Machine-Check Architecture.”

MC error codes associated with mirrored memory corrections are reported in the IA32_MC12_MISC,
IA32_MC16_MISC, IA32_MC20_MISC, and IA32_MC24_MISC MSRs. The model-specific error codes listed in Table
17-32 also apply to IA32_MCi_MISC, where i = 12, 16, 20, 24.

17.12 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH CPUID
DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_86H, MACHINE ERROR
CODES FOR MACHINE CHECK

In Intel Atom® processors based on Tremont microarchitecture with CPUID DisplayFamily_DisplaySignature
06_86H, incremental error codes for internal machine check errors from the PCU controller are reported in the
register bank IA32_MC4. Table 17-34 in Section 17.11.1 lists model-specific fields to interpret error codes appli-
cable to IA32_MC4_STATUS.

17.12.1 Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC13_STATUS−
IA32_MC15_STATUS. The supported error codes follow the architectural MCACOD definition type 1MMMCCCC; see
Chapter 16, “Machine-Check Architecture.”

The IA32_MCi_STATUS MSR (where i = 13, 14, 15) contains information related to a machine check error if its
VAL(valid) flag is set. Bit definitions are the same as those found in Table 17-37 “Intel IMC MC Error Codes for
IA32_MCi_STATUS (i= 13—14, 17—18, 21—22, 25—26).”

The IA32_MCi_MISC MSR (where i = 13, 14, 15) contains information related memory corrections. Bit definitions
are the same as those found in Table 17-38 “Additional Information Reported in IA32_MCi_MISC (i= 13—14,
17—18, 21—22, 25—26).”

Table 17-39. M2M MC Error Codes for IA32_MCi_STATUS (i= 12, 16, 20, 24)
Type Bit No. Bit Function Bit Description

MCA Error Codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

15:0 MCACOD Compound error format: 0000 0000 1MMM CCCC

Model Specific Errors 23:16 MSCOD Logged an MC error.

25:24 MscodDDRType Logged a DDR/DDRT specific error.

26 MscodFailoverWhileResetPrep Logged a failover specific error while preparing to reset.

31:27 Reserved Reserved

37:32 Other Info Other information.

56:38 See Chapter 16, “Machine-Check Architecture.”

Status Register
Validity Indicators1

63:57
17-36 Vol. 3B

INTERPRETING MACHINE CHECK ERROR CODES
17.12.2 M2M Machine Check Errors
MC error codes associated with M2M are reported in the IA32_MC12_STATUS MSR. The supported error codes
follow the architectural MCACOD definition type 1MMMCCCC; see Chapter 16, “Machine-Check Architecture.”

Bit definitions are the same as those found in Table 17-39 “M2M MC Error Codes for IA32_MCi_STATUS (i= 12, 16,
20, 24).”

17.13 INCREMENTAL DECODING INFORMATION: 4TH GENERATION INTEL® XEON®
SCALABLE PROCESSOR FAMILY, MACHINE ERROR CODES FOR MACHINE
CHECK

In the 4th generation Intel® Xeon® Scalable Processor Family with CPUID DisplayFamily_DisplaySignature of
06_8FH, incremental error codes for internal machine check errors from the PCU controller are reported in the
register bank IA32_MC4. Table 17-40 in Section 17.13.1 lists model-specific fields to interpret error codes appli-
cable to IA32_MC4_STATUS.

17.13.1 Internal Machine Check Errors

Table 17-40. Machine Check Error Codes for IA32_MC4_STATUS
Type Bit No. Bit Function Bit Description

MCACOD1 15:0 Internal Errors The value of this field will be 0402H for the PCU and 0406H for internal
firmware errors.

This applies for any logged error.

Model Specific Errors 19:16 Reserved, except for the
following

Model specific error code bits 19:16.

If MACOD = 40CH, MSCOD encoding should be interpreted as:

01H: MCE when CR4.MCE is clear.

02H: MCE when MCIP bit is set.

03H: MCE under WPS.

04H: Unrecoverable error during security flow execution.

05H: Software triple fault shutdown.

06H: VMX-exit-consistency-check failures.

07H: RSM-consistency-check failures.

08H: Invalid conditions on protected mode SMM entry.

09H: Unrecoverable error during security flow execution.

For all other MACOD values, MSCOD logs the type of hardware UC
(PCU/VCU) error that has occurred. There are seven errors defined:

01H: Instruction address out of valid space.

02H: Double bit RAM error on Instruction Fetch.

03H: Invalid OpCode seen.

04H: Stack Underflow.

05H: Stack Overflow.

06H: Data address out of valid space.

07H: Double bit RAM error on Data Fetch.
Vol. 3B 17-37

INTERPRETING MACHINE CHECK ERROR CODES
23:20 Reserved, except for the
following

Model specific error code bits 23:20.

This logs the type of HW FSM error that has occurred. There are 3 errors
defined:

04H: Clock/power IP response timeout.

05H: SMBus controller raised SMI.

09H: PM controller received invalid transaction.

31:24 Reserved, except for the
following

0DH: MCA_LLC_BIST_ACTIVE_TIMEOUT

0EH: MCA_DMI_TRAINING_TIMEOUT

0FH: MCA_DMI_STRAP_SET_ARRIVAL_TIMEOUT

10H: MCA_DMI_CPU_RESET_ACK_TIMEOUT

11H: MCA_MORE_THAN_ONE_LT_AGENT

14H: MCA_INCOMPATIBLE_PCH_TYPE

1EH: MCA_BIOS_RST_CPL_INVALID_SEQ

1FH: MCA_BIOS_INVALID_PKG_STATE_CONFIG

2DH: MCA_PCU_PMAX_CALIB_ERROR

2EH: MCA_TSC100_SYNC_TIMEOUT

3AH: MCA_GPSB_TIMEOUT

3BH: MCA_PMSB_TIMEOUT

3EH: MCA_IOSFSB_PMREQ_CMP_TIMEOUT

40H: MCA_SVID_VCCIN_VR_ICC_MAX_FAILURE

42H: MCA_SVID_VCCIN_VR_VOUT_FAILURE

43H: MCA_SVID_CPU_VR_CAPABILITY_ERROR

44H: MCA_SVID_CRITICAL_VR_FAILED

45H: MCA_SVID_SA_ITD_ERROR

46H: MCA_SVID_READ_REG_FAILED

47H: MCA_SVID_WRITE_REG_FAILED

4AH: MCA_SVID_PKGC_REQUEST_FAILED

4BH: MCA_SVID_IMON_REQUEST_FAILED

4CH: MCA_SVID_ALERT_REQUEST_FAILED

4DH: MCA_SVID_MCP_VR_RAMP_ERROR

56H: MCA_FIVR_PD_HARDERR

58H: MCA_WATCHDOG_TIMEOUT_PKGC_SECONDARY

59H: MCA_WATCHDOG_TIMEOUT_PKGC_MAIN

5AH: MCA_WATCHDOG_TIMEOUT_PKGS_MAIN

5BH: MCA_WATCHDOG_TIMEOUT_MSG_CH_FSM

5CH: MCA_WATCHDOG_TIMEOUT_BULK_CR_FSM

5DH: MCA_WATCHDOG_TIMEOUT_IOSFSB_FSM

60H: MCA_PKGS_SAFE_WP_TIMEOUT

61H: MCA_PKGS_CPD_UNCPD_TIMEOUT

62H: MCA_PKGS_INVALID_REQ_PCH

63H: MCA_PKGS_INVALID_REQ_INTERNAL

64H: MCA_PKGS_INVALID_RSP_INTERNAL

65H-7AH: MCA_PKGS_RESET_PREP_TIMEOUT

7BH: MCA_PKGS_SMBUS_VPP_PAUSE_TIMEOUT

Table 17-40. Machine Check Error Codes for IA32_MC4_STATUS (Contd.)
Type Bit No. Bit Function Bit Description
17-38 Vol. 3B

INTERPRETING MACHINE CHECK ERROR CODES
17.13.2 Interconnect Machine Check Errors
MC error codes associated with the link interconnect agents are reported in the IA32_MC5_STATUS MSR. The
supported error codes follow the architectural MCACOD definition type 1PPTRRRRIILL; see Chapter 16,
“Machine-Check Architecture.”

Table 17-41 lists model-specific fields to interpret error codes applicable to IA32_MC5_STATUS.

7CH: MCA_PKGS_SMBUS_MCP_PAUSE_TIMEOUT

7DH: MCA_PKGS_SMBUS_SPD_PAUSE_TIMEOUT

80H: MCA_PKGC_DISP_BUSY_TIMEOUT

81H: MCA_PKGC_INVALID_RSP_PCH

83H: MCA_PKGC_WATCHDOG_HANG_CBZ_DOWN

84H: MCA_PKGC_WATCHDOG_HANG_CBZ_UP

87H: MCA_PKGC_WATCHDOG_HANG_C2_BLKMASTER

88H: MCA_PKGC_WATCHDOG_HANG_C2_PSLIMIT

89H: MCA_PKGC_WATCHDOG_HANG_SETDISP

8BH: MCA_PKGC_ALLOW_L1_ERROR

90H: MCA_RECOVERABLE_DIE_THERMAL_TOO_HOT

A0H: MCA_ADR_SIGNAL_TIMEOUT

A1H: MCA_BCLK_FREQ_OC_ABOVE_THRESHOLD

B0H: MCA_DISPATCHER_RUN_BUSY_TIMEOUT

C0H: MCA_DISPATCHER_RUN_BUSY_TIMEOUT

37:32 ENH_MCA_AVAIL0 Available when Enhanced MCA is in use.

52:38 CORR_ERR_COUNT Correctable error count.

54:53 CORRERRORSTATUSIND These bits are used to indicate when the number of corrected errors has
exceeded the safe threshold to the point where an uncorrected error has
become more likely to happen.

Table 3 shows the encoding of these bits.

56:55 ENH_MCA_AVAIL1 Available when Enhanced MCA is in use.

Status Register
Validity Indicators1

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

Table 17-40. Machine Check Error Codes for IA32_MC4_STATUS (Contd.)
Type Bit No. Bit Function Bit Description
Vol. 3B 17-39

INTERPRETING MACHINE CHECK ERROR CODES
Table 17-41. Interconnect MC Error Codes for IA32_MC5_STATUS
Type Bit No. Bit Function Bit Description

MCA Error Codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

15:0 MCACOD Bus error format: 1PPTRRRRIILL

The two supported compound error codes:

• 0x0C0F: Unsupported/Undefined Packet.
• 0x0E0F: For all other corrected and uncorrected errors.

Model Specific Errors 21:16 MSCOD The encoding of Uncorrectable (UC) errors are:

00H: UC Phy Initialization Failure.

01H: UC Phy Detected Drift Buffer Alarm.

02H: UC Phy Detected Latency Buffer Rollover.

10H: UC LL Rx detected CRC error: unsuccessful LLR (entered Abort state).

11H: UC LL Rx Unsupported/Undefined packet.

12H: UC LL or Phy Control Error.

13H: UC LL Rx Parameter Exception.

15H: UC LL Rx SGX MAC Error.

1FH: UC LL Detected Control Error.

The encoding of correctable (COR) errors are:

20H: COR Phy Initialization Abort.

21H: COR Phy Inband Reset.

22H: COR Phy Lane failure, recovery in x8 width.

23H: COR Phy L0c error corrected without Phy reset.

24H: COR Phy L0c error triggering Phy reset.

25H: COR Phy L0p exit error corrected with reset.

30H: COR LL Rx detected CRC error: successful LLR without Phy Re-init.

31H: COR LL Rx detected CRC error: successful LLR with Phy Re-init.

All other values are reserved.

31:22 MSCOD_SPARE The definition below applies to MSCOD 12H (UC LL or Phy Control Errors).

[Bit 22]: Phy Control Error.

[Bit 23]: Unexpected Retry.Ack flit.

[Bit 24]: Unexpected Retry.Req flit.

[Bit 25]: RF parity error.

[Bit 26]: Routeback Table error.

[Bit 27]: Unexpected Tx Protocol flit (EOP, Header, or Data).

[Bit 28]: Rx Header-or-Credit BGF credit overflow/underflow.

[Bit 29]: Link Layer Reset still in progress when Phy enters L0 (Phy
training should not be enabled until after LL reset is complete as indicated
by KTILCL.LinkLayerReset going back to 0).

[Bit 30]: Link Layer reset initiated while protocol traffic not idle.

[Bit 31]: Link Layer Tx Parity Error.

37:32 OTHER_INFO Other Info.

56:38 Corrected Error Cnt See Chapter 16, “Machine-Check Architecture.”

Status Register
Validity Indicators1

63:57
17-40 Vol. 3B

INTERPRETING MACHINE CHECK ERROR CODES
17.13.3 Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers for the 4th generation Intel® Xeon® Scalable
Processor Family based on Sapphire Rapids microarchitecture are reported in the IA32_MC13_STATUS−
IA32_MC20_STATUS MSRs.

The supported error codes follow the architectural MCACOD definition type 1MMMCCCC; see Chapter 16,
“Machine-Check Architecture.”

Table 17-42. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 13—20)
Type Bit No. Bit Function Bit Description

MCA Error Codes1 15:0 MCACOD Memory Controller error format: 0000 0000 1MMM CCCC

Model Specific Errors 31:16 Reserved, except for the
following

0001H: Address parity error.

0002H: Data parity error.

0003H: Data ECC error.

0004H: Data byte enable parity error.

0007H: Transaction ID parity error.

0008H: Corrected patrol scrub error.

0010H: Uncorrected patrol scrub error.

0020H: Corrected spare error.

0040H: Uncorrected spare error.

0080H: Corrected read error.

00A0H: Uncorrected read error.

00C0H: Uncorrected metadata.

0100H: WDB read parity error.

0108H: DDR link failure.

0200H: DDR5 command / address parity error.

0400H: RPQ0 parity (primary) error.

0800H: DDR-T bad request.

0801H: DDR Data response to an invalid entry.

0802H: DDR data response to an entry not expecting data.

0803H: DDR5 completion to an invalid entry.

0804H: DDR-T completion to an invalid entry.

0805H: DDR data/completion FIFO overflow.

0806H: DDR-T ERID correctable parity error.

0807H: DDR-T ERID uncorrectable error.

0808H: DDR-T interrupt received while outstanding interrupt was not
ACKed.

0809H: ERID FIFO overflow.

080AH: DDR-T error on FNV write credits.

080BH: DDR-T error on FNV read credits.

080CH: DDR-T scheduler error.

080DH: DDR-T FNV error event.

080EH: DDR-T FNV thermal event.

080FH: CMI packet while idle.

0810H: DDR_T_RPQ_REQ_PARITY_ERR.

0811H: DDR_T_WPQ_REQ_PARITY_ERR.

0812H: 2LM_NMFILLWR_CAM_ERR.
Vol. 3B 17-41

INTERPRETING MACHINE CHECK ERROR CODES
Additional information is reported in the IA32_MC13_MISC−IA32_MC20_MISC MSRs. Table 17-43 lists the infor-
mation reported in IA32_MCi_MISC, where i = 13−20.

0813H: CMI_CREDIT_OVERSUB_ERR.

0814H: CMI_CREDIT_TOTAL_ERR.

0815H: CMI_CREDIT_RSVD_POOL_ERR.

0816H: DDR_T_RD_ERROR.

0817H: WDB_FIFO_ERR.

0818H: CMI_REQ_FIFO_OVERFLOW.

0819H: CMI_REQ_FIFO_UNDERFLOW.

081AH: CMI_RSP_FIFO_OVERFLOW.

081BH: CMI_RSP_FIFO_UNDERFLOW.

081CH: CMI_MISC_MC_CRDT_ERRORS.

081DH: CMI_MISC_MC_ARB_ERRORS.

081EH: DDR_T_WR_CMPL_FIFO_OVERFLOW.

081FH: DDR_T_WR_CMPL_FIFO_UNDERFLOW.

0820H: CMI_RD_CPL_FIFO_OVERFLOW.

0821H: CMI_RD_CPL_FIFO_UNDERFLOW.

0822H: TME_KEY_PAR_ERR.

0823H: TME_CMI_MISC_ERR.

0824H: TME_CMI_OVFL_ERR.

0825H: TME_CMI_UFL_ERR.

0826H: TME_TEM_SECURE_ERR.

0827H: TME_UFILL_PAR_ERR.

0829H: INTERNAL_ERR.

082AH: TME_INTEGRITY_ERR.

082BH: TME_TDX_ERR

082CH: TME_UFILL_TEM_SECURE_ERR.

082DH: TME_KEY_POISON_ERR.

082EH: TME_SECURITY_ENGINE_ERR.

1008H: CORR_PATSCRUB_MIRR2ND_ERR.

1010H: UC_PATSCRUB_MIRR2ND_ERR.

1020H: COR_SPARE_MIRR2ND_ERR.

1040H: UC_SPARE_MIRR2ND_ERR.
1080H: HA_RD_MIRR2ND_ERR.
10A0H: HA_UNCORR_RD_MIRR2ND_ERR.

37:32 Other Info Other Info.

56:38 See Chapter 16, “Machine-Check Architecture.”

Status Register
Validity Indicators1

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

Table 17-42. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 13—20)
Type Bit No. Bit Function Bit Description
17-42 Vol. 3B

INTERPRETING MACHINE CHECK ERROR CODES
17.13.4 M2M Machine Check Errors
MC error codes associated with M2M for the 4th generation Intel Xeon Scalable Processor Family with a CPUID
DisplayFamily_DisplaySignature of 06_8FH are reported in the IA32_MC12_STATUS MSR.

The supported error codes follow the architectural MCACOD definition type 1MMMCCCC; see Chapter 16,
“Machine-Check Architecture.”

Table 17-43. Additional Information Reported in IA32_MCi_MISC (i= 13—20)
Bit No. Bit Function Bit Description

5:0 LSB See Figure 16-8.

8:6 Address Mode See Table 16-3.

18:9 Column Column address for the last retry. To get the real column address from this field, shift the
value left by 2.

36:19 Row Component of sub-DIMM address.

42:37 Bank ID Component of sub-DIMM address.

Bit 42: Reserved.

Bit 41: Bank group 2.

Bit 40: Bank address 1.

Bit 39: Bank address 0.

Bit 38: Bank group 1.

Bit 37: Bank group 0.

48:43 Failed Device Failing device for correctable error (not valid for uncorrectable or transient errors).

50:49 Reserved Reserved

55:51 Failed Device Number In HBM mode, holds the failed device number for upper 32 bytes.

55:52 CBit In DDR mode, bits 54-52: sub_rank[2:0]; bit 55: reserved.

58:56 Chip Select Chip Select

62:59 ECC Mode 0000b: SDDC 2LM.

0001b: SDDC 1LM.

0010b: SDDC + 1 2LM.

0011b: SDDC + 1 1LM.

0100b: ADDDC 2LM.

0101b: ADDDC 1LM.

0110b: ADDDC + 1 2LM.

0111b: ADDDC + 1 1LM.

1000b: Read from DDRT.

1011b: Not a valid ECC mode.

For HBM mode:

0001b: 64B read.

1001b: 32B read.

Other values: Reserved.

63 Transient Indicates if the error was a transient error. A transient error is only indicated for demand
reads, underfill reads, and patrol. If there was a WDBParity Error, this field indicates the WDB
ID bit 6.
Vol. 3B 17-43

INTERPRETING MACHINE CHECK ERROR CODES
17.13.5 High Bandwidth Memory Machine Check Errors
MC error codes associated with high bandwidth memory for the 4th generation Intel Xeon Scalable Processor
Family are reported in the IA32_MC29_STATUS−IA32_MC31_STATUS MSRs.

17.14 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY 0FH,
MACHINE ERROR CODES FOR MACHINE CHECK

Table 17-45 provides information for interpreting additional family 0FH model-specific fields for external bus errors.
These errors are reported in the IA32_MCi_STATUS MSRs. They are reported architecturally as compound errors
with a general form of 0000 1PPT RRRR IILL in the MCA error code field. See Chapter 16 for information on the
interpretation of compound error codes.

Table 17-44. M2M MC Error Codes for IA32_MC12_STATUS
Type Bit No. Bit Function Bit Description

MCA Error Codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

15:0 MCACOD Compound error format: 0000 0000 1MMM CCCC

Model Specific Errors 23:16 MscodDataRdErr 00H: No error (default).

01H: Read ECC error (MemSpecRd; MemRd; MemRdData; MemRdXto*;
MemInv; MemInvXto*; MemInvItoX).

02H: Bucket1 error.

03H: RdTrkr Parity error.

05H: Prefetch channel mismatch.

07H: Read completion parity error.

08H: Response parity error.

09H: Timeout error.

0AH: CMI reserved credit pool error.

0BH: CMI total credit count error.

0CH: CMI credit oversubscription error.

25:24 MscodDDRType 00: Not logged, whether error on DDR4 or DDRT.

01: HBM errors.

31:26 Reserved Reserved

37:32 Other Info Other Info.

56:38 See Chapter 16, “Machine-Check Architecture.”

Status Register
Validity Indicators1

63:57
17-44 Vol. 3B

INTERPRETING MACHINE CHECK ERROR CODES
Table 17-10 provides information on interpreting additional family 0FH model specific fields for cache hierarchy
errors. These errors are reported in one of the IA32_MCi_STATUS MSRs. These errors are reported, architecturally,
as compound errors with a general form of 0000 0001 RRRR TTLL in the MCA error code field. See Chapter 16 for
how to interpret the compound error code.

17.14.1 Model-Specific Machine Check Error Codes for the Intel® Xeon® Processor MP 7100
Series

The Intel Xeon processor MP 7100 series has five register banks which contain information related to Machine
Check Errors. MCi_STATUS[63:0] refers to all five register banks. MC0_STATUS[63:0] through MC3_STATUS[63:0]
is the same as previous generations of Intel Xeon processors within Family 0FH. MC4_STATUS[63:0] is the main
error logging for the processor’s L3 and front side bus errors. It supports the L3 Errors, Bus and Interconnect Errors
Compound Error Codes in the MCA Error Code Field.

Table 17-45. Incremental Decoding Information: Processor Family 0FH, Machine Error Codes for Machine Check
Type Bit No. Bit Function Bit Description

MCA Error
Codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.

15:0

Model-Specific
Error Codes

16 FSB Address Parity Address parity error detected:

1: Address parity error detected.

0: No address parity error.

17 Response Hard Fail Hardware failure detected on response.

18 Response Parity Parity error detected on response.

19 PIC and FSB Data Parity Data Parity detected on either PIC or FSB access.

20 Processor Signature =
00000F04H:

Invalid PIC Request

Processor Signature = 00000F04H:

Indicates error due to an invalid PIC request access was made to PIC space
with WB memory):

1: Invalid PIC request error.

0: No Invalid PIC request error.

All other processors:

Reserved

Reserved

21 Pad State Machine The state machine that tracks P and N data-strobe relative timing has
become unsynchronized or a glitch has been detected.

22 Pad Strobe Glitch Data strobe glitch.

23 Pad Address Glitch Address strobe glitch.

Other
Information

56:24 Reserved Reserved

Status

Register
Validity
Indicators1

63:57
Vol. 3B 17-45

INTERPRETING MACHINE CHECK ERROR CODES
17.14.1.1 Processor Machine Check Status Register MCA Error Code Definition

The Intel Xeon processor MP 7100 series uses compound MCA Error Codes for logging its CBC internal machine
check errors, L3 Errors, and Bus/Interconnect Errors. It defines additional Machine Check error types
(IA32_MC4_STATUS[15:0]) beyond those defined in Chapter 16. Table 17-47 lists these model-specific MCA error
codes. Error code details are specified in MC4_STATUS [31:16]; see Section 17.14.3, the “Model Specific Error
Code” field. The information in the “Other_Info” field (MC4_STATUS[56:32]) is common to the three processor
error types and contains a correctable event count and specifies the MC4_MISC register format.

Table 17-46. MCi_STATUS Register Bit Definition
Bit Field Name Bits Description

MCA_Error_Code 15:0 This field specifies the machine check architecture defined error code for the machine check error
condition detected. The machine check architecture defined error codes are guaranteed to be the same
for all Intel Architecture processors that implement the machine check architecture. See tables below.

Model_Specific_E
rror_Code

31:16 This field specifies the model specific error code that uniquely identifies the machine check error
condition detected. The model specific error codes may differ among Intel Architecture processors for
the same Machine Check Error condition. See tables below.

Other_Info 56:32 The functions of the bits in this field are implementation specific and are not part of the machine check
architecture. Software that is intended to be portable among Intel Architecture processors should not
rely on the values in this field.

PCC 57 The Processor Context Corrupt flag indicates that the state of the processor might have been corrupted
by the error condition detected and that reliable restarting of the processor may not be possible. When
clear, this flag indicates that the error did not affect the processor's state. This bit will always be set for
MC errors, which are not corrected.

ADDRV 58 The MC_ADDR register valid flag indicates that the MC_ADDR register contains the address where the
error occurred. When clear, this flag indicates that the MC_ADDR register does not contain the address
where the error occurred. The MC_ADDR register should not be read if the ADDRV bit is clear.

MISCV 59 The MC_MISC register valid flag indicates that the MC_MISC register contains additional
information regarding the error. When clear, this flag indicates that the MC_MISC register does not
contain additional information regarding the error. MC_MISC should not be read if the MISCV bit is not
set.

EN 60 The error enabled flag indicates that reporting of the machine check exception for this error was
enabled by the associated flag bit of the MC_CTL register. Note that correctable errors do not have
associated enable bits in the MC_CTL register so the EN bit should be clear when a correctable error is
logged.

UC 61 The error uncorrected flag indicates that the processor did not correct the error condition. When clear,
this flag indicates that the processor was able to correct the event condition.

OVER 62 The machine check overflow flag indicates that a machine check error occurred while the results of a
previous error were still in the register bank (i.e., the VAL bit was already set in the
MC_STATUS register). The processor sets the OVER flag and software is responsible for clearing it.
Enabled errors are written over disabled errors, and uncorrected errors are written over corrected
events. Uncorrected errors are not written over previous valid uncorrected errors.

VAL 63 The MC_STATUS register valid flag indicates that the information within the MC_STATUS register is valid.
When this flag is set, the processor follows the rules given for the OVER flag in the MC_STATUS register
when overwriting previously valid entries. The processor sets the VAL flag and software is responsible
for clearing it.
17-46 Vol. 3B

INTERPRETING MACHINE CHECK ERROR CODES
The bold faced binary encodings are the only encodings used by the processor for MC4_STATUS[15:0].

17.14.2 Other_Info Field (All MCA Error Types)

The MC4_STATUS[56:32] field is common to the processor's three MCA error types (A, B, and C).

Table 17-47. Incremental MCA Error Code for Intel® Xeon® Processor MP 7100
Processor MCA_Error_Code (MC4_STATUS[15:0])

Type Error Code Binary Encoding Meaning

C Internal Error 0000 0100 0000 0000 Internal Error Type Code.

A L3 Tag Error 0000 0001 0000 1011 L3 Tag Error Type Code.

B Bus and
Interconnect Error

0000 100x 0000 1111 Not used, but this encoding is reserved for compatibility with other MCA
implementations.

0000 101x 0000 1111 Not used, but this encoding is reserved for compatibility with other MCA
implementations.

0000 110x 0000 1111 Not used, but this encoding is reserved for compatibility with other MCA
implementations.

0000 1110 0000 1111 Bus and Interconnection Error Type Code.

0000 1111 0000 1111 Not used, but this encoding is reserved for compatibility with other MCA
implementations.

Table 17-48. Other Information Field Bit Definition
Bit Field Name Bits Description

39:32 8-bit Correctable
Event Count

This field holds a count of the number of correctable events since cold reset. This is a saturating
counter; the counter begins at 1 (with the first error) and saturates at a count of 255.

41:40 MC4_MISC
Format Type

The value in this field specifies the format of information in the MC4_MISC register. Currently,
only two values are defined. Valid only when MISCV is asserted.

43:42 Reserved Reserved

51:44 ECC Syndrome ECC syndrome value for a correctable ECC event when the “Valid ECC syndrome” bit is asserted.

52 Valid ECC
Syndrome

Set when a correctable ECC event supplies the ECC syndrome.

54:53 Threshold-Based
Error Status

00: No tracking. No hardware status tracking is provided for the structure reporting this event.

01: Green. Status tracking is provided for the structure posting the event; the current status is
green (below threshold).

10: Yellow. Status tracking is provided for the structure posting the event; the current status is
yellow (above threshold).

11: Reserved for future use.

Valid only if the Valid bit (bit 63) is set.

Undefined if the UC bit (bit 61) is set.

56:55 Reserved Reserved
Vol. 3B 17-47

INTERPRETING MACHINE CHECK ERROR CODES
17.14.3 Processor Model Specific Error Code Field

17.14.3.1 MCA Error Type A: L3 Error

Note: The Model Specific Error Code field in MC4_STATUS (bits 31:16).

17.14.3.2 Processor Model Specific Error Code Field Type B: Bus and Interconnect Error

Note: The Model Specific Error Code field in MC4_STATUS (bits 31:16).

Table 17-49. Type A: L3 Error Codes
Bit Num Sub-Field

Name
Description Legal Value(s)

18:16 L3 Error
Code

Describes the L3
error
encountered

000: No error.

001: More than one way reporting a correctable event.

010: More than one way reporting an uncorrectable error.

011: More than one way reporting a tag hit.

100: No error.

101: One way reporting a correctable event.

110: One way reporting an uncorrectable error.

111: One or more ways reporting a correctable event while one or more ways are
reporting an uncorrectable error.

20:19 --- Reserved 00

31:21 --- Fixed pattern 0010_0000_000

Table 17-50. Type B: Bus and Interconnect Error Codes
Bit Num Sub-Field Name Description

16 FSB Request Parity Parity error detected during FSB request phase.

17 Core0 Addr Parity Parity error detected on Core 0 request’s address field.

18 Core1 Addr Parity Parity error detected on Core 1 request’s address field.

19 Reserved Reserved

20 FSB Response Parity Parity error on FSB response field detected.

21 FSB Data Parity FSB data parity error on inbound data detected.

22 Core0 Data Parity Data parity error on data received from Core 0 detected.

23 Core1 Data Parity Data parity error on data received from Core 1 detected.

24 IDS Parity Detected an Enhanced Defer parity error (phase A or phase B).

25 FSB Inbound Data ECC Data ECC event to error on inbound data (correctable or uncorrectable).

26 FSB Data Glitch Pad logic detected a data strobe ‘glitch’ (or sequencing error).

27 FSB Address Glitch Pad logic detected a request strobe ‘glitch’ (or sequencing error).

31:28 Reserved Reserved
17-48 Vol. 3B

INTERPRETING MACHINE CHECK ERROR CODES
Exactly one of the bits defined in the preceding table will be set for a Bus and Interconnect Error. The Data ECC can
be correctable or uncorrectable; the MC4_STATUS.UC bit distinguishes between correctable and uncorrectable
cases with the Other_Info field possibly providing the ECC Syndrome for correctable errors. All other errors for this
processor MCA Error Type are uncorrectable.

17.14.3.3 Processor Model Specific Error Code Field Type C: Cache Bus Controller Error

All errors, except for the correctable ECC types, in this table are uncorrectable. The correctable ECC events may
supply the ECC syndrome in the Other_Info field of the MC4_STATUS MSR.

Table 17-51. Type C: Cache Bus Controller Error Codes
MC4_STATUS[31:16] (MSCE) Value Error Description

0000_0000_0000_0001 0001H Inclusion Error from Core 0.

0000_0000_0000_0010 0002H Inclusion Error from Core 1.

0000_0000_0000_0011 0003H Write Exclusive Error from Core 0.

0000_0000_0000_0100 0004H Write Exclusive Error from Core 1.

0000_0000_0000_0101 0005H Inclusion Error from FSB.

0000_0000_0000_0110 0006H SNP Stall Error from FSB.

0000_0000_0000_0111 0007H Write Stall Error from FSB.

0000_0000_0000_1000 0008H FSB Arb Timeout Error.

0000_0000_0000_1001 0009H CBC OOD Queue Underflow/overflow.

0000_0001_0000_0000 0100H Enhanced Intel SpeedStep Technology TM1-TM2 Error.

0000_0010_0000_0000 0200H Internal Timeout Error.

0000_0011_0000_0000 0300H Internal Timeout Error.

0000_0100_0000_0000 0400H Intel® Cache Safe Technology Queue Full Error or Disabled-ways-in-a-set overflow.

1100_0000_0000_0001 C001H Correctable ECC event on outgoing FSB data.

1100_0000_0000_0010 C002H Correctable ECC event on outgoing Core 0 data.

1100_0000_0000_0100 C004H Correctable ECC event on outgoing Core 1 data.

1110_0000_0000_0001 E001H Uncorrectable ECC error on outgoing FSB data.

1110_0000_0000_0010 E002H Uncorrectable ECC error on outgoing Core 0 data.

1110_0000_0000_0100 E004H Uncorrectable ECC error on outgoing Core 1 data.

 — All other encodings — Reserved
Vol. 3B 17-49

INTERPRETING MACHINE CHECK ERROR CODES
Table 17-52. Decoding Family 0FH Machine Check Codes for Cache Hierarchy Errors
Type Bit No. Bit Function Bit Description

MCA error
codes1

15:0

Model
Specific Error
Codes

17:16 Tag Error Code Contains the tag error code for this machine check error:

00: No error detected.

01: Parity error on tag miss with a clean line.

10: Parity error/multiple tag match on tag hit.

11: Parity error/multiple tag match on tag miss.

19:18 Data Error Code Contains the data error code for this machine check error:

00: No error detected.

01: Single bit error.

10: Double bit error on a clean line.

11: Double bit error on a modified line.

20 L3 Error This bit is set if the machine check error originated in the L3 (it can be ignored for
invalid PIC request errors):

1: L3 error.

0: L2 error.

21 Invalid PIC Request Indicates error due to invalid PIC request access was made to PIC space with WB
memory:

1: Invalid PIC request error.

0: No invalid PIC request error.

31:22 Reserved Reserved

Other
Information

39:32 8-bit Error Count Holds a count of the number of errors since reset. The counter begins at 0 for the first
error and saturates at a count of 255.

56:40 Reserved Reserved

Status
Register
Validity
Indicators1

63:57

NOTES:
1. These fields are architecturally defined. Refer to Chapter 16, “Machine-Check Architecture,” for more information.
17-50 Vol. 3B

CHAPTER 18
DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR

TECHNOLOGY (INTEL® RDT) FEATURES

NOTE
This chapter makes numerous references to last-branch recording (LBR) facilities. Unless noted
otherwise, all such references in this chapter are to an earlier non-architectural form of the feature.
Chapter 19 defines an architectural form of last-branch recording that is supported on newer
processors.

Intel 64 and IA-32 architectures provide debug facilities for use in debugging code and monitoring performance.
These facilities are valuable for debugging application software, system software, and multitasking operating
systems. Debug support is accessed using debug registers (DR0 through DR7) and model-specific registers
(MSRs):
• Debug registers hold the addresses of memory and I/O locations called breakpoints. Breakpoints are user-

selected locations in a program, a data-storage area in memory, or specific I/O ports. They are set where a
programmer or system designer wishes to halt execution of a program and examine the state of the processor
by invoking debugger software. A debug exception (#DB) is generated when a memory or I/O access is made
to a breakpoint address.

• MSRs monitor branches, interrupts, and exceptions; they record addresses of the last branch, interrupt or
exception taken and the last branch taken before an interrupt or exception.

• Time stamp counter is described in Section 18.17, “Time-Stamp Counter.”
• Features that allow monitoring of shared platform resources such as the L3 cache are described in Section

18.18, “Intel® Resource Director Technology (Intel® RDT) Monitoring Features.”
• Features that enable control over shared platform resources are described in Section 18.19, “Intel® Resource

Director Technology (Intel® RDT) Allocation Features.”
• Features that enable control over shared platform resources for non-CPU agents are described in Section

18.20, “Intel® Resource Director Technology (Intel® RDT) for Non-CPU Agents.”1

18.1 OVERVIEW OF DEBUG SUPPORT FACILITIES
The following processor facilities support debugging and performance monitoring:
• Debug exception (#DB) — Transfers program control to a debug procedure or task when a debug event

occurs.
• Breakpoint exception (#BP) — See breakpoint instruction (INT3) below.
• Breakpoint-address registers (DR0 through DR3) — Specifies the addresses of up to 4 breakpoints.
• Debug status register (DR6) — Reports the conditions that were in effect when a debug or breakpoint

exception was generated.
• Debug control register (DR7) — Specifies the forms of memory or I/O access that cause breakpoints to be

generated.
• T (trap) flag, TSS — Generates a debug exception (#DB) when an attempt is made to switch to a task with

the T flag set in its TSS.
• RF (resume) flag, EFLAGS register — Suppresses multiple exceptions to the same instruction.
• TF (trap) flag, EFLAGS register — Generates a debug exception (#DB) after every execution of an

instruction.

1. Additional information about Intel® RDT can be found in the document titled “Intel® Resource Director Technology Architecture Spec-
ification,” available here: https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html.
Vol. 3B 18-1

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
• Breakpoint instruction (INT3) — Generates a breakpoint exception (#BP) that transfers program control to
the debugger procedure or task. This instruction is an alternative way to set instruction breakpoints. It is
especially useful when more than four breakpoints are desired, or when breakpoints are being placed in the
source code.

• Last branch recording facilities — Store branch records in the last branch record (LBR) stack MSRs for the
most recent taken branches, interrupts, and/or exceptions in MSRs. A branch record consist of a branch-from
and a branch-to instruction address. Send branch records out on the system bus as branch trace messages
(BTMs).

These facilities allow a debugger to be called as a separate task or as a procedure in the context of the current
program or task. The following conditions can be used to invoke the debugger:
• Task switch to a specific task.
• Execution of the breakpoint instruction.
• Execution of any instruction.
• Execution of an instruction at a specified address.
• Read or write to a specified memory address/range.
• Write to a specified memory address/range.
• Input from a specified I/O address/range.
• Output to a specified I/O address/range.
• Attempt to change the contents of a debug register.

18.2 DEBUG REGISTERS
Eight debug registers (see Figure 18-1 for 32-bit operation and Figure 18-2 for 64-bit operation) control the debug
operation of the processor. These registers can be written to and read using the move to/from debug register form
of the MOV instruction. A debug register may be the source or destination operand for one of these instructions.
18-2 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
Debug registers are privileged resources; a MOV instruction that accesses these registers can only be executed in
real-address mode, in SMM or in protected mode at a CPL of 0. An attempt to read or write the debug registers
from any other privilege level generates a general-protection exception (#GP).

The primary function of the debug registers is to set up and monitor from 1 to 4 breakpoints, numbered 0 though
3. For each breakpoint, the following information can be specified:
• The linear address where the breakpoint is to occur.
• The length of the breakpoint location: 1, 2, 4, or 8 bytes (refer to the notes in Section 18.2.4).
• The operation that must be performed at the address for a debug exception to be generated.
• Whether the breakpoint is enabled.
• Whether the breakpoint condition was present when the debug exception was generated.

The following paragraphs describe the functions of flags and fields in the debug registers.

Figure 18-1. Debug Registers

L
0

G
0

L
1

G
1

L
2

G
2

L
3

G
3

L
E

G
E1

R
T
M

0G
D0 0R/W

0
LEN

0
R/W

1
LEN

1
R/W

2
LEN

2
R/W

3
LEN

3 DR7

B
0

B
1

B
2

B
3

B
D

B
S

B
T

R
T
M

Reserved (set to 1) DR6

031

DR5

031

DR4

031

Breakpoint 3 Linear Address DR3

031

Breakpoint 2 Linear Address DR2

031

Breakpoint 1 Linear Address DR1

031

Breakpoint 0 Linear Address DR0

111111110

Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B
L
D

Vol. 3B 18-3

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
18.2.1 Debug Address Registers (DR0-DR3)
Each of the debug-address registers (DR0 through DR3) holds the 32-bit linear address of a breakpoint (see
Figure 18-1). Breakpoint comparisons are made before physical address translation occurs. The contents of debug
register DR7 further specifies breakpoint conditions.

18.2.2 Debug Registers DR4 and DR5
Debug registers DR4 and DR5 are reserved when debug extensions are enabled (when the DE flag in control
register CR4 is set) and attempts to reference the DR4 and DR5 registers cause invalid-opcode exceptions (#UD).
When debug extensions are not enabled (when the DE flag is clear), these registers are aliased to debug registers
DR6 and DR7.

18.2.3 Debug Status Register (DR6)
The debug status register (DR6) reports debug conditions that were sampled at the time the last debug exception
was generated (see Figure 18-1). Updates to this register only occur when an exception is generated. The flags in
this register show the following information:
• B0 through B3 (breakpoint condition detected) flags (bits 0 through 3) — Indicates (when set) that its

associated breakpoint condition was met when a debug exception was generated. These flags are set if the
condition described for each breakpoint by the LENn, and R/Wn flags in debug control register DR7 is true. They
may or may not be set if the breakpoint is not enabled by the Ln or the Gn flags in register DR7. Therefore on
a #DB, a debug handler should check only those B0-B3 bits which correspond to an enabled breakpoint.

• BLD (bus-lock detected) flag (bit 11) — Indicates (when clear) that the debug exception was triggered by
the assertion of a bus lock when CPL > 0 and OS bus-lock detection was enabled (see Section 18.3.1.6). Other
debug exceptions do not modify this bit. To avoid confusion in identifying debug exceptions, software debug-
exception handlers should set bit 11 to 1 before returning. (Software that never enables OS bus-lock detection
need not do this as DR6[11] = 1 following reset.) This bit is always 1 if the processor does not support OS bus-
lock detection.

• BD (debug register access detected) flag (bit 13) — Indicates that the next instruction in the instruction
stream accesses one of the debug registers (DR0 through DR7). This flag is enabled when the GD (general
detect) flag in debug control register DR7 is set. See Section 18.2.4, “Debug Control Register (DR7),” for
further explanation of the purpose of this flag.

• BS (single step) flag (bit 14) — Indicates (when set) that the debug exception was triggered by the single-
step execution mode (enabled with the TF flag in the EFLAGS register). The single-step mode is the highest-
priority debug exception. When the BS flag is set, any of the other debug status bits also may be set.

• BT (task switch) flag (bit 15) — Indicates (when set) that the debug exception resulted from a task switch
where the T flag (debug trap flag) in the TSS of the target task was set. See Section 8.2.1, “Task-State
Segment (TSS),” for the format of a TSS. There is no flag in debug control register DR7 to enable or disable this
exception; the T flag of the TSS is the only enabling flag.

• RTM (restricted transactional memory) flag (bit 16) — Indicates (when clear) that a debug exception
(#DB) or breakpoint exception (#BP) occurred inside an RTM region while advanced debugging of RTM trans-
actional regions was enabled (see Section 18.3.3). This bit is set for any other debug exception (including all
those that occur when advanced debugging of RTM transactional regions is not enabled). This bit is always 1 if
the processor does not support RTM.

Certain debug exceptions may clear bits 0-3. The remaining contents of the DR6 register are never cleared by the
processor. To avoid confusion in identifying debug exceptions, debug handlers should clear the register (except
bit 16, which they should set) before returning to the interrupted task.

18.2.4 Debug Control Register (DR7)
The debug control register (DR7) enables or disables breakpoints and sets breakpoint conditions (see Figure 18-1).
The flags and fields in this register control the following things:
18-4 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
• L0 through L3 (local breakpoint enable) flags (bits 0, 2, 4, and 6) — Enables (when set) the breakpoint
condition for the associated breakpoint for the current task. When a breakpoint condition is detected and its
associated Ln flag is set, a debug exception is generated. The processor automatically clears these flags on
every task switch to avoid unwanted breakpoint conditions in the new task.

• G0 through G3 (global breakpoint enable) flags (bits 1, 3, 5, and 7) — Enables (when set) the
breakpoint condition for the associated breakpoint for all tasks. When a breakpoint condition is detected and its
associated Gn flag is set, a debug exception is generated. The processor does not clear these flags on a task
switch, allowing a breakpoint to be enabled for all tasks.

• LE and GE (local and global exact breakpoint enable) flags (bits 8, 9) — This feature is not supported in
the P6 family processors, later IA-32 processors, and Intel 64 processors. When set, these flags cause the
processor to detect the exact instruction that caused a data breakpoint condition. For backward and forward
compatibility with other Intel processors, we recommend that the LE and GE flags be set to 1 if exact
breakpoints are required.

• RTM (restricted transactional memory) flag (bit 11) — Enables (when set) advanced debugging of RTM
transactional regions (see Section 18.3.3). This advanced debugging is enabled only if IA32_DEBUGCTL.RTM is
also set.

• GD (general detect enable) flag (bit 13) — Enables (when set) debug-register protection, which causes a
debug exception to be generated prior to any MOV instruction that accesses a debug register. When such a
condition is detected, the BD flag in debug status register DR6 is set prior to generating the exception. This
condition is provided to support in-circuit emulators.
When the emulator needs to access the debug registers, emulator software can set the GD flag to prevent
interference from the program currently executing on the processor.
The processor clears the GD flag upon entering to the debug exception handler, to allow the handler access to
the debug registers.

• R/W0 through R/W3 (read/write) fields (bits 16, 17, 20, 21, 24, 25, 28, and 29) — Specifies the
breakpoint condition for the corresponding breakpoint. The DE (debug extensions) flag in control register CR4
determines how the bits in the R/Wn fields are interpreted. When the DE flag is set, the processor interprets
bits as follows:

00 — Break on instruction execution only.
01 — Break on data writes only.
10 — Break on I/O reads or writes.
11 — Break on data reads or writes but not instruction fetches.

When the DE flag is clear, the processor interprets the R/Wn bits the same as for the Intel386™ and Intel486™
processors, which is as follows:

00 — Break on instruction execution only.
01 — Break on data writes only.
10 — Undefined.
11 — Break on data reads or writes but not instruction fetches.

• LEN0 through LEN3 (Length) fields (bits 18, 19, 22, 23, 26, 27, 30, and 31) — Specify the size of the
memory location at the address specified in the corresponding breakpoint address register (DR0 through DR3).
These fields are interpreted as follows:

00 — 1-byte length.
01 — 2-byte length.
10 — Undefined (or 8 byte length, see note below).
11 — 4-byte length.

If the corresponding RWn field in register DR7 is 00 (instruction execution), then the LENn field should also be 00.
The effect of using other lengths is undefined. See Section 18.2.5, “Breakpoint Field Recognition,” below.
Vol. 3B 18-5

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
NOTES
For Pentium® 4 and Intel® Xeon® processors with a CPUID signature corresponding to family 15
(model 3, 4, and 6), break point conditions permit specifying 8-byte length on data read/write with
an of encoding 10B in the LENn field.
Encoding 10B is also supported in processors based on Intel Core microarchitecture or enhanced
Intel Core microarchitecture, the respective CPUID signatures corresponding to family 6, model 15,
and family 6, DisplayModel value 23 (see the CPUID instruction in Chapter 3, “Instruction Set
Reference, A-L,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A). The Encoding 10B is supported in processors based on Intel Atom® microarchitecture, with
CPUID signature of family 6, DisplayModel value 1CH. The encoding 10B is undefined for other
processors.

18.2.5 Breakpoint Field Recognition
Breakpoint address registers (debug registers DR0 through DR3) and the LENn fields for each breakpoint define a
range of sequential byte addresses for a data or I/O breakpoint. The LENn fields permit specification of a 1-, 2-, 4-
or 8-byte range, beginning at the linear address specified in the corresponding debug register (DRn). Two-byte
ranges must be aligned on word boundaries; 4-byte ranges must be aligned on doubleword boundaries, 8-byte
ranges must be aligned on quadword boundaries. I/O addresses are zero-extended (from 16 to 32 bits, for compar-
ison with the breakpoint address in the selected debug register). These requirements are enforced by the
processor; it uses LENn field bits to mask the lower address bits in the debug registers. Unaligned data or I/O
breakpoint addresses do not yield valid results.

A data breakpoint for reading or writing data is triggered if any of the bytes participating in an access is within the
range defined by a breakpoint address register and its LENn field. Table 18-1 provides an example setup of debug
registers and data accesses that would subsequently trap or not trap on the breakpoints.

A data breakpoint for an unaligned operand can be constructed using two breakpoints, where each breakpoint is
byte-aligned and the two breakpoints together cover the operand. The breakpoints generate exceptions only for
the operand, not for neighboring bytes.

Instruction breakpoint addresses must have a length specification of 1 byte (the LENn field is set to 00). Instruction
breakpoints for other operand sizes are undefined. The processor recognizes an instruction breakpoint address only
when it points to the first byte of an instruction. If the instruction has prefixes, the breakpoint address must point
to the first prefix.

Table 18-1. Breakpoint Examples

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENn

DR0
DR1
DR2
DR3

R/W0 = 11 (Read/Write)
R/W1 = 01 (Write)
R/W2 = 11 (Read/Write)
R/W3 = 01 (Write)

A0001H
A0002H
B0002H
C0000H

LEN0 = 00 (1 byte)
LEN1 = 00 (1 byte)
LEN2 = 01) (2 bytes)
LEN3 = 11 (4 bytes)

Data Accesses

Operation Address Access Length
(In Bytes)

Data operations that trap
- Read or write
- Read or write
- Write
- Write
- Read or write
- Read or write
- Read or write
- Write
- Write
- Write

A0001H
A0001H
A0002H
A0002H
B0001H
B0002H
B0002H
C0000H
C0001H
C0003H

1
2
1
2
4
1
2
4
2
1

18-6 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
18.2.6 Debug Registers and Intel® 64 Processors
For Intel 64 architecture processors, debug registers DR0–DR7 are 64 bits. In 16-bit or 32-bit modes (protected
mode and compatibility mode), writes to a debug register fill the upper 32 bits with zeros. Reads from a debug
register return the lower 32 bits. In 64-bit mode, MOV DRn instructions read or write all 64 bits. Operand-size
prefixes are ignored.

In 64-bit mode, the upper 32 bits of DR6 and DR7 are reserved and must be written with zeros. Writing 1 to any of
the upper 32 bits results in a #GP(0) exception (see Figure 18-2). All 64 bits of DR0–DR3 are writable by software.
However, MOV DRn instructions do not check that addresses written to DR0–DR3 are in the linear-address limits of
the processor implementation (address matching is supported only on valid addresses generated by the processor
implementation). Breakpoint conditions for 8-byte memory read/writes are supported in all modes.

18.3 DEBUG EXCEPTIONS
The Intel 64 and IA-32 architectures dedicate two interrupt vectors to handling debug exceptions: vector 1 (debug
exception, #DB) and vector 3 (breakpoint exception, #BP). The following sections describe how these exceptions
are generated and typical exception handler operations.

18.3.1 Debug Exception (#DB)—Interrupt Vector 1
The debug-exception handler is usually a debugger program or part of a larger software system. The processor
generates a debug exception for any of several conditions. The debugger checks flags in the DR6 and DR7 registers
to determine which condition caused the exception and which other conditions might apply. Table 18-2 shows the
states of these flags following the generation of each kind of breakpoint condition.

Instruction-breakpoint and general-detect condition (see Section 18.3.1.3, “General-Detect Exception Condition”)
result in faults; other debug-exception conditions result in traps. The debug exception may report one or both at
one time. The following sections describe each class of debug exception.

The INT1 instruction generates a debug exception as a trap. Hardware vendors may use the INT1 instruction for
hardware debug. For that reason, Intel recommends software vendors instead use the INT3 instruction for soft-
ware breakpoints.

See also: Chapter 6, “Interrupt 1—Debug Exception (#DB),” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A.

Data operations that do not trap
- Read or write
- Read
- Read or write
- Read or write
- Read
- Read or write

A0000H
A0002H
A0003H
B0000H
C0000H
C0004H

1
1
4
2
2
4

Table 18-1. Breakpoint Examples (Contd.)

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENn
Vol. 3B 18-7

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
Figure 18-2. DR6/DR7 Layout on Processors Supporting Intel® 64 Architecture

3263

L
0

G
0

L
1

G
1

L
2

G
2

L
3

G
3

L
E

G
E

G
D

R/W
0

LEN
0

R/W
1

LEN
1

R/W
2

LEN
2

R/W
3

LEN
3 DR7

DR7

3263

B
0

B
1

B
2

B
3

B
D

B
S

B
TReserved (set to 1) DR6

DR6

00 100

11111110

3263

DR5

3263

DR4

3263

Breakpoint 3 Linear Address DR3

3263

Breakpoint 2 Linear Address DR2

3263

Breakpoint 1 Linear Address DR1

3263

Breakpoint 0 Linear Address DR0

Reserved

R
T
M

B
L
D

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1

18-8 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
18.3.1.1 Instruction-Breakpoint Exception Condition
The processor reports an instruction breakpoint when it attempts to execute an instruction at an address specified
in a breakpoint-address register (DR0 through DR3) that has been set up to detect instruction execution (R/W flag
is set to 0). Upon reporting the instruction breakpoint, the processor generates a fault-class, debug exception
(#DB) before it executes the target instruction for the breakpoint.

Instruction breakpoints are the highest priority debug exceptions. They are serviced before any other exceptions
detected during the decoding or execution of an instruction. However, if an instruction breakpoint is placed on an
instruction located immediately after a POP SS/MOV SS instruction, the breakpoint will be suppressed as if
EFLAGS.RF were 1 (see the next paragraph and Section 6.8.3, “Masking Exceptions and Interrupts When
Switching Stacks,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).

Because the debug exception for an instruction breakpoint is generated before the instruction is executed, if the
instruction breakpoint is not removed by the exception handler; the processor will detect the instruction breakpoint
again when the instruction is restarted and generate another debug exception. To prevent looping on an instruction
breakpoint, the Intel 64 and IA-32 architectures provide the RF flag (resume flag) in the EFLAGS register (see
Section 2.3, “System Flags and Fields in the EFLAGS Register,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A). When the RF flag is set, the processor ignores instruction breakpoints.

All Intel 64 and IA-32 processors manage the RF flag as follows. The RF Flag is cleared at the start of the instruction
after the check for instruction breakpoints, CS limit violations, and FP exceptions. Task Switches and IRETD/IRETQ
instructions transfer the RF image from the TSS/stack to the EFLAGS register.

When calling an event handler, Intel 64 and IA-32 processors establish the value of the RF flag in the EFLAGS image
pushed on the stack:
• For any fault-class exception except a debug exception generated in response to an instruction breakpoint, the

value pushed for RF is 1.
• For any interrupt arriving after any iteration of a repeated string instruction but the last iteration, the value

pushed for RF is 1.
• For any trap-class exception generated by any iteration of a repeated string instruction but the last iteration,

the value pushed for RF is 1.
• For other cases, the value pushed for RF is the value that was in EFLAG.RF at the time the event handler was

called. This includes:

— Debug exceptions generated in response to instruction breakpoints

— Hardware-generated interrupts arriving between instructions (including those arriving after the last
iteration of a repeated string instruction)

Table 18-2. Debug Exception Conditions

Debug or Breakpoint Condition DR6 Flags Tested DR7 Flags Tested Exception Class

Single-step trap BS = 1 Trap

Instruction breakpoint, at addresses defined by DRn and
LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 0 Fault

Data write breakpoint, at addresses defined by DRn and
LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 1 Trap

I/O read or write breakpoint, at addresses defined by DRn
and LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 2 Trap

Data read or write (but not instruction fetches), at
addresses defined by DRn and LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 3 Trap

General detect fault, resulting from an attempt to modify
debug registers (usually in conjunction with in-circuit
emulation)

BD = 1 None Fault

Task switch BT = 1 None Trap

INT1 instruction None None Trap
Vol. 3B 18-9

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
— Trap-class exceptions generated after an instruction completes (including those generated after the last
iteration of a repeated string instruction)

— Software-generated interrupts (RF is pushed as 0, since it was cleared at the start of the software interrupt)

As noted above, the processor does not set the RF flag prior to calling the debug exception handler for debug
exceptions resulting from instruction breakpoints. The debug exception handler can prevent recurrence of the
instruction breakpoint by setting the RF flag in the EFLAGS image on the stack. If the RF flag in the EFLAGS image
is set when the processor returns from the exception handler, it is copied into the RF flag in the EFLAGS register by
IRETD/IRETQ or a task switch that causes the return. The processor then ignores instruction breakpoints for the
duration of the next instruction. (Note that the POPF, POPFD, and IRET instructions do not transfer the RF image
into the EFLAGS register.) Setting the RF flag does not prevent other types of debug-exception conditions (such as,
I/O or data breakpoints) from being detected, nor does it prevent non-debug exceptions from being generated.

For the Pentium processor, when an instruction breakpoint coincides with another fault-type exception (such as a
page fault), the processor may generate one spurious debug exception after the second exception has been
handled, even though the debug exception handler set the RF flag in the EFLAGS image. To prevent a spurious
exception with Pentium processors, all fault-class exception handlers should set the RF flag in the EFLAGS image.

18.3.1.2 Data Memory and I/O Breakpoint Exception Conditions
Data memory and I/O breakpoints are reported when the processor attempts to access a memory or I/O address
specified in a breakpoint-address register (DR0 through DR3) that has been set up to detect data or I/O accesses
(R/W flag is set to 1, 2, or 3). The processor generates the exception after it executes the instruction that made the
access, so these breakpoint condition causes a trap-class exception to be generated.

Because data breakpoints are traps, an instruction that writes memory overwrites the original data before the
debug exception generated by a data breakpoint is generated. If a debugger needs to save the contents of a write
breakpoint location, it should save the original contents before setting the breakpoint. The handler can report the
saved value after the breakpoint is triggered. The address in the debug registers can be used to locate the new
value stored by the instruction that triggered the breakpoint.

If a data breakpoint is detected during an iteration of a string instruction executed with fast-string operation (see
Section 7.3.9.3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1), delivery of the
resulting debug exception may be delayed until completion of the corresponding group of iterations.

Intel486 and later processors ignore the GE and LE flags in DR7. In Intel386 processors, exact data breakpoint
matching does not occur unless it is enabled by setting the LE and/or the GE flags.

For repeated INS and OUTS instructions that generate an I/O-breakpoint debug exception, the processor generates
the exception after the completion of the first iteration. Repeated INS and OUTS instructions generate a data-
breakpoint debug exception after the iteration in which the memory address breakpoint location is accessed.

If an execution of the MOV or POP instruction loads the SS register and encounters a data breakpoint, the resulting
debug exception is delivered after completion of the next instruction (the one after the MOV or POP).

Any pending data or I/O breakpoints are lost upon delivery of an exception. For example, if a machine-check
exception (#MC) occurs following an instruction that encounters a data breakpoint (but before the resulting debug
exception is delivered), the data breakpoint is lost. If a MOV or POP instruction that loads the SS register encoun-
ters a data breakpoint, the data breakpoint is lost if the next instruction causes a fault.

Delivery of events due to INT n, INT3, or INTO does not cause a loss of data breakpoints. If a MOV or POP instruc-
tion that loads the SS register encounters a data breakpoint, and the next instruction is software interrupt (INT n,
INT3, or INTO), a debug exception (#DB) resulting from a data breakpoint will be delivered after the transition to
the software-interrupt handler. The #DB handler should account for the fact that the #DB may have been delivered
after a invocation of a software-interrupt handler, and in particular that the CPL may have changed between recog-
nition of the data breakpoint and delivery of the #DB.

18.3.1.3 General-Detect Exception Condition
When the GD flag in DR7 is set, the general-detect debug exception occurs when a program attempts to access any
of the debug registers (DR0 through DR7) at the same time they are being used by another application, such as an
emulator or debugger. This protection feature guarantees full control over the debug registers when required. The
18-10 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
debug exception handler can detect this condition by checking the state of the BD flag in the DR6 register. The
processor generates the exception before it executes the MOV instruction that accesses a debug register, which
causes a fault-class exception to be generated.

18.3.1.4 Single-Step Exception Condition
The processor generates a single-step debug exception if (while an instruction is being executed) it detects that the
TF flag in the EFLAGS register is set. The exception is a trap-class exception, because the exception is generated
after the instruction is executed. The processor will not generate this exception after the instruction that sets the
TF flag. For example, if the POPF instruction is used to set the TF flag, a single-step trap does not occur until after
the instruction that follows the POPF instruction.

The processor clears the TF flag before calling the exception handler. If the TF flag was set in a TSS at the time of
a task switch, the exception occurs after the first instruction is executed in the new task.

The TF flag normally is not cleared by privilege changes inside a task. The INT n, INT3, and INTO instructions,
however, do clear this flag. Therefore, software debuggers that single-step code must recognize and emulate INT n
or INTO instructions rather than executing them directly. To maintain protection, the operating system should
check the CPL after any single-step trap to see if single stepping should continue at the current privilege level.

The interrupt priorities guarantee that, if an external interrupt occurs, single stepping stops. When both an
external interrupt and a single-step interrupt occur together, the single-step interrupt is processed first. This oper-
ation clears the TF flag. After saving the return address or switching tasks, the external interrupt input is examined
before the first instruction of the single-step handler executes. If the external interrupt is still pending, then it is
serviced. The external interrupt handler does not run in single-step mode. To single step an interrupt handler,
single step an INT n instruction that calls the interrupt handler.

If an occurrence of the MOV or POP instruction loads the SS register executes with EFLAGS.TF = 1, no single-step
debug exception occurs following the MOV or POP instruction.

18.3.1.5 Task-Switch Exception Condition
The processor generates a debug exception after a task switch if the T flag of the new task's TSS is set. This excep-
tion is generated after program control has passed to the new task, and prior to the execution of the first instruc-
tion of that task. The exception handler can detect this condition by examining the BT flag of the DR6 register.

If entry 1 (#DB) in the IDT is a task gate, the T bit of the corresponding TSS should not be set. Failure to observe
this rule will put the processor in a loop.

18.3.1.6 OS Bus-Lock Detection
OS bus-lock detection is a feature that causes the processor to generate a debug exception (called a bus-lock
detection debug exception) if it detects that a bus lock has been asserted (see Section 9.1.2). Such an excep-
tion is a trap-class exception, because it is generated after execution of an instruction that asserts a bus lock. The
exception thus does not prevent assertion of the bus lock. Delivery of a bus-lock detection debug exception clears
DR6.BLD.

Software can enable OS bus-lock detection by setting IA32_DEBUGCTL.BLD[bit 2]. Bus-lock detection debug
exceptions occur only if CPL > 0.

18.3.2 Breakpoint Exception (#BP)—Interrupt Vector 3
The breakpoint exception (interrupt 3) is caused by execution of an INT3 instruction. See Chapter 6,
“Interrupt 3—Breakpoint Exception (#BP).” Debuggers use breakpoint exceptions in the same way that they use
the breakpoint registers; that is, as a mechanism for suspending program execution to examine registers and
memory locations. With earlier IA-32 processors, breakpoint exceptions are used extensively for setting instruction
breakpoints.

With the Intel386 and later IA-32 processors, it is more convenient to set breakpoints with the breakpoint-address
registers (DR0 through DR3). However, the breakpoint exception still is useful for breakpointing debuggers,
Vol. 3B 18-11

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
because a breakpoint exception can call a separate exception handler. The breakpoint exception is also useful when
it is necessary to set more breakpoints than there are debug registers or when breakpoints are being placed in the
source code of a program under development.

18.3.3 Debug Exceptions, Breakpoint Exceptions, and Restricted Transactional Memory
(RTM)

Chapter 16, “Programming with Intel® Transactional Synchronization Extensions,” of Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1, describes Restricted Transactional Memory (RTM). This is an instruc-
tion-set interface that allows software to identify transactional regions (or critical sections) using the XBEGIN
and XEND instructions.

Execution of an RTM transactional region begins with an XBEGIN instruction. If execution of the region successfully
reaches an XEND instruction, the processor ensures that all memory operations performed within the region
appear to have occurred instantaneously when viewed from other logical processors. Execution of an RTM transac-
tion region does not succeed if the processor cannot commit the updates atomically. When this happens, the
processor rolls back the execution, a process referred to as a transactional abort. In this case, the processor
discards all updates performed in the region, restores architectural state to appear as if the execution had not
occurred, and resumes execution at a fallback instruction address that was specified with the XBEGIN instruction.

If debug exception (#DB) or breakpoint exception (#BP) occurs within an RTM transaction region, a transactional
abort occurs, the processor sets EAX[4], and no exception is delivered.

Software can enable advanced debugging of RTM transactional regions by setting DR7.RTM[bit 11] and
IA32_DEBUGCTL.RTM[bit 15]. If these bits are both set, the transactional abort caused by a #DB or #BP within an
RTM transaction region does not resume execution at the fallback instruction address specified with the XBEGIN
instruction that begin the region. Instead, execution is resumed at that XBEGIN instruction, and a #DB is delivered.
(A #DB is delivered even if the transactional abort was caused by a #BP.) Such a #DB will clear DR6.RTM[bit 16]
(all other debug exceptions set DR6[16]).

18.4 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING OVERVIEW
P6 family processors introduced the ability to set breakpoints on taken branches, interrupts, and exceptions, and
to single-step from one branch to the next. This capability has been modified and extended in the Pentium 4, Intel
Xeon, Pentium M, Intel® Core™ Solo, Intel® Core™ Duo, Intel® Core™2 Duo, Intel® Core™ i7 and Intel Atom®
processors to allow logging of branch trace messages in a branch trace store (BTS) buffer in memory.

See the following sections for processor specific implementation of last branch, interrupt, and exception recording:

— Section 18.5, “Last Branch, Interrupt, and Exception Recording (Intel® Core™ 2 Duo and Intel Atom®
Processors).”

— Section 18.6, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on
Goldmont Microarchitecture.”

— Section 18.9, “Last Branch, Interrupt, and Exception Recording for Processors based on Nehalem Microar-
chitecture.”

— Section 18.10, “Last Branch, Interrupt, and Exception Recording for Processors based on Sandy Bridge
Microarchitecture.”

— Section 18.11, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on
Haswell Microarchitecture.”

— Section 18.12, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on
Skylake Microarchitecture.”

— Section 18.14, “Last Branch, Interrupt, and Exception Recording (Intel® Core™ Solo and Intel® Core™

Duo Processors).”

— Section 18.15, “Last Branch, Interrupt, and Exception Recording (Pentium M Processors).”

— Section 18.16, “Last Branch, Interrupt, and Exception Recording (P6 Family Processors).”
18-12 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
The following subsections of Section 18.4 describe common features of profiling branches. These features are
generally enabled using the IA32_DEBUGCTL MSR (older processor may have implemented a subset or model-
specific features, see definitions of MSR_DEBUGCTLA, MSR_DEBUGCTLB, MSR_DEBUGCTL).

18.4.1 IA32_DEBUGCTL MSR
The IA32_DEBUGCTL MSR provides bit field controls to enable debug trace interrupts, debug trace stores, trace
messages enable, single stepping on branches, last branch record recording, and to control freezing of LBR stack
or performance counters on a PMI request. IA32_DEBUGCTL MSR is located at register address 01D9H.

See Figure 18-3 for the MSR layout and the bullets below for a description of the flags:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace of

the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug exception
being generated) in the last branch record (LBR) stack. For more information, see the Section 18.5.1, “LBR
Stack” (Intel® Core™2 Duo and Intel Atom® processor family) and Section 18.9.1, “LBR Stack” (processors
based on Nehalem microarchitecture).

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism
allows single-stepping the processor on taken branches. See Section 18.4.3, “Single-Stepping on Branches,”
for more information about the BTF flag.

• BLD (bus-lock detection) flag (bit 2) — If this bit is set, OS bus-lock detection is enabled when CPL > 0.
See Section 18.3.1.6.

• TR (trace message enable) flag (bit 6) — When set, branch trace messages are enabled. When the
processor detects a taken branch, interrupt, or exception; it sends the branch record out on the system bus as
a branch trace message (BTM). See Section 18.4.4, “Branch Trace Messages,” for more information about the
TR flag.

• BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS facilities to log BTMs to a memory-
resident BTS buffer that is part of the DS save area. See Section 18.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bit 8) — When set, the BTS facilities generate an interrupt when the
BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 18.4.5, “Branch
Trace Store (BTS),” for a description of this mechanism.

Figure 18-3. IA32_DEBUGCTL MSR for Processors Based on Intel® Core™ Microarchitecture

RTM
FREEZE_WHILE_SMM
FREEZE_PERFMON_ON_PMI
FREEZE_LBRS_ON_PMI
BTS_OFF_USR — BTS off in user code
BTS_OFF_OS — BTS off in OS
BTINT — Branch trace interrupt
BTS — Branch trace store
TR — Trace messages enable
Reserved

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

0123456789101112141531

Reserved

BLD — Bus-lock detection

Reserved
Vol. 3B 18-13

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
• BTS_OFF_OS (branch trace off in privileged code) flag (bit 9) — When set, BTS or BTM is skipped if CPL
is 0. See Section 18.13.2.

• BTS_OFF_USR (branch trace off in user code) flag (bit 10) — When set, BTS or BTM is skipped if CPL is
greater than 0. See Section 18.13.2.

• FREEZE_LBRS_ON_PMI flag (bit 11) — When set, the LBR stack is frozen on a hardware PMI request (e.g.,
when a counter overflows and is configured to trigger PMI). See Section 18.4.7 for details.

• FREEZE_PERFMON_ON_PMI flag (bit 12) — When set, the performance counters (IA32_PMCx and IA32_-
FIXED_CTRx) are frozen on a PMI request. See Section 18.4.7 for details.

• FREEZE_WHILE_SMM (bit 14) — If this bit is set, upon the delivery of an SMI, the processor will clear all the
enable bits of IA32_PERF_GLOBAL_CTRL, save a copy of the content of IA32_DEBUGCTL and disable LBR, BTF,
TR, and BTS fields of IA32_DEBUGCTL before transferring control to the SMI handler. If Intel Thread Director
support was enabled before transferring control to the SMI handler, then the processor will also reset the Intel
Thread Director history (see Section 15.6.11 for more details about Intel Thread Director enable, reset, and
history reset operations).
Subsequently, the enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved copy of IA32_DEBUGCTL
prior to SMI delivery will be restored, after the SMI handler issues RSM to complete its service. If Intel Thread
Director support is enabled when RSM is executed, then the processor resets the Intel Thread Director history.
Note that system software must check if the processor supports the IA32_DEBUGCTL.FREEZE_WHILE_SMM
control bit. IA32_DEBUGCTL.FREEZE_WHILE_SMM is supported if IA32_PERF_CAPABIL-
ITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See Section 20.8 for details of detecting the presence of
IA32_PERF_CAPABILITIES MSR.

• RTM (bit 15) — If this bit is set, advanced debugging of RTM transactional regions is enabled if DR7.RTM is
also set. See Section 18.3.3.

18.4.2 Monitoring Branches, Exceptions, and Interrupts
When the LBR flag (bit 0) in the IA32_DEBUGCTL MSR is set, the processor automatically begins recording branch
records for taken branches, interrupts, and exceptions (except for debug exceptions) in the LBR stack MSRs.

When the processor generates a debug exception (#DB), it automatically clears the LBR flag before executing the
exception handler. This action does not clear previously stored LBR stack MSRs.

A debugger can use the linear addresses in the LBR stack to re-set breakpoints in the breakpoint address registers
(DR0 through DR3). This allows a backward trace from the manifestation of a particular bug toward its source.

On some processors, if the LBR flag is cleared and TR flag in the IA32_DEBUGCTL MSR remains set, the processor
will continue to update LBR stack MSRs. This is because those processors use the entries in the LBR stack in the
process of generating BTM/BTS records. A #DB does not automatically clear the TR flag.

18.4.3 Single-Stepping on Branches
When software sets both the BTF flag (bit 1) in the IA32_DEBUGCTL MSR and the TF flag in the EFLAGS register,
the processor generates a single-step debug exception only after instructions that cause a branch.1 This mecha-
nism allows a debugger to single-step on control transfers caused by branches. This “branch single stepping” helps
isolate a bug to a particular block of code before instruction single-stepping further narrows the search. The
processor clears the BTF flag when it generates a debug exception. The debugger must set the BTF flag before
resuming program execution to continue single-stepping on branches.

1. Executions of CALL, IRET, and JMP that cause task switches never cause single-step debug exceptions (regardless of the value of the
BTF flag). A debugger desiring debug exceptions on switches to a task should set the T flag (debug trap flag) in the TSS of that task.
See Section 8.2.1, “Task-State Segment (TSS).”
18-14 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
18.4.4 Branch Trace Messages
Setting the TR flag (bit 6) in the IA32_DEBUGCTL MSR enables branch trace messages (BTMs). Thereafter, when
the processor detects a branch, exception, or interrupt, it sends a branch record out on the system bus as a BTM.
A debugging device that is monitoring the system bus can read these messages and synchronize operations with
taken branch, interrupt, and exception events.

When interrupts or exceptions occur in conjunction with a taken branch, additional BTMs are sent out on the bus,
as described in Section 18.4.2, “Monitoring Branches, Exceptions, and Interrupts.”

For the P6 processor family, Pentium M processor family, and processors based on Intel Core microarchitecture, TR
and LBR bits can not be set at the same time due to hardware limitation. The content of LBR stack is undefined
when TR is set.

For processors with Intel NetBurst microarchitecture, Intel Atom processors, and Intel Core and related Intel Xeon
processors both starting with the Nehalem microarchitecture, the processor can collect branch records in the LBR
stack and at the same time send/store BTMs when both the TR and LBR flags are set in the IA32_DEBUGCTL MSR
(or the equivalent MSR_DEBUGCTLA, MSR_DEBUGCTLB).

The following exception applies:
• BTM may not be observable on Intel Atom processor families that do not provide an externally visible system

bus (i.e., processors based on the Silvermont microarchitecture or later).

18.4.4.1 Branch Trace Message Visibility
Branch trace message (BTM) visibility is implementation specific and limited to systems with a front side bus (FSB).
BTMs may not be visible to newer system link interfaces or a system bus that deviates from a traditional FSB.

18.4.5 Branch Trace Store (BTS)
A trace of taken branches, interrupts, and exceptions is useful for debugging code by providing a method of deter-
mining the decision path taken to reach a particular code location. The LBR flag (bit 0) of IA32_DEBUGCTL provides
a mechanism for capturing records of taken branches, interrupts, and exceptions and saving them in the last
branch record (LBR) stack MSRs, setting the TR flag for sending them out onto the system bus as BTMs. The branch
trace store (BTS) mechanism provides the additional capability of saving the branch records in a memory-resident
BTS buffer, which is part of the DS save area. The BTS buffer can be configured to be circular so that the most
recent branch records are always available or it can be configured to generate an interrupt when the buffer is
nearly full so that all the branch records can be saved. The BTINT flag (bit 8) can be used to enable the generation
of interrupt when the BTS buffer is full. See Section 18.4.9.2, “Setting Up the DS Save Area,” for additional details.

Setting this flag (BTS) alone can greatly reduce the performance of the processor. CPL-qualified branch trace
storing mechanism can help mitigate the performance impact of sending/logging branch trace messages.

18.4.6 CPL-Qualified Branch Trace Mechanism
CPL-qualified branch trace mechanism is available to a subset of Intel 64 and IA-32 processors that support the
branch trace storing mechanism. The processor supports the CPL-qualified branch trace mechanism if
CPUID.01H:ECX[bit 4] = 1.

The CPL-qualified branch trace mechanism is described in Section 18.4.9.4. System software can selectively
specify CPL qualification to not send/store Branch Trace Messages associated with a specified privilege level. Two
bit fields, BTS_OFF_USR (bit 10) and BTS_OFF_OS (bit 9), are provided in the debug control register to specify the
CPL of BTMs that will not be logged in the BTS buffer or sent on the bus.

18.4.7 Freezing LBR and Performance Counters on PMI
Many issues may generate a performance monitoring interrupt (PMI); a PMI service handler will need to determine
cause to handle the situation. Two capabilities that allow a PMI service routine to improve branch tracing and
performance monitoring are available for processors supporting architectural performance monitoring version 2 or
Vol. 3B 18-15

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
greater (i.e., CPUID.0AH:EAX[7:0] > 1). These capabilities provides the following interface in IA32_DEBUGCTL to
reduce runtime overhead of PMI servicing, profiler-contributed skew effects on analysis or counter metrics:
• Freezing LBRs on PMI (bit 11)— Allows the PMI service routine to ensure the content in the LBR stack are

associated with the target workload and not polluted by the branch flows of handling the PMI. Depending on the
version ID enumerated by CPUID.0AH:EAX.ArchPerfMonVerID[bits 7:0], two flavors are supported:

— Legacy Freeze_LBR_on_PMI is supported for ArchPerfMonVerID <= 3 and ArchPerfMonVerID >1. If
IA32_DEBUGCTL.Freeze_LBR_On_PMI = 1, the LBR is frozen on the overflowed condition of the buffer
area, the processor clears the LBR bit (bit 0) in IA32_DEBUGCTL. Software must then re-enable IA32_DE-
BUGCTL.LBR to resume recording branches. When using this feature, software should be careful about
writes to IA32_DEBUGCTL to avoid re-enabling LBRs by accident if they were just disabled.

— Streamlined Freeze_LBR_on_PMI is supported for ArchPerfMonVerID >= 4. If IA32_DEBUGCTL.Freeze_L-
BR_On_PMI = 1, the processor behaves as follows:

• sets IA32_PERF_GLOBAL_STATUS.LBR_Frz =1 to disable recording, but does not change the LBR bit
(bit 0) in IA32_DEBUGCTL. The LBRs are frozen on the overflowed condition of the buffer area.

• Freezing PMCs on PMI (bit 12) — Allows the PMI service routine to ensure the content in the performance
counters are associated with the target workload and not polluted by the PMI and activities within the PMI
service routine. Depending on the version ID enumerated by CPUID.0AH:EAX.ArchPerfMonVerID[bits 7:0], two
flavors are supported:

— Legacy Freeze_Perfmon_on_PMI is supported for ArchPerfMonVerID <= 3 and ArchPerfMonVerID >1. If
IA32_DEBUGCTL.Freeze_Perfmon_On_PMI = 1, the performance counters are frozen on the counter
overflowed condition when the processor clears the IA32_PERF_GLOBAL_CTRL MSR (see Figure 20-3). The
PMCs affected include both general-purpose counters and fixed-function counters (see Section 20.6.2.1,
“Fixed-function Performance Counters”). Software must re-enable counts by writing 1s to the corre-
sponding enable bits in IA32_PERF_GLOBAL_CTRL before leaving a PMI service routine to continue counter
operation.

— Streamlined Freeze_Perfmon_on_PMI is supported for ArchPerfMonVerID >= 4. The processor behaves as
follows:

• sets IA32_PERF_GLOBAL_STATUS.CTR_Frz =1 to disable counting on a counter overflow condition, but
does not change the IA32_PERF_GLOBAL_CTRL MSR.

Freezing LBRs and PMCs on PMIs (both legacy and streamlined operation) occur when one of the following applies:
• A performance counter had an overflow and was programmed to signal a PMI in case of an overflow.

— For the general-purpose counters; enabling PMI is done by setting bit 20 of the IA32_PERFEVTSELx
register.

— For the fixed-function counters; enabling PMI is done by setting the 3rd bit in the corresponding 4-bit
control field of the MSR_PERF_FIXED_CTR_CTRL register (see Figure 20-1) or IA32_FIXED_CTR_CTRL MSR
(see Figure 20-2).

• The PEBS buffer is almost full and reaches the interrupt threshold.
• The BTS buffer is almost full and reaches the interrupt threshold.

Table 18-3 compares the interaction of the processor with the PMI handler using the legacy versus streamlined
Freeza_Perfmon_On_PMI interface.
18-16 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
18.4.8 LBR Stack
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported across Intel 64 and IA-32
processor families. However, the number of MSRs in the LBR stack and the valid range of TOS pointer value can
vary between different processor families. Table 18-4 lists the LBR stack size and TOS pointer range for several
processor families according to the CPUID signatures of DisplayFamily_DisplayModel encoding (see the CPUID
instruction in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A).

Table 18-3. Legacy and Streamlined Operation with Freeze_Perfmon_On_PMI = 1, Counter Overflowed
Legacy Freeze_Perfmon_On_PMI Streamlined Freeze_Perfmon_On_PMI Comment

Processor freezes the counters on
overflow

Processor freezes the counters on overflow Unchanged

Processor clears
IA32_PERF_GLOBAL_CTRL

Processor set IA32_PERF_GLOBAL_STATUS.CTR_FTZ

Handler reads
IA32_PERF_GLOBAL_STATUS (0x38E) to
examine which counter(s) overflowed

mask = RDMSR(0x38E) Similar

Handler services the PMI Handler services the PMI Unchanged

Handler writes 1s to
IA32_PERF_GLOBAL_OVF_CTL (0x390)

Handler writes mask into
IA32_PERF_GLOBAL_OVF_RESET (0x390)

Processor clears
IA32_PERF_GLOBAL_STATUS

Processor clears IA32_PERF_GLOBAL_STATUS Unchanged

Handler re-enables
IA32_PERF_GLOBAL_CTRL

None Reduced software overhead

Table 18-4. LBR Stack Size and TOS Pointer Range
DisplayFamily_DisplayModel Size of LBR Stack Component of an LBR Entry Range of TOS Pointer

06_5CH, 06_5FH 32 FROM_IP, TO_IP 0 to 31

06_4EH, 06_5EH, 06_8EH, 06_9EH, 06_55H,
06_66H, 06_7AH, 06_67H, 06_6AH, 06_6CH,
06_7DH, 06_7EH, 06_8CH, 06_8DH, 06_6AH,
06_A5H, 06_A6H, 06_A7H, 06_A8H, 06_86H,
06_8AH, 06_96H, 06_9CH

32 FROM_IP, TO_IP, LBR_INFO1

NOTES:
1. See Section 18.12.

0 to 31

06_3DH, 06_47H, 06_4FH, 06_56H, 06_3CH,
06_45H, 06_46H, 06_3FH, 06_2AH, 06_2DH,
06_3AH, 06_3EH, 06_1AH, 06_1EH, 06_1FH,
06_2EH, 06_25H, 06_2CH, 06_2FH

16 FROM_IP, TO_IP 0 to 15

06_17H, 06_1DH, 06_0FH 4 FROM_IP, TO_IP 0 to 3

06_37H, 06_4AH, 06_4CH, 06_4DH, 06_5AH,
06_5DH, 06_1CH, 06_26H, 06_27H, 06_35H,
06_36H

8 FROM_IP, TO_IP 0 to 7
Vol. 3B 18-17

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
The last branch recording mechanism tracks not only branch instructions (e.g., JMP, Jcc, LOOP, and CALL instruc-
tions), but also other operations that cause a change in the instruction pointer (e.g., external interrupts, traps, and
faults). The branch recording mechanisms generally employs a set of MSRs, referred to as last branch record (LBR)
stack. The size and exact locations of the LBR stack are generally model-specific (see Chapter 2, “Model-Specific
Registers (MSRs)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, for model-
specific MSR addresses).
• Last Branch Record (LBR) Stack — The LBR consists of N pairs of MSRs (N is listed in the LBR stack size

column of Table 18-4) that store source and destination address of recent branches (see Figure 18-3):

— MSR_LASTBRANCH_0_FROM_IP (address is model specific) through the next consecutive (N-1) MSR
address store source addresses.

— MSR_LASTBRANCH_0_TO_IP (address is model specific) through the next consecutive (N-1) MSR address
store destination addresses.

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant M bits of the TOS Pointer MSR
(MSR_LASTBRANCH_TOS, address is model specific) contains an M-bit pointer to the MSR in the LBR stack that
contains the most recent branch, interrupt, or exception recorded. The valid range of the M-bit POS pointer is
given in Table 18-4.

18.4.8.1 LBR Stack and Intel® 64 Processors
LBR MSRs are 64-bits. In 64-bit mode, last branch records store the full address. Outside of 64-bit mode, the upper
32-bits of branch addresses will be stored as 0.

Software should query an architectural MSR IA32_PERF_CAPABILITIES[5:0] about the format of the address that
is stored in the LBR stack. Four formats are defined by the following encoding:

— 000000B (32-bit record format) — Stores 32-bit offset in current CS of respective source/destination,

— 000001B (64-bit LIP record format) — Stores 64-bit linear address of respective source/destination,

— 000010B (64-bit EIP record format) — Stores 64-bit offset (effective address) of respective
source/destination.

— 000011B (64-bit EIP record format) and Flags — Stores 64-bit offset (effective address) of respective
source/destination. Misprediction info is reported in the upper bit of 'FROM' registers in the LBR stack. See
LBR stack details below for flag support and definition.

— 000100B (64-bit EIP record format), Flags, and TSX — Stores 64-bit offset (effective address) of
respective source/destination. Misprediction and TSX info are reported in the upper bits of ‘FROM’ registers
in the LBR stack.

— 000101B (64-bit EIP record format), Flags, TSX, and LBR_INFO — Stores 64-bit offset (effective
address) of respective source/destination. Misprediction, TSX, and elapsed cycles since the last LBR update
are reported in the LBR_INFO MSR stack.

— 000110B (64-bit LIP record format), Flags, and Cycles — Stores 64-bit linear address (CS.Base +
effective address) of respective source/destination. Misprediction info is reported in the upper bits of

Figure 18-4. 64-bit Address Layout of LBR MSR

63

Source Address

0

063

Destination Address

MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_(N-1)_FROM_IP

MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_(N-1)_TO_IP
18-18 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
'FROM' registers in the LBR stack. Elapsed cycles since the last LBR update are reported in the upper 16 bits
of the 'TO' registers in the LBR stack (see Section 18.6).

— 000111B (64-bit LIP record format), Flags, and LBR_INFO — Stores 64-bit linear address (CS.Base
+ effective address) of respective source/destination. Misprediction, and elapsed cycles since the last LBR
update are reported in the LBR_INFO MSR stack.

Processor’s support for the architectural MSR IA32_PERF_CAPABILITIES is provided by CPUID.01H:ECX[PERF_CA-
PAB_MSR] (bit 15).

18.4.8.2 LBR Stack and IA-32 Processors
The LBR MSRs in IA-32 processors introduced prior to Intel 64 architecture store the 32-bit “To Linear Address” and
“From Linear Address” using the high and low half of each 64-bit MSR.

18.4.8.3 Last Exception Records and Intel 64 Architecture
Intel 64 and IA-32 processors also provide MSRs that store the branch record for the last branch taken prior to an
exception or an interrupt. The location of the last exception record (LER) MSRs are model specific. The MSRs that
store last exception records are 64-bits. If IA-32e mode is disabled, only the lower 32-bits of the address is
recorded. If IA-32e mode is enabled, the processor writes 64-bit values into the MSR. In 64-bit mode, last excep-
tion records store 64-bit addresses; in compatibility mode, the upper 32-bits of last exception records are cleared.

18.4.9 BTS and DS Save Area
The Debug store (DS) feature flag (bit 21), returned by CPUID.1:EDX[21] indicates that the processor provides
the debug store (DS) mechanism. The DS mechanism allows:
• BTMs to be stored in a memory-resident BTS buffer. See Section 18.4.5, “Branch Trace Store (BTS).”
• Processor event-based sampling (PEBS) also uses the DS save area provided by debug store mechanism. The

capability of PEBS varies across different microarchitectures. See Section 20.6.2.4, “Processor Event Based
Sampling (PEBS),” and the relevant PEBS sub-sections across the core PMU sections in Chapter 20, “Perfor-
mance Monitoring.”

When CPUID.1:EDX[21] is set:
• The BTS_UNAVAILABLE and PEBS_UNAVAILABLE flags in the IA32_MISC_ENABLE MSR indicate (when clear)

the availability of the BTS and PEBS facilities, including the ability to set the BTS and BTINT bits in the
appropriate DEBUGCTL MSR.

• The IA32_DS_AREA MSR exists and points to the DS save area.

The debug store (DS) save area is a software-designated area of memory that is used to collect the following two
types of information:
• Branch records — When the BTS flag in the IA32_DEBUGCTL MSR is set, a branch record is stored in the BTS

buffer in the DS save area whenever a taken branch, interrupt, or exception is detected.
• PEBS records — When a performance counter is configured for PEBS, a PEBS record is stored in the PEBS

buffer in the DS save area after the counter overflow occurs. This record contains the architectural state of the
processor (state of the 8 general purpose registers, EIP register, and EFLAGS register) at the next occurrence
of the PEBS event that caused the counter to overflow. When the state information has been logged, the
counter is automatically reset to a specified value, and event counting begins again. The content layout of a
PEBS record varies across different implementations that support PEBS. See Section 20.6.2.4.2 for details of
enumerating PEBS record format.
Vol. 3B 18-19

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
NOTES

Prior to processors based on the Goldmont microarchitecture, PEBS facility only supports a subset
of implementation-specific precise events. See Section 20.5.3.1 for a PEBS enhancement that can
generate records for both precise and non-precise events.

The DS save area and recording mechanism are disabled on INIT, processor Reset or transition to
system-management mode (SMM) or IA-32e mode. It is similarly disabled on the generation of a
machine-check exception on 45nm and 32nm Intel Atom processors and on processors with
Netburst or Intel Core microarchitecture.

The BTS and PEBS facilities may not be available on all processors. The availability of these facilities
is indicated by the BTS_UNAVAILABLE and PEBS_UNAVAILABLE flags, respectively, in the IA32_-
MISC_ENABLE MSR (see Chapter 2, “Model-Specific Registers (MSRs)‚” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 4).

The DS save area is divided into three parts: buffer management area, branch trace store (BTS) buffer, and PEBS
buffer (see Figure 18-5). The buffer management area is used to define the location and size of the BTS and PEBS
buffers. The processor then uses the buffer management area to keep track of the branch and/or PEBS records in
their respective buffers and to record the performance counter reset value. The linear address of the first byte of
the DS buffer management area is specified with the IA32_DS_AREA MSR.

The fields in the buffer management area are as follows:
• BTS buffer base — Linear address of the first byte of the BTS buffer. This address should point to a natural

doubleword boundary.
• BTS index — Linear address of the first byte of the next BTS record to be written to. Initially, this address

should be the same as the address in the BTS buffer base field.
• BTS absolute maximum — Linear address of the next byte past the end of the BTS buffer. This address should

be a multiple of the BTS record size (12 bytes) plus 1.
• BTS interrupt threshold — Linear address of the BTS record on which an interrupt is to be generated. This

address must point to an offset from the BTS buffer base that is a multiple of the BTS record size. Also, it must
be several records short of the BTS absolute maximum address to allow a pending interrupt to be handled prior
to processor writing the BTS absolute maximum record.

• PEBS buffer base — Linear address of the first byte of the PEBS buffer. This address should point to a natural
doubleword boundary.

• PEBS index — Linear address of the first byte of the next PEBS record to be written to. Initially, this address
should be the same as the address in the PEBS buffer base field.

• PEBS absolute maximum — Linear address of the next byte past the end of the PEBS buffer. This address
should be a multiple of the PEBS record size (40 bytes) plus 1.

• PEBS interrupt threshold — Linear address of the PEBS record on which an interrupt is to be generated. This
address must point to an offset from the PEBS buffer base that is a multiple of the PEBS record size. Also, it
must be several records short of the PEBS absolute maximum address to allow a pending interrupt to be
handled prior to processor writing the PEBS absolute maximum record.

• PEBS counter reset value — A 64-bit value that the counter is to be set to when a PEBS record is written. Bits
beyond the size of the counter are ignored. This value allows state information to be collected regularly every
time the specified number of events occur.
18-20 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
Figure 18-6 shows the structure of a 12-byte branch record in the BTS buffer. The fields in each record are as
follows:
• Last branch from — Linear address of the instruction from which the branch, interrupt, or exception was

taken.
• Last branch to — Linear address of the branch target or the first instruction in the interrupt or exception

service routine.
• Branch predicted — Bit 4 of field indicates whether the branch that was taken was predicted (set) or not

predicted (clear).

Figure 18-5. DS Save Area Example1

NOTES:
1. This example represents the format for a system that supports PEBS on only one counter.

BTS Buffer Base

BTS Index

BTS Absolute

BTS Interrupt

PEBS Absolute

PEBS Interrupt

PEBS

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter Reset

Reserved

0H

4H

8H

CH

10H

14H

18H

1CH

20H

24H

30H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n

BTS Buffer

PEBS Buffer

DS Buffer Management Area

IA32_DS_AREA MSR
Vol. 3B 18-21

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
Figure 18-7 shows the structure of the 40-byte PEBS records. Nominally the register values are those at the begin-
ning of the instruction that caused the event. However, there are cases where the registers may be logged in a
partially modified state. The linear IP field shows the value in the EIP register translated from an offset into the
current code segment to a linear address.

18.4.9.1 64 Bit Format of the DS Save Area
When DTES64 = 1 (CPUID.1.ECX[2] = 1), the structure of the DS save area is shown in Figure 18-8.

When DTES64 = 0 (CPUID.1.ECX[2] = 0) and IA-32e mode is active, the structure of the DS save area is shown in
Figure 18-8. If IA-32e mode is not active the structure of the DS save area is as shown in Figure 18-5.

Figure 18-6. 32-bit Branch Trace Record Format

Figure 18-7. PEBS Record Format

Last Branch From

Last Branch To

Branch Predicted

0H

4H

8H

031 4

EFLAGS 0H

4H

8H

031

Linear IP

10H

18H

14H

1CH

20H

24H

CH

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP
18-22 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
The IA32_DS_AREA MSR holds the 64-bit linear address of the first byte of the DS buffer management area. The
structure of a branch trace record is similar to that shown in Figure 18-6, but each field is 8 bytes in length. This
makes each BTS record 24 bytes (see Figure 18-9). The structure of a PEBS record is similar to that shown in
Figure 18-7, but each field is 8 bytes in length and architectural states include register R8 through R15. This makes
the size of a PEBS record in 64-bit mode 144 bytes (see Figure 18-10).

Figure 18-8. IA-32e Mode DS Save Area Example1

NOTES:
1. This example represents the format for a system that supports PEBS on only one counter.

Figure 18-9. 64-bit Branch Trace Record Format

BTS Buffer Base

BTS Index

BTS Absolute

BTS Interrupt

PEBS Absolute

PEBS Interrupt

PEBS

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter Reset

Reserved

0H

8H

10H

18H

20H

28H

30H

38H

40H

48H

50H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n

BTS Buffer

PEBS Buffer

DS Buffer Management Area

IA32_DS_AREA MSR

Last Branch From

Last Branch To

Branch Predicted

0H

8H

10H

063 4
Vol. 3B 18-23

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
Fields in the buffer management area of a DS save area are described in Section 18.4.9.

The format of a branch trace record and a PEBS record are the same as the 64-bit record formats shown in Figures
18-9 and Figures 18-10, with the exception that the branch predicted bit is not supported by Intel Core microarchi-
tecture or Intel Atom microarchitecture. The 64-bit record formats for BTS and PEBS apply to DS save area for all
operating modes.

The procedures used to program IA32_DEBUGCTL MSR to set up a BTS buffer or a CPL-qualified BTS are described
in Section 18.4.9.3 and Section 18.4.9.4.

Required elements for writing a DS interrupt service routine are largely the same on processors that support using
DS Save area for BTS or PEBS records. However, on processors based on Intel NetBurst® microarchitecture, re-
enabling counting requires writing to CCCRs. But a DS interrupt service routine on processors supporting architec-
tural performance monitoring should:
• Re-enable the enable bits in IA32_PERF_GLOBAL_CTRL MSR if it is servicing an overflow PMI due to PEBS.
• Clear overflow indications by writing to IA32_PERF_GLOBAL_OVF_CTRL when a counting configuration is

changed. This includes bit 62 (ClrOvfBuffer) and the overflow indication of counters used in either PEBS or
general-purpose counting (specifically: bits 0 or 1; see Figures 20-3).

18.4.9.2 Setting Up the DS Save Area
To save branch records with the BTS buffer, the DS save area must first be set up in memory as described in the
following procedure (See Section 20.6.2.4.1, “Setting up the PEBS Buffer,” for instructions for setting up a PEBS
buffer, respectively, in the DS save area):

1. Create the DS buffer management information area in memory (see Section 18.4.9, “BTS and DS Save Area,”
and Section 18.4.9.1, “64 Bit Format of the DS Save Area”). Also see the additional notes in this section.

2. Write the base linear address of the DS buffer management area into the IA32_DS_AREA MSR.

3. Set up the performance counter entry in the xAPIC LVT for fixed delivery and edge sensitive. See Section
11.5.1, “Local Vector Table.”

4. Establish an interrupt handler in the IDT for the vector associated with the performance counter entry in the
xAPIC LVT.

Figure 18-10. 64-bit PEBS Record Format

RFLAGS 0H

8H

10H

063

RIP

20H

30H

28H

38H

40H

48H

18H

RAX

RBX

RCX

RDX

RSI

RDI

RBP

RSP

R8

...

R15

50H

...

88H
18-24 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
5. Write an interrupt service routine to handle the interrupt. See Section 18.4.9.5, “Writing the DS Interrupt
Service Routine.”

The following restrictions should be applied to the DS save area.
• The recording of branch records in the BTS buffer (or PEBS records in the PEBS buffer) may not operate

properly if accesses to the linear addresses in any of the three DS save area sections cause page faults, VM
exits, or the setting of accessed or dirty flags in the paging structures (ordinary or EPT). For that reason,
system software should establish paging structures (both ordinary and EPT) to prevent such occurrences.
Implications of this may be that an operating system should allocate this memory from a non-paged pool and
that system software cannot do “lazy” page-table entry propagation for these pages. Some newer processor
generations support “lazy” EPT page-table entry propagation for PEBS; see Section 20.3.9.1 and Section
20.9.5 for more information. A virtual-machine monitor may choose to allow use of PEBS by guest software
only if EPT maps all guest-physical memory as present and read/write.

• The DS save area can be larger than a page, but the pages must be mapped to contiguous linear addresses.
The buffer may share a page, so it need not be aligned on a 4-KByte boundary. For performance reasons, the
base of the buffer must be aligned on a doubleword boundary and should be aligned on a cache line boundary.

• It is recommended that the buffer size for the BTS buffer and the PEBS buffer be an integer multiple of the
corresponding record sizes.

• The precise event records buffer should be large enough to hold the number of precise event records that can
occur while waiting for the interrupt to be serviced.

• The DS save area should be in kernel space. It must not be on the same page as code, to avoid triggering self-
modifying code actions.

• There are no memory type restrictions on the buffers, although it is recommended that the buffers be
designated as WB memory type for performance considerations.

• Either the system must be prevented from entering A20M mode while DS save area is active, or bit 20 of all
addresses within buffer bounds must be 0.

• Pages that contain buffers must be mapped to the same physical addresses for all processes, such that any
change to control register CR3 will not change the DS addresses.

• The DS save area is expected to used only on systems with an enabled APIC. The LVT Performance Counter
entry in the APCI must be initialized to use an interrupt gate instead of the trap gate.

18.4.9.3 Setting Up the BTS Buffer
Three flags in the MSR_DEBUGCTLA MSR (see Table 18-5), IA32_DEBUGCTL (see Figure 18-3), or MSR_DE-
BUGCTLB (see Figure 18-16) control the generation of branch records and storing of them in the BTS buffer; these
are TR, BTS, and BTINT. The TR flag enables the generation of BTMs. The BTS flag determines whether the BTMs
are sent out on the system bus (clear) or stored in the BTS buffer (set). BTMs cannot be simultaneously sent to the
system bus and logged in the BTS buffer. The BTINT flag enables the generation of an interrupt when the BTS buffer
is full. When this flag is clear, the BTS buffer is a circular buffer.

The following procedure describes how to set up a DS Save area to collect branch records in the BTS buffer:

1. Place values in the BTS buffer base, BTS index, BTS absolute maximum, and BTS interrupt threshold fields of
the DS buffer management area to set up the BTS buffer in memory.

2. Set the TR and BTS flags in the IA32_DEBUGCTL for Intel Core Solo and Intel Core Duo processors or later
processors (or MSR_DEBUGCTLA MSR for processors based on Intel NetBurst Microarchitecture; or MSR_DE-
BUGCTLB for Pentium M processors).

Table 18-5. IA32_DEBUGCTL Flag Encodings
TR BTS BTINT Description

0 X X Branch trace messages (BTMs) off

1 0 X Generate BTMs

1 1 0 Store BTMs in the BTS buffer, used here as a circular buffer

1 1 1 Store BTMs in the BTS buffer, and generate an interrupt when the buffer is nearly full
Vol. 3B 18-25

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
3. Clear the BTINT flag in the corresponding IA32_DEBUGCTL (or MSR_DEBUGCTLA MSR; or MSR_DEBUGCTLB)
if a circular BTS buffer is desired.

NOTES
If the buffer size is set to less than the minimum allowable value (i.e., BTS absolute maximum < 1
+ size of BTS record), the results of BTS is undefined.
In order to prevent generating an interrupt, when working with circular BTS buffer, SW need to set
BTS interrupt threshold to a value greater than BTS absolute maximum (fields of the DS buffer
management area). It's not enough to clear the BTINT flag itself only.

18.4.9.4 Setting Up CPL-Qualified BTS
If the processor supports CPL-qualified last branch recording mechanism, the generation of branch records and
storing of them in the BTS buffer are determined by: TR, BTS, BTS_OFF_OS, BTS_OFF_USR, and BTINT. The
encoding of these five bits are shown in Table 18-6.

18.4.9.5 Writing the DS Interrupt Service Routine
The BTS, non-precise event-based sampling, and PEBS facilities share the same interrupt vector and interrupt
service routine (called the debug store interrupt service routine or DS ISR). To handle BTS, non-precise event-
based sampling, and PEBS interrupts: separate handler routines must be included in the DS ISR. Use the following
guidelines when writing a DS ISR to handle BTS, non-precise event-based sampling, and/or PEBS interrupts.
• The DS interrupt service routine (ISR) must be part of a kernel driver and operate at a current privilege level of

0 to secure the buffer storage area.
• Because the BTS, non-precise event-based sampling, and PEBS facilities share the same interrupt vector, the

DS ISR must check for all the possible causes of interrupts from these facilities and pass control on to the
appropriate handler.

BTS and PEBS buffer overflow would be the sources of the interrupt if the buffer index matches/exceeds the
interrupt threshold specified. Detection of non-precise event-based sampling as the source of the interrupt is
accomplished by checking for counter overflow.

• There must be separate save areas, buffers, and state for each processor in an MP system.
• Upon entering the ISR, branch trace messages and PEBS should be disabled to prevent race conditions during

access to the DS save area. This is done by clearing TR flag in the IA32_DEBUGCTL (or MSR_DEBUGCTLA MSR)
and by clearing the precise event enable flag in the MSR_PEBS_ENABLE MSR. These settings should be
restored to their original values when exiting the ISR.

Table 18-6. CPL-Qualified Branch Trace Store Encodings
TR BTS BTS_OFF_OS BTS_OFF_USR BTINT Description

0 X X X X Branch trace messages (BTMs) off

1 0 X X X Generates BTMs but do not store BTMs

1 1 0 0 0 Store all BTMs in the BTS buffer, used here as a circular buffer

1 1 1 0 0 Store BTMs with CPL > 0 in the BTS buffer

1 1 0 1 0 Store BTMs with CPL = 0 in the BTS buffer

1 1 1 1 X Generate BTMs but do not store BTMs

1 1 0 0 1 Store all BTMs in the BTS buffer; generate an interrupt when the
buffer is nearly full

1 1 1 0 1 Store BTMs with CPL > 0 in the BTS buffer; generate an interrupt
when the buffer is nearly full

1 1 0 1 1 Store BTMs with CPL = 0 in the BTS buffer; generate an interrupt
when the buffer is nearly full
18-26 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
• The processor will not disable the DS save area when the buffer is full and the circular mode has not been
selected. The current DS setting must be retained and restored by the ISR on exit.

• After reading the data in the appropriate buffer, up to but not including the current index into the buffer, the ISR
must reset the buffer index to the beginning of the buffer. Otherwise, everything up to the index will look like
new entries upon the next invocation of the ISR.

• The ISR must clear the mask bit in the performance counter LVT entry.
• The ISR must re-enable the counters to count via IA32_PERF_GLOBAL_CTRL/IA32_PERF_GLOBAL_OVF_CTRL

if it is servicing an overflow PMI due to PEBS (or via CCCR's ENABLE bit on processor based on Intel NetBurst
microarchitecture).

• The Pentium 4 Processor and Intel Xeon Processor mask PMIs upon receiving an interrupt. Clear this condition
before leaving the interrupt handler.

18.5 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™ 2
DUO AND INTEL ATOM® PROCESSORS)

The Intel Core 2 Duo processor family and Intel Xeon processors based on Intel Core microarchitecture or
enhanced Intel Core microarchitecture provide last branch interrupt and exception recording. The facilities
described in this section also apply to 45 nm and 32 nm Intel Atom processors. These capabilities are similar to
those found in Pentium 4 processors, including support for the following facilities:
• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR provide bit fields for software to

configure mechanisms related to debug trace, branch recording, branch trace store, and performance counter
operations. See Section 18.4.1 for a description of the flags. See Figure 18-3 for the MSR layout.

• Last branch record (LBR) stack — There are a collection of MSR pairs that store the source and destination
addresses related to recently executed branches. See Section 18.5.1.

• Monitoring and single-stepping of branches, exceptions, and interrupts

— See Section 18.4.2 and Section 18.4.3. In addition, the ability to freeze the LBR stack on a PMI request is
available.

— 45 nm and 32 nm Intel Atom processors clear the TR flag when the FREEZE_LBRS_ON_PMI flag is set.
• Branch trace messages — See Section 18.4.4.
• Last exception records — See Section 18.13.3.
• Branch trace store and CPL-qualified BTS — See Section 18.4.5.
• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 18.4.7 for legacy Freeze_LBRs_On_PMI operation.
• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 18.4.7 for legacy Freeze_Perfmon_On_PMI

operation.
• FREEZE_WHILE_SMM (bit 14) — FREEZE_WHILE_SMM is supported if IA32_PERF_CAPABIL-

ITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See Section 18.4.1.

18.5.1 LBR Stack
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported across Intel Core 2, Intel Atom
processor families, and Intel processors based on Intel NetBurst microarchitecture.

Four pairs of MSRs are supported in the LBR stack for Intel Core 2 processors families and Intel processors based
on Intel NetBurst microarchitecture:
• Last Branch Record (LBR) Stack

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through MSR_LASTBRANCH_3_FROM_IP (address 43H)
store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through MSR_LASTBRANCH_3_TO_IP (address 63H) store
destination addresses
Vol. 3B 18-27

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 2 bits of the TOS Pointer MSR
(MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer to the MSR in the LBR stack that contains the most
recent branch, interrupt, or exception recorded.

Eight pairs of MSRs are supported in the LBR stack for 45 nm and 32 nm Intel Atom processors:
• Last Branch Record (LBR) Stack

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through MSR_LASTBRANCH_7_FROM_IP (address 47H)
store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through MSR_LASTBRANCH_7_TO_IP (address 67H) store
destination addresses

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 3 bits of the TOS Pointer MSR
(MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer to the MSR in the LBR stack that contains the most
recent branch, interrupt, or exception recorded.

The address format written in the FROM_IP/TO_IP MSRS may differ between processors. Software should query
IA32_PERF_CAPABILITIES[5:0] and consult Section 18.4.8.1. The behavior of the MSR_LER_TO_LIP and the
MSR_LER_FROM_LIP MSRs corresponds to that of the LastExceptionToIP and LastExceptionFromIP MSRs found in
P6 family processors.

18.5.2 LBR Stack in Intel Atom® Processors based on the Silvermont Microarchitecture
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported in Intel Atom processors based on
the Silvermont and Airmont microarchitectures. Eight pairs of MSRs are supported in the LBR stack.

LBR filtering is supported. Filtering of LBRs based on a combination of CPL and branch type conditions is supported.
When LBR filtering is enabled, the LBR stack only captures the subset of branches that are specified by MSR_L-
BR_SELECT. The layout of MSR_LBR_SELECT is described in Table 18-11.

18.6 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING
FOR PROCESSORS BASED ON GOLDMONT MICROARCHITECTURE

Processors based on the Goldmont microarchitecture extend the capabilities described in Section 18.5.2 with the
following enhancements:
• Supports new LBR format encoding 00110b in IA32_PERF_CAPABILITIES[5:0].
• Size of LBR stack increased to 32. Each entry includes MSR_LASTBRANCH_x_FROM_IP (address 0x680..0x69f)

and MSR_LASTBRANCH_x_TO_IP (address 0x6c0..0x6df).

• LBR call stack filtering supported. The layout of MSR_LBR_SELECT is described in Table 18-13.

• Elapsed cycle information is added to MSR_LASTBRANCH_x_TO_IP. Format is shown in Table 18-7.

• Misprediction info is reported in the upper bits of MSR_LASTBRANCH_x_FROM_IP. MISPRED bit format is
shown in Table 18-8.

• Streamlined Freeze_LBRs_On_PMI operation; see Section 18.12.2.

• LBR MSRs may be cleared when MWAIT is used to request a C-state that is numerically higher than C1; see
Section 18.12.3.

Table 18-7. MSR_LASTBRANCH_x_TO_IP for the Goldmont Microarchitecture
Bit Field Bit Offset Access Description

Data 47:0 R/W This is the “branch to“ address. See Section 18.4.8.1 for address format.

Cycle Count
(Saturating)

63:48 R/W Elapsed core clocks since last update to the LBR stack.
18-28 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
18.7 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING
FOR PROCESSORS BASED ON GOLDMONT PLUS MICROARCHITECTURE

Next generation Intel Atom processors are based on the Goldmont Plus microarchitecture. Processors based on the
Goldmont Plus microarchitecture extend the capabilities described in Section 18.6 with the following changes:

• Enumeration of new LBR format: encoding 00111b in IA32_PERF_CAPABILITIES[5:0] is supported, see
Section 18.4.8.1.

• Each LBR stack entry consists of three MSRs:
— MSR_LASTBRANCH_x_FROM_IP, the layout is simplified, see Table 18-9.

— MSR_LASTBRANCH_x_TO_IP, the layout is the same as Table 18-9.

— MSR_LBR_INFO_x, stores branch prediction flag, TSX info, and elapsed cycle data. Layout is the same as
Table 18-16.

18.8 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR INTEL®
XEON PHI™ PROCESSOR 7200/5200/3200

The last branch record stack and top-of-stack (TOS) pointer MSRs are supported in the Intel® Xeon Phi™ processor
7200/5200/3200 series based on the Knights Landing microarchitecture. Eight pairs of MSRs are supported in the
LBR stack, per thread:
• Last Branch Record (LBR) Stack

— MSR_LASTBRANCH_0_FROM_IP (address 680H) through MSR_LASTBRANCH_7_FROM_IP (address 687H)
store source addresses.

— MSR_LASTBRANCH_0_TO_IP (address 6C0H) through MSR_LASTBRANCH_7_TO_IP (address 6C7H) store
destination addresses.

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 3 bits of the TOS Pointer MSR
(MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer to the MSR in the LBR stack that contains the
most recent branch, interrupt, or exception recorded.

LBR filtering is supported. Filtering of LBRs based on a combination of CPL and branch type conditions is supported.
When LBR filtering is enabled, the LBR stack only captures the subset of branches that are specified by MSR_L-
BR_SELECT. The layout of MSR_LBR_SELECT is described in Table 18-11.

The address format written in the FROM_IP/TO_IP MSRS may differ between processors. Software should query
IA32_PERF_CAPABILITIES[5:0] and consult Section 18.4.8.1.The behavior of the MSR_LER_TO_LIP and the
MSR_LER_FROM_LIP MSRs corresponds to that of the LastExceptionToIP and LastExceptionFromIP MSRs found in
the P6 family processors.

18.9 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR
PROCESSORS BASED ON NEHALEM MICROARCHITECTURE

The processors based on Nehalem microarchitecture and Westmere microarchitecture support last branch inter-
rupt and exception recording. These capabilities are similar to those found in Intel Core 2 processors and add addi-
tional capabilities:
• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR provides bit fields for software to

configure mechanisms related to debug trace, branch recording, branch trace store, and performance counter
operations. See Section 18.4.1 for a description of the flags. See Figure 18-11 for the MSR layout.

• Last branch record (LBR) stack — There are 16 MSR pairs that store the source and destination addresses
related to recently executed branches. See Section 18.9.1.

• Monitoring and single-stepping of branches, exceptions, and interrupts — See Section 18.4.2 and
Section 18.4.3. In addition, the ability to freeze the LBR stack on a PMI request is available.
Vol. 3B 18-29

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
• Branch trace messages — The IA32_DEBUGCTL MSR provides bit fields for software to enable each logical
processor to generate branch trace messages. See Section 18.4.4. However, not all BTM messages are
observable using the Intel® QPI link.

• Last exception records — See Section 18.13.3.
• Branch trace store and CPL-qualified BTS — See Section 18.4.6 and Section 18.4.5.
• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 18.4.7 for legacy Freeze_LBRs_On_PMI operation.
• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 18.4.7 for legacy Freeze_Perfmon_On_PMI

operation.
• UNCORE_PMI_EN (bit 13) — When set. this logical processor is enabled to receive an counter overflow

interrupt form the uncore.
• FREEZE_WHILE_SMM (bit 14) — FREEZE_WHILE_SMM is supported if IA32_PERF_CAPABIL-

ITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See Section 18.4.1.

Processors based on Nehalem microarchitecture provide additional capabilities:
• Independent control of uncore PMI — The IA32_DEBUGCTL MSR provides a bit field (see Figure 18-11) for

software to enable each logical processor to receive an uncore counter overflow interrupt.
• LBR filtering — Processors based on Nehalem microarchitecture support filtering of LBR based on combination

of CPL and branch type conditions. When LBR filtering is enabled, the LBR stack only captures the subset of
branches that are specified by MSR_LBR_SELECT.

18.9.1 LBR Stack
Processors based on Nehalem microarchitecture provide 16 pairs of MSR to record last branch record information.
The layout of each MSR pair is shown in Table 18-8 and Table 18-9.

Figure 18-11. IA32_DEBUGCTL MSR for Processors Based on Nehalem Microarchitecture

Table 18-8. MSR_LASTBRANCH_x_FROM_IP
Bit Field Bit Offset Access Description

Data 47:0 R/W This is the “branch from” address. See Section 18.4.8.1 for address format.

SIGN_EXt 62:48 R/W Signed extension of bit 47 of this register.

MISPRED 63 R/W When set, indicates either the target of the branch was mispredicted and/or the
direction (taken/non-taken) was mispredicted; otherwise, the target branch was
predicted.

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1 0

BTS — Branch trace store

Reserved

910

BTS_OFF_OS — BTS off in OS
BTS_OFF_USR — BTS off in user code
FREEZE_LBRS_ON_PMI
FREEZE_PERFMON_ON_PMI

111214

FREEZE_WHILE_SMM
UNCORE_PMI_EN

13
18-30 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
Processors based on Nehalem microarchitecture have an LBR MSR Stack as shown in Table 18-10.

Table 18-10. LBR Stack Size and TOS Pointer Range

18.9.2 Filtering of Last Branch Records
MSR_LBR_SELECT is cleared to zero at RESET, and LBR filtering is disabled, i.e., all branches will be captured.
MSR_LBR_SELECT provides bit fields to specify the conditions of subsets of branches that will not be captured in
the LBR. The layout of MSR_LBR_SELECT is shown in Table 18-11.

18.10 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR
PROCESSORS BASED ON SANDY BRIDGE MICROARCHITECTURE

Generally, all of the last branch record, interrupt, and exception recording facility described in Section 18.9, “Last
Branch, Interrupt, and Exception Recording for Processors based on Nehalem Microarchitecture,” apply to proces-
sors based on Sandy Bridge microarchitecture. For processors based on Ivy Bridge microarchitecture, the same
holds true.

One difference of note is that MSR_LBR_SELECT is shared between two logical processors in the same core. In
Sandy Bridge microarchitecture, each logical processor has its own MSR_LBR_SELECT. The filtering semantics for
“Near_ind_jmp” and “Near_rel_jmp” has been enhanced, see Table 18-12.

Table 18-9. MSR_LASTBRANCH_x_TO_IP
Bit Field Bit Offset Access Description

Data 47:0 R/W This is the “branch to” address. See Section 18.4.8.1 for address format

SIGN_EXt 63:48 R/W Signed extension of bit 47 of this register.

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_1AH 16 0 to 15

Table 18-11. MSR_LBR_SELECT for Nehalem Microarchitecture
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches ending in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches ending in ring >0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps

FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero
Vol. 3B 18-31

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
18.11 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING
FOR PROCESSORS BASED ON HASWELL MICROARCHITECTURE

Generally, all of the last branch record, interrupt, and exception recording facility described in Section 18.10, “Last
Branch, Interrupt, and Exception Recording for Processors based on Sandy Bridge Microarchitecture,” apply to next
generation processors based on Haswell microarchitecture.

The LBR facility also supports an alternate capability to profile call stack profiles. Configuring the LBR facility to
conduct call stack profiling is by writing 1 to the MSR_LBR_SELECT.EN_CALLSTACK[bit 9]; see Table 18-13. If
MSR_LBR_SELECT.EN_CALLSTACK is clear, the LBR facility will capture branches normally as described in Section
18.10.

The call stack profiling capability is an enhancement of the LBR facility. The LBR stack is a ring buffer typically used
to profile control flow transitions resulting from branches. However, the finite depth of the LBR stack often become
less effective when profiling certain high-level languages (e.g., C++), where a transition of the execution flow is
accompanied by a large number of leaf function calls, each of which returns an individual parameter to form the list

Table 18-12. MSR_LBR_SELECT for Sandy Bridge Microarchitecture
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches ending in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches ending in ring >0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps except near indirect calls and near returns

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps except near relative calls.

FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero

Table 18-13. MSR_LBR_SELECT for Haswell Microarchitecture
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches ending in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches ending in ring >0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps except near indirect calls and near returns

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps except near relative calls.

FAR_BRANCH 8 R/W When set, do not capture far branches

EN_CALLSTACK1

NOTES:
1. Must set valid combination of bits 0-8 in conjunction with bit 9 (as described below), otherwise the contents of the LBR MSRs are

undefined.

9 Enable LBR stack to use LIFO filtering to capture Call stack profile

Reserved 63:10 Must be zero
18-32 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
of parameters for the main execution function call. A long list of such parameters returned by the leaf functions
would serve to flush the data captured in the LBR stack, often losing the main execution context.

When the call stack feature is enabled, the LBR stack will capture unfiltered call data normally, but as return
instructions are executed the last captured branch record is flushed from the on-chip registers in a last-in first-out
(LIFO) manner. Thus, branch information relative to leaf functions will not be captured, while preserving the call
stack information of the main line execution path.

The configuration of the call stack facility is summarized below:
• Set IA32_DEBUGCTL.LBR (bit 0) to enable the LBR stack to capture branch records. The source and target

addresses of the call branches will be captured in the 16 pairs of From/To LBR MSRs that form the LBR stack.
• Program the Top of Stack (TOS) MSR that points to the last valid from/to pair. This register is incremented by

1, modulo 16, before recording the next pair of addresses.
• Program the branch filtering bits of MSR_LBR_SELECT (bits 0:8) as desired.
• Program the MSR_LBR_SELECT to enable LIFO filtering of return instructions with:

— The following bits in MSR_LBR_SELECT must be set to ‘1’: JCC, NEAR_IND_JMP, NEAR_REL_JMP,
FAR_BRANCH, EN_CALLSTACK;

— The following bits in MSR_LBR_SELECT must be cleared: NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET;

— At most one of CPL_EQ_0, CPL_NEQ_0 is set.

Note that when call stack profiling is enabled, “zero length calls” are excluded from writing into the LBRs. (A “zero
length call” uses the attribute of the call instruction to push the immediate instruction pointer on to the stack and
then pops off that address into a register. This is accomplished without any matching return on the call.)

18.11.1 LBR Stack Enhancement
Processors based on Haswell microarchitecture provide 16 pairs of MSR to record last branch record information.
The layout of each MSR pair is enumerated by IA32_PERF_CAPABILITIES[5:0] = 04H, and is shown in Table 18-14
and Table 18-9.

18.12 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING
FOR PROCESSORS BASED ON SKYLAKE MICROARCHITECTURE

Processors based on the Skylake microarchitecture provide a number of enhancement with storing last branch
records:
• enumeration of new LBR format: encoding 00101b in IA32_PERF_CAPABILITIES[5:0] is supported, see Section

18.4.8.1.
• Each LBR stack entry consists of a triplets of MSRs:

Table 18-14. MSR_LASTBRANCH_x_FROM_IP with TSX Information
Bit Field Bit Offset Access Description

Data 47:0 R/W This is the “branch from” address. See Section 18.4.8.1 for address format.

SIGN_EXT 60:48 R/W Signed extension of bit 47 of this register.

TSX_ABORT 61 R/W When set, indicates a TSX Abort entry
LBR_FROM: EIP at the time of the TSX Abort
LBR_TO: EIP of the start of HLE region, or EIP of the RTM Abort Handler

IN_TSX 62 R/W When set, indicates the entry occurred in a TSX region

MISPRED 63 R/W When set, indicates either the target of the branch was mispredicted and/or the
direction (taken/non-taken) was mispredicted; otherwise, the target branch was
predicted.
Vol. 3B 18-33

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
— MSR_LASTBRANCH_x_FROM_IP, the layout is simplified, see Table 18-9.

— MSR_LASTBRANCH_x_TO_IP, the layout is the same as Table 18-9.

— MSR_LBR_INFO_x, stores branch prediction flag, TSX info, and elapsed cycle data.
• Size of LBR stack increased to 32.

Processors based on the Skylake microarchitecture support the same LBR filtering capabilities as described in
Table 18-13.

Table 18-15. LBR Stack Size and TOS Pointer Range

18.12.1 MSR_LBR_INFO_x MSR
The layout of each MSR_LBR_INFO_x MSR is shown in Table 18-16.

18.12.2 Streamlined Freeze_LBRs_On_PMI Operation
The FREEZE_LBRS_ON_PMI feature causes the LBRs to be frozen on a hardware request for a PMI. This prevents
the LBRs from being overwritten by new branches, allowing the PMI handler to examine the control flow that
preceded the PMI generation. Architectural performance monitoring version 4 and above supports a streamlined
FREEZE_LBRs_ON_PMI operation for PMI service routine that replaces the legacy FREEZE_LBRs_ON_PMI operation
(see Section 18.4.7).

While the legacy FREEZE_LBRS_ON_PMI clear the LBR bit in the IA32_DEBUGCTL MSR on a PMI request, the
streamlined FREEZE_LBRS_ON_PMI will set the LBR_FRZ bit in IA32_PERF_GLOBAL_STATUS. Branches will not
cause the LBRs to be updated when LBR_FRZ is set. Software can clear LBR_FRZ at the same time as it clears over-
flow bits by setting the LBR_FRZ bit as well as the needed overflow bit when writing to IA32_PERF_GLOBAL_STA-
TUS_RESET MSR.

This streamlined behavior avoids race conditions between software and processor writes to IA32_DEBUGCTL that
are possible with FREEZE_LBRS_ON_PMI clearing of the LBR enable.

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_4EH, 06_5EH 32 0 to 31

Table 18-16. MSR_LBR_INFO_x
Bit Field Bit Offset Access Description

Cycle Count
(saturating)

15:0 R/W Elapsed core clocks since last update to the LBR stack.

Reserved 60:16 R/W Reserved

TSX_ABORT 61 R/W When set, indicates a TSX Abort entry
LBR_FROM: EIP at the time of the TSX Abort
LBR_TO: EIP of the start of HLE region OR
 EIP of the RTM Abort Handler

IN_TSX 62 R/W When set, indicates the entry occurred in a TSX region.

MISPRED 63 R/W When set, indicates either the target of the branch was mispredicted and/or the
direction (taken/non-taken) was mispredicted; otherwise, the target branch was
predicted.
18-34 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
18.12.3 LBR Behavior and Deep C-State
When MWAIT is used to request a C-state that is numerically higher than C1, then LBR state may be initialized to
zero depending on optimized “waiting” state that is selected by the processor The affected LBR states include the
FROM, TO, INFO, LAST_BRANCH, LER, and LBR_TOS registers. The LBR enable bit and LBR_FROZEN bit are not
affected. The LBR-time of the first LBR record inserted after an exit from such a C-state request will be zero.

18.13 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PROCESSORS
BASED ON INTEL NETBURST® MICROARCHITECTURE)

Pentium 4 and Intel Xeon processors based on Intel NetBurst microarchitecture provide the following methods for
recording taken branches, interrupts, and exceptions:
• Store branch records in the last branch record (LBR) stack MSRs for the most recent taken branches,

interrupts, and/or exceptions in MSRs. A branch record consist of a branch-from and a branch-to instruction
address.

• Send the branch records out on the system bus as branch trace messages (BTMs).
• Log BTMs in a memory-resident branch trace store (BTS) buffer.

To support these functions, the processor provides the following MSRs and related facilities:
• MSR_DEBUGCTLA MSR — Enables last branch, interrupt, and exception recording; single-stepping on taken

branches; branch trace messages (BTMs); and branch trace store (BTS). This register is named DebugCtlMSR
in the P6 family processors.

• Debug store (DS) feature flag (CPUID.1:EDX.DS[bit 21]) — Indicates that the processor provides the
debug store (DS) mechanism, which allows BTMs to be stored in a memory-resident BTS buffer.

• CPL-qualified debug store (DS) feature flag (CPUID.1:ECX.DS-CPL[bit 4]) — Indicates that the
processor provides a CPL-qualified debug store (DS) mechanism, which allows software to selectively skip
sending and storing BTMs, according to specified current privilege level settings, into a memory-resident BTS
buffer.

• IA32_MISC_ENABLE MSR — Indicates that the processor provides the BTS facilities.
• Last branch record (LBR) stack — The LBR stack is a circular stack that consists of four MSRs (MSR_LAST-

BRANCH_0 through MSR_LASTBRANCH_3) for the Pentium 4 and Intel Xeon processor family [CPUID family
0FH, models 0H-02H]. The LBR stack consists of 16 MSR pairs (MSR_LASTBRANCH_0_FROM_IP through
MSR_LASTBRANCH_15_FROM_IP and MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_15_TO_IP)
for the Pentium 4 and Intel Xeon processor family [CPUID family 0FH, model 03H].

• Last branch record top-of-stack (TOS) pointer — The TOS Pointer MSR contains a 2-bit pointer (0-3) to
the MSR in the LBR stack that contains the most recent branch, interrupt, or exception recorded for the
Pentium 4 and Intel Xeon processor family [CPUID family 0FH, models 0H-02H]. This pointer becomes a 4-bit
pointer (0-15) for the Pentium 4 and Intel Xeon processor family [CPUID family 0FH, model 03H]. See also:
Table 18-17, Figure 18-12, and Section 18.13.2, “LBR Stack for Processors Based on Intel NetBurst® Microar-
chitecture.”

• Last exception record — See Section 18.13.3, “Last Exception Records.”

18.13.1 MSR_DEBUGCTLA MSR
The MSR_DEBUGCTLA MSR enables and disables the various last branch recording mechanisms described in the
previous section. This register can be written to using the WRMSR instruction, when operating at privilege level 0
or when in real-address mode. A protected-mode operating system procedure is required to provide user access to
this register. Figure 18-12 shows the flags in the MSR_DEBUGCTLA MSR. The functions of these flags are as
follows:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace of

the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug exception
being generated) in the last branch record (LBR) stack. Each branch, interrupt, or exception is recorded as a
64-bit branch record. The processor clears this flag whenever a debug exception is generated (for example,
Vol. 3B 18-35

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
when an instruction or data breakpoint or a single-step trap occurs). See Section 18.13.2, “LBR Stack for
Processors Based on Intel NetBurst® Microarchitecture.”

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism
allows single-stepping the processor on taken branches. See Section 18.4.3, “Single-Stepping on Branches.”

• TR (trace message enable) flag (bit 2) — When set, branch trace messages are enabled. Thereafter, when
the processor detects a taken branch, interrupt, or exception, it sends the branch record out on the system bus
as a branch trace message (BTM). See Section 18.4.4, “Branch Trace Messages.”

• BTS (branch trace store) flag (bit 3) — When set, enables the BTS facilities to log BTMs to a memory-
resident BTS buffer that is part of the DS save area. See Section 18.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bits 4) — When set, the BTS facilities generate an interrupt when the
BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 18.4.5, “Branch
Trace Store (BTS).”

• BTS_OFF_OS (disable ring 0 branch trace store) flag (bit 5) — When set, enables the BTS facilities to
skip sending/logging CPL_0 BTMs to the memory-resident BTS buffer. See Section 18.13.2, “LBR Stack for
Processors Based on Intel NetBurst® Microarchitecture.”

• BTS_OFF_USR (disable ring 0 branch trace store) flag (bit 6) — When set, enables the BTS facilities to
skip sending/logging non-CPL_0 BTMs to the memory-resident BTS buffer. See Section 18.13.2, “LBR Stack for
Processors Based on Intel NetBurst® Microarchitecture.”

NOTE
The initial implementation of BTS_OFF_USR and BTS_OFF_OS in MSR_DEBUGCTLA is shown in
Figure 18-12. The BTS_OFF_USR and BTS_OFF_OS fields may be implemented on other model-
specific debug control register at different locations.

See Chapter 2, “Model-Specific Registers (MSRs)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 4, for a detailed description of each of the last branch recording MSRs.

18.13.2 LBR Stack for Processors Based on Intel NetBurst® Microarchitecture
The LBR stack is made up of LBR MSRs that are treated by the processor as a circular stack. The TOS pointer
(MSR_LASTBRANCH_TOS MSR) points to the LBR MSR (or LBR MSR pair) that contains the most recent (last)
branch record placed on the stack. Prior to placing a new branch record on the stack, the TOS is incremented by 1.
When the TOS pointer reaches it maximum value, it wraps around to 0. See Table 18-17 and Figure 18-12.

Figure 18-12. MSR_DEBUGCTLA MSR for Pentium 4 and Intel Xeon Processors

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

5 4 3 2 1 0

BTS — Branch trace store

Reserved

67

BTS_OFF_OS — Disable storing CPL_0 BTS
BTS_OFF_USR — Disable storing non-CPL_0 BTS
18-36 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
Table 18-17. LBR MSR Stack Size and TOS Pointer Range for the Pentium® 4 and the Intel® Xeon® Processor Family

The registers in the LBR MSR stack and the MSR_LASTBRANCH_TOS MSR are read-only and can be read using the
RDMSR instruction.

Figure 18-13 shows the layout of a branch record in an LBR MSR (or MSR pair). Each branch record consists of two
linear addresses, which represent the “from” and “to” instruction pointers for a branch, interrupt, or exception. The
contents of the from and to addresses differ, depending on the source of the branch:
• Taken branch — If the record is for a taken branch, the “from” address is the address of the branch instruction

and the “to” address is the target instruction of the branch.
• Interrupt — If the record is for an interrupt, the “from” address the return instruction pointer (RIP) saved for

the interrupt and the “to” address is the address of the first instruction in the interrupt handler routine. The RIP
is the linear address of the next instruction to be executed upon returning from the interrupt handler.

• Exception — If the record is for an exception, the “from” address is the linear address of the instruction that
caused the exception to be generated and the “to” address is the address of the first instruction in the
exception handler routine.

Additional information is saved if an exception or interrupt occurs in conjunction with a branch instruction. If a
branch instruction generates a trap type exception, two branch records are stored in the LBR stack: a branch
record for the branch instruction followed by a branch record for the exception.

If a branch instruction is immediately followed by an interrupt, a branch record is stored in the LBR stack for the
branch instruction followed by a record for the interrupt.

18.13.3 Last Exception Records
The Pentium 4, Intel Xeon, Pentium M, Intel® Core™ Solo, Intel® Core™ Duo, Intel® Core™2 Duo, Intel® Core™ i7
and Intel Atom® processors provide two MSRs (the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that
duplicate the functions of the LastExceptionToIP and LastExceptionFromIP MSRs found in the P6 family processors.

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

Family 0FH, Models 0H-02H; MSRs at locations 1DBH-1DEH. 4 0 to 3

Family 0FH, Models; MSRs at locations 680H-68FH. 16 0 to 15

Family 0FH, Model 03H; MSRs at locations 6C0H-6CFH. 16 0 to 15

Figure 18-13. LBR MSR Branch Record Layout for the Pentium 4 and Intel® Xeon® Processor Family

63

From Linear Address

0

To Linear Address

63

From Linear Address

0

063

To Linear Address

32 - 31
MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3
CPUID Family 0FH, Models 0H-02H

Reserved

CPUID Family 0FH, Model 03H-04H

Reserved

MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_15_FROM_IP

32 - 31

32 - 31

MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_15_TO_IP
Vol. 3B 18-37

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
The MSR_LER_TO_LIP and MSR_LER_FROM_LIP MSRs contain a branch record for the last branch that the
processor took prior to an exception or interrupt being generated.

18.14 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™
SOLO AND INTEL® CORE™ DUO PROCESSORS)

Intel Core Solo and Intel Core Duo processors provide last branch interrupt and exception recording. This capability
is almost identical to that found in Pentium 4 and Intel Xeon processors. There are differences in the stack and in
some MSR names and locations.

Note the following:
• IA32_DEBUGCTL MSR — Enables debug trace interrupt, debug trace store, trace messages enable,

performance monitoring breakpoint flags, single stepping on branches, and last branch. IA32_DEBUGCTL MSR
is located at register address 01D9H.
See Figure 18-14 for the layout and the entries below for a description of the flags:

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace
of the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug
exception being generated) in the last branch record (LBR) stack. For more information, see the “Last
Branch Record (LBR) Stack” below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism
allows single-stepping the processor on taken branches. See Section 18.4.3, “Single-Stepping on
Branches,” for more information about the BTF flag.

— TR (trace message enable) flag (bit 6) — When set, branch trace messages are enabled. When the
processor detects a taken branch, interrupt, or exception; it sends the branch record out on the system bus
as a branch trace message (BTM). See Section 18.4.4, “Branch Trace Messages,” for more information
about the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS facilities to log BTMs to a
memory-resident BTS buffer that is part of the DS save area. See Section 18.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS facilities generate an interrupt when
the BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 18.4.5,
“Branch Trace Store (BTS),” for a description of this mechanism.

• Debug store (DS) feature flag (bit 21), returned by the CPUID instruction — Indicates that the
processor provides the debug store (DS) mechanism, which allows BTMs to be stored in a memory-resident
BTS buffer. See Section 18.4.5, “Branch Trace Store (BTS).”

• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs (MSR_LASTBRANCH_0 through
MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’ address, bits 63-32 hold the ‘to’ address (MSR addresses start
at 40H). See Figure 18-15.

Figure 18-14. IA32_DEBUGCTL MSR for Intel® Core™ Solo and Intel® Core™ Duo Processors

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1 0

BTS — Branch trace store

Reserved
18-38 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR contains a 3-bit pointer (bits 2-
0) to the MSR in the LBR stack that contains the most recent branch, interrupt, or exception recorded. For Intel
Core Solo and Intel Core Duo processors, this MSR is located at register address 01C9H.

For compatibility, the Intel Core Solo and Intel Core Duo processors provide two 32-bit MSRs (the
MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate functions of the LastExceptionToIP and Last-
ExceptionFromIP MSRs found in P6 family processors.

For details, see Section 18.12, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based
on Skylake Microarchitecture,” and Section 2.20, “MSRs In Intel® Core™ Solo and Intel® Core™ Duo Processors,”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

18.15 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PENTIUM M
PROCESSORS)

Like the Pentium 4 and Intel Xeon processor family, Pentium M processors provide last branch interrupt and excep-
tion recording. The capability operates almost identically to that found in Pentium 4 and Intel Xeon processors.
There are differences in the shape of the stack and in some MSR names and locations. Note the following:
• MSR_DEBUGCTLB MSR — Enables debug trace interrupt, debug trace store, trace messages enable,

performance monitoring breakpoint flags, single stepping on branches, and last branch. For Pentium M
processors, this MSR is located at register address 01D9H. See Figure 18-16 and the entries below for a
description of the flags.

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace
of the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug
exception being generated) in the last branch record (LBR) stack. For more information, see the “Last
Branch Record (LBR) Stack” bullet below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism
allows single-stepping the processor on taken branches. See Section 18.4.3, “Single-Stepping on
Branches,” for more information about the BTF flag.

— PBi (performance monitoring/breakpoint pins) flags (bits 5-2) — When these flags are set, the
performance monitoring/breakpoint pins on the processor (BP0#, BP1#, BP2#, and BP3#) report
breakpoint matches in the corresponding breakpoint-address registers (DR0 through DR3). The processor
asserts then deasserts the corresponding BPi# pin when a breakpoint match occurs. When a PBi flag is
clear, the performance monitoring/breakpoint pins report performance events. Processor execution is not
affected by reporting performance events.

— TR (trace message enable) flag (bit 6) — When set, branch trace messages are enabled. When the
processor detects a taken branch, interrupt, or exception, it sends the branch record out on the system bus
as a branch trace message (BTM). See Section 18.4.4, “Branch Trace Messages,” for more information
about the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, enables the BTS facilities to log BTMs to a memory-
resident BTS buffer that is part of the DS save area. See Section 18.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS facilities generate an interrupt when
the BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 18.4.5,
“Branch Trace Store (BTS),” for a description of this mechanism.

Figure 18-15. LBR Branch Record Layout for the Intel® Core™ Solo and Intel® Core™ Duo Processor

063

From Linear AddressTo Linear Address
32 - 31

MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7
Vol. 3B 18-39

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
• Debug store (DS) feature flag (bit 21), returned by the CPUID instruction — Indicates that the
processor provides the debug store (DS) mechanism, which allows BTMs to be stored in a memory-resident
BTS buffer. See Section 18.4.5, “Branch Trace Store (BTS).”

• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs (MSR_LASTBRANCH_0 through
MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’ address, bits 63-32 hold the ‘to’ address. For Pentium M
Processors, these pairs are located at register addresses 040H-047H. See Figure 18-17.

• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR contains a 3-bit pointer (bits 2-0)
to the MSR in the LBR stack that contains the most recent branch, interrupt, or exception recorded. For Pentium
M Processors, this MSR is located at register address 01C9H.

For more detail on these capabilities, see Section 18.13.3, “Last Exception Records,” and Section 2.21, “MSRs In
the Pentium M Processor,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

18.16 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (P6 FAMILY
PROCESSORS)

The P6 family processors provide five MSRs for recording the last branch, interrupt, or exception taken by the
processor: DEBUGCTLMSR, LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP.
These registers can be used to collect last branch records, to set breakpoints on branches, interrupts, and excep-
tions, and to single-step from one branch to the next.

See Chapter 2, “Model-Specific Registers (MSRs)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 4, for a detailed description of each of the last branch recording MSRs.

18.16.1 DEBUGCTLMSR Register
The version of the DEBUGCTLMSR register found in the P6 family processors enables last branch, interrupt, and
exception recording; taken branch breakpoints; the breakpoint reporting pins; and trace messages. This register
can be written to using the WRMSR instruction, when operating at privilege level 0 or when in real-address mode.

Figure 18-16. MSR_DEBUGCTLB MSR for Pentium M Processors

Figure 18-17. LBR Branch Record Layout for the Pentium M Processor

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1 0

BTS — Branch trace store

PB3/2/1/0 — Performance monitoring breakpoint flags

063

From Linear AddressTo Linear Address
32 - 31

MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7
18-40 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
A protected-mode operating system procedure is required to provide user access to this register. Figure 18-18
shows the flags in the DEBUGCTLMSR register for the P6 family processors. The functions of these flags are as
follows:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records the source and

target addresses (in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP
MSRs) for the last branch and the last exception or interrupt taken by the processor prior to a debug exception
being generated. The processor clears this flag whenever a debug exception, such as an instruction or data
breakpoint or single-step trap occurs.

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS
register as a “single-step on branches” flag. See Section 18.4.3, “Single-Stepping on Branches.”

• PBi (performance monitoring/breakpoint pins) flags (bits 2 through 5) — When these flags are set,
the performance monitoring/breakpoint pins on the processor (BP0#, BP1#, BP2#, and BP3#) report
breakpoint matches in the corresponding breakpoint-address registers (DR0 through DR3). The processor
asserts then deasserts the corresponding BPi# pin when a breakpoint match occurs. When a PBi flag is clear,
the performance monitoring/breakpoint pins report performance events. Processor execution is not affected by
reporting performance events.

• TR (trace message enable) flag (bit 6) — When set, trace messages are enabled as described in Section
18.4.4, “Branch Trace Messages.” Setting this flag greatly reduces the performance of the processor. When
trace messages are enabled, the values stored in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP,
and LastExceptionFromIP MSRs are undefined.

18.16.2 Last Branch and Last Exception MSRs
The LastBranchToIP and LastBranchFromIP MSRs are 32-bit registers for recording the instruction pointers for the
last branch, interrupt, or exception that the processor took prior to a debug exception being generated. When a
branch occurs, the processor loads the address of the branch instruction into the LastBranchFromIP MSR and loads
the target address for the branch into the LastBranchToIP MSR.

When an interrupt or exception occurs (other than a debug exception), the address of the instruction that was
interrupted by the exception or interrupt is loaded into the LastBranchFromIP MSR and the address of the excep-
tion or interrupt handler that is called is loaded into the LastBranchToIP MSR.

The LastExceptionToIP and LastExceptionFromIP MSRs (also 32-bit registers) record the instruction pointers for
the last branch that the processor took prior to an exception or interrupt being generated. When an exception or
interrupt occurs, the contents of the LastBranchToIP and LastBranchFromIP MSRs are copied into these registers
before the to and from addresses of the exception or interrupt are recorded in the LastBranchToIP and LastBranch-
FromIP MSRs.

These registers can be read using the RDMSR instruction.

Note that the values stored in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP
MSRs are offsets into the current code segment, as opposed to linear addresses, which are saved in last branch
records for the Pentium 4 and Intel Xeon processors.

Figure 18-18. DEBUGCTLMSR Register (P6 Family Processors)

31

TR — Trace messages enable
PBi — Performance monitoring/breakpoint pins
BTF — Single-step on branches
LBR — Last branch/interrupt/exception

7 6 5 4 3 2 1 0

P
B
2

P
B
1

P
B
0

B
T
F

T
R

L
B
R

P
B
3

Reserved
Vol. 3B 18-41

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
18.16.3 Monitoring Branches, Exceptions, and Interrupts
When the LBR flag in the DEBUGCTLMSR register is set, the processor automatically begins recording branches that
it takes, exceptions that are generated (except for debug exceptions), and interrupts that are serviced. Each time
a branch, exception, or interrupt occurs, the processor records the to and from instruction pointers in the Last-
BranchToIP and LastBranchFromIP MSRs. In addition, for interrupts and exceptions, the processor copies the
contents of the LastBranchToIP and LastBranchFromIP MSRs into the LastExceptionToIP and LastExceptionFromIP
MSRs prior to recording the to and from addresses of the interrupt or exception.

When the processor generates a debug exception (#DB), it automatically clears the LBR flag before executing the
exception handler, but does not touch the last branch and last exception MSRs. The addresses for the last branch,
interrupt, or exception taken are thus retained in the LastBranchToIP and LastBranchFromIP MSRs and the
addresses of the last branch prior to an interrupt or exception are retained in the LastExceptionToIP, and LastEx-
ceptionFromIP MSRs.

The debugger can use the last branch, interrupt, and/or exception addresses in combination with code-segment
selectors retrieved from the stack to reset breakpoints in the breakpoint-address registers (DR0 through DR3),
allowing a backward trace from the manifestation of a particular bug toward its source. Because the instruction
pointers recorded in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP MSRs are
offsets into a code segment, software must determine the segment base address of the code segment associated
with the control transfer to calculate the linear address to be placed in the breakpoint-address registers. The
segment base address can be determined by reading the segment selector for the code segment from the stack
and using it to locate the segment descriptor for the segment in the GDT or LDT. The segment base address can
then be read from the segment descriptor.

Before resuming program execution from a debug-exception handler, the handler must set the LBR flag again to re-
enable last branch and last exception/interrupt recording.

18.17 TIME-STAMP COUNTER
The Intel 64 and IA-32 architectures (beginning with the Pentium processor) define a time-stamp counter mecha-
nism that can be used to monitor and identify the relative time occurrence of processor events. The counter’s archi-
tecture includes the following components:
• TSC flag — A feature bit that indicates the availability of the time-stamp counter. The counter is available in an

if the function CPUID.1:EDX.TSC[bit 4] = 1.
• IA32_TIME_STAMP_COUNTER MSR (called TSC MSR in P6 family and Pentium processors) — The MSR used

as the counter.
• RDTSC instruction — An instruction used to read the time-stamp counter.
• TSD flag — A control register flag is used to enable or disable the time-stamp counter (enabled if

CR4.TSD[bit 2] = 1).

The time-stamp counter (as implemented in the P6 family, Pentium, Pentium M, Pentium 4, Intel Xeon, Intel Core
Solo and Intel Core Duo processors and later processors) is a 64-bit counter that is set to 0 following a RESET of
the processor. Following a RESET, the counter increments even when the processor is halted by the HLT instruction
or the external STPCLK# pin. Note that the assertion of the external DPSLP# pin may cause the time-stamp
counter to stop.

Processor families increment the time-stamp counter differently:
• For Pentium M processors (family [06H], models [09H, 0DH]); for Pentium 4 processors, Intel Xeon processors

(family [0FH], models [00H, 01H, or 02H]); and for P6 family processors: the time-stamp counter increments
with every internal processor clock cycle.
The internal processor clock cycle is determined by the current core-clock to bus-clock ratio. Intel®
SpeedStep® technology transitions may also impact the processor clock.

• For Pentium 4 processors, Intel Xeon processors (family [0FH], models [03H and higher]); for Intel Core Solo
and Intel Core Duo processors (family [06H], model [0EH]); for the Intel Xeon processor 5100 series and Intel
Core 2 Duo processors (family [06H], model [0FH]); for Intel Core 2 and Intel Xeon processors (family [06H],
DisplayModel [17H]); for Intel Atom processors (family [06H], DisplayModel [1CH]): the time-stamp counter
increments at a constant rate. That rate may be set by the maximum core-clock to bus-clock ratio of the
18-42 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
processor or may be set by the maximum resolved frequency at which the processor is booted. The maximum
resolved frequency may differ from the processor base frequency, see Section 20.7.2 for more detail. On
certain processors, the TSC frequency may not be the same as the frequency in the brand string.
The specific processor configuration determines the behavior. Constant TSC behavior ensures that the duration
of each clock tick is uniform and supports the use of the TSC as a wall clock timer even if the processor core
changes frequency. This is the architectural behavior moving forward.

NOTE
To determine average processor clock frequency, Intel recommends the use of performance
monitoring logic to count processor core clocks over the period of time for which the average is
required. See Section 20.6.4.5, “Counting Clocks on systems with Intel® Hyper-Threading
Technology in Processors Based on Intel NetBurst® Microarchitecture,” and https://perfmon-
events.intel.com/ for more information.

The RDTSC instruction reads the time-stamp counter and is guaranteed to return a monotonically increasing
unique value whenever executed, except for a 64-bit counter wraparound. Intel guarantees that the time-stamp
counter will not wraparound within 10 years after being reset. The period for counter wrap is longer for Pentium 4,
Intel Xeon, P6 family, and Pentium processors.

Normally, the RDTSC instruction can be executed by programs and procedures running at any privilege level and in
virtual-8086 mode. The TSD flag allows use of this instruction to be restricted to programs and procedures running
at privilege level 0. A secure operating system would set the TSD flag during system initialization to disable user
access to the time-stamp counter. An operating system that disables user access to the time-stamp counter should
emulate the instruction through a user-accessible programming interface.

The RDTSC instruction is not serializing or ordered with other instructions. It does not necessarily wait until all
previous instructions have been executed before reading the counter. Similarly, subsequent instructions may begin
execution before the RDTSC instruction operation is performed.

The RDMSR and WRMSR instructions read and write the time-stamp counter, treating the time-stamp counter as
an ordinary MSR (address 10H). In the Pentium 4, Intel Xeon, and P6 family processors, all 64-bits of the time-
stamp counter are read using RDMSR (just as with RDTSC). When WRMSR is used to write the time-stamp counter
on processors before family [0FH], models [03H, 04H]: only the low-order 32-bits of the time-stamp counter can
be written (the high-order 32 bits are cleared to 0). For family [0FH], models [03H, 04H, 06H]; for family [06H]],
model [0EH, 0FH]; for family [06H]], DisplayModel [17H, 1AH, 1CH, 1DH]: all 64 bits are writable.

18.17.1 Invariant TSC
The time stamp counter in newer processors may support an enhancement, referred to as invariant TSC.
Processor’s support for invariant TSC is indicated by CPUID.80000007H:EDX[8].

The invariant TSC will run at a constant rate in all ACPI P-, C-. and T-states. This is the architectural behavior
moving forward. On processors with invariant TSC support, the OS may use the TSC for wall clock timer services
(instead of ACPI or HPET timers). TSC reads are much more efficient and do not incur the overhead associated with
a ring transition or access to a platform resource.

18.17.2 IA32_TSC_AUX Register and RDTSCP Support
Processors based on Nehalem microarchitecture provide an auxiliary TSC register, IA32_TSC_AUX that is designed
to be used in conjunction with IA32_TSC. IA32_TSC_AUX provides a 32-bit field that is initialized by privileged
software with a signature value (for example, a logical processor ID).

The primary usage of IA32_TSC_AUX in conjunction with IA32_TSC is to allow software to read the 64-bit time
stamp in IA32_TSC and signature value in IA32_TSC_AUX with the instruction RDTSCP in an atomic operation.
RDTSCP returns the 64-bit time stamp in EDX:EAX and the 32-bit TSC_AUX signature value in ECX. The atomicity
of RDTSCP ensures that no context switch can occur between the reads of the TSC and TSC_AUX values.

Support for RDTSCP is indicated by CPUID.80000001H:EDX[27]. As with RDTSC instruction, non-ring 0 access is
controlled by CR4.TSD (Time Stamp Disable flag).
Vol. 3B 18-43

https://perfmon-events.intel.com/
https://perfmon-events.intel.com/
https://perfmon-events.intel.com/

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
User mode software can use RDTSCP to detect if CPU migration has occurred between successive reads of the TSC.
It can also be used to adjust for per-CPU differences in TSC values in a NUMA system.

18.17.3 Time-Stamp Counter Adjustment
Software can modify the value of the time-stamp counter (TSC) of a logical processor by using the WRMSR instruc-
tion to write to the IA32_TIME_STAMP_COUNTER MSR (address 10H). Because such a write applies only to that
logical processor, software seeking to synchronize the TSC values of multiple logical processors must perform these
writes on each logical processor. It may be difficult for software to do this in a way that ensures that all logical
processors will have the same value for the TSC at a given point in time.

The synchronization of TSC adjustment can be simplified by using the 64-bit IA32_TSC_ADJUST MSR (address
3BH). Like the IA32_TIME_STAMP_COUNTER MSR, the IA32_TSC_ADJUST MSR is maintained separately for each
logical processor. A logical processor maintains and uses the IA32_TSC_ADJUST MSR as follows:
• On RESET, the value of the IA32_TSC_ADJUST MSR is 0.
• If an execution of WRMSR to the IA32_TIME_STAMP_COUNTER MSR adds (or subtracts) value X from the TSC,

the logical processor also adds (or subtracts) value X from the IA32_TSC_ADJUST MSR.
• If an execution of WRMSR to the IA32_TSC_ADJUST MSR adds (or subtracts) value X from that MSR, the logical

processor also adds (or subtracts) value X from the TSC.

Unlike the TSC, the value of the IA32_TSC_ADJUST MSR changes only in response to WRMSR (either to the MSR
itself, or to the IA32_TIME_STAMP_COUNTER MSR). Its value does not otherwise change as time elapses. Software
seeking to adjust the TSC can do so by using WRMSR to write the same value to the IA32_TSC_ADJUST MSR on
each logical processor.

Processor support for the IA32_TSC_ADJUST MSR is indicated by CPUID.(EAX=07H, ECX=0H):EBX.TSC_ADJUST
(bit 1).

18.17.4 Invariant Time-Keeping
The invariant TSC is based on the invariant timekeeping hardware (called Always Running Timer or ART), that runs
at the core crystal clock frequency. The ratio defined by CPUID leaf 15H expresses the frequency relationship
between the ART hardware and TSC.

If CPUID.15H:EBX[31:0] != 0 and CPUID.80000007H:EDX[InvariantTSC] = 1, the following linearity relationship
holds between TSC and the ART hardware:

TSC_Value = (ART_Value * CPUID.15H:EBX[31:0])/ CPUID.15H:EAX[31:0] + K

Where 'K' is an offset that can be adjusted by a privileged agent1.

When ART hardware is reset, both invariant TSC and K are also reset.

18.18 INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) MONITORING
FEATURES

The Intel Resource Director Technology (Intel RDT) feature set provides a set of monitoring capabilities including
Cache Monitoring Technology (CMT) and Memory Bandwidth Monitoring (MBM). The Intel® Xeon® processor E5 v3
family introduced resource monitoring capability in each logical processor to measure specific platform shared
resource metrics, for example, L3 cache occupancy. The programming interface for these monitoring features is
described in this section. Two features within the monitoring feature set provided are described - Cache Monitoring
Technology (CMT) and Memory Bandwidth Monitoring.

1. IA32_TSC_ADJUST MSR and the TSC-offset field in the VM execution controls of VMCS are some of the common interfaces that priv-
ileged software can use to manage the time stamp counter for keeping time
18-44 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
Cache Monitoring Technology (CMT) allows an Operating System, Hypervisor or similar system management agent
to determine the usage of cache by applications running on the platform. The initial implementation is directed at
L3 cache monitoring (currently the last level cache in most server platforms).

Memory Bandwidth Monitoring (MBM), introduced in the Intel® Xeon® processor E5 v4 family, builds on the CMT
infrastructure to allow monitoring of bandwidth from one level of the cache hierarchy to the next - in this case
focusing on the L3 cache, which is typically backed directly by system memory. As a result of this implementation,
memory bandwidth can be monitored.

The monitoring mechanisms described provide the following key shared infrastructure features:
• A mechanism to enumerate the presence of the monitoring capabilities within the platform (via a CPUID feature

bit).
• A framework to enumerate the details of each sub-feature (including CMT and MBM, as discussed later, via

CPUID leaves and sub-leaves).
• A mechanism for the OS or Hypervisor to indicate a software-defined ID for each of the software threads (appli-

cations, virtual machines, etc.) that are scheduled to run on a logical processor. These identifiers are known as
Resource Monitoring IDs (RMIDs).

• Mechanisms in hardware to monitor cache occupancy and bandwidth statistics as applicable to a given product
generation on a per software-id basis.

• Mechanisms for the OS or Hypervisor to read back the collected metrics such as L3 occupancy or Memory
Bandwidth for a given software ID at any point during runtime.

18.18.1 Overview of Cache Monitoring Technology and Memory Bandwidth Monitoring
The shared resource monitoring features described in this chapter provide a layer of abstraction between applica-
tions and logical processors through the use of Resource Monitoring IDs (RMIDs). Each logical processor in the
system can be assigned an RMID independently, or multiple logical processors can be assigned to the same RMID
value (e.g., to track an application with multiple threads). For each logical processor, only one RMID value is active
at a time. This is enforced by the IA32_PQR_ASSOC MSR, which specifies the active RMID of a logical processor.
Writing to this MSR by software changes the active RMID of the logical processor from an old value to a new value.

The underlying platform shared resource monitoring hardware tracks cache metrics such as cache utilization and
misses as a result of memory accesses according to the RMIDs and reports monitored data via a counter register
(IA32_QM_CTR). The specific event types supported vary by generation and can be enumerated via CPUID. To read
back monitored data, software configures an event selection MSR (IA32_QM_EVTSEL) to specify which metric is to
be reported and the specific RMID for which the data should be returned.

Processor support of the monitoring framework and sub-features such as CMT is reported via the CPUID instruc-
tion. The resource type available to the monitoring framework is enumerated via a new leaf function in CPUID.
Reading and writing to the monitoring MSRs requires the RDMSR and WRMSR instructions.

The Cache Monitoring Technology feature set provides the following unique mechanisms:
• A mechanism to enumerate the presence and details of the CMT feature as applicable to a given level of the

cache hierarchy, independent of other monitoring features.
• CMT-specific event codes to read occupancy for a given level of the cache hierarchy.

The Memory Bandwidth Monitoring feature provides the following unique mechanisms:
• A mechanism to enumerate the presence and details of the MBM feature as applicable to a given level of the

cache hierarchy, independent of other monitoring features.
• MBM-specific event codes to read bandwidth out to the next level of the hierarchy and various sub-event codes

to read more specific metrics as discussed later (e.g., total bandwidth vs. bandwidth only from local memory
controllers on the same package).

18.18.2 Enabling Monitoring: Usage Flow
Figure 18-19 illustrates the key steps for OS/VMM to detect support of shared resource monitoring features such
as CMT and enable resource monitoring for available resource types and monitoring events.
Vol. 3B 18-45

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
18.18.3 Enumeration and Detecting Support of Cache Monitoring Technology and Memory
Bandwidth Monitoring

Software can query processor support of shared resource monitoring features capabilities by executing CPUID
instruction with EAX = 07H, ECX = 0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] reports 1, the
processor provides the following programming interfaces for shared resource monitoring, including Cache Moni-
toring Technology:
• CPUID leaf function 0FH (Shared Resource Monitoring Enumeration leaf) provides information on available

resource types (see Section 18.18.4), and monitoring capabilities for each resource type (see Section 18.18.5).
Note CMT and MBM capabilities are enumerated as separate event vectors using shared enumeration infra-
structure under a given resource type.

• IA32_PQR_ASSOC.RMID: The per-logical-processor MSR, IA32_PQR_ASSOC, that OS/VMM can use to assign
an RMID to each logical processor, see Section 18.18.6.

• IA32_QM_EVTSEL: This MSR specifies an Event ID (EvtID) and an RMID which the platform uses to look up and
provide monitoring data in the monitoring counter, IA32_QM_CTR, see Section 18.18.7.

• IA32_QM_CTR: This MSR reports monitored resource data when available along with bits to allow software to
check for error conditions and verify data validity.

Software must follow the following sequence of enumeration to discover Cache Monitoring Technology capabilities:

1. Execute CPUID with EAX=0 to discover the “cpuid_maxLeaf” supported in the processor;

2. If cpuid_maxLeaf >= 7, then execute CPUID with EAX=7, ECX= 0 to verify CPUID.(EAX=07H,
ECX=0):EBX.PQM[bit 12] is set;

3. If CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] = 1, then execute CPUID with EAX=0FH, ECX= 0 to query
available resource types that support monitoring;

4. If CPUID.(EAX=0FH, ECX=0):EDX.L3[bit 1] = 1, then execute CPUID with EAX=0FH, ECX= 1 to query the
specific capabilities of L3 Cache Monitoring Technology (CMT) and Memory Bandwidth Monitoring.

5. If CPUID.(EAX=0FH, ECX=0):EDX reports additional resource types supporting monitoring, then execute
CPUID with EAX=0FH, ECX set to a corresponding resource type ID (ResID) as enumerated by the bit position
of CPUID.(EAX=0FH, ECX=0):EDX.

18.18.4 Monitoring Resource Type and Capability Enumeration
CPUID leaf function 0FH (Shared Resource Monitoring Enumeration leaf) provides one sub-leaf (sub-function 0)
that reports shared enumeration infrastructure, and one or more sub-functions that report feature-specific
enumeration data:
• Monitoring leaf sub-function 0 enumerates available resources that support monitoring, i.e., executing CPUID

with EAX=0FH and ECX=0H. In the initial implementation, L3 cache is the only resource type available. Each

Figure 18-19. Platform Shared Resource Monitoring Usage Flow

CPUID.(7,0):EBX.12

On OS/VMM Initialization

CPUID.(0FH,0):EDX[31:1]

PQM Capability
Enumeration

IA32_PQR_ASSOC.RMID

On Context Switch

Set RMID to monitor
the scheduled app

Periodical Resource

IA32_QM_EVTSEL

Configure event type
Read monitored data

CPUID.(0FH,1):ECX[31:0]
CPUID.(0FH,1):EDX[31:0]
CPUID.(0FH,1):EBX[31:0]

CPUID[WRMSR RDMSR/WRMSR

Selection/Reporting

IA32_QM_CTR

CPUID.(0FH,0):EBX[31:0]
18-46 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
supported resource type is represented by a bit in CPUID.(EAX=0FH, ECX=0):EDX[31:1]. The bit position
corresponds to the sub-leaf index (ResID) that software must use to query details of the monitoring capability
of that resource type (see Figure 18-21 and Figure 18-22). Reserved bits of CPUID.(EAX=0FH,
ECX=0):EDX[31:2] correspond to unsupported sub-leaves of the CPUID.0FH leaf. Additionally,
CPUID.(EAX=0FH, ECX=0H):EBX reports the highest RMID value of any resource type that supports
monitoring in the processor.

18.18.5 Feature-Specific Enumeration
Each additional sub-leaf of CPUID.(EAX=0FH, ECX=ResID) enumerates the specific details for software to program
monitoring MSRs using the resource type associated with the given ResID.

Note that in future Monitoring implementations the meanings of the returned registers may vary in other sub-
leaves that are not yet defined. The registers will be specified and defined on a per-ResID basis.

CPUID.(EAX=0FH, ECX=1H).EAX[7:0]: Encode counter width as offset from 24b. See Section 18.18.5.2 for details.
Bits 31:11 of EAX are reserved.

Figure 18-20. CPUID.(EAX=0FH, ECX=0H) Monitoring Resource Type Enumeration

Figure 18-21. L3 Cache Monitoring Capability Enumeration Data (CPUID.(EAX=0FH, ECX=1H))

0231

CPUID.(EAX=0FH, ECX=0H) Output: (EAX: Reserved; ECX: Reserved)

EDX L

EBX
031

Highest RMID Value of Any Resource Type (Zero-Based)

3

1

Reserved

031

Upscaling Factor to Total Occupancy (Bytes)EBX Upscaling Factor

031

CPUID.(EAX=0FH, ECX=1H) Output:

Highest RMID Value of this Resource Type (Zero-Based)ECX MaxRMID

10 9 8 7 031

ReservedEAX

Non-CPU Agent Cache Occupancy Monitoring

Non-CPU Agent Memory L3 External Bandwidth Monitoring

Enumeration of an Overflow Bit (Bit 61) in the IA32_QM_CTR MSR

Counter Width Encoded as an Offset from 24b
Vol. 3B 18-47

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
CPUID.(EAX=0FH, ECX=1H).EAX[bit 8]: If 1, indicates the presence of an overflow bit in the IA32_QM_CTR MSR.
See Section 18.18.5.2 for details. Bits 31:11 of EAX are reserved.

CPUID.(EAX=0FH, ECX=1H).EAX[bit 9]: If 1, indicates the presence of non-CPU agent Intel RDT CMT support. See
Section 18.20 for details. Bits 31:11 of EAX are reserved.

CPUID.(EAX=0FH, ECX=1H).EAX[bit 10]:If 1, indicates the presence of non-CPU agent Intel RDT MBM support.
See Section 18.20 for details. Bits 31:11 of EAX are reserved.

For each supported Cache Monitoring resource type, hardware supports only a finite number of RMIDs.
CPUID.(EAX=0FH, ECX=1H).ECX enumerates the highest RMID value that can be monitored with this resource
type, see Figure 18-21.

CPUID.(EAX=0FH, ECX=1H).EDX specifies a bit vector that is used to look up the EventID (See Figure 18-22 and
Table 18-18) that software must program with IA32_QM_EVTSEL in order to retrieve event data. After software
configures IA32_QMEVTSEL with the desired RMID and EventID, it can read the resulting data from IA32_QM_CTR.
The raw numerical value reported from IA32_QM_CTR can be converted to the final value (occupancy in bytes or
bandwidth in bytes per sampled time period) by multiplying the counter value by the value from CPUID.(EAX=0FH,
ECX=1H).EBX, see Figure 18-21.

18.18.5.1 Cache Monitoring Technology
On processors for which Cache Monitoring Technology supports the L3 cache occupancy event, CPUID.(EAX=0FH,
ECX=1H).EDX returns with bit 0 set. The corresponding event ID is shown in Table 18-18. The L3 occupancy data
accumulated in the IA32_QM_CTR MSR can be converted to total occupancy (in bytes) by multiplying with
CPUID.(EAX=0FH, ECX=1H).EBX.

Event codes for Cache Monitoring Technology are discussed in the next section.

18.18.5.2 Memory Bandwidth Monitoring
On processors that monitoring supports Memory Bandwidth Monitoring using ResID=1 (L3), two additional bits are
defined in the vector at CPUID.(EAX=0FH, ECX=1H).EDX:
• CPUID.(EAX=0FH, ECX=1H).EDX[bit 1]: indicates the L3 total external bandwidth monitoring event is

supported if set. This event monitors the L3 total external bandwidth to the next level of the cache hierarchy,
including all demand and prefetch misses from the L3 to the next hierarchy of the memory system. In most
platforms, this represents memory bandwidth.

• CPUID.(EAX=0FH, ECX=1H).EDX[bit 2]: indicates L3 local memory bandwidth monitoring event is supported if
set. This event monitors the L3 external bandwidth satisfied by the local memory. In most platforms that
support this event, L3 requests are likely serviced by a memory system with non-uniform memory architecture.
This allows bandwidth to off-package memory resources to be tracked by subtracting local from total bandwidth
(for instance, bandwidth over QPI to a memory controller on another physical processor could be tracked by
subtraction). Note that it is not possible to read the local and total bandwidth atomically; multiple operations
are needed. Because of this, it is possible for the counters to change in between the two reads.

The corresponding Event ID is shown in Table 18-18. The L3 bandwidth data accumulated in IA32_QM_CTR can be
converted to total bandwidth (in bytes) using CPUID.(EAX=0FH, ECX=1H).EBX.

Figure 18-22. L3 Cache Monitoring Capability Enumeration Event Type Bit Vector (CPUID.(EAX=0FH, ECX=1H))

0231
EDX

1

Reserved

EventTypeBitMask
3

L3 Occupancy
L3 Total BW
L3 Local BW
18-48 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
Table 18-18. Monitoring Supported Event IDs

A field is added to CPUID to enumerate the MBM counter width in platforms that support the extensible MBM
counter width feature.
• CPUID.(EAX=0FH, ECX=1H).EAX[7:0]: Encode counter width as offset from 24b in bits[7:0]. In EAX bits 7:0,

the counter width is encoded as an offset from 24b. A value of zero in this field means 24-bit counters are
supported. A value of 8 indicates that 32-bit counters are supported, as in the 3rd generation Intel Xeon
Scalable Processor Family. With this enumerable counter width, the requirement that software polls at 1Hz is
removed. Software may poll at a varying rate with a reduced risk of rollover. Under typical conditions, rollover
will likely require hundreds of seconds (though this value is not explicitly specified and may vary and decrease
in future processor generations as memory bandwidths increase). Suppose software seeks to ensure that
rollover does not occur more than once between samples. In that case, sampling at 1Hz while consuming the
enumerated counter widths' worth of data will provide this guarantee for a specific platform and counter width
under all conditions.

• CPUID.(EAX=0FH, ECX=1H).EAX[8]: Enumeration of the presence of an overflow bit in the IA32_QM_CTR MSR
via EAX bit[8]. Software that uses the MBM event retrieval MSR interface should be updated to comprehend
this new format, which enables up to 62-bit MBM counters to be provided by future platforms. Higher-level
software that consumes the resulting bandwidth values is not expected to be affected. An overflow bit is
defined in the IA32_QM_CTR MSR, bit 61, if CPUID.(EAX=0FH, ECX=1H).EAX[bit 8] is set. This rollover bit will
be set on overflow of the MBM counters and reset upon read. Current processors do not support this capability.

18.18.6 Monitoring Resource RMID Association
After Monitoring and sub-features have been enumerated, software can begin using the monitoring features. The
first step is to associate a given software thread (or multiple threads as part of an application, VM, group of appli-
cations or other abstraction) with an RMID.

Note that the process of associating an RMID with a given software thread is the same for all shared resource moni-
toring features (CMT, MBM), and a given RMID number has the same meaning from the viewpoint of any logical
processors in a package. Stated another way, a thread may be associated in a 1:1 mapping with an RMID, and that
RMID may allow cache occupancy, memory bandwidth information or other monitoring data to be read back later
with monitoring event codes (retrieving data is discussed in a previous section).

The association of an application thread with an RMID requires an OS to program the per-logical-processor MSR
IA32_PQR_ASSOC at context swap time (updates may also be made at any other arbitrary points during program
execution such as application phase changes). The IA32_PQR_ASSOC MSR specifies the active RMID that moni-
toring hardware will use to tag internal operations, such as L3 cache requests. The layout of the MSR is shown in
Figure 18-23. Software specifies the active RMID to monitor in the IA32_PQR_ASSOC.RMID field. The width of the
RMID field can vary from one implementation to another, and is derived from Ceil (LOG2 (1 + CPUID.(EAX=0FH,
ECX=0):EBX[31:0])). The value of IA32_PQR_ASSOC after power-on is 0.

Event Type Event ID Context

L3 Cache Occupancy 01H Cache Monitoring Technology

L3 Total External Bandwidth 02H MBM

L3 Local External Bandwidth 03H MBM

Reserved All other event codes N/A

Figure 18-23. IA32_PQR_ASSOC MSR

01063

Width of IA32_PQR_ASSOC.RMID field: Log2 (CPUID.(EAX=0FH, ECX=0H).EBX[31:0] +1)

RMID

9

Reserved IA32_PQR_ASSOCReserved for CLOS

32 31
Vol. 3B 18-49

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
In the initial implementation, the width of the RMID field is up to 10 bits wide, zero-referenced and fully encoded.
However, software must use CPUID to query the maximum RMID supported by the processor. If a value larger than
the maximum RMID is written to IA32_PQR_ASSOC.RMID, a #GP(0) fault will be generated.

RMIDs have a global scope within the physical package- if an RMID is assigned to one logical processor then the
same RMID can be used to read multiple thread attributes later (for example, L3 cache occupancy or external
bandwidth from the L3 to the next level of the cache hierarchy). In a multiple LLC platform the RMIDs are to be
reassigned by the OS or VMM scheduler when an application is migrated across LLCs.

Note that in a situation where Monitoring supports multiple resource types, some upper range of RMIDs (e.g., RMID
31) may only be supported by one resource type but not by another resource type.

18.18.7 Monitoring Resource Selection and Reporting Infrastructure
The reporting mechanism for Cache Monitoring Technology and other related features is architecturally exposed as
an MSR pair that can be programmed and read to measure various metrics such as the L3 cache occupancy (CMT)
and bandwidths (MBM) depending on the level of Monitoring support provided by the platform. Data is reported
back on a per-RMID basis. These events do not trigger based on event counts or trigger APIC interrupts (e.g., no
Performance Monitoring Interrupt occurs based on counts). Rather, they are used to sample counts explicitly.

The MSR pair for the shared resource monitoring features (CMT, MBM) is separate from and not shared with archi-
tectural Perfmon counters, meaning software can use these monitoring features simultaneously with the Perfmon
counters.

Access to the aggregated monitoring information is accomplished through the following programmable monitoring
MSRs:
• IA32_QM_EVTSEL: This MSR provides a role similar to the event select MSRs for programmable performance

monitoring described in Chapter 18. The simplified layout of the MSR is shown in Figure 18-24.
IA32_QM_EVTSEL.EvtID (bits 7:0) specifies an event code of a supported resource type for hardware to report
monitored data associated with IA32_QM_EVTSEL.RMID (bits 41:32). Software can configure
IA32_QM_EVTSEL.RMID with any RMID that is active within the physical processor. The width of
IA32_QM_EVTSEL.RMID matches that of IA32_PQR_ASSOC.RMID. Supported event codes for the
IA32_QM_EVTSEL register are shown in Table 18-18. Note that valid event codes may not necessarily map
directly to the bit position used to enumerate support for the resource via CPUID.
Software can program an RMID / Event ID pair into the IA32_QM_EVTSEL MSR bit field to select an RMID to
read a particular counter for a given resource. The currently supported list of Monitoring Event IDs is discussed
in Section 18.18.5, which covers feature-specific details.
Thread access to the IA32_QM_EVTSEL and IA32_QM_CTR MSR pair should be serialized (that is, treated as a
critical section under lock) to avoid situations where one thread changes the RMID/EvtID just before another
thread reads monitoring data from IA32_QM_CTR.

• IA32_QM_CTR: This MSR reports monitored data when available. It contains three bit fields. If software
configures an unsupported RMID or event type in IA32_QM_EVTSEL, then IA32_QM_CTR.Error (bit 63) will be
set, indicating there is no valid data to report. If IA32_QM_CTR.Unavailable (bit 62) is set, it indicates
monitored data for the RMID is not available, and IA32_QM_CTR.data (bits 61:0) should be ignored. Therefore,
IA32_QM_CTR.data (bits 61:0) is valid only if bit 63 and 62 are both clear. For Cache Monitoring Technology,
software can convert IA32_QM_CTR.data into cache occupancy or bandwidth metrics expressed in bytes by
multiplying with the conversion factor from CPUID.(EAX=0FH, ECX=1H).EBX.
18-50 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
18.18.8 Monitoring Programming Considerations
Figure 18-25 illustrates how system software can program IA32_QOSEVTSEL and IA32_QM_CTR to perform
resource monitoring.

Though the field provided in IA32_QM_CTR allows for up to 62 bits of data to be returned, often a subset of bits are
used. With Cache Monitoring Technology for instance, the number of bits used is the base-two logarithm of the
total cache size divided by the Upscaling Factor from CPUID.

In Memory Bandwidth Monitoring, the initial counter size is 24 bits, and retrieving the value at 1Hz or faster is suffi-
cient to ensure at most one rollover per sampling period. Any changes to counter width are enumerated to soft-
ware; see Section 18.18.5.2 for details.

18.18.8.1 Monitoring Dynamic Configuration
Both the IA32_QM_EVTSEL and IA32_PQR_ASSOC registers are accessible and modifiable at any time during
execution using RDMSR/WRMSR unless otherwise noted. When writing to these MSRs a #GP(0) will be generated
if any of the following conditions occur:
• A reserved bit is modified,
• An RMID exceeding the maximum RMID is used.

18.18.8.2 Monitoring Operation With Power Saving Features
Some advanced power management features such as deep package C-states may shrink the L3 cache and cause
CMT occupancy count to be reduced. MBM bandwidth counts may increase due to flushing cached data out of L3.

Figure 18-24. IA32_QM_EVTSEL and IA32_QM_CTR MSRs

Figure 18-25. Software Usage of Cache Monitoring Resources

063

IA32_QM_CTRU

61

E Resource Monitoring Data

03163

RMID

7

Reserved IA32_QM_EVTSELReserved

41 3242 8

EvtID

RMID

063

Monitoring Data

IA32_QM_CTR MSR

62

Availability
Error

763

Reserved

41

RMID

Resource Monitoring ID

0

EvtID

32

Reserved

Event ID

IA32_QOSEVTSEL MSR

System Software

Event ID Counter Data
Vol. 3B 18-51

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
18.18.8.3 Monitoring Operation with Other Operating Modes
The states in IA32_PQR_ASSOC and monitoring counter are unmodified across an SMI delivery. Thus, the execu-
tion of SMM handler code and SMM handler’s data can manifest as spurious contribution in the monitored data.

It is possible for an SMM handler to minimize the impact on of spurious contribution in the QOS monitoring counters
by reserving a dedicated RMID for monitoring the SMM handler. Such an SMM handler can save the previously
configured QOS Monitoring state immediately upon entering SMM, and restoring the QOS monitoring state back to
the prev-SMM RMID upon exit.

18.18.8.4 Monitoring Operation with RAS Features
In general, the Reliability, Availability, and Serviceability (RAS) features present in Intel Platforms are not expected
to significantly affect shared resource monitoring counts. In cases where software RAS features cause memory
copies or cache accesses, these may be tracked and may influence the shared resource monitoring counter values.

18.19 INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) ALLOCATION
FEATURES

The Intel Resource Director Technology (Intel RDT) feature set provides a set of allocation (resource control) capa-
bilities including Cache Allocation Technology (CAT) and Code and Data Prioritization (CDP). The Intel Xeon
processor E5 v4 family (and a subset of communication-focused processors in the Intel Xeon E5 v3 family) intro-
duce capabilities to configure and make use of the Cache Allocation Technology (CAT) mechanisms on the L3 cache.
Certain Intel Atom processors also provide support for control over the L2 cache, with capabilities as described
below. The programming interface for Cache Allocation Technology and for the more general allocation capabilities
are described in the rest of this chapter. The CAT and CDP capabilities, where architecturally supported, may be
detected and enumerated in software using the CPUID instruction, as described in this chapter.

The Intel Xeon Scalable Processor Family introduces the Memory Bandwidth Allocation (MBA) feature which
provides indirect control over the memory bandwidth available to CPU cores, and is discussed later in this chapter.

18.19.1 Introduction to Cache Allocation Technology (CAT)
Cache Allocation Technology enables an Operating System (OS), Hypervisor /Virtual Machine Manager (VMM) or
similar system service management agent to specify the amount of cache space into which an application can fill
(as a hint to hardware - certain features such as power management may override CAT settings). Specialized user-
level implementations with minimal OS support are also possible, though not necessarily recommended (see notes
below for OS/Hypervisor with respect to ring 3 software and virtual guests). Depending on the processor family, L2
or L3 cache allocation capability may be provided, and the technology is designed to scale across multiple cache
levels and technology generations.

Software can determine which levels are supported in a given platform programmatically using CPUID as described
in the following sections.

The CAT mechanisms defined in this document provide the following key features:
• A mechanism to enumerate platform Cache Allocation Technology capabilities and available resource types that

provides CAT control capabilities. For implementations that support Cache Allocation Technology, CPUID
provides enumeration support to query which levels of the cache hierarchy are supported and specific CAT
capabilities, such as the max allocation bitmask size,

• A mechanism for the OS or Hypervisor to configure the amount of a resource available to a particular Class of
Service via a list of allocation bitmasks,

• Mechanisms for the OS or Hypervisor to signal the Class of Service to which an application belongs, and
• Hardware mechanisms to guide the LLC fill policy when an application has been designated to belong to a

specific Class of Service.

Note that for many usages, an OS or Hypervisor may not want to expose Cache Allocation Technology mechanisms
to Ring3 software or virtualized guests.
18-52 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
The Cache Allocation Technology feature enables more cache resources (i.e., cache space) to be made available for
high priority applications based on guidance from the execution environment as shown in Figure 18-26. The archi-
tecture also allows dynamic resource reassignment during runtime to further optimize the performance of the high
priority application with minimal degradation to the low priority app. Additionally, resources can be rebalanced for
system throughput benefit across uses cases of OSes, VMMs, containers, and other scenarios by managing the
CPUID and MSR interfaces. This section describes the hardware and software support required in the platform
including what is required of the execution environment (i.e., OS/VMM) to support such resource control. Note that
in Figure 18-26 the L3 Cache is shown as an example resource.

18.19.2 Cache Allocation Technology Architecture
The fundamental goal of Cache Allocation Technology is to enable resource allocation based on application priority
or Class of Service (COS or CLOS). The processor exposes a set of Classes of Service into which applications (or
individual threads) can be assigned. Cache allocation for the respective applications or threads is then restricted
based on the class with which they are associated. Each Class of Service can be configured using capacity bitmasks
(CBMs) which represent capacity and indicate the degree of overlap and isolation between classes. For each logical
processor there is a register exposed (referred to here as the IA32_PQR_ASSOC MSR or PQR) to allow the OS/VMM
to specify a COS when an application, thread or VM is scheduled.

The usage of Classes of Service (COS) are consistent across resources and a COS may have multiple resource
control attributes attached, which reduces software overhead at context swap time. Rather than adding new types
of COS tags per resource for instance, the COS management overhead is constant. Cache allocation for the indi-
cated application/thread/container/VM is then controlled automatically by the hardware based on the class and the
bitmask associated with that class. Bitmasks are configured via the IA32_resourceType_MASK_n MSRs, where
resourceType indicates a resource type (e.g., “L3” for the L3 cache) and “n” indicates a COS number.

The basic ingredients of Cache Allocation Technology are as follows:
• An architecturally exposed mechanism using CPUID to indicate whether CAT is supported, and what resource

types are available which can be controlled,
• For each available resourceType, CPUID also enumerates the total number of Classes of Services and the length

of the capacity bitmasks that can be used to enforce cache allocation to applications on the platform,
• An architecturally exposed mechanism to allow the execution environment (OS/VMM) to configure the behavior

of different classes of service using the bitmasks available,
• An architecturally exposed mechanism to allow the execution environment (OS/VMM) to assign a COS to an

executing software thread (i.e., associating the active CR3 of a logical processor with the COS in
IA32_PQR_ASSOC),

• Implementation-dependent mechanisms to indicate which COS is associated with a memory access and to
enforce the cache allocation on a per COS basis.

A capacity bitmask (CBM) provides a hint to the hardware indicating the cache space an application should be
limited to as well as providing an indication of overlap and isolation in the CAT-capable cache from other applica-
tions contending for the cache. The bit length of the capacity mask available generally depends on the configura-

Figure 18-26. Cache Allocation Technology Enables Allocation of More Resources to High Priority Applications

Without CAT

Core 0

Shared LLC, Low priority got more cache

Lo Pri AppHi Pri App

Core 1 Core 0

Shared LLC, High priority got more cache

Lo Pri AppHi Pri App

Core 1

With CAT
Vol. 3B 18-53

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
tion of the cache and is specified in the enumeration process for CAT in CPUID (this may vary between models in a
processor family as well). Similarly, other parameters such as the number of supported COS may vary for each
resource type, and these details can be enumerated via CPUID.

Sample cache capacity bitmasks for a bit length of 8 are shown in Figure 18-27. Note that all (and only) contiguous
'1' combinations are allowed (e.g., FFFFH, 0FF0H, 003CH, etc.), unless otherwise non-contiguous capacity bitmask
support is specified in CPUID enumeration for the resource type. Attempts to program a value without contiguous
'1's (including zero) will result in a general protection fault (#GP(0)). It is generally expected that in way-based
implementations, one capacity mask bit corresponds to some number of ways in cache, but the specific mapping is
implementation-dependent. In all cases, a mask bit set to '1' specifies that a particular Class of Service can allocate
into the cache subset represented by that bit. A value of '0' in a mask bit specifies that a Class of Service cannot
allocate into the given cache subset. In general, allocating more cache to a given application is usually beneficial to
its performance.

Figure 18-27 also shows three examples of sets of Cache Capacity Bitmasks. For simplicity these are represented
as 8-bit vectors, though this may vary depending on the implementation and how the mask is mapped to the avail-
able cache capacity. The first example shows the default case where all 4 Classes of Service (the total number of
COS are implementation-dependent) have full access to the cache. The second case shows an overlapped case,
which would allow some lower-priority threads to share cache space with the highest priority threads. The third
case shows various non-overlapped partitioning schemes. As a matter of software policy for extensibility, COS0
should typically be considered and configured as the highest priority COS, followed by COS1, and so on, though
there is no hardware restriction enforcing this mapping. When the system boots all threads are initialized to COS0,
which has full access to the cache by default.

Though the representation of the CBMs looks similar to a way-based mapping they are independent of any specific
enforcement implementation (e.g., way partitioning.) Rather, this is a convenient manner to represent capacity,
overlap, and isolation of cache space. For example, executing a POPCNT instruction (population count of set bits)

Figure 18-27. Examples of Cache Capacity Bitmasks

M7 M6 M5 M4 M3 M2 M1 M0

A A A A A A A A

A A A A A A A A

A A A A A A A A

A A A A A A A A

COS0

COS1

COS2

COS3

Default Bitmask

M7 M6 M5 M4 M3 M2 M1 M0

A A A A

A A

A

A

COS0

COS1

COS2

COS3

Isolated Bitmask

M7 M6 M5 M4 M3 M2 M1 M0

A A A A A A A A

A A A A

A A

A

COS0

COS1

COS2

COS3

Overlapped Bitmask
18-54 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
on the capacity bitmask can provide the fraction of cache space that a class of service can allocate into. In addition
to the fraction, the exact location of the bits also shows whether the class of service overlaps with other classes of
service or is entirely isolated in terms of cache space used.

Figure 18-28 shows how the Cache Capacity Bitmasks and the per-logical-processor Class of Service are logically
used to enable Cache Allocation Technology. All (and only) contiguous 1's in the CBM are permitted, unless other-
wise non-contiguous capacity bitmask support is specified in CPUID enumeration for the resource type. The length
of a CBM may vary from resource to resource or between processor generations and can be enumerated using
CPUID. From the available mask set and based on the goals of the OS/VMM (shared or isolated cache, etc.)
bitmasks are selected and associated with different classes of service. For the available Classes of Service the asso-
ciated CBMs can be programmed via the global set of CAT configuration registers (in the case of L3 CAT, via the
IA32_L3_MASK_n MSRs, where “n” is the Class of Service, starting from zero). In all architectural implementations
supporting CPUID it is possible to change the CBMs dynamically, during program execution, unless stated other-
wise by Intel.

The currently running application's Class of Service is communicated to the hardware through the per-logical-
processor PQR MSR (IA32_PQR_ASSOC MSR). When the OS schedules an application thread on a logical processor,
the application thread is associated with a specific COS (i.e., the corresponding COS in the PQR) and all requests to
the CAT-capable resource from that logical processor are tagged with that COS (in other words, the application
thread is configured to belong to a specific COS). The cache subsystem uses this tagged request information to
enforce QoS. The capacity bitmask may be mapped into a way bitmask (or a similar enforcement entity based on
the implementation) at the cache before it is applied to the allocation policy. For example, the capacity bitmask can
be an 8-bit mask and the enforcement may be accomplished using a 16-way bitmask for a cache enforcement
implementation based on way partitioning.

The following sections describe extensions of CAT such as Code and Data Prioritization (CDP), followed by details
on specific features such as L3 CAT, L3 CDP, L2 CAT, and L2 CDP. Depending on the specific processor a mix of
features may be supported, and CPUID provides enumeration capabilities to enable software to dynamically detect
the set of supported features.

Figure 18-28. Class of Service and Cache Capacity Bitmasks

Set 1
Set 2

....

Cache Subsystem

Config

Tag with Cache

Enforcement

Set n

way 1

......

way 16

Enforce Mask

Capacity bitmask 3COS 3

Capacity bitmask 3COS 2

Capacity bitmask 3COS 1

Capacity bitmask 3COS 0

Cache Allocation

TransactionCOS

COS = 2 Mem Request

Class of Service

Application
Memory Request

Set Class of Service

Association

in IA32_PQR

OS Context
Switch

Configure CBM for

Enum/Confg

each Class of Service

Enumerate
Enforcement

2

Vol. 3B 18-55

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
18.19.3 Code and Data Prioritization (CDP) Technology
Code and Data Prioritization Technology is an extension of CAT. CDP enables isolation and separate prioritization of
code and data fetches to the L2 or L3 cache in a software configurable manner, depending on hardware support,
which can enable workload prioritization and tuning of cache capacity to the characteristics of the workload. CDP
extends Cache Allocation Technology (CAT) by providing separate code and data masks per Class of Service (COS).
Support for the L2 CDP feature and the L3 CDP features are separately enumerated (via CPUID) and separately
controlled (via remapping the L2 CAT MSRs or L3 CAT MSRs respectively). Section 18.19.6.3 and Section 18.19.7
provide details on enumerating, controlling, and enabling L3 and L2 CDP respectively, while this section provides a
general overview.

The L3 CDP feature was first introduced on the Intel Xeon E5 v4 family of server processors, as an extension to L3
CAT. The L2 CDP feature is first introduced on future Intel Atom family processors, as an extension to L2 CAT.

By default, CDP is disabled on the processor. If the CAT MSRs are used without enabling CDP, the processor oper-
ates in a traditional CAT-only mode. When CDP is enabled,
• the CAT mask MSRs are re-mapped into interleaved pairs of mask MSRs for data or code fetches (see

Figure 18-29),
• the range of COS for CAT is re-indexed, with the lower-half of the COS range available for CDP.

Using the CDP feature, virtual isolation between code and data can be configured on the L2 or L3 cache if desired,
similar to how some processor cache levels provide separate L1 data and L1 instruction caches.

Like the CAT feature, CDP may be dynamically configured by privileged software at any point during normal system
operation, including dynamically enabling or disabling the feature provided that certain software configuration
requirements are met (see Section 18.19.5).

An example of the operating mode of CDP is shown in Figure 18-29. Shown at the top are traditional CAT usage
models where capacity masks map 1:1 with a COS number to enable control over the cache space which a given
COS (and thus applications, threads or VMs) may occupy. Shown at the bottom are example mask configurations
where CDP is enabled, and each COS number maps 1:2 to two masks, one for code and one for data. This enables
code and data to be either overlapped or isolated to varying degrees either globally or on a per-COS basis,
depending on application and system needs.

Figure 18-29. Code and Data Capacity Bitmasks of CDP

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

COS0.Data

COS0.Code

COS1.Data

COS1.Code

CAT with

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

COS0

COS1

COS2

COS3

Traditional
CAT

CDP

Other COS.Data

Example of Code/Data Prioritization Usage - 16 bit Capacity Masks

Example of CAT-Only Usage - 16 bit Capacity Masks

Other COS.Code
18-56 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
When CDP is enabled, the existing mask space for CAT-only operation is split. As an example if the system supports
16 CAT-only COS, when CDP is enabled the same MSR interfaces are used, however half of the masks correspond
to code, half correspond to data, and the effective number of COS is reduced by half. Code/Data masks are defined
per-COS and interleaved in the MSR space as described in subsequent sections.

In cases where CPUID exposes a non-even number of supported Classes of Service for the CAT or CDP features,
software using CDP should use the lower matched pairs of code/data masks, and any upper unpaired masks should
not be used. As an example, if CPUID exposes 5 CLOS, when CDP is enabled then two code/data pairs are available
(masks 0/1 for CLOS[0] data/code and masks 2/3 for CLOS[1] data/code), however the upper un-paired mask
should not be used (mask 4 in this case) or undefined behavior may result.

18.19.4 Enabling Cache Allocation Technology Usage Flow
Figure 18-30 illustrates the key steps for OS/VMM to detect support of Cache Allocation Technology and enable
priority-based resource allocation for a CAT-capable resource.

Enumeration and configuration of L2 CAT is similar to L3 CAT, however CPUID details and MSR addresses differ.
Common CLOS are used across the features.

18.19.4.1 Enumeration and Detection Support of Cache Allocation Technology
Software can query processor support of CAT capabilities by executing CPUID instruction with EAX = 07H, ECX =
0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQE[bit 15] reports 1, the processor supports software control over
shared processor resources. Software must use CPUID leaf 10H to enumerate additional details of available
resource types, classes of services and capability bitmasks. The programming interfaces provided by Cache Alloca-
tion Technology include:
• CPUID leaf function 10H (Cache Allocation Technology Enumeration leaf) and its sub-functions provide

information on available resource types, and CAT capability for each resource type (see Section 18.19.4.2).
• IA32_L3_MASK_n: A range of MSRs is provided for each resource type, each MSR within that range specifying

a software-configured capacity bitmask for each class of service. For L3 with Cache Allocation support, the CBM
is specified using one of the IA32_L3_QOS_MASK_n MSR, where 'n' corresponds to a number within the
supported range of COS, i.e., the range between 0 and CPUID.(EAX=10H, ECX=ResID):EDX[15:0], inclusive.
See Section 18.19.4.3 for details.

• IA32_L2_MASK_n: A range of MSRs is provided for L2 Cache Allocation Technology, enabling software control
over the amount of L2 cache available for each CLOS. Similar to L3 CAT, a CBM is specified for each CLOS using
the set of registers, IA32_L2_QOS_MASK_n MSR, where 'n' ranges from zero to the maximum CLOS number
reported for L2 CAT in CPUID. See Section 18.19.4.3 for details.
The L2 mask MSRs are scoped at the same level as the L2 cache (similarly, the L3 mask MSRs are scoped at the
same level as the L3 cache). Software may determine which logical processors share an MSR (for instance local

Figure 18-30. Cache Allocation Technology Usage Flow

CPUID.(7,0):EBX.15

On OS/VMM Initialization

CPUID.(10H,0):EBX[31:1]

CQE Capability
Enumeration

IA32_L3_QOS_MASK_0

Cache Allocation Configuration

...

Configure CBM
per COS

On Context Switch

IA32_PQR_ASSOC

Set COS for scheduled
thread context

IA32_L3_QOS_MASK_n
CPUID.(10H,1):EAX[4:0]
CPUID.(10H,1):EDX[15:0]
CPUID.(10H,1):EBX[

CPUID[WRMSR WRMSR
Vol. 3B 18-57

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
to a core, or shared across multiple cores) by performing a write to one of these MSRs and noting which logical
threads observe the change. Example flows for a similar method to determine register scope are described in
Section 16.5.2, “System Software Recommendation for Managing CMCI and Machine Check Resources.”
Software may also use CPUID leaf 4 to determine the maximum number of logical processor IDs that may share
a given level of the cache.

• IA32_PQR_ASSOC.CLOS: The IA32_PQR_ASSOC MSR provides a COS field that OS/VMM can use to assign a
logical processor to an available COS. The set of COS are common across all allocation features, meaning that
multiple features may be supported in the same processor without additional software COS management
overhead at context swap time. See Section 18.19.4.4 for details.

18.19.4.2 Cache Allocation Technology: Resource Type and Capability Enumeration
CPUID leaf function 10H (Cache Allocation Technology Enumeration leaf) provides two or more sub-functions:
• CAT Enumeration leaf sub-function 0 enumerates available resource types that support allocation control, i.e.,

by executing CPUID with EAX=10H and ECX=0H. Each supported resource type is represented by a bit field in
CPUID.(EAX=10H, ECX=0):EBX[31:1]. The bit position of each set bit corresponds to a Resource ID (ResID),
for instance ResID=1 is used to indicate L3 CAT support, and ResID=2 indicates L2 CAT support. The ResID is
also the sub-leaf index that software must use to query details of the CAT capability of that resource type (see
Figure 18-31).

— For ECX>0, EAX[4:0] reports the length of the capacity bitmask (ECX=1 or 2 for L3 CAT or L2 CAT respec-
tively). Add one to the return value to get the result, e.g., a value of 15 corresponds to the capacity bitmask
having length of 16 bits. Bits 31:5 of EAX are reserved.

• Sub-functions of CPUID.EAX=10H with a non-zero ECX input matching a supported ResID enumerate the
specific enforcement details of the corresponding ResID. The capabilities enumerated include the length of the
capacity bitmasks and the number of Classes of Service for a given ResID. Software should query the capability
of each available ResID that supports CAT from a sub-leaf of leaf 10H using the sub-leaf index reported by the
corresponding non-zero bit in CPUID.(EAX=10H, ECX=0):EBX[31:1] in order to obtain additional feature
details.

Figure 18-31. CPUID.(EAX=10H, ECX=0H) Available Resource Type Identification

M
B
A

L
2

L
3

4 3 2 1 0

EBX

31
CPUID.(EAX=10H, ECX=0) Output: (EAX: Reserved; ECX: Reserved; EDX: Reserved)

Reserved
18-58 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
• CAT capability for L3 is enumerated by CPUID.(EAX=10H, ECX=1H), see Figure 18-32. The specific CAT
capabilities reported by CPUID.(EAX=10H, ECX=1) are:

— CPUID.(EAX=10H, ECX=ResID=1):EAX[4:0] reports the length of the capacity bitmask. Add one to the
return value to get the result, e.g., a value of 15 corresponds to the capability bitmask having length of 16
bits. Bits 31:5 of EAX are reserved.

— CPUID.(EAX=10H, ECX=1):EBX[31:0] reports a bit mask. Each set bit within the length of the CBM
indicates the corresponding unit of the L3 allocation may be used by other entities in the platform (e.g., an
integrated graphics engine or hardware units outside the processor core and have direct access to L3). Each
cleared bit within the length of the CBM indicates the corresponding allocation unit can be configured to
implement a priority-based allocation scheme chosen by an OS/VMM without interference with other
hardware agents in the system. Bits outside the length of the CBM are reserved.

— CPUID.(EAX=10H, ECX=1):ECX[bit 1]: If 1, indicates L3 CAT for non-CPU agents is supported. Bits 0 and
31:4 of ECX are reserved. See section 18.20 for details.

— CPUID.(EAX=10H, ECX=1):ECX.CDP[bit 2]: If 1, indicates L3 Code and Data Prioritization Technology is
supported (see Section 18.19.5). Bits 0 and 31:4 of ECX are reserved.

— CPUID.(EAX=10H, ECX=1):ECX[bit 3]: If 1, indicates non-contiguous capacity bitmask is supported. The
bits that are set in the various IA32_L3_MASK_n registers do not have to be contiguous. Bits 0 and 31:4 of
ECX are reserved.

— CPUID.(EAX=10H, ECX=1):EDX[15:0] reports the maximum COS supported for the resource (COS are
zero-referenced, meaning a reported value of '15' would indicate 16 total supported COS). Bits 31:16 are
reserved.

Figure 18-32. L3 Cache Allocation Technology and CDP Enumeration

04531

CBM_LENReservedEAX

031

Bitmask of Shareable Resource with Other Executing EntitiesEBX

31

ReservedECX

0151631

COS_MAXReservedEDX

CPUID.(EAX=10H, ECX=ResID=1) Output:

3 2 1 0

CDP

Non-contiguous
Capacity Bitmask

L3 CAT for Non-CPU
Agents
Vol. 3B 18-59

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
• CAT capability for L2 is enumerated by CPUID.(EAX=10H, ECX=2H), see Figure 18-33. The specific CAT
capabilities reported by CPUID.(EAX=10H, ECX=2) are:

— CPUID.(EAX=10H, ECX=ResID=2):EAX[4:0] reports the length of the capacity bitmask. Add one to the
return value to get the result, e.g., a value of 15 corresponds to the capability bitmask having length of 16
bits. Bits 31:5 of EAX are reserved.

— CPUID.(EAX=10H, ECX=2):EBX[31:0] reports a bit mask. Each set bit within the length of the CBM
indicates the corresponding unit of the L2 allocation may be used by other entities in the platform. Each
cleared bit within the length of the CBM indicates the corresponding allocation unit can be configured to
implement a priority-based allocation scheme chosen by an OS/VMM without interference with other
hardware agents in the system. Bits outside the length of the CBM are reserved.

— CPUID.(EAX=10H, ECX=2):ECX.CDP[bit 2]: If 1, indicates L2 Code and Data Prioritization Technology is
supported (see Section 17.19.6). Bits 1:0 and 31:4 of ECX are reserved.

— CPUID.(EAX=10H, ECX=2):ECX[bit 3]: If 1, indicates non-contiguous capacity bitmask is supported. The
bits which are set in the various IA32_L2_MASK_n registers do not have to be contiguous. Bits 1:0 and 31:4
of ECX are reserved.

— CPUID.(EAX=10H, ECX=2):EDX[15:0] reports the maximum COS supported for the resource (COS are
zero-referenced, meaning a reported value of '15' would indicate 16 total supported COS). Bits 31:16 are
reserved.

A note on migration of Classes of Service (COS): Software should minimize migrations of COS across logical
processors (across threads or cores), as a reduction in the performance of the Cache Allocation Technology feature
may result if COS are migrated frequently. This is aligned with the industry-standard practice of minimizing unnec-
essary thread migrations across processor cores in order to avoid excessive time spent warming up processor
caches after a migration. In general, for best performance, minimize thread migration and COS migration across
processor logical threads and processor cores.

Figure 18-33. L2 Cache Allocation Technology

 Bitmask of Shareable Resource with Other Executing Entities

031

3 2 1 031

 Reserved

031

ECX

EBX

EAX CBM_LEN

031

Reserved

16

COS_MAX

15

EDX

 CPUID.(EAX=10H, ECX=ResID=2) Output:

Reserved

CDP

5 4

Non-Contiguous
Capacity Bitmask
18-60 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
18.19.4.3 Cache Allocation Technology: Cache Mask Configuration
After determining the length of the capacity bitmasks (CBM) and number of COS supported using CPUID (see
Section 18.19.4.2), each COS needs to be programmed with a CBM to dictate its available cache via a write to the
corresponding IA32_resourceType_MASK_n register, where 'n' corresponds to a number within the supported
range of COS, i.e., the range between 0 and CPUID.(EAX=10H, ECX=ResID):EDX[15:0], inclusive, and 'resource-
Type' corresponds to a specific resource as enumerated by the set bits of CPUID.(EAX=10H, ECX=0):EBX[31:1],
for instance, ‘L2’ or ‘L3’ cache.

A hierarchy of MSRs is reserved for Cache Allocation Technology registers of the form IA32_resource-
Type_MASK_n:
• From 0C90H through 0D8FH (inclusive), providing support for multiple sub-ranges to support varying resource

types. The first supported resource type is 'L3', corresponding to the L3 cache in a platform. The MSRs range
from 0C90H through 0D0FH (inclusive), enables support for up to 128 L3 CAT Classes of Service.

• Within the same CAT range hierarchy, another set of registers is defined for resourceType 'L2', corresponding
to the L2 cache in a platform, and MSRs IA32_L2_MASK_n are defined for n=[0,63] at addresses 0D10H
through 0D4FH (inclusive).

Figure 18-34 and Figure 18-35 provide an overview of the relevant registers.

All CAT configuration registers can be accessed using the standard RDMSR / WRMSR instructions.

Note that once L3 or L2 CAT masks are configured, threads can be grouped into Classes of Service (COS) using the
IA32_PQR_ASSOC MSR as described in Section 18.19.4.4, “Class of Service to Cache Mask Association: Common
Across Allocation Features.”

18.19.4.4 Class of Service to Cache Mask Association: Common Across Allocation Features
After configuring the available classes of service with the preferred set of capacity bitmasks, the OS/VMM can set
the IA32_PQR_ASSOC.COS of a logical processor to the class of service with the desired CBM when a thread

Figure 18-34. IA32_PQR_ASSOC, IA32_L3_MASK_n MSRs

Figure 18-35. IA32_L2_MASK_n MSRs

01063

RMID

9

Reserved IA32_PQR_ASSOC

IA32_L3_MASK_n

03163

Reserved IA32_L3_MASK_0

32

Bit_Mask

31

COS

....
03163

Reserved

32

Bit_Mask

IA32_L2_MASK_n

03163

Reserved IA32_L2_MASK_0

32

Bit_Mask

....
03163

Reserved

32

Bit_Mask
Vol. 3B 18-61

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
context switch occurs. This allows the OS/VMM to indicate which class of service an executing thread/VM belongs
within. Each logical processor contains an instance of the IA32_PQR_ASSOC register at MSR location 0C8FH, and
Figure 18-34 shows the bit field layout for this register. Bits[63:32] contain the COS field for each logical processor.

Note that placing the RMID field within the same PQR register enables both RMID and CLOS to be swapped at
context swap time for simultaneous use of monitoring and allocation features with a single register write for effi-
ciency.

When CDP is enabled, Specifying a COS value in IA32_PQR_ASSOC.COS greater than MAX_COS_CDP =
(CPUID.(EAX=10H, ECX=1):EDX[15:0] >> 1) will cause undefined performance impact to code and data fetches.
In all cases, code and data masks for L2 and L3 CDP should be programmed with at least one bit set.

Note that if the IA32_PQR_ASSOC.COS is never written then the CAT capability defaults to using COS 0, which in
turn is set to the default mask in IA32_L3_MASK_0 - which is all “1”s (on reset). This essentially disables the
enforcement feature by default or for legacy operating systems and software.

See Section 18.19.7, “Introduction to Memory Bandwidth Allocation,” for important COS programming consider-
ations including maximum values when using CAT and CDP.

18.19.5 Code and Data Prioritization (CDP): Enumerating and Enabling L3 CDP Technology
L3 CDP is an extension of L3 CAT. The presence of the L3 CDP feature is enumerated via CPUID.(EAX=10H,
ECX=1):ECX.CDP[bit 2] (see Figure 18-32). Most of the CPUID.(EAX=10H, ECX=1) sub-leaf data that applies to
CAT also apply to CDP. However, CPUID.(EAX=10H, ECX=1):EDX.COS_MAX_CAT specifies the maximum COS
applicable to CAT-only operation. For CDP operations, COS_MAX_CDP is equal to (CPUID.(EAX=10H,
ECX=1):EDX.COS_MAX_CAT >>1).

If CPUID.(EAX=10H, ECX=1):ECX.CDP[bit 2] =1, the processor supports CDP and provides a new MSR
IA32_L3_QOS_CFG at address 0C81H. The layout of IA32_L3_QOS_CFG is shown in Figure 18-36. The bit field
definition of IA32_L3_QOS_CFG are:
• Bit 0: L3 CDP Enable. If set, enables CDP, maps CAT mask MSRs into pairs of Data Mask and Code Mask MSRs.

The maximum allowed value to write into IA32_PQR_ASSOC.COS is COS_MAX_CDP.
• Bits 63:1: Reserved. Attempts to write to reserved bits result in a #GP(0).

IA32_L3_QOS_CFG default values are all 0s at RESET, the mask MSRs are all 1s. Hence, all logical processors are
initialized in COS0 allocated with the entire L3 with CDP disabled, until software programs CAT and CDP. The scope
of the IA32_L3_QOS_CFG MSR is defined to be the same scope as the L3 cache (e.g., typically per processor
socket). Refer to Section 18.19.7 for software considerations while enabling or disabling L3 CDP.

18.19.5.1 Mapping Between L3 CDP Masks and CAT Masks
When CDP is enabled, the existing CAT mask MSR space is re-mapped to provide a code mask and a data mask per
COS. The re-mapping is shown in Table 18-19.

Figure 18-36. Layout of IA32_L3_QOS_CFG

0263 1

Reserved

IA32_L3_QOS_CFG
3

L3 CDP Enable
18-62 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
Table 18-19. Re-indexing of COS Numbers and Mapping to CAT/CDP Mask MSRs

One can derive the MSR address for the data mask or code mask for a given COS number ‘n’ by:
• data_mask_address (n) = base + (n <<1), where base is the address of IA32_L3_QOS_MASK_0.
• code_mask_address (n) = base + (n <<1) +1.

When CDP is enabled, each COS is mapped 1:2 with mask MSRs, with one mask enabling programmatic control
over data fill location and one mask enabling control over code placement. A variety of overlapped and isolated
mask configurations are possible (see the example in Figure 18-29).

Mask MSR field definitions remain the same. Capacity masks must be formed of contiguous set bits, unless other-
wise non-contiguous capacity bitmask support is specified in CPUID enumeration for the resource type with a
length of 1 bit or longer and should not exceed the maximum mask length specified in CPUID. As examples, valid
masks on a cache with max bitmask length of 16b (from CPUID) include 0xFFFF, 0xFF00, 0x00FF, 0x00F0, 0x0001,
0x0003, and so on. Maximum valid mask lengths are unchanged whether CDP is enabled or disabled, and writes of
invalid mask values may lead to undefined behavior. Writes to reserved bits will generate #GP(0).

18.19.6 Code and Data Prioritization (CDP): Enumerating and Enabling L2 CDP Technology
L2 CDP is an extension of the L2 CAT feature. The presence of the L2 CDP feature is enumerated via
CPUID.(EAX=10H, ECX=2):ECX.CDP[bit 2] (see Figure 17-33). Most of the CPUID.(EAX=10H, ECX=2) sub-leaf
data that applies to CAT also apply to CDP. However, CPUID.(EAX=10H, ECX=2):EDX.COS_MAX_CAT specifies the
maximum COS applicable to CAT-only operation. For CDP operations, COS_MAX_CDP is equal to
(CPUID.(EAX=10H, ECX=2):EDX.COS_MAX_CAT >>1).

If CPUID.(EAX=10H, ECX=2):ECX.CDP[bit 2] =1, the processor supports L2 CDP and provides a new MSR
IA32_L2_QOS_CFG at address 0C82H. The layout of IA32_L2_QOS_CFG is shown in Figure 18-37. The bit field
definition of IA32_L2_QOS_CFG are:
• Bit 0: L2 CDP Enable. If set, enables CDP, maps CAT mask MSRs into pairs of Data Mask and Code Mask MSRs.

The maximum allowed value to write into IA32_PQR_ASSOC.COS is COS_MAX_CDP.
• Bits 63:1: Reserved. Attempts to write to reserved bits result in a #GP(0).

Mask MSR CAT-only Operation CDP Operation

IA32_L3_QOS_Mask_0 COS0 COS0.Data
IA32_L3_QOS_Mask_1 COS1 COS0.Code
IA32_L3_QOS_Mask_2 COS2 COS1.Data
IA32_L3_QOS_Mask_3 COS3 COS1.Code
IA32_L3_QOS_Mask_4 COS4 COS2.Data
IA32_L3_QOS_Mask_5 COS5 COS2.Code
....

IA32_L3_QOS_Mask_’2n’ COS’2n’ COS’n’.Data
IA32_L3_QOS_Mask_’2n+1’ COS’2n+1’ COS’n’.Code

Figure 18-37. Layout of IA32_L2_QOS_CFG

0263 1

Reserved

IA32_L2_QOS_CFG
3

L2 CDP Enable
Vol. 3B 18-63

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
IA32_L2_QOS_CFG default values are all 0s at RESET, and the mask MSRs are all 1s. Hence all logical processors
are initialized in COS0 allocated with the entire L2 available and with CDP disabled, until software programs CAT
and CDP. The IA32_L2_QOS_CFG MSR is defined at the same scope as the L2 cache, typically at the module level
for Intel Atom processors for instance. In processors with multiple modules present it is recommended to program
the IA32_L2_QOS_CFG MSR consistently across all modules for simplicity.

18.19.6.1 Mapping Between L2 CDP Masks and L2 CAT Masks
When CDP is enabled, the existing CAT mask MSR space is re-mapped to provide a code mask and a data mask per
COS. This remapping is the same as the remapping shown in Table 18-19 for L3 CDP, but for the L2 MSR block
(IA32_L2_QOS_MASK_n) instead of the L3 MSR block (IA32_L3_QOS_MASK_n). The same code / data mask
mapping algorithm applies to remapping the MSR block between code and data masks.

As with L3 CDP, when L2 CDP is enabled, each COS is mapped 1:2 with mask MSRs, with one mask enabling
programmatic control over data fill location and one mask enabling control over code placement. A variety of over-
lapped and isolated mask configurations are possible (see the example in Figure 18-29).

Mask MSR field definitions for L2 CDP remain the same as for L2 CAT. Capacity masks must be formed of contiguous
set bits, unless otherwise non-contiguous capacity bitmask support is specified in CPUID enumeration for the
resource type with a length of 1 bit or longer and should not exceed the maximum mask length specified in CPUID.
As examples, valid masks on a cache with max bitmask length of 16b (from CPUID) include 0xFFFF, 0xFF00,
0x00FF, 0x00F0, 0x0001, 0x0003, and so on. Maximum valid mask lengths are unchanged whether CDP is enabled
or disabled, and writes of invalid mask values may lead to undefined behavior. Writes to reserved bits will generate
#GP(0).

18.19.6.2 Common L2 and L3 CDP Programming Considerations
Before enabling or disabling L2 or L3 CDP, software should write all 1's to all of the corresponding CAT/CDP masks
to ensure proper behavior (e.g., the IA32_L3_QOS_Mask_n set of MSRs for the L3 CAT feature). When enabling
CDP, software should also ensure that only COS number which are valid in CDP operation is used, otherwise unde-
fined behavior may result. For instance in a case with 16 CAT COS, since COS are reduced by half when CDP is
enabled, software should ensure that only COS 0-7 are in use before enabling CDP (along with writing 1's to all
mask bits before enabling or disabling CDP).

Software should also account for the fact that mask interpretations change when CDP is enabled or disabled,
meaning for instance that a CAT mask for a given COS may become a code mask for a different Class of Service
when CDP is enabled. In order to simplify this behavior and prevent unintended remapping software should
consider resetting all threads to COS[0] before enabling or disabling CDP.

18.19.6.3 Cache Allocation Technology Dynamic Configuration
All Intel Resource Director Technology (Intel RDT) interfaces including the IA32_PQR_ASSOC MSR, CAT/CDP
masks, MBA delay values, and CQM/MBM registers are accessible and modifiable at any time during execution
using RDMSR/WRMSR unless otherwise noted. When writing to these MSRs a #GP(0) will be generated if any of the
following conditions occur:
• A reserved bit is modified,
• Accessing a QOS mask register outside the supported COS (the max COS number is specified in

CPUID.(EAX=10H, ECX=ResID):EDX[15:0]), or
• Writing a COS greater than the supported maximum (specified as the maximum value of CPUID.(EAX=10H,

ECX=ResID):EDX[15:0] for all valid ResID values) is written to the IA32_PQR_ASSOC.CLOS field.

When CDP is enabled, specifying a COS value in IA32_PQR_ASSOC.COS outside of the lower half of the COS space
will cause undefined performance impact to code and data fetches due to MSR space re-indexing into code/data
masks when CDP is enabled.

When reading the IA32_PQR_ASSOC register the currently programmed COS on the core will be returned.

When reading an IA32_resourceType_MASK_n register the current capacity bit mask for COS 'n' will be returned.
18-64 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
As noted previously, software should minimize migrations of COS across logical processors (across threads or
cores), as a reduction in the accuracy of the Cache Allocation feature may result if COS are migrated frequently.
This is aligned with the industry standard practice of minimizing unnecessary thread migrations across processor
cores in order to avoid excessive time spent warming up processor caches after a migration. In general, for best
performance, minimize thread migration and COS migration across processor logical threads and processor cores.

18.19.6.4 Cache Allocation Technology Operation With Power Saving Features
Note that the Cache Allocation Technology feature cannot be used to enforce cache coherency, and that some
advanced power management features such as C-states which may shrink or power off various caches within the
system may interfere with CAT hints - in such cases the CAT bitmasks are ignored and the other features take
precedence. If the highest possible level of CAT differentiation or determinism is required, disable any power-
saving features which shrink the caches or power off caches. The details of the power management interfaces are
typically implementation-specific, but can be found at Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3C.

If software requires differentiation between threads but not absolute determinism then in many cases it is possible
to leave power-saving cache shrink features enabled, which can provide substantial power savings and increase
battery life in mobile platforms. In such cases when the caches are powered off (e.g., package C-states) the entire
cache of a portion thereof may be powered off. Upon resuming an active state any new incoming data to the cache
will be filled subject to the cache capacity bitmasks. Any data in the cache prior to the cache shrink or power off
may have been flushed to memory during the process of entering the idle state, however, and is not guaranteed to
remain in the cache. If differentiation between threads is the goal of system software then this model allows
substantial power savings while continuing to deliver performance differentiation. If system software needs
optimal determinism then power saving modes which flush portions of the caches and power them off should be
disabled.

NOTE
IA32_PQR_ASSOC is saved and restored across C6 entry/exit. Similarly, the mask register contents
are saved across package C-state entry/exit and are not lost.

18.19.6.5 Cache Allocation Technology Operation with Other Operating Modes
The states in IA32_PQR_ASSOC and mask registers are unmodified across an SMI delivery. Thus, the execution of
SMM handler code can interact with the Cache Allocation Technology resource and manifest some degree of non-
determinism to the non-SMM software stack. An SMM handler may also perform certain system-level or power
management practices that affect CAT operation.

It is possible for an SMM handler to minimize the impact on data determinism in the cache by reserving a COS with
a dedicated partition in the cache. Such an SMM handler can switch to the dedicated COS immediately upon
entering SMM, and switching back to the previously running COS upon exit.

18.19.6.6 Associating Threads with CAT/CDP Classes of Service
Threads are associated with Classes of Service (CLOS) via the per-logical-processor IA32_PQR_ASSOC MSR. The
same COS concept applies to both CAT and CDP (for instance, COS[5] means the same thing whether CAT or CDP
is in use, and the COS has associated resource usage constraint attributes including cache capacity masks). The
mapping of COS to mask MSRs does change when CDP is enabled, according to the following guidelines:
• In CAT-only Mode - one set of bitmasks in one mask MSR control both code and data.

— Each COS number map 1:1 with a capacity mask on the applicable resource (e.g., L3 cache).
• When CDP is enabled,

— Two mask sets exist for each COS number, one for code, one for data.

— Masks for code/data are interleaved in the MSR address space (see Table 18-19).
Vol. 3B 18-65

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
18.19.7 Introduction to Memory Bandwidth Allocation
The Memory Bandwidth Allocation (MBA) feature provides indirect and approximate control over memory band-
width available per-core. It was introduced in the Intel Xeon Scalable Processor Family. This feature provides a
method to control applications that may be over-utilizing bandwidth relative to their priority in environments such
as the data-center.

The MBA feature uses existing constructs from the Intel RDT feature set, including Classes of Service (CLOS). A
given CLOS used for L3 CAT, for instance, means the same thing as a CLOS used for MBA. Infrastructure, such as
the MSR used to associate a thread with a CLOS (the IA32_PQR_ASSOC_MSR) and some elements of the CPUID
enumeration (such as CPUID leaf 10H), are shared. Certain generations include advanced hardware controllers for
efficiency. For more information, refer to the “Intel® Resource Director Technology Architecture Specification.”

The following sections describe CPU interfaces to Memory Bandwidth Allocation, such as CPUID enumeration and
configuration interfaces (MSRs).

18.19.7.1 Memory Bandwidth Allocation Enumeration
Similar to other Intel RDT features, enumeration of the presence and details of the MBA feature is provided via a
sub-leaf of the CPUID instruction.

Key components of the enumeration are as follows.
• Support for the MBA feature on the processor, and if MBA is supported, the following details:

— Number of supported Classes of Service (CLOS) for the processor.

— The maximum MBA delay value supported (which also implicitly provides a definition of the granularity).

— An indication of whether the delay values which can be programmed are linearly spaced or not.

The presence of any of the Intel RDT features which enable control over shared platform resources is enumerated
by executing CPUID instruction with EAX = 07H, ECX = 0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQE[bit 15]
reports 1, the processor supports software control over shared processor resources. Software may then use CPUID
leaf 10H to enumerate additional details on the specific controls provided.

Through CPUID leaf 10H software may determine whether MBA is supported on the platform. Specifically, as shown
in Figure 18-31, bit 3 of the EBX register indicates whether MBA is supported on the processor, and the bit position
(3) constitutes a Resource ID (ResID) which allows enumeration of MBA details. For instance, if bit 3 is supported
this implies the presence of CPUID.10H.[ResID=3] as shown in Figure 18-38 which provides the following details.
• CPUID.(EAX=10H, ECX=ResID=3):EAX[11:0] reports the maximum MBA throttling value supported, minus

one. For instance, a value of 89 indicates that a maximum throttling value of 90 is supported. Additionally, in
cases where a linear interface (see below) is supported then one hundred minus the maximum throttling value
indicates the granularity, 10% in this example.

• CPUID.(EAX=10H, ECX=ResID=3):EBX is reserved.
• CPUID.(EAX=10H, ECX=ResID=3):ECX[2] reports whether the response of the delay values is linear (see

text).
• CPUID.(EAX=10H, ECX=ResID=3):EDX[15:0] reports the number of Classes of Service (CLOS) supported for

the feature (minus one). For instance, a reported value of 15 implies a maximum of 16 supported MBA CLOS.

The number of CLOS supported for the MBA feature may or may not align with other resources such as L3 CAT. In
cases where the Intel RDT features support different numbers of CLOS the lowest numerical CLOS support the
common set of features, while higher CLOS may support a subset. For instance, if L3 CAT supports 8 CLOS while
MBA supports 4 CLOS, all 8 CLOS would have L3 CAT masks available for cache control, but the upper 4 CLOS would
not offer MBA support. In this case the upper 4 CLOS would not be subject to any throttling control. Software can
manage supported resources / CLOS in order to either have consistent capabilities across CLOS by using the
common subset or enable more flexibility by selectively applying resource control where needed based on careful
CLOS and thread mapping. In all cases, CLOS[0] supports all Intel RDT resource control features present on the
platform.

Discussion on the interpretation and usage of the MBA delay values is provided in Section 18.19.7.2 on MBA config-
uration.
18-66 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
18.19.7.2 Memory Bandwidth Allocation Configuration
The configuration of MBA takes consists of two processes once enumeration is complete.
• Association of threads to Classes of Service (CLOS) - accomplished in a common fashion across Intel RDT

features as described in Section 18.19.7.1 via the IA32_PQR_ASSOC MSR. As with features such as L3 CAT,
software may update the CLOS field of the PQR MSR at context swap time in order to maintain the proper
association of software threads to Classes of Service on the hardware. While logical processors may each be
associated with independent CLOS, see Section 18.19.7.3 for important usage model considerations (initial
versions of the MBA feature select the maximum delay value across threads).

• Configuration of the per-CLOS delay values, accomplished via the IA32_L2_QoS_Ext_BW_Thrtl_n MSR set
shown in Table 18-20.

The MBA delay values which may be programmed range from zero (implying zero delay, and full bandwidth avail-
able) to the maximum (MBA_MAX) specified in CPUID as discussed in Section 18.19.7.1. The throttling values are
approximate and do not sum to 100% across CLOS, rather they should be viewed as a maximum bandwidth “cap”
per-CLOS.

Software may select an MBA delay value then write the value into one or more of the IA32_L2_QoS_Ext_B-
W_Thrtl_n MSRs to update the delay values applied for a specific CLOS. As shown in Table 18-20 the base address
of the MSRs is at D50H, and the range corresponds to the maximum supported CLOS from CPUID.(EAX=10H,
ECX=ResID=1):EDX[15:0] as described in Section 18.19.7.1. For instance, if 16 CLOS are supported then the valid
MSR range will extend from D50H through D5F inclusive.

Figure 18-38. CPUID.(EAX=10H, ECX=3H) MBA Feature Details Identification

11 0

EAX

31

CPUID.(EAX = 10H, ECX = ResID = 3) Output:

Reserved

EBX Reserved

ECX Reserved

EDX Reserved

MBA_MAX-1

 031

31

31

 2 1 0

16 15 0

MBA_Lin_Rsp

COS_MAX
Vol. 3B 18-67

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
Table 18-20. MBA Delay Value MSRs

The definition for the MBA delay value MSRs is provided in Figure 17.39. The lower 16 bits are used for MBA delay
values, and values from zero to the maximum from the CPUID MBA_MAX-1 value are supported. Values outside this
range will generate #GP(0).

If linear input throttling values are indicated by CPUID.(EAX=10H, ECX=ResID=3):ECX[bit 2] then values from
zero through the MBA_MAX field from CPUID.(EAX=10H, ECX=ResID=3):EAX[11:0] are supported as inputs. In
the linear mode the input precision is defined as 100-(MBA_MAX). For instance, if the MBA_MAX value is 90, the
input precision is 10%. Values not an even multiple of the precision (e.g., 12%) will be rounded down (e.g., to 10%
delay applied).
• If linear values are not supported (CPUID.(EAX=10H, ECX=ResID=3):ECX[bit 2] = 0) then input delay values

are powers-of-two from zero to the MBA_MAX value from CPUID. In this case any values not a power of two will
be rounded down the next nearest power of two.

Note that the throttling values provided to software are calibrated through specific traffic patterns, however as
workload characteristics may vary the response precision and linearity of the delay values will vary across products
and should be treated as approximate values only.

18.19.7.3 Memory Bandwidth Allocation Usage Considerations
Different versions of Memory Bandwidth Allocation have various usage considerations and improving efficiency
over time. See the “Intel® Resource Director Technology Architecture Specification” for additional details.

18.20 INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FOR NON-CPU
AGENTS

This section describes Intel RDT features for non-CPU agents. CPU agents are threads running on IA cores. Non-
CPU agents include PCIe and CXL devices and integrated accelerators, thus broadly encompassing the set of agents
that read from and write to either caches or memory, excluding IA cores. The non-CPU agent Intel RDT features
enable monitoring of I/O device shared cache and memory bandwidth and cache allocation control. This provides
features for I/O devices equivalent to the CPU agent Intel RDT capabilities CMT, MBM, and CAT (discussed in

Delay Value MSR Address

IA32_L2_QoS_Ext_BW_Thrtl_0 D50H
IA32_L2_QoS_Ext_BW_Thrtl_1 D51H
IA32_L2_QoS_Ext_BW_Thrtl_2 D52H
....

IA32_L2_QoS_Ext_BW_Thrtl_'COS_MAX' D50H + COS_MAX from CPUID.10H.3

Figure 18-39. IA32_L2_QoS_Ext_BW_Thrtl_n MSR Definition

16 15 063

Base MSR Address = 0xD50

IA32_L2_QOS_Ext_BW_Thrtl_n MSR
Reserved MBA Delay Value
18-68 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
Section 18.18 and Section 18.19). Refer to the “Intel® Resource Director Technology Architecture Specification”
regarding design goals, use cases, software architecture, ACPI enumeration, and MMIO register interfaces.

“Non-CPU agent Intel RDT” refers to capabilities that monitor and control non-CPU agents' resource utilization,
including PCIe and CXL devices and integrated accelerators. Non-CPU agent Intel RDT may be called I/O RDT in
some literature. In this document, the term “non-CPU agent Intel RDT” is used.

18.20.1 Non-CPU Agent Intel® RDT Features Enumeration Details
CPU agent Intel RDT features use the CPUID instruction to enumerate supported features and the level of support.
Architectural Model-Specific Registers (MSRs) are interfaces to the monitoring and allocation features, as described
in Sections 18.18 and 18.19.

Non-CPU agent Intel RDT builds on CPU agent Intel RDT by extending CPUID to indicate the presence and integra-
tion of non-CPU agent Intel RDT and by providing rich enumeration information in vendor-specific extensions to the
Advanced Configuration and Power Interface (ACPI), in particular in the I/O RDT (IRDT) table. The ACPI extensions
detailed in the “Intel® Resource Director Technology Architecture Specification” provide mechanisms to compre-
hend the structure of devices attached behind I/O blocks to particular links and what forms of tagging are
supported on a per-link basis.

It is recommended that software parse CPUID and ACPI to obtain a detailed understanding of platform support and
capabilities before attempting to use non-CPU agent Intel RDT.

18.20.1.1 CPUID-Based Enumeration for Non-CPU Agent Intel® RDT Feature
CPUID-based enumeration provides a method by which all architectural Intel RDT features may be enumerated.

For CPU agent Intel RDT, monitoring details are enumerated in a CPUID sub-leaf denoted as CPUID.(EAX=0FH,
ECX=ResID), where ResID corresponds to a resource ID bit index from the CPUID.(EAX=0FH, ECX=0) sub-leaf.
Similarly, Intel RDT allocation features are described in CPUID.(EAX=10H, ECX=ResID). (Note that the ResID bit
positions are not guaranteed to be symmetric or have the same encodings.)

No CPUID leaves or sub-leaves are created for non-CPU agent Intel RDT. Rather, non-CPU agent Intel RDT extends
the existing Intel RDT CPUID sub-leaves with a bit per resource type, indicating whether non-CPU agent Intel RDT
monitoring or control is present. CPUID.(EAX=0FH, ECX=ResID=1):EAX[bits 9, 10] represents the presence of
CMT and MBM features for non-CPU agents. CPUID.(EAX=10H, ECX=ResID=1):ECX[bit 1] represents the presence
of the CAT feature for non-CPU agents.

Specifically, for non-CPU Agent Intel RDT Monitoring (see Figure 18-21):
• Bits are added in the CPU Agent Intel RDT CMT/MBM leaf: CPUID.(EAX=0FH, ECX=ResID=1):EAX[bits 9, 10].

— EAX[bit 9]: If set, indicates the presence of non-CPU Agent Cache Occupancy Monitoring (the equivalent of
CPU Agent Intel RDT's CMT feature).

— EAX[bit 10]: If set, indicates the presence of non-CPU Agent memory L3 external BW monitoring (the
equivalent of CPU Agent Intel RDT's MBM feature).

For non-CPU Agent Intel RDT Allocation (see Figure 18-32):
• New bit in L3 CAT leaf: CPUID.(EAX=10H, ECX=ResID=1):ECX[bit 1].

— ECX[bit 1]: If set, indicates the presence of non-CPU Agent Cache Allocation Technology (the equivalent of
CPU Agent Intel RDT's L3 CAT feature).

• As before, ECX[bit 2] indicates that L3 CDP is supported if set.

Note that no equivalent bits are defined in CPUID.(EAX=10H, ECX=ResID=2) as there is no ability for devices to fill
into core L2 caches.

If any of these non-CPU agent Intel RDT enumeration bits are set, indicating that a monitoring feature or allocation
feature is present, it also indicates the presence of the IA32_L3_IO_RDT_CFG architectural MSR. This MSR may be
used to enable the non-CPU agent Intel RDT features. See Section 18.20.2 for MSR details.

The presence of Intel RDT is a prerequisite for using the equivalent non-CPU agent Intel RDT feature. If a particular
CPU agent Intel RDT feature is absent, any attempt to use non-CPU agent Intel RDT equivalents will result in
Vol. 3B 18-69

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES
general protection faults in the MSR interface. Attempts to enable unsupported features in the I/O complex will
result in writes to the corresponding MMIO enable or configuration interfaces being ignored.

Software may use the existing CPUID leaves to gather the maximum number of RMID and CLOS tags for each
resource level (e.g., L3 cache), and non-CPU agent Intel RDT is also subject to these limits.

Some platforms may support a mix of features, for instance, supporting L3 CAT architectural controls and the non-
CPU agent Intel RDT equivalent, but no CMT/MBM monitoring or non-CPU agent monitoring equivalent, and these
capabilities should be enumerated on a per-platform basis.

18.20.1.2 ACPI Enumeration
When support for non-CPU agent Intel RDT features is detected using CPUID, ACPI may be consulted for further
details on the level of feature support, device structures behind various I/O ports, and the specific MMIO interfaces
used to control a given device.

Non-CPU agent Intel RDT enumeration is via the “IRDT” ACPI table. For more information, refer to the “Intel®
Resource Director Technology Architecture Specification.”

18.20.2 Non-CPU Agent Intel® RDT Feature Enable MSR
Before configuring non-CPU agent Intel RDT through MMIO, the feature should be enabled using the non-CPU
agent Intel RDT Feature Enable MSR, IA32_L3_IO_RDT_CFG (MSR address 0C83H). As described in Section
18.20.1.1, the presence of one or more CPUID bits indicating support for one or more non-CPU agent Intel RDT
features also indicates the presence of this MSR. This MSR may be used to enable the non-CPU agent Intel RDT
features.

Two bits are defined in this MSR. Bit 0, when set, enables non-CPU agent RDT resource allocation features. Bit 1,
when set, enables non-CPU agent Intel RDT monitoring features.

The L3 Non-CPU agent Intel RDT Monitoring Enable bit is supported if CPUID indicates that one or more non-CPU
agent Intel RDT resource monitoring features are present.

The L3 Non-CPU agent Intel RDT Allocation Enable bit is supported if CPUID indicates that one or more non-CPU
agent Intel RDT resource allocation features are present.

The default value is 0x0, so both classes of features are disabled by default. All bits not defined are reserved.
Writing a non-zero value to any reserved bit will generate a General Protection Fault (#GP(0)).

This MSR is scoped at the L3 cache level and is cleared on system reset. It is expected that the software will
configure this MSR consistently across all L3 caches that may be present on that package.

The definition of the IA32_L3_IO_RDT_CFG MSR is shown in Figure 18-40.

Figure 18-40. Layout of the IA32_L3_IO_QOS_CFG MSR for Enabling Non-CPU Agent Intel® RDT

Reserved Reserved

 63 2 1 0

M A

IRAE = L3 Non-CPU Agent Intel® RDT Allocation Enable

IRME = L3 Non-CPU Agent Intel® RDT Monitoring Enable
18-70 Vol. 3B

CHAPTER 19
LAST BRANCH RECORDS

NOTE
This chapter defines a last-branch recording (LBR) facility that is architectural and part of the Intel
64 architecture. This facility is an enhancement of but distinct from earlier LBR facilities that were
not architectural. Those earlier facilities are documented in Chapter 18.

Support of the architectural LBR feature in a logical processor is reported in CPUID.(EAX=07H,
ECX=0H):EDX[19]=1. When the architectural LBR feature is supported, capability details like the number of LBR
records that are available is indicated in CPUID.1CH:EAX[7:0]. The number of LBR records available varies across
processor generations, so software should only access the available LBR records indicated by
CPUID.1CH:EAX[7:0].

Last Branch Records (LBRs) enable recording of software path history by logging taken branches and other control
flow transfers within processor registers. Each LBR record or entry is comprised of three MSRs:
• IA32_LBR_x_FROM_IP − Holds the source IP of the operation.
• IA32_LBR_x_TO_IP − Holds the destination IP of the operation.
• IA32_LBR_x_INFO − Holds metadata for the operation, including mispredict, TSX, and elapsed cycle time infor-

mation.
LBR records are stored in age order. The most recent LBR entry is stored in IA32_LBR_0_*, the next youngest in
IA32_LBR_1_*, and so on. When an operation to be recorded completes (retires) with LBRs enabled
(IA32_LBR_CTL.LBREn=1), older LBR entries are shifted in the LBR array by one entry, then a record of the new
operation is written into entry 0. See Section 19.1.1 for the list of recorded operations.
The number of LBR entries available for recording operations is dictated by the value in IA32_LBR_DEPTH.DEPTH.
By default, the DEPTH value matches the maximum number of LBRs supported by the processor, but software may
opt to use fewer in order to achieve reduced context switch latency.
In addition to the LBRs, there is a single Last Event Record (LER). It records the last taken branch preceding the
last exception, hardware interrupt, or software interrupt. Like LBRs, the LER is comprised of three MSRs
(IA32_LER_FROM_IP, IA32_LER_TO_IP, IA32_LER_INFO), and is subject to the same dependencies on enabling
and filtering.
Which operations are recorded in LBRs depends upon a series of factors:
• Branch Type Filtering − Software must opt in to the types of branches to be logged; see Section 19.1.2.3.
• Current Privilege Level (CPL) − LBRs can be filtered based on CPL; see Section 19.1.2.5.
• LBR Freeze − LBR and LER recording can be suspended by setting IA32_PERF_GLOBAL_STATUS.LBR_FRZ to 1.

See Section 18.4.7 for details on LBR_FRZ.
On some implementations, recording LBRs may require constraining the number of operations that can complete in
a cycle. As a result, on these implementations, enabling LBRs may have some performance overhead.

19.1 BEHAVIOR

19.1.1 Logged Operations
LBRs can log most control flow transfer operations.
The source IP recorded for a branch instruction is the IP of that instruction. For events that take place between
instructions, the source IP recorded is the IP of the next sequential instruction.
The destination IP recorded is always the target of the branch or event, the next instruction that will execute.
The full list of operations and the respective IPs recorded is shown in Table 19-1.
Vol. 3B 19-1

LAST BRANCH RECORDS
19.1.2 Configuration

19.1.2.1 Enabling and Disabling
LBRs are enabled by setting IA32_LBR_CTL.LBREn to 1.
Some operations, such as entry to a secure mode like SMM or Intel SGX, can cause LBRs to be temporarily
disabled. Other operations, such as debug exceptions or some SMX operations, disable LBRs and require software
to re-enable them. Details on these interactions can be found in Section 19.1.4.

19.1.2.2 LBR Depth
The number of LBRs used by the processor can be constrained by modifying the IA32_LBR_DEPTH.DEPTH value.
DEPTH defaults to the maximum number of LBRs supported by the processor. Allowed DEPTH values can be found
in CPUID.1CH:EAX[7:0].
Reducing the LBR depth can result in improved performance, by reducing the number of LBRs that need to be read
and/or context switched.
On a software write to IA32_LBR_DEPTH, all LBR entries are reset to 0. LERs are not impacted.
A RDMSR or WRMSR to any IA32_LBR_x_* MSRs, such that x ≥ DEPTH, will generate a #GP exception. Note that
the XSAVES and XRSTORS instructions access only the LBRs associated with entries 0 to DEPTH-1.
By clearing the LBR entries on writes to IA32_LBR_DEPTH, and forbidding any software writes to LBRs ≥ DEPTH, it
is thereby guaranteed that any LBR entries equal to or above DEPTH will have value 0.

19.1.2.3 Branch Type Enabling and Filtering
Software must opt in to the types of branches that are desired to be recorded. These elections are made in
IA32_LBR_CTL; see Section 19.2. Branch type options are listed in Table 19-2; only those enabled will be recorded.

Table 19-1. LBR IP Values for Various Operations

Operation FROM_IP TO_IP

Taken Branch1, Exception, INT3, INTn,
INTO, TSX Abort

Current IP Target IP

Interrupt Next IP Target IP

INIT (BSP) Next IP Reset Vector

INIT (AP) + SIPI Next IP SIPI Vector

EENTER/ERESUME + EEXIT/AEX Current IP Target or Trampoline IP

RSM2 Target IP Target IP

#DB, #SMI, VM exit, VM entry None None

NOTES:
1. Direct CALLs with displacement zero, for which the target is typically the next sequential IP, are not treated as

taken branches by LBRs.
2. RSM is only recorded in LBRs when IA32_DEBUGCTL.FREEZE_WHILE_SMM is set to 0.
19-2 Vol. 3B

LAST BRANCH RECORDS
These encodings match those in IA32_LBR_x_INFO.BR_TYPE.
Control flow transfers that are not recorded include #DB, VM exit, VM entry, and #SMI.

19.1.2.4 Call-Stack Mode
The LBR array is, by default, treated as a ring buffer that captures control flow transitions. However, the finite
depth of the LBR array can be limiting when profiling certain high-level languages (e.g., C++), where a transition
of the execution flow is accompanied by a large number of leaf function calls. These calls to leaf functions, and their
returns, are likely to displace the main execution context from the LBRs.
When call-stack mode is enabled, the LBR array can capture unfiltered call data normally, but as return instructions
are executed the last captured branch (call) record is flushed from the LBRs in a last-in first-out (LIFO) manner.
Thus, branch information pertaining to completed leaf functions will not be retained, while preserving the call stack
information of the main line execution path.
Call-stack mode is enabled by setting IA32_LBR_CTL.CALL_STACK to 1. When enabled, near RET instructions
receive special treatment. Rather than adding a new record in LBR_0, a near RET will instead “pop” the CALL entry
at LBR_0 by shifting entries LBR_1..LBR_[DEPTH-1] up to LBR_0..LBR_[DEPTH-2], and clearing LBR_[DEPTH-1] to
0. Thus, LBR processing software can consume only valid call-stack entries by reading until finding an entry that is
all zeros.
Call-stack mode should be used with branch type enabling configured to capture only CALLs (NEAR_REL_CALL and
NEAR_IND_CALL) and RETs (NEAR_RET). When configured in this manner, the LBR array emulates a call stack,
where CALLs are “pushed” and RETs “pop” them off the stack. If other branch types (JCC, NEAR_*_JMP, or
OTHER_BRANCH) are enabled for recording with call-stack mode, LBR behavior may be undefined.
It is recommended that call-stack mode be used along with CPL filtering, by setting at most one of the OS and USR
bits in the IA32_LBR_CTL MSR. Call-stack mode does not emulate the stack switch that can occur on CPL transi-
tions, and hence monitoring all CPLs may result in a corrupted LBR call stack.

Call-Stack Mode and LBR Freeze

When IA32_DEBUGCTL.FREEZE_LBRS_ON_PMI=1, IA32_PERF_GLOBAL_STATUS.LBR_FRZ will be set to 1 when a
PMI is pended. That will cause LBRs and LERs to cease recording branches until LBR_FRZ is cleared. Because there
may be some “skid”, or instructions retiring, in between the PMI being pended and the PMI being taken, it is
possible that some branches may be missing from the LBRs. In the case of call-stack mode, if a CALL or RET is
missed, that can lead to confusing results where CALL entries fail to get “popped” off the stack, and RETs “pop” the
wrong CALLs.
An alternative is to utilize CPL filtering to limit LBR recording to less privileged modes only (CPL>3) instead of using
the FREEZE_LBRS_ON_PMI=1 feature. This will record branches in the “skid”, but avoid recording any branches in
the privilege level 0 handler.

Table 19-2. Branch Type Filtering Details

Branch Type Operations Recorded

COND Jcc, J*CXZ, and LOOP*

NEAR_IND_JMP JMP r/m*

NEAR_REL_JMP JMP rel*

NEAR_IND_CALL CALL r/m*

NEAR_REL_CALL CALL rel* (excluding CALLs to the next sequential IP)

NEAR_RET RET (0C3H)

OTHER_BRANCH JMP/CALL ptr*, JMP/CALL m*, RET (0C8H), SYS*, interrupts, exceptions (other than debug
exceptions), IRET, INT3, INTn, INTO, TSX Abort, EENTER, ERESUME, EEXIT, AEX, INIT, SIPI, RSM
Vol. 3B 19-3

LAST BRANCH RECORDS
19.1.2.5 CPL Filtering
Software must opt in to which CPL(s) will have branches recorded. If IA32_LBR_CTL.OS=1, then branches in
CPL=0 can be recorded. If IA32_LBR_CTL.USR=1, then branches in CPL>0 can be recorded. For operations which
change the CPL, the operation is recorded in LBRs only if the CPL at the end of the operation is enabled for LBR
recording. In cases where the CPL transitions from a value that is filtered out to a value that is enabled for LBR
recording, the FROM_IP address for the recorded CPL transition branch or event will be 0FFFFFFFFFFFFFFFFH.

19.1.3 Record Data

19.1.3.1 IP Fields
The source and destination IP values in IA32_LBR_x_[FROM|TO]_IP and IA32_LER_x_[FROM|TO]_IP may hold
effective IPs or linear IPs (LIPs), depending on the processor generation. The effective IP is the offset from the CS
base address, while LIP includes the CS base address. Which IP type is used is indicated in CPUID.1CH:EAX[bit 31].
The value read from this field will always be canonical. Note that this includes the case where a canonical violation
(#GP) results from executing sequential code that runs precisely to the end of the lower canonical address space
(where IP[63:MAXLINADDR-1] is 0, but IP[MAXLINADDR-2:0] is all ones). In this case, the FROM_IP will hold the
lowest canonical address in the upper canonical space, such that IP[63:MAXLINADDR-1] is all ones, and IP[MAXLI-
NADDR-2:0] is 0.
In some cases, due to CPL filtering, the FROM_IP of the recorded operation may be filtered out. In this case
0FFFFFFFFFFFFFFFFH will be recorded. See Section 19.1.2.5 for details.
Writes of these fields will be forced canonical, such that the processor ignores the value written to the upper bits
(IP[63:MAXLINADDR-1]).

19.1.3.2 Branch Types
The IA32_LBR_x_INFO.BR_TYPE and IA32_LER_INFO.BR_TYPE fields encode the branch types as shown in Table
19-3.

For a list of branch operations that fall into the categories above, see Table 19-2. In future generations, BR_TYPE
bits 2:0 may be used to distinguish between differing types of OTHER_BRANCH.

19.1.3.3 Cycle Time
Each time an operation is recorded in an LBR, the value of the LBR cycle timer is recorded in
IA32_LBR_x_INFO.CYC_CNT. The LBR cycle timer is a saturating counter that counts at the processor clock rate.
Each time an operation is recorded in an LBR, the counter is reset but continues counting.

Table 19-3. IA32_LBR_x_INFO and IA32_LER_INFO Branch Type Encodings

Encoding Branch Type

0000B COND

0001B NEAR_IND_JMP

0010B NEAR_REL_JMP

0011B NEAR_IND_CALL

0100B NEAR_REL_CALL

0101B NEAR_RET

011xB Reserved

1xxxB OTHER_BRANCH
19-4 Vol. 3B

LAST BRANCH RECORDS
There is an LBR cycle counter valid bit, IA32_LBR_x_INFO.CYC_CNT_VALID. When set, the CYC_CNT field holds a
valid value, the number of elapsed cycles since the last operation recorded in an LBR (up to 0FFFFH).
Some implementations may opt to reduce the granularity of the CYC_CNT field for larger values. The implication of
this is that the least significant bits may be forced to 1 in cases where the count has reached some minimum
threshold. It is guaranteed that this reduced granularity will never result in an inaccuracy of more than 10%.

19.1.3.4 Mispredict Information
IA32_LBR_x_INFO.MISPRED provides an indication of whether the recorded branch was predicted incorrectly by
the processor. The bit is set if either the taken/not-taken direction of a conditional branch was mispredicted, or if
the target of an indirect branch was mispredicted.

19.1.3.5 Intel® TSX Information
IA32_LBR_x_INFO.IN_TSX indicates whether the operation recorded retired during a TSX transaction.
IA32_LBR_x_INFO.TSX_ABORT indicates that the operation is a TSX Abort.

19.1.4 Interaction with Other Processor Features

19.1.4.1 SMM
IA32_LBR_CTL.LBREn is saved and cleared on #SMI, and restored on RSM. As a result of disabling LBRs, the #SMI
is not recorded. RSM is recorded only if IA32_DEBUGCTL.FREEZE_WHILE_SMM is set to 0, and the FROM_IP will be
set to the same value as the TO_IP.

19.1.4.2 SMM Transfer Monitor (STM)
LBREn is not cleared on #SMI when it causes SMM VM exit. Instead, the STM should use the VMCS controls
described in Section 19.1.4.3 to disable LBRs while in SMM, and to restore them on VM entries that exit SMM.
On VMCALL to configure STM, IA32_LBR_CTL is cleared.

19.1.4.3 VMX
By default, LBR operation persists across VMX transitions. However, VMCS fields have been added to enable
constraining LBR usage to within non-root operation only. See details in Table 19-4.

To enable “guest-only” LBR use, a VMM should set both the “Load Guest IA32_LBR_CTL” entry control and the
“Clear IA32_LBR_CTL” exit control. For “system-wide” LBR use, where LBRs remain enabled across host and
guest(s), a VMM should keep both new VMCS controls clear.
VM entry checks that, if the “Load Guest IA32_LBR_CTL” entry control is 1, bits reserved in the IA32_LBR_CTL MSR
must be 0 in the field for that register.

Table 19-4. LBR VMCS Fields

Name Type Bit Position Behavior

Guest IA32_LBR_CTL Guest State Field NA The guest value of IA32_LBR_CTL is written to this field on all
VM exits.

Load Guest IA32_LBR_CTL Entry Control 21 When set, VM entry will write the value from the “Guest
IA32_LBR_CTL” guest state field to IA32_LBR_CTL.

Clear IA32_LBR_CTL Exit Control 26 When set, VM exit will clear IA32_LBR_CTL after the value has
been saved to the “Guest IA32_LBR_CTL” guest state field.
Vol. 3B 19-5

LAST BRANCH RECORDS
For additional information relating to VMX transitions, see Chapter 25, Chapter 27, and Chapter 28 in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3C.

19.1.4.4 Intel® SGX
On entry to an enclave, via EENTER or ERESUME, logging of LBR entries is suspended. On enclave exit, via EEXIT
or AEX, logging resumes. The cycle counter will continue to run during enclave execution.
An exception to the above is made for opt-in debug enclaves. For such enclaves, LBR logging is not impacted.

19.1.4.5 Debug Exceptions
When a branch happens because of a #DB exception, IA32_LBR_CTL.LBREn is cleared. As a result, the operation is
not recorded.

19.1.4.6 SMX
On GETSEC leaves SENTER or ENTERACCS, IA32_LBR_CTL is cleared. As a result, the operation is not recorded.

19.1.4.7 MWAIT
On an MWAIT that requests a C-state deeper than C1, IA32_LBR_x_* MSRs may be cleared to 0. IA32_LBR_CTL,
IA32_LBR_DEPTH, and IA32_LER_* MSRs will be preserved.
For an MWAIT that enters a C-state equal to or less deep than C1, and all C-states that enter as a result of Hard-
ware Duty Cycling (HDC), all LBR MSRs are preserved.

19.1.4.8 Processor Event-Based Sampling (PEBS)
PEBS records can be configured to include LBRs, by setting PEBS_DATA_CFG.LBREn[3]=1. The number of LBRs to
include in the record is also configurable, via PEBS_DATA_CFG.NUM_LBRS[28:24]. For details on PEBS, see Section
20.9 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.
If NUM_LBRS is set to a value greater than LBR_DEPTH, then only LBR_DEPTH entries will be written into the PEBS
record. Further, the Record Size field will be decreased to match the actual size of the record to be written, and the
Record Format field will replace the value of NUM_LBRS with the value of LBR_DEPTH. These adjustments ensure
that software is able to properly interpret the PEBS record.

19.2 MSRS
The MSRs that represent the LBR entries (IA32_LBR_x_[TO|FROM|INFO]) and the LER entry
(IA32_LER_[TO|FROM|INFO]) do not fault on writes. Any address field written will force sign-extension based on
the maximum linear address width supported by the processor, and any non-zero value written to undefined bits
may be ignored such that subsequent reads return 0.
On a warm reset, all LBR MSRs, including IA32_LBR_DEPTH, have their values preserved. However,
IA32_LBR_CTL.LBREn is cleared to 0, disabling LBRs. If a warm reset is triggered while the processor is in the C6
idle state, also known as warm init, all LBR MSRs will be reset to their initial values.

See Table 2-2 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, for details on LBR
MSRs.

19.3 FAST LBR READ ACCESS
XSAVES provides a faster means than RDMSR for software to read all LBRs. When using XSAVES for reading LBRs
rather than for context switch, software should take care to ensure that XSAVES does not write LBR state to an area
of memory that has been or will be used by XRSTORS. This could corrupt INIT tracking.
19-6 Vol. 3B

LAST BRANCH RECORDS
19.4 OTHER IMPACTS

19.4.1 Branch Trace Store on Intel Atom® Processors
Branch Trace Store (BTS) on Intel Atom processors that support the architectural form of the LBR feature has
dependencies on the LBR configuration. BTS will store out the LBR_0 (TOS) record each time a taken branch or
event retires. If any filtering of LBRs is employed, or if LBRs are disabled, some duplicate entries may be stored by
BTS. Like LBRs and LERs, BTS is suspended when IA32_PERF_GLOBAL_STATUS.LBR_FRZ is set to 1.
BTS will change to cease issuing branch records for direct near CALLs with displacement zero to align with LBR
behavior.

19.4.2 IA32_DEBUGCTL
On processors that do not support model-specific LBRs, IA32_DEBUGCTL[bit 0] has no meaning. It can be written
to 0 or 1, but reads will always return 0.

19.4.3 IA32_PERF_CAPABILITIES
On processors that do not support model-specific LBRs, IA32_PERF_CAPABILITIES.LBR_FMT will have the value
03FH.
Vol. 3B 19-7

LAST BRANCH RECORDS
19-8 Vol. 3B

CHAPTER 20
PERFORMANCE MONITORING

Intel 64 and IA-32 architectures provide facilities for monitoring performance via a PMU (Performance Monitoring
Unit).

NOTE
Performance monitoring events can be found here: https://perfmon-events.intel.com/.
Additionally, performance monitoring event files for Intel processors are hosted by the Intel Open
Source Technology Center. These files can be downloaded here:
https://download.01.org/perfmon/.

20.1 PERFORMANCE MONITORING OVERVIEW
Performance monitoring was introduced in the Pentium processor with a set of model-specific performance-moni-
toring counter MSRs. These counters permit selection of processor performance parameters to be monitored and
measured. The information obtained from these counters can be used for tuning system and compiler perfor-
mance.

In Intel P6 family of processors, the performance monitoring mechanism was enhanced to permit a wider selection
of events to be monitored and to allow greater control events to be monitored. Next, Intel processors based on
Intel NetBurst microarchitecture introduced a distributed style of performance monitoring mechanism and perfor-
mance events.

The performance monitoring mechanisms and performance events defined for the Pentium, P6 family, and Intel
processors based on Intel NetBurst microarchitecture are not architectural. They are all model specific (not
compatible among processor families). Intel Core Solo and Intel Core Duo processors support a set of architectural
performance events and a set of non-architectural performance events. Newer Intel processor generations support
enhanced architectural performance events and non-architectural performance events.

Starting with Intel Core Solo and Intel Core Duo processors, there are two classes of performance monitoring capa-
bilities. The first class supports events for monitoring performance using counting or interrupt-based event
sampling usage. These events are non-architectural and vary from one processor model to another. They are
similar to those available in Pentium M processors. These non-architectural performance monitoring events are
specific to the microarchitecture and may change with enhancements. They are discussed in Section 20.6.3,
“Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture).” Non-architectural events for a
given microarchitecture cannot be enumerated using CPUID; and they can be found at:
https://perfmon-events.intel.com/.

The second class of performance monitoring capabilities is referred to as architectural performance monitoring.
This class supports the same counting and Interrupt-based event sampling usages, with a smaller set of available
events. The visible behavior of architectural performance events is consistent across processor implementations.
Availability of architectural performance monitoring capabilities is enumerated using the CPUID.0AH. These events
are discussed in Section 20.2.

See also:

— Section 20.2, “Architectural Performance Monitoring.”

— Section 20.3, “Performance Monitoring (Intel® Core™ Processors and Intel® Xeon® Processors).”

• Section 20.3.1, “Performance Monitoring for Processors Based on Nehalem Microarchitecture.”

• Section 20.3.2, “Performance Monitoring for Processors Based on Westmere Microarchitecture.”

• Section 20.3.3, “Intel® Xeon® Processor E7 Family Performance Monitoring Facility.”

• Section 20.3.4, “Performance Monitoring for Processors Based on Sandy Bridge Microarchitecture.”

• Section 20.3.5, “3rd Generation Intel® Core™ Processor Performance Monitoring Facility.”
Vol. 3B 20-1

https://perfmon-events.intel.com/
https://download.01.org/perfmon/
https://download.01.org/perfmon/
https://download.01.org/perfmon/
https://perfmon-events.intel.com/
https://perfmon-events.intel.com/

PERFORMANCE MONITORING
• Section 20.3.6, “4th Generation Intel® Core™ Processor Performance Monitoring Facility.”

• Section 20.3.7, “5th Generation Intel® Core™ Processor and Intel® Core™ M Processor Performance
Monitoring Facility.”

• Section 20.3.8, “6th Generation, 7th Generation and 8th Generation Intel® Core™ Processor
Performance Monitoring Facility.”

• Section 20.3.9, “10th Generation Intel® Core™ Processor Performance Monitoring Facility.”

• Section 20.3.10, “12th and 13th Generation Intel® Core™ Processors, and 4th Generation Intel®
Xeon® Scalable Processor Family Performance Monitoring Facility.”

— Section 20.4, “Performance monitoring (Intel® Xeon™ Phi Processors).”

• Section 20.4.1, “Intel® Xeon Phi™ Processor 7200/5200/3200 Performance Monitoring.”

— Section 20.5, “Performance Monitoring (Intel Atom® Processors).”

• Section 20.5.1, “Performance Monitoring (45 nm and 32 nm Intel Atom® Processors).”

• Section 20.5.2, “Performance Monitoring for Silvermont Microarchitecture.”

• Section 20.5.3, “Performance Monitoring for Goldmont Microarchitecture.”

• Section 20.5.4, “Performance Monitoring for Goldmont Plus Microarchitecture.”

• Section 20.5.5, “Performance Monitoring for Tremont Microarchitecture.”

— Section 20.6, “Performance Monitoring (Legacy Intel Processors).”

• Section 20.6.1, “Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo Processors).”

• Section 20.6.2, “Performance Monitoring (Processors Based on Intel® Core™ Microarchitecture).”

• Section 20.6.3, “Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture).”

• Section 20.6.4, “Performance Monitoring and Intel® Hyper-Threading Technology in Processors Based
on Intel NetBurst® Microarchitecture.”

• Section 20.6.4.5, “Counting Clocks on systems with Intel® Hyper-Threading Technology in
Processors Based on Intel NetBurst® Microarchitecture.”

• Section 20.6.5, “Performance Monitoring and Dual-Core Technology.”

• Section 20.6.6, “Performance Monitoring on 64-bit Intel® Xeon® Processor MP with Up to 8-MByte L3
Cache.”

• Section 20.6.7, “Performance Monitoring on L3 and Caching Bus Controller Sub-Systems.”

• Section 20.6.8, “Performance Monitoring (P6 Family Processor).”

• Section 20.6.9, “Performance Monitoring (Pentium Processors).”

— Section 20.7, “Counting Clocks.”

— Section 20.8, “IA32_PERF_CAPABILITIES MSR Enumeration.”

— Section 20.9, “PEBS Facility.”

20.2 ARCHITECTURAL PERFORMANCE MONITORING
Performance monitoring events are architectural when they behave consistently across microarchitectures. Intel
Core Solo and Intel Core Duo processors introduced architectural performance monitoring. The feature provides a
mechanism for software to enumerate performance events and provides configuration and counting facilities for
events.

Architectural performance monitoring does allow for enhancement across processor implementations. The
CPUID.0AH leaf provides version ID for each enhancement. Intel Core Solo and Intel Core Duo processors support
base level functionality identified by version ID of 1. Processors based on Intel Core microarchitecture support, at
a minimum, the base level functionality of architectural performance monitoring. Intel Core 2 Duo processor T
20-2 Vol. 3B

PERFORMANCE MONITORING
7700 and newer processors based on Intel Core microarchitecture support both the base level functionality and
enhanced architectural performance monitoring identified by version ID of 2.

45 nm and 32 nm Intel Atom processors and Intel Atom processors based on the Silvermont microarchitecture
support the functionality provided by versionID 1, 2, and 3; CPUID.0AH:EAX[7:0] reports versionID = 3 to indicate
the aggregate of architectural performance monitoring capabilities. Intel Atom processors based on the Airmont
microarchitecture support the same performance monitoring capabilities as those based on the Silvermont
microarchitecture. Intel Atom processors based on the Goldmont and Goldmont Plus microarchitectures support
versionID 4. Intel Atom processors starting with processors based on the Tremont microarchitecture support
versionID 5.

Intel Core processors and related Intel Xeon processor families based on the Nehalem through Broadwell microar-
chitectures support version ID 3. Intel processors based on the Skylake through Coffee Lake microarchitectures
support versionID 4. Intel processors starting with processors based on the Ice Lake microarchitecture support
versionID 5.

20.2.1 Architectural Performance Monitoring Version 1
Configuring an architectural performance monitoring event involves programming performance event select regis-
ters. There are a finite number of performance event select MSRs (IA32_PERFEVTSELx MSRs). The result of a
performance monitoring event is reported in a performance monitoring counter (IA32_PMCx MSR). Performance
monitoring counters are paired with performance monitoring select registers.

Performance monitoring select registers and counters are architectural in the following respects:
• The bit field layout of IA32_PERFEVTSELx is consistent across microarchitectures. A non-zero write of a field

that is introduced after the initial implementation of architectural performance monitoring (Version 1) results in
#GP if that field is not supported.

• Addresses of IA32_PERFEVTSELx MSRs remain the same across microarchitectures.
• Addresses of IA32_PMC MSRs remain the same across microarchitectures.
• Each logical processor has its own set of IA32_PERFEVTSELx and IA32_PMCx MSRs. Configuration facilities and

counters are not shared between logical processors sharing a processor core.

Architectural performance monitoring provides a CPUID mechanism for enumerating the following information:
• Number of performance monitoring counters available to software in a logical processor (each

IA32_PERFEVTSELx MSR is paired to the corresponding IA32_PMCx MSR).
• Number of bits supported in each IA32_PMCx.
• Number of architectural performance monitoring events supported in a logical processor.

Software can use CPUID to discover architectural performance monitoring availability (CPUID.0AH). The architec-
tural performance monitoring leaf provides an identifier corresponding to the version number of architectural
performance monitoring available in the processor.

The version identifier is retrieved by querying CPUID.0AH:EAX[bits 7:0] (see Chapter 3, “Instruction Set Refer-
ence, A-L,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). If the version iden-
tifier is greater than zero, architectural performance monitoring capability is supported. Software queries the
CPUID.0AH for the version identifier first; it then analyzes the value returned in CPUID.0AH.EAX, CPUID.0AH.EBX
to determine the facilities available.

In the initial implementation of architectural performance monitoring; software can determine how many
IA32_PERFEVTSELx/ IA32_PMCx MSR pairs are supported per core, the bit-width of PMC, and the number of archi-
tectural performance monitoring events available.

20.2.1.1 Architectural Performance Monitoring Version 1 Facilities
Architectural performance monitoring facilities include a set of performance monitoring counters and performance
event select registers. These MSRs have the following properties:
• IA32_PMCx MSRs start at address 0C1H and occupy a contiguous block of MSR address space; the number of

MSRs per logical processor is reported using CPUID.0AH:EAX[15:8]. Note that this may vary from the number
Vol. 3B 20-3

PERFORMANCE MONITORING
of physical counters present on the hardware, because an agent running at a higher privilege level (e.g., a
VMM) may not expose all counters.

• IA32_PERFEVTSELx MSRs start at address 186H and occupy a contiguous block of MSR address space. Each
performance event select register is paired with a corresponding performance counter in the 0C1H address
block. Note the number of IA32_PERFEVTSELx MSRs may vary from the number of physical counters present
on the hardware, because an agent running at a higher privilege level (e.g., a VMM) may not expose all
counters.

• The bit width of an IA32_PMCx MSR is reported using the CPUID.0AH:EAX[23:16]. This the number of valid bits
for read operation. On write operations, the lower-order 32 bits of the MSR may be written with any value, and
the high-order bits are sign-extended from the value of bit 31.

• Bit field layout of IA32_PERFEVTSELx MSRs is defined architecturally.

See Figure 20-1 for the bit field layout of IA32_PERFEVTSELx MSRs. The bit fields are:
• Event select field (bits 0 through 7) — Selects the event logic unit used to detect microarchitectural

conditions (see Table 20-1, for a list of architectural events and their 8-bit codes). The set of values for this field
is defined architecturally; each value corresponds to an event logic unit for use with an architectural
performance event. The number of architectural events is queried using CPUID.0AH:EAX. A processor may
support only a subset of pre-defined values.

• Unit mask (UMASK) field (bits 8 through 15) — These bits qualify the condition that the selected event
logic unit detects. Valid UMASK values for each event logic unit are specific to the unit. For each architectural
performance event, its corresponding UMASK value defines a specific microarchitectural condition.
A pre-defined microarchitectural condition associated with an architectural event may not be applicable to a
given processor. The processor then reports only a subset of pre-defined architectural events. Pre-defined
architectural events are listed in Table 20-1; support for pre-defined architectural events is enumerated using
CPUID.0AH:EBX.

• USR (user mode) flag (bit 16) — Specifies that the selected microarchitectural condition is counted when
the logical processor is operating at privilege levels 1, 2 or 3. This flag can be used with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that the selected microarchitectural condition is
counted when the logical processor is operating at privilege level 0. This flag can be used with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of the selected microarchitectural
condition. The logical processor counts the number of deasserted to asserted transitions for any condition that
can be expressed by the other fields. The mechanism does not permit back-to-back assertions to be distin-
guished.
This mechanism allows software to measure not only the fraction of time spent in a particular state, but also the
average length of time spent in such a state (for example, the time spent waiting for an interrupt to be
serviced).

• PC (pin control) flag (bit 19) — Beginning with Sandy Bridge microarchitecture, this bit is reserved (not
writeable). On processors based on previous microarchitectures, the logical processor toggles the PMi pins and

Figure 20-1. Layout of IA32_PERFEVTSELx MSRs

31

INV—Invert counter mask
EN—Enable counters
INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

Counter Mask
EE

N
I
N
T

19 1618 15172021222324

Reserved

I
N
V

P
C

U
S
R

O
S Unit Mask (UMASK)(CMASK)

63
20-4 Vol. 3B

PERFORMANCE MONITORING
increments the counter when performance-monitoring events occur; when clear, the processor toggles the PMi
pins when the counter overflows. The toggling of a pin is defined as assertion of the pin for a single bus clock
followed by deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the logical processor generates an exception
through its local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — When set, performance counting is enabled in the corresponding
performance-monitoring counter; when clear, the corresponding counter is disabled. The event logic unit for a
UMASK must be disabled by setting IA32_PERFEVTSELx[bit 22] = 0, before writing to IA32_PMCx.

• INV (invert) flag (bit 23) — When set, inverts the counter-mask (CMASK) comparison, so that both greater
than or equal to and less than comparisons can be made (0: greater than or equal; 1: less than). Note if
counter-mask is programmed to zero, INV flag is ignored.

• Counter mask (CMASK) field (bits 24 through 31) — When this field is not zero, a logical processor
compares this mask to the events count of the detected microarchitectural condition during a single cycle. If
the event count is greater than or equal to this mask, the counter is incremented by one. Otherwise the counter
is not incremented.
This mask is intended for software to characterize microarchitectural conditions that can count multiple
occurrences per cycle (for example, two or more instructions retired per clock; or bus queue occupations). If
the counter-mask field is 0, then the counter is incremented each cycle by the event count associated with
multiple occurrences.

20.2.1.2 Pre-defined Architectural Performance Events
Table 20-1 lists architecturally defined events.

A processor that supports architectural performance monitoring may not support all the predefined architectural
performance events (Table 20-1). The number of architectural events is reported through CPUID.0AH:EAX[31:24],
while non-zero bits in CPUID.0AH:EBX indicate any architectural events that are not available.

The behavior of each architectural performance event is expected to be consistent on all processors that support
that event. Minor variations between microarchitectures are noted below:
• UnHalted Core Cycles — Event select 3CH, Umask 00H

This event counts core clock cycles when the clock signal on a specific core is running (not halted). The counter
does not advance in the following conditions:

— An ACPI C-state other than C0 for normal operation.

— HLT.

— STPCLK# pin asserted.

Table 20-1. UMask and Event Select Encodings for Pre-Defined Architectural Performance Events

Bit Position
CPUID.AH.EBX

Event Name UMask Event Select

0 UnHalted Core Cycles 00H 3CH

1 Instruction Retired 00H C0H

2 UnHalted Reference Cycles1

NOTES:
1. Implementations prior to the 12th generation Intel® Core™ processor P-cores count at core crystal clock, TSC, or bus clock frequency.

01H 3CH

3 LLC Reference 4FH 2EH

4 LLC Misses 41H 2EH

5 Branch Instruction Retired 00H C4H

6 Branch Misses Retired 00H C5H

7 Topdown Slots 01H A4H
Vol. 3B 20-5

PERFORMANCE MONITORING
— Being throttled by TM1.

— During the frequency switching phase of a performance state transition (see Chapter 15, “Power and
Thermal Management”).

The performance counter for this event counts across performance state transitions using different core clock
frequencies.

• Instructions Retired — Event select C0H, Umask 00H
This event counts the number of instructions at retirement. For instructions that consist of multiple micro-ops,
this event counts the retirement of the last micro-op of the instruction. An instruction with a REP prefix counts
as one instruction (not per iteration). Faults before the retirement of the last micro-op of a multi-ops instruction
are not counted.
This event does not increment under VM-exit conditions. Counters continue counting during hardware
interrupts, traps, and inside interrupt handlers.

• UnHalted Reference Cycles — Event select 3CH, Umask 01H
This event counts reference clock cycles at a fixed frequency while the clock signal on the core is running. The
event counts at a fixed frequency, irrespective of core frequency changes due to performance state transitions.
Processors may implement this behavior differently. Current implementations use the core crystal clock, TSC or
the bus clock. Because the rate may differ between implementations, software should calibrate it to a time
source with known frequency.

• Last Level Cache References — Event select 2EH, Umask 4FH
This event counts requests originating from the core that reference a cache line in the last level on-die cache.
The event count includes speculation and cache line fills due to the first-level cache hardware prefetcher, but
may exclude cache line fills due to other hardware-prefetchers.
Because cache hierarchy, cache sizes and other implementation-specific characteristics; value comparison to
estimate performance differences is not recommended.

• Last Level Cache Misses — Event select 2EH, Umask 41H
This event counts each cache miss condition for references to the last level on-die cache. The event count may
include speculation and cache line fills due to the first-level cache hardware prefetcher, but may exclude cache
line fills due to other hardware-prefetchers.
Because cache hierarchy, cache sizes and other implementation-specific characteristics; value comparison to
estimate performance differences is not recommended.

• Branch Instructions Retired — Event select C4H, Umask 00H
This event counts branch instructions at retirement. It counts the retirement of the last micro-op of a branch
instruction.

• All Branch Mispredict Retired — Event select C5H, Umask 00H
This event counts mispredicted branch instructions at retirement. It counts the retirement of the last micro-op
of a branch instruction in the architectural path of execution and experienced misprediction in the branch
prediction hardware.
Branch prediction hardware is implementation-specific across microarchitectures; value comparison to
estimate performance differences is not recommended.

• Topdown Slots — Event select A4H, Umask 01H
This event counts the total number of available slots for an unhalted logical processor.
The event increments by machine-width of the narrowest pipeline as employed by the Top-down Microarchi-
tecture Analysis method. The count is distributed among unhalted logical processors (hyper-threads) who
share the same physical core, in processors that support Intel Hyper-Threading Technology.
Software can use this event as the denominator for the top-level metrics of the Top-down Microarchitecture
Analysis method.

NOTE
Programming decisions or software precisians on functionality should not be based on the event
values or dependent on the existence of performance monitoring events.
20-6 Vol. 3B

PERFORMANCE MONITORING
20.2.2 Architectural Performance Monitoring Version 2
The enhanced features provided by architectural performance monitoring version 2 include the following:
• Fixed-function performance counter register and associated control register — Three of the architec-

tural performance events are counted using three fixed-function MSRs (IA32_FIXED_CTR0 through IA32_-
FIXED_CTR2). Each of the fixed-function PMC can count only one architectural performance event.
Configuring the fixed-function PMCs is done by writing to bit fields in the MSR (IA32_FIXED_CTR_CTRL) located
at address 38DH. Unlike configuring performance events for general-purpose PMCs (IA32_PMCx) via UMASK
field in (IA32_PERFEVTSELx), configuring, programming IA32_FIXED_CTR_CTRL for fixed-function PMCs do
not require any UMASK.

• Simplified event programming — Most frequent operation in programming performance events are
enabling/disabling event counting and checking the status of counter overflows. Architectural performance
event version 2 provides three architectural MSRs:

— IA32_PERF_GLOBAL_CTRL allows software to enable/disable event counting of all or any combination of
fixed-function PMCs (IA32_FIXED_CTRx) or any general-purpose PMCs via a single WRMSR.

— IA32_PERF_GLOBAL_STATUS allows software to query counter overflow conditions on any combination of
fixed-function PMCs or general-purpose PMCs via a single RDMSR.

— IA32_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow conditions on any combination of
fixed-function PMCs or general-purpose PMCs via a single WRMSR.

• PMI Overhead Mitigation — Architectural performance monitoring version 2 introduces two bit field interface
in IA32_DEBUGCTL for PMI service routine to accumulate performance monitoring data and LBR records with
reduced perturbation from servicing the PMI. The two bit fields are:

— IA32_DEBUGCTL.Freeze_LBR_On_PMI(bit 11). In architectural performance monitoring version 2, only the
legacy semantic behavior is supported. See Section 18.4.7 for details of the legacy Freeze LBRs on PMI
control.

— IA32_DEBUGCTL.Freeze_PerfMon_On_PMI(bit 12). In architectural performance monitoring version 2,
only the legacy semantic behavior is supported. See Section 18.4.7 for details of the legacy Freeze LBRs on
PMI control.

The facilities provided by architectural performance monitoring version 2 can be queried from CPUID leaf 0AH by
examining the content of register EDX:
• Bits 0 through 4 of CPUID.0AH.EDX indicates the number of fixed-function performance counters available per

core,
• Bits 5 through 12 of CPUID.0AH.EDX indicates the bit-width of fixed-function performance counters. Bits

beyond the width of the fixed-function counter are reserved and must be written as zeros.

NOTE
Early generation of processors based on Intel Core microarchitecture may report in
CPUID.0AH:EDX of support for version 2 but indicating incorrect information of version 2 facilities.

The IA32_FIXED_CTR_CTRL MSR include multiple sets of 4-bit field, each 4 bit field controls the operation of a
fixed-function performance counter. Figure 20-2 shows the layout of 4-bit controls for each fixed-function PMC.
Two sub-fields are currently defined within each control. The definitions of the bit fields are:
Vol. 3B 20-7

PERFORMANCE MONITORING
• Enable field (lowest 2 bits within each 4-bit control) — When bit 0 is set, performance counting is
enabled in the corresponding fixed-function performance counter to increment while the target condition
associated with the architecture performance event occurred at ring 0. When bit 1 is set, performance counting
is enabled in the corresponding fixed-function performance counter to increment while the target condition
associated with the architecture performance event occurred at ring greater than 0. Writing 0 to both bits stops
the performance counter. Writing a value of 11B enables the counter to increment irrespective of privilege
levels.

• PMI field (the fourth bit within each 4-bit control) — When set, the logical processor generates an
exception through its local APIC on overflow condition of the respective fixed-function counter.

IA32_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting of each performance counter.
Figure 20-3 shows the layout of IA32_PERF_GLOBAL_CTRL. Each enable bit in IA32_PERF_GLOBAL_CTRL is
AND’ed with the enable bits for all privilege levels in the respective IA32_PERFEVTSELx or IA32_PERF_FIXED_C-
TR_CTRL MSRs to start/stop the counting of respective counters. Counting is enabled if the AND’ed results is true;
counting is disabled when the result is false.

The behavior of the fixed function performance counters supported by architectural performance version 2 is
expected to be consistent on all processors that support those counters, and is defined as follows.

Figure 20-2. Layout of IA32_FIXED_CTR_CTRL MSR

Figure 20-3. Layout of IA32_PERF_GLOBAL_CTRL MSR

Cntr2 — Controls for IA32_FIXED_CTR2
Cntr1 — Controls for IA32_FIXED_CTR1
PMI — Enable PMI on overflow
Cntr0 — Controls for IA32_FIXED_CTR0

8 7 0

ENABLE — 0: disable; 1: OS; 2: User; 3: All ring levels

E
N

P
M
I

11 312 1

Reserved

63 2

E
N

E
N

49 5

PP
MM
II

IA32_FIXED_CTR2 enable
IA32_FIXED_CTR1 enable
IA32_FIXED_CTR0 enable
IA32_PMC1 enable

2 1 0

IA32_PMC0 enable

3132333435

Reserved

63
20-8 Vol. 3B

PERFORMANCE MONITORING
IA32_PERF_GLOBAL_STATUS MSR provides single-bit status for software to query the overflow condition of each
performance counter. IA32_PERF_GLOBAL_STATUS[bit 62] indicates overflow conditions of the DS area data
buffer. IA32_PERF_GLOBAL_STATUS[bit 63] provides a CondChgd bit to indicate changes to the state of perfor-
mance monitoring hardware. Figure 20-4 shows the layout of IA32_PERF_GLOBAL_STATUS. A value of 1 in bits 0,
1, 32 through 34 indicates a counter overflow condition has occurred in the associated counter.

When a performance counter is configured for PEBS, overflow condition in the counter generates a performance-
monitoring interrupt signaling a PEBS event. On a PEBS event, the processor stores data records into the buffer
area (see Section 18.15.5), clears the counter overflow status., and sets the “OvfBuffer” bit in IA32_PERF_-
GLOBAL_STATUS.

Table 20-2. Association of Fixed-Function Performance Counters with Architectural Performance Events

Fixed-Function
Performance Counter

Address Event Mask Mnemonic Description

IA32_FIXED_CTR0 309H INST_RETIRED.ANY This event counts the number of instructions that retire
execution. For instructions that consist of multiple uops,
this event counts the retirement of the last uop of the
instruction. The counter continues counting during
hardware interrupts, traps, and in-side interrupt handlers.

IA32_FIXED_CTR1 30AH CPU_CLK_UNHALTED.THREAD

CPU_CLK_UNHALTED.CORE

The CPU_CLK_UNHALTED.THREAD event counts the
number of core cycles while the logical processor is not in a
halt state.

If there is only one logical processor in a processor core,
CPU_CLK_UNHALTED.CORE counts the unhalted cycles of
the processor core.

The core frequency may change from time to time due to
transitions associated with Enhanced Intel SpeedStep
Technology or TM2. For this reason this event may have a
changing ratio with regards to time.

IA32_FIXED_CTR2 30BH CPU_CLK_UNHALTED.REF_TSC This event counts the number of reference cycles at the
TSC rate when the core is not in a halt state and not in a TM
stop-clock state. The core enters the halt state when it is
running the HLT instruction or the MWAIT instruction. This
event is not affected by core frequency changes (e.g., P
states) but counts at the same frequency as the time stamp
counter. This event can approximate elapsed time while the
core was not in a halt state and not in a TM stopclock state.

IA32_FIXED_CTR3 30CH TOPDOWN.SLOTS This event counts the number of available slots for an
unhalted logical processor. The event increments by
machine-width of the narrowest pipeline as employed by
the Top-down Microarchitecture Analysis method. The
count is distributed among unhalted logical processors
(hyper-threads) who share the same physical core.

Software can use this event as the denominator for the
top-level metrics of the Top-down Microarchitecture
Analysis method.
Vol. 3B 20-9

PERFORMANCE MONITORING
IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow indicator(s) of any general-purpose or fixed-
function counters via a single WRMSR. Software should clear overflow indications when
• Setting up new values in the event select and/or UMASK field for counting or interrupt-based event sampling.
• Reloading counter values to continue collecting next sample.
• Disabling event counting or interrupt-based event sampling.

The layout of IA32_PERF_GLOBAL_OVF_CTL is shown in Figure 20-5.

20.2.3 Architectural Performance Monitoring Version 3
Processors supporting architectural performance monitoring version 3 also supports version 1 and 2, as well as
capability enumerated by CPUID leaf 0AH. Specifically, version 3 provides the following enhancement in perfor-
mance monitoring facilities if a processor core comprising of more than one logical processor, i.e., a processor core
supporting Intel Hyper-Threading Technology or simultaneous multi-threading capability:
• AnyThread counting for processor core supporting two or more logical processors. The interface that supports

AnyThread counting include:

— Each IA32_PERFEVTSELx MSR (starting at MSR address 186H) support the bit field layout defined in Figure
20-6.

Figure 20-4. Layout of IA32_PERF_GLOBAL_STATUS MSR

Figure 20-5. Layout of IA32_PERF_GLOBAL_OVF_CTRL MSR

62

IA32_FIXED_CTR2 Overflow
IA32_FIXED_CTR1 Overflow
IA32_FIXED_CTR0 Overflow
IA32_PMC1 Overflow

2 1 0

IA32_PMC0 Overflow

3132333435

Reserved

63

CondChgd
OvfDSBuffer

62

IA32_FIXED_CTR2 ClrOverflow
IA32_FIXED_CTR1 ClrOverflow
IA32_FIXED_CTR0 ClrOverflow
IA32_PMC1 ClrOverflow

2 1 0

IA32_PMC0 ClrOverflow

3132333435

Reserved

63

ClrCondChgd
ClrOvfDSBuffer
20-10 Vol. 3B

PERFORMANCE MONITORING
Bit 21 (AnyThread) of IA32_PERFEVTSELx is supported in architectural performance monitoring version 3 for
processor core comprising of two or more logical processors. When set to 1, it enables counting the associated
event conditions (including matching the thread’s CPL with the OS/USR setting of IA32_PERFEVTSELx)
occurring across all logical processors sharing a processor core. When bit 21 is 0, the counter only increments
the associated event conditions (including matching the thread’s CPL with the OS/USR setting of IA32_PERFE-
VTSELx) occurring in the logical processor which programmed the IA32_PERFEVTSELx MSR.

— Each fixed-function performance counter IA32_FIXED_CTRx (starting at MSR address 309H) is configured
by a 4-bit control block in the IA32_PERF_FIXED_CTR_CTRL MSR. The control block also allows thread-
specificity configuration using an AnyThread bit for fixed-function counters 0, 1, and 2. The layout of
IA32_PERF_FIXED_CTR_CTRL MSR is shown.

Each control block for a fixed-function performance counter provides an AnyThread (bit position 2 + 4*N, N=
0, 1, etc.) bit. When set to 1, it enables counting the associated event conditions (including matching the
thread’s CPL with the ENABLE setting of the corresponding control block of IA32_PERF_FIXED_CTR_CTRL)
occurring across all logical processors sharing a processor core. When an AnyThread bit is 0 in IA32_PERF_-
FIXED_CTR_CTRL, the corresponding fixed counter only increments the associated event conditions occurring
in the logical processor which programmed the IA32_PERF_FIXED_CTR_CTRL MSR.

• The IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS, IA32_PERF_GLOBAL_OVF_CTRL MSRs provide
single-bit controls/status for each general-purpose and fixed-function performance counter. Figure 20-8 and
Figure 20-9 show the layout of these MSRs for N general-purpose performance counters (where N is reported
by CPUID.0AH:EAX[15:8]) and three fixed-function counters.

Figure 20-6. Layout of IA32_PERFEVTSELx MSRs Supporting Architectural Performance Monitoring Version 3

Figure 20-7. IA32_FIXED_CTR_CTRL MSR Supporting Architectural Performance Monitoring Version 3

31

INV—Invert counter mask
EN—Enable counters

INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

Counter Mask
EE

N
I
N
T

19 1618 15172021222324

Reserved

I
N
V

P
C

U
S
R

O
S Unit Mask (UMASK)(CMASK)

63

ANY—Any Thread

A
N
Y

Cntr2 — Controls for IA32_FIXED_CTR2
Cntr1 — Controls for IA32_FIXED_CTR1
PMI — Enable PMI on overflow on IA32_FIXED_CTR0
AnyThread — AnyThread for IA32_FIXED_CTR0

8 7 0

ENABLE — IA32_FIXED_CTR0. 0: disable; 1: OS; 2: User; 3: All ring levels

E
N

P
M
I

11 312 1

Reserved

63 2

E
N

E
N

49 5

PP
MM
II

A
N
Y

A
N
Y

A
N
Y

Vol. 3B 20-11

PERFORMANCE MONITORING
NOTE
The number of general-purpose performance monitoring counters (i.e., N in Figure 20-9) can vary
across processor generations within a processor family, across processor families, or could be
different depending on the configuration chosen at boot time in the BIOS regarding Intel Hyper
Threading Technology, (e.g., N=2 for 45 nm Intel Atom processors; N =4 for processors based on
the Nehalem microarchitecture; for processors based on the Sandy Bridge microarchitecture, N =
4 if Intel Hyper Threading Technology is active and N=8 if not active). In addition, the number of
counters may vary from the number of physical counters present on the hardware, because an
agent running at a higher privilege level (e.g., a VMM) may not expose all counters.

Figure 20-8. Layout of Global Performance Monitoring Control MSR

Figure 20-9. Global Performance Monitoring Overflow Status and Control MSRs

IA32_FIXED_CTR2 enable
IA32_FIXED_CTR1 enable
IA32_FIXED_CTR0 enable
IA32_PMC(N-1) enable

.. 1 0

.................... enable

3132333435

Reserved

63 ..N

IA32_PMC1 enable
IA32_PMC0 enable

Global Enable Controls IA32_PERF_GLOBAL_CTRL

62

IA32_FIXED_CTR2 Overflow
IA32_FIXED_CTR1 Overflow
IA32_FIXED_CTR0 Overflow
IA32_PMC1 Overflow

.. 1 0

IA32_PMC0 Overflow

313233343563

CondChgd
OvfDSBuffer

..N

...................... Overflow
IA32_PMC(N-1) Overflow

Global Overflow Status IA32_PERF_GLOBAL_STATUS

62

IA32_FIXED_CTR2 ClrOverflow
IA32_FIXED_CTR1 ClrOverflow
IA32_FIXED_CTR0 ClrOverflow
IA32_PMC1 ClrOverflow

.. 1 0

IA32_PMC0 ClrOverflow

313233343563

ClrCondChgd
ClrOvfDSBuffer

Global Overflow Status IA32_PERF_GLOBAL_OVF_CTRL

........................ ClrOverflow
IA32_PMC(N-1) ClrOverflow

N ..

ClrOvfUncore

OvfUncore

61
20-12 Vol. 3B

PERFORMANCE MONITORING
20.2.3.1 AnyThread Counting and Software Evolution
The motivation for characterizing software workload over multiple software threads running on multiple logical
processors of the same processor core originates from a time earlier than the introduction of the AnyThread inter-
face in IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL. While AnyThread counting provides some benefits in
simple software environments of an earlier era, the evolution contemporary software environments introduce
certain concepts and pre-requisites that AnyThread counting does not comply with.

One example is the proliferation of software environments that support multiple virtual machines (VM) under VMX
(see Chapter 24, “Introduction to Virtual Machine Extensions”) where each VM represents a domain separated
from one another.

A Virtual Machine Monitor (VMM) that manages the VMs may allow an individual VM to employ performance moni-
toring facilities to profiles the performance characteristics of a workload. The use of the Anythread interface in
IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL is discouraged with software environments supporting virtualiza-
tion or requiring domain separation.

Specifically, Intel recommends VMM:
• Configure the MSR bitmap to cause VM-exits for WRMSR to IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL in

VMX non-Root operation (see Chapter 25 for additional information),
• Clear the AnyThread bit of IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL in the MSR-load lists for VM exits

and VM entries (see Chapter 25, Chapter 27, and Chapter 28).

Even when operating in simpler legacy software environments which might not emphasize the pre-requisites of a
virtualized software environment, the use of the AnyThread interface should be moderated and follow any event-
specific guidance where explicitly noted.

20.2.4 Architectural Performance Monitoring Version 4
Processors supporting architectural performance monitoring version 4 also supports version 1, 2, and 3, as well as
capability enumerated by CPUID leaf 0AH. Version 4 introduced a streamlined PMI overhead mitigation interface
that replaces the legacy semantic behavior but retains the same control interface in IA32_DEBUGCTL.Freeze_L-
BRs_On_PMI and Freeze_PerfMon_On_PMI. Specifically version 4 provides the following enhancements:
• New indicators (LBR_FRZ, CTR_FRZ) in IA32_PERF_GLOBAL_STATUS, see Section 20.2.4.1.
• Streamlined Freeze/PMI Overhead management interfaces to use IA32_DEBUGCTL.Freeze_LBRs_On_PMI and

IA32_DEBUGCTL.Freeze_PerfMon_On_PMI: see Section 20.2.4.1. Legacy semantics of Freeze_LBRs_On_PMI
and Freeze_PerfMon_On_PMI (applicable to version 2 and 3) are not supported with version 4 or higher.

• Fine-grain separation of control interface to manage overflow/status of IA32_PERF_GLOBAL_STATUS and
read-only performance counter enabling interface in IA32_PERF_GLOBAL_STATUS: see Section 20.2.4.2.

• Performance monitoring resource in-use MSR to facilitate cooperative sharing protocol between perfmon-
managing privilege agents.

20.2.4.1 Enhancement in IA32_PERF_GLOBAL_STATUS
The IA32_PERF_GLOBAL_STATUS MSR provides the following indicators with architectural performance monitoring
version 4:
• IA32_PERF_GLOBAL_STATUS.LBR_FRZ[bit 58]: This bit is set due to the following conditions:

— IA32_DEBUGCTL.FREEZE_LBR_ON_PMI has been set by the profiling agent, and

— A performance counter, configured to generate PMI, has overflowed to signal a PMI. Consequently the LBR
stack is frozen.

Effectively, the IA32_PERF_GLOBAL_STATUS.LBR_FRZ bit also serves as a control to enable capturing data in
the LBR stack. To enable capturing LBR records, the following expression must hold with architectural perfmon
version 4 or higher:

— (IA32_DEBUGCTL.LBR & (!IA32_PERF_GLOBAL_STATUS.LBR_FRZ)) =1
• IA32_PERF_GLOBAL_STATUS.CTR_FRZ[bit 59]: This bit is set due to the following conditions:
Vol. 3B 20-13

PERFORMANCE MONITORING
— IA32_DEBUGCTL.FREEZE_PERFMON_ON_PMI has been set by the profiling agent, and

— A performance counter, configured to generate PMI, has overflowed to signal a PMI. Consequently, all the
performance counters are frozen.

Effectively, the IA32_PERF_GLOBAL_STATUS.CTR_FRZ bit also serve as an read-only control to enable
programmable performance counters and fixed counters in the core PMU. To enable counting with the
performance counters, the following expression must hold with architectural perfmon version 4 or higher:

• (IA32_PERFEVTSELn.EN & IA32_PERF_GLOBAL_CTRL.PMCn & (!IA32_PERF_-
GLOBAL_STATUS.CTR_FRZ)) = 1 for programmable counter ‘n’, or

• (IA32_PERF_FIXED_CRTL.ENi & IA32_PERF_GLOBAL_CTRL.FCi & (!IA32_PERF_-
GLOBAL_STATUS.CTR_FRZ)) = 1 for fixed counter ‘i’

The read-only enable interface IA32_PERF_GLOBAL_STATUS.CTR_FRZ provides a more efficient flow for a PMI
handler to use IA32_DEBUGCTL.Freeze_Perfmon_On_PMI to filter out data that may distort target workload anal-
ysis, see Table 18-3. It should be noted the IA32_PERF_GLOBAL_CTRL register continue to serve as the primary
interface to control all performance counters of the logical processor.

For example, when the Freeze-On-PMI mode is not being used, a PMI handler would be setting IA32_PERF_-
GLOBAL_CTRL as the very last step to commence the overall operation after configuring the individual counter
registers, controls, and PEBS facility. This does not only assure atomic monitoring but also avoids unnecessary
complications (e.g., race conditions) when software attempts to change the core PMU configuration while some
counters are kept enabled.

Additionally, IA32_PERF_GLOBAL_STATUS.TraceToPAPMI[bit 55]: On processors that support Intel Processor Trace
and configured to store trace output packets to physical memory using the ToPA scheme, bit 55 is set when a PMI
occurred due to a ToPA entry memory buffer was completely filled.

IA32_PERF_GLOBAL_STATUS also provides an indicator to distinguish interaction of performance monitoring oper-
ations with other side-band activities, which apply Intel SGX on processors that support it (for additional informa-
tion about Intel SGX, see the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3D):
• IA32_PERF_GLOBAL_STATUS.ASCI[bit 60]: This bit is set when data accumulated in any of the configured

performance counters (i.e., IA32_PMCx or IA32_FIXED_CTRx) may include contributions from direct or indirect
operation of Intel SGX to protect an enclave (since the last time IA32_PERF_GLOBAL_STATUS.ASCI was
cleared).

Note, a processor’s support for IA32_PERF_GLOBAL_STATUS.TraceToPAPMI[bit 55] is enumerated as a result of
CPUID enumerated capability of Intel Processor Trace and the use of the ToPA buffer scheme. Support of IA32_PER-
F_GLOBAL_STATUS.ASCI[bit 60] is enumerated by the CPUID enumeration of Intel SGX.

Figure 20-10. IA32_PERF_GLOBAL_STATUS MSR and Architectural Perfmon Version 4

Reserved

62

IA32_FIXED_CTR2 Overflow
IA32_FIXED_CTR1 Overflow
IA32_FIXED_CTR0 Overflow

TraceToPAPMI

.. 1 0

IA32_PMC0 Overflow

313233343563

CondChgd
OvfDSBuffer

..N

...................... Overflow
IA32_PMC(N-1) Overflow

OvfUncore

61

IA32_PMC1 Overflow

60 59 58 55

ASCI

LBR_Frz
CTR_Frz
20-14 Vol. 3B

PERFORMANCE MONITORING
20.2.4.2 IA32_PERF_GLOBAL_STATUS_RESET and IA32_PERF_GLOBAL_STATUS_SET MSRS
With architectural performance monitoring version 3 and lower, clearing of the set bits in IA32_PERF_-
GLOBAL_STATUS MSR by software is done via IA32_PERF_GLOBAL_OVF_CTRL MSR. Starting with architectural
performance monitoring version 4, software can manage the overflow and other indicators in IA32_PERF_-
GLOBAL_STATUS using separate interfaces to set or clear individual bits.

The address and the architecturally-defined bits of IA32_PERF_GLOBAL_OVF_CTRL is inherited by IA32_PERF_-
GLOBAL_STATUS_RESET (see Figure 20-11). Further, IA32_PERF_GLOBAL_STATUS_RESET provides additional bit
fields to clear the new indicators in IA32_PERF_GLOBAL_STATUS described in Section 20.2.4.1.

The IA32_PERF_GLOBAL_STATUS_SET MSR is introduced with architectural performance monitoring version 4. It
allows software to set individual bits in IA32_PERF_GLOBAL_STATUS. The IA32_PERF_GLOBAL_STATUS_SET
interface can be used by a VMM to virtualize the state of IA32_PERF_GLOBAL_STATUS across VMs.

20.2.4.3 IA32_PERF_GLOBAL_INUSE MSR
In a contemporary software environment, multiple privileged service agents may wish to employ the processor’s
performance monitoring facilities. The IA32_MISC_ENABLE.PERFMON_AVAILABLE[bit 7] interface could not serve

Figure 20-11. IA32_PERF_GLOBAL_STATUS_RESET MSR and Architectural Perfmon Version 4

Figure 20-12. IA32_PERF_GLOBAL_STATUS_SET MSR and Architectural Perfmon Version 4

Reserved

62

Clr IA32_FIXED_CTR2 Ovf
Clr IA32_FIXED_CTR1 Ovf
Clr IA32_FIXED_CTR0 Ovf

Clr TraceToPAPMI

.. 1 0

Clr IA32_PMC0 Ovf

313233343563

Clr CondChgd
Clr OvfDSBuffer

..N

Clr Ovf
Clr IA32_PMC(N-1) Ovf

Clr OvfUncore

61

Clr IA32_PMC1 Ovf

60 59 58 55

Clr ASCI

Clr LBR_Frz
Clr CTR_Frz

Reserved
Set IA32_FIXED_CTR2 Ovf
Set IA32_FIXED_CTR1 Ovf
Set IA32_FIXED_CTR0 Ovf

Set TraceToPAPMI

.. 1 0

Set IA32_PMC0 Ovf

3132333435

Set OvfDSBuffer

..N

Set Ovf
Set IA32_PMC(N-1) Ovf

Set OvfUncore

Set IA32_PMC1 Ovf

55

Set ASCI

Set LBR_Frz
Set CTR_Frz

63 62 61 60 59 58
Vol. 3B 20-15

PERFORMANCE MONITORING
the need of multiple agent adequately. A white paper, “Performance Monitoring Unit Sharing Guideline”1, proposed
a cooperative sharing protocol that is voluntary for participating software agents.

Architectural performance monitoring version 4 introduces a new MSR, IA32_PERF_GLOBAL_INUSE, that simplifies
the task of multiple cooperating agents to implement the sharing protocol.

The layout of IA32_PERF_GLOBAL_INUSE is shown in Figure 20-13.

The IA32_PERF_GLOBAL_INUSE MSR provides an “InUse” bit for each programmable performance counter and
fixed counter in the processor. Additionally, it includes an indicator if the PMI mechanism has been configured by a
profiling agent.
• IA32_PERF_GLOBAL_INUSE.PERFEVTSEL0_InUse[bit 0]: This bit reflects the logical state of (IA32_PERFE-

VTSEL0[7:0] != 0).
• IA32_PERF_GLOBAL_INUSE.PERFEVTSEL1_InUse[bit 1]: This bit reflects the logical state of (IA32_PERFE-

VTSEL1[7:0] != 0).
• IA32_PERF_GLOBAL_INUSE.PERFEVTSEL2_InUse[bit 2]: This bit reflects the logical state of (IA32_PERFE-

VTSEL2[7:0] != 0).
• IA32_PERF_GLOBAL_INUSE.PERFEVTSELn_InUse[bit n]: This bit reflects the logical state of (IA32_PERFE-

VTSELn[7:0] != 0), n < CPUID.0AH:EAX[15:8].
• IA32_PERF_GLOBAL_INUSE.FC0_InUse[bit 32]: This bit reflects the logical state of (IA32_FIXED_C-

TR_CTRL[1:0] != 0).
• IA32_PERF_GLOBAL_INUSE.FC1_InUse[bit 33]: This bit reflects the logical state of (IA32_FIXED_C-

TR_CTRL[5:4] != 0).
• IA32_PERF_GLOBAL_INUSE.FC2_InUse[bit 34]: This bit reflects the logical state of (IA32_FIXED_C-

TR_CTRL[9:8] != 0).
• IA32_PERF_GLOBAL_INUSE.PMI_InUse[bit 63]: This bit is set if any one of the following bit is set:

— IA32_PERFEVTSELn.INT[bit 20], n < CPUID.0AH:EAX[15:8].

— IA32_FIXED_CTR_CTRL.ENi_PMI, i = 0, 1, 2.

— Any IA32_PEBS_ENABLES bit which enables PEBS for a general-purpose or fixed-function performance
counter.

1. Available at http://www.intel.com/sdm

Figure 20-13. IA32_PERF_GLOBAL_INUSE MSR and Architectural Perfmon Version 4

Reserved

PMI InUse
FIXED_CTR2 InUse
FIXED_CTR1 InUse

.. 1 0

PERFEVTSEL0 InUse

313233343563 ..N

 InUse
PERFEVTSEL(N-1) InUse

PERFEVTSEL1 InUse
FIXED_CTR0 InUse

N = CPUID.0AH:EAX[15:8]
20-16 Vol. 3B

PERFORMANCE MONITORING
20.2.5 Architectural Performance Monitoring Version 5
Processors supporting architectural performance monitoring version 5 also support versions 1, 2, 3, and 4, as well
as capability enumerated by CPUID leaf 0AH. Specifically, version 5 provides the following enhancements:
• Deprecation of AnyThread mode, see Section 20.2.5.1.
• Individual enumeration of Fixed counters in CPUID.0AH, see Section 20.2.5.2.
• Domain separation, see Section 20.2.5.3.

20.2.5.1 AnyThread Mode Deprecation
With Architectural Performance Monitoring Version 5, a processor that supports AnyThread mode deprecation is
enumerated by CPUID.0AH.EDX[15]. If set, software will not have to follow guidelines in Section 20.2.3.1.

20.2.5.2 Fixed Counter Enumeration
With Architectural Performance Monitoring Version 5, register CPUID.0AH.ECX indicates Fixed Counter enumera-
tion. It is a bit mask which enumerates the supported Fixed Counters in a processor. If bit 'i' is set, it implies that
Fixed Counter 'i' is supported. Software is recommended to use the following logic to check if a Fixed Counter is
supported on a given processor:

FxCtr[i]_is_supported := ECX[i] || (EDX[4:0] > i);

20.2.5.3 Domain Separation
When the INV flag in IA32_PERFEVTSELx is used, a counter stops counting when the logical processor exits the C0
ACPI C-state.

20.2.6 Full-Width Writes to Performance Counter Registers
The general-purpose performance counter registers IA32_PMCx are writable via WRMSR instruction. However, the
value written into IA32_PMCx by WRMSR is the signed extended 64-bit value of the EAX[31:0] input of WRMSR.

A processor that supports full-width writes to the general-purpose performance counters enumerated by
CPUID.0AH:EAX[15:8] will set IA32_PERF_CAPABILITIES[13] to enumerate its full-width-write capability See
Figure 20-65.

If IA32_PERF_CAPABILITIES.FW_WRITE[bit 13] =1, each IA32_PMCi is accompanied by a corresponding alias
address starting at 4C1H for IA32_A_PMC0.

The bit width of the performance monitoring counters is specified in CPUID.0AH:EAX[23:16].

If IA32_A_PMCi is present, the 64-bit input value (EDX:EAX) of WRMSR to IA32_A_PMCi will cause IA32_PMCi to
be updated by:

COUNTERWIDTH = CPUID.0AH:EAX[23:16] bit width of the performance monitoring counter
IA32_PMCi[COUNTERWIDTH-1:32] := EDX[COUNTERWIDTH-33:0]);
IA32_PMCi[31:0] := EAX[31:0];
EDX[63:COUNTERWIDTH] are reserved

20.3 PERFORMANCE MONITORING (INTEL® CORE™ PROCESSORS AND INTEL®
XEON® PROCESSORS)

20.3.1 Performance Monitoring for Processors Based on Nehalem Microarchitecture
Intel Core i7 processor family1 supports architectural performance monitoring capability with version ID 3 (see
Section 20.2.3) and a host of non-architectural monitoring capabilities. The Intel Core i7 processor family is based
Vol. 3B 20-17

PERFORMANCE MONITORING
on Nehalem microarchitecture, and provides four general-purpose performance counters (IA32_PMC0,
IA32_PMC1, IA32_PMC2, IA32_PMC3) and three fixed-function performance counters (IA32_FIXED_CTR0, IA32_-
FIXED_CTR1, IA32_FIXED_CTR2) in the processor core.

Non-architectural performance monitoring in Intel Core i7 processor family uses the IA32_PERFEVTSELx MSR to
configure a set of non-architecture performance monitoring events to be counted by the corresponding general-
purpose performance counter. The list of non-architectural performance monitoring events can be found at:
https://perfmon-events.intel.com/. Non-architectural performance monitoring events fall into two broad catego-
ries:
• Performance monitoring events in the processor core: These include many events that are similar to

performance monitoring events available to processor based on Intel Core microarchitecture. Additionally,
there are several enhancements in the performance monitoring capability for detecting microarchitectural
conditions in the processor core or in the interaction of the processor core to the off-core sub-systems in the
physical processor package. The off-core sub-systems in the physical processor package is loosely referred to
as “uncore“.

• Performance monitoring events in the uncore: The uncore sub-system is shared by more than one processor
cores in the physical processor package. It provides additional performance monitoring facility outside of
IA32_PMCx and performance monitoring events that are specific to the uncore sub-system.

Architectural and non-architectural performance monitoring events in Intel Core i7 processor family support thread
qualification using bit 21 of IA32_PERFEVTSELx MSR.

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 20-6 and described in Section 20.2.1.1 and
Section 20.2.3.

20.3.1.1 Enhancements of Performance Monitoring in the Processor Core
The notable enhancements in the monitoring of performance events in the processor core include:
• Four general purpose performance counters, IA32_PMCx, associated counter configuration MSRs, IA32_PERFE-

VTSELx, and global counter control MSR supporting simplified control of four counters. Each of the four
performance counter can support processor event based sampling (PEBS) and thread-qualification of architec-
tural and non-architectural performance events. Width of IA32_PMCx supported by hardware has been
increased. The width of counter reported by CPUID.0AH:EAX[23:16] is 48 bits. The PEBS facility in Nehalem

1. Intel Xeon processor 5500 series and 3400 series are also based on Nehalem microarchitecture; the performance monitoring facili-
ties described in this section generally also apply.

Figure 20-14. IA32_PERF_GLOBAL_STATUS MSR

CHG (R/W)
OVF_PMI (R/W)

8 7 032 3 1

Reserved

63 2431 5662 6061

OVF_PC7 (R/O), if CCNT>7
OVF_PC6 (R/O), if CCNT>6
OVF_PC5 (R/O), if CCNT>5
OVF_PC4 (R/O), if CCNT>4
OVF_PC3 (R/O)
OVF_PC2 (R/O)
OVF_PC1 (R/O)
OVF_PC0 (R/O)

RESET Value — 00000000_00000000H

OVF_FC2 (R/O)
OVF_FC1 (R/O)

353433

OVF_FC0 (R/O)

CCNT: CPUID.AH:EAX[15:8]
20-18 Vol. 3B

https://perfmon-events.intel.com/
https://perfmon-events.intel.com/

PERFORMANCE MONITORING
microarchitecture has been enhanced to include new data format to capture additional information, such as
load latency.

• Load latency sampling facility. Average latency of memory load operation can be sampled using load-latency
facility in processors based on Nehalem microarchitecture. This field measures the load latency from load's first
dispatch of till final data writeback from the memory subsystem. The latency is reported for retired demand
load operations and in core cycles (it accounts for re-dispatches). This facility is used in conjunction with the
PEBS facility.

• Off-core response counting facility. This facility in the processor core allows software to count certain
transaction responses between the processor core to sub-systems outside the processor core (uncore).
Counting off-core response requires additional event qualification configuration facility in conjunction with
IA32_PERFEVTSELx. Two off-core response MSRs are provided to use in conjunction with specific event codes
that must be specified with IA32_PERFEVTSELx.

NOTE
The number of counters available to software may vary from the number of physical counters
present on the hardware, because an agent running at a higher privilege level (e.g., a VMM) may
not expose all counters. CPUID.0AH:EAX[15:8] reports the MSRs available to software; see Section
20.2.1.

20.3.1.1.1 Processor Event Based Sampling (PEBS)

All general-purpose performance counters, IA32_PMCx, can be used for PEBS if the performance event supports
PEBS. Software uses IA32_MISC_ENABLE[7] and IA32_MISC_ENABLE[12] to detect whether the performance
monitoring facility and PEBS functionality are supported in the processor. The MSR IA32_PEBS_ENABLE provides 4
bits that software must use to enable which IA32_PMCx overflow condition will cause the PEBS record to be
captured.

Additionally, the PEBS record is expanded to allow latency information to be captured. The MSR IA32_PEBS_EN-
ABLE provides 4 additional bits that software must use to enable latency data recording in the PEBS record upon
the respective IA32_PMCx overflow condition. The layout of IA32_PEBS_ENABLE for processors based on Nehalem
microarchitecture is shown in Figure 20-15.

When a counter is enabled to capture machine state (PEBS_EN_PMCx = 1), the processor will write machine state
information to a memory buffer specified by software as detailed below. When the counter IA32_PMCx overflows
from maximum count to zero, the PEBS hardware is armed.

Upon occurrence of the next PEBS event, the PEBS hardware triggers an assist and causes a PEBS record to be
written. The format of the PEBS record is indicated by the bit field IA32_PERF_CAPABILITIES[11:8] (see
Figure 20-65).

Figure 20-15. Layout of IA32_PEBS_ENABLE MSR

LL_EN_PMC3 (R/W)
LL_EN_PMC2 (R/W)

8 7 0

LL_EN_PMC1 (R/W)

32 333 1

Reserved

63 2431 56343536

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

LL_EN_PMC0 (R/W)

RESET Value — 00000000_00000000H
Vol. 3B 20-19

PERFORMANCE MONITORING
The behavior of PEBS assists is reported by IA32_PERF_CAPABILITIES[6] (see Figure 20-65). The return instruc-
tion pointer (RIP) reported in the PEBS record will point to the instruction after (+1) the instruction that causes the
PEBS assist. The machine state reported in the PEBS record is the machine state after the instruction that causes
the PEBS assist is retired. For instance, if the instructions:

mov eax, [eax] ; causes PEBS assist

nop

are executed, the PEBS record will report the address of the nop, and the value of EAX in the PEBS record will show
the value read from memory, not the target address of the read operation.

The PEBS record format is shown in Table 20-3, and each field in the PEBS record is 64 bits long. The PEBS record
format, along with debug/store area storage format, does not change regardless of IA-32e mode is active or not.
CPUID.01H:ECX.DTES64[bit 2] reports whether the processor's DS storage format support is mode-independent.
When set, it uses 64-bit DS storage format.

In IA-32e mode, the full 64-bit value is written to the register. If the processor is not operating in IA-32e mode, 32-
bit value is written to registers with bits 63:32 zeroed. Registers not defined when the processor is not in IA-32e
mode are written to zero.

Bytes AFH:90H are enhancement to the PEBS record format. Support for this enhanced PEBS record format is indi-
cated by IA32_PERF_CAPABILITIES[11:8] encoding of 0001B.

The value written to bytes 97H:90H is the state of the IA32_PERF_GLOBAL_STATUS register before the PEBS assist
occurred. This value is written so software can determine which counters overflowed when this PEBS record was
written. Note that this field indicates the overflow status for all counters, regardless of whether they were
programmed for PEBS or not.

Programming PEBS Facility

Only a subset of non-architectural performance events in the processor support PEBS. The subset of precise events
are listed in Table 20-84. In addition to using IA32_PERFEVTSELx to specify event unit/mask settings and setting
the EN_PMCx bit in the IA32_PEBS_ENABLE register for the respective counter, the software must also initialize the
DS_BUFFER_MANAGEMENT_AREA data structure in memory to support capturing PEBS records for precise events.

The recording of PEBS records may not operate properly if accesses to the linear addresses in the DS buffer
management area or in the PEBS buffer (see below) cause page faults, VM exits, or the setting of accessed or dirty
flags in the paging structures (ordinary or EPT). For that reason, system software should establish paging struc-
tures (both ordinary and EPT) to prevent such occurrences. Implications of this may be that an operating system
should allocate this memory from a non-paged pool and that system software cannot do “lazy” page-table entry
propagation for these pages. A virtual-machine monitor may choose to allow use of PEBS by guest software only if
EPT maps all guest-physical memory as present and read/write.

Table 20-3. PEBS Record Format for Intel Core i7 Processor Family

Byte Offset Field Byte Offset Field

00H R/EFLAGS 58H R9

08H R/EIP 60H R10

10H R/EAX 68H R11

18H R/EBX 70H R12

20H R/ECX 78H R13

28H R/EDX 80H R14

30H R/ESI 88H R15

38H R/EDI 90H IA32_PERF_GLOBAL_STATUS

40H R/EBP 98H Data Linear Address

48H R/ESP A0H Data Source Encoding

50H R8 A8H Latency value (core cycles)
20-20 Vol. 3B

PERFORMANCE MONITORING
NOTE
PEBS events are only valid when the following fields of IA32_PERFEVTSELx are all zero: AnyThread,
Edge, Invert, CMask.

The beginning linear address of the DS_BUFFER_MANAGEMENT_AREA data structure must be programmed into
the IA32_DS_AREA register. The layout of the DS_BUFFER_MANAGEMENT_AREA is shown in Figure 20-16.
• PEBS Buffer Base: This field is programmed with the linear address of the first byte of the PEBS buffer

allocated by software. The processor reads this field to determine the base address of the PEBS buffer.
• PEBS Index: This field is initially programmed with the same value as the PEBS Buffer Base field, or the

beginning linear address of the PEBS buffer. The processor reads this field to determine the location of the next
PEBS record to write to. After a PEBS record has been written, the processor also updates this field with the
address of the next PEBS record to be written. The figure above illustrates the state of PEBS Index after the first
PEBS record is written.

• PEBS Absolute Maximum: This field represents the absolute address of the maximum length of the allocated
PEBS buffer plus the starting address of the PEBS buffer. The processor will not write any PEBS record beyond
the end of PEBS buffer, when PEBS Index equals PEBS Absolute Maximum. No signaling is generated when
PEBS buffer is full. Software must reset the PEBS Index field to the beginning of the PEBS buffer address to
continue capturing PEBS records.

Figure 20-16. PEBS Programming Environment

BTS Buffer Base

BTS Index

BTS Absolute

BTS Interrupt

PEBS Absolute

PEBS Interrupt

PEBS

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter0 Reset

Reserved

0H

8H

10H

18H

20H

28H

30H

38H

40H

48H

50H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n

BTS Buffer

PEBS Buffer

DS Buffer Management Area

IA32_DS_AREA MSR

58H

60H

PEBS
Counter1 Reset

PEBS
Counter2 Reset

PEBS
Counter3 Reset
Vol. 3B 20-21

PERFORMANCE MONITORING
• PEBS Interrupt Threshold: This field specifies the threshold value to trigger a performance interrupt and
notify software that the PEBS buffer is nearly full. This field is programmed with the linear address of the first
byte of the PEBS record within the PEBS buffer that represents the threshold record. After the processor writes
a PEBS record and updates PEBS Index, if the PEBS Index reaches the threshold value of this field, the
processor will generate a performance interrupt. This is the same interrupt that is generated by a performance
counter overflow, as programmed in the Performance Monitoring Counters vector in the Local Vector Table of
the Local APIC. When a performance interrupt due to PEBS buffer full is generated, the IA32_PERF_-
GLOBAL_STATUS.PEBS_Ovf bit will be set.

• PEBS CounterX Reset: This field allows software to set up PEBS counter overflow condition to occur at a rate
useful for profiling workload, thereby generating multiple PEBS records to facilitate characterizing the profile
the execution of test code. After each PEBS record is written, the processor checks each counter to see if it
overflowed and was enabled for PEBS (the corresponding bit in IA32_PEBS_ENABLED was set). If these
conditions are met, then the reset value for each overflowed counter is loaded from the DS Buffer Management
Area. For example, if counter IA32_PMC0 caused a PEBS record to be written, then the value of “PEBS Counter
0 Reset” would be written to counter IA32_PMC0. If a counter is not enabled for PEBS, its value will not be
modified by the PEBS assist.

Performance Counter Prioritization

Performance monitoring interrupts are triggered by a counter transitioning from maximum count to zero (assuming
IA32_PerfEvtSelX.INT is set). This same transition will cause PEBS hardware to arm, but not trigger. PEBS hard-
ware triggers upon detection of the first PEBS event after the PEBS hardware has been armed (a 0 to 1 transition
of the counter). At this point, a PEBS assist will be undertaken by the processor.

Performance counters (fixed and general-purpose) are prioritized in index order. That is, counter IA32_PMC0 takes
precedence over all other counters. Counter IA32_PMC1 takes precedence over counters IA32_PMC2 and
IA32_PMC3, and so on. This means that if simultaneous overflows or PEBS assists occur, the appropriate action will
be taken for the highest priority performance counter. For example, if IA32_PMC1 cause an overflow interrupt and
IA32_PMC2 causes an PEBS assist simultaneously, then the overflow interrupt will be serviced first.

The PEBS threshold interrupt is triggered by the PEBS assist, and is by definition prioritized lower than the PEBS
assist. Hardware will not generate separate interrupts for each counter that simultaneously overflows. General-
purpose performance counters are prioritized over fixed counters.

If a counter is programmed with a precise (PEBS-enabled) event and programmed to generate a counter overflow
interrupt, the PEBS assist is serviced before the counter overflow interrupt is serviced. If in addition the PEBS inter-
rupt threshold is met, the

threshold interrupt is generated after the PEBS assist completes, followed by the counter overflow interrupt (two
separate interrupts are generated).

Uncore counters may be programmed to interrupt one or more processor cores (see Section 20.3.1.2). It is
possible for interrupts posted from the uncore facility to occur coincident with counter overflow interrupts from the
processor core. Software must check core and uncore status registers to determine the exact origin of counter
overflow interrupts.

20.3.1.1.2 Load Latency Performance Monitoring Facility

The load latency facility provides software a means to characterize the average load latency to different levels of
cache/memory hierarchy. This facility requires processor supporting enhanced PEBS record format in the PEBS
buffer, see Table 20-3. This field measures the load latency from load's first dispatch of till final data writeback from
the memory subsystem. The latency is reported for retired demand load operations and in core cycles (it accounts
for re-dispatches).

To use this feature software must assure:
• One of the IA32_PERFEVTSELx MSR is programmed to specify the event unit MEM_INST_RETIRED, and the

LATENCY_ABOVE_THRESHOLD event mask must be specified (IA32_PerfEvtSelX[15:0] = 100H). The corre-
sponding counter IA32_PMCx will accumulate event counts for architecturally visible loads which exceed the
programmed latency threshold specified separately in a MSR. Stores are ignored when this event is
programmed. The CMASK or INV fields of the IA32_PerfEvtSelX register used for counting load latency must be
0. Writing other values will result in undefined behavior.
20-22 Vol. 3B

PERFORMANCE MONITORING
• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired latency threshold in core clock
cycles. Loads with latencies greater than this value are eligible for counting and latency data reporting. The
minimum value that may be programmed in this register is 3 (the minimum detectable load latency is 4 core
clock cycles).

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corresponding IA32_PMCx counter
register. This means that both the PEBS_EN_CTRX and LL_EN_CTRX bits must be set for the counter(s) of
interest. For example, to enable load latency on counter IA32_PMC0, the IA32_PEBS_ENABLE register must be
programmed with the 64-bit value 00000001_00000001H.

When the load-latency facility is enabled, load operations are randomly selected by hardware and tagged to carry
information related to data source locality and latency. Latency and data source information of tagged loads are
updated internally.

When a PEBS assist occurs, the last update of latency and data source information are captured by the assist and
written as part of the PEBS record. The PEBS sample after value (SAV), specified in PEBS CounterX Reset, operates
orthogonally to the tagging mechanism. Loads are randomly tagged to collect latency data. The SAV controls the
number of tagged loads with latency information that will be written into the PEBS record field by the PEBS assists.
The load latency data written to the PEBS record will be for the last tagged load operation which retired just before
the PEBS assist was invoked.

The load-latency information written into a PEBS record (see Table 20-3, bytes AFH:98H) consists of:
• Data Linear Address: This is the linear address of the target of the load operation.
• Latency Value: This is the elapsed cycles of the tagged load operation between dispatch to GO, measured in

processor core clock domain.
• Data Source: The encoded value indicates the origin of the data obtained by the load instruction. The

encoding is shown in Table 20-4. In the descriptions, local memory refers to system memory physically
attached to a processor package, and remote memory refers to system memory physically attached to another
processor package.

Table 20-4. Data Source Encoding for Load Latency Record

Encoding Description

00H Unknown L3 cache miss.

01H Minimal latency core cache hit. This request was satisfied by the L1 data cache.

02H Pending core cache HIT. Outstanding core cache miss to same cache-line address was already underway.

03H This data request was satisfied by the L2.

04H L3 HIT. Local or Remote home requests that hit L3 cache in the uncore with no coherency actions required (snooping).

05H L3 HIT. Local or Remote home requests that hit the L3 cache and were serviced by another processor core with a
cross core snoop where no modified copies were found. (clean).

06H L3 HIT. Local or Remote home requests that hit the L3 cache and were serviced by another processor core with a
cross core snoop where no modified copies were found.

07H1 Reserved/LLC Snoop HitM. Local or Remote home requests that hit the last level cache and were serviced by another
core with a cross core snoop where modified copies were found.

08H Reserved/L3 MISS. Local homed requests that missed the L3 cache and were serviced by forwarded data following a
cross package snoop where no modified copies were found. (Remote home requests are not counted).

09H Reserved

0AH L3 MISS. Local home requests that missed the L3 cache and were serviced by local DRAM (go to shared state).

0BH L3 MISS. Remote home requests that missed the L3 cache and were serviced by remote DRAM (go to shared state).

0CH L3 MISS. Local home requests that missed the L3 cache and were serviced by local DRAM (go to exclusive state).

0DH L3 MISS. Remote home requests that missed the L3 cache and were serviced by remote DRAM (go to exclusive state).

0EH I/O, Request of input/output operation.

0FH The request was to un-cacheable memory.
Vol. 3B 20-23

PERFORMANCE MONITORING
The layout of MSR_PEBS_LD_LAT_THRESHOLD is shown in Figure 20-17.

Bits 15:0 specifies the threshold load latency in core clock cycles. Performance events with latencies greater than
this value are counted in IA32_PMCx and their latency information is reported in the PEBS record. Otherwise, they
are ignored. The minimum value that may be programmed in this field is 3.

20.3.1.1.3 Off-core Response Performance Monitoring in the Processor Core

Programming a performance event using the off-core response facility can choose any of the four IA32_PERFEVT-
SELx MSR with specific event codes and predefine mask bit value. Each event code for off-core response monitoring
requires programming an associated configuration MSR, MSR_OFFCORE_RSP_0. There is only one off-core
response configuration MSR. Table 20-5 lists the event code, mask value and additional off-core configuration MSR
that must be programmed to count off-core response events using IA32_PMCx.

The layout of MSR_OFFCORE_RSP_0 is shown in Figure 20-18. Bits 7:0 specifies the request type of a transaction
request to the uncore. Bits 15:8 specifies the response of the uncore subsystem.

NOTES:
1. Bit 7 is supported only for processors with a CPUID DisplayFamily_DisplayModel signature of 06_2A, and 06_2E; otherwise it is

reserved.

Figure 20-17. Layout of MSR_PEBS_LD_LAT MSR

Table 20-5. Off-Core Response Event Encoding

Event code in
IA32_PERFEVTSELx

Mask Value in
IA32_PERFEVTSELx Required Off-core Response MSR

B7H 01H MSR_OFFCORE_RSP_0 (address 1A6H)

1615 0

Reserved

63

THRHLD - Load latency threshold

RESET Value — 00000000_00000000H
20-24 Vol. 3B

PERFORMANCE MONITORING
Figure 20-18. Layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 to Configure Off-core Response Events

Table 20-6. MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 Counts the number of demand and DCU prefetch data reads of full and partial cachelines as well as
demand data page table entry cacheline reads. Does not count L2 data read prefetches or instruction
fetches.

DMND_RFO 1 Counts the number of demand and DCU prefetch reads for ownership (RFO) requests generated by a
write to data cacheline. Does not count L2 RFO.

DMND_IFETCH 2 Counts the number of demand instruction cacheline reads and L1 instruction cacheline prefetches.

WB 3 Counts the number of writeback (modified to exclusive) transactions.

PF_DATA_RD 4 Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 Counts the number of code reads generated by L2 prefetchers.

OTHER 7 Counts one of the following transaction types, including L3 invalidate, I/O, full or partial writes, WC or
non-temporal stores, CLFLUSH, Fences, lock, unlock, split lock.

UNCORE_HIT 8 L3 Hit: local or remote home requests that hit L3 cache in the uncore with no coherency actions
required (snooping).

OTHER_CORE_HI
T_SNP

9 L3 Hit: local or remote home requests that hit L3 cache in the uncore and was serviced by another
core with a cross core snoop where no modified copies were found (clean).

OTHER_CORE_HI
TM

10 L3 Hit: local or remote home requests that hit L3 cache in the uncore and was serviced by another
core with a cross core snoop where modified copies were found (HITM).

Reserved 11 Reserved

REMOTE_CACHE_
FWD

12 L3 Miss: local homed requests that missed the L3 cache and was serviced by forwarded data following
a cross package snoop where no modified copies found. (Remote home requests are not counted)

REMOTE_DRAM 13 L3 Miss: remote home requests that missed the L3 cache and were serviced by remote DRAM.

LOCAL_DRAM 14 L3 Miss: local home requests that missed the L3 cache and were serviced by local DRAM.

RESPONSE TYPE — NON_DRAM (R/W)
RESPONSE TYPE — LOCAL_DRAM (R/W)
RESPONSE TYPE — REMOTE_DRAM (R/W)
RESPONSE TYPE — REMOTE_CACHE_FWD (R/W)

8 7 0

RESPONSE TYPE — RESERVED

11 312 1

Reserved

63 249 5610131415

RESPONSE TYPE — OTHER_CORE_HITM (R/W)
RESPONSE TYPE — OTHER_CORE_HIT_SNP (R/W)
RESPONSE TYPE — UNCORE_HIT (R/W)
REQUEST TYPE — OTHER (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 00000000_00000000H
Vol. 3B 20-25

PERFORMANCE MONITORING
20.3.1.2 Performance Monitoring Facility in the Uncore
The “uncore” in Nehalem microarchitecture refers to subsystems in the physical processor package that are shared
by multiple processor cores. Some of the sub-systems in the uncore include the L3 cache, Intel QuickPath Intercon-
nect link logic, and integrated memory controller. The performance monitoring facilities inside the uncore operates
in the same clock domain as the uncore (U-clock domain), which is usually different from the processor core clock
domain. The uncore performance monitoring facilities described in this section apply to Intel Xeon processor 5500
series and processors with the following CPUID signatures: 06_1AH, 06_1EH, 06_1FH (see Chapter 2, “Model-
Specific Registers (MSRs),” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4). An
overview of the uncore performance monitoring facilities is described separately.

The performance monitoring facilities available in the U-clock domain consist of:
• Eight General-purpose counters (MSR_UNCORE_PerfCntr0 through MSR_UNCORE_PerfCntr7). The counters

are 48 bits wide. Each counter is associated with a configuration MSR, MSR_UNCORE_PerfEvtSelx, to specify
event code, event mask and other event qualification fields. A set of global uncore performance counter
enabling/overflow/status control MSRs are also provided for software.

• Performance monitoring in the uncore provides an address/opcode match MSR that provides event qualification
control based on address value or QPI command opcode.

• One fixed-function counter, MSR_UNCORE_FixedCntr0. The fixed-function uncore counter increments at the
rate of the U-clock when enabled.
The frequency of the uncore clock domain can be determined from the uncore clock ratio which is available in
the PCI configuration space register at offset C0H under device number 0 and Function 0.

20.3.1.2.1 Uncore Performance Monitoring Management Facility

MSR_UNCORE_PERF_GLOBAL_CTRL provides bit fields to enable/disable general-purpose and fixed-function
counters in the uncore. Figure 20-19 shows the layout of MSR_UNCORE_PERF_GLOBAL_CTRL for an uncore that is
shared by four processor cores in a physical package.
• EN_PCn (bit n, n = 0, 7): When set, enables counting for the general-purpose uncore counter MSR_UN-

CORE_PerfCntr n.
• EN_FC0 (bit 32): When set, enables counting for the fixed-function uncore counter MSR_UNCORE_FixedCntr0.
• EN_PMI_COREn (bit n, n = 0, 3 if four cores are present): When set, processor core n is programmed to receive

an interrupt signal from any interrupt enabled uncore counter. PMI delivery due to an uncore counter overflow
is enabled by setting IA32_DEBUGCTL.Offcore_PMI_EN to 1.

• PMI_FRZ (bit 63): When set, all U-clock uncore counters are disabled when any one of them signals a
performance interrupt. Software must explicitly re-enable the counter by setting the enable bits in MSR_UN-
CORE_PERF_GLOBAL_CTRL upon exit from the ISR.

NON_DRAM 15 Non-DRAM requests that were serviced by IOH.

Table 20-6. MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition (Contd.)

Bit Name Offset Description
20-26 Vol. 3B

PERFORMANCE MONITORING
MSR_UNCORE_PERF_GLOBAL_STATUS provides overflow status of the U-clock performance counters in the
uncore. This is a read-only register. If an overflow status bit is set the corresponding counter has overflowed. The
register provides a condition change bit (bit 63) which can be quickly checked by software to determine if a signif-
icant change has occurred since the last time the condition change status was cleared. Figure 20-20 shows the
layout of MSR_UNCORE_PERF_GLOBAL_STATUS.
• OVF_PCn (bit n, n = 0, 7): When set, indicates general-purpose uncore counter MSR_UNCORE_PerfCntr n has

overflowed.
• OVF_FC0 (bit 32): When set, indicates the fixed-function uncore counter MSR_UNCORE_FixedCntr0 has

overflowed.
• OVF_PMI (bit 61): When set indicates that an uncore counter overflowed and generated an interrupt request.
• CHG (bit 63): When set indicates that at least one status bit in MSR_UNCORE_PERF_GLOBAL_STATUS register

has changed state.

MSR_UNCORE_PERF_GLOBAL_OVF_CTRL allows software to clear the status bits in the UNCORE_PERF_-
GLOBAL_STATUS register. This is a write-only register, and individual status bits in the global status register are
cleared by writing a binary one to the corresponding bit in this register. Writing zero to any bit position in this
register has no effect on the uncore PMU hardware.

Figure 20-19. Layout of MSR_UNCORE_PERF_GLOBAL_CTRL MSR

PMI_FRZ (R/W)
EN_PMI_CORE3 (R/W)
EN_PMI_CORE2 (R/W)
EN_PMI_CORE1 (R/W)

8 7 0

EN_PMI_CORE0 (R/W)

32 348 1

Reserved

63 2431 5662 495051

EN_PC7 (R/W)
EN_PC6 (R/W)
EN_PC5 (R/W)
EN_PC4 (R/W)
EN_PC3 (R/W)
EN_PC2 (R/W)
EN_PC1 (R/W)
EN_PC0 (R/W)

EN_FC0 (R/W)

RESET Value — 00000000_00000000H
Vol. 3B 20-27

PERFORMANCE MONITORING
Figure 20-21 shows the layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL.

• CLR_OVF_PCn (bit n, n = 0, 7): Set this bit to clear the overflow status for general-purpose uncore counter
MSR_UNCORE_PerfCntr n. Writing a value other than 1 is ignored.

• CLR_OVF_FC0 (bit 32): Set this bit to clear the overflow status for the fixed-function uncore counter MSR_UN-
CORE_FixedCntr0. Writing a value other than 1 is ignored.

• CLR_OVF_PMI (bit 61): Set this bit to clear the OVF_PMI flag in MSR_UNCORE_PERF_GLOBAL_STATUS. Writing
a value other than 1 is ignored.

• CLR_CHG (bit 63): Set this bit to clear the CHG flag in MSR_UNCORE_PERF_GLOBAL_STATUS register. Writing
a value other than 1 is ignored.

20.3.1.2.2 Uncore Performance Event Configuration Facility

MSR_UNCORE_PerfEvtSel0 through MSR_UNCORE_PerfEvtSel7 are used to select performance event and
configure the counting behavior of the respective uncore performance counter. Each uncore PerfEvtSel MSR is
paired with an uncore performance counter. Each uncore counter must be locally configured using the corre-

Figure 20-20. Layout of MSR_UNCORE_PERF_GLOBAL_STATUS MSR

Figure 20-21. Layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL MSR

CHG (R/W)
OVF_PMI (R/W)

8 7 032 3 1

Reserved

63 2431 5662 6061

OVF_PC7 (R/O)
OVF_PC6 (R/O)
OVF_PC5 (R/O)
OVF_PC4 (R/O)
OVF_PC3 (R/O)
OVF_PC2 (R/O)
OVF_PC1 (R/O)
OVF_PC0 (R/O)

OVF_FC0 (R/O)

RESET Value — 00000000_00000000H

CLR_CHG (WO1)
CLR_OVF_PMI (WO1)

8 7 032 3 1

Reserved

63 2431 5662 6061

CLR_OVF_PC7 (WO1)
CLR_OVF_PC6 (WO1)
CLR_OVF_PC5 (WO1)
CLR_OVF_PC4 (WO1)
CLR_OVF_PC3 (WO1)
CLR_OVF_PC2 (WO1)
CLR_OVF_PC1 (WO1)
CLR_OVF_PC0 (WO1)

CLR_OVF_FC0 (WO1)

RESET Value — 00000000_00000000H
20-28 Vol. 3B

PERFORMANCE MONITORING
sponding MSR_UNCORE_PerfEvtSelx and counting must be enabled using the respective EN_PCx bit in MSR_UN-
CORE_PERF_GLOBAL_CTRL. Figure 20-22 shows the layout of MSR_UNCORE_PERFEVTSELx.

• Event Select (bits 7:0): Selects the event logic unit used to detect uncore events.
• Unit Mask (bits 15:8) : Condition qualifiers for the event selection logic specified in the Event Select field.
• OCC_CTR_RST (bit17): When set causes the queue occupancy counter associated with this event to be cleared

(zeroed). Writing a zero to this bit will be ignored. It will always read as a zero.
• Edge Detect (bit 18): When set causes the counter to increment when a deasserted to asserted transition

occurs for the conditions that can be expressed by any of the fields in this register.
• PMI (bit 20): When set, the uncore will generate an interrupt request when this counter overflowed. This

request will be routed to the logical processors as enabled in the PMI enable bits (EN_PMI_COREx) in the
register MSR_UNCORE_PERF_GLOBAL_CTRL.

• EN (bit 22): When clear, this counter is locally disabled. When set, this counter is locally enabled and counting
starts when the corresponding EN_PCx bit in MSR_UNCORE_PERF_GLOBAL_CTRL is set.

• INV (bit 23): When clear, the Counter Mask field is interpreted as greater than or equal to. When set, the
Counter Mask field is interpreted as less than.

• Counter Mask (bits 31:24): When this field is clear, it has no effect on counting. When set to a value other than
zero, the logical processor compares this field to the event counts on each core clock cycle. If INV is clear and
the event counts are greater than or equal to this field, the counter is incremented by one. If INV is set and the
event counts are less than this field, the counter is incremented by one. Otherwise the counter is not incre-
mented.

Figure 20-23 shows the layout of MSR_UNCORE_FIXED_CTR_CTRL.

• EN (bit 0): When clear, the uncore fixed-function counter is locally disabled. When set, it is locally enabled and
counting starts when the EN_FC0 bit in MSR_UNCORE_PERF_GLOBAL_CTRL is set.

• PMI (bit 2): When set, the uncore will generate an interrupt request when the uncore fixed-function counter
overflowed. This request will be routed to the logical processors as enabled in the PMI enable bits
(EN_PMI_COREx) in the register MSR_UNCORE_PERF_GLOBAL_CTRL.

Figure 20-22. Layout of MSR_UNCORE_PERFEVTSELx MSRs

Figure 20-23. Layout of MSR_UNCORE_FIXED_CTR_CTRL MSR

31

INV—Invert counter mask
EN—Enable counters

E—Edge detect
OCC_CTR_RST—Rest Queue Occ

8 7 0

Event SelectCounter Mask

19 1618 15172021222324

Reserved

Unit Mask (UMASK)(CMASK)

63

PMI—Enable PMI on overflow
RESET Value — 00000000_00000000H

8 7 03 1

Reserved

63 2456

PMI - Generate PMI on overflow
EN - Enable

RESET Value — 00000000_00000000H
Vol. 3B 20-29

PERFORMANCE MONITORING
Both the general-purpose counters (MSR_UNCORE_PerfCntr) and the fixed-function counter (MSR_UNCORE_-
FixedCntr0) are 48 bits wide. They support both counting and interrupt based sampling usages. The event logic
unit can filter event counts to specific regions of code or transaction types incoming to the home node logic.

20.3.1.2.3 Uncore Address/Opcode Match MSR

The Event Select field [7:0] of MSR_UNCORE_PERFEVTSELx is used to select different uncore event logic unit.
When the event “ADDR_OPCODE_MATCH” is selected in the Event Select field, software can filter uncore perfor-
mance events according to transaction address and certain transaction responses. The address filter and transac-
tion response filtering requires the use of MSR_UNCORE_ADDR_OPCODE_MATCH register. The layout is shown in
Figure 20-24.

• Addr (bits 39:3): The physical address to match if “MatchSel“ field is set to select address match. The uncore
performance counter will increment if the lowest 40-bit incoming physical address (excluding bits 2:0) for a
transaction request matches bits 39:3.

• Opcode (bits 47:40) : Bits 47:40 allow software to filter uncore transactions based on QPI link message
class/packed header opcode. These bits are consists two sub-fields:

— Bits 43:40 specify the QPI packet header opcode.

— Bits 47:44 specify the QPI message classes.
Table 20-7 lists the encodings supported in the opcode field.

Figure 20-24. Layout of MSR_UNCORE_ADDR_OPCODE_MATCH MSR

Table 20-7. Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCH

Opcode [43:40] QPI Message Class

Home Request

[47:44] = 0000B

Snoop Response

[47:44] = 0001B

Data Response

[47:44] = 1110B

1

DMND_IFETCH 2 2

WB 3 3

PF_DATA_RD 4 4

PF_RFO 5 5

PF_IFETCH 6 6

OTHER 7 7

NON_DRAM 15 15

60

MatchSel—Select addr/Opcode
Opcode—Opcode and Message

3 2 040 394748

Reserved

ADDR

63

ADDR—Bits 39:4 of physical address
RESET Value — 00000000_00000000H

Opcode
20-30 Vol. 3B

PERFORMANCE MONITORING
• MatchSel (bits 63:61): Software specifies the match criteria according to the following encoding:

— 000B: Disable addr_opcode match hardware.

— 100B: Count if only the address field matches.

— 010B: Count if only the opcode field matches.

— 110B: Count if either opcode field matches or the address field matches.

— 001B: Count only if both opcode and address field match.

— Other encoding are reserved.

20.3.1.3 Intel® Xeon® Processor 7500 Series Performance Monitoring Facility
The performance monitoring facility in the processor core of Intel® Xeon® processor 7500 series are the same as
those supported in Intel Xeon processor 5500 series. The uncore subsystem in Intel Xeon processor 7500 series
are significantly different The uncore performance monitoring facility consist of many distributed units associated
with individual logic control units (referred to as boxes) within the uncore subsystem. A high level block diagram of
the various box units of the uncore is shown in Figure 20-25.

Uncore PMUs are programmed via MSR interfaces. Each of the distributed uncore PMU units have several general-
purpose counters. Each counter requires an associated event select MSR, and may require additional MSRs to
configure sub-event conditions. The uncore PMU MSRs associated with each box can be categorized based on its
functional scope: per-counter, per-box, or global across the uncore. The number counters available in each box
type are different. Each box generally provides a set of MSRs to enable/disable, check status/overflow of multiple
counters within each box.

Table 20-8 summarizes the number MSRs for uncore PMU for each box.

Figure 20-25. Distributed Units of the Uncore of Intel® Xeon® Processor 7500 Series

PBox

L3 Cache

PBoxPBox PBox UBoxWBox

RBox BBoxBBoxMBox MBox PBoxPBox

SBox SBox

CBox CBoxCBoxCBox CBoxCBox CBoxCBox

4 Intel QPI Links

SMI Channels

SMI Channels
Vol. 3B 20-31

PERFORMANCE MONITORING
The W-Box provides 4 general-purpose counters, each requiring an event select configuration MSR, similar to the
general-purpose counters in other boxes. There is also a fixed-function counter that increments clockticks in the
uncore clock domain.

For C,S,B,M,R, and W boxes, each box provides an MSR to enable/disable counting, configuring PMI of multiple
counters within the same box, this is somewhat similar the “global control“ programming interface, IA32_PERF_-
GLOBAL_CTRL, offered in the core PMU. Similarly status information and counter overflow control for multiple
counters within the same box are also provided in C,S,B,M,R, and W boxes.

In the U-Box, MSR_U_PMON_GLOBAL_CTL provides overall uncore PMU enable/disable and PMI configuration
control. The scope of status information in the U-box is at per-box granularity, in contrast to the per-box status
information MSR (in the C,S,B,M,R, and W boxes) providing status information of individual counter overflow. The
difference in scope also apply to the overflow control MSR in the U-Box versus those in the other Boxes.

The individual MSRs that provide uncore PMU interfaces are listed in Chapter 2, “Model-Specific Registers (MSRs),”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, Table 2-17 under the general
naming style of MSR_%box#%_PMON_%scope_function%, where %box#% designates the type of box and zero-
based index if there are more the one box of the same type, %scope_function% follows the examples below:
• Multi-counter enabling MSRs: MSR_U_PMON_GLOBAL_CTL, MSR_S0_PMON_BOX_CTL, MSR_C7_PMON_-

BOX_CTL, etc.
• Multi-counter status MSRs: MSR_U_PMON_GLOBAL_STATUS, MSR_S0_PMON_BOX_STATUS, MSR_C7_P-

MON_BOX_STATUS, etc.
• Multi-counter overflow control MSRs: MSR_U_PMON_GLOBAL_OVF_CTL, MSR_S0_PMON_BOX_OVF_CTL,

MSR_C7_PMON_BOX_OVF_CTL, etc.
• Performance counters MSRs: the scope is implicitly per counter, e.g., MSR_U_PMON_CTR, MSR_S0_P-

MON_CTR0, MSR_C7_PMON_CTR5, etc.
• Event select MSRs: the scope is implicitly per counter, e.g., MSR_U_PMON_EVNT_SEL, MSR_S0_P-

MON_EVNT_SEL0, MSR_C7_PMON_EVNT_SEL5, etc.
• Sub-control MSRs: the scope is implicitly per-box granularity, e.g., MSR_M0_PMON_TIMESTAMP, MSR_R0_P-

MON_IPERF0_P1, MSR_S1_PMON_MATCH.

Details of uncore PMU MSR bit field definitions can be found in a separate document “Intel Xeon Processor 7500
Series Uncore Performance Monitoring Guide“.

20.3.2 Performance Monitoring for Processors Based on Westmere Microarchitecture
All of the performance monitoring programming interfaces (architectural and non-architectural core PMU facilities,
and uncore PMU) described in Section 20.6.3 also apply to processors based on Westmere microarchitecture.

Table 20-5 describes a non-architectural performance monitoring event (event code 0B7H) and associated
MSR_OFFCORE_RSP_0 (address 1A6H) in the core PMU. This event and a second functionally equivalent offcore

Table 20-8. Uncore PMU MSR Summary

Box # of Boxes Counters per Box
Counter
Width

General
Purpose

Global
Enable Sub-control MSRs

C-Box 8 6 48 Yes per-box None

S-Box 2 4 48 Yes per-box Match/Mask

B-Box 2 4 48 Yes per-box Match/Mask

M-Box 2 6 48 Yes per-box Yes

R-Box 1 16 (2 port, 8 per port) 48 Yes per-box Yes

W-Box 1 4 48 Yes per-box None

1 48 No per-box None

U-Box 1 1 48 Yes uncore None
20-32 Vol. 3B

PERFORMANCE MONITORING
response event using event code 0BBH and MSR_OFFCORE_RSP_1 (address 1A7H) are supported in processors
based on Westmere microarchitecture. The event code and event mask definitions of non-architectural perfor-
mance monitoring events can be found at: https://perfmon-events.intel.com/.

The load latency facility is the same as described in Section 20.3.1.1.2, but added enhancement to provide more
information in the data source encoding field of each load latency record. The additional information relates to
STLB_MISS and LOCK, see Table 20-13.

20.3.3 Intel® Xeon® Processor E7 Family Performance Monitoring Facility
The performance monitoring facility in the processor core of the Intel® Xeon® processor E7 family is the same as
those supported in the Intel Xeon processor 5600 series1. The uncore subsystem in the Intel Xeon processor E7
family is similar to those of the Intel Xeon processor 7500 series. The high level construction of the uncore sub-
system is similar to that shown in Figure 20-25, with the additional capability that up to 10 C-Box units are
supported.

Table 20-9 summarizes the number MSRs for uncore PMU for each box.

Details of the uncore performance monitoring facility of Intel Xeon Processor E7 family is available in the “Intel®
Xeon® Processor E7 Uncore Performance Monitoring Programming Reference Manual”.

20.3.4 Performance Monitoring for Processors Based on Sandy Bridge Microarchitecture
Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series, and Intel® Xeon® processor
E3-1200 family are based on Sandy Bridge microarchitecture; this section describes the performance monitoring
facilities provided in the processor core. The core PMU supports architectural performance monitoring capability
with version ID 3 (see Section 20.2.3) and a host of non-architectural monitoring capabilities.

Architectural performance monitoring version 3 capabilities are described in Section 20.2.3.

The core PMU’s capability is similar to those described in Section 20.3.1.1 and Section 20.6.3, with some differ-
ences and enhancements relative to Westmere microarchitecture summarized in Table 20-10.

1. Exceptions are indicated for event code 0FH in the event list for this processor (https://perfmon-events.intel.com/); and valid
bits of data source encoding field of each load latency record is limited to bits 5:4 of Table 20-13.

Table 20-9. Uncore PMU MSR Summary for Intel® Xeon® Processor E7 Family

Box # of Boxes Counters per Box
Counter
Width

General
Purpose

Global
Enable Sub-control MSRs

C-Box 10 6 48 Yes per-box None

S-Box 2 4 48 Yes per-box Match/Mask

B-Box 2 4 48 Yes per-box Match/Mask

M-Box 2 6 48 Yes per-box Yes

R-Box 1 16 (2 port, 8 per port) 48 Yes per-box Yes

W-Box 1 4 48 Yes per-box None

1 48 No per-box None

U-Box 1 1 48 Yes uncore None
Vol. 3B 20-33

https://perfmon-events.intel.com/

PERFORMANCE MONITORING
20.3.4.1 Global Counter Control Facilities in Sandy Bridge Microarchitecture
The number of general-purpose performance counters visible to a logical processor can vary across Processors
based on Sandy Bridge microarchitecture. Software must use CPUID to determine the number performance
counters/event select registers (See Section 20.2.1.1).

Table 20-10. Core PMU Comparison

Box Sandy Bridge Microarchitecture Westmere Microarchitecture Comment

of Fixed counters per
thread

3 3 Use CPUID to determine # of
counters. See Section 20.2.1.

of general-purpose
counters per core

8 8 Use CPUID to determine # of
counters. See Section 20.2.1.

Counter width (R,W) R:48, W: 32/48 R:48, W:32 See Section 20.2.2.

of programmable counters
per thread

4 or (8 if a core not shared by two
threads)

4 Use CPUID to determine # of
counters. See Section 20.2.1.

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with
legacy semantics.

• Freeze_LBR_on_PMI with legacy
semantics for branch profiling.

• Freeze_while_SMM.

• Freeze_Perfmon_on_PMI
with legacy semantics.

• Freeze_LBR_on_PMI with
legacy semantics for branch
profiling.

• Freeze_while_SMM.

See Section 18.4.7.

Processor Event Based
Sampling (PEBS) Events

See Table 20-12. See Table 20-84. IA32_PMC4-IA32_PMC7 do
not support PEBS.

PEBS-Load Latency See Section 20.3.4.4.2;

• Data source encoding
• STLB miss encoding
• Lock transaction encoding

Data source encoding

PEBS-Precise Store Section 20.3.4.4.3 No

PEBS-PDIR Yes (using precise
INST_RETIRED.ALL).

No

Off-core Response Event MSR 1A6H and 1A7H, extended
request and response types.

MSR 1A6H and 1A7H, limited
response types.

Nehalem supports 1A6H
only.

Figure 20-26. IA32_PERF_GLOBAL_CTRL MSR in Sandy Bridge Microarchitecture

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable
PMC7_EN (if PMC7 present)

2 1 0

PMC6_EN (if PMC6 present)

3132333435

Reserved

63

PMC5_EN (if PMC5 present)
PMC4_EN (if PMC4 present)
PMC3_EN
PMC2_EN
PMC1_EN

Valid if CPUID.0AH:EAX[15:8] = 8, else reserved.

PMC0_EN

8 7 6 5 4 3
20-34 Vol. 3B

PERFORMANCE MONITORING
Figure 20-44 depicts the layout of IA32_PERF_GLOBAL_CTRL MSR. The enable bits (PMC4_EN, PMC5_EN,
PMC6_EN, PMC7_EN) corresponding to IA32_PMC4-IA32_PMC7 are valid only if CPUID.0AH:EAX[15:8] reports a
value of ‘8’. If CPUID.0AH:EAX[15:8] = 4, attempts to set the invalid bits will cause #GP.

Each enable bit in IA32_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all privilege levels in the respective
IA32_PERFEVTSELx or IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective counters.
Counting is enabled if the AND’ed results is true; counting is disabled when the result is false.
IA32_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to query the overflow condition of
each performance counter. IA32_PERF_GLOBAL_STATUS[bit 62] indicates overflow conditions of the DS area data
buffer (see Figure 20-27). A value of 1 in each bit of the PMCx_OVF field indicates an overflow condition has
occurred in the associated counter.

When a performance counter is configured for PEBS, an overflow condition in the counter will arm PEBS. On the
subsequent event following overflow, the processor will generate a PEBS event. On a PEBS event, the processor will
perform bounds checks based on the parameters defined in the DS Save Area (see Section 18.4.9). Upon
successful bounds checks, the processor will store the data record in the defined buffer area, clear the counter
overflow status, and reload the counter. If the bounds checks fail, the PEBS will be skipped entirely. In the event
that the PEBS buffer fills up, the processor will set the OvfBuffer bit in MSR_PERF_GLOBAL_STATUS.

IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators for general-purpose or fixed-
function counters via a single WRMSR (see Figure 20-28). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or interrupt based sampling.
• Reloading counter values to continue sampling.
• Disabling event counting or interrupt based sampling.

Figure 20-27. IA32_PERF_GLOBAL_STATUS MSR in Sandy Bridge Microarchitecture

62

FIXED_CTR2 Overflow (RO)
FIXED_CTR1 Overflow (RO)
FIXED_CTR0 Overflow (RO)
PMC7_OVF (RO, If PMC7 present)

2 1 0

PMC6_OVF (RO, If PMC6 present)

3132333435

Reserved

63

CondChgd
Ovf_DSBuffer

8 7 6 5 4 3

PMC5_OVF (RO, If PMC5 present)
PMC4_OVF (RO, If PMC4 present)
PMC3_OVF (RO)
PMC2_OVF (RO)
PMC1_OVF (RO)
PMC0_OVF (RO)

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

Ovf_UncorePMU

61
Vol. 3B 20-35

PERFORMANCE MONITORING
20.3.4.2 Counter Coalescence
In processors based on Sandy Bridge microarchitecture, each processor core implements eight general-purpose
counters. CPUID.0AH:EAX[15:8] will report the number of counters visible to software.

If a processor core is shared by two logical processors, each logical processors can access up to four counters
(IA32_PMC0-IA32_PMC3). This is the same as in the prior generation for processors based on Nehalem microarchi-
tecture.

If a processor core is not shared by two logical processors, up to eight general-purpose counters are visible. If
CPUID.0AH:EAX[15:8] reports 8 counters, then IA32_PMC4-IA32_PMC7 would occupy MSR addresses 0C5H
through 0C8H. Each counter is accompanied by an event select MSR (IA32_PERFEVTSEL4-IA32_PERFEVTSEL7).

If CPUID.0AH:EAX[15:8] report 4, access to IA32_PMC4-IA32_PMC7, IA32_PMC4-IA32_PMC7 will cause #GP.
Writing 1’s to bit position 7:4 of IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS, or IA32_PERF_-
GLOBAL_OVF_CTL will also cause #GP.

20.3.4.3 Full Width Writes to Performance Counters
Processors based on Sandy Bridge microarchitecture support full-width writes to the general-purpose counters,
IA32_PMCx. Support of full-width writes are enumerated by IA32_PERF_CAPABILITIES.FW_WRITES[13] (see
Section 20.2.4).

The default behavior of IA32_PMCx is unchanged, i.e., WRMSR to IA32_PMCx results in a sign-extended 32-bit
value of the input EAX written into IA32_PMCx. Full-width writes must issue WRMSR to a dedicated alias MSR
address for each IA32_PMCx.

Software must check the presence of full-width write capability and the presence of the alias address IA32_A_PMCx
by testing IA32_PERF_CAPABILITIES[13].

20.3.4.4 PEBS Support in Sandy Bridge Microarchitecture
Processors based on Sandy Bridge microarchitecture support PEBS, similar to those offered in prior generation,
with several enhanced features. The key components and differences of PEBS facility relative to Westmere microar-
chitecture is summarized in Table 20-11.

Figure 20-28. IA32_PERF_GLOBAL_OVF_CTRL MSR in Sandy Bridge Microarchitecture

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC7_ClrOvf (if PMC7 present)

2 1 0

PMC6_ClrOvf (if PMC6 present)

3132333435

Reserved

63

ClrCondChgd
ClrOvfDSBuffer

8 7 6 5 4 3

PMC5_ClrOvf (if PMC5 present)
PMC4_ClrOvf (if PMC4 present)
PMC3_ClrOvf
PMC2_ClrOvf
PMC1_ClrOvf
PMC0_ClrOvf

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

ClrOvfUncore
20-36 Vol. 3B

PERFORMANCE MONITORING
Only IA32_PMC0 through IA32_PMC3 support PEBS.

NOTE
PEBS events are only valid when the following fields of IA32_PERFEVTSELx are all zero: AnyThread,
Edge, Invert, CMask.

In a PMU with PDIR capability, PEBS behavior is unpredictable if IA32_PERFEVTSELx or IA32_PMCx
is changed for a PEBS-enabled counter while an event is being counted. To avoid this, changes to
the programming or value of a PEBS-enabled counter should be performed when the counter is
disabled.

In IA32_PEBS_ENABLE MSR, bit 63 is defined as PS_ENABLE: When set, this enables IA32_PMC3 to capture
precise store information. Only IA32_PMC3 supports the precise store facility. In typical usage of PEBS, the bit
fields in IA32_PEBS_ENABLE are written to when the agent software starts PEBS operation; the enabled bit fields
should be modified only when re-programming another PEBS event or cleared when the agent uses the perfor-
mance counters for non-PEBS operations.

Table 20-11. PEBS Facility Comparison

Box Sandy Bridge Microarchitecture Westmere Microarchitecture Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7.

PEBS Buffer Programming Section 20.3.1.1.1 Section 20.3.1.1.1 Unchanged

IA32_PEBS_ENABLE
Layout

 Figure 20-29 Figure 20-15

PEBS record layout Physical Layout same as
Table 20-3.

Table 20-3 Enhanced fields at offsets
98H, A0H, A8H.

PEBS Events See Table 20-12. See Table 20-84. IA32_PMC4-IA32_PMC7 do
not support PEBS.

PEBS-Load Latency See Table 20-13. Table 20-4

PEBS-Precise Store Yes; see Section 20.3.4.4.3. No IA32_PMC3 only

PEBS-PDIR Yes No IA32_PMC1 only

PEBS skid from EventingIP 1 (or 2 if micro+macro fusion) 1

SAMPLING Restriction Small SAV(CountDown) value incur higher overhead than prior
generation.
Vol. 3B 20-37

PERFORMANCE MONITORING
20.3.4.4.1 PEBS Record Format

The layout of PEBS records physically identical to those shown in Table 20-3, but the fields at offsets 98H, A0H, and
A8H have been enhanced to support additional PEBS capabilities.
• Load/Store Data Linear Address (Offset 98H): This field will contain the linear address of the source of the load,

or linear address of the destination of the store.
• Data Source /Store Status (Offset A0H): When load latency is enabled, this field will contain three piece of

information (including an encoded value indicating the source which satisfied the load operation). The source
field encodings are detailed in Table 20-4. When precise store is enabled, this field will contain information
indicating the status of the store, as detailed in Table 19.

• Latency Value/0 (Offset A8H): When load latency is enabled, this field contains the latency in cycles to service
the load. This field is not meaningful when precise store is enabled and will be written to zero in that case. Upon
writing the PEBS record, microcode clears the overflow status bits in the IA32_PERF_GLOBAL_STATUS corre-
sponding to those counters that both overflowed and were enabled in the IA32_PEBS_ENABLE register. The
status bits of other counters remain unaffected.

The number PEBS events has expanded. The list of PEBS events supported in Sandy Bridge microarchitecture is
shown in Table 20-12.

Figure 20-29. Layout of IA32_PEBS_ENABLE MSR

Table 20-12. PEBS Performance Events for Sandy Bridge Microarchitecture
Event Name Event Select Sub-event UMask

INST_RETIRED C0H PREC_DIST 01H1

UOPS_RETIRED C2H All 01H

Retire_Slots 02H

BR_INST_RETIRED C4H Conditional 01H

Near_Call 02H

All_branches 04H

Near_Return 08H

Near_Taken 20H

BR_MISP_RETIRED C5H Conditional 01H

Near_Call 02H

All_branches 04H

Not_Taken 10H

Taken 20H

LL_EN_PMC3 (R/W)
LL_EN_PMC2 (R/W)

8 7 0

LL_EN_PMC1 (R/W)

32 333 1

Reserved

63 2431 56343536

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

LL_EN_PMC0 (R/W)

RESET Value — 00000000_00000000H

62

PS_EN (R/W)
20-38 Vol. 3B

PERFORMANCE MONITORING
20.3.4.4.2 Load Latency Performance Monitoring Facility

The load latency facility in Sandy Bridge microarchitecture is similar to that in prior microarchitectures. It provides
software a means to characterize the average load latency to different levels of cache/memory hierarchy. This
facility requires processor supporting enhanced PEBS record format in the PEBS buffer, see Table 20-3 and Section
20.3.4.4.1. This field measures the load latency from load's first dispatch of till final data writeback from the
memory subsystem. The latency is reported for retired demand load operations and in core cycles (it accounts for
re-dispatches).

To use this feature software must assure:
• One of the IA32_PERFEVTSELx MSR is programmed to specify the event unit MEM_TRANS_RETIRED, and the

LATENCY_ABOVE_THRESHOLD event mask must be specified (IA32_PerfEvtSelX[15:0] = 1CDH). The corre-
sponding counter IA32_PMCx will accumulate event counts for architecturally visible loads which exceed the
programmed latency threshold specified separately in a MSR. Stores are ignored when this event is
programmed. The CMASK or INV fields of the IA32_PerfEvtSelX register used for counting load latency must be
0. Writing other values will result in undefined behavior.

• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired latency threshold in core clock
cycles. Loads with latencies greater than this value are eligible for counting and latency data reporting. The
minimum value that may be programmed in this register is 3 (the minimum detectable load latency is 4 core
clock cycles).

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corresponding IA32_PMCx counter
register. This means that both the PEBS_EN_CTRX and LL_EN_CTRX bits must be set for the counter(s) of
interest. For example, to enable load latency on counter IA32_PMC0, the IA32_PEBS_ENABLE register must be
programmed with the 64-bit value 00000001.00000001H.

• When Load latency event is enabled, no other PEBS event can be configured with other counters.

When the load-latency facility is enabled, load operations are randomly selected by hardware and tagged to carry
information related to data source locality and latency. Latency and data source information of tagged loads are
updated internally. The MEM_TRANS_RETIRED event for load latency counts only tagged retired loads. If a load is
cancelled it will not be counted and the internal state of the load latency facility will not be updated. In this case the
hardware will tag the next available load.

MEM_UOPS_RETIRED D0H STLB_MISS_LOADS 11H

STLB_MISS_STORE 12H

LOCK_LOADS 21H

SPLIT_LOADS 41H

SPLIT_STORES 42H

ALL_LOADS 81H

ALL_STORES 82H

MEM_LOAD_UOPS_RETIRED D1H L1_Hit 01H

L2_Hit 02H

L3_Hit 04H

Hit_LFB 40H

MEM_LOAD_UOPS_LLC_HIT_RETIRED D2H XSNP_Miss 01H

XSNP_Hit 02H

XSNP_Hitm 04H

XSNP_None 08H

NOTES:
1. Only available on IA32_PMC1.

Table 20-12. PEBS Performance Events for Sandy Bridge Microarchitecture (Contd.)
Event Name Event Select Sub-event UMask
Vol. 3B 20-39

PERFORMANCE MONITORING
When a PEBS assist occurs, the last update of latency and data source information are captured by the assist and
written as part of the PEBS record. The PEBS sample after value (SAV), specified in PEBS CounterX Reset, operates
orthogonally to the tagging mechanism. Loads are randomly tagged to collect latency data. The SAV controls the
number of tagged loads with latency information that will be written into the PEBS record field by the PEBS assists.
The load latency data written to the PEBS record will be for the last tagged load operation which retired just before
the PEBS assist was invoked.

The physical layout of the PEBS records is the same as shown in Table 20-3. The specificity of Data Source entry at
offset A0H has been enhanced to report three pieces of information.

The layout of MSR_PEBS_LD_LAT_THRESHOLD is the same as shown in Figure 20-17.

20.3.4.4.3 Precise Store Facility

Processors based on Sandy Bridge microarchitecture offer a precise store capability that complements the load
latency facility. It provides a means to profile store memory references in the system.

Precise stores leverage the PEBS facility and provide additional information about sampled stores. Having precise
memory reference events with linear address information for both loads and stores can help programmers improve
data structure layout, eliminate remote node references, and identify cache-line conflicts in NUMA systems.

Only IA32_PMC3 can be used to capture precise store information. After enabling this facility, counter overflows will
initiate the generation of PEBS records as previously described in PEBS. Upon counter overflow hardware captures
the linear address and other status information of the next store that retires. This information is then written to the
PEBS record.

To enable the precise store facility, software must complete the following steps. Please note that the precise store
facility relies on the PEBS facility, so the PEBS configuration requirements must be completed before attempting to
capture precise store information.
• Complete the PEBS configuration steps.
• Program the MEM_TRANS_RETIRED.PRECISE_STORE event in IA32_PERFEVTSEL3. Only counter 3

(IA32_PMC3) supports collection of precise store information.
• Set IA32_PEBS_ENABLE[3] and IA32_PEBS_ENABLE[63]. This enables IA32_PMC3 as a PEBS counter and

enables the precise store facility, respectively.

The precise store information written into a PEBS record affects entries at offsets 98H, A0H, and A8H of Table 20-3.
The specificity of Data Source entry at offset A0H has been enhanced to report three piece of information.

Table 20-13. Layout of Data Source Field of Load Latency Record

Field Position Description

Source 3:0 See Table 20-4

STLB_MISS 4 0: The load did not miss the STLB (hit the DTLB or STLB).

1: The load missed the STLB.

Lock 5 0: The load was not part of a locked transaction.

1: The load was part of a locked transaction.

Reserved 63:6 Reserved
20-40 Vol. 3B

PERFORMANCE MONITORING
20.3.4.4.4 Precise Distribution of Instructions Retired (PDIR)

Upon triggering a PEBS assist, there will be a finite delay between the time the counter overflows and when the
microcode starts to carry out its data collection obligations. INST_RETIRED is a very common event that is used to
sample where performance bottleneck happened and to help identify its location in instruction address space. Even
if the delay is constant in core clock space, it invariably manifest as variable “skids” in instruction address space.
This creates a challenge for programmers to profile a workload and pinpoint the location of bottlenecks.

The core PMU in processors based on Sandy Bridge microarchitecture include a facility referred to as precise distri-
bution of Instruction Retired (PDIR).

The PDIR facility mitigates the “skid” problem by providing an early indication of when the INST_RETIRED counter
is about to overflow, allowing the machine to more precisely trap on the instruction that actually caused the
counter overflow. On processors based on Sandy Bridge microarchitecture, skid is significantly reduced and can be
as little as one instruction. On future implementations, PDIR may eliminate skid.

PDIR applies only to the INST_RETIRED.ALL precise event, and processors based on Sandy Bridge microarchitec-
ture must use IA32_PMC1 with PerfEvtSel1 property configured and bit 1 in the IA32_PEBS_ENABLE set to 1.
INST_RETIRED.ALL is a non-architectural performance event, it is not supported in prior generation microarchitec-
tures. Additionally, on processors with CPUID DisplayFamily_DisplayModel signatures of 06_2A and 06_2D, the tool
that programs PDIR should quiesce the rest of the programmable counters in the core when PDIR is active.

20.3.4.5 Off-core Response Performance Monitoring
The core PMU in processors based on Sandy Bridge microarchitecture provides off-core response facility similar to
prior generation. Off-core response can be programmed only with a specific pair of event select and counter MSR,
and with specific event codes and predefine mask bit value in a dedicated MSR to specify attributes of the off-core
transaction. Two event codes are dedicated for off-core response event programming. Each event code for off-core
response monitoring requires programming an associated configuration MSR, MSR_OFFCORE_RSP_x. Table 20-15
lists the event code, mask value and additional off-core configuration MSR that must be programmed to count off-
core response events using IA32_PMCx.

The layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 are shown in Figure 20-30 and Figure 20-31. Bits
15:0 specifies the request type of a transaction request to the uncore. Bits 30:16 specifies supplier information,
bits 37:31 specifies snoop response information.

Table 20-14. Layout of Precise Store Information In PEBS Record

Field Offset Description

Store Data
Linear Address

98H The linear address of the destination of the store.

Store Status A0H L1D Hit (Bit 0): The store hit the data cache closest to the core (lowest latency cache) if this bit is set,
otherwise the store missed the data cache.

STLB Miss (bit 4): The store missed the STLB if set, otherwise the store hit the STLB

Locked Access (bit 5): The store was part of a locked access if set, otherwise the store was not part of a
locked access.

Reserved A8H Reserved

Table 20-15. Off-Core Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0-3 B7H 01H MSR_OFFCORE_RSP_0 (address 1A6H)

PMC0-3 BBH 01H MSR_OFFCORE_RSP_1 (address 1A7H)
Vol. 3B 20-41

PERFORMANCE MONITORING
Figure 20-30. Request_Type Fields for MSR_OFFCORE_RSP_x

Table 20-16. MSR_OFFCORE_RSP_x Request_Type Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 Counts the number of demand data reads of full and partial cachelines as well as demand data page
table entry cacheline reads. Does not count L2 data read prefetches or instruction fetches.

DMND_RFO 1 Counts the number of demand and DCU prefetch reads for ownership (RFO) requests generated by a
write to data cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 Counts the number of demand instruction cacheline reads and L1 instruction cacheline prefetches.

WB 3 Counts the number of writeback (modified to exclusive) transactions.

PF_DATA_RD 4 Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 Counts the number of code reads generated by L2 prefetchers.

PF_LLC_DATA_RD 7 L2 prefetcher to L3 for loads.

PF_LLC_RFO 8 RFO requests generated by L2 prefetcher

PF_LLC_IFETCH 9 L2 prefetcher to L3 for instruction fetches.

BUS_LOCKS 10 Bus lock and split lock requests

STRM_ST 11 Streaming store requests

OTHER 15 Any other request that crosses IDI, including I/O.

RESPONSE TYPE — Other (R/W)
RESERVED

8 7 0

REQUEST TYPE — STRM_ST (R/W)

11 312 1

Reserved

63 249 5610131415

REQUEST TYPE — BUS_LOCKS (R/W)
REQUEST TYPE — PF_LLC_IFETCH (R/W)
REQUEST TYPE — PF_LLC_RFO (R/W)
REQUEST TYPE — PF_LLC_DATA_RD (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 00000000_00000000H

37

See Figure 18-30
20-42 Vol. 3B

PERFORMANCE MONITORING
To properly program this extra register, software must set at least one request type bit and a valid response type
pattern. Otherwise, the event count reported will be zero. It is permissible and useful to set multiple request and
response type bits in order to obtain various classes of off-core response events. Although MSR_OFFCORE_RSP_x
allow an agent software to program numerous combinations that meet the above guideline, not all combinations
produce meaningful data.

To specify a complete offcore response filter, software must properly program bits in the request and response type
fields. A valid request type must have at least one bit set in the non-reserved bits of 15:0. A valid response type
must be a non-zero value of the following expression:

ANY | [(‘OR’ of Supplier Info Bits) & (‘OR’ of Snoop Info Bits)]

If “ANY“ bit is set, the supplier and snoop info bits are ignored.

Figure 20-31. Response_Supplier and Snoop Info Fields for MSR_OFFCORE_RSP_x

Table 20-17. MSR_OFFCORE_RSP_x Response Supplier Info Field Definition

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier
Info

NO_SUPP 17 No Supplier Information available.

LLC_HITM 18 M-state initial lookup stat in L3.

LLC_HITE 19 E-state

LLC_HITS 20 S-state

LLC_HITF 21 F-state

LOCAL 22 Local DRAM Controller.

Reserved 30:23 Reserved

RESPONSE TYPE — NON_DRAM (R/W)
RSPNS_SNOOP — HITM (R/W)

16

RSPNS_SNOOP — HIT_FWD

33 1934 17

Reserved

63 182031 212232353637

RSPNS_SNOOP — HIT_NO_FWD (R/W)
RSPNS_SNOOP — SNP_MISS (R/W)
RSPNS_SNOOP — SNP_NOT_NEEDED (R/W)
RSPNS_SNOOP — SNPl_NONE (R/W)
RSPNS_SUPPLIER — RESERVED

RSPNS_SUPPLIER — LLC_HITF (R/W)
RSPNS_SUPPLIER — LLC_HITS (R/W)
RSPNS_SUPPLIER — LLC_HITE (R/W)
RSPNS_SUPPLIER — LLC_HITM (R/W)
RSPNS_SUPPLIER — No_SUPP (R/W)
RSPNS_SUPPLIER — ANY (R/W)

RESET Value — 00000000_00000000H

RSPNS_SUPPLIER — Local
Vol. 3B 20-43

PERFORMANCE MONITORING
20.3.4.6 Uncore Performance Monitoring Facilities in the Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx,
and Intel® Core™ i3-2xxx Processor Series

The uncore sub-system in Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
provides a unified L3 that can support up to four processor cores. The L3 cache consists multiple slices, each slice
interface with a processor via a coherence engine, referred to as a C-Box. Each C-Box provides dedicated facility of
MSRs to select uncore performance monitoring events and each C-Box event select MSR is paired with a counter
register, similar in style as those described in Section 20.3.1.2.2. The ARB unit in the uncore also provides its local
performance counters and event select MSRs. The layout of the event select MSRs in the C-Boxes and the ARB unit
are shown in Figure 20-32.

Table 20-18. MSR_OFFCORE_RSP_x Snoop Info Field Definition

Subtype Bit Name Offset Description

Snoop
Info

SNP_NONE 31 No details on snoop-related information.

SNP_NOT_NEEDED 32 No snoop was needed to satisfy the request.

SNP_MISS 33 A snoop was needed and it missed all snooped caches:

-For LLC Hit, ReslHitl was returned by all cores

-For LLC Miss, Rspl was returned by all sockets and data was returned from DRAM.

SNP_NO_FWD 34 A snoop was needed and it hits in at least one snooped cache. Hit denotes a cache-line was
valid before snoop effect. This includes:

-Snoop Hit w/ Invalidation (LLC Hit, RFO)

-Snoop Hit, Left Shared (LLC Hit/Miss, IFetch/Data_RD)

-Snoop Hit w/ Invalidation and No Forward (LLC Miss, RFO Hit S)

In the LLC Miss case, data is returned from DRAM.

SNP_FWD 35 A snoop was needed and data was forwarded from a remote socket. This includes:

-Snoop Forward Clean, Left Shared (LLC Hit/Miss, IFetch/Data_RD/RFT).

HITM 36 A snoop was needed and it HitM-ed in local or remote cache. HitM denotes a cache-line was
in modified state before effect as a results of snoop. This includes:

-Snoop HitM w/ WB (LLC miss, IFetch/Data_RD)

-Snoop Forward Modified w/ Invalidation (LLC Hit/Miss, RFO)

-Snoop MtoS (LLC Hit, IFetch/Data_RD).

NON_DRAM 37 Target was non-DRAM system address. This includes MMIO transactions.

Figure 20-32. Layout of Uncore PERFEVTSEL MSR for a C-Box Unit or the ARB Unit

28

INV—Invert counter mask
EN—Enable counter

E—Edge detect

8 7 0

Event SelectCounter Mask

19 1618 15172021222324

Reserved

Unit Mask (UMASK)(CMASK)

63

OVF_EN—Overflow forwarding

RESET Value — 00000000_00000000H
20-44 Vol. 3B

PERFORMANCE MONITORING
The bit fields of the uncore event select MSRs for a C-box unit or the ARB unit are summarized below:
• Event_Select (bits 7:0) and UMASK (bits 15:8): Specifies the microarchitectural condition to count in a local

uncore PMU counter, see the event list at: https://perfmon-events.intel.com/.
• E (bit 18): Enables edge detection filtering, if 1.
• OVF_EN (bit 20): Enables the overflow indicator from the uncore counter forwarded to MSR_UNC_PERF_-

GLOBAL_CTRL, if 1.
• EN (bit 22): Enables the local counter associated with this event select MSR.
• INV (bit 23): Event count increments with non-negative value if 0, with negated value if 1.
• CMASK (bits 28:24): Specifies a positive threshold value to filter raw event count input.

At the uncore domain level, there is a master set of control MSRs that centrally manages all the performance moni-
toring facility of uncore units. Figure 20-33 shows the layout of the uncore domain global control.

When an uncore counter overflows, a PMI can be routed to a processor core. Bits 3:0 of MSR_UNC_PERF_-
GLOBAL_CTRL can be used to select which processor core to handle the uncore PMI. Software must then write to
bit 13 of IA32_DEBUGCTL (at address 1D9H) to enable this capability.
• PMI_SEL_Core#: Enables the forwarding of an uncore PMI request to a processor core, if 1. If bit 30 (WakePMI)

is ‘1’, a wake request is sent to the respective processor core prior to sending the PMI.
• EN: Enables the fixed uncore counter, the ARB counters, and the CBO counters in the uncore PMU, if 1. This bit

is cleared if bit 31 (FREEZE) is set and any enabled uncore counters overflow.
• WakePMI: Controls sending a wake request to any halted processor core before issuing the uncore PMI request.

If a processor core was halted and not sent a wake request, the uncore PMI will not be serviced by the
processor core.

• FREEZE: Provides the capability to freeze all uncore counters when an overflow condition occurs in a unit
counter. When this bit is set, and a counter overflow occurs, the uncore PMU logic will clear the global enable
bit (bit 29).

Additionally, there is also a fixed counter, counting uncore clockticks, for the uncore domain. Table 20-19 summa-
rizes the number MSRs for uncore PMU for each box.

Figure 20-33. Layout of MSR_UNC_PERF_GLOBAL_CTRL MSR for Uncore

Table 20-19. Uncore PMU MSR Summary

Box # of Boxes
Counters per
Box

Counter
Width

General
Purpose

Global
Enable Comment

C-Box SKU specific 2 44 Yes Per-box Up to 4, seeTable 2-21
MSR_UNC_CBO_CONFIG

ARB 1 2 44 Yes Uncore

FREEZE—Freeze counters

EN—Enable all uncore counters

02829303132

Reserved

63

WakePMI—Wake cores on PMI

RESET Value — 00000000_00000000H

4 3 2 1

PMI_Sel_Core3 — Uncore PMI to core 3
PMI_Sel_Core2 — Uncore PMI to core 2
PMI_Sel_Core1 — Uncore PMI to core 1
PMI_Sel_Core0 — Uncore PMI to core 0
Vol. 3B 20-45

https://perfmon-events.intel.com/
https://perfmon-events.intel.com/

PERFORMANCE MONITORING
20.3.4.6.1 Uncore Performance Monitoring Events

There are certain restrictions on the uncore performance counters in each C-Box. Specifically,
• Occupancy events are supported only with counter 0 but not counter 1.
• Other uncore C-Box events can be programmed with either counter 0 or 1.

The C-Box uncore performance events can collect performance characteristics of transactions initiated by
processor core. In that respect, they are similar to various sub-events in the OFFCORE_RESPONSE family of perfor-
mance events in the core PMU. Information such as data supplier locality (LLC HIT/MISS) and snoop responses can
be collected via OFFCORE_RESPONSE and qualified on a per-thread basis.

On the other hand, uncore performance event logic cannot associate its counts with the same level of per-thread
qualification attributes as the core PMU events can. Therefore, whenever similar event programming capabilities
are available from both core PMU and uncore PMU, the recommendation is that utilizing the core PMU events may
be less affected by artifacts, complex interactions and other factors.

20.3.4.7 Intel® Xeon® Processor E5 Family Performance Monitoring Facility
The Intel® Xeon® Processor E5 Family (and Intel® Core™ i7-3930K Processor) are based on Sandy Bridge-E
microarchitecture. While the processor cores share the same microarchitecture as those of the Intel® Xeon®
Processor E3 Family and 2nd generation Intel Core i7-2xxx, Intel Core i5-2xxx, Intel Core i3-2xxx processor series,
the uncore subsystems are different. An overview of the uncore performance monitoring facilities of the Intel Xeon
processor E5 family (and Intel Core i7-3930K processor) is described in Section 20.3.4.8.

Thus, the performance monitoring facilities in the processor core generally are the same as those described in
Section 20.6.3 through Section 20.3.4.5. However, the MSR_OFFCORE_RSP_0/MSR_OFFCORE_RSP_1 Response
Supplier Info field shown in Table 20-17 applies to Intel Core Processors with CPUID signature of DisplayFami-
ly_DisplayModel encoding of 06_2AH; Intel Xeon processor with CPUID signature of DisplayFamily_DisplayModel
encoding of 06_2DH supports an additional field for remote DRAM controller shown in Table 20-20. Additionally,
there are some small differences in the non-architectural performance monitoring events (see event list available
at: https://perfmon-events.intel.com/).

Fixed
Counter

N.A. N.A. 48 No Uncore

Table 20-20. MSR_OFFCORE_RSP_x Supplier Info Field Definitions

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier Info NO_SUPP 17 No Supplier Information available.

LLC_HITM 18 M-state initial lookup stat in L3.

LLC_HITE 19 E-state

LLC_HITS 20 S-state

LLC_HITF 21 F-state

LOCAL 22 Local DRAM Controller.

Remote 30:23 Remote DRAM Controller (either all 0s or all 1s).

Table 20-19. Uncore PMU MSR Summary (Contd.)

Box # of Boxes
Counters per
Box

Counter
Width

General
Purpose

Global
Enable Comment
20-46 Vol. 3B

https://perfmon-events.intel.com/
https://perfmon-events.intel.com/

PERFORMANCE MONITORING
20.3.4.8 Intel® Xeon® Processor E5 Family Uncore Performance Monitoring Facility
The uncore subsystem in the Intel Xeon processor E5-2600 product family has some similarities with those of the
Intel Xeon processor E7 family. Within the uncore subsystem, localized performance counter sets are provided at
logic control unit scope. For example, each Cbox caching agent has a set of local performance counters, and the
power controller unit (PCU) has its own local performance counters. Up to 8 C-Box units are supported in the
uncore sub-system.

Table 20-21 summarizes the uncore PMU facilities providing MSR interfaces.

Details of the uncore performance monitoring facility of Intel Xeon Processor E5 family is available in “Intel®
Xeon® Processor E5 Uncore Performance Monitoring Programming Reference Manual”. The MSR-based uncore
PMU interfaces are listed in Table 2-24.

20.3.5 3rd Generation Intel® Core™ Processor Performance Monitoring Facility
The 3rd generation Intel® Core™ processor family and Intel® Xeon® processor E3-1200v2 product family are
based on the Ivy Bridge microarchitecture. The performance monitoring facilities in the processor core generally
are the same as those described in Section 20.6.3 through Section 20.3.4.5. The non-architectural performance
monitoring events supported by the processor core can be found at: https://perfmon-events.intel.com/.

20.3.5.1 Intel® Xeon® Processor E5 v2 and E7 v2 Family Uncore Performance Monitoring Facility
The uncore subsystem in the Intel Xeon processor E5 v2 and Intel Xeon Processor E7 v2 product families are based
on the Ivy Bridge-E microarchitecture. There are some similarities with those of the Intel Xeon processor E5 family
based on the Sandy Bridge microarchitecture. Within the uncore subsystem, localized performance counter sets
are provided at logic control unit scope.

Details of the uncore performance monitoring facility of Intel Xeon Processor E5 v2 and Intel Xeon Processor E7 v2
families are available in the “Intel® Xeon® Processor E5 v2 and E7 v2 Uncore Performance Monitoring Program-
ming Reference Manual”. The MSR-based uncore PMU interfaces are listed in Table 2-28.

20.3.6 4th Generation Intel® Core™ Processor Performance Monitoring Facility
The 4th generation Intel® Core™ processor and Intel® Xeon® processor E3-1200 v3 product family are based on
the Haswell microarchitecture. The core PMU supports architectural performance monitoring capability with version
ID 3 (see Section 20.2.3) and a host of non-architectural monitoring capabilities.

Architectural performance monitoring version 3 capabilities are described in Section 20.2.3.

The core PMU’s capability is similar to those described in Section 20.6.3 through Section 20.3.4.5, with some differ-
ences and enhancements summarized in Table 20-22. Additionally, the core PMU provides some enhancement to
support performance monitoring when the target workload contains instruction streams using Intel® Transactional
Synchronization Extensions (TSX), see Section 20.3.6.5. For details of Intel TSX, see Chapter 16, “Programming with
Intel® Transactional Synchronization Extensions‚” of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1.

Table 20-21. Uncore PMU MSR Summary for Intel® Xeon® Processor E5 Family

Box # of Boxes Counters per Box
Counter
Width

General
Purpose

Global
Enable Sub-control MSRs

C-Box 8 4 44 Yes per-box None

PCU 1 4 48 Yes per-box Match/Mask

U-Box 1 2 44 Yes uncore None
Vol. 3B 20-47

https://perfmon-events.intel.com/
https://perfmon-events.intel.com/
https://perfmon-events.intel.com/

PERFORMANCE MONITORING
20.3.6.1 Processor Event Based Sampling (PEBS) Facility
The PEBS facility in the 4th Generation Intel Core processor is similar to those in processors based on Sandy Bridge
microarchitecture, with several enhanced features. The key components and differences of PEBS facility relative to
Sandy Bridge microarchitecture is summarized in Table 20-23.

Table 20-22. Core PMU Comparison

Box Haswell Microarchitecture Sandy Bridge Microarchitecture Comment

of Fixed counters per thread 3 3 Use CPUID to determine #
of counters. See Section
20.2.1.

of general-purpose counters
per core

8 8 Use CPUID to determine #
of counters. See Section
20.2.1.

Counter width (R,W) R:48, W: 32/48 R:48, W: 32/48 See Section 20.2.2.

of programmable counters
per thread

4 or (8 if a core not shared by two
threads)

4 or (8 if a core not shared by two
threads)

Use CPUID to determine #
of counters. See Section
20.2.1.

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with
legacy semantics.

• Freeze_LBR_on_PMI with
legacy semantics for branch
profiling.

• Freeze_while_SMM.

• Freeze_Perfmon_on_PMI with
legacy semantics.

• Freeze_LBR_on_PMI with
legacy semantics for branch
profiling.

• Freeze_while_SMM.

See Section 18.4.7.

Processor Event Based
Sampling (PEBS) Events

See Table 20-12 and Section
20.3.6.5.1.

See Table 20-12. IA32_PMC4-IA32_PMC7
do not support PEBS.

PEBS-Load Latency See Section 20.3.4.4.2. See Section 20.3.4.4.2.

PEBS-Precise Store No, replaced by Data Address
profiling.

Section 20.3.4.4.3

PEBS-PDIR Yes (using precise
INST_RETIRED.ALL)

Yes (using precise
INST_RETIRED.ALL)

PEBS-EventingIP Yes No

Data Address Profiling Yes No

LBR Profiling Yes Yes

Call Stack Profiling Yes, see Section 18.11. No Use LBR facility.

Off-core Response Event MSR 1A6H and 1A7H; extended
request and response types.

MSR 1A6H and 1A7H; extended
request and response types.

Intel TSX support for Perfmon See Section 20.3.6.5. No

Table 20-23. PEBS Facility Comparison

Box Haswell Microarchitecture Sandy Bridge Microarchitecture Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7

PEBS Buffer Programming Section 20.3.1.1.1 Section 20.3.1.1.1 Unchanged

IA32_PEBS_ENABLE Layout Figure 20-15 Figure 20-29

PEBS record layout Table 20-24; enhanced fields
at offsets 98H, A0H, A8H, B0H.

Table 20-3; enhanced fields at
offsets 98H, A0H, A8H.
20-48 Vol. 3B

PERFORMANCE MONITORING
Only IA32_PMC0 through IA32_PMC3 support PEBS.

NOTE
PEBS events are only valid when the following fields of IA32_PERFEVTSELx are all zero: AnyThread,
Edge, Invert, CMask.

In a PMU with PDIR capability, PEBS behavior is unpredictable if IA32_PERFEVTSELx or IA32_PMCx
is changed for a PEBS-enabled counter while an event is being counted. To avoid this, changes to
the programming or value of a PEBS-enabled counter should be performed when the counter is
disabled.

20.3.6.2 PEBS Data Format
The PEBS record format for the 4th Generation Intel Core processor is shown in Table 20-24. The PEBS record
format, along with debug/store area storage format, does not change regardless of whether IA-32e mode is active
or not. CPUID.01H:ECX.DTES64[bit 2] reports whether the processor's DS storage format support is mode-inde-
pendent. When set, it uses 64-bit DS storage format.

Precise Events See Table 20-12. See Table 20-12. IA32_PMC4-IA32_PMC7 do
not support PEBS.

PEBS-Load Latency See Table 20-13. Table 20-13

PEBS-Precise Store No, replaced by data address
profiling.

Yes; see Section 20.3.4.4.3.

PEBS-PDIR Yes Yes IA32_PMC1 only.

PEBS skid from EventingIP 1 (or 2 if micro+macro fusion) 1

SAMPLING Restriction Small SAV(CountDown) value incur higher overhead than prior
generation.

Table 20-24. PEBS Record Format for 4th Generation Intel Core Processor Family

Byte Offset Field Byte Offset Field

00H R/EFLAGS 60H R10

08H R/EIP 68H R11

10H R/EAX 70H R12

18H R/EBX 78H R13

20H R/ECX 80H R14

28H R/EDX 88H R15

30H R/ESI 90H IA32_PERF_GLOBAL_STATUS

38H R/EDI 98H Data Linear Address

40H R/EBP A0H Data Source Encoding

48H R/ESP A8H Latency value (core cycles)

50H R8 B0H EventingIP

58H R9 B8H TX Abort Information (Section
20.3.6.5.1)

Table 20-23. PEBS Facility Comparison

Box Haswell Microarchitecture Sandy Bridge Microarchitecture Comment
Vol. 3B 20-49

PERFORMANCE MONITORING
The layout of PEBS records are almost identical to those shown in Table 20-3. Offset B0H is a new field that records
the eventing IP address of the retired instruction that triggered the PEBS assist.

The PEBS records at offsets 98H, A0H, and ABH record data gathered from three of the PEBS capabilities in prior
processor generations: load latency facility (Section 20.3.4.4.2), PDIR (Section 20.3.4.4.4), and the equivalent
capability of precise store in prior generation (see Section 20.3.6.3).

In the core PMU of the 4th generation Intel Core processor, load latency facility and PDIR capabilities are
unchanged. However, precise store is replaced by an enhanced capability, data address profiling, that is not
restricted to store address. Data address profiling also records information in PEBS records at offsets 98H, A0H,
and ABH.

20.3.6.3 PEBS Data Address Profiling
The Data Linear Address facility is also abbreviated as DataLA. The facility is a replacement or extension of the
precise store facility in previous processor generations. The DataLA facility complements the load latency facility by
providing a means to profile load and store memory references in the system, leverages the PEBS facility, and
provides additional information about sampled loads and stores. Having precise memory reference events with
linear address information for both loads and stores provides information to improve data structure layout, elimi-
nate remote node references, and identify cache-line conflicts in NUMA systems.

The DataLA facility in the 4th generation processor supports the following events configured to use PEBS:

DataLA can use any one of the IA32_PMC0-IA32_PMC3 counters. Counter overflows will initiate the generation of
PEBS records. Upon counter overflow, hardware captures the linear address and possible other status information
of the retiring memory uop. This information is then written to the PEBS record that is subsequently generated.

To enable the DataLA facility, software must complete the following steps. Please note that the DataLA facility relies
on the PEBS facility, so the PEBS configuration requirements must be completed before attempting to capture
DataLA information.
• Complete the PEBS configuration steps.
• Program an event listed in Table 20-25 using any one of IA32_PERFEVTSEL0-IA32_PERFEVTSEL3.
• Set the corresponding IA32_PEBS_ENABLE.PEBS_EN_CTRx bit. This enables the corresponding IA32_PMCx as

a PEBS counter and enables the DataLA facility.

When the DataLA facility is enabled, the relevant information written into a PEBS record affects entries at offsets
98H, A0H, and A8H, as shown in Table 20-26.

Table 20-25. Precise Events That Supports Data Linear Address Profiling
Event Name Event Name

MEM_UOPS_RETIRED.STLB_MISS_LOADS MEM_UOPS_RETIRED.STLB_MISS_STORES

MEM_UOPS_RETIRED.LOCK_LOADS MEM_UOPS_RETIRED.SPLIT_STORES

MEM_UOPS_RETIRED.SPLIT_LOADS MEM_UOPS_RETIRED.ALL_STORES

MEM_UOPS_RETIRED.ALL_LOADS MEM_LOAD_UOPS_LLC_MISS_RETIRED.LOCAL_DRAM

MEM_LOAD_UOPS_RETIRED.L1_HIT MEM_LOAD_UOPS_RETIRED.L2_HIT

MEM_LOAD_UOPS_RETIRED.L3_HIT MEM_LOAD_UOPS_RETIRED.L1_MISS

MEM_LOAD_UOPS_RETIRED.L2_MISS MEM_LOAD_UOPS_RETIRED.L3_MISS

MEM_LOAD_UOPS_RETIRED.HIT_LFB MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS

MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM

UOPS_RETIRED.ALL (if load or store is tagged) MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_NONE
20-50 Vol. 3B

PERFORMANCE MONITORING
20.3.6.3.1 EventingIP Record

The PEBS record layout for processors based on Haswell microarchitecture adds a new field at offset 0B0H. This is
the eventingIP field that records the IP address of the retired instruction that triggered the PEBS assist. The
EIP/RIP field at offset 08H records the IP address of the next instruction to be executed following the PEBS assist.

20.3.6.4 Off-core Response Performance Monitoring
The core PMU facility to collect off-core response events are similar to those described in Section 20.3.4.5. The
event codes are listed in Table 20-15. Each event code for off-core response monitoring requires programming an
associated configuration MSR, MSR_OFFCORE_RSP_x. Software must program MSR_OFFCORE_RSP_x according
to:
• Transaction request type encoding (bits 15:0): see Table 20-27.
• Supplier information (bits 30:16): see Table 20-28.
• Snoop response information (bits 37:31): see Table 20-18.

Table 20-26. Layout of Data Linear Address Information In PEBS Record

Field Offset Description

Data Linear
Address

98H The linear address of the load or the destination of the store.

Store Status A0H • DCU Hit (Bit 0): The store hit the data cache closest to the core (L1 cache) if this bit is set, otherwise
the store missed the data cache. This information is valid only for the following store events:
UOPS_RETIRED.ALL (if store is tagged),
MEM_UOPS_RETIRED.STLB_MISS_STORES,
MEM_UOPS_RETIRED.SPLIT_STORES, MEM_UOPS_RETIRED.ALL_STORES

• Other bits are zero, The STLB_MISS, LOCK bit information can be obtained by programming the
corresponding store event in Table 20-25.

Reserved A8H Always zero.

Table 20-27. MSR_OFFCORE_RSP_x Request_Type Definition (Haswell Microarchitecture)

Bit Name Offset Description

DMND_DATA_RD 0 Counts the number of demand data reads and page table entry cacheline reads. Does not count L2 data
read prefetches or instruction fetches.

DMND_RFO 1 Counts demand read (RFO) and software prefetches (PREFETCHW) for exclusive ownership in
anticipation of a write.

DMND_IFETCH 2 Counts the number of demand instruction cacheline reads and L1 instruction cacheline prefetches.

COREWB 3 Counts the number of modified cachelines written back.

PF_DATA_RD 4 Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 Counts the number of code reads generated by L2 prefetchers.

PF_L3_DATA_RD 7 Counts the number of data cacheline reads generated by L3 prefetchers.

PF_L3_RFO 8 Counts the number of RFO requests generated by L3 prefetchers.

PF_L3_CODE_RD 9 Counts the number of code reads generated by L3 prefetchers.

SPLIT_LOCK_UC_
LOCK

10 Counts the number of lock requests that split across two cachelines or are to UC memory.

STRM_ST 11 Counts the number of streaming store requests electronically.

Reserved 14:12 Reserved
Vol. 3B 20-51

PERFORMANCE MONITORING
The supplier information field listed in Table 20-28. The fields vary across products (according to CPUID signatures)
and is noted in the description.

20.3.6.4.1 Off-core Response Performance Monitoring in Intel Xeon Processors E5 v3 Series

Table 20-28 lists the supplier information field that apply to Intel Xeon processor E5 v3 series (CPUID signature
06_3FH).

OTHER 15 Any other request that crosses IDI, including I/O.

Table 20-28. MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signatures: 06_3CH, 06_46H)

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier
Info

NO_SUPP 17 No Supplier Information available.

L3_HITM 18 M-state initial lookup stat in L3.

L3_HITE 19 E-state

L3_HITS 20 S-state

Reserved 21 Reserved

LOCAL 22 Local DRAM Controller.

Reserved 30:23 Reserved

Table 20-29. MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signature: 06_45H)

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier
Info

NO_SUPP 17 No Supplier Information available.

L3_HITM 18 M-state initial lookup stat in L3.

L3_HITE 19 E-state

L3_HITS 20 S-state

Reserved 21 Reserved

L4_HIT_LOCAL_L4 22 L4 Cache

L4_HIT_REMOTE_HOP0_L4 23 L4 Cache

L4_HIT_REMOTE_HOP1_L4 24 L4 Cache

L4_HIT_REMOTE_HOP2P_L4 25 L4 Cache

Reserved 30:26 Reserved

Table 20-27. MSR_OFFCORE_RSP_x Request_Type Definition (Haswell Microarchitecture) (Contd.)

Bit Name Offset Description
20-52 Vol. 3B

PERFORMANCE MONITORING
20.3.6.5 Performance Monitoring and Intel® TSX
Chapter 16 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the details
of Intel® Transactional Synchronization Extensions (Intel® TSX). This section describes performance monitoring
support for Intel TSX.

If a processor supports Intel TSX, the core PMU enhances its IA32_PERFEVTSELx MSR with two additional bit fields
for event filtering. Support for Intel TSX is indicated by either (a) CPUID.(EAX=7, ECX=0):RTM[bit 11]=1, or (b) if
CPUID.07H.EBX.HLE [bit 4] = 1. The TSX-enhanced layout of IA32_PERFEVTSELx is shown in Figure 20-34. The
two additional bit fields are:
• IN_TX (bit 32): When set, the counter will only include counts that occurred inside a transactional region,

regardless of whether that region was aborted or committed. This bit may only be set if the processor supports
HLE or RTM.

• IN_TXCP (bit 33): When set, the counter will not include counts that occurred inside of an aborted transac-
tional region. This bit may only be set if the processor supports HLE or RTM. This bit may only be set for
IA32_PERFEVTSEL2.

When the IA32_PERFEVTSELx MSR is programmed with both IN_TX=0 and IN_TXCP=0 on a processor that
supports Intel TSX, the result in a counter may include detectable conditions associated with a transaction code
region for its aborted execution (if any) and completed execution.

In the initial implementation, software may need to take pre-caution when using the IN_TXCP bit. See Table 2-29.

Table 20-30. MSR_OFFCORE_RSP_x Supplier Info Field Definition

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier
Info

NO_SUPP 17 No Supplier Information available.

L3_HITM 18 M-state initial lookup stat in L3.

L3_HITE 19 E-state

L3_HITS 20 S-state

L3_HITF 21 F-state

LOCAL 22 Local DRAM Controller.

Reserved 26:23 Reserved

L3_MISS_REMOTE_HOP0 27 Hop 0 Remote supplier.

L3_MISS_REMOTE_HOP1 28 Hop 1 Remote supplier.

L3_MISS_REMOTE_HOP2P 29 Hop 2 or more Remote supplier.

Reserved 30 Reserved
Vol. 3B 20-53

PERFORMANCE MONITORING
A common usage of setting IN_TXCP=1 is to capture the number of events that were discarded due to a transac-
tional abort. With IA32_PMC2 configured to count in such a manner, then when a transactional region aborts, the
value for that counter is restored to the value it had prior to the aborted transactional region. As a result, any
updates performed to the counter during the aborted transactional region are discarded.

On the other hand, setting IN_TX=1 can be used to drill down on the performance characteristics of transactional
code regions. When a PMCx is configured with the corresponding IA32_PERFEVTSELx.IN_TX=1, only eventing
conditions that occur inside transactional code regions are propagated to the event logic and reflected in the
counter result. Eventing conditions specified by IA32_PERFEVTSELx but occurring outside a transactional region
are discarded.

Additionally, a number of performance events are solely focused on characterizing the execution of Intel TSX trans-
actional code, they can be found at: https://perfmon-events.intel.com/.

20.3.6.5.1 Intel® TSX and PEBS Support

If a PEBS event would have occurred inside a transactional region, then the transactional region first aborts, and
then the PEBS event is processed.

Two of the TSX performance monitoring events also support using the PEBS facility to capture additional informa-
tion. They are:
• HLE_RETIRED.ABORTED (encoding C8H mask 04H),
• RTM_RETIRED.ABORTED (encoding C9H mask 04H).

A transactional abort (HLE_RETIRED.ABORTED,RTM_RETIRED.ABORTED) can also be programmed to cause PEBS
events. In this scenario, a PEBS event is processed following the abort.

Pending a PEBS record inside of a transactional region will cause a transactional abort. If a PEBS record was pended
at the time of the abort or on an overflow of the TSX PEBS events listed above, only the following PEBS entries will
be valid (enumerated by PEBS entry offset B8H bits[33:32] to indicate an HLE abort or an RTM abort):
• Offset B0H: EventingIP,
• Offset B8H: TX Abort Information

These fields are set for all PEBS events.
• Offset 08H (RIP/EIP) corresponds to the instruction following the outermost XACQUIRE in HLE or the first

instruction of the fallback handler of the outermost XBEGIN instruction in RTM. This is useful to identify the
aborted transactional region.

In the case of HLE, an aborted transaction will restart execution deterministically at the start of the HLE region. In
the case of RTM, an aborted transaction will transfer execution to the RTM fallback handler.

The layout of the TX Abort Information field is given in Table 20-31.

Figure 20-34. Layout of IA32_PERFEVTSELx MSRs Supporting Intel TSX

31

INV—Invert counter mask
EN—Enable counters

INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode

USR—User Mode

Counter Mask
EE

N
I
N
T

19 1618 15172021222324

Reserved
I
N
V

P
C

U
S
R

O
S Unit Mask (UMASK)(CMASK)

63

ANY—Any Thread

A
N
Y

34

IN_TX—In Trans. Rgn
IN_TXCP—In Tx exclude abort (PERFEVTSEL2 Only)
20-54 Vol. 3B

https://perfmon-events.intel.com/
https://perfmon-events.intel.com/

PERFORMANCE MONITORING
20.3.6.6 Uncore Performance Monitoring Facilities in the 4th Generation Intel® Core™ Processors
The uncore sub-system in the 4th Generation Intel® Core™ processors provides its own performance monitoring
facility. The uncore PMU facility provides dedicated MSRs to select uncore performance monitoring events in a
similar manner as those described in Section 20.3.4.6.

The ARB unit and each C-Box provide local pairs of event select MSR and counter register. The layout of the event
select MSRs in the C-Boxes are identical as shown in Figure 20-32.

At the uncore domain level, there is a master set of control MSRs that centrally manages all the performance moni-
toring facility of uncore units. Figure 20-33 shows the layout of the uncore domain global control.

Additionally, there is also a fixed counter, counting uncore clockticks, for the uncore domain. Table 20-19 summa-
rizes the number MSRs for uncore PMU for each box.

The uncore performance events for the C-Box and ARB units can be found at: https://perfmon-events.intel.com/.

20.3.6.7 Intel® Xeon® Processor E5 v3 Family Uncore Performance Monitoring Facility
Details of the uncore performance monitoring facility of Intel Xeon Processor E5 v3 families are available in “Intel®
Xeon® Processor E5 v3 Uncore Performance Monitoring Programming Reference Manual”. The MSR-based uncore
PMU interfaces are listed in Table 2-33.

Table 20-31. TX Abort Information Field Definition

Bit Name Offset Description

Cycles_Last_TX 31:0 The number of cycles in the last TSX region, regardless of whether that region had aborted or
committed.

HLE_Abort 32 If set, the abort information corresponds to an aborted HLE execution

RTM_Abort 33 If set, the abort information corresponds to an aborted RTM execution

Instruction_Abort 34 If set, the abort was associated with the instruction corresponding to the eventing IP (offset
0B0H) within the transactional region.

Non_Instruction_Abort 35 If set, the instruction corresponding to the eventing IP may not necessarily be related to the
transactional abort.

Retry 36 If set, retrying the transactional execution may have succeeded.

Data_Conflict 37 If set, another logical processor conflicted with a memory address that was part of the
transactional region that aborted.

Capacity Writes 38 If set, the transactional region aborted due to exceeding resources for transactional writes.

Capacity Reads 39 If set, the transactional region aborted due to exceeding resources for transactional reads.

In_Suspend 40 Transaction was aborted while in a suspend region. This is an Intel Xeon processor only feature,
available beginning with 4th generation Intel Xeon Scalable Processor Family; otherwise
reserved.

Reserved 63:41 Reserved

Table 20-32. Uncore PMU MSR Summary

Box # of Boxes
Counters per
Box

Counter
Width

General
Purpose

Global
Enable Comment

C-Box SKU specific 2 44 Yes Per-box Up to 4, seeTable 2-21
MSR_UNC_CBO_CONFIG

ARB 1 2 44 Yes Uncore

Fixed Counter N.A. N.A. 48 No Uncore
Vol. 3B 20-55

https://perfmon-events.intel.com/

PERFORMANCE MONITORING
20.3.7 5th Generation Intel® Core™ Processor and Intel® Core™ M Processor Performance
Monitoring Facility

The 5th Generation Intel® Core™ processor and the Intel® Core™ M processor families are based on the Broadwell
microarchitecture. The core PMU supports architectural performance monitoring capability with version ID 3 (see
Section 20.2.3) and a host of non-architectural monitoring capabilities.

Architectural performance monitoring version 3 capabilities are described in Section 20.2.3.

The core PMU has the same capability as those described in Section 20.3.6. IA32_PERF_GLOBAL_STATUS provide
a bit indicator (bit 55) for PMI handler to distinguish PMI due to output buffer overflow condition due to accumu-
lating packet data from Intel Processor Trace.

Details of Intel Processor Trace is described in Chapter 33, “Intel® Processor Trace.” The
IA32_PERF_GLOBAL_OVF_CTRL MSR provides a corresponding reset control bit.

Figure 20-35. IA32_PERF_GLOBAL_STATUS MSR in Broadwell Microarchitecture

Figure 20-36. IA32_PERF_GLOBAL_OVF_CTRL MSR in Broadwell microarchitecture

62

FIXED_CTR2 Overflow (RO)
FIXED_CTR1 Overflow (RO)
FIXED_CTR0 Overflow (RO)
PMC7_OVF (RO, If PMC7 present)

2 1 0

PMC6_OVF (RO, If PMC6 present)

3132333435

Reserved

63

CondChgd
Ovf_Buffer

8 7 6 5 4 3

PMC5_OVF (RO, If PMC5 present)
PMC4_OVF (RO, If PMC4 present)
PMC3_OVF (RO)
PMC2_OVF (RO)
PMC1_OVF (RO)
PMC0_OVF (RO)

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

Ovf_UncorePMU

61

Trace_ToPA_PMI

55

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC7_ClrOvf (if PMC7 present)

2 1 0

PMC6_ClrOvf (if PMC6 present)

3132333435

Reserved

63

ClrCondChgd
ClrOvfDSBuffer

8 7 6 5 4 3

PMC5_ClrOvf (if PMC5 present)
PMC4_ClrOvf (if PMC4 present)
PMC3_ClrOvf
PMC2_ClrOvf
PMC1_ClrOvf
PMC0_ClrOvf

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

ClrOvfUncore
ClrTraceToPA_PMI

61 55
20-56 Vol. 3B

PERFORMANCE MONITORING
The specifics of non-architectural performance events can be found at: https://perfmon-events.intel.com/.

20.3.8 6th Generation, 7th Generation and 8th Generation Intel® Core™ Processor
Performance Monitoring Facility

The 6th generation Intel® Core™ processor is based on the Skylake microarchitecture. The 7th generation Intel®
Core™ processor is based on the Kaby Lake microarchitecture. The 8th generation Intel® Core™ processors, 9th
generation Intel® Core™ processors, and Intel® Xeon® E processors are based on the Coffee Lake microarchitec-
ture. For these microarchitectures, the core PMU supports architectural performance monitoring capability with
version ID 4 (see Section 20.2.4) and a host of non-architectural monitoring capabilities.

Architectural performance monitoring version 4 capabilities are described in Section 20.2.4.

The core PMU’s capability is similar to those described in Section 20.6.3 through Section 20.3.4.5, with some differ-
ences and enhancements summarized in Table 20-33. Additionally, the core PMU provides some enhancement to
support performance monitoring when the target workload contains instruction streams using Intel® Transactional
Synchronization Extensions (TSX), see Section 20.3.6.5. For details of Intel TSX, see Chapter 16, “Programming
with Intel® Transactional Synchronization Extensions‚” of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1.

Performance monitoring result may be affected by side-band activity on processors that support Intel SGX, details
are described in Chapter 40, “Enclave Code Debug and Profiling.”

Table 20-33. Core PMU Comparison

Box Skylake, Kaby Lake and Coffee Lake
Microarchitectures

Haswell and Broadwell
Microarchitectures

Comment

of Fixed counters per thread 3 3 Use CPUID to
determine # of
counters. See
Section 20.2.1.

of general-purpose counters
per core

8 8 Use CPUID to
determine # of
counters. See
Section 20.2.1.

Counter width (R,W) R:48, W: 32/48 R:48, W: 32/48 See Section 20.2.2.

of programmable counters
per thread

4 or (8 if a core not shared by two
threads)

4 or (8 if a core not shared by two
threads)

Use CPUID to
determine # of
counters. See
Section 20.2.1.

Architectural Perfmon version 4 3 See Section 20.2.4

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with
streamlined semantics.

• Freeze_LBR_on_PMI with
streamlined semantics.

• Freeze_while_SMM.

• Freeze_Perfmon_on_PMI with
legacy semantics.

• Freeze_LBR_on_PMI with
legacy semantics for branch
profiling.

• Freeze_while_SMM.

See Section 18.4.7.

Legacy semantics
not supported with
version 4 or higher.

Counter and Buffer Overflow
Status Management

• Query via
IA32_PERF_GLOBAL_STATUS

• Reset via
IA32_PERF_GLOBAL_STATUS_RESET

• Set via
IA32_PERF_GLOBAL_STATUS_SET

• Query via
IA32_PERF_GLOBAL_STATUS

• Reset via
IA32_PERF_GLOBAL_OVF_CTRL

See Section 20.2.4.
Vol. 3B 20-57

https://perfmon-events.intel.com/

PERFORMANCE MONITORING
20.3.8.1 Processor Event Based Sampling (PEBS) Facility
The PEBS facility in the 6th generation, 7th generation and 8th generation Intel Core processors provides a number
enhancement relative to PEBS in processors based on Haswell/Broadwell microarchitectures. The key components
and differences of PEBS facility relative to Haswell/Broadwell microarchitecture is summarized in Table 20-34.

IA32_PERF_GLOBAL_STATUS
Indicators of
Overflow/Overhead/Interferen
ce

• Individual counter overflow
• PEBS buffer overflow
• ToPA buffer overflow
• CTR_Frz, LBR_Frz, ASCI

• Individual counter overflow
• PEBS buffer overflow
• ToPA buffer overflow

(applicable to Broadwell
microarchitecture)

See Section 20.2.4.

Enable control in
IA32_PERF_GLOBAL_STATUS

• CTR_Frz
• LBR_Frz

NA See Section
20.2.4.1.

Perfmon Counter In-Use
Indicator

Query IA32_PERF_GLOBAL_INUSE NA See Section
20.2.4.3.

Precise Events See Table 20-36. See Table 20-12. IA32_PMC4-PMC7
do not support
PEBS.

PEBS for front end events See Section 20.3.8.2. No

LBR Record Format Encoding 000101b 000100b Section 18.4.8.1

LBR Size 32 entries 16 entries

LBR Entry From_IP/To_IP/LBR_Info triplet From_IP/To_IP pair Section 18.12

LBR Timing Yes No Section 18.12.1

Call Stack Profiling Yes, see Section 18.11 Yes, see Section 18.11 Use LBR facility.

Off-core Response Event MSR 1A6H and 1A7H; Extended request
and response types.

MSR 1A6H and 1A7H; Extended
request and response types.

Intel TSX support for Perfmon See Section 20.3.6.5. See Section 20.3.6.5.

Table 20-34. PEBS Facility Comparison

Box Skylake, Kaby Lake and
Coffee Lake

Microarchitectures

Haswell and Broadwell
Microarchitectures

Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7.

PEBS Buffer Programming Section 20.3.1.1.1 Section 20.3.1.1.1 Unchanged

IA32_PEBS_ENABLE Layout Figure 20-15 Figure 20-15

PEBS-EventingIP Yes Yes

PEBS record format encoding 0011b 0010b

PEBS record layout Table 20-35; enhanced fields
at offsets 98H- B8H; and TSC
record field at C0H.

Table 20-24; enhanced fields at
offsets 98H, A0H, A8H, B0H.

Multi-counter PEBS
resolution

PEBS record 90H resolves the
eventing counter overflow.

PEBS record 90H reflects
IA32_PERF_GLOBAL_STATUS.

Precise Events See Table 20-36. See Table 20-12. IA32_PMC4-IA32_PMC7 do not
support PEBS.

Table 20-33. Core PMU Comparison (Contd.)

Box Skylake, Kaby Lake and Coffee Lake
Microarchitectures

Haswell and Broadwell
Microarchitectures

Comment
20-58 Vol. 3B

PERFORMANCE MONITORING
Only IA32_PMC0 through IA32_PMC3 support PEBS.

NOTES
Precise events are only valid when the following fields of IA32_PERFEVTSELx are all zero:
AnyThread, Edge, Invert, CMask.

In a PMU with PDIR capability, PEBS behavior is unpredictable if IA32_PERFEVTSELx or IA32_PMCx
is changed for a PEBS-enabled counter while an event is being counted. To avoid this, changes to
the programming or value of a PEBS-enabled counter should be performed when the counter is
disabled.

20.3.8.1.1 PEBS Data Format

The PEBS record format for the 6th generation, 7th generation and 8th generation Intel Core processors is
reporting with encoding 0011b in IA32_PERF_CAPABILITIES[11:8]. The lay out is shown in Table 20-35. The PEBS
record format, along with debug/store area storage format, does not change regardless of whether IA-32e mode is
active or not. CPUID.01H:ECX.DTES64[bit 2] reports whether the processor's DS storage format support is mode-
independent. When set, it uses 64-bit DS storage format.

The layout of PEBS records are largely identical to those shown in Table 20-24.

PEBS-PDIR Yes Yes IA32_PMC1 only.

PEBS-Load Latency See Section 20.3.4.4.2. See Section 20.3.4.4.2.

Data Address Profiling Yes Yes

FrontEnd event support FrontEnd_Retried event and
MSR_PEBS_FRONTEND.

No IA32_PMC0-PMC3 only.

Table 20-35. PEBS Record Format for the 6th Generation, 7th Generation, and 8th Generation Intel Core Processor
Families

Byte Offset Field Byte Offset Field

00H R/EFLAGS 68H R11

08H R/EIP 70H R12

10H R/EAX 78H R13

18H R/EBX 80H R14

20H R/ECX 88H R15

28H R/EDX 90H Applicable Counter

30H R/ESI 98H Data Linear Address

38H R/EDI A0H Data Source Encoding

40H R/EBP A8H Latency value (core cycles)

48H R/ESP B0H EventingIP

50H R8 B8H TX Abort Information (Section 20.3.6.5.1)

58H R9 C0H TSC

60H R10

Table 20-34. PEBS Facility Comparison (Contd.)

Box Skylake, Kaby Lake and
Coffee Lake

Microarchitectures

Haswell and Broadwell
Microarchitectures

Comment
Vol. 3B 20-59

PERFORMANCE MONITORING
The PEBS records at offsets 98H, A0H, and ABH record data gathered from three of the PEBS capabilities in prior
processor generations: load latency facility (Section 20.3.4.4.2), PDIR (Section 20.3.4.4.4), and data address
profiling (Section 20.3.6.3).

In the core PMU of the 6th generation, 7th generation and 8th generation Intel Core processors, load latency facility
and PDIR capabilities and data address profiling are unchanged relative to the 4th generation and 5th generation
Intel Core processors. Similarly, precise store is replaced by data address profiling.

With format 0010b, a snapshot of the IA32_PERF_GLOBAL_STATUS may be useful to resolve the situations when
more than one of IA32_PMICx have been configured to collect PEBS data and two consecutive overflows of the
PEBS-enabled counters are sufficiently far apart in time. It is also possible for the image at 90H to indicate multiple
PEBS-enabled counters have overflowed. In the latter scenario, software cannot to correlate the PEBS record entry
to the multiple overflowed bits.

With PEBS record format encoding 0011b, offset 90H reports the “applicable counter” field, which is a multi-
counter PEBS resolution index allowing software to correlate the PEBS record entry with the eventing PEBS over-
flow when multiple counters are configured to record PEBS records. Additionally, offset C0H captures a snapshot of
the TSC that provides a time line annotation for each PEBS record entry.

20.3.8.1.2 PEBS Events

The list of precise events supported for PEBS in the Skylake, Kaby Lake and Coffee Lake microarchitectures is
shown in Table 20-36.

Table 20-36. Precise Events for the Skylake, Kaby Lake, and Coffee Lake Microarchitectures
Event Name Event Select Sub-event UMask

INST_RETIRED C0H PREC_DIST1 01H

ALL_CYCLES2 01H

OTHER_ASSISTS C1H ANY 3FH

BR_INST_RETIRED C4H CONDITIONAL 01H

NEAR_CALL 02H

ALL_BRANCHES 04H

NEAR_RETURN 08H

NEAR_TAKEN 20H

FAR_BRACHES 40H

BR_MISP_RETIRED C5H CONDITIONAL 01H

ALL_BRANCHES 04H

NEAR_TAKEN 20H

FRONTEND_RETIRED C6H <Programmable3> 01H

HLE_RETIRED C8H ABORTED 04H

RTM_RETIRED C9H ABORTED 04H

MEM_INST_RETIRED2 D0H LOCK_LOADS 21H

SPLIT_LOADS 41H

SPLIT_STORES 42H

ALL_LOADS 81H

ALL_STORES 82H
20-60 Vol. 3B

PERFORMANCE MONITORING
20.3.8.1.3 Data Address Profiling

The PEBS Data address profiling on the 6th generation, 7th generation and 8th generation Intel Core processors is
largely unchanged from the prior generation. When the DataLA facility is enabled, the relevant information written
into a PEBS record affects entries at offsets 98H, A0H, and A8H, as shown in Table 20-26.

20.3.8.2 Frontend Retired Facility
The Skylake Core PMU has been extended to cover common microarchitectural conditions related to the front end
pipeline in addition to providing a generic latency mechanism that can locate fetch bubbles without necessarily
attributing them to a particular condition. The facility counts the events if the associated instruction reaches retire-
ment (architecturally committed). Additionally, the user may opt to enable the PEBS facility to obtain precise infor-
mation on the context of the event, e.g., EventingIP.

The supported frontend microarchitectural conditions require the following interfaces:
• The IA32_PERFEVTSELx MSR must select the FRONTEND_RETIRED event, EventSelect = C6H and UMASK =

01H.

MEM_LOAD_RETIRED4 D1H L1_HIT 01H

L2_HIT 02H

L3_HIT 04H

L1_MISS 08H

L2_MISS 10H

L3_MISS 20H

HIT_LFB 40H

MEM_LOAD_L3_HIT_RETIRED2 D2H XSNP_MISS 01H

XSNP_HIT 02H

XSNP_HITM 04H

XSNP_NONE 08H

NOTES:
1. Only available on IA32_PMC1.
2. INST_RETIRED.ALL_CYCLES is configured with additional parameters of cmask = 10 and INV = 1
3. Subevents are specified using MSR_PEBS_FRONTEND, see Section 20.3.8.3
4. Instruction with at least one load uop experiencing the condition specified in the UMask.

Table 20-37. Layout of Data Linear Address Information In PEBS Record

Field Offset Description

Data Linear
Address

98H The linear address of the load or the destination of the store.

Store Status A0H • DCU Hit (Bit 0): The store hit the data cache closest to the core (L1 cache) if this bit is set, otherwise
the store missed the data cache. This information is valid only for the following store events:
UOPS_RETIRED.ALL (if store is tagged),
MEM_INST_RETIRED.STLB_MISS_STORES,
MEM_INST_RETIRED.ALL_STORES,
MEM_INST_RETIRED.SPLIT_STORES.

• Other bits are zero.

Reserved A8H Always zero.

Table 20-36. Precise Events for the Skylake, Kaby Lake, and Coffee Lake Microarchitectures (Contd.)
Event Name Event Select Sub-event UMask
Vol. 3B 20-61

PERFORMANCE MONITORING
• This event employs a new MSR, MSR_PEBS_FRONTEND, to specify the supported frontend event details, see
Table 20-38.

• If precise information is desired, program the PEBS_EN_PMCx field of IA32_PEBS_ENABLE MSR as required.

Note the AnyThread field of IA32_PERFEVTSELx is ignored by the processor for the “FRONTEND_RETIRED” event.

The sub-event encodings supported by MSR_PEBS_FRONTEND.EVTSEL is given in Table 20-38.

The layout of MSR_PEBS_FRONTEND is given in Table 20-39.

The FRONTEND_RETIRED event is designed to help software developers identify exact instructions that caused
front-end issues. There are some instances in which the event will, by design, the under-counting scenarios include
the following:
• The event counts only retired (non-speculative) front-end events, i.e., events from just true program execution

path are counted.
• The event will count once per cacheline (at most). If a cacheline contains multiple instructions which caused

front-end misses, the count will be only 1 for that line.
• If the multibyte sequence of an instruction spans across two cachelines and causes a miss it will be recorded

once. If there were additional misses in the second cacheline, they will not be counted separately.

Table 20-38. FrontEnd_Retired Sub-Event Encodings Supported by MSR_PEBS_FRONTEND.EVTSEL

Sub-Event Name EVTSEL Description

ANY_DSB_MISS 1H Retired Instructions which experienced any decode stream buffer (DSB) miss.

DSB_MISS 11H Retired Instructions which experienced a DSB miss that caused a fetch starvation cycle.

L1I_MISS 12H The fetch of retired Instructions which experienced Instruction L1 Cache true miss1. Additional
requests to the same cache line as an in-flight L1I cache miss will not be counted.

NOTES:
1. A true miss is the first miss for a cacheline/page (excluding secondary misses that fall into same cacheline/page).

L2_MISS 13H The fetch of retired Instructions which experienced L2 Cache true miss. Additional requests to the
same cache line as an in-flight MLC cache miss will not be counted.

ITLB_MISS 14H The fetch of retired Instructions which experienced ITLB true miss. Additional requests to the same
cache line as an in-flight ITLB miss will not be counted.

STLB_MISS 15H The fetch of retired Instructions which experienced STLB true miss. Additional requests to the
same cache line as an in-flight STLB miss will not be counted.

IDQ_READ_BUBBLES 6H An IDQ read bubble is defined as any one of the 4 allocation slots of IDQ that is not filled by the
front-end on any cycle where there is no back end stall. Using the threshold and latency fields in
MSR_PEBS_FRONTEND allows counting of IDQ read bubbles of various magnitude and duration.

Latency controls the number of cycles and Threshold controls the number of allocation slots that
contain bubbles.

The event counts if and only if a sequence of at least FE_LATENCY consecutive cycles contain at
least FE_TRESHOLD number of bubbles each.

Table 20-39. MSR_PEBS_FRONTEND Layout

Bit Name Offset Description

EVTSEL 7:0 Encodes the sub-event within FrontEnd_Retired that can use PEBS facility, see Table 20-38.

IDQ_Bubble_Length 19:8 Specifies the threshold of continuously elapsed cycles for the specified width of bubbles when
counting IDQ_READ_BUBBLES event.

IDQ_Bubble_Width 22:20 Specifies the threshold of simultaneous bubbles when counting IDQ_READ_BUBBLES event.

Reserved 63:23 Reserved
20-62 Vol. 3B

PERFORMANCE MONITORING
• If a multi-uop instruction exceeds the allocation width of one cycle, the bubbles associated with these uops will
be counted once per that instruction.

• If 2 instructions are fused (macro-fusion), and either of them or both cause front-end misses, it will be counted
once for the fused instruction.

• If a front-end (miss) event occurs outside instruction boundary (e.g., due to processor handling of architectural
event), it may be reported for the next instruction to retire.

20.3.8.3 Off-core Response Performance Monitoring
The core PMU facility to collect off-core response events are similar to those described in Section 20.3.4.5. Each
event code for off-core response monitoring requires programming an associated configuration MSR, MSR_OFF-
CORE_RSP_x. Software must program MSR_OFFCORE_RSP_x according to:
• Transaction request type encoding (bits 15:0): see Table 20-40.
• Supplier information (bits 29:16): see Table 20-41.
• Snoop response information (bits 37:30): see Table 20-42.

Table 20-41 lists the supplier information field that applies to 6th generation, 7th generation and 8th generation
Intel Core processors. (6th generation Intel Core processor CPUID signatures: 06_4EH and 06_5EH; 7th genera-
tion and 8th generation Intel Core processor CPUID signatures: 06_8EH and 06_9EH).

Table 20-40. MSR_OFFCORE_RSP_x Request_Type Definition
(Skylake, Kaby Lake, and Coffee Lake Microarchitectures)

Bit Name Offset Description

DMND_DATA_RD 0 Counts the number of demand data reads and page table entry cacheline reads. Does not count hw or
sw prefetches.

DMND_RFO 1 Counts the number of demand reads for ownership (RFO) requests generated by a write to data
cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 Counts the number of demand instruction cacheline reads and L1 instruction cacheline prefetches.

Reserved 14:3 Reserved

OTHER 15 Counts miscellaneous requests, such as I/O and uncacheable accesses.

Table 20-41. MSR_OFFCORE_RSP_x Supplier Info Field Definition
(CPUID Signatures: 06_4EH, 06_5EH, 06_8EH, 06_9EH)

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier
Info

NO_SUPP 17 No Supplier Information available.

L3_HITM 18 M-state initial lookup stat in L3.

L3_HITE 19 E-state

L3_HITS 20 S-state

Reserved 21 Reserved

L4_HIT 22 L4 Cache (if L4 is present in the processor).

Reserved 25:23 Reserved

DRAM 26 Local Node

Reserved 29:27 Reserved

SPL_HIT 30 L4 cache super line hit (if L4 is present in the processor).
Vol. 3B 20-63

PERFORMANCE MONITORING
Table 20-42 lists the snoop information field that apply to processors with CPUID signatures 06_4EH, 06_5EH,
06_8EH, 06_9E, and 06_55H.

20.3.8.3.1 Off-core Response Performance Monitoring for the Intel® Xeon® Scalable Processor Family

The following tables list the requestor and supplier information fields that apply to the Intel® Xeon® Scalable
Processor Family.
• Transaction request type encoding (bits 15:0): see Table 20-43.
• Supplier information (bits 29:16): see Table 20-44.
• Supplier information (bits 29:16) with support for Intel® Optane™ DC Persistent Memory support: see

Table 20-45.
• Snoop response information has not been changed and is the same as in (bits 37:30): see Table 20-42.

Table 20-42. MSR_OFFCORE_RSP_x Snoop Info Field Definition
(CPUID Signatures: 06_4EH, 06_5EH, 06_8EH, 06_9E, 06_55H)

Subtype Bit Name Offset Description

Snoop Info SPL_HIT 30 L4 cache super line hit (if L4 is present in the processor).

SNOOP_NONE 31 No details on snoop-related information.

SNOOP_NOT_NEEDED 32 No snoop was needed to satisfy the request.

SNOOP_MISS 33 A snoop was needed and it missed all snooped caches:

-For LLC Hit, ReslHitl was returned by all cores.

-For LLC Miss, Rspl was returned by all sockets and data was returned from
DRAM.

SNOOP_HIT_NO_FWD 34 A snoop was needed and it hits in at least one snooped cache. Hit denotes a
cache-line was valid before snoop effect. This includes:

-Snoop Hit w/ Invalidation (LLC Hit, RFO).

-Snoop Hit, Left Shared (LLC Hit/Miss, IFetch/Data_RD).

-Snoop Hit w/ Invalidation and No Forward (LLC Miss, RFO Hit S).

In the LLC Miss case, data is returned from DRAM.

SNOOP_HIT_WITH_FWD 35 A snoop was needed and data was forwarded from a remote socket. This
includes:

-Snoop Forward Clean, Left Shared (LLC Hit/Miss, IFetch/Data_RD/RFT).

SNOOP_HITM 36 A snoop was needed and it HitM-ed in local or remote cache. HitM denotes a
cache-line was in modified state before effect as a results of snoop. This
includes:

-Snoop HitM w/ WB (LLC miss, IFetch/Data_RD).

-Snoop Forward Modified w/ Invalidation (LLC Hit/Miss, RFO).

-Snoop MtoS (LLC Hit, IFetch/Data_RD).

SNOOP_NON_DRAM 37 Target was non-DRAM system address. This includes MMIO transactions.
20-64 Vol. 3B

PERFORMANCE MONITORING
Table 20-44 lists the supplier information field that applies to the Intel Xeon Scalable Processor Family (CPUID
signature: 06_55H).

Table 20-45 lists the supplier information field that applies to the Intel Xeon Scalable Processor Family (CPUID
signature: 06_55H, Steppings 0x5H - 0xFH).

Table 20-43. MSR_OFFCORE_RSP_x Request_Type Definition (Intel® Xeon® Scalable Processor Family)

Bit Name Offset Description

DEMAND_DATA_RD 0 Counts the number of demand data reads and page table entry cacheline reads. Does not count
hw or sw prefetches.

DEMAND_RFO 1 Counts the number of demand reads for ownership (RFO) requests generated by a write to data
cacheline. Does not count L2 RFO prefetches.

DEMAND_CODE_RD 2 Counts the number of demand instruction cacheline reads and L1 instruction cacheline
prefetches.

Reserved 3 Reserved.

PF_L2_DATA_RD 4 Counts the number of prefetch data reads into L2.

PF_L2_RFO 5 Counts the number of RFO Requests generated by the MLC prefetches to L2.

Reserved 6 Reserved.

PF_L3_DATA_RD 7 Counts the number of MLC data read prefetches into L3.

PF_L3_RFO 8 Counts the number of RFO requests generated by MLC prefetches to L3.

Reserved 9 Reserved.

PF_L1D_AND_SW 10 Counts data cacheline reads generated by hardware L1 data cache prefetcher or software
prefetch requests.

Reserved 14:11 Reserved.

OTHER 15 Counts miscellaneous requests, such as I/O and un-cacheable accesses.

Table 20-44. MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signature: 06_55H)

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier
Info

SUPPLIER_NONE 17 No Supplier Information available.

L3_HIT_M 18 M-state initial lookup stat in L3.

L3_HIT_E 19 E-state

L3_HIT_S 20 S-state

L3_HIT_F 21 F-state

Reserved 25:22 Reserved

L3_MISS_LOCAL_DRAM 26 L3 Miss: local home requests that missed the L3 cache and were
serviced by local DRAM.

L3_MISS_REMOTE_HOP0_DRAM 27 Hop 0 Remote supplier.

L3_MISS_REMOTE_HOP1_DRAM 28 Hop 1 Remote supplier.

L3_MISS_REMOTE_HOP2P_DRAM 29 Hop 2 or more Remote supplier.

Reserved 30 Reserved
Vol. 3B 20-65

PERFORMANCE MONITORING
20.3.8.4 Uncore Performance Monitoring Facilities on Intel® Core™ Processors Based on Cannon Lake
Microarchitecture

Cannon Lake microarchitecture introduces LLC support of up to six processor cores. To support six processor cores
and eight LLC slices, existing MSRs have been rearranged and new CBo MSRs have been added. Uncore perfor-
mance monitoring software drivers from prior generations of Intel Core processors will need to update the MSR
addresses. The new MSRs and updated MSR addresses have been added to the Uncore PMU listing in Section
2.17.2, “MSRs Specific to 8th Generation Intel® Core™ i3 Processors,” in Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 4.

20.3.9 10th Generation Intel® Core™ Processor Performance Monitoring Facility
Some 10th generation Intel® Core™ processors and some 3rd generation Intel® Xeon® Scalable Processor Family
are based on Ice Lake microarchitecture. Some 11th generation Intel® Core™ processors are based on the Tiger
Lake microarchitecture, and some are based on the Rocket Lake microarchitecture. For these processors, the core
PMU supports architectural performance monitoring capability with version Id 5 (see Section 20.2.5) and a host of
non-architectural monitoring capabilities.

The core PMU's capability is similar to those described in Section 20.3.1 through Section 20.3.8, with some differ-
ences and enhancements summarized in Table 20-46.

Table 20-45. MSR_OFFCORE_RSP_x Supplier Info Field Definition
(CPUID Signature: 06_55H, Steppings 0x5H - 0xFH)

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Supplier
Info

SUPPLIER_NONE 17 No Supplier Information available.

L3_HIT_M 18 M-state initial lookup stat in L3.

L3_HIT_E 19 E-state

L3_HIT_S 20 S-state

L3_HIT_F 21 F-state

LOCAL_PMM 22 Local home requests that were serviced by local PMM.

REMOTE_HOP0_PMM 23 Hop 0 Remote supplier.

REMOTE_HOP1_PMM 24 Hop 1 Remote supplier.

REMOTE_HOP2P_PMM 25 Hop 2 or more Remote supplier.

L3_MISS_LOCAL_DRAM 26 L3 Miss: Local home requests that missed the L3 cache and were
serviced by local DRAM.

L3_MISS_REMOTE_HOP0_DRAM 27 Hop 0 Remote supplier.

L3_MISS_REMOTE_HOP1_DRAM 28 Hop 1 Remote supplier.

L3_MISS_REMOTE_HOP2P_DRAM 29 Hop 2 or more Remote supplier.

Reserved 30 Reserved
20-66 Vol. 3B

PERFORMANCE MONITORING
20.3.9.1 Processor Event Based Sampling (PEBS) Facility
The PEBS facility in the 10th generation Intel Core processors provides a number of enhancements relative to PEBS
in processors based on the Skylake, Kaby Lake, and Coffee Lake microarchitectures. Enhancement of the PEBS
facility with Extended PEBS and Adaptive PEBS features is described in detail in Section 20.9.

The 3rd generation Intel Xeon Scalable Family of processors based on the Ice Lake microarchitecture introduce
EPT-friendly PEBS. This allows EPT violations and other VM Exits to be taken on PEBS accesses to the DS Area. See
Section 20.9.5 for details.

20.3.9.2 Off-core Response Performance Monitoring
The core PMU facility to collect off-core response events are similar to those described in Section 20.3.4.5. Each
event code for off-core response monitoring requires programming an associated configuration MSR, MSR_OFF-
CORE_RSP_x. Software must program MSR_OFFCORE_RSP_x according to:
• Transaction request type encoding (bits 15:0): see Table 18-[N1].
• Response type encoding (bits 16-37) of

— Supplier information: see Table [18-N2].

— Snoop response information: see Table [18-N3].
• All transactions are tracked at cacheline granularity except some in request type OTHER.

Table 20-46. Core PMU Summary of the Ice Lake Microarchitecture

Box Ice Lake Microarchitecture Skylake, Kaby Lake and Coffee
Lake Microarchitectures

Comment

Architectural Perfmon
version

5 4 See Section 20.2.5.

Number of programmable
counters per thread

8 4 Use CPUID to determine number
of counters. See Section 20.2.1.

PEBS: Basic functionality Yes Yes See Section 20.3.9.1.

PEBS record format encoding 0100b 0011b See Section 20.6.2.4.2.

Extended PEBS PEBS is extended to all Fixed
and General Purpose counters
and to all performance
monitoring events.

No See Section 20.9.1.

Adaptive PEBS Yes No See Section 20.9.2.

Performance Metrics Yes (4) No See Section 20.3.9.3.

PEBS-PDIR IA32_FIXED0 only
(Corresponding counter control
MSRs must be enabled.)

IA32_PMC1 only.

Table 20-47. MSR_OFFCORE_RSP_x Request_Type Definition
(Processors Based on Ice Lake Microarchitecture)

Bit Name Offset Description

DEMAND_DATA_RD 0 Counts demand data and page table entry reads.

DEMAND_RFO 1 Counts demand read (RFO) and software prefetches (PREFETCHW) for exclusive ownership
in anticipation of a write.

DEMAND_CODE_RD 2 Counts demand instruction fetches and instruction prefetches targeting the L1 instruction
cache.

Reserved 3 Reserved
Vol. 3B 20-67

PERFORMANCE MONITORING
Ice Lake microarchitecture has added a new category of Response subtype, called a Combined Response Info. To
count a feature in this type, all the bits specified must be set to 1.

A valid response type must be a non-zero value of the following expression:

Any | ['OR' of Combined Response Info Bits | [('OR' of Supplier Info Bits) & ('OR' of Snoop Info Bits)]]

If "ANY" bit[16] is set, other response type bits [17-39] are ignored.

Table 20-48 lists the supplier information field that applies to processors based on Ice Lake microarchitecture.

Table 20-49 lists the snoop information field that applies to processors based on Ice Lake microarchitecture.

HWPF_L2_DATA_RD 4 Counts hardware generated data read prefetches targeting the L2 cache.

HWPF_L2_RFO 5 Counts hardware generated prefetches for exclusive ownership (RFO) targeting the L2
cache.

Reserved 6 Reserved

HWPF_L3 9:7 and 131 Counts hardware generated prefetches of any type targeting the L3 cache.

HWPF_L1D_AND_SWPF 10 Counts hardware generated data read prefetches targeting the L1 data cache and the
following software prefetches (PREFETCHNTA, PREFETCHT0/1/2).

STREAMING_WR 11 Counts streaming stores.

Reserved 12 Reserved

Reserved 14 Reserved

OTHER 15 Counts miscellaneous requests, such as I/O and un-cacheable accesses.

NOTES:
1. All bits need to be set to 1 to count this type.

Table 20-48. MSR_OFFCORE_RSP_x Supplier Info Field Definition
(Processors Based on Ice Lake Microarchitecture)

Subtype Bit Name Offset Description

Common Any 16 Catch all value for any response types.

Combined
Response
Info

DRAM 26, 31, 321

NOTES:
1. All bits need to be set to 1 to count this type.

Requests that are satisfied by DRAM.

NON_DRAM 26, 371 Requests that are satisfied by a NON_DRAM system component. This includes
MMIO transactions.

L3_MISS 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33,
34, 35, 36, 371

Requests that were not supplied by the L3 Cache. The event includes some
currently reserved bits in anticipation of future memory designs.

Supplier
Info

L3_HIT 18,19, 201 Requests that hit in L3 cache. Depending on the snoop response the L3 cache
may have retrieved the cacheline from another core's cache.

Reserved 17, 21:25, 27:29 Reserved.

Table 20-47. MSR_OFFCORE_RSP_x Request_Type Definition
(Processors Based on Ice Lake Microarchitecture)

Bit Name Offset Description
20-68 Vol. 3B

PERFORMANCE MONITORING
20.3.9.3 Performance Metrics
The Ice Lake core PMU provides built-in support for Top-down Microarchitecture Analysis (TMA) method level 1
metrics. These metrics are always available to cross-validate performance observations, freeing general purpose
counters to count other events in high counter utilization scenarios. For more details about the method, refer to
Top-Down Analysis Method chapter (Appendix B.1) of the Intel® 64 and IA-32 Architectures Optimization Refer-
ence Manual.

A new MSR called MSR_PERF_METRICS reports the metrics directly. Software can check (and/or expose to its
guests) the availability of the PERF_METRICS feature using IA32_PERF_CAPABILITIES.PERF_METRICS_AVAILABLE
(bit 15). For additional details on this MSR, refer to Chapter 2, “Model-Specific Registers (MSRs)‚” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 4.

This register exposes the four TMA Level 1 metrics. The lower 32 bits are divided into four 8-bit fields, as shown by
the above figure, each of which is an integer fraction of 255.

Table 20-49. MSR_OFFCORE_RSP_x Snoop Info Field Definition
(Processors Based on Ice Lake Microarchitecture)

Subtype Bit Name Offset Description

Snoop
Info

Reserved 30 Reserved.

SNOOP_NOT_NEEDED 32 No snoop was needed to satisfy the request.

SNOOP_MISS 33 A snoop was sent and none of the snooped caches contained the cacheline.

SNOOP_HIT_NO_FWD 34 A snoop was sent and hit in at least one snooped cache. The unmodified
cacheline was not forwarded back, because the L3 already has a valid copy.

Reserved 35 Reserved.

SNOOP_HITM 36 A snoop was sent and the cacheline was found modified in another core's
caches. The modified cacheline was forwarded to the requesting core.

Figure 20-37. MSR_PERF_METRICS Definition

63 55 47 39

31 23 15 7 0

Backend Bound Frontend Bound Bad Speculation Retiring

Reserved
Vol. 3B 20-69

PERFORMANCE MONITORING
To support built-in performance metrics, new bits have been added to the following MSRs:
• IA32_PERF_GLOBAL_CTRL. EN_PERF_METRICS[48]: If this bit is set and fixed-function performance-

monitoring counter 3 is enabled, built-in performance metrics are enabled.
• IA32_PERF_GLOBAL_STATUS_SET. SET_OVF_PERF_METRICS[48]: If this bit is set, it will set the status bit in

the IA32_PERF_GLOBAL_STATUS register for PERF_METRICS.
• IA32_PERF_GLOBAL_STATUS_RESET. RESET_OVF_PERF_METRICS[48]: If this bit is set, it will clear the status

bit in the IA32_PERF_GLOBAL_STATUS register for PERF_METRICS.
• IA32_PERF_GLOBAL_STATUS. OVF_PERF_METRICS[48]: If this bit is set, it indicates that a PERF_METRICS-

related resource has overflowed and a PMI is triggered1. If this bit is clear, no such overflow has occurred.

NOTE
Software has to synchronize, e.g., re-start, fixed-function performance-monitoring counter 3 as
well as PERF_METRICS when either bit 35 or 48 in IA32_PERF_GLOBAL_STATUS is set. Otherwise,
PERF_METRICS may return undefined values.

The values in MSR_PERF_METRICS are derived from fixed-function performance-monitoring counter 3. Software
should start both registers, PERF_METRICS and fixed-function performance-monitoring counter 3, from zero. Addi-
tionally, software is recommended to periodically clear both registers in order to maintain accurate measurements
for certain scenarios that involve sampling metrics at high rates.

In order to save/restore PERF_METRICS, software should follow these guidelines:
• PERF_METRICS and fixed-function performance-monitoring counter 3 should be saved and restored together.
• To ensure that PERF_METRICS and fixed-function performance-monitoring counter 3 remain synchronized,

both should be disabled during both save and restore. Software should enable/disable them atomically, with a
single write to IA32_PERF_GLOBAL_CTRL to set/clear both EN_PERF_METRICS[bit 48] and
EN_FIXED_CTR3[bit 35].

• On state restore, fixed-function performance-monitoring counter 3 must be restored before PERF_METRICS,
otherwise undefined results may be observed.

20.3.10 12th and 13th Generation Intel® Core™ Processors, and 4th Generation Intel® Xeon®
Scalable Processor Family Performance Monitoring Facility

The 12th generation Intel® Core™ processor supports Alder Lake performance hybrid architecture. These proces-
sors offer a unique combination of Performance and Efficient-cores (P-core and E-core). The P-core is based on
Golden Cove microarchitecture and the E-core is based on Gracemont microarchitecture. The 13th generation
Intel® Core™ processor supports Raptor Lake performance hybrid architecture, utilizing both Raptor Cove cores
and enhanced Gracemont cores. The 4th generation Intel® Xeon® Scalable Processor Family is based on Sapphire
Rapids microarchitecture utilizing Golden Cove cores. These processors all report architectural performance moni-
toring version ID = 5 and support non-architectural monitoring capabilities described in this section.

20.3.10.1 P-core Performance Monitoring Unit
The P-core PMU's capability is similar to those described in Section 20.3.1 through Section 20.3.9, with some differ-
ences and enhancements summarized in Table 20-50.

1. An overflow of fixed-function performance-monitoring counter 3 should normally happen first if software follows Intel’s recommen-
dations.
20-70 Vol. 3B

PERFORMANCE MONITORING
20.3.10.1.1 P-core Perf Metrics Extensions

For 12th generation Intel Core processor P-cores, the core PMU supports the built-in metrics that were introduced
in the Ice Lake microarchitecture PMU. This core PMU extends the PERF_METRICS MSR to feature TMA method
level 2 metrics, as shown in Figure 20-38.

Table 20-50. Core PMU Summary of the Golden Cove Microarchitecture

Box Golden Cove
Microarchitecture

Ice Lake Microarchitecture Comment

Architectural Perfmon
version

5 5 See Section 20.2.5.

Event-Counter Restrictions Simplified identification Counters 4-7 support a subset of
events. See Section 20.3.10.1.2.

Performance Metrics Yes (12) Yes (4) See Section 20.3.9.3.

PEBS: Baseline, record
format

Yes

0100b

Yes

0100b

See Section 20.3.9.

PEBS: EPT-friendly Yes No; debuts in Ice Lake server
microarchitecture

See Section 20.6.2.4.2.

PEBS: Precise Distribution IA32_FIXED0 instruction-
granularity

PDist on IA32_PMC0

IA32_FIXED0 cycle-granularity

No PDist

See Section 20.9.6.

PEBS: Load Latency Instruction latency

Cache latency

Access info fields (5)

Instruction latency

Access info fields (3)

See Section 20.9.7.

PEBS: Store Latency Cache latency

Access info fields (3)

None See Section 20.9.8.

PEBS: Intel TSX support Abort info fields (9) Abort info fields (8) See Section 20.3.6.5.1.

(Intel Xeon processor only
feature.)

Figure 20-38. PERF_METRICS MSR Definition for 12th Generation Intel® Core™ Processor P-core

31 23 15 7 0

Backend Bound Frontend Bound Bad Speculation Retiring

Memory Bound Fetch Latency Branch Mispredicts Heavy Operations

63 55 47 39 32
Vol. 3B 20-71

PERFORMANCE MONITORING
The lower half of the register is the TMA level 1 metrics (legacy). The upper half is also divided into four 8-bit fields,
each of which is an integer fraction of 255. Additionally, each of the new level 2 metrics in the upper half is a subset
of the corresponding level 1 metric in the lower half (that is, its parent node per the TMA hierarchy). This enables
software to deduce the other four level 2 metrics by subtracting corresponding metrics as shown in Figure 20-39.

The PERF_METRICS MSR and fixed-function performance-monitoring counter 3 of the core PMU feature 12 metrics
in total that cover all level 1 and level 2 nodes of the TMA hierarchy.

20.3.10.1.2 P-core Counter Restrictions Simplification

The 12th generation Intel Core processor P-core allows identification of performance monitoring events with
counter restrictions based on event encodings. The general rule is: Event Codes < 0x90 are restricted to general-
purpose performance-monitoring counters 0-3. Event Codes ≥ 0x90 are likely to have no restrictions. Table 20-51
lists the exceptions to this rule.

20.3.10.1.3 P-core Off-core Response Facility

For the 12th generation Intel Core processor P-core, the Off-core Response (OCR) Facility is similar to that
described in Section 20.3.9.2.

The following enhancements are introduced for the Request_Type of MSR_OFFCORE_RSP_x:
• WB (bits 3 and 12): Count writeback (modified or non-modified) transactions by core caches.
• HWPF_L1D (bit 10): Counts hardware generated data read prefetches targeting the L1 data cache (only).
• SWPF_READ (bit 14): Counts software generated data read prefetches by the PREFETCHNTA and

PREFETCHT0/1/2 instructions.

Figure 20-39. Deducing Implied Level 2 Metrics in the Core PMU for12th Generation Intel® Core™ Processor P-core

Table 20-51. Special Performance Monitoring Events with Counter Restrictions

Event Encoding1

NOTES:
1. Linux perf rUUEE syntax, where UU is the Unit Mask field and EE is the Event Select (also known as Event

Code) field in the IA32_PERFEVTSELx MSRs.

Event Name Counter Restriction

xx3C CPU_CLK_UNHALTED.*
0-7 (No restriction for all architectural events.)

xx2E LONGEST_LAT_CACHE.*

xxDx MEM_*_RETIRED.* 0-3

01A3, 02A3, 08A3 Some CYCLE_ACTIVITY sub-events 0-3

02CD MEM_TRANS_RETIRED.STORE_SAMPLE 0

04A4 TOPDOWN.BAD_SPEC_SLOTS
0

08A4 TOPDOWN.BR_MISPREDICT_SLOTS

xxCE AMX_OPS_RETIRED 0

Light_Operations = Retiring - Heavy_Operations
Machine_Clears = Bad_Specula tion - Branch_Mispredicts
Fetch_Bandwidth = Frontend_Bound - Fetch_Latency
Core_Bound = Backend_Bound - Memory_Bound
20-72 Vol. 3B

PERFORMANCE MONITORING
20.3.10.2 E-core Performance Monitoring Unit
The core PMU capabilities on the 12th generation Intel Core processor E-core are summarized in Table 20-52
below.

20.3.10.2.1 E-core PEBS Load Latency

The 12th generation Intel Core processor E-core includes PEBS Load Latency support similar to that described in
Section 20.9.7.

When a programmable counter is configured to count MEM_UOPS_RETIRED.LOAD_LATENCY_ABOVE_THRESHOLD
(IA32_PERFEVTSELx[15:0] = 0xD005, with CMASK=0 and INV=0), selected load operations whose latency
exceeds the threshold provided in MSR_PEBS_LD_LAT_THRESHOLD (MSR 03F6H) will be counted. If a PEBS record
is generated on overflow of this counter, the Memory Access Latency and Memory Auxiliary Info data is reported in
the Memory Access Info group (Section 20.9.2.2.2). The formats of these fields are shown in Table 20-53 and Table
20-94.

Table 20-52. Core PMU Summary of the Gracemont Microarchitecture

Box Gracemont
Microarchitecture

Tremont Microarchitecture Comment

Number of fixed-function
performance-monitoring
counters per core

3 3 Use CPUID to enumerate number of
counters. See Section 20.2.1.

Number of general-purpose
counters per core

6 4 Use CPUID to enumerate number of
counters. See Section 20.2.1.

Architectural Performance
Monitoring version ID

5 5 See Section 20.2.5.

PEBS record format encoding 0100b 0100b See Section 20.5.5.

EPT-friendly PEBS support Yes No See Section 20.9.5.

Extended PEBS Yes Yes See Section 20.9.1.

Adaptive PEBS Yes Yes See Section 20.9.2.

Precise distribution (PDist) PEBS IA32_PMC0 and
IA32_FIXED_CTR0

IA32_PMC0 and
IA32_FIXED_CTR0

PDist eliminates skid, see Section
20.9.3, Section 20.9.4, and Section
20.9.6.

PEBS Latency Load and Store Latency No See Section 20.3.10.2.1, Section
20.3.10.2.2, Section 20.9.7, and
Section 20.9.8.

PEBS Output DS Save Area or Intel®
Processor Trace

DS Save Area or Intel®
Processor Trace

See Section 20.5.5.2.1.

Offcore Response MSR 01A6H and 01A7H,
each core has its own
register, extended request
and response types.

MSR 1A6H and 1A7H, each
core has its own register,
extended request and
response types.

See Section 20.5.5.4.

Table 20-53. E-core PEBS Memory Access Info Encoding

Bit(s) Field Description

3:0 Data Source The source of the data; see Table 20-54.

4 Lock 0: The operation was not part of a locked transaction.

1: The operation was part of a locked transaction.
Vol. 3B 20-73

PERFORMANCE MONITORING
For details on E-core PEBS memory access latency encoding, see the Access Latency Field in Table 20-94.

20.3.10.2.2 E-core PEBS Store Latency

The 12th generation Intel Core processor E-core includes PEBS Store Latency support. When a programmable
counter is configured to count MEM_UOPS_RETIRED.STORE_LATENCY (IA32_PERFEVTSELx[15:0] = 0xD006, with
CMASK=0 and INV=0), all store operations will be counted. If a PEBS record is generated on overflow of this
counter, the Memory Access Latency and Memory Auxiliary Info data is reported in the Memory Access Info group
(Section 18.9.2.2.2). The formats of these fields are shown in Table 20-53 and Table 20-94.

20.3.10.2.3 E-core Precise Distribution (PDist) Support

The 12th generation Intel Core processor E-core supports PEBS with Precise Distribution (PDist) on IA32_PMC0 and
IA32_FIXED_CTR0. All precise events support PDist save for UOPS_RETIRED. See Section 20.9.6 for additional
details on PDist.

5 STLB_MISS 0: The load did not miss the STLB (hit the DTLB or STLB).

1: The load missed the STLB.

6 ST_FWD_BLK 0: Load did not get a store forward block.

1: Load got a store forward block.

63:7 Reserved Reserved

Table 20-54. E-core PEBS Data Source Encodings

Encoding Description

00H Unknown Data Source (the processor could not retrieve the origin of this request) and MMIO. Memory mapped I/O hit.

01H L1 HIT. This request was satisfied by the L1 data cache. (Minimal latency core cache hit.)

02H FB HIT. Outstanding core cache miss to same cache-line address was already underway. (Pending core cache hit.)

03H L2 HIT. This request was satisfied by the L2 cache.

04H L3 HIT. Local or Remote home requests that hit L3 cache in the uncore with no coherency actions required (snooping).

05H L3 HITE. Local or Remote home requests that hit the L3 cache and were serviced by another processor core with a
cross core snoop where no modified copies were found (clean).

06H L3 HITM. Local or Remote home requests that hit the L3 cache and were serviced by another processor core with a
cross core snoop where a modified copy was found.

07H Reserved.

08H L3 HITF. Local or Remote home requests that hit the L3 cache and were serviced by another processor core with a
cross core snoop where a shared or forwarding copy was found.

09H Reserved.

0AH L3 MISS. Local home requests that missed the L3 cache and were serviced by local DRAM (go to shared state).

0BH Reserved.

0CH Reserved.

0DH Reserved.

0EH I/O. Request of input/output operation.

0FH The request was to un-cacheable memory.

Table 20-53. E-core PEBS Memory Access Info Encoding (Contd.)

Bit(s) Field Description
20-74 Vol. 3B

PERFORMANCE MONITORING
20.3.10.2.4 E-core Enhanced Off-core Response

Event number 0B7H support off-core response monitoring using an associated configuration MSR, MSR_OFF-
CORE_RSP0 (address 1A6H) in conjunction with UMASK value 01H or MSR_OFFCORE_RSP1 (address 1A7H) in
conjunction with UMASK value 02H. There are unique pairs of MSR_OFFCORE_RSPx registers per core. The layout
of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 are organized as follows:
• Bits 15:0 and bits 49:44 specify the request type of a transaction request to the uncore. This is described in

Table 20-55.
• Bits 30:16 specify Response Type information or an L2 Hit, and is described in Table 20-75.
• If L2 misses, then bits 37:31 can be used to specify snoop response information and is described in Table

20-76.
• For outstanding requests, bit 38 can enable measurement of average latency of specific type of offcore

transaction requests using two programmable counter simultaneously; see Section 20.5.2.3 for details.

20.3.10.3 Unhalted Reference Cycles
The Unhalted Reference Cycles architectural performance monitoring event is enhanced to count at TSC-rate in the
12th generation Intel Core processor P-core when used on a general-purpose PMC. This enhancement makes it
consistent with the fixed-function counter 2 and the E-core. As a result, this event is kept enumerated in CPUID leaf
0AH.EBX (unlike prior hybrid parts).

Table 20-55. MSR_OFFCORE_RSPx Request Type Definition

Bit Name Offset Description

DEMAND_DATA_RD 0 Counts demand data reads.

DEMAND_RFO 1 Counts all demand reads for ownership (RFO) requests and software based prefteches for
exclusive ownership (prefetchw).

DEMAND_CODE_RD 2 Counts demand instruction fetches and L1 instruction cache prefetches.

COREWB_M 3 Counts modified write backs from L1 and L2.

HWPF_L2_DATA_RD 4 Counts prefetch (that bring data to L2) data reads.

HWPF_L2_RFO 5 Counts all prefetch (that bring data to L2) RFOs.

HWPF_L2_CODE_RD 6 Counts all prefetch (that bring data to MLC only) code reads.

HWPF_L3_DATA_RD 7 Counts L3 cache hardware prefetch data reads (written to the L3 cache only).

HWPF_L3_RFO 8 Counts L3 cache hardware prefetch RFOs (written to the L3 cache only) .

HWPF_L3_CODE_RD 9 Counts L3 cache hardware prefetch code reads (written to the L3 cache only).

HWPF_L1D_AND_SWPF 10 Counts L1 data cache hardware prefetch requests, read for ownership prefetch requests
and software prefetch requests (except prefetchw).

STREAMING_WR 11 Counts all streaming stores.

COREWB_NONM 12 Counts non-modified write backs from L2.

RSVD 14:13 Reserved.

OTHER 15 Counts miscellaneous requests, such as I/O accesses that have any response type.

UC_RD 44 Counts uncached memory reads (PRd, UCRdF).

UC_WR 45 Counts uncached memory writes (WiL).

PARTIAL_STREAMING_WR 46 Counts partial (less than 64 byte) streaming stores (WCiL).

FULL_STREAMING_WR 47 Counts full, 64 byte streaming stores (WCiLF).

L1WB_M 48 Counts modified WriteBacks from L1 that miss the L2.

L2WB_M 49 Counts modified WriteBacks from L2.
Vol. 3B 20-75

PERFORMANCE MONITORING
20.4 PERFORMANCE MONITORING (INTEL® XEON™ PHI PROCESSORS)

NOTE
This section also applies to the Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series based on
Knights Mill microarchitecture.

20.4.1 Intel® Xeon Phi™ Processor 7200/5200/3200 Performance Monitoring
The Intel® Xeon Phi™ processor 7200/5200/3200 series are based on the Knights Landing microarchitecture. The
performance monitoring capabilities are distributed between its tiles (pair of processor cores) and untile
(connecting many tiles in a physical processor package). Functional details of the tiles and untile of the Knights
Landing microarchitecture can be found in Chapter 16 of Intel® 64 and IA-32 Architectures Optimization Reference
Manual.

A complete description of the tile and untile PMU programming interfaces for Intel Xeon Phi processors based on the
Knights Landing microarchitecture can be found in the Technical Document section at
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html.

A tile contains a pair of cores attached to a shared L2 cache and is similar to those found in Intel Atom® processors
based on the Silvermont microarchitecture. The processor provides several new capabilities on top of the Silver-
mont performance monitoring facilities.

The processor supports architectural performance monitoring capability with version ID 3 (see Section 20.2.3) and
a host of non-architectural performance monitoring capabilities. The processor provides two general-purpose
performance counters (IA32_PMC0, IA32_PMC1) and three fixed-function performance counters (IA32_-
FIXED_CTR0, IA32_FIXED_CTR1, IA32_FIXED_CTR2).

Non-architectural performance monitoring in the processor also uses the IA32_PERFEVTSELx MSR to configure a
set of non-architecture performance monitoring events to be counted by the corresponding general-purpose
performance counter.

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 20-6 and described in Section 20.2.1.1 and
Section 20.2.3. The processor supports AnyThread counting in three architectural performance monitoring events.

20.4.1.1 Enhancements of Performance Monitoring in the Intel® Xeon Phi™ Processor Tile
The Intel® Xeon Phi™ processor tile includes the following enhancements to the Silvermont microarchitecture.
• AnyThread support. This facility is limited to following three architectural events: Instructions Retired, Unhalted

Core Cycles, Unhalted Reference Cycles using IA32_FIXED_CTR0-2 and Unhalted Core Cycles, Unhalted
Reference Cycles using IA32_PERFEVTSELx.

• PEBS-DLA (Processor Event-Based Sampling-Data Linear Address) fields. The processor provides memory
address in addition to the Silvermont PEBS record support on select events. The PEBS recording format as
reported by IA32_PERF_CAPABILITIES [11:8] is 2.

• Off-core response counting facility. This facility in the processor core allows software to count certain
transaction responses between the processor tile to subsystems outside the tile (untile). Counting off-core
response requires additional event qualification configuration facility in conjunction with IA32_PERFEVTSELx.
Two off-core response MSRs are provided to use in conjunction with specific event codes that must be specified
with IA32_PERFEVTSELx. Two cores do not share the off-core response MSRs. Knights Landing expands off-
core response capability to match the processor untile changes.

• Average request latency measurement. The off-core response counting facility can be combined to use two
performance counters to count the occurrences and weighted cycles of transaction requests. This facility is
updated to match the processor untile changes.

20.4.1.1.1 Processor Event-Based Sampling

The processor supports processor event based sampling (PEBS). PEBS is supported using IA32_PMC0 (see also
Section 18.4.9, “BTS and DS Save Area”).
20-76 Vol. 3B

PERFORMANCE MONITORING
PEBS uses a debug store mechanism to store a set of architectural state information for the processor. The infor-
mation provides architectural state of the instruction executed after the instruction that caused the event (See
Section 20.6.2.4).

The list of PEBS events supported in the processor is shown in the following table.

The PEBS record format 2 supported by processors based on the Knights Landing microarchitecture is shown in
Table 20-57, and each field in the PEBS record is 64 bits long.

Table 20-56. PEBS Performance Events for Knights Landing Microarchitecture
Event Name Event Select Sub-event UMask Data Linear

Address Support

BR_INST_RETIRED C4H ALL_BRANCHES 00H No

JCC 7EH No

TAKEN_JCC FEH No

CALL F9H No

REL_CALL FDH No

IND_CALL FBH No

NON_RETURN_IND EBH No

FAR_BRANCH BFH No

RETURN F7H No

BR_MISP_RETIRED C5H ALL_BRANCHES 00H No

JCC 7EH No

TAKEN_JCC FEH No

IND_CALL FBH No

NON_RETURN_IND EBH No

RETURN F7H No

MEM_UOPS_RETIRED 04H L2_HIT_LOADS 02H Yes

L2_MISS_LOADS 04H Yes

DLTB_MISS_LOADS 08H Yes

RECYCLEQ 03H LD_BLOCK_ST_FORWARD 01H Yes

LD_SPLITS 08H Yes

Table 20-57. PEBS Record Format for Knights Landing Microarchitecture

Byte Offset Field Byte Offset Field

00H R/EFLAGS 60H R10

08H R/EIP 68H R11

10H R/EAX 70H R12

18H R/EBX 78H R13

20H R/ECX 80H R14

28H R/EDX 88H R15

30H R/ESI 90H IA32_PERF_GLOBAL_STATUS

38H R/EDI 98H PSDLA

40H R/EBP A0H Reserved

48H R/ESP A8H Reserved

50H R8 B0H EventingRIP
Vol. 3B 20-77

PERFORMANCE MONITORING
20.4.1.1.2 Offcore Response Event

Event number 0B7H support offcore response monitoring using an associated configuration MSR, MSR_OFF-
CORE_RSP0 (address 1A6H) in conjunction with UMASK value 01H or MSR_OFFCORE_RSP1 (address 1A7H) in
conjunction with UMASK value 02H. Table 20-58 lists the event code, mask value and additional off-core configura-
tion MSR that must be programmed to count off-core response events using IA32_PMCx.

Some of the MSR_OFFCORE_RESP [0,1] register bits are not valid in this processor and their use is reserved. The
layout of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 registers are defined in Table 20-59. Bits 15:0 specifies
the request type of a transaction request to the uncore. Bits 30:16 specifies supplier information, bits 37:31 spec-
ifies snoop response information.

Additionally, MSR_OFFCORE_RSP0 provides bit 38 to enable measurement of average latency of specific type of
offcore transaction requests using two programmable counter simultaneously, see Section 20.5.2.3 for details.

58H R9 B8H Reserved

Table 20-58. OffCore Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0-1 B7H 01H MSR_OFFCORE_RSP0 (address 1A6H)

PMC0-1 B7H 02H MSR_OFFCORE_RSP1 (address 1A7H)

Table 20-59. Bit fields of the MSR_OFFCORE_RESP [0, 1] Registers

Main Sub-field Bit Name Description

Request Type 0 DEMAND_DATA_RD Demand cacheable data and L1 prefetch data reads.

1 DEMAND_RFO Demand cacheable data writes.

2 DEMAND_CODE_RD Demand code reads and prefetch code reads.

3 Reserved Reserved.

4 Reserved Reserved.

5 PF_L2_RFO L2 data RFO prefetches (includes PREFETCHW instruction).

6 PF_L2_CODE_RD L2 code HW prefetches.

7 PARTIAL_READS Partial reads (UC or WC).

8 PARTIAL_WRITES Partial writes (UC or WT or WP). Valid only for
OFFCORE_RESP_1 event. Should only be used on PMC1.
This bit is reserved for OFFCORE_RESP_0 event.

9 UC_CODE_READS UC code reads.

10 BUS_LOCKS Bus locks and split lock requests.

11 FULL_STREAMING_STO
RES

Full streaming stores (WC). Valid only for OFFCORE_RESP_1
event. Should only be used on PMC1. This bit is reserved for
OFFCORE_RESP_0 event.

12 SW_PREFETCH Software prefetches.

13 PF_L1_DATA_RD L1 data HW prefetches.

14 PARTIAL_STREAMING_
STORES

Partial streaming stores (WC). Valid only for
OFFCORE_RESP_1 event. Should only be used on PMC1.
This bit is reserved for OFFCORE_RESP_0 event.

15 ANY_REQUEST Account for any requests.

Table 20-57. PEBS Record Format for Knights Landing Microarchitecture (Contd.)

Byte Offset Field Byte Offset Field
20-78 Vol. 3B

PERFORMANCE MONITORING
20.4.1.1.3 Average Offcore Request Latency Measurement

Measurement of average latency of offcore transaction requests can be enabled using MSR_OFFCORE_RSP0.[bit
38] with the choice of request type specified in MSR_OFFCORE_RSP0.[bit 15:0].

Refer to Section 20.5.2.3, “Average Offcore Request Latency Measurement,” for typical usage. Note that
MSR_OFFCORE_RESPx registers are not shared between cores in Knights Landing. This allows one core to measure
average latency while other core is measuring different offcore response events.

Response Type Any 16 ANY_RESPONSE Account for any response.

Data Supply from
Untile

17 NO_SUPP No Supplier Details.

18 Reserved Reserved.

19 L2_HIT_OTHER_TILE_N
EAR

Other tile L2 hit E Near.

20 Reserved Reserved.

21 MCDRAM_NEAR MCDRAM Local.

22 MCDRAM_FAR_OR_L2_
HIT_OTHER_TILE_FAR

MCDRAM Far or Other tile L2 hit far.

23 DRAM_NEAR DRAM Local.

24 DRAM_FAR DRAM Far.

Data Supply from
within same tile

25 L2_HITM_THIS_TILE M-state.

26 L2_HITE_THIS_TILE E-state.

27 L2_HITS_THIS_TILE S-state.

28 L2_HITF_THIS_TILE F-state.

29 Reserved Reserved.

30 Reserved Reserved.

Snoop Info; Only
Valid in case of
Data Supply from
Untile

31 SNOOP_NONE None of the cores were snooped.

32 NO_SNOOP_NEEDED No snoop was needed to satisfy the request.

33 Reserved Reserved.

34 Reserved Reserved.

35 HIT_OTHER_TILE_FWD Snoop request hit in the other tile with data forwarded.

36 HITM_OTHER_TILE A snoop was needed and it HitM-ed in other core's L1 cache.
HitM denotes a cache-line was in modified state before
effect as a result of snoop.

37 NON_DRAM Target was non-DRAM system address. This includes MMIO
transactions.

Outstanding
requests

Weighted cycles 38 OUTSTANDING (Valid
only for
MSR_OFFCORE_RESP0.
Should only be used on
PMC0. This bit is
reserved for
MSR_OFFCORE_RESP1).

If set, counts total number of weighted cycles of any
outstanding offcore requests with data response. Valid only
for OFFCORE_RESP_0 event. Should only be used on PMC0.
This bit is reserved for OFFCORE_RESP_1 event.

Table 20-59. Bit fields of the MSR_OFFCORE_RESP [0, 1] Registers (Contd.)

Main Sub-field Bit Name Description
Vol. 3B 20-79

PERFORMANCE MONITORING
20.5 PERFORMANCE MONITORING (INTEL ATOM® PROCESSORS)

20.5.1 Performance Monitoring (45 nm and 32 nm Intel Atom® Processors)
45 nm and 32 nm Intel Atom processors report architectural performance monitoring versionID = 3 (supporting the
aggregate capabilities of versionID 1, 2, and 3; see Section 20.2.3) and a host of non-architectural monitoring
capabilities. These 45 nm and 32 nm Intel Atom processors provide two general-purpose performance counters
(IA32_PMC0, IA32_PMC1) and three fixed-function performance counters (IA32_FIXED_CTR0, IA32_FIXED_CTR1,
IA32_FIXED_CTR2).

NOTE
The number of counters available to software may vary from the number of physical counters
present on the hardware, because an agent running at a higher privilege level (e.g., a VMM) may
not expose all counters. CPUID.0AH:EAX[15:8] reports the MSRs available to software; see Section
20.2.1.

Non-architectural performance monitoring in Intel Atom processor family uses the IA32_PERFEVTSELx MSR to
configure a set of non-architecture performance monitoring events to be counted by the corresponding general-
purpose performance counter. The list of non-architectural performance monitoring events can be found at:
https://perfmon-events.intel.com/.

Architectural and non-architectural performance monitoring events in 45 nm and 32 nm Intel Atom processors
support thread qualification using bit 21 (AnyThread) of IA32_PERFEVTSELx MSR, i.e., if IA32_PERFEVT-
SELx.AnyThread =1, event counts include monitored conditions due to either logical processors in the same
processor core.

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 20-6 and described in Section 20.2.1.1 and
Section 20.2.3.

Valid event mask (Umask) bits can be found at: https://perfmon-events.intel.com/. The UMASK field may contain
sub-fields that provide the same qualifying actions like those listed in Table 20-77, Table 20-78, Table 20-79, and
Table 20-80. One or more of these sub-fields may apply to specific events on an event-by-event basis. Precise
Event Based Monitoring is supported using IA32_PMC0 (see also Section 18.4.9, “BTS and DS Save Area”).

20.5.2 Performance Monitoring for Silvermont Microarchitecture
Intel processors based on the Silvermont microarchitecture report architectural performance monitoring versionID
= 3 (see Section 20.2.3) and a host of non-architectural monitoring capabilities. Intel processors based on the
Silvermont microarchitecture provide two general-purpose performance counters (IA32_PMC0, IA32_PMC1) and
three fixed-function performance counters (IA32_FIXED_CTR0, IA32_FIXED_CTR1, IA32_FIXED_CTR2). Intel
Atom processors based on the Airmont microarchitecture support the same performance monitoring capabilities as
those based on the Silvermont microarchitecture.

Non-architectural performance monitoring in the Silvermont microarchitecture uses the IA32_PERFEVTSELx MSR
to configure a set of non-architecture performance monitoring events to be counted by the corresponding general-
purpose performance counter. The list of non-architectural performance monitoring events can be found at:
https://perfmon-events.intel.com/.

The bit fields (except bit 21) within each IA32_PERFEVTSELx MSR are defined in Figure 20-6 and described in
Section 20.2.1.1 and Section 20.2.3. Architectural and non-architectural performance monitoring events in the
Silvermont microarchitecture ignore the AnyThread qualification regardless of its setting in IA32_PERFEVTSELx
MSR.

20.5.2.1 Enhancements of Performance Monitoring in the Processor Core
The notable enhancements in the monitoring of performance events in the processor core include:
• The width of counter reported by CPUID.0AH:EAX[23:16] is 40 bits.
20-80 Vol. 3B

https://perfmon-events.intel.com/
https://perfmon-events.intel.com/
https://perfmon-events.intel.com/
https://perfmon-events.intel.com/
https://perfmon-events.intel.com/

PERFORMANCE MONITORING
• Off-core response counting facility. This facility in the processor core allows software to count certain
transaction responses between the processor core to sub-systems outside the processor core (uncore).
Counting off-core response requires additional event qualification configuration facility in conjunction with
IA32_PERFEVTSELx. Two off-core response MSRs are provided to use in conjunction with specific event codes
that must be specified with IA32_PERFEVTSELx.

• Average request latency measurement. The off-core response counting facility can be combined to use two
performance counters to count the occurrences and weighted cycles of transaction requests.

20.5.2.1.1 Processor Event Based Sampling (PEBS)

In the Silvermont microarchitecture, the PEBS facility can be used with precise events. PEBS is supported using
IA32_PMC0 (see also Section 18.4.9).

PEBS uses a debug store mechanism to store a set of architectural state information for the processor. The infor-
mation provides architectural state of the instruction executed after the instruction that caused the event (See
Section 20.6.2.4).

The list of precise events supported in the Silvermont microarchitecture is shown in Table 20-60.

PEBS Record Format The PEBS record format supported by processors based on the Intel Silvermont microarchi-
tecture is shown in Table 20-61, and each field in the PEBS record is 64 bits long.

Table 20-60. PEBS Performance Events for the Silvermont Microarchitecture
Event Name Event Select Sub-event UMask

BR_INST_RETIRED C4H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

CALL F9H

REL_CALL FDH

IND_CALL FBH

NON_RETURN_IND EBH

FAR_BRANCH BFH

RETURN F7H

BR_MISP_RETIRED C5H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

IND_CALL FBH

NON_RETURN_IND EBH

RETURN F7H

MEM_UOPS_RETIRED 04H L2_HIT_LOADS 02H

L2_MISS_LOADS 04H

DLTB_MISS_LOADS 08H

HITM 20H

REHABQ 03H LD_BLOCK_ST_FORWARD 01H

LD_SPLITS 08H
Vol. 3B 20-81

PERFORMANCE MONITORING
20.5.2.2 Offcore Response Event
Event number 0B7H support offcore response monitoring using an associated configuration MSR, MSR_OFF-
CORE_RSP0 (address 1A6H) in conjunction with UMASK value 01H or MSR_OFFCORE_RSP1 (address 1A7H) in
conjunction with UMASK value 02H. Table 20-62 lists the event code, mask value and additional off-core configura-
tion MSR that must be programmed to count off-core response events using IA32_PMCx.

In the Silvermont microarchitecture, each MSR_OFFCORE_RSPx is shared by two processor cores.

The layout of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 are shown in Figure 20-40 and Figure 20-41. Bits
15:0 specifies the request type of a transaction request to the uncore. Bits 30:16 specifies supplier information,
bits 37:31 specifies snoop response information.

Additionally, MSR_OFFCORE_RSP0 provides bit 38 to enable measurement of average latency of specific type of
offcore transaction requests using two programmable counter simultaneously, see Section 20.5.2.3 for details.

Table 20-61. PEBS Record Format for the Silvermont Microarchitecture

Byte Offset Field Byte Offset Field

00H R/EFLAGS 60H R10

08H R/EIP 68H R11

10H R/EAX 70H R12

18H R/EBX 78H R13

20H R/ECX 80H R14

28H R/EDX 88H R15

30H R/ESI 90H IA32_PERF_GLOBAL_STATUS

38H R/EDI 98H Reserved

40H R/EBP A0H Reserved

48H R/ESP A8H Reserved

50H R8 B0H EventingRIP

58H R9 B8H Reserved

Table 20-62. OffCore Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0-1 B7H 01H MSR_OFFCORE_RSP0 (address 1A6H)

PMC0-1 B7H 02H MSR_OFFCORE_RSP1 (address 1A7H)
20-82 Vol. 3B

PERFORMANCE MONITORING
Figure 20-40. Request_Type Fields for MSR_OFFCORE_RSPx

Table 20-63. MSR_OFFCORE_RSPx Request_Type Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 Counts the number of demand and DCU prefetch data reads of full and partial cachelines as well as
demand data page table entry cacheline reads. Does not count L2 data read prefetches or
instruction fetches.

DMND_RFO 1 Counts the number of demand and DCU prefetch reads for ownership (RFO) requests generated by
a write to data cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 Counts the number of demand instruction cacheline reads and L1 instruction cacheline prefetches.

WB 3 Counts the number of writeback (modified to exclusive) transactions.

PF_DATA_RD 4 Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 Counts the number of code reads generated by L2 prefetchers.

PARTIAL_READ 7 Counts the number of demand reads of partial cache lines (including UC and WC).

PARTIAL_WRITE 8 Counts the number of demand RFO requests to write to partial cache lines (includes UC, WT, and
WP).

UC_IFETCH 9 Counts the number of UC instruction fetches.

BUS_LOCKS 10 Bus lock and split lock requests.

STRM_ST 11 Streaming store requests.

SW_PREFETCH 12 Counts software prefetch requests.

PF_DATA_RD 13 Counts DCU hardware prefetcher data read requests.

PARTIAL_STRM_ST 14 Streaming store requests.

ANY 15 Any request that crosses IDI, including I/O.

REQUEST TYPE — Any (R/W)
REQUEST TYPE — PARTIAL_STRM_ST (R/W)

8 7 0

REQUEST TYPE — STRM_ST (R/W)

11 312 1

Reserved

63 249 5610131415

REQUEST TYPE — BUS_LOCKS (R/W)
REQUEST TYPE — UC_IFETCH (R/W)
REQUEST TYPE — PARTIAL_WRITE (R/W)
REQUEST TYPE — PARTIAL_READ (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 00000000_00000000H

37

See Figure 18-30

REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — SW_PREFETCH (R/W)
Vol. 3B 20-83

PERFORMANCE MONITORING
To properly program this extra register, software must set at least one request type bit (Table 20-63) and a valid
response type pattern (Table 20-64, Table 20-65). Otherwise, the event count reported will be zero. It is permis-
sible and useful to set multiple request and response type bits in order to obtain various classes of off-core
response events. Although MSR_OFFCORE_RSPx allow an agent software to program numerous combinations that
meet the above guideline, not all combinations produce meaningful data.

To specify a complete offcore response filter, software must properly program bits in the request and response type
fields. A valid request type must have at least one bit set in the non-reserved bits of 15:0. A valid response type
must be a non-zero value of the following expression:

ANY | [(‘OR’ of Supplier Info Bits) & (‘OR’ of Snoop Info Bits)]

If “ANY” bit is set, the supplier and snoop info bits are ignored.

Figure 20-41. Response_Supplier and Snoop Info Fields for MSR_OFFCORE_RSPx

Table 20-64. MSR_OFFCORE_RSP_x Response Supplier Info Field Definition

Subtype Bit Name Offset Description

Common ANY_RESPONSE 16 Catch all value for any response types.

Supplier Info Reserved 17 Reserved

L2_HIT 18 Cache reference hit L2 in either M/E/S states.

Reserved 30:19 Reserved

Table 20-65. MSR_OFFCORE_RSPx Snoop Info Field Definition

Subtype Bit Name Offset Description

Snoop
Info

SNP_NONE 31 No details on snoop-related information.

Reserved 32 Reserved

SNOOP_MISS 33 Counts the number of snoop misses when L2 misses.

SNOOP_HIT 34 Counts the number of snoops hit in the other module where no modified copies were
found.

Reserved 35 Reserved

RESPONSE TYPE — NON_DRAM (R/W)
RSPNS_SNOOP — HITM (R/W)

16

RESERVED

33 1934 17

Reserved

63 182031 212232353637

RSPNS_SNOOP — SNOOP_HIT (R/W)
RSPNS_SNOOP — SNOOP_MISS (R/W)
RESERVED
RSPNS_SNOOP — SNOOP_NONE (R/W)
RESERVED
RSPNS_SUPPLIER — L2_HIT (R/W)
RESERVED
RSPNS_SUPPLIER — ANY (R/W)

RESET Value — 00000000_00000000H

38

AVG LATENCY — ENABLE AVG LATENCY(R/W)
20-84 Vol. 3B

PERFORMANCE MONITORING
20.5.2.3 Average Offcore Request Latency Measurement
Average latency for offcore transactions can be determined by using both MSR_OFFCORE_RSP registers. Using two
performance monitoring counters, program the two OFFCORE_RESPONSE event encodings into the corresponding
IA32_PERFEVTSELx MSRs. Count the weighted cycles via MSR_OFFCORE_RSP0 by programming a request type in
MSR_OFFCORE_RSP0.[15:0] and setting MSR_OFFCORE_RSP0.OUTSTANDING[38] to 1, white setting the
remaining bits to 0. Count the number of requests via MSR_OFFCORE_RSP1 by programming the same request
type from MSR_OFFCORE_RSP0 into MSR_OFFCORE_RSP1[bit 15:0], and setting MSR_OFFCORE_RSP1.ANY_RE-
SPONSE[16] = 1, while setting the remaining bits to 0. The average latency can be obtained by dividing the value
of the IA32_PMCx register that counted weight cycles by the register that counted requests.

20.5.3 Performance Monitoring for Goldmont Microarchitecture
Intel Atom processors based on the Goldmont microarchitecture report architectural performance monitoring
versionID = 4 (see Section 20.2.4) and support non-architectural monitoring capabilities described in this section.

Architectural performance monitoring version 4 capabilities are described in Section 20.2.4.

The bit fields (except bit 21) within each IA32_PERFEVTSELx MSR are defined in Figure 20-6 and described in
Section 20.2.1.1 and Section 20.2.3. The Goldmont microarchitecture does not support Hyper-Threading and thus
architectural and non-architectural performance monitoring events ignore the AnyThread qualification regardless
of its setting in the IA32_PERFEVTSELx MSR. However, Goldmont does not set the AnyThread deprecation bit
(CPUID.0AH:EDX[15]).

The core PMU’s capability is similar to that of the Silvermont microarchitecture described in Section 20.5.2, with
some differences and enhancements summarized in Table 20-66.

HITM 36 Counts the number of snoops hit in the other module where modified copies were
found in other core's L1 cache.

NON_DRAM 37 Target was non-DRAM system address. This includes MMIO transactions.

AVG_LATENCY 38 Enable average latency measurement by counting weighted cycles of outstanding
offcore requests of the request type specified in bits 15:0 and any response (bits 37:16
cleared to 0).

This bit is available in MSR_OFFCORE_RESP0. The weighted cycles is accumulated in the
specified programmable counter IA32_PMCx and the occurrence of specified requests
are counted in the other programmable counter.

Table 20-66. Core PMU Comparison Between the Goldmont and Silvermont Microarchitectures

Box Goldmont Microarchitecture Silvermont Microarchitecture Comment

of Fixed counters per core 3 3 Use CPUID to determine #
of counters. See Section
20.2.1.

of general-purpose
counters per core

4 2 Use CPUID to determine #
of counters. See Section
20.2.1.

Counter width (R,W) R:48, W: 32/48 R:40, W:32 See Section 20.2.2.

Architectural Performance
Monitoring version ID

4 3 Use CPUID to determine #
of counters. See Section
20.2.1.

Table 20-65. MSR_OFFCORE_RSPx Snoop Info Field Definition (Contd.)

Subtype Bit Name Offset Description
Vol. 3B 20-85

PERFORMANCE MONITORING
20.5.3.1 Processor Event Based Sampling (PEBS)
Processor event based sampling (PEBS) on the Goldmont microarchitecture is enhanced over prior generations
with respect to sampling support of precise events and non-precise events. In the Goldmont microarchitecture,
PEBS is supported using IA32_PMC0 for all events (see Section 18.4.9).

PEBS uses a debug store mechanism to store a set of architectural state information for the processor at the time
the sample was generated.

Precise events work the same way on Goldmont microarchitecture as on the Silvermont microarchitecture. The
record will be generated after an instruction that causes the event when the counter is already overflowed and will
capture the architectural state at this point (see Section 20.6.2.4 and Section 18.4.9). The eventingIP in the record
will indicate the instruction that caused the event. The list of precise events supported in the Goldmont microarchi-
tecture is shown in Table 20-67.

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with
streamlined semantics.

• Freeze_LBR_on_PMI with
streamlined semantics for
branch profiling.

• Freeze_Perfmon_on_PMI with
legacy semantics.

• Freeze_LBR_on_PMI with legacy
semantics for branch profiling.

See Section 18.4.7.

Legacy semantics not
supported with version 4
or higher.

Counter and Buffer
Overflow Status
Management

• Query via
IA32_PERF_GLOBAL_STATUS

• Reset via
IA32_PERF_GLOBAL_STATUS_R
ESET

• Set via
IA32_PERF_GLOBAL_STATUS_S
ET

• Query via
IA32_PERF_GLOBAL_STATUS

• Reset via
IA32_PERF_GLOBAL_OVF_CTRL

See Section 20.2.4.

IA32_PERF_GLOBAL_STATU
S Indicators of
Overflow/Overhead/Interfer
ence

• Individual counter overflow
• PEBS buffer overflow
• ToPA buffer overflow
• CTR_Frz, LBR_Frz

• Individual counter overflow
• PEBS buffer overflow

See Section 20.2.4.

Enable control in
IA32_PERF_GLOBAL_STATU
S

• CTR_Frz,
• LBR_Frz

No See Section 20.2.4.1.

Perfmon Counter In-Use
Indicator

Query IA32_PERF_GLOBAL_INUSE No See Section 20.2.4.3.

Processor Event Based
Sampling (PEBS) Events

General-Purpose Counter 0 only.
Supports all events (precise and
non-precise). Precise events are
listed in Table 20-67.

See Section 20.5.2.1.1. General-
Purpose Counter 0 only. Only
supports precise events (see
Table 20-60).

IA32_PMC0 only.

PEBS record format
encoding

0011b 0010b

Reduce skid PEBS IA32_PMC0 only No

Data Address Profiling Yes No

PEBS record layout Table 20-68; enhanced fields at
offsets 90H- 98H; and TSC record
field at C0H.

Table 20-61.

PEBS EventingIP Yes Yes

Off-core Response Event MSR 1A6H and 1A7H, each core
has its own register.

MSR 1A6H and 1A7H, shared by a
pair of cores.

Nehalem supports 1A6H
only.

Table 20-66. Core PMU Comparison Between the Goldmont and Silvermont Microarchitectures

Box Goldmont Microarchitecture Silvermont Microarchitecture Comment
20-86 Vol. 3B

PERFORMANCE MONITORING
In the Goldmont microarchitecture, the PEBS facility also supports the use of non-precise events to record
processor state information into PEBS records with the same format as with precise events.

However, a non-precise event may not be attributable to a particular retired instruction or the time of instruction
execution. When the counter overflows, a PEBS record will be generated at the next opportunity. Consider the
event ICACHE.HIT. When the counter overflows, the processor is fetching future instructions. The PEBS record will
be generated at the next opportunity and capture the state at the processor's current retirement point. It is likely
that the instruction fetch that caused the event to increment was beyond that current retirement point. Other
examples of non-precise events are CPU_CLK_UNHALTED.CORE_P and HARDWARE_INTERRUPTS.RECEIVED.
CPU_CLK_UNHALTED.CORE_P will increment each cycle that the processor is awake. When the counter over-flows,
there may be many instructions in various stages of execution. Additionally, zero, one or multiple instructions may
be retired the cycle that the counter overflows. HARDWARE_INTERRUPTS.RECEIVED increments independent of
any instructions being executed. For all non-precise events, the PEBS record will be generated at the next oppor-
tunity, after the counter has overflowed. The PEBS facility thus allows for identification of the instructions which
were executing when the event overflowed.

After generating a record for a non-precise event, the PEBS facility reloads the counter and resumes execution, just
as is done for precise events. Unlike interrupt-based sampling, which requires an interrupt service routine to collect
the sample and reload the counter, the PEBS facility can collect samples even when interrupts are masked and
without using NMI. Since a PEBS record is generated immediately when a counter for a non-precise event is
enabled, it may also be generated after an overflow is set by an MSR write to IA32_PERF_GLOBAL_STATUS_SET.

Table 20-67. Precise Events Supported by the Goldmont Microarchitecture
Event Name Event Select Sub-event UMask

LD_BLOCKS 03H DATA_UNKNOWN 01H

STORE_FORWARD 02H

4K_ALIAS 04H

UTLB_MISS 08H

ALL_BLOCK 10H

MISALIGN_MEM_REF 13H LOAD_PAGE_SPLIT 02H

STORE_PAGE_SPLIT 04H

INST_RETIRED C0H ANY 00H

UOPS_RETITRED C2H ANY 00H

LD_SPLITSMS 01H

BR_INST_RETIRED C4H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

CALL F9H

REL_CALL FDH

IND_CALL FBH

NON_RETURN_IND EBH

FAR_BRANCH BFH

RETURN F7H

BR_MISP_RETIRED C5H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

IND_CALL FBH

NON_RETURN_IND EBH

RETURN F7H
Vol. 3B 20-87

PERFORMANCE MONITORING
The PEBS record format supported by processors based on the Goldmont microarchitecture is shown in
Table 20-68, and each field in the PEBS record is 64 bits long.

On Goldmont microarchitecture, all 64 bits of architectural registers are written into the PEBS record regardless of
processor mode.

With PEBS record format encoding 0011b, offset 90H reports the “Applicable Counter” field, which indicates which
counters actually requested generating a PEBS record. This allows software to correlate the PEBS record entry
properly with the instruction that caused the event even when multiple counters are configured to record PEBS
records and multiple bits are set in the field. Additionally, offset C0H captures a snapshot of the TSC that provides
a time line annotation for each PEBS record entry.

MEM_UOPS_RETIRED D0H ALL_LOADS 81H

ALL_STORES 82H

ALL 83H

DLTB_MISS_LOADS 11H

DLTB_MISS_STORES 12H

DLTB_MISS 13H

MEM_LOAD_UOPS_RETIRED D1H L1_HIT 01H

L2_HIT 02H

L1_MISS 08H

L2_MISS 10H

HITM 20H

WCB_HIT 40H

DRAM_HIT 80H

Table 20-68. PEBS Record Format for the Goldmont Microarchitecture

Byte Offset Field Byte Offset Field

00H R/EFLAGS 68H R11

08H R/EIP 70H R12

10H R/EAX 78H R13

18H R/EBX 80H R14

20H R/ECX 88H R15

28H R/EDX 90H Applicable Counters

30H R/ESI 98H Data Linear Address

38H R/EDI A0H Reserved

40H R/EBP A8H Reserved

48H R/ESP B0H EventingRIP

50H R8 B8H Reserved

58H R9 C0H TSC

60H R10

Table 20-67. Precise Events Supported by the Goldmont Microarchitecture (Contd.)
Event Name Event Select Sub-event UMask
20-88 Vol. 3B

PERFORMANCE MONITORING
20.5.3.1.1 PEBS Data Linear Address Profiling

Goldmont supports the Data Linear Address field introduced in Haswell. It does not support the Data Source
Encoding or Latency Value fields that are also part of Data Address Profiling; those fields are present in the record
but are reserved.

For Goldmont microarchitecture, the Data Linear Address field will record the linear address of memory accesses in
the previous instruction (e.g., the one that triggered a precise event that caused the PEBS record to be generated).
Goldmont microarchitecture may record a Data Linear Address for the instruction that caused the event even for
events not related to memory accesses. This may differ from other microarchitectures.

20.5.3.1.2 Reduced Skid PEBS

Processors based on Goldmont Plus microarchitecture support the Reduced Skid PEBS feature described in Section
20.9.4 on the IA32_PMC0 counter. Although Extended PEBS adds support for generating PEBS records for precise
events on additional general-purpose and fixed-function performance counters, those counters do not support the
Reduced Skid PEBS feature.

20.5.3.1.3 Enhancements to IA32_PERF_GLOBAL_STATUS.OvfDSBuffer[62]

In addition to IA32_PERF_GLOBAL_STATUS.OvfDSBuffer[62] being set when PEBS_Index reaches the PEBS_Inter-
rupt_Theshold, the bit is also set when PEBS_Index is out of bounds. That is, the bit will be set when PEBS_Index
< PEBS_Buffer_Base or PEBS_Index > PEBS_Absolute_Maximum. Note that when an out of bound condition is
encountered, the overflow bits in IA32_PERF_GLOBAL_STATUS will be cleared according to Applicable Counters,
however the IA32_PMCx values will not be reloaded with the Reset values stored in the DS_AREA.

20.5.3.2 Offcore Response Event
Event number 0B7H support offcore response monitoring using an associated configuration MSR, MSR_OFF-
CORE_RSP0 (address 1A6H) in conjunction with UMASK value 01H or MSR_OFFCORE_RSP1 (address 1A7H) in
conjunction with UMASK value 02H. Table 20-62 lists the event code, mask value and additional off-core configu-
ration MSR that must be programmed to count off-core response events using IA32_PMCx.

The Goldmont microarchitecture provides unique pairs of MSR_OFFCORE_RSPx registers per core.

The layout of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 are organized as follows:
• Bits 15:0 specifies the request type of a transaction request to the uncore. This is described in Table 20-69.
• Bits 30:16 specifies common supplier information or an L2 Hit, and is described in Table 20-64.
• If L2 misses, then Bits 37:31 can be used to specify snoop response information and is described in

Table 20-70.
• For outstanding requests, bit 38 can enable measurement of average latency of specific type of offcore

transaction requests using two programmable counter simultaneously; see Section 20.5.2.3 for details.

Table 20-69. MSR_OFFCORE_RSPx Request_Type Field Definition

Bit Name Offset Description

DEMAND_DATA_RD 0 Counts cacheline read requests due to demand reads (excludes prefetches).

DEMAND_RFO 1 Counts cacheline read for ownership (RFO) requests due to demand writes (excludes
prefetches).

DEMAND_CODE_RD 2 Counts demand instruction cacheline and I-side prefetch requests that miss the
instruction cache.

COREWB 3 Counts writeback transactions caused by L1 or L2 cache evictions.

PF_L2_DATA_RD 4 Counts data cacheline reads generated by hardware L2 cache prefetcher.

PF_L2_RFO 5 Counts reads for ownership (RFO) requests generated by L2 prefetcher.

Reserved 6 Reserved.
Vol. 3B 20-89

PERFORMANCE MONITORING
To properly program this extra register, software must set at least one request type bit (Table 20-63) and a valid
response type pattern (either Table 20-64 or Table 20-70). Otherwise, the event count reported will be zero. It is
permissible and useful to set multiple request and response type bits in order to obtain various classes of off-core
response events. Although MSR_OFFCORE_RSPx allow an agent software to program numerous combinations that
meet the above guideline, not all combinations produce meaningful data.

To specify a complete offcore response filter, software must properly program bits in the request and response type
fields. A valid request type must have at least one bit set in the non-reserved bits of 15:0. A valid response type
must be a non-zero value of the following expression:

Any_Response Bit | L2 Hit | ‘OR’ of Snoop Info Bits | Outstanding Bit

20.5.3.3 Average Offcore Request Latency Measurement
In Goldmont microarchitecture, measurement of average latency of offcore transaction requests is the same as
described in Section 20.5.2.3.

PARTIAL_READS 7 Counts demand data partial reads, including data in uncacheable (UC) or uncacheable
(WC) write combining memory types.

PARTIAL_WRITES 8 Counts partial writes, including uncacheable (UC), write through (WT) and write
protected (WP) memory type writes.

UC_CODE_READS 9 Counts code reads in uncacheable (UC) memory region.

BUS_LOCKS 10 Counts bus lock and split lock requests.

FULL_STREAMING_STORES 11 Counts full cacheline writes due to streaming stores.

SW_PREFETCH 12 Counts cacheline requests due to software prefetch instructions.

PF_L1_DATA_RD 13 Counts data cacheline reads generated by hardware L1 data cache prefetcher.

PARTIAL_STREAMING_STORES 14 Counts partial cacheline writes due to streaming stores.

ANY_REQUEST 15 Counts requests to the uncore subsystem.

Table 20-70. MSR_OFFCORE_RSPx For L2 Miss and Outstanding Requests

Subtype Bit Name Offset Description

L2_MISS
(Snoop Info)

Reserved 32:31 Reserved

L2_MISS.SNOOP_MISS_O
R_NO_SNOOP_NEEDED

33 A true miss to this module, for which a snoop request missed the other module or
no snoop was performed/needed.

L2_MISS.HIT_OTHER_CO
RE_NO_FWD

34 A snoop hit in the other processor module, but no data forwarding is required.

Reserved 35 Reserved

L2_MISS.HITM_OTHER_C
ORE

36 Counts the number of snoops hit in the other module or other core's L1 where
modified copies were found.

L2_MISS.NON_DRAM 37 Target was a non-DRAM system address. This includes MMIO transactions.

Outstanding
requests1

NOTES:
1. See Section 20.5.2.3, “Average Offcore Request Latency Measurement,” for details on how to use this bit to extract average latency.

OUTSTANDING 38 Counts weighted cycles of outstanding offcore requests of the request type
specified in bits 15:0, from the time the XQ receives the request and any
response is received. Bits 37:16 must be set to 0. This bit is only available in
MSR_OFFCORE_RESP0.

Table 20-69. MSR_OFFCORE_RSPx Request_Type Field Definition (Contd.)

Bit Name Offset Description
20-90 Vol. 3B

PERFORMANCE MONITORING
20.5.4 Performance Monitoring for Goldmont Plus Microarchitecture
Intel Atom processors based on the Goldmont Plus microarchitecture report architectural performance monitoring
versionID = 4 and support non-architectural monitoring capabilities described in this section.

Architectural performance monitoring version 4 capabilities are described in Section 20.2.4.

Goldmont Plus performance monitoring capabilities are similar to Goldmont capabilities. The differences are in
specific events and in which counters support PEBS. Goldmont Plus introduces the ability for fixed performance
monitoring counters to generate PEBS records.

Goldmont Plus will set the AnyThread deprecation CPUID bit (CPUID.0AH:EDX[15]) to indicate that the Any-Thread
bits in IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL have no effect.

The core PMU's capability is similar to that of the Goldmont microarchitecture described in Section 20.6.3, with
some differences and enhancements summarized in Table 20-71.

20.5.4.1 Extended PEBS
The PEBS facility in Goldmont Plus microarchitecture provides a number of enhancements relative to PEBS in
processors from previous generations. Enhancement of PEBS facility with the Extended PEBS feature are de-
scribed in detail in section 18.9.

20.5.5 Performance Monitoring for Tremont Microarchitecture
Intel Atom processors based on the Tremont microarchitecture report architectural performance monitoring
versionID = 5 and support non-architectural monitoring capabilities described in this section.

Architectural performance monitoring version 5 capabilities are described in Section 20.2.5.

Tremont performance monitoring capabilities are similar to Goldmont Plus capabilities, with the following exten-
sions:
• Support for Adaptive PEBS.
• Support for PEBS output to Intel® Processor Trace.
• Precise Distribution support on Fixed Counter0.
• Compatibility enhancements to off-core response MSRs, MSR_OFFCORE_RSPx.

Table 20-71. Core PMU Comparison Between the Goldmont Plus and Goldmont Microarchitectures

Box Goldmont Plus Microarchitecture Goldmont Microarchitecture Comment

of Fixed counters per core 3 3 Use CPUID to determine #
of counters. See Section
20.2.1.

of general-purpose
counters per core

4 4 Use CPUID to determine #
of counters. See Section
20.2.1.

Counter width (R,W) R:48, W: 32/48 R:48, W: 32/48 No change.

Architectural Performance
Monitoring version ID

4 4 No change.

Processor Event Based
Sampling (PEBS) Events

All General-Purpose and Fixed
counters. Each General-Purpose
counter supports all events (precise
and non-precise).

General-Purpose Counter 0 only.
Supports all events (precise and
non-precise). Precise events are
listed in Table 20-67.

Goldmont Plus supports
PEBS on all counters.

PEBS record format
encoding

0011b 0011b No change.
Vol. 3B 20-91

PERFORMANCE MONITORING
The differences and enhancements between Tremont microarchitecture and Goldmont Plus microarchitecture are
summarized in Table 20-72.

20.5.5.1 Adaptive PEBS
The PEBS record format and configuration interface has changed versus Goldmont Plus, as the Tremont microarchi-
tecture includes support for the configurable Adaptive PEBS records; see Section 20.9.2.

20.5.5.2 PEBS output to Intel® Processor Trace
Intel Atom processors based on the Tremont microarchitecture introduce the following Precise Event-Based
Sampling (PEBS) extensions:
• A mechanism to direct PEBS output into the Intel® Processor Trace (Intel® PT) output stream. In this scenario,

the PEBS record is written in packetized form, in order to co-exist with other Intel PT trace data.
• New Performance Monitoring counter reload MSRs, which are used by PEBS in place of the counter reload

values stored in the DS Management area when PEBS output is directed into the Intel PT output stream.

Processors that indicate support for Intel PT by setting CPUID.07H.0.EBX[25]=1, and set the new IA32_PERF_CA-
PABILITIES.PEBS_OUTPUT_PT_AVAIL[16] bit, support these extensions.

20.5.5.2.1 PEBS Configuration

PEBS output to Intel Processor Trace includes support for two new fields in IA32_PEBS_ENABLE.

Table 20-72. Core PMU Comparison Between the Tremont and Goldmont Plus Microarchitectures

Box Tremont Microarchitecture Goldmont Plus Microarchitecture Comment

of fixed counters per core 3 3 Use CPUID to determine #
of counters. See Section
20.2.1.

of general-purpose
counters per core

4 4 Use CPUID to determine #
of counters. See Section
20.2.1.

Counter width (R,W) R:48, W: 32/48 R:48, W: 32/48 No change. See Section
20.2.2.

Architectural Performance
Monitoring version ID

5 4

PEBS record format
encoding

0100b 0011b See Section 20.6.2.4.2.

Reduce skid PEBS IA32_PMC0 and IA32_FIXED_CTR0 IA32_PMC0 only

Extended PEBS Yes Yes See Section 20.5.4.1.

Adaptive PEBS Yes No See Section 20.9.2.

PEBS output DS Save Area or Intel® Processor
Trace

DS Save Area only See Section 20.5.5.2.1.

PEBS record layout See Section 20.9.2.3 for output to
DS, Section 20.5.5.2.2 for output to
Intel PT.

Table 20-68; enhanced fields at
offsets 90H- 98H; and TSC record
field at C0H.

Off-core Response Event MSR 1A6H and 1A7H, each core
has its own register, extended
request and response types.

MSR 1A6H and 1A7H, each core has
its own register.
20-92 Vol. 3B

PERFORMANCE MONITORING
When PEBS_OUTPUT is set to 01B, the DS Management Area is not used and need not be configured. Instead, the
output mechanism is configured through IA32_RTIT_CTL and other Intel PT MSRs, while counter reload values are
configured in the MSR_RELOAD_PMCx MSRs. Details on configuring Intel PT can be found in Section 33.2.7.

20.5.5.2.2 PEBS Record Format in Intel® Processor Trace

The format of the PEBS record changes when output to Intel PT, as the PEBS state is packetized. Each PEBS
grouping is emitted as a Block Begin (BBP) and following Block Item (BIP) packets. A PEBS grouping ends when
either a new PEBS grouping begins (indicated by a BBP packet) or a Block End (BEP) packet is encountered. See
Section 33.4.1.1 for details of these Intel PT packets.

Because the packet headers describe the state held in the packet payload, PEBS state ordering is not fixed. PEBS
state groupings may be emitted in any order, and the PEBS state elements within those groupings may be emitted
in any order. Further, there is no packet that provides indication of “Record Format” or “Record Size”.

If Intel PT tracing is not enabled (IA32_RTIT_STATUS.TriggerEn=0), any PEBS records triggered will be dropped.
PEBS packets do not depend on ContextEn or FilterEn in IA32_RTIT_STATUS, any filtering of PEBS must be enabled
from within the PerfMon configuration. Counter reload will occur in all scenarios where PEBS is triggered, regard-
less of TriggerEn.

Table 20-73. New Fields in IA32_PEBS_ENABLE

Field Description

PMI_AFTER_EACH_RECORD[60] Pend a PerfMon Interrupt (PMI) after each PEBS event.

PEBS_OUTPUT[62:61] Specifies PEBS output destination. Encodings:

00B: DS Save Area. Matches legacy PEBS behavior, output location defined by IA32_DS_AREA.

01B: Intel PT trace output.

10B: Reserved.

11B: Reserved.

Figure 20-42. IA32_PEBS_ENABLE MSR with PEBS Output to Intel® Processor Trace

 m 1 063 62 61 60

PEBS_EN_FIXED0 (R/W)

PEBS_EN_PMC1 (R/W)

PEBS_EN_PMC0 (R/W)

PEBS_EN_FIXED1 (R/W)

n 32 31

Reserved RESET Value – 00000000 _00000000 H

PMI_AFTER_EACH_RECORD (R/W)

PEBS_OUTPUT (R/W)

● ● ● ● ● ●

PEBS_EN_PMCm (R/W)

PEBS_EN_FIXEDn (R/W)
Vol. 3B 20-93

PERFORMANCE MONITORING
The PEBS threshold mechanism for generating PerfMon Interrupts (PMIs) is not available in this mode. However,
there exist other means to generate PMIs based on PEBS output. When the Intel PT ToPA output mechanism is
chosen, a PMI can optionally be pended when a ToPA region is filled; see Section 33.2.7.2 for details. Further, soft-
ware can opt to generate a PMI on each PEBS record by setting the new IA32_PEBS_EN-
ABLE.PMI_AFTER_EACH_RECORD[60] bit.

The IA32_PERF_GLOBAL_STATUS.OvfDSBuffer bit will not be set in this mode.

20.5.5.2.3 PEBS Counter Reload

When PEBS output is directed into Intel PT (IA32_PEBS_ENABLE.PEBS_OUTPUT = 01B), new MSR_RELOAD_PMCx
MSRs are used by the PEBS routine to reload PerfMon counters. The value from the associated reload MSR will be
loaded to the appropriate counter on each PEBS event.

20.5.5.3 Precise Distribution Support on Fixed Counter 0
The Tremont microarchitecture supports the PDIR (Precise Distribution of Retired Instructions) facility, as described
in Section 20.3.4.4.4, on Fixed Counter 0. Fixed Counter 0 counts the INST_RETIRED.ALL event. PEBS skid for
Fixed Counter 0 will be precisely one instruction.

This is in addition to the reduced skid PEBS behavior on IA32_PMC0; see Section 20.5.3.1.2.

20.5.5.4 Compatibility Enhancements to Offcore Response MSRs
The Off-core Response facility is similar to that described in Section 20.5.3.2.

The layout of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 are organized as shown below. RequestType bits are
defined in Table 20-74, ResponseType bits in Table 20-75, and SnoopInfo bits in Table 20-76.

Table 20-74. MSR_OFFCORE_RSPx Request Type Definition

Bit Name Offset Description

DEMAND_DATA_RD 0 Counts demand data reads.

DEMAND_RFO 1 Counts all demand reads for ownership (RFO) requests and software based
prefetches for exclusive ownership (prefetchw).

DEMAND_CODE_RD 2 Counts demand instruction fetches and L1 instruction cache prefetches.

COREWB_M 3 Counts modified write backs from L1 and L2.

HWPF_L2_DATA_RD 4 Counts prefetch (that bring data to L2) data reads.

HWPF_L2_RFO 5 Counts all prefetch (that bring data to L2) RFOs.

HWPF_L2_CODE_RD 6 Counts all prefetch (that bring data to L2 only) code reads.

Reserved 9:7 Reserved.

HWPF_L1D_AND_SWPF 10 Counts L1 data cache hardware prefetch requests, read for ownership prefetch
requests and software prefetch requests (except prefetchw).

STREAMING_WR 11 Counts all streaming stores.

COREWB_NONM 12 Counts non-modified write backs from L2.

Reserved 14:13 Reserved.

OTHER 15 Counts miscellaneous requests, such as I/O accesses that have any response type.

UC_RD 44 Counts uncached memory reads (PRd, UCRdF).

UC_WR 45 Counts uncached memory writes (WiL).

PARTIAL_STREAMING_WR 46 Counts partial (less than 64 byte) streaming stores (WCiL).

FULL_STREAMING_WR 47 Counts full, 64 byte streaming stores (WCiLF).
20-94 Vol. 3B

PERFORMANCE MONITORING
L1WB_M 48 Counts modified WriteBacks from L1 that miss the L2.

L2WB_M 49 Counts modified WriteBacks from L2.

Table 20-75. MSR_OFFCORE_RSPx Response Type Definition

Bit Name Offset Description

ANY_RESPONSE 16 Catch all value for any response types.

L3_HIT_M 18 LLC/L3 Hit - M-state.

L3_HIT_E 19 LLC/L3 Hit - E-state.

L3_HIT_S 20 LLC/L3 Hit - S-state.

L3_HIT_F 21 LLC/L3 Hit - I-state.

LOCAL_DRAM 26 LLC/L3 Miss, DRAM Hit.

OUTSTANDING 63 Average latency of outstanding requests with the other counter counting number
of occurrences; can also can be used to count occupancy.

Table 20-76. MSR_OFFCORE_RSPx Snoop Info Definition

Bit Name Offset Description

SNOOP_NONE 31 None of the cores were snooped.

• LLC miss and Dram data returned directly to the core.

SNOOP_NOT_NEEDED 32 No snoop needed to satisfy the request.

• LLC hit and CV bit(s) (core valid) was not set.
• LLC miss and Dram data returned directly to the core.

SNOOP_MISS 33 A snoop was sent but missed.

• LLC hit and CV bit(s) was set but snoop missed (silent data drop in core), data
returned from LLC.

• LLC miss and Dram data returned directly to the core.

SNOOP_HIT_NO_FWD 34 A snoop was sent but no data forward.

• LLC hit and CV bit(s) was set but no data forward from the core, data returned
from LLC.

• LLC miss and Dram data returned directly to the core.

SNOOP_HIT_WITH_FWD 35 A snoop was sent and non-modified data was forward.

• LLC hit and CV bit(s) was set, non-modified data was forward from core.

SNOOP_HITM 36 A snoop was sent and modified data was forward.

• LLC hit E or M and the CV bit(s) was set, modified data was forward from core.

NON_DRAM_BIT 37 Target was non-DRAM system address, MMIO access.

• LLC miss and Non-Dram data returned.

Table 20-74. MSR_OFFCORE_RSPx Request Type Definition (Contd.)

Bit Name Offset Description
Vol. 3B 20-95

PERFORMANCE MONITORING
The Off-core Response capability behaves as follows:
• To specify a complete offcore response filter, software must properly program at least one RequestType and one

ResponseType. A valid request type must have at least one bit set in the non-reserved bits of 15:0 or 49:44. A
valid response type must be a non-zero value of one the following expressions:

• Read requests:

Any_Response Bit | (‘OR’ of Supplier Info Bits) ‘AND’ (‘OR’ of Snoop Info Bits) | Outstanding Bit

• Write requests:

Any_Response Bit | (‘OR’ of Supplier Info Bits) | Outstanding Bit
• When the ANY_RESPONSE bit in the ResponseType is set, all other response type bits will be ignored.
• True Demand Cacheable Loads include neither L1 Prefetches nor Software Prefetches.
• Bits 15:0 and Bits 49:44 specifies the request type of a transaction request to the uncore. This is described in

Table 20-74.
• Bits 30:16 specifies common supplier information.
• “Outstanding Requests” (bit 63) is only available on MSR_OFFCORE_RSP0; a #GP fault will occur if software

attempts to write a 1 to this bit in MSR_OFFCORE_RSP1. It is mutually exclusive with any ResponseType.
Software must guarantee that all other ResponseType bits are set to 0 when the “Outstanding Requests” bit is
set.

• “Outstanding Requests” bit 63 can enable measurement of the average latency of a specific type of off-core
transaction; two programmable counters must be used simultaneously and the RequestType programming for
MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 must be the same when using this Average Latency feature.
See Section 20.5.2.3 for further details.

20.6 PERFORMANCE MONITORING (LEGACY INTEL PROCESSORS)

20.6.1 Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo Processors)
In Intel Core Solo and Intel Core Duo processors, non-architectural performance monitoring events are
programmed using the same facilities (see Figure 20-1) used for architectural performance events.

Non-architectural performance events use event select values that are model-specific. Event mask (Umask) values
are also specific to event logic units. Some microarchitectural conditions detectable by a Umask value may have
specificity related to processor topology (see Section 9.6, “Detecting Hardware Multi-Threading Support and
Topology,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). As a result, the unit
mask field (for example, IA32_PERFEVTSELx[bits 15:8]) may contain sub-fields that specify topology information
of processor cores.

The sub-field layout within the Umask field may support two-bit encoding that qualifies the relationship between a
microarchitectural condition and the originating core. This data is shown in Table 20-77. The two-bit encoding for
core-specificity is only supported for a subset of Umask values (see: https://perfmon-events.intel.com/) and for
Intel Core Duo processors. Such events are referred to as core-specific events.

Table 20-77. Core Specificity Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 15:14 Encoding Description

11B All cores

10B Reserved

01B This core

00B Reserved
20-96 Vol. 3B

https://perfmon-events.intel.com/

PERFORMANCE MONITORING
Some microarchitectural conditions allow detection specificity only at the boundary of physical processors. Some
bus events belong to this category, providing specificity between the originating physical processor (a bus agent)
versus other agents on the bus. Sub-field encoding for agent specificity is shown in Table 20-78.

Some microarchitectural conditions are detectable only from the originating core. In such cases, unit mask does
not support core-specificity or agent-specificity encodings. These are referred to as core-only conditions.

Some microarchitectural conditions allow detection specificity that includes or excludes the action of hardware
prefetches. A two-bit encoding may be supported to qualify hardware prefetch actions. Typically, this applies only
to some L2 or bus events. The sub-field encoding for hardware prefetch qualification is shown in Table 20-79.

Some performance events may (a) support none of the three event-specific qualification encodings (b) may
support core-specificity and agent specificity simultaneously (c) or may support core-specificity and hardware
prefetch qualification simultaneously. Agent-specificity and hardware prefetch qualification are mutually exclusive.

In addition, some L2 events permit qualifications that distinguish cache coherent states. The sub-field definition for
cache coherency state qualification is shown in Table 20-80. If no bits in the MESI qualification sub-field are set for
an event that requires setting MESI qualification bits, the event count will not increment.

20.6.2 Performance Monitoring (Processors Based on Intel® Core™ Microarchitecture)
In addition to architectural performance monitoring, processors based on the Intel Core microarchitecture support
non-architectural performance monitoring events.

Architectural performance events can be collected using general-purpose performance counters. Non-architectural
performance events can be collected using general-purpose performance counters (coupled with two IA32_PERFE-
VTSELx MSRs for detailed event configurations), or fixed-function performance counters (see Section 20.6.2.1).
IA32_PERFEVTSELx MSRs are architectural; their layout is shown in Figure 20-1. Starting with Intel Core 2

Table 20-78. Agent Specificity Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 13 Encoding Description

0 This agent

1 Include all agents

Table 20-79. HW Prefetch Qualification Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 13:12 Encoding Description

11B All inclusive

10B Reserved

01B Hardware prefetch only

00B Exclude hardware prefetch

Table 20-80. MESI Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description

Bit 11 Counts modified state

Bit 10 Counts exclusive state

Bit 9 Counts shared state

Bit 8 Counts Invalid state
Vol. 3B 20-97

PERFORMANCE MONITORING
processor T 7700, fixed-function performance counters and associated counter control and status MSR becomes
part of architectural performance monitoring version 2 facilities (see also Section 20.2.2).

Non-architectural performance events in processors based on Intel Core microarchitecture use event select values
that are model-specific. Valid event mask (Umask) bits can be found at: https://perfmon-events.intel.com/. The
UMASK field may contain sub-fields identical to those listed in Table 20-77, Table 20-78, Table 20-79, and
Table 20-80. One or more of these sub-fields may apply to specific events on an event-by-event basis.

In addition, the UMASK filed may also contain a sub-field that allows detection specificity related to snoop
responses. Bits of the snoop response qualification sub-field are defined in Table 20-81.

There are also non-architectural events that support qualification of different types of snoop operation. The corre-
sponding bit field for snoop type qualification are listed in Table 20-82.

No more than one sub-field of MESI, snoop response, and snoop type qualification sub-fields can be supported in a
performance event.

NOTE
Software must write known values to the performance counters prior to enabling the counters. The
content of general-purpose counters and fixed-function counters are undefined after INIT or RESET.

20.6.2.1 Fixed-function Performance Counters
Processors based on Intel Core microarchitecture provide three fixed-function performance counters. Bits beyond
the width of the fixed counter are reserved and must be written as zeros. Model-specific fixed-function performance
counters on processors that support Architectural Perfmon version 1 are 40 bits wide.

Each of the fixed-function counter is dedicated to count a pre-defined performance monitoring events. See Table
20-2 for details of the PMC addresses and what these events count.

Programming the fixed-function performance counters does not involve any of the IA32_PERFEVTSELx MSRs, and
does not require specifying any event masks. Instead, the MSR IA32_FIXED_CTR_CTRL provides multiple sets of
4-bit fields; each 4-bit field controls the operation of a fixed-function performance counter (PMC). See Figures
20-43. Two sub-fields are defined for each control. See Figure 20-43; bit fields are:
• Enable field (low 2 bits in each 4-bit control) — When bit 0 is set, performance counting is enabled in the

corresponding fixed-function performance counter to increment when the target condition associated with the
architecture performance event occurs at ring 0.

Table 20-81. Bus Snoop Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description

Bit 11 HITM response

Bit 10 Reserved

Bit 9 HIT response

Bit 8 CLEAN response

Table 20-82. Snoop Type Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 9:8 Description

Bit 9 CMP2I snoops

Bit 8 CMP2S snoops
20-98 Vol. 3B

https://perfmon-events.intel.com/

PERFORMANCE MONITORING
When bit 1 is set, performance counting is enabled in the corresponding fixed-function performance counter to
increment when the target condition associated with the architecture performance event occurs at ring greater
than 0.
Writing 0 to both bits stops the performance counter. Writing 11B causes the counter to increment irrespective
of privilege levels.

• PMI field (fourth bit in each 4-bit control) — When set, the logical processor generates an exception
through its local APIC on overflow condition of the respective fixed-function counter.

20.6.2.2 Global Counter Control Facilities
Processors based on Intel Core microarchitecture provides simplified performance counter control that simplifies
the most frequent operations in programming performance events, i.e., enabling/disabling event counting and
checking the status of counter overflows. This is done by the following three MSRs:
• MSR_PERF_GLOBAL_CTRL enables/disables event counting for all or any combination of fixed-function PMCs

(IA32_FIXED_CTRx) or general-purpose PMCs via a single WRMSR.
• MSR_PERF_GLOBAL_STATUS allows software to query counter overflow conditions on any combination of

fixed-function PMCs (IA32_FIXED_CTRx) or general-purpose PMCs via a single RDMSR.
• MSR_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow conditions on any combination of

fixed-function PMCs (IA32_FIXED_CTRx) or general-purpose PMCs via a single WRMSR.

MSR_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting in each performance counter (see
Figure 20-44). Each enable bit in MSR_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all privilege levels in
the respective IA32_PERFEVTSELx or IA32_FIXED_CTR_CTRL MSRs to start/stop the counting of respective
counters. Counting is enabled if the AND’ed results is true; counting is disabled when the result is false.

Figure 20-43. Layout of IA32_FIXED_CTR_CTRL MSR

SDM30265

63 0123457891112

E
N

P
M
I

E
N

P
M
I

E
N

P
M
I

Cntr2 — Controls for IA32_FIXED_CTR2

Cntr1 — Controls for IA32_FIXED_CTR1

PMI — Enable PMI on overflow

Cntr0 — Controls for IA32_FIXED_CTR0

ENABLE — 0: disable; 1: OS; 2: User; 3: All ring levels

Reserved
Vol. 3B 20-99

PERFORMANCE MONITORING
MSR_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to query the overflow condition of
each performance counter. MSR_PERF_GLOBAL_STATUS[bit 62] indicates overflow conditions of the DS area data
buffer. MSR_PERF_GLOBAL_STATUS[bit 63] provides a CondChgd bit to indicate changes to the state of perfor-
mance monitoring hardware (see Figure 20-45). A value of 1 in bits 34:32, 1, 0 indicates an overflow condition has
occurred in the associated counter.

When a performance counter is configured for PEBS, an overflow condition in the counter will arm PEBS. On the
subsequent event following overflow, the processor will generate a PEBS event. On a PEBS event, the processor will
perform bounds checks based on the parameters defined in the DS Save Area (see Section 18.4.9). Upon
successful bounds checks, the processor will store the data record in the defined buffer area, clear the counter
overflow status, and reload the counter. If the bounds checks fail, the PEBS will be skipped entirely. In the event
that the PEBS buffer fills up, the processor will set the OvfBuffer bit in MSR_PERF_GLOBAL_STATUS.

MSR_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators for general-purpose or fixed-
function counters via a single WRMSR (see Figure 20-46). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or interrupt-based event sampling.
• Reloading counter values to continue collecting next sample.
• Disabling event counting or interrupt-based event sampling.

Figure 20-44. Layout of MSR_PERF_GLOBAL_CTRL MSR

Figure 20-45. Layout of MSR_PERF_GLOBAL_STATUS MSR

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable
PMC1 enable

2 1 0

PMC0 enable

3132333435

Reserved

63

62

FIXED_CTR2 Overflow
FIXED_CTR1 Overflow
FIXED_CTR0 Overflow
PMC1 Overflow

2 1 0

PMC0 Overflow

3132333435

Reserved

63

CondChgd
OvfBuffer
20-100 Vol. 3B

PERFORMANCE MONITORING
20.6.2.3 At-Retirement Events
Many non-architectural performance events are impacted by the speculative nature of out-of-order execution. A
subset of non-architectural performance events on processors based on Intel Core microarchitecture are enhanced
with a tagging mechanism (similar to that found in Intel NetBurst® microarchitecture) that exclude contributions
that arise from speculative execution. The at-retirement events available in processors based on Intel Core
microarchitecture does not require special MSR programming control (see Section 20.6.3.6, “At-Retirement
Counting”), but is limited to IA32_PMC0. See Table 20-83 for a list of events available to processors based on Intel
Core microarchitecture.

20.6.2.4 Processor Event Based Sampling (PEBS)
Processors based on Intel Core microarchitecture also support processor event based sampling (PEBS). This
feature was introduced by processors based on Intel NetBurst microarchitecture.

PEBS uses a debug store mechanism and a performance monitoring interrupt to store a set of architectural state
information for the processor. The information provides architectural state of the instruction executed after the
instruction that caused the event (See Section 20.6.2.4.2 and Section 18.4.9).

In cases where the same instruction causes BTS and PEBS to be activated, PEBS is processed before BTS are
processed. The PMI request is held until the processor completes processing of PEBS and BTS.

For processors based on Intel Core microarchitecture, precise events that can be used with PEBS are listed in
Table 20-84. The procedure for detecting availability of PEBS is the same as described in Section 20.6.3.8.1.

Figure 20-46. Layout of MSR_PERF_GLOBAL_OVF_CTRL MSR

Table 20-83. At-Retirement Performance Events for Intel Core Microarchitecture

Event Name UMask Event Select

ITLB_MISS_RETIRED 00H C9H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC1 ClrOverflow

2 1 0

PMC0 ClrOverflow

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer
Vol. 3B 20-101

PERFORMANCE MONITORING
20.6.2.4.1 Setting up the PEBS Buffer

For processors based on Intel Core microarchitecture, PEBS is available using IA32_PMC0 only. Use the following
procedure to set up the processor and IA32_PMC0 counter for PEBS:

1. Set up the precise event buffering facilities. Place values in the precise event buffer base, precise event index,
precise event absolute maximum, precise event interrupt threshold, and precise event counter reset fields of
the DS buffer management area. In processors based on Intel Core microarchitecture, PEBS records consist of
64-bit address entries. See Figure 18-8 to set up the precise event records buffer in memory.

2. Enable PEBS. Set the Enable PEBS on PMC0 flag (bit 0) in IA32_PEBS_ENABLE MSR.

3. Set up the IA32_PMC0 performance counter and IA32_PERFEVTSEL0 for an event listed in Table 20-84.

20.6.2.4.2 PEBS Record Format

The PEBS record format may be extended across different processor implementations. The IA32_PERF_CAPABI-
LITES MSR defines a mechanism for software to handle the evolution of PEBS record format in processors that
support architectural performance monitoring with version ID equals 2 or higher. The bit fields of IA32_PERF_CA-
PABILITES are defined in Table 2-2 of Chapter 2, “Model-Specific Registers (MSRs)‚” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 4. The relevant bit fields that governs PEBS are:
• PEBSTrap [bit 6]: When set, PEBS recording is trap-like. After the PEBS-enabled counter has overflowed, PEBS

record is recorded for the next PEBS-able event at the completion of the sampled instruction causing the PEBS
event. When clear, PEBS recording is fault-like. The PEBS record is recorded before the sampled instruction
causing the PEBS event.

• PEBSSaveArchRegs [bit 7]: When set, PEBS will save architectural register and state information according to
the encoded value of the PEBSRecordFormat field. When clear, only the return instruction pointer and flags are
recorded. On processors based on Intel Core microarchitecture, this bit is always 1.

• PEBSRecordFormat [bits 11:8]: Valid encodings are:

— 0000B: Only general-purpose registers, instruction pointer and RFLAGS registers are saved in each PEBS
record (See Section 20.6.3.8).

— 0001B: PEBS record includes additional information of IA32_PERF_GLOBAL_STATUS and load latency data.
(See Section 20.3.1.1.1).

— 0010B: PEBS record includes additional information of IA32_PERF_GLOBAL_STATUS, load latency data,
and TSX tuning information. (See Section 20.3.6.2).

— 0011B: PEBS record includes additional information of load latency data, TSX tuning information, TSC data,
and the applicable counter field replaces IA32_PERF_GLOBAL_STATUS at offset 90H. (See Section
20.3.8.1.1).

— 0100B: PEBS record contents are defined by elections in MSR_PEBS_DATA_CFG. (See Section 20.9.2.3).
The PEBS Configuration Buffer is defined as shown in Figure 20-64 with Counter Reset fields allocation for
8 general-purpose counters followed by 4 fixed-function counters.

Table 20-84. PEBS Performance Events for Intel Core Microarchitecture
Event Name UMask Event Select

INSTR_RETIRED.ANY_P 00H C0H

X87_OPS_RETIRED.ANY FEH C1H

BR_INST_RETIRED.MISPRED 00H C5H

SIMD_INST_RETIRED.ANY 1FH C7H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH
20-102 Vol. 3B

PERFORMANCE MONITORING
— 0101B: PEBS record contents are defined by elections in MSR_PEBS_DATA_CFG. (See Section 20.9.2.3).
The PEBS Configuration Buffer is defined as shown in Figure 20-64 with Counter Reset fields allocation for
32 general-purpose counters followed by 16 fixed-function counters.

20.6.2.4.3 Writing a PEBS Interrupt Service Routine

The PEBS facilities share the same interrupt vector and interrupt service routine (called the DS ISR) with the Inter-
rupt-based event sampling and BTS facilities. To handle PEBS interrupts, PEBS handler code must be included in
the DS ISR. See Section 18.4.9.1, “64 Bit Format of the DS Save Area,” for guidelines when writing the DS ISR.

The service routine can query MSR_PERF_GLOBAL_STATUS to determine which counter(s) caused of overflow
condition. The service routine should clear overflow indicator by writing to MSR_PERF_GLOBAL_OVF_CTL.

A comparison of the sequence of requirements to program PEBS for processors based on Intel Core and Intel
NetBurst microarchitectures is listed in Table 20-85.

Table 20-85. Requirements to Program PEBS

For Processors based on Intel Core
microarchitecture

For Processors based on Intel NetBurst
microarchitecture

Verify PEBS support of
processor/OS.

• IA32_MISC_ENABLE.EMON_AVAILABE (bit 7) is set.
• IA32_MISC_ENABLE.PEBS_UNAVAILABE (bit 12) is clear.

Ensure counters are in disabled. On initial set up or changing event configurations,
write MSR_PERF_GLOBAL_CTRL MSR (38FH) with 0.

On subsequent entries:

• Clear all counters if “Counter Freeze on PMI“ is not
enabled.

• If IA32_DebugCTL.Freeze is enabled, counters are
automatically disabled.

Counters MUST be stopped before writing.1

NOTES:
1. Counters read while enabled are not guaranteed to be precise with event counts that occur in timing proximity to the RDMSR.

Optional

Disable PEBS. Clear ENABLE PMC0 bit in IA32_PEBS_ENABLE MSR
(3F1H).

Optional

Check overflow conditions. Check MSR_PERF_GLOBAL_STATUS MSR (38EH)
handle any overflow conditions.

Check OVF flag of each CCCR for overflow
condition

Clear overflow status. Clear MSR_PERF_GLOBAL_STATUS MSR (38EH)
using IA32_PERF_GLOBAL_OVF_CTRL MSR (390H).

Clear OVF flag of each CCCR.

Write “sample-after“ values. Configure the counter(s) with the sample after value.

Configure specific counter
configuration MSR.

• Set local enable bit 22 - 1.
• Do NOT set local counter PMI/INT bit, bit 20 - 0.
• Event programmed must be PEBS capable.

• Set appropriate OVF_PMI bits - 1.
• Only CCCR for MSR_IQ_COUNTER4

support PEBS.

Allocate buffer for PEBS states. Allocate a buffer in memory for the precise information.

Program the IA32_DS_AREA MSR. Program the IA32_DS_AREA MSR.

Configure the PEBS buffer
management records.

Configure the PEBS buffer management records in the DS buffer management area.

Configure/Enable PEBS. Set Enable PMC0 bit in IA32_PEBS_ENABLE MSR
(3F1H).

Configure MSR_PEBS_ENABLE,
MSR_PEBS_MATRIX_VERT, and
MSR_PEBS_MATRIX_HORZ as needed.

Enable counters. Set Enable bits in MSR_PERF_GLOBAL_CTRL MSR
(38FH).

Set each CCCR enable bit 12 - 1.
Vol. 3B 20-103

PERFORMANCE MONITORING
20.6.2.4.4 Re-configuring PEBS Facilities

When software needs to reconfigure PEBS facilities, it should allow a quiescent period between stopping the prior
event counting and setting up a new PEBS event. The quiescent period is to allow any latent residual PEBS records
to complete its capture at their previously specified buffer address (provided by IA32_DS_AREA).

20.6.3 Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture)
The performance monitoring mechanism provided in processors based on Intel NetBurst microarchitecture is
different from that provided in the P6 family and Pentium processors. While the general concept of selecting,
filtering, counting, and reading performance events through the WRMSR, RDMSR, and RDPMC instructions is
unchanged, the setup mechanism and MSR layouts are incompatible with the P6 family and Pentium processor
mechanisms. Also, the RDPMC instruction has been extended to support faster reading of counters and to read all
performance counters available in processors based on Intel NetBurst microarchitecture.

The event monitoring mechanism consists of the following facilities:
• The IA32_MISC_ENABLE MSR, which indicates the availability in an Intel 64 or IA-32 processor of the

performance monitoring and processor event-based sampling (PEBS) facilities.
• Event selection control (ESCR) MSRs for selecting events to be monitored with specific performance counters.

The number available differs by family and model (43 to 45).
• 18 performance counter MSRs for counting events.
• 18 counter configuration control (CCCR) MSRs, with one CCCR associated with each performance counter.

CCCRs sets up an associated performance counter for a specific method of counting.
• A debug store (DS) save area in memory for storing PEBS records.
• The IA32_DS_AREA MSR, which establishes the location of the DS save area.
• The debug store (DS) feature flag (bit 21) returned by the CPUID instruction, which indicates the availability of

the DS mechanism.
• The MSR_PEBS_ENABLE MSR, which enables the PEBS facilities and replay tagging used in at-retirement event

counting.
• A set of predefined events and event metrics that simplify the setting up of the performance counters to count

specific events.

Table 20-86 lists the performance counters and their associated CCCRs, along with the ESCRs that select events to
be counted for each performance counter. Predefined event metrics and events can be found at: https://perfmon-
events.intel.com/.

Table 20-86. Performance Counter MSRs and Associated CCCR and ESCR MSRs
(Processors Based on Intel NetBurst Microarchitecture)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr

MSR_BPU_COUNTER0 0 300H MSR_BPU_CCCR0 360H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H
20-104 Vol. 3B

https://perfmon-events.intel.com/
https://perfmon-events.intel.com/

PERFORMANCE MONITORING
MSR_BPU_COUNTER1 1 301H MSR_BPU_CCCR1 361H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H

MSR_BPU_COUNTER2 2 302H MSR_BPU_CCCR2 362H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H

MSR_BPU_COUNTER3 3 303H MSR_BPU_CCCR3 363H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H

MSR_MS_COUNTER0 4 304H MSR_MS_CCCR0 364H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H

MSR_MS_COUNTER1 5 305H MSR_MS_CCCR1 365H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H

MSR_MS_COUNTER2 6 306H MSR_MS_CCCR2 366H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H

MSR_MS_COUNTER3 7 307H MSR_MS_CCCR3 367H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H

MSR_FLAME_COUNTER0 8 308H MSR_FLAME_CCCR0 368H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

MSR_FLAME_COUNTER1 9 309H MSR_FLAME_CCCR1 369H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

MSR_FLAME_COUNTER2 10 30AH MSR_FLAME_CCCR2 36AH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

MSR_FLAME_COUNTER3 11 30BH MSR_FLAME_CCCR3 36BH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

Table 20-86. Performance Counter MSRs and Associated CCCR and ESCR MSRs
(Processors Based on Intel NetBurst Microarchitecture) (Contd.)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr
Vol. 3B 20-105

PERFORMANCE MONITORING
The types of events that can be counted with these performance monitoring facilities are divided into two classes:
non-retirement events and at-retirement events.
• Non-retirement events are events that occur any time during instruction execution (such as bus transactions or

cache transactions).
• At-retirement events are events that are counted at the retirement stage of instruction execution, which allows

finer granularity in counting events and capturing machine state.
The at-retirement counting mechanism includes facilities for tagging μops that have encountered a particular
performance event during instruction execution. Tagging allows events to be sorted between those that
occurred on an execution path that resulted in architectural state being committed at retirement as well as
events that occurred on an execution path where the results were eventually cancelled and never committed to
architectural state (such as, the execution of a mispredicted branch).

MSR_IQ_COUNTER0 12 30CH MSR_IQ_CCCR0 36CH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER1 13 30DH MSR_IQ_CCCR1 36DH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER2 14 30EH MSR_IQ_CCCR2 36EH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

MSR_IQ_COUNTER3 15 30FH MSR_IQ_CCCR3 36FH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
 0

2
1

3B9H
3CDH
3E1H
3BBH

3BDH
3CBH

MSR_IQ_COUNTER4 16 310H MSR_IQ_CCCR4 370H MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER5 17 311H MSR_IQ_CCCR5 371H MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

NOTES:
1. MSR_IQ_ESCR0 and MSR_IQ_ESCR1 are available only on early processor builds (family 0FH, models 01H-02H). These MSRs are not

available on later versions.

Table 20-86. Performance Counter MSRs and Associated CCCR and ESCR MSRs
(Processors Based on Intel NetBurst Microarchitecture) (Contd.)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr
20-106 Vol. 3B

PERFORMANCE MONITORING
The Pentium 4 and Intel Xeon processor performance monitoring facilities support the three usage models
described below. The first two models can be used to count both non-retirement and at-retirement events; the
third model is used to count a subset of at-retirement events:
• Event counting — A performance counter is configured to count one or more types of events. While the

counter is counting, software reads the counter at selected intervals to determine the number of events that
have been counted between the intervals.

• Interrupt-based event sampling — A performance counter is configured to count one or more types of
events and to generate an interrupt when it overflows. To trigger an overflow, the counter is preset to a
modulus value that will cause the counter to overflow after a specific number of events have been counted.
When the counter overflows, the processor generates a performance monitoring interrupt (PMI). The interrupt
service routine for the PMI then records the return instruction pointer (RIP), resets the modulus, and restarts
the counter. Code performance can be analyzed by examining the distribution of RIPs with a tool like the
VTune™ Performance Analyzer.

• Processor event-based sampling (PEBS) — In PEBS, the processor writes a record of the architectural
state of the processor to a memory buffer after the counter overflows. The records of architectural state
provide additional information for use in performance tuning. Processor-based event sampling can be used to
count only a subset of at-retirement events. PEBS captures more precise processor state information compared
to interrupt based event sampling, because the latter need to use the interrupt service routine to re-construct
the architectural states of processor.

The following sections describe the MSRs and data structures used for performance monitoring in the Pentium 4
and Intel Xeon processors.

20.6.3.1 ESCR MSRs
The 45 ESCR MSRs (see Table 20-86) allow software to select specific events to be countered. Each ESCR is usually
associated with a pair of performance counters (see Table 20-86) and each performance counter has several ESCRs
associated with it (allowing the events counted to be selected from a variety of events).

Figure 20-47 shows the layout of an ESCR MSR. The functions of the flags and fields are:
• USR flag, bit 2 — When set, events are counted when the processor is operating at a current privilege level

(CPL) of 1, 2, or 3. These privilege levels are generally used by application code and unprotected operating
system code.

• OS flag, bit 3 — When set, events are counted when the processor is operating at CPL of 0. This privilege level
is generally reserved for protected operating system code. (When both the OS and USR flags are set, events
are counted at all privilege levels.)

• Tag enable, bit 4 — When set, enables tagging of μops to assist in at-retirement event counting; when clear,
disables tagging. See Section 20.6.3.6, “At-Retirement Counting.”

Figure 20-47. Event Selection Control Register (ESCR) for Pentium 4
and Intel® Xeon® Processors without Intel HT Technology Support

31 24 8 0123492530

63 32

Reserved

Event Mask
Event
Select

USR
OS

5

Tag Enable

Tag
Value

Reserved
Vol. 3B 20-107

PERFORMANCE MONITORING
• Tag value field, bits 5 through 8 — Selects a tag value to associate with a μop to assist in at-retirement
event counting.

• Event mask field, bits 9 through 24 — Selects events to be counted from the event class selected with the
event select field.

• Event select field, bits 25 through 30) — Selects a class of events to be counted. The events within this
class that are counted are selected with the event mask field.

When setting up an ESCR, the event select field is used to select a specific class of events to count, such as retired
branches. The event mask field is then used to select one or more of the specific events within the class to be
counted. For example, when counting retired branches, four different events can be counted: branch not taken
predicted, branch not taken mispredicted, branch taken predicted, and branch taken mispredicted. The OS and
USR flags allow counts to be enabled for events that occur when operating system code and/or application code are
being executed. If neither the OS nor USR flag is set, no events will be counted.

The ESCRs are initialized to all 0s on reset. The flags and fields of an ESCR are configured by writing to the ESCR
using the WRMSR instruction. Table 20-86 gives the addresses of the ESCR MSRs.

Writing to an ESCR MSR does not enable counting with its associated performance counter; it only selects the event
or events to be counted. The CCCR for the selected performance counter must also be configured. Configuration of
the CCCR includes selecting the ESCR and enabling the counter.

20.6.3.2 Performance Counters
The performance counters in conjunction with the counter configuration control registers (CCCRs) are used for
filtering and counting the events selected by the ESCRs. Processors based on Intel NetBurst microarchitecture
provide 18 performance counters organized into 9 pairs. A pair of performance counters is associated with a partic-
ular subset of events and ESCR’s (see Table 20-86). The counter pairs are partitioned into four groups:
• The BPU group, includes two performance counter pairs:

— MSR_BPU_COUNTER0 and MSR_BPU_COUNTER1.

— MSR_BPU_COUNTER2 and MSR_BPU_COUNTER3.
• The MS group, includes two performance counter pairs:

— MSR_MS_COUNTER0 and MSR_MS_COUNTER1.

— MSR_MS_COUNTER2 and MSR_MS_COUNTER3.
• The FLAME group, includes two performance counter pairs:

— MSR_FLAME_COUNTER0 and MSR_FLAME_COUNTER1.

— MSR_FLAME_COUNTER2 and MSR_FLAME_COUNTER3.
• The IQ group, includes three performance counter pairs:

— MSR_IQ_COUNTER0 and MSR_IQ_COUNTER1.

— MSR_IQ_COUNTER2 and MSR_IQ_COUNTER3.

— MSR_IQ_COUNTER4 and MSR_IQ_COUNTER5.

The MSR_IQ_COUNTER4 counter in the IQ group provides support for the PEBS.

Alternate counters in each group can be cascaded: the first counter in one pair can start the first counter in the
second pair and vice versa. A similar cascading is possible for the second counters in each pair. For example, within
the BPU group of counters, MSR_BPU_COUNTER0 can start MSR_BPU_COUNTER2 and vice versa, and MSR_B-
PU_COUNTER1 can start MSR_BPU_COUNTER3 and vice versa (see Section 20.6.3.5.6, “Cascading Counters”).
The cascade flag in the CCCR register for the performance counter enables the cascading of counters.

Each performance counter is 40-bits wide (see Figure 20-48). The RDPMC instruction is intended to allow reading
of either the full counter-width (40-bits) or, if ECX[31] is set to 1, the low 32-bits of the counter. Reading the low
32-bits is faster than reading the full counter width and is appropriate in situations where the count is small enough
to be contained in 32 bits. In such cases, counter bits 31:0 are written to EAX, while 0 is written to EDX.
20-108 Vol. 3B

PERFORMANCE MONITORING
The RDPMC instruction can be used by programs or procedures running at any privilege level and in virtual-8086
mode to read these counters. The PCE flag in control register CR4 (bit 8) allows the use of this instruction to be
restricted to only programs and procedures running at privilege level 0.

The RDPMC instruction is not serializing or ordered with other instructions. Thus, it does not necessarily wait until
all previous instructions have been executed before reading the counter. Similarly, subsequent instructions may
begin execution before the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the performance counters, using
the RDMSR and WRMSR instructions. A secure operating system would clear the PCE flag during system initializa-
tion to disable direct user access to the performance-monitoring counters, but provide a user-accessible program-
ming interface that emulates the RDPMC instruction.

Some uses of the performance counters require the counters to be preset before counting begins (that is, before
the counter is enabled). This can be accomplished by writing to the counter using the WRMSR instruction. To set a
counter to a specified number of counts before overflow, enter a 2s complement negative integer in the counter.
The counter will then count from the preset value up to -1 and overflow. Writing to a performance counter in a
Pentium 4 or Intel Xeon processor with the WRMSR instruction causes all 40 bits of the counter to be written.

20.6.3.3 CCCR MSRs
Each of the 18 performance counters has one CCCR MSR associated with it (see Table 20-86). The CCCRs control
the filtering and counting of events as well as interrupt generation. Figure 20-49 shows the layout of an CCCR MSR.
The functions of the flags and fields are as follows:
• Enable flag, bit 12 — When set, enables counting; when clear, the counter is disabled. This flag is cleared on

reset.
• ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to select events to be counted with

the counter associated with the CCCR.
• Compare flag, bit 18 — When set, enables filtering of the event count; when clear, disables filtering. The

filtering method is selected with the threshold, complement, and edge flags.
• Complement flag, bit 19 — Selects how the incoming event count is compared with the threshold value.

When set, event counts that are less than or equal to the threshold value result in a single count being
delivered to the performance counter; when clear, counts greater than the threshold value result in a count
being delivered to the performance counter (see Section 20.6.3.5.2, “Filtering Events”). The complement flag
is not active unless the compare flag is set.

• Threshold field, bits 20 through 23 — Selects the threshold value to be used for comparisons. The
processor examines this field only when the compare flag is set, and uses the complement flag setting to
determine the type of threshold comparison to be made. The useful range of values that can be entered in this
field depend on the type of event being counted (see Section 20.6.3.5.2, “Filtering Events”).

• Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge detection of the threshold comparison
output for filtering event counts; when clear, rising edge detection is disabled. This flag is active only when the
compare flag is set.

Figure 20-48. Performance Counter (Pentium 4 and Intel® Xeon® Processors)

63 32

Reserved

31 0

Counter

39

Counter
Vol. 3B 20-109

PERFORMANCE MONITORING
• FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every counter increment; when clear,
overflow only occurs when the counter actually overflows.

• OVF_PMI flag, bit 26 — When set, causes a performance monitor interrupt (PMI) to be generated when the
counter overflows occurs; when clear, disables PMI generation. Note that the PMI is generated on the next
event count after the counter has overflowed.

• Cascade flag, bit 30 — When set, enables counting on one counter of a counter pair when its alternate
counter in the other the counter pair in the same counter group overflows (see Section 20.6.3.2, “Performance
Counters,” for further details); when clear, disables cascading of counters.

• OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag is a sticky flag that must be
explicitly cleared by software.

The CCCRs are initialized to all 0s on reset.

The events that an enabled performance counter actually counts are selected and filtered by the following flags and
fields in the ESCR and CCCR registers and in the qualification order given:

1. The event select and event mask fields in the ESCR select a class of events to be counted and one or more event
types within the class, respectively.

2. The OS and USR flags in the ESCR selected the privilege levels at which events will be counted.

3. The ESCR select field of the CCCR selects the ESCR. Since each counter has several ESCRs associated with it,
one ESCR must be chosen to select the classes of events that may be counted.

4. The compare and complement flags and the threshold field of the CCCR select an optional threshold to be used
in qualifying an event count.

5. The edge flag in the CCCR allows events to be counted only on rising-edge transitions.

The qualification order in the above list implies that the filtered output of one “stage” forms the input for the next.
For instance, events filtered using the privilege level flags can be further qualified by the compare and complement
flags and the threshold field, and an event that matched the threshold criteria, can be further qualified by edge
detection.

The uses of the flags and fields in the CCCRs are discussed in greater detail in Section 20.6.3.5, “Programming the
Performance Counters for Non-Retirement Events.”

Figure 20-49. Counter Configuration Control Register (CCCR)

63 32

Reserved

Reserved

Reserved: Must be set to 11B
Compare

Enable

31 24 23 20 19 16 15 12 11 017182526272930

Edge
FORCE_OVF

OVF_PMI

Threshold

Cascade
OVF

Complement

Reserved

13

ESCR
Select

Reserved
20-110 Vol. 3B

PERFORMANCE MONITORING
20.6.3.4 Debug Store (DS) Mechanism
The debug store (DS) mechanism was introduced with processors based on Intel NetBurst microarchitecture to
allow various types of information to be collected in memory-resident buffers for use in debugging and tuning
programs. The DS mechanism can be used to collect two types of information: branch records and processor
event-based sampling (PEBS) records. The availability of the DS mechanism in a processor is indicated with the DS
feature flag (bit 21) returned by the CPUID instruction.

See Section 18.4.5, “Branch Trace Store (BTS),” and Section 20.6.3.8, “Processor Event-Based Sampling (PEBS),”
for a description of these facilities. Records collected with the DS mechanism are saved in the DS save area. See
Section 18.4.9, “BTS and DS Save Area.”

20.6.3.5 Programming the Performance Counters for Non-Retirement Events
The basic steps to program a performance counter and to count events include the following:

1. Select the event or events to be counted.

2. For each event, select an ESCR that supports the event.

3. Match the CCCR Select value and ESCR name to a value listed in Table 20-86; select a CCCR and performance
counter.

4. Set up an ESCR for the specific event or events to be counted and the privilege levels at which they are to be
counted.

5. Set up the CCCR for the performance counter by selecting the ESCR and the desired event filters.

6. Set up the CCCR for optional cascading of event counts, so that when the selected counter overflows its
alternate counter starts.

7. Set up the CCCR to generate an optional performance monitor interrupt (PMI) when the counter overflows. If
PMI generation is enabled, the local APIC must be set up to deliver the interrupt to the processor and a handler
for the interrupt must be in place.

8. Enable the counter to begin counting.

20.6.3.5.1 Selecting Events to Count

There is a set of at-retirement events for processors based on Intel NetBurst microarchitecture. For each event,
setup information is provided. Table 20-87 gives an example of one of the events.

Table 20-87. Event Example
Event Name Event Parameters Parameter Value Description

branch_retired Counts the retirement of a branch. Specify one or more mask bits to select
any combination of branch taken, not-taken, predicted, and mispredicted.

ESCR restrictions MSR_CRU_ESCR2
MSR_CRU_ESCR3

See Table 15-3 for the addresses of the ESCR MSRs.

Counter numbers per
ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

The counter numbers associated with each ESCR are provided. The
performance counters and corresponding CCCRs can be obtained from
Table 15-3.

ESCR Event Select 06H ESCR[31:25]

ESCR Event Mask

Bit 0: MMNP

 1: MMNM

 2: MMTP

 3: MMTM

ESCR[24:9]

Branch Not-taken Predicted

Branch Not-taken Mispredicted

Branch Taken Predicted

Branch Taken Mispredicted

CCCR Select 05H CCCR[15:13]
Vol. 3B 20-111

PERFORMANCE MONITORING
Event Parameters are described below.
• ESCR restrictions — Lists the ESCRs that can be used to program the event. Typically only one ESCR is

needed to count an event.
• Counter numbers per ESCR — Lists which performance counters are associated with each ESCR. Table 20-86

gives the name of the counter and CCCR for each counter number. Typically only one counter is needed to count
the event.

• ESCR event select — Gives the value to be placed in the event select field of the ESCR to select the event.
• ESCR event mask — Gives the value to be placed in the Event Mask field of the ESCR to select sub-events to

be counted. The parameter value column defines the documented bits with relative bit position offset starting
from 0, where the absolute bit position of relative offset 0 is bit 9 of the ESCR. All undocumented bits are
reserved and should be set to 0.

• CCCR select — Gives the value to be placed in the ESCR select field of the CCCR associated with the counter
to select the ESCR to be used to define the event. This value is not the address of the ESCR; it is the number of
the ESCR from the Number column in Table 20-86.

• Event specific notes — Gives additional information about the event, such as the name of the same or a
similar event defined for the P6 family processors.

• Can support PEBS — Indicates if PEBS is supported for the event (only supplied for at-retirement events).
• Requires additional MSR for tagging — Indicates which if any additional MSRs must be programmed to

count the events (only supplied for the at-retirement events).

NOTE
The performance-monitoring events found at https://perfmon-events.intel.com/ are intended to be
used as guides for performance tuning. The counter values reported are not guaranteed to be
absolutely accurate and should be used as a relative guide for tuning. Known discrepancies are
documented where applicable.

The following procedure shows how to set up a performance counter for basic counting; that is, the counter is set
up to count a specified event indefinitely, wrapping around whenever it reaches its maximum count. This procedure
is continued through the following four sections.

An event to be counted can be selected as follows:

1. Select the event to be counted.

2. Select the ESCR to be used to select events to be counted from the ESCRs field.

3. Select the number of the counter to be used to count the event from the Counter Numbers Per ESCR field.

4. Determine the name of the counter and the CCCR associated with the counter, and determine the MSR
addresses of the counter, CCCR, and ESCR from Table 20-86.

5. Use the WRMSR instruction to write the ESCR Event Select and ESCR Event Mask values into the appropriate
fields in the ESCR. At the same time set or clear the USR and OS flags in the ESCR as desired.

6. Use the WRMSR instruction to write the CCCR Select value into the appropriate field in the CCCR.

Event Specific Notes P6: EMON_BR_INST_RETIRED

Can Support PEBS No

Requires Additional
MSRs for Tagging

No

Table 20-87. Event Example (Contd.)
Event Name Event Parameters Parameter Value Description
20-112 Vol. 3B

https://perfmon-events.intel.com/

PERFORMANCE MONITORING
NOTE
Typically all the fields and flags of the CCCR will be written with one WRMSR instruction; however,
in this procedure, several WRMSR writes are used to more clearly demonstrate the uses of the
various CCCR fields and flags.

This setup procedure is continued in the next section, Section 20.6.3.5.2, “Filtering Events.”

20.6.3.5.2 Filtering Events

Each counter receives up to 4 input lines from the processor hardware from which it is counting events. The
counter treats these inputs as binary inputs (input 0 has a value of 1, input 1 has a value of 2, input 3 has a value
of 4, and input 3 has a value of 8). When a counter is enabled, it adds this binary input value to the counter value
on each clock cycle. For each clock cycle, the value added to the counter can then range from 0 (no event) to 15.

For many events, only the 0 input line is active, so the counter is merely counting the clock cycles during which the
0 input is asserted. However, for some events two or more input lines are used. Here, the counters threshold
setting can be used to filter events. The compare, complement, threshold, and edge fields control the filtering of
counter increments by input value.

If the compare flag is set, then a “greater than” or a “less than or equal to” comparison of the input value vs. a
threshold value can be made. The complement flag selects “less than or equal to” (flag set) or “greater than” (flag
clear). The threshold field selects a threshold value of from 0 to 15. For example, if the complement flag is cleared
and the threshold field is set to 6, than any input value of 7 or greater on the 4 inputs to the counter will cause the
counter to be incremented by 1, and any value less than 7 will cause an increment of 0 (or no increment) of the
counter. Conversely, if the complement flag is set, any value from 0 to 6 will increment the counter and any value
from 7 to 15 will not increment the counter. Note that when a threshold condition has been satisfied, the input to
the counter is always 1, not the input value that is presented to the threshold filter.

The edge flag provides further filtering of the counter inputs when a threshold comparison is being made. The edge
flag is only active when the compare flag is set. When the edge flag is set, the resulting output from the threshold
filter (a value of 0 or 1) is used as an input to the edge filter. Each clock cycle, the edge filter examines the last and
current input values and sends a count to the counter only when it detects a “rising edge” event; that is, a false-
to-true transition. Figure 20-50 illustrates rising edge filtering.

The following procedure shows how to configure a CCCR to filter events using the threshold filter and the edge
filter. This procedure is a continuation of the setup procedure introduced in Section 20.6.3.5.1, “Selecting Events
to Count.”

7. (Optional) To set up the counter for threshold filtering, use the WRMSR instruction to write values in the CCCR
compare and complement flags and the threshold field:

— Set the compare flag.

— Set or clear the complement flag for less than or equal to or greater than comparisons, respectively.

— Enter a value from 0 to 15 in the threshold field.

8. (Optional) Select rising edge filtering by setting the CCCR edge flag.

This setup procedure is continued in the next section, Section 20.6.3.5.3, “Starting Event Counting.”

Figure 20-50. Effects of Edge Filtering

Output from
Threshold Filter

Counter Increments
On Rising Edge
(False-to-True)

Processor Clock
Vol. 3B 20-113

PERFORMANCE MONITORING
20.6.3.5.3 Starting Event Counting

Event counting by a performance counter can be initiated in either of two ways. The typical way is to set the enable
flag in the counter’s CCCR. Following the instruction to set the enable flag, event counting begins and continues
until it is stopped (see Section 20.6.3.5.5, “Halting Event Counting”).

The following procedural step shows how to start event counting. This step is a continuation of the setup procedure
introduced in Section 20.6.3.5.2, “Filtering Events.”

9. To start event counting, use the WRMSR instruction to set the CCCR enable flag for the performance counter.

This setup procedure is continued in the next section, Section 20.6.3.5.4, “Reading a Performance Counter’s
Count.”

The second way that a counter can be started by using the cascade feature. Here, the overflow of one counter auto-
matically starts its alternate counter (see Section 20.6.3.5.6, “Cascading Counters”).

20.6.3.5.4 Reading a Performance Counter’s Count

Performance counters can be read using either the RDPMC or RDMSR instructions. The enhanced functions of the
RDPMC instruction (including fast read) are described in Section 20.6.3.2, “Performance Counters.” These instruc-
tions can be used to read a performance counter while it is counting or when it is stopped.

The following procedural step shows how to read the event counter. This step is a continuation of the setup proce-
dure introduced in Section 20.6.3.5.3, “Starting Event Counting.”

10. To read a performance counters current event count, execute the RDPMC instruction with the counter number
obtained from Table 20-86 used as an operand.

This setup procedure is continued in the next section, Section 20.6.3.5.5, “Halting Event Counting.”

20.6.3.5.5 Halting Event Counting

After a performance counter has been started (enabled), it continues counting indefinitely. If the counter overflows
(goes one count past its maximum count), it wraps around and continues counting. When the counter wraps
around, it sets its OVF flag to indicate that the counter has overflowed. The OVF flag is a sticky flag that indicates
that the counter has overflowed at least once since the OVF bit was last cleared.

To halt counting, the CCCR enable flag for the counter must be cleared.

The following procedural step shows how to stop event counting. This step is a continuation of the setup procedure
introduced in Section 20.6.3.5.4, “Reading a Performance Counter’s Count.”

11. To stop event counting, execute a WRMSR instruction to clear the CCCR enable flag for the performance
counter.

To halt a cascaded counter (a counter that was started when its alternate counter overflowed), either clear the
Cascade flag in the cascaded counter’s CCCR MSR or clear the OVF flag in the alternate counter’s CCCR MSR.

20.6.3.5.6 Cascading Counters

As described in Section 20.6.3.2, “Performance Counters,” eighteen performance counters are implemented in
pairs. Nine pairs of counters and associated CCCRs are further organized as four blocks: BPU, MS, FLAME, and IQ
(see Table 20-86). The first three blocks contain two pairs each. The IQ block contains three pairs of counters (12
through 17) with associated CCCRs (MSR_IQ_CCCR0 through MSR_IQ_CCCR5).

The first 8 counter pairs (0 through 15) can be programmed using ESCRs to detect performance monitoring events.
Pairs of ESCRs in each of the four blocks allow many different types of events to be counted. The cascade flag in the
CCCR MSR allows nested monitoring of events to be performed by cascading one counter to a second counter
located in another pair in the same block (see Figure 20-49 for the location of the flag).

Counters 0 and 1 form the first pair in the BPU block. Either counter 0 or 1 can be programmed to detect an event
via MSR_MO B_ESCR0. Counters 0 and 2 can be cascaded in any order, as can counters 1 and 3. It’s possible to set
up 4 counters in the same block to cascade on two pairs of independent events. The pairing described also applies
to subsequent blocks. Since the IQ PUB has two extra counters, cascading operates somewhat differently if 16 and
17 are involved. In the IQ block, counter 16 can only be cascaded from counter 14 (not from 12); counter 14
20-114 Vol. 3B

PERFORMANCE MONITORING
cannot be cascaded from counter 16 using the CCCR cascade bit mechanism. Similar restrictions apply to counter
17.

Example 20-1. Counting Events

Assume a scenario where counter X is set up to count 200 occurrences of event A; then counter Y is set up to count
400 occurrences of event B. Each counter is set up to count a specific event and overflow to the next counter. In
the above example, counter X is preset for a count of -200 and counter Y for a count of -400; this setup causes the
counters to overflow on the 200th and 400th counts respectively.

Continuing this scenario, counter X is set up to count indefinitely and wraparound on overflow. This is described in
the basic performance counter setup procedure that begins in Section 20.6.3.5.1, “Selecting Events to Count.”
Counter Y is set up with the cascade flag in its associated CCCR MSR set to 1 and its enable flag set to 0.

To begin the nested counting, the enable bit for the counter X is set. Once enabled, counter X counts until it over-
flows. At this point, counter Y is automatically enabled and begins counting. Thus counter X overflows after 200
occurrences of event A. Counter Y then starts, counting 400 occurrences of event B before overflowing. When
performance counters are cascaded, the counter Y would typically be set up to generate an interrupt on overflow.
This is described in Section 20.6.3.5.8, “Generating an Interrupt on Overflow.”

The cascading counters mechanism can be used to count a single event. The counting begins on one counter then
continues on the second counter after the first counter overflows. This technique doubles the number of event
counts that can be recorded, since the contents of the two counters can be added together.

20.6.3.5.7 EXTENDED CASCADING

Extended cascading is a model-specific feature in the Intel NetBurst microarchitecture with CPUID DisplayFami-
ly_DisplayModel 0F_02, 0F_03, 0F_04, 0F_06. This feature uses bit 11 in CCCRs associated with the IQ block. See
Table 20-88.

The extended cascading feature can be adapted to the Interrupt based sampling usage model for performance
monitoring. However, it is known that performance counters do not generate PMI in cascade mode or extended
cascade mode due to an erratum. This erratum applies to processors with CPUID DisplayFamily_DisplayModel
signature of 0F_02. For processors with CPUID DisplayFamily_DisplayModel signature of 0F_00 and 0F_01, the
erratum applies to processors with stepping encoding greater than 09H.

Counters 16 and 17 in the IQ block are frequently used in processor event-based sampling or at-retirement
counting of events indicating a stalled condition in the pipeline. Neither counter 16 or 17 can initiate the cascading
of counter pairs using the cascade bit in a CCCR.

Extended cascading permits performance monitoring tools to use counters 16 and 17 to initiate cascading of two
counters in the IQ block. Extended cascading from counter 16 and 17 is conceptually similar to cascading other
counters, but instead of using CASCADE bit of a CCCR, one of the four CASCNTxINTOy bits is used.

Example 20-2. Scenario for Extended Cascading

A usage scenario for extended cascading is to sample instructions retired on logical processor 1 after the first 4096
instructions retired on logical processor 0. A procedure to program extended cascading in this scenario is outlined
below:

Table 20-88. CCR Names and Bit Positions

CCCR Name:Bit Position Bit Name Description

MSR_IQ_CCCR1|2:11 Reserved

MSR_IQ_CCCR0:11 CASCNT4INTO0 Allow counter 4 to cascade into counter 0

MSR_IQ_CCCR3:11 CASCNT5INTO3 Allow counter 5 to cascade into counter 3

MSR_IQ_CCCR4:11 CASCNT5INTO4 Allow counter 5 to cascade into counter 4

MSR_IQ_CCCR5:11 CASCNT4INTO5 Allow counter 4 to cascade into counter 5
Vol. 3B 20-115

PERFORMANCE MONITORING
1. Write the value 0 to counter 12.

2. Write the value 04000603H to MSR_CRU_ESCR0 (corresponding to selecting the NBOGNTAG and NBOGTAG
event masks with qualification restricted to logical processor 1).

3. Write the value 04038800H to MSR_IQ_CCCR0. This enables CASCNT4INTO0 and OVF_PMI. An ISR can sample
on instruction addresses in this case (do not set ENABLE, or CASCADE).

4. Write the value FFFFF000H into counter 16.1.

5. Write the value 0400060CH to MSR_CRU_ESCR2 (corresponding to selecting the NBOGNTAG and NBOGTAG
event masks with qualification restricted to logical processor 0).

6. Write the value 00039000H to MSR_IQ_CCCR4 (set ENABLE bit, but not OVF_PMI).

Another use for cascading is to locate stalled execution in a multithreaded application. Assume MOB replays in
thread B cause thread A to stall. Getting a sample of the stalled execution in this scenario could be accomplished
by:

1. Set up counter B to count MOB replays on thread B.

2. Set up counter A to count resource stalls on thread A; set its force overflow bit and the appropriate CASCNTx-
INTOy bit.

3. Use the performance monitoring interrupt to capture the program execution data of the stalled thread.

20.6.3.5.8 Generating an Interrupt on Overflow

Any performance counter can be configured to generate a performance monitor interrupt (PMI) if the counter over-
flows. The PMI interrupt service routine can then collect information about the state of the processor or program
when overflow occurred. This information can then be used with a tool like the Intel® VTune™ Performance
Analyzer to analyze and tune program performance.

To enable an interrupt on counter overflow, the OVR_PMI flag in the counter’s associated CCCR MSR must be set.
When overflow occurs, a PMI is generated through the local APIC. (Here, the performance counter entry in the local
vector table [LVT] is set up to deliver the interrupt generated by the PMI to the processor.)

The PMI service routine can use the OVF flag to determine which counter overflowed when multiple counters have
been configured to generate PMIs. Also, note that these processors mask PMIs upon receiving an interrupt. Clear
this condition before leaving the interrupt handler.

When generating interrupts on overflow, the performance counter being used should be preset to value that will
cause an overflow after a specified number of events are counted plus 1. The simplest way to select the preset
value is to write a negative number into the counter, as described in Section 20.6.3.5.6, “Cascading Counters.”
Here, however, if an interrupt is to be generated after 100 event counts, the counter should be preset to minus 100
plus 1 (-100 + 1), or -99. The counter will then overflow after it counts 99 events and generate an interrupt on the
next (100th) event counted. The difference of 1 for this count enables the interrupt to be generated immediately
after the selected event count has been reached, instead of waiting for the overflow to be propagation through the
counter.

Because of latency in the microarchitecture between the generation of events and the generation of interrupts on
overflow, it is sometimes difficult to generate an interrupt close to an event that caused it. In these situations, the
FORCE_OVF flag in the CCCR can be used to improve reporting. Setting this flag causes the counter to overflow on
every counter increment, which in turn triggers an interrupt after every counter increment.

20.6.3.5.9 Counter Usage Guideline

There are some instances where the user must take care to configure counting logic properly, so that it is not
powered down. To use any ESCR, even when it is being used just for tagging, (any) one of the counters that the
particular ESCR (or its paired ESCR) can be connected to should be enabled. If this is not done, 0 counts may
result. Likewise, to use any counter, there must be some event selected in a corresponding ESCR (other than
no_event, which generally has a select value of 0).
20-116 Vol. 3B

PERFORMANCE MONITORING
20.6.3.6 At-Retirement Counting
At-retirement counting provides a means counting only events that represent work committed to architectural
state and ignoring work that was performed speculatively and later discarded.

One example of this speculative activity is branch prediction. When a branch misprediction occurs, the results of
instructions that were decoded and executed down the mispredicted path are canceled. If a performance counter
was set up to count all executed instructions, the count would include instructions whose results were canceled as
well as those whose results committed to architectural state.

To provide finer granularity in event counting in these situations, the performance monitoring facilities provided in
the Pentium 4 and Intel Xeon processors provide a mechanism for tagging events and then counting only those
tagged events that represent committed results. This mechanism is called “at-retirement counting.”

There are predefined at-retirement events and event metrics that can be used to for tagging events when using at
retirement counting. The following terminology is used in describing at-retirement counting:
• Bogus, non-bogus, retire — In at-retirement event descriptions, the term “bogus” refers to instructions or

μops that must be canceled because they are on a path taken from a mispredicted branch. The terms “retired”
and “non-bogus” refer to instructions or μops along the path that results in committed architectural state
changes as required by the program being executed. Thus instructions and μops are either bogus or non-
bogus, but not both. Several of the Pentium 4 and Intel Xeon processors’ performance monitoring events (such
as, Instruction_Retired and Uops_Retired) can count instructions or μops that are retired based on the charac-
terization of bogus” versus non-bogus.

• Tagging — Tagging is a means of marking μops that have encountered a particular performance event so they
can be counted at retirement. During the course of execution, the same event can happen more than once per
μop and a direct count of the event would not provide an indication of how many μops encountered that event.
The tagging mechanisms allow a μop to be tagged once during its lifetime and thus counted once at retirement.
The retired suffix is used for performance metrics that increment a count once per μop, rather than once per
event. For example, a μop may encounter a cache miss more than once during its life time, but a “Miss Retired”
metric (that counts the number of retired μops that encountered a cache miss) will increment only once for that
μop. A “Miss Retired” metric would be useful for characterizing the performance of the cache hierarchy for a
particular instruction sequence. Details of various performance metrics and how these can be constructed
using the Pentium 4 and Intel Xeon processors performance events are provided in the Intel® 64 and IA-32
Architectures Optimization Reference Manual (see Section 1.4, “Related Literature”).

• Replay — To maximize performance for the common case, the Intel NetBurst microarchitecture aggressively
schedules μops for execution before all the conditions for correct execution are guaranteed to be satisfied. In
the event that all of these conditions are not satisfied, μops must be reissued. The mechanism that the Pentium
4 and Intel Xeon processors use for this reissuing of μops is called replay. Some examples of replay causes are
cache misses, dependence violations, and unforeseen resource constraints. In normal operation, some number
of replays is common and unavoidable. An excessive number of replays is an indication of a performance
problem.

• Assist — When the hardware needs the assistance of microcode to deal with some event, the machine takes
an assist. One example of this is an underflow condition in the input operands of a floating-point operation. The
hardware must internally modify the format of the operands in order to perform the computation. Assists clear
the entire machine of μops before they begin and are costly.

20.6.3.6.1 Using At-Retirement Counting

Processors based on Intel NetBurst microarchitecture allow counting both events and μops that encountered a
specified event. For a subset of the at-retirement events, a μop may be tagged when it encounters that event. The
tagging mechanisms can be used in Interrupt-based event sampling, and a subset of these mechanisms can be
used in PEBS. There are four independent tagging mechanisms, and each mechanism uses a different event to
count μops tagged with that mechanism:
• Front-end tagging — This mechanism pertains to the tagging of μops that encountered front-end events (for

example, trace cache and instruction counts) and are counted with the Front_end_event event.
• Execution tagging — This mechanism pertains to the tagging of μops that encountered execution events (for

example, instruction types) and are counted with the Execution_Event event.
Vol. 3B 20-117

PERFORMANCE MONITORING
• Replay tagging — This mechanism pertains to tagging of μops whose retirement is replayed (for example, a
cache miss) and are counted with the Replay_event event. Branch mispredictions are also tagged with this
mechanism.

• No tags — This mechanism does not use tags. It uses the Instr_retired and the Uops_ retired events.

Each tagging mechanism is independent from all others; that is, a μop that has been tagged using one mechanism
will not be detected with another mechanism’s tagged-μop detector. For example, if μops are tagged using the
front-end tagging mechanisms, the Replay_event will not count those as tagged μops unless they are also tagged
using the replay tagging mechanism. However, execution tags allow up to four different types of μops to be counted
at retirement through execution tagging.

The independence of tagging mechanisms does not hold when using PEBS. When using PEBS, only one tagging
mechanism should be used at a time.

Certain kinds of μops that cannot be tagged, including I/O, uncacheable and locked accesses, returns, and far
transfers.

There are performance monitoring events that support at-retirement counting: specifically the Front_end_event,
Execution_event, Replay_event, Inst_retired, and Uops_retired events. The following sections describe the tagging
mechanisms for using these events to tag μop and count tagged μops.

20.6.3.6.2 Tagging Mechanism for Front_end_event

The Front_end_event counts μops that have been tagged as encountering any of the following events:
• μop decode events — Tagging μops for μop decode events requires specifying bits in the ESCR associated with

the performance-monitoring event, Uop_type.
• Trace cache events — Tagging μops for trace cache events may require specifying certain bits in the

MSR_TC_PRECISE_EVENT MSR.

The MSRs that are supported by the front-end tagging mechanism must be set and one or both of the NBOGUS and
BOGUS bits in the Front_end_event event mask must be set to count events. None of the events currently
supported requires the use of the MSR_TC_PRECISE_EVENT MSR.

20.6.3.6.3 Tagging Mechanism For Execution_event

The execution tagging mechanism differs from other tagging mechanisms in how it causes tagging. One upstream
ESCR is used to specify an event to detect and to specify a tag value (bits 5 through 8) to identify that event. A
second downstream ESCR is used to detect μops that have been tagged with that tag value identifier using Execu-
tion_event for the event selection.

The upstream ESCR that counts the event must have its tag enable flag (bit 4) set and must have an appropriate
tag value mask entered in its tag value field. The 4-bit tag value mask specifies which of tag bits should be set for
a particular μop. The value selected for the tag value should coincide with the event mask selected in the down-
stream ESCR. For example, if a tag value of 1 is set, then the event mask of NBOGUS0 should be enabled, corre-
spondingly in the downstream ESCR. The downstream ESCR detects and counts tagged μops. The normal (not tag
value) mask bits in the downstream ESCR specify which tag bits to count. If any one of the tag bits selected by the
mask is set, the related counter is incremented by one. The tag enable and tag value bits are irrelevant for the
downstream ESCR used to select the Execution_event.

The four separate tag bits allow the user to simultaneously but distinctly count up to four execution events at
retirement. (This applies for interrupt-based event sampling. There are additional restrictions for PEBS as noted in
Section 20.6.3.8.3, “Setting Up the PEBS Buffer.”) It is also possible to detect or count combinations of events by
setting multiple tag value bits in the upstream ESCR or multiple mask bits in the downstream ESCR. For example,
use a tag value of 3H in the upstream ESCR and use NBOGUS0/NBOGUS1 in the downstream ESCR event mask.

20.6.3.7 Tagging Mechanism for Replay_event
The replay mechanism enables tagging of μops for a subset of all replays before retirement. Use of the replay
mechanism requires selecting the type of μop that may experience the replay in the MSR_PEBS_MATRIX_VERT
MSR and selecting the type of event in the MSR_PEBS_ENABLE MSR. Replay tagging must also be enabled with the
UOP_Tag flag (bit 24) in the MSR_PEBS_ENABLE MSR.
20-118 Vol. 3B

PERFORMANCE MONITORING
The replay tags defined in Table A-5 also enable Processor Event-Based Sampling (PEBS, see Section 18.4.9). Each
of these replay tags can also be used in normal sampling by not setting Bit 24 nor Bit 25 in IA_32_PEBS_EN-
ABLE_MSR. Each of these metrics requires that the Replay_Event be used to count the tagged μops.

20.6.3.8 Processor Event-Based Sampling (PEBS)
The debug store (DS) mechanism in processors based on Intel NetBurst microarchitecture allow two types of infor-
mation to be collected for use in debugging and tuning programs: PEBS records and BTS records. See Section
18.4.5, “Branch Trace Store (BTS),” for a description of the BTS mechanism.

PEBS permits the saving of precise architectural information associated with one or more performance events in
the precise event records buffer, which is part of the DS save area (see Section 18.4.9, “BTS and DS Save Area”).
To use this mechanism, a counter is configured to overflow after it has counted a preset number of events. After
the counter overflows, the processor copies the current state of the general-purpose and EFLAGS registers and
instruction pointer into a record in the precise event records buffer. The processor then resets the count in the
performance counter and restarts the counter. When the precise event records buffer is nearly full, an interrupt is
generated, allowing the precise event records to be saved. A circular buffer is not supported for precise event
records.

PEBS is supported only for a subset of the at-retirement events: Execution_event, Front_end_event, and
Replay_event. Also, PEBS can only be carried out using the one performance counter, the MSR_IQ_COUNTER4
MSR.

In processors based on Intel Core microarchitecture, a similar PEBS mechanism is also supported using
IA32_PMC0 and IA32_PERFEVTSEL0 MSRs (See Section 20.6.2.4).

20.6.3.8.1 Detection of the Availability of the PEBS Facilities

The DS feature flag (bit 21) returned by the CPUID instruction indicates (when set) the availability of the DS mech-
anism in the processor, which supports the PEBS (and BTS) facilities. When this bit is set, the following PEBS facil-
ities are available:
• The PEBS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates (when clear) the availability of the

PEBS facilities, including the MSR_PEBS_ENABLE MSR.
• The enable PEBS flag (bit 24) in the MSR_PEBS_ENABLE MSR allows PEBS to be enabled (set) or disabled

(clear).
• The IA32_DS_AREA MSR can be programmed to point to the DS save area.

20.6.3.8.2 Setting Up the DS Save Area

Section 18.4.9.2, “Setting Up the DS Save Area,” describes how to set up and enable the DS save area. This proce-
dure is common for PEBS and BTS.

20.6.3.8.3 Setting Up the PEBS Buffer

Only the MSR_IQ_COUNTER4 performance counter can be used for PEBS. Use the following procedure to set up the
processor and this counter for PEBS:

1. Set up the precise event buffering facilities. Place values in the precise event buffer base, precise event index,
precise event absolute maximum, and precise event interrupt threshold, and precise event counter reset fields
of the DS buffer management area (see Figure 18-5) to set up the precise event records buffer in memory.

2. Enable PEBS. Set the Enable PEBS flag (bit 24) in MSR_PEBS_ENABLE MSR.

3. Set up the MSR_IQ_COUNTER4 performance counter and its associated CCCR and one or more ESCRs for
PEBS.
Vol. 3B 20-119

PERFORMANCE MONITORING
20.6.3.8.4 Writing a PEBS Interrupt Service Routine

The PEBS facilities share the same interrupt vector and interrupt service routine (called the DS ISR) with the non-
precise event-based sampling and BTS facilities. To handle PEBS interrupts, PEBS handler code must be included in
the DS ISR. See Section 18.4.9.5, “Writing the DS Interrupt Service Routine,” for guidelines for writing the DS ISR.

20.6.3.8.5 Other DS Mechanism Implications

The DS mechanism is not available in the SMM. It is disabled on transition to the SMM mode. Similarly the DS
mechanism is disabled on the generation of a machine check exception and is cleared on processor RESET and INIT.

The DS mechanism is available in real address mode.

20.6.3.9 Operating System Implications
The DS mechanism can be used by the operating system as a debugging extension to facilitate failure analysis.
When using this facility, a 25 to 30 times slowdown can be expected due to the effects of the trace store occurring
on every taken branch.

Depending upon intended usage, the instruction pointers that are part of the branch records or the PEBS records
need to have an association with the corresponding process. One solution requires the ability for the DS specific
operating system module to be chained to the context switch. A separate buffer can then be maintained for each
process of interest and the MSR pointing to the configuration area saved and setup appropriately on each context
switch.

If the BTS facility has been enabled, then it must be disabled and state stored on transition of the system to a sleep
state in which processor context is lost. The state must be restored on return from the sleep state.

It is required that an interrupt gate be used for the DS interrupt as opposed to a trap gate to prevent the generation
of an endless interrupt loop.

Pages that contain buffers must have mappings to the same physical address for all processes/logical processors,
such that any change to CR3 will not change DS addresses. If this requirement cannot be satisfied (that is, the
feature is enabled on a per thread/process basis), then the operating system must ensure that the feature is
enabled/disabled appropriately in the context switch code.

20.6.4 Performance Monitoring and Intel® Hyper-Threading Technology in Processors Based
on Intel NetBurst® Microarchitecture

The performance monitoring capability of processors based on Intel NetBurst microarchitecture and supporting
Intel Hyper-Threading Technology is similar to that described in Section 20.6.3. However, the capability is extended
so that:
• Performance counters can be programmed to select events qualified by logical processor IDs.
• Performance monitoring interrupts can be directed to a specific logical processor within the physical processor.

The sections below describe performance counters, event qualification by logical processor ID, and special purpose
bits in ESCRs/CCCRs. They also describe MSR_PEBS_ENABLE, MSR_PEBS_MATRIX_VERT, and MSR_TC_PRE-
CISE_EVENT.

20.6.4.1 ESCR MSRs
Figure 20-51 shows the layout of an ESCR MSR in processors supporting Intel Hyper-Threading Technology.

The functions of the flags and fields are as follows:
• T1_USR flag, bit 0 — When set, events are counted when thread 1 (logical processor 1) is executing at a

current privilege level (CPL) of 1, 2, or 3. These privilege levels are generally used by application code and
unprotected operating system code.
20-120 Vol. 3B

PERFORMANCE MONITORING
• T1_OS flag, bit 1 — When set, events are counted when thread 1 (logical processor 1) is executing at CPL of
0. This privilege level is generally reserved for protected operating system code. (When both the T1_OS and
T1_USR flags are set, thread 1 events are counted at all privilege levels.)

• T0_USR flag, bit 2 — When set, events are counted when thread 0 (logical processor 0) is executing at a CPL
of 1, 2, or 3.

• T0_OS flag, bit 3 — When set, events are counted when thread 0 (logical processor 0) is executing at CPL of
0. (When both the T0_OS and T0_USR flags are set, thread 0 events are counted at all privilege levels.)

• Tag enable, bit 4 — When set, enables tagging of μops to assist in at-retirement event counting; when clear,
disables tagging. See Section 20.6.3.6, “At-Retirement Counting.”

• Tag value field, bits 5 through 8 — Selects a tag value to associate with a μop to assist in at-retirement
event counting.

• Event mask field, bits 9 through 24 — Selects events to be counted from the event class selected with the
event select field.

• Event select field, bits 25 through 30) — Selects a class of events to be counted. The events within this
class that are counted are selected with the event mask field.

The T0_OS and T0_USR flags and the T1_OS and T1_USR flags allow event counting and sampling to be specified
for a specific logical processor (0 or 1) within an Intel Xeon processor MP (See also: Section 9.4.5, “Identifying
Logical Processors in an MP System,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A).

Not all performance monitoring events can be detected within an Intel Xeon processor MP on a per logical processor
basis (see Section 20.6.4.4, “Performance Monitoring Events”). Some sub-events (specified by an event mask bits)
are counted or sampled without regard to which logical processor is associated with the detected event.

20.6.4.2 CCCR MSRs
Figure 20-52 shows the layout of a CCCR MSR in processors supporting Intel Hyper-Threading Technology. The
functions of the flags and fields are as follows:
• Enable flag, bit 12 — When set, enables counting; when clear, the counter is disabled. This flag is cleared on

reset
• ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to select events to be counted with

the counter associated with the CCCR.
• Active thread field, bits 16 and 17 — Enables counting depending on which logical processors are active

(executing a thread). This field enables filtering of events based on the state (active or inactive) of the logical
processors. The encodings of this field are as follows:
00 — None. Count only when neither logical processor is active.

Figure 20-51. Event Selection Control Register (ESCR) for the Pentium 4 Processor, Intel® Xeon® Processor, and
Intel® Xeon® Processor MP Supporting Hyper-Threading Technology

31 24 8 0123492530

63 32

Reserved

Event Mask
Event
Select

T0_USR
T0_OS

5

Tag Enable

Tag
Value

T1_USR
T1_OS

Reserved
Vol. 3B 20-121

PERFORMANCE MONITORING
01 — Single. Count only when one logical processor is active (either 0 or 1).
10 — Both. Count only when both logical processors are active.
11 — Any. Count when either logical processor is active.
A halted logical processor or a logical processor in the “wait for SIPI” state is considered inactive.

• Compare flag, bit 18 — When set, enables filtering of the event count; when clear, disables filtering. The
filtering method is selected with the threshold, complement, and edge flags.

• Complement flag, bit 19 — Selects how the incoming event count is compared with the threshold value.
When set, event counts that are less than or equal to the threshold value result in a single count being delivered
to the performance counter; when clear, counts greater than the threshold value result in a count being
delivered to the performance counter (see Section 20.6.3.5.2, “Filtering Events”). The compare flag is not
active unless the compare flag is set.

• Threshold field, bits 20 through 23 — Selects the threshold value to be used for comparisons. The
processor examines this field only when the compare flag is set, and uses the complement flag setting to
determine the type of threshold comparison to be made. The useful range of values that can be entered in this
field depend on the type of event being counted (see Section 20.6.3.5.2, “Filtering Events”).

• Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge detection of the threshold comparison
output for filtering event counts; when clear, rising edge detection is disabled. This flag is active only when the
compare flag is set.

• FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every counter increment; when clear,
overflow only occurs when the counter actually overflows.

• OVF_PMI_T0 flag, bit 26 — When set, causes a performance monitor interrupt (PMI) to be sent to logical
processor 0 when the counter overflows occurs; when clear, disables PMI generation for logical processor 0.
Note that the PMI is generate on the next event count after the counter has overflowed.

• OVF_PMI_T1 flag, bit 27 — When set, causes a performance monitor interrupt (PMI) to be sent to logical
processor 1 when the counter overflows occurs; when clear, disables PMI generation for logical processor 1.
Note that the PMI is generate on the next event count after the counter has overflowed.

• Cascade flag, bit 30 — When set, enables counting on one counter of a counter pair when its alternate
counter in the other the counter pair in the same counter group overflows (see Section 20.6.3.2, “Performance
Counters,” for further details); when clear, disables cascading of counters.

Figure 20-52. Counter Configuration Control Register (CCCR)

63 32

Reserved

Reserved

Active Thread
Compare

Enable

31 24 23 20 19 16 15 12 11 017182526272930

Edge
FORCE_OVF
OVF_PMI_T0

Threshold

Cascade
OVF

Complement

Reserved

13

ESCR
Select

OVF_PMI_T1

Reserved
20-122 Vol. 3B

PERFORMANCE MONITORING
• OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag is a sticky flag that must be
explicitly cleared by software.

20.6.4.3 IA32_PEBS_ENABLE MSR
In a processor supporting Intel Hyper-Threading Technology and based on the Intel NetBurst microarchitecture,
PEBS is enabled and qualified with two bits in the MSR_PEBS_ENABLE MSR: bit 25 (ENABLE_PEBS_MY_THR) and
26 (ENABLE_PEBS_OTH_THR) respectively. These bits do not explicitly identify a specific logical processor by logic
processor ID(T0 or T1); instead, they allow a software agent to enable PEBS for subsequent threads of execution
on the same logical processor on which the agent is running (“my thread”) or for the other logical processor in the
physical package on which the agent is not running (“other thread”).

PEBS is supported for only a subset of the at-retirement events: Execution_event, Front_end_event, and
Replay_event. Also, PEBS can be carried out only with two performance counters: MSR_IQ_CCCR4 (MSR address
370H) for logical processor 0 and MSR_IQ_CCCR5 (MSR address 371H) for logical processor 1.

Performance monitoring tools should use a processor affinity mask to bind the kernel mode components that need
to modify the ENABLE_PEBS_MY_THR and ENABLE_PEBS_OTH_THR bits in the MSR_PEBS_ENABLE MSR to a
specific logical processor. This is to prevent these kernel mode components from migrating between different
logical processors due to OS scheduling.

20.6.4.4 Performance Monitoring Events
When Intel Hyper-Threading Technology is active, many performance monitoring events can be can be qualified by
the logical processor ID, which corresponds to bit 0 of the initial APIC ID. This allows for counting an event in any
or all of the logical processors. However, not all the events have this logic processor specificity, or thread specificity.

Here, each event falls into one of two categories:
• Thread specific (TS) — The event can be qualified as occurring on a specific logical processor.
• Thread independent (TI) — The event cannot be qualified as being associated with a specific logical

processor.

If for example, a TS event occurred in logical processor T0, the counting of the event (as shown in Table 20-89)
depends only on the setting of the T0_USR and T0_OS flags in the ESCR being used to set up the event counter.
The T1_USR and T1_OS flags have no effect on the count.

When a bit in the event mask field is TI, the effect of specifying bit-0-3 of the associated ESCR are described in
Table 15-6. For events that are marked as TI, the effect of selectively specifying T0_USR, T0_OS, T1_USR, T1_OS
bits is shown in Table 20-90.

Table 20-89. Effect of Logical Processor and CPL Qualification
for Logical-Processor-Specific (TS) Events

T1_OS/T1_USR = 00 T1_OS/T1_USR = 01 T1_OS/T1_USR = 11 T1_OS/T1_USR = 10

T0_OS/T0_USR = 00 Zero count Counts while T1 in USR Counts while T1 in OS or
USR

Counts while T1 in OS

T0_OS/T0_USR = 01 Counts while T0 in USR Counts while T0 in USR
or T1 in USR

Counts while (a) T0 in
USR or (b) T1 in OS or (c)
T1 in USR

Counts while (a) T0 in OS
or (b) T1 in OS

T0_OS/T0_USR = 11 Counts while T0 in OS or
USR

Counts while (a) T0 in OS
or (b) T0 in USR or (c) T1
in USR

Counts irrespective of
CPL, T0, T1

Counts while (a) T0 in OS
or (b) or T0 in USR or (c)
T1 in OS

T0_OS/T0_USR = 10 Counts T0 in OS Counts T0 in OS or T1 in
USR

Counts while (a)T0 in Os
or (b) T1 in OS or (c) T1
in USR

Counts while (a) T0 in OS
or (b) T1 in OS
Vol. 3B 20-123

PERFORMANCE MONITORING
20.6.4.5 Counting Clocks on systems with Intel® Hyper-Threading Technology in Processors Based on
Intel NetBurst® Microarchitecture

20.6.4.5.1 Non-Halted Clockticks

Use the following procedure to program ESCRs and CCCRs to obtain non-halted clockticks on processors based on
Intel NetBurst microarchitecture:

1. Select an ESCR for the global_power_events and specify the RUNNING sub-event mask and the desired
T0_OS/T0_USR/T1_OS/T1_USR bits for the targeted processor.

2. Select an appropriate counter.

3. Enable counting in the CCCR for that counter by setting the enable bit.

20.6.4.5.2 Non-Sleep Clockticks

Performance monitoring counters can be configured to count clockticks whenever the performance monitoring
hardware is not powered-down. To count Non-sleep Clockticks with a performance-monitoring counter, do the
following:

1. Select one of the 18 counters.

2. Select any of the ESCRs whose events the selected counter can count. Set its event select to anything other
than “no_event”; the counter may be disabled if this is not done.

3. Turn threshold comparison on in the CCCR by setting the compare bit to “1”.

4. Set the threshold to “15” and the complement to “1” in the CCCR. Since no event can exceed this threshold, the
threshold condition is met every cycle and the counter counts every cycle. Note that this overrides any qualifi-
cation (e.g., by CPL) specified in the ESCR.

5. Enable counting in the CCCR for the counter by setting the enable bit.

In most cases, the counts produced by the non-halted and non-sleep metrics are equivalent if the physical package
supports one logical processor and is not placed in a power-saving state. Operating systems may execute an HLT
instruction and place a physical processor in a power-saving state.

On processors that support Intel Hyper-Threading Technology (Intel HT Technology), each physical package can
support two or more logical processors. Current implementation of Intel HT Technology provides two logical proces-
sors for each physical processor. While both logical processors can execute two threads simultaneously, one logical
processor may halt to allow the other logical processor to execute without sharing execution resources between
two logical processors.

Non-halted Clockticks can be set up to count the number of processor clock cycles for each logical processor when-
ever the logical processor is not halted (the count may include some portion of the clock cycles for that logical
processor to complete a transition to a halted state). Physical processors that support Intel HT Technology enter
into a power-saving state if all logical processors halt.

Table 20-90. Effect of Logical Processor and CPL Qualification
for Non-logical-Processor-specific (TI) Events

T1_OS/T1_USR = 00 T1_OS/T1_USR = 01 T1_OS/T1_USR = 11 T1_OS/T1_USR = 10

T0_OS/T0_USR = 00 Zero count Counts while (a) T0 in
USR or (b) T1 in USR

Counts irrespective of
CPL, T0, T1

Counts while (a) T0 in OS
or (b) T1 in OS

T0_OS/T0_USR = 01 Counts while (a) T0 in
USR or (b) T1 in USR

Counts while (a) T0 in
USR or (b) T1 in USR

Counts irrespective of
CPL, T0, T1

Counts irrespective of
CPL, T0, T1

T0_OS/T0_USR = 11 Counts irrespective of
CPL, T0, T1

Counts irrespective of
CPL, T0, T1

Counts irrespective of
CPL, T0, T1

Counts irrespective of
CPL, T0, T1

T0_OS/T0_USR = 0 Counts while (a) T0 in OS
or (b) T1 in OS

Counts irrespective of
CPL, T0, T1

Counts irrespective of
CPL, T0, T1

Counts while (a) T0 in OS
or (b) T1 in OS
20-124 Vol. 3B

PERFORMANCE MONITORING
The Non-sleep Clockticks mechanism uses a filtering mechanism in CCCRs. The mechanism will continue to incre-
ment as long as one logical processor is not halted or in a power-saving state. Applications may cause a processor
to enter into a power-saving state by using an OS service that transfers control to an OS's idle loop. The idle loop
then may place the processor into a power-saving state after an implementation-dependent period if there is no
work for the processor.

20.6.5 Performance Monitoring and Dual-Core Technology
The performance monitoring capability of dual-core processors duplicates the microarchitectural resources of a
single-core processor implementation. Each processor core has dedicated performance monitoring resources.

In the case of Pentium D processor, each logical processor is associated with dedicated resources for performance
monitoring. In the case of Pentium processor Extreme edition, each processor core has dedicated resources, but
two logical processors in the same core share performance monitoring resources (see Section 20.6.4, “Perfor-
mance Monitoring and Intel® Hyper-Threading Technology in Processors Based on Intel NetBurst® Microarchitec-
ture”).

20.6.6 Performance Monitoring on 64-bit Intel® Xeon® Processor MP with Up to 8-MByte L3
Cache

The 64-bit Intel Xeon processor MP with up to 8-MByte L3 cache has a CPUID signature of family [0FH], model
[03H or 04H]. Performance monitoring capabilities available to Pentium 4 and Intel Xeon processors with the same
values (see Section 20.1 and Section 20.6.4) apply to the 64-bit Intel Xeon processor MP with an L3 cache.

The level 3 cache is connected between the system bus and IOQ through additional control logic. See Figure 20-53.

Additional performance monitoring capabilities and facilities unique to 64-bit Intel Xeon processor MP with an L3
cache are described in this section. The facility for monitoring events consists of a set of dedicated model-specific
registers (MSRs), each dedicated to a specific event. Programming of these MSRs requires using RDMSR/WRMSR
instructions with 64-bit values.

The lower 32-bits of the MSRs at addresses 107CC through 107D3 are treated as 32 bit performance counter regis-
ters. These performance counters can be accessed using RDPMC instruction with the index starting from 18
through 25. The EDX register returns zero when reading these 8 PMCs.

The performance monitoring capabilities consist of four events. These are:

Figure 20-53. Block Diagram of 64-bit Intel® Xeon® Processor MP with 8-MByte L3

iBUSQ and iSNPQ

System Bus

3rd Level Cache

8 or 4 -way

IOQ

iFSB

Processor Core

(Front end, Execution,

Retirement, L1, L2
Vol. 3B 20-125

PERFORMANCE MONITORING
• IBUSQ event — This event detects the occurrence of micro-architectural conditions related to the iBUSQ unit.
It provides two MSRs: MSR_IFSB_IBUSQ0 and MSR_IFSB_IBUSQ1. Configure sub-event qualification and
enable/disable functions using the high 32 bits of these MSRs. The low 32 bits act as a 32-bit event counter.
Counting starts after software writes a non-zero value to one or more of the upper 32 bits. See Figure 20-54.

• ISNPQ event — This event detects the occurrence of microarchitectural conditions related to the iSNPQ unit.
It provides two MSRs: MSR_IFSB_ISNPQ0 and MSR_IFSB_ISNPQ1. Configure sub-event qualifications and
enable/disable functions using the high 32 bits of the MSRs. The low 32-bits act as a 32-bit event counter.
Counting starts after software writes a non-zero value to one or more of the upper 32-bits. See Figure 20-55.

• EFSB event — This event can detect the occurrence of micro-architectural conditions related to the iFSB unit
or system bus. It provides two MSRs: MSR_EFSB_DRDY0 and MSR_EFSB_DRDY1. Configure sub-event qualifi-
cations and enable/disable functions using the high 32 bits of the 64-bit MSR. The low 32-bit act as a 32-bit
event counter. Counting starts after software writes a non-zero value to one or more of the qualification bits in
the upper 32-bits of the MSR. See Figure 20-56.

Figure 20-54. MSR_IFSB_IBUSQx, Addresses: 107CCH and 107CDH

Figure 20-55. MSR_IFSB_ISNPQx, Addresses: 107CEH and 107CFH

L3_state_match

46 3845 37 36 3334

Saturate
Fill_match
Eviction_match

Snoop_match
Type_match
T1_match
T0_match

Reserved

63 56 55 48 324957585960 35

1 1
32 bit event count

MSR_IFSB_IBUSQx, Addresses: 107CCH and 107CDH
31 0

L3_state_match

46 3845 37 36 3334

Saturate

Snoop_match
Type_match

T1_match
T0_match

Reserved
63 56 55 48 3257585960 3539

Agent_match

MSR_IFSB_ISNPQx, Addresses: 107CEH and 107CFH

32 bit event count

031
20-126 Vol. 3B

PERFORMANCE MONITORING
• IBUSQ Latency event — This event accumulates weighted cycle counts for latency measurement of transac-
tions in the iBUSQ unit. The count is enabled by setting MSR_IFSB_CTRL6[bit 26] to 1; the count freezes after
software sets MSR_IFSB_CTRL6[bit 26] to 0. MSR_IFSB_CNTR7 acts as a 64-bit event counter for this event.
See Figure 20-57.

20.6.7 Performance Monitoring on L3 and Caching Bus Controller Sub-Systems
The Intel Xeon processor 7400 series and Dual-Core Intel Xeon processor 7100 series employ a distinct L3/caching
bus controller sub-system. These sub-system have a unique set of performance monitoring capability and
programming interfaces that are largely common between these two processor families.

Intel Xeon processor 7400 series are based on 45 nm enhanced Intel Core microarchitecture. The CPUID signature
is indicated by DisplayFamily_DisplayModel value of 06_1DH (see the CPUID instruction in Chapter 3, “Instruction
Set Reference, A-L‚” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). Intel Xeon
processor 7400 series have six processor cores that share an L3 cache.

Dual-Core Intel Xeon processor 7100 series are based on Intel NetBurst microarchitecture, have a CPUID signature
of family [0FH], model [06H] and a unified L3 cache shared between two cores. Each core in an Intel Xeon
processor 7100 series supports Intel Hyper-Threading Technology, providing two logical processors per core.

Both Intel Xeon processor 7400 series and Intel Xeon processor 7100 series support multi-processor configurations
using system bus interfaces. In Intel Xeon processor 7400 series, the L3/caching bus controller sub-system
provides three Simple Direct Interface (SDI) to service transactions originated the XQ-replacement SDI logic in
each dual-core modules. In Intel Xeon processor 7100 series, the IOQ logic in each processor core is replaced with
a Simple Direct Interface (SDI) logic. The L3 cache is connected between the system bus and the SDI through
additional control logic. See Figure 20-58 for the block configuration of six processor cores and the L3/Caching bus

Figure 20-56. MSR_EFSB_DRDYx, Addresses: 107D0H and 107D1H

Figure 20-57. MSR_IFSB_CTL6, Address: 107D2H; MSR_IFSB_CNTR7, Address: 107D3H

Other

49 3850 37 36 3334

Saturate

Own
Reserved

63 56 55 48 3257585960 3539

31 0

32 bit event count

MSR_EFSB_DRDYx, Addresses: 107D0H and 107D1H

Reserved

MSR_IFSB_CTL6 Address: 107D2H

MSR_IFSB_CNTR7 Address: 107D3H

Enable

63 05759

63 0

64 bit event count
Vol. 3B 20-127

PERFORMANCE MONITORING
controller sub-system in Intel Xeon processor 7400 series. Figure 20-58 shows the block configuration of two
processor cores (four logical processors) and the L3/Caching bus controller sub-system in Intel Xeon processor
7100 series.

Almost all of the performance monitoring capabilities available to processor cores with the same CPUID signatures
(see Section 20.1 and Section 20.6.4) apply to Intel Xeon processor 7100 series. The MSRs used by performance
monitoring interface are shared between two logical processors in the same processor core.

The performance monitoring capabilities available to processor with DisplayFamily_DisplayModel signature 06_17H
also apply to Intel Xeon processor 7400 series. Each processor core provides its own set of MSRs for performance
monitoring interface.

The IOQ_allocation and IOQ_active_entries events are not supported in Intel Xeon processor 7100 series and 7400
series. Additional performance monitoring capabilities applicable to the L3/caching bus controller sub-system are
described in this section.

Figure 20-58. Block Diagram of the Intel® Xeon® Processor 7400 Series

SDI interface

L2

SDI interface

L2

L3
GBSQ, GSNPQ,
GINTQ, ...

FSB

SDI

SDI interface

L2

Core Core Core Core Core Core
20-128 Vol. 3B

PERFORMANCE MONITORING
20.6.7.1 Overview of Performance Monitoring with L3/Caching Bus Controller
The facility for monitoring events consists of a set of dedicated model-specific registers (MSRs). There are eight
event select/counting MSRs that are dedicated to counting events associated with specified microarchitectural
conditions. Programming of these MSRs requires using RDMSR/WRMSR instructions with 64-bit values. In addition,
an MSR MSR_EMON_L3_GL_CTL provides simplified interface to control freezing, resetting, re-enabling operation
of any combination of these event select/counting MSRs.

The eight MSRs dedicated to count occurrences of specific conditions are further divided to count three sub-classes
of microarchitectural conditions:
• Two MSRs (MSR_EMON_L3_CTR_CTL0 and MSR_EMON_L3_CTR_CTL1) are dedicated to counting GBSQ

events. Up to two GBSQ events can be programmed and counted simultaneously.
• Two MSRs (MSR_EMON_L3_CTR_CTL2 and MSR_EMON_L3_CTR_CTL3) are dedicated to counting GSNPQ

events. Up to two GBSQ events can be programmed and counted simultaneously.
• Four MSRs (MSR_EMON_L3_CTR_CTL4, MSR_EMON_L3_CTR_CTL5, MSR_EMON_L3_CTR_CTL6, and

MSR_EMON_L3_CTR_CTL7) are dedicated to counting external bus operations.

The bit fields in each of eight MSRs share the following common characteristics:
• Bits 63:32 is the event control field that includes an event mask and other bit fields that control counter

operation. The event mask field specifies details of the microarchitectural condition, and its definition differs
across GBSQ, GSNPQ, FSB.

• Bits 31:0 is the event count field. If the specified condition is met during each relevant clock domain of the
event logic, the matched condition signals the counter logic to increment the associated event count field. The
lower 32-bits of these 8 MSRs at addresses 107CC through 107D3 are treated as 32 bit performance counter
registers.

In Dual-Core Intel Xeon processor 7100 series, the uncore performance counters can be accessed using RDPMC
instruction with the index starting from 18 through 25. The EDX register returns zero when reading these 8 PMCs.

In Intel Xeon processor 7400 series, RDPMC with ECX between 2 and 9 can be used to access the eight uncore
performance counter/control registers.

Figure 20-59. Block Diagram of the Intel® Xeon® Processor 7100 Series

SDI interface

Processor core

SDI interface

Processor core

L3
GBSQ, GSNPQ,
GINTQ, ...

FSB

SDI

Logical
processor

Logical
processor

Logical
processor

Logical
processor
Vol. 3B 20-129

PERFORMANCE MONITORING
20.6.7.2 GBSQ Event Interface
The layout of MSR_EMON_L3_CTR_CTL0 and MSR_EMON_L3_CTR_CTL1 is given in Figure 20-60. Counting starts
after software writes a non-zero value to one or more of the upper 32 bits.

The event mask field (bits 58:32) consists of the following eight attributes:
• Agent_Select (bits 35:32): The definition of this field differs slightly between Intel Xeon processor 7100 and

7400.
For Intel Xeon processor 7100 series, each bit specifies a logical processor in the physical package. The lower
two bits corresponds to two logical processors in the first processor core, the upper two bits corresponds to two
logical processors in the second processor core. 0FH encoding matches transactions from any logical processor.
For Intel Xeon processor 7400 series, each bit of [34:32] specifies the SDI logic of a dual-core module as the
originator of the transaction. A value of 0111B in bits [35:32] specifies transaction from any processor core.

• Data_Flow (bits 37:36): Bit 36 specifies demand transactions, bit 37 specifies prefetch transactions.
• Type_Match (bits 43:38): Specifies transaction types. If all six bits are set, event count will include all

transaction types.
• Snoop_Match: (bits 46:44): The three bits specify (in ascending bit position) clean snoop result, HIT snoop

result, and HITM snoop results respectively.
• L3_State (bits 53:47): Each bit specifies an L2 coherency state.
• Core_Module_Select (bits 55:54): The valid encodings for L3 lookup differ slightly between Intel Xeon

processor 7100 and 7400.
For Intel Xeon processor 7100 series,

— 00B: Match transactions from any core in the physical package

— 01B: Match transactions from this core only

— 10B: Match transactions from the other core in the physical package

— 11B: Match transaction from both cores in the physical package
For Intel Xeon processor 7400 series,

— 00B: Match transactions from any dual-core module in the physical package

— 01B: Match transactions from this dual-core module only

— 10B: Match transactions from either one of the other two dual-core modules in the physical package

Figure 20-60. MSR_EMON_L3_CTR_CTL0/1, Addresses: 107CCH/107CDH

Core_module_select

44 3843 37 3654 53

Saturate
Cross_snoop
Fill_eviction

Snoop_match
Type_match
Data_flow
Agent_select

Reserved
63 56 55 46 324757585960 35

32 bit event count

031

MSR_EMON_L3_CTR_CTL0/1, Addresses: 107CCH/107CDH

L3_state
20-130 Vol. 3B

PERFORMANCE MONITORING
— 11B: Match transaction from more than one dual-core modules in the physical package
• Fill_Eviction (bits 57:56): The valid encodings are

— 00B: Match any transactions

— 01B: Match transactions that fill L3

— 10B: Match transactions that fill L3 without an eviction

— 11B: Match transaction fill L3 with an eviction
• Cross_Snoop (bit 58): The encodings are

— 0B: Match any transactions

— 1B: Match cross snoop transactions

For each counting clock domain, if all eight attributes match, event logic signals to increment the event count field.

20.6.7.3 GSNPQ Event Interface
The layout of MSR_EMON_L3_CTR_CTL2 and MSR_EMON_L3_CTR_CTL3 is given in Figure 20-61. Counting starts
after software writes a non-zero value to one or more of the upper 32 bits.

The event mask field (bits 58:32) consists of the following six attributes:
• Agent_Select (bits 37:32): The definition of this field differs slightly between Intel Xeon processor 7100 and

7400.
• For Intel Xeon processor 7100 series, each of the lowest 4 bits specifies a logical processor in the physical

package. The lowest two bits corresponds to two logical processors in the first processor core, the next two bits
corresponds to two logical processors in the second processor core. Bit 36 specifies other symmetric agent
transactions. Bit 37 specifies central agent transactions. 3FH encoding matches transactions from any logical
processor.
For Intel Xeon processor 7400 series, each of the lowest 3 bits specifies a dual-core module in the physical
package. Bit 37 specifies central agent transactions.

• Type_Match (bits 43:38): Specifies transaction types. If all six bits are set, event count will include any
transaction types.

• Snoop_Match: (bits 46:44): The three bits specify (in ascending bit position) clean snoop result, HIT snoop
result, and HITM snoop results respectively.

• L2_State (bits 53:47): Each bit specifies an L3 coherency state.
• Core_Module_Select (bits 56:54): Bit 56 enables Core_Module_Select matching. If bit 56 is clear, Core_Mod-

ule_Select encoding is ignored. The valid encodings for the lower two bits (bit 55, 54) differ slightly between
Intel Xeon processor 7100 and 7400.
For Intel Xeon processor 7100 series, if bit 56 is set, the valid encodings for the lower two bits (bit 55, 54) are

— 00B: Match transactions from only one core (irrespective which core) in the physical package

— 01B: Match transactions from this core and not the other core

— 10B: Match transactions from the other core in the physical package, but not this core

— 11B: Match transaction from both cores in the physical package
For Intel Xeon processor 7400 series, if bit 56 is set, the valid encodings for the lower two bits (bit 55, 54) are

— 00B: Match transactions from only one dual-core module (irrespective which module) in the physical
package.

— 01B: Match transactions from one or more dual-core modules.

— 10B: Match transactions from two or more dual-core modules.

— 11B: Match transaction from all three dual-core modules in the physical package.
• Block_Snoop (bit 57): specifies blocked snoop.

For each counting clock domain, if all six attributes match, event logic signals to increment the event count field.
Vol. 3B 20-131

PERFORMANCE MONITORING
20.6.7.4 FSB Event Interface
The layout of MSR_EMON_L3_CTR_CTL4 through MSR_EMON_L3_CTR_CTL7 is given in Figure 20-62. Counting
starts after software writes a non-zero value to one or more of the upper 32 bits.

The event mask field (bits 58:32) is organized as follows:
• Bit 58: must set to 1.
• FSB_Submask (bits 57:32): Specifies FSB-specific sub-event mask.

The FSB sub-event mask defines a set of independent attributes. The event logic signals to increment the associ-
ated event count field if one of the attribute matches. Some of the sub-event mask bit counts durations. A duration
event increments at most once per cycle.

20.6.7.4.1 FSB Sub-Event Mask Interface

• FSB_type (bit 37:32): Specifies different FSB transaction types originated from this physical package.
• FSB_L_clear (bit 38): Count clean snoop results from any source for transaction originated from this physical

package.
• FSB_L_hit (bit 39): Count HIT snoop results from any source for transaction originated from this physical

package.

Figure 20-61. MSR_EMON_L3_CTR_CTL2/3, Addresses: 107CEH/107CFH

Figure 20-62. MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: 107D0H-107D3H

L2_state

46 3844 37 364354

Saturate

Snoop_match
Type_match

Reserved
63 56 55 47 3257585960 53 39

Agent_match

MSR_EMON_L3_CTR_CTL2/3, Addresses: 107CEH/107CFH

Block_snoop
Core_select

32 bit event count

031

1

49 3850 37 36 3334

Saturate

FSB submask

Reserved

63 56 55 48 3257585960 3539

MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: 107D0H-107D3H

32 bit event count

031
20-132 Vol. 3B

PERFORMANCE MONITORING
• FSB_L_hitm (bit 40): Count HITM snoop results from any source for transaction originated from this physical
package.

• FSB_L_defer (bit 41): Count DEFER responses to this processor’s transactions.
• FSB_L_retry (bit 42): Count RETRY responses to this processor’s transactions.
• FSB_L_snoop_stall (bit 43): Count snoop stalls to this processor’s transactions.
• FSB_DBSY (bit 44): Count DBSY assertions by this processor (without a concurrent DRDY).
• FSB_DRDY (bit 45): Count DRDY assertions by this processor.
• FSB_BNR (bit 46): Count BNR assertions by this processor.
• FSB_IOQ_empty (bit 47): Counts each bus clocks when the IOQ is empty.
• FSB_IOQ_full (bit 48): Counts each bus clocks when the IOQ is full.
• FSB_IOQ_active (bit 49): Counts each bus clocks when there is at least one entry in the IOQ.
• FSB_WW_data (bit 50): Counts back-to-back write transaction’s data phase.
• FSB_WW_issue (bit 51): Counts back-to-back write transaction request pairs issued by this processor.
• FSB_WR_issue (bit 52): Counts back-to-back write-read transaction request pairs issued by this processor.
• FSB_RW_issue (bit 53): Counts back-to-back read-write transaction request pairs issued by this processor.
• FSB_other_DBSY (bit 54): Count DBSY assertions by another agent (without a concurrent DRDY).
• FSB_other_DRDY (bit 55): Count DRDY assertions by another agent.
• FSB_other_snoop_stall (bit 56): Count snoop stalls on the FSB due to another agent.
• FSB_other_BNR (bit 57): Count BNR assertions from another agent.

20.6.7.5 Common Event Control Interface
The MSR_EMON_L3_GL_CTL MSR provides simplified access to query overflow status of the GBSQ, GSNPQ, FSB
event counters. It also provides control bit fields to freeze, unfreeze, or reset those counters. The following bit
fields are supported:
• GL_freeze_cmd (bit 0): Freeze the event counters specified by the GL_event_select field.
• GL_unfreeze_cmd (bit 1): Unfreeze the event counters specified by the GL_event_select field.
• GL_reset_cmd (bit 2): Clear the event count field of the event counters specified by the GL_event_select field.

The event select field is not affected.
• GL_event_select (bit 23:16): Selects one or more event counters to subject to specified command operations

indicated by bits 2:0. Bit 16 corresponds to MSR_EMON_L3_CTR_CTL0, bit 23 corresponds to
MSR_EMON_L3_CTR_CTL7.

• GL_event_status (bit 55:48): Indicates the overflow status of each event counters. Bit 48 corresponds to
MSR_EMON_L3_CTR_CTL0, bit 55 corresponds to MSR_EMON_L3_CTR_CTL7.

In the event control field (bits 63:32) of each MSR, if the saturate control (bit 59, see Figure 20-60 for example) is
set, the event logic forces the value FFFF_FFFFH into the event count field instead of incrementing it.

20.6.8 Performance Monitoring (P6 Family Processor)
The P6 family processors provide two 40-bit performance counters, allowing two types of events to be monitored
simultaneously. These can either count events or measure duration. When counting events, a counter increments
each time a specified event takes place or a specified number of events takes place. When measuring duration, it
counts the number of processor clocks that occur while a specified condition is true. The counters can count events
or measure durations that occur at any privilege level.
Vol. 3B 20-133

PERFORMANCE MONITORING
NOTE
The performance-monitoring events found at https://perfmon-events.intel.com/ are intended to be
used as guides for performance tuning. Counter values reported are not guaranteed to be accurate
and should be used as a relative guide for tuning. Known discrepancies are documented where
applicable.

The performance-monitoring counters are supported by four MSRs: the performance event select MSRs (PerfEvt-
Sel0 and PerfEvtSel1) and the performance counter MSRs (PerfCtr0 and PerfCtr1). These registers can be read
from and written to using the RDMSR and WRMSR instructions, respectively. They can be accessed using these
instructions only when operating at privilege level 0. The PerfCtr0 and PerfCtr1 MSRs can be read from any privilege
level using the RDPMC (read performance-monitoring counters) instruction.

NOTE
The PerfEvtSel0, PerfEvtSel1, PerfCtr0, and PerfCtr1 MSRs and the events listed for P6 family
processors are model-specific for P6 family processors. They are not guaranteed to be available in
other IA-32 processors.

20.6.8.1 PerfEvtSel0 and PerfEvtSel1 MSRs
The PerfEvtSel0 and PerfEvtSel1 MSRs control the operation of the performance-monitoring counters, with one
register used to set up each counter. They specify the events to be counted, how they should be counted, and the
privilege levels at which counting should take place. Figure 20-63 shows the flags and fields in these MSRs.

The functions of the flags and fields in the PerfEvtSel0 and PerfEvtSel1 MSRs are as follows:
• Event select field (bits 0 through 7) — Selects the event logic unit to detect certain microarchitectural

conditions.
• Unit mask (UMASK) field (bits 8 through 15) — Further qualifies the event logic unit selected in the event

select field to detect a specific microarchitectural condition. For example, for some cache events, the mask is
used as a MESI-protocol qualifier of cache states.

• USR (user mode) flag (bit 16) — Specifies that events are counted only when the processor is operating at
privilege levels 1, 2 or 3. This flag can be used in conjunction with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that events are counted only when the processor is
operating at privilege level 0. This flag can be used in conjunction with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of events. The processor counts the
number of deasserted to asserted transitions of any condition that can be expressed by the other fields. The
mechanism is limited in that it does not permit back-to-back assertions to be distinguished. This mechanism
allows software to measure not only the fraction of time spent in a particular state, but also the average length
of time spent in such a state (for example, the time spent waiting for an interrupt to be serviced).

Figure 20-63. PerfEvtSel0 and PerfEvtSel1 MSRs

31

INV—Invert counter mask
EN—Enable counters*
INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

* Only available in PerfEvtSel0.

Counter Mask
EE

N
I
N
T

19 1618 15172021222324

Reserved

I
N
V

P
C

U
S
R

O
S Unit Mask (UMASK)(CMASK)
20-134 Vol. 3B

https://perfmon-events.intel.com/

PERFORMANCE MONITORING
• PC (pin control) flag (bit 19) — When set, the processor toggles the PMi pins and increments the counter
when performance-monitoring events occur; when clear, the processor toggles the PMi pins when the counter
overflows. The toggling of a pin is defined as assertion of the pin for a single bus clock followed by deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the processor generates an exception through its
local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — This flag is only present in the PerfEvtSel0 MSR. When set,
performance counting is enabled in both performance-monitoring counters; when clear, both counters are
disabled.

• INV (invert) flag (bit 23) — When set, inverts the counter-mask (CMASK) comparison, so that both greater
than or equal to and less than comparisons can be made (0: greater than or equal; 1: less than). Note if
counter-mask is programmed to zero, INV flag is ignored.

• Counter mask (CMASK) field (bits 24 through 31) — When nonzero, the processor compares this mask to
the number of events counted during a single cycle. If the event count is greater than or equal to this mask, the
counter is incremented by one. Otherwise the counter is not incremented. This mask can be used to count
events only if multiple occurrences happen per clock (for example, two or more instructions retired per clock).
If the counter-mask field is 0, then the counter is incremented each cycle by the number of events that
occurred that cycle.

20.6.8.2 PerfCtr0 and PerfCtr1 MSRs
The performance-counter MSRs (PerfCtr0 and PerfCtr1) contain the event or duration counts for the selected
events being counted. The RDPMC instruction can be used by programs or procedures running at any privilege level
and in virtual-8086 mode to read these counters. The PCE flag in control register CR4 (bit 8) allows the use of this
instruction to be restricted to only programs and procedures running at privilege level 0.

The RDPMC instruction is not serializing or ordered with other instructions. Thus, it does not necessarily wait until
all previous instructions have been executed before reading the counter. Similarly, subsequent instructions may
begin execution before the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the performance counters, using
the RDMSR and WRMSR instructions. A secure operating system would clear the PCE flag during system initializa-
tion to disable direct user access to the performance-monitoring counters, but provide a user-accessible program-
ming interface that emulates the RDPMC instruction.

The WRMSR instruction cannot arbitrarily write to the performance-monitoring counter MSRs (PerfCtr0 and
PerfCtr1). Instead, the lower-order 32 bits of each MSR may be written with any value, and the high-order 8 bits
are sign-extended according to the value of bit 31. This operation allows writing both positive and negative values
to the performance counters.

20.6.8.3 Starting and Stopping the Performance-Monitoring Counters
The performance-monitoring counters are started by writing valid setup information in the PerfEvtSel0 and/or
PerfEvtSel1 MSRs and setting the enable counters flag in the PerfEvtSel0 MSR. If the setup is valid, the counters
begin counting following the execution of a WRMSR instruction that sets the enable counter flag. The counters can
be stopped by clearing the enable counters flag or by clearing all the bits in the PerfEvtSel0 and PerfEvtSel1 MSRs.
Counter 1 alone can be stopped by clearing the PerfEvtSel1 MSR.

20.6.8.4 Event and Time-Stamp Monitoring Software
To use the performance-monitoring counters and time-stamp counter, the operating system needs to provide an
event-monitoring device driver. This driver should include procedures for handling the following operations:
• Feature checking.
• Initialize and start counters.
• Stop counters.
• Read the event counters.
• Read the time-stamp counter.
Vol. 3B 20-135

PERFORMANCE MONITORING
The event monitor feature determination procedure must check whether the current processor supports the perfor-
mance-monitoring counters and time-stamp counter. This procedure compares the family and model of the
processor returned by the CPUID instruction with those of processors known to support performance monitoring.
(The Pentium and P6 family processors support performance counters.) The procedure also checks the MSR and
TSC flags returned to register EDX by the CPUID instruction to determine if the MSRs and the RDTSC instruction are
supported.

The initialize and start counters procedure sets the PerfEvtSel0 and/or PerfEvtSel1 MSRs for the events to be
counted and the method used to count them and initializes the counter MSRs (PerfCtr0 and PerfCtr1) to starting
counts. The stop counters procedure stops the performance counters (see Section 20.6.8.3, “Starting and Stopping
the Performance-Monitoring Counters”).

The read counters procedure reads the values in the PerfCtr0 and PerfCtr1 MSRs, and a read time-stamp counter
procedure reads the time-stamp counter. These procedures would be provided in lieu of enabling the RDTSC and
RDPMC instructions that allow application code to read the counters.

20.6.8.5 Monitoring Counter Overflow
The P6 family processors provide the option of generating a local APIC interrupt when a performance-monitoring
counter overflows. This mechanism is enabled by setting the interrupt enable flag in either the PerfEvtSel0 or the
PerfEvtSel1 MSR. The primary use of this option is for statistical performance sampling.

To use this option, the operating system should do the following things on the processor for which performance
events are required to be monitored:
• Provide an interrupt vector for handling the counter-overflow interrupt.
• Initialize the APIC PERF local vector entry to enable handling of performance-monitor counter overflow events.
• Provide an entry in the IDT that points to a stub exception handler that returns without executing any instruc-

tions.
• Provide an event monitor driver that provides the actual interrupt handler and modifies the reserved IDT entry

to point to its interrupt routine.

When interrupted by a counter overflow, the interrupt handler needs to perform the following actions:
• Save the instruction pointer (EIP register), code-segment selector, TSS segment selector, counter values and

other relevant information at the time of the interrupt.
• Reset the counter to its initial setting and return from the interrupt.

An event monitor application utility or another application program can read the information collected for analysis
of the performance of the profiled application.

20.6.9 Performance Monitoring (Pentium Processors)
The Pentium processor provides two 40-bit performance counters, which can be used to count events or measure
duration. The counters are supported by three MSRs: the control and event select MSR (CESR) and the perfor-
mance counter MSRs (CTR0 and CTR1). These can be read from and written to using the RDMSR and WRMSR
instructions, respectively. They can be accessed using these instructions only when operating at privilege level 0.

Each counter has an associated external pin (PM0/BP0 and PM1/BP1), which can be used to indicate the state of the
counter to external hardware.

NOTES
The CESR, CTR0, and CTR1 MSRs and the events listed for Pentium processors are model-specific
for the Pentium processor.

The performance-monitoring events found at https://perfmon-events.intel.com/ are intended to be
used as guides for performance tuning. Counter values reported are not guaranteed to be accurate
and should be used as a relative guide for tuning. Known discrepancies are documented where
applicable.
20-136 Vol. 3B

https://perfmon-events.intel.com/

PERFORMANCE MONITORING
20.6.9.1 Control and Event Select Register (CESR)
The 32-bit control and event select MSR (CESR) controls the operation of performance-monitoring counters CTR0
and CTR1 and the associated pins (see Figure 20-64). To control each counter, the CESR register contains a 6-bit
event select field (ES0 and ES1), a pin control flag (PC0 and PC1), and a 3-bit counter control field (CC0 and CC1).
The functions of these fields are as follows:
• ES0 and ES1 (event select) fields (bits 0-5, bits 16-21) — Selects (by entering an event code in the field)

up to two events to be monitored.

• CC0 and CC1 (counter control) fields (bits 6-8, bits 22-24) — Controls the operation of the counter.
Control codes are as follows:

000 — Count nothing (counter disabled).

001 — Count the selected event while CPL is 0, 1, or 2.

010 — Count the selected event while CPL is 3.

011 — Count the selected event regardless of CPL.

100 — Count nothing (counter disabled).

101 — Count clocks (duration) while CPL is 0, 1, or 2.

110 — Count clocks (duration) while CPL is 3.

111 — Count clocks (duration) regardless of CPL.
The highest order bit selects between counting events and counting clocks (duration); the middle bit enables
counting when the CPL is 3; and the low-order bit enables counting when the CPL is 0, 1, or 2.

• PC0 and PC1 (pin control) flags (bits 9, 25) — Selects the function of the external performance-monitoring
counter pin (PM0/BP0 and PM1/BP1). Setting one of these flags to 1 causes the processor to assert its
associated pin when the counter has overflowed; setting the flag to 0 causes the pin to be asserted when the
counter has been incremented. These flags permit the pins to be individually programmed to indicate the
overflow or incremented condition. The external signaling of the event on the pins will lag the internal event by
a few clocks as the signals are latched and buffered.

While a counter need not be stopped to sample its contents, it must be stopped and cleared or preset before
switching to a new event. It is not possible to set one counter separately. If only one event needs to be changed,
the CESR register must be read, the appropriate bits modified, and all bits must then be written back to CESR. At
reset, all bits in the CESR register are cleared.

20.6.9.2 Use of the Performance-Monitoring Pins
When performance-monitor pins PM0/BP0 and/or PM1/BP1 are configured to indicate when the performance-
monitor counter has incremented and an “occurrence event” is being counted, the associated pin is asserted (high)
each time the event occurs. When a “duration event” is being counted, the associated PM pin is asserted for the

Figure 20-64. CESR MSR (Pentium Processor Only)

31

PC1—Pin control 1
CC1—Counter control 1
ES1—Event select 1
PC0—Pin control 0

8 0

CC0—Counter control 0
ES0—Event select 0

16 15212224

Reserved

9 56

ESOCC0
P
C
0

ES1CC1
P
C
1

2526 10
Vol. 3B 20-137

PERFORMANCE MONITORING
entire duration of the event. When the performance-monitor pins are configured to indicate when the counter has
overflowed, the associated PM pin is asserted when the counter has overflowed.

When the PM0/BP0 and/or PM1/BP1 pins are configured to signal that a counter has incremented, it should be
noted that although the counters may increment by 1 or 2 in a single clock, the pins can only indicate that the event
occurred. Moreover, since the internal clock frequency may be higher than the external clock frequency, a single
external clock may correspond to multiple internal clocks.

A “count up to” function may be provided when the event pin is programmed to signal an overflow of the counter.
Because the counters are 40 bits, a carry out of bit 39 indicates an overflow. A counter may be preset to a specific
value less then 240 − 1. After the counter has been enabled and the prescribed number of events has transpired,
the counter will overflow.

Approximately 5 clocks later, the overflow is indicated externally and appropriate action, such as signaling an inter-
rupt, may then be taken.

The PM0/BP0 and PM1/BP1 pins also serve to indicate breakpoint matches during in-circuit emulation, during which
time the counter increment or overflow function of these pins is not available. After RESET, the PM0/BP0 and
PM1/BP1 pins are configured for performance monitoring, however a hardware debugger may reconfigure these
pins to indicate breakpoint matches.

20.6.9.3 Events Counted
Events that performance-monitoring counters can be set to count and record (using CTR0 and CTR1) are divided in
two categories: occurrence and duration:
• Occurrence events — Counts are incremented each time an event takes place. If PM0/BP0 or PM1/BP1 pins

are used to indicate when a counter increments, the pins are asserted each clock counters increment. But if an
event happens twice in one clock, the counter increments by 2 (the pins are asserted only once).

• Duration events — Counters increment the total number of clocks that the condition is true. When used to
indicate when counters increment, PM0/BP0 and/or PM1/BP1 pins are asserted for the duration.

20.7 COUNTING CLOCKS
The count of cycles, also known as clockticks, forms the basis for measuring how long a program takes to execute.
Clockticks are also used as part of efficiency ratios like cycles per instruction (CPI). Processor clocks may stop
ticking under circumstances like the following:
• The processor is halted when there is nothing for the CPU to do. For example, the processor may halt to save

power while the computer is servicing an I/O request. When Intel Hyper-Threading Technology is enabled, both
logical processors must be halted for performance-monitoring counters to be powered down.

• The processor is asleep as a result of being halted or because of a power-management scheme. There are
different levels of sleep. In the some deep sleep levels, the time-stamp counter stops counting.

In addition, processor core clocks may undergo transitions at different ratios relative to the processor’s bus clock
frequency. Some of the situations that can cause processor core clock to undergo frequency transitions include:
• TM2 transitions.
• Enhanced Intel SpeedStep Technology transitions (P-state transitions).

For Intel processors that support TM2, the processor core clocks may operate at a frequency that differs from the
Processor Base frequency (as indicated by processor frequency information reported by CPUID instruction). See
Section 20.7.2 for more detail.

Due to the above considerations there are several important clocks referenced in this manual:
• Base Clock — The frequency of this clock is the frequency of the processor when the processor is not in turbo

mode, and not being throttled via Intel SpeedStep.
• Maximum Clock — This is the maximum frequency of the processor when turbo mode is at the highest point.
• Bus Clock — These clockticks increment at a fixed frequency and help coordinate the bus on some systems.
20-138 Vol. 3B

PERFORMANCE MONITORING
• Core Crystal Clock — This is a clock that runs at fixed frequency; it coordinates the clocks on all packages
across the system.

• Non-halted Clockticks — Measures clock cycles in which the specified logical processor is not halted and is
not in any power-saving state. When Intel Hyper-Threading Technology is enabled, ticks can be measured on a
per-logical-processor basis. There are also performance events on dual-core processors that measure
clockticks per logical processor when the processor is not halted.

• Non-sleep Clockticks — Measures clock cycles in which the specified physical processor is not in a sleep
mode or in a power-saving state. These ticks cannot be measured on a logical-processor basis.

• Time-stamp Counter — See Section 18.17, “Time-Stamp Counter.”
• Reference Clockticks — TM2 or Enhanced Intel SpeedStep technology are two examples of processor

features that can cause processor core clockticks to represent non-uniform tick intervals due to change of bus
ratios. Performance events that counts clockticks of a constant reference frequency was introduced Intel Core
Duo and Intel Core Solo processors. The mechanism is further enhanced on processors based on Intel Core
microarchitecture.

Some processor models permit clock cycles to be measured when the physical processor is not in deep sleep (by
using the time-stamp counter and the RDTSC instruction). Note that such ticks cannot be measured on a per-
logical-processor basis. See Section 18.17, “Time-Stamp Counter,” for detail on processor capabilities.

The first two methods use performance counters and can be set up to cause an interrupt upon overflow (for
sampling). They may also be useful where it is easier for a tool to read a performance counter than to use a time
stamp counter (the timestamp counter is accessed using the RDTSC instruction).

For applications with a significant amount of I/O, there are two ratios of interest:
• Non-halted CPI — Non-halted clockticks/instructions retired measures the CPI for phases where the CPU was

being used. This ratio can be measured on a logical-processor basis when Intel Hyper-Threading Technology is
enabled.

• Nominal CPI — Time-stamp counter ticks/instructions retired measures the CPI over the duration of a
program, including those periods when the machine halts while waiting for I/O.

20.7.1 Non-Halted Reference Clockticks
Software can use UnHalted Reference Cycles on either a general purpose performance counter using event mask
0x3C and UMASK 0x01 or on fixed function performance counter 2 to count at a constant rate. These events count
at a consistent rate irrespective of P-state, TM2, or frequency transitions that may occur to the processor. The
UnHalted Reference Cycles event may count differently on the general purpose event and fixed counter.

20.7.2 Cycle Counting and Opportunistic Processor Operation
As a result of the state transitions due to opportunistic processor performance operation (see Chapter 15, “Power
and Thermal Management”), a logical processor or a processor core can operate at frequency different from the
Processor Base frequency.

The following items are expected to hold true irrespective of when opportunistic processor operation causes state
transitions:
• The time stamp counter operates at a fixed-rate frequency of the processor.
• The IA32_MPERF counter increments at a fixed frequency irrespective of any transitions caused by opportu-

nistic processor operation.
• The IA32_FIXED_CTR2 counter increments at the same TSC frequency irrespective of any transitions caused

by opportunistic processor operation.
• The Local APIC timer operation is unaffected by opportunistic processor operation.
• The TSC, IA32_MPERF, and IA32_FIXED_CTR2 operate at close to the maximum non-turbo frequency, which is

equal to the product of scalable bus frequency and maximum non-turbo ratio.
Vol. 3B 20-139

PERFORMANCE MONITORING
20.7.3 Determining the Processor Base Frequency
For Intel processors in which the nominal core crystal clock frequency is enumerated in CPUID.15H.ECX and the
core crystal clock ratio is encoded in CPUID.15H (see Table 3-8 “Information Returned by CPUID Instruction”), the
nominal TSC frequency can be determined by using the following equation:

Nominal TSC frequency = (CPUID.15H.ECX[31:0] * CPUID.15H.EBX[31:0]) ÷ CPUID.15H.EAX[31:0]

For Intel processors in which CPUID.15H.EBX[31:0] ÷ CPUID.0x15.EAX[31:0] is enumerated but CPUID.15H.ECX
is not enumerated, Table 20-91 can be used to look up the nominal core crystal clock frequency.

20.7.3.1 For Intel® Processors Based on Sandy Bridge, Ivy Bridge, Haswell, and Broadwell
Microarchitectures

The scalable bus frequency is encoded in the bit field MSR_PLATFORM_INFO[15:8] and the nominal TSC frequency
can be determined by multiplying this number by a bus speed of 100 MHz.

20.7.3.2 For Intel® Processors Based on Nehalem Microarchitecture
The scalable bus frequency is encoded in the bit field MSR_PLATFORM_INFO[15:8] and the nominal TSC frequency
can be determined by multiplying this number by a bus speed of 133.33 MHz.

20.7.3.3 For Intel Atom® Processors Based on Silvermont Microarchitecture (Including Intel Processors
Based on Airmont Microarchitecture)

The scalable bus frequency is encoded in the bit field MSR_PLATFORM_INFO[15:8] and the nominal TSC frequency
can be determined by multiplying this number by the scalable bus frequency. The scalable bus frequency is
encoded in the bit field MSR_FSB_FREQ[2:0] for Intel Atom processors based on the Silvermont microarchitecture,
and in bit field MSR_FSB_FREQ[3:0] for processors based on the Airmont microarchitecture; see Chapter 2,
“Model-Specific Registers (MSRs)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
4.

20.7.3.4 For Intel® Core™ 2 Processor Family and for Intel® Xeon® Processors Based on Intel Core
Microarchitecture

For processors based on Intel Core microarchitecture, the scalable bus frequency is encoded in the bit field
MSR_FSB_FREQ[2:0] at (0CDH), see Chapter 2, “Model-Specific Registers (MSRs)‚” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 4. The maximum resolved bus ratio can be read from the
following bit field:
• If XE operation is disabled, the maximum resolved bus ratio can be read in MSR_PLATFORM_ID[12:8]. It

corresponds to the Processor Base frequency.

Table 20-91. Nominal Core Crystal Clock Frequency

Processor Families/Processor Number Series1

NOTES:
1. For any processor in which CPUID.15H is enumerated and MSR_PLATFORM_INFO[15:8] (which gives the scalable bus frequency) is

available, a more accurate frequency can be obtained by using CPUID.15H.

Nominal Core Crystal Clock Frequency

Intel® Xeon® Scalable Processor Family with CPUID signature 06_55H. 25 MHz

6th and 7th generation Intel® Core™ processors and Intel® Xeon® W Processor Family. 24 MHz

Next Generation Intel Atom® processors based on Goldmont Microarchitecture with
CPUID signature 06_5CH (does not include Intel Xeon processors).

19.2 MHz
20-140 Vol. 3B

PERFORMANCE MONITORING
• IF XE operation is enabled, the maximum resolved bus ratio is given in MSR_PERF_STATUS[44:40], it
corresponds to the maximum XE operation frequency configured by BIOS.

XE operation of an Intel 64 processor is implementation specific. XE operation can be enabled only by BIOS. If
MSR_PERF_STATUS[31] is set, XE operation is enabled. The MSR_PERF_STATUS[31] field is read-only.

20.8 IA32_PERF_CAPABILITIES MSR ENUMERATION
The layout of IA32_PERF_CAPABILITIES MSR is shown in Figure 20-65; it provides enumeration of a variety of
interfaces:
• IA32_PERF_CAPABILITIES.LBR_FMT[bits 5:0]: encodes the LBR format, details are described in Section

18.4.8.1.
• IA32_PERF_CAPABILITIES.PEBSTrap[6]: Trap/Fault-like indicator of PEBS recording assist; see Section

20.6.2.4.2.
• IA32_PERF_CAPABILITIES.PEBSArchRegs[7]: Indicator of PEBS assist save architectural registers; see Section

20.6.2.4.2.
• IA32_PERF_CAPABILITIES.PEBS_FMT[bits 11:8]: Specifies the encoding of the layout of PEBS records; see

Section 20.6.2.4.2.
• IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[12]: Indicates IA32_DEBUGCTL.FREEZE_WHILE_SMM is

supported if 1, see Section 20.8.1.
• IA32_PERF_CAPABILITIES.FULL_WRITE[13]: Indicates the processor supports IA32_A_PMCx interface for

updating bits 32 and above of IA32_PMCx; see Section 20.2.6.
• IA32_PERF_CAPABILITIES.PEBS_BASELINE [bit 14]: If set, the following is true:

— The IA32_PEBS_ENABLE MSR (address 3F1H) exists and all architecturally enumerated fixed and general-
purpose counters have corresponding bits in IA32_PEBS_ENABLE that enable generation of PEBS records.
The general-purpose counter bits start at bit IA32_PEBS_ENABLE[0], and the fixed counter bits start at bit
IA32_PEBS_ENABLE[32].

— The format of the PEBS record is enumerated by IA32_PERF_CAPABILITIES.PEBS_FMT; see Section
20.6.2.4.2.

— Extended PEBS is supported. All counters support the PEBS facility, and all events (both precise and non-
precise) can generate PEBS records when PEBS is enabled for that counter. Note that not all events may be
available on all counters.

— Adaptive PEBS is supported. The PEBS_DATA_CFG MSR (address 3F2H) and adaptive record enable bits
(IA32_PERFEVTSELx.Adaptive_Record and IA32_FIXED_CTR_CTRL.FCx_Adaptive_Record) are supported.
The definition of the PEBS_DATA_CFG MSR, including which bits are supported and how they affect the
record, is enumerated by IA32_PERF_CAPABILITIES.PEBS_FMT; see Section 20.9.2.3.

— NOTE: Software is recommended to feature PEBS Baseline when the following is true: IA32_PERF_CAPA-
BILITIES.PEBS_BASELINE[14] && IA32_PERF_CAPABILITIES.PEBS_FMT[11:8] ≥ 4.

• IA32_PERF_CAPABILITIES.PERF_METRICS_AVAILABLE[15]: If set, indicates that the architecture provides
built in support for TMA L1 metrics through the PERF_METRICS MSR, see Section 20.3.9.3.

• IA32_PERF_CAPABILITIES.PEBS_OUTPUT_PT_AVAIL[16]: If set on parts that enumerate support for Intel PT
(CPUID.0x7.0.EBX[25]=1), setting IA32_PEBS_ENABLE.PEBS_OUTPUT to 01B will result in PEBS output being
written into the Intel PT trace stream. See Section 20.5.5.2.
Vol. 3B 20-141

PERFORMANCE MONITORING
20.8.1 Filtering of SMM Handler Overhead
When performance monitoring facilities and/or branch profiling facilities (see Section 18.5, “Last Branch, Interrupt,
and Exception Recording (Intel® Core™ 2 Duo and Intel Atom® Processors)”) are enabled, these facilities capture
event counts, branch records and branch trace messages occurring in a logical processor. The occurrence of inter-
rupts, instruction streams due to various interrupt handlers all contribute to the results recorded by these facilities.

If CPUID.01H:ECX.PDCM[bit 15] is 1, the processor supports the IA32_PERF_CAPABILITIES MSR. If IA32_PERF_-
CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is 1, the processor supports the ability for system software using
performance monitoring and/or branch profiling facilities to filter out the effects of servicing system management
interrupts.

If the FREEZE_WHILE_SMM capability is enabled on a logical processor and after an SMI is delivered, the processor
will clear all the enable bits of IA32_PERF_GLOBAL_CTRL, save a copy of the content of IA32_DEBUGCTL and
disable LBR, BTF, TR, and BTS fields of IA32_DEBUGCTL before transferring control to the SMI handler.

The enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved copy of IA32_DEBUGCTL prior to SMI
delivery will be restored , after the SMI handler issues RSM to complete its servicing.

It is the responsibility of the SMM code to ensure the state of the performance monitoring and branch profiling facil-
ities are preserved upon entry or until prior to exiting the SMM. If any of this state is modified due to actions by the
SMM code, the SMM code is required to restore such state to the values present at entry to the SMM handler.

System software is allowed to set IA32_DEBUGCTL.FREEZE_WHILE_SMM[bit 14] to 1 only supported as indicated
by IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] reporting 1.

20.9 PEBS FACILITY

20.9.1 Extended PEBS
• The Extended PEBS feature supports Processor Event Based Sampling (PEBS) on all counters, both fixed

function and general purpose; and all performance monitoring events, both precise and non-precise. PEBS can
be enabled for the general purpose counters using PEBS_EN_PMCi bits of IA32_PEBS_ENABLE (i = 0, 1,..m).
PEBS can be enabled for 'i' fixed function counters using the PEBS_EN_FIXEDi bits of IA32_PEBS_ENABLE (i =
0, 1, ...n).

Figure 20-65. Layout of IA32_PERF_CAPABILITIES MSR

5 4 3 2 1 063 7 611 816 15 13 12

PEBS_TRAP (R/O)

PEBS_ARCH_REG (R/O)

PEBS_REC_FMT (R/O)

SMM_FREEZE (R/O)

FW_WRITE (R/O)

LBR_FMT (R/O)

Reserved

PERF_METRICS_AVAILABLE (R/O)
PEBS_OUTPUT_PT_AVAIL (R/O)
20-142 Vol. 3B

PERFORMANCE MONITORING
A PEBS record due to a precise event will be generated after an instruction that causes the event when the counter
has already overflowed. A PEBS record due to a non-precise event will occur at the next opportunity after the
counter has overflowed, including immediately after an overflow is set by an MSR write.

Currently, IA32_FIXED_CTR0 counts instructions retired and is a precise event. IA32_FIXED_CTR1, IA32_-
FIXED_CTR2 … IA32_FIXED_CTRm count as non-precise events.

The Applicable Counter field in the Basic Info Group of the PEBS record indicates which counters caused the PEBS
record to be generated. It is in the same format as the enable bits for each counter in IA32_PEBS_ENABLE. As an
example, an Applicable Counter field with bits 2 and 32 set would indicate that both general purpose counter 2 and
fixed function counter 0 generated the PEBS record.
• To properly use PEBS for the additional counters, software will need to set up the counter reset values in PEBS

portion of the DS_BUFFER_MANAGEMENT_AREA data structure that is indicated by the IA32_DS_AREA
register. The layout of the DS_BUFFER_MANAGEMENT_AREA is shown in Figure 20-67. When a counter
generates a PEBS records, the appropriate counter reset values will be loaded into that counter. In the above
example where general purpose counter 2 and fixed function counter 0 generated the PEBS record, general
purpose counter 2 would be reloaded with the value contained in PEBS GP Counter 2 Reset (offset 50H) and
fixed function counter 0 would be reloaded with the value contained in PEBS Fixed Counter 0 Reset (offset
80H).

Figure 20-66. Layout of IA32_PEBS_ENABLE MSR

1 063

PEBS_EN_PMCm (R/W)

PEBS_EN_FIXED0 (R/W)

PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

PEBS_EN_FIXED1 (R/W)

PEBS_EN_FIXEDn (R/W)

n 32 31 m

Reserved RESET Value – 00000000 _00000000 H

● ● ● ● ● ●
Vol. 3B 20-143

PERFORMANCE MONITORING
Extended PEBS support debuts on Intel Atom® processors based on the Goldmont Plus microarchitecture and
future Intel® Core™ processors based on the Ice Lake microarchitecture.

20.9.2 Adaptive PEBS
The PEBS facility has been enhanced to collect the following CPU state in addition to GPRs, EventingIP, TSC, and
memory access related information collected by legacy PEBS:
• XMM registers
• LBR records (TO/FROM/INFO)

The PEBS record is restructured where fields are grouped into Basic group, Memory group, GPR group, XMM group,
and LBR group. A new register MSR_PEBS_DATA_CFG provides software the capability to select data groups of
interest and thus reduce the record size in memory and record generation latency. Hence, a PEBS record's size and
layout vary based on the selected groups. The MSR also allows software to select LBR depth for branch data
records.

By default, the PEBS record will only contain the Basic group. Optionally, each counter can be configured to
generate a PEBS records with the groups specified in MSR_PEBS_DATA_CFG.

Figure 20-67. PEBS Programming Environment

00H

08H

10H

18H

20H

28H

30H

38H

40H

●●●

PEBS Fixed Counter 0 Reset

63 BTS Buffer Base 0

BTS Index

BTS Absolute Maximum

BTS Interrupt Threshold

PEBS Buffer Base

PEBS Index

PEBS Absolute Maximum

PEBS Interrupt Threshold

PEBS GP Counter 0 Reset

PEBS GP Counter 1 Reset

●●●

PEBS GP Counter m Reset

PE
B

S
 C

onfig B
uffer

DS Buffer Management

Branch Record 0

Branch Record 1

Branch Record N

BTS Buffer

PEBS Record 0

PEBS Record 1

PEBS Record N

PEBS Buffer

IA32_DS_AREA MSR

80H

PEBS Fixed Counter n Reset
20-144 Vol. 3B

PERFORMANCE MONITORING
Details and examples for the Adaptive PEBS capability follow below.

20.9.2.1 Adaptive_Record Counter Control
• IA32_PERFEVTSELx.Adaptive_Record[34]: If this bit is set and IA32_PEBS_ENABLE.PEBS_EN_PMCx is set for

the corresponding GP counter, an overflow of PMCx results in generation of an adaptive PEBS record with state
information based on the selections made in MSR_PEBS_DATA_CFG. If this bit is not set, a basic record is
generated.

• IA32_FIXED_CTR_CTRL.FCx_Adaptive_Record: If this bit is set and IA32_PEBS_ENABLE.PEBS_EN_FIXEDx is
set for the corresponding Fixed counter, an overflow of FixedCtrx results in generation of an adaptive PEBS
record with state information based on the selections made in MSR_PEBS_DATA_CFG. If this bit is not set, a
basic record is generated.

Figure 20-68. Layout of IA32_PerfEvtSelX MSR Supporting Adaptive PEBS

IA32_PerfEvtSelX
 Address Range: 0x186 to 0x18D

Scope: Thread
Reset value: 0x00000000.0000000

Reserved

0

UM
as

k

Ev
en

t_
Se

le
ct

US
R

O
SEIN
T

ENIN
V

CM
as

k

31

63 32

IN
_T

X
IN

_T
XC

P

71523

394755

AD
AP

TI
VE

_R
EC

O
RD

An
yT

hr

Deprecated
Vol. 3B 20-145

PERFORMANCE MONITORING
20.9.2.2 PEBS Record Format
The data fields in the PEBS record are aggregated into five groups which are described in the sub-sections below.
Processors that support Adaptive PEBS implement a new MSR called MSR_PEBS_DATA_CFG which allows software
to select the data groups to be captured. The data groups are not placed at fixed locations in the PEBS record, but
are positioned immediately after one another, thus making the record format/size variable based on the groups
selected.

20.9.2.2.1 Basic Info

The Basic group contains essential information for software to parse a record along with several critical fields. It is
always collected.

Figure 20-69. Layout of IA32_FIXED_CTR_CTRL MSR Supporting Adaptive PEBS

Table 20-92. Basic Info Group

Field Name Bit Width Description

Record Format [47:0] This field indicates which data groups are included in the record. The field is zero if
none of the counters that triggered the current PEBS record have their
Adaptive_Record bit set. Otherwise it contains the value of MSR_PEBS_DATA_CFG.

[63:48] This field provides the size of the current record in bytes. Selected groups are
packed back-to-back in the record without gaps or padding for unselected groups.

An
yT

hr
_F

C
0

An
yT

hr
_F

C
1

An
yT

hr
_F

C
2

IA32_Fixed_CTR_CTRL
Address: 38DH
Scope: Thread

Reset value: 0x00000000.00000000

63 55 47 39

31 23 15 7 0

FC
3_

AD
AP

TI
V

E_
RE

CO
RD

FC
2_

AD
AP

TI
V

E_
RE

CO
RD

FC
1_

AD
AP

TI
V

E_
RE

CO
RD

FC
0_

AD
AP

TI
V

E_
RE

CO
RD

Reserved

32

PM
I_

FC
3

R
es

er
ve

d

EN
_F

C
3

PM
I_

FC
2

EN
_F

C
2

PM
I_

FC
1

EN
_F

C
1

PM
I_

FC
0

EN
_F

C
0

Deprecated
20-146 Vol. 3B

PERFORMANCE MONITORING
20.9.2.2.2 Memory Access Info

This group contains the legacy PEBS memory-related fields; see Section 20.3.1.1.2.

Beginning with 12th generation Intel Core processors, the memory access information group has been updated.
New fields added are shaded gray in Table 20-94.

Instruction Pointer [63:0] This field reports the Eventing Instruction Pointer (EventingIP) of the retired
instruction that triggered the PEBS record generation. Note that this field is
different than R/EIP which records the instruction pointer of the next instruction
to be executed after record generation. The legacy R/EIP field has been removed.

Applicable Counters [63:0] The Applicable Counters field indicates which counters triggered the generation of
the PEBS record, linking the record to specific events. This allows software to
correlate the PEBS record entry properly with the instruction that caused the
event, even when multiple counters are configured to generate PEBS records and
multiple bits are set in the field.

TSC [63:0] This field provides the time stamp counter value when the PEBS record was
generated.

Table 20-93. Memory Access Info Group

Field Name Bit Width Description

Memory Access Address [63:0] This field contains the linear address of the source of the load, or linear address of
the destination (target) of the store. This value is written as a 64-bit address in
canonical form.

Memory Auxiliary Info [63:0] When a MEM_TRANS_RETIRED.* event is configured in a General Purpose counter,
this field contains an encoded value indicating the memory hierarchy source which
satisfied the load. These encodings are detailed in Table 20-4 and Table 20-13. If
the PEBS assist was triggered for a store uop, this field will contain information
indicating the status of the store, as detailed in Table 20-14.

Memory Access Latency1

NOTES:
1. In certain conditions, high latencies in fields under “Memory Access Latency” may be observed even when the Data Src of the “Mem-

ory Auxiliary Info” field indicates a close source.

[63:0] When a MEM_TRANS_RETIRED.* event is configured in a General Purpose counter,
this field contains the latency to service the load in core clock cycles.

TSX Auxiliary Info [31:0] This field contains the number of cycles in the last TSX region, regardless of
whether that region had aborted or committed.

[63:32] This field contains the abort details. Refer to Section 20.3.6.5.1.

Table 20-92. Basic Info Group (Contd.)
Vol. 3B 20-147

PERFORMANCE MONITORING
To determine which fields are supported for certain performance monitoring events, consult the Memory Info attri-
bute in the event lists at https://download.01.org/perfmon/.

NOTE
There may be additional block reasons, even if Data-Blk and Address-Blk are both clear, e.g., non-
optimal instruction latency.
On P-core, the new Data-Blk and Address-Blk bits require the event LD_BLOCKS.STORE_FORWARD
(r8203) to be configured in a programmable counter.

20.9.2.2.3 GPRs

This group is captured when the GPR bit is enabled in MSR_PEBS_DATA_CFG. GPRs are always 64 bits wide. If they
are selected for non 64-bit mode, the upper 32-bit of the legacy RAX - RDI and all contents of R8-15 GPRs will be
filled with 0s. In 64bit mode, the full 64 bit value of each register is written.

Table 20-94. Updated Memory Access Info Group

Field Name Sub-field Name Bits Description

Access Address
(offset 0H)

DLA [63:0] This field reports the data linear address (DLA) of the memory access in
canonical form.

A zero value indicates the processor could not retrieve the address of the
particular access.

Access Info

(offset 8H)

Data Src [3:0] An encoded value indicating the memory hierarchy source which satisfied the
access. These encodings are detailed in Table 20-4.

A zero value indicates the processor could not retrieve the data source of the
particular access.

STLB-miss [4] A value of 1 indicates the access has missed the Second-level TLB (STLB).

Is-Lock [5] A value of 1 indicates the access was part of a locked (atomic) memory trans-
action.

Data-Blk [6] A value of 1 indicates the load was blocked since its data could not be forwarded
from a preceding store.

Address-Blk [7] A value of 1 indicates the load was blocked due to potential address conflict with
a preceding store.

Access Latency

(offset 10H)

Instruction
Latency

[15:0] Measured instruction latency in core cycles.

For loads, the latency starts by the dispatch of the load operation for execution
and lasts until completion of the instruction it belongs to.

This field includes the entire latency including time for data-dependency
resolution or TLB lookups.

Cache Latency [47:32] Measured cache access latency in core cycles.

For loads, the latency starts by the actual cache access until the data is returned
by the memory subsystem.

For stores, the latency starts when the demand write accesses the L1 data-
cache and lasts until the cacheline write is completed in the memory subsystem.

This field does not include non-data-cache latency such as memory ordering
checks or TLB lookups.

TSX

(offset 18H)

Transaction
Latency

[31:0] This field contains the number of cycles in the last TSX region, regardless of
whether that region had aborted or committed.

Abort Info [63:32] This field contains the abort details. Refer to Section 20.3.6.5.1.
20-148 Vol. 3B

https://download.01.org/perfmon/
https://download.01.org/perfmon/

PERFORMANCE MONITORING
The order differs from legacy. The table below shows the order of the GPRs in Ice Lake microarchitecture.

The machine state reported in the PEBS record is the committed machine state immediately after the instruction
that triggers PEBS completes.

For instance, consider the following instruction sequence:

MOV eax, [eax]; triggers PEBS record generation

NOP

If the mov instruction triggers PEBS record generation, the EventingIP field in the PEBS record will report the
address of the mov, and the value of EAX in the PEBS record will show the value read from memory, not the target
address of the read operation. And the value of RIP will contain the linear address of the nop.

20.9.2.2.4 XMMs

This group is captured when the XMM bit is enabled in MSR_PEBS_DATA_CFG and SSE is enabled. If SSE is not
enabled, the fields will contain zeroes. XMM8-XMM15 will also contain zeroes if not in 64-bit mode.

Table 20-95. GPRs in Ice Lake Microarchitecture

Field Name Bit Width

RFLAGS [63:0]

RIP [63:0]

RAX [63:0]

RCX* [63:0]

RDX* [63:0]

RBX* [63:0]

RSP* [63:0]

RBP* [63:0]

RSI* [63:0]

RDI* [63:0]

R8 [63:0]

... ...

R15 [63:0]

Table 20-96. XMMs

Field Name Bit Width

XMM0 [127:0]

... ...

XMM15 [127:0]
Vol. 3B 20-149

PERFORMANCE MONITORING
20.9.2.2.5 LBRs

To capture LBR data in the PEBS record, the LBR bit in MSR_PEBS_DATA_CFG must be enabled. The number of LBR
entries included in the record can be configured in the LBR_entries field of MSR_PEBS_DATA_CFG.

LBR entries are recorded into the record starting at LBR[TOS] and proceeding to LBR[TOS-1] and following. Note
that LBR index is modulo the number of LBRs supporting on the processor.

20.9.2.3 MSR_PEBS_DATA_CFG
Bits in MSR_PEBS_DATA_CFG can be set to include data field blocks/groups into adaptive records. The Basic Info
group is always included in the record. Additionally, the number of LBR entries included in the record is configu-
rable.

Table 20-97. LBRs

Field Name Bit Width Description

LBR[].FROM [63:0] Branch from address.

LBR[].TO [63:0] Branch to address.

LBR[].INFO [63:0] Other LBR information, like timing. This field is described in more
detail in Section 18.12.1, “MSR_LBR_INFO_x MSR.”

Figure 20-70. MSR_PEBS_DATA_CFG

MSR_PEBS_DATA_CFG
Address: 3F2H
Scope: Thread

Reset value: 0x00000000 .00000000

63 55 47 39

31 23 15 7 31

LB
R

 E
nt

rie
s

Reserved

63

LB
Rs

XM
M

s

G
PR

s

M
em

or
y

In
fo
20-150 Vol. 3B

PERFORMANCE MONITORING
20.9.2.4 PEBS Record Examples
The following example shows the layout of the PEBS record when all data groups are selected (all valid bits in
MSR_PEBS_DATA_CFG are set) and maximum number of LBRs are selected. There are no gaps in the PEBS record
when a subset of the groups are selected, thus keeping the layout compact. Implementations that do not support
some features will have to pad zeroes in the corresponding fields.

Table 20-98. MSR_PEBS_CFG Programming1

NOTES:
1. A write to the MSR will be ignored when IA32_MISC_ENABLE.PERFMON_AVAILABLE is zero (default).

Bit Bit Index Access Description

Memory Info 0 R/W Setting this bit will capture memory information such as the linear address,
data source and latency of the memory access in the PEBS record.

GPRs 1 R/W Setting this bit will capture the contents of the General Purpose registers
in the PEBS record.

XMMs 2 R/W Setting this bit will capture the contents of the XMM registers in the PEBS
record.

LBRs 3 R/W Setting this bit will capture LBR TO, FROM, and INFO in the PEBS record.

Reserved2

2. Writing to the reserved bits will cause a GP fault.

23:4 NA Reserved

LBR Entries 31:24 R/W Set the field to the desired number of entries minus 1. For example, if the
LBR_entries field is 0, a single entry will be included in the record. To
include 32 LBR entries, set the LBR_entries field to 31 (0x1F). To ensure
all PEBS records are 16-byte aligned, it is recommended to select an even
number of LBR entries (programmed into LBR_entries as an odd number).

Table 20-99. PEBS Record Example 1

Offset Group Name Field Name Legacy Name (If Different)

0x0 Basic Info Record Format New

Record Size New

0x8 Instruction Pointer EventingRIP

0x10 Applicable Counters

0x18 TSC

0x20 Memory Info Memory Access Address DLA

0x28 Memory Auxiliary Info DATA_SRC

0x30 Memory Access Latency Load Latency

0x38 TSX Auxiliary Info HLE Information
Vol. 3B 20-151

PERFORMANCE MONITORING
The following example shows the layout of the PEBS record when Basic, GPR, and LBR group with 3 LBR entries are
selected.

0x40 GPRs RFLAGS

0x48 RIP

0x50 RAX

... ...

0x88 RDI

0x90 R8

... ...

0xC8 R15

0xD0 XMMs XMM0 New

... ...

0x1C0 XMM15

0x1D0 LBRs LBR[TOS].FROM New

0x1D8 LBR[TOS].TO

0x1E0 LBR[TOS].INFO

... ...

0x4B8 LBR[TOS +1].FROM

0x4C0 LBR[TOS +1].TO

0x4C8 LBR[TOS +1].INFO

Table 20-100. PEBS Record Example 2

Offset Group Name Field Name Legacy Name (If Different)

0x0 Basic Info Record Format New

Record Size New

0x8 Instruction Pointer EventingRIP

0x10 Applicable Counters

0x18 TSC

Table 20-99. PEBS Record Example 1
20-152 Vol. 3B

PERFORMANCE MONITORING
20.9.3 Precise Distribution of Instructions Retired (PDIR) Facility
Precise Distribution of Instructions Retired Facility is available via PEBS on some microarchitectures. Refer to
Section 20.3.4.4.4. Counters that support PDIR also vary. See the processor specific sections for availability.

20.9.4 Reduced Skid PEBS
For precise events, upon triggering a PEBS assist, there will be a finite delay between the time the counter over-
flows and when the microcode starts to carry out its data collection obligations. The Reduced Skid mechanism miti-
gates the “skid” problem by providing an early indication of when the counter is about to overflow, allowing the
machine to more precisely trap on the instruction that actually caused the counter overflow thus greatly reducing
skid.

This mechanism is a superset of the PDIR mechanism available in the Sandy Bridge microarchitecture. See Section
20.3.4.4.4

In the Goldmont microarchitecture, the mechanism applies to all precise events including, INST_RETIRED, except
for UOPS_RETIRED. However, the Reduced Skid mechanism is disabled for any counter when the INV, ANY, E, or
CMASK fields are set.

With Reduced Skid PEBS, the skid is precisely one event occurrence. Hence if counting INST_RETIRED, PEBS will
indicate the instruction that follows that which caused the counter to overflow.

For the Reduced Skid mechanism to operate correctly, the performance monitoring counters should not be recon-
figured or modified when they are running with PEBS enabled. The counters need to be disabled (e.g., via
IA32_PERF_GLOBAL_CTRL MSR) before changes to the configuration (e.g., what event is specified in IA32_PERFE-
VTSELx or whether PEBS is enabled for that counter via IA32_PEBS_ENABLE) or counter value (MSR write to
IA32_PMCx and IA32_A_PMCx).

0x20 GPRs RFLAGS

0x28 RIP

0x30 RAX

... ...

0x68 RDI

0x70 R8

... ...

0xA8 R15

0xB0 LBRs LBR[TOS].FROM New

0xB8 LBR[TOS].TO

0xC0 LBR[TOS].INFO

... ...

0xE0 LBR[TOS +1].FROM

0xE8 LBR[TOS +1].TO

0xF0 LBR[TOS +1].INFO

Table 20-100. PEBS Record Example 2
Vol. 3B 20-153

PERFORMANCE MONITORING
20.9.5 EPT-Friendly PEBS
The 3rd generation Intel Xeon Scalable Family of processors based on Ice Lake microarchitecture (and later proces-
sors) and the 12th generation Intel Core processor (and later processors) support VMX guest use of PEBS when the
DS Area (including the PEBS Buffer and DS Management Area) is allocated from a paged pool of EPT pages. In such
a configuration PEBS DS Area accesses may result in VM exits (e.g., EPT violations due to “lazy” EPT page-table
entry propagation), and in such cases the PEBS record will not be lost but instead will “skid” to after the subsequent
VM Entry back to the guest. For precise events the guest will observe that the record skid by one event occurrence,
while for non-precise events the record will skid by one instruction.

20.9.6 PDist: Precise Distribution
PDist eliminates any skid or shadowing effects from PEBS. With PDist, the PEBS record will be generated precisely
upon completion of the instruction or operation that causes the counter to overflow (there is no “wait for next
occurrence” by default).

PDist is supported by selected counters, and is only supported when those counters are programmed to count
select precise events1. The legacy PEBS behavior applies to counters that do not support PDist, unless specified
otherwise. PDist requires that the INV, ANY, E, and CMASK fields are cleared. Which counters support PDist, and
which events are supported for PDist, is model-specific. Further, the counter reload value must not be lesser than
127 for PDist to operate.

For the PDist mechanism to operate correctly, the performance monitoring counters should not be reconfigured or
modified when they are running with PEBS enabled. The counters need to be disabled (e.g., via IA32_PERF_-
GLOBAL_CTRL MSR) before changes to the configuration (e.g., what event is specified in IA32_PERFEVTSELx or
whether PEBS is enabled for that counter via IA32_PEBS_ENABLE) or counter value (MSR write to IA32_PMCx and
IA32_A_PMCx).

20.9.7 Load Latency Facility
The load latency facility provides software a means to characterize the latencies of memory load operations to
different levels of cache/memory hierarchy. This facility requires a processor supporting the enhanced PEBS record
format in the PEBS buffer.

Beginning with 12th generation Intel Core processors, the load latency facility supports all fields in Table 20-94,
“Updated Memory Access Info Group,” in addition to the Memory Access Address field:
• The Instruction Latency field measures the load latency from the load's first dispatch until final data

writeback from the memory subsystem. The latency is reported for retired demand load operations and in core
cycles (it accounts for re-dispatches and data dependencies).

• The Cache Latency field measures the subset of cache access latency in core cycles. It starts from the actual
cache access until the data is returned by the memory subsystem The latency is reported for retired demand
load operations in core cycles (it does not account for memory ordering blocks).

• The Data Source field is an encoded value indicates the origin of the data obtained by the load instruction. The
encoding is shown in Table 20-101. In the descriptions, local memory refers to system memory physically
attached to a processor package, and remote memory refers to system memory or cache physically attached
to another processor package (in a server product).

• Through the Access Info field, load latency features binary indications on certain blocks that the load
operation may have encountered. Refer to STLB-miss, Is-Lock, Data-Blk and Address-Blk fields in Table 20-94.

NOTE
For loads triggered by software prefetch instructions, the cache related fields including Data Source
and Cache Latency, report values as if the load was an L1 cache hit (the prefetch completes without
waiting for data return, for performance reasons).

1. To determine whether an event is precise or supports PDist, consult the relevant attribute in the event lists at https://down-
load.01.org/perfmon/.
20-154 Vol. 3B

https://download.01.org/perfmon/

PERFORMANCE MONITORING
To use this feature, software must complete the following steps:
• Complete the PEBS configuration steps.
• Set the Memory Info bit in the PEBS_DATA_CFG MSR.
• One of the relevant IA32_PERFEVTSELx MSRs is programmed to specify the event unit MEM_TRANS_RE-

TIRED.LOAD_LATENCY (IA32_PerfEvtSelX[15:0] = 1CDH). The corresponding counter, IA32_PMCx, will
accumulate event counts for architecturally visible loads which exceed the programmed latency threshold
specified separately in an MSR. Stores are ignored when this event is programmed. The CMASK or INV fields of
the IA32_PerfEvtSelX register used for counting load latency must be 0. Writing other values will result in
undefined behavior.

• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired latency threshold in core clock
cycles. Loads with instruction latency greater than this value are eligible for counting and PEBS data reporting.
The minimum value that may be programmed in this register is 1.

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corresponding IA32_PMCx counter
register.

Refer to Section 20.3.4.4.2 for further implementation details of Load Latency.

20.9.8 Store Latency Facility
Store latency support is available on the 12th generation Intel Core processor. Store latency is a PEBS extension
that provides a means to profile store memory accesses in the system. It complements the load latency facility.

Store latency leverages the PEBS facility where it can provide additional information about sampled stores. The
additional information includes the data address, memory auxiliary information, and the cache latency of the store
access. Normal stores (those preceded with a read-for-ownership) as well as streaming stores are supported by
the store latency facility.

Table 20-101. Data Source Encoding for Memory Accesses (Ice Lake and Later Microarchitectures)

Encoding Description

00H Unknown Data Source (the processor could not retrieve the origin of this request).

01H L1 HIT. This request was satisfied by the L1 data cache. (Minimal latency core cache hit.)

02H FB HIT. This request was merged into an outstanding cache miss to same cache-line address.

03H L2 HIT. This request was satisfied by the L2 cache.

04H L3 HIT. This request was satisfied by the L3 cache with no coherency actions performed (snooping).

05H XCORE MISS. This request was satisfied by the L3 cache but involved a coherency check in some sibling core(s).

06H XCORE HIT. This request was satisfied by the L3 cache but involved a coherency check that hit a non-modified copy in
a sibling core.

07H XCORE FWD. This request was satisfied by a sibling core where either a modified (cross-core HITM) or a non-modified
(cross-core FWD) cache-line copy was found.

08H Local Far Memory. This request has missed the L3 cache and was serviced by local far memory.

09H Remote Far Memory. This request has missed the L3 cache and was serviced by remote far memory.

0AH Local Near Memory. This request has missed the L3 cache and was serviced by local near memory.

0BH Remote Near Memory. This request has missed the L3 cache and was serviced by remote near memory.

0CH Remote FWD. This request has missed the L3 cache and a non-modified cache-line copy was forwarded from a
remote cache.

0DH Remote HITM. This request has missed the L3 cache and a modified cache-line was forwarded from a remote cache.

0EH I/O. Request of input/output operation.

0FH UC. The request was to uncacheable memory.
Vol. 3B 20-155

PERFORMANCE MONITORING
Memory store operations typically do not limit performance since they update the memory with no operation that
directly depends on them. Thus, data out of this facility should be carefully used once stores are suspected as a
performance limiter; for example, once the TMA node of Backend_Bound.Memory_Bound.Store_Bound is flagged1.

To enable the store latency facility, software must complete the following steps:
• Complete the PEBS configuration steps.
• Set the Memory Info bit in the PEBS_DATA_CFG MSR.
• Program the MEM_TRANS_RETIRED.STORE_SAMPLE event on general-purpose performance-monitoring

counter 0 (IA32_PERFEVTSEL0[15:0] = 2CDH).
• Setup the PEBS buffer to hold at least two records, setting both ‘PEBS Absolute Maximum’ and ‘PEBS Interrupt

Threshold’, should any other counter be used by PEBS (that is whenever IA32_PEBS_ENABLE[x] ≠ 0 for x ≠ 0).
• Set IA32_PEBS_ENABLE[0].

The store latency information is written into a PEBS record as shown in Table 20-48.

The store latency relies on the PEBS facility, so the PEBS configuration must be completed first. Unlike load latency,
there is no option to filter on a subset of stores that exceed a certain threshold.

1. For more details about the method, refer to Section B.1, “Top-Down Analysis Method” of the Intel® 64 and IA-32 Architectures Opti-
mization Reference Manual.
20-156 Vol. 3B

CHAPTER 21
8086 EMULATION

IA-32 processors (beginning with the Intel386 processor) provide two ways to execute new or legacy programs
that are assembled and/or compiled to run on an Intel 8086 processor:
• Real-address mode.
• Virtual-8086 mode.

Figure 2-3 shows the relationship of these operating modes to protected mode and system management mode
(SMM).

When the processor is powered up or reset, it is placed in the real-address mode. This operating mode almost
exactly duplicates the execution environment of the Intel 8086 processor, with some extensions. Virtually any
program assembled and/or compiled to run on an Intel 8086 processor will run on an IA-32 processor in this mode.

When running in protected mode, the processor can be switched to virtual-8086 mode to run 8086 programs. This
mode also duplicates the execution environment of the Intel 8086 processor, with extensions. In virtual-8086
mode, an 8086 program runs as a separate protected-mode task. Legacy 8086 programs are thus able to run
under an operating system (such as Microsoft Windows*) that takes advantage of protected mode and to use
protected-mode facilities, such as the protected-mode interrupt- and exception-handling facilities. Protected-mode
multitasking permits multiple virtual-8086 mode tasks (with each task running a separate 8086 program) to be run
on the processor along with other non-virtual-8086 mode tasks.

This section describes both the basic real-address mode execution environment and the virtual-8086-mode execu-
tion environment, available on the IA-32 processors beginning with the Intel386 processor.

21.1 REAL-ADDRESS MODE
The IA-32 architecture’s real-address mode runs programs written for the Intel 8086, Intel 8088, Intel 80186, and
Intel 80188 processors, or for the real-address mode of the Intel 286, Intel386, Intel486, Pentium, P6 family,
Pentium 4, and Intel Xeon processors.

The execution environment of the processor in real-address mode is designed to duplicate the execution environ-
ment of the Intel 8086 processor. To an 8086 program, a processor operating in real-address mode behaves like a
high-speed 8086 processor. The principal features of this architecture are defined in Chapter 3, “Basic Execution
Environment,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

The following is a summary of the core features of the real-address mode execution environment as would be seen
by a program written for the 8086:
• The processor supports a nominal 1-MByte physical address space (see Section 21.1.1, “Address Translation in

Real-Address Mode,” for specific details). This address space is divided into segments, each of which can be up
to 64 KBytes in length. The base of a segment is specified with a 16-bit segment selector, which is shifted left
by 4 bits to form a 20-bit offset from address 0 in the address space. An operand within a segment is addressed
with a 16-bit offset from the base of the segment. A physical address is thus formed by adding the offset to the
20-bit segment base (see Section 21.1.1, “Address Translation in Real-Address Mode”).

• All operands in “native 8086 code” are 8-bit or 16-bit values. (Operand size override prefixes can be used to
access 32-bit operands.)

• Eight 16-bit general-purpose registers are provided: AX, BX, CX, DX, SP, BP, SI, and DI. The extended 32 bit
registers (EAX, EBX, ECX, EDX, ESP, EBP, ESI, and EDI) are accessible to programs that explicitly perform a size
override operation.

• Four segment registers are provided: CS, DS, SS, and ES. (The FS and GS registers are accessible to programs
that explicitly access them.) The CS register contains the segment selector for the code segment; the DS and
ES registers contain segment selectors for data segments; and the SS register contains the segment selector
for the stack segment.

• The 8086 16-bit instruction pointer (IP) is mapped to the lower 16-bits of the EIP register. Note this register is
a 32-bit register and unintentional address wrapping may occur.
Vol. 3B 21-1

8086 EMULATION
• The 16-bit FLAGS register contains status and control flags. (This register is mapped to the 16 least significant
bits of the 32-bit EFLAGS register.)

• All of the Intel 8086 instructions are supported (see Section 21.1.3, “Instructions Supported in Real-Address
Mode”).

• A single, 16-bit-wide stack is provided for handling procedure calls and invocations of interrupt and exception
handlers. This stack is contained in the stack segment identified with the SS register. The SP (stack pointer)
register contains an offset into the stack segment. The stack grows down (toward lower segment offsets) from
the stack pointer. The BP (base pointer) register also contains an offset into the stack segment that can be used
as a pointer to a parameter list. When a CALL instruction is executed, the processor pushes the current
instruction pointer (the 16 least-significant bits of the EIP register and, on far calls, the current value of the CS
register) onto the stack. On a return, initiated with a RET instruction, the processor pops the saved instruction
pointer from the stack into the EIP register (and CS register on far returns). When an implicit call to an interrupt
or exception handler is executed, the processor pushes the EIP, CS, and EFLAGS (low-order 16-bits only)
registers onto the stack. On a return from an interrupt or exception handler, initiated with an IRET instruction,
the processor pops the saved instruction pointer and EFLAGS image from the stack into the EIP, CS, and
EFLAGS registers.

• A single interrupt table, called the “interrupt vector table” or “interrupt table,” is provided for handling
interrupts and exceptions (see Figure 21-2). The interrupt table (which has 4-byte entries) takes the place of
the interrupt descriptor table (IDT, with 8-byte entries) used when handling protected-mode interrupts and
exceptions. Interrupt and exception vector numbers provide an index to entries in the interrupt table. Each
entry provides a pointer (called a “vector”) to an interrupt- or exception-handling procedure. See Section
21.1.4, “Interrupt and Exception Handling,” for more details. It is possible for software to relocate the IDT by
means of the LIDT instruction on IA-32 processors beginning with the Intel386 processor.

• The x87 FPU is active and available to execute x87 FPU instructions in real-address mode. Programs written to
run on the Intel 8087 and Intel 287 math coprocessors can be run in real-address mode without modification.

The following extensions to the Intel 8086 execution environment are available in the IA-32 architecture’s real-
address mode. If backwards compatibility to Intel 286 and Intel 8086 processors is required, these features should
not be used in new programs written to run in real-address mode.
• Two additional segment registers (FS and GS) are available.
• Many of the integer and system instructions that have been added to later IA-32 processors can be executed in

real-address mode (see Section 21.1.3, “Instructions Supported in Real-Address Mode”).
• The 32-bit operand prefix can be used in real-address mode programs to execute the 32-bit forms of instruc-

tions. This prefix also allows real-address mode programs to use the processor’s 32-bit general-purpose
registers.

• The 32-bit address prefix can be used in real-address mode programs, allowing 32-bit offsets.

The following sections describe address formation, registers, available instructions, and interrupt and exception
handling in real-address mode. For information on I/O in real-address mode, see Chapter 19, “Input/Output,” of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

21.1.1 Address Translation in Real-Address Mode
In real-address mode, the processor does not interpret segment selectors as indexes into a descriptor table;
instead, it uses them directly to form linear addresses as the 8086 processor does. It shifts the segment selector
left by 4 bits to form a 20-bit base address (see Figure 21-1). The offset into a segment is added to the base
address to create a linear address that maps directly to the physical address space.

When using 8086-style address translation, it is possible to specify addresses larger than 1 MByte. For example,
with a segment selector value of FFFFH and an offset of FFFFH, the linear (and physical) address would be 10FFEFH
(1 megabyte plus 64 KBytes). The 8086 processor, which can form addresses only up to 20 bits long, truncates the
high-order bit, thereby “wrapping” this address to FFEFH. When operating in real-address mode, however, the
processor does not truncate such an address and uses it as a physical address. (Note, however, that for IA-32
processors beginning with the Intel486 processor, the A20M# signal can be used in real-address mode to mask
address line A20, thereby mimicking the 20-bit wrap-around behavior of the 8086 processor.) Care should be take
to ensure that A20M# based address wrapping is handled correctly in multiprocessor based system.
21-2 Vol. 3B

8086 EMULATION
The IA-32 processors beginning with the Intel386 processor can generate 32-bit offsets using an address override
prefix; however, in real-address mode, the value of a 32-bit offset may not exceed FFFFH without causing an
exception.

For full compatibility with Intel 286 real-address mode, pseudo-protection faults (interrupt 12 or 13) occur if a 32-
bit offset is generated outside the range 0 through FFFFH.

21.1.2 Registers Supported in Real-Address Mode
The register set available in real-address mode includes all the registers defined for the 8086 processor plus the
new registers introduced in later IA-32 processors, such as the FS and GS segment registers, the debug registers,
the control registers, and the floating-point unit registers. The 32-bit operand prefix allows a real-address mode
program to use the 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESP, EBP, ESI, and EDI).

21.1.3 Instructions Supported in Real-Address Mode
The following instructions make up the core instruction set for the 8086 processor. If backwards compatibility to
the Intel 286 and Intel 8086 processors is required, only these instructions should be used in a new program
written to run in real-address mode.
• Move (MOV) instructions that move operands between general-purpose registers, segment registers, and

between memory and general-purpose registers.
• The exchange (XCHG) instruction.
• Load segment register instructions LDS and LES.
• Arithmetic instructions ADD, ADC, SUB, SBB, MUL, IMUL, DIV, IDIV, INC, DEC, CMP, and NEG.
• Logical instructions AND, OR, XOR, and NOT.
• Decimal instructions DAA, DAS, AAA, AAS, AAM, and AAD.
• Stack instructions PUSH and POP (to general-purpose registers and segment registers).
• Type conversion instructions CWD, CDQ, CBW, and CWDE.
• Shift and rotate instructions SAL, SHL, SHR, SAR, ROL, ROR, RCL, and RCR.
• TEST instruction.
• Control instructions JMP, Jcc, CALL, RET, LOOP, LOOPE, and LOOPNE.
• Interrupt instructions INT n, INTO, and IRET.
• EFLAGS control instructions STC, CLC, CMC, CLD, STD, LAHF, SAHF, PUSHF, and POPF.
• I/O instructions IN, INS, OUT, and OUTS.
• Load effective address (LEA) instruction, and translate (XLATB) instruction.

Figure 21-1. Real-Address Mode Address Translation

19 0

16-bit Segment Selector

3

0 0 0 0Base

19 0

16-bit Effective Address

15

0 0 0 0Offset

0

20-bit Linear AddressLinear
Address

+

=

4

16

19
Vol. 3B 21-3

8086 EMULATION
• LOCK prefix.
• Repeat prefixes REP, REPE, REPZ, REPNE, and REPNZ.
• Processor halt (HLT) instruction.
• No operation (NOP) instruction.

The following instructions, added to later IA-32 processors (some in the Intel 286 processor and the remainder in
the Intel386 processor), can be executed in real-address mode, if backwards compatibility to the Intel 8086
processor is not required.
• Move (MOV) instructions that operate on the control and debug registers.
• Load segment register instructions LSS, LFS, and LGS.
• Generalized multiply instructions and multiply immediate data.
• Shift and rotate by immediate counts.
• Stack instructions PUSHA, PUSHAD, POPA, POPAD, and PUSH immediate data.
• Move with sign extension instructions MOVSX and MOVZX.
• Long-displacement Jcc instructions.
• Exchange instructions CMPXCHG, CMPXCHG8B, and XADD.
• String instructions MOVS, CMPS, SCAS, LODS, and STOS.
• Bit test and bit scan instructions BT, BTS, BTR, BTC, BSF, and BSR; the byte-set-on condition instruction SETcc;

and the byte swap (BSWAP) instruction.
• Double shift instructions SHLD and SHRD.
• EFLAGS control instructions PUSHF and POPF.
• ENTER and LEAVE control instructions.
• BOUND instruction.
• CPU identification (CPUID) instruction.
• System instructions CLTS, INVD, WINVD, INVLPG, LGDT, SGDT, LIDT, SIDT, LMSW, SMSW, RDMSR, WRMSR,

RDTSC, and RDPMC.

Execution of any of the other IA-32 architecture instructions (not given in the previous two lists) in real-address
mode result in an invalid-opcode exception (#UD) being generated.

21.1.4 Interrupt and Exception Handling
When operating in real-address mode, software must provide interrupt and exception-handling facilities that are
separate from those provided in protected mode. Even during the early stages of processor initialization when the
processor is still in real-address mode, elementary real-address mode interrupt and exception-handling facilities
must be provided to ensure reliable operation of the processor, or the initialization code must ensure that no inter-
rupts or exceptions will occur.

The IA-32 processors handle interrupts and exceptions in real-address mode similar to the way they handle them
in protected mode. When a processor receives an interrupt or generates an exception, it uses the vector number of
the interrupt or exception as an index into the interrupt table. (In protected mode, the interrupt table is called the
interrupt descriptor table (IDT), but in real-address mode, the table is usually called the interrupt vector
table, or simply the interrupt table.) The entry in the interrupt vector table provides a pointer to an interrupt- or
exception-handler procedure. (The pointer consists of a segment selector for a code segment and a 16-bit offset
into the segment.) The processor performs the following actions to make an implicit call to the selected handler:

1. Pushes the current values of the CS and EIP registers onto the stack. (Only the 16 least-significant bits of the
EIP register are pushed.)

2. Pushes the low-order 16 bits of the EFLAGS register onto the stack.

3. Clears the IF flag in the EFLAGS register to disable interrupts.

4. Clears the TF, RF, and AC flags, in the EFLAGS register.
21-4 Vol. 3B

8086 EMULATION
5. Transfers program control to the location specified in the interrupt vector table.

An IRET instruction at the end of the handler procedure reverses these steps to return program control to the inter-
rupted program. Exceptions do not return error codes in real-address mode.

The interrupt vector table is an array of 4-byte entries (see Figure 21-2). Each entry consists of a far pointer to a
handler procedure, made up of a segment selector and an offset. The processor scales the interrupt or exception
vector by 4 to obtain an offset into the interrupt table. Following reset, the base of the interrupt vector table is
located at physical address 0 and its limit is set to 3FFH. In the Intel 8086 processor, the base address and limit of
the interrupt vector table cannot be changed. In the later IA-32 processors, the base address and limit of the inter-
rupt vector table are contained in the IDTR register and can be changed using the LIDT instruction.

(For backward compatibility to Intel 8086 processors, the default base address and limit of the interrupt vector
table should not be changed.)

Table 21-1 shows the interrupt and exception vectors that can be generated in real-address mode and virtual-8086
mode, and in the Intel 8086 processor. See Chapter 6, “Interrupt and Exception Handling‚” for a description of the
exception conditions.

21.2 VIRTUAL-8086 MODE
Virtual-8086 mode is actually a special type of a task that runs in protected mode. When the operating-system or
executive switches to a virtual-8086-mode task, the processor emulates an Intel 8086 processor. The execution
environment of the processor while in the 8086-emulation state is the same as is described in Section 21.1, “Real-
Address Mode,” for real-address mode, including the extensions. The major difference between the two modes is
that in virtual-8086 mode the 8086 emulator uses some protected-mode services (such as the protected-mode
interrupt and exception-handling and paging facilities).

Figure 21-2. Interrupt Vector Table in Real-Address Mode

0

2

4

8

12

015

Segment Selector

Offset

* Interrupt vector number 0 selects entry 0

Interrupt Vector 0*

Entry 1

Entry 2

Entry 3

Up to Entry 255

IDTR(called “interrupt vector 0”) in the interrupt
vector table. Interrupt vector 0 in turn
points to the start of the interrupt handler
for interrupt 0.
Vol. 3B 21-5

8086 EMULATION
As in real-address mode, any new or legacy program that has been assembled and/or compiled to run on an Intel
8086 processor will run in a virtual-8086-mode task. And several 8086 programs can be run as virtual-8086-mode
tasks concurrently with normal protected-mode tasks, using the processor’s multitasking facilities.

21.2.1 Enabling Virtual-8086 Mode
The processor runs in virtual-8086 mode when the VM (virtual machine) flag in the EFLAGS register is set. This flag
can only be set when the processor switches to a new protected-mode task or resumes virtual-8086 mode via an
IRET instruction.

System software cannot change the state of the VM flag directly in the EFLAGS register (for example, by using the
POPFD instruction). Instead it changes the flag in the image of the EFLAGS register stored in the TSS or on the
stack following a call to an interrupt- or exception-handler procedure. For example, software sets the VM flag in the
EFLAGS image in the TSS when first creating a virtual-8086 task.

The processor tests the VM flag under three general conditions:
• When loading segment registers, to determine whether to use 8086-style address translation.
• When decoding instructions, to determine which instructions are not supported in virtual-8086 mode and which

instructions are sensitive to IOPL.

Table 21-1. Real-Address Mode Exceptions and Interrupts

Vector
No.

Description Real-Address Mode Virtual-8086 Mode Intel 8086 Processor

 0 Divide Error (#DE) Yes Yes Yes

 1 Debug Exception (#DB) Yes Yes No

 2 NMI Interrupt Yes Yes Yes

 3 Breakpoint (#BP) Yes Yes Yes

 4 Overflow (#OF) Yes Yes Yes

 5 BOUND Range Exceeded (#BR) Yes Yes Reserved

 6 Invalid Opcode (#UD) Yes Yes Reserved

 7 Device Not Available (#NM) Yes Yes Reserved

 8 Double Fault (#DF) Yes Yes Reserved

 9 (Intel reserved. Do not use.) Reserved Reserved Reserved

10 Invalid TSS (#TS) Reserved Yes Reserved

11 Segment Not Present (#NP) Reserved Yes Reserved

12 Stack Fault (#SS) Yes Yes Reserved

13 General Protection (#GP)* Yes Yes Reserved

14 Page Fault (#PF) Reserved Yes Reserved

15 (Intel reserved. Do not use.) Reserved Reserved Reserved

16 Floating-Point Error (#MF) Yes Yes Reserved

17 Alignment Check (#AC) Reserved Yes Reserved

18 Machine Check (#MC) Yes Yes Reserved

19-31 (Intel reserved. Do not use.) Reserved Reserved Reserved

32-255 User Defined Interrupts Yes Yes Yes

NOTE:
* In the real-address mode, vector 13 is the segment overrun exception. In protected and virtual-8086 modes, this exception cov-

ers all general-protection error conditions, including traps to the virtual-8086 monitor from virtual-8086 mode.
21-6 Vol. 3B

8086 EMULATION
• When checking privileged instructions, on page accesses, or when performing other permission checks.
(Virtual-8086 mode always executes at CPL 3.)

21.2.2 Structure of a Virtual-8086 Task
A virtual-8086-mode task consists of the following items:
• A 32-bit TSS for the task.
• The 8086 program.
• A virtual-8086 monitor.
• 8086 operating-system services.

The TSS of the new task must be a 32-bit TSS, not a 16-bit TSS, because the 16-bit TSS does not load the most-
significant word of the EFLAGS register, which contains the VM flag. All TSS’s, stacks, data, and code used to handle
exceptions when in virtual-8086 mode must also be 32-bit segments.

The processor enters virtual-8086 mode to run the 8086 program and returns to protected mode to run the virtual-
8086 monitor.

The virtual-8086 monitor is a 32-bit protected-mode code module that runs at a CPL of 0. The monitor consists of
initialization, interrupt- and exception-handling, and I/O emulation procedures that emulate a personal computer
or other 8086-based platform. Typically, the monitor is either part of or closely associated with the protected-mode
general-protection (#GP) exception handler, which also runs at a CPL of 0. As with any protected-mode code
module, code-segment descriptors for the virtual-8086 monitor must exist in the GDT or in the task’s LDT. The
virtual-8086 monitor also may need data-segment descriptors so it can examine the IDT or other parts of the 8086
program in the first 1 MByte of the address space. The linear addresses above 10FFEFH are available for the
monitor, the operating system, and other system software.

The 8086 operating-system services consists of a kernel and/or operating-system procedures that the 8086
program makes calls to. These services can be implemented in either of the following two ways:
• They can be included in the 8086 program. This approach is desirable for either of the following reasons:

— The 8086 program code modifies the 8086 operating-system services.

— There is not sufficient development time to merge the 8086 operating-system services into main operating
system or executive.

• They can be implemented or emulated in the virtual-8086 monitor. This approach is desirable for any of the
following reasons:

— The 8086 operating-system procedures can be more easily coordinated among several virtual-8086 tasks.

— Memory can be saved by not duplicating 8086 operating-system procedure code for several virtual-8086
tasks.

— The 8086 operating-system procedures can be easily emulated by calls to the main operating system or
executive.

The approach chosen for implementing the 8086 operating-system services may result in different virtual-8086-
mode tasks using different 8086 operating-system services.

21.2.3 Paging of Virtual-8086 Tasks
Even though a program running in virtual-8086 mode can use only 20-bit linear addresses, the processor converts
these addresses into 32-bit linear addresses before mapping them to the physical address space. If paging is being
used, the 8086 address space for a program running in virtual-8086 mode can be paged and located in a set of
pages in physical address space. If paging is used, it is transparent to the program running in virtual-8086 mode
just as it is for any task running on the processor.

Paging is not necessary for a single virtual-8086-mode task, but paging is useful or necessary in the following situ-
ations:
Vol. 3B 21-7

8086 EMULATION
• When running multiple virtual-8086-mode tasks. Here, paging allows the lower 1 MByte of the linear address
space for each virtual-8086-mode task to be mapped to a different physical address location.

• When emulating the 8086 address-wraparound that occurs at 1 MByte. When using 8086-style address trans-
lation, it is possible to specify addresses larger than 1 MByte. These addresses automatically wraparound in the
Intel 8086 processor (see Section 21.1.1, “Address Translation in Real-Address Mode”). If any 8086 programs
depend on address wraparound, the same effect can be achieved in a virtual-8086-mode task by mapping the
linear addresses between 100000H and 110000H and linear addresses between 0 and 10000H to the same
physical addresses.

• When sharing the 8086 operating-system services or ROM code that is common to several 8086 programs
running as different 8086-mode tasks.

• When redirecting or trapping references to memory-mapped I/O devices.

21.2.4 Protection within a Virtual-8086 Task
Protection is not enforced between the segments of an 8086 program. Either of the following techniques can be
used to protect the system software running in a virtual-8086-mode task from the 8086 program:
• Reserve the first 1 MByte plus 64 KBytes of each task’s linear address space for the 8086 program. An 8086

processor task cannot generate addresses outside this range.
• Use the U/S flag of page-table entries to protect the virtual-8086 monitor and other system software in the

virtual-8086 mode task space. When the processor is in virtual-8086 mode, the CPL is 3. Therefore, an 8086
processor program has only user privileges. If the pages of the virtual-8086 monitor have supervisor privilege,
they cannot be accessed by the 8086 program.

21.2.5 Entering Virtual-8086 Mode
Figure 21-3 summarizes the methods of entering and leaving virtual-8086 mode. The processor switches to
virtual-8086 mode in either of the following situations:
• Task switch when the VM flag is set to 1 in the EFLAGS register image stored in the TSS for the task. Here the

task switch can be initiated in either of two ways:

— A CALL or JMP instruction.

— An IRET instruction, where the NT flag in the EFLAGS image is set to 1.
• Return from a protected-mode interrupt or exception handler when the VM flag is set to 1 in the EFLAGS

register image on the stack.

When a task switch is used to enter virtual-8086 mode, the TSS for the virtual-8086-mode task must be a 32-bit
TSS. (If the new TSS is a 16-bit TSS, the upper word of the EFLAGS register is not in the TSS, causing the processor
to clear the VM flag when it loads the EFLAGS register.) The processor updates the VM flag prior to loading the
segment registers from their images in the new TSS. The new setting of the VM flag determines whether the
processor interprets the contents of the segment registers as 8086-style segment selectors or protected-mode
segment selectors. When the VM flag is set, the segment registers are loaded from the TSS, using 8086-style
address translation to form base addresses.

See Section 21.3, “Interrupt and Exception Handling in Virtual-8086 Mode,” for information on entering virtual-
8086 mode on a return from an interrupt or exception handler.
21-8 Vol. 3B

8086 EMULATION
21.2.6 Leaving Virtual-8086 Mode
The processor can leave the virtual-8086 mode only through an interrupt or exception. The following are situations
where an interrupt or exception will lead to the processor leaving virtual-8086 mode (see Figure 21-3):
• The processor services a hardware interrupt generated to signal the suspension of execution of the virtual-

8086 application. This hardware interrupt may be generated by a timer or other external mechanism. Upon
receiving the hardware interrupt, the processor enters protected mode and switches to a protected-mode (or
another virtual-8086 mode) task either through a task gate in the protected-mode IDT or through a trap or
interrupt gate that points to a handler that initiates a task switch. A task switch from a virtual-8086 task to
another task loads the EFLAGS register from the TSS of the new task. The value of the VM flag in the new
EFLAGS determines if the new task executes in virtual-8086 mode or not.

• The processor services an exception caused by code executing the virtual-8086 task or services a hardware
interrupt that “belongs to” the virtual-8086 task. Here, the processor enters protected mode and services the

Figure 21-3. Entering and Leaving Virtual-8086 Mode

Monitor
Virtual-8086

Real Mode
Code

Protected-
Mode Tasks

Virtual-8086
Mode Tasks

(8086
Programs)

Protected-
Mode Interrupt
and Exception

Handlers

Task Switch1

VM = 1

Protected
Mode

Virtual-8086
Mode

Real-Address
Mode

RESET

PE=1
PE=0 or
RESET

#GP Exception3

CALL

RET

Task Switch
VM=0

Redirect Interrupt to 8086 Program
Interrupt or Exception Handler6

IRET4

Interrupt or
Exception2

VM = 0

NOTES:

- CALL or JMP where the VM flag in the EFLAGS image is 1.
- IRET where VM is 1 and NT is 1.

4. Normal return from protected-mode interrupt or exception handler.

3. General-protection exception caused by software interrupt (INT n), IRET,
POPF, PUSHF, IN, or OUT when IOPL is less than 3.

2. Hardware interrupt or exception; software interrupt (INT n) when IOPL is 3.

5. A return from the 8086 monitor to redirect an interrupt or exception back
 to an interrupt or exception handler in the 8086 program running in virtual-

6. Internal redirection of a software interrupt (INT n) when VME is 1,
IOPL is <3, and the redirection bit is 1.

IRET5

8086 mode.

1. Task switch carried out in either of two ways:
Vol. 3B 21-9

8086 EMULATION
exception or hardware interrupt through the protected-mode IDT (normally through an interrupt or trap gate)
and the protected-mode exception- and interrupt-handlers. The processor may handle the exception or
interrupt within the context of the virtual 8086 task and return to virtual-8086 mode on a return from the
handler procedure. The processor may also execute a task switch and handle the exception or interrupt in the
context of another task.

• The processor services a software interrupt generated by code executing in the virtual-8086 task (such as a
software interrupt to call a MS-DOS* operating system routine). The processor provides several methods of
handling these software interrupts, which are discussed in detail in Section 21.3.3, “Class 3—Software
Interrupt Handling in Virtual-8086 Mode.” Most of them involve the processor entering protected mode, often
by means of a general-protection (#GP) exception. In protected mode, the processor can send the interrupt to
the virtual-8086 monitor for handling and/or redirect the interrupt back to the application program running in
virtual-8086 mode task for handling.
IA-32 processors that incorporate the virtual mode extension (enabled with the VME flag in control register
CR4) are capable of redirecting software-generated interrupts back to the program’s interrupt handlers without
leaving virtual-8086 mode. See Section 21.3.3.4, “Method 5: Software Interrupt Handling,” for more
information on this mechanism.

• A hardware reset initiated by asserting the RESET or INIT pin is a special kind of interrupt. When a RESET or
INIT is signaled while the processor is in virtual-8086 mode, the processor leaves virtual-8086 mode and enters
real-address mode.

• Execution of the HLT instruction in virtual-8086 mode will cause a general-protection (GP#) fault, which the
protected-mode handler generally sends to the virtual-8086 monitor. The virtual-8086 monitor then
determines the correct execution sequence after verifying that it was entered as a result of a HLT execution.

See Section 21.3, “Interrupt and Exception Handling in Virtual-8086 Mode,” for information on leaving virtual-8086
mode to handle an interrupt or exception generated in virtual-8086 mode.

21.2.7 Sensitive Instructions
When an IA-32 processor is running in virtual-8086 mode, the CLI, STI, PUSHF, POPF, INT n, and IRET instructions
are sensitive to IOPL. The IN, INS, OUT, and OUTS instructions, which are sensitive to IOPL in protected mode, are
not sensitive in virtual-8086 mode.

The CPL is always 3 while running in virtual-8086 mode; if the IOPL is less than 3, an attempt to use the IOPL-sensi-
tive instructions listed above triggers a general-protection exception (#GP). These instructions are sensitive to
IOPL to give the virtual-8086 monitor a chance to emulate the facilities they affect.

21.2.8 Virtual-8086 Mode I/O
Many 8086 programs written for non-multitasking systems directly access I/O ports. This practice may cause prob-
lems in a multitasking environment. If more than one program accesses the same port, they may interfere with
each other. Most multitasking systems require application programs to access I/O ports through the operating
system. This results in simplified, centralized control.

The processor provides I/O protection for creating I/O that is compatible with the environment and transparent to
8086 programs. Designers may take any of several possible approaches to protecting I/O ports:
• Protect the I/O address space and generate exceptions for all attempts to perform I/O directly.
• Let the 8086 program perform I/O directly.
• Generate exceptions on attempts to access specific I/O ports.
• Generate exceptions on attempts to access specific memory-mapped I/O ports.

The method of controlling access to I/O ports depends upon whether they are I/O-port mapped or memory
mapped.
21-10 Vol. 3B

8086 EMULATION
21.2.8.1 I/O-Port-Mapped I/O
The I/O permission bit map in the TSS can be used to generate exceptions on attempts to access specific I/O port
addresses. The I/O permission bit map of each virtual-8086-mode task determines which I/O addresses generate
exceptions for that task. Because each task may have a different I/O permission bit map, the addresses that
generate exceptions for one task may be different from the addresses for another task. This differs from protected
mode in which, if the CPL is less than or equal to the IOPL, I/O access is allowed without checking the I/O permis-
sion bit map. See Chapter 19, “Input/Output,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for more information about the I/O permission bit map.

21.2.8.2 Memory-Mapped I/O
In systems which use memory-mapped I/O, the paging facilities of the processor can be used to generate excep-
tions for attempts to access I/O ports. The virtual-8086 monitor may use paging to control memory-mapped I/O in
these ways:
• Map part of the linear address space of each task that needs to perform I/O to the physical address space

where I/O ports are placed. By putting the I/O ports at different addresses (in different pages), the paging
mechanism can enforce isolation between tasks.

• Map part of the linear address space to pages that are not-present. This generates an exception whenever a
task attempts to perform I/O to those pages. System software then can interpret the I/O operation being
attempted.

Software emulation of the I/O space may require too much operating system intervention under some conditions.
In these cases, it may be possible to generate an exception for only the first attempt to access I/O. The system
software then may determine whether a program can be given exclusive control of I/O temporarily, the protection
of the I/O space may be lifted, and the program allowed to run at full speed.

21.2.8.3 Special I/O Buffers
Buffers of intelligent controllers (for example, a bit-mapped frame buffer) also can be emulated using page
mapping. The linear space for the buffer can be mapped to a different physical space for each virtual-8086-mode
task. The virtual-8086 monitor then can control which virtual buffer to copy onto the real buffer in the physical
address space.

21.3 INTERRUPT AND EXCEPTION HANDLING IN VIRTUAL-8086 MODE
When the processor receives an interrupt or detects an exception condition while in virtual-8086 mode, it invokes
an interrupt or exception handler, just as it does in protected or real-address mode. The interrupt or exception
handler that is invoked and the mechanism used to invoke it depends on the class of interrupt or exception that has
been detected or generated and the state of various system flags and fields.

In virtual-8086 mode, the interrupts and exceptions are divided into three classes for the purposes of handling:
• Class 1 — All processor-generated exceptions and all hardware interrupts, including the NMI interrupt and the

hardware interrupts sent to the processor’s external interrupt delivery pins. All class 1 exceptions and
interrupts are handled by the protected-mode exception and interrupt handlers.

• Class 2 — Special case for maskable hardware interrupts (Section 6.3.2, “Maskable Hardware Interrupts”)
when the virtual mode extensions are enabled.

• Class 3 — All software-generated interrupts, that is interrupts generated with the INT n instruction1.

The method the processor uses to handle class 2 and 3 interrupts depends on the setting of the following flags and
fields:
• IOPL field (bits 12 and 13 in the EFLAGS register) — Controls how class 3 software interrupts are handled

when the processor is in virtual-8086 mode (see Section 2.3, “System Flags and Fields in the EFLAGS

1. The INT 3 instruction is a special case (see the description of the INT n instruction in Chapter 3, “Instruction Set Reference, A-L,” of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A).
Vol. 3B 21-11

8086 EMULATION
Register”). This field also controls the enabling of the VIF and VIP flags in the EFLAGS register when the VME
flag is set. The VIF and VIP flags are provided to assist in the handling of class 2 maskable hardware interrupts.

• VME flag (bit 0 in control register CR4) — Enables the virtual mode extension for the processor when set
(see Section 2.5, “Control Registers”).

• Software interrupt redirection bit map (32 bytes in the TSS, see Figure 21-5) — Contains 256 flags
that indicates how class 3 software interrupts should be handled when they occur in virtual-8086 mode. A
software interrupt can be directed either to the interrupt and exception handlers in the currently running 8086
program or to the protected-mode interrupt and exception handlers.

• The virtual interrupt flag (VIF) and virtual interrupt pending flag (VIP) in the EFLAGS register —
Provides virtual interrupt support for the handling of class 2 maskable hardware interrupts (see Section
21.3.2, “Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt
Mechanism”).

NOTE
The VME flag, software interrupt redirection bit map, and VIF and VIP flags are only available in
IA-32 processors that support the virtual mode extensions. These extensions were introduced in
the IA-32 architecture with the Pentium processor.

The following sections describe the actions that processor takes and the possible actions of interrupt and exception
handlers for the two classes of interrupts described in the previous paragraphs. These sections describe three
possible types of interrupt and exception handlers:
• Protected-mode interrupt and exceptions handlers — These are the standard handlers that the processor

calls through the protected-mode IDT.
• Virtual-8086 monitor interrupt and exception handlers — These handlers are resident in the virtual-8086

monitor, and they are commonly accessed through a general-protection exception (#GP, interrupt 13) that is
directed to the protected-mode general-protection exception handler.

• 8086 program interrupt and exception handlers — These handlers are part of the 8086 program that is
running in virtual-8086 mode.

The following sections describe how these handlers are used, depending on the selected class and method of inter-
rupt and exception handling.

21.3.1 Class 1—Hardware Interrupt and Exception Handling in Virtual-8086 Mode
In virtual-8086 mode, the Pentium, P6 family, Pentium 4, and Intel Xeon processors handle hardware interrupts
and exceptions in the same manner as they are handled by the Intel486 and Intel386 processors. They invoke the
protected-mode interrupt or exception handler that the interrupt or exception vector points to in the IDT. Here, the
IDT entry must contain either a 32-bit trap or interrupt gate or a task gate. The following sections describe various
ways that a virtual-8086 mode interrupt or exception can be handled after the protected-mode handler has been
invoked.

See Section 21.3.2, “Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual Inter-
rupt Mechanism,” for a description of the virtual interrupt mechanism that is available for handling maskable hard-
ware interrupts while in virtual-8086 mode. When this mechanism is either not available or not enabled, maskable
hardware interrupts are handled in the same manner as exceptions, as described in the following sections.

21.3.1.1 Handling an Interrupt or Exception Through a Protected-Mode Trap or Interrupt Gate
When an interrupt or exception vector points to a 32-bit trap or interrupt gate in the IDT, the gate must in turn point
to a nonconforming, privilege-level 0, code segment. When accessing this code segment, processor performs the
following steps.

1. Switches to 32-bit protected mode and privilege level 0.

2. Saves the state of the processor on the privilege-level 0 stack. The states of the EIP, CS, EFLAGS, ESP, SS, ES,
DS, FS, and GS registers are saved (see Figure 21-4).
21-12 Vol. 3B

8086 EMULATION
3. Clears the segment registers. Saving the DS, ES, FS, and GS registers on the stack and then clearing the
registers lets the interrupt or exception handler safely save and restore these registers regardless of the type
segment selectors they contain (protected-mode or 8086-style). The interrupt and exception handlers, which
may be called in the context of either a protected-mode task or a virtual-8086-mode task, can use the same
code sequences for saving and restoring the registers for any task. Clearing these registers before execution of
the IRET instruction does not cause a trap in the interrupt handler. Interrupt procedures that expect values in
the segment registers or that return values in the segment registers must use the register images saved on the
stack for privilege level 0.

4. Clears VM, NT, RF, and TF flags (in the EFLAGS register). If the gate is an interrupt gate, clears the IF flag.

5. Begins executing the selected interrupt or exception handler.

If the trap or interrupt gate references a procedure in a conforming segment or in a segment at a privilege level
other than 0, the processor generates a general-protection exception (#GP). Here, the error code is the segment
selector of the code segment to which a call was attempted.

Interrupt and exception handlers can examine the VM flag on the stack to determine if the interrupted procedure
was running in virtual-8086 mode. If so, the interrupt or exception can be handled in one of three ways:
• The protected-mode interrupt or exception handler that was called can handle the interrupt or exception.
• The protected-mode interrupt or exception handler can call the virtual-8086 monitor to handle the interrupt or

exception.
• The virtual-8086 monitor (if called) can in turn pass control back to the 8086 program’s interrupt and exception

handler.

If the interrupt or exception is handled with a protected-mode handler, the handler can return to the interrupted
program in virtual-8086 mode by executing an IRET instruction. This instruction loads the EFLAGS and segment
registers from the images saved in the privilege level 0 stack (see Figure 21-4). A set VM flag in the EFLAGS image
causes the processor to switch back to virtual-8086 mode. The CPL at the time the IRET instruction is executed
must be 0, otherwise the processor does not change the state of the VM flag.

The virtual-8086 monitor runs at privilege level 0, like the protected-mode interrupt and exception handlers. It is
commonly closely tied to the protected-mode general-protection exception (#GP, vector 13) handler. If the

Figure 21-4. Privilege Level 0 Stack After Interrupt or Exception in Virtual-8086 Mode

Unused

Old GS

Old ESP

With Error Code

ESP from

Old FS

Old DS

Old ES

Old SS

Old EFLAGS

Old CS

Old EIP

Error Code New ESP

TSSUnused

Old GS

Old ESP

Without Error Code

ESP from

Old FS

Old DS

Old ES

Old SS

Old EFLAGS

Old CS

Old EIP New ESP

TSS
Vol. 3B 21-13

8086 EMULATION
protected-mode interrupt or exception handler calls the virtual-8086 monitor to handle the interrupt or exception,
the return from the virtual-8086 monitor to the interrupted virtual-8086 mode program requires two return
instructions: a RET instruction to return to the protected-mode handler and an IRET instruction to return to the
interrupted program.

The virtual-8086 monitor has the option of directing the interrupt and exception back to an interrupt or exception
handler that is part of the interrupted 8086 program, as described in Section 21.3.1.2, “Handling an Interrupt or
Exception With an 8086 Program Interrupt or Exception Handler.”

21.3.1.2 Handling an Interrupt or Exception With an 8086 Program Interrupt or Exception Handler
Because it was designed to run on an 8086 processor, an 8086 program running in a virtual-8086-mode task
contains an 8086-style interrupt vector table, which starts at linear address 0. If the virtual-8086 monitor correctly
directs an interrupt or exception vector back to the virtual-8086-mode task it came from, the handlers in the 8086
program can handle the interrupt or exception. The virtual-8086 monitor must carry out the following steps to send
an interrupt or exception back to the 8086 program:

1. Use the 8086 interrupt vector to locate the appropriate handler procedure in the 8086 program interrupt table.

2. Store the EFLAGS (low-order 16 bits only), CS and EIP values of the 8086 program on the privilege-level 3
stack. This is the stack that the virtual-8086-mode task is using. (The 8086 handler may use or modify this
information.)

3. Change the return link on the privilege-level 0 stack to point to the privilege-level 3 handler procedure.

4. Execute an IRET instruction to pass control to the 8086 program handler.

5. When the IRET instruction from the privilege-level 3 handler triggers a general-protection exception (#GP) and
thus effectively again calls the virtual-8086 monitor, restore the return link on the privilege-level 0 stack to
point to the original, interrupted, privilege-level 3 procedure.

6. Copy the low order 16 bits of the EFLAGS image from the privilege-level 3 stack to the privilege-level 0 stack
(because some 8086 handlers modify these flags to return information to the code that caused the interrupt).

7. Execute an IRET instruction to pass control back to the interrupted 8086 program.

Note that if an operating system intends to support all 8086 MS-DOS-based programs, it is necessary to use the
actual 8086 interrupt and exception handlers supplied with the program. The reason for this is that some programs
modify their own interrupt vector table to substitute (or hook in series) their own specialized interrupt and excep-
tion handlers.

21.3.1.3 Handling an Interrupt or Exception Through a Task Gate
When an interrupt or exception vector points to a task gate in the IDT, the processor performs a task switch to the
selected interrupt- or exception-handling task. The following actions are carried out as part of this task switch:

1. The EFLAGS register with the VM flag set is saved in the current TSS.

2. The link field in the TSS of the called task is loaded with the segment selector of the TSS for the interrupted
virtual-8086-mode task.

3. The EFLAGS register is loaded from the image in the new TSS, which clears the VM flag and causes the
processor to switch to protected mode.

4. The NT flag in the EFLAGS register is set.

5. The processor begins executing the selected interrupt- or exception-handler task.

When an IRET instruction is executed in the handler task and the NT flag in the EFLAGS register is set, the proces-
sors switches from a protected-mode interrupt- or exception-handler task back to a virtual-8086-mode task. Here,
the EFLAGS and segment registers are loaded from images saved in the TSS for the virtual-8086-mode task. If the
VM flag is set in the EFLAGS image, the processor switches back to virtual-8086 mode on the task switch. The CPL
at the time the IRET instruction is executed must be 0, otherwise the processor does not change the state of the
VM flag.
21-14 Vol. 3B

8086 EMULATION
21.3.2 Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the
Virtual Interrupt Mechanism

Maskable hardware interrupts are those interrupts that are delivered through the INTR# pin or through an inter-
rupt request to the local APIC (see Section 6.3.2, “Maskable Hardware Interrupts”). These interrupts can be inhib-
ited (masked) from interrupting an executing program or task by clearing the IF flag in the EFLAGS register.

When the VME flag in control register CR4 is set and the IOPL field in the EFLAGS register is less than 3, two addi-
tional flags are activated in the EFLAGS register:
• VIF (virtual interrupt) flag, bit 19 of the EFLAGS register.
• VIP (virtual interrupt pending) flag, bit 20 of the EFLAGS register.

These flags provide the virtual-8086 monitor with more efficient control over handling maskable hardware inter-
rupts that occur during virtual-8086 mode tasks. They also reduce interrupt-handling overhead, by eliminating the
need for all IF related operations (such as PUSHF, POPF, CLI, and STI instructions) to trap to the virtual-8086
monitor. The purpose and use of these flags are as follows.

NOTE
The VIF and VIP flags are only available in IA-32 processors that support the virtual mode
extensions. These extensions were introduced in the IA-32 architecture with the Pentium
processor. When this mechanism is either not available or not enabled, maskable hardware
interrupts are handled as class 1 interrupts. Here, if VIF and VIP flags are needed, the virtual-8086
monitor can implement them in software.

Existing 8086 programs commonly set and clear the IF flag in the EFLAGS register to enable and disable maskable
hardware interrupts, respectively; for example, to disable interrupts while handling another interrupt or an excep-
tion. This practice works well in single task environments, but can cause problems in multitasking and multiple-
processor environments, where it is often desirable to prevent an application program from having direct control
over the handling of hardware interrupts. When using earlier IA-32 processors, this problem was often solved by
creating a virtual IF flag in software. The IA-32 processors (beginning with the Pentium processor) provide hard-
ware support for this virtual IF flag through the VIF and VIP flags.

The VIF flag is a virtualized version of the IF flag, which an application program running from within a virtual-8086
task can used to control the handling of maskable hardware interrupts. When the VIF flag is enabled, the CLI and
STI instructions operate on the VIF flag instead of the IF flag. When an 8086 program executes the CLI instruction,
the processor clears the VIF flag to request that the virtual-8086 monitor inhibit maskable hardware interrupts
from interrupting program execution; when it executes the STI instruction, the processor sets the VIF flag
requesting that the virtual-8086 monitor enable maskable hardware interrupts for the 8086 program. But actually
the IF flag, managed by the operating system, always controls whether maskable hardware interrupts are enabled.
Also, if under these circumstances an 8086 program tries to read or change the IF flag using the PUSHF or POPF
instructions, the processor will change the VIF flag instead, leaving IF unchanged.

The VIP flag provides software a means of recording the existence of a deferred (or pending) maskable hardware
interrupt. This flag is read by the processor but never explicitly written by the processor; it can only be written by
software.

If the IF flag is set and the VIF and VIP flags are enabled, and the processor receives a maskable hardware inter-
rupt (interrupt vector 0 through 255), the processor performs and the interrupt handler software should perform
the following operations:

1. The processor invokes the protected-mode interrupt handler for the interrupt received, as described in the
following steps. These steps are almost identical to those described for method 1 interrupt and exception
handling in Section 21.3.1.1, “Handling an Interrupt or Exception Through a Protected-Mode Trap or Interrupt
Gate”:

a. Switches to 32-bit protected mode and privilege level 0.

b. Saves the state of the processor on the privilege-level 0 stack. The states of the EIP, CS, EFLAGS, ESP, SS,
ES, DS, FS, and GS registers are saved (see Figure 21-4).

c. Clears the segment registers.
Vol. 3B 21-15

8086 EMULATION
d. Clears the VM flag in the EFLAGS register.

e. Begins executing the selected protected-mode interrupt handler.

2. The recommended action of the protected-mode interrupt handler is to read the VM flag from the EFLAGS
image on the stack. If this flag is set, the handler makes a call to the virtual-8086 monitor.

3. The virtual-8086 monitor should read the VIF flag in the EFLAGS register.

— If the VIF flag is clear, the virtual-8086 monitor sets the VIP flag in the EFLAGS image on the stack to
indicate that there is a deferred interrupt pending and returns to the protected-mode handler.

— If the VIF flag is set, the virtual-8086 monitor can handle the interrupt if it “belongs” to the 8086 program
running in the interrupted virtual-8086 task; otherwise, it can call the protected-mode interrupt handler to
handle the interrupt.

4. The protected-mode handler executes a return to the program executing in virtual-8086 mode.

5. Upon returning to virtual-8086 mode, the processor continues execution of the 8086 program.

When the 8086 program is ready to receive maskable hardware interrupts, it executes the STI instruction to set the
VIF flag (enabling maskable hardware interrupts). Prior to setting the VIF flag, the processor automatically checks
the VIP flag and does one of the following, depending on the state of the flag:
• If the VIP flag is clear (indicating no pending interrupts), the processor sets the VIF flag.
• If the VIP flag is set (indicating a pending interrupt), the processor generates a general-protection exception

(#GP).

The recommended action of the protected-mode general-protection exception handler is to then call the virtual-
8086 monitor and let it handle the pending interrupt. After handling the pending interrupt, the typical action of the
virtual-8086 monitor is to clear the VIP flag and set the VIF flag in the EFLAGS image on the stack, and then
execute a return to the virtual-8086 mode. The next time the processor receives a maskable hardware interrupt, it
will then handle it as described in steps 1 through 5 earlier in this section.

If the processor finds that both the VIF and VIP flags are set at the beginning of an instruction, it generates a
general-protection exception. This action allows the virtual-8086 monitor to handle the pending interrupt for the
virtual-8086 mode task for which the VIF flag is enabled. Note that this situation can only occur immediately
following execution of a POPF or IRET instruction or upon entering a virtual-8086 mode task through a task switch.

Note that the states of the VIF and VIP flags are not modified in real-address mode or during transitions between
real-address and protected modes.

NOTE
The virtual interrupt mechanism described in this section is also available for use in protected
mode, see Section 21.4, “Protected-Mode Virtual Interrupts.”

21.3.3 Class 3—Software Interrupt Handling in Virtual-8086 Mode
When the processor receives a software interrupt (an interrupt generated with the INT n instruction) while in
virtual-8086 mode, it can use any of six different methods to handle the interrupt. The method selected depends
on the settings of the VME flag in control register CR4, the IOPL field in the EFLAGS register, and the software inter-
rupt redirection bit map in the TSS. Table 21-2 lists the six methods of handling software interrupts in virtual-8086
mode and the respective settings of the VME flag, IOPL field, and the bits in the interrupt redirection bit map for
each method. The table also summarizes the various actions the processor takes for each method.

The VME flag enables the virtual mode extensions for the Pentium and later IA-32 processors. When this flag is
clear, the processor responds to interrupts and exceptions in virtual-8086 mode in the same manner as an Intel386
or Intel486 processor does. When this flag is set, the virtual mode extension provides the following enhancements
to virtual-8086 mode:
• Speeds up the handling of software-generated interrupts in virtual-8086 mode by allowing the processor to

bypass the virtual-8086 monitor and redirect software interrupts back to the interrupt handlers that are part of
the currently running 8086 program.

• Supports virtual interrupts for software written to run on the 8086 processor.
21-16 Vol. 3B

8086 EMULATION
The IOPL value interacts with the VME flag and the bits in the interrupt redirection bit map to determine how
specific software interrupts should be handled.

The software interrupt redirection bit map (see Figure 21-5) is a 32-byte field in the TSS. This map is located
directly below the I/O permission bit map in the TSS. Each bit in the interrupt redirection bit map is mapped to an
interrupt vector. Bit 0 in the interrupt redirection bit map (which maps to vector zero in the interrupt table) is
located at the I/O base map address in the TSS minus 32 bytes. When a bit in this bit map is set, it indicates that
the associated software interrupt (interrupt generated with an INT n instruction) should be handled through the
protected-mode IDT and interrupt and exception handlers. When a bit in this bit map is clear, the processor redi-
rects the associated software interrupt back to the interrupt table in the 8086 program (located at linear address 0
in the program’s address space).

NOTE
The software interrupt redirection bit map does not affect hardware generated interrupts and
exceptions. Hardware generated interrupts and exceptions are always handled by the protected-
mode interrupt and exception handlers.

Table 21-2. Software Interrupt Handling Methods While in Virtual-8086 Mode

Method VME IOPL

Bit in
Redir.

Bitmap* Processor Action

1 0 3 X Interrupt directed to a protected-mode interrupt handler:

• Switches to privilege-level 0 stack.
• Pushes GS, FS, DS, and ES onto privilege-level 0 stack.
• Pushes SS, ESP, EFLAGS, CS, and EIP of interrupted task onto privilege-level 0 stack.
• Clears VM, RF, NT, and TF flags.
• If serviced through interrupt gate, clears IF flag.
• Clears GS, FS, DS, and ES to 0.
• Sets CS and EIP from interrupt gate.

2 0 < 3 X Interrupt directed to protected-mode general-protection exception (#GP) handler.

3 1 < 3 1 Interrupt directed to a protected-mode general-protection exception (#GP) handler; VIF and VIP
flag support for handling class 2 maskable hardware interrupts.

4 1 3 1 Interrupt directed to protected-mode interrupt handler: (see method 1 processor action).

5 1 3 0 Interrupt redirected to 8086 program interrupt handler:

• Pushes EFLAGS.
• Pushes CS and EIP (lower 16 bits only).
• Clears IF flag.
• Clears TF flag.
• Loads CS and EIP (lower 16 bits only) from selected entry in the interrupt vector table of the

current virtual-8086 task.

6 1 < 3 0 Interrupt redirected to 8086 program interrupt handler; VIF and VIP flag support for handling class
2 maskable hardware interrupts:

• Pushes EFLAGS with IOPL set to 3 and VIF copied to IF.
• Pushes CS and EIP (lower 16 bits only).
• Clears the VIF flag.
• Clears TF flag.
• Loads CS and EIP (lower 16 bits only) from selected entry in the interrupt vector table of the

current virtual-8086 task.

NOTE:
* When set to 0, software interrupt is redirected back to the 8086 program interrupt handler; when set to 1, interrupt is directed to

protected-mode handler.
Vol. 3B 21-17

8086 EMULATION
Redirecting software interrupts back to the 8086 program potentially speeds up interrupt handling because a
switch back and forth between virtual-8086 mode and protected mode is not required. This latter interrupt-
handling technique is particularly useful for 8086 operating systems (such as MS-DOS) that use the INT n instruc-
tion to call operating system procedures.

The CPUID instruction can be used to verify that the virtual mode extension is implemented on the processor. Bit 1
of the feature flags register (EDX) indicates the availability of the virtual mode extension (see “CPUID—CPU Iden-
tification” in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A).

The following sections describe the six methods (or mechanisms) for handling software interrupts in virtual-8086
mode. See Section 21.3.2, “Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual
Interrupt Mechanism,” for a description of the use of the VIF and VIP flags in the EFLAGS register for handling
maskable hardware interrupts.

21.3.3.1 Method 1: Software Interrupt Handling
When the VME flag in control register CR4 is clear and the IOPL field is 3, a Pentium or later IA-32 processor
handles software interrupts in the same manner as they are handled by an Intel386 or Intel486 processor. It
executes an implicit call to the interrupt handler in the protected-mode IDT pointed to by the interrupt vector. See
Section 21.3.1, “Class 1—Hardware Interrupt and Exception Handling in Virtual-8086 Mode,” for a complete
description of this mechanism and its possible uses.

21.3.3.2 Methods 2 and 3: Software Interrupt Handling
When a software interrupt occurs in virtual-8086 mode and the method 2 or 3 conditions are present, the processor
generates a general-protection exception (#GP). Method 2 is enabled when the VME flag is set to 0 and the IOPL
value is less than 3. Here the IOPL value is used to bypass the protected-mode interrupt handlers and cause any
software interrupt that occurs in virtual-8086 mode to be treated as a protected-mode general-protection excep-
tion (#GP). The general-protection exception handler calls the virtual-8086 monitor, which can then emulate an
8086-program interrupt handler or pass control back to the 8086 program’s handler, as described in Section
21.3.1.2, “Handling an Interrupt or Exception With an 8086 Program Interrupt or Exception Handler.”

Method 3 is enabled when the VME flag is set to 1, the IOPL value is less than 3, and the corresponding bit for the
software interrupt in the software interrupt redirection bit map is set to 1. Here, the processor performs the same

Figure 21-5. Software Interrupt Redirection Bit Map in TSS

I/O Map Base

Task-State Segment (TSS)

64H

31 24 23 0
1 1111111

I/O Permission Bit Map

0

I/O map
base must
not exceed
DFFFH.

Last byte of
bit

map must be

Software Interrupt Redirection Bit Map (32 Bytes)
21-18 Vol. 3B

8086 EMULATION
operation as it does for method 2 software interrupt handling. If the corresponding bit for the software interrupt in
the software interrupt redirection bit map is set to 0, the interrupt is handled using method 6 (see Section 21.3.3.5,
“Method 6: Software Interrupt Handling”).

21.3.3.3 Method 4: Software Interrupt Handling
Method 4 handling is enabled when the VME flag is set to 1, the IOPL value is 3, and the bit for the interrupt vector
in the redirection bit map is set to 1. Method 4 software interrupt handling allows method 1 style handling when the
virtual mode extension is enabled; that is, the interrupt is directed to a protected-mode handler (see Section
21.3.3.1, “Method 1: Software Interrupt Handling”).

21.3.3.4 Method 5: Software Interrupt Handling
Method 5 software interrupt handling provides a streamlined method of redirecting software interrupts (invoked
with the INT n instruction) that occur in virtual 8086 mode back to the 8086 program’s interrupt vector table and
its interrupt handlers. Method 5 handling is enabled when the VME flag is set to 1, the IOPL value is 3, and the bit
for the interrupt vector in the redirection bit map is set to 0. The processor performs the following actions to make
an implicit call to the selected 8086 program interrupt handler:

1. Pushes the low-order 16 bits of the EFLAGS register onto the stack.

2. Pushes the current values of the CS and EIP registers onto the current stack. (Only the 16 least-significant bits
of the EIP register are pushed and no stack switch occurs.)

3. Clears the IF flag in the EFLAGS register to disable interrupts.

4. Clears the TF flag, in the EFLAGS register.

5. Locates the 8086 program interrupt vector table at linear address 0 for the 8086-mode task.

6. Loads the CS and EIP registers with values from the interrupt vector table entry pointed to by the interrupt
vector number. Only the 16 low-order bits of the EIP are loaded and the 16 high-order bits are set to 0. The
interrupt vector table is assumed to be at linear address 0 of the current virtual-8086 task.

7. Begins executing the selected interrupt handler.

An IRET instruction at the end of the handler procedure reverses these steps to return program control to the inter-
rupted 8086 program.

Note that with method 5 handling, a mode switch from virtual-8086 mode to protected mode does not occur. The
processor remains in virtual-8086 mode throughout the interrupt-handling operation.

The method 5 handling actions are virtually identical to the actions the processor takes when handling software
interrupts in real-address mode. The benefit of using method 5 handling to access the 8086 program handlers is
that it avoids the overhead of methods 2 and 3 handling, which requires first going to the virtual-8086 monitor,
then to the 8086 program handler, then back again to the virtual-8086 monitor, before returning to the interrupted
8086 program (see Section 21.3.1.2, “Handling an Interrupt or Exception With an 8086 Program Interrupt or
Exception Handler”).

NOTE
Methods 1 and 4 handling can handle a software interrupt in a virtual-8086 task with a regular
protected-mode handler, but this approach requires all virtual-8086 tasks to use the same software
interrupt handlers, which generally does not give sufficient latitude to the programs running in the
virtual-8086 tasks, particularly MS-DOS programs.

21.3.3.5 Method 6: Software Interrupt Handling
Method 6 handling is enabled when the VME flag is set to 1, the IOPL value is less than 3, and the bit for the inter-
rupt or exception vector in the redirection bit map is set to 0. With method 6 interrupt handling, software interrupts
are handled in the same manner as was described for method 5 handling (see Section 21.3.3.4, “Method 5: Soft-
ware Interrupt Handling”).
Vol. 3B 21-19

8086 EMULATION
Method 6 differs from method 5 in that with the IOPL value set to less than 3, the VIF and VIP flags in the EFLAGS
register are enabled, providing virtual interrupt support for handling class 2 maskable hardware interrupts (see
Section 21.3.2, “Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt
Mechanism”). These flags provide the virtual-8086 monitor with an efficient means of handling maskable hardware
interrupts that occur during a virtual-8086 mode task. Also, because the IOPL value is less than 3 and the VIF flag
is enabled, the information pushed on the stack by the processor when invoking the interrupt handler is slightly
different between methods 5 and 6 (see Table 21-2).

21.4 PROTECTED-MODE VIRTUAL INTERRUPTS
The IA-32 processors (beginning with the Pentium processor) also support the VIF and VIP flags in the EFLAGS
register in protected mode by setting the PVI (protected-mode virtual interrupt) flag in the CR4 register. Setting the
PVI flag allows applications running at privilege level 3 to execute the CLI and STI instructions without causing a
general-protection exception (#GP) or affecting hardware interrupts.

When the PVI flag is set to 1, the CPL is 3, and the IOPL is less than 3, the STI and CLI instructions set and clear
the VIF flag in the EFLAGS register, leaving IF unaffected. In this mode of operation, an application running in
protected mode and at a CPL of 3 can inhibit interrupts in the same manner as is described in Section 21.3.2, “Class
2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt Mechanism,” for a
virtual-8086 mode task. When the application executes the CLI instruction, the processor clears the VIF flag. If the
processor receives a maskable hardware interrupt, the processor invokes the protected-mode interrupt handler.
This handler checks the state of the VIF flag in the EFLAGS register. If the VIF flag is clear (indicating that the active
task does not want to have interrupts handled now), the handler sets the VIP flag in the EFLAGS image on the stack
and returns to the privilege-level 3 application, which continues program execution. When the application executes
a STI instruction to set the VIF flag, the processor automatically invokes the general-protection exception handler,
which can then handle the pending interrupt. After handing the pending interrupt, the handler typically sets the VIF
flag and clears the VIP flag in the EFLAGS image on the stack and executes a return to the application program. The
next time the processor receives a maskable hardware interrupt, the processor will handle it in the normal manner
for interrupts received while the processor is operating at a CPL of 3.

If the protected-mode virtual interrupt extension is enabled, CPL = 3, and the processor finds that both the VIF and
VIP flags are set at the beginning of an instruction, a general-protection exception is generated.

Because the protected-mode virtual interrupt extension changes only the treatment of EFLAGS.IF (by having CLI
and STI update EFLAGS.VIF instead), it affects only the masking of maskable hardware interrupts (interrupt
vectors 32 through 255). NMI interrupts and exceptions are handled in the normal manner.

(When protected-mode virtual interrupts are disabled (that is, when the PVI flag in control register CR4 is set to 0,
the CPL is less than 3, or the IOPL value is 3), then the CLI and STI instructions execute in a manner compatible
with the Intel486 processor. That is, if the CPL is greater (less privileged) than the I/O privilege level (IOPL), a
general-protection exception occurs. If the IOPL value is 3, CLI and STI clear or set the IF flag, respectively.)

PUSHF, POPF, IRET, and INT are executed like in the Intel486 processor, regardless of whether protected-mode
virtual interrupts are enabled.

It is only possible to enter virtual-8086 mode through a task switch or the execution of an IRET instruction, and it
is only possible to leave virtual-8086 mode by faulting to a protected-mode interrupt handler (typically the general-
protection exception handler, which in turn calls the virtual 8086-mode monitor). In both cases, the EFLAGS
register is saved and restored. This is not true, however, in protected mode when the PVI flag is set and the
processor is not in virtual-8086 mode. Here, it is possible to call a procedure at a different privilege level, in which
case the EFLAGS register is not saved or modified. However, the states of VIF and VIP flags are never examined by
the processor when the CPL is not 3.
21-20 Vol. 3B

CHAPTER 22
MIXING 16-BIT AND 32-BIT CODE

Program modules written to run on IA-32 processors can be either 16-bit modules or 32-bit modules. Table 22-1
shows the characteristic of 16-bit and 32-bit modules.

The IA-32 processors function most efficiently when executing 32-bit program modules. They can, however, also
execute 16-bit program modules, in any of the following ways:
• In real-address mode.
• In virtual-8086 mode.
• System management mode (SMM).
• As a protected-mode task, when the code, data, and stack segments for the task are all configured as a 16-bit

segments.
• By integrating 16-bit and 32-bit segments into a single protected-mode task.
• By integrating 16-bit operations into 32-bit code segments.

Real-address mode, virtual-8086 mode, and SMM are native 16-bit modes. A legacy program assembled and/or
compiled to run on an Intel 8086 or Intel 286 processor should run in real-address mode or virtual-8086 mode
without modification. Sixteen-bit program modules can also be written to run in real-address mode for handling
system initialization or to run in SMM for handling system management functions. See Chapter 21, “8086 Emula-
tion,” for detailed information on real-address mode and virtual-8086 mode; see Chapter 32, “System Manage-
ment Mode,” for information on SMM.

This chapter describes how to integrate 16-bit program modules with 32-bit program modules when operating in
protected mode and how to mix 16-bit and 32-bit code within 32-bit code segments.

22.1 DEFINING 16-BIT AND 32-BIT PROGRAM MODULES
The following IA-32 architecture mechanisms are used to distinguish between and support 16-bit and 32-bit
segments and operations:
• The D (default operand and address size) flag in code-segment descriptors.
• The B (default stack size) flag in stack-segment descriptors.
• 16-bit and 32-bit call gates, interrupt gates, and trap gates.
• Operand-size and address-size instruction prefixes.
• 16-bit and 32-bit general-purpose registers.

The D flag in a code-segment descriptor determines the default operand-size and address-size for the instructions
of a code segment. (In real-address mode and virtual-8086 mode, which do not use segment descriptors, the
default is 16 bits.) A code segment with its D flag set is a 32-bit segment; a code segment with its D flag clear is a
16-bit segment.

Table 22-1. Characteristics of 16-Bit and 32-Bit Program Modules

Characteristic 16-Bit Program Modules 32-Bit Program Modules

Segment Size 0 to 64 KBytes 0 to 4 GBytes

Operand Sizes 8 bits and 16 bits 8 bits and 32 bits

Pointer Offset Size (Address Size) 16 bits 32 bits

Stack Pointer Size 16 Bits 32 Bits

Control Transfers Allowed to Code Segments
of This Size

16 Bits 32 Bits
Vol. 3B 22-1

MIXING 16-BIT AND 32-BIT CODE
The B flag in the stack-segment descriptor specifies the size of stack pointer (the 32-bit ESP register or the 16-bit
SP register) used by the processor for implicit stack references. The B flag for all data descriptors also controls
upper address range for expand down segments.

When transferring program control to another code segment through a call gate, interrupt gate, or trap gate, the
operand size used during the transfer is determined by the type of gate used (16-bit or 32-bit), (not by the D-flag
or prefix of the transfer instruction). The gate type determines how return information is saved on the stack (or
stacks).

For most efficient and trouble-free operation of the processor, 32-bit programs or tasks should have the D flag in
the code-segment descriptor and the B flag in the stack-segment descriptor set, and 16-bit programs or tasks
should have these flags clear. Program control transfers from 16-bit segments to 32-bit segments (and vice versa)
are handled most efficiently through call, interrupt, or trap gates.

Instruction prefixes can be used to override the default operand size and address size of a code segment. These
prefixes can be used in real-address mode as well as in protected mode and virtual-8086 mode. An operand-size or
address-size prefix only changes the size for the duration of the instruction.

22.2 MIXING 16-BIT AND 32-BIT OPERATIONS WITHIN A CODE SEGMENT
The following two instruction prefixes allow mixing of 32-bit and 16-bit operations within one segment:
• The operand-size prefix (66H)
• The address-size prefix (67H)

These prefixes reverse the default size selected by the D flag in the code-segment descriptor. For example, the
processor can interpret the (MOV mem, reg) instruction in any of four ways:
• In a 32-bit code segment:

— Moves 32 bits from a 32-bit register to memory using a 32-bit effective address.

— If preceded by an operand-size prefix, moves 16 bits from a 16-bit register to memory using a 32-bit
effective address.

— If preceded by an address-size prefix, moves 32 bits from a 32-bit register to memory using a 16-bit
effective address.

— If preceded by both an address-size prefix and an operand-size prefix, moves 16 bits from a 16-bit register
to memory using a 16-bit effective address.

• In a 16-bit code segment:

— Moves 16 bits from a 16-bit register to memory using a 16-bit effective address.

— If preceded by an operand-size prefix, moves 32 bits from a 32-bit register to memory using a 16-bit
effective address.

— If preceded by an address-size prefix, moves 16 bits from a 16-bit register to memory using a 32-bit
effective address.

— If preceded by both an address-size prefix and an operand-size prefix, moves 32 bits from a 32-bit register
to memory using a 32-bit effective address.

The previous examples show that any instruction can generate any combination of operand size and address size
regardless of whether the instruction is in a 16- or 32-bit segment. The choice of the 16- or 32-bit default for a code
segment is normally based on the following criteria:
• Performance — Always use 32-bit code segments when possible. They run much faster than 16-bit code

segments on P6 family processors, and somewhat faster on earlier IA-32 processors.
• The operating system the code segment will be running on — If the operating system is a 16-bit

operating system, it may not support 32-bit program modules.
• Mode of operation — If the code segment is being designed to run in real-address mode, virtual-8086 mode,

or SMM, it must be a 16-bit code segment.
22-2 Vol. 3B

MIXING 16-BIT AND 32-BIT CODE
• Backward compatibility to earlier IA-32 processors — If a code segment must be able to run on an Intel
8086 or Intel 286 processor, it must be a 16-bit code segment.

22.3 SHARING DATA AMONG MIXED-SIZE CODE SEGMENTS
Data segments can be accessed from both 16-bit and 32-bit code segments. When a data segment that is larger
than 64 KBytes is to be shared among 16- and 32-bit code segments, the data that is to be accessed from the 16-
bit code segments must be located within the first 64 KBytes of the data segment. The reason for this is that 16-
bit pointers by definition can only point to the first 64 KBytes of a segment.

A stack that spans less than 64 KBytes can be shared by both 16- and 32-bit code segments. This class of stacks
includes:
• Stacks in expand-up segments with the G (granularity) and B (big) flags in the stack-segment descriptor clear.
• Stacks in expand-down segments with the G and B flags clear.
• Stacks in expand-up segments with the G flag set and the B flag clear and where the stack is contained

completely within the lower 64 KBytes. (Offsets greater than FFFFH can be used for data, other than the stack,
which is not shared.)

See Section 3.4.5, “Segment Descriptors,” for a description of the G and B flags and the expand-down stack type.

The B flag cannot, in general, be used to change the size of stack used by a 16-bit code segment. This flag controls
the size of the stack pointer only for implicit stack references such as those caused by interrupts, exceptions, and
the PUSH, POP, CALL, and RET instructions. It does not control explicit stack references, such as accesses to
parameters or local variables. A 16-bit code segment can use a 32-bit stack only if the code is modified so that all
explicit references to the stack are preceded by the 32-bit address-size prefix, causing those references to use 32-
bit addressing and explicit writes to the stack pointer are preceded by a 32-bit operand-size prefix.

In 32-bit, expand-down segments, all offsets may be greater than 64 KBytes; therefore, 16-bit code cannot use
this kind of stack segment unless the code segment is modified to use 32-bit addressing.

22.4 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE SEGMENTS
There are three ways for a procedure in a 16-bit code segment to safely make a call to a 32-bit code segment:
• Make the call through a 32-bit call gate.
• Make a 16-bit call to a 32-bit interface procedure. The interface procedure then makes a 32-bit call to the

intended destination.
• Modify the 16-bit procedure, inserting an operand-size prefix before the call, to change it to a 32-bit call.

Likewise, there are three ways for procedure in a 32-bit code segment to safely make a call to a 16-bit code
segment:
• Make the call through a 16-bit call gate. Here, the EIP value at the CALL instruction cannot exceed FFFFH.
• Make a 32-bit call to a 16-bit interface procedure. The interface procedure then makes a 16-bit call to the

intended destination.
• Modify the 32-bit procedure, inserting an operand-size prefix before the call, changing it to a 16-bit call. Be

certain that the return offset does not exceed FFFFH.

These methods of transferring program control overcome the following architectural limitations imposed on calls
between 16-bit and 32-bit code segments:
• Pointers from 16-bit code segments (which by default can only be 16 bits) cannot be used to address data or

code located beyond FFFFH in a 32-bit segment.
• The operand-size attributes for a CALL and its companion RETURN instruction must be the same to maintain

stack coherency. This is also true for implicit calls to interrupt and exception handlers and their companion IRET
instructions.

• A 32-bit parameters (particularly a pointer parameter) greater than FFFFH cannot be squeezed into a 16-bit
parameter location on a stack.
Vol. 3B 22-3

MIXING 16-BIT AND 32-BIT CODE
• The size of the stack pointer (SP or ESP) changes when switching between 16-bit and 32-bit code segments.

These limitations are discussed in greater detail in the following sections.

22.4.1 Code-Segment Pointer Size
For control-transfer instructions that use a pointer to identify the next instruction (that is, those that do not use
gates), the operand-size attribute determines the size of the offset portion of the pointer. The implications of this
rule are as follows:
• A JMP, CALL, or RET instruction from a 32-bit segment to a 16-bit segment is always possible using a 32-bit

operand size, providing the 32-bit pointer does not exceed FFFFH.
• A JMP, CALL, or RET instruction from a 16-bit segment to a 32-bit segment cannot address a destination greater

than FFFFH, unless the instruction is given an operand-size prefix.

See Section 22.4.5, “Writing Interface Procedures,” for an interface procedure that can transfer program control
from 16-bit segments to destinations in 32-bit segments beyond FFFFH.

22.4.2 Stack Management for Control Transfer
Because the stack is managed differently for 16-bit procedure calls than for 32-bit calls, the operand-size attribute
of the RET instruction must match that of the CALL instruction (see Figure 22-1). On a 16-bit call, the processor
pushes the contents of the 16-bit IP register and (for calls between privilege levels) the 16-bit SP register. The
matching RET instruction must also use a 16-bit operand size to pop these 16-bit values from the stack into the 16-
bit registers.

A 32-bit CALL instruction pushes the contents of the 32-bit EIP register and (for inter-privilege-level calls) the 32-
bit ESP register. Here, the matching RET instruction must use a 32-bit operand size to pop these 32-bit values from
the stack into the 32-bit registers. If the two parts of a CALL/RET instruction pair do not have matching operand
sizes, the stack will not be managed correctly and the values of the instruction pointer and stack pointer will not be
restored to correct values.
22-4 Vol. 3B

MIXING 16-BIT AND 32-BIT CODE
While executing 32-bit code, if a call is made to a 16-bit code segment which is at the same or a more privileged
level (that is, the DPL of the called code segment is less than or equal to the CPL of the calling code segment)
through a 16-bit call gate, then the upper 16-bits of the ESP register may be unreliable upon returning to the 32-
bit code segment (that is, after executing a RET in the 16-bit code segment).

When the CALL instruction and its matching RET instruction are in code segments that have D flags with the same
values (that is, both are 32-bit code segments or both are 16-bit code segments), the default settings may be
used. When the CALL instruction and its matching RET instruction are in segments which have different D-flag
settings, an operand-size prefix must be used.

22.4.2.1 Controlling the Operand-Size Attribute For a Call
Three things can determine the operand-size of a call:
• The D flag in the segment descriptor for the calling code segment.
• An operand-size instruction prefix.
• The type of call gate (16-bit or 32-bit), if a call is made through a call gate.

When a call is made with a pointer (rather than a call gate), the D flag for the calling code segment determines the
operand-size for the CALL instruction. This operand-size attribute can be overridden by prepending an operand-
size prefix to the CALL instruction. So, for example, if the D flag for a code segment is set for 16 bits and the
operand-size prefix is used with a CALL instruction, the processor will cause the information stored on the stack to

Figure 22-1. Stack after Far 16- and 32-Bit Calls

SP

After 16-bit Call

PARM 1

IP SP

SS

PARM 2

CS

031

SS

EIP

After 32-bit Call

CS

ESP

ESP

PARM 2

PARM 1

031

With Privilege Transition

Stack
Growth

After 16-bit Call

PARM 1

IP SP

PARM 2

CS

031

Without Privilege Transition

Stack
Growth

After 32-bit Call

PARM 1

ESP

PARM 2

CS

031

EIP

Undefined
Vol. 3B 22-5

MIXING 16-BIT AND 32-BIT CODE
be stored in 32-bit format. If the call is to a 32-bit code segment, the instructions in that code segment will be able
to read the stack coherently. Also, a RET instruction from the 32-bit code segment without an operand-size prefix
will maintain stack coherency with the 16-bit code segment being returned to.

When a CALL instruction references a call-gate descriptor, the type of call is determined by the type of call gate (16-
bit or 32-bit). The offset to the destination in the code segment being called is taken from the gate descriptor;
therefore, if a 32-bit call gate is used, a procedure in a 16-bit code segment can call a procedure located more than
64 KBytes from the base of a 32-bit code segment, because a 32-bit call gate uses a 32-bit offset.

Note that regardless of the operand size of the call and how it is determined, the size of the stack pointer used (SP
or ESP) is always controlled by the B flag in the stack-segment descriptor currently in use (that is, when B is clear,
SP is used, and when B is set, ESP is used).

An unmodified 16-bit code segment that has run successfully on an 8086 processor or in real-mode on a later IA-
32 architecture processor will have its D flag clear and will not use operand-size override prefixes. As a result, all
CALL instructions in this code segment will use the 16-bit operand-size attribute. Procedures in these code
segments can be modified to safely call procedures to 32-bit code segments in either of two ways:
• Relink the CALL instruction to point to 32-bit call gates (see Section 22.4.2.2, “Passing Parameters With a

Gate”).
• Add a 32-bit operand-size prefix to each CALL instruction.

22.4.2.2 Passing Parameters With a Gate
When referencing 32-bit gates with 16-bit procedures, it is important to consider the number of parameters passed
in each procedure call. The count field of the gate descriptor specifies the size of the parameter string to copy from
the current stack to the stack of a more privileged (numerically lower privilege level) procedure. The count field of
a 16-bit gate specifies the number of 16-bit words to be copied, whereas the count field of a 32-bit gate specifies
the number of 32-bit doublewords to be copied. The count field for a 32-bit gate must thus be half the size of the
number of words being placed on the stack by a 16-bit procedure. Also, the 16-bit procedure must use an even
number of words as parameters.

22.4.3 Interrupt Control Transfers
A program-control transfer caused by an exception or interrupt is always carried out through an interrupt or trap
gate (located in the IDT). Here, the type of the gate (16-bit or 32-bit) determines the operand-size attribute used
in the implicit call to the exception or interrupt handler procedure in another code segment.

A 32-bit interrupt or trap gate provides a safe interface to a 32-bit exception or interrupt handler when the excep-
tion or interrupt occurs in either a 32-bit or a 16-bit code segment. It is sometimes impractical, however, to place
exception or interrupt handlers in 16-bit code segments, because only 16-bit return addresses are saved on the
stack. If an exception or interrupt occurs in a 32-bit code segment when the EIP was greater than FFFFH, the 16-
bit handler procedure cannot provide the correct return address.

22.4.4 Parameter Translation
When segment offsets or pointers (which contain segment offsets) are passed as parameters between 16-bit and
32-bit procedures, some translation is required. If a 32-bit procedure passes a pointer to data located beyond 64
KBytes to a 16-bit procedure, the 16-bit procedure cannot use it. Except for this limitation, interface code can
perform any format conversion between 32-bit and 16-bit pointers that may be needed.

Parameters passed by value between 32-bit and 16-bit code also may require translation between 32-bit and 16-
bit formats. The form of the translation is application-dependent.

22.4.5 Writing Interface Procedures
Placing interface code between 32-bit and 16-bit procedures can be the solution to the following interface prob-
lems:
22-6 Vol. 3B

MIXING 16-BIT AND 32-BIT CODE
• Allowing procedures in 16-bit code segments to call procedures with offsets greater than FFFFH in 32-bit code
segments.

• Matching operand-size attributes between companion CALL and RET instructions.
• Translating parameters (data), including managing parameter strings with a variable count or an odd number

of 16-bit words.
• The possible invalidation of the upper bits of the ESP register.

The interface procedure is simplified where these rules are followed.

1. The interface procedure must reside in a 32-bit code segment (the D flag for the code-segment descriptor is
set).

2. All procedures that may be called by 16-bit procedures must have offsets not greater than FFFFH.

3. All return addresses saved by 16-bit procedures must have offsets not greater than FFFFH.

The interface procedure becomes more complex if any of these rules are violated. For example, if a 16-bit proce-
dure calls a 32-bit procedure with an entry point beyond FFFFH, the interface procedure will need to provide the
offset to the entry point. The mapping between 16- and 32-bit addresses is only performed automatically when a
call gate is used, because the gate descriptor for a call gate contains a 32-bit address. When a call gate is not used,
the interface code must provide the 32-bit address.

The structure of the interface procedure depends on the types of calls it is going to support, as follows:
• Calls from 16-bit procedures to 32-bit procedures — Calls to the interface procedure from a 16-bit code

segment are made with 16-bit CALL instructions (by default, because the D flag for the calling code-segment
descriptor is clear), and 16-bit operand-size prefixes are used with RET instructions to return from the interface
procedure to the calling procedure. Calls from the interface procedure to 32-bit procedures are performed with
32-bit CALL instructions (by default, because the D flag for the interface procedure’s code segment is set), and
returns from the called procedures to the interface procedure are performed with 32-bit RET instructions (also
by default).

• Calls from 32-bit procedures to 16-bit procedures — Calls to the interface procedure from a 32-bit code
segment are made with 32-bit CALL instructions (by default), and returns to the calling procedure from the
interface procedure are made with 32-bit RET instructions (also by default). Calls from the interface procedure
to 16-bit procedures require the CALL instructions to have the operand-size prefixes, and returns from the
called procedures to the interface procedure are performed with 16-bit RET instructions (by default).
Vol. 3B 22-7

MIXING 16-BIT AND 32-BIT CODE
22-8 Vol. 3B

CHAPTER 23
ARCHITECTURE COMPATIBILITY

Intel 64 and IA-32 processors are binary compatible. Compatibility means that, within limited constraints,
programs that execute on previous generations of processors will produce identical results when executed on later
processors. The compatibility constraints and any implementation differences between the Intel 64 and IA-32
processors are described in this chapter.

Each new processor has enhanced the software visible architecture from that found in earlier Intel 64 and IA-32
processors. Those enhancements have been defined with consideration for compatibility with previous and future
processors. This chapter also summarizes the compatibility considerations for those extensions.

23.1 PROCESSOR FAMILIES AND CATEGORIES
IA-32 processors are referred to in several different ways in this chapter, depending on the type of compatibility
information being related, as described in the following:
• IA-32 Processors — All the Intel processors based on the Intel IA-32 Architecture, which include the

8086/88, Intel 286, Intel386, Intel486, Pentium, Pentium Pro, Pentium II, Pentium III, Pentium 4, and Intel
Xeon processors.

• 32-bit Processors — All the IA-32 processors that use a 32-bit architecture, which include the Intel386,
Intel486, Pentium, Pentium Pro, Pentium II, Pentium III, Pentium 4, and Intel Xeon processors.

• 16-bit Processors — All the IA-32 processors that use a 16-bit architecture, which include the 8086/88 and
Intel 286 processors.

• P6 Family Processors — All the IA-32 processors that are based on the P6 microarchitecture, which include
the Pentium Pro, Pentium II, and Pentium III processors.

• Pentium® 4 Processors — A family of IA-32 and Intel 64 processors that are based on the Intel NetBurst®
microarchitecture.

• Intel® Pentium® M Processors — A family of IA-32 processors that are based on the Intel Pentium M
processor microarchitecture.

• Intel® Core™ Duo and Solo Processors — Families of IA-32 processors that are based on an improved Intel
Pentium M processor microarchitecture.

• Intel® Xeon® Processors — A family of IA-32 and Intel 64 processors that are based on the Intel NetBurst
microarchitecture. This family includes the Intel Xeon processor and the Intel Xeon processor MP based on the
Intel NetBurst microarchitecture. Intel Xeon processors 3000, 3100, 3200, 3300, 3200, 5100, 5200, 5300,
5400, 7200, 7300 series are based on Intel Core microarchitectures and support Intel 64 architecture.

• Pentium® D Processors — A family of dual-core Intel 64 processors that provides two processor cores in a
physical package. Each core is based on the Intel NetBurst microarchitecture.

• Pentium® Processor Extreme Editions — A family of dual-core Intel 64 processors that provides two
processor cores in a physical package. Each core is based on the Intel NetBurst microarchitecture and supports
Intel Hyper-Threading Technology.

• Intel® Core™ 2 Processor family— A family of Intel 64 processors that are based on the Intel Core microar-
chitecture. Intel Pentium Dual-Core processors are also based on the Intel Core microarchitecture.

• Intel Atom® Processors — A family of IA-32 and Intel 64 processors. 45 nm Intel Atom processors are based
on the Intel Atom microarchitecture. 32 nm Intel Atom processors are based on newer microarchitectures
including the Silvermont microarchitecture and the Airmont microarchitecture. Each generation of Intel Atom
processors can be identified by the CPUID’s DisplayFamily_DisplayModel signature; see Table 2-1 “CPUID
Signature Values of DisplayFamily_DisplayModel” in Chapter 2, “Model-Specific Registers (MSRs),” of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 4.
Vol. 3B 23-1

ARCHITECTURE COMPATIBILITY
23.2 RESERVED BITS
Throughout this manual, certain bits are marked as reserved in many register and memory layout descriptions.
When bits are marked as undefined or reserved, it is essential for compatibility with future processors that software
treat these bits as having a future, though unknown effect. Software should follow these guidelines in dealing with
reserved bits:
• Do not depend on the states of any reserved bits when testing the values of registers or memory locations that

contain such bits. Mask out the reserved bits before testing.
• Do not depend on the states of any reserved bits when storing them to memory or to a register.
• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated in the documentation, if any, or

reload them with values previously read from the same register.

Software written for existing IA-32 processor that handles reserved bits correctly will port to future IA-32 proces-
sors without generating protection exceptions.

23.3 ENABLING NEW FUNCTIONS AND MODES
Most of the new control functions defined for the P6 family and Pentium processors are enabled by new mode flags
in the control registers (primarily register CR4). This register is undefined for IA-32 processors earlier than the
Pentium processor. Attempting to access this register with an Intel486 or earlier IA-32 processor results in an
invalid-opcode exception (#UD). Consequently, programs that execute correctly on the Intel486 or earlier IA-32
processor cannot erroneously enable these functions. Attempting to set a reserved bit in register CR4 to a value
other than its original value results in a general-protection exception (#GP). So, programs that execute on the P6
family and Pentium processors cannot erroneously enable functions that may be implemented in future IA-32
processors.

The P6 family and Pentium processors do not check for attempts to set reserved bits in model-specific registers;
however these bits may be checked on more recent processors. It is the obligation of the software writer to enforce
this discipline. These reserved bits may be used in future Intel processors.

23.4 DETECTING THE PRESENCE OF NEW FEATURES THROUGH SOFTWARE
Software can check for the presence of new architectural features and extensions in either of two ways:

1. Test for the presence of the feature or extension. Software can test for the presence of new flags in the EFLAGS
register and control registers. If these flags are reserved (meaning not present in the processor executing the
test), an exception is generated. Likewise, software can attempt to execute a new instruction, which results in
an invalid-opcode exception (#UD) being generated if it is not supported.

2. Execute the CPUID instruction. The CPUID instruction (added to the IA-32 in the Pentium processor) indicates
the presence of new features directly.

See Chapter 20, “Processor Identification and Feature Determination,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for detailed information on detecting new processor features and exten-
sions.

23.5 INTEL MMX TECHNOLOGY
The Pentium processor with MMX technology introduced the MMX technology and a set of MMX instructions to the
IA-32. The MMX instructions are described in Chapter 9, “Programming with Intel® MMX™ Technology,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, and in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D. The MMX technology and MMX instructions are
also included in the Pentium II, Pentium III, Pentium 4, and Intel Xeon processors.
23-2 Vol. 3B

ARCHITECTURE COMPATIBILITY
23.6 STREAMING SIMD EXTENSIONS (SSE)
The Streaming SIMD Extensions (SSE) were introduced in the Pentium III processor. The SSE extensions consist of
a new set of instructions and a new set of registers. The new registers include the eight 128-bit XMM registers and
the 32-bit MXCSR control and status register. These instructions and registers are designed to allow SIMD compu-
tations to be made on single precision floating-point numbers. Several of these new instructions also operate in the
MMX registers. SSE instructions and registers are described in Section 10, “Programming with Intel® Streaming
SIMD Extensions (Intel® SSE),” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
and in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D.

23.7 STREAMING SIMD EXTENSIONS 2 (SSE2)
The Streaming SIMD Extensions 2 (SSE2) were introduced in the Pentium 4 and Intel Xeon processors. They
consist of a new set of instructions that operate on the XMM and MXCSR registers and perform SIMD operations on
double precision floating-point values and on integer values. Several of these new instructions also operate in the
MMX registers. SSE2 instructions and registers are described in Chapter 11, “Programming with Intel® Streaming
SIMD Extensions 2 (Intel® SSE2),” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
1, and in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D.

23.8 STREAMING SIMD EXTENSIONS 3 (SSE3)
The Streaming SIMD Extensions 3 (SSE3) were introduced in Pentium 4 processors supporting Intel Hyper-
Threading Technology and Intel Xeon processors. SSE3 extensions include 13 instructions. Ten of these 13 instruc-
tions support the single instruction multiple data (SIMD) execution model used with SSE/SSE2 extensions. One
SSE3 instruction accelerates x87 style programming for conversion to integer. The remaining two instructions
(MONITOR and MWAIT) accelerate synchronization of threads. SSE3 instructions are described in Chapter 12,
“Programming with Intel® SSE3, SSSE3, Intel® SSE4, and Intel® AES-NI,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1, and in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volumes 2A, 2B, 2C, & 2D.

23.9 ADDITIONAL STREAMING SIMD EXTENSIONS
The Supplemental Streaming SIMD Extensions 3 (SSSE3) were introduced in the Intel Core 2 processor and Intel
Xeon processor 5100 series. Streaming SIMD Extensions 4 provided 54 new instructions introduced in 45 nm Intel
Xeon processors and Intel Core 2 processors. SSSE3, SSE4.1 and SSE4.2 instructions are described in Chapter 12,
“Programming with Intel® SSE3, SSSE3, Intel® SSE4, and Intel® AES-NI,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1, and in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volumes 2A, 2B, 2C, & 2D.

23.10 INTEL HYPER-THREADING TECHNOLOGY
Intel Hyper-Threading Technology provides two logical processors that can execute two separate code streams
(called threads) concurrently by using shared resources in a single processor core or in a physical package.

This feature was introduced in the Intel Xeon processor MP and later steppings of the Intel Xeon processor, and
Pentium 4 processors supporting Intel Hyper-Threading Technology. The feature is also found in the Pentium
processor Extreme Edition. See also: Section 9.7, “Intel® Hyper-Threading Technology Architecture.”

45 nm and 32 nm Intel Atom processors support Intel Hyper-Threading Technology.

Intel Atom processors based on Silvermont and Airmont microarchitectures do not support Intel Hyper-Threading
Technology.
Vol. 3B 23-3

ARCHITECTURE COMPATIBILITY
23.11 MULTI-CORE TECHNOLOGY
The Pentium D processor and Pentium processor Extreme Edition provide two processor cores in each physical
processor package. See also: Section 9.5, “Intel® Hyper-Threading Technology and Intel® Multi-Core Technology,”
and Section 9.8, “Multi-Core Architecture.” Intel Core 2 Duo, Intel Pentium Dual-Core processors, Intel Xeon
processors 3000, 3100, 5100, 5200 series provide two processor cores in each physical processor package. Intel
Core 2 Extreme, Intel Core 2 Quad processors, Intel Xeon processors 3200, 3300, 5300, 5400, 7300 series provide
two processor cores in each physical processor package.

23.12 SPECIFIC FEATURES OF DUAL-CORE PROCESSOR
Dual-core processors may have some processor-specific features. Use CPUID feature flags to detect the availability
features. Note the following:
• CPUID Brand String — On Pentium processor Extreme Edition, the process will report the correct brand string

only after the correct microcode updates are loaded.
• Enhanced Intel SpeedStep Technology — This feature is supported in Pentium D processor but not in

Pentium processor Extreme Edition.

23.13 NEW INSTRUCTIONS IN THE PENTIUM AND LATER IA-32 PROCESSORS
Table 23-1 identifies the instructions introduced into the IA-32 in the Pentium processor and later IA-32 processors.

23.13.1 Instructions Added Prior to the Pentium Processor
The following instructions were added in the Intel486 processor:
• BSWAP (byte swap) instruction.
• XADD (exchange and add) instruction.
• CMPXCHG (compare and exchange) instruction.
• ΙNVD (invalidate cache) instruction.
• WBINVD (write-back and invalidate cache) instruction.
• INVLPG (invalidate TLB entry) instruction.

Table 23-1. New Instruction in the Pentium Processor and Later IA-32 Processors

Instruction CPUID Identification Bits Introduced In

CMOVcc (conditional move) EDX, Bit 15 Pentium Pro processor

FCMOVcc (floating-point conditional move) EDX, Bits 0 and 15

FCOMI (floating-point compare and set EFLAGS) EDX, Bits 0 and 15

RDPMC (read performance monitoring counters) EAX, Bits 8-11, set to 6H;
see Note 1

UD2 (undefined) EAX, Bits 8-11, set to 6H
23-4 Vol. 3B

ARCHITECTURE COMPATIBILITY
The following instructions were added in the Intel386 processor:
• LSS, LFS, and LGS (load SS, FS, and GS registers).
• Long-displacement conditional jumps.
• Single-bit instructions.
• Bit scan instructions.
• Double-shift instructions.
• Byte set on condition instruction.
• Move with sign/zero extension.
• Generalized multiply instruction.
• MOV to and from control registers.
• MOV to and from test registers (now obsolete).
• MOV to and from debug registers.
• RSM (resume from SMM). This instruction was introduced in the Intel386 SL and Intel486 SL processors.

The following instructions were added in the Intel 387 math coprocessor:
• FPREM1.
• FUCOM, FUCOMP, and FUCOMPP.

23.14 OBSOLETE INSTRUCTIONS
The MOV to and from test registers instructions were removed from the Pentium processor and future IA-32
processors. Execution of these instructions generates an invalid-opcode exception (#UD).

23.15 UNDEFINED OPCODES
All new instructions defined for Intel 64 and IA-32 processors use binary encodings that were reserved on earlier-
generation processors. Generally, attempting to execute a reserved opcode results in an invalid-opcode (#UD)
exception being generated. Consequently, programs that execute correctly on earlier-generation processors
cannot erroneously execute these instructions and thereby produce unexpected results when executed on later
Intel 64 processors.

For compatibility with prior generations, there are a few reserved opcodes which do not result in a #UD but rather
result in the same behavior as certain defined instructions. In the interest of standardization, it is recommended

CMPXCHG8B (compare and exchange 8 bytes) EDX, Bit 8 Pentium processor

CPUID (CPU identification) None; see Note 2

RDTSC (read time-stamp counter) EDX, Bit 4

RDMSR (read model-specific register) EDX, Bit 5

WRMSR (write model-specific register) EDX, Bit 5

MMX Instructions EDX, Bit 23

NOTES:
1. The RDPMC instruction was introduced in the P6 family of processors and added to later model Pentium processors. This instruc-

tion is model specific in nature and not architectural.
2. The CPUID instruction is available in all Pentium and P6 family processors and in later models of the Intel486 processors. The ability

to set and clear the ID flag (bit 21) in the EFLAGS register indicates the availability of the CPUID instruction.

Table 23-1. New Instruction in the Pentium Processor and Later IA-32 Processors (Contd.)

Instruction CPUID Identification Bits Introduced In
Vol. 3B 23-5

ARCHITECTURE COMPATIBILITY
that software not use the opcodes given below but instead use those defined in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D.

The following items enumerate those reserved opcodes (referring in some cases to opcode groups as defined in
Appendix A, “Opcode Map,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2D).
• Immediate Group 1 - When not in 64-bit mode, instructions encoded with opcode 82H result in the behavior

of the corresponding instructions encoded with opcode 80H. Depending on the Op/Reg field of the ModR/M
Byte, these opcodes are the byte forms of ADD, OR, ADC, SBB, AND, SUB, XOR, CMP. (In 64-bit mode, these
opcodes cause a #UD.)

• Shift Group 2 /6 - Instructions encoded with opcodes C0H, C1H, D0H, D1H, D2H, and D3H with value 110B in
the Op/Reg field (/6) of the ModR/M Byte result in the behavior of the corresponding instructions with value
100B in the Op/Reg field (/4). These are various forms of the SAL/SHL instruction.

• Unary Group 3 /1 - Instructions encoded with opcodes F6H and F7H with value 001B in the Op/Reg field (/01)
of the ModR/M Byte result in the behavior of the corresponding instructions with value 000B in the Op/Reg field
(/0). These are various forms of the TEST instruction.

• Reserved NOP - Instructions encoded with the opcode 0F0DH or with the opcodes 0F18H through 0F1FH
result in the behavior of the NOP (No Operation) instruction, except for those opcodes defined in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D. The opcodes not so defined
are considered “Reserved NOP” and may be used for future instructions which have no defined impact on
existing architectural state. These reserved NOP opcodes are decoded with a ModR/M byte and typical
instruction prefix options but still result in the behavior of the NOP instruction.

• x87 Opcodes - There are several groups of x87 opcodes which provide the same behavior as other x87
instructions. See Section 23.18.9 for the complete list.

There are a few reserved opcodes that provide unique behavior but do not provide capabilities that are not already
available in the main instructions defined in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 2A, 2B, 2C, & 2D.
• D6H - When not in 64-bit mode SALC - Set AL to Cary flag. IF (CF=1), AL=FF, ELSE, AL=0 (#UD in 64-bit

mode)
• x87 Opcodes - There are a few x87 opcodes with subtly different behavior from existing x87 instructions. See

Section 23.18.9 for details.

23.16 NEW FLAGS IN THE EFLAGS REGISTER
The section titled “EFLAGS Register” in Chapter 3, “Basic Execution Environment,” of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, shows the configuration of flags in the EFLAGS register for the P6
family processors. No new flags have been added to this register in the P6 family processors. The flags added to
this register in the Pentium and Intel486 processors are described in the following sections.

The following flags were added to the EFLAGS register in the Pentium processor:
• VIF (virtual interrupt flag), bit 19.
• VIP (virtual interrupt pending), bit 20.
• ID (identification flag), bit 21.

The AC flag (bit 18) was added to the EFLAGS register in the Intel486 processor.

23.16.1 Using EFLAGS Flags to Distinguish Between 32-Bit IA-32 Processors
The following bits in the EFLAGS register that can be used to differentiate between the 32-bit IA-32 processors:
• Bit 18 (the AC flag) can be used to distinguish an Intel386 processor from the P6 family, Pentium, and Intel486

processors. Since it is not implemented on the Intel386 processor, it will always be clear.
• Bit 21 (the ID flag) indicates whether an application can execute the CPUID instruction. The ability to set and

clear this bit indicates that the processor is a P6 family or Pentium processor. The CPUID instruction can then
be used to determine which processor.
23-6 Vol. 3B

ARCHITECTURE COMPATIBILITY
• Bits 19 (the VIF flag) and 20 (the VIP flag) will always be zero on processors that do not support virtual mode
extensions, which includes all 32-bit processors prior to the Pentium processor.

See Chapter 20, “Processor Identification and Feature Determination,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for more information on identifying processors.

23.17 STACK OPERATIONS AND USER SOFTWARE
This section identifies the differences in stack implementation between the various IA-32 processors.

23.17.1 PUSH SP
The P6 family, Pentium, Intel486, Intel386, and Intel 286 processors push a different value on the stack for a PUSH
SP instruction than the 8086 processor. The 32-bit processors push the value of the SP register before it is decre-
mented as part of the push operation; the 8086 processor pushes the value of the SP register after it is decre-
mented. If the value pushed is important, replace PUSH SP instructions with the following three instructions:

PUSH BP
MOV BP, SP
XCHG BP, [BP]

This code functions as the 8086 processor PUSH SP instruction on the P6 family, Pentium, Intel486, Intel386, and
Intel 286 processors.

23.17.2 EFLAGS Pushed on the Stack
The setting of the stored values of bits 12 through 15 (which includes the IOPL field and the NT flag) in the EFLAGS
register by the PUSHF instruction, by interrupts, and by exceptions is different with the 32-bit IA-32 processors
than with the 8086 and Intel 286 processors. The differences are as follows:
• 8086 processor—bits 12 through 15 are always set.
• Intel 286 processor—bits 12 through 15 are always cleared in real-address mode.
• 32-bit processors in real-address mode—bit 15 (reserved) is always cleared, and bits 12 through 14 have the

last value loaded into them.

23.18 X87 FPU
This section addresses the issues that must be faced when porting floating-point software designed to run on
earlier IA-32 processors and math coprocessors to a Pentium 4, Intel Xeon, P6 family, or Pentium processor with
integrated x87 FPU. To software, a Pentium 4, Intel Xeon, or P6 family processor looks very much like a Pentium
processor. Floating-point software which runs on a Pentium or Intel486 DX processor, or on an Intel486 SX
processor/Intel 487 SX math coprocessor system or an Intel386 processor/Intel 387 math coprocessor system,
will run with at most minor modifications on a Pentium 4, Intel Xeon, or P6 family processor. To port code directly
from an Intel 286 processor/Intel 287 math coprocessor system or an Intel 8086 processor/8087 math copro-
cessor system to a Pentium 4, Intel Xeon, P6 family, or Pentium processor, certain additional issues must be
addressed.

In the following sections, the term “32-bit x87 FPUs” refers to the P6 family, Pentium, and Intel486 DX processors,
and to the Intel 487 SX and Intel 387 math coprocessors; the term “16-bit IA-32 math coprocessors” refers to the
Intel 287 and 8087 math coprocessors.
Vol. 3B 23-7

ARCHITECTURE COMPATIBILITY
23.18.1 Control Register CR0 Flags
The ET, NE, and MP flags in control register CR0 control the interface between the integer unit of an IA-32 processor
and either its internal x87 FPU or an external math coprocessor. The effect of these flags in the various IA-32
processors are described in the following paragraphs.

The ET (extension type) flag (bit 4 of the CR0 register) is used in the Intel386 processor to indicate whether the
math coprocessor in the system is an Intel 287 math coprocessor (flag is clear) or an Intel 387 DX math copro-
cessor (flag is set). This bit is hardwired to 1 in the P6 family, Pentium, and Intel486 processors.

The NE (Numeric Exception) flag (bit 5 of the CR0 register) is used in the P6 family, Pentium, and Intel486 proces-
sors to determine whether unmasked floating-point exceptions are reported internally through interrupt vector 16
(flag is set) or externally through an external interrupt (flag is clear). On a hardware reset, the NE flag is initialized
to 0, so software using the automatic internal error-reporting mechanism must set this flag to 1. This flag is nonex-
istent on the Intel386 processor.

As on the Intel 286 and Intel386 processors, the MP (monitor coprocessor) flag (bit 1 of register CR0) determines
whether the WAIT/FWAIT instructions or waiting-type floating-point instructions trap when the context of the x87
FPU is different from that of the currently-executing task. If the MP and TS flag are set, then a WAIT/FWAIT instruc-
tion and waiting instructions will cause a device-not-available exception (interrupt vector 7). The MP flag is used on
the Intel 286 and Intel386 processors to support the use of a WAIT/FWAIT instruction to wait on a device other
than a math coprocessor. The device reports its status through the BUSY# pin. Since the P6 family, Pentium, and
Intel486 processors do not have such a pin, the MP flag has no relevant use and should be set to 1 for normal oper-
ation.

23.18.2 x87 FPU Status Word
This section identifies differences to the x87 FPU status word for the different IA-32 processors and math coproces-
sors, the reason for the differences, and their impact on software.

23.18.2.1 Condition Code Flags (C0 through C3)
The following information pertains to differences in the use of the condition code flags (C0 through C3) located in
bits 8, 9, 10, and 14 of the x87 FPU status word.

After execution of an FINIT instruction or a hardware reset on a 32-bit x87 FPU, the condition code flags are set to
0. The same operations on a 16-bit IA-32 math coprocessor leave these flags intact (they contain their prior value).
This difference in operation has no impact on software and provides a consistent state after reset.

Transcendental instruction results in the core range of the P6 family and Pentium processors may differ from the
Intel486 DX processor and Intel 487 SX math coprocessor by 2 to 3 units in the last place (ulps)—(see “Transcen-
dental Instruction Accuracy” in Chapter 8, “Programming with the x87 FPU,” of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1). As a result, the value saved in the C1 flag may also differ.

After an incomplete FPREM/FPREM1 instruction, the C0, C1, and C3 flags are set to 0 on the 32-bit x87 FPUs. After
the same operation on a 16-bit IA-32 math coprocessor, these flags are left intact.

On the 32-bit x87 FPUs, the C2 flag serves as an incomplete flag for the FTAN instruction. On the 16-bit IA-32 math
coprocessors, the C2 flag is undefined for the FPTAN instruction. This difference has no impact on software,
because Intel 287 or 8087 programs do not check C2 after an FPTAN instruction. The use of this flag on later
processors allows fast checking of operand range.

23.18.2.2 Stack Fault Flag
When unmasked stack overflow or underflow occurs on a 32-bit x87 FPU, the IE flag (bit 0) and the SF flag (bit 6)
of the x87 FPU status word are set to indicate a stack fault and condition code flag C1 is set or cleared to indicate
overflow or underflow, respectively. When unmasked stack overflow or underflow occurs on a 16-bit IA-32 math
coprocessor, only the IE flag is set. Bit 6 is reserved on these processors. The addition of the SF flag on a 32-bit x87
FPU has no impact on software. Existing exception handlers need not change, but may be upgraded to take advan-
tage of the additional information.
23-8 Vol. 3B

ARCHITECTURE COMPATIBILITY
23.18.3 x87 FPU Control Word
Only affine closure is supported for infinity control on a 32-bit x87 FPU. The infinity control flag (bit 12 of the x87
FPU control word) remains programmable on these processors, but has no effect. This change was made to
conform to the IEEE Standard 754 for Floating-Point Arithmetic. On a 16-bit IA-32 math coprocessor, both affine
and projective closures are supported, as determined by the setting of bit 12. After a hardware reset, the default
value of bit 12 is projective. Software that requires projective infinity arithmetic may give different results.

23.18.4 x87 FPU Tag Word
When loading the tag word of a 32-bit x87 FPU, using an FLDENV, FRSTOR, or FXRSTOR (Pentium III processor only)
instruction, the processor examines the incoming tag and classifies the location only as empty or non-empty. Thus,
tag values of 00, 01, and 10 are interpreted by the processor to indicate a non-empty location. The tag value of 11
is interpreted by the processor to indicate an empty location. Subsequent operations on a non-empty register
always examine the value in the register, not the value in its tag. The FSTENV, FSAVE, and FXSAVE (Pentium III
processor only) instructions examine the non-empty registers and put the correct values in the tags before storing
the tag word.

The corresponding tag for a 16-bit IA-32 math coprocessor is checked before each register access to determine the
class of operand in the register; the tag is updated after every change to a register so that the tag always reflects
the most recent status of the register. Software can load a tag with a value that disagrees with the contents of a
register (for example, the register contains a valid value, but the tag says special). Here, the 16-bit IA-32 math
coprocessors honor the tag and do not examine the register.

Software written to run on a 16-bit IA-32 math coprocessor may not operate correctly on a 16-bit x87 FPU, if it
uses the FLDENV, FRSTOR, or FXRSTOR instructions to change tags to values (other than to empty) that are
different from actual register contents.

The encoding in the tag word for the 32-bit x87 FPUs for unsupported data formats (including pseudo-zero and
unnormal) is special (10B), to comply with IEEE Standard 754. The encoding in the 16-bit IA-32 math coprocessors
for pseudo-zero and unnormal is valid (00B) and the encoding for other unsupported data formats is special (10B).
Code that recognizes the pseudo-zero or unnormal format as valid must therefore be changed if it is ported to a 32-
bit x87 FPU.

23.18.5 Data Types
This section discusses the differences of data types for the various x87 FPUs and math coprocessors.

23.18.5.1 NaNs
The 32-bit x87 FPUs distinguish between signaling NaNs (SNaNs) and quiet NaNs (QNaNs). These x87 FPUs only
generate QNaNs and normally do not generate an exception upon encountering a QNaN. An invalid-operation
exception (#I) is generated only upon encountering a SNaN, except for the FCOM, FIST, and FBSTP instructions,
which also generates an invalid-operation exceptions for a QNaNs. This behavior matches IEEE Standard 754.

The 16-bit IA-32 math coprocessors only generate one kind of NaN (the equivalent of a QNaN), but the raise an
invalid-operation exception upon encountering any kind of NaN.

When porting software written to run on a 16-bit IA-32 math coprocessor to a 32-bit x87 FPU, uninitialized memory
locations that contain QNaNs should be changed to SNaNs to cause the x87 FPU or math coprocessor to fault when
uninitialized memory locations are referenced.

23.18.5.2 Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal Formats
The 32-bit x87 FPUs neither generate nor support the pseudo-zero, pseudo-NaN, pseudo-infinity, and unnormal
formats. Whenever they encounter them in an arithmetic operation, they raise an invalid-operation exception. The
16-bit IA-32 math coprocessors define and support special handling for these formats. Support for these formats
was dropped to conform with IEEE Standard 754 for Floating-Point Arithmetic.
Vol. 3B 23-9

ARCHITECTURE COMPATIBILITY
This change should not impact software ported from 16-bit IA-32 math coprocessors to 32-bit x87 FPUs. The 32-
bit x87 FPUs do not generate these formats, and therefore will not encounter them unless software explicitly loads
them in the data registers. The only affect may be in how software handles the tags in the tag word (see also:
Section 23.18.4, “x87 FPU Tag Word”).

23.18.6 Floating-Point Exceptions
This section identifies the implementation differences in exception handling for floating-point instructions in the
various x87 FPUs and math coprocessors.

23.18.6.1 Denormal Operand Exception (#D)
When the denormal operand exception is masked, the 32-bit x87 FPUs automatically normalize denormalized
numbers when possible; whereas, the 16-bit IA-32 math coprocessors return a denormal result. A program written
to run on a 16-bit IA-32 math coprocessor that uses the denormal exception solely to normalize denormalized
operands is redundant when run on the 32-bit x87 FPUs. If such a program is run on 32-bit x87 FPUs, performance
can be improved by masking the denormal exception. Floating-point programs run faster when the FPU performs
normalization of denormalized operands.

The denormal operand exception is not raised for transcendental instructions and the FXTRACT instruction on the
16-bit IA-32 math coprocessors. This exception is raised for these instructions on the 32-bit x87 FPUs. The excep-
tion handlers ported to these latter processors need to be changed only if the handlers gives special treatment to
different opcodes.

23.18.6.2 Numeric Overflow Exception (#O)
On the 32-bit x87 FPUs, when the numeric overflow exception is masked and the rounding mode is set to chop
(toward 0), the result is the largest positive or smallest negative number. The 16-bit IA-32 math coprocessors do
not signal the overflow exception when the masked response is not ∞; that is, they signal overflow only when the
rounding control is not set to round to 0. If rounding is set to chop (toward 0), the result is positive or negative ∞.
Under the most common rounding modes, this difference has no impact on existing software.

If rounding is toward 0 (chop), a program on a 32-bit x87 FPU produces, under overflow conditions, a result that is
different in the least significant bit of the significand, compared to the result on a 16-bit IA-32 math coprocessor.
The reason for this difference is IEEE Standard 754 compatibility.

When the overflow exception is not masked, the precision exception is flagged on the 32-bit x87 FPUs. When the
result is stored in the stack, the significand is rounded according to the precision control (PC) field of the FPU
control word or according to the opcode. On the 16-bit IA-32 math coprocessors, the precision exception is not
flagged and the significand is not rounded. The impact on existing software is that if the result is stored on the
stack, a program running on a 32-bit x87 FPU produces a different result under overflow conditions than on a 16-
bit IA-32 math coprocessor. The difference is apparent only to the exception handler. This difference is for IEEE
Standard 754 compatibility.

23.18.6.3 Numeric Underflow Exception (#U)
When the underflow exception is masked on the 32-bit x87 FPUs, the underflow exception is signaled when the
result is tiny and inexact (see Section 4.9.1.5, “Numeric Underflow Exception (#U),” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1). When the underflow exception is unmasked and the instruction
is supposed to store the result on the stack, the significand is rounded to the appropriate precision (according to
the PC flag in the FPU control word, for those instructions controlled by PC, otherwise to extended precision), after
adjusting the exponent.

23.18.6.4 Exception Precedence
There is no difference in the precedence of the denormal-operand exception on the 32-bit x87 FPUs, whether it be
masked or not. When the denormal-operand exception is not masked on the 16-bit IA-32 math coprocessors, it
takes precedence over all other exceptions. This difference causes no impact on existing software, but some
23-10 Vol. 3B

ARCHITECTURE COMPATIBILITY
unneeded normalization of denormalized operands is prevented on the Intel486 processor and Intel 387 math
coprocessor.

23.18.6.5 CS and EIP For FPU Exceptions
On the Intel 32-bit x87 FPUs, the values from the CS and EIP registers saved for floating-point exceptions point to
any prefixes that come before the floating-point instruction. On the 8087 math coprocessor, the saved CS and IP
registers points to the floating-point instruction.

23.18.6.6 FPU Error Signals
The floating-point error signals to the P6 family, Pentium, and Intel486 processors do not pass through an interrupt
controller; an INT# signal from an Intel 387, Intel 287 or 8087 math coprocessors does. If an 8086 processor uses
another exception for the 8087 interrupt, both exception vectors should call the floating-point-error exception
handler. Some instructions in a floating-point-error exception handler may need to be deleted if they use the inter-
rupt controller. The P6 family, Pentium, and Intel486 processors have signals that, with the addition of external
logic, support reporting for emulation of the interrupt mechanism used in many personal computers.

On the P6 family, Pentium, and Intel486 processors, an undefined floating-point opcode will cause an invalid-
opcode exception (#UD, interrupt vector 6). Undefined floating-point opcodes, like legal floating-point opcodes,
cause a device not available exception (#NM, interrupt vector 7) when either the TS or EM flag in control register
CR0 is set. The P6 family, Pentium, and Intel486 processors do not check for floating-point error conditions on
encountering an undefined floating-point opcode.

23.18.6.7 Assertion of the FERR# Pin
When using the MS-DOS compatibility mode for handing floating-point exceptions, the FERR# pin must be
connected to an input to an external interrupt controller. An external interrupt is then generated when the FERR#
output drives the input to the interrupt controller and the interrupt controller in turn drives the INTR pin on the
processor.

For the P6 family and Intel386 processors, an unmasked floating-point exception always causes the FERR# pin to
be asserted upon completion of the instruction that caused the exception. For the Pentium and Intel486 proces-
sors, an unmasked floating-point exception may cause the FERR# pin to be asserted either at the end of the
instruction causing the exception or immediately before execution of the next floating-point instruction. (Note that
the next floating-point instruction would not be executed until the pending unmasked exception has been
handled.) See Appendix D, “Guidelines for Writing SIMD Floating-Point Exception Handlers,” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1, for a complete description of the required mechanism
for handling floating-point exceptions using the MS-DOS compatibility mode.

Using FERR# and IGNNE# to handle floating-point exception is deprecated by modern operating systems; this
approach also limits newer processors to operate with one logical processor active.

23.18.6.8 Invalid Operation Exception On Denormals
An invalid-operation exception is not generated on the 32-bit x87 FPUs upon encountering a denormal value when
executing a FSQRT, FDIV, or FPREM instruction or upon conversion to BCD or to integer. The operation proceeds by
first normalizing the value. On the 16-bit IA-32 math coprocessors, upon encountering this situation, the invalid-
operation exception is generated. This difference has no impact on existing software. Software running on the 32-
bit x87 FPUs continues to execute in cases where the 16-bit IA-32 math coprocessors trap. The reason for this
change was to eliminate an exception from being raised.

23.18.6.9 Alignment Check Exceptions (#AC)
If alignment checking is enabled, a misaligned data operand on the P6 family, Pentium, and Intel486 processors
causes an alignment check exception (#AC) when a program or procedure is running at privilege-level 3, except
for the stack portion of the FSAVE/FNSAVE, FXSAVE, FRSTOR, and FXRSTOR instructions.
Vol. 3B 23-11

ARCHITECTURE COMPATIBILITY
23.18.6.10 Segment Not Present Exception During FLDENV
On the Intel486 processor, when a segment not present exception (#NP) occurs in the middle of an FLDENV
instruction, it can happen that part of the environment is loaded and part not. In such cases, the FPU control word
is left with a value of 007FH. The P6 family and Pentium processors ensure the internal state is correct at all times
by attempting to read the first and last bytes of the environment before updating the internal state.

23.18.6.11 Device Not Available Exception (#NM)
The device-not-available exception (#NM, interrupt 7) will occur in the P6 family, Pentium, and Intel486 processors
as described in Section 2.5, “Control Registers,” Table 2-2, and Chapter 6, “Interrupt 7—Device Not Available
Exception (#NM).”

23.18.6.12 Coprocessor Segment Overrun Exception
The coprocessor segment overrun exception (interrupt 9) does not occur in the P6 family, Pentium, and Intel486
processors. In situations where the Intel 387 math coprocessor would cause an interrupt 9, the P6 family, Pentium,
and Intel486 processors simply abort the instruction. To avoid undetected segment overruns, it is recommended
that the floating-point save area be placed in the same page as the TSS. This placement will prevent the FPU envi-
ronment from being lost if a page fault occurs during the execution of an FLDENV, FRSTOR, or FXRSTOR instruction
while the operating system is performing a task switch.

23.18.6.13 General Protection Exception (#GP)
A general-protection exception (#GP, interrupt 13) occurs if the starting address of a floating-point operand falls
outside a segment’s size. An exception handler should be included to report these programming errors.

23.18.6.14 Floating-Point Error Exception (#MF)
In real mode and protected mode (not including virtual-8086 mode), interrupt vector 16 must point to the floating-
point exception handler. In virtual-8086 mode, the virtual-8086 monitor can be programmed to accommodate a
different location of the interrupt vector for floating-point exceptions.

23.18.7 Changes to Floating-Point Instructions
This section identifies the differences in floating-point instructions for the various Intel FPU and math coprocessor
architectures, the reason for the differences, and their impact on software.

23.18.7.1 FDIV, FPREM, and FSQRT Instructions
The 32-bit x87 FPUs support operations on denormalized operands and, when detected, an underflow exception
can occur, for compatibility with the IEEE Standard 754. The 16-bit IA-32 math coprocessors do not operate on
denormalized operands or return underflow results. Instead, they generate an invalid-operation exception when
they detect an underflow condition. An existing underflow exception handler will require change only if it gives
different treatment to different opcodes. Also, it is possible that fewer invalid-operation exceptions will occur.

23.18.7.2 FSCALE Instruction
With the 32-bit x87 FPUs, the range of the scaling operand is not restricted. If (0 < | ST(1) < 1), the scaling factor
is 0; therefore, ST(0) remains unchanged. If the rounded result is not exact or if there was a loss of accuracy
(masked underflow), the precision exception is signaled. With the 16-bit IA-32 math coprocessors, the range of the
scaling operand is restricted. If (0 < | ST(1) | < 1), the result is undefined and no exception is signaled. The
impact of this difference on exiting software is that different results are delivered on the 32-bit and 16-bit FPUs and
math coprocessors when (0 < | ST(1) | < 1).
23-12 Vol. 3B

ARCHITECTURE COMPATIBILITY
23.18.7.3 FPREM1 Instruction
The 32-bit x87 FPUs compute a partial remainder according to IEEE Standard 754. This instruction does not exist
on the 16-bit IA-32 math coprocessors. The availability of the FPREM1 instruction has is no impact on existing soft-
ware.

23.18.7.4 FPREM Instruction
On the 32-bit x87 FPUs, the condition code flags C0, C3, C1 in the status word correctly reflect the three low-order
bits of the quotient following execution of the FPREM instruction. On the 16-bit IA-32 math coprocessors, the
quotient bits are incorrect when performing a reduction of (64N + M) when (N ≥ 1) and M is 1 or 2. This difference
does not affect existing software; software that works around the bug should not be affected.

23.18.7.5 FUCOM, FUCOMP, and FUCOMPP Instructions
When executing the FUCOM, FUCOMP, and FUCOMPP instructions, the 32-bit x87 FPUs perform unordered compare
according to IEEE Standard 754. These instructions do not exist on the 16-bit IA-32 math coprocessors. The avail-
ability of these new instructions has no impact on existing software.

23.18.7.6 FPTAN Instruction
On the 32-bit x87 FPUs, the range of the operand for the FPTAN instruction is much less restricted (| ST(0) | < 263)
than on earlier math coprocessors. The instruction reduces the operand internally using an internal π/4 constant
that is more accurate. The range of the operand is restricted to (| ST(0) | < π/4) on the 16-bit IA-32 math copro-
cessors; the operand must be reduced to this range using FPREM. This change has no impact on existing software.
See also sections 8.3.8 and section 8.3.10 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, for more information on the accuracy of the FPTAN instruction.

23.18.7.7 Stack Overflow
On the 32-bit x87 FPUs, if an FPU stack overflow occurs when the invalid-operation exception is masked, the FPU
returns the real, integer, or BCD-integer indefinite value to the destination operand, depending on the instruction
being executed. On the 16-bit IA-32 math coprocessors, the original operand remains unchanged following a stack
overflow, but it is loaded into register ST(1). This difference has no impact on existing software.

23.18.7.8 FSIN, FCOS, and FSINCOS Instructions
On the 32-bit x87 FPUs, these instructions perform three common trigonometric functions. These instructions do
not exist on the 16-bit IA-32 math coprocessors. The availability of these instructions has no impact on existing
software, but using them provides a performance upgrade. See also sections 8.3.8 and section 8.3.10 of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more information on the accuracy of the
FSIN, FCOS, and FSINCOS instructions.

23.18.7.9 FPATAN Instruction
On the 32-bit x87 FPUs, the range of operands for the FPATAN instruction is unrestricted. On the 16-bit IA-32 math
coprocessors, the absolute value of the operand in register ST(0) must be smaller than the absolute value of the
operand in register ST(1). This difference has impact on existing software.

23.18.7.10 F2XM1 Instruction
The 32-bit x87 FPUs support a wider range of operands (–1 < ST (0) < + 1) for the F2XM1 instruction. The
supported operand range for the 16-bit IA-32 math coprocessors is (0 ≤ ST(0) ≤ 0.5). This difference has no impact
on existing software.
Vol. 3B 23-13

ARCHITECTURE COMPATIBILITY
23.18.7.11 FLD Instruction
On the 32-bit x87 FPUs, when using the FLD instruction to load an extended-real value, a denormal-operand excep-
tion is not generated because the instruction is not arithmetic. The 16-bit IA-32 math coprocessors do report a
denormal-operand exception in this situation. This difference does not affect existing software.

On the 32-bit x87 FPUs, loading a denormal value that is in single- or double-real format causes the value to be
converted to extended-real format. Loading a denormal value on the 16-bit IA-32 math coprocessors causes the
value to be converted to an unnormal. If the next instruction is FXTRACT or FXAM, the 32-bit x87 FPUs will give a
different result than the 16-bit IA-32 math coprocessors. This change was made for IEEE Standard 754 compati-
bility.

On the 32-bit x87 FPUs, loading an SNaN that is in single- or double-real format causes the FPU to generate an
invalid-operation exception. The 16-bit IA-32 math coprocessors do not raise an exception when loading a signaling
NaN. The invalid-operation exception handler for 16-bit math coprocessor software needs to be updated to handle
this condition when porting software to 32-bit FPUs. This change was made for IEEE Standard 754 compatibility.

23.18.7.12 FXTRACT Instruction
On the 32-bit x87 FPUs, if the operand is 0 for the FXTRACT instruction, the divide-by-zero exception is reported
and –∞ is delivered to register ST(1). If the operand is +∞, no exception is reported. If the operand is 0 on the 16-
bit IA-32 math coprocessors, 0 is delivered to register ST(1) and no exception is reported. If the operand is +∞, the
invalid-operation exception is reported. These differences have no impact on existing software. Software usually
bypasses 0 and ∞. This change is due to the IEEE Standard 754 recommendation to fully support the “logb” func-
tion.

23.18.7.13 Load Constant Instructions
On 32-bit x87 FPUs, rounding control is in effect for the load constant instructions. Rounding control is not in effect
for the 16-bit IA-32 math coprocessors. Results for the FLDPI, FLDLN2, FLDLG2, and FLDL2E instructions are the
same as for the 16-bit IA-32 math coprocessors when rounding control is set to round to nearest or round to +∞.
They are the same for the FLDL2T instruction when rounding control is set to round to nearest, round to –∞, or
round to zero. Results are different from the 16-bit IA-32 math coprocessors in the least significant bit of the
mantissa if rounding control is set to round to –∞ or round to 0 for the FLDPI, FLDLN2, FLDLG2, and FLDL2E instruc-
tions; they are different for the FLDL2T instruction if round to +∞ is specified. These changes were implemented for
compatibility with IEEE Standard 754 for Floating-Point Arithmetic recommendations.

23.18.7.14 FXAM Instruction
With the 32-bit x87 FPUs, if the FPU encounters an empty register when executing the FXAM instruction, it not
generate combinations of C0 through C3 equal to 1101 or 1111. The 16-bit IA-32 math coprocessors may generate
these combinations, among others. This difference has no impact on existing software; it provides a performance
upgrade to provide repeatable results.

23.18.7.15 FSAVE and FSTENV Instructions
With the 32-bit x87 FPUs, the address of a memory operand pointer stored by FSAVE or FSTENV is undefined if the
previous floating-point instruction did not refer to memory

23.18.8 Transcendental Instructions
The floating-point results of the P6 family and Pentium processors for transcendental instructions in the core range
may differ from the Intel486 processors by about 2 or 3 ulps (see “Transcendental Instruction Accuracy” in Chapter
8, “Programming with the x87 FPU,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
1). Condition code flag C1 of the status word may differ as a result. The exact threshold for underflow and overflow
will vary by a few ulps. The P6 family and Pentium processors’ results will have a worst case error of less than 1 ulp
when rounding to the nearest-even and less than 1.5 ulps when rounding in other modes. The transcendental
23-14 Vol. 3B

ARCHITECTURE COMPATIBILITY
instructions are guaranteed to be monotonic, with respect to the input operands, throughout the domain supported
by the instruction.

Transcendental instructions may generate different results in the round-up flag (C1) on the 32-bit x87 FPUs. The
round-up flag is undefined for these instructions on the 16-bit IA-32 math coprocessors. This difference has no
impact on existing software.

23.18.9 Obsolete Instructions and Undefined Opcodes
The 8087 math coprocessor instructions FENI and FDISI, and the Intel 287 math coprocessor instruction FSETPM
are treated as integer NOP instructions in the 32-bit x87 FPUs. If these opcodes are detected in the instruction
stream, no specific operation is performed and no internal states are affected. FSETPM informed the Intel 287 math
coprocessor that the processor was in protected mode. The 32-bit x87 FPUs handle all addressing and exception-
pointer information, whether in protected mode or not.

For compatibility with prior generations there are a few reserved x87 opcodes which do not result in an invalid-
opcode (#UD) exception, but rather result in the same behavior as existing defined x87 instructions. In the interest
of standardization, it is recommended that the opcodes defined in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volumes 2A, 2B, 2C, & 2D, be used for these operations for standardization.
• DCD0H through DCD7H - Behaves the same as FCOM, D8D0H through D8D7H.
• DCD8H through DCDFH - Behaves the same as FCOMP, D8D8H through D8DFH.
• DDC8H through DDCFH - Behaves the same as FXCH, D9C8H through D9CFH.
• DED0H through DED7H - Behaves the same as FCOMP, D8D8H through D8DFH.
• DFD0H through DFD7H - Behaves the same as FSTP, DDD8H through DDDFH.
• DFC8H through DFCFH - Behaves the same as FXCH, D9C8H through D9CFH.
• DFD8H through DFDFH - Behaves the same as FSTP, DDD8H through DDDFH.

There are a few reserved x87 opcodes which provide unique behavior but do not provide capabilities which are not
already available in the main instructions defined in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volumes 2A, 2B, 2C, & 2D.
• D9D8H through D9DFH - Behaves the same as FSTP (DDD8H through DDDFH) but won't cause a stack

underflow exception.
• DFC0H through DFC7H - Behaves the same as FFREE (DDC0H through DDD7H) with the addition of an x87

stack POP.

23.18.10 WAIT/FWAIT Prefix Differences
On the Intel486 processor, when a WAIT/FWAIT instruction precedes a floating-point instruction (one which itself
automatically synchronizes with the previous floating-point instruction), the WAIT/FWAIT instruction is treated as
a no-op. Pending floating-point exceptions from a previous floating-point instruction are processed not on the
WAIT/FWAIT instruction but on the floating-point instruction following the WAIT/FWAIT instruction. In such a case,
the report of a floating-point exception may appear one instruction later on the Intel486 processor than on a P6
family or Pentium FPU, or on Intel 387 math coprocessor.

23.18.11 Operands Split Across Segments and/or Pages
On the P6 family, Pentium, and Intel486 processor FPUs, when the first half of an operand to be written is inside a
page or segment and the second half is outside, a memory fault can cause the first half to be stored but not the
second half. In this situation, the Intel 387 math coprocessor stores nothing.

23.18.12 FPU Instruction Synchronization
On the 32-bit x87 FPUs, all floating-point instructions are automatically synchronized; that is, the processor auto-
matically waits until the previous floating-point instruction has completed before completing the next floating-point
Vol. 3B 23-15

ARCHITECTURE COMPATIBILITY
instruction. No explicit WAIT/FWAIT instructions are required to assure this synchronization. For the 8087 math
coprocessors, explicit waits are required before each floating-point instruction to ensure synchronization. Although
8087 programs having explicit WAIT instructions execute perfectly on the 32-bit IA-32 processors without reas-
sembly, these WAIT instructions are unnecessary.

23.19 SERIALIZING INSTRUCTIONS
Certain instructions have been defined to serialize instruction execution to ensure that modifications to flags, regis-
ters, and memory are completed before the next instruction is executed (or in P6 family processor terminology
“committed to machine state”). Because the P6 family processors use branch-prediction and out-of-order execu-
tion techniques to improve performance, instruction execution is not generally serialized until the results of an
executed instruction are committed to machine state (see Chapter 2, “Intel® 64 and IA-32 Architectures,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).

As a result, at places in a program or task where it is critical to have execution completed for all previous instruc-
tions before executing the next instruction (for example, at a branch, at the end of a procedure, or in multipro-
cessor dependent code), it is useful to add a serializing instruction. See Section 9.3, “Serializing Instructions,” for
more information on serializing instructions.

23.20 FPU AND MATH COPROCESSOR INITIALIZATION
Table 10-1 shows the states of the FPUs in the P6 family, Pentium, Intel486 processors and of the Intel 387 math
coprocessor and Intel 287 coprocessor following a power-up, reset, or INIT, or following the execution of an
FINIT/FNINIT instruction. The following is some additional compatibility information concerning the initialization of
x87 FPUs and math coprocessors.

23.20.1 Intel® 387 and Intel® 287 Math Coprocessor Initialization
Following an Intel386 processor reset, the processor identifies its coprocessor type (Intel® 287 or Intel® 387 DX
math coprocessor) by sampling its ERROR# input some time after the falling edge of RESET# signal and before
execution of the first floating-point instruction. The Intel 287 coprocessor keeps its ERROR# output in inactive
state after hardware reset; the Intel 387 coprocessor keeps its ERROR# output in active state after hardware
reset.

Upon hardware reset or execution of the FINIT/FNINIT instruction, the Intel 387 math coprocessor signals an error
condition. The P6 family, Pentium, and Intel486 processors, like the Intel 287 coprocessor, do not.

23.20.2 Intel486 SX Processor and Intel 487 SX Math Coprocessor Initialization
When initializing an Intel486 SX processor and an Intel 487 SX math coprocessor, the initialization routine should
check the presence of the math coprocessor and should set the FPU related flags (EM, MP, and NE) in control
register CR0 accordingly (see Section 2.5, “Control Registers,” for a complete description of these flags). Table 23-2
gives the recommended settings for these flags when the math coprocessor is present. The FSTCW instruction will
give a value of FFFFH for the Intel486 SX microprocessor and 037FH for the Intel 487 SX math coprocessor.
23-16 Vol. 3B

ARCHITECTURE COMPATIBILITY
The EM and MP flags in register CR0 are interpreted as shown in Table 23-3.

Following is an example code sequence to initialize the system and check for the presence of Intel486 SX
processor/Intel 487 SX math coprocessor.

fninit
fstcw mem_loc
mov ax, mem_loc
cmp ax, 037fh
jz Intel487_SX_Math_CoProcessor_present ;ax=037fh
jmp Intel486_SX_microprocessor_present ;ax=ffffh

If the Intel 487 SX math coprocessor is not present, the following code can be run to set the CR0 register for the
Intel486 SX processor.

mov eax, cr0
and eax, fffffffdh ;make MP=0
or eax, 0024h ;make EM=1, NE=1
mov cr0, eax

This initialization will cause any floating-point instruction to generate a device not available exception (#NM), inter-
rupt 7. The software emulation will then take control to execute these instructions. This code is not required if an
Intel 487 SX math coprocessor is present in the system. In that case, the typical initialization routine for the
Intel486 SX microprocessor will be adequate.

Also, when designing an Intel486 SX processor based system with an Intel 487 SX math coprocessor, timing loops
should be independent of frequency and clocks per instruction. One way to attain this is to implement these loops
in hardware and not in software (for example, BIOS).

23.21 CONTROL REGISTERS
The following sections identify the new control registers and control register flags and fields that were introduced
to the 32-bit IA-32 in various processor families. See Figure 2-7 for the location of these flags and fields in the
control registers.

Table 23-2. Recommended Values of the EM, MP, and NE Flags for Intel486 SX Microprocessor/Intel 487 SX Math
Coprocessor System

CR0 Flags Intel486 SX Processor Only Intel 487 SX Math Coprocessor Present

EM 1 0

MP 0 1

NE 1 0, for MS-DOS* systems
1, for user-defined exception handler

Table 23-3. EM and MP Flag Interpretation

EM MP Interpretation

0 0 Floating-point instructions are passed to FPU; WAIT/FWAIT and other waiting-type instructions
ignore TS.

0 1 Floating-point instructions are passed to FPU; WAIT/FWAIT and other waiting-type instructions
test TS.

1 0 Floating-point instructions trap to emulator; WAIT/FWAIT and other waiting-type instructions
ignore TS.

1 1 Floating-point instructions trap to emulator; WAIT/FWAIT and other waiting-type instructions
test TS.
Vol. 3B 23-17

ARCHITECTURE COMPATIBILITY
The Pentium III processor introduced one new control flag in control register CR4:
• OSXMMEXCPT (bit 10) — The OS will set this bit if it supports unmasked SIMD floating-point exceptions.

The Pentium II processor introduced one new control flag in control register CR4:
• OSFXSR (bit 9) — The OS supports saving and restoring the Pentium III processor state during context

switches.

The Pentium Pro processor introduced three new control flags in control register CR4:
• PAE (bit 5) — Physical address extension. Enables paging mechanism to reference extended physical addresses

when set; restricts physical addresses to 32 bits when clear (see also: Section 23.22.1.1, “Physical Memory
Addressing Extension”).

• PGE (bit 7) — Page global enable. Inhibits flushing of frequently-used or shared pages on CR3 writes (see also:
Section 23.22.1.2, “Global Pages”).

• PCE (bit 8) — Performance-monitoring counter enable. Enables execution of the RDPMC instruction at any
protection level.

The content of CR4 is 0H following a hardware reset.

Control register CR4 was introduced in the Pentium processor. This register contains flags that enable certain new
extensions provided in the Pentium processor:
• VME — Virtual-8086 mode extensions. Enables support for a virtual interrupt flag in virtual-8086 mode (see

Section 21.3, “Interrupt and Exception Handling in Virtual-8086 Mode”).
• PVI — Protected-mode virtual interrupts. Enables support for a virtual interrupt flag in protected mode (see

Section 21.4, “Protected-Mode Virtual Interrupts”).
• TSD — Time-stamp disable. Restricts the execution of the RDTSC instruction to procedures running at

privileged level 0.
• DE — Debugging extensions. Causes an undefined opcode (#UD) exception to be generated when debug

registers DR4 and DR5 are references for improved performance (see Section 23.23.3, “Debug Registers DR4
and DR5”).

• PSE — Page size extensions. Enables 4-MByte pages with 32-bit paging when set (see Section 4.3, “32-Bit
Paging”).

• MCE — Machine-check enable. Enables the machine-check exception, allowing exception handling for certain
hardware error conditions (see Chapter 16, “Machine-Check Architecture”).

The Intel486 processor introduced five new flags in control register CR0:
• NE — Numeric error. Enables the normal mechanism for reporting floating-point numeric errors.
• WP — Write protect. Write-protects read-only pages against supervisor-mode accesses.
• AM — Alignment mask. Controls whether alignment checking is performed. Operates in conjunction with the AC

(Alignment Check) flag.
• NW — Not write-through. Enables write-throughs and cache invalidation cycles when clear and disables invali-

dation cycles and write-throughs that hit in the cache when set.
• CD — Cache disable. Enables the internal cache when clear and disables the cache when set.

The Intel486 processor introduced two new flags in control register CR3:
• PCD — Page-level cache disable. The state of this flag is driven on the PCD# pin during bus cycles that are not

paged, such as interrupt acknowledge cycles, when paging is enabled. The PCD# pin is used to control caching
in an external cache on a cycle-by-cycle basis.

• PWT — Page-level write-through. The state of this flag is driven on the PWT# pin during bus cycles that are not
paged, such as interrupt acknowledge cycles, when paging is enabled. The PWT# pin is used to control write
through in an external cache on a cycle-by-cycle basis.
23-18 Vol. 3B

ARCHITECTURE COMPATIBILITY
23.22 MEMORY MANAGEMENT FACILITIES
The following sections describe the new memory management facilities available in the various IA-32 processors
and some compatibility differences.

23.22.1 New Memory Management Control Flags
The Pentium Pro processor introduced three new memory management features: physical memory addressing
extension, the global bit in page-table entries, and general support for larger page sizes. These features are only
available when operating in protected mode.

23.22.1.1 Physical Memory Addressing Extension
The new PAE (physical address extension) flag in control register CR4, bit 5, may enable additional address lines
on the processor, allowing extended physical addresses. This option can only be used when paging is enabled,
using a new page-table mechanism provided to support the larger physical address range (see Section 4.1, “Paging
Modes and Control Bits”).

23.22.1.2 Global Pages
The new PGE (page global enable) flag in control register CR4, bit 7, provides a mechanism for preventing
frequently used pages from being flushed from the translation lookaside buffer (TLB). When this flag is set,
frequently used pages (such as pages containing kernel procedures or common data tables) can be marked global
by setting the global flag in a page-directory or page-table entry.

On a task switch or a write to control register CR3 (which normally causes the TLBs to be flushed), the entries in
the TLB marked global are not flushed. Marking pages global in this manner prevents unnecessary reloading of the
TLB due to TLB misses on frequently used pages. See Section 4.10, “Caching Translation Information,” for a
detailed description of this mechanism.

23.22.1.3 Larger Page Sizes
The P6 family processors support large page sizes. For 32-bit paging, this facility is enabled with the PSE (page size
extension) flag in control register CR4, bit 4. When this flag is set, the processor supports either 4-KByte or 4-
MByte page sizes. PAE paging and 4-level paging1 support 2-MByte pages regardless of the value of CR4.PSE (see
Section 4.4, “PAE Paging,” and Section 4.5, “4-Level Paging and 5-Level Paging”). See Chapter 4, “Paging,” for
more information about large page sizes.

23.22.2 CD and NW Cache Control Flags
The CD and NW flags in control register CR0 were introduced in the Intel486 processor. In the P6 family and
Pentium processors, these flags are used to implement a writeback strategy for the data cache; in the Intel486
processor, they implement a write-through strategy. See Table 12-5 for a comparison of these bits on the P6 family,
Pentium, and Intel486 processors. For complete information on caching, see Chapter 12, “Memory Cache Control.”

23.22.3 Descriptor Types and Contents
Operating-system code that manages space in descriptor tables often contains an invalid value in the access-rights
field of descriptor-table entries to identify unused entries. Access rights values of 80H and 00H remain invalid for
the P6 family, Pentium, Intel486, Intel386, and Intel 286 processors. Other values that were invalid on the Intel
286 processor may be valid on the 32-bit processors because uses for these bits have been defined.

1. Earlier versions of this manual used the term “IA-32e paging” to identify 4-level paging.
Vol. 3B 23-19

ARCHITECTURE COMPATIBILITY
23.22.4 Changes in Segment Descriptor Loads
On the Intel386 processor, loading a segment descriptor always causes a locked read and write to set the accessed
bit of the descriptor. On the P6 family, Pentium, and Intel486 processors, the locked read and write occur only if the
bit is not already set.

23.23 DEBUG FACILITIES
The P6 family and Pentium processors include extensions to the Intel486 processor debugging support for break-
points. To use the new breakpoint features, it is necessary to set the DE flag in control register CR4.

23.23.1 Differences in Debug Register DR6
It is not possible to write a 1 to reserved bit 12 in debug status register DR6 on the P6 family and Pentium proces-
sors; however, it is possible to write a 1 in this bit on the Intel486 processor. See Table 10-1 for the different setting
of this register following a power-up or hardware reset.

23.23.2 Differences in Debug Register DR7
The P6 family and Pentium processors determines the type of breakpoint access by the R/W0 through R/W3 fields
in debug control register DR7 as follows:

00 Break on instruction execution only.

01 Break on data writes only.

10 Undefined if the DE flag in control register CR4 is cleared; break on I/O reads or writes but not instruction
fetches if the DE flag in control register CR4 is set.

11 Break on data reads or writes but not instruction fetches.

On the P6 family and Pentium processors, reserved bits 11, 12, 14, and 15 are hard-wired to 0. On the Intel486
processor, however, bit 12 can be set. See Table 10-1 for the different settings of this register following a power-up
or hardware reset.

23.23.3 Debug Registers DR4 and DR5
Although the DR4 and DR5 registers are documented as reserved, previous generations of processors aliased refer-
ences to these registers to debug registers DR6 and DR7, respectively. When debug extensions are not enabled
(the DE flag in control register CR4 is cleared), the P6 family and Pentium processors remain compatible with
existing software by allowing these aliased references. When debug extensions are enabled (the DE flag is set),
attempts to reference registers DR4 or DR5 will result in an invalid-opcode exception (#UD).

23.24 RECOGNITION OF BREAKPOINTS
For the Pentium processor, it is recommended that debuggers execute the LGDT instruction before returning to the
program being debugged to ensure that breakpoints are detected. This operation does not need to be performed
on the P6 family, Intel486, or Intel386 processors.

The implementation of test registers on the Intel486 processor used for testing the cache and TLB has been rede-
signed using MSRs on the P6 family and Pentium processors. (Note that MSRs used for this function are different
on the P6 family and Pentium processors.) The MOV to and from test register instructions generate invalid-opcode
exceptions (#UD) on the P6 family processors.
23-20 Vol. 3B

ARCHITECTURE COMPATIBILITY
23.25 EXCEPTIONS AND/OR EXCEPTION CONDITIONS
This section describes the new exceptions and exception conditions added to the 32-bit IA-32 processors and
implementation differences in existing exception handling. See Chapter 6, “Interrupt and Exception Handling,” for
a detailed description of the IA-32 exceptions.

The Pentium III processor introduced new state with the XMM registers. Computations involving data in these regis-
ters can produce exceptions. A new MXCSR control/status register is used to determine which exception or excep-
tions have occurred. When an exception associated with the XMM registers occurs, an interrupt is generated.
• SIMD floating-point exception (#XM, interrupt 19) — New exceptions associated with the SIMD floating-point

registers and resulting computations.

No new exceptions were added with the Pentium Pro and Pentium II processors. The set of available exceptions is
the same as for the Pentium processor. However, the following exception condition was added to the IA-32 with the
Pentium Pro processor:
• Machine-check exception (#MC, interrupt 18) — New exception conditions. Many exception conditions have

been added to the machine-check exception and a new architecture has been added for handling and reporting
on hardware errors. See Chapter 16, “Machine-Check Architecture,” for a detailed description of the new
conditions.

The following exceptions and/or exception conditions were added to the IA-32 with the Pentium processor:
• Machine-check exception (#MC, interrupt 18) — New exception. This exception reports parity and other

hardware errors. It is a model-specific exception and may not be implemented or implemented differently in
future processors. The MCE flag in control register CR4 enables the machine-check exception. When this bit is
clear (which it is at reset), the processor inhibits generation of the machine-check exception.

• General-protection exception (#GP, interrupt 13) — New exception condition added. An attempt to write a 1 to
a reserved bit position of a special register causes a general-protection exception to be generated.

• Page-fault exception (#PF, interrupt 14) — New exception condition added. When a 1 is detected in any of the
reserved bit positions of a page-table entry, page-directory entry, or page-directory pointer during address
translation, a page-fault exception is generated.

The following exception was added to the Intel486 processor:
• Alignment-check exception (#AC, interrupt 17) — New exception. Reports unaligned memory references when

alignment checking is being performed.

The following exceptions and/or exception conditions were added to the Intel386 processor:
• Divide-error exception (#DE, interrupt 0)

— Change in exception handling. Divide-error exceptions on the Intel386 processors always leave the saved
CS:IP value pointing to the instruction that failed. On the 8086 processor, the CS:IP value points to the next
instruction.

— Change in exception handling. The Intel386 processors can generate the largest negative number as a
quotient for the IDIV instruction (80H and 8000H). The 8086 processor generates a divide-error exception
instead.

• Invalid-opcode exception (#UD, interrupt 6) — New exception condition added. Improper use of the LOCK
instruction prefix can generate an invalid-opcode exception.

• Page-fault exception (#PF, interrupt 14) — New exception condition added. If paging is enabled in a 16-bit
program, a page-fault exception can be generated as follows. Paging can be used in a system with 16-bit tasks
if all tasks use the same page directory. Because there is no place in a 16-bit TSS to store the PDBR register,
switching to a 16-bit task does not change the value of the PDBR register. Tasks ported from the Intel 286
processor should be given 32-bit TSSs so they can make full use of paging.

• General-protection exception (#GP, interrupt 13) — New exception condition added. The Intel386 processor
sets a limit of 15 bytes on instruction length. The only way to violate this limit is by putting redundant prefixes
before an instruction. A general-protection exception is generated if the limit on instruction length is violated.
The 8086 processor has no instruction length limit.
Vol. 3B 23-21

ARCHITECTURE COMPATIBILITY
23.25.1 Machine-Check Architecture
The Pentium Pro processor introduced a new architecture to the IA-32 for handling and reporting on machine-check
exceptions. This machine-check architecture (described in detail in Chapter 16, “Machine-Check Architecture”)
greatly expands the ability of the processor to report on internal hardware errors.

23.25.2 Priority of Exceptions
The priority of exceptions are broken down into several major categories:

1. Traps on the previous instruction

2. External interrupts

3. Faults on fetching the next instruction

4. Faults in decoding the next instruction

5. Faults on executing an instruction

There are no changes in the priority of these major categories between the different processors, however, excep-
tions within these categories are implementation dependent and may change from processor to processor.

23.25.3 Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers
MMX instructions and a subset of SSE, SSE2, SSSE3 instructions operate on MMX registers. The exception condi-
tions of these instructions are described in the following tables.

Table 23-4. Exception Conditions for Legacy SIMD/MMX Instructions with FP Exception and 16-Byte Alignment

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protec-
tion, #GP(0)

X X X X Legacy SSE: Memory operand is not 16-byte aligned

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH

#PF(fault-code) X X X For a page fault

#XM X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1

Applicable
Instructions

CVTPD2PI, CVTTPD2PI
23-22 Vol. 3B

ARCHITECTURE COMPATIBILITY
Table 23-5. Exception Conditions for Legacy SIMD/MMX Instructions with XMM and FP Exception

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH

#PF(fault-code) X X X For a page fault

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference is made while
the current privilege level is 3.

SIMD Floating-point
Exception, #XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1

Applicable Instruc-
tions

CVTPI2PS, CVTPS2PI, CVTTPS2PI
Vol. 3B 23-23

ARCHITECTURE COMPATIBILITY
Table 23-6. Exception Conditions for Legacy SIMD/MMX Instructions with XMM and without FP Exception

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF1

NOTES:
1. Applies to “CVTPI2PD xmm, mm” but not “CVTPI2PD xmm, m64”.

X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH

 #PF(fault-code) X X X For a page fault

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Applicable Instruc-
tions

CVTPI2PD
23-24 Vol. 3B

ARCHITECTURE COMPATIBILITY
Table 23-7. Exception Conditions for SIMD/MMX Instructions with Memory Reference

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X X X If CR0.EM[bit 2] = 1.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH

 #PF(fault-code) X X X For a page fault

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference is made while
the current privilege level is 3.

Applicable Instruc-
tions

PABSB, PABSD, PABSW, PACKSSWB, PACKSSDW, PACKUSWB, PADDB, PADDD, PADDQ, PADDW, PADDSB,
PADDSW, PADDUSB, PADDUSW, PALIGNR, PAND, PANDN, PAVGB, PAVGW, PCMPEQB, PCMPEQD, PCMPEQW,
PCMPGTB, PCMPGTD, PCMPGTW, PHADDD, PHADDW, PHADDSW, PHSUBD, PHSUBW, PHSUBSW, PINSRW,
PMADDUBSW, PMADDWD, PMAXSW, PMAXUB, PMINSW, PMINUB, PMULHRSW, PMULHUW, PMULHW, PMULLW,
PMULUDQ, PSADBW, PSHUFB, PSHUFW, PSIGNB PSIGND PSIGNW, PSLLW, PSLLD, PSLLQ, PSRAD, PSRAW,
PSRLW, PSRLD, PSRLQ, PSUBB, PSUBD, PSUBQ, PSUBW, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW,
PUNPCKHBW, PUNPCKHWD, PUNPCKHDQ, PUNPCKLBW, PUNPCKLWD, PUNPCKLDQ, PXOR
Vol. 3B 23-25

ARCHITECTURE COMPATIBILITY
Table 23-8. Exception Conditions for Legacy SIMD/MMX Instructions without FP Exception

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X X X
If CR0.EM[bit 2] = 1.
If ModR/M.mod ≠ 11b1

NOTES:
1. Applies to MASKMOVQ only.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

#GP(0)

X

For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.
If the destination operand is in a non-writable segment.2

If the DS, ES, FS, or GS register contains a NULL segment selector.3

2. Applies to MASKMOVQ and MOVQ (mmreg) only.
3. Applies to MASKMOVQ only.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH

 #PF(fault-code) X X X For a page fault

#AC(0) X X X
If alignment checking is enabled and an unaligned memory reference is made while
the current privilege level is 3.

Applicable Instruc-
tions

MASKMOVQ, MOVNTQ, “MOVQ (mmreg)”
23-26 Vol. 3B

ARCHITECTURE COMPATIBILITY
23.26 INTERRUPTS
The following differences in handling interrupts are found among the IA-32
processors.

23.26.1 Interrupt Propagation Delay
External hardware interrupts may be recognized on different instruction boundaries on the P6 family, Pentium,
Intel486, and Intel386 processors, due to the superscaler designs of the P6 family and Pentium processors. There-
fore, the EIP pushed onto the stack when servicing an interrupt may be different for the P6 family, Pentium,
Intel486, and Intel386 processors.

23.26.2 NMI Interrupts
After an NMI interrupt is recognized by the P6 family, Pentium, Intel486, Intel386, and Intel 286 processors, the
NMI interrupt is masked until the first IRET instruction is executed, unlike the 8086 processor.

23.26.3 IDT Limit
The LIDT instruction can be used to set a limit on the size of the IDT. A double-fault exception (#DF) is generated
if an interrupt or exception attempts to read a vector beyond the limit. Shutdown then occurs on the 32-bit IA-32
processors if the double-fault handler vector is beyond the limit. (The 8086 processor does not have a shutdown
mode nor a limit.)

23.27 ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
The Advanced Programmable Interrupt Controller (APIC), referred to in this book as the local APIC, was intro-
duced into the IA-32 processors with the Pentium processor (beginning with the 735/90 and 815/100 models) and
is included in the Pentium 4, Intel Xeon, and P6 family processors. The features and functions of the local APIC are
derived from the Intel 82489DX external APIC, which was used with the Intel486 and early Pentium processors.
Additional refinements of the local APIC architecture were incorporated in the Pentium 4 and Intel Xeon processors.

Table 23-9. Exception Conditions for Legacy SIMD/MMX Instructions without Memory Reference

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X X X If CR0.EM[bit 2] = 1.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X If CR0.TS[bit 3]=1

Applicable Instruc-
tions

PEXTRW, PMOVMSKB
Vol. 3B 23-27

ARCHITECTURE COMPATIBILITY
23.27.1 Software Visible Differences Between the Local APIC and the 82489DX
The following features in the local APIC features differ from those found in the 82489DX external APIC:
• When the local APIC is disabled by clearing the APIC software enable/disable flag in the spurious-interrupt

vector MSR, the state of its internal registers are unaffected, except that the mask bits in the LVT are all set to
block local interrupts to the processor. Also, the local APIC ceases accepting IPIs except for INIT, SMI, NMI, and
start-up IPIs. In the 82489DX, when the local unit is disabled, all the internal registers including the IRR, ISR,
and TMR are cleared and the mask bits in the LVT are set. In this state, the 82489DX local unit will accept only
the reset deassert message.

• In the local APIC, NMI and INIT (except for INIT deassert) are always treated as edge triggered interrupts, even
if programmed otherwise. In the 82489DX, these interrupts are always level triggered.

• In the local APIC, IPIs generated through the ICR are always treated as edge triggered (except INIT Deassert).
In the 82489DX, the ICR can be used to generate either edge or level triggered IPIs.

• In the local APIC, the logical destination register supports 8 bits; in the 82489DX, it supports 32 bits.
• In the local APIC, the APIC ID register is 4 bits wide; in the 82489DX, it is 8 bits wide.
• The remote read delivery mode provided in the 82489DX and local APIC for Pentium processors is not

supported in the local APIC in the Pentium 4, Intel Xeon, and P6 family processors.
• For the 82489DX, in the lowest priority delivery mode, all the target local APICs specified by the destination

field participate in the lowest priority arbitration. For the local APIC, only those local APICs which have free
interrupt slots will participate in the lowest priority arbitration.

23.27.2 New Features Incorporated in the Local APIC for the P6 Family and Pentium
Processors

The local APIC in the Pentium and P6 family processors have the following new features not found in the 82489DX
external APIC.
• Cluster addressing is supported in logical destination mode.
• Focus processor checking can be enabled/disabled.
• Interrupt input signal polarity can be programmed for the LINT0 and LINT1 pins.
• An SMI IPI is supported through the ICR and I/O redirection table.
• An error status register is incorporated into the LVT to log and report APIC errors.

In the P6 family processors, the local APIC incorporates an additional LVT register to handle performance moni-
toring counter interrupts.

23.27.3 New Features Incorporated in the Local APIC of the Pentium 4 and Intel Xeon
Processors

The local APIC in the Pentium 4 and Intel Xeon processors has the following new features not found in the P6 family
and Pentium processors and in the 82489DX.
• The local APIC ID is extended to 8 bits.
• An thermal sensor register is incorporated into the LVT to handle thermal sensor interrupts.
• The the ability to deliver lowest-priority interrupts to a focus processor is no longer supported.
• The flat cluster logical destination mode is not supported.

23.28 TASK SWITCHING AND TSS
This section identifies the implementation differences of task switching, additions to the TSS and the handling of
TSSs and TSS segment selectors.
23-28 Vol. 3B

ARCHITECTURE COMPATIBILITY
23.28.1 P6 Family and Pentium Processor TSS
When the virtual mode extensions are enabled (by setting the VME flag in control register CR4), the TSS in the P6
family and Pentium processors contain an interrupt redirection bit map, which is used in virtual-8086 mode to redi-
rect interrupts back to an 8086 program.

23.28.2 TSS Selector Writes
During task state saves, the Intel486 processor writes 2-byte segment selectors into a 32-bit TSS, leaving the
upper 16 bits undefined. For performance reasons, the P6 family and Pentium processors write 4-byte segment
selectors into the TSS, with the upper 2 bytes being 0. For compatibility reasons, code should not depend on the
value of the upper 16 bits of the selector in the TSS.

23.28.3 Order of Reads/Writes to the TSS
The order of reads and writes into the TSS is processor dependent. The P6 family and Pentium processors may
generate different page-fault addresses in control register CR2 in the same TSS area than the Intel486 and
Intel386 processors, if a TSS crosses a page boundary (which is not recommended).

23.28.4 Using A 16-Bit TSS with 32-Bit Constructs
Task switches using 16-bit TSSs should be used only for pure 16-bit code. Any new code written using 32-bit
constructs (operands, addressing, or the upper word of the EFLAGS register) should use only 32-bit TSSs. This is
due to the fact that the 32-bit processors do not save the upper 16 bits of EFLAGS to a 16-bit TSS. A task switch
back to a 16-bit task that was executing in virtual mode will never re-enable the virtual mode, as this flag was not
saved in the upper half of the EFLAGS value in the TSS. Therefore, it is strongly recommended that any code using
32-bit constructs use a 32-bit TSS to ensure correct behavior in a multitasking environment.

23.28.5 Differences in I/O Map Base Addresses
The Intel486 processor considers the TSS segment to be a 16-bit segment and wraps around the 64K boundary.
Any I/O accesses check for permission to access this I/O address at the I/O base address plus the I/O offset. If the
I/O map base address exceeds the specified limit of 0DFFFH, an I/O access will wrap around and obtain the permis-
sion for the I/O address at an incorrect location within the TSS. A TSS limit violation does not occur in this situation
on the Intel486 processor. However, the P6 family and Pentium processors consider the TSS to be a 32-bit segment
and a limit violation occurs when the I/O base address plus the I/O offset is greater than the TSS limit. By following
the recommended specification for the I/O base address to be less than 0DFFFH, the Intel486 processor will not
wrap around and access incorrect locations within the TSS for I/O port validation and the P6 family and Pentium
processors will not experience general-protection exceptions (#GP). Figure 23-1 demonstrates the different areas
accessed by the Intel486 and the P6 family and Pentium processors.
Vol. 3B 23-29

ARCHITECTURE COMPATIBILITY
23.29 CACHE MANAGEMENT
The P6 family processors include two levels of internal caches: L1 (level 1) and L2 (level 2). The L1 cache is divided
into an instruction cache and a data cache; the L2 cache is a general-purpose cache. See Section 12.1, “Internal
Caches, TLBs, and Buffers,” for a description of these caches. (Note that although the Pentium II processor L2
cache is physically located on a separate chip in the cassette, it is considered an internal cache.)

The Pentium processor includes separate level 1 instruction and data caches. The data cache supports a writeback
(or alternatively write-through, on a line by line basis) policy for memory updates.

The Intel486 processor includes a single level 1 cache for both instructions and data.

The meaning of the CD and NW flags in control register CR0 have been redefined for the P6 family and Pentium
processors. For these processors, the recommended value (00B) enables writeback for the data cache of the
Pentium processor and for the L1 data cache and L2 cache of the P6 family processors. In the Intel486 processor,
setting these flags to (00B) enables write-through for the cache.

External system hardware can force the Pentium processor to disable caching or to use the write-through cache
policy should that be required. In the P6 family processors, the MTRRs can be used to override the CD and NW flags
(see Table 12-6).

The P6 family and Pentium processors support page-level cache management in the same manner as the Intel486
processor by using the PCD and PWT flags in control register CR3, the page-directory entries, and the page-table
entries. The Intel486 processor, however, is not affected by the state of the PWT flag since the internal cache of the
Intel486 processor is a write-through cache.

23.29.1 Self-Modifying Code with Cache Enabled
On the Intel486 processor, a write to an instruction in the cache will modify it in both the cache and memory. If the
instruction was prefetched before the write, however, the old version of the instruction could be the one executed.
To prevent this problem, it is necessary to flush the instruction prefetch unit of the Intel486 processor by coding a
jump instruction immediately after any write that modifies an instruction. The P6 family and Pentium processors,
however, check whether a write may modify an instruction that has been prefetched for execution. This check is
based on the linear address of the instruction. If the linear address of an instruction is found to be present in the

Figure 23-1. I/O Map Base Address Differences

Intel486 Processor

FFFFHI/O Map
Base Addres

FFFFH

FFFFH + 10H = FH
for I/O Validation

0H

FFFFH

FFFFH

I/O access at port 10H checks

0H

FFFFH + 10H = Outside Segment
for I/O Validation

bitmap at I/O address FFFFH + 10H,
which exceeds segment limit.
Wrap around does not occur,
general-protection exception (#GP)

I/O access at port 10H checks
bitmap at I/O map base address
FFFFH + 10H = offset 10H.
Offset FH from beginning of
TSS segment results because

P6 family and Pentium Processors

I/O Map
Base Addres

occurs. wraparound occurs.
23-30 Vol. 3B

ARCHITECTURE COMPATIBILITY
prefetch queue, the P6 family and Pentium processors flush the prefetch queue, eliminating the need to code a
jump instruction after any writes that modify an instruction.

Because the linear address of the write is checked against the linear address of the instructions that have been
prefetched, special care must be taken for self-modifying code to work correctly when the physical addresses of the
instruction and the written data are the same, but the linear addresses differ. In such cases, it is necessary to
execute a serializing operation to flush the prefetch queue after the write and before executing the modified
instruction. See Section 9.3, “Serializing Instructions,” for more information on serializing instructions.

NOTE
The check on linear addresses described above is not in practice a concern for compatibility. Appli-
cations that include self-modifying code use the same linear address for modifying and fetching the
instruction. System software, such as a debugger, that might possibly modify an instruction using
a different linear address than that used to fetch the instruction must execute a serializing
operation, such as IRET, before the modified instruction is executed.

23.29.2 Disabling the L3 Cache
A unified third-level (L3) cache in processors based on Intel NetBurst microarchitecture (see Section 12.1,
“Internal Caches, TLBs, and Buffers”) provides the third-level cache disable flag, bit 6 of the IA32_MISC_ENABLE
MSR. The third-level cache disable flag allows the L3 cache to be disabled and enabled, independently of the L1 and
L2 caches (see Section 12.5.4, “Disabling and Enabling the L3 Cache”). The third-level cache disable flag applies
only to processors based on Intel NetBurst microarchitecture. Processors with L3 and based on other microarchi-
tectures do not support the third-level cache disable flag.

23.30 PAGING
This section identifies enhancements made to the paging mechanism and implementation differences in the paging
mechanism for various IA-32 processors.

23.30.1 Large Pages
The Pentium processor extended the memory management/paging facilities of the IA-32 to allow large (4 MBytes)
pages sizes (see Section 4.3, “32-Bit Paging”). The first P6 family processor (the Pentium Pro processor) added a
2 MByte page size to the IA-32 in conjunction with the physical address extension (PAE) feature (see Section 4.4,
“PAE Paging”).

The availability of large pages with 32-bit paging on any IA-32 processor can be determined via feature bit 3 (PSE)
of register EDX after the CPUID instruction has been execution with an argument of 1. (Large pages are always
available with PAE paging and 4-level paging.) Intel processors that do not support the CPUID instruction support
only 32-bit paging and do not support page size enhancements. (See “CPUID—CPU Identification” in Chapter 3,
“Instruction Set Reference, A-L,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A, for more information on the CPUID instruction.)

23.30.2 PCD and PWT Flags
The PCD and PWT flags were introduced to the IA-32 in the Intel486 processor to control the caching of pages:
• PCD (page-level cache disable) flag—Controls caching on a page-by-page basis.
• PWT (page-level write-through) flag—Controls the write-through/writeback caching policy on a page-by-page

basis. Since the internal cache of the Intel486 processor is a write-through cache, it is not affected by the state
of the PWT flag.
Vol. 3B 23-31

ARCHITECTURE COMPATIBILITY
23.30.3 Enabling and Disabling Paging
Paging is enabled and disabled by loading a value into control register CR0 that modifies the PG flag. For backward
and forward compatibility with all IA-32 processors, Intel recommends that the following operations be performed
when enabling or disabling paging:

1. Execute a MOV CR0, REG instruction to either set (enable paging) or clear (disable paging) the PG flag.

2. Execute a near JMP instruction.

The sequence bounded by the MOV and JMP instructions should be identity mapped (that is, the instructions should
reside on a page whose linear and physical addresses are identical).

For the P6 family processors, the MOV CR0, REG instruction is serializing, so the jump operation is not required.
However, for backwards compatibility, the JMP instruction should still be included.

23.31 STACK OPERATIONS AND SUPERVISOR SOFTWARE
This section identifies the differences in the stack mechanism for the various IA-32 processors.

23.31.1 Selector Pushes and Pops
When pushing a segment selector onto the stack, the Pentium 4, Intel Xeon, P6 family, and Intel486 processors
decrement the ESP register by the operand size and then write 2 bytes. If the operand size is 32-bits, the upper two
bytes of the write are not modified. The Pentium processor decrements the ESP register by the operand size and
determines the size of the write by the operand size. If the operand size is 32-bits, the upper two bytes are written
as 0s.

When popping a segment selector from the stack, the Pentium 4, Intel Xeon, P6 family, and Intel486 processors
read 2 bytes and increment the ESP register by the operand size of the instruction. The Pentium processor deter-
mines the size of the read from the operand size and increments the ESP register by the operand size.

It is possible to align a 32-bit selector push or pop such that the operation generates an exception on a Pentium
processor and not on an Pentium 4, Intel Xeon, P6 family, or Intel486 processor. This could occur if the third and/or
fourth byte of the operation lies beyond the limit of the segment or if the third and/or fourth byte of the operation
is locate on a non-present or inaccessible page.

For a POP-to-memory instruction that meets the following conditions:
• The stack segment size is 16-bit.
• Any 32-bit addressing form with the SIB byte specifying ESP as the base register.
• The initial stack pointer is FFFCH (32-bit operand) or FFFEH (16-bit operand) and will wrap around to 0H as a

result of the POP operation.

The result of the memory write is implementation-specific. For example, in P6 family processors, the result of the
memory write is SS:0H plus any scaled index and displacement. In Pentium processors, the result of the memory
write may be either a stack fault (real mode or protected mode with stack segment size of 64 KByte), or write to
SS:10000H plus any scaled index and displacement (protected mode and stack segment size exceeds 64 KByte).

23.31.2 Error Code Pushes
The Intel486 processor implements the error code pushed on the stack as a 16-bit value. When pushed onto a 32-
bit stack, the Intel486 processor only pushes 2 bytes and updates ESP by 4. The P6 family and Pentium processors’
error code is a full 32 bits with the upper 16 bits set to zero. The P6 family and Pentium processors, therefore, push
4 bytes and update ESP by 4. Any code that relies on the state of the upper 16 bits may produce inconsistent
results.
23-32 Vol. 3B

ARCHITECTURE COMPATIBILITY
23.31.3 Fault Handling Effects on the Stack
During the handling of certain instructions, such as CALL and PUSHA, faults may occur in different sequences for
the different processors. For example, during far calls, the Intel486 processor pushes the old CS and EIP before a
possible branch fault is resolved. A branch fault is a fault from a branch instruction occurring from a segment limit
or access rights violation. If a branch fault is taken, the Intel486 and P6 family processors will have corrupted
memory below the stack pointer. However, the ESP register is backed up to make the instruction restartable. The
P6 family processors issue the branch before the pushes. Therefore, if a branch fault does occur, these processors
do not corrupt memory below the stack pointer. This implementation difference, however, does not constitute a
compatibility problem, as only values at or above the stack pointer are considered to be valid. Other operations
that encounter faults may also corrupt memory below the stack pointer and this behavior may vary on different
implementations.

23.31.4 Interlevel RET/IRET From a 16-Bit Interrupt or Call Gate
If a call or interrupt is made from a 32-bit stack environment through a 16-bit gate, only 16 bits of the old ESP can
be pushed onto the stack. On the subsequent RET/IRET, the 16-bit ESP is popped but the full 32-bit ESP is updated
since control is being resumed in a 32-bit stack environment. The Intel486 processor writes the SS selector into the
upper 16 bits of ESP. The P6 family and Pentium processors write zeros into the upper 16 bits.

23.32 MIXING 16- AND 32-BIT SEGMENTS
The features of the 16-bit Intel 286 processor are an object-code compatible subset of those of the 32-bit IA-32
processors. The D (default operation size) flag in segment descriptors indicates whether the processor treats a
code or data segment as a 16-bit or 32-bit segment; the B (default stack size) flag in segment descriptors indicates
whether the processor treats a stack segment as a 16-bit or 32-bit segment.

The segment descriptors used by the Intel 286 processor are supported by the 32-bit IA-32 processors if the Intel-
reserved word (highest word) of the descriptor is clear. On the 32-bit IA-32 processors, this word includes the
upper bits of the base address and the segment limit.

The segment descriptors for data segments, code segments, local descriptor tables (there are no descriptors for
global descriptor tables), and task gates are the same for the 16- and 32-bit processors. Other 16-bit descriptors
(TSS segment, call gate, interrupt gate, and trap gate) are supported by the 32-bit processors.

The 32-bit processors also have descriptors for TSS segments, call gates, interrupt gates, and trap gates that
support the 32-bit architecture. Both kinds of descriptors can be used in the same system.

For those segment descriptors common to both 16- and 32-bit processors, clear bits in the reserved word cause the
32-bit processors to interpret these descriptors exactly as an Intel 286 processor does, that is:
• Base Address — The upper 8 bits of the 32-bit base address are clear, which limits base addresses to 24 bits.
• Limit — The upper 4 bits of the limit field are clear, restricting the value of the limit field to 64 KBytes.
• Granularity bit — The G (granularity) flag is clear, indicating the value of the 16-bit limit is interpreted in units

of 1 byte.
• Big bit — In a data-segment descriptor, the B flag is clear in the segment descriptor used by the 32-bit

processors, indicating the segment is no larger than 64 KBytes.
• Default bit — In a code-segment descriptor, the D flag is clear, indicating 16-bit addressing and operands are

the default. In a stack-segment descriptor, the D flag is clear, indicating use of the SP register (instead of the
ESP register) and a 64-KByte maximum segment limit.

For information on mixing 16- and 32-bit code in applications, see Chapter 22, “Mixing 16-Bit and 32-Bit Code.”

23.33 SEGMENT AND ADDRESS WRAPAROUND
This section discusses differences in segment and address wraparound between the P6 family, Pentium, Intel486,
Intel386, Intel 286, and 8086 processors.
Vol. 3B 23-33

ARCHITECTURE COMPATIBILITY
23.33.1 Segment Wraparound
On the 8086 processor, an attempt to access a memory operand that crosses offset 65,535 or 0FFFFH or offset 0
(for example, moving a word to offset 65,535 or pushing a word when the stack pointer is set to 1) causes the
offset to wrap around modulo 65,536 or 010000H. With the Intel 286 processor, any base and offset combination
that addresses beyond 16 MBytes wraps around to the 1 MByte of the address space. The P6 family, Pentium,
Intel486, and Intel386 processors in real-address mode generate an exception in these cases:
• A general-protection exception (#GP) if the segment is a data segment (that is, if the CS, DS, ES, FS, or GS

register is being used to address the segment).
• A stack-fault exception (#SS) if the segment is a stack segment (that is, if the SS register is being used).

An exception to this behavior occurs when a stack access is data aligned, and the stack pointer is pointing to the
last aligned piece of data that size at the top of the stack (ESP is FFFFFFFCH). When this data is popped, no
segment limit violation occurs and the stack pointer will wrap around to 0.

The address space of the P6 family, Pentium, and Intel486 processors may wraparound at 1 MByte in real-address
mode. An external A20M# pin forces wraparound if enabled. On Intel 8086 processors, it is possible to specify
addresses greater than 1 MByte. For example, with a selector value FFFFH and an offset of FFFFH, the effective
address would be 10FFEFH (1 MByte plus 65519 bytes). The 8086 processor, which can form addresses up to 20
bits long, truncates the uppermost bit, which “wraps” this address to FFEFH. However, the P6 family, Pentium, and
Intel486 processors do not truncate this bit if A20M# is not enabled.

If a stack operation wraps around the address limit, shutdown occurs. (The 8086 processor does not have a shut-
down mode or a limit.)

The behavior when executing near the limit of a 4-GByte selector (limit = FFFFFFFFH) is different between the
Pentium Pro and the Pentium 4 family of processors. On the Pentium Pro, instructions which cross the limit -- for
example, a two byte instruction such as INC EAX that is encoded as FFH C0H starting exactly at the limit faults for
a segment violation (a one byte instruction at FFFFFFFFH does not cause an exception). Using the Pentium 4 micro-
processor family, neither of these situations causes a fault.

Segment wraparound and the functionality of A20M# is used primarily by older operating systems and not used by
modern operating systems. On newer Intel 64 processors, A20M# may be absent.

23.34 STORE BUFFERS AND MEMORY ORDERING
The Pentium 4, Intel Xeon, and P6 family processors provide a store buffer for temporary storage of writes (stores)
to memory (see Section 12.10, “Store Buffer”). Writes stored in the store buffer(s) are always written to memory
in program order, with the exception of “fast string” store operations (see Section 9.2.4, “Fast-String Operation and
Out-of-Order Stores”).

The Pentium processor has two store buffers, one corresponding to each of the pipelines. Writes in these buffers
are always written to memory in the order they were generated by the processor core.

It should be noted that only memory writes are buffered and I/O writes are not. The Pentium 4, Intel Xeon, P6
family, Pentium, and Intel486 processors do not synchronize the completion of memory writes on the bus and
instruction execution after a write. An I/O, locked, or serializing instruction needs to be executed to synchronize
writes with the next instruction (see Section 9.3, “Serializing Instructions”).

The Pentium 4, Intel Xeon, and P6 family processors use processor ordering to maintain consistency in the order
that data is read (loaded) and written (stored) in a program and the order the processor actually carries out the
reads and writes. With this type of ordering, reads can be carried out speculatively and in any order, reads can pass
buffered writes, and writes to memory are always carried out in program order. (See Section 9.2, “Memory
Ordering,” for more information about processor ordering.) The Pentium III processor introduced a new instruction
to serialize writes and make them globally visible. Memory ordering issues can arise between a producer and a
consumer of data. The SFENCE instruction provides a performance-efficient way of ensuring ordering between
routines that produce weakly-ordered results and routines that consume this data.

No re-ordering of reads occurs on the Pentium processor, except under the condition noted in Section 9.2.1,
“Memory Ordering in the Intel® Pentium® and Intel486™ Processors,” and in the following paragraph describing
the Intel486 processor.
23-34 Vol. 3B

ARCHITECTURE COMPATIBILITY
Specifically, the store buffers are flushed before the IN instruction is executed. No reads (as a result of cache miss)
are reordered around previously generated writes sitting in the store buffers. The implication of this is that the
store buffers will be flushed or emptied before a subsequent bus cycle is run on the external bus.

On both the Intel486 and Pentium processors, under certain conditions, a memory read will go onto the external
bus before the pending memory writes in the buffer even though the writes occurred earlier in the program execu-
tion. A memory read will only be reordered in front of all writes pending in the buffers if all writes pending in the
buffers are cache hits and the read is a cache miss. Under these conditions, the Intel486 and Pentium processors
will not read from an external memory location that needs to be updated by one of the pending writes.

During a locked bus cycle, the Intel486 processor will always access external memory, it will never look for the
location in the on-chip cache. All data pending in the Intel486 processor's store buffers will be written to memory
before a locked cycle is allowed to proceed to the external bus. Thus, the locked bus cycle can be used for elimi-
nating the possibility of reordering read cycles on the Intel486 processor. The Pentium processor does check its
cache on a read-modify-write access and, if the cache line has been modified, writes the contents back to memory
before locking the bus. The P6 family processors write to their cache on a read-modify-write operation (if the
access does not split across a cache line) and does not write back to system memory. If the access does split across
a cache line, it locks the bus and accesses system memory.

I/O reads are never reordered in front of buffered memory writes on an IA-32 processor. This ensures an update of
all memory locations before reading the status from an I/O device.

23.35 BUS LOCKING
The Intel 286 processor performs the bus locking differently than the Intel P6 family, Pentium, Intel486, and
Intel386 processors. Programs that use forms of memory locking specific to the Intel 286 processor may not run
properly when run on later processors.

A locked instruction is guaranteed to lock only the area of memory defined by the destination operand, but may
lock a larger memory area. For example, typical 8086 and Intel 286 configurations lock the entire physical memory
space. Programmers should not depend on this.

On the Intel 286 processor, the LOCK prefix is sensitive to IOPL. If the CPL is greater than the IOPL, a general-
protection exception (#GP) is generated. On the Intel386 DX, Intel486, and Pentium, and P6 family processors, no
check against IOPL is performed.

The Pentium processor automatically asserts the LOCK# signal when acknowledging external interrupts. After
signaling an interrupt request, an external interrupt controller may use the data bus to send the interrupt vector to
the processor. After receiving the interrupt request signal, the processor asserts LOCK# to ensure that no other
data appears on the data bus until the interrupt vector is received. This bus locking does not occur on the P6 family
processors.

23.36 BUS HOLD
Unlike the 8086 and Intel 286 processors, but like the Intel386 and Intel486 processors, the P6 family and Pentium
processors respond to requests for control of the bus from other potential bus masters, such as DMA controllers,
between transfers of parts of an unaligned operand, such as two words which form a doubleword. Unlike the
Intel386 processor, the P6 family, Pentium, and Intel486 processors respond to bus hold during reset initialization.

23.37 MODEL-SPECIFIC EXTENSIONS TO THE IA-32
Certain extensions to the IA-32 are specific to a processor or family of IA-32 processors and may not be imple-
mented or implemented in the same way in future processors. The following sections describe these model-specific
extensions. The CPUID instruction indicates the availability of some of the model-specific features.
Vol. 3B 23-35

ARCHITECTURE COMPATIBILITY
23.37.1 Model-Specific Registers
The Pentium processor introduced a set of model-specific registers (MSRs) for use in controlling hardware functions
and performance monitoring. To access these MSRs, two new instructions were added to the IA-32 architecture:
read MSR (RDMSR) and write MSR (WRMSR). The MSRs in the Pentium processor are not guaranteed to be dupli-
cated or provided in the next generation IA-32 processors.

The P6 family processors greatly increased the number of MSRs available to software. See Chapter 2, “Model-
Specific Registers (MSRs)‚” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, for a
complete list of the available MSRs. The new registers control the debug extensions, the performance counters, the
machine-check exception capability, the machine-check architecture, and the MTRRs. These registers are acces-
sible using the RDMSR and WRMSR instructions. Specific information on some of these new MSRs is provided in the
following sections. As with the Pentium processor MSR, the P6 family processor MSRs are not guaranteed to be
duplicated or provided in the next generation IA-32 processors.

23.37.2 RDMSR and WRMSR Instructions
The RDMSR (read model-specific register) and WRMSR (write model-specific register) instructions recognize a
much larger number of model-specific registers in the P6 family processors. (See “RDMSR—Read from Model
Specific Register” and “WRMSR—Write to Model Specific Register” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volumes 2A, 2B, 2C, & 2D, for more information.)

23.37.3 Memory Type Range Registers
Memory type range registers (MTRRs) are a new feature introduced into the IA-32 in the Pentium Pro processor.
MTRRs allow the processor to optimize memory operations for different types of memory, such as RAM, ROM, frame
buffer memory, and memory-mapped I/O.

MTRRs are MSRs that contain an internal map of how physical address ranges are mapped to various types of
memory. The processor uses this internal memory map to determine the cacheability of various physical memory
locations and the optimal method of accessing memory locations. For example, if a memory location is specified in
an MTRR as write-through memory, the processor handles accesses to this location as follows. It reads data from
that location in lines and caches the read data or maps all writes to that location to the bus and updates the cache
to maintain cache coherency. In mapping the physical address space with MTRRs, the processor recognizes five
types of memory: uncacheable (UC), uncacheable, speculatable, write-combining (WC), write-through (WT),
write-protected (WP), and writeback (WB).

Earlier IA-32 processors (such as the Intel486 and Pentium processors) used the KEN# (cache enable) pin and
external logic to maintain an external memory map and signal cacheable accesses to the processor. The MTRR
mechanism simplifies hardware designs by eliminating the KEN# pin and the external logic required to drive it.

See Chapter 10, “Processor Management and Initialization,” and Chapter 2, “Model-Specific Registers (MSRs)‚” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, for more information on the MTRRs.

23.37.4 Machine-Check Exception and Architecture
The Pentium processor introduced a new exception called the machine-check exception (#MC, interrupt 18). This
exception is used to detect hardware-related errors, such as a parity error on a read cycle.

The P6 family processors extend the types of errors that can be detected and that generate a machine-check
exception. It also provides a new machine-check architecture for recording information about a machine-check
error and provides extended recovery capability.

The machine-check architecture provides several banks of reporting registers for recording machine-check errors.
Each bank of registers is associated with a specific hardware unit in the processor. The primary focus of the
machine checks is on bus and interconnect operations; however, checks are also made of translation lookaside
buffer (TLB) and cache operations.
23-36 Vol. 3B

ARCHITECTURE COMPATIBILITY
The machine-check architecture can correct some errors automatically and allow for reliable restart of instruction
execution. It also collects sufficient information for software to use in correcting other machine errors not corrected
by hardware.

See Chapter 16, “Machine-Check Architecture,” for more information on the machine-check exception and the
machine-check architecture.

23.37.5 Performance-Monitoring Counters
The P6 family and Pentium processors provide two performance-monitoring counters for use in monitoring internal
hardware operations. The number of performance monitoring counters and associated programming interfaces
may be implementation specific for Pentium 4 processors, Pentium M processors. Later processors may have
implemented these as part of an architectural performance monitoring feature. The architectural and non-architec-
tural performance monitoring interfaces for different processor families are described in Chapter 20, “Performance
Monitoring.” https://perfmon-events.intel.com/ lists all the events that can be counted for architectural perfor-
mance monitoring events and non-architectural events. The counters are set up, started, and stopped using two
MSRs and the RDMSR and WRMSR instructions. For the P6 family processors, the current count for a particular
counter can be read using the new RDPMC instruction.

The performance-monitoring counters are useful for debugging programs, optimizing code, diagnosing system fail-
ures, or refining hardware designs. See Chapter 20, “Performance Monitoring,” for more information on these
counters.

23.38 TWO WAYS TO RUN INTEL 286 PROCESSOR TASKS
When porting 16-bit programs to run on 32-bit IA-32 processors, there are two approaches to consider:
• Porting an entire 16-bit software system to a 32-bit processor, complete with the old operating system, loader,

and system builder. Here, all tasks will have 16-bit TSSs. The 32-bit processor is being used as if it were a faster
version of the 16-bit processor.

• Porting selected 16-bit applications to run in a 32-bit processor environment with a 32-bit operating system,
loader, and system builder. Here, the TSSs used to represent 286 tasks should be changed to 32-bit TSSs. It is
possible to mix 16 and 32-bit TSSs, but the benefits are small and the problems are great. All tasks in a 32-bit
software system should have 32-bit TSSs. It is not necessary to change the 16-bit object modules themselves;
TSSs are usually constructed by the operating system, by the loader, or by the system builder. See Chapter 22,
“Mixing 16-Bit and 32-Bit Code,” for more detailed information about mixing 16-bit and 32-bit code.

Because the 32-bit processors use the contents of the reserved word of 16-bit segment descriptors, 16-bit
programs that place values in this word may not run correctly on the 32-bit processors.

23.39 INITIAL STATE OF PENTIUM, PENTIUM PRO AND PENTIUM 4 PROCESSORS
Table 23-10 shows the state of the flags and other registers following power-up for the Pentium, Pentium Pro and
Pentium 4 processors. The state of control register CR0 is 60000010H (see Figure 10-1 “Contents of CR0 Register
after Reset” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). This places the
processor in real-address mode with paging disabled.

Table 23-10. Processor State Following Power-up/Reset/INIT for Pentium, Pentium Pro and Pentium 4 Processors

Register Pentium 4 Processor Pentium Pro Processor Pentium Processor

EFLAGS1 00000002H 00000002H 00000002H

EIP 0000FFF0H 0000FFF0H 0000FFF0H

CR0 60000010H2 60000010H2 60000010H2

CR2, CR3, CR4 00000000H 00000000H 00000000H
Vol. 3B 23-37

https://perfmon-events.intel.com/
https://perfmon-events.intel.com/

ARCHITECTURE COMPATIBILITY
CS Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, Accessed

SS, DS, ES, FS, GS Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

EDX 00000FxxH 000n06xxH3 000005xxH

EAX 04 04 04

EBX, ECX, ESI, EDI, EBP,
ESP

00000000H 00000000H 00000000H

ST0 through ST75 Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

x87 FPU Control
Word5

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

x87 FPU Status Word5 Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Tag Word5 Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

x87 FPU Data
Operand and CS Seg.
Selectors5

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Data
Operand and Inst.
Pointers5

Pwr up or Reset:
 00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset:
 00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset:
 00000000H
FINIT/FNINIT: 00000000H

MM0 through MM75 Pwr up or Reset:
 0000000000000000H
INIT or FINIT/FNINIT:
 Unchanged

Pentium II and Pentium III
Processors Only—

Pwr up or Reset:
 0000000000000000H
INIT or FINIT/FNINIT:
 Unchanged

Pentium with MMX Technology
Only—

Pwr up or Reset:
 0000000000000000H
INIT or FINIT/FNINIT:
 Unchanged

XMM0 through XMM7 Pwr up or Reset: 0H
INIT: Unchanged

If CPUID.01H:SSE is 1 —

Pwr up or Reset: 0H
INIT: Unchanged

NA

MXCSR Pwr up or Reset: 1F80H
INIT: Unchanged

Pentium III processor only-

Pwr up or Reset: 1F80H
INIT: Unchanged

NA

GDTR, IDTR Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

LDTR, Task Register Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

DR0, DR1, DR2, DR3 00000000H 00000000H 00000000H

DR6 FFFF0FF0H FFFF0FF0H FFFF0FF0H

Table 23-10. Processor State Following Power-up/Reset/INIT for Pentium, Pentium Pro and Pentium 4 Processors

Register Pentium 4 Processor Pentium Pro Processor Pentium Processor
23-38 Vol. 3B

ARCHITECTURE COMPATIBILITY
DR7 00000400H 00000400H 00000400H

Time-Stamp Counter Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Perf. Counters and
Event Select

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

All Other MSRs Pwr up or Reset:
 Undefined
INIT: Unchanged

Pwr up or Reset:
 Undefined
INIT: Unchanged

Pwr up or Reset:
 Undefined
INIT: Unchanged

Data and Code Cache,
TLBs

Invalid6 Invalid6 Invalid6

Fixed MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Variable MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Machine-Check
Architecture

Pwr up or Reset:
 Undefined
INIT: Unchanged

Pwr up or Reset:
 Undefined
INIT: Unchanged

Not Implemented

APIC Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

R8-R157 0000000000000000H 0000000000000000H N.A.

XMM8-XMM157 Pwr up or Reset: 0H
INIT: Unchanged

Pwr up or Reset: 0H
INIT: Unchanged

N.A.

NOTES:
1. The 10 most-significant bits of the EFLAGS register are undefined following a reset. Software should not depend on the states of

any of these bits.
2. The CD and NW flags are unchanged, bit 4 is set to 1, all other bits are cleared.
3. Where “n” is the Extended Model Value for the respective processor.
4. If Built-In Self-Test (BIST) is invoked on power up or reset, EAX is 0 only if all tests passed. (BIST cannot be invoked during an INIT.)
5. The state of the x87 FPU and MMX registers is not changed by the execution of an INIT.
6. Internal caches are invalid after power-up and RESET, but left unchanged with an INIT.
7. If the processor supports IA-32e mode.

Table 23-10. Processor State Following Power-up/Reset/INIT for Pentium, Pentium Pro and Pentium 4 Processors

Register Pentium 4 Processor Pentium Pro Processor Pentium Processor
Vol. 3B 23-39

ARCHITECTURE COMPATIBILITY
23-40 Vol. 3B

	Chapter 15 Power and Thermal Management
	15.1 Enhanced Intel Speedstep® Technology
	15.1.1 Software Interface For Initiating Performance State Transitions

	15.2 P-State Hardware Coordination
	15.3 System Software Considerations and Opportunistic processor Performance operation
	15.3.1 Intel® Dynamic Acceleration Technology
	15.3.2 System Software Interfaces for Opportunistic Processor Performance Operation
	15.3.2.1 Discover Hardware Support and Enabling of Opportunistic Processor Performance Operation
	15.3.2.2 OS Control of Opportunistic Processor Performance Operation
	15.3.2.3 Required Changes to OS Power Management P-State Policy

	15.3.3 Intel® Turbo Boost Technology
	15.3.4 Performance and Energy Bias Hint Support

	15.4 Hardware-Controlled Performance States (HWP)
	15.4.1 HWP Programming Interfaces
	15.4.2 Enabling HWP
	15.4.3 HWP Performance Range and Dynamic Capabilities
	15.4.4 Managing HWP
	15.4.4.1 IA32_HWP_REQUEST MSR (Address: 774H Logical Processor Scope)
	15.4.4.2 IA32_HWP_REQUEST_PKG MSR (Address: 772H Package Scope)
	15.4.4.3 IA32_HWP_PECI_REQUEST_INFO MSR (Address 775H Package Scope)
	15.4.4.4 IA32_HWP_CTL MSR (Address: 776H Logical Processor Scope)

	15.4.5 HWP Feedback
	15.4.5.1 Non-Architectural HWP Feedback

	15.4.6 HWP Notifications
	15.4.7 Idle Logical Processor Impact on Core Frequency
	15.4.8 Fast Write of Uncore MSR (Model Specific Feature)
	15.4.8.1 FAST_UNCORE_MSRS_CAPABILITY (Address: 0x65F, Logical Processor Scope)
	15.4.8.2 FAST_UNCORE_MSRS_CTL (Address: 0x657, Logical Processor Scope)
	15.4.8.3 FAST_UNCORE_MSRS_STATUS (Address: 0x65E, Logical Processor Scope)

	15.4.9 Fast_IA32_HWP_REQUEST CPUID
	15.4.10 Recommendations for OS use of HWP Controls

	15.5 Hardware Duty Cycling (HDC)
	15.5.1 Hardware Duty Cycling Programming Interfaces
	15.5.2 Package level Enabling HDC
	15.5.3 Logical-Processor Level HDC Control
	15.5.4 HDC Residency Counters
	15.5.4.1 IA32_THREAD_STALL
	15.5.4.2 Non-Architectural HDC Residency Counters

	15.5.5 MPERF and APERF Counters Under HDC

	15.6 Hardware Feedback Interface and Intel® Thread Director
	15.6.1 Hardware Feedback Interface Table Structure
	15.6.2 Intel® Thread Director Table Structure
	15.6.3 Intel® Thread Director Usage Model
	15.6.4 Hardware Feedback Interface Pointer
	15.6.5 Hardware Feedback Interface Configuration
	15.6.6 Hardware Feedback Interface Notifications
	15.6.7 Hardware Feedback Interface and Intel® Thread Director Structure Dynamic Update
	15.6.8 Logical Processor Scope Intel® Thread Director Configuration
	15.6.9 Implicit Reset of Package and Logical Processor Scope Configuration MSRs
	15.6.10 Logical Processor Scope Intel® Thread Director Run Time Characteristics
	15.6.11 Logical Processor Scope History
	15.6.11.1 Enabling Intel® Thread Director History Reset
	15.6.11.2 Implicit Intel® Thread Director History Reset

	15.7 MWAIT Extensions for Advanced Power Management
	15.8 Thermal Monitoring and Protection
	15.8.1 Catastrophic Shutdown Detector
	15.8.2 Thermal Monitor
	15.8.2.1 Thermal Monitor 1
	15.8.2.2 Thermal Monitor 2
	15.8.2.3 Two Methods for Enabling TM2
	15.8.2.4 Performance State Transitions and Thermal Monitoring
	15.8.2.5 Thermal Status Information
	15.8.2.6 Adaptive Thermal Monitor

	15.8.3 Software Controlled Clock Modulation
	15.8.3.1 Extension of Software Controlled Clock Modulation

	15.8.4 Detection of Thermal Monitor and Software Controlled Clock Modulation Facilities
	15.8.4.1 Detection of Software Controlled Clock Modulation Extension

	15.8.5 On Die Digital Thermal Sensors
	15.8.5.1 Digital Thermal Sensor Enumeration
	15.8.5.2 Reading the Digital Sensor

	15.8.6 Power Limit Notification

	15.9 Package Level Thermal Management
	15.9.1 Support for Passive and Active cooling

	15.10 Platform Specific Power Management Support
	15.10.1 RAPL Interfaces
	15.10.2 RAPL Domains and Platform Specificity
	15.10.3 Package RAPL Domain
	15.10.4 PP0/PP1 RAPL Domains
	15.10.5 DRAM RAPL Domain

	Chapter 16 Machine-Check Architecture
	16.1 Machine-Check Architecture
	16.2 Compatibility with Pentium Processor
	16.3 Machine-Check MSRs
	16.3.1 Machine-Check Global Control MSRs
	16.3.1.1 IA32_MCG_CAP MSR
	16.3.1.2 IA32_MCG_STATUS MSR
	16.3.1.3 IA32_MCG_CTL MSR
	16.3.1.4 IA32_MCG_EXT_CTL MSR
	16.3.1.5 Enabling Local Machine Check

	16.3.2 Error-Reporting Register Banks
	16.3.2.1 IA32_MCi_CTL MSRs
	16.3.2.2 IA32_MCi_STATUS MSRS
	16.3.2.3 IA32_MCi_ADDR MSRs
	16.3.2.4 IA32_MCi_MISC MSRs
	16.3.2.5 IA32_MCi_CTL2 MSRs
	16.3.2.6 IA32_MCG Extended Machine Check State MSRs

	16.3.3 Mapping of the Pentium Processor Machine-Check Errors to the Machine-Check Architecture

	16.4 Enhanced Cache Error reporting
	16.5 Corrected Machine Check Error Interrupt
	16.5.1 CMCI Local APIC Interface
	16.5.2 System Software Recommendation for Managing CMCI and Machine Check Resources
	16.5.2.1 CMCI Initialization
	16.5.2.2 CMCI Threshold Management
	16.5.2.3 CMCI Interrupt Handler

	16.6 Recovery of Uncorrected Recoverable (UCR) Errors
	16.6.1 Detection of Software Error Recovery Support
	16.6.2 UCR Error Reporting and Logging
	16.6.3 UCR Error Classification
	16.6.4 UCR Error Overwrite Rules

	16.7 Machine-Check Availability
	16.8 Machine-Check Initialization
	16.9 Interpreting the MCA Error Codes
	16.9.1 Simple Error Codes
	16.9.2 Compound Error Codes
	16.9.2.1 Correction Report Filtering (F) Bit
	16.9.2.2 Transaction Type (TT) Sub-Field
	16.9.2.3 Level (LL) Sub-Field
	16.9.2.4 Request (RRRR) Sub-Field
	16.9.2.5 Bus and Interconnect Errors
	16.9.2.6 Memory Controller and Extended Memory Errors

	16.9.3 Architecturally Defined UCR Errors
	16.9.3.1 Architecturally Defined SRAO Errors
	16.9.3.2 Architecturally Defined SRAR Errors

	16.9.4 Multiple MCA Errors
	16.9.5 Machine-Check Error Codes Interpretation

	16.10 Guidelines for Writing Machine-Check Software
	16.10.1 Machine-Check Exception Handler
	16.10.2 Pentium Processor Machine-Check Exception Handling
	16.10.3 Logging Correctable Machine-Check Errors
	16.10.4 Machine-Check Software Handler Guidelines for Error Recovery
	16.10.4.1 Machine-Check Exception Handler for Error Recovery
	16.10.4.2 Corrected Machine-Check Handler for Error Recovery

	Chapter 17 Interpreting Machine Check Error Codes
	17.1 Incremental Decoding Information: Processor Family 06H, Machine Error Codes For Machine Check
	17.2 Incremental Decoding Information: Intel® Core™ 2 Processor Family, Machine Error Codes For Machine Check
	17.2.1 Model-Specific Machine Check Error Codes for Intel® Xeon® Processor 7400 Series
	17.2.1.1 Processor Machine Check Status Register, Incremental MCA Error Code Definition

	17.2.2 Intel® Xeon® Processor 7400 Model Specific Error Code Field
	17.2.2.1 Processor Model Specific Error Code Field, Type B: Bus and Interconnect Error Codes
	17.2.2.2 Processor Model Specific Error Code Field, Type C: Cache Bus Controller Error Codes

	17.3 Incremental Decoding Information: Intel® Xeon® processor 3400, 3500, 5500 series, Machine Error Codes For Machine Check
	17.3.1 Intel® QPI Machine Check Errors
	17.3.2 Internal Machine Check Errors
	17.3.3 Memory Controller Errors

	17.4 Incremental Decoding Information: Intel® Xeon® processor E5 Family, Machine Error Codes For Machine Check
	17.4.1 Internal Machine Check Errors
	17.4.2 Intel® QPI Machine Check Errors
	17.4.3 Integrated Memory Controller Machine Check Errors

	17.5 Incremental Decoding Information: Intel® Xeon® processor E5 v2 and Intel® Xeon® processor E7 v2 families, Machine Error Codes For Machine Check
	17.5.1 Internal Machine Check Errors
	17.5.2 Integrated Memory Controller Machine Check Errors
	17.5.3 Home Agent Machine Check Errors

	17.6 Incremental Decoding Information: Intel® Xeon® processor E5 v3 family, Machine Error Codes For Machine Check
	17.6.1 Internal Machine Check Errors
	17.6.2 Intel® QPI Machine Check Errors
	17.6.3 Integrated Memory Controller Machine Check Errors
	17.6.4 Home Agent Machine Check Errors

	17.7 Incremental Decoding Information: Intel® Xeon® processor D family, Machine Error Codes For Machine Check
	17.7.1 Internal Machine Check Errors
	17.7.2 Integrated Memory Controller Machine Check Errors

	17.8 Incremental Decoding Information: Intel® Xeon® Processor E5 V4 Family, Machine Error Codes For Machine Check
	17.8.1 Integrated Memory Controller Machine Check Errors
	17.8.2 Home Agent Machine Check Errors

	17.9 Incremental Decoding Information: Intel® Xeon® Scalable Processor Family, Machine Error Codes For Machine Check
	17.9.1 Internal Machine Check Errors
	17.9.2 Interconnect Machine Check Errors
	17.9.3 Integrated Memory Controller Machine Check Errors
	17.9.4 M2M Machine Check Errors
	17.9.5 Home Agent Machine Check Errors

	17.10 Incremental Decoding Information: Processor Family with CPUID DisplayFamily_DisplayModel Signature 06_5FH, Machine Error Codes For Machine Check
	17.10.1 Integrated Memory Controller Machine Check Errors

	17.11 Incremental Decoding Information: 3rd Generation Intel® Xeon® Scalable Processor Family, Machine Error Codes For Machine Check
	17.11.1 Internal Machine Check Errors
	17.11.2 Interconnect Machine Check Errors
	17.11.3 Integrated Memory Controller Machine Check Errors
	17.11.4 M2M Machine Check Errors

	17.12 Incremental Decoding Information: Processor Family with CPUID DisplayFamily_DisplayModel Signature 06_86H, Machine Error Codes For Machine Check
	17.12.1 Integrated Memory Controller Machine Check Errors
	17.12.2 M2M Machine Check Errors

	17.13 Incremental Decoding Information: 4th Generation Intel® Xeon® Scalable Processor Family, Machine Error Codes For Machine Check
	17.13.1 Internal Machine Check Errors
	17.13.2 Interconnect Machine Check Errors
	17.13.3 Integrated Memory Controller Machine Check Errors
	17.13.4 M2M Machine Check Errors
	17.13.5 High Bandwidth Memory Machine Check Errors

	17.14 Incremental Decoding Information: Processor Family 0FH, Machine Error Codes For Machine Check
	17.14.1 Model-Specific Machine Check Error Codes for the Intel® Xeon® Processor MP 7100 Series
	17.14.1.1 Processor Machine Check Status Register MCA Error Code Definition

	17.14.2 Other_Info Field (All MCA Error Types)
	17.14.3 Processor Model Specific Error Code Field
	17.14.3.1 MCA Error Type A: L3 Error
	17.14.3.2 Processor Model Specific Error Code Field Type B: Bus and Interconnect Error
	17.14.3.3 Processor Model Specific Error Code Field Type C: Cache Bus Controller Error

	Chapter 18 Debug, Branch Profile, TSC, and Intel® Resource Director Technology (Intel® RDT) Features
	18.1 Overview of Debug Support Facilities
	18.2 Debug Registers
	18.2.1 Debug Address Registers (DR0-DR3)
	18.2.2 Debug Registers DR4 and DR5
	18.2.3 Debug Status Register (DR6)
	18.2.4 Debug Control Register (DR7)
	18.2.5 Breakpoint Field Recognition
	18.2.6 Debug Registers and Intel® 64 Processors

	18.3 Debug Exceptions
	18.3.1 Debug Exception (#DB)—Interrupt Vector 1
	18.3.1.1 Instruction-Breakpoint Exception Condition
	18.3.1.2 Data Memory and I/O Breakpoint Exception Conditions
	18.3.1.3 General-Detect Exception Condition
	18.3.1.4 Single-Step Exception Condition
	18.3.1.5 Task-Switch Exception Condition
	18.3.1.6 OS Bus-Lock Detection

	18.3.2 Breakpoint Exception (#BP)—Interrupt Vector 3
	18.3.3 Debug Exceptions, Breakpoint Exceptions, and Restricted Transactional Memory (RTM)

	18.4 Last Branch, Interrupt, and Exception Recording Overview
	18.4.1 IA32_DEBUGCTL MSR
	18.4.2 Monitoring Branches, Exceptions, and Interrupts
	18.4.3 Single-Stepping on Branches
	18.4.4 Branch Trace Messages
	18.4.4.1 Branch Trace Message Visibility

	18.4.5 Branch Trace Store (BTS)
	18.4.6 CPL-Qualified Branch Trace Mechanism
	18.4.7 Freezing LBR and Performance Counters on PMI
	18.4.8 LBR Stack
	18.4.8.1 LBR Stack and Intel® 64 Processors
	18.4.8.2 LBR Stack and IA-32 Processors
	18.4.8.3 Last Exception Records and Intel 64 Architecture

	18.4.9 BTS and DS Save Area
	18.4.9.1 64 Bit Format of the DS Save Area
	18.4.9.2 Setting Up the DS Save Area
	18.4.9.3 Setting Up the BTS Buffer
	18.4.9.4 Setting Up CPL-Qualified BTS
	18.4.9.5 Writing the DS Interrupt Service Routine

	18.5 Last Branch, Interrupt, and Exception Recording (Intel® Core™ 2 Duo and Intel Atom® Processors)
	18.5.1 LBR Stack
	18.5.2 LBR Stack in Intel Atom® Processors based on the Silvermont Microarchitecture

	18.6 Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on Goldmont Microarchitecture
	18.7 Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on Goldmont Plus Microarchitecture
	18.8 Last Branch, Interrupt, and Exception Recording for Intel® Xeon Phi™ Processor 7200/5200/3200
	18.9 Last Branch, Interrupt, and Exception Recording for Processors based on Nehalem Microarchitecture
	18.9.1 LBR Stack
	18.9.2 Filtering of Last Branch Records

	18.10 Last Branch, Interrupt, and Exception Recording for Processors based on Sandy Bridge Microarchitecture
	18.11 Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on Haswell Microarchitecture
	18.11.1 LBR Stack Enhancement

	18.12 Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on Skylake Microarchitecture
	18.12.1 MSR_LBR_INFO_x MSR
	18.12.2 Streamlined Freeze_LBRs_On_PMI Operation
	18.12.3 LBR Behavior and Deep C-State

	18.13 Last Branch, Interrupt, and Exception Recording (Processors based on Intel NetBurst® Microarchitecture)
	18.13.1 MSR_DEBUGCTLA MSR
	18.13.2 LBR Stack for Processors Based on Intel NetBurst® Microarchitecture
	18.13.3 Last Exception Records

	18.14 Last Branch, Interrupt, and Exception Recording (Intel® Core™ Solo and Intel® Core™ Duo Processors)
	18.15 Last Branch, Interrupt, and Exception Recording (Pentium M Processors)
	18.16 Last Branch, Interrupt, and Exception Recording (P6 Family Processors)
	18.16.1 DEBUGCTLMSR Register
	18.16.2 Last Branch and Last Exception MSRs
	18.16.3 Monitoring Branches, Exceptions, and Interrupts

	18.17 Time-Stamp Counter
	18.17.1 Invariant TSC
	18.17.2 IA32_TSC_AUX Register and RDTSCP Support
	18.17.3 Time-Stamp Counter Adjustment
	18.17.4 Invariant Time-Keeping

	18.18 Intel® Resource Director Technology (Intel® RDT) Monitoring Features
	18.18.1 Overview of Cache Monitoring Technology and Memory Bandwidth Monitoring
	18.18.2 Enabling Monitoring: Usage Flow
	18.18.3 Enumeration and Detecting Support of Cache Monitoring Technology and Memory Bandwidth Monitoring
	18.18.4 Monitoring Resource Type and Capability Enumeration
	18.18.5 Feature-Specific Enumeration
	18.18.5.1 Cache Monitoring Technology
	18.18.5.2 Memory Bandwidth Monitoring

	18.18.6 Monitoring Resource RMID Association
	18.18.7 Monitoring Resource Selection and Reporting Infrastructure
	18.18.8 Monitoring Programming Considerations
	18.18.8.1 Monitoring Dynamic Configuration
	18.18.8.2 Monitoring Operation With Power Saving Features
	18.18.8.3 Monitoring Operation with Other Operating Modes
	18.18.8.4 Monitoring Operation with RAS Features

	18.19 Intel® Resource Director Technology (Intel® RDT) Allocation Features
	18.19.1 Introduction to Cache Allocation Technology (CAT)
	18.19.2 Cache Allocation Technology Architecture
	18.19.3 Code and Data Prioritization (CDP) Technology
	18.19.4 Enabling Cache Allocation Technology Usage Flow
	18.19.4.1 Enumeration and Detection Support of Cache Allocation Technology
	18.19.4.2 Cache Allocation Technology: Resource Type and Capability Enumeration
	18.19.4.3 Cache Allocation Technology: Cache Mask Configuration
	18.19.4.4 Class of Service to Cache Mask Association: Common Across Allocation Features

	18.19.5 Code and Data Prioritization (CDP): Enumerating and Enabling L3 CDP Technology
	18.19.5.1 Mapping Between L3 CDP Masks and CAT Masks

	18.19.6 Code and Data Prioritization (CDP): Enumerating and Enabling L2 CDP Technology
	18.19.6.1 Mapping Between L2 CDP Masks and L2 CAT Masks
	18.19.6.2 Common L2 and L3 CDP Programming Considerations
	18.19.6.3 Cache Allocation Technology Dynamic Configuration
	18.19.6.4 Cache Allocation Technology Operation With Power Saving Features
	18.19.6.5 Cache Allocation Technology Operation with Other Operating Modes
	18.19.6.6 Associating Threads with CAT/CDP Classes of Service

	18.19.7 Introduction to Memory Bandwidth Allocation
	18.19.7.1 Memory Bandwidth Allocation Enumeration
	18.19.7.2 Memory Bandwidth Allocation Configuration
	18.19.7.3 Memory Bandwidth Allocation Usage Considerations

	18.20 Intel® Resource Director Technology (Intel® RDT) for Non-CPU Agents
	18.20.1 Non-CPU Agent Intel® RDT Features Enumeration Details
	18.20.1.1 CPUID-Based Enumeration for Non-CPU Agent Intel® RDT Feature
	18.20.1.2 ACPI Enumeration

	18.20.2 Non-CPU Agent Intel® RDT Feature Enable MSR

	Chapter 19 Last Branch Records
	19.1 Behavior
	19.1.1 Logged Operations
	19.1.2 Configuration
	19.1.2.1 Enabling and Disabling
	19.1.2.2 LBR Depth
	19.1.2.3 Branch Type Enabling and Filtering
	19.1.2.4 Call-Stack Mode
	Call-Stack Mode and LBR Freeze

	19.1.2.5 CPL Filtering

	19.1.3 Record Data
	19.1.3.1 IP Fields
	19.1.3.2 Branch Types
	19.1.3.3 Cycle Time
	19.1.3.4 Mispredict Information
	19.1.3.5 Intel® TSX Information

	19.1.4 Interaction with Other Processor Features
	19.1.4.1 SMM
	19.1.4.2 SMM Transfer Monitor (STM)
	19.1.4.3 VMX
	19.1.4.4 Intel® SGX
	19.1.4.5 Debug Exceptions
	19.1.4.6 SMX
	19.1.4.7 MWAIT
	19.1.4.8 Processor Event-Based Sampling (PEBS)

	19.2 MSRs
	19.3 Fast LBR Read Access
	19.4 other Impacts
	19.4.1 Branch Trace Store on Intel Atom® Processors
	19.4.2 IA32_DEBUGCTL
	19.4.3 IA32_PERF_CAPABILITIES

	Chapter 20 Performance Monitoring
	20.1 Performance Monitoring Overview
	20.2 Architectural Performance Monitoring
	20.2.1 Architectural Performance Monitoring Version 1
	20.2.1.1 Architectural Performance Monitoring Version 1 Facilities
	20.2.1.2 Pre-defined Architectural Performance Events

	20.2.2 Architectural Performance Monitoring Version 2
	20.2.3 Architectural Performance Monitoring Version 3
	20.2.3.1 AnyThread Counting and Software Evolution

	20.2.4 Architectural Performance Monitoring Version 4
	20.2.4.1 Enhancement in IA32_PERF_GLOBAL_STATUS
	20.2.4.2 IA32_PERF_GLOBAL_STATUS_RESET and IA32_PERF_GLOBAL_STATUS_SET MSRS
	20.2.4.3 IA32_PERF_GLOBAL_INUSE MSR

	20.2.5 Architectural Performance Monitoring Version 5
	20.2.5.1 AnyThread Mode Deprecation
	20.2.5.2 Fixed Counter Enumeration
	20.2.5.3 Domain Separation

	20.2.6 Full-Width Writes to Performance Counter Registers

	20.3 Performance Monitoring (Intel® Core™ Processors and Intel® Xeon® Processors)
	20.3.1 Performance Monitoring for Processors Based on Nehalem Microarchitecture
	20.3.1.1 Enhancements of Performance Monitoring in the Processor Core
	20.3.1.2 Performance Monitoring Facility in the Uncore
	20.3.1.3 Intel® Xeon® Processor 7500 Series Performance Monitoring Facility

	20.3.2 Performance Monitoring for Processors Based on Westmere Microarchitecture
	20.3.3 Intel® Xeon® Processor E7 Family Performance Monitoring Facility
	20.3.4 Performance Monitoring for Processors Based on Sandy Bridge Microarchitecture
	20.3.4.1 Global Counter Control Facilities in Sandy Bridge Microarchitecture
	20.3.4.2 Counter Coalescence
	20.3.4.3 Full Width Writes to Performance Counters
	20.3.4.4 PEBS Support in Sandy Bridge Microarchitecture
	20.3.4.5 Off-core Response Performance Monitoring
	20.3.4.6 Uncore Performance Monitoring Facilities in the Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, and Intel® Core™ i3-2xxx Processor Series
	20.3.4.7 Intel® Xeon® Processor E5 Family Performance Monitoring Facility
	20.3.4.8 Intel® Xeon® Processor E5 Family Uncore Performance Monitoring Facility

	20.3.5 3rd Generation Intel® Core™ Processor Performance Monitoring Facility
	20.3.5.1 Intel® Xeon® Processor E5 v2 and E7 v2 Family Uncore Performance Monitoring Facility

	20.3.6 4th Generation Intel® Core™ Processor Performance Monitoring Facility
	20.3.6.1 Processor Event Based Sampling (PEBS) Facility
	20.3.6.2 PEBS Data Format
	20.3.6.3 PEBS Data Address Profiling
	20.3.6.4 Off-core Response Performance Monitoring
	20.3.6.5 Performance Monitoring and Intel® TSX
	20.3.6.6 Uncore Performance Monitoring Facilities in the 4th Generation Intel® Core™ Processors
	20.3.6.7 Intel® Xeon® Processor E5 v3 Family Uncore Performance Monitoring Facility

	20.3.7 5th Generation Intel® Core™ Processor and Intel® Core™ M Processor Performance Monitoring Facility
	20.3.8 6th Generation, 7th Generation and 8th Generation Intel® Core™ Processor Performance Monitoring Facility
	20.3.8.1 Processor Event Based Sampling (PEBS) Facility
	20.3.8.2 Frontend Retired Facility
	20.3.8.3 Off-core Response Performance Monitoring
	20.3.8.4 Uncore Performance Monitoring Facilities on Intel® Core™ Processors Based on Cannon Lake Microarchitecture

	20.3.9 10th Generation Intel® Core™ Processor Performance Monitoring Facility
	20.3.9.1 Processor Event Based Sampling (PEBS) Facility
	20.3.9.2 Off-core Response Performance Monitoring
	20.3.9.3 Performance Metrics

	20.3.10 12th and 13th Generation Intel® Core™ Processors, and 4th Generation Intel® Xeon® Scalable Processor Family Performance Monitoring Facility
	20.3.10.1 P-core Performance Monitoring Unit
	20.3.10.2 E-core Performance Monitoring Unit
	20.3.10.3 Unhalted Reference Cycles

	20.4 Performance monitoring (Intel® Xeon™ Phi Processors)
	20.4.1 Intel® Xeon Phi™ Processor 7200/5200/3200 Performance Monitoring
	20.4.1.1 Enhancements of Performance Monitoring in the Intel® Xeon Phi™ Processor Tile

	20.5 Performance Monitoring (Intel Atom® Processors)
	20.5.1 Performance Monitoring (45 nm and 32 nm Intel Atom® Processors)
	20.5.2 Performance Monitoring for Silvermont Microarchitecture
	20.5.2.1 Enhancements of Performance Monitoring in the Processor Core
	20.5.2.2 Offcore Response Event
	20.5.2.3 Average Offcore Request Latency Measurement

	20.5.3 Performance Monitoring for Goldmont Microarchitecture
	20.5.3.1 Processor Event Based Sampling (PEBS)
	20.5.3.2 Offcore Response Event
	20.5.3.3 Average Offcore Request Latency Measurement

	20.5.4 Performance Monitoring for Goldmont Plus Microarchitecture
	20.5.4.1 Extended PEBS

	20.5.5 Performance Monitoring for Tremont Microarchitecture
	20.5.5.1 Adaptive PEBS
	20.5.5.2 PEBS output to Intel® Processor Trace
	20.5.5.3 Precise Distribution Support on Fixed Counter 0
	20.5.5.4 Compatibility Enhancements to Offcore Response MSRs

	20.6 Performance Monitoring (Legacy Intel Processors)
	20.6.1 Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo Processors)
	20.6.2 Performance Monitoring (Processors Based on Intel® Core™ Microarchitecture)
	20.6.2.1 Fixed-function Performance Counters
	20.6.2.2 Global Counter Control Facilities
	20.6.2.3 At-Retirement Events
	20.6.2.4 Processor Event Based Sampling (PEBS)

	20.6.3 Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture)
	20.6.3.1 ESCR MSRs
	20.6.3.2 Performance Counters
	20.6.3.3 CCCR MSRs
	20.6.3.4 Debug Store (DS) Mechanism
	20.6.3.5 Programming the Performance Counters for Non-Retirement Events
	20.6.3.6 At-Retirement Counting
	20.6.3.7 Tagging Mechanism for Replay_event
	20.6.3.8 Processor Event-Based Sampling (PEBS)
	20.6.3.9 Operating System Implications

	20.6.4 Performance Monitoring and Intel® Hyper-Threading Technology in Processors Based on Intel NetBurst® Microarchitecture
	20.6.4.1 ESCR MSRs
	20.6.4.2 CCCR MSRs
	20.6.4.3 IA32_PEBS_ENABLE MSR
	20.6.4.4 Performance Monitoring Events
	20.6.4.5 Counting Clocks on systems with Intel® Hyper-Threading Technology in Processors Based on Intel NetBurst® Microarchitecture

	20.6.5 Performance Monitoring and Dual-Core Technology
	20.6.6 Performance Monitoring on 64-bit Intel® Xeon® Processor MP with Up to 8-MByte L3 Cache
	20.6.7 Performance Monitoring on L3 and Caching Bus Controller Sub-Systems
	20.6.7.1 Overview of Performance Monitoring with L3/Caching Bus Controller
	20.6.7.2 GBSQ Event Interface
	20.6.7.3 GSNPQ Event Interface
	20.6.7.4 FSB Event Interface
	20.6.7.5 Common Event Control Interface

	20.6.8 Performance Monitoring (P6 Family Processor)
	20.6.8.1 PerfEvtSel0 and PerfEvtSel1 MSRs
	20.6.8.2 PerfCtr0 and PerfCtr1 MSRs
	20.6.8.3 Starting and Stopping the Performance-Monitoring Counters
	20.6.8.4 Event and Time-Stamp Monitoring Software
	20.6.8.5 Monitoring Counter Overflow

	20.6.9 Performance Monitoring (Pentium Processors)
	20.6.9.1 Control and Event Select Register (CESR)
	20.6.9.2 Use of the Performance-Monitoring Pins
	20.6.9.3 Events Counted

	20.7 Counting Clocks
	20.7.1 Non-Halted Reference Clockticks
	20.7.2 Cycle Counting and Opportunistic Processor Operation
	20.7.3 Determining the Processor Base Frequency
	20.7.3.1 For Intel® Processors Based on Sandy Bridge, Ivy Bridge, Haswell, and Broadwell Microarchitectures
	20.7.3.2 For Intel® Processors Based on Nehalem Microarchitecture
	20.7.3.3 For Intel Atom® Processors Based on Silvermont Microarchitecture (Including Intel Processors Based on Airmont Microarchitecture)
	20.7.3.4 For Intel® Core™ 2 Processor Family and for Intel® Xeon® Processors Based on Intel Core Microarchitecture

	20.8 IA32_PERF_CAPABILITIES MSR Enumeration
	20.8.1 Filtering of SMM Handler Overhead

	20.9 PEBS Facility
	20.9.1 Extended PEBS
	20.9.2 Adaptive PEBS
	20.9.2.1 Adaptive_Record Counter Control
	20.9.2.2 PEBS Record Format
	20.9.2.3 MSR_PEBS_DATA_CFG
	20.9.2.4 PEBS Record Examples

	20.9.3 Precise Distribution of Instructions Retired (PDIR) Facility
	20.9.4 Reduced Skid PEBS
	20.9.5 EPT-Friendly PEBS
	20.9.6 PDist: Precise Distribution
	20.9.7 Load Latency Facility
	20.9.8 Store Latency Facility

	Chapter 21 8086 Emulation
	21.1 Real-Address Mode
	21.1.1 Address Translation in Real-Address Mode
	21.1.2 Registers Supported in Real-Address Mode
	21.1.3 Instructions Supported in Real-Address Mode
	21.1.4 Interrupt and Exception Handling

	21.2 Virtual-8086 Mode
	21.2.1 Enabling Virtual-8086 Mode
	21.2.2 Structure of a Virtual-8086 Task
	21.2.3 Paging of Virtual-8086 Tasks
	21.2.4 Protection within a Virtual-8086 Task
	21.2.5 Entering Virtual-8086 Mode
	21.2.6 Leaving Virtual-8086 Mode
	21.2.7 Sensitive Instructions
	21.2.8 Virtual-8086 Mode I/O
	21.2.8.1 I/O-Port-Mapped I/O
	21.2.8.2 Memory-Mapped I/O
	21.2.8.3 Special I/O Buffers

	21.3 Interrupt and Exception Handling in Virtual-8086 Mode
	21.3.1 Class 1—Hardware Interrupt and Exception Handling in Virtual-8086 Mode
	21.3.1.1 Handling an Interrupt or Exception Through a Protected-Mode Trap or Interrupt Gate
	21.3.1.2 Handling an Interrupt or Exception With an 8086 Program Interrupt or Exception Handler
	21.3.1.3 Handling an Interrupt or Exception Through a Task Gate

	21.3.2 Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt Mechanism
	21.3.3 Class 3—Software Interrupt Handling in Virtual-8086 Mode
	21.3.3.1 Method 1: Software Interrupt Handling
	21.3.3.2 Methods 2 and 3: Software Interrupt Handling
	21.3.3.3 Method 4: Software Interrupt Handling
	21.3.3.4 Method 5: Software Interrupt Handling
	21.3.3.5 Method 6: Software Interrupt Handling

	21.4 Protected-Mode Virtual Interrupts

	Chapter 22 Mixing 16-Bit and 32-Bit Code
	22.1 Defining 16-Bit and 32-Bit Program Modules
	22.2 Mixing 16-Bit and 32-Bit Operations Within a Code Segment
	22.3 Sharing Data Among Mixed-Size Code Segments
	22.4 Transferring Control Among Mixed-Size Code Segments
	22.4.1 Code-Segment Pointer Size
	22.4.2 Stack Management for Control Transfer
	22.4.2.1 Controlling the Operand-Size Attribute For a Call
	22.4.2.2 Passing Parameters With a Gate

	22.4.3 Interrupt Control Transfers
	22.4.4 Parameter Translation
	22.4.5 Writing Interface Procedures

	Chapter 23 Architecture Compatibility
	23.1 Processor Families and Categories
	23.2 Reserved Bits
	23.3 Enabling New Functions and Modes
	23.4 Detecting the Presence of New Features Through Software
	23.5 Intel MMX Technology
	23.6 Streaming SIMD Extensions (SSE)
	23.7 Streaming SIMD Extensions 2 (SSE2)
	23.8 Streaming SIMD Extensions 3 (SSE3)
	23.9 Additional Streaming SIMD Extensions
	23.10 Intel Hyper-Threading Technology
	23.11 Multi-Core Technology
	23.12 Specific Features of Dual-Core Processor
	23.13 New Instructions In the Pentium and Later IA-32 Processors
	23.13.1 Instructions Added Prior to the Pentium Processor

	23.14 Obsolete Instructions
	23.15 Undefined Opcodes
	23.16 New Flags in the EFLAGS Register
	23.16.1 Using EFLAGS Flags to Distinguish Between 32-Bit IA-32 Processors

	23.17 Stack Operations and User Software
	23.17.1 PUSH SP
	23.17.2 EFLAGS Pushed on the Stack

	23.18 x87 FPU
	23.18.1 Control Register CR0 Flags
	23.18.2 x87 FPU Status Word
	23.18.2.1 Condition Code Flags (C0 through C3)
	23.18.2.2 Stack Fault Flag

	23.18.3 x87 FPU Control Word
	23.18.4 x87 FPU Tag Word
	23.18.5 Data Types
	23.18.5.1 NaNs
	23.18.5.2 Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal Formats

	23.18.6 Floating-Point Exceptions
	23.18.6.1 Denormal Operand Exception (#D)
	23.18.6.2 Numeric Overflow Exception (#O)
	23.18.6.3 Numeric Underflow Exception (#U)
	23.18.6.4 Exception Precedence
	23.18.6.5 CS and EIP For FPU Exceptions
	23.18.6.6 FPU Error Signals
	23.18.6.7 Assertion of the FERR# Pin
	23.18.6.8 Invalid Operation Exception On Denormals
	23.18.6.9 Alignment Check Exceptions (#AC)
	23.18.6.10 Segment Not Present Exception During FLDENV
	23.18.6.11 Device Not Available Exception (#NM)
	23.18.6.12 Coprocessor Segment Overrun Exception
	23.18.6.13 General Protection Exception (#GP)
	23.18.6.14 Floating-Point Error Exception (#MF)

	23.18.7 Changes to Floating-Point Instructions
	23.18.7.1 FDIV, FPREM, and FSQRT Instructions
	23.18.7.2 FSCALE Instruction
	23.18.7.3 FPREM1 Instruction
	23.18.7.4 FPREM Instruction
	23.18.7.5 FUCOM, FUCOMP, and FUCOMPP Instructions
	23.18.7.6 FPTAN Instruction
	23.18.7.7 Stack Overflow
	23.18.7.8 FSIN, FCOS, and FSINCOS Instructions
	23.18.7.9 FPATAN Instruction
	23.18.7.10 F2XM1 Instruction
	23.18.7.11 FLD Instruction
	23.18.7.12 FXTRACT Instruction
	23.18.7.13 Load Constant Instructions
	23.18.7.14 FXAM Instruction
	23.18.7.15 FSAVE and FSTENV Instructions

	23.18.8 Transcendental Instructions
	23.18.9 Obsolete Instructions and Undefined Opcodes
	23.18.10 WAIT/FWAIT Prefix Differences
	23.18.11 Operands Split Across Segments and/or Pages
	23.18.12 FPU Instruction Synchronization

	23.19 Serializing Instructions
	23.20 FPU and Math Coprocessor Initialization
	23.20.1 Intel® 387 and Intel® 287 Math Coprocessor Initialization
	23.20.2 Intel486 SX Processor and Intel 487 SX Math Coprocessor Initialization

	23.21 Control Registers
	23.22 Memory Management Facilities
	23.22.1 New Memory Management Control Flags
	23.22.1.1 Physical Memory Addressing Extension
	23.22.1.2 Global Pages
	23.22.1.3 Larger Page Sizes

	23.22.2 CD and NW Cache Control Flags
	23.22.3 Descriptor Types and Contents
	23.22.4 Changes in Segment Descriptor Loads

	23.23 Debug Facilities
	23.23.1 Differences in Debug Register DR6
	23.23.2 Differences in Debug Register DR7
	23.23.3 Debug Registers DR4 and DR5

	23.24 Recognition of Breakpoints
	23.25 Exceptions and/or Exception Conditions
	23.25.1 Machine-Check Architecture
	23.25.2 Priority of Exceptions
	23.25.3 Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers

	23.26 Interrupts
	23.26.1 Interrupt Propagation Delay
	23.26.2 NMI Interrupts
	23.26.3 IDT Limit

	23.27 Advanced Programmable Interrupt Controller (APIC)
	23.27.1 Software Visible Differences Between the Local APIC and the 82489DX
	23.27.2 New Features Incorporated in the Local APIC for the P6 Family and Pentium Processors
	23.27.3 New Features Incorporated in the Local APIC of the Pentium 4 and Intel Xeon Processors

	23.28 Task Switching and TSs
	23.28.1 P6 Family and Pentium Processor TSS
	23.28.2 TSS Selector Writes
	23.28.3 Order of Reads/Writes to the TSS
	23.28.4 Using A 16-Bit TSS with 32-Bit Constructs
	23.28.5 Differences in I/O Map Base Addresses

	23.29 Cache Management
	23.29.1 Self-Modifying Code with Cache Enabled
	23.29.2 Disabling the L3 Cache

	23.30 Paging
	23.30.1 Large Pages
	23.30.2 PCD and PWT Flags
	23.30.3 Enabling and Disabling Paging

	23.31 Stack Operations and Supervisor Software
	23.31.1 Selector Pushes and Pops
	23.31.2 Error Code Pushes
	23.31.3 Fault Handling Effects on the Stack
	23.31.4 Interlevel RET/IRET From a 16-Bit Interrupt or Call Gate

	23.32 Mixing 16- and 32-Bit Segments
	23.33 Segment and Address Wraparound
	23.33.1 Segment Wraparound

	23.34 Store Buffers and Memory Ordering
	23.35 Bus Locking
	23.36 Bus Hold
	23.37 Model-Specific Extensions to the IA-32
	23.37.1 Model-Specific Registers
	23.37.2 RDMSR and WRMSR Instructions
	23.37.3 Memory Type Range Registers
	23.37.4 Machine-Check Exception and Architecture
	23.37.5 Performance-Monitoring Counters

	23.38 Two Ways to Run Intel 286 Processor Tasks
	23.39 Initial State of Pentium, Pentium Pro and Pentium 4 Processors

