intel

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Volume 3 (3A, 3B, 3C, & 3D):
System Programming Guide

NOTE: The Intel 64 and IA-32 Architectures Software Developer's Manual consists of four volumes:
Basic Architecture, Order Number 253665; Instruction Set Reference A-Z, Order Number 325383;
System Programming Guide, Order Number 325384; Model-Specific Registers, Order Number 335592.
Refer to all four volumes when evaluating your design needs.

Order Number: 325384-081US
September 2023

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.
No product or component can be absolutely secure.
Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability,
fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of
dealing, or usage in trade.

Code names are used by Intel to identify products, technologies, or services that are in development and not publicly
available. These are not “commercial” names and not intended to function as trademarks.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document, with
the sole exception that a) you may publish an unmodified copy and b) code included in this document is licensed subject to
the Zero-Clause BSD open source license (0BSD), https://opensource.org/licenses/0BSD. You may create software
implementations based on this document and in compliance with the foregoing that are intended to execute on the Intel
product(s) referenced in this document. No rights are granted to create modifications or derivatives of this document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other
names and brands may be claimed as the property of others.

https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD

CONTENTS

PAGE
CHAPTER 1
ABOUT THIS MANUAL
1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL . . ottt et e et e eieaes 1-1
1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDEo e ottt et et e a e 1-4
13 NOTATIONAL CONVENTIONS . Lottt ettt et e ettt e e e et e e e et et e e et e ey 1-7
1.3.1 BT AN BYTE DT, . ..ottt ittt et e et et e e e e e e 1-7
13.2 Reserved Bits and Software Compatibilityoovuiriiii i e 1-7
133 1 ot ot o] T =T o= T 1-8
134 Hexadecimal and Binary NUMDEIS e i e et et aaas 1-8
135 SEgMENTEA AArESSING vttt ettt et e e e e e e e 1-8
136 Syntax for CPUID, CR, aNd MSR ValUBSttt et ettt et e ettt et 1-9
13.7 (=T 11T T 1-9
14 RELATED LITERATURE . . .ttt ettt ettt et et et e et et e e e et e e e ettt es 1-10
CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW
2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE. . ..ttt t ettt et e et 2-1
2.1.1 Global and LoCal DESCriPtOr Tables. .. v vttt e e e e e e 2-3
2.1.1.1 Global and Local Descriptor Tables inIA-32€ MOde.ov it 2-4
2.1.2 System Segments, Segment Descriptors, and Gatesoi it e 2-4
2.1.2.1 GatES N IA-32E MO . . oottt e e e e 2-4
213 Task-State Segments and Task Gates.o .ttt e e e e 2-5
2.1.3.1 Task-State Segments iN IA-328 MOGE.ottt et e e e e e 2-5
214 Interrupt and EXCEption Handling.o v ov i e e e 2-5
2.1.4.1 Interrupt and Exception Handling [A-32€ MOde. oo vt 2-5
215 [(=T Lo Y = T T T= T 1T 2-6
2.1.5.1 Memory Management in IA-328 MOovit e 2-6
216 I AS] (] =T 0] (=] 2-6
2.16.1 System RegiStars INIA-328 MOGE.ttt it e et e e e e 2-7
217 (01 L= Y Yy (=T (=0 o =3 2-7
2.2 MODES OF OPER ATION. . .ottt sttt et ettt et e e e e et e e e et e e e e e e e e 2-7
2.2.1 Extended Feature ENable ReGIS O it i et et et e e 2-9
2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER.ottt e e 2-9
231 System Flags and Fields iN1A-328 MOGEo e 2-11
2.4 MEMORY-MANAGEMENT REGISTERS .. . ittt ettt e e e e e e e e 2-11
241 Global Descriptor Table Register (GDTR) ... u ittt e 2-12
24.2 Local Descriptor Table Register (LDTR) vuvui ettt ens 2-12
243 IDTR Interrupt Descriptor Table REGISTOr. ... vttt i ittt ettt i eans 2-12
244 TaSK REGISTET (TR . vttt et ettt e et e e e e et e e e e e e e 2-13
2.5 CONTROL REGISTERS ...ttt ittt et e et e e e e e e e e et e e e 2-13
2.5.1 CPUID Qualification of Control ReGiSter FIags. . .. v v vttt ettt e e ees 2-20
2.6 EXTENDED CONTROL REGISTERS (INCLUDING XCRO) . .t e ettt e e et e e et e e e e e e e e 2-20
2.7 PROTECTION-KEY RIGHTS REGISTERS (PKRU AND IA32_PKRS). ..ttt ettt 2-22
2.8 SYSTEM INSTRUCTION SUMMARY ..ttt ittt ettt et et e et et e e e e e 2-23
2.8.1 Loading and STOMNg SYSteM REGISTEIS .. .\ttt ettt e e e e 2-24
282 Verifying Of ACCESS PriVilEgeSottt e e e e e 2-24
283 Loading and Storing DEDUG REGIS OIS . ..o\ttt it e it e e e e 2-25
284 INValidating Caches @nd TLBS vt ittt ittt e ettt e e e e ettt e ettt 2-25
2.85 CoNTrOlliNg ThE PrOCESSOT . ettt ettt et e e et et e e e 2-26
286 Reading Performance-Monitoring and Time-Stamp COUNTErSouirie it et eneaeeas 2-26
2.8.6.1 Reading Counters in B4-Bit MOGe. ovit ittt ettt et e 2-27
287 Reading and Writing Model-Specific REGISTEISt e e 2-27
2.8.7.1 Reading and Writing Model-Specific Registers in 64-BitModecooiiiiiii i e 2-27
288 ENabIiNg Processor EXtENAed STateSttt ettt e e 2-27

Vol. 3A i

CONTENTS

PAGE
CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT
3.1 MEMORY MANAGEMENT OVERVIEW ..ottt e e e e e e e e e e e 3-1
3.2 USING SEGMEN T S, Lttt ettt e ettt et e e e e e e e e et e e e et et e e e e 3-2
3.2.1 BaSiC FIat MOGE] . ..ot e e e e e e e 3-3
3.2.2 Protected FIAt MOEL. e e e e 3-3
3.2.3 MU= SEgMENT MO . ..o i e e e e 3-4
324 SegmeENtatioN N JA-328 MOottt e e e e 3-5
3.25 Paging and SegmMIEN At iONot e e e e e 3-5
33 PHY SICAL ADDRESS SPACE. ..\ttt ittt ettt e e e et e e e e e 3-6
3.3.1 Intel® 64 Processors and PhySiCal AdAress SPate v vviii et 3-6
3.4 LOGICAL AND LINEAR AD D RESSES . . .ttt ittt ettt e e e e e e e e e e e e 3-6
3.4.1 Logical Address Translation iN IA-328 MOo . ittt et ettt e 3-7
34.2 Y= 0= Y1 =T o (o5 3-7
343 A0 T (=0] =T 5 3-8
344 Segment Loading INStructions iN IA-328 MOGE. v ittt e e e e 3-9
345 Y= 0= L= ol) o5 3-9
34.5.1 Code- and Data-Segment DeSCripTOr Ty P S, v vttt ettt ettt ettt e ettt ettt ettt et 3-12
35 SY STEM DESCRIPTOR TYPES ..ttt ettt e e e e e e e e 3-13
3.5.1 SegmeENt DESCriPIOr TabIES. . .\ttt e s e 3-14
35.2 Segment Descriptor Tables iN IA-326 MOde ...t i e e e e e 3-16
CHAPTER 4
PAGING
4.1 PAGING MODES AND CONTROL BITS ..t ettt ettt ettt et e e e e et e e et et e et e e a e e s 4-1
411 FOUM PagiNg MOESttt e et et e e et e e e e e 4-1
41.2 Paging-Mode ENabling. oo e 4-3
413 Paging-Mode MOGifierS. . ..ottt e e e 4-4
414 Enumeration of Paging Features Dy CPUID oo e 4-5
4.2 HIERARCHICAL PAGING STRUCTURES: AN OVERVIEW . .ottt et e 4-7
43 32-BIT PAGING ..ottt ettt e e e e e e e 4-9
44 P PAGING . oottt et e e e e e e 4-14
441 o D I (=T (= 4-14
442 Linear-Address Translation With PAE Pagingoviriiiiii i e 4-15
45 4-LEVEL PAGING AND 5-LEVEL PAGING . . ottt ettt e e et e e et e et e e e 4-20
451 Ordinary Paging and HLAT Pagingc.vuiii ittt it et ettt et e e i 4-20
452 Use of CR3 with Ordinary 4-Level Paging and 5-Level Pagingovvuiuiiiiiiii it 4-20
453 Use of HLATP with HLAT 4-Level Paging and 5-Level Paging.cooiiriiiiiii e 4-21
454 Linear-Address Translation with 4-Level Pagingand 5-Level Paging. ... e 4-22
455 RESTANt OF HLAT Paging. ..o vttt ittt et e ettt e e e e e e 4-33
46 ACCESS RIGHT S ottt ittt e e e e e e e e e 4-33
4.6.1 Determination 0f ACCESS RIGNTSo i it e et e 4-33
46.2 PO ECTION KBY S .ottt et e e e e e 4-36
4.7 PAGE-FAULT EXCEPTIONS ottt e e e e e e e 4-37
48 ACCESSED AND DIRTY FLAGS ittt ittt ittt et e e e e e e e e e e 4-39
49 PAGING AND MEMORY TYPING ..\ttt ettt et e et e et e e et et es 4-39
4.9.1 Paging and Memory Typing When the PAT is Not Supported (Pentium Pro and Pentium Il Processors).............. 4-40
49.2 Paging and Memory Typing When the PAT is Supported (Pentium lll and More Recent Processor Families).......... 4-40
493 Caching Paging-Related Information about Memory TYPINg vvvvirititi e 4-41
4.10 CACHING TRANSLATION INFORMATION . . .ottt ettt e ettt e et et e et e e 4-41
4.10.1 Process-Context Identifiers (PCIDS) . .. v vttt ettt e e 4-41
410.2 Translation Lookaside BUTTErS (TLBS) vuuiuttt ittt ettt 4-42
4.10.2.1 Page Numbers, Page Frames, and Page OffSetsooriinieii e 4-42
4.10.2.2 Caching Translations M TLBSo vttt e et i e it et e et i 4-43
4.10.2.3 =3] o3 I 02 = 4-43
41024 GIODAI PGB . .ttt e e 4-44
4103 Paging-StrUCTUrE CaCRES . . oo i it e e e 4-44
410.3.1 Caches TOr Paging STrUCTUNES. . .. vttt ettt et et e e e ettt et aeaens 4-44
4.103.2 Using the Paging-Structure Caches to Translate Linear Addresses.vvvvi v 4-47
41033 Multiple Cached Entries for a Single Paging-Structure ENtryoviiiii i e e i eans 4-47
4104 Invalidation of TLBs and Paging-Structure Cachesvviiiii i e e eaes 4-48
41041 Operations that Invalidate TLBs and Paging-Structure Caches.oviiiiiiii i 4-48
4104.2 Recommended INValidation.t e e e e 4-50

iv Vol. 3A

41043 Optional INValidation.o e e
4.104.4 Delayed INValidationo e
4105 Propagation of Paging-Structure Changes to Multiple Processorscccovviiiiiiiieennnnenns.
4.11 INTERACTIONS WITH VIRTUAL-MACHINE EXTENSIONS (VMX). ottt et
4111 RV DG = 1 P
411.2 VMX Support for Address Translationoviii i e e
412 USING PAGING FOR VIRTUAL MEMORY ..\ttt ettt e et ettt e e et e s
413 MAPPING SEGMENTS TO PAGES . . ottt ettt et e e e e et
CHAPTER 5

PROTECTION

5.1 ENABLING AND DISABLING SEGMENT AND PAGE PROTECTION . .. vttt ettt e in e
5.2 FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND PAGE-LEVEL PROTECTIONovvvviiiii e
5.2.1 Code-Segment Descriptor in 64-bit Modeo.oir it s
53 LIMIT CHECKING . v v ettt et e et et e e e e e e e e e e e e et et e e e et et e s
5.3.1 Limit Checking in B4-Dit MOde oottt e
54 TYPE CHECKING . .ttt ettt e e e e e e e e e e e e e e e e
54.1 Null Segment Selector ChecKiNgo oot e i e e e i e
54.1.1 NULL Segment Checking in 64-Dit Modeovii i e e
55 PRIVILEGE LEVELS. .o\ttt ittt et ettt e e e e e e e e e e e e ey
56 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA SEGMENTS ...ttt i
56.1 Accessing Data in Code SEgMEBNTS . .o\t vit ittt e
57 PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS REGISTER\ttt
58 PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING PROGRAM CONTROL BETWEEN CODE SEGMENTS

5.8.1 Direct Calls or Jumps t0 Code SEOMBNTS. ..t v vttt et i
58.1.1 Accessing Nonconforming Code Segmentsttt
58.1.2 Accessing Conforming Code SEOMENTS. . ..o\ttt ittt ittt ettt ettt eeeaeans
5.8.2 (1 (B LT o 0] (o P
583 [0 7= (=P
5.83.1 IA-328 MOde Call GateS . .ottt ettt et e e e e e e
584 Accessing a Code Segment Through a Call Gate . ..o vvie it e
585 STACK SWITCRING . .o e
5.8.5.1 Stack SWItching in B4-Dit MOde.ot e e e e
586 Returning from @ Called ProCeAUEo v it e e
5.8.7 Performing Fast Calls to System Procedures with the SYSENTER and SYSEXIT Instructions
58.7.1 SYSENTER and SYSEXIT Instructions in 1A-32e MOdeo it
5.88 Fast System Calls iN B4-Bit MOGE.ottt e e
5.9 PRIVILEGED INSTRUCTIONS . . ottt t ettt et et e e ettt
5.10 POINTER VAU D AT ON Lottt ettt ettt et e e et
5.10.1 Checking Access Rights (LAR INSTTUCTION) ..o v v v vttt
5.10.2 Checking Read/Write Rights (VERR and VERW INStructions).vviivviiiiii e
5.10.3 Checking That the Pointer Offset Is Within Limits (LSL Instruction)............covviiiiiiiiiiniinnnen.
5104 Checking Caller Access Privileges (ARPL INSTrUCTiON). oo vttt
5.10.5 Checking AlIGNMENT. . .ot e e e e e e

511.1 Page-ProteCtion FIags .. .o v ittt
511.2 Restricting Addressable DOMain. v . ettt
5113 o [0 T I 0
5114 Combining Protection of Both Levels of Page Tables ... e
5115 Overrides t0 Page ProteCtionvuiunii e s
5.12 COMBINING PAGE AND SEGMENT PROTECTION. .1\ttt ittt e et e e
5.13 PAGE-LEVEL PROTECTION AND EXECUTE-DISABLE BIT ..t vt ettt
5131 Detecting and Enabling the Execute-Disable Capabilityc.cooiiiiiiiiiii e
513.2 Execute-Disable Page Protection.o.iuii i i e e
5.133 ReSErved Bit ChECKING . .\ttt e e e e e
5.134 EXCEPHION HANAING . . . e e
CHAPTER 6

INTERRUPT AND EXCEPTION HANDLING

6.1 INTERRUPT AND EXCEPTION OVERVIEW. . . v\ttt e ittt ettt e e et e e e et e in e e
6.2 EXCEPTION AND INTERRUPT VECTORS . . .ottt ettt et e
6.3 SOURCES OF INTERRUP TS Lottt ittt e e e e e

511 PAGE-LEVEL PROTECTION ..ot e e

CONTENTS

PAGE

Vol.3A v

CONTENTS

PAGE
6.3.1 L (= =T (= o) £ 6-2
6.3.2 Maskable Hardware INTeITUDTSttt ettt e e e et 6-3
633 Software-Generated Nt TUPES. . ..ottt e e e e e ettt e 6-4
6.4 SOURCES OF EXCEPTIONS. . ottt ettt ettt e e e et e e et e e e e e e e e e e e 6-4
6.4.1 e o a o0 B o (ol = ' o 3 6-4
6.4.2 Software-GeNerated EXCEPIONS. . ..ttt e et ettt e e e e e e e 6-4
643 Machine-Check EXCEPTIONS ...\ttt e ettt e et e 6-4
6.5 EXCEPTION CLASSIFICATIONS L ottt et e e e e e e e e et e e 6-5
6.6 PROGRAM OR TASK RES T AR T L1ttt ittt ettt et et ettt et e e e et e e e e e et et e e e 6-5
6.7 NONMASKABLE INTERRUPT (NMI) . .ottt ettt et et e e e et e e e et et e et et e n e e s 6-6
6.7.1 Handling MUIIDIE NMIS . . o e e e e e e e e e e e e e s 6-6
6.8 ENABLING AND DISABLING INTERRUP TS . L ottt ettt et et e et e e e 6-6
6.8.1 Masking Maskable Hardware I ermUDESo v ettt e ettt e e 6-7
6.8.2 Masking INStrUCTION BreaKPOintS . . o\ v vttt e et e e e e e e e e e 6-7
6.83 Masking Exceptions and Interrupts When Switching Stackso i 6-8
6.9 PRIORITIZATION OF CONCURRENT EVENT S .ttt ettt et et et r e e e s 6-8
6.10 INTERRUPT DESCRIPTOR TABLE (IDT) .+ ettt ettt ettt e et et e e et et e e et et et et ettt n e et 6-9
6.11 DT DESCRIP T ORS ..ttt ettt ettt e e e e e e e 6-10
6.12 EXCEPTION AND INTERRUPT HANDUING . . o ettt ettt et et e e et e e e e e e et et et e e e 6-11
6.12.1 Exception- or INterrupt-Handler ProCeaUIESottt e e 6-12
6.12.1.1 Shadow Stack Usage on Transfers to Interrupt and Exception Handling Routinescooveat 6-14
6.12.1.2 Protection of Exception- and Interrupt-Handler Procedures.oviviii it et 6-16
6.12.1.3 Flag Usage By Exception- or Interrupt-Handler Procedure.o e 6-17
6.12.2 I EITUD T TaSKS . ottt i it et et e e e e e 6-17
6.13 ERROR CODE ...ttt ettt et e et e e e e e e e e e 6-18
6.14 EXCEPTION AND INTERRUPT HANDLING IN B4-BIT MODEottt 6-19
6.14.1 B4-Bit MOME DT . ettt ettt et e e 6-19
6.14.2 B4-Bit MO STaCK FramMIE .ttt e e 6-20
6.14.3 IRET N TA-32E MO . . .ottt e e et e e e et e e et e e e 6-21
6.14.4 Stack SWItChING N JA-32E MOGEottt e e e et e e s 6-21
6.14.5 INTEITUPT STaCK TabI . ..ottt e e ettt e e e e e e 6-22
6.15 EXCEPTION AND INTERRUPT REFERENCE.ottt ettt et et aees 6-23
Interrupt O—Divide Error EXCeption (HDE). vttt e 6-24
Interrupt 1—Debug EXCEPtioN (HDB)ot e e e 6-25
(0o At N =T o P 6-27
Interrupt 3—Breakpoint EXCEPTioN (HBP).t e 6-28
Interrupt 4—0verflow EXCEPTION (HOF) ...ttt e e e e 6-29
Interrupt 5—BOUND Range Exceeded Exception (HBR)ooiiiii 6-30
Interrupt 6—Invalid Opcode EXCEPLiON (HUD) ov et e 6-31
Interrupt 7—Device Not Available Exception (ENM). 6-32
Interrupt 8—Double Fault EXCEPTION (HDF)o v ittt e e 6-33
Interrupt 9—Coprocessor SEGMENT OVEITUN. ...t v vttt ettt ettt ettt et e e e e e e e 6-35
Interrupt 10—INvalid TSS EXCEPTION (BT S) 1\ttt ittt e e 6-36
Interrupt 11—Segment Not Present (HNP) e 6-38
Interrupt 12—Stack Fault EXCEPLION (HSS) ... vttt e e e 6-40
Interrupt 13—General Protection EXCeption (HGP).ov it e 6-41
Interrupt 14—Page-Fault EXCEPtioN (HPF). . ..o vt e 6-44
Interrupt 16—x87 FPU Floating-Point Error (HMF). ... vt e e e 6-48
Interrupt 17—Alignment Check EXCEPTION (HAC). . ..o vttt e 6-50
Interrupt 18—Machine-Check EXCeption (HMC) oot e e 6-52
Interrupt 19—SIMD Floating-Point EXCEPLiON (HXM)ot e 6-53
Interrupt 20—Virtualization EXCEPLioN (HVE) vor i e 6-55
Interrupt 21—Control Protection EXCEPTioN (HCP)v vttt e 6-56
Interrupts 32 10 255—User Defined I ermUPTS. .. vttt e e e 6-58
CHAPTER 7
USER INTERRUPTS
7.1 INT RO DUCTION . ottt ettt ettt e e et et e e e e e e e e e e e e et e e 7-1
7.2 ENUMERATION AND ENABLING . . .ot ettt e e e et e e et e e e e et e e e e e e et e e n e 7-1
73 USER-INTERRUPT STATE AND USER-INTERRUPT MSRS. . .ottt ittt st 7-1
7.3.1 USer- I e UDT S Al . . ettt e e e e 7-2

vi Vol. 3A

CONTENTS

PAGE
732 USEr- N e UD T MO RS . L oottt et e e e e e e e 7-2
74 EVALUATION AND DELIVERY OF USER INTERRUP TS, . .o\ttt it e e 7-3
741 User-INtermUPt RECOGNITION. . ..ottt it e et et e et e e 7-3
74.2 USEr-INtermUDT DBl EIY . . oottt e e et et e e 7-4
75 USER-INTERRUPT NOTIFICATION IDENTIFICATION AND PROCESSING. ...t v o vttt ettt aea s 7-5
7.5.1 User-Interrupt Notification Identification e 7-6
752 User-Interrupt Notification ProCeSSiNg.cvovi ettt i e e ettt 7-6
7.6 USER-INTERRUPT INSTRUCTIONS Lottt ettt ettt e e ettt e e e 7-7
77 USE R IPIS Lttt e e e e e 7-7
CHAPTER 8
TASK MANAGEMENT
8.1 TASK MANAGEMENT OVERVIEWttt ettt e et e e et e e e enees 8-1
8.1.1 B 110t (=P 8-1
8.1.2 L 15 =1 (= 8-2
813 EXBCUTING @ TaSK « ottt vttt sttt e e e e e e et e e e e e 8-2
8.2 TASK MANAGEMENT DATA STRUCTURES . .. ittt ittt e e e e e e 8-3
8.2.1 RO = 1 EIY=Ta 1 T (0 8-3
8.2.2 BT Lol {1 o 8-5
8.23 TSS Descriptor iN 64-Dit MOAe.\ e e s 8-6
8.24 TASK REGIS O ittt it i it et e e e e e e 8-7
8.2.5 I €= L (= ol {51 o 8-8
83 TASK S T CHING . ottt et e e e e e e e et e e e e e e e e 8-9
84 TASK LINKING .« oottt et s e e e et e e e et e e e e e e e e e 8-15
84.1 Use of Busy Flag To Prevent Recursive Task SWItChing.oviviii i e 8-16
84.2 MOdIfYING TaSK LINKGGES oo ettt ettt e e e et e et et e et 8-16
8.5 TASK ADDRESS SP A CE. ..\ttt sttt et et e e e e e 8-16
8.5.1 Mapping Tasks to the Linear and Physical Address SPates ... vvvvvi ittt e 8-17
8.5.2 Task LOGICal AdArESS SPaCE . .. vttt ettt et e et e e e 8-18
8.6 16-BIT TASK-STATE SEGMENT (TS) &ttt ittt ettt et et aees 8-18
8.7 TASK MANAGEMENT IN B4-BIT MODEttt ettt e et eaes 8-19
CHAPTER 9
MULTIPLE-PROCESSOR MANAGEMENT
9.1 LOCKED ATOMIC OPERATIONS .ttt ittt ettt ettt e e et et e e e et et e e e e 9-1
9.1.1 Guaranteed AtOmMIC QP atiONS . . .ttt ettt et ettt e ettt e e e ettt e e e e 9-2
9.1.2 BUS LOCKING .« vttt e e e e e e e 9-3
9.1.2.1 AUTOMATIC LOCKING. .. ottt e e et et e e e ey 9-3
9.1.2.2 Software Controlled Bus LOCKINGo vttt et 9-4
9.1.23 Features 10 Disable BUS LOCKS.ottt e 9-4
9.1.3 Handling Self- and Cross-Modifying Code.ouii it e e ettt 9-5
9.14 Effects of a LOCK Operation on Internal Processor Caches. e 9-6
9.2 MEMORY ORDERING . . .ttt sttt et ettt e et et e e et et e e et et e e et e e 9-6
9.2.1 Memory Ordering in the Intel® Pentium® and INtel486™ ProceSSOrs ... vvv ittt ittt 9-6
9.2.2 Memory Ordering in P6 and More Recent Processor Families.o e 9-7
9.23 Examples lllustrating the Memory-0Ordering PrinCiplest e e 9-8
9.2.3.1 Assumptions, Terminology, and Notationt i e i e i e i e 9-8
9.23.2 Neither Loads Nor Stores Are Reordered with Like Operations.coviiiiii it 9-9
9.233 Stores Are Not Reordered With Earlier LOadSvvveiiii e 9-9
9.234 Loads May Be Reordered with Earlier Stores to Different Locations.............cooiiiviiiii i 9-10
9.235 Intra-Processor Forwarding IS AIOWET.ot e e 9-11
9.236 Stores Are Transitively VisiDIe e 9-11
9.23.7 Stores Are Seen in a Consistent Order by Other ProCeSSOrS. ...ttt ettt aeas 9-12
9238 Locked INStructions Have @ Total Order. . ..o v vttt ettt e e 9-12
9239 Loads and Stores Are Not Reordered with Locked INSTrUCtionS.vvvvii i 9-12
9.24 Fast-String Operation and Out-0f-0rder STOMES. ... v vttt e e 9-13
9.24.1 Memory-Ordering Model for String Operations on Write-Back (WB) MemoOry.oovvviviiiiiiiiii s 9-13
9.24.2 Examples lllustrating Memory-Ordering Principles for String Operationscovviiii i 9-14
9.25 Strengthening or Weakening the Memory-Ordering Model ..o e 9-16
93 SERIALIZING INSTRUCTIONS . .ottt ettt ettt et et e et et e et e e et e e et a e n e e 9-17
9.4 MULTIPLE-PROCESSOR (MP) INITIALIZATION . ottt ettt e e e et ettt e e eens 9-19
94.1 BSP AN AP PrOCES SO S v vttt ettt ettt et e e e ettt et e e e e e e e e e e e 9-19

Vol. 3A Vii

CONTENTS

94.2 MP Initialization Protocol Requirements and ReStrHCHiONS.o vu ittt e 9-20
94.3 MP Initialization Protocol Algorithm for MP Systems e 9-20
944 MP INitialiZation EXAMIDIE. . . ot e e e 9-21
944.1 Typical BSP INitialization SEQUENCE vt e et e s 9-21
94.4.2 Typical AP INitialization SEQUENCE ettt 9-23
945 Identifying Logical Processors inan MP SYStem ottt e e 9-24
95 INTEL® HYPER-THREADING TECHNOLOGY AND INTEL® MULTI-CORE TECHNOLOGYvvvviiiiiiiiiieiieiiiiennens 9-25
9.6 DETECTING HARDWARE MULTI-THREADING SUPPORT AND TOPOLOGY. ...ttt ettt e i e 9-25
9.6.1 Initializing Processors Supporting Intel® Hyper-Threading Technology ... e 9-26
96.2 INitialiZINg MURI-COME PrOCESS OIS .« o\ttt ittt ettt ettt ettt et e e et et e e e e e ettt a e neeeaes 9-26
96.3 Executing Multiple Threads on an Intel® 64 or IA-32 Processor Supporting Hardware Multi-Threading.............. 9-27
964 Handling Interrupts on an IA-32 Processor Supporting Hardware Multi-Threading............cococii i nnns 9-27
9.7 INTEL® HYPER-THREADING TECHNOLOGY ARCHITECTURE . ..\ttt ettt es 9-27
9.7.1 State Of Tthe LOGICal PrOCESS OIS, . vttt ittt ettt et e e e e e e e e 9-28
9.7.2 A o O T o o = Y/ 9-29
9.7.3 Memory Type RaNge ReGiStErs (MTRR)ouiti ettt ettt et eees 9-29
974 Page AtIriDUTE TablE (P AT). . ottt e e e e e e e e e 9-29
9.75 [= Yol a1 L= O g T= Tl Y C=Ton (= 9-29
9.76 Debug RegiSters and EXTENSIONS. . ..o\ttt sttt ettt ettt ettt e e et ettt e e e e e 9-30
9.7.7 Performance Monitoring COUNM OISttt ittt ettt et e e e e e e e 9-30
9.7.8 IAB2 _MISC ENABLE MR, . ottt ettt e e e e e e e e e e e e e 9-30
9.79 [T T V0= Ve 9-30
9.7.10 SEIAliZING NS T UCTIONS . . ottt e et e e e e e 9-30
9.7.11 ot o Talo T [N a2 (= R =T o] ol 9-30
9.7.12 Y= 1 o Ta 13 T 0 T = 9-31
9.7.13 Implementation-Specific Intel® HT Technology Facilities.covvuiii i e 9-31
9.7.13.1 PrOCESSOr CACNES . . . ettt ettt e et s 9-31
9.7.13.2 Processor Translation Lookaside BUFfers (TLBS). vuvuuitet ittt et ie e e ie e 9-31
97133 == Lo T T 9-32
97134 External Signal ComPatibilityot e e 9-32
98 MULTI-CORE ARCHITECTURE . ..ottt ettt e et e e et e e et e et et e es 9-32
9.8.1 [u o= o o o 1Y T U0 o P 9-33
9.8.2 Memory Type Range Registers (MTRR)o e e neaes 9-33
9.8.3 Performance Monitoring COUNM IS . . .ottt ettt et ettt e e e e et e e e ettt 9-33
984 IAB2_MISC_ENABLE MSR. ..ttt ettt e e e e e e e e e 9-33
9.8.5 o o Talo T [T a2 L (= R =TS0 ol = 9-33
99 PROGRAMMING CONSIDERATIONS FOR HARDWARE MULTI-THREADING CAPABLE PROCESSORScvvvvvevne 9-34
9.9.1 Hierarchical Mapping of Shared RESOUICES v vttt e e 9-34
99.2 Hierarchical Mapping of CPUID Extended Topology Leaf. ..o i 9-36
993 Hierarchical ID of Logical Processors in an MP SYSTeM ittt e ie e 9-39
9.93.1 Hierarchical ID of Logical Processors With X2APIC ID ouu et 9-40
994 Algorithm for Three-Domain Mappings 0f APIC Doui it e ettt eienans 9-41
995 Identifying Topological Relationships in @n MP SyStemo.iti i e 9-45
9.10 MANAGEMENT OF IDLE AND BLOCKED CONDITIONS . ..ottt ettt et e eens 9-48
9.10.1 [I 0 Y ot 1T 9-48
9.10.2 o A = 0 Y 1 o o 9-48
9.10.3 Detecting Support MONITOR/MWAIT INSTrUCTION. .. vttt et e e e 9-49
9.104 MONITOR/MW AT IS U ON .« ottt e e e et et e et e e eees 9-49
9.10.5 Monitor/Mwait Address Range Determinationouu et et e 9-50
9.10.6 Required Operating Sy S em SUP PO Tttt et e e 9-51
9.10.6.1 Use the PAUSE Instruction in Spin-Wait LOOPS.ot e e e e i iaaas 9-51
9.106.2 Potential Usage of MONITOR/MWAIT in CO IdIE LOOPS. . .. vt ee et ettt et e e aans 9-51
9.106.3 Halt Idle LOGICal PrOCESS OIS v vttt ittt ettt sttt e e e et e et e e e e s 9-53
9.10.6.4 Potential Usage of MONITOR/MWAIT in CT Idle LOOPS. . . vt i e ettt et ittt e e ieaans 9-53
9.10.6.5 Guidelines for Scheduling Threads on Logical Processors Sharing Execution Resources.............ovvvvvnnn. 9-54
9.10.6.6 Eliminate Execution-Based TimiNG LOOPS. . ..\ttt ittt ettt sttt et aaas 9-54
9.10.6.7 Place Locks and Semaphores in Aligned, 128-Byte Blocks of MeMOry.vviiiiiii it ieieaens 9-54
9.11 MP INITIALIZATION FOR P6 FAMILY PROCESSORSttt ettt et e e e es 9-54
9.11.1 Overview of the MP Initialization Process for P6 Family Processorso iiiniiianns 9-55
9.11.2 MP Initialization Protocol AIGOrithm e 9-55
9.11.2.1 Error Detection and Handling During the MP Initialization Protocol.............coii i 9-57

viii Vol. 3A

CONTENTS

PAGE
CHAPTER 10

PROCESSOR MANAGEMENT AND INITIALIZATION

10.1 INITIALIZATION OV RV EW .ottt et e e e e e e e e et e e e e 10-1
10.1.1 PrOCESSOr STaTE AT T RO BT ...ttt ittt e e et et e e e e 10-2
10.1.2 Processor BUilt-In Self-Test (BIST)o v vt e s 10-5
10.1.3 Model and Stepping INformMatioN. o e 10-5
10.1.4 [Ty (S g Ton o = =T ol U | = 10-5
10.2 XB7 FPU INITIAUIZATION .ottt ettt ettt et e et et e e e e et e e n et e e aanes 10-5
10.2.1 Configuring the X87 FPU ENVITONMENT.ttt ettt e et ettt aeneenens 10-6
10.2.2 Setting the Processor for x87 FPU Software EmUIation e ees 10-6
103 CACHE ENABLING. . .ottt sttt st s e e et e e e e e e e et e e e et et e e 10-7
104 MODEL-SPECIFIC REGISTERS (MRS) . . . ettt it ettt et e e et e e e e e 10-7
10.5 MEMORY TYPE RANGE REGISTERS (MTRRS). . vttt ettt et e ettt et et aees 10-8
10.6 INITIALIZING SSE/SSE2/SSEI/SSSES EXTENSIONS.ottt e e 10-8
10.7 SOFTWARE INITIALIZATION FOR REAL-ADDRESS MODE OPERATION ...ttt et aas 10-8
10.7.1 REAI-AAATESS MOE DT ..ttt ettt et e e e e e et et e e et et e e e e e e 10-8
10.7.2 NMIINtErTUPT Handling. . .. oot e e e e 10-9
10.8 SOFTWARE INITIALIZATION FOR PROTECTED-MODE OPERATION ...ttt 10-9
10.8.1 Protected-Mode System Data STrUCTUNESttt e e e ettt n i aanas 10-9
10.8.2 Initializing Protected-Mode EXxceptions and INtermUPtS .. .o .ottt 10-10
10.8.3 INITIRliZING Paging. . oot i e e e e 10-10
10.84 INitialiZINg MUREASKING. . .. oo e e e e e 10-10
10.8.5 INIIANIZING LA-328 MOQE . .. ottt e e e 10-11
10.8.5.1 IA-32€ Mode System Data StrUCTUNES .. vttt i it e et e ettt i 10-11
10.8.5.2 I1A-32e Mode INterrupts and EXCEPTIONS. . ..\ttt et ettt et e 10-12
10.85.3 64-bit Mode and Compatibility Mode Operation.vvui it 10-12
10854 Switching Out of IA-32e Mode Operationiiiii i e e ettt 10-12
109 MODE SWITCHING .ottt ettt et et e e et e e et e e e et e e et e e et et e et n e a e 10-13
10.9.1 SWItChiNg 10 Protected MO ... o i e e 10-13
10.9.2 Switching Back 10 REal-AdAresS MOGEot e et e e e 10-14
10.70 INITIALIZATION AND MODE SWITCHING EXAMPLE\ttt ettt e e 10-14
10.10.1 FANSY =T 1 0] (=T LY = 10-16
10.10.2 STARTUPR. ASM LiSTiNg v vttt ittt ettt et sttt e e e et e e et e e et et et 10-16
10.10.3 T N e Yo T o= N e a1 P 10-25
10.104 SUP PTG FllES . oottt e s e e e e e 10-25
10.1T MICROCODE UPDATE FACILITIES. . ottt e ettt et e e et et e e e 10-27
10.11.1 Tl o oo T[T 0T = 10-28
10.11.2 Optional Extended Signature Tableo . vv ittt e 10-31
10.11.3 ProCeSSOr IdEN i ICaTiON. . .o\ttt e e 10-32
10114 o w0 T T= o o P 10-32
10.11.5 Microcode Update ChECKSUM . ..ottt e e e et e e e e e e e e e e 10-33
10.11.6 [Tt o Talo T [N I T F=) (N = T =T 10-34
10.11.6.1 Hard Resets in Update Loading. ovvuiririt e ettt 10-35
10.11.6.2 Update in @ MU PIrOCESS 0T Sy S M . . ottt sttt ettt et e ettt 10-35
10.11.6.3 Update in a System Supporting Intel Hyper-Threading Technology ...t e 10-35
10.11.64 Update in a System Supporting Dual-Core Technologyvuvii it eaes 10-35
10.11.6.5 Update Loader ENRanCemEntS .. .v ittt et et e e 10-35
10.11.7 Update Signature and Verification.o e e 10-36
10.11.7.1 Determining the SIGNatUNEttt e e e et e 10-36
10.11.7.2 Authenticating the Update. . ..o e e e 10-37
10.11.8 Optional Processor Microcode Update Specifications.oviiii e it eieaas 10-37
10.11.8.1 Responsibilities 0f the BIOS e e e 10-38
10.11.8.2 Responsibilities of the Calling Program e 10-39
10.11.83 Microcode Update FUNCHIONS . ..ottt i i e et e et e e e 10-42
10.11.84 NI Y B =TT [=T = Tol = P 10-42
10.11.85 FUNCHION O0H—PIESENCE TOST. . . ottt ettt e ettt e e e et ee s 10-42
10.11.86 Function 0TH—Write Microcode Update Datao.oiiii i ettt 10-43
10.11.8.7 Function 02H—Microcode Update Control.ouiuirit et 10-46
10.11.88 Function 03H—Read Microcode Update Data.o.vvitiitr e 10-47
10.11.89 RS (o T 0 T[] 10-48

Vol. 3A iX

CONTENTS

PAGE
CHAPTER 11
ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
11.1 LOCAL AND 170 APIC OVERVIEW . . vttt ettt et e e e e e e e et e e e e e 11-1
11.2 SYSTEM BUS VS, APIC BUS .ottt et e ettt e e e 11-3
11.3 THE INTEL® 82489DX EXTERNAL APIC, THE APIC, THE XAPIC, AND THE X2APICot 11-4
114 LOC AL APIC ittt e e e e e e e 11-4
11.4.1 The Local APIC BIOCK Diagram ... v ettt e e ettt e et e et e e e e et et e e e et 11-4
114.2 Presence Of the LOCal APIC.o ettt e e e e e 11-7
1143 Enabling or Disabling the Local APIC i i et e et i e 11-7
1144 [or= | 2 (O = (W o T 1o 11-8
11.4.5 Relocating the LoCal APIC REGIS OIS ..\ttt ettt e e e e 11-9
1146 [Tor= 2 [11-9
1147 [Tor= | (O = | (S 11-10
11.4.7.1 Local APIC State After POWEr-Up OF RESETottt e e 11-10
11.4.7.2 Local APIC State After It Has Been Software Disabledo.vvuv i 11-10
11.4.7.3 Local APIC State After an INIT Reset (“Wait-for-SIPI" State)vvvi i 11-10
11474 Local APIC State After It Receives an INIT-Deassert IPlt e 11-11
1148 (0Tt A o [O VT o o N =T (= 11-11
115 HANDLUING LOCAL INTERRUP TS ottt ettt et et e e e e e et eanes 11-12
11.5.1 [or=] Y=ot (o = = 11-12
11.5.2 RV 1 Ta B (=T o] Y= Ton (o] 11-15
1153 30T = T T 11-15
1154 (O T 1T 11-16
11.5.4.1 TS C-DEAANINE MO . . .ottt ettt e e e e e e e e e e 11-17
1155 [Yot I) (=T o 00 2 Yol =T) = ol 11-18
11.6 ISSUING INTERPROCESSOR INTERRUP T S, . ettt ettt ettt et et e eens 11-19
11.6.1 Interrupt Command ReGISTEr (ICR)ttt e e e e e et e 11-19
11.6.2 Determining [Pl Destination\ ittt i ettt e e 11-22
11.6.2.1 PhYSICal DEStiNATioN MOGE ..\ttt e e e 11-23
11.6.2.2 L0gical Destination MOde.ot e i e e 11-23
11.6.23 Broadcast/Self Delivery MOv it e et e 11-25
11624 LOWEST Priority DeliVery MOottt e 11-25
11.6.3 T L= AL YA T eI o= o = 11-26
11.7 SYSTEM AND APIC BUS ARBITRATION ..ottt ettt ettt et e e e e e e e et e e e e e e 11-26
11.8 HANDLUING INTERRUP TS .ottt ittt ettt et e et et e ettt eas 11-26
11.8.1 Interrupt Handling with the Pentium 4 and Intel Xeon ProCesSorsv ittt ittt aaas 11-27
11.8.2 Interrupt Handling with the P6 Family and Pentium Processorsovvuiririiiii it i it eeaens 11-27
11.83 Interrupt, Task, and ProCeSSOr Priority . ..ottt e e e e e 11-28
11.8.3.1 Task AN ProCeS SO PriOritiES. . v vttt e e e e e e e 11-29
11.84 Interrupt Acceptance for FiIXed IMTemTUDTS.ottt e e e e e e 11-30
11.85 Signaling Interrupt Servicing ComPlETiONo v ittt e e 11-31
11.86 Task Priority N IA-328 MOQE . ..o i e e e e 11-31
11.8.6.1 Interaction of Task Priorities between CRB and APIC o ittt e 11-32
11.9 SPURIOUS INTERRUPT . . ettt sttt et e ettt et e et e et et e e et e e et e e e eees 11-32
11.10 APIC BUS MESSAGE PASSING MECHANISM AND PROTOCOL (P6 FAMILY, PENTIUM PROCESSORS)ovvvvvvvnnnn 11-33
11.101 BUS MBS0 F Ot S, L o ittt t et e e e e e e e e e 11-34
1117 MESSAGE SIGNALLED INTERRUPTS . . .ttt ettt et e et et et et e et et e e e eens 11-34
11111 Message Address REgiSTEr FOMmMat.ttt it it ettt e et ettt e 11-34
11.11.2 Message Data Register FOMmMat.ttt e e ettt e 11-35
1112 EXTENDED XAPIC (X2APIC). . . e vttt ettt et e e et e e et et e e et e et et e ettt e eens 11-36
11121 Detecting and ENabliNg X2APIC MOGE i vttt i e e e e 11-37
11.12.1.1 INSTrUCtiONS t0 ACCESS APIC REGISTEIS. . .\ttt sttt et ettt et e e 11-37
11.12.1.2 X2APIC REGISTEr AUMESS SPaCE .ottt ettt ettt e e e e e e e 11-38
111213 ReServed Bit CReCKINg . ..ot ottt et e e et e e e 11-40
11.12.2 X2APIC Register AVailabiliTyov i e e e e 11-40
11123 MSR ACCESS IN X2APIC MOGE. . . .ottt ettt e e e e e et 11-40
11.124 VM-Exit Controls for MSRS and X2APIC REGISTEISttt ittt ettt et ettt ittt aenenans 11-41
11125 D A o (O =1 (= I [L 11-41
11.12.5.1 D (O | =1 11-41
D A e O i (=Tl (== 11-42
X2APIC Transitions From X2APIC MO ovi ittt e ettt eees 11-42
X2APIC Transitions From Disabled MOdevuiie e e e 11-43
State Changes From XAPIC Mode t0 X2APIC MOv it i ettt ettt e e 11-43
11126 Routing of Device INterrupts in X2APIC MOGe.o v vv it e i e 11-43

X Vol. 3A

CONTENTS

PAGE

11.12.7 Initialization Dy SYSTEM SO AIEt e e 11-43
11.12.8 CPUID Extensions And Topology ENUMEration.ttt e e 11-43
11.128.1 Consistency of APICIDS and CPUIDo .iui ittt e ettt 11-44
11.129 ICR Operation in X2APIC MO, . ..o\ttt ittt e et e et e e e e e e 11-44
11.1210 Determining IPI Destination in X2APICMOTEviiiii i 11-45
11.12.10.1 Logical Destination Mode in X2APIC MOGe.o .i ittt i e e e e e e 11-45
11.12.10.2 Deriving Logical x2APIC ID from the Local X2APICID. u e et 11-46
L TR T O I o (=1 =Y P 11-47
1113 APIC BUS MESSAGE FORMAT S, ittt ittt ettt ettt et e e e e et e e e 11-47
11.131 BUS MESSa0E FOMMIaTS .« vttt ittt e et e e e e e e 11-47
11.13.2 L0 T T 11-47
11.13.21 1) 0] o (7= T = 11-48
11.13.2.2 Non-focused LoWeSt Priority MESSage.ottt ettt et ettt 11-49
11.13.23 APIC BUS STatUS Gyl ottt ittt et e e e e e e e 11-50
CHAPTER 12

MEMORY CACHE CONTROL

12.1 INTERNAL CACHES, TLBS, AND BUFFERS ...\ttt sttt e e e e e e e aes 12-1
12.2 CACHING TERMINOLOGY . ..t ttt ettt et et e ettt e e e e e e e et et e e et et e e e e et e e a e aenes 12-5
123 METHODS OF CACHING AV AILABLE. . ..ottt et e e e e e e e e e 12-6
12.3.1 Buffering of Write Combining Memory LOCationsuiriii et 12-8
12.3.2 CRO0SING @ MmO Y Ty D Lottt ittt ettt ettt et e e e et e e et e e e e 12-8
1233 Code Fetches in UNCacheable MemMOTYv . e e 12-9
124 CACHE CONTROL PROTOCOL . .t vttt vttt et e et et e it et e e et et e e et et e e et e e e et aaas 12-9
125 CACHE CONTROL & v vttt et et e e et e e e et e e e et e et r e et e e r e et e e et e e i a e e e 12-10
12.5.1 Cache Control Registers and Bitsvuii e e e 12-10
12.5.2 Precedence Of CaChe COMTr0lS. v ittt ettt ettt et e e et e e et e ettt 12-13
12.5.2.1 Selecting Memory Types for Pentium Pro and Pentium Il Processorsco.vviiiiiiiiiiiiininiienannns 12-14
125.22 Selecting Memory Types for Pentium Ill and More Recent Processor Families. ...t 12-15
125.23 Writing Values Across Pages with Different Memory TYPeS. .. cv.vr it it aeien 12-16
1253 Preventing Caching.o e 12-16
1254 Disabling and Enabling the L3 Cacheo e 12-17
12.5.5 Cache Management IS UG ONS. . .. ottt it ettt et e et e et e 12-17
1256 LT Data Cache ConteXt MOGE.ottt ettt e e et e ettt 12-18
12.5.6.1 APtV MO . . o v ittt e e e 12-18
12.56.2 ST MO . .o ettt et e e 12-18
12.6 SELF-MODIFYING CODE ..\ttt ettt et et e et e e et e et e et e e et e e e et e e 12-18
12.7 IMPLICIT CACHING (PENTIUM 4, INTEL® XEON®, AND P6 FAMILY PROCESSORS) ...\t vi vt ii i 12-19
12.8 EXPLICIT CACHING. oottt et e e e e e e e e et e e e e e e 12-19
129 INVALIDATING THE TRANSLATION LOOKASIDE BUFFERS (TLBS) . ..\ttt ettt ettt iaeaenes 12-19
1210 STORE BUFFER. .. vttt ittt et e e e e et e et et e e e 12-20
12,117 MEMORY TYPE RANGE REGISTERS (MTRRS). ..ttt ettt ettt et et e 12-20
12.111 MTRR Feature IdentifiCationue ettt 12-21
1211.2 Setting Memory Ranges With MTRRS e e 12-22
12.11.2.1 IA32 _MTRR _DEF _TYPE MR . .ttt ittt e et e e e e e e 12-22
12.11.2.2 FIXEA RANGE M RRS . .ottt ittt e e e e e e e e e 12-23
12.11.23 Variable RANGE M R RS, . . ittt et e e s 12-23
121124 System-Management Range Register INterfaceoc vt e e 12-25
12113 Example Base and Mask CalCUlationsovirie e e e 12-26
12.11.31 Base and Mask Calculations for Greater-Than 36-bit Physical Address Support............coviviiiiinnn. 12-27
12114 Range Size and Alignment ReqQUITEMIENT i i i e e e e 12-28
12.11.4.1 I 3 =T =T 1= ol 12-28
12115 S T £ 2 (P 12-29
12116 = = o] o T T=T 0 T YA Y/ =T3P 12-29
1211.7 MTRR Maintenance Programming INterface v e e 12-29
1211.71 MemTyPEGEt() FUNCLION . ..ottt et e ettt e et e e e en s 12-29
1211.7.2 MemTYPESET() FUNCHION ...ttt e et e e e e e et e 12-31
12.11.8 MTRR Considerations iN MP Sy StemMIS i .ttt ettt et e e et eas 12-32
12.11.9 Large Page Size CoNSIAErationsv. ettt ettt et e et et e 12-33
12.12 PAGE ATTRIBUTE TABLE (P AT . ittt ettt ettt e ettt et e ettt e et 12-33
12.12.1 Detecting SUPPOrt Tor the PAT FEaTUME. i ittt e e e e et eaens 12-34
12.12.2 L P o N I Y P 12-34
12.12.3 Selecting a Memory Type from the PAT ... ettt 12-35
12124 Programming the PAT ..o i i e e e 12-35

Vol. 3A Xi

CONTENTS

12125 PAT Compatibility With Earlier IA-32 ProCeSSOrS . . .\ttt t ittt ettt ettt anenanas 12-36
CHAPTER 13

INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING

13.1 EMULATION OF THE MMX INSTRUCTION SET ..ttt ittt ettt e 13-1
13.2 THE MMX STATE AND MMX REGISTER ALIASING . .ttt e 13-1
13.2.1 Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR Instructions on the x87 FPU TagWordcovvvnnn. 13-3
133 SAVING AND RESTORING THE MMX STATE AND REGISTERS ...\ttt e 13-3
134 SAVING MMX STATE ON TASK OR CONTEXT SWITCHES. . ..ottt e 13-4
135 EXCEPTIONS THAT CAN OCCUR WHEN EXECUTING MMX INSTRUCTIONS.ttt 13-4
13.5.1 Effect of MMX Instructions on Pending x87 Floating-Point EXCeptions.c.vveiiiii e 13-5
136 DEBUGGING MMX CODE . . vttt ettt et e et e e et e e e st e e s e e e e et et et e e e 13-5
CHAPTER 14

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR EXTENDED
STATES

14.1 PROVIDING OPERATING SYSTEM SUPPORT FOR SSE EXTENSIONS.o 14-1
14.1.1 Adding Support to an Operating System for SSE EXTENSIONSv.irir i e 14-2
14.1.2 CheCKing TOT CPU SUP PO T . ..ottt ittt ettt ettt e et e ettt e e e e ettt e e e e e ettt nenanaes 14-2
1413 Initialization of the SSE EXTENSIONS\ttt e e 14-2
1414 Providing Non-Numeric Exception Handlers for Exceptions Generated by the SSE Instructions..................... 14-4
1415 Providing a Handler for the SIMD Floating-Point EXception (HEXM)vviriiii e 14-5
14.1.5.1 Numeric Error flag and IGNNEHo e e 14-6
14.2 EMULATION OF SSE EXTENSIONS . .. ottt ettt e e e e e e e e e e e 14-6
143 SAVING AND RESTORING SSE ST AT E ittt ettt e e e e e e 14-6
144 DESIGNING OS FACILITIES FOR SAVING X87 FPU, SSE, AND EXTENDED STATES ON TASK OR CONTEXT SWITCHES.... 14-6
14.4.1 Using the TS Flag to Control the Saving of the x87 FPUand SSEStatecooviiiii e 14-7
145 THE XSAVE FEATURE SET AND PROCESSOR EXTENDED STATE MANAGEMENT ... oviiiii i 14-7
14.5.1 Checking the Support for XSAVE FEature SET .. . v. ittt e e 14-8
145.2 Determining the XSAVE Managed Feature States And The Required BufferSize ..., 14-8
1453 Enable the Use Of XSAVE Feature Set And XSAVE State Components........oviiiiiiiiii it iiineienass 14-9
1454 Provide an Initialization for the XSAVE State ComPONENtSvtitit it 14-9
1455 Providing the Required EXception Handlersou i e 14-9
146 INTEROPERABILITY OF THE XSAVE FEATURE SET AND FXSAVE/FXRSTOR ..\ vtiii i 14-9
14.7 THE XSAVE FEATURE SET AND PROCESSOR SUPERVISOR STATE MANAGEMENT ..o 14-10
148 SYSTEM PROGRAMMING FOR XSAVE MANAGED FEATURESttt 14-10
14.8.1 Intel® Advanced Vector EXensions (INtel® AVX)ot e 14-11
14.8.2 Intel® Advanced Vector Extensions 512 (Intel® AVX-5T2) ... oot e 14-11
CHAPTER 15

POWER AND THERMAL MANAGEMENT

15.1 ENHANCED INTEL SPEEDSTEP® TECHNOLOGY ...ttt e ettt e e e e e e e e e et es 15-1
15.1.1 Software Interface For Initiating Performance State Transitionscovrir it 15-1
15.2 P-STATE HARDWARE COORDINATION. . .o vttt ettt e et et e e e e e et e e et et es 15-1
153 SYSTEM SOFTWARE CONSIDERATIONS AND OPPORTUNISTIC PROCESSOR PERFORMANCE OPERATION 15-3
15.3.1 Intel® Dynamic Acceleration TeChNOIOgY. v i e e e 15-3
15.3.2 System Software Interfaces for Opportunistic Processor Performance Operation..........cocovviiiiiinininnnns. 15-3
15.3.2.1 Discover Hardware Support and Enabling of Opportunistic Processor Performance Operation................... 15-3
153.2.2 0S Control of Opportunistic Processor Performance Operation............ooiiiiiiiii it iiiiiii e eanns 15-4
153.2.3 Required Changes to 0S Power Management P-State POliCYovvviiiiii e 15-4
1533 INtel® TUrDO BOOST TECRNMOIOGY .. .ottt e e e e e e e e e et i ae e 15-5
1534 Performance and Energy Bias Hint SUPPOto it e e e 15-5
154 HARDWARE-CONTROLLED PERFORMANCE STATES (HWP)ttt 15-5
15.4.1 HWP Programming INTer acesottt et e et e ettt 15-6
154.2 ENaDlING H P e e 15-7
154.3 HWP Performance Range and Dynamic Capabilitiesvvvr i e 15-7
1544 MaNagING HWP . .. e e 15-8
15.4.4.1 IA32_HWP_REQUEST MSR (Address: 774H Logical Processor SCOPE) vvvviiii e ieiiieiieieeneenns 15-8
15.4.4.2 IA32_HWP_REQUEST_PKG MSR (Address: 772H Package SCOPE). ... vv vttt i in e 15-11
15.4.4.3 IA32_HWP_PECI_REQUEST_INFO MSR (Address 775H Package SCope)vviiiiiiii i 15-11
154.4.4 IA32_HWP_CTL MSR (Address: 776H Logical ProCesSor SCOPE). . .. vttt ettintieei e eneineiaeianennees 15-12

Xii Vol. 3A

CONTENTS

PAGE

1545 HWP FEEADACK . . vttt ettt e e e e e 15-13
15.4.5.1 Non-Architectural HWP FEEADACK v e e 15-15
15.4.6 1T N0y or= 1o PP 15-16
15.4.7 Idle Logical Processor Impact 0N COre FrEQUENCYt tv ettt ettt ettt ettt e ettt e e aeaa e enanas 15-16
1548 Fast Write of Uncore MSR (Model Specific FEatUre). ... ovvve i e 15-17
15.4.8.1 FAST_UNCORE_MSRS_CAPABILITY (Address: Ox65F, Logical Processor SCope)vvvviviviiniiniiennnnns 15-17
15482 FAST_UNCORE_MSRS_CTL (Address: 0x657, Logical Processor SCOPE) ... vvvvvvvvii et eieiniiannenns 15-17
15483 FAST_UNCORE_MSRS_STATUS (Address: Ox65E, Logical Processor SCOPe)........vvvvirvinerniriiiininnn. 15-18
1549 Fast_IA32_HWP _REQUEST CPUID . . .ttt e et ettt e et e e e 15-18
15.4.10 Recommendations for OS use of HWP CONtrolS. ovuvui st 15-18
155 HARDWARE DUTY CYCLING (HDC) .ottt vttt e ettt e e et e e e et et e et e e et e a e eenes 15-20
15.5.1 Hardware Duty Cycling Programming INTerfaces.ooviriri i e e ittt 15-20
15.5.2 Package level ENabling HDC oot e e e e e 15-21
1553 Logical-Processor LeVel HDC Control. . ..o uvu ittt e e e e e e enens 15-22
1554 | O (=T L f= oY o T =] 15-22
15.5.4.1 JAB 2 THREAD ST AL L vttt sttt e e e e e e e e e e e 15-22
15.54.2 Non-Architectural HDC ReSidenCy COoUNTEIS v vttt ettt e ettt eaees 15-23
15.5.5 MPERF and APERF Counters Under HDCot e enens 15-25
15.6 HARDWARE FEEDBACK INTERFACE AND INTEL® THREAD DIRECTOR ...ttt et iaeeans 15-25
15.6.1 Hardware Feedback Interface Table StrUCTUME v it 15-25
15.6.2 Intel® Thread Director Table StrUCTUNEot et et enens 15-27
15.6.3 Intel® Thread Director USage MOGEL.vii ittt e e ettt eaanas 15-30
15.6.4 Hardware Feedback INterface Pointer e e 15-31
15.6.5 Hardware Feedback Interface Configurationooiriii i e ettt 15-31
15.6.6 Hardware Feedback Interface NOtifiCationso.vur vt e e i 15-32
15.6.7 Hardware Feedback Interface and Intel® Thread Director Structure DynamicUpdate............oovvviiviinnnn.n. 15-33
15.6.8 Logical Processor Scope Intel® Thread Director Configuration ... e 15-33
15.6.9 Implicit Reset of Package and Logical Processor Scope Configuration MSRSoviiiiiii i 15-34
15.6.10 Logical Processor Scope Intel® Thread Director Run Time Characteristicsvvvvviiiiiiiiiiiiii i, 15-34
15.6.11 LOGiCal ProCesSSOr SCOPE HisSTOrY . ..ottt ittt i e et e e e e e e 15-34
15.6.11.1 €nabling Intel® Thread Director History ReSETt et 15-35
15.6.11.2 Implicit Intel® Thread Director History RESETttt e e 15-35
15.7 MWAIT EXTENSIONS FOR ADVANCED POWER MANAGEMENT ...\ttt ittt e 15-35
15.8 THERMAL MONITORING AND PROTECTION. . v ettt ettt ettt et e e e et et e e e et e e e e e e 15-36
15.8.1 Catastrophic SNUTAOWN DETECIOT . . . v\ttt et et e e e e 15-37
15.8.2 LI L= .0 =1 3T o P 15-37
15.8.2.1 B L= = Lo T T o P 15-37
15.8.2.2 TREMMIAl MONITOr 2. .ttt ettt et e et e e e et e e s 15-37
15.8.23 Two Methods for ENabling TM2 . ..o e i ettt 15-37
15824 Performance State Transitions and Thermal MoniToringvviiiii i e ea s 15-38
15.8.25 Thermal Status INfOrmMation. e e e e 15-38
15.8.2.6 Adaptive ThEMMAl MOniTOr ..ottt et e e e e 15-39
1583 Software Controlled Clock MOdUIBTION vttt e e 15-40
15.8.3.1 Extension of Software Controlled Clock Modulation ..o e 15-41
15.84 Detection of Thermal Monitor and Software Controlled Clock Modulation Facilitiescovvviiiiiiiinnninnns 15-41
15.8.4.1 Detection of Software Controlled Clock Modulation EXTENSIONvuveevi e 15-41
15.8.5 On Die Digital TREMMIAl SBNSO S . . v vttt ettt ettt et e e e ettt e e st 15-42
15.8.5.1 Digital Thermal SeNSOr ENUMEratiON.ttt ettt ettt it ans 15-42
15.85.2 Reading The Digital SENSOr . ..o\ttt e 15-42
15.8.6 Power Limit NOtifiCationo v e e e 15-45
15.9 PACKAGE LEVEL THERMAL MANAGEMENT . ..ottt ittt et e et et e et e e e e e 15-45
15.9.1 Support for Passive and ACtiVe COONING vu ettt e 15-47
15.10 PLATFORM SPECIFIC POWER MANAGEMENT SUPPORT ...\ttt ettt 15-48
15.10.1 Y IR0 (= = (o P 15-48
15.10.2 RAPL Domains and Platform SpeCifiCityo.vve et e e 15-49
15.10.3 Package RAPL DOmMIain . . vttt ettt ettt et e s et e e e e e e 15-50
15.104 PPO/PPT RAPL DOMINS .ot vttt vttt ettt e et e e e e et e e et e e e e et et et e et et e et e e 15-52
15.10.5 DRAM RAPL DOMIGIN .+ v vttt et e ettt e et e e e e e et e e et e et e e e e n e et e et i n e e et 15-54
CHAPTER 16

MACHINE-CHECK ARCHITECTURE

16.1 MACHINE-CHECK ARCHITECTUREottt ettt e e e e e e e e 16-1
16.2 COMPATIBILITY WITH PENTIUM PROCESSOR . . . ot ettt ittt e et et e e e et e e e et 16-1
16.3 MACHINE-CHECK MRS ..ttt ittt e et et e e e et e e et et e e et et et et et e ees 16-2

Vol. 3A Xiii

CONTENTS

16.3.1 Machine-Check GIODal CONTIOl MSRS.o v ittt ettt e et ettt e eens 16-2
16.3.1.1 A2 MG LA MR . ittt it e e e e e e e e e 16-2
16.3.1.2 A2 MG ST ATUS MO R . ittt ittt e e e e e e e et e 16-4
16.3.1.3 N O T O I) P 16-4
163.1.4 A2 MG EXT T MO R ittt ittt e e e e e e e e e 16-4
16.3.1.5 Enabling Local Maching CReCK ot i i i e e e e e et i 16-5
16.3.2 Error-Reporting RegiSTer BanKs.ttt et e e e 16-5
16.3.2.1 N [O Y 16-5
16.3.2.2 A3 MO ST ATUS MRS ottt ittt et e e e e 16-6
16.3.23 A2 MU AR MO RS . . vttt ittt ettt e e et e e e e e e e e 16-9
16.3.24 1 [T S O Y S R 16-9
16.3.25 L O O 8 Y 4 16-11
16.3.2.6 IA32_MCG Extended Machine Check STate MSRSttt e e 16-12
16.3.3 Mapping of the Pentium Processor Machine-Check Errors to the Machine-Check Architecture...................... 16-13
164 ENHANCED CACHE ERROR REPORTING. . . .t vttt ettt et e et e et ettt e et e et et e et n e 16-13
16.5 CORRECTED MACHINE CHECK ERROR INTERRUPT ..\ttt ettt e e e et e e e e et e e et in e eans 16-14
16.5.1 0 (Ol oo A o (O [=] = Lol 16-14
16.5.2 System Software Recommendation for Managing CMCI and Machine Check Resources.covvvivnnnt. 16-15
16.5.2.1 (O T]2 o 16-15
16.5.2.2 CMCI Threshold Management. . ..ottt ettt e e e et e e e et e 16-16
16.5.2.3 0 [Ty =T 0 o = T T = 16-16
16.6 RECOVERY OF UNCORRECTED RECOVERABLE (UCR) ERRORS ...\ttt e eieanes 16-16
16.6.1 Detection of SOftware Ermor RECOVENY SUPPOMT. ..o\ttt e e e iaas 16-16
16.6.2 UCR Error Reporting and LOGging . .« ..o v ittt ittt ettt et e ettt et e e e et et 16-16
16.6.3 L0 [=y o Tl 0= T o= o 16-17
16.6.4 UCR Ermor OVerWIItE RUIES . . ottt et et ettt et ettt et e e 16-18
16.7 MACHINE-CHECK AV AL ABIL T Y. L ettt et e e e e e e e e e et e e e e e 16-19
16.8 MACHINE-CHECK INITIAUZATION L oottt et e e e et et et e et et e a e e 16-19
16.9 INTERPRETING THE MCA ERROR CODES. . . . ettt ettt ittt et ettt e et ettt e e s 16-20
16.9.1 I 10 S = o 0T [16-20
16.9.2 000330 o TU e S 3 o T[S 16-21
16.9.2.1 Correction Report FIltering (F) Bit. vt e e 16-21
16.9.2.2 Transaction Type (TT) SUD-FIeld.o e ens 16-22
16.9.2.3 LeVel (LL) SUD-FIEldot 16-22
169.2.4 Request (RRRR) SUD-FIld.t e e e e e 16-22
16.9.2.5 LU T o Y =] o] =T ot A o o 16-23
16.9.2.6 Memory Controller and Extended MEeMOMY EITOIS v vttt et ettt et ettt n e eeees 16-24
16.9.3 Architecturally Defined UCR BITOrS ... vttt ittt e e e ettt e e et et nees 16-24
16.9.3.1 Architecturally Defined SRAD EITOrS . .. vttt ittt et ettt e e e ettt e 16-24
16.9.3.2 Architecturally Defined SRAR EITOrS vttt ittt ettt ettt e ettt e et eaens 16-25
16.9.4 MURIDIE MO A B 0TS . o v ettt sttt et ettt ettt e e e e ettt e e e e e e e e e aas 16-27
16.9.5 Machine-Check Error Codes INterpretationot i i e e i e 16-27
16.10 GUIDELINES FOR WRITING MACHINE-CHECK SOFTWARE . ..o\ttt et 16-28
16.10.1 Machine-Check EXCeption Handlero e e e 16-28
16.10.2 Pentium Processor Machine-Check Exception Handling. e 16-29
16.10.3 Logging Correctable Maching-Chetk ErTOrS ... v .ttt e et e et enaaas 16-29
16.104 Machine-Check Software Handler Guidelines for Error RECOVEMY.vvviu it 16-31
16.104.1 Machine-Check Exception Handler for Error RECOVETYvieiiii ittt e e ieeees 16-31
16.104.2 Corrected Machine-Check Handler for Error RECOVEIY. vvv ittt ens 16-35
CHAPTER 17

INTERPRETING MACHINE CHECK ERROR CODES

17.1 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY 06H, MACHINE ERROR CODES FOR MACHINE CHECK... 17-1
17.2 INCREMENTAL DECODING INFORMATION: INTEL® CORE™ 2 PROCESSOR FAMILY, MACHINE ERROR CODES FOR MACHINE

CHE K ..ttt et et e e e e e e e e e e e e e e 17-3
17.2.1 Model-Specific Machine Check Error Codes for Intel® Xeon® Processor 7400 Seriesovvvviiiiiiiiininnennen. 17-5
17.2.1.1 Processor Machine Check Status Register, Incremental MCA Error Code Definition....................cocoiuit. 17-6
17.2.2 Intel® Xeon® Processor 7400 Model Specific Error Code Field . ..ot e 17-6
17.2.2.1 Processor Model Specific Error Code Field, Type B: Bus and Interconnect Error Codes.c.ocovvivvninne. 17-6
17.2.2.2 Processor Model Specific Error Code Field, Type C: Cache Bus Controller Error Codescoovvvvivnenannnn. 17-7
17.3 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR 3400, 3500, 5500 SERIES, MACHINE ERROR

CODES FOR MACHINE CHECK . .ottt ittt ettt et ettt e e e e e e e e e e e e 17-7
17.3.1 Intel® QPI Maching ChECK BrTOrS. . ..ttt ettt ettt e e et e e e e e e ettt e r e e e aeaenes 17-8
17.3.2 INternal Maching CRECK ErTOrS . .. vttt ettt et e e ettt e 17-9

Xiv Vol. 3A

CONTENTS

PAGE
1733 [T=T 0 o Y O 0 o] | =Tl o 3 17-9
17.4 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR E5 FAMILY, MACHINE ERROR CODES FOR MACHINE
CHECK ettt e e e e e e e e e e e 17-10
17.4.1 INterNal Maching CNECK ErTOrS . . v ettt ettt ettt et et e e et et et et e et et et n e e 17-10
174.2 INtel® QPI Maching CRECK EITOrS ..ttt ettt e et e e e e e e e e e e e 17-11
1743 Integrated Memory Controller Maching ChecK BrTOrS. .. .o vt i e e ettt enes 17-11
175 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR E5 V2 AND INTEL® XEON® PROCESSOR E7 V2
FAMILIES, MACHINE ERROR CODES FOR MACHINE CHECK\ttt et 17-13
17.5.1 L= = T Tl T O Y= Q= o Y 17-13
17.5.2 Integrated Memory Controller Machine Check ErmOrs.vu oot e et e s 17-14
1753 Home Agent Maching CheCK ErTOrS ... v ettt e e e e aaas 17-15
176 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR E5 V3 FAMILY, MACHINE ERROR CODES FOR
MACHINE CHECK. . . vttt ettt et et et e e e et e e e e e e e et et e e et et e n e 17-15
17.6.1 INternal Maching CRECK ErTOrSttt et ettt et ettt et e et et e ettt e et e s 17-16
176.2 Intel® QP Maching ChECK ErTOrS . ..ottt ettt et et e et e e e e e e 17-17
17.6.3 Integrated Memory Controller Machine Check Ermors.ot e e s 17-17
1764 Home Agent Maching CheCK ErTOrS ... v vttt e e e s 17-19
17.7 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR D FAMILY, MACHINE ERROR CODES FOR MACHINE
[0 17-19
17.7.1 INternal Maching CRECK ErTOrSttt e et ettt et ettt et et e e et e et et et e s 17-19
17.7.2 Integrated Memory Controller Maching ChecK ErTOrS.ottt i e ettt e e 17-20
17.8 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR E5 V4 FAMILY, MACHINE ERROR CODES FOR
L O N 0 17-21
17.8.1 Integrated Memory Controller Maching CheCK ErTOrS.ottt e i e ettt enes 17-21
17.8.2 Home Agent Maching CheCk EITOrS vu ittt e e ettt e i eanas 17-21
17.9 INCREMENTAL DECODING INFORMATION: INTEL® XEON® SCALABLE PROCESSOR FAMILY, MACHINE ERROR CODES FOR
MACHINE CHECK. ..ttt sttt et e et e e ettt et et e e e e et e e et e e e e et e 17-22
17.9.1 INternal Maching CNECK ErTOrS . . v vttt ettt ettt et e e et et e e et et et e n e et a e e 17-22
17.9.2 Interconnect Maching ChECK ErTOrS . .. v vttt ettt e e e et et et 17-24
1793 Integrated Memory Controller Maching ChecK BrTOrS.ottt e i e ettt eenes 17-25
1794 [B = O =Tl S T 17-26
17.9.5 Home Agent Maching CheCK ErTOrS ... vttt e e e e e e 17-27
17.10 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH CPUID DISPLAYFAMILY_DISPLAYMODEL SIGNATURE
06_5FH, MACHINE ERROR CODES FOR MACHINE CHECK\ttt 17-28
17.10.1 Integrated Memory Controller Machine Check Ermors. ... oottt e e 17-28
17.11 INCREMENTAL DECODING INFORMATION: 3RD GENERATION INTEL® XEON® SCALABLE PROCESSOR FAMILY, MACHINE
ERROR CODES FOR MACHINE CHECK. . . oottt ettt sttt et e e et et e e e et e e et e e n e a et 17-28
17.11.1 INternal Maching CRECK ErTOrSttt sttt ettt ettt et ettt e et et e s 17-29
17.11.2 Interconnect Maching ChECK ErTOrSttt ettt e ettt a e aens 17-31
17.11.3 Integrated Memory Controller Machine Check Ermors. . ..ottt e ens 17-32
17114 P i g = O =Tl S o 17-36
17.12 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH CPUID DISPLAYFAMILY_DISPLAYMODEL SIGNATURE
06_86H, MACHINE ERROR CODES FOR MACHINE CHECK v ettt et e et ae e 17-36
17.12.1 Integrated Memory Controller Machine Check Ermors. ... vt i e 17-36
17.12.2 70 i I = Tl L= O =T ol o o 17-37
17.13 INCREMENTAL DECODING INFORMATION: 4TH GENERATION INTEL® XEON® SCALABLE PROCESSOR FAMILY, MACHINE
ERROR CODES FOR MACHINE CHECK. . . oottt ettt ettt e e e e e et e e eees 17-37
17.13.1 L= = T Tl T T O Y=l S = oo Y 17-37
17.13.2 Interconnect Maching CRECK ErTOMS . .. v vttt sttt et e et et e e et e et e e a s 17-39
17.133 Integrated Memory Controller Machine Check Ermors. ... vt e 17-41
17134 M2M MaChing CRECK B TS, . .ottt ettt ettt e e et e e e e e ettt e e e ettt r e e eenens 17-43
17.135 High Bandwidth Memory Machine Check ErTOrs.v i e et ens 17-44
17.14 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY OFH, MACHINE ERROR CODES FOR MACHINE CHECK.. 17-44
17.14.1 Model-Specific Machine Check Error Codes for the Intel® Xeon® Processor MP 7100 Series.oovvvvvivnennnn... 17-45
17.14.1.1 Processor Machine Check Status Register MCA Error Code Definition.............cociiiiiiiiii i, 17-46
17.14.2 Other_INfo Field (Al MCA EITOr Ty DS . . vttt vttt et ettt ettt e e e ettt e et n e iaas 17-47
17.14.3 Processor Model Specific Error Code Field.o e e e e 17-48
17.14.3.1 (O = o i Y/ = 2 W IR o o 17-48
171432 Processor Model Specific Error Code Field Type B: Bus and Interconnect Errorcoovvvvivivnininnnnnnns 17-48
17.1433 Processor Model Specific Error Code Field Type C: Cache Bus Controller Efror..........covvvviiiiiiinnnn. 17-49

Vol. 3A Xv

CONTENTS

PAGE

CHAPTER 18
DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT)
FEATURES

18.1 OVERVIEW OF DEBUG SUPPORT FACILITIES . .ottt ittt et et e e e e e et e 18-1
18.2 DEBUG REGISTE RS . . ottt sttt st e e e e e et e e e e e e e et e et e 18-2
18.2.1 Debug Address Registers (DRO-DR3). ... u ittt e e e e 18-4
18.2.2 Debug Registers DR @nd DRSttt e e et e e 18-4
18.2.3 Debug Status ReGISTEr (DRB) v ettt et et e e e 18-4
18.2.4 DEbUg CoNTrol REGISTEN (DR 7) .+ vttt ettt e e ettt e e e ettt e e e 18-4
18.25 Breakpoint Field RECOGNITION o .t e e e 18-6
18.2.6 Debug Registers and INTel® B4 PrOCeSSOrS. . ..\ttt ittt ettt ettt et ettt e 18-7
183 DEBUG EXCEPTIONS ..ttt ettt e e et et e e e et e e 18-7
18.3.1 Debug Exception (HDB)—INterrupt Vettor 1.t 18-7
18.3.1.1 Instruction-Breakpoint EXception Conditionouir it i i e e 18-9
183.1.2 Data Memory and I/0 Breakpoint Exception CoNditionsvuiiii i e 18-10
183.1.3 General-Detect EXCeption CONAItIONu ittt e e e 18-10
183.14 Single-Step EXCePtioN CoNAitionottt e e e 18-11
183.1.5 Task-Switch EXCEPTION CoNAitionottt e e e 18-11
18.3.1.6 L0) =10 R W ol g =1 =T o 18-11
18.3.2 Breakpoint Exception (HBP)—INterrupt Vector 3.o e 18-11
1833 Debug Exceptions, Breakpoint Exceptions, and Restricted Transactional Memory (RTM)ovvvviiiiiiinnnn, 18-12
184 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING OVERVIEW ...\ vv et eieaas 18-12
18.4.1 N = 8 O I Y 18-13
184.2 Monitoring Branches, EXceptions, and INtermUPTS ... v vt 18-14
1843 Single-SteppiNg ON BranChiest e e 18-14
1844 BranCh Tra08 MBS Sa0ES . . ot vttt ittt et et e e e e e e e e 18-15
18.4.4.1 Branch Trace Message VisiDilityo.vuiu e e 18-15
1845 BranCh Trace StOre (BT S) ..ottt et e e 18-15
184.6 CPL-Qualified Branch Trace Mechanismiuit e e e 18-15
184.7 Freezing LBR and Performance Counters 0N PMIot 18-15
1848 LBR STaCK vttt ettt e e e e e e e e e 18-17
18.4.8.1 LBR STack and INTel® B4 PrOCESSOrS . . o .ottt ettt ettt e e e e e e e e e e 18-18
184.8.2 LBR Stack @and IA-32 PrOCESSOMS . . v vttt et et ettt ettt e e et et e e e et e e e 18-19
18.4.83 Last Exception Records and Intel 64 ArChiteCtUreo v e 18-19
18.4.9 BTS @GN0 DS SAVE AT . . ottt ittt ettt e e e e e e e e e 18-19
18.4.9.1 64 Bit FOrmMat Of the DS Saue AT a .. .ottt e e e e 18-22
184.9.2 Setting UP the DS SaVe ArBa . ..ottt 18-24
18.4.9.3 Setting Up the BT S BUI el ...t e e et ettt 18-25
18.4.94 Setting Up CPL-QUalified BT S, ..ottt e e e e 18-26
184.95 Writing the DS Interrupt Service ROUTINE.o .o u i e 18-26
185 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™ 2 DUO AND INTEL ATOM® PROCESSORS) .. 18-27
18.5.1 L2 Y - o 18-27
185.2 LBR Stack in Intel Atom® Processors based on the Silvermont Microarchitecture ...t 18-28
186 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING FOR PROCESSORS BASED ON GOLDMONT
MICROARCHITECTURE. . . .ottt ettt e et e e e et e e e et e e et e e e et e e e a e e s 18-28
187 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING FOR PROCESSORS BASED ON GOLDMONT PLUS
MICRO AR CHITECTURE. . . .ottt t et ettt et e et e e et e e e et e et e s 18-29

18.8 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR INTEL® XEON PHI™ PROCESSOR 7200/5200/3200... 18-29
18.9 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR PROCESSORS BASED ON NEHALEM

MICRO AR CHITECTURE. . . sttt vttt et ettt e e e e e e e 18-29
18.9.1 LBR S 0K .+ o vttt ettt i e e e e e 18-30
18.9.2 Filtering of Last BranCh RECOTAS.o . vttt 18-31
18.10 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR PROCESSORS BASED ON SANDY BRIDGE
MICRO AR CHITECTURE. . . v vttt ittt ettt et e et e et e e ettt e ettt et e e 18-31
18.11 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING FOR PROCESSORS BASED ON HASWELL
MICRO AR CHITECTURE. . . ittt vttt et e et e et e et e e e e 18-32
18.11.1 LBR StaCK BNt et « oottt ittt e e e 18-33
18.12 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING FOR PROCESSORS BASED ON SKYLAKE
MICRO AR CHITECTURE. . .ttt ittt et et e et et e e e e e e e e 18-33
18.12.1 MS R _LBR _INFO X MR .ottt ittt e e e 18-34
18.12.2 Streamlined Freeze_LBRS_ON_PMI Operationv.urie ettt 18-34
18.123 LBR Behavior and DD C-State ..ttt e e e e e e 18-35
1813 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PROCESSORS BASED ON INTEL NETBURST®
MICROARCHITECTURE) . . v vttt ettt ettt et ettt e e e e et et e e e et e et ettt e e ettt e e aeaes 18-35

Xxvi Vol. 3A

CONTENTS

PAGE

18.13.1 MSR _DEBUGCTLA MR .ottt sttt sttt et e et e e e ettt et e et e e 18-35
18.13.2 LBR Stack for Processors Based on Intel NetBurst® Microarchitectureooovviiiiiiii i 18-36
18.13.3 LaSt EXCEPTION RECOMASttt ittt it e et ettt et e e e e 18-37
18.14 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™ SOLO AND INTEL® CORE™DUO

PROCES SRS) . v ittt ettt ettt et et e e e e e e e 18-38
18.15 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PENTIUMM PROCESSORS). ...t vvvivieiei i 18-39
18.16 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (P6 FAMILY PROCESSORS)vvvivviivi i 18-40
18.16.1 DEBUGCTLMSR REGISTET .o\ttt vttt ettt ettt e e et e e et e e et e e e et e et 18-40
18.16.2 Last Branch and Last EXCEPtiON MO RSttt i i i e e e e e 18-41
18.16.3 Monitoring Branches, EXCeptions, and INTeITUDTS vv it e ettt eanas 18-42
18.17 TIME-STAMP COUNTER . .ottt ettt ettt et et e et et e et e et et e e es 18-42
18.17.1 LNz T 18-43
18.17.2 IA32_TSC_AUX Register and RDTSCP SUPDOMt . ..ttt ettt ettt et eaens 18-43
18.17.3 Time-Stamp CoUNter A USTmIENT. . .ttt e et e e e e e 18-44
18.17.4 LYV T E= T = =T o 18-44
18.18 INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) MONITORING FEATURESovviii i 18-44
18.18.1 Overview of Cache Monitoring Technology and Memory Bandwidth Monitoringc.covviiiiiivinniinn 18-45
18.18.2 Enabling Monitoring: USage FIOW . ..o ettt ettt e e e e 18-45
18.18.3 Enumeration and Detecting Support of Cache Monitoring Technology and Memory Bandwidth Monitoring. 18-46
18.184 Monitoring Resource Type and Capability EnUMeration ..o e i 18-46
18.18.5 Feature-SpeCific BNUMEBIATIONttt e e e e e et e e et e 18-47
18.18.5.1 Cache Monitoring TECANOIOGYo v vttt et ettt e e e e e e e ettt n i eaaes 18-48
18.18.5.2 Memory Bandwidth MOnitOmiNg. vttt e e e 18-48
18.18.6 Monitoring Resource RMID ASSOCiation vt ittt it et ettt e 18-49
18.18.7 Monitoring Resource Selection and Reporting INfrastructure.ot i e 18-50
18.18.8 Monitoring Programming CoNSIAErationSo vttt ettt 18-51
18.18.8.1 Monitoring Dynamic ConfigUIation.ottt e e et e e 18-51
18.18.8.2 Monitoring Operation With Power Saving FEatUreS ovvut ittt eeees 18-51
18.18.8.3 Monitoring Operation with Other Operating ModesSovvu i e 18-52
18.1884 Monitoring Operation With RAS FEatUMES ittt it i e e ettt enes 18-52
18.19 INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) ALLOCATION FEATURES.ot 18-52
18.19.1 Introduction to Cache Allocation TeChNOlogY (CAT) ..ttt e e e eas 18-52
18.19.2 Cache Allocation Technology ArCNITECTUNE ... vttt e e ettt e e 18-53
18.19.3 Code and Data Prioritization (CDP) TECANOIOGY vttt ettt et nees 18-56
18.194 Enabling Cache Allocation Technology Usage FIOWvuiuiuiiir e 18-57
18.194.1 Enumeration and Detection Support of Cache Allocation Technology ..ot 18-57
18.19.4.2 Cache Allocation Technology: Resource Type and Capability Enumeration ..ot 18-58
18.194.3 Cache Allocation Technology: Cache Mask Configuration........ ..o e 18-61
18.19.4.4 Class of Service to Cache Mask Association: Common Across Allocation Features.covvvvvviivinnnennns 18-61
18.19.5 Code and Data Prioritization (CDP): Enumerating and Enabling L3 CDP Technologyc.ovvvviiviniinnnnns, 18-62
18.19.5.1 Mapping Between L3 CDP Masks and CAT Masks oviviriui et 18-62
18.19.6 Code and Data Prioritization (CDP): Enumerating and Enabling L2 CDP Technologycccoviviiiiiiinnnn, 18-63
18.19.6.1 Mapping Between L2 CDP Masks and L2 CAT Masks.oviuiiiii ittt 18-64
18.19.6.2 Common L2 and L3 CDP Programming Considerationsvueenitet it ieieieaaas 18-64
18.196.3 Cache Allocation Technology Dynamic Configuration ...t et i e e 18-64
18.19.64 Cache Allocation Technology Operation With Power Saving Features.oo.vviiiiiii it eiennns 18-65
18.19.6.5 Cache Allocation Technology Operation with Other OperatingModes. ..o i i 18-65
18.19.6.6 Associating Threads with CAT/CDP Classes 0f SErViCe ovvv ittt 18-65
18.19.7 Introduction to Memory Bandwidth AllOCation.vi it e i e 18-66
18.19.7.1 Memory Bandwidth Allocation ENUMEIation. vu ittt e 18-66
18.19.7.2 Memory Bandwidth Allocation Configuration. ..ot e it 18-67
18.19.7.3 Memory Bandwidth Allocation Usage Considerationsovuvuiritirinnenii it ieneieieennns 18-68
18.20 INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FOR NON-CPU AGENTS ..o i 18-68
18.20.1 Non-CPU Agent Intel® RDT Features Enumeration Details. e e e 18-69
18.20.1.1 CPUID-Based Enumeration for Non-CPU Agent Intel® RDT Feature........oovirir it ieiieianns 18-69
18.20.1.2 L0 I TU T 1= = 1o 18-70
18.20.2 Non-CPU Agent Intel® RDT Feature Enable MSR i e e e 18-70
CHAPTER 19
LAST BRANCH RECORDS
19.1 BEH AV IO R .ottt e e e e 19-1
19.1.1 [T o 1=l 1< = 1o Y 19-1
19.1.2 {000 10 U= o 19-2
19.1.2.1 ENAbIiNG @Nd Disablingottt e e 19-2

Vol. 3A Xvii

CONTENTS

19.1.2.2 L2 1= o 1 3 19-2
19.1.23 Branch Type Enabling and Filtering v v vv et e e 19-2
19.1.2.4 Call- S aCK MO, . . ottt et e e e 19-3

Call-Stack Mode and LBR FrEEZEottt t ettt ettt e e e 19-3
19.1.25 1 I =T o P 19-4
19.1.3 T alo] e [D | - S PP 19-4
19.1.3.1 e 1= P 19-4
19.1.3.2 2= o I 0= 19-4
19.1.3.3 Yol =0 I3 3= P 19-4
19.1.34 Mispredict INfOrmatioN e e e 19-5
19.1.35 Nl TS X I O MatiON .ttt e e e e e 19-5
19.1.4 Interaction With Other ProCeSSOr FEatUNES . ..\ttt ettt ettt e e i eaenes 19-5
19.1.4.1 S Lt e e e e e e e 19-5
19.1.4.2 SMM Transter MONtOr (ST M) ..ttt e e e e e e 19-5
19.14.3 X e e e e e e 19-5
19.1.4.4 =] Y) P 19-6
19.1.4.5 [=] T8 Ta (=] o] P 19-6
19.1.4.6] G 19-6
19.1.4.7 1 19-6
19.1.4.8 Processor Event-Based Sampling (PEBS)oviiiit e s 19-6
19.2] 19-6
193 FAST LBR READ ACCESS ..ttt ittt ettt e ettt e e e e e 19-6
194 O [| [G 19-7
19.4.1 Branch Trace Store on INtel ATOM® PrOCESSOIS .« ..ttt ittt ettt e e e ettt e e et anees 19-7
194.2 N = 5 O I 19-7
1943 IA32_PERF_CAPABILITIES. . . .ttt ettt et et et e e e ettt e e 19-7
CHAPTER 20
PERFORMANCE MONITORING
20.1 PERFORMANCE MONITORING OVERVIEW. . .\t o vttt ettt et e e et e e et 20-1
20.2 ARCHITECTURAL PERFORMANCE MONITORING. . . ottt ettt et et e e et e e e et e e et e e e i en s 20-2
20.2.1 Architectural Performance Monitoring Version T et 20-3
20.2.1.1 Architectural Performance Monitoring Version 1 Facilities ... i 20-3
20.2.1.2 Pre-defined Architectural Performance EVENTS vttt 20-5
20.2.2 Architectural Performance Monitoring VErsion 2vuitititit e 20-7
20.23 Architectural Performance Monitoring Version 3 e et e 20-10
20.2.3.1 AnyThread Counting and Software EVOIUTION.t i et e 20-13
20.24 Architectural Performance Monitoring Version 4 e e e 20-13
20.2.4.1 Enhancement in IA32_PERF_GLOBAL ST ATUS. ...ttt e 20-13
20.24.2 IA32_PERF_GLOBAL_STATUS_RESET and IA32_PERF_GLOBAL_STATUS_SETMSRS........ovviiiiiininnn, 20-15
20.24.3 [A32_PERF_GLOBAL_INUSE MSR . ..ttt ettt e e e e e 20-15
20.2.5 Architectural Performance Monitoring Version 5 i e 20-17
20.2.5.1 ANYThread Mode DEPrECation v vttt ettt et ettt e e e e ettt e e e 20-17
20.25.2 Fixed CoUNter ENUMEIATiON . .o\ttt et et e e e 20-17
20.253 [o] 1 = T IS =T = = 11 [0 20-17
20.2.6 Full-Width Writes to Performance CouNter REGISTEISv'it ittt et eiaaas 20-17
20.3 PERFORMANCE MONITORING (INTEL® CORE™ PROCESSORS AND INTEL® XEON® PROCESSORS)vvvviviiiannns 20-17
20.3.1 Performance Monitoring for Processors Based on Nehalem Microarchitecture.................cociiiiiiiiiant, 20-17
20.3.1.1 Enhancements of Performance Monitoring in the Processor Core.oovuviiii ittt iiciciei e 20-18
203.1.2 Performance Monitoring Facility in the UNCOrevv i e e 20-26
20.3.1.3 Intel® Xeon® Processor 7500 Series Performance Monitoring Facility ...t 20-31
20.3.2 Performance Monitoring for Processors Based on Westmere Microarchitecturecocoviiiiiiiiiinnn 20-32
20.3.3 Intel® Xeon® Processor €7 Family Performance Monitoring Facility...........oooi i e 20-33
2034 Performance Monitoring for Processors Based on Sandy Bridge Microarchitectureooiviinit, 20-33
20.3.4.1 Global Counter Control Facilities in Sandy Bridge Microarchitecture. ...t 20-34
2034.2 001U) (T o= ol o 20-36
20343 Full Width Writes to Performance COUNTEISttt ettt ettt a e e e 20-36
20344 PEBS Support in Sandy Bridge MicroarChiteCtureovvvriit e et 20-36
20.34.5 Off-core Response Performance MOnITOMNG. v ettt et e 20-41
20.3.4.6 Uncore Performance Monitoring Facilities in the Intel® Core™ i7-2xxXx, Intel® Core™ i5-2xxx, and Intel® Core™ i3-2xxx

L o To = Yo Y= 1= 20-44

2034.7 Intel® Xeon® Processor €5 Family Performance Monitoring Facility. ..o 20-46
203438 Intel® Xeon® Processor E5 Family Uncore Performance Monitoring Facilitycooiiiiiiiiiiinn . 20-47

Xxviii Vol. 3A

CONTENTS

PAGE

20.3.5 3rd Generation Intel® Core™ Processor Performance Monitoring Facility. ... 20-47
20.3.5.1 Intel® Xeon® Processor €5 v2 and €7 v2 Family Uncore Performance Monitoring Facility....................... 20-47
20.3.6 4th Generation Intel® Core™ Processor Performance Monitoring Facility ...t 20-47
20.3.6.1 Processor Event Based Sampling (PEBS) FaCility.v.vviunii e 20-48
20.36.2 PEBS Data FOrmat. . vttt ettt et e et 20-49
20.3.6.3 PEBS Data Address Profilingo i i e e et e 20-50
20364 Off-core Response Performance MonitoriNgouuueii it ettt n e 20-51
20.3.6.5 Performance Monitoring and INtel® TSX. ... v 20-53
20.3.6.6 Uncore Performance Monitoring Facilities in the 4th Generation Intel® Core™ Processorsc........ 20-55
20.36.7 Intel® Xeon® Processor E5 v3 Family Uncore Performance Monitoring Facility...............cooviiiiinnns, 20-55
20.3.7 5th Generation Intel® Core™ Processor and Intel® Core™ M Processor Performance Monitoring Facility 20-56
20.3.8 6th Generation, 7th Generation and 8th Generation Intel® Core™ Processor Performance Monitoring Facility 20-57
20.3.8.1 Processor Event Based Sampling (PEBS) FaCility.vvvriit e 20-58
20.38.2 Frontend Retired Facilityovui e 20-61
20.3.8.3 Off-core Response Performance Monitoringo.uuiiiriei ettt 20-63
20384 Uncore Performance Monitoring Facilities on Intel® Core™ Processors Based on Cannon Lake Microarchitecture.20-66
2039 10th Generation Intel® Core™ Processor Performance Monitoring Facility ..o 20-66
20.3.9.1 Processor Event Based Sampling (PEBS) Facility.ooniinoi e 20-67
20.39.2 Off-core Response Performance MonitOriNgouuueii i et eeaaes 20-67
20393 =m0 1= T o T = o ot 20-69
20.3.10 12th and 13th Generation Intel® Core™ Processors, and 4th Generation Intel® Xeon® Scalable Processor Family

Performance Monitoring FaCility.oovv i e e e e 20-70
20.3.10.1 P-core Performance Monitoring Unit.o.ou e e e e 20-70
20.3.10.2 E-core Performance Monitoring Unit.ou ettt e 20-73
20.3.10.3 Unhalted REfErENCE CYCIBS ...\ttt ettt ettt et e e e e et ettt eeaes 20-75
20.4 PERFORMANCE MONITORING (INTEL® XEON™ PHI PROCESSORS) . .. ettt ettt iaeaens 20-76
20.4.1 Intel® Xeon Phi™ Processor 7200/5200/3200 Performance Monitoring.c.ovvvrieiiiiiiiei i ieieenens 20-76
204.1.1 Enhancements of Performance Monitoring in the Intel® Xeon Phi™ Processor Tilecooveiviiiinnns, 20-76
20.5 PERFORMANCE MONITORING (INTEL ATOM® PROCESSORS) . .. ettt ittt et eens 20-80
20.5.1 Performance Monitoring (45 nm and 32 nm Intel ATOM® PrOCESSOIS) .\ vvvvv ittt et 20-80
20.5.2 Performance Monitoring for Silvermont Microarchitectureo e e 20-80
20.5.2.1 Enhancements of Performance Monitoring in the Processor Coreo.vuiuiuiiiiiii it iieienns 20-80
20522 (0] el =l 2SI o] TN VT3 20-82
20.5.2.3 Average Offcore Request Latency MeasUremMENT.ttt ettt eaes 20-85
20.5.3 Performance Monitoring for Goldmont MicroarchiteCtureo vr it e 20-85
20.5.3.1 Processor Event Based Sampling (PEBS)ot e e 20-86
20532 (0] ol =l R{EE o] Y ST VT3 20-89
20533 Average Offcore Request Latency MeasuremMENT.ttt e 20-90
2054 Performance Monitoring for Goldmont Plus Microarchitecture ...t e 20-91
20.5.4.1 EXTENAEA PEBS. . .t 20-91
20.5.5 Performance Monitoring for Tremont MicroarChiteCturevv it e e 20-91
20.5.5.1 APtV PEBS . .ttt e e e e e 20-92
2055.2 PEBS 0UtpUL 10 INTEI® PrOCESSOr Trate .« vt vttt vttt ettt et e e ettt e e e ettt ettt e e n e aeanees 20-92
20553 Precise Distribution Support on Fixed CoUNter O i ittt 20-94
20554 Compatibility Enhancements to Offcore Response MSRS.co. ittt i 20-94
206 PERFORMANCE MONITORING (LEGACY INTEL PROCESSORS) . . vttt vt ettt e et 20-96
206.1 Performance Monitoring (Intel® Core™ Solo and Intel® Core™ DUO ProCesSors). ... vvvvvrviiiiiiriniiiieennnnen, 20-96
206.2 Performance Monitoring (Processors Based on Intel® Core™ Microarchitecture)...........covvivi i 20-97
20.6.2.1 Fixed-function Performance CoUMTErS vttt e e e 20-98
20.6.2.2 Global Counter CoNtrol FaCilitieSo vt e e 20-99
206.2.3 At RETITEMENT EVBNTS .ttt et e et e e e 20-101
206.24 Processor Event Based Sampling (PEBS) vttt s 20-101
206.3 Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture).............ooovviiinnn.. 20-104
20.6.3.1 ES R MO RS, 1ttt ettt e e e e e 20-107
206.3.2 =T 0T =T o T 0T =] PP 20-108
20.6.33 000 Y 20-109
20634 Debug Store (DS) MECNaNiSM. . vttt et e et e e e e 20-111
20.6.35 Programming the Performance Counters for Non-Retirement EVENtScoviiiiiiiiiiiiiniienannn. 20-111
20.6.3.6 At-RetirEMENT COUNMTING . vttt ettt et e e e et e e e e e e e 20-117
20.6.3.7 Tagging Mechanism for RepIay_eVeNt 20-118
20.6.3.8 Processor Event-Based Sampling (PEBS)vviiii et 20-119
20.6.3.9 Operating System IMPlCationSt e e 20-120
2064 Performance Monitoring and Intel® Hyper-Threading Technology in Processors Based on Intel NetBurst®

ol o =Tt a1 (=Tt U = 20-120
20.6.4.1 S R MO RS, ettt e e e s 20-120

Vol. 3A Xix

CONTENTS

PAGE

20.64.2 00 2 i Y P 20-121
20.64.3 A2 _PEBS _ENABLE MO R ..ttt ettt e e e e s 20-123
20644 Performance Monitoring EVENTSttt et e e 20-123
20.6.4.5 Counting Clocks on systems with Intel® Hyper-Threading Technology in Processors Based on Intel NetBurst®

[T = o T =T ot (1= PP 20-124
20.6.5 Performance Monitoring and Dual-Core TechnoIogyovviiii i ettt 20-125
20.6.6 Performance Monitoring on 64-bit Intel® Xeon® Processor MP with Up to 8-MByte L3 Cache 20-125
20.6.7 Performance Monitoring on L3 and Caching Bus Controller Sub-Systems............coooiiiiiiiiiiiiiii i 20-127
20.6.7.1 Overview of Performance Monitoring with L3/Caching Bus Controllercoiiiiiiiiiiiiinnanns. 20-129
20.6.7.2 L] O Y =T 0 =T = =P 20-130
20.6.7.3 O N O V= A = o 20-131
206.7.4 LY S BT) (=T = (o= P 20-132
20.6.7.5 Common EVent Control INter At .. vttt e e e s 20-133
20.6.8 Performance Monitoring (P6 Family ProCESSOr) . .. vvvutttt i e e 20-133
20.6.8.1 PerfEVESEl0 and PerfEUtSEIT MRS . ..ttt e e 20-134
20.6.8.2 PerfCtrO and PerfCtrT MSRS ...ttt e e e s 20-135
20.6.83 Starting and Stopping the Performance-Monitoring COUNTErSvvivii it e 20-135
206.84 Event and Time-Stamp Monitoring SOfIWaArevi e e 20-135
20.6.8.5 MoNitoring CoUNTEr OVe T IO, ..ottt et e et 20-136
20.6.9 Performance Monitoring (PENtiUM PrOCESSOIS) ... v v vt vttt sttt ettt 20-136
20.6.9.1 Control and Event Select RegiSter (CESR) et ne e 20-137
20.6.9.2 Use of the Performance-Monitoring Pins.ot e e et 20-137
20.693 LY =T £ O T3 =T 20-138
20.7 COUNTING CLOCKS ittt ettt et et e et e e e et e e e et e e et et e et e eees 20-138
20.7.1 Non-Halted Reference ClOCKTICKS v v vt e 20-139
20.7.2 Cycle Counting and Opportunistic Processor Operation.vuvr ittt 20-139
20.7.3 Determining the Processor Base FreqQUENCY ... cv vttt i e i ettt aeaaes 20-140
20.7.3.1 For Intel® Processors Based on Sandy Bridge, Ivy Bridge, Haswell, and Broadwell Microarchitectures.......... 20-140
20.7.3.2 For Intel® Processors Based on Nehalem Microarchitecture.vvnvuni i 20-140
20.7.33 For Intel Atom® Processors Based on Silvermont Microarchitecture (Including Intel Processors Based on Airmont

L Tol o =Tt 1 (= Tot (U] =) I 20-140
20.7.34 For Intel® Core™ 2 Processor Family and for Intel® Xeon® Processors Based on Intel Core Microarchitecture ... 20-140
20.8 IA32_PERF_CAPABILITIES MSR ENUMERATION. . . o vttt ettt ettt e eees 20-141
20.8.1 Filtering of SMM Handler OVerheadovir i e e et et 20-142
20.9 o =12 o 20-142
20.9.1 EXTENAEA PEBS . . it e e 20-142
20.9.2 APtV PEBS ..ottt e e e 20-144
209.2.1 Adaptive_Record Counter CONTIOluuu ettt e 20-145
209.2.2 PEBS RECOMA FOMmMIat. . oottt ettt e e et e e e et e e e 20-146
20.9.23 MS R L PEBS D AT A C G, ittt et ettt ettt e e et e e e e e e 20-150
209.24 PEBS RECOMA EXAMIPIES. . v vttt ettt et e e e e e e et e e e 20-151
209.3 Precise Distribution of Instructions Retired (PDIR) Facility.cvvviii i i 20-153
20.9.4 RedUCEA SKId PEBS ...ttt e e e e 20-153
20.95 EPT-FriEndly PEBS . .. ittt e e e 20-154
20.9.6 PDist: Precise DistriDULION. e s 20-154
209.7 L0ad LatenCy FaCility .. .ovve et e e e e e e 20-154
209.8 STOrE LatenCy FaCility . . oottt e 20-155
CHAPTER 21
8086 EMULATION
21.1 REAL-ADDRESS MODE ...ttt ettt e e sttt e e e 21-1
21.1.1 Address Translation in Real-Address MOGEo v ittt e 21-2
21.1.2 Registers Supported in Real-Address MOGE e e 21-3
21.1.3 Instructions Supported in Real-Address MOGettt et e 21-3
21.1.4 Interrupt and EXCePtioN HandliNg.o vttt e e e 21-4
21.2 VIRTUAL-BOBE MODE. . . vttt ettt ettt ettt e ettt et e et e e e et e e e 21-5
21.2.1 ENAbliNG VirtUal-8086 MOGe.ottt e i et e e e e e e e 21-6
21.2.2 Structure of @ VIrtual-8086 Task vuii e e e 21-7
21.23 Paging of Virtual-B086 Tasksc.veie ittt e 21-7
21.24 Protection within @ Virtual-8086 Taskvviii et 21-8
21.25 ENtering VirtUal-8086 MO,ottt e ettt e e e 21-8
21.26 Leaving Virtual-B086 MOTEttt et e e 21-9
21.2.7 SBNSITIVE IS T UCTIONS . . . vttt e e ettt e s 21-10
21.28 VirtUl-8B086 MO 10 . . ettt et e e e e e e 21-10

XX Vol. 3A

CONTENTS

PAGE
21.2.8.1 /0-POrt-Mapped /0 . ..ottt e e e 21-11
21.28.2 MemOry-Mapped 110 e 21-11
21283 Y=o = N O U i = 21-11
21.3 INTERRUPT AND EXCEPTION HANDLING IN VIRTUAL-8086 MODE.ottt eetee et i eieneineiaeiens 21-11
21.3.1 Class 1—Hardware Interrupt and Exception Handling in Virtual-8086 Mode.coooiviiiiiii i, 21-12
21.3.1.1 Handling an Interrupt or Exception Through a Protected-Mode Trap or InterruptGate.................oooveee 21-12
213.1.2 Handling an Interrupt or Exception With an 8086 Program Interrupt or ExceptionHandler 21-14
21313 Handling an Interrupt or Exception Through a Task Gateovuiiiii e 21-14
21.3.2 Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt Mechanism..... 21-15
2133 Class 3—Software Interrupt Handling in Virtual-8086 Modecoiriiiiii it ieaas 21-16
21.3.3.1 Method 1: Software Interrupt Handlingov e e e e 21-18
21332 Methods 2 and 3: Software Interrupt Handling. ... e 21-18
21333 Method 4: Software Interrupt Handlingo.o i e e e 21-19
21334 Method 5: Software Interrupt Handlingov oo e 21-19
21335 Method 6: Software Interrupt Handlingo 21-19
21.4 PROTECTED-MODE VIRTUAL INTERRUP TS . .ottt ettt et et e e e et e e e et 21-20
CHAPTER 22
MIXING 16-BIT AND 32-BIT CODE
22.1 DEFINING 16-BIT AND 32-BIT PROGRAM MODULES.\ttt ettt et e aes 22-1
22.2 MIXING 16-BIT AND 32-BIT OPERATIONS WITHIN A CODE SEGMENT ...ttt it aens 22-2
223 SHARING DATA AMONG MIXED-SIZE CODE SEGMENT S . ..ottt e 22-3
224 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE SEGMENTS .ttt 22-3
22.4.1 (000 Ta L= =Tu 1 =] o Y (=T Y . 22-4
224.2 Stack Management for Control TranS e .. vttt e e 22-4
22.4.2.1 Controlling the Operand-Size Attribute FOra Call. e 22-5
22422 Passing Parameters With @ Gate i i e e 22-6
2243 INTerTUPT CONTrOl Tran S IS o .ottt ettt ettt e e e e e e 22-6
2244 ParamEter TranS ation . . oottt e 22-6
2245 WritiNg INTErTace PrOCEAUNES. . ..\ttt ettt e e e e e et ettt e 22-6
CHAPTER 23
ARCHITECTURE COMPATIBILITY
23.1 PROCESSOR FAMILIES AND CATEGORIES. .. vttt et e et aees 23-1
23.2 RESERV D BITS ettt ettt e e e e e e e e e 23-2
233 ENABLING NEW FUNCTIONS AND MODESottt e ettt e e ettt e e e e et e e et et e aees 23-2
234 DETECTING THE PRESENCE OF NEW FEATURES THROUGH SOFTWARE\t 23-2
235 INTEL MMX TECHNOLOGY . . .ottt ittt ettt e et e e e e e et e e et e et et e e et e e i eees 23-2
236 STREAMING SIMD EXTENSIONS (SSE) . .ottt e ettt et et e e e e e 23-3
23.7 STREAMING SIMD EXTENSIONS 2 (SSE2). vttt ettt ettt e e e 23-3
238 STREAMING SIMD EXTENSIONS 3 (SSE D). ittt ittt ettt ettt et e e e e ey 23-3
239 ADDITIONAL STREAMING SIMD EXTENSIONS . . .ttt et 23-3
23.10 INTEL HYPER-THREADING TECHNOLOGY ...ttt ittt et et et e et et et et et e et et a e e e 23-3
2311 MULTI-CORE TECHNOLOGY. . vttt ittt ettt et et et e e e e e e et e e et e et et e e et et e e e e 23-4
23.12 SPECIFIC FEATURES OF DUAL-CORE PROCESSOR ...\ttt ettt e e et et e e et et et et eees 23-4
23.13 NEW INSTRUCTIONS IN THE PENTIUM AND LATER IA-32 PROCESSORS\ttt 23-4
23.13.1 Instructions Added Prior 10 the Pentium ProCeSSOr. e 23-4
23.14 OBSOLETE INSTRUCTIONS . .ttt ettt ettt et et et e e et e e e e et et et et et e e et et e e e e eees 23-5
2315 UNDEFINED OPCODES ...ttt ittt ettt et et e e e et e et et et et et e e et et e e e e eens 23-5
2316 NEW FLAGS IN THE EFLAGS REGISTER . ..\ttt ittt et ittt e e e e e e 23-6
23.16.1 Using EFLAGS Flags to Distinguish Between 32-Bit [A-32 ProCessors. ... ovvv vt vt ci i i i ieeaas 23-6
23.17 STACK OPERATIONS AND USER SOFTWARE ...\ttt ettt et e e ees 23-7
23.17.1 PUSH SP . it e e e e e e 23-7
23.17.2 EFLAGS PUShEd 0N the STatK. . .o v ettt e e e e e 23-7
2318 XB7 FPU ..ttt e e e e e 23-7
23.18.1 Control ReGiSTer CRO IS vttt e ettt et e e et ettt 23-8
23.18.2 XB7 FPU STatUs WOr. . .ottt ittt e e ettt e e e e e e 23-8
23.18.2.1 Condition Code FIags (CO through C3). ..o ittt e e 23-8
23.18.2.2) = [0 = 0] = T 23-8
23.183 XB87 FPU CoNTrol WO . . . oottt ettt e et e e 23-9
23.184 XB7 FPU Tag WO oottt e e et e e e e e e e e e 23-9
23.185 = = 5 0= 3 23-9

Vol. 3A XxXi

CONTENTS

PAGE
23.18.5.1 V= 1A 23-9
23.185.2 Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal FOrmats.........ovvve i 23-9
23.186 Floating-Point EXCEPIIONS . . o ottt e e e e e 23-10
23.186.1 Denormal Operand EXCEPTION (HD). . ..o v vttt ettt ettt ettt e et e 23-10
23.186.2 Numeric Overflow EXCEPLION (HO) vue ittt e 23-10
23.18.6.3 Numeric Underflow EXCEPTION (HU) ... ov it e e 23-10
23.186.4 (=T) o T =T =T [T 23-10
23.186.5 CS aNd EIP FOr FPU EXCEPTIONSottt ittt ettt e et ettt et et ne s 23-11
23.18.6.6 o O = T Y [0 = 23-11
23.186.7 Assertion Of the FERRHE Pint e e e 23-11
23.18.6.8 Invalid Operation EXCEPtion On DENOMMEIS . ..\ttt et e e e 23-11
23.186.9 Alignment Check EXCEPTIONS (HAC)ttt et et en 23-11
23.18.6.10 Segment Not Present Exception DUring FLDENV iiiii i i e e s 23-12
23.186.11 Device Not Available EXCepTion (HNM) . ..ot e e 23-12
23.186.12 Coprocessor Segment OVerTUN EXCEPTIONttt e e et e ettt e n e 23-12
23.186.13 General Protection EXCePioN (HGP) ...ttt 23-12
23.186.14 Floating-Point Error EXCEPTioN (HME) .. .ot e 23-12
23.18.7 Changes 10 Floating-Point INStrUCTIONS it e it e it i 23-12
23.18.7.1 FDIV, FPREM, and FSQRT INSTrUCTIONS. v\ vt e ettt et ettt et et e et e e e en 23-12
23.18.7.2 (Y O B [y o o o 23-12
23.18.7.3 o R I T« oo 23-13
23.18.7.4 o S Ty o T 23-13
23.18.7.5 FUCOM, FUCOMP, and FUCOMPP INSTIUCHIONS. . ..\t v et et et et e e et et e e e e enen 23-13
23.18.7.6 L 2 AV [Ty T o 23-13
23.18.7.7 1) [0 Q0= 1 23-13
23.18.7.8 FSIN, FCOS, and FSINCOS INSITUCTIONSo vttt ettt ettt et e e et ee s 23-13
23.18.7.9 o A 0Ty T o 23-13
23.18.7.10) I T T oo T 23-13
23.18.7.11 I T o ot o 23-14
23.18.7.12 FXTRACT IS UG ON vttt ettt et e et et e e e e et et e et e 23-14
23.18.7.13 [T o O Iy =T Y o o3 T 23-14
23.18.7.14 (2 i N[5 oy o 23-14
23.18.7.15 FSAVE and FSTENV IS rUCTIONS. . .ottt e ettt e e e e e e e et n e e e 23-14
23.188 TransCeNdental INSTTUCTIONS . . . vttt et et e e e e e e e e e 23-14
23.189 Obsolete Instructions and Undefined OPpCOdes. vvvuii i e 23-15
23.18.10 WAIT/FWAIT PrefiX DifferenCes . ..ottt e e e e e 23-15
23.18.11 Operands Split ACross SEgmMENts aNd/Or Pagesttt ittt ettt r e eeaes 23-15
23.18.12 FPU INStruction SYNCRMOMIZation. ... v ittt et e e et 23-15
23.19 SERIALIZING INSTRUCTIONS. oottt ettt et e ettt e e e et e e et e e et e eaes 23-16
23.20 FPU AND MATH COPROCESSOR INITIAUZATION . . o vttt e ettt e e et e e e e et et e et e e e s 23-16
23.20.1 Intel® 387 and Intel® 287 Math Coprocessor Initialization.o s 23-16
23.20.2 Intel486 SX Processor and Intel 487 SX Math Coprocessor Initializationcooii i, 23-16
23271 CONTROL REGISTERS . .ttt ettt ettt et et et e et et et et et et et e e e e e 23-17
23.22 MEMORY MANAGEMENT FACILITIES ..ottt ettt e ettt et e et eens 23-19
23.22.1 New Memory Management Control Flags.ot e e ittt e 23-19
23.22.1.1 Physical Memory Addressing EXTENSIONttt et et e 23-19
23.22.1.2 (0] Fo = N =T =T 23-19
23.22.1.3 LargEr PagE SizZBS .ttt i i e e e e 23-19
23.22.2 CD and NW Cache Control FIags. . ..o ve ettt e et ettt ettt et n e 23-19
23.22.3 DesCriptOr TYPES AN COM TS . o vttt sttt ettt e et sttt e e e e et e e e e e 23-19
23.224 Changes in Segment DesCriPTOr LOaasovi ittt it e ettt et e 23-20
23.23 DEBUG FACILITIES ..ttt ettt et ettt e e et et e e et et e e et et et r e e e e et et e e s 23-20
23.23.1 Differences in DebUg ReGISTEr DRGttt e e 23-20
23.23.2 Differences in DebUG ReGISTEr DR 7 ittt ettt e ettt ettt 23-20
23.23.3 Debug Registers DR and DRttt ettt et e 23-20
23.24 RECOGNITION OF BREAKPOINT S, . . vttt sttt ettt et et e et et e e et et et et eens 23-20
23.25 EXCEPTIONS AND/OR EXCEPTION CONDITIONS. ..ttt ittt ettt ettt e et e e et eaes 23-21
23.25.1 4 ol g TR O =Yl QY31 =Y (= 23-22
23.25.2 T Y = Cal= o] P 23-22
23.253 Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers.covvveiiiiiiiininnnnns 23-22
23,26 INTERRUP TS L.ttt ettt et e e e et e e e e e e e e 23-27
23.26.1 INtermUPT Propagation Delayttt e s e e 23-27
23.26.2 N LN T £ 23-27
23.26.3 10 3 23-27
23.27 ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC). ...ttt ettt ettt 23-27

XXxii Vol. 3A

CONTENTS

PAGE
23.27.1 Software Visible Differences Between the Local APIC and the 82489DXovvviiviii i 23-28
23.27.2 New Features Incorporated in the Local APIC for the P6 Family and Pentium Processorscovvvvvne 23-28
23.27.3 New Features Incorporated in the Local APIC of the Pentium 4 and Intel Xeon Processors.............cccovvven... 23-28
23.28 TASK SWITCHING AND T S, ittt ettt ettt ettt e e e et e e e e n e e 23-28
23.28.1 P6 Family and Pentium ProCessor TSSt 23-29
23.28.2 LIS =1 L= Ton (o e T 23-29
23.28.3 Order 0f Reads/Writes 10 the TS v ittt e e e e 23-29
23.284 Using A 16-Bit TSS With 32-Bit CONSITUCTS. i i e 23-29
23.285 Differences in 1/0 Map Base AQAreSSeS v vttt ettt et e e ettt et et e et et e 23-29
23.29 CACHE MANAGEMENT Lottt ittt et sttt et e e e et e e et et e e et et e e e 23-30
23.29.1 Self-Modifying Code with Cache ENabled.ouin i e e e 23-30
23.29.2 DisabliNg the L3 Cathe. .ottt e e e e e e e e 23-31
2330 PAGING .ottt e e e e e e e e 23-31
23.30.1 LM PagES. o ittt e e 23-31
23.30.2 OB o T T =T PP 23-31
23.30.3 Enabling and Disabling Pagingc.viii i i e 23-32
2331 STACK OPERATIONS AND SUPERVISOR SOFTWAREttt 23-32
23.31.1 SElECtOr PUSNES AN POPS. . . o\ttt it e e e e e 23-32
23.31.2 EITOr CO0E PUSNIES . . vttt ettt ettt e e e e et e e e et e e e e 23-32
23.31.3 Fault Handling Effects on the STackoviriiiii i e 23-33
23314 Interlevel RET/IRET From a 16-Bit Interrupt or Call Gate. ... e e e 23-33
2332 MIXING 16- AND 32-BIT SEGMEN T S . .ottt e e e ettt e ees 23-33
23.33 SEGMENT AND ADDRESS WRAPAROUNDottt sttt et e e e e e e et e a e e 23-33
23.33.1 YT T L 1= = 0T T 23-34
2334 STORE BUFFERS AND MEMORY ORDERINGttt ettt ettt e et et e e et et e e e e eens 23-34
= 15 1= T = 116 T 06 [23-35
2336 BUS HOLD ...ttt ittt ettt et e e e e e e e e e e 23-35
23.37 MODEL-SPECIFIC EXTENSIONS TO THE IA-32 .o oottt et ettt e et e 23-35
23.37.1 MOdEl-SPECITIC REGIS OIS . o ottt ettt e e e e 23-36
23.37.2 RDMSR and WRMSR INSTIUCTIONS . .. vttt ettt et ettt e e et ettt e r e eenens 23-36
23373 Memory TYPE RaNGE REGISTEIS. . .\ttt ittt ettt et e e e e e aens 23-36
23374 Machine-Check Exception and ArCNITECTUNE .. .o u ettt e e e e ens 23-36
23375 Performance-Monitoring COUNTEIS. vttt ettt ettt et et e ettt e e e et ettt e e e et aeaens 23-37
2338 TWO WAYS TO RUN INTEL 286 PROCESSOR TASKS ...ttt ettt ettt ettt e 23-37
23.39 INITIAL STATE OF PENTIUM, PENTIUM PRO AND PENTIUM 4 PROCESSORSot 23-37
CHAPTER 24
INTRODUCTION TO VIRTUAL MACHINE EXTENSIONS
24.1 OV RV B .ttt e et s e e e e e e e e 24-1
24.2 VIRTUAL MACHINE ARCHITECTURE. . . .ottt ittt e e et e e et et et e e ee s 24-1
24.3 INTRODUCTION TO VMX OPERATION . . ottt ittt ettt e e ettt e e e e e e e et e et a e 24-1
24.4 LIFE CYCLE OF VMM SOFT W ARE .« o ittt ettt e e e e e e e e e e e e e 24-2
24.5 VIRTUAL-MACHINE CONTROL STRUCTURE.ottt ettt et e et et e e e 24-2
24.6 DISCOVERING SUPPORT FOR VM X, 1 ittt ittt et ettt e et et e e e ettt et e e et e ees 24-2
24.7 ENABLING AND ENTERING VMX OPERATION . .ottt ettt ettt e e s et e e et e e et e ees 24-3
248 RESTRICTIONS ON VMX OPERATION. . . .ottt ettt et e ettt et et et e eees 24-3
CHAPTER 25
VIRTUAL MACHINE CONTROL STRUCTURES
25.1 OV RV B .ttt e e s e e e e e e e 25-1
25.2 FORMAT OF THE VMUES REGION ...ttt ettt ettt e e et e e e e et e et e e e e e e et e e 25-2
253 ORGANIZATION OF VMCS DA T A L ettt et e e e e e e e 25-3
25.4 GUEST - T AT ARE A L ettt e e e e e e e 25-4
25.4.1 GUBST REGIS T STaTE . vttt ettt ettt e e e et e e e e e e 25-4
254.2 GUEST NN REGIST BT STaT . 1\ ottt vttt e e e e e e e 25-6
25.5 HO S T oS T AT E AR A oottt ettt ettt e e e e e e e e e e e e e e e 25-8
25.6 VM-EXECUTION CONTROL FIELDS . . .ottt ettt et e e e et e e e e et e e e e e e et 25-9
25.6.1 Pin-Based VM-EXecution CONTIOISouite ettt e e e e e 25-9
25.6.2 Processor-Based VM-EXeCUION CONTIOIS. vttt ettt e e e enens 25-10
256.3 EXCEPTION BItMaD. . . oottt e e e e 25-14
2564 /OBt AQArES S ES. v vttt vttt ettt sttt e e et et e e e e e e 25-14
25.6.5 Time-Stamp Counter Offset and MUIIPIEro e e 25-14

Vol. 3A XxXiii

CONTENTS

25.6.6 Guest/Host Masks and Read Shadows for CROANd CRA ou ittt 25-14
25.6.7 (81 B T = Ao o 25-14
25.6.8 Controls fOr APIC VirtUaliZation. vttt ettt e e et 25-15
25.6.9 MR- BITMAD AQAIESS. . o vttt ettt et ettt ettt e e e et e e e e e e 25-16
25.6.10 EXECUTIVE-VMOS POIN T vttt ittt et e e e e e e e e e e e e e 25-16
25.6.11 Extended-Page-Table PoInter (EPTP)ot e e 25-17
25.6.12 Virtual-Processor Identifier (VPID)ttt e e e e e et e 25-17
25.6.13 Controls for PAUSE-LOOP EXITING vvtte ittt ettt et e et et e et e e et e s 25-17
256.14 RV B]Vt o] o N] 1 0 25-18
25.6.15 VMCS Shadowing Bitmap AQQrESSESttt ettt ettt et e ettt e e e e e ettt 25-18
25.6.16 EN LS EXITING BitmIaD .« ot vttt ettt et e e et e e e 25-18
25.6.17 ENCLV - EXITING BItmMIaD. .« v v vttt ettt et e et e et e e e e e 25-18
25.6.18 PCONFIG-EXITING BItmMIaD. . o . vttt ettt ettt et et et e et et e et e e 25-18
25.6.19 Control Field for Page-Modification LOGQingvvvritittt e e 25-19
25.6.20 Controls for Virtualization EXCEPTIONS.ttt ettt e ettt ettt e 25-19
25.6.21 XS S EXItING BITmIaD . vttt et e e 25-19
25.6.22 Sub-Page-Permission-Table Pointer (SPPTP) ...t e e e 25-19
25.6.23 Fields Related to Hypervisor-Managed Linear-Address Translationcoov it e 25-20
25.6.24 Fields Related t0 PASID Translation. ettt ettt et e ettt 25-20
25.6.25 INStrUCHiON-TIMEOUL CONTIOLttt ettt e et et e e e e e ee s 25-20
25.6.26 Fields Controlling Virtualization of the [A32_SPEC_CTRLMSR ..ottt et ieas 25-21
25.7 VM-EXIT CONTROL FIELDS . .. ettt ettt et et e e e et e e et e e e e e e e e e 25-21
25.7.1 BV B oy A e 0 o] 25-21
25.7.2 VM-EXIT CONTrOIS FOr MRS Lttt ittt ettt e 25-22
25.8 VM-ENTRY CONTROL FIELDS . . .ttt ettt et e e et e et et e e et e e e e e e e et 25-23
25.8.1 QY B Y O) o 25-23
25.8.2 RV B Y O 0 o] S (o i Y 25-24
2583 VM-Entry Controls for EVent INECtiON.ottt ettt ettt e 25-24
25.9 VM-EXIT INFORMATION FIELDS. . . ottt ettt et e et e e et e e e e e eees 25-25
25.9.1 Basic VM-EXIt INfOrmIation. .. vt 25-26
25.9.2 Information for VM Exits Due 10 Vectored BVENTSvutitei ettt e 25-27
259.3 Information for VM Exits That Occur During EVent DEliVErYovv i e 25-27
2594 Information for VM Exits Due 10 INStruction EXECUTION. ... v vt e vttt 25-28
25.95 VM-INSTTUCTION BITOr FIEld . . vttt e e e e e et e e et e 25-28
2510 VMCS TYPES: ORDINARY AND SHADOW.. . ..ottt ettt et et e e et et et et et ettt e e e e 25-29
2511 SOFTWARE USE OF THE VMCS AND RELATED STRUCTURES ...ttt et eaes 25-29
25.11.1 Software Use of Virtual-Machine Control STrUCTUTES.o v vttt 25-29
25.11.2 VMREAD, VMWRITE, and Encodings of VMCS Fields oot 25-30
25.11.3 INtIAlIZING @ VMO e e e e e e 25-32
25114 Software ACCESS 10 REIGTEA STTUCTUMES . ..o\ttt ettt 25-32
25115 RV D0\ (=T o 25-32
CHAPTER 26

VMX NON-ROOT OPERATION

26.1 INSTRUCTIONS THAT CAUSE VM EXITS Lttt ettt ettt ettt e e e e e et et e et e e 26-1
26.1.1 Relative Priority 0f FAuIts and VM EXiTS. .. v vttt e e e e 26-1
26.1.2 Instructions That Cause VM Exits Unconditionallyooniuiiniiii e 26-2
26.1.3 Instructions That Cause VM Exits Conditionallycoooiriiii i et ae e 26-2
26.2 OTHER CAUSES OF VM EXIT S, Lttt ittt et et e e et et et e et es 26-5
26.3 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-ROOT OPERATION . ..ottt et e e e 26-7
26.4 OTHER CHANGES IN VMX NON-ROOT OPERATION . 1 ettt ettt e et et e e e e e et eans 26-13
26.4.1 BVENT BIOCKING. o vttt e e 26-13
26.4.2 Treatment Of Task SWITCNES ...\ v e e e e e e e e 26-13
264.3 SHAdOW-STaCK UPdateS . oot i it e e 26-14
26.5 FEATURES SPECIFIC TO VMX NON-ROOT OPERATION. . . .o vttt t ettt et et e et e e ie e e 26-14
26.5.1 RV =TT T T T I T 26-14
26.5.2 T T o i I =T o =T S 26-15
26.5.3 Translation of Guest-Physical Addresses Using EPT.o. ittt et 26-16
26.5.4 Translation of Guest-Physical Addresses Used by Intel Processor Tracec.vveviiiiiiiiiiiiiiiinennnss 26-16
26.54.1 Guest-Physical Address Translation for Intel PT: Details.cooiii i 26-16
26.54.2 Trace-Address Pre-Trans ation (TAP T). ...ttt e 26-17
26.5.5 L O T 012 o 26-17
26.5.6 RV U7 oy o 26-17
26.5.6.1 ENADING VM FUNCEIONS . . ottt e e et et e et e 26-17

XXiv Vol. 3A

CONTENTS

PAGE

26.56.2 General Operation of the VMFUNC INSTrUCTIONottt et eaes 26-18
26.5.6.3 EP TP SWITCRING Lottt 26-18
26.5.7 VIrtUAliZation EXCEPTIONS . ..ttt e et e e e e 26-19
26.5.7.1 ConVErtiDIE BPT Vi0lationsttt ettt et et et e e e e e 26-20
26.5.7.2 Virtualization-Exception INfOrmationo s 26-20
26.5.7.3 Delivery of Virtualization EXCEPTIONSiui it et ettt 26-21
26.5.8 N | =0 = o P 26-21
26.6 UNRES TRICTED GUES TS &t ittt ittt et e e ettt et e e e et e e e e et e e et e 26-22
CHAPTER 27

VM ENTRIES

27.1 BASIC VM-ENTRY CHECK S, Lttt ettt e e e e e e et e e e et e e et ees 27-2
27.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREAottt et e 27-2
27.2.1 CRECKS ON VMX COMETOIS .o vttt e e e e e e et e e et e e e et 27-2
27.2.1.1 VM-EXecution Control FIEIAS e e e e e et 27-2
27.2.1.2 VM-EXIt CONTrOl FIElAS . .. oe et e e e e e e e e 27-5
27.21.3 VM-ENtry CONTrol FIEIAS. . o .t 27-6
27.2.2 Checks on Host Control Registers, MSRS, and SSPttt e e e et 27-7
27.2.3 Checks on Host Segment and Descriptor-Table Registersvv vt e 27-7
27.2.4 Checks Related 10 Address-SPace Size.t e e e 27-8
27.3 CHECKING AND LOADING GUEST STATE ittt ettt ittt et e et e e e 27-8
27.3.1 Checks 0N the GUEST STatE ATB. . vttt ettt e ettt et e e et e et et e e 27-8
27.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRS.ot 27-8
27.3.1.2 Checks 0N GUEST SEGMENT REGIS OIS, . .ttt ittt it e et et ettt aaees 27-10
27.3.1.3 Checks on Guest Descriptor-Table ReGISTErS .. v vttt i 27-12
27314 Checks on GUEST RIP, RFLAGS, @Nd SSPttt ettt ie e 27-12
27315 Checks on Guest NON-REGISTEr STatettt i e e e e e 27-13
27.3.1.6 Checks on Guest Page-Directory-Pointer-Table ENtriesvvvuiii i 27-15
27.3.2 [T 1T [U= Y =1 = 27-15
27.3.2.1 Loading Guest Control Registers, Debug Registers, and MSRSot e e e 27-15
27.3.2.2 Loading Guest Segment Registers and Descriptor-Table Registers ..o i 27-17
27323 Loading Guest RIP, RSP, RFLAGS, @nd SSP ...\ttt e e e 27-17
27324 Loading Page-Directory-Pointer-Table Entries. oo e e e 27-18
27.3.25 Updating NON-ReGISTEr STat. ..o\ttt e e e e et e 27-18
2733 Clearing Address-Range MONITOMING.o vttt ettt e ettt 27-18
27.4 LOADING MRS . .ottt ettt e e e e e e e 27-18
27.5 TRACE-ADDRESS PRE-TRANSLATION (T AP T .t ettt ettt et e et e e e 27-19
27.6 BV ENT INJECT 0N, .« ottt ettt et et e e et et e e e et e e e e et e e e e e e 27-19
27.6.1 RV L= Tot (T =Ta B =T o A Tt o A 27-19
27.6.1.1 Details of Vectored-EVent INjeCtion. e e 27-20
276.1.2 VM Exits DUMNG BVENT INJECHIONot e e e 27-21
276.1.3 Event Injection for VM Entries to Real-Address Mode.t e 27-22
276.2 Injection of Pending MTF VM EXItS. . .. v ittt e e e e e e e 27-22
27.7 SPECIAL FEATURES OF VM ENTRY L.ttt it e e e e e e e 27-22
27.7.1 It ErTUP DIty STatE. . o e 27-23
27.7.2 et Y71 Y] =1 (=P 27-23
27.7.3 Delivery of Pending Debug Exceptions after VM ENtry. ..o e 27-24
2774 RV D = == 170 T T I 2T 27-25
27.7.5 Interrupt-Window Exiting and Virtual-Interrupt Deliveryoii i e 27-25
27.7.6 N T o LT o 27-25
27.7.7 VM Exits Induced by the TPR Thresholdcoir i i e e e e i e e e 27-25
27.78 PENAING M VM EXIES ..ottt e e e e e e e e e 27-26
27.7.9 VM Entries and Advanced Debugging FEatUMES.ttt e e 27-26
27.7.10 User-Interrupt Recognition After VM ENArYoui et et ettt e s 27-26
27.8 VM-ENTRY FAILURES DURING OR AFTER LOADING GUEST STATE. ..ottt eee s 27-26
27.9 MACHINE-CHECK EVENTS DURING VM ENTRY .. ittt ittt e sttty 27-27
CHAPTER 28

VM EXITS

28.1 ARCHITECTURAL STATE BEFORE A VM EXIT .ottt ettt ettt e et aaaes 28-1
28.2 RECORDING VM-EXIT INFORMATION AND UPDATING VM-ENTRY CONTROL FIELDS.ooii i 28-4
28.2.1 Basic VM-EXIt INfOrmation. . ..o 28-4

Vol. 3A XXV

CONTENTS

28.2.2 Information for VM Exits Due 10 Vertored EVENTS vuiu ittt 28-12
28.2.3 Information About NMI Unblocking Due tO IRET e 28-13
28.2.4 Information for VM Exits During EVent DeliVEryouiuiiiii i e 28-13
28.2.5 Information for VM Exits Due 10 INStruction EXECUTION. . ..o v v vttt e 28-15
28.3 SAVING GUEST ST AT E oottt ittt et e e e e e e e e e e e e e 28-23
28.3.1 Saving Control Registers, Debug Registers, and MSRS.ot e e e e e e 28-23
28.3.2 Saving Segment Registers and Descriptor-Table REGISTErSvv vt i 28-23
2833 SaviNg RIP, RSP, RFLAGS, AN SO . . ittt e e e e e e 28-24
2834 SaVING NON-REGISTEr STaTE . ..ottt it it e e 28-25
28.4 SAVING MO RS Lt e e e e e 28-27
28.5 LOADING HOST ST AT E . .ttt ettt ettt et ettt e e e e e e et e e e et e e e et 28-28
28.5.1 Loading Host Control Registers, Debug Registers, MSRSt i i et 28-28
28.5.2 Loading Host Segment and Descriptor-Table REGISTEISv.ir ittt i i eaaas 28-30
2853 Loading Host RIP, RSP, RFLAGS, @Nd SSP.ttt ettt it 28-31
2854 Checking and Loading Host Page-Directory-Pointer-Table Entries ... e 28-31
28.5.5 Updating NON-REGISTEr STatettt et ettt ettt e e 28-31
28.5.6 Clearing Address-Range MoONitOMiNG . . .« .o v vttt ettt ettt e e et e e 28-32
28.6 LOADING MRS . ittt et e e e e e e e e e 28-32
28.7 LT 2 =0 1T 28-32
28.8 MACHINE-CHECK EVENTS DURING VM EXIT ottt ettt et et e et et et eens 28-33
28.9 USER-INTERRUPT RECOGNITION AFTER VM EXIT . . ottt ettt et et e e et 28-34
CHAPTER 29

VMX SUPPORT FOR ADDRESS TRANSLATION

29.1 VIRTUAL PROCESSOR IDENTIFIERS (VPIDS) . .t e vttt ettt ettt e et et e et e e e en s 29-1
29.2 HYPERVISOR-MANAGED LINEAR-ADDRESS TRANSLATION (HLAT). .ttt et 29-1
29.3 THE EXTENDED PAGE TABLE MECHANISM (EP T). . ittt ettt e e e e e 29-1
29.3.1 o Y= YT 29-2
29.3.2 EPT TranSIation MECRaNISI . v vttt e e e e e e e e e e 29-3
2933 ol I Yo N =T T £ 29-10
29.3.3.1 EP T MISCONMTIGUITIONS . ..ttt ittt e e e e et e e e 29-10
29.33.2 [I Y10 = T L 29-12
29333 Prioritization of EPT Misconfigurations and EPT Violationscooiiiii i e ee 29-15
2934 SUD-Page Wit P IS SIONS. . o\ttt ettt ettt st e e e e e e e 29-16
29.3.4.1 Write Accesses That Are Eligible for Sub-Page Write Permissions.ovviriiiii i 29-17
29.34.2 Determining an Access's Sub-Page Write Permission.o i e e 29-17
29.3.5 Accessed and Dirty FIags for EP Tt e e 29-18
29.3.6 Page-Modification LOGGINGo v ettt ittt sttt et et et et e e e e 29-19
29.3.7 EPT and MemMOrY Ty PINg .ottt ittt i et e e e e et e e e 29-19
29.3.7.1 Memory Type Used for Accessing EPT Paging STtruCTUNESo v vt i 29-19
293.7.2 Memory Type Used for Translated Guest-Physical Addressesvvvviiiiii i 29-19
29.4 CACHING TRANSLATION INFORMATION . . .ttt e ettt e et e e e e e et et et e 29-20
29.4.1 Information That May Be Cachedt e e e e e e 29-20
29.4.2 Creating and Using Cached Translation INformation.ouiui i e 29-21
294.3 Invalidating Cached Translation INformation.t e et e s 29-22
29.4.3.1 Operations that Invalidate Cached MapPingsovvve it e 29-22
29432 Operations that Need Not Invalidate Cached Mappings. vvvvr it e 29-24
29433 Guidelines for Use of the INVVPID INSTrUCTION . ..o v vt vttt e 29-24
29434 Guidelines for Use of the INVEPT INStrUCTIONo vttt e 29-25
CHAPTER 30

APIC VIRTUALIZATION AND VIRTUAL INTERRUPTS

30.1 R 0 I A o () I I 30-1
30.1.1 RV (0 oo A o O 2T] =T 30-2
30.1.2 TPR VITTUBIIZaTION « vttt e e e 30-2
30.1.3 PP R ViUl ZatiON .« vttt e 30-2
30.1.4 (S0 N T (U= 4 1o 30-3
30.1.5 Self-IPIVIFtUALIZATIONttt e e e e e e e e 30-3
30.1.6 L1 IRV AT (U= 2=« T 30-3
30.2 EVALUATION AND DELIVERY OF VIRTUAL INTERRUPTS ...ttt ettt et et es 30-4
30.2.1 Evaluation of Pending Virtual IntermUDTS ..t e 30-4
30.2.2 VirtUal-INTerTUPT DEliVEIY . .ot e e e e e e 30-5

XXvi Vol. 3A

CONTENTS

PAGE
30.2.3 Virtualizing User-Interrupt Notificationsooi i et 30-6
30.3 VIRTUALIZING CR8-BASED TPR ACCESSES . . .ottt ittt ittt e e e e e s 30-6
30.4 VIRTUALIZING MEMORY-MAPPED APIC ACCESSES ..ttt e e e e e 30-6
30.4.1 Priority O APIC-ACCESS VM EXITS ..\ttt ittt ettt et et e ettt 30-7
30.4.2 Virtualizing Reads from the APIC-ACCESS PAge ittt ees 30-8
304.3 Virtualizing Writes 10 the APIC-ACCESS Page. ov it e e et e s 30-9
304.3.1 Determining Whether a Write Access is Virtualized.o e 30-9
304.3.2 AP G-I EMUIGTION . . o vttt e e e e e e 30-10
30.4.33 AP T VM EXIES oo vttt ettt e e e e et e e e e e e e 30-11
3044 INStruction-Specific CoNSIAEIatioNS v .ttt e e e e 30-11
304.5 Issues Pertaining to Page Size and TLB Management. .. .o vu vttt e eaens 30-12
30.4.6 APIC Accesses Not Directly Resulting From Linear AddressesS . ..o .v v ittt ittt ne e 30-12
304.6.1 Guest-Physical Accesses 10 the APIC-ACCESS Page. ovieii ittt ettt 30-13
304.6.2 Physical Accesses 10 The APIC-ACCESS Paget . ittt et e e 30-13
30.5 VIRTUALIZING MSR-BASED APIC ACCESSES ..ttt ittt e e e e e e 30-14
30.6 POSTED-INTERRUPT PROCESSING. . . vttt ittt et sttt e e et e e e et et e et e et e e n e a e 30-15
30.7 VIRTUALIZING SENDUIPL . . . e ettt e et ettt e et e e e s e et et e e e e e e s 30-16
CHAPTER 31
VMX INSTRUCTION REFERENCE
31.1 OV RV B .ttt ettt s e e e e e e e e e 31-1
31.2 CONV ENTIONS L.ttt e e e e e e et e e et e e e et e s 31-2
31.3 M INS TRUC T ION S . . ottt et e et et e e e et e e e e et e 31-2
INVEPT— Invalidate Translations Derived from EPT u ittt 31-3
INVVPID— Invalidate Translations Based 0N VPIDouiiiii et 31-6
VMCALL—CAI 10 VM MOMit0r .« v vt e et ettt et e e e et et e e et e e e e et et e e e et e e aenas 31-9
VMCLEAR—Clear Virtual-Machine Control STTUCTUNE v et 31-11
VMFUNC—INVOKE VM fUNCHION. L. oot e e e e e et e e 31-13
VMLAUNCH/VMRESUME—Launch/Resume Virtual Machingo i 31-14
VMPTRLD—Load Pointer to Virtual-Machine Control STructureovii e 31-17
VMPTRST—Store Pointer to Virtual-Machine Control Structureovviiii e 31-19
VMREAD—Read Field from Virtual-Machine Control STructure.vvuviii e 31-21
VMRESUME—Resume Virtual Machingouiie e e 31-23
VMWRITE—Write Field to Virtual-Machine Control STrUCTUNEo v ettt 31-24
VMXOFF—LEaVe VMX OPBration . vttt ittt et ettt ettt ettt e et e e ettt 31-26
RV 0 e = Y 0 oY= = o 31-28
31.4 VM INSTRUCTION ERROR NUMBERS ittt ittt ettt et e e et et e e e e e e 31-31
CHAPTER 32
SYSTEM MANAGEMENT MODE
32.1 SYSTEM MANAGEMENT MODE OVERVIEW. . .\ttt ettty 32-1
32.1.1 System Management Mode and VMX Operationcooviuiiii i i e et et e s 32-2
32.2 SYSTEM MANAGEMENT INTERRUPT (SMI). ..ttt e e e 32-2
323 SWITCHING BETWEEN SMM AND THE OTHER PROCESSOR OPERATING MODES. ...\ v vt aans 32-2
32.3.1 ENTEriNG SMM L e e 32-2
32.3.2 EXITING FIOM SMM i e e e e 32-3
324 S R A Lt e e e e 32-4
32.4.1 SMRAM SEaTE SAVE M. . ottt it et e it i e e e s 32-4
324.1.1 SMRAM State Save Map and Intel 64 ArChiteCIUrE. ... vttt e e 32-6
324.2 SMRAM CaCNING .t vt vttt ettt ettt e e e e 32-8
32.4.2.1 System Management Range Registers (SMRR)t e 32-9
325 SMIHANDLER EXECUTION ENVIRONMENT . ..ottt ettt e et 32-9
32.5.1 INitial SMM EXECULION ENVITONMIENT . ettt ettt ettt e e et e e et e et e e e 32-9
32.5.2 SMI Handler Operating Mode SWItChiNgt e e i e e e i e 32-10
3253 Control-flow Enforcement Technology INtEractions.o.irirtet i e et eieaas 32-11
326 EXCEPTIONS AND INTERRUPTS WITHIN SMM L.ttt e e e e 32-11
327 MANAGING SYNCHRONOUS AND ASYNCHRONQUS SYSTEM MANAGEMENT INTERRUPTS. ... 32-12
32.7.1 170 STate IMPIEmMEN At ON . . oottt ettt e e e 32-12
328 NMEHANDLUING WHILE IN SMM. L e e e e e e e et 32-13
329 SMM REVISION IDENTIFIER . . . ottt e e e e e e e e e e e e e e 32-13
3210 AUT O HALT REST AR .ttt ittt ettt et e et e e e et e e e et e e et e et et e e e s 32-14

Vol. 3A XXvii

CONTENTS

32.10.1 Executing the HLT INStruction in SMM ... i e e ety 32-14
3211 SMBASE RELOCATION. Lttt ittt ittt ettt et et e e e et et e e et e e e 32-14
3212 O INSTRUCTION RES T AR T L.ttt ettt ettt et ettt et e e e et e e e et e et et e e eaes 32-15
32.12.1 Back-to-Back SMI Interrupts When I/0 Instruction RestartIs BeingUsed ... 32-16
32.13 SMM MULTIPLE-PROCESSOR CONSIDERATIONS. .« .ottt ettt ettt e e e e 32-16
32.14 DEFAULT TREATMENT OF SMIS AND SMM WITH VMX OPERATION AND SMX OPERATIONcovvvviiinininnnn, 32-16
32.14.1 Default Treatment Of SMI DElIVEIY.ot ettt 32-17
32.14.2 Default Treatment Of RSM ... e e e e 32-18
32.14.3 Protection 0f CRANVMXE N SMM . L.ttt e e e e 32-19
32.144 VMXOFF and SMIUNDIOCKING .« v et e ettt e e e e e e e et e e e et e e a e e e 32-19
32.15 DUAL-MONITOR TREATMENT OF SMIS AND SMM .. .ottt e 32-19
32.15.1 DUual-Monitor TreatMent OV VIBW.ottt ettt et et et et e e e e et et e e e e e e n et e e n e neneanas 32-19
32.15.2 SMM UM EXITS vttt ettt et et et e e e e e e e 32-20
32.15.2.1 Architectural State Before @ VM EXIto e 32-20
32.15.2.2 Updating the Current-VMCS and Executive-VMCS PoiNters. ... ov vttt ittt ie e 32-20
32.15.2.3 Recording VM-EXit INformationt e e 32-20
32.15.24 SAVING GUEST ST .ottt ettt et e e e e e e e e 32-21
32.15.25 UPdating State . ..ot e e e e 32-21
32.15.3 Operation of the SMM-TranSTer MONITOr i e e ettt n e 32-22
32154 VM Entries that Return from SMM e e 32-22
32.15.4.1 Checks on the Executive-VMCS Pointer Fieldo e e s 32-22
32.154.2 Checks on VM-Execution Control FIeldsSvuiuneei e e 32-22
32.154.3 Checks on VM-ENtry Control Fields.ov e e e e 32-23
32.154.4 Checks 0N The GUEST STatE AT . ..ottt ettt e ettt et enens 32-23
32.154.5 [0 Ta o 0Ty A - = 32-23
32.15.4.6 AV D o == T T 1o o I V= P 32-23
32.15.4.7 Updating the Current-VMCS and SMM-Transfer VMCS Pointers. ..ot ieee 32-24
32.154.8 VM EXits INAUCEA DY VM BTy . oottt e e et ettt e e e ettt e e 32-24
32.154.9 1] =] o Tt T 32-24
32.154.10 Failures of VM Entries That Return from SMM. i e e 32-24
32.15.5 ENabling the DUal-MoNitor TreatmENtottt ettt e ettt ettty 32-25
32.15.6 Activating the DUal-Monitor TreatmEntttt e e e 32-26
32.15.6.1 Il CNBCKS v vttt ettt e e e e e e e 32-26
32.15.6.2 Updating the Current-VMCS and Executive-VMCS PoINTerS.vvv i e 32-27
32.15.6.3 SAVING GUEST STaTE .o\ttt ettt e e e et e e e e e e 32-27
32.156.4 SAVING MO RS &t ittt ettt e e e e e e 32-27
32.15.6.5 L0adiNg HOSt STate . vttt ettt e e e e e 32-27
32.15.6.6 L0adING MO RS ottt e e e e 32-29
32.15.7 Deactivating the Dual-Monitor Treatment.t e e e ittt 32-29
32.16 SMI AND PROCESSOR EXTENDED STATE MANAGEMENT . ..ottt e eans 32-29
32.17 MODEL-SPECIFIC SYSTEM MANAGEMENT ENHANCEMENT . ..ottt e 32-30
32.17.1 SMM Handler Code ACCESS CONTIOlttt ettt e e e et e e e e ettt e e a e ie i enes 32-30
32.17.2 SMI Delivery Delay REPOMtiNG. . .. v vttt et e e et e e et e 32-30
32.17.3 BIOCKEd SMI REP O NG .+ ot v v vttt ettt et e e s e e e e e 32-30
CHAPTER 33

INTEL® PROCESSOR TRACE

331 OV RV B ottt et et e e e e e e e 33-1
33.1.1 Features and CapabiliTies. v vt e e e 33-1
33.1.1.1 PaCK et SUMIMIAIY .\ttt e e e e 33-1
33.2 INTEL® PROCESSOR TRACE OPERATIONAL MODEL. . .t vttt ettt et e e et e e et e et et e et 33-2
33.2.1 Change of Flow INStruction (COFI) Trating. ... v v vv et ettt ettt ettt et et e e e a e 33-2
33.2.1.1 [T r=T o A I = 1 Y =T 00 33-3
33.2.1.2 T T =Tot fl =T Y =T 00 P 33-3
33.2.1.3 =T 3 =T 00 33-4
33.2.2 Software Trace Instrumentation With PTWRITEt e 33-4
33.23 o1V L= V7= I =T 33-4
33.24 Y= I o= Tl T 33-5
33.25 L L3N =11 33-5
33.2.5.1 Filtering by Current Privilege Level (CPL). v ettt aens 33-5
33.2.5.2 FIEMNG DY CR 3 .ottt i e e e ettt e e e e e e e 33-5
33.253 FIEIING DY P e e e e e 33-6
33.2.6 Packet Generation ENable CONTIOlSttt e e e e e e 33-7
33.2.6.1 Packet ENAbIE (PACKETEN)ttt ettt e e e e et e e e e 33-7

Xxxviii Vol. 3A

CONTENTS

PAGE

33.26.2 Trigger ENAbIE (TriGErEN) . .o v ettt e e e e e e e e e e 33-8
33.26.3 Context ENable (CoNtEXTEN). ... v .ttt e e e e 33-8
33.264 Branch Enable (BranChEN).c.v i e e e 33-8
33.26.5 Filter EN@DIe (FIEErEN) . . ettt et e e e e e e e e e e 33-8
33.2.7 A0 OULDUL. . . ettt e e e e et e e e e e e e e 33-9
33.2.7.1 SINGIe RANGE OULDUL. . . ot i i e e e e 33-9
33.2.7.2 Table of Physical AdAresses (TOPA) v vttt ettt e ettt et 33-10

Single Output Region TOPA IMplementation.c.ot i e 33-12

TOPA Table ENtry FOMmMatottt e e e e e e et e 33-12

TOP A ST 0P Lttt e e e e e 33-13

TOP A P ettt e e e e e 33-13

e == Y= 1o P 33-14

ToPA PMI and Single Output Region ToPA Implementation.o i 33-14

ToPA PMI and XSAVES/XRSTORS State Handling.vvei e i 33-15

L0 o AN = 1013 33-15
33.2.7.3 B Lo =T = L 1oAY 010153 A3 (= 33-16
33274 LR eIy o =T a =T T Y Yo L 33-16

Modifications to Restricted MemMOrY REGIONS v vttt e e e et eaeas 33-16
33.2.8 Enabling and Configuration MRSo e 33-17
33.2.8.1 (07=T o =T T o] T (=T o 0 33-17
33.28.2 L O 1 Y 33-17
33.283 Enabling and Disabling Packet Generation With TraceENovvriiiiii i e 33-20

Disabling Packet Gemeration. .. .ottt ittt e ettt e e 33-21

Other WIS 10 IAS 2 R T T T L. ettt ettt e et e e e e e e e e et et e es 33-21
33.284 IAB 2 _RTIT_STATUS MSR ..ttt ittt e et e e e e e e e e e e e en s 33-21
33.285 IA32_RTIT_ADDRN_A and IA32_RTIT_ADDRN_B MSRSttt ettt et 33-22
33.2.86 IA3 2 RTIT R _MAT CH MR ..ttt e e e e e e e e e 33-22
33.28.7 IA32_RTIT_OUTPUT _BASE MSR. . . .ttt e e e e e e 33-23
33.2.88 IA32_ RTIT _OUTPUT _MASK PTRS MO R, ittt ittt ettt e e e 33-23
33.29 Interaction of Intel® Processor Trace and Other Processor FEAtUreS u.vvuvur ittt in it inienieas 33-24
33.29.1 Intel® Transactional Synchronization Extensions (INtel® TSX)o e 33-24
33.29.2 B 1o T 1 T o 33-25
33.293 System Management Mode (SMM) e e 33-25
33.294 Virtual-Maching EXTENSIONS (VMX). . vttt e e e e e 33-26
33.295 Intel® Software Guard Extensions (INTel® SGX). vt e 33-26
33.2.96 SENTER/ENTERACCS aNd ACM . v ittt et e e e e e 33-26
33.29.7 Intel® Memory Protection Extensions (INtel® MPX)t e 33-26
333 CONFIGURATION AND PROGRAMMING GUIDELINEottt e ettt e 33-26
33.3.1 Detection of Intel Processor Trace and Capability Enumeration. ... i 33-26
33.3.1.1 Packet Decoding Of RIP VEISUS LIP.ttt e e e e aees 33-30
333.1.2 Model Specific Capability RESTTCHIONS.ottt e 33-30
33.3.2 €nabling and Configuration of Trace Packet Generation.ot e e eee s 33-30
333.2.1 ENADING Packet GeNEration . ..\ttt e e e 33-30
333.2.2 Disabling Packet GENEIationurieiit e e e e 33-31
3333 FIUSRING Trace QUL DUL . ..ot i i et et e e e ettt e 33-31
3334 L L T2 ST < 33-31
3335 ConteXt SWItCh CONSIAEIatiON . ..ottt st 33-31
33.3.5.1 Manual Trace Configuration Context SWitch. e 33-31
3335.2 Trace Configuration Context Switch Using XSAVES/XRSTORS ...t 33-32
33.3.6 CYClE-ACCUrATE MOE . . . ettt et ettt e e e e 33-32
33.3.6.1 [0 ol L= o 0) =] 33-33
3336.2 [0 T = Lol (= Y= = ok 33-33
33363 Cyele TRFESNOIAS e e e e e e s 33-33
33.3.7 Decoder SYNChronization (PSB) v ittt e e e e e 33-34
3338 Internal BUFfer OVErflOW. e e e 33-35
33.3.8.1 Overflow IMPact 0N ENADIESt e s 33-35
33.38.2 Overflow Impact on TiMING Packetso.ii i et ettt a e 33-35
33.3.9 L LI 53 1o (= 33-36
33.3.10 (8]0 1= = 1[0 = N = o 53 33-36
334 TRACE PACKETS AND DAT A TYPES. . ottt ettt et et e e e e e e 33-36
334.1 Packet Relationships and Orderingovniniriti it i e ettt 33-36
334.1.1 PaCKET BIOCKS . . vttt e e 33-37

D= o T L=l 00T o ot o] L 33-37

Vol. 3A XxXiX

CONTENTS

334.2 PaCKET DI M tiONS .o\ttt e e e e 33-38
33.4.2.1 Taken/Not-taken (TNT) Packet e e e 33-39
334.22 TarGET P (TIP) PaCKeT. . o v vttt ettt et e e e et e e et 33-40
1 0110 =TS T P 33-40
Indirect Transfer Compression for REtUNNS (RET) ... vv ittt e s 33-41
334.2.3 D12 = o =T P 33-42
334.24 Packet Generation Enable (TIP.PGE) Packetcouinirii e i ee e 33-43
334.25 Packet Generation Disable (TIP.PGD) PaCKet.vurei ettt e 33-44
334.2.6 FIOW Update (FUP) PacKet. . ..ottt e et e e e e e e e 33-45
L o o 1Y o - P 33-45
334.2.7 Paging INformation (PIP) PacKet v ettt e 33-47
334.28 (0] S o =1 £ 33-47
MODE EXEC PaCKET . . vttt e e e e e e e 33-48
(0] o IS G = ol (=) PP 33-49
334.29 TrACES 0D PaCKET. . oo e e e 33-50
334.2.10 CoreiBus Ratio (CBR) PatKet. . .. v ittt et e e e e 33-50
33.4.2.11 Timestamp Counter (TSC) Packel.o .t e e e 33-51
334.2.12 Mini Time Counter (MTC) Packetou e e ettt enees 33-52
334.2.13 TSC/MTC AlIgNmeENt (TMA) PacKet . ..t e e e e e 33-53
334.2.14 Cycle CoUNt (CYC) PacKet. oo vttt e e e e 33-54
334.2.15 L O o Vol (= 33-55
334.2.16 OVEMTIOW (OVF) PaCKeT. . .ottt et e e e e ettt 33-56
33.4.2.17 Packet Stream Boundary (PSB) Packet.oouieii i e 33-56
334.2.18 POBEND PatKeT. . .ottt t ettt e e 33-57
334.2.19 MainteNANCe (MNT) PaCKet . ..ottt e e e e e e e e 33-58
33.4.2.20 P D PaCKT ettt e e e e 33-58
334.2.21 PTWRITE (PTW) PacKet .ottt e e e e e e 33-59
334.2.22 EXECUTION STOP (EXSTOPR) PacKeT ..\ttt e e 33-60
334.2.23 M AL PaCK T, ottt e 33-61
33.4.2.24 Power ENtry (PWRE) Packet. e e 33-62
33.4.2.25 Power EXIt (PWRX) PacKet . ..ottt e e e e e e 33-63
334.2.26 BIOCK BEGIN Packet (BBP). . ..ottt ettt e 33-64
33.4.2.27 BIOCK HEM PACKET (BIP) vttt ettt et e e e e e e e 33-65
BIP State Value ENCOAINGS .. vttt ettt e e et e e 33-65
33.4.2.28 BIOCK ENA PaCKet (BEP). .. .o v ettt ettt e e e e 33-70
33.4.2.29 Control Flow Event (CFE) Packet. e e 33-71
CFE Packet Type and Vector FIEldSovuii ettt et e e ettt e e e ettt e e 33-71
33.4.2.30 EVENT Data (EV D) PacKet . . .ottt ittt e e e 33-73
335 TRACING IN VMX OPERATION ..ottt ittt ettt e e e e et e e e e e e e e 33-73
33.5.1 VMX-Specific Packets and VMCS CONtrolSovi ittt ettt ettt ettt ieeeaes 33-74
33.5.2 Managing Trace Packet Generation Across VMX Transitions.vvvu vttt it neiaas 33-74
33.5.2.1 I ASY (] L= I = o 33-75
335.2.2 U1y L]| I Vol T 33-75
33523 EmUIation of INtel PT Traced State ... ot 33-76
33524 L) O Yo 33-76
33525 FAIlEd M EIETY Lot e e e 33-76
33.5.26 LY G 4 T o 33-77
336 TRACING AND SMM TRANSFER MONITOR (STM) ..ttt ittt et e et 33-77
337 PACKET GENERATION SCENARIDS . . .ttt ettt et 33-77
338 SOFTWARE CONSIDERATIONS . . . ettt ettt ettt e e 33-81
33.8.1 =L T Y | N T = 33-81
33.8.2 Cooperative Transition of Multiple Trace Collection AQENTS.or ittt et eeiaaas 33-81
3383 1= (0 LT T 1121 S 33-81
33.83.1 Time Domain RelationShips. . ..o e e 33-82
33.8.3.2 Estimating TSC Within INTel P, ..o i e e et e e 33-82
33.83.3 RV DG I O = 1T = 1o 33-83
33834 Calculating Frequency With INtel P e 33-83
CHAPTER 34
INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS
34.1 OV RV B ottt et e et e e e e e e e e e 34-1
34.2 ENCLAVE INTERACTION AND PROTECTION. . . vttt ettt et e e e et e e e e e e et es 34-1
343 o N O S I = O 34-2

XXX Vol. 3A

CONTENTS

PAGE

34.4 DATA STRUCTURES AND ENCLAVE OPERATION. . ..ttt ettt ettt e et et e e et ettt e aees 34-2
34.5 ENCLAVE PAGE CACHE. . .ottt ettt e e et e e e e e e e e e e e e e e e e 34-2
34.5.1 ENclave Page Cache Map (EPCM). ... v ettt e e e e e e e e e e e s 34-3
34.6 ENCLAVE INSTRUCTIONS AND INTEL® SGX . ottt ettt et ettt e e et et et et e et et e e e e aees 34-3
34.7 DISCOVERING SUPPORT FOR INTEL® SGX AND ENABLING ENCLAVE INSTRUCTIONSot 34-4
34.7.1 Intel® SGX Opt-In ConfigUratioN.ot e e e e e 34-5
34.7.2 Intel® SGX ReSOUrCe ENUMETAtion LBaVES . . v\ttt ettt et e et ettt et e 34-5
34.8 INTEL® SGX INTERACTIONS WITH CONTROL-FLOW ENFORCEMENT TECHNOLOGY ...\ vv i eaaaa 34-7
34.8.1 CET N ENCIAVES MOt e ettt e 34-7
34.8.2 Operations Not Supported on Shadow Stack Pages.o v e 34-8
34.8.3 Indirect Branch Tracking - Legacy Compatibility Treatment...... ... e 34-8
CHAPTER 35

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

35.1 OVERVIEW OF ENCLAVE EXECUTION ENVIRONMENT ...\ttt ettt e e et 35-1
35.2 TERMINOLOGY vttt ettt e ettt e e et e e et e e e e e 35-1
353 ACCESS-CONTROL REQUIREMENT S . ottt ettt ettt et e e e e e ey 35-1
354 SEGMENT-BASED ACCESS CONTROL . 44ttt t ettt et et e e et e e e et e e et e e e a e 35-2
355 PAGE-BASED ACCESS CONTROL . . v ettt ettt e e et e e et e e e e et et e e e et et et e e e e e 35-2
35.5.1 Access-control for Accesses that Originate from Non-SGX INSTructionscovvvi i 35-2
35.5.2 Memory Accesses that Split ACross ELRANGEttt i i i e i et et i 35-2
3553 IMIPlICIT VS, EXPlCIT ACCES S S, v vt vttt ettt ettt e ettt e e e e et e e et e e 35-3
35.5.3.1 0] o Aol 1= 35-3
35.5.3.2 00T ol Aol =T =T 35-3
35.6 INTEL® SGX DATA STRUCTURES OVERVIEW. . ..ottt e et e e et eees 35-4
35.7 SGX ENCLAVE CONTROL STRUCTURE (SECS) . 1 vttt ettt ettt e e et e e e 35-5
35.7.1 AT RIBUT ES .ottt ittt e e e e e e e e e e e e e e e 35-6
35.7.2 SECS.IMISCSELECT FIIA . vttt ettt et e et e e et et et e et et et e 35-6
35.7.3 SECS. CET _ATTRIBUTES Fleld. . ottt ettt et e ettt et e e e e e ees 35-6
35.8 THREAD CONTROUL STRUCTURE (TS) © vttt vttt ettt st ettt e et et e e et et e e e e et e e eans 35-7
35.8.1 L 0 1 35-8
35.8.2 State Save Area OffSet (OSSA) . ..ttt e 35-8
3583 Current State Save Area Frame (CSSA) ...ttt et e e e 35-8
3584 Number of State Save Area Frames (NSSA)ttt e e e 35-8
359 STATE SAVE AREA (SSA) FRAME ...ttt e e e e e 35-8
35.9.1 L0 R)G (= [o 3 35-9
35.9.1.1 EXITINF O et e e e e e e e 35-10
35.9.1.2 VECTOR Field Definition ..ottt et e e e e 35-10
35.9.2 1Y (= o 35-11
35.9.2.1 EXINFO StTUCIUNE .ttt ettt et et e e e e e et e e e e e 35-11
35.9.2.2 Page FaUIt ErmOr COMEttt e et e e e e e e 35-12
35,10 CET STATE SAVE AREA FRAME. . ..\ttt t ittt ettt et e et et e e e 35-12
3511 PAGE INFORMATION (PAGEINFO) . ..\ttt et e e e e e e et e e s 35-12
35.12 SECURITY INFORMATION (SECINFO) . vttt ittt et ettt et e e e e e e e e e et e e e 35-13
35.12.1 SECINF O F A G S, . ottt ettt et s e e e e e e e e 35-13
35.12.2 PAGE_TYPE Field Definmition ov ettt e ettt 35-13
35.13 PAGING CRYPTO METADATA (PCMD) ...ttt ittt ettt et ettt e e et e e e e e e 35-14
35.14 ENCLAVE SIGNATURE STRUCTURE (SIGSTRUCT) vttt vttt et et e e et et e e e e e e e e in e ae s 35-14
35.15 EINIT TOKEN STRUCTURE (EINITTOKEN) . . .ottt ettt e e e e e e e e aenes 35-15
3516 REPORT (REP O RT . ittt ettt ittt et e ettt e et et e e et e e e et e e et e et e e 35-16
35.16.1 REP O R T D AT A ottt ettt e et et e e e e e e e 35-17
35.17 REPORT TARGET INFO (TARGETINFO) . ..ttt ettt ettt et e e et e e et et e e ees 35-17
35,18 KEY REQUEST (KEYREQUEST) ..t ttt ettt ettt ettt e e et e e e e e e e e e e e e 35-17
35.18.1 KEY REQUEST KBYNGMIES . . v ottt ettt ettt ettt e et e e e e e e e et e e et et et r e 35-18
35.18.2 KeY ReQUEST POliCY StrUCTUNE . .o\ttt e e e e e e e 35-18
35.19 VERSION ARRAY (VA). ot ittt ittt ettt et ettt et e e e e et et e et e et e e 35-19
35,20 ENCLAVE PAGE CACHE MAP (EPCM) ..ttt ittt e ettt e et et e e e 35-19
3521 READ INFO (RDINFO). . ottt ettt ittt ettt e e e et et e et et e e et e e et et e e e e e e n e e 35-19
35.21.1 RDINFO STatUS SITUCTUIE vttt ettt ettt e e e e et e ettt 35-20
35.21.2 R N O = T RS« s on 1= 35-20

Vol. 3A XXXi

CONTENTS

PAGE
CHAPTER 36
ENCLAVE OPERATION
36.1 CONSTRUCTING AN ENCLAVE L.ttt ittt e e e e e e e e e e et e e e e e 36-1
36.1.1 0 I = 36-2
36.1.2 EADD and EEXTEND INteraCion ..o v vttt vttt ettt et ettt e e e e ettt e e e e 36-2
36.1.3 L1 I =T = oy o 36-2
36.1.4 Intel® SGX Launch Control Configurationooiii i i e e e et 36-3
36.2 ENCLAVE ENTRY AND EXITING ..\ttt ettt ettt e e e et e e e e et e e et e e et et e e e 36-3
36.2.1 Controlled ENtry and EXit. ... ot e it e e e e 36-3
36.2.2 AsyNchronous ENCIAVE EXIT (AEX) v ittt ettt et et et e et ettt e 36-4
36.2.3 RESUMING EXECUTION ATTEr A X . . ittt ittt et e e e e 36-4
36.2.3.1 [RS W [(== ot o] 36-5
36.2.3.2 Asynchronous Enclave Exit Notify and EDECCSSAottt e e it 36-5
36.3 CALLING ENCLAVE PROCEDURES . .. ettt et e e e e e e et e et et es 36-6
36.3.1 0= 70 o 1000 V7T 0 o 36-6
36.3.2 R S0 R (=Tl == Y= L) AP 36-6
36.3.3 RETUIMING 10 CallEr. . o\ ottt e e s ettt e e e e 36-6
36.4 INTEL® SGX KEY AND AT TEST ATION . .ottt ettt ettt ettt et e e et e e e et e et 36-6
36.4.1 Enclave Measurement and IdentifiCationo vttt e 36-6
36.4.1.1 MRENCLAVE. . ..ttt et e e e et e e et e e e e 36-6
36.4.1.2 MRS GN R, L .o ettt e e e 36-7
36.4.1.3 CONFIGID. vt ettt e et e e e e et e e e e e e e e e e e 36-7
36.4.2 Security Version NUMDErS (SVN). ... vttt e e e 36-7
36.4.2.1 [ol LYY <ol U VY L= o 36-8
36.4.2.2 HardWare SECUMNITY VBISiON. L .ottt ettt et et e ettt et et e r et 36-8
36.4.2.3 CONFIGID SECUMITY VIS0 L o vttt ettt et e e et e e e e e et e e e e e et aaas 36-8
3643 KBS et ettt e e e e 36-8
36.4.3.1 SEAlNG BNCIAVE Data. .. o ittt e s 36-9
36.4.3.2 Using REPORTS TOr LOCal AtteStationo v vttt ettt e s aaas 36-9
36.5 EPC AND MANAGEMENT OF EPC PAGES ...ttt e e e e 36-10
36.5.1 [O 133 T0] =T 1 1T 0 = 4T P 36-10
36.5.2 0S ManagemeENt Of EPC Pages. .. v vttt ittt e e e e 36-10
36.5.2.1 Enhancement 10 Managing EPC Pages ... c.iui ittt i e e e 36-10
36.5.3 BVICTION OF ENCIAVE Pages . .. oo ottt e e e e 36-10
36.5.4 L0ading N ENCIaVE Pageo v ittt e e 36-11
36.5.5 BVICTION OF AN SECS Page. . ..o v ittt e e ettt e 36-11
36.5.6 EVICTioN O @ Version AMTay Pagevv ittt ettt ettt e e 36-12
36.5.7 AlloCating @ REGUIA Page . ..ottt e e e 36-12
36.5.8 A o= 1o = T 1 O =T = 36-12
36.5.9 I T T T =T = 36-13
36.5.10 Restricting the EPCM Permissions 0f @ Page. ovvuiiiit i e s 36-13
36.5.11 Extending the EPCM Permissions 0f @ Pagec. ittt i e et ettt iaas 36-14
36.5.12 VMM Oversubscription Of EPC i e e et e 36-14
36.6 CHANGES TO INSTRUCTION BEHAVIOR INSIDE AN ENCLAVE . . .ottt aeas 36-14
36.6.1 11 =T F= T g ot o 36-15
36.6.2 RDRAND and RDSEED INSTTUCTIONS . .« v vttt ettt ettt ettt ettt et e e et e e et et e et e e e 36-15
36.6.3 P AU S E NSt UCTION . vttt e et ettt e et e e e e 36-15
36.6.4 Executions of INTT and INT3 INSide an ENCIave vt e i 36-16
36.6.5 INVD Handling when Enclaves Are Enabled.t e e e 36-16
CHAPTER 37
ENCLAVE EXITING EVENTS
37.1 COMPATIBLE SWITCH TO THE EXITING STACK OF AEX . ..ttt ittt et 37-1
37.2 STATE SAVING BY AEX. vttt t ettt e e e e 37-2
373 SYNTHETIC STATE ON ASYNCHRONOUS ENCLAVE EXIT & . ettt et 37-3
37.3.1 Processor Synthetic State on Asynchronous ENclave EXit...........ovniriii i 37-3
37.3.2 Synthetic State for EXTENdEd FEATUMESttt e ettt et 37-3
3733 SYNTETIC STate TOr MISC FEaTUMES . . vttt ettt et et ettt aneanaes 37-4
374 = 0 37-4
37.4.1 AEX Operational Detail. . ..ot e e s 37-5

XxXii Vol. 3A

CHAPTER 38
INTEL® SGX INSTRUCTION REFERENCES
38.1 INTEL® SGX INSTRUCTION SYNTAX AND OPERATION . ..ttt
38.1.1 ENCLS Register Usage SUMMAYvutt ettt ettt ettt ie ettt ittt e aenaiaananns
38.1.2 ENCLU Register USage SUMMEIY v ettt et e e e e et e et ie et eaeeens
38.1.3 ENCLV Register Usage SUMMIAIY ..o vv ettt ettt et it ettt e ettt a i enens
38.1.4 INfOrmation @Nd EMTOr COOES ... v ittt ettt et et et e in e eees
38.1.5 INTEMNAl CREGS ..ttt et e et et
38.1.6 Concurrent Operation ReStriCHiONS.v ittt i i e it
38.1.6.1 Concurrency Tables of Intel® SGX INSTrUCtionsS. oo vv i e
38.2 INTEL® SGX INSTRUCTION REFERENCE. . ..o\ttt ettt
ENCLS—Execute an Enclave System Function of Specified Leaf Number..........................
ENCLU—Execute an Enclave User Function of Specified Leaf Number
ENCLV—Execute an Enclave VMM Function of Specified Leaf Number............................
383 INTEL® SGX SYSTEM LEAF FUNCTION REFERENCE.\ttt
EADD—Add a Page to an Uninitialized ENClaveo
EAUG—Add a Page to an Initialized ENClave e e
EBLOCK—Mark apagein EPCasBlockedc.coiiiiiiiiiii it
ECREATE—Create an SECS page in the Enclave Page Cache.............coci i
EDBGRD—Read From a Debug ENCIave.o.vi i e
EDBGWR—Write to a DebUug ENClaVve. . ..o
EEXTEND—Extend Uninitialized Enclave Measurement by 256 Bytes. ...t
EINIT—Initialize an ENclave for EXECUTION\ v v vt eens
ELDB/ELDU/ELDBC/ELDUC—Load an EPC Page and Mark itsState.............cooviiiiiiiin,
EMODPR—Restrict the Permissions of an EPCPageccooviiiiiiiiiii it
EMODT—Change the Type of an EPC Pagevviiiiiii i e
e Va [a I =T Fo o=
ERDINFO—Read Type and Status Information Aboutan EPCPage..........ccoovvviviiiiiiinnnn,
EREMOVE—Remove apage fromthe EPC. et
ETRACK—ACctivates EBLOCK Checkso v aens
ETRACKC—Activates EBLOCK CheCKS . ..o v vttt ettt ettt in e eens
EWB—Invalidate an EPC Page and Write out to Main Memoryc.coiiiiiiiiiiiiiiiiienn
38.4 INTEL® SGX USER LEAF FUNCTION REFERENCE.\ttt
EACCEPT—Accept Changes to an EPC Pageo ittt
EACCEPTCOPY—Initialize a Pending Paget e e e
EDECCSSA—Decrements TCS.CSS A L. e e
EENTER—ENTErs an ENClaVe. .. .ot e e
EEXIT—EXITS @N ENCIAVE ..ot e e e
EGETKEY—Retrieves a Cryptographic Keycuvvniiii e
EMODPE—Extend an EPC Page PermiSSiONSuititiiti ittt it aeaens
EREPORT—Create a Cryptographic Reportof the Enclave. ..o,
ERESUME—RE-ENtErs an ENClaveo vttt i
385 INTEL® SGX VIRTUALIZATION LEAF FUNCTION REFERENCEovtt i
EDECVIRTCHILD—Decrement VIRTCHILDCNT in SECSt vr i e i
EINCVIRTCHILD—Increment VIRTCHILDCNT N SECS ..ottt
ESETCONTEXT—Set the ENCLAVECONTEXT Field inSECSvvv it
CHAPTER 39
INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
39.1 INTEL® SGX AVAILABILITY IN VARIOUS PROCESSOR MODES.ottt
39.2 IA32_FEATURE _CONTROL . .ottt ittt et et e et e e et
39.2.1 Availability Of INtel SOX . .ttt
39.2.2 Intel SGX Launch Control Configurationouiuiiiiii i et
393 INTERACTIONS WITH SEGMENT ATION L .ottt e e e e s
39.3.1 SCOPE Of IMEBIACT 0N . . .ot s
39.3.2 Interactions of Intel® SGX Instructions with Segment, Operand, and Addressing Prefixes
3933 Interaction of Intel® SGX Instructions with Segmentation ...,
3934 Interactions of Enclave Execution with Segmentationcciiiiii i
394 INTERACTIONS WITH PAGING ..ottt ettt et et e e e e e et et aanes
395 INTERACTIONS WITH VMX Lottt e e e e e

................ 38-8

CONTENTS

PAGE

ARORRAD D

Wwuwuwwwww
00 CO 00 00 00 OO0 CO @O

W S50 4

WWWwwwwwwww
LOOLLOLLOOLWLWDLW

Vol. 3A Xxxiii

CONTENTS

39.5.1 VMM Controls to Configure Guest Support of INtel® SGX. oo it 39-3
39.5.2 Interactions with the Extended Page Table Mechanism (EPT)oviriiiii s 39-3
39.5.3 Interactions with APIC Virtualization.o .o e e 39-4
3954 Interactions With VT @and SGX CONMCUMMENCY . . .ottt ettt et ettt ettt e e et ettt n et aeaenas 39-4
3955 VirtUal Child TracKing « v oe ettt e e e e e e et e e e e 39-5
3956 Handling EPCM ENtry LoCK ConfliCtS. ov ettt e i ettt ettt eens 39-5
39.5.7 000 =) A I =T 4T 39-6
39.6 INTEL® SGX INTERACTIONS WITH ARCHITECTURALLY-VISIBLE EVENTS . ..\ttt 39-6
39.7 INTERACTIONS WITH THE PROCESSOR EXTENDED STATE AND MISCELLANEOUS STATE . ..vvvii i i 39-6
39.7.1 Requirements and ArChiteCTUrE OV IBW. vttt ettt e e et n e aaaes 39-6
39.7.2 Relevant Fields in Various Data STrUCTUMESottt e e ens 39-7
39.7.2.1 SECS AT TRIBUT ES X RM . ottt ettt e et e e e e e e e e 39-7
39.7.2.2 SECS S S AR R AMESIZE ..ttt e e 39-8
39.7.23 XS AV E AT M S A ittt e e e e 39-8
39.7.24 MISC AT M S A ittt ittt e e e e 39-8
39.7.25 SIS TRUCT RIS vt ettt ettt et et e et et e e et et e e et e e e e 39-8
39.7.26 REPORT.ATTRIBUTES.XFRM and REPORT.MISCSELECTottt 39-9
39.7.2.7 KEY REQUES T . . ittt it e e e e e e e e e e 39-9
39.7.3 Processor Extended States and ENCLSIECREATE] ...\ vvtrtiit it e e et ie e 39-9
39.7.4 Processor Extended States and ENCLUIEENTER]vu ittt e 39-9
39.7.4.1 AUt CNBCKING. . oottt i e e e e e e e 39-9
39.74.2 SHATE LOAING .+ .o e ettt e e s 39-9
39.75 Processor Extended States and AEX.ttt e 39-10
39.7.5.1 SEATE SAVING . it e 39-10
39.7.5.2 SHATE ST SIS L. ittt et i e e 39-10
39.7.6 Processor Extended States and ENCLU[ERESUME].ttt s 39-10
39.7.6.1 AUt CNECKING. . oot i et e e e e e 39-10
39.7.6.2 SHATE LOAING .« .ottt e e e e 39-10
39.7.7 Processor Extended States and ENCLU EEXIT] ... ov vttt e ey 39-10
39.7.8 Processor Extended States and ENCLU[EREP OR Tttt i i e et e e 39-11
39.7.9 Processor Extended States and ENCLU[EGETKEY] vttt e ettt eieaas 39-11
39.8 INTERACTIONS WITH SMM Lottt e e et e e e et e e e s 39-11
39.8.1 Availability of Intel® SGX INStructions N SMM i e e 39-11
39.8.2 SMIWhIlE INSIAE @M ENCIAVE. . ..ottt e e e e e 39-11
39.8.3 SMRAM Synthetic State of AEX Triggered By SMI.ottt e s 39-11
39.9 INTERACTIONS OF INIT, SIPI, AND WAIT-FOR-SIPIWITH INTEL® SGX. . .ot v ettt e eeans 39-12
39.10 INTERACTIONS WITH DM A ottt ettt et ettt et e et et e et et et ettt e eans 39-12
3917 INTERACTIONS WITH X sttt ettt et et et et e et et et et et et e et et e eens 39-12
39.11.1 Enclaves Created Prior t0 EXecUtion Of GETSEC. ...\ ut ittt et et 39-12
39.11.2 Interaction of GETSEC With INtel® SGX .. i e e et 39-12
39.11.3 Interactions with Authenticated Code Modules (ACMS) v ittt e 39-13
39.12 INTERACTIONS WITH CACHING OF LINEAR-ADDRESS TRANSLATIONS ..ottt e 39-13
39.13 INTERACTIONS WITH INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) vvvvvvviiiiieenenn 39-13
39.13.1 HULE QN RTM DEDUG .« o v vttt vttt ettt et e e e e et e e e e e e e e et 39-14
39.14 INTEL® SGX INTERACTIONS WITH S ST AT ES oottt ettt e e e e 39-14
39.15 INTEL® SGX INTERACTIONS WITH MACHINE CHECK ARCHITECTURE (MCA). . ..ottt ieeeans 39-14
39.15.1 INtEractions With MCA BUVENTSttt et et ettt et e ettt 39-14
39.15.2 Machine Check ENADIES (A2 MU LT). .t vttt ittt ettt e ettt e 39-14
39.15.3 CRAIMCE . e e e 39-14
39.16 INTEL® SGX INTERACTIONS WITH PROTECTED MODE VIRTUAL INTERRUPTS\t 39-15
39.17 INTEL SGX INTERACTION WITH PROTECTION KEYS ..ttt ettt e e e et e e 39-15
CHAPTER 40

ENCLAVE CODE DEBUG AND PROFILING

40.1 CONFIGURATION AND CONTROLS ...ttt ettt e e et e e e e e e et e e e et a e e 40-1
40.1.1 Debug Enclave vs. Production ENCIAVE oe i e e 40-1
40.1.2 o L) L g = 1 00 [40-1
40.1.3 Debugging an Enclave That Uses Asynchronous Enclave Exit Notify ... 40-1
40.2 SINGLE STEP DEBUG . .. vttt ettt et et e e e e e e e e e e e 40-1
40.2.1 Single Stepping ENCLS INStruction Leafs o i e et 40-1
40.2.2 Single Stepping ENCLU INSTruction Leats v e e e et e e 40-2
40.2.3 Single-Stepping Enclave Entry with Opt-OUt ENTIY . ..o e e e 40-2
40.2.3.1 Single StEPPING WIthoUT AEX . .t i i et i et s 40-2
40.23.2 Single Step Preempted by AEX Due to NON-SMI EVENTo oottt et 40-2

XXXiv Vol. 3A

CONTENTS

PAGE
40.24 RELAGS. TF Treatment On AEX ...ttt ettt et e e e n i aenes 40-3
40.2.5 Restriction on Setting of TF after an Opt-OUut ENTrYoe it e 40-3
40.2.6 Trampoline Code ConSIderationS. . ..o\ttt ettt it et et e ettt e i s 40-3
40.3 CODE AND DAT A BREAKPOINT S, 1 ettt ettt ettt et e e e e e e e e et e e e e aas 40-3
40.3.1 BreaKPOINT SUPPIESSION. . o\ttt ettt et et e e et et e e e et e e e 40-3
40.3.2 Reporting of Instruction Breakpoint on Next InstructiononaDebug Trapovvvvviiiii i i ieeeenas 40-4
4033 RE Treatment ON A X .ttt e et e e s 40-4
403.4 Breakpoint Matching in Intel® SGX INStruction FIOWS oo e 40-4
404 CONSIDERATION OF THE INTT AND INT3 INSTRUCTIONS ...ttt ettt et 40-4
40.4.1 Behavior of INTT and INT3 INSide an ENClave.o v ettt 40-4
404.2 (=] T8 a o =T O 3 Ty (a1 = o 40-4
404.3 RV o T L= o= 1o 40-5
40.5 BRANCH TRACING . 1ttt ettt sttt ettt et e et e e e e et e e et et e et et e e et et e e 40-5
40.5.1 2 I =T 102 T=T 0 40-5
40.5.2 [0 I == 10T | 40-5
40.5.2.1 LBR STaCK 0N OPt-in EItrY oottt et ettt e e e e e e 40-5
40.5.2.2 LBR STaCK 0N OPt-0Ut ENtrY oottt e e e e e e 40-6
40.5.2.3 Mispredict Bit, Record Type, and Filteringo vttt e e e ettt e 40-7
406 INTERACTION WITH PERFORMANCE MONITORING. . . .ottt ettt ettt et et e e et et e et et e e e i eens 40-7
40.6.1 IA32_PERF_GLOBAL_STATUS ENN@NCEMENT. . .\ttt t ettt et et e et et et 40-7
40.6.2 Performance Monitoring With Opt-in ENtrYo oo e e e 40-7
40.6.3 Performance Monitoring With Opt-0Ut ENTrYt e e e 40-8
4064 Enclave Exit and Performance MoniTOmiNG. . ..o . vv vttt e e 40-8
40.6.5 PEBS Record Generation on Intel® SGX INSTIUCTIONS. v et i 40-8
40.6.6 Exception-Handling on PEBS/BTS Loads/Stores after AEXo.iriiiii it e e 40-8
40.6.6.1 Other Interactions with Performance Monitoring.v. vt v vt 40-9
APPENDIX A
VMX CAPABILITY REPORTING FACILITY
A1 BASIC VMX INFORMATION . .ttt it ettt et e e et e e e e et e e e e et e e e et A-1
A2 RESERVED CONTROLS AND DEFAULT SETTINGS . ..ttt ettt e et eans A-2
A3 VM-EXECUTION CONT ROLS ..ttt ettt ettt ettt e e e e e e et e e e e e e e e A-2
A31 Pin-Based VM-EXecUtion CONTIOISottt e e e ettt enenens A-2
A3.2 Primary Processor-Based VM-EXeCUtion CONtrolS.vui ittt e ene s A-3
A33 Secondary Processor-Based VM-EXeCUtion CONTrOlSt ettt e e eeaes A4
A34 Tertiary Processor-Based VM-EXecution Controlsoviui it i i e i i A-4
A4 VM-EXIT CONTROLS . .ottt ettt e e e e e e e e e e et et e e e e e e e es A-4
A41 PrimMary VM-EXIt CONTIOIS . ..ottt et et et et e et e et A-4
Ad4.2 SECONAArY VM-EXIT COnMEr OIS, . . ottt ittt ettt e e e e e A-5
A5 VM-ENTRY CONT ROLS . ..ottt ettt et e e e e e e e e e e et et e e e e e e enees A-5
A6 MISCELLANEOUS DA T A ittt ittt e e e e e e e e e e e e e et e e A-6
A7 VMX-FIXED BITS IN CRO. . o ettt ittt et ettt et e e et e et et e e et e et e e e et eas A-7
A8 VMX-FIXED BITS IN CRA. . oottt ettt et et e e e e e et A-7
A9 VMCS ENUMER AT ON . ottt ettt et e e e e e e e e e e e e e A-7
A10 VPID AND EPT CAP ABIL T ES . ittt e e e e e e e e e e e e e A-8
A1 VM FUNCTIONS . . oottt e e e e et e e e et e e et et e e e e A-9
APPENDIX B
FIELD ENCODING IN VMCS
B.1 LIS = I I o1 5 B-1
B.1.1 TB-Bit CONTIOl FIBIAS. v\ttt e e e e e e e e B-1
B.1.2 16-Bit GUEST-STaTE FIBIAS . . vttt e e e B-1
B.1.3 16-Bit HOSt-STate FIelds . .. oo e e e e e e B-2
B.2 BBl FIELDS. . .ttt ettt ettt et e e e e e e e e e B-2
B.2.1 B4-Bit CONtrol FIelds. . ..ottt e e e B-2
B.2.2 64-Bit Read-Only Data Field.ottt e e e e e B-5
B.2.3 B4-Bit GUEST-STate FIeldS . . . oottt et e e e B-5
B.2.4 B4-Bit HOST-STate FIldsottt e e e e B-6
B3 S = | I I =3 B-7
B.3.1 32-Bit CONtrOl FIBIAS . . . vttt e e e e e e B-7
B.3.2 32-Bit Read-Only Data Fields.ot e e B-8
B33 32-Bit GUEST-STATE FIeldS . . ottt e e B-8

Vol. 3A XXXV

CONTENTS

PAGE

B34 32-Bit HOST-State Il ..ottt ittt it e e e B-9
B4 NATURAL-WIDTH FIBLDS. . ittt et e e e e e s B-9
B.4.1 NAtUral-WIdth CoNtrol FIElAS. ..\ vttt et e e e it ittt ittt e e eeaes B-9
B4.2 Natural-Width Read-Only Data FIeldsvuini ittt e e it eees B-10
B4.3 NatUrl-Width GUEST-STate FIldS . o ottt i e i i i e i i et et e e e aes B-10
B.4.4 NatUMaI-WIdth HOST-STate FlldS . oottt ittt ittt st e e e e et it ittt e eaes B-11
APPENDIX C

VMX BASIC EXIT REASONS

XXXVi Vol. 3A

CONTENTS

PAGE
FIGURES

Figure 1-1. BiT AN BYTE OrAer ..ottt e e e e 1-7
Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation.o.veiriii i ieas 1-9
Figure 2-1. IA-32 System-Level Registers and Data StrUCTUMES. . ..o .ottt aenens 2-2
Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode and 4-Level Pagingovviviiiiiiininnnnn, 2-3
Figure 2-3. Transitions Among the Processor's Operating MOodeS v vttt 2-8
Figure 2-4. IA3 2 _EFER MO R LAY 0UL. . oottt it et et e e e e 2-9
Figure 2-5. System FIags in the EFLAGS REGISttt e e e 2-10
Figure 2-6. Memory Management REGISTOrS v .ttt e e e e 2-12
Figure 2-7. (0003 (o I =T 1) (=] 5 2-14
Figure 2-8. RO Lttt e e e e e 2-21
Figure 2-9. Format of Protection-Key Rights Registers e 2-22
Figure 2-10. WBINVD Invalidation of Shared and Non-Shared Cache Hierarchy ... 2-26
Figure 3-1. Segmentation AN Paging.o v vttt e e 3-2
Figure 3-2. FIRE MOGEL. . e e e e 3-3
Figure 3-3. Protected FIat MOl ... i e e e 3-4
Figure 3-4. MUR-SEgMENT MOo e 3-5
Figure 3-5. Logical Address to Linear Address TransSIationovuuinii i e 3-7
Figure 3-6. I Y100 1T A1 (= on (o 3-7
Figure 3-7. I Y= 1A= =T 1) (= 3-8
Figure 3-8. Y= 1= AT 01 o 3-10
Figure 3-9. Segment Descriptor When Segment-Present FIag Is Clear.ot e i 3-11
Figure 3-10. Global and LoCal DESCIiPTOr TabIES. . v\ v vttt st ettt e e e e et e eas 3-15
Figure 3-11. Pseudo-DesCriptor FOMMAtS u ittt ettt et et e e eens 3-16
Figure 4-1. Enabling and Changing Paging Modesottt i i et e i e 4-4
Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging............cooviiiiiiiiiiiii i 4-10
Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging ... 4-11
Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Pagingccooviiiiiiiii i i 4-11
Figure 4-5. Linear-Address Translation to a 4-KByte Page using PAEPaging...... ..o 4-16
Figure 4-6. Linear-Address Translation to a 2-MByte Page using PAEPaging.c.coviiiiiiiii i 4-17
Figure 4-7. Formats of CR3 and Paging-Structure Entries with PAEPaging ...t 4-19
Figure 4-8. Linear-Address Translation to a 4-KByte Page Using 4-Level Paging ..o 4-22
Figure 4-9. Linear-Address Translation to a 2-MByte Page using 4-Level Pagingooviiiii i 4-23
Figure 4-10. Linear-Address Translation to a 1-GByte Page using4-Level Paging.coi it 4-23
Figure 4-11. Formats of CR3 and Paging-Structure Entries with 4-Level Paging and 5-Level Paging..................ocoouu 4-32
Figure 4-12. Page-Fault ErmOr COQE . ..o vttt ettt e e et et e e 4-37
Figure 4-13. Memory Management Convention That Assigns a Page Table to EachSegment....................ooiiiat. 4-55
Figure 5-1. Descriptor Fields Used for ProteCtion. vt e e e 5-3
Figure 5-2. Descriptor Fields with Flags used iN1A-32e MOdeot e 5-4
Figure 5-3. PrOTECHION RINGS .\ttt i i et e e e 5-7
Figure 5-4. Privilege ChecK fOr Data ACCESS . . vttt vttt ettt et e e e e e e e e e et e e e 5-8
Figure 5-5. Examples of Accessing Data Segments From Various Privilege Levelso 5-9
Figure 5-6. Privilege Check for Control Transfer Without Usinga Gate.oviriiiii it 5-11
Figure 5-7. Examples of Accessing Conforming and Nonconforming Code Segments From Various Privilege Levels.......... 5-12
Figure 5-8. L0172 1 (= B =Tl) (o 5-13
Figure 5-9. Call-Gate Descriptor iN IA-328 MOQeo i i e e e e s 5-14
Figure 5-10. Call-Gate MECNAM S,ttt e et e e e e e 5-15
Figure 5-11. Privilege Check for Control Transfer with Call Gateoviiiiiii s 5-16
Figure 5-12. Example of Accessing Call Gates At Various Privilege Levelso i 5-17
Figure 5-13. Stack Switching During an Interprivilege-Level Callo.o i e i 5-19
Figure 5-14. MSRs Used by SYSCALL and SYSRET ...ttt e e e e 5-23
Figure 5-15. Use of RPL to Weaken Privilege Level of Called Procedure.cc.oiiiiiiiiii it e i ieieaaas 5-26
Figure 6-1. Relationship of the IDTR and IDT u ittt e e 6-10
Figure 6-2. 1 T =3 D<ol 0 (o 3 6-11
Figure 6-3. INterrUPT ProcedUre Call ... i i it e e 6-12
Figure 6-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routinesooviiiiiiiiiii i 6-13
Figure 6-5. Shadow Stack Usage on Transfers to Interrupt and Exception-Handling Routines....................oooiiiit 6-15
Figure 6-6. INtErTUPT TasK SWITCN. . o i i e e e e 6-18
Figure 6-7. 0 [6-19
Figure 6-8. B4-Bit IDT Gate DS DIONS . . ottt ettt ettt e e e 6-20
Figure 6-9. IA-32e Mode Stack Usage After Privilege Level Change.coiii i et 6-22
Figure 6-10. Interrupt Shadow Stack Table.ot e e e e et et 6-23
Figure 6-11. Page-Fault ErmOr COQE . ..o vttt ettt e e et et e et et e eens 6-46

Vol. 3A XXXVii

CONTENTS

Figure 6-12.
Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 8-5.
Figure 8-6.
Figure 8-7.
Figure 8-8.
Figure 8-9.
Figure 8-10.
Figure 8-11.
Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.
Figure 9-5.
Figure 9-6.
Figure 9-7.
Figure 9-8.
Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 10-4.
Figure 10-5.
Figure 10-6.
Figure 10-7.
Figure 10-8.
Figure 10-9.
Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.
Figure 11-5.
Figure 11-6.
Figure 11-7.
Figure 11-8.
Figure 11-9.
Figure 11-10.
Figure 11-11.
Figure 11-12.
Figure 11-13.
Figure 11-14.
Figure 11-15.
Figure 11-16.
Figure 11-17.
Figure 11-18.
Figure 11-19.
Figure 11-20.
Figure 11-21.
Figure 11-22.
Figure 11-23.
Figure 11-24.
Figure 11-25.
Figure 11-26.
Figure 11-27.
Figure 11-28.
Figure 11-29.
Figure 11-30.
Figure 12-1.
Figure 12-2.
Figure 12-3.
Figure 12-4.
Figure 12-5.
Figure 12-6.

XXXviii Vol. 3A

Exception Error Code INformationottt e e 6-56
SETUCTUNE OF @ TaSK . o ettt e e e e e e e e e e 8-2
32-Bit Task-State SegmMENt (1SS). .. r ittt e e e e 8-4
IS L1 1 (o 8-6
Format of TSS and LDT Descriptors in 64-Dit Modet e eas 8-7
TaSK REGIS T .ottt i i i i e e e e 8-8
LI G €= L (] D =Tl] (o P 8-8
Task Gates Referencing the Same Taskovuie i e 8-9
LN L (=T I T € 8-15
Overlapping Linear-10-PhySiCal MapPings.o v vttt ettt ettt n e aaas 8-17
I 2 L IS YN o 31 | 8-19
B4-BIt TS MMt .ttt ettt e e e e 8-20
Example of Write Ordering in MUltiple-ProcesSor SYStemMS. ...\t eaens 9-8
Interpretation of APICID in Early MP Sy S emIS . ..o v ittt e e 9-25
Local APICs and I/0 APIC in MP System Supporting Intel HT Technology ... 9-27
IA-32 Processor with Two Logical Processors Supporting Intel HT Technology............cccovvviiiiiiiianns. 9-28
Generalized Seven-Domain Interpretation of the APICID. ..ottt e e 9-35
Conceptual Six-Domain Topology and 32-bit APIC ID CompOoSition.vvvir i i eans 9-36
Topological Relationships Between Hierarchical IDs in a Hypothetical MP Platformo.e 9-39
MP System With Multiple Pentium [l PrOCESSOrS v vttt ettt aaas 9-56
Contents of CRO Register after RESET viri it e e e e ettt e i aeas 10-2
Version Information in the EDX Register after RESetovvvii it it 10-5
ProCeSSOr State A Er RES et ...ttt e 10-15
Constructing Temporary GDT and Switching to Protected Mode (Lines 162-172 of ListFile)................... 10-23
Moving the GDT, IDT, and TSS from ROM to RAM (Lines 196-261 of ListFile)ovviviiiiiiiiiinnnn, 10-24
Task Switching (Lines 282-296 of LISt Fil8) vv vttt i e 10-25
APPlYING MIicrocode UpPdatesottt i e e e e 10-28
Microcode Update Write Operation FIOW [T]. ...ttt et eeaes 10-45
Microcode Update Write Operation FIOW [2]. ... vveni it 10-46
Relationship of Local APIC and I/0 APIC In Single-Processor SYSTEMSoviri ittt ieiiei e eanns 11-2
Local APICs and 1/0 APIC When Intel Xeon Processors Are Used in Multiple-Processor Systems 11-3
Local APICs and 1/0 APIC When P6 Family Processors Are Used in Multiple-Processor Systems.................. 11-3
[Yot A o [1 ot (= 11-5
IA32_APIC_BASE MSR (APIC_BASE_MSR NP6 Family).vvet it e e 11-9
LOCAl APIC D RIS O . vttt ettt et e e et e e e e e 11-9
(0Tt | A o O VT S o N =T (= 11-11
[Tor= 1 Y =Tox (o = L= (LY I 11-13
ErrOr Status ReGISTEr (ESR). ..ttt e e s e e e 11-15
Divide Configuration ReGISTer\ttt ettt e e e 11-17
Initial Count and Current CoUNT REGISTEIS ...\ttt ittt ettt eeaes 11-17
Interrupt Command RegiSter (ICR) ... v vttt e e e 11-19
Logical Destination ReGISTEr (LDR)ttt ittt e 11-24
Destination Format Register (DFR)vuit ittt et e e 11-24
Arbitration Priority RegiSTer (APR). ... v ittt e e 11-25
Interrupt Acceptance Flow Chart for the Local APIC (Pentium 4 and Intel Xeon Processors).........c..ovvvun.. 11-27
Interrupt Acceptance Flow Chart for the Local APIC (P6 Family and Pentium Processors)...........covvvvvnnn.. 11-28
TasK-Priority REGISTE (TP R). . ittt e e e e e e e 11-29
Processor-Priority REGISTEr (PPR).ttt e e e 11-29
L A T T I I 1 =T = 11-30
L0 2T] =] P 11-31
CRB REGIS I . vttt ittt i ettt e e e e e e e 11-32
Spurious-Interrupt Vector REGISTEr (SVR) .. v vttt ettt e e e 11-33
Layout of the MSI Message Address REGISTEr ... v vttt e 11-34
Layout of the MSI Message Data RegISter. vttt ettt a e 11-36
IA32_APIC_BASE MSR SUPPOTtiNg X2APIC. . ..ttt ettt ettt 11-37
Local x2APIC State Transitions with IA32_APIC_BASE, INIT,and Resetcooviiiiiiiiii i 11-42
Interrupt Command Register (ICR) in X2APIC MOdE. e 11-45
Logical Destination Register in X2APIC MOGE v it ittt e e 11-46
) = | I =T) (=T 11-47
Cache Structure of the Pentium 4 and Intel Xeon Processorsc.vvviiiiiiiii i 12-1
Cache Structure of the INtel Core i7 PrOCESSOMS .\ttt ettt et e e 12-2
Cache-Control Registers and Bits Available in Intel 64 and IA-32 Processorsc.ovvvvviviiininiiinenennn. 12-11
Mapping Physical Memory With MTRRS 12-21
N I B e (=T |1 =T 12-22
IA32_MTRR _DEF _TYPE MSR ..ottt e e e e e e e 12-23

Figure 12-7.
Figure 12-8.
Figure 12-9.
Figure 13-1.
Figure 13-2.
Figure 15-1.
Figure 15-2.
Figure 15-3.
Figure 15-4.
Figure 15-5.
Figure 15-6.
Figure 15-7.
Figure 15-8.
Figure 15-9.

Figure 15-10.
Figure 15-11.
Figure 15-12.
Figure 15-13.
Figure 15-14.
Figure 15-15.
Figure 15-16.
Figure 15-17.
Figure 15-18.
Figure 15-19.
Figure 15-20.
Figure 15-21.
Figure 15-22.
Figure 15-23.
Figure 15-24.
Figure 15-25.

Figure 15-26.
Figure 15-27.
Figure 15-28.
Figure 15-29.
Figure 15-30.
Figure 15-31.
Figure 15-32.
Figure 15-33.
Figure 15-34.
Figure 15-35.
Figure 15-36.
Figure 15-37.
Figure 15-38.
Figure 15-39.
Figure 15-40.
Figure 15-41.
Figure 15-42.
Figure 15-43.
Figure 15-44.
Figure 15-45.
Figure 15-46.
Figure 15-47.

Figure 16-1.
Figure 16-2.
Figure 16-3.
Figure 16-4.
Figure 16-5.
Figure 16-6.
Figure 16-7.
Figure 16-8.
Figure 16-9.

Figure 16-10.

Figure 18-1.
Figure 18-2.

CONTENTS

PAGE

IA32_MTRR_PHYSBASEnN and IA32_MTRR_PHYSMASKn Variable-Range Register Pair 12-25
IA32_SMRR_PHYSBASE and IA32_SMRR_PHYSMASK SMRR Pair.ttt 12-26
A3 P AT MO R . ittt e e e 12-34
Mapping of MMX Registers to Floating-Point Registers ... e 13-2
Mapping of MMX Registers to x87 FPU Data Register Stack ..o 13-5
IA32_MPERF MSR and IA32_APERF MSR for P-state Coordinationovviiuiiiniiiiiiiiiiiiiannns 15-2
L P o = o O I I =T |1 1= A 15-4
IA32_ENERGY _PERF _BIAS REGISTOT v vttt vttt ettt et ettt 15-5
IA32 PM _ENABLE MR ..\ttt ittt e e e e e 15-7
IA32 _HWP _C AP ABILITIES RIS O . v . vttt ettt ettt e et e e et aans 15-8
IA3 2 _HWP _ REQUEST REGIS O . v vttt ettt ettt et e e ettt e e 15-9
IA32 _HWP _REQUEST _PKG REGIS O . . vttt ittt ettt e e e e e ea s 15-11
IA32_HWP_PECI_REQUEST _INFO MSR. . .ottt ittt ettt et e 15-11
IABZ2 _HWP ST ATUS MR L.ttt e e e e e e e e 15-14
IA32_THERM_STATUS Register With HWP Feedback...........vuiiniii i i 15-15
MO R P PERF MR . . ottt sttt e e e e e e e e 15-15
IA32_HWP_INTERRUPT MSR. ..ttt ettt ettt e et e e e e e e ee s 15-16
FAST_UNCORE_MSRS _CAPABILITY MSR . .. ittt ettt ittt et e 15-17
FAST_UNCORE _MSRS T L MR . ittt ettt e e e e e e ee s 15-18
FAST_UNCORE_MSRS_STATUS MSR ..ttt e e e 15-18
T o T [O O I I] 15-21
2 o I Y 2 15-22
IA32 _THREAD _STALL MSR .ttt e e e et e e e e e 15-22
MSR_CORE_HDC _RESIDENCY MSR. .\ttt ittt ittt et e et e e e e 15-23
MSR_PKG_HDC_SHALLOW_RESIDENCY MSR .. .ttt ittt ittt 15-23
MSR_PKG_HDC_DEEP_RESIDENCY MSR.ttt ittt ettt 15-24
MSR_PKG_HDC _CONFIG MR, .ot ettt ettt et et e e e e e e e et e e e e 15-24
Example of Effective Frequency Reduction and Forced Idle Period of HDC..............cooiiiiiiiiiiinnns,. 15-25
Processor Modulation Through Stop-Clock Mechanism. e 15-36
MSR_THERMZ_CTL Register On Processors with CPUID Family/Model/Stepping Signature Encoded as 0x69n or

(015 P 15-38
MSR_THERMZ2_CTL Register for SUPPOrting TM2. . ..o v vvit ittt 15-38
A3 _THERM ST ATUS MR, L ittt ittt ettt e e e e e e 15-39
IA32_THERM_INTERRUPT MSR ..ttt ettt ittt et e et e e e e e ee s 15-39
IA32_CLOCK_MODULATION MSR . . ettt et ettt e et e e e e e e 15-40
IA32_CLOCK_MODULATION MSR with Clock Modulation EXteNSIONvvtvei e iieeaa 15-41
A3 _THERM ST ATUS REGIS T . v ottt ettt ettt et et et e e e e e et e ee s 15-42
IA32_THERM_INTERRUPT REGIS N &\ttt ittt ettt et et et e et e e e e en s 15-44
IA32_PACKAGE_THERM _STATUS REGISTEI .\ttt tt ettt ettt et e 15-45
IA32_PACKAGE_THERM_INTERRUPT REGISTEI . .\ vttt ettt ettt ettt e e et e e en s 15-47
MSR_RAPL_POWER _UNIT REGISTEI .« ot vttt vttt ettt et e et et es 15-49
MSR_PKG_POWER _LIMIT RIS O . o v vttt vttt et ettt et et e et et e et e e e en s 15-50
MSR_PKG_ENERGY _STATUS MSR . .ttt ettt ettt e e e e e 15-51
MSR_PKG_POWER _INFO REGISTOI . v vttt ettt ettt et e e e e e e e e e e 15-51
MSR _PKG _ PERF ST ATUS MO R ..ttt e e e e 15-52
MSR_PPO_POWER _LIMIT/MSR_PP1_POWER _LIMIT REGISTOr . o\ttt e ettt et en 15-52
MSR_PPO_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS MSR. ... it 15-53
MSR_PPO_POLICY/MSR_PP T _POLICY REGISTEI . v vttt vttt e et ittt et e e e ea s 15-53
MSR PP O _PERF _STATUS MR ..ttt ettt et et e et e e e e 15-54
MSR_DRAM_POWER _LIMIT REGIS O .« v vttt vttt ettt et e e et e e i as 15-54
MSR_DRAM_ENERGY _STATUS MSR ..ttt ittt et e e e e 15-55
MSR_DRAM_POWER _INFO RIS O . . vttt ettt ettt ettt e e et e et e e e en s 15-55
MSR_DRAM _PERF_STATUS MSR .. ittt e e e e e 15-55
MaChinE-CheCK MRS . . e e e 16-2
A3 MG AP REGIS T . v vttt ettt ettt et et e e et et e et e e e e e 16-3
IA32 MO ST ATUS REGIST. ottt ettt ettt ettt e e e e e e et 16-4
1 i (OO = G O 1 3 (=T | =T A 16-5
1 (O O I =T 3 =T P 16-6
JAZ 2 MO ST ATUS REGISTEI. .« vttt ettt ettt e e e e e e et 16-7
JAB 2 MU _ADD R MR, . .ttt ettt e 16-9
UCR Support in TA32 MG _MISC REGISTEI. . . o\ttt ettt et e ettt ettt i e eees 16-10
LA O O I 2T (=] 16-11
L O 2= T 1Yo P 16-14
=] o0 a I =T 3 (=Y 18-3
DR6/DR7 Layout on Processors Supporting Intel® 64 Architectureo 18-8

Vol. 3A XXXix

CONTENTS

Figure 18-3.
Figure 18-4.
Figure 18-5.
Figure 18-6.
Figure 18-7.
Figure 18-8.
Figure 18-9.

Figure 18-10.
Figure 18-11.
Figure 18-12.
Figure 18-13.
Figure 18-14.
Figure 18-15.
Figure 18-16.
Figure 18-17.
Figure 18-18.
Figure 18-19.
Figure 18-20.
Figure 18-21.
Figure 18-22.
Figure 18-23.
Figure 18-24.
Figure 18-25.
Figure 18-26.
Figure 18-27.
Figure 18-28.
Figure 18-29.
Figure 18-30.
Figure 18-31.
Figure 18-32.
Figure 18-33.
Figure 18-34.
Figure 18-35.
Figure 18-36.
Figure 18-37.
Figure 18-38.
Figure 18-39.
Figure 18-40.

Figure 20-1.
Figure 20-2.
Figure 20-3.
Figure 20-4.
Figure 20-5.
Figure 20-6.
Figure 20-7.
Figure 20-8.
Figure 20-9.

Figure 20-10.
Figure 20-11.
Figure 20-12.
Figure 20-13.
Figure 20-14.
Figure 20-15.
Figure 20-16.
Figure 20-17.
Figure 20-18.
Figure 20-19.
Figure 20-20.
Figure 20-21.
Figure 20-22.
Figure 20-23.
Figure 20-24.
Figure 20-25.
Figure 20-26.
Figure 20-27.

x| Vol. 3A

IA32_DEBUGCTL MSR for Processors Based on Intel® Core™ Microarchitecturecovvviiiiiiiiininnns, 18-13
64-bit Address Layout OFf LBRIMSRo e 18-18
DS SaVE AN EXAmI DI . oottt it it e e e e 18-21
32-bit Branch Trace ReCOMd FOMMat. . ..o vt vttt ettt et et et et es 18-22
L S =Yoo e o] 33 = | 18-22
IA-32e Mode DS Save Area EXamMIPIEo i e e 18-23
64-bit Branch Trace ReCOrd FOMmMat.o vttt ettt et e e en 18-23
64-bit PEBS RECOMA FOMmMIat . vttt ettt ettt et ettt e e e e ettt e e e 18-24
IA32_DEBUGCTL MSR for Processors Based on Nehalem Microarchitecture..........oovvviiviiiiiiiniinnnnnn. 18-30
MSR_DEBUGCTLA MSR for Pentium 4 and INtel Xe0N PrOCESSOTS\ vt vttt naieienenn 18-36
LBR MSR Branch Record Layout for the Pentium 4 and Intel® Xeon® Processor Familyoevus 18-37
IA32_DEBUGCTL MSR for Intel® Core™ Solo and Intel® Core™ DUO ProCeSSOrsvvvvvvivviieiiiiieiiennenn, 18-38
LBR Branch Record Layout for the Intel® Core™ Solo and Intel® Core™ Duo Processor............ovvvivnvnnns. 18-39
MSR_DEBUGCTLB MSR for Pentium M ProCESSOTS ... v vttt ittt et e et e e e e e nen s 18-40
LBR Branch Record Layout for the Pentium M Processor.vuiiii ittt e e 18-40
DEBUGCTLMSR Register (P6 FAamMIly PrOCESSOIS). . v v vttt et ettt e te e e e et et e e e e 18-41
Platform Shared Resource Monitoring Usage FIOW.vuiu ittt e 18-46
CPUID.(EAX=0FH, ECX=0H) Monitoring Resource Type ENUMEration..........c.covrvrvriiiiiiiiiie s, 18-47
L3 Cache Monitoring Capability Enumeration Data (CPUID.(EAX=0FH, ECX=TH)).......ccovviviiiiiiiniinenn 18-47
L3 Cache Monitoring Capability Enumeration Event Type Bit Vector (CPUID.(EAX=0FH, ECX=1H)).............. 18-48
JA32 POR _ASSOC MR ittt ittt e e 18-49
IA32_QM_EVTSEL aNd IA32_QM_CTR MSRS. .. ettt sttt ettt e et e e e 18-51
Software Usage of Cache Monitoring RESOUNCES. v vttt e eas 18-51
Cache Allocation Technology Enables Allocation of More Resources to High Priority Applications............... 18-53
Examples of Cache Capacity Bitmasks.o e e e e et 18-54
Class of Service and Cache Capacity Bitmasksvvi i e 18-55
Code and Data Capacity Bitmasks Of CDP.ottt e ettt e s 18-56
Cache Allocation Technology Usage FIoWouiuirit e it ens 18-57
CPUID.(EAX=10H, ECX=0H) Available Resource Type Identification.............cccoiiiiiiii i, 18-58
L3 Cache Allocation Technology and CDP ENUMEration. ovv vttt et eaes 18-59
L2 Cache AlloCation TECANOIOGYt v ettt et ettt et et e e e e ettt a e e 18-60
IA32_PQR_ASSOC, IA32_L3_MASK M MRS . . . ittt ettt e 18-61
A3 L2 MASK N MRS o\ttt sttt et e e e e 18-61
LayoUt OF IA32 L3 Q0 C G ottt ittt ettt et et e et et e 18-62
Layout OF IA32_L2_Q0S L G ottt et ettt et e et e e e e 18-63
CPUID.(EAX=10H, ECX=3H) MBA Feature Details Identification.............cooiiiiiiiiiiii s 18-67
IA32_L2_QoS_Ext_ BW_Thrtl_n MSR Definition.vuit i 18-68
Layout of the IA32_L3_10_QO0S_CFG MSR for Enabling Non-CPU Agent Intel*RDTcovvviiininnnns, 18-70
Layout OF A3 2 _PERFEV T SELX MSRS ..\ttt ittt e e e 20-4
Layout of IA32_FIXED_CTR_CTRL MSR ..ttt e e e e e e 20-8
Layout of IA32_PERF_GLOBAL_CTRLU MSR ...ttt e e e e 20-8
Layout of IA32_PERF_GLOBAL _STATUS MSR ...ttt ittt e e e 20-10
Layout of IA32_PERF_GLOBAL _OVF_CTRLMSR. ..\ttt 20-10
Layout of IA32_PERFEVTSELx MSRs Supporting Architectural Performance Monitoring Version3............. 20-11
IA32_FIXED_CTR_CTRL MSR Supporting Architectural Performance Monitoring Version3..................... 20-11
Layout of Global Performance Monitoring Control MSR. it e 20-12
Global Performance Monitoring Overflow Status and Control MSRS . ..o vt e 20-12
IA32_PERF_GLOBAL_STATUS MSR and Architectural Perfmon Version 4...........coviviiiiiiiiiiniinnnnnn, 20-14
IA32_PERF_GLOBAL_STATUS_RESET MSR and Architectural Perfmon Version 4covviiiinnnn. 20-15
IA32_PERF_GLOBAL_STATUS_SET MSR and Architectural Perfmon Version 4ooviiiiiiiiinnnnn. 20-15
IA32_PERF_GLOBAL_INUSE MSR and Architectural Perfmon Version 4..........c.covviiiiiiniiiiiiniinnann, 20-16
IA32_PERF_GLOBAL _STATUS MR .. ittt e e e e e 20-18
Layout Of IA32_PEBS_ENABLE MSRttt e e e 20-19
PEBS Programming EnVirOnmEnt ittt e e e e e 20-21
Layout OF MSR_PEBS LD _LAT MR . ..ttt ittt et et e e e e e e e 20-24
Layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 to Configure Off-core Response Events.......... 20-25
Layout of MSR_UNCORE_PERF_GLOBAL _CTRL MSR ...\ttt ettt 20-27
Layout of MSR_UNCORE_PERF_GLOBAL_STATUS MSRttt it 20-28
Layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRLMSR. ...ttt 20-28
Layout of MSR_UNCORE_PERFEVTSELX MSRS ..\ttt ittt it 20-29
Layout of MSR_UNCORE_FIXED_CTR_CTRL MSR ..ttt et 20-29
Layout of MSR_UNCORE_ADDR_OPCODE_MATCH MSR ...ttt 20-30
Distributed Units of the Uncore of Intel® Xeon® Processor 7500 Seriesvvvvvvviii it iiiiiii e 20-31
IA32_PERF_GLOBAL_CTRL MSR in Sandy Bridge Microarchitecture.coviiiii i iiii i e 20-34
IA32_PERF_GLOBAL_STATUS MSR in Sandy Bridge Microarchitecture.coviiiiiiiiiiiiciii i 20-35

Figure 20-28.
Figure 20-29.
Figure 20-30.
Figure 20-31.
Figure 20-32.
Figure 20-33.
Figure 20-34.
Figure 20-35.
Figure 20-36.
Figure 20-37.
Figure 20-38.
Figure 20-39.
Figure 20-40.
Figure 20-41.
Figure 20-42.
Figure 20-43.
Figure 20-44.
Figure 20-45.
Figure 20-46.
Figure 20-47.

Figure 20-48.
Figure 20-49.
Figure 20-50.
Figure 20-51.

Figure 20-52.
Figure 20-53.
Figure 20-54.
Figure 20-55.
Figure 20-56.
Figure 20-57.
Figure 20-58.
Figure 20-59.
Figure 20-60.
Figure 20-61.
Figure 20-62.
Figure 20-63.
Figure 20-64.
Figure 20-65.
Figure 20-66.
Figure 20-67.
Figure 20-68.
Figure 20-69.
Figure 20-70.

Figure 21-1.
Figure 21-2.
Figure 21-3.
Figure 21-4.
Figure 21-5.
Figure 22-1.
Figure 23-1.
Figure 24-1.
Figure 25-1.
Figure 29-1.
Figure 31-1.
Figure 31-2.
Figure 32-1.
Figure 32-2.
Figure 32-3.
Figure 32-4.
Figure 32-5.
Figure 33-1.
Figure 33-2.
Figure 33-3.

CONTENTS

IA32_PERF_GLOBAL_OVF_CTRL MSR in Sandy Bridge Microarchitecturecocoviviiiiiiiiinnanns. 20-36
Layout Of IA32_PEBS _ENABLE MSR ittt et e e 20-38
Request_Type Fields for MSR_OFFCORE_RSP _X ...\ vttt e 20-42
Response_Supplier and Snoop Info Fields for MSR_OFFCORE_RSP_X......cviuiiiiiiii it iiciii e 20-43
Layout of Uncore PERFEVTSEL MSR for a C-Box Unit orthe ARBURNIt. ..o 20-44
Layout of MSR_UNC_PERF_GLOBAL_CTRLMSR for UNCOre. ... v vttt ettt et i e e 20-45
Layout of IA32_PERFEVTSELX MSRs Supporting Intel TSX. ... vi e 20-54
IA32_PERF_GLOBAL_STATUS MSR in Broadwell MicroarchiteCture.v vt i it cie i neens 20-56
IA32_PERF_GLOBAL_OVF_CTRL MSR in Broadwell microarchitecturecoviviiiiniiiiiiiii i 20-56
MSR_PERF_METRICS DefiMiTioN . .\ vttt ettt ettt et e e e et e e s 20-69
PERF_METRICS MSR Definition for 12th Generation Intel® Core™ Processor P-core............covvvvivinnnnn. 20-71
Deducing Implied Level 2 Metrics in the Core PMU for12th Generation Intel® Core™ Processor P-core. 20-72
Request_Type Fields for MSR_OFFCORE_RSPX ...\ttt e e e 20-83
Response_Supplier and Snoop Info Fields for MSR_OFFCORE_RSPXovvuiiiiii it 20-84
IA32_PEBS_ENABLE MSR with PEBS Output to Intel® Processor Tracevvviiiiiiii it cie e 20-93
Layout of IA32_FIXED_CTR_CTRL MSR . .ttt e 20-99
Layout of MSR_PERF_GLOBAL_CTRUMSRttt e e e 20-100
Layout of MSR_PERF_GLOBAL _STATUS MSR L.ttt 20-100
Layout of MSR_PERF_GLOBAL_OVF_CTRUMSR. ...\ttt ettt 20-101
Event Selection Control Register (ESCR) for Pentium 4

and Intel® Xeon® Processors without Intel HT Technology Support ... s 20-107
Performance Counter (Pentium 4 and Intel® Xeon® ProCESSOTS) ...\ vvvrvitetiini e einenaiannens 20-109
Counter Configuration Control Register (CCCR) ... u .ttt e ey 20-110
Effects of EAQe FIlMiNgo e e e e e e 20-113
Event Selection Control Register (ESCR) for the Pentium 4 Processor, Intel® Xeon® Processor, and Intel® Xeon®
Processor MP Supporting Hyper-Threading Technologyouiuiriiiii it 20-121
Counter Configuration Control Register (CCCR) ... v v vttt ettt e e e eees 20-122
Block Diagram of 64-bit Intel® Xeon® Processor MP with 8-MByte L3ccoviiiiiiiiii i 20-125
MSR_IFSB_IBUSQXx, Addresses: TO7CCH aNd TO7ZCDH. ovitti et 20-126
MSR_IFSB_ISNPQx, Addresses: TO7CEH aNd TO7CFH.ottt i 20-126
MSR_EFSB_DRDYx, Addresses: 1T07D0OH and TO7ZDTH uuitiit e 20-127
MSR_IFSB_CTL6, Address: 107D2H; MSR_IFSB_CNTR7, Address: TO7D3H.covirviiiiiiiiiieiieinnns 20-127
Block Diagram of the Intel® Xeon® Processor 7400 Series.vv ittt et aneens 20-128
Block Diagram of the Intel® Xeon® Processor 7100 SerieS. ... v vvir ittt aneees 20-129
MSR_EMON_L3_CTR_CTLO/1, Addresses: TOZ7CCH/TO7CDH ... vvietie e 20-130
MSR_EMON_L3_CTR_CTL2/3, Addresses: TOZ7CEH/TO7ZCFH. ot e 20-132
MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: TO7D0OH-TO7D3H.viiiiiiiiii i 20-132
PerfEvtSel0 and PerfEUtSelT MRS,ttt 20-134
CESR MSR (Pentium Processor ONIY).t ettt e e et n e enas 20-137
Layout of IA32_PERF_CAPABILITIES MSR.ttt 20-142
Layout Of IA32_PEBS_ENABLE MSRttt e 20-143
PEBS Programming EnVirOnmIEntottt e e e e e 20-144
Layout of IA32_PerfEvitSelX MSR Supporting Adaptive PEBSo 20-145
Layout of IA32_FIXED_CTR_CTRL MSR Supporting Adaptive PEBSo 20-146
MO R P EBS D AT A G ottt ettt et e e e e e e e e e e 20-150
Real-Address Mode Address Translation o.urvur et e 21-3
Interrupt Vector Table in Real-Address MOGE vvitiri it e 21-5
Entering and Leaving Virtual-8086 MOdev ittt i i e e e 21-9
Privilege Level O Stack After Interrupt or Exception in Virtual-8086 Mode.covvviiiiiiiiiiianns 21-13
Software Interrupt Redirection Bit Map in TSS ...t e e 21-18
Stack after Far 16-and 32-Bit Calls vuivi it e e e 22-5
1/0 Map Base Address DifferenCeS. v ittt ettt e e ettt e e 23-30
Interaction of a Virtual-Machine Monitor and GUESTS. vttt e 24-2
TS OF UM X ottt et e e e e e e e 25-2
Formats of EPTP and EPT Paging-Structure ENtriesovvuirr ittt ee e 29-13
LA A o =T) (o 31-3
LN VAV | = o T o 31-6
S R AM S0, .+ 1ttt ittt ettt ettt e e e e e e e e 32-4
SMM ReVISION IdEN IO, . et e e e 32-13
AUTO HALT ReSTart FIld . . oottt e e e e e e e e e e e aenens 32-14
SMBASE ReloCation FIEId. . . . oottt e e e 32-15
/0 INStruction ReSTart FIEld. oot e 32-15
TOPA MEMOTY USTrationo e ettt e e et et e e 33-11
LI 1Yo TN o A o =N I] (N 1 33-12
Interpreting Tabular Definition of Packet FOrmat.ouiiiiiii i e 33-38

Vol. 3A xli

CONTENTS

Figure 34-1.
Figure 36-1.
Figure 36-2.
Figure 36-3.
Figure 37-1.
Figure 37-2.
Figure 38-1.
Figure 40-1.
Figure 40-2.
Figure 40-3.
Figure 40-4.

xlii Vol. 3A

An Enclave Within the Application’s Virtual Address SPacevviriiri ittt 34-1
ENCIaVE MEMOTY LAYOUTL. . . .ttt et e e e e e e 36-1
Measurement Flow of ENclave Build ProCeSS vv ittt 36-7
Y 0@ o otz 2 (=] = o 36-9
Exit Stack Just After Interrupt with Stack SWitCh. ... 37-1
THE S A STaCK. .+ ettt ettt e e e e 37-2
Relationships Between SECS, SIGSTRUCT, and EINITTOKENo.iiii i eeee 38-47
Single Stepping With Opt-0Ut ENTrY - NO ABXttt e 40-2
Single Stepping with Opt-out Entry -AEX Due to Non-SMI Event Before Single-Step Boundary 40-3
LBR Stack Interaction With Opt-in ENTry.ou it e e et e 40-6
LBR Stack Interaction With Opt-0Ut ENTryvu vt 40-7

CONTENTS

PAGE
TABLES
Table 2-1. IA32_EFER MSR I Ommation . .. ov ettt et e e 2-9
Table 2-2. Action Taken By x87 FPU Instructions for Different Combinations of EM, MP,and TSccoviiintn, 2-16
Table 2-3. SUMMANY Of SYSTEM INSTTUCTHIONSottt ettt e n e eaaas 2-23
Table 3-1. Code- anNd Data-SegmENt Ty DS . . vttt vttt ettt ettt et e et e e e 3-12
Table 3-2. System-Segment and Gate-DesCriplor TYPESttt 3-14
Table 4-1. Properties of Different Paging MOGesSoviiiiii i et e 4-2
Table 4-2. Paging Structures in the Different Paging ModeSo vttt e 4-8
Table 4-3. Use of CRI With 32-Bit Pagingooviiie e 4-12
Table 4-4. Format of a 32-Bit Page-Directory Entry that Mapsa4-MBytePage ..ot 4-12
Table 4-6. Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page ... 4-13
Table 4-5. Format of a 32-Bit Page-Directory Entry that ReferencesaPage Tablecooviiiiiiiiii i, 4-13
Table 4-7. Use OF CR3 With PAE Paging ... v vttt et e ettt ettt et ettt a e eaees 4-14
Table 4-8. Format of a PAE Page-Directory-Pointer-Table Entry (PDPTE)oviviiiiii i 4-15
Table 4-S. Format of a PAE Page-Directory Entry that Maps a 2-MByte Page.ooviiiiiiii e 4-17
Table 4-10. Format of a PAE Page-Directory Entry that ReferencesaPage Table ... 4-18
Table 4-11. Format of a PAE Page-Table Entry that Maps @ 4-KByte Page.vviiiiiii i 4-18
Table 4-12. Use of CR3 with 4-Level Paging and 5-level Pagingand CRAPCIDE =0covviiiiiiiiiiii i 4-20
Table 4-13. Use of CR3 with 4-Level Paging and 5-Level Pagingand CRA.PCIDE =1cviririiiiii it 4-21
Table 4-14. Format of a PML5 Entry (PML5E) that ReferencesaPML4 Table.........covi i 4-26
Table 4-15. Format of a PML4 Entry (PML4E) that References a Page-Directory-Pointer Table......................coieit 4-26
Table 4-16. Format of a Page-Directory-Pointer-Table Entry (PDPTE) that Mapsa 1-GBytePage............c.ocovvvvviinnnn 4-27
Table 4-17. Format of a Page-Directory-Pointer-Table Entry (PDPTE) that References a Page Directory.................... 4-28
Table 4-18. Format of a Page-Directory Entry that Mapsa 2-MByte Pagecoooiiiiiii i 4-29
Table 4-19. Format of a Page-Directory Entry that ReferencesaPage Table............ccciiiiiiiiiiii i 4-30
Table 4-20. Format of a Page-Table Entry that Maps @ 4-KByte Pageovvviiii it 4-31
Table 5-1. Privilege Check RUIES TOr Call Gates.t ve ettt e e e 5-16
Table 5-2. 64-Bit-Mode Stack Layout After Far CALL with CPLChange. ... e 5-19
Table 5-3. Combined Page-Directory and Page-Table Protection.o.vuvuri et 5-29
Table 5-4. Extended Feature ENable MSR (JA32_EFER).ii it 5-30
Table 5-6. 4-KByte Page Level Protection Matrix with Execute-Disable Bit Capability with PAEPaging.................... 5-31
Table 5-7. 2-MByte Page Level Protection with Execute-Disable Bit Capability with PAE Paging................oooovints 5-31
Table 5-5. Page Level Protection Matrix with Execute-Disable Bit Capability with 4-Level Pagingt 5-31
Table 5-9. Reserved Bit Checking with Execute-Disable Bit Capability NotEnabled ..., 5-32
Table 5-8. Page Level Protection Matrix with Execute-Disable Bit Capability Enabled...............cccoviiiiiininninns, 5-32
Table 6-1. Protected-Mode EXCeptions and INTEITUPTSt it it e 6-2
Table 6-2. Priority AMONg CoNCUM Nt BV EMTS .ottt it i it et e et ettt 6-8
Table 6-3. Debug Exception Conditions and Corresponding EXCeption Classes .. .vvvvir ittt 6-25
Table 6-4. Interrupt and EXCEPLION ClasSeSttt e e e e e 6-33
Table 6-5. Conditions for Generating a Double Fault i i ettt 6-34
Table 6-6. INVAlId TSS CONAITIONS ..\ttt et e e e e e e e e e 6-36
Table 6-7. Alignment Requirements BY Data TyPe v vt e e 6-50
Table 6-8. SIMD Floating-Point EXCEPTiONS Priority. ..o .v ot e i e e e 6-54
Table 7-1. Format of User Posted-Interrupt Descriptor — UPID. ou et eas 7-5
Table 8-1. Exception Conditions Checked Duringa Task SWItcho e 8-13
Table 8-2. Effect of a Task Switch on Busy Flag, NT Flag, Previous Task Link Field,and TSFlag................coooveatt 8-15
Table 9-1. Broadcast INIT-SIPI-SIPI Sequence and Choice of TIMEOUTS. vv vt vttt 9-23
Table 9-2. Initial APIC IDs for the Logical Processors in a System that has Four Intel Xeon MP Processors Supporting Intel

Hyper-Threading Technology1 .. 9-39
Table 9-3. Initial APIC IDs for the Logical Processors in a System that has Two Physical Processors Supporting Dual-Core

and Intel Hyper-Threading TEChNOIOGYvii e e 9-40
Table 9-4. Example of Possible x2APIC ID Assignment in a System that has Two Physical Processors Supporting x2APIC and

Intel Hyper-Threading TeChNOIOGY c.oviii i e e 9-40
Table 9-5. Boot Phase [Pl MesSsage FOmmMat.ttt e e e e 9-55
Table 10-1. IA-32 and Intel® 64 Processor States Following Power-up, Reset, or INIT 10-2
Table 10-2. Variance of RESET Values in Selected Intel Architecture Processors.vvvriiii i 10-4
Table 10-3. Recommended Settings of EM and MP Flags on IA-32 ProCeSSOrS vvvrvieii i 10-6
Table 10-4. Software Emulation Settings of EM, MP, and NE FIagscoiiiiiiii et 10-7
Table 10-5. Main Initialization Steps in STARTUP.ASM Source LiStingc.vvniiii it 10-16
Table 10-6. Relationship Between BLD Item and ASM SOUMCE File. . ..o v vt 10-27
Table 10-7. Microcode Update Field Definitionsoui et et et e 10-28
Table 10-8. MiCrocode Update FOmmMat. . .. ov ottt et e e e e e e e e 10-30
Table 10-9. Extended Processor Signature Table Header STruCtUMe. . ..o vt 10-31

Vol. 3A xliii

CONTENTS

Table 10-10.
Table 10-11.
Table 10-12.
Table 10-13.
Table 10-14.
Table 10-15.
Table 10-16.
Table 10-17.
Table 10-18.
Table 10-19.
Table 11-1.
Table 11-2.
Table 11-3.
Table 11-4.
Table 11-5.
Table 11-6.
Table 11-7.
Table 11-8.
Table 11-9.
Table 11-10.
Table 11-11.
Table 12-1.
Table 12-2.
Table 12-3.

Table 12-4.
Table 12-5.
Table 12-6.
Table 12-7.
Table 12-8.
Table 12-9.
Table 12-10.
Table 12-11.
Table 12-12.
Table 13-1.
Table 13-3.
Table 13-2.
Table 14-1.
Table 14-2.
Table 14-3.
Table 15-1.
Table 15-2.
Table 15-3.
Table 15-4.
Table 15-5.
Table 15-6.
Table 15-7.
Table 15-8.
Table 15-9.
Table 15-10.
Table 15-11.
Table 15-12.
Table 16-1.
Table 16-2.
Table 16-3.
Table 16-4.
Table 16-5.
Table 16-6.
Table 16-7.
Table 16-8.
Table 16-9.
Table 16-10.
Table 16-11.
Table 16-12.
Table 16-13.

xliv Vol. 3A

PrOCESSOr SIgNAtUNE STTUCTUNE ..\ttt et et e e ettt et a e aees 10-31
PrOCESSOT FlagS. . ettt e e e e e 10-33
Microcode Update SiIgnatureo i e e e e 10-37
Microcode Update FUNCHIONSttt ettt e e e ettt 10-42
Parameters for The PrESEnCE ToSt. . vttt ettt et e a e 10-42
Parameters for the Write Update Data FUNCHION.ottt ae s 10-43
Parameters for the Control Update Sub-fUNCHiono e 10-47
MNEMONIC ValUBS . . v vttt ettt e s et e e e e e e 10-47
Parameters for the Read Microcode Update Data FUNCHION.oviii e 10-47
RetUMN Code DEfinitioNS. . . vttt e e e e e 10-49
LOCal APIC REGISTEr AdArESS MaD . vttt ettt ettt et e s et e e e e e 11-6
LI Tore A o O T =Y gl 1 T T 11-17
Valid Combinations for Pentium 4 and Intel Xeon Processors Local xAPIC Interrupt Command Register. 11-21
Valid Combinations for the P6 Family Processor Local APIC Interrupt Command Register 11-22
X2APIC Operating Mode Configurationsovui it e e e ettt 11-37
Local APIC Register Address Map Supported by X2APICttt 11-38
MSR/MMIO Interface of a Local x2APIC in Different Modes of Operationcoovvviiiviiiiniienennnnns 11-40
EOIMESSA0E (T4 QYIS vttt ettt et e et e e e e et e e e e e 11-47
SNOTEMESSAGE (21 CYCIES) vttt ettt ettt e e et e e e e e et e et e e 11-48
Non-Focused Lowest Priority Message (34 CYCles) .. ovvviuiii it i 11-49
APIC Bus Status Cycles Interpretationot i i i e 11-51
Characteristics of the Caches, TLBs, Store Buffer, and Write Combining Buffer in Intel 64 and IA-32 Processors . 12-2
Memory Types and Their PropErtiES vttt ettt e e e aaas 12-6
Methods of Caching Available in Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium M, Pentium 4, Intel Xeon,

P6 Family, and PentiUm PrOCESSOrS . . . vttt ettt ettt e sttt e e e et et 12-7
MEST CaCRE LINE STatES vttt ettt e e e et 12-9
Cache OPerating MOGESttt it i e e e e e e e e 12-12
Effective Page-Level Memory Type for Pentium Pro and Pentium Il Processorscovvvviiiiiennnns. 12-14
Effective Page-Level Memory Types for Pentium lll and More Recent Processor Families...................... 12-15
Memory Types That Can Be ENcoded iIN MTRRS.ottt i e e et eas 12-21
Address Mapping for Fixed-Range MTRRS.ttt i e e e e e e 12-24
Memory Types That Can Be Encoded With PATo i 12-34
Selection of PAT Entries with PAT, PCD, and PWT FIags. cooviii i 12-35
Memory Type Setting of PAT Entries Following a Power-up or Reset..........coviiiii it 12-35
Action Taken By MMX Instructions for Different Combinations of EM, MP,and TScoviiiiiiinnnns 13-1
Effect of the MMX, x87 FPU, and FXSAVE/FXRSTOR Instructions on the x87 FPU TagWord. 13-3
Effects of MMX INStructions 0N X87 FPU Statettt e 13-3
Action Taken for Combinations of OSFXSR, OSXMMEXCPT, SSE, SSE2, SSE3, EM,MP, and TS.................... 14-3
Action Taken for Combinations of OSFXSR, SSSE3, SSE4, EM, and TS ...ttt i 14-4
CPUID.(EAX=0DH, ECX=T) EAX Bit ASSIGNMMIENT. . .\ttt ettt ettt et e e e aees 14-8
Architectural and Non-Architectural MSRs Related tO HWP. 15-6
IA32_HWP_CTUMSR Bit O BERaVIOr v vttt ettt ettt e e e e e e 15-13
Architectural and non-Architecture MSRs Related TO HDCo v v i it 15-21
Hardware Feedback INterface StrUCTUTE oot e 15-25
Hardware Feedback Interface Global Header STruCTUrE ... ov v v vt 15-26
Hardware Feedback Interface Logical Processor Entry Structure . ..ottt ci i eaens 15-26
Intel® Thread Director Table StrUCTUNEottt e e e e 15-27
Intel® Thread Director Global Header STrUCTUMe v vt 15-28
Intel® Thread Director Logical Processor ENtry STrUCTUME.o v e aa e 15-29
IA32_HW_FEEDBACK_CONFIG Control Options. . .o v vttt ettt ettt e et a e 15-32
On-Demand Clock Modulation Duty Cycle Field ENCOdingovvviriii i i i 15-40
RAPL MSR Interfaces and RAPL DOMaiNS. . ..o v vttt ettt ettt et ettt e i enns 15-50
Bits 54:53 in IA32_MCi_STATUS MSRs when IA32_MCG_CAP[11]=1andUC=0.......c.cooovviiiiiiiianiinnns 16-7
Overwrite Rules fOr EN@DIEd EITOrS . ..o\ v ettt ettt et e e e e e e 16-8
Address Mode iN TA3 2 _ MU _MISC B Bttt ettt et et e 16-10
Address Mode iN TA3 2 _ MU _MISC B B . .ottt vttt e e e 16-11
Extended Machine Check State MSRs in Processors Without Support for Intel® 64 Architecture................ 16-12
Extended Machine Check State MSRs In Processors With Support for Intel® 64 Architecture 16-12
(O S ol O RS o= 1o 0 16-18
Overwrite Rules for UC, CE, aNd UCR EITOMS ... v ittt sttt et it ie e e ettt et e e eaenens 16-18
IA32_MCi_Status [15:0] Simple Error Code ENCOAING.o vuvi ittt iaiaaas 16-21
IA32_MCi_Status [15:0] Compound Error Code ENCOAING. ... vv v vttt aa e 16-21
Encoding for TT (Transaction Type) Sub-Fieldo e 16-22
Level Encoding for LL (Memory Hierarchy Level) Sub-Fieldo e 16-22
Encoding of Request (RRRR) SUD-Field.ove e e i e 16-23

CONTENTS

PAGE
Table 16-14. Encodings of PP, T, and Il SUD-FIlds oo e e e eas 16-23
Table 16-15. Encodings of MMM and CCCC SUD-FIEIAS.ttt i ettt e e e e e 16-24
Table 16-16. MCA Compound Error Code ENcoding for SRAD EITOTS vttt ettt et eeaens 16-24
Table 16-17. 1A32_MCi_STATUS ValUes fOr SRAD EITOTS . ..t vtte ettt et e et et e e n e et e et enen s 16-25
Table 16-18. I1A32_MCG_STATUS Flag Indication for SRAD ErTOS vttt ee s 16-25
Table 16-19. MCA Compound Error Code Encoding for SRAR EITOrS. vttt et eeaens 16-25
Table 16-20. IA32_MCi_STATUS ValUes fOr SRAR EITOISttt ettt ettt et e e et et et ens 16-26
Table 16-21. 1A32_MCG_STATUS Flag Indication for SRAR ErTOrS v vttt ettt et eenens 16-26
Table 17-1. CPUID DisplayFamily_DisplayModel Signatures for Processor Family 06Hcoiiiiiiiiiinnn.s 171
Table 17-2. Incremental Decoding Information: Processor Family 06H Machine Error Codes for Machine Check.............. 17-1
Table 17-3. CPUID DisplayFamily_DisplayModel Signatures for Processors Based on Intel® Core™ Microarchitecture......... 17-3
Table 17-4. Incremental Bus Error Codes of Machine Check for Processors Based on Intel® Core™ Microarchitecture 17-4
Table 17-5. Incremental MCA Error Code Types for Intel® Xeon® Processor 7400cvviririiiiii it iinnenennns 17-6
Table 17-6. Type B: Bus and INterconnect Error COUES v ittt e i e 17-6
Table 17-7. Type C: Cache Bus Controller Error Codes . ..o vi ittt it e e i e et ne e 17-7
Table 17-8. Intel® QPI Machine Check Error Codes for IA32_MCO_STATUS and IA32_MC1_STATUScooviiiiiiiininnnn 17-8
Table 17-S. Intel® QPI Machine Check Error Codes for IA32_MCO_MISCand IA32_MCT_MISC........ccvviiiiiiiiniiines 17-8
Table 17-10. Machine Check Error Codes for IA32_MC7 _STATUS L.ttt e 17-9
Table 17-11. Incremental Memory Controller Error Codes of Machine Check for IA32_MC8_STATUSccvvvvivnnnnt. 17-9
Table 17-12. Incremental Memory Controller Error Codes of Machine Check for IA32_MC8_MISC............covvvviiiininnn. 17-10
Table 17-13. Machine Check Error Codes for IA32_MCA_STATUS .. ottt e e 17-10
Table 17-14. Intel® QPI MC Error Codes for IA32_MC6_STATUS and IA32_MC7_STATUS ... it 17-11
Table 17-15. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 8, 11) vuuvuiiiiii et 17-12
Table 17-16. Intel IMC MC Error Codes for IA32_MCI_MISC (1= 8, T1) ..t vu ittt ettt 17-12
Table 17-17. Machine Check Error Codes for IA32_MCA_STATUS .. it e 17-13
Table 17-18. Intel IMC MC Error Codes for IA32_MCi_STATUS (1= 9—16). . . vt v ittt e 17-14
Table 17-19. Intel IMC MC Error Codes for IA32_MCIi_MISC (1= 9—T6) . ..t vv ittt e e 17-15
Table 17-20. Machine Check Error Codes for IA32_MCA_STATUS ...t 17-16
Table 17-21. Intel® QPI MC Error Codes for IA32_MCi_STATUS (i =5,20, 21) . .oviririiii it 17-17
Table 17-22. Intel IMC MC Error Codes for IA32_MCI_STATUS (1= 9—16). ...t vvv ittt e 17-18
Table 17-23. Intel IMC MC Error Codes for IA32_MCI_MISC (i= 9—T6) . ..ttt eit ittt e e 17-18
Table 17-24. Machine Check Error Codes for IA32_MCA_STATUS ... e 17-19
Table 17-25. Intel IMC MC Error Codes for IA32_MCIi_STATUS (1= 9—10). ...t vvvtit ittt e 17-20
Table 17-26. Intel IMC MC Error Codes for IA32_MCI_STATUS (1= 9—16). . ..t \vvitt ittt 17-21
Table 17-27. Intel HA MC Error Codes for IA32_MCi_MISC (= 7, 8). ...t vt ittt e 17-22
Table 17-28. Machine Check Error Codes for IA32_MCA_STATUS ...t e e 17-22
Table 17-29. Interconnect MC Error Codes for IA32_MCi_STATUS (i=5, 12, 19) e viiiiriiii i 17-24
Table 17-30. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 13—=18) ..ottt e 17-26
Table 17-31. MZ2M MC Error Codes Tor IA32_MCi_STATUS (1= 7, 8) « vt vttt ittt 17-27
Table 17-32. Intel HA MC Error Codes for IA32_MCI_MISC (1= 7, 8). ..ttt et 17-27
Table 17-33. Intel IMC MC Error Codes for IA32_MCi_STATUS (1= 6, 7). .t v vttt et e 17-28
Table 17-34. Machine Check Error Codes for IA32_MCA_STATUS ..o it e 17-29
Table 17-35. Interconnect MC Error Codes for IA32_MCi_STATUS (i1=5, 7, 8) ...ttt 17-31
Table 17-36. MSRs Reporting MC Error Codes by CPUID DisplayFamily_DisplaySignaturecoooviiiiiiiiiiinnnnn, 17-32
Table 17-37. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 13—14,17—18,21-22,25—26).coviiiiiininnnn, 17-33
Table 17-38. Additional Information Reported in IA32_MCi_MISC (i= 13—14,17—18,21—22,25—26)covnt . 17-35
Table 17-39. MZ2M MC Error Codes for IA32_MCi_STATUS (i= 12, 16,20, 24) ... v vttt 17-36
Table 17-40. Machine Check Error Codes for IA32_MCA_STATUS .. it e 17-37
Table 17-41. Interconnect MC Error Codes for IA32_MCS ST ATUS ... it 17-40
Table 17-42. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 13—20) .. .e vttt e 17-41
Table 17-43. Additional Information Reported in IA32_MCi_MISC (i= 13—20) . .. vttt e 17-43
Table 17-44. MZ2M MC Error Codes Tor IA32_MCT 2 _STATUS ...ttt e e n s 17-44
Table 17-45. Incremental Decoding Information: Processor Family OFH, Machine Error Codes for Machine Check............. 17-45
Table 17-46. MCi_STATUS Register Bit Definitionvui i e e 17-46
Table 17-47. Incremental MCA Error Code for Intel® Xeon® Processor MP 7100vvvvtveiiin i nena 17-47
Table 17-48. Other Information Field Bit Definition. e 17-47
Table 17-49. TYPE Ai L3 ErTOr COQES .t ittt ittt ittt ettt ettt e e e et e e et e et ettt eanen 17-48
Table 17-50. Type B: Bus and INterconnect Error COUBS vtiiti ettt ettt ettt ettt e et eeaens 17-48
Table 17-51. Type C: Cache Bus Controller Error CoeS v vttt et et e ens 17-49
Table 17-52. Decoding Family OFH Machine Check Codes for Cache Hierarchy Errors.c.oooovviiiiiiiiiiiii e 17-50
Table 18-1. BreaKpOiNT EXAMIDIES . .o\ttt ittt e e e e 18-6
Table 18-2. Debug EXCEPTION CONAitiONS. . v v ettt ettt et e e e e e 18-9
Table 18-4. LBR Stack Size and TOS PoINter RANGE.o vttt 18-17
Table 18-3. Legacy and Streamlined Operation with Freeze_Perfmon_On_PMI = 1, Counter Overflowed.................. 18-17
Table 18-5. IA32_DEBUGCTL FIag ENCOINGS . . . ot e vttt ettt ettt et s et e e et e aeas 18-25

Vol. 3A Xlv

CONTENTS

Table 18-6.
Table 18-7.
Table 18-8.
Table 18-9

Table 18-10.
Table 18-11.
Table 18-12.
Table 18-13.
Table 18-14.
Table 18-15.
Table 18-16.
Table 18-17.
Table 18-18.
Table 18-19.
Table 18-20.

Table 19-1.
Table 19-2.
Table 19-3.
Table 19-4.
Table 20-1.
Table 20-2.
Table 20-3.
Table 20-4.
Table 20-5.
Table 20-6.
Table 20-7.
Table 20-8.
Table 20-9.

Table 20-10.
Table 20-11.
Table 20-12.
Table 20-13.
Table 20-15.
Table 20-14.
Table 20-16.
Table 20-17.
Table 20-18.
Table 20-19.
Table 20-20.
Table 20-21.
Table 20-22.
Table 20-23.
Table 20-24.
Table 20-25.
Table 20-26.
Table 20-27.
Table 20-28.
Table 20-29.
Table 20-30.
Table 20-31.
Table 20-32.
Table 20-33.
Table 20-34.
Table 20-35.
Table 20-36.
Table 20-37.
Table 20-38.
Table 20-39.
Table 20-40.
Table 20-41.
Table 20-42.

Table 20-44.
Table 20-43.
Table 20-45.

xlvi Vol. 3A

CPL-Qualified Branch Trace Store ENCOGINGS v vttt ettt ettt et et ieans 18-26
MSR_LASTBRANCH_x_TO_IP for the Goldmont MicroarchiteCture.vvviiiiii it 18-28
MSR_LASTBRANCH X _FROM P ottt e e e e e 18-30
MSR _LASTBRANCH X T O IP .ottt ettt et e e e e e e e et e e e et 18-31
LBR Stack Size and TOS POINtEr RANGEo v vt 18-31
MSR_LBR_SELECT for Nehalem MicroarchiteCturevvuii i 18-31
MSR_LBR_SELECT for Sandy Bridge Microarchitecture e 18-32
MSR_LBR_SELECT for Haswell MicroarChiteCtureov et e 18-32
MSR_LASTBRANCH_x_FROM_IP with TSX INformation.oviri i i 18-33
LBR Stack Size and TOS POINter RaNGE ovivi ittt et 18-34
MSR _LBR _INF O X ot ettt ettt ettt e e e e e e e e e e 18-34
LBR MSR Stack Size and TOS Pointer Range for the Pentium® 4 and the Intel® Xeon® Processor Family......... 18-37
Monitoring SUPPOrTEd EVENT DSttt e e e e e e e 18-49
Re-indexing of COS Numbers and Mapping to CAT/CDP Mask MSRSovviii i 18-63
MBA Delay Value MO RS ..ttt e e e e e e 18-68
LBR IP Values for Various Operationsvuut ettt e e e ettt e e e e ettt e e ne e enanas 19-2
Branch Type Fitering Details.ttt e s e s 19-3
IA32_LBR_x_INFO and IA32_LER_INFO Branch Type ENCOdingS. viiriiiii it it e it eaans 19-4
LBRIVMUES FHlaS. . o v vttt ettt e e e e e e e et e e e e e 19-5
UMask and Event Select Encodings for Pre-Defined Architectural Performance Eventscoovvvn, 20-5
Association of Fixed-Function Performance Counters with Architectural Performance Events 20-9
PEBS Record Format for Intel Core i7 Processor Familyovuiiiii et ea e 20-20
Data Source Encoding for Load Latency RECOMdc.vuiuiiiit e e 20-23
Off-Core Response EVENt ENCOGING ovit ittt e ettt e e e ettt aeens 20-24
MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition. ..o 20-25
Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCHvvoti e 20-30
UNCOTE PMU MO R SUMIMIA Y v ittt ittt et ettt ettt e ettt e ettt e e e e e e ettt aann 20-32
Uncore PMU MSR Summary for Intel® Xeon® Processor E7 Family. ..o i eaans 20-33
(000 o L @033 0= i Yo P 20-34
PEBS FaCility COmMIPariSOn & vttt ettt et ettt ittt e e ettt e e e e 20-37
PEBS Performance Events for Sandy Bridge Microarchitecture. ... 20-38
Layout of Data Source Field of Load Latency RECOMdovviiiii et 20-40
Off-Core Response EVENt ENCOGINGo vttt ittt ettt e ettt et eaenens 20-41
Layout of Precise Store Information INPEBS RECOrd.oviviiiiii i e 20-41
MSR_OFFCORE_RSP_x Request_Type Field Definitionouvuiii it 20-42
MSR_OFFCORE_RSP_x Response Supplier Info Field Definition. ... 20-43
MSR_OFFCORE_RSP_x Snoop Info Field Definition.couvuri i e 20-44
UNCOME PMU MSR UMY vttt ettt ettt e e et s e et ee e e e sttt e e e a e e 20-45
MSR_OFFCORE_RSP_x Supplier Info Field Definitions.ouviiii i e 20-46
Uncore PMU MSR Summary for Intel® Xeon® Processor E5 Family. ...t 20-47
(000 o [A @033 = i Yo P 20-48
PEBS FaCility COmMIPariSOn vttt ettt ettt et et e e e et e e e e 20-48
PEBS Record Format for 4th Generation Intel Core Processor Familycoiiii i 20-49
Precise Events That Supports Data Linear Address Profilingcoooviiiii i e 20-50
Layout of Data Linear Address Information INPEBS ReCOrdoviii it 20-51
MSR_OFFCORE_RSP_x Request_Type Definition (Haswell Microarchitecture).............covviiiiiiiinnn. 20-51
MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signatures: 06_3CH, 06_46H) 20-52
MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signature: 06_45H)covviiiiiviinnnnn. 20-52
MSR_OFFCORE_RSP_x Supplier Info Field Definition.ovieiii i e ea e 20-53
TX Abort Information Field Definitionvvr i e e 20-55
L0 ol = o W S 2 YU 1 = Y 20-55
(000 o LU A @033 o= i Yo 20-57
PEBS FaCility COmIPariSOn v v vttt ettt ettt ettt e e e e et e e e 20-58
PEBS Record Format for the 6th Generation, 7th Generation, and 8th Generation Intel Core Processor Families 20-59
Precise Events for the Skylake, Kaby Lake, and Coffee Lake Microarchitecturescccovvvivninnnnns. 20-60
Layout of Data Linear Address Information INPEBS RECOMdovviiiii i 20-61
FrontEnd_Retired Sub-Event Encodings Supported by MSR_PEBS_FRONTEND.EVTSELccovivtt, 20-62
MSR_PEBS_FRONTEND LayOUL. . o .ot tte et ettt et et e e et e e e et e et et e e ee s 20-62

MSR_OFFCORE_RSP_x Request_Type Definition (Skylake, Kaby Lake, and Coffee Lake Microarchitectures)20-63
MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signatures: 06_4EH, 06_5EH, 06_8EH, 06_9€H). ..20-63
MSR_OFFCORE_RSP_x Snoop Info Field Definition (CPUID Signatures: 06_4€H, 06_5€EH, 06_8EH, 06_SE,

OS] | 20-64
MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signature: 06_55H) ..o, 20-65
MSR_OFFCORE_RSP_x Request_Type Definition (Intel® Xeon® Scalable Processor Family) 20-65
MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signature: 06_55H, Steppings Ox5H - OxFH)....... 20-66

CONTENTS

PAGE

Table 20-47. MSR_OFFCORE_RSP_x Request_Type Definition (Processors Based on Ice Lake Microarchitecture)............ 20-67
Table 20-46. Core PMU Summary of the Ice Lake Microarchitectureovv i e i 20-67
Table 20-48. MSR_OFFCORE_RSP_x Supplier Info Field Definition (Processors Based on Ice Lake Microarchitecture)......... 20-68
Table 20-49. MSR_OFFCORE_RSP_x Snoop Info Field Definition (Processors Based on Ice Lake Microarchitecture)........... 20-69
Table 20-50. Core PMU Summary of the Golden Cove MicroarchiteCture.v.ve v e 20-71
Table 20-51. Special Performance Monitoring Events with Counter Restrictions ...t 20-72
Table 20-52. Core PMU Summary of the Gracemont Microarchitecture ...t e 20-73
Table 20-53. E-core PEBS Memory Access INfO ENCOAINGovveii e 20-73
Table 20-54. E-core PEBS Data SoUMCe ENCOGINGS . ..o v v v ittt it et ettt et et ettt i e 20-74
Table 20-55. MSR_OFFCORE_RSPx Request Type Definition.vuveiiiii e 20-75
Table 20-56. PEBS Performance Events for Knights Landing Microarchitecture ..o i 20-77
Table 20-57. PEBS Record Format for Knights Landing Microarchitecture ..o 20-77
Table 20-58. OffCore Response EVENT ENCOGINGovitit ittt ettt et ettt eaens 20-78
Table 20-59. Bit fields of the MSR_OFFCORE_RESP [0, 1] REGISTEIS. ...ttt ettt et ee s 20-78
Table 20-60. PEBS Performance Events for the Silvermont Microarchitecture ... e 20-81
Table 20-62. OffCore Response EVENT ENCOMINGottt ettt et ettt e aeaens 20-82
Table 20-61. PEBS Record Format for the Silvermont Microarchitecture.oovvi i e 20-82
Table 20-63. MSR_OFFCORE_RSPx Request_Type Field Definition. ... i 20-83
Table 20-64. MSR_OFFCORE_RSP_x Response Supplier Info Field Definition..............ooii i 20-84
Table 20-65. MSR_OFFCORE_RSPx Snoop Info Field Definition.vuvuri e 20-84
Table 20-66. Core PMU Comparison Between the Goldmont and Silvermont Microarchitectures.................ccoovvivnt, 20-85
Table 20-67. Precise Events Supported by the Goldmont Microarchitecture ...t e i 20-87
Table 20-68. PEBS Record Format for the Goldmont MicroarchiteCture.o.vui it e 20-88
Table 20-69. MSR_OFFCORE_RSPx Request_Type Field Definition. ..o i 20-89
Table 20-70. MSR_OFFCORE_RSPx For L2 Miss and Outstanding ReqQUESTSo vvir ittt 20-90
Table 20-71. Core PMU Comparison Between the Goldmont Plus and Goldmont Microarchitecturesovvventn. 20-91
Table 20-72. Core PMU Comparison Between the Tremont and Goldmont Plus Microarchitectures................ccovvvvnnt 20-92
Table 20-73. New Fields in TA32_PEBS _ENABLEttt e e e e n 20-93
Table 20-74. MSR_OFFCORE_RSPx Request Type Definition.ovvuveii i e 20-94
Table 20-75. MSR_OFFCORE_RSPx Response Type Definitioncooviiiiiiiii e 20-95
Table 20-76. MSR_OFFCORE_RSPx Snoop INfo Definition.couiuii i i e 20-95
Table 20-77. Core Specificity Encoding within @ Non-Architectural Umask ... i 20-96
Table 20-78. Agent Specificity Encoding within a Non-Architectural Umask. ... e 20-97
Table 20-79. HW Prefetch Qualification Encoding within @ Non-Architectural Umaskcooiiiiiiii i, 20-97
Table 20-80. MESI Qualification Definitions within @ Non-Architectural Umask ... 20-97
Table 20-81. Bus Snoop Qualification Definitions within @ Non-Architectural Umask.c.oovi i 20-98
Table 20-82. Snoop Type Qualification Definitions within @ Non-Architectural Umask ..., 20-98
Table 20-83. At-Retirement Performance Events for Intel Core Microarchitecturecoociviiiiii i, 20-101
Table 20-84. PEBS Performance Events for Intel Core MicroarchiteCtureoovvviii e 20-102
Table 20-85. Requirements 10 Program PEBS it e e e 20-103
Table 20-86. Performance Counter MSRs and Associated CCCR and ESCR MSRs (Processors Based on Intel NetBurst

Tl o o g (T on (=) 20-104
Table 20-87. EVENT EXAMIDIE . . ettt et et e e e e e e e 20-111
Table 20-88. CCR Names and Bit POSItiONS.ttt e e e e e e e 20-115
Table 20-89. Effect of Logical Processor and CPL Qualification for Logical-Processor-Specific (TS) Events.................. 20-123
Table 20-90. Effect of Logical Processor and CPL Qualification for Non-logical-Processor-specific (TI) Events............... 20-124
Table 20-91. Nominal Core Crystal Clock FreQUENCYttt ettt e aees 20-140
Table 20-92. BasiC INT0 GrOUD . ..ottt ettt ettt e et e e e e e e e 20-146
Table 20-93. MemOry ACCESS INT0 GrOUDttt e ettt e e e e e et e 20-147
Table 20-94. Updated Memory ACCESS INTO GrOUD vttt ettt ettt e et et eaes 20-148
Table 20-95. GPRs in Ice Lake MiCroarChiteCtUNettt e e e e e e aees 20-149
TaADIE 20-96. XMIMS. ittt ittt et e e e e e e e 20-149
TaADIE 20-97. LBRS. .ttt ittt e e e e e e e e 20-150
Table 20-98. MSR_PEBS _CFG Programimling. . . oottt ettt ettt it e e ettt e e ittt e et e et et et 20-151
Table 20-99. PEBS ReCOTd EXamMPIE T ...ttt ettt ettt et ettt et e e e e e e e 20-151
Table 20-T00. PEBS RECOTd EXAMPIE 2 1.ttt ittt ettt e et e e et e e e e e e 20-152
Table 20-101. Data Source Encoding for Memory Accesses (Ice Lake and Later Microarchitectures)..............covvvvnnn 20-155
Table 21-1. Real-Address Mode EXCeptions and INTeITUDTS ov ittt et 21-6
Table 21-2. Software Interrupt Handling Methods While in Virtual-8086 Modecco i 21-17
Table 22-1. Characteristics of 16-Bit and 32-Bit Program Modules.o 22-1
Table 23-1. New Instruction in the Pentium Processor and Later IA-32 PrOCESSOIS ... vvvvvvrvriii et iieiieineannns 23-4
Table 23-3. EM and MP Flag INterpretation ... v ettt e 23-17
Table 23-2. Recommended Values of the EM, MP, and NE Flags for Intel486 SX Microprocessor/Intel 487 SX Math

(000 o] o Tt =T Y o) V£ =] 23-17
Table 23-4. Exception Conditions for Legacy SIMD/MMX Instructions with FP Exception and 16-Byte Alignment 23-22

Vol. 3A Xlvii

CONTENTS

Table 23-5.
Table 23-6.
Table 23-7.
Table 23-8.
Table 23-9.
Table 23-10.
Table 25-1.
Table 25-2.
Table 25-3.
Table 25-4.
Table 25-5.
Table 25-6.
Table 25-7.
Table 25-8.
Table 25-9.
Table 25-10.
Table 25-11.
Table 25-12.
Table 25-13.
Table 25-14.
Table 25-15.
Table 25-16.
Table 25-17.
Table 25-18.
Table 25-19.
Table 25-20.
Table 25-21.
Table 26-1.
Table 28-1.
Table 28-2.
Table 28-3.
Table 28-4.
Table 28-5.
Table 28-6.
Table 28-7.
Table 28-8.
Table 28-10.
Table 28-9.
Table 28-11.
Table 28-12.
Table 28-13.

Table 28-14.
Table 28-15.
Table 29-1.
Table 29-2.
Table 29-3.
Table 29-4.
Table 29-5.
Table 29-6.
Table 29-7.
Table 30-1.
Table 31-1.
Table 32-1.
Table 32-2.
Table 32-3.
Table 32-4.
Table 32-5.
Table 32-6.
Table 32-7.
Table 32-8.
Table 32-9.
Table 32-10.
Table 33-1.
Table 33-2.

xlviii Vol. 3A

Exception Conditions for Legacy SIMD/MMX Instructions with XMM and FP Exception......................... 23-23
Exception Conditions for Legacy SIMD/MMX Instructions with XMM and without FP Exception................. 23-24
Exception Conditions for SIMD/MMX Instructions with Memory Referencecccoviiiiiiiiiinns. 23-25
Exception Conditions for Legacy SIMD/MMX Instructions without FP Exceptioncooiviiiinnnt, 23-26
Exception Conditions for Legacy SIMD/MMX Instructions without Memory Referencecoovvvnnt 23-27
Processor State Following Power-up/Reset/INIT for Pentium, Pentium Pro and Pentium 4 Processors........... 23-37
FOrmat Of the VMCS REGIONttt et et e et e ettt e anas 25-2
FOrmat Of ACCESS RIGNTS . ..o e e e e 25-4
Format of INterrUptiDility State. e s 25-6
Format of Pending-DebUg-EXCEPTiONS.\ttt s 25-7
Definitions of Pin-Based VM-EXecution CONtrolS.vuetit e e 25-10
Definitions of Primary Processor-Based VM-Execution CoNtrolsooiiieiiiii it iiiii i eaanes 25-10
Definitions of Secondary Processor-Based VM-Execution CoNtrols.ovuvriniii ittt ci i eieaanns 25-12
Definitions of Tertiary Processor-Based VM-Execution Controls.couvuvuiniiiiii it iiennns 25-13
Format of Extended-Page-Table Pointer. et 25-17
Definitions of VM-FUNCHON CONTIOIS\ v vt e 25-18
Format of Sub-Page-Permission-Table Pointervuiriiir e i 25-19
Format of Hypervisor-Managed Linear-Address Translation Pointer ...t 25-20
Definitions of Primary VM-EXit CONtrolS. ov et e ettt aees 25-21
Definitions of Secondary VM-EXit CONTrolS v it e e 25-22
FOrmMat Of AN MO R BNy, .ottt et ettt e 25-23
Definitions 0f VM-ENtry CONTrOlS u ittt et e ettt ettt 25-23
Format of the VM-Entry Interruption-Information Field e 25-25
FOrmMat OF EXIT REASOM . ettt ettt e e e e et e e e e 25-26
Format of the VM-Exit Interruption-Information Field. e 25-27
Format of the IDT-Vectoring Information Fieldcooiii i e i 25-27
Structure of VMCS Component ENCOAINGo v ittt e e ettt e ettt et 25-30
Format of the Virtualization-Exception INformation Areaottt e i 26-21
Exit Qualification for DebUG EXCEPTIONS . . .\ttt s 28-4
Exit Qualification for Task SWItCRESottt e e 28-5
Exit Qualification for Control-RegiSter ACCESSES . . v\ v vttt ittt e 28-7
Exit QUalIfication TOr MOV DR ... v ittt et e e e e e e 28-8
Exit QUalIfication TOr 1/0 INSTrUCTIONS. . v\ vttt sttt e e e e e 28-8
Exit Qualification for APIC-Access VM Exits from Linear Accesses and Guest-Physical Accesses................. 28-9
Exit Qualification for EPT VIOIGLIONSttt e e 28-10
Format of the VM-Exit Instruction-Information Field as Used for INSand OUTScoviiiiiiiinnnn. 28-16
Format of the VM-Exit Instruction-Information Field as Used for LIDT, LGDT, SIDT, or SGDT............cvvvtn 28-17
Format of the VM-Exit Instruction-Information Field as Used for INVEPT, INVPCID, and INVVPID 28-17
Format of the VM-Exit Instruction-Information Field as Used for LLDT, LTR, SLDT,andSTR.................... 28-19
Format of the VM-Exit Instruction-Information Field as Used for RDRAND, RDSEED, TPAUSE, and UMWAIT 28-20
Format of the VM-Exit Instruction-Information Field as Used for VMCLEAR, VMPTRLD, VMPTRST, VMXON,

XRSTORS, AN XS AV ES .ottt it e e e e e e 28-20
Format of the VM-Exit Instruction-Information Field as Used for VMREAD and VMWRITE 28-21
Format of the VM-Exit Instruction-Information Field as Used for LOADIWKEYcooiviiiiiiiiiinnnn. 28-22
Format of an EPT PML5 Entry (PML5E) that References an EPTPML4A Table.........ovvvviiiiiiiiiiiiininnns 29-4
Format of an EPT PML4 Entry (PML4E) that References an EPT Page-Directory-Pointer Table.................. 29-5
Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that Maps a 1-GByte Page...................... 29-6
Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that References an EPT Page Directory 29-7
Format of an EPT Page-Directory Entry (PDE) that Mapsa 2-MBytePage...........covviviiiiiiiii i 29-8
Format of an EPT Page-Directory Entry (PDE) that References an EPTPage Tablecocoiiiiinen, 29-9
Format of an EPT Page-Table Entry that Maps a 4-KByte Page.ccooiiii i 29-11
Format of Posted-INtermUpt DeSCripIOr. . ..ottt e 30-15
VM-INSTrUCHION BrTOr NUMIDETSttt ettt ettt et e et et e e e e 31-31
SMRAM SEaTE SAVE M. . ottt i i it e e e e e s 32-5
Processor Signatures and 64-bit SMRAM State Save Map FOrmat.vvviiii i 32-6
SMRAM State Save Map for Intel 64 ArChiteCtUre ... vv e e 32-7
Processor Register Initialization in SMM. i e 32-9
1/0 Instruction Information in the SMM State Save Map v v it e 32-12
1/0 INSTrUCtiON TYPE ENCOGINGS .+ v vttt ettt e e e e e e e e e e e a e 32-12
Auto HALT Restart FIag ValUes.ot e 32-14
1/0 Instruction Restart Field Values u ittt 32-16
Exit Qualification for SMIs That Arrive Immediately After the Retirement of an I/0 Instruction................. 32-21
FOrMAat Of MSEG HEAAET. . ..t vttt e e e et 32-25
COFI Type for BranCh INSTrUCTONS vt e et e et et aeaeas 33-3
IP Filtering Packet EXamIPIE e e e 33-7

Table 33-3.
Table 33-4.
Table 33-5.
Table 33-6.
Table 33-7.
Table 33-8

Table 33-10.

Table 33-9.

Table 33-11.
Table 33-12.
Table 33-13.
Table 33-14.
Table 33-15.
Table 33-16.
Table 33-17.
Table 33-18.
Table 33-19.
Table 33-20.
Table 33-21.
Table 33-22.
Table 33-23.
Table 33-24.
Table 33-25.
Table 33-26.
Table 33-27.
Table 33-28.
Table 33-29.
Table 33-30.
Table 33-31.
Table 33-32.
Table 33-33.
Table 33-34.
Table 33-35.
Table 33-36.
Table 33-37.
Table 33-38.
Table 33-39.
Table 33-40.
Table 33-41.
Table 33-42.
Table 33-43.
Table 33-44.
Table 33-45.
Table 33-46.
Table 33-47.
Table 33-48.
Table 33-49.
Table 33-50.
Table 33-51.
Table 33-52.
Table 33-53.
Table 33-54.
Table 33-55.
Table 33-56.
Table 33-57.
Table 33-58.
Table 33-59.

Table 34-1.
Table 34-2.
Table 34-3.
Table 34-4.
Table 34-5.
Table 34-6.
Table 34-7.
Table 35-1.

TOPA Table ENtry Fields e e e e e e
Algorithm to Manage Intel PT ToPA PMI and XSAVES/XRSTORS.t
Behavior on Restricted MemMOrY ACCESS. . vttt ettt ettt et ettt ettt aeaaas
12 I O Y R
IA3 2 RTIT ST ATUS MR L.t e e e e
IA32 _RTIT _OUTPUT _BASE MSR. ..ttt et e e e e
TSX Packet Scenarios with BranChBN=To e
IA32_RTIT_OUTPUT_MASK _PTRS MSR. .\ttt it e e
CPUID Leaf 14H Enumeration of Intel Processor Trace Capabilities.............ccooiiiiinnns
CPUID Leaf 14H, sub-leaf TH Enumeration of Intel Processor Trace Capabilities........................
An lllustrative CYC Packet EXamMIPIE. . ..o .v ettt e
Compound Packet BVeNt SUMMIArY .o .v i i e e e et et
Packets Forbidden Between BBP and BEPvuiuiiii i
TNT Packet Definitiono e
[P PaCKET DEfiitiON. . o\ttt e e e
FUP/TIP [P RECONSIIUCTION . . vttt e ettt e e e et e e e aees
TNT Examples With Deferred TIPS, ... v vt e e
TIP.PGE Packet Defimition . . .o v vttt et et
TIP.PGD Packet Defimition. . ..ottt e e e
FUP Packet Definitionoouiuii e e
FUP Cases and IP Payload.oi i i ittt e et et e s
PIP Packet Definmition ..ottt e
General FOrm 0f MODE Packetsoviri i e
MODE.EXEC Packet Defimition. . ..o vttt ettt e e e e e e
MODE.TSX Packet Definitionovve ettt e e
TraceStop Packet Definitiono.iuii i
CBR Packet DEfINItiON ...\ttt e e e e
B I O =) 1= T o T
MTC Packet Definitionttt e e
TMA Packet Defimition . ..ottt e
Cycle Count Packet Defimitiont e e et e
VMCS Packet Definmition. . ..ot e
OVF Packet Definition . ..ottt e e e e e e e e
PSB Packet Defimitionvv vttt ettt e e e e e
PSBEND Packet Defimitionouii e e
MNT Packet Definition. ...t e e e e
PAD Packet Defimition ..o v ettt e
PTW Packet Definition. e
EXSTOP Packet Defimition ... ou ittt e e
MWAIT Packet Definmition. . ..ottt e e
PWRE Packet Definition.ttt e e s
PWRX Packet Definition ... vu ettt et e
Block Begin Packet Defimitionouiuiei i i e
Block Item Packet Defimitionouuee e e
BIP BNCOOINGS . .ot i ittt e e e e
Block End Packet Definition ovvv e e e
Control Flow Event Packet Definition.vuii i
CFE Packet Type and Vector Fields Details.o i
Event Data Packet Defimition.ot e e
VMX Controls For INTel ProCeSSOm TraCe ... v vttt ettt et et e e e
Packets on VMX Transitions (System-Wide Tracing)ovviririiii i eieiieieaens
Packets ona Failed VM BNty ..o e e
Packet Generation under Different Example Operationsvvvrvriiiii it
Packet Generation with Operations That Alter the Value of PacketEn................coviiiiiiiinn,
Examples of PTWRITE when Triggeren & & PTWEN IS True. ... vvir it ciieaaas
Examples of Power Event Trace when Triggeren && PwrEvtEnis True..........ccovvviiiiiiiiiiinnnn,
Event Trace Examples when Trigger€n && ContextEn && EventEnis Trueccoviviiiiiiinnn,
Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX1T
Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX2

VMX Operation and Supervisor Mode Enclave Instruction Leaf Functions in Long-Form of OVERSUB

Intel® SGX Opt-in and Enabling Behavior e e
CPUID Leaf 12H, Sub-Leaf 0 Enumeration of Intel® SGX Capabilitiesccooviviiiiiiiiiinnt
CPUID Leaf 12H, Sub-Leaf 1 Enumeration of Intel® SGX Capabilitiescooviviiiiiiiin.s,
CPUID Leaf 12H, Sub-Leaf Index 2 or Higher Enumeration of Intel® SGX Resources.
List of Implicit and Explicit Memory Access by Intel® SGX Enclave Instructions.cocvvvivnnn.

CONTENTS

PAGE

Vol. 3A Xxlix

CONTENTS

Table 35-2.
Table 35-3.
Table 35-4.
Table 35-5.
Table 35-6.
Table 35-7.
Table 35-8.
Table 35-9.

Table 35-10.
Table 35-11.
Table 35-12.
Table 35-13.
Table 35-14.
Table 35-15.
Table 35-16.
Table 35-17.
Table 35-18.
Table 35-19.
Table 35-20.
Table 35-21.
Table 35-23.
Table 35-22.
Table 35-24.
Table 35-25.
Table 35-26.
Table 35-27.
Table 35-28.
Table 35-29.
Table 35-30.
Table 35-31.
Table 35-32.

Table 36-1.
Table 37-1.
Table 38-1.
Table 38-2.
Table 38-3.
Table 38-4.
Table 38-5.
Table 38-6.
Table 38-7.
Table 38-8.
Table 38-9

Table 38-10.
Table 38-11.
Table 38-12.
Table 38-13.
Table 38-14.
Table 38-15.
Table 38-16.
Table 38-17.
Table 38-18.
Table 38-19.
Table 38-20.
Table 38-21.
Table 38-22.
Table 38-23.
Table 38-24.
Table 38-25.
Table 38-26.
Table 38-27.
Table 38-28.
Table 38-29.
Table 38-30.
Table 38-31.
Table 38-32.

| Vol.3A

Layout of SGX Enclave Control STructure (SECS). vttt e e 35-5
Layout Of ATTRIBUTES STrUCTUE. . ..ottt ettt et et et e 35-6
Bit Vector Layout of MISCSELECT Field of Extended Information ... 35-6
Bit Vector Layout of CET_ATTRIBUTES Field of Extended Information...............ccoiiiiiiiiiiiii i, 35-7
Layout of Thread Control STructure (TCS) . ..o v ettt 35-7
Layout OF TCSIFLAGS Field ..ottt et e e e e e e e e e e 35-8
Top-t0-Bottom Layout Of @n SSA Framie ...ttt ettt e ettt 35-9
Layout of GPRSGX Portion of the State Save Ara ov e e 35-9
Layout Of EXITINFO FIld. . ..o v ettt et e e e e e e e 35-10
(=T T T Y=oy (o 3 35-10
Layout of MISC region of the State Save ArBa. u i e e i e 35-11
LayoUT OF EXINFO StTUCTUME. . ..ottt e et et e e et et e et ettt i e 35-11
Page FaUIt ErTOr COQE. . . ittt ettt ettt e ettt e e e 35-12
Layout OF CET State SaVe ArBa Fram . ..ot i ittt ettt et e e ettt et a e 35-12
Layout of PAGEINFO Data StrUCTUNEottt ettt e et e e e et ettt et e e aees 35-12
Layout 0f SECINFO Data StrUCTUME. . .. vttt et ettt ettt e e et e aees 35-13
Layout of SECINFO.FLAGS Field. . .. v ettt e e e e e eens 35-13
SUPPOMTEA PAGE T P . .. ittt i e e e et e e e 35-13
LayoUT O PCMD Data StrUCTUNE ..o v ottt ettt e e e e ettt e e et n i eeaes 35-14
Layout of Enclave Signature Structure (SIGSTRUCT) . ..t u vttt i e 35-14
I 1Yo T 0) S 0 35-16
Layout of EINIT Token (EINITTOKEN) ovttt ettt ettt e e et e eens 35-16
Layout of TARGETINFO Data StrUCTUNE ..o v vttt ettt et a e 35-17
Layout of KEYREQUEST Data STrUCTUMEot vttt ettt et e e et e e e ee s 35-18
Supported KEYNGME ValUes.ottt ettt e e e e et 35-18
Layout of KEYPOULICY Field. ... vttt e e e e e e e e es 35-18
Layout of Version Array Data StrUCTUME.ot e e ettt 35-19
Content of an Enclave Page Cache Map ENIrYo.iiit e e e ens 35-19
LayoUT OF RDINF O StrUCTUNE. . o\ttt ettt e et e et e e e e a e 35-20
Layout Of RDINFO STATUS StrUCTUNE . ..ottt et ettt e i aees 35-20
Layout Of RDINFO FLAGS STTUCTUN . . . vttt ettt ettt e e e et e e et ettt e e e aees 35-20
lllegal Instructions INSide an ENCIAVEot e 36-15
GPR, x87 Synthetic States on Asynchronous ENclave EXit.t e i e 37-3
Register Usage of Privileged Enclave Instruction Leaf FUNCLIONS ...t i 38-1
Register Usage of Unprivileged Enclave Instruction Leaf FUNCLIONS.ovvi i e 38-2
Register Usage of Virtualization Operation Enclave Instruction Leaf Functions....................coiiiint. 38-2
Error or Information Codes for Intel® SGX INSTIUCTIONS ...\ v vttt e 38-2
List Of INTerNal CREG . . . ettt e e et e 38-3
Base CoNCUMENCY RESIM T IONS ...ttt i it et e ettt i et i eaans 38-5
Additional ConCUMMENCY RESTIICTIONS ...\ttt e e e e e e ettt et it eaens 38-6
Base Concurrency Restrictions OF EADD. v ittt e e 38-17
Additional Concurrency Restrictions O EADD.iut ittt ittt e ettt et 38-18
Base Concurrency Restrictions 0f EAUG.ttt e ettt 38-22
Additional Concurrency Restrictions Of EAUG. ouu ittt e 38-23
EBLOCK ReTUMN Value N R A X . e e e e e e e aees 38-27
Base Concurrency Restrictions of EBLOCKiuiuitititr ittt aees 38-27
Additional Concurrency Restrictions of EBLOCK oottt e 38-28
Base Concurrency Restrictions 0f ECREATE ittt e ettt 38-30
Additional Concurrency Restrictions 0f ECREATEttt e eaens 38-31
EDBGRD RetUN Value i RAX ottt ettt 38-36
Base Concurrency Restrictions 0f EDBGRDiuititttr ittt ettt e i aees 38-37
Additional Concurrency Restrictions of EDBGRDovieiiiii i e 38-37
EDBGWR RetUMN Value in RA X . .ttt ettt ee s 38-40
Base Concurrency Restrictions of EDBGWR.ottt e it 38-41
Additional Concurrency Restrictions of EDBGWR.t ii i e e 38-41
Base Concurrency Restrictions 0f EEXTENDvuitiuititr it e 38-44
Additional Concurrency Restrictions of EEXTEND. ...ttt it et 38-45
EINIT RetUIN ValUe M R A ottt e e e e e e e e e 38-48
Base Concurrency Restrictions of EINIT o o e e e 38-49
Additional Concurrency Restrictions of ENIT. oo e 38-49
ELDB/ELDU/ELDBC/ELBUC Return Value in RAX . . oottt e et e e 38-55
Base Concurrency Restrictions of ELDB/ELDU/ELDBC/ELBUC.vuvtiti it ea e 38-56
Additional Concurrency Restrictions of ELDB/ELDU/ELDBC/ELBUC.oviiii i 38-56
EMODPR ReTUMN ValUB M R A X .ttt ettt e e e e e e e 38-61
Base Concurrency Restrictions 0f EMODPR. vuit it 38-61

Table 38-33.
Table 38-34.
Table 38-35.
Table 38-36.
Table 38-37.
Table 38-38.
Table 38-39.
Table 38-40.
Table 38-41.
Table 38-42.
Table 38-43.
Table 38-44.
Table 38-45.
Table 38-46.
Table 38-47.
Table 38-48.
Table 38-49.
Table 38-50.
Table 38-51.
Table 38-52.
Table 38-53.
Table 38-54.
Table 38-55.
Table 38-56.
Table 38-57.
Table 38-58.
Table 38-59.
Table 38-60.
Table 38-61.
Table 38-62.
Table 38-63.
Table 38-64.
Table 38-65.
Table 38-66.
Table 38-67.
Table 38-68.
Table 38-69.
Table 38-70.
Table 38-71.
Table 38-72.
Table 38-73.
Table 38-74.
Table 38-75.
Table 38-76.
Table 38-77.
Table 38-78.
Table 38-79.
Table 38-80.
Table 38-81.

Table 39-1.
Table 39-2.
Table 39-3.
Table A-1.
Table B-1.
Table B-2.
Table B-3.
Table B-4.
Table B-5.
Table B-6.
Table B-7.
Table B-8.
Table B-9.
Table B-10.
Table B-11.
Table B-12.

Additional Concurrency Restrictions of EMODPRt
EMODT Return Value in RAX . . e e eas
Base Concurrency Restrictions of EMODTottt e eans
Additional Concurrency Restrictions of EMODTottt i eieaeaas
Base Concurrency Restrictions of EPAo e
Additional Concurrency Restrictions of EPA. ...
ERDINFO Return Value in RAX ..ottt
Base Concurrency Restrictions of ERDINFOovviriiiii i
Additional Concurrency Restrictions of ERDINFO ...t
EREMOVE Return Value in RAX. ...ttt e
Base Concurrency Restrictions of EREMOVEot
Additional Concurrency Restrictions of EREMOVE ...t
ETRACK Return Value in RAX .ttt
Base Concurrency Restrictions of ETRACK e
Additional Concurrency Restrictions of ETRACK
ETRACKC Return Value in RAX . .ottt et
Base Concurrency Restrictions of ETRACKC. ... i
Additional Concurrency Restrictions of ETRACKC. ...t
EWB Return Value in RAX. ..ot tieeeee
Base Concurrency Restrictions of EWBov it
Additional Concurrency RestrictionsSof EWB ... e
EACCEPT Return Value in RAX ..ottt
Base Concurrency Restrictions of EACCEPTo e
Additional Concurrency Restrictions of EACCEPTcciii i
EACCEPTCOPY Return Value in RAX v e
Base Concurrency Restrictions of EACCEPTCOPYvviriii ittt
Additional Concurrency Restrictions of EACCEPTCOPY. ...
Base Concurrency Restrictions of EDECCSSA. ... i ittt
Additional Concurrency Restrictions of EDECCSSA.ovvriii i
Base Concurrency Restrictions of EENTERttt
Additional Concurrency Restrictions of EENTER
Base Concurrency Restrictions of EEXIT ovn i e
Additional Concurrency Restrictions of EEXIT ...
[NGE1Y B =T 1 V= (o
EGETKEY Return Value in RAX ...t
Base Concurrency Restrictions of EGETKEY ...t
Additional Concurrency Restrictions of EGETKEYcoiiiiiiiiiiii it
Base Concurrency Restrictions of EMODPE.covririiii it
Additional Concurrency Restrictions of EMODPE. ...t
Base Concurrency Restrictions of EREPORT.ot
Additional Concurrency Restrictions of EREPORT.ot
Base Concurrency Restrictions of ERESUME.ttt eieeens
Additional Concurrency Restrictions of ERESUME.ccoiiiiiiiiiiiii i
Base Concurrency Restrictions of EDECVIRTCHILD ...
Additional Concurrency Restrictions of EDECVIRTCHILDc.cvvviiiiiiennnnnnn.
Base Concurrency Restrictions of EINCVIRTCHILDoviiiii i
Additional Concurrency Restrictions of EINCVIRTCHILDcoviiiiiiiiininnenns
Base Concurrency Restrictions of ESETCONTEXToviviiiiiiiii it iii i i enanns
Additional Concurrency Restrictions of ESETCONTEXTovviiiiiiiiiiiiiiiiienennss
SGX Conflict Exit QUAlifICation.vv e e
SMRAM Synthetic States on Asynchronous Enclave Exit...........c.ccoiiiiiiiiine,
Layout of the IA32_SGX_SVN_STATUS MSR. ...\ttt
Memory Types Recommended for VMCS and Related Data Structures....................
Encoding for 16-Bit Control Fields (0000_00XX_XXXX_XXXO0B).......covviiviiviinninnns
Encodings for 16-Bit Guest-State Fields (0000_TOXX_XXXX_XXXO0B)ccvvvvvinnns
Encodings for 16-Bit Host-State Fields (0000_1TXX_XXXX_XXXOB)covvvuiuvnnn
Encodings for 64-Bit Control Fields (00T0_00XX_XXXX_XXXAD) vvivuiiniiiiinnnannns
Encodings for 64-Bit Read-Only Data Field (00T10_01TXX_XXXX_XXXAD).........cuvvvvunn
Encodings for 64-Bit Guest-State Fields (00T0_TOXX_XXXX_XXXAD)cccvvvvvvun.n.
Encodings for 64-Bit Host-State Fields (00T0_T1XX_XXXX_XXXAb)covvvte.
Encodings for 32-Bit Control Fields (0100_00XX_XXXX_XXXOB).......ovvvriiiiinerninnns

Encodings for 32-Bit Read-Only Data Fields (0100_01xx_xxxx_xxx0B)

Encodings for 32-Bit Guest-State Fields (0T00_TOXX_XXXX_XXXOB)covvvvvnnnn.
Encoding for 32-Bit Host-State Field (0T00_11TXX_XXXX_XXXO0B)ccvvviviiniinnn
Encodings for Natural-Width Control Fields (0110_00XX_XXXX_XXXOB)...................

CONTENTS

PAGE

Vol. 3A li

CONTENTS

Table B-13.
Table B-14.

Table B-15.

Table C-1.

li Vol. 3A

Encodings for Natural-Width Read-Only Data Fields (0110_01XX_XXXX_XXXO0B).......cvvviriiiiiiiiiininnns B-10
Encodings for Natural-Width Guest-State Fields (07 T0_TOXX_XXXX_XXXO0B)ccoviiiiiiiiiiiin B-10
Encodings for Natural-Width Host-State Fields (01 T0_TTXX_XXXX_XXXOB) ..\ t\vvririiinieiiniieieniannas B-11

C-1

5 P T Lol ot A (=T Y 1

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System Programming Guide, Part
1 (order number 253668), the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B: System
Programming Guide, Part 2 (order number 253669), the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3C: System Programming Guide, Part 3 (order number 326019), and the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3D:System Programming Guide, Part 4 (order number
332831) are part of a set that describes the architecture and programming environment of Intel 64 and IA-32
Architecture processors. The other volumes in this set are:

* Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (order number
253665).

* Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D: Instruction Set
Reference (order numbers 253666, 253667, 326018, and 334569).

®* The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model-Specific Registers
(order number 335592).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture
and programming environment of Intel 64 and IA-32 processors. The Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volumes 2A, 2B, 2C, & 2D, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who write operating systems or exec-
utives. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C, & 3D, describe
the operating-system support environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3B, and Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, address the programming
environment for classes of software that host operating systems. The Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 4, describes the model-specific registers of Intel 64 and IA-32 processors.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:

* Pentium® processors

®* P6 family processors

* Pentium® 4 processors

* Pentium® M processors

* Intel® Xeon® processors

* Pentium® D processors

* Pentium® processor Extreme Editions

* 64-bit Intel® Xeon® processors

* Intel® Core™ Duo processor

* Intel® Core™ Solo processor

* Dual-Core Intel® Xeon® processor LV

* Intel® Core™ 2 Duo processor

* Intel® Core™ 2 Quad processor Q6000 series
* Intel® Xeon® processor 3000, 3200 series
* Intel® Xeon® processor 5000 series

* Intel® Xeon® processor 5100, 5300 series

Vol. 3A 1-1

ABOUT THIS MANUAL

* Intel® Core™ 2 Extreme processor X7000 and X6800 series
* Intel® Core™ 2 Extreme QX6000 series

* Intel® Xeon® processor 7100 series

* Intel® Pentium® Dual-Core processor

* Intel® Xeon® processor 7200, 7300 series

* Intel® Core™ 2 Extreme QX9000 series

* Intel® Xeon® processor 5200, 5400, 7400 series

* Intel® Core™ 2 Extreme processor QX9000 and X9000 series
* Intel® Core™ 2 Quad processor Q9000 series

* Intel® Core™ 2 Duo processor E8000, T9000 series

* Intel Atom® processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000,
C1000 series are built from 45 nm and 32 nm processes.

* Intel® Core™ i7 processor

* Intel® Core™i5 processor

* Intel® Xeon® processor E7-8800/4800/2800 product families
* Intel® Core™ i7-3930K processor

* 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
* Intel® Xeon® processor E3-1200 product family

* Intel® Xeon® processor E5-2400/1400 product family

* Intel® Xeon® processor E5-4600/2600/1600 product family
* 3rd generation Intel® Core™ processors

* Intel® Xeon® processor E3-1200 v2 product family

* Intel® Xeon® processor E5-2400/1400 v2 product families

* Intel® Xeon® processor E5-4600/2600/1600 v2 product families
* Intel® Xeon® processor E7-8800/4800/2800 v2 product families
* 4th generation Intel® Core™ processors

* The Intel® Core™ M processor family

* Intel® Core™ i7-59xx Processor Extreme Edition

* Intel® Core™ i7-49xx Processor Extreme Edition

* Intel® Xeon® processor E3-1200 v3 product family

* Intel® Xeon® processor E5-2600/1600 v3 product families

* 5th generation Intel® Core™ processors

* Intel® Xeon® processor D-1500 product family

* Intel® Xeon® processor E5 v4 family

* Intel Atom® processor X7-Z8000 and X5-Z8000 series

* Intel Atom® processor Z3400 series

* Intel Atom® processor Z3500 series

* 6th generation Intel® Core™ processors

* Intel® Xeon® processor E3-1500m v5 product family

* 7th generation Intel® Core™ processors

* Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series

* Intel® Xeon® Scalable Processor Family

* 8th generation Intel® Core™ processors

* Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series

1-2 Vol.3A

ABOUT THIS MANUAL

* Intel® Xeon® E processors

* 9th generation Intel® Core™ processors

* 2nd generation Intel® Xeon® Scalable Processor Family
* 10th generation Intel® Core™ processors

* 11th generation Intel® Core™ processors

* 3rd generation Intel® Xeon® Scalable Processor Family
* 12th generation Intel® Core™ processors

* 13th generation Intel® Core™ processors

* 4th generation Intel® Xeon® Scalable Processor Family

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® 11, and Pentium® 11l Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel®
Core™ 2 Duo, Intel® Core™ 2 Quad, and Intel® Core™ 2 Extreme processors are based on Intel® Core™ microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™ 2 Quad processor Q9000 series, and Intel®
Core™ 2 Extreme processors QX9000, X9000 series, Intel® Core™ 2 processor E8000 series are based on
Enhanced Intel® Core™ microarchitecture.

The Intel Atom® processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000,
C1000 series are based on the Intel Atom® microarchitecture and supports Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™ 2 Duo, Intel® Core™ 2 Extreme, Intel® Core™ 2 Quad processors, Pentium® D processors, Pentium® Dual-
Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Nehalem
microarchitecture. Westmere microarchitecture is a 32 nm version of the Nehalem microarchitecture. Intel®
Xeon® processor 5600 series, Intel Xeon processor E7 and various Intel Core i7, i5, i3 processors are based on the
Westmere microarchitecture. These processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2XxX,
Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Sandy Bridge microarchitecture and
support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2 product
family and 3rd generation Intel® Core™ processors are based on the Ivy Bridge microarchitecture and support
Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Ivy Bridge-E microarchitec-
ture and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based on
the Haswell microarchitecture and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme
Edition are based on the Haswell-E microarchitecture and support Intel 64 architecture.

The Intel Atom® processor Z8000 series is based on the Airmont microarchitecture.

Vol.3A 1-3

ABOUT THIS MANUAL

The Intel Atom® processor Z3400 series and the Intel Atom® processor Z3500 series are based on the Silvermont
microarchitecture.

The Intel® Core™ M processor family, 5th generation Intel® Core™ processors, Intel® Xeon® processor D-1500
product family and the Intel® Xeon® processor E5 v4 family are based on the Broadwell microarchitecture and
support Intel 64 architecture.

The Intel® Xeon® Scalable Processor Family, Intel® Xeon® processor E3-1500m v5 product family and 6th gener-
ation Intel® Core™ processors are based on the Skylake microarchitecture and support Intel 64 architecture.

The 7th generation Intel® Core™ processors are based on the Kaby Lake microarchitecture and support Intel 64
architecture.

The Intel Atom® processor C series, the Intel Atom® processor X series, the Intel® Pentium® processor J series,
the Intel® Celeron® processor J series, and the Intel® Celeron® processor N series are based on the Goldmont
microarchitecture.

The Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series is based on the Knights Landing microarchitecture and
supports Intel 64 architecture.

The Intel® Pentium® Silver processor series, the Intel® Celeron® processor J series, and the Intel® Celeron®
processor N series are based on the Goldmont Plus microarchitecture.

The 8th generation Intel® Core™ processors, 9th generation Intel® Core™ processors, and Intel® Xeon® E proces-
sors are based on the Coffee Lake microarchitecture and support Intel 64 architecture.

The Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series is based on the Knights Mill microarchitecture and
supports Intel 64 architecture.

The 2nd generation Intel® Xeon® Scalable Processor Family is based on the Cascade Lake product and supports
Intel 64 architecture.

Some 10th generation Intel® Core™ processors are based on the Ice Lake microarchitecture, and some are based
on the Comet Lake microarchitecture; both support Intel 64 architecture.

Some 11th generation Intel® Core™ processors are based on the Tiger Lake microarchitecture, and some are
based on the Rocket Lake microarchitecture; both support Intel 64 architecture.

Some 3rd generation Intel® Xeon® Scalable Processor Family processors are based on the Cooper Lake product,
and some are based on the Ice Lake microarchitecture; both support Intel 64 architecture.

The 12th generation Intel® Core™ processors supporting Alder Lake performance hybrid architecture support Intel
64 architecture.

The 13th generation Intel® Core™ processors are based on the Raptor Lake performance hybrid architecture and
support Intel 64 architecture.

The 4th generation Intel® Xeon® Scalable Processor Family is based on Sapphire Rapids microarchitecture and
supports Intel 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit microproces-
sors. Intel® 64 architecture is the instruction set architecture and programming environment which is the superset
of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE

A description of this manual’s content follows?:

Chapter 1 — About This Manual. Gives an overview of all volumes of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual. It also describes the notational conventions in these manuals and lists related Intel
manuals and documentation of interest to programmers and hardware designers.

Chapter 2 — System Architecture Overview. Describes the modes of operation used by Intel 64 and IA-32
processors and the mechanisms provided by the architectures to support operating systems and executives,

1. Model-Specific Registers have been moved out of this volume and into a separate volume: Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 4.

1-4 Vol. 3A

ABOUT THIS MANUAL

including the system-oriented registers and data structures and the system-oriented instructions. The steps neces-
sary for switching between real-address and protected modes are also identified.

Chapter 3 — Protected-Mode Memory Management. Describes the data structures, registers, and instructions
that support segmentation and paging. The chapter explains how they can be used to implement a “flat” (unseg-
mented) memory model or a segmented memory model.

Chapter 4 — Paging. Describes the paging modes supported by Intel 64 and IA-32 processors.

Chapter 5 — Protection. Describes the support for page and segment protection provided in the Intel 64 and IA-
32 architectures. This chapter also explains the implementation of privilege rules, stack switching, pointer valida-
tion, user mode, and supervisor mode.

Chapter 6 — Interrupt and Exception Handling. Describes the basic interrupt mechanisms defined in the Intel
64 and IA-32 architectures, shows how interrupts and exceptions relate to protection, and describes how the archi-
tecture handles each exception type. Reference information for each exception is given in this chapter. Includes
programming the LINTO and LINT1 inputs and gives an example of how to program the LINTO and LINT1 pins for
specific interrupt vectors.

Chapter 7 — User Interrupts. Describes user interrupts supported by Intel 64 and IA-32 processors.

Chapter 8 — Task Management. Describes mechanisms the Intel 64 and IA-32 architectures provide to support
multitasking and inter-task protection.

Chapter 9 — Multiple-Processor Management. Describes the instructions and flags that support multiple
processors with shared memory, memory ordering, and Intel® Hyper-Threading Technology. Includes MP initializa-
tion for P6 family processors and gives an example of how to use the MP protocol to boot P6 family processors in
an MP system.

Chapter 10 — Processor Management and Initialization. Defines the state of an Intel 64 or IA-32 processor
after reset initialization. This chapter also explains how to set up an Intel 64 or IA-32 processor for real-address
mode operation and protected- mode operation, and how to switch between modes.

Chapter 11 — Advanced Programmable Interrupt Controller (APIC). Describes the programming interface
to the local APIC and gives an overview of the interface between the local APIC and the I/O APIC. Includes APIC bus
message formats and describes the message formats for messages transmitted on the APIC bus for P6 family and
Pentium processors.

Chapter 12 — Memory Cache Control. Describes the general concept of caching and the caching mechanisms
supported by the Intel 64 or IA-32 architectures. This chapter also describes the memory type range registers
(MTRRs) and how they can be used to map memory types of physical memory. Information on using the new cache
control and memory streaming instructions introduced with the Pentium Ill, Pentium 4, and Intel Xeon processors
is also given.

Chapter 13 — Intel® MMX™ Technology System Programming. Describes those aspects of the Intel® MMX™
technology that must be handled and considered at the system programming level, including: task switching,
exception handling, and compatibility with existing system environments.

Chapter 14 — System Programming For Instruction Set Extensions And Processor Extended States.
Describes the operating system requirements to support SSE/SSE2/SSE3/SSSE3/SSE4 extensions, including task
switching, exception handling, and compatibility with existing system environments. The latter part of this chapter
describes the extensible framework of operating system requirements to support processor extended states.
Processor extended state may be required by instruction set extensions beyond those of
SSE/SSE2/SSE3/SSSE3/SSE4 extensions.

Chapter 15 — Power and Thermal Management. Describes facilities of Intel 64 and IA-32 architecture used for
power management and thermal monitoring.

Chapter 16 — Machine-Check Architecture. Describes the machine-check architecture and machine-check
exception mechanism found in the Pentium 4, Intel Xeon, and P6 family processors. Additionally, a signaling mech-
anism for software to respond to hardware corrected machine check error is covered.

Chapter 17 — Interpreting Machine-Check Error Codes. Gives an example of how to interpret the error codes
for a machine-check error that occurred on a P6 family processor.

Chapter 18 — Debug, Branch Profile, TSC, and Resource Monitoring Features. Describes the debugging
registers and other debug mechanism provided in Intel 64 or IA-32 processors. This chapter also describes the
time-stamp counter.

Vol.3A 1-5

ABOUT THIS MANUAL

Chapter 19 — Last Branch Records. Describes the Last Branch Records (architectural feature).

Chapter 20 — Performance Monitoring. Describes the Intel 64 and IA-32 architectures’ facilities for monitoring
performance.

Chapter 21 — 8086 Emulation. Describes the real-address and virtual-8086 modes of the IA-32 architecture.

Chapter 22 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and 32-bit code modules within the
same program or task.

Chapter 23 — IA-32 Architecture Compatibility. Describes architectural compatibility among IA-32 proces-
sors.

Chapter 24 — Introduction to Virtual Machine Extensions. Describes the basic elements of virtual machine
architecture and the virtual machine extensions for Intel 64 and IA-32 Architectures.

Chapter 25 — Virtual Machine Control Structures. Describes components that manage VMX operation. These
include the working-VMCS pointer and the controlling-VMCS pointer.

Chapter 26 — VMX Non-Root Operation. Describes the operation of a VMX non-root operation. Processor oper-
ation in VMX non-root mode can be restricted programmatically such that certain operations, events or conditions
can cause the processor to transfer control from the guest (running in VMX non-root mode) to the monitor software
(running in VMX root mode).

Chapter 27 — VM Entries. Describes VM entries. VM entry transitions the processor from the VMM running in VMX
root-mode to a VM running in VMX non-root mode. VM-Entry is performed by the execution of VMLAUNCH or VMRE-
SUME instructions.

Chapter 28 — VM Exits. Describes VM exits. Certain events, operations or situations while the processor is in VMX
non-root operation may cause VM-exit transitions. In addition, VM exits can also occur on failed VM entries.

Chapter 29 — VMX Support for Address Translation. Describes virtual-machine extensions that support
address translation and the virtualization of physical memory.

Chapter 30 — APIC Virtualization and Virtual Interrupts. Describes the VMCS including controls that enable
the virtualization of interrupts and the Advanced Programmable Interrupt Controller (APIC).

Chapter 31 — VMX Instruction Reference. Describes the virtual-machine extensions (VMX). VMX is intended
for a system executive to support virtualization of processor hardware and a system software layer acting as a host
to multiple guest software environments.

Chapter 32 — System Management Mode. Describes Intel 64 and IA-32 architectures’ system management
mode (SMM) facilities.

Chapter 33 — Intel® Processor Trace. Describes details of Intel® Processor Trace.

Chapter 34 — Introduction to Intel® Software Guard Extensions. Provides an overview of the Intel® Soft-
ware Guard Extensions (Intel® SGX) set of instructions.

Chapter 35 — Enclave Access Control and Data Structures. Describes Enclave Access Control procedures and
defines various Intel SGX data structures.

Chapter 36 — Enclave Operation. Describes enclave creation and initialization, adding pages and measuring an
enclave, and enclave entry and exit.

Chapter 37 — Enclave Exiting Events. Describes enclave-exiting events (EEE) and asynchronous enclave exit
(AEX).

Chapter 38 — SGX Instruction References. Describes the supervisor and user level instructions provided by
Intel SGX.

Chapter 39 — Intel® SGX Interactions with IA32 and Intel® 64 Architecture. Describes the Intel SGX
collection of enclave instructions for creating protected execution environments on processors supporting IA32 and
Intel 64 architectures.

Chapter 40 — Enclave Code Debug and Profiling. Describes enclave code debug processes and options.

Appendix A — VMX Capability Reporting Facility. Describes the VMX capability MSRs. Support for specific VMX
features is determined by reading capability MSRs.

1-6 Vol. 3A

ABOUT THIS MANUAL

Appendix B — Field Encoding in VMCS. Enumerates all fields in the VMCS and their encodings. Fields are
grouped by width (16-bit, 32-bit, etc.) and type (guest-state, host-state, etc.).

Appendix C — VM Basic Exit Reasons. Describes the 32-bit fields that encode reasons for a VM exit. Examples
of exit reasons include, but are not limited to: software interrupts, processor exceptions, software traps, NMIs,
external interrupts, and triple faults.

1.3 NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic representation of instructions, and for
hexadecimal and binary numbers. A review of this notation makes the manual easier to read.

1.3.1 Bit and Byte Order

Inillustrations of data structures in memory, smaller addresses appear toward the bottom of the figure; addresses
increase toward the top. Bit positions are numbered from right to left. The numerical value of a set bit is equal to
two raised to the power of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this means
the bytes of a word are numbered starting from the least significant byte. Figure 1-1 illustrates these conventions.

1.3.2 Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When bits are marked as
reserved, it is essential for compatibility with future processors that software treat these bits as having a future,
though unknown, effect. The behavior of reserved bits should be regarded as not only undefined, but unpredict-
able. Software should follow these guidelines in dealing with reserved bits:

®* Do not depend on the states of any reserved bits when testing the values of registers which contain such bits.
Mask out the reserved bits before testing.

®* Do not depend on the states of any reserved bits when storing to memory or to a register.
®* Do not depend on the ability to retain information written into any reserved bits.

®* When loading a register, always load the reserved bits with the values indicated in the documentation, if any,
or reload them with values previously read from the same register.

NOTE

Avoid any software dependence upon the state of reserved bits in Intel 64 and IA-32 registers.
Depending upon the values of reserved register bits will make software dependent upon the
unspecified manner in which the processor handles these bits. Programs that depend upon
reserved values risk incompatibility with future processors.

Data Structure
31 24 23 16 15 8 7 0 <«— Bit offset
28
24
20
16
12
8

Highest
Address

Lowest
Address

Byte 3 Byte 2 Byte 1 Byte0 | O

A

Byte Offset

Figure 1-1. Bit and Byte Order

Vol.3A 1-7

ABOUT THIS MANUAL

1.3.3 Instruction Operands

When instructions are represented symbolically, a subset of assembly language is used. In this subset, an instruc-
tion has the following format:
label: mnemonic argument1, argument2, argument3
where:
®* Alabel is an identifier which is followed by a colon.
* A mnemonic is a reserved name for a class of instruction opcodes which have the same function.

®* The operands argumentl, argument2, and argument3 are optional. There may be from zero to three
operands, depending on the opcode. When present, they take the form of either literals or identifiers for data
items. Operand identifiers are either reserved names of registers or are assumed to be assigned to data items
declared in another part of the program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the source and the left
operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is the destination operand,
and SUBTOTAL is the source operand. Some assembly languages put the source and destination in reverse order.

1.3.4 Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by the character H (for
example, F82EH). A hexadecimal digit is a character from the following set: 0, 1, 2, 3,4, 5,6, 7,8,9,A,B,C, D,
E, and F.

Base 2 (binary) numbers are represented by a string of 1s and Os, sometimes followed by the character B (for
example, 1010B). The “B” designation is only used in situations where confusion as to the type of number might
arise.

1.3.5 Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a sequence of bytes.
Whether one or more bytes are being accessed, a byte address is used to locate the byte or bytes memory. The
range of memory that can be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing where a program may have many
independent address spaces, called segments. For example, a program can keep its code (instructions) and stack
in separate segments. Code addresses would always refer to the code space, and stack addresses would always
refer to the stack space. The following notation is used to specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment pointed by the DS
register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS register points to the
code segment and the EIP register contains the address of the instruction.

CS:EP

1-8 Vol. 3A

1.3.6

Syntax for CPUID, CR, and MSR Values

ABOUT THIS MANUAL

Obtain feature flags, status, and system information by using the CPUID instruction, by checking control register
bits, and by reading model-specific registers. We are moving toward a single syntax to represent this type of infor-

mation. See Figure 1-2.

CPUID Input and Output

CPUID.01H:EDX.SSE[bit 25] = 1

Control Register Values

Input value for EAX register

Output register and feature flag or field
name with bit position(s)

Value (or range) of output

CR4.0SFXSR{bit 9] = 1

]

Example CR name

Feature flag or field name
with bit position(s)

Value (or range) of output

Model-Specific Register Values

IA32_MISC_ENABLE.ENABLEFOPCODE[bit 2] = 1

i

Example MSR name

Feature flag or field name with bit position(s)

Value (or range) of output

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation

1.3.7 Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example, an attempt to
divide by zero generates an exception. However, some exceptions, such as breakpoints, occur under other condi-
tions. Some types of exceptions may provide error codes. An error code reports additional information about the

error. An example of the notation used to show an exception and error code is shown below:

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a type of fault is
reported. Under some conditions, exceptions which produce error codes may not be able to report an accurate

code. In this case, the error code is zero, as shown below for a general-protection exception:

#GP(0)

Vol.3A 1-9

ABOUT THIS MANUAL

1.4 RELATED LITERATURE

Literature related to Intel 64 and IA-32 processors is listed and viewable on-line at:
https://software.intel.com/en-us/articles/intel-sdm

See also:

The latest security information on Intel® products:
https://www.intel.com/content/www/us/en/security-center/default.html

Software developer resources, guidance, and insights for security advisories:
https://software.intel.com/security-software-guidance/

The data sheet for a particular Intel 64 or IA-32 processor
The specification update for a particular Intel 64 or IA-32 processor

Intel® C++ Compiler documentation and online help:
http://software.intel.com/en-us/articles/intel-compilers/

Intel® Fortran Compiler documentation and online help:
http://software.intel.com/en-us/articles/intel-compilers/

Intel® Software Development Tools:
https://software.intel.com/en-us/intel-sdp-home

Intel® 64 and IA-32 Architectures Software Developer’s Manual (in one, four or ten volumes):
https://software.intel.com/en-us/articles/intel-sdm

Intel® 64 and IA-32 Architectures Optimization Reference Manual:
https://software.intel.com/en-us/articles/intel-sdm#optimization

Intel® Trusted Execution Technology Measured Launched Environment Programming Guide:
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html

Intel® Software Guard Extensions (Intel® SGX) Information
https://software.intel.com/en-us/isa-extensions/intel-sgx

Developing Multi-threaded Applications: A Platform Consistent Approach:
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applica-
tions.pdf

Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
https://software.intel.com/sites/default/files/22/30/25602

Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

Literature related to select features in future Intel processors are available at:

Intel® Architecture Instruction Set Extensions Programming Reference
https://software.intel.com/en-us/isa-extensions

More relevant links are:

Intel® Developer Zone:

https://software.intel.com/en-us

Developer centers:
http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
Processor support general link:

http://www.intel.com/support/processors/

Intel® Hyper-Threading Technology (Intel® HT Technology):
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm

1-10 Vol. 3A

http://developer.intel.com/technology/hyperthread/
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/isa-extensions/intel-sgx
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://software.intel.com/en-us/articles/intel-compilers/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://software.intel.com/en-us/articles/intel-compilers/
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
https://software.intel.com/en-us
https://software.intel.com/en-us
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
https://software.intel.com/en-us/articles/resource-center/
http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
http://www.intel.com/support/processors/
https://software.intel.com/en-us/intel-sdp-home
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applications.pdf
https://software.intel.com/en-us/isa-extensions
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm#optimization
https://software.intel.com/sites/default/files/22/30/25602
https://www.intel.com/content/www/us/en/security-center/default.html
https://software.intel.com/security-software-guidance/

CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW

IA-32 architecture (beginning with the Intel386 processor family) provides extensive support for operating-system
and system-development software. This support offers multiple modes of operation, which include:

®* Real mode, protected mode, virtual 8086 mode, and system management mode. These are sometimes
referred to as legacy modes.

Intel 64 architecture supports almost all the system programming facilities available in IA-32 architecture and
extends them to a new operating mode (IA-32e mode) that supports a 64-bit programming environment. IA-32e
mode allows software to operate in one of two sub-modes:

® 64-bit mode supports 64-bit OS and 64-bit applications

®* Compatibility mode allows most legacy software to run; it co-exists with 64-bit applications under a 64-bit OS.
The IA-32 system-level architecture includes features to assist in the following operations:
® Memory management.

®* Protection of software modules.

® Multitasking.

®* Exception and interrupt handling.

® Multiprocessing.

®* Cache management.

® Hardware resource and power management.

®* Debugging and performance monitoring.

This chapter provides a description of each part of this architecture. It also describes the system registers that are
used to set up and control the processor at the system level and gives a brief overview of the processor’s system-
level (operating system) instructions.

Many features of the system-level architecture are used only by system programmers. However, application
programmers may need to read this chapter and the following chapters in order to create a reliable and secure
environment for application programs.

This overview and most subsequent chapters of this book focus on protected-mode operation of the IA-32 architec-
ture. IA-32e mode operation of the Intel 64 architecture, as it differs from protected mode operation, is also
described.

All Intel 64 and IA-32 processors enter real-address mode following a power-up or reset (see Chapter 10,
“Processor Management and Initialization”). Software then initiates the switch from real-address mode to
protected mode. If IA-32e mode operation is desired, software also initiates a switch from protected mode to IA-
32e mode.

2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE

System-level architecture consists of a set of registers, data structures, and instructions designed to support basic
system-level operations such as memory management, interrupt and exception handling, task management, and
control of multiple processors.

Figure 2-1 provides a summary of system registers and data structures that applies to 32-bit modes. System regis-
ters and data structures that apply to IA-32e mode are shown in Figure 2-2.

Vol. 3A 2-1

SYSTEM ARCHITECTURE OVERVIEW

Y

*Physical Address

EFLAGS Register Physica &ddress Code, Data or
: Linear Address Stack Segment
Control Regls.tersCR4 S—>S | Task-State
egment Selector Segment (TSS)
e S LErer=
CR2 oSl
CR1 Register 7 >Data
- CRO Global Descriptor Stack
Task Register Table (GDT)
[Segment Sel. | - »| Seg. Desc. | Irgerrupt Handler
| Code |
Current- — »
Interrupt TSS Seg. Sel.; — »| TSS Desc. TSS L Stack
Vector)
- - - - > Seg. Desc.
Interrupt Descriptor | 4 Task-State
Table (IDT) | . _ 3! TSS Desc. Segment _(T_S§)) Task
b - = Code
Interrupt Gate| - — = | LDT Desc. |— " P Data
| - - ‘;
Task Gate |- - - - - Stack
GDTR
> Trap Gate [- -~ .
‘ Local Descriptor Exception Handler
b Table (LDT) “TCode |
‘ Current- — > Stack
IDTR Call-Gate -»| Seg. Desc. TSS |_
Segment Selector
| F-> CallGate | |- - N Protected Procedure
XCRO (XFEM) [;:LDTR < Current- — »2°%
TSS Stack
L
Linear Address Space Linear Address
J—>l Dir | Table Offset |
Linear Addr. Page Directory Page Table Page
Physical Addr.
Pg. Dir. Entry Pg. Tbl. Entry
. 3 3
0 This page mapping example is for 4-KByte pages
and 32-bit paging.

Figure 2-1. IA-32 System-Level Registers and Data Structures

2-2 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

RFLAGS
i —>
EWS_'C? Iiddress Code, Data or Stack
Control Register Linear Address Segment (Base =0)
CR8 Task-State
CR4 Segment Selector Segment (TSS)
CR3 i >
CR2
CR1
CRO)
Global D t
Task Register OTa?)Ie (eng_llp) or
[SegmentSel. |} - »| Seg. Desc. |— Irgelrrupt Handler
NULL - - aS0de]
Interrupt TR } — »| TSS Desc. L Stack
Vector
. - — - —» Seg. Desc.
Interrupt Descriptor |
Table (IDT) I — — »| Seg.Desc. | Interr. Handler
h Code
Interrupt Gate | — — | LDT Desc. - Current TSS
[’—V
Stack
Interrupt Gate | - - -
= GDTR IST—
“»| Trap Gate |- -~)
! Local Descriptor Exception Handler
! >
L Table (LDT) NULL [Code |
! Stack
IDTR Cal-Gate -3| Seg. Desc. | |
Segment Selector
| - > CallGate ||~ - N Protected Procedure
XCRO (XFEM) TBTR < NULL - — ;Code

|_ Stack

Linear Address Space Linear Address
J—>l PML4 [Dir. Pointer | Directory [Table [Offset |
Linear Addr.
PML4 Pg. Dir. Ptr.| Page Dir. Page Table Page

Physical

PMLA4. Pg. Dir. Page Tbl Addr.
Entry Entry Entry
>

0 This page mapping example is for 4-KByte pages
and 4-level paging.

*Physical Address

Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode and 4-Level Paging

2.1.1 Global and Local Descriptor Tables

When operating in protected mode, all memory accesses pass through either the global descriptor table (GDT) or
an optional local descriptor table (LDT) as shown in Figure 2-1. These tables contain entries called segment

descriptors. Segment descriptors provide the base address of segments well as access rights, type, and usage
information.

Vol. 3A 2-3

SYSTEM ARCHITECTURE OVERVIEW

Each segment descriptor has an associated segment selector. A segment selector provides the software that uses
it with an index into the GDT or LDT (the offset of its associated segment descriptor), a global/local flag (deter-
mines whether the selector points to the GDT or the LDT), and access rights information.

To access a byte in a segment, a segment selector and an offset must be supplied. The segment selector provides
access to the segment descriptor for the segment (in the GDT or LDT). From the segment descriptor, the processor
obtains the base address of the segment in the linear address space. The offset then provides the location of the
byte relative to the base address. This mechanism can be used to access any valid code, data, or stack segment,
provided the segment is accessible from the current privilege level (CPL) at which the processor is operating. The
CPL is defined as the protection level of the currently executing code segment.

See Figure 2-1. The solid arrows in the figure indicate a linear address, dashed lines indicate a segment selector,
and the dotted arrows indicate a physical address. For simplicity, many of the segment selectors are shown as
direct pointers to a segment. However, the actual path from a segment selector to its associated segment is always
through a GDT or LDT.

The linear address of the base of the GDT is contained in the GDT register (GDTR); the linear address of the LDT is
contained in the LDT register (LDTR).

2.1.1.1 Global and Local Descriptor Tables in IA-32e Mode

GDTR and LDTR registers are expanded to 64-bits wide in both IA-32e sub-modes (64-bit mode and compatibility
mode). For more information: see Section 3.5.2, “"Segment Descriptor Tables in IA-32e Mode.”

Global and local descriptor tables are expanded in 64-bit mode to support 64-bit base addresses, (16-byte LDT
descriptors hold a 64-bit base address and various attributes). In compatibility mode, descriptors are not
expanded.

2.1.2 System Segments, Segment Descriptors, and Gates

Besides code, data, and stack segments that make up the execution environment of a program or procedure, the
architecture defines two system segments: the task-state segment (TSS) and the LDT. The GDT is not considered
a segment because it is not accessed by means of a segment selector and segment descriptor. TSSs and LDTs have
segment descriptors defined for them.

The architecture also defines a set of special descriptors called gates (call gates, interrupt gates, trap gates, and
task gates). These provide protected gateways to system procedures and handlers that may operate at a different
privilege level than application programs and most procedures. For example, a CALL to a call gate can provide
access to a procedure in a code segment that is at the same or a numerically lower privilege level (more privileged)
than the current code segment. To access a procedure through a call gate, the calling procedure! supplies the
selector for the call gate. The processor then performs an access rights check on the call gate, comparing the CPL
with the privilege level of the call gate and the destination code segment pointed to by the call gate.

If access to the destination code segment is allowed, the processor gets the segment selector for the destination
code segment and an offset into that code segment from the call gate. If the call requires a change in privilege
level, the processor also switches to the stack for the targeted privilege level. The segment selector for the new
stack is obtained from the TSS for the currently running task. Gates also facilitate transitions between 16-bit and
32-bit code segments, and vice versa.

2.1.2.1 Gates in IA-32e Mode

In IA-32e mode, the following descriptors are 16-byte descriptors (expanded to allow a 64-bit base): LDT descrip-
tors, 64-bit TSSs, call gates, interrupt gates, and trap gates.

Call gates facilitate transitions between 64-bit mode and compatibility mode. Task gates are not supported in IA-
32e mode. On privilege level changes, stack segment selectors are not read from the TSS. Instead, they are set to
NULL.

1. The word “procedure” is commonly used in this document as a general term for a logical unit or block of code (such as a program, pro-
cedure, function, or routine).

2-4 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

2.1.3 Task-State Segments and Task Gates

The TSS (see Figure 2-1) defines the state of the execution environment for a task. It includes the state of general-
purpose registers, segment registers, the EFLAGS register, the EIP register, and segment selectors with stack
pointers for three stack segments (one stack for each privilege level). The TSS also includes the segment selector
for the LDT associated with the task and the base address of the paging-structure hierarchy.

All program execution in protected mode happens within the context of a task (called the current task). The
segment selector for the TSS for the current task is stored in the task register. The simplest method for switching
to a task is to make a call or jump to the new task. Here, the segment selector for the TSS of the new task is given
in the CALL or JMP instruction. In switching tasks, the processor performs the following actions:

Stores the state of the current task in the current TSS.

2. Loads the task register with the segment selector for the new task.
3. Accesses the new TSS through a segment descriptor in the GDT.
4. Loads the state of the new task from the new TSS into the general-purpose registers, the segment registers,

the LDTR, control register CR3 (base address of the paging-structure hierarchy), the EFLAGS register, and the
EIP register.

5. Begins execution of the new task.

A task can also be accessed through a task gate. A task gate is similar to a call gate, except that it provides access
(through a segment selector) to a TSS rather than a code segment.

2.1.3.1 Task-State Segments in IA-32e Mode

Hardware task switches are not supported in IA-32e mode. However, TSSs continue to exist. The base address of
a TSS is specified by its descriptor.

A 64-bit TSS holds the following information that is important to 64-bit operation:
® Stack pointer addresses for each privilege level.

®* Pointer addresses for the interrupt stack table.

* Offset address of the I0-permission bitmap (from the TSS base).

The task register is expanded to hold 64-bit base addresses in IA-32e mode. See also: Section 8.7, “Task Manage-
ment in 64-bit Mode.”

2.1.4 Interrupt and Exception Handling

External interrupts, software interrupts and exceptions are handled through the interrupt descriptor table (IDT).
The IDT stores a collection of gate descriptors that provide access to interrupt and exception handlers. Like the
GDT, the IDT is not a segment. The linear address for the base of the IDT is contained in the IDT register (IDTR).

Gate descriptors in the IDT can be interrupt, trap, or task gate descriptors. To access an interrupt or exception
handler, the processor first receives an interrupt vector from internal hardware, an external interrupt controller, or
from software by means of an INT n, INTO, INT3, INT1, or BOUND instruction. The interrupt vector provides an
index into the IDT. If the selected gate descriptor is an interrupt gate or a trap gate, the associated handler proce-
dure is accessed in a manner similar to calling a procedure through a call gate. If the descriptor is a task gate, the
handler is accessed through a task switch.

2.1.4.1 Interrupt and Exception Handling IA-32e Mode

In IA-32e mode, interrupt gate descriptors are expanded to 16 bytes to support 64-bit base addresses. This is true
for 64-bit mode and compatibility mode.

The IDTR register is expanded to hold a 64-bit base address. Task gates are not supported.

Vol. 3A 2-5

SYSTEM ARCHITECTURE OVERVIEW

2.1.5 Memory Management

System architecture supports either direct physical addressing of memory or virtual memory (through paging).
When physical addressing is used, a linear address is treated as a physical address. When paging is used: all code,
data, stack, and system segments (including the GDT and IDT) can be paged with only the most recently accessed
pages being held in physical memory.

The location of pages (sometimes called page frames) in physical memory is contained in the paging structures.
These structures reside in physical memory (see Figure 2-1 for the case of 32-bit paging).

The base physical address of the paging-structure hierarchy is contained in control register CR3. The entries in the
paging structures determine the physical address of the base of a page frame, access rights and memory manage-
ment information.

To use this paging mechanism, a linear address is broken into parts. The parts provide separate offsets into the
paging structures and the page frame. A system can have a single hierarchy of paging structures or several. For
example, each task can have its own hierarchy.

2.1.5.1 Memory Management in IA-32e Mode

In IA-32e mode, physical memory pages are managed by a set of system data structures. In both compatibility
mode and 64-bit mode, four or five levels of system data structures are used (see Chapter 4, “Paging”). These
include the following:

®* The page map level 5 (PML5) — An entry in the PML5 table contains the physical address of the base of a
PML4 table, access rights, and memory management information. The base physical address of the PML5 table
is stored in CR3. The PMLS5 table is used only with 5-level paging.

* A page map level 4 (PML4) — An entry in a PML4 table contains the physical address of the base of a page
directory pointer table, access rights, and memory management information. With 4-level paging, there is only
one PML4 table and its base physical address is stored in CR3.

* A set of page directory pointer tables — An entry in a page directory pointer table contains the physical
address of the base of a page directory table, access rights, and memory management information.

* Sets of page directories — An entry in a page directory table contains the physical address of the base of a
page table, access rights, and memory management information.

®* Sets of page tables — An entry in a page table contains the physical address of a page frame, access rights,
and memory management information.

2.1.6 System Registers

To assist in initializing the processor and controlling system operations, the system architecture provides system
flags in the EFLAGS register and several system registers:

®* The system flags and IOPL field in the EFLAGS register control task and mode switching, interrupt handling,
instruction tracing, and access rights. See also: Section 2.3, "System Flags and Fields in the EFLAGS Register.

®* The control registers (CR0O, CR2, CR3, and CR4) contain a variety of flags and data fields for controlling system-
level operations. Other flags in these registers are used to indicate support for specific processor capabilities
within the operating system or executive. See also: Chapter 2, "Control Registers,” and Section 2.6, “"Extended
Control Registers (Including XCR0O).”

® The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for use in debugging programs
and systems software. See also: Chapter 18, "Debug, Branch Profile, TSC, and Intel® Resource Director
Technology (Intel® RDT) Features.”

®* The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes (limits) of their respective tables.
See also: Section 2.4, "Memory-Management Registers.”

”

® The task register contains the linear address and size of the TSS for the current task. See also: Section 2.4,
“Memory-Management Registers.”

®* Model-specific registers (not shown in Figure 2-1).

2-6 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

The model-specific registers (MSRs) are a group of registers available primarily to operating-system or executive
procedures (that is, code running at privilege level 0). These registers control items such as the debug extensions,
the performance-monitoring counters, the machine- check architecture, and the memory type ranges (MTRRs).

The number and function of these registers varies among different members of the Intel 64 and IA-32 processor
families. See also: Section 10.4, "Model-Specific Registers (MSRs),” and Chapter 2, "Model-Specific Registers
(MSRs),” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

Most systems restrict access to system registers (other than the EFLAGS register) by application programs.
Systems can be designed, however, where all programs and procedures run at the most privileged level (privilege
level 0). In such a case, application programs would be allowed to modify the system registers.

2.1.6.1 System Registers in IA-32e Mode

In IA-32e mode, the four system-descriptor-table registers (GDTR, IDTR, LDTR, and TR) are expanded in hardware
to hold 64-bit base addresses. EFLAGS becomes the 64-bit RFLAGS register. CRO-CR4 are expanded to 64 bits.
CR8 becomes available. CR8 provides read-write access to the task priority register (TPR) so that the operating
system can control the priority classes of external interrupts.

In 64-bit mode, debug registers DRO-DR7 are 64 bits. In compatibility mode, address-matching in DRO-DR3 is
also done at 64-bit granularity.

On systems that support IA-32e mode, the extended feature enable register (IA32_EFER) is available. This model-
specific register controls activation of IA-32e mode and other IA-32e mode operations. In addition, there are
several model-specific registers that govern IA-32e mode instructions:

* 1IA32_KERNEL_GS_BASE — Used by SWAPGS instruction.
® IA32_LSTAR — Used by SYSCALL instruction.

* 1IA32_FMASK — Used by SYSCALL instruction.

® IA32_STAR — Used by SYSCALL and SYSRET instruction.

2.1.7 Other System Resources

Besides the system registers and data structures described in the previous sections, system architecture provides
the following additional resources:

® Operating system instructions (see also: Section 2.8, “System Instruction Summary”).
® Performance-monitoring counters (not shown in Figure 2-1).
* Internal caches and buffers (not shown in Figure 2-1).

Performance-monitoring counters are event counters that can be programmed to count processor events such as
the number of instructions decoded, the number of interrupts received, or the number of cache loads.

The processor provides several internal caches and buffers. The caches are used to store both data and instruc-
tions. The buffers are used to store things like decoded addresses to system and application segments and write
operations waiting to be performed. See also: Chapter 12, *“Memory Cache Control.”

2.2 MODES OF OPERATION

The IA-32 architecture supports three operating modes and one quasi-operating mode:

®* Protected mode — This is the native operating mode of the processor. It provides a rich set of architectural
features, flexibility, high performance and backward compatibility to existing software base.

®* Real-address mode — This operating mode provides the programming environment of the Intel 8086
processor, with a few extensions (such as the ability to switch to protected or system management mode).

* System management mode (SMM) — SMM is a standard architectural feature in all IA-32 processors,
beginning with the Intel386 SL processor. This mode provides an operating system or executive with a
transparent mechanism for implementing power management and OEM differentiation features. SMM is
entered through activation of an external system interrupt pin (SMI#), which generates a system management

Vol. 3A 2-7

SYSTEM ARCHITECTURE OVERVIEW

interrupt (SMI). In SMM, the processor switches to a separate address space while saving the context of the
currently running program or task. SMM-specific code may then be executed transparently. Upon returning
from SMM, the processor is placed back into its state prior to the SMI.

Virtual-8086 mode — In protected mode, the processor supports a quasi-operating mode known as virtual-
8086 mode. This mode allows the processor execute 8086 software in a protected, multitasking environment.

Intel 64 architecture supports all operating modes of IA-32 architecture and IA-32e modes:

* IA-32e mode — In IA-32e mode, the processor supports two sub-modes: compatibility mode and 64-bit
mode. 64-bit mode provides 64-bit linear addressing and support for physical address space larger than 64
GBytes. Compatibility mode allows most legacy protected-mode applications to run unchanged.

Figure 2-3 shows how the processor moves between operating modes.

SMI#

Real-Address
Mode

Reset
or
Reset or _ RSM
PE=0 T PE=1
SMI#
Reset
Protected Mode RSN System
Management

LME=1, CRO.PG=1" g4 Mode
:\ s
See -
RSM
VM=0 VM=1
* See Section 10.8.5
Virtual-8086 See Section 10.8.5.4

Mode

Figure 2-3. Transitions Among the Processor’'s Operating Modes

The processor is placed in real-address mode following power-up or a reset. The PE flag in control register CRO then
controls whether the processor is operating in real-address or protected mode. See also: Section 10.9, "Mode
Switching,” and Section 4.1.2, “Paging-Mode Enabling.”

The VM flag in the EFLAGS register determines whether the processor is operating in protected mode or virtual-
8086 mode. Transitions between protected mode and virtual-8086 mode are generally carried out as part of a task
switch or a return from an interrupt or exception handler. See also: Section 21.2.5, “Entering Virtual-8086 Mode.”

The LMA bit (IA32_EFER.LMA[bit 10]) determines whether the processor is operating in IA-32e mode. When
running in IA-32e mode, 64-bit or compatibility sub-mode operation is determined by CS.L bit of the code segment.
The processor enters into IA-32e mode from protected mode by enabling paging and setting the LME bit
(IA32_EFER.LME[bit 8]). See also: Chapter 10, “"Processor Management and Initialization.”

The processor switches to SMM whenever it receives an SMI while the processor is in real-address, protected,
virtual-8086, or IA-32e modes. Upon execution of the RSM instruction, the processor always returns to the mode
it was in when the SMI occurred.

2-8 Vol.3A

2.2.1

SYSTEM ARCHITECTURE OVERVIEW

Extended Feature Enable Register

The IA32_EFER MSR provides several fields related to IA-32e mode enabling and operation. It also provides one
field that relates to page-access right modification (see Section 4.6, “Access Rights”). The layout of the
IA32_EFER MSR is shown in Figure 2-4.

63 121110 9 8 7 1.0

IA32_EFER

Execute Disable Bit Enable

1A-32e Mode Active

1A-32e Mode Enable

SYSCALL Enable

D Reserved

Figure 2-4. IA32_EFER MSR Layout

Table 2-1. IA32_EFER MSR Information

Bit Description
0 SYSCALL Enable: IA32_EFER.SCE (R/W)
Enables SYSCALL/SYSRET instructions in 64-bit mode.
7:1 Reserved.
8 IA-32e Mode Enable: IA32_EFER.LME (R/W)
Enables IA-32e mode operation.
9 Reserved.
10 IA-32e Mode Active: IA32_EFER.LMA (R)
Indicates IA-32e mode is active when set.
11 Execute Disable Bit Enable: IA32_EFER.NXE (R/W)
Enables page access restriction by preventing instruction fetches from PAE pages with the XD bit set (See Section 4.6).
63:12 Reserved.
2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER

The system flags and IOPL field of the EFLAGS register control I/O, maskable hardware interrupts, debugging, task
switching, and the virtual-8086 mode (see Figure 2-5). Only privileged code (typically operating system or execu-
tive code) should be allowed to modify these bits.

The system flags and IOPL are:

TF

Trap (bit 8) — Set to enable single-step mode for debugging; clear to disable single-step mode. In single-
step mode, the processor generates a debug exception after each instruction. This allows the execution
state of a program to be inspected after each instruction. If an application program sets the TF flag using a

Vol. 3A 2-9

SYSTEM ARCHITECTURE OVERVIEW

IF

IOPL

NT

RF

VM

POPF, POPFD, or IRET instruction, a debug exception is generated after the instruction that follows the
POPF, POPFD, or IRET.

31 222120191817 161514 131211109 8 7 6 5 4 3 2 1 0

VIVIAlv]R] [n] 6 ool |t]s|z| (Al |el.|c

Reserved (set to 0) D'L;_CMFOT b |EIFIFIFIEIEIOIF|O[F|1]F
L

ID — Identification FlagQ

VIP — Virtual Interrupt Pending
VIF — Virtual Interrupt Flag
AC — Alignment Check / Access Control
VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag
IOPL— /O Privilege Level
IF — Interrupt Enable Flag
TF — Trap Flag

D Reserved

Figure 2-5. System Flags in the EFLAGS Register

Interrupt enable (bit 9) — Controls the response of the processor to maskable hardware interrupt
requests (see also: Section 6.3.2, “"Maskable Hardware Interrupts”). The flag is set to respond to maskable
hardware interrupts; cleared to inhibit maskable hardware interrupts. The IF flag does not affect the gener-
ation of exceptions or nonmaskable interrupts (NMI interrupts). The CPL, IOPL, and the state of the VME
flag in control register CR4 determine whether the IF flag can be modified by the CLI, STI, POPF, POPFD,
and IRET.

I/0 privilege level field (bits 12 and 13) — Indicates the I/O privilege level (IOPL) of the currently
running program or task. The CPL of the currently running program or task must be less than or equal to
the IOPL to access the I/O address space. The POPF and IRET instructions can modify this field only when
operating at a CPL of 0.

The IOPL is also one of the mechanisms that controls the modification of the IF flag and the handling of
interrupts in virtual-8086 mode when virtual mode extensions are in effect (when CR4.VME = 1). See also:
Chapter 19, “Input/Output,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
1.

Nested task (bit 14) — Controls the chaining of interrupted and called tasks. The processor sets this flag
on calls to a task initiated with a CALL instruction, an interrupt, or an exception. It examines and modifies
this flag on returns from a task initiated with the IRET instruction. The flag can be explicitly set or cleared
with the POPF/POPFD instructions; however, changing to the state of this flag can generate unexpected
exceptions in application programs.

See also: Section 8.4, “Task Linking.”

Resume (bit 16) — Controls the processor’s response to instruction-breakpoint conditions. When set, this
flag temporarily disables debug exceptions (#DB) from being generated for instruction breakpoints
(although other exception conditions can cause an exception to be generated). When clear, instruction
breakpoints will generate debug exceptions.

The primary function of the RF flag is to allow the restarting of an instruction following a debug exception
that was caused by an instruction breakpoint condition. Here, debug software must set this flag in the
EFLAGS image on the stack just prior to returning to the interrupted program with IRETD (to prevent the
instruction breakpoint from causing another debug exception). The processor then automatically clears
this flag after the instruction returned to has been successfully executed, enabling instruction breakpoint
faults again.

See also: Section 18.3.1.1, “Instruction-Breakpoint Exception Condition.”
Virtual-8086 mode (bit 17) — Set to enable virtual-8086 mode; clear to return to protected mode.

2-10 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

See also: Section 21.2.1, “Enabling Virtual-8086 Mode.”

AC Alignment check or access control (bit 18) — If the AM bit is set in the CRO register, alignment
checking of user-mode data accesses is enabled if and only if this flag is 1. An alignment-check exception
is generated when reference is made to an unaligned operand, such as a word at an odd byte address or a
doubleword at an address which is not an integral multiple of four. Alignment-check exceptions are gener-
ated only in user mode (privilege level 3). Memory references that default to privilege level 0, such as
segment descriptor loads, do not generate this exception even when caused by instructions executed in
user-mode.

The alignment-check exception can be used to check alignment of data. This is useful when exchanging
data with processors which require all data to be aligned. The alignment-check exception can also be used
by interpreters to flag some pointers as special by misaligning the pointer. This eliminates overhead of
checking each pointer and only handles the special pointer when used.

If the SMAP bit is set in the CR4 register, explicit supervisor-mode data accesses to user-mode pages are
allowed if and only if this bit is 1. See Section 4.6, “Access Rights.”

VIF Virtual Interrupt (bit 19) — Contains a virtual image of the IF flag. This flag is used in conjunction with
the VIP flag. The processor only recognizes the VIF flag when either the VME flag or the PVI flag in control
register CR4 is set and the IOPL is less than 3. (The VME flag enables the virtual-8086 mode extensions;
the PVI flag enables the protected-mode virtual interrupts.)

See also: Section 21.3.3.5, “"Method 6: Software Interrupt Handling,” and Section 21.4, “Protected-Mode
Virtual Interrupts.”

VIP Virtual interrupt pending (bit 20) — Set by software to indicate that an interrupt is pending; cleared to
indicate that no interrupt is pending. This flag is used in conjunction with the VIF flag. The processor reads
this flag but never modifies it. The processor only recognizes the VIP flag when either the VME flag or the
PVI flag in control register CR4 is set and the IOPL is less than 3. The VME flag enables the virtual-8086
mode extensions; the PVI flag enables the protected-mode virtual interrupts.

See Section 21.3.3.5, "Method 6: Software Interrupt Handling,” and Section 21.4, “Protected-Mode Virtual
Interrupts.”

ID Identification (bit 21) — The ability of a program or procedure to set or clear this flag indicates support
for the CPUID instruction.

2.3.1 System Flags and Fields in IA-32e Mode

In 64-bit mode, the RFLAGS register expands to 64 bits with the upper 32 bits reserved. System flags in RFLAGS
(64-bit mode) or EFLAGS (compatibility mode) are shown in Figure 2-5.

In IA-32e mode, the processor does not allow the VM bit to be set because virtual-8086 mode is not supported
(attempts to set the bit are ignored). Also, the processor will not set the NT bit. The processor does, however, allow
software to set the NT bit (note that an IRET causes a general protection fault in IA-32e mode if the NT bit is set).

In IA-32e mode, the SYSCALL/SYSRET instructions have a programmable method of specifying which bits are
cleared in RFLAGS/EFLAGS. These instructions save/restore EFLAGS/RFLAGS.

2.4 MEMORY-MANAGEMENT REGISTERS

The processor provides four memory-management registers (GDTR, LDTR, IDTR, and TR) that specify the locations
of the data structures which control segmented memory management (see Figure 2-6). Special instructions are
provided for loading and storing these registers.

Vol. 3A 2-11

SYSTEM ARCHITECTURE OVERVIEW

System Table Registers

47(79) 16 15 0
GDTR 32(64)-bit Linear Base Address 16-Bit Table Limit
IDTR 32(64)-bit Linear Base Address 16-Bit Table Limit
System Segment Segment Descriptor Registers (Automatically Loaded)
Registers
0 Attributes
Task [seq. sel 32(64)-bit Linear Base Add s t Limit
Register eg. Sel. (64)-bit Linear Base ress egment Limi
LDTR Seg. Sel. 32(64)-bit Linear Base Address Segment Limit

Figure 2-6. Memory Management Registers

2.4.1 Global Descriptor Table Register (GDTR)

The GDTR register holds the base address (32 bits in protected mode; 64 bits in IA-32e mode) and the 16-bit table
limit for the GDT. The base address specifies the linear address of byte 0 of the GDT;, the table limit specifies the
number of bytes in the table.

The LGDT and SGDT instructions load and store the GDTR register, respectively. On power up or reset of the
processor, the base address is set to the default value of 0 and the limit is set to OFFFFH. A new base address must
be loaded into the GDTR as part of the processor initialization process for protected-mode operation.

See also: Section 3.5.1, "Segment Descriptor Tables.”

2.4.2 Local Descriptor Table Register (LDTR)

The LDTR register holds the 16-bit segment selector, base address (32 bits in protected mode; 64 bits in IA-32e
mode), segment limit, and descriptor attributes for the LDT. The base address specifies the linear address of byte
0 of the LDT segment; the segment limit specifies the humber of bytes in the segment. See also: Section 3.5.1,
“Segment Descriptor Tables.”

The LLDT and SLDT instructions load and store the segment selector part of the LDTR register, respectively. The
segment that contains the LDT must have a segment descriptor in the GDT. When the LLDT instruction loads a
segment selector in the LDTR: the base address, limit, and descriptor attributes from the LDT descriptor are auto-
matically loaded in the LDTR.

When a task switch occurs, the LDTR is automatically loaded with the segment selector and descriptor for the LDT
for the new task. The contents of the LDTR are not automatically saved prior to writing the new LDT information
into the register.

On power up or reset of the processor, the segment selector and base address are set to the default value of 0 and
the limit is set to OFFFFH.

2.4.3 IDTR Interrupt Descriptor Table Register

The IDTR register holds the base address (32 bits in protected mode; 64 bits in IA-32e mode) and 16-bit table limit
for the IDT. The base address specifies the linear address of byte 0 of the IDT; the table limit specifies the number
of bytes in the table. The LIDT and SIDT instructions load and store the IDTR register, respectively. On power up or
reset of the processor, the base address is set to the default value of 0 and the limit is set to OFFFFH. The base
address and limit in the register can then be changed as part of the processor initialization process.

See also: Section 6.10, “Interrupt Descriptor Table (IDT).”

2-12 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

24.4 Task Register (TR)

The task register holds the 16-bit segment selector, base address (32 bits in protected mode; 64 bits in IA-32e
mode), segment limit, and descriptor attributes for the TSS of the current task. The selector references the TSS
descriptor in the GDT. The base address specifies the linear address of byte 0 of the TSS; the segment limit speci-
fies the number of bytes in the TSS. See also: Section 8.2.4, “Task Register.”

The LTR and STR instructions load and store the segment selector part of the task register, respectively. When the
LTR instruction loads a segment selector in the task register, the base address, limit, and descriptor attributes from
the TSS descriptor are automatically loaded into the task register. On power up or reset of the processor, the base
address is set to the default value of 0 and the limit is set to OFFFFH.

When a task switch occurs, the task register is automatically loaded with the segment selector and descriptor for
the TSS for the new task. The contents of the task register are not automatically saved prior to writing the new TSS
information into the register.

2.5 CONTROL REGISTERS

Control registers (CR0, CR1, CR2, CR3, and CR4; see Figure 2-7) determine operating mode of the processor and
the characteristics of the currently executing task. These registers are 32 bits in all 32-bit modes and compatibility
mode.

In 64-bit mode, control registers are expanded to 64 bits. The MOV CRn instructions are used to manipulate the
register bits. Operand-size prefixes for these instructions are ignored. The following is also true:

®* The control registers can be read and loaded (or modified) using the move-to-or-from-control-registers forms
of the MOV instruction. In protected mode, the MOV instructions allow the control registers to be read or loaded
(at privilege level 0 only). This restriction means that application programs or operating-system procedures
(running at privilege levels 1, 2, or 3) are prevented from reading or loading the control registers.

®* Some of the bits in CRO and CR4 are reserved and must be written with zeros. Attempting to set any reserved
bits in CRO[31:0] is ignored. Attempting to set any reserved bits in CRO[63:32] results in a general-protection
exception, #GP(0). Attempting to set any reserved bits in CR4 results in a general-protection exception,
#GP(0).

® All 64 bits of CR2 are writable by software.
® Reserved bits in CR3[63:MAXPHYADDR] must be zero. Attempting to set any of them results in #GP(0).
® The MOV CR2 instruction does not check that address written to CR2 is canonical.

®* A 64-bit capable processor will retain the upper 32 bits of each control register when transitioning out of IA-32e
mode.

®* On a 64-bit capable processor, an execution of MOV to CR outside of 64-bit mode zeros the upper 32 bits of the
control register.

® Register CR8 is available in 64-bit mode only.

The control registers are summarized below, and each architecturally defined control field in these control registers
is described individually. In Figure 2-7, the width of the register in 64-bit mode is indicated in parenthesis (except
for CRO).

® CRO — Contains system control flags that control operating mode and states of the processor.
® CR1 — Reserved.
® CR2 — Contains the page-fault linear address (the linear address that caused a page fault).

® CR3 — Contains the physical address of the base of the paging-structure hierarchy and two flags (PCD and
PWT). Only the most-significant bits (less the lower 12 bits) of the base address are specified; the lower 12 bits
of the address are assumed to be 0. The first paging structure must thus be aligned to a page (4-KByte)
boundary. The PCD and PWT flags control caching of that paging structure in the processor’s internal data
caches (they do not control TLB caching of page-directory information).

When using the physical address extension, the CR3 register contains the base address of the page-directory-
pointer table. With 4-level paging and 5-level paging, the CR3 register contains the base address of the PML4

Vol.3A 2-13

SYSTEM ARCHITECTURE OVERVIEW

table and PML5 table, respectively. If PCIDs are enabled, CR3 has a format different from that illustrated in

Figure 2-7. See Section 4.5, “4-Level Paging and 5-Level Paging.”

See also: Chapter 4, “Paging.”

®* CR4 — Contains a group of flags that enable several architectural extensions, and indicate operating system or
executive support for specific processor capabilities. Bits CR4[63:32] can only be used for IA-32e mode only
features that are enabled after entering 64-bit mode. Bits CR4[63:32] do not have any effect outside of IA-32e

mode.

® CR8 — Provides read and write access to the Task Priority Register (TPR). It specifies the priority threshold
value that operating systems use to control the priority class of external interrupts allowed to interrupt the
processor. This register is available only in 64-bit mode. However, interrupt filtering continues to apply in

compatibility mode.

31 (63) 25 24 23 2 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10
u P
A AP c MM o PlP|m[P P |T|P|V
Reserved NIKIE|K]AlE]L | x | x X C|G|C|A|S|[S|V|M|CR
T|s|T|E D E|E|E|E|E D|I|E
PP E|E P
R E
L .
OSFXSR
OSXSAVEJ FSGSBASE L
OSXMMEXCPT
31 (63) 12 1 5 4 3 2 0
) PP
Page-Directory Base clw CR3
D| T
31 (63) 0
Page-Fault Linear Address CR2
31 (63) 0
CR1
31 30 29 28 19 18 17 16 15 6 5 4 3 2 1.0
P|C|N A w N|E|[T|E|M|P
G|D|W M P E[T|s|m|P|E|CRO

|:| Reserved

2-14 Vol. 3A

Figure 2-7. Control Registers

SYSTEM ARCHITECTURE OVERVIEW

The flags in control registers are:
CRO.PG

Paging (bit 31 of CRO) — Enables paging when set; disables paging when clear. When paging is
disabled, all linear addresses are treated as physical addresses. The PG flag has no effect if the PE flag (bit
0 of register CRO) is not also set; setting the PG flag when the PE flag is clear causes a general-protection
exception (#GP). See also: Chapter 4, “Paging.”

On Intel 64 processors, enabling and disabling IA-32e mode operation also requires modifying CRO.PG.
CR0O.CD

Cache Disable (bit 30 of CRO) — When the CD and NW flags are clear, caching of memory locations for
the whole of physical memory in the processor’s internal (and external) caches is enabled. When the CD
flag is set, caching is restricted as described in Table 12-5. To prevent the processor from accessing and
updating its caches, the CD flag must be set and the caches must be invalidated so that no cache hits can
occur.

See also: Section 12.5.3, “Preventing Caching,” and Section 12.5, “"Cache Control.”

CRO.NW
Not Write-through (bit 29 of CR0O) — When the NW and CD flags are clear, write-back (for Pentium 4,
Intel Xeon, P6 family, and Pentium processors) or write-through (for Intel486 processors) is enabled for
writes that hit the cache and invalidation cycles are enabled. See Table 12-5 for detailed information about
the effect of the NW flag on caching for other settings of the CD and NW flags.

CR0O.AM
Alignment Mask (bit 18 of CR0O) — Enables automatic alignment checking when set; disables alignment
checking when clear. Alignment checking is performed only when the AM flag is set, the AC flag in the
EFLAGS register is set, CPL is 3, and the processor is operating in either protected or virtual-8086 mode.

CRO.WP
Write Protect (bit 16 of CR0O) — When set, inhibits supervisor-level procedures from writing into read-
only pages; when clear, allows supervisor-level procedures to write into read-only pages (regardless of the
U/S bit setting; see Section 4.1.3 and Section 4.6). This flag facilitates implementation of the copy-on-
write method of creating a new process (forking) used by operating systems such as UNIX. This flag must
be set before software can set CR4.CET, and it cannot be cleared as long as CR4.CET = 1 (see below).

CRO.NE
Numeric Error (bit 5 of CR0) — Enables the native (internal) mechanism for reporting x87 FPU errors
when set; enables the PC-style x87 FPU error reporting mechanism when clear. When the NE flag is clear
and the IGNNE# input is asserted, x87 FPU errors are ignored. When the NE flag is clear and the IGNNE#
input is deasserted, an unmasked x87 FPU error causes the processor to assert the FERR# pin to generate
an external interrupt and to stop instruction execution immediately before executing the next waiting
floating-point instruction or WAIT/FWAIT instruction.

The FERR# pin is intended to drive an input to an external interrupt controller (the FERR# pin emulates the
ERROR# pin of the Intel 287 and Intel 387 DX math coprocessors). The NE flag, IGNNE# pin, and FERR#
pin are used with external logic to implement PC-style error reporting. Using FERR# and IGNNE# to handle
floating-point exceptions is deprecated by modern operating systems; this non-native approach also limits
newer processors to operate with one logical processor active.

See also: Section 8.7, "Handling x87 FPU Exceptions in Software,” in Chapter 8, “Programming with the
x87 FPU,” and Appendix A, “EFLAGS Cross-Reference,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1.

CRO.ET
Extension Type (bit 4 of CR0) — Reserved in the Pentium 4, Intel Xeon, P6 family, and Pentium proces-
sors. In the Pentium 4, Intel Xeon, and P6 family processors, this flag is hardcoded to 1. In the Intel386
and Intel486 processors, this flag indicates support of Intel 387 DX math coprocessor instructions when
set.

CRO.TS
Task Switched (bit 3 of CR0O) — Allows the saving of the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4
context on a task switch to be delayed until an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction is

Vol.3A 2-15

SYSTEM ARCHITECTURE OVERVIEW

actually executed by the new task. The processor sets this flag on every task switch and tests it when
executing x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

e Ifthe TS flag is set and the EM flag (bit 2 of CRO) is clear, a device-not-available exception (#NM) is
raised prior to the execution of any x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction; with the
exception of PAUSE, PREFETCHhA, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and POPCNT.
See the paragraph below for the special case of the WAIT/FWAIT instructions.

¢ Ifthe TS flag is set and the MP flag (bit 1 of CR0O) and EM flag are clear, an #NM exception is not raised
prior to the execution of an x87 FPU WAIT/FWAIT instruction.

¢ Ifthe EM flag is set, the setting of the TS flag has no effect on the execution of x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

Table 2-2 shows the actions taken when the processor encounters an x87 FPU instruction based on the
settings of the TS, EM, and MP flags. Table 13-1 and 14-1 show the actions taken when the processor
encounters an MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction.

The processor does not automatically save the context of the x87 FPU, XMM, and MXCSR registers on a
task switch. Instead, it sets the TS flag, which causes the processor to raise an #NM exception whenever it
encounters an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction in the instruction stream for the
new task (with the exception of the instructions listed above).

The fault handler for the #NM exception can then be used to clear the TS flag (with the CLTS instruction)
and save the context of the x87 FPU, XMM, and MXCSR registers. If the task never encounters an x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction, the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4
context is never saved.

Table 2-2. Action Taken By x87 FPU Instructions for Different Combinations of EM, MP, and TS

CRO Flags x87 FPU Instruction Type

EM MP TS Floating-Point WAIT/FWAIT
0 0 0 Execute Execute.

0 0 1 #NM Exception Execute.

0 1 0 Execute Execute.

0 1 1 #NM Exception #NM exception.
1 0 0 #NM Exception Execute.

1 0 1 #NM Exception Execute.

1 1 0 #NM Exception Execute.

1 1 1 #NM Exception #NM exception.

CRO.EM

Emulation (bit 2 of CR0O) — Indicates that the processor does not have an internal or external x87 FPU when set;
indicates an x87 FPU is present when clear. This flag also affects the execution of
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

When the EM flag is set, execution of an x87 FPU instruction generates a device-not-available exception
(#NM). This flag must be set when the processor does not have an internal x87 FPU or is not connected to
an external math coprocessor. Setting this flag forces all floating-point instructions to be handled by soft-
ware emulation. Table 10-3 shows the recommended setting of this flag, depending on the IA-32 processor
and x87 FPU or math coprocessor present in the system. Table 2-2 shows the interaction of the EM, MP, and
TS flags.

Also, when the EM flag is set, execution of an MMX instruction causes an invalid-opcode exception (#UD)
to be generated (see Table 13-1). Thus, if an IA-32 or Intel 64 processor incorporates MMX technology, the
EM flag must be set to 0 to enable execution of MMX instructions.

Similarly for SSE/SSE2/SSE3/SSSE3/SSE4 extensions, when the EM flag is set, execution of most
SSE/SSE2/SSE3/SSSE3/SSE4 instructions causes an invalid opcode exception (#UD) to be generated (see

2-16 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

Table 14-1). If an IA-32 or Intel 64 processor incorporates the SSE/SSE2/SSE3/SSSE3/SSE4 extensions,
the EM flag must be set to 0 to enable execution of these extensions. SSE/SSE2/SSE3/SSSE3/SSE4
instructions not affected by the EM flag include: PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI,
CLFLUSH, CRC32, and POPCNT.

CR0O.MP
Monitor Coprocessor (bit 1 of CR0O) — Controls the interaction of the WAIT (or FWAIT) instruction with
the TS flag (bit 3 of CRO). If the MP flag is set, a WAIT instruction generates a device-not-available exception
(#NM) if the TS flag is also set. If the MP flag is clear, the WAIT instruction ignores the setting of the TS flag.
Table 10-3 shows the recommended setting of this flag, depending on the IA-32 processor and x87 FPU or
math coprocessor present in the system. Table 2-2 shows the interaction of the MP, EM, and TS flags.

CRO.PE
Protection Enable (bit 0 of CRO) — Enables protected mode when set; enables real-address mode when
clear. This flag does not enable paging directly. It only enables segment-level protection. To enable paging,
both the PE and PG flags must be set.

See also: Section 10.9, “*Mode Switching.”

CR3.PCD
Page-level Cache Disable (bit 4 of CR3) — Controls the memory type used to access the first paging
structure of the current paging-structure hierarchy. See Section 4.9, “Paging and Memory Typing.” This bit
is not used if paging is disabled, with PAE paging, or with 4-level paging! or 5-level paging if CR4.PCIDE=1.

CR3.PWT
Page-level Write-Through (bit 3 of CR3) — Controls the memory type used to access the first paging
structure of the current paging-structure hierarchy. See Section 4.9, “Paging and Memory Typing.” This bit
is not used if paging is disabled, with PAE paging, or with 4-level paging or 5-level paging if CR4.PCIDE=1.

CR4.VME
Virtual-8086 Mode Extensions (bit 0 of CR4) — Enables interrupt- and exception-handling extensions
in virtual-8086 mode when set; disables the extensions when clear. Use of the virtual mode extensions can
improve the performance of virtual-8086 applications by eliminating the overhead of calling the virtual-
8086 monitor to handle interrupts and exceptions that occur while executing an 8086 program and,
instead, redirecting the interrupts and exceptions back to the 8086 program’s handlers. It also provides
hardware support for a virtual interrupt flag (VIF) to improve reliability of running 8086 programs in multi-
tasking and multiple-processor environments.

See also: Section 21.3, “Interrupt and Exception Handling in Virtual-8086 Mode.”

CR4.PVI
Protected-Mode Virtual Interrupts (bit 1 of CR4) — Enables hardware support for a virtual interrupt
flag (VIF) in protected mode when set; disables the VIF flag in protected mode when clear.

See also: Section 21.4, “Protected-Mode Virtual Interrupts.”

CR4.TSD
Time Stamp Disable (bit 2 of CR4) — Restricts the execution of the RDTSC instruction to procedures
running at privilege level 0 when set; allows RDTSC instruction to be executed at any privilege level when
clear. This bit also applies to the RDTSCP instruction if supported (if CPUID.80000001H:EDX[27] = 1).

CR4.DE
Debugging Extensions (bit 3 of CR4) — References to debug registers DR4 and DR5 cause an unde-
fined opcode (#UD) exception to be generated when set; when clear, processor aliases references to regis-
ters DR4 and DR5 for compatibility with software written to run on earlier IA-32 processors.

See also: Section 18.2.2, "Debug Registers DR4 and DR5.”

CR4.PSE
Page Size Extensions (bit 4 of CR4) — Enables 4-MByte pages with 32-bit paging when set; restricts
32-bit paging to pages of 4 KBytes when clear.

See also: Section 4.3, “32-Bit Paging.”

1. Earlier versions of this manual used the term “|A-32e paging” to identify 4-level paging.

Vol.3A 2-17

SYSTEM ARCHITECTURE OVERVIEW

CR4.PAE
Physical Address Extension (bit 5 of CR4) — When set, enables paging to produce physical addresses
with more than 32 bits. When clear, restricts physical addresses to 32 bits. PAE must be set before entering
IA-32e mode.

See also: Chapter 4, “Paging.”

CR4.MCE
Machine-Check Enable (bit 6 of CR4) — Enables the machine-check exception when set; disables the
machine-check exception when clear.

See also: Chapter 16, “"Machine-Check Architecture.”

CR4.PGE
Page Global Enable (bit 7 of CR4) — (Introduced in the P6 family processors.) Enables the global page
feature when set; disables the global page feature when clear. The global page feature allows frequently
used or shared pages to be marked as global to all users (done with the global flag, bit 8, in a page-direc-
tory-pointer-table entry, a page-directory entry, or a page-table entry). Global pages are not flushed from
the translation-lookaside buffer (TLB) on a task switch or a write to register CR3.

When enabling the global page feature, paging must be enabled (by setting the PG flag in control register
CRO) before the PGE flag is set. Reversing this sequence may affect program correctness, and processor
performance will be impacted.

See also: Section 4.10, “Caching Translation Information.”

CR4.PCE
Performance-Monitoring Counter Enable (bit 8 of CR4) — Enables execution of the RDPMC instruc-
tion for programs or procedures running at any protection level when set; RDPMC instruction can be
executed only at protection level 0 when clear.

CR4.0SFXSR
Operating System Support for FXSAVE and FXRSTOR instructions (bit 9 of CR4) — When set, this
flag: (1) indicates to software that the operating system supports the use of the FXSAVE and FXRSTOR
instructions, (2) enables the FXSAVE and FXRSTOR instructions to save and restore the contents of the
XMM and MXCSR registers along with the contents of the x87 FPU and MMX registers, and (3) enables the
processor to execute SSE/SSE2/SSE3/SSSE3/SSE4 instructions, with the exception of the PAUSE,
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and POPCNT.

If this flag is clear, the FXSAVE and FXRSTOR instructions will save and restore the contents of the x87 FPU
and MMX registers, but they may not save and restore the contents of the XMM and MXCSR registers. Also,
the processor will generate an invalid opcode exception (#UD) if it attempts to execute any
SSE/SSE2/SSE3 instruction, with the exception of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE,
MOVNTI, CLFLUSH, CRC32, and POPCNT. The operating system or executive must explicitly set this flag.

NOTE

CPUID feature flag FXSR indicates availability of the FXSAVE/FXRSTOR instructions. The OSFXSR
bit provides operating system software with a means of enabling FXSAVE/FXRSTOR to save/restore
the contents of the X87 FPU, XMM, and MXCSR registers. Consequently OSFXSR bit indicates that
the operating system provides context switch support for SSE/SSE2/SSE3/SSSE3/SSE4.

CR4.0SXMMEXCPT
Operating System Support for Unmasked SIMD Floating-Point Exceptions (bit 10 of CR4) —
When set, indicates that the operating system supports the handling of unmasked SIMD floating-point
exceptions through an exception handler that is invoked when a SIMD floating-point exception (#XM) is
generated. SIMD floating-point exceptions are only generated by SSE/SSE2/SSE3/SSE4.1 SIMD floating-
point instructions.

The operating system or executive must explicitly set this flag. If this flag is not set, the processor will
generate an invalid opcode exception (#UD) whenever it detects an unmasked SIMD floating-point excep-
tion.

2-18 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

CR4.UMIP
User-Mode Instruction Prevention (bit 11 of CR4) — When set, the following instructions cannot be
executed if CPL > 0: SGDT, SIDT, SLDT, SMSW, and STR. An attempt at such execution causes a general-
protection exception (#GP).

CR4.LA57
57-bit linear addresses (bit 12 of CR4) — When set in IA-32e mode, the processor uses 5-level paging
to translate 57-bit linear addresses. When clear in IA-32e mode, the processor uses 4-level paging to
translate 48-bit linear addresses. This bit cannot be modified in IA-32e mode.

See also: Chapter 4, “Paging.”

CR4.VMXE
VMX-Enable Bit (bit 13 of CR4) — Enables VMX operation when set. See Chapter 24, “Introduction to
Virtual Machine Extensions.”

CR4.SMXE
SMX-Enable Bit (bit 14 of CR4) — Enables SMX operation when set. See Chapter 7, “Safer Mode Exten-
sions Reference,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2D.

CR4.FSGSBASE
FSGSBASE-Enable Bit (bit 16 of CR4) — Enables the instructions RDFSBASE, RDGSBASE, WRFSBASE,
and WRGSBASE.

CR4.PCIDE
PCID-Enable Bit (bit 17 of CR4) — Enables process-context identifiers (PCIDs) when set. See Section
4.10.1, “Process-Context Identifiers (PCIDs).” Applies only in IA-32e mode (if IA32_EFER.LMA = 1).

CR4.0SXSAVE
XSAVE and Processor Extended States-Enable Bit (bit 18 of CR4) — When set, this flag: (1) indi-
cates (via CPUID.01H:ECX.OSXSAVE[bit 27]) that the operating system supports the use of the XGETBV,
XSAVE, and XRSTOR instructions by general software; (2) enables the XSAVE and XRSTOR instructions to
save and restore the x87 FPU state (including MMX registers), the SSE state (XMM registers and MXCSR),
along with other processor extended states enabled in XCRO; (3) enables the processor to execute XGETBV
and XSETBYV instructions in order to read and write XCRO. See Section 2.6 and Chapter 14, “System
Programming for Instruction Set Extensions and Processor Extended States.”

CR4.KL
Key-Locker-Enable Bit (bit 19 of CR4) — When set, the LOADIWKEY instruction is enabled; in addition,
if support for the AES Key Locker instructions has been activated by system firmware,
CPUID.19H:EBX.AESKLE[bit 0] is enumerated as 1 and the AES Key Locker instructions are enabled.!
When clear, CPUID.19H:EBX.AESKLE[bit 0] is enumerated as 0 and execution of any Key Locker instruction
causes an invalid-opcode exception (#UD).

CR4.SMEP
SMEP-Enable Bit (bit 20 of CR4) — Enables supervisor-mode execution prevention (SMEP) when set.
See Section 4.6, “Access Rights.”

CR4.SMAP
SMAP-Enable Bit (bit 21 of CR4) — Enables supervisor-mode access prevention (SMAP) when set. See
Section 4.6, “Access Rights.”

CR4.PKE
Enable protection keys for user-mode pages (bit 22 of CR4) — 4-level paging and 5-level paging
associate each user-mode linear address with a protection key. When set, this flag indicates (via
CPUID.(EAX=07H,ECX=0H):ECX.0OSPKE [bit 4]) that the operating system supports use of the PKRU
register to specify, for each protection key, whether user-mode linear addresses with that protection key
can be read or written. This bit also enables access to the PKRU register using the RDPKRU and WRPKRU
instructions.

1. Software can check CPUID.19H:EBX.AESKLE[bit O] after setting CR4.KL to determine whether the AES Key Locker instructions have
been enabled. Note that some processors may allow enabling of those instructions without activation by system firmware. Some
processors may not support use of the AES Key Locker instructions in system-management mode (SMM). Those processors enumer-
ate CPUID.19H:EBX.AESKLE[bit O] as 0 in SMM regardless of the setting of CR4.KL.

Vol.3A 2-19

SYSTEM ARCHITECTURE OVERVIEW

CR4.CET
Control-flow Enforcement Technology (bit 23 of CR4) — Enables control-flow enforcement tech-
nology when set. See Chapter 17, “Control-flow Enforcement Technology (CET),” of the IA-32 Intel® Archi-
tecture Software Developer’s Manual, Volume 1. This flag can be set only if CRO.WP is set, and it must be
clear before CR0O.WP can be cleared (see below).

CR4.PKS
Enable protection keys for supervisor-mode pages (bit 24 of CR4) — 4-level paging and 5-level
paging associate each supervisor-mode linear address with a protection key. When set, this flag allows use
of the IA32_PKRS MSR to specify, for each protection key, whether supervisor-mode linear addresses with
that protection key can be read or written.

CR4.UINTR
User Interrupts Enable Bit (bit 25 of CR4) — Enables user interrupts when set, including user-interrupt
delivery, user-interrupt notification identification, and the user-interrupt instructions.

CR8.TPL
Task Priority Level (bit 3:0 of CR8) — This sets the threshold value corresponding to the highest-
priority interrupt to be blocked. A value of 0 means all interrupts are enabled. This field is available in 64-
bit mode. A value of 15 means all interrupts will be disabled.

2.5.1 CPUID Qualification of Control Register Flags

Not all flags in control register CR4 are implemented on all processors. With the exception of the PCE flag, they can
be qualified with the CPUID instruction to determine if they are implemented on the processor before they are
used.

The CRS register is available on processors that support Intel 64 architecture.

2.6 EXTENDED CONTROL REGISTERS (INCLUDING XCRO)

If CPUID.01H:ECX.XSAVE[bit 26] is 1, the processor supports one or more extended control registers (XCRs).
Currently, the only such register defined is XCRO. This register specifies the set of processor state components for
which the operating system provides context management, e.g., x87 FPU state, SSE state, AVX state. The OS
programs XCRO to reflect the features for which it provides context management.

2-20 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

63 18 17 M0 9 8 7 6 5 4 3 2 1 0

Reserved for XCRO bit vector expansion
Reserved / Future processor extended states
TILEDATA state
TILECONFIG state
PKRU state
Hi16_ZMM state
ZMM_Hi256 state
Opmask state
BNDCSR state
BNDREG state
AVX state
SSE state
X87 FPU/MMX state (must be 1)

|:| Reserved (must be 0)

Figure 2-8. XCRO

Software can access XCRO only if CR4.0SXSAVE[bit 18] = 1. (This bit is also readable as
CPUID.01H:ECX.0OSXSAVE[bit 27].) Software can use CPUID leaf function ODH to enumerate the bits in XCRO that
the processor supports (see CPUID instruction in Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A). Each supported state component is represented by a bit in XCR0O. System software enables state
components by loading an appropriate bit mask value into XCRO using the XSETBV instruction.

As each bit in XCRO (except bit 63) corresponds to a processor state component, XCRO thus provides support for
up to 63 sets of processor state components. Bit 63 of XCRO is reserved for future expansion and will not represent
a processor state component.

Currently, XCRO defines support for the following state components:

XCRO0.X87 (bit 0): This bit 0 must be 1. An attempt to write 0 to this bit causes a #GP exception.

XCRO.SSE (bit 1): If 1, the XSAVE feature set can be used to manage MXCSR and the XMM registers (XMMO-
XMM15 in 64-bit mode; otherwise XMM0-XMM7).

XCRO.AVX (bit 2): If 1, Intel AVX instructions can be executed and the XSAVE feature set can be used to
manage the upper halves of the YMM registers (YMMO0-YMM15 in 64-bit mode; otherwise YMMO-YMM7).

XCRO.BNDREG (bit 3): If 1, Intel MPX instructions can be executed and the XSAVE feature set can be used to
manage the bounds registers BNDO-BND3.

XCRO.BNDCSR (bit 4): If 1, Intel MPX instructions can be executed and the XSAVE feature set can be used to
manage the BNDCFGU and BNDSTATUS registers.

XCRO.opmask (bit 5): If 1, Intel AVX-512 instructions can be executed and the XSAVE feature set can be used
to manage the opmask registers kO-k7.

XCR0.ZMM_Hi256 (bit 6): If 1, Intel AVX-512 instructions can be executed and the XSAVE feature set can be
used to manage the upper halves of the lower ZMM registers (ZMM0-ZMM15 in 64-bit mode; otherwise ZMMO-
ZMM7).

XCRO.Hi16_ZMM (bit 7): If 1, Intel AVX-512 instructions can be executed and the XSAVE feature set can be
used to manage the upper ZMM registers (ZMM16-ZMM31, only in 64-bit mode).

XCRO.PKRU (bit 9): If 1, the XSAVE feature set can be used to manage the PKRU register (see Section 2.7).

XCRO.TILECFG (bit 17): If 1, and if XCRO.TILEDATA is also 1, Intel AMX instructions can be executed and the
XSAVE feature set can be used to manage TILECFG.

Vol. 3A 2-21

SYSTEM ARCHITECTURE OVERVIEW

® XCRO.TILEDATA (bit 18): If 1, and if XCRO.TILECFG is also 1, Intel AMX instructions can be executed and the
XSAVE feature set can be used to manage TILEDATA.

An attempt to use XSETBV to write to XCRO results in general-protection exceptions (#GP) if it would do any of the
following:

® Seta bit reserved in XCRO for a given processor (as determined by the contents of EAX and EDX after executing
CPUID with EAX=0DH, ECX= 0H).

® Clear XCR0.x87.

® Clear XCRO.SSE and set XCRO.AVX.

® (Clear XCR0.AVX and set any of XCR0O.opmask, XCR0.ZMM_Hi256, or XCRO.Hi16_ZMM.

® Set either XCRO.BNDREG or XCR0O.BNDCSR while not setting the other.

® Set any of XCR0O.opmask, XCR0.ZMM_Hi256, and XCR0.Hi16_ZMM while not setting all of them.
® Set either XCRO.TILECFG or XCRO.TILEDATA while not setting the other.

After reset, all bits (except bit 0) in XCRO are cleared to zero; XCR0O[0] is set to 1.

2.7 PROTECTION-KEY RIGHTS REGISTERS (PKRU AND IA32_PKRS)

Processors may support either or both of two protection-key rights registers: PKRU for user-mode pages and the
IA32_PKRS MSR (MSR index 6E1H) for supervisor-mode pages. 4-level paging and 5-level paging associate a 4-bit
protection key with each page. The protection-key rights registers determine accessibility based on a page’s
protection key.

If CPUID.(EAX=07H,ECX=0H):ECX.PKU [bit 3] = 1, the processor supports the protection-key feature for user-
mode pages. When CR4.PKE = 1, software can use the protection-key rights register for user pages (PKRU)
to specify the access rights for user-mode pages for each protection key.

If CPUID.(EAX=07H,ECX=0H):ECX.PKS [bit 31] = 1, the processor supports the protection-key feature for super-
visor-mode pages. When CR4.PKS = 1, software can use the protection-key rights register for supervisor
pages (the IA32_PKRS MSR) to specify the access rights for supervisor-mode pages for each protection key.

3130292827 26252423222120191817 161514131211 10 9 8 7 6 5 4 3 2 1 0 Bit Position

WIA|WAIWAI WA WA|WAIWA WA WA WAIWA WA|WA WA WA|WA
bpp/bD/DDDDDDDDDDDDDDDDDDDD|DDD|DIDD|D
15(15| 14|14/ 13|13 12/ 12| 11/11{1010|9 |9 |8 |8 |7 |7 |6 |6 |5|5|4 (4|3 |3 |2(2|1|1|0 |0

Figure 2-9. Format of Protection-Key Rights Registers

The format of each protection-key rights register is given in Figure 2-9. Each contains 16 pairs of disable controls
to prevent data accesses to linear addresses (user-mode or supervisor-mode, depending on the register) based on
their protection keys. Each protection key i (0 </ < 15) is associated with two bits in each protection-key rights
register:

®* Bit 2/, shown as “AD/” (access disable): if set, the processor prevents any data accesses to linear addresses
(user-mode or supervisor-mode, depending on the register) with protection key i.

® Bit 2i+1, shown as “WD/” (write disable): if set, the processor prevents write accesses to linear addresses
(user-mode or supervisor-mode, depending on the register) with protection key /.

(Bits 63:32 of the IA32_PKRS MSR are reserved and must be zero.)

See Section 4.6.2, “Protection Keys,"” for details of how the processor uses the protection-key rights registers to
control accesses to linear addresses.

Software can read and write PKRU using the RDPKRU and WRPKRU instructions. The IA32_PKRS MSR can be read
and written with the RDMSR and WRMSR instructions. Writes to the IA32_PKRS MSR using WRMSR are not serial-
izing.

2-22 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

2.8 SYSTEM INSTRUCTION SUMMARY

System instructions handle system-level functions such as loading system registers, managing the cache,
managing interrupts, or setting up the debug registers. Many of these instructions can be executed only by oper-
ating-system or executive procedures (that is, procedures running at privilege level 0). Others can be executed at
any privilege level and are thus available to application programs.

Table 2-3 lists the system instructions and indicates whether they are available and useful for application
programs. These instructions are described in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 2A, 2B, 2C, & 2D.

Table 2-3. Summary of System Instructions

Useful to Protected from
Instruction Description Application? Application?
LLDT Load LDT Register No Yes
SLDT Store LDT Register No If CR4.UMIP =1
LGDT Load GDT Register No Yes
SGDT Store GDT Register No If CR4.UMIP =1
LTR Load Task Register No Yes
STR Store Task Register No If CR4.UMIP =1
LIDT Load IDT Register No Yes
SIDT Store IDT Register No If CR4.UMIP =1
MOV CRn Load and store control registers No Yes
SMSW Store MSW Yes If CR4.UMIP = 1
LMSW Load MSW No Yes
CLTS Clear TS flag in CRO No Yes
ARPL Adjust RPL Yes'-> No
LAR Load Access Rights Yes No
LSL Load Segment Limit Yes No
VERR Verify for Reading Yes No
VERW Verify for Writing Yes No
MOV DRn Load and store debug registers No Yes
INVD Invalidate cache, no writeback No Yes
WBINVD Invalidate cache, with writeback No Yes
INVLPG Invalidate TLB entry No Yes
HLT Halt Processor No Yes
LOCK (Prefix) Bus Lock Yes No
RSM Return from system management mode No Yes
RDMSR3 Read Model-Specific Registers No Yes
WRMSR3 Write Model-Specific Registers No Yes
RDPMC* Read Performance-Monitoring Counter Yes Yes?
RDTSC3 Read Time-Stamp Counter Yes Yes?
RDTSCP’ Read Serialized Time-Stamp Counter Yes Yes?
XGETBV Return the state of XCRO Yes No
XSETBV Enable one or more processor extended states No® Yes

Vol. 3A 2-23

SYSTEM ARCHITECTURE OVERVIEW

Table 2-3. Summary of System Instructions (Contd.)

Useful to Protected from
Instruction Description Application? Application?

NOTES:

1. Useful to application programs running at a CPL of 1 or 2.

2. The TSD and PCE flags in control register CR4 control access to these instructions by application programs running at a CPL of 3.

3. These instructions were introduced into the IA-32 Architecture with the Pentium processor.

4., This instruction was introduced into the IA-32 Architecture with the Pentium Pro processor and the Pentium processor with MMX technol-
ogy.

5. This instruction is not supported in 64-bit mode.

6. Application uses XGETBV to query which set of processor extended states are enabled.

7.RDTSCP is introduced in Intel Core i7 processor.

2.8.1 Loading and Storing System Registers

The GDTR, LDTR, IDTR, and TR registers each have a load and store instruction for loading data into and storing
data from the register:

®* LGDT (Load GDTR Register) — Loads the GDT base address and limit from memory into the GDTR register.
® SGDT (Store GDTR Register) — Stores the GDT base address and limit from the GDTR register into memory.
® LIDT (Load IDTR Register) — Loads the IDT base address and limit from memory into the IDTR register.

® SIDT (Store IDTR Register) — Stores the IDT base address and limit from the IDTR register into memory.

®* LLDT (Load LDTR Register) — Loads the LDT segment selector and segment descriptor from memory into
the LDTR. (The segment selector operand can also be located in a general-purpose register.)

® SLDT (Store LDTR Register) — Stores the LDT segment selector from the LDTR register into memory or a
general-purpose register.

®* LTR (Load Task Register) — Loads segment selector and segment descriptor for a TSS from memory into the
task register. (The segment selector operand can also be located in a general-purpose register.)

® STR (Store Task Register) — Stores the segment selector for the current task TSS from the task register into
memory or a general-purpose register.

The LMSW (load machine status word) and SMSW (store machine status word) instructions operate on bits 0
through 15 of control register CRO. These instructions are provided for compatibility with the 16-bit Intel 286
processor. Programs written to run on 32-bit IA-32 processors should not use these instructions. Instead, they
should access the control register CRO using the MOV CR instruction.

The CLTS (clear TS flag in CRO) instruction is provided for use in handling a device-not-available exception (#NM)
that occurs when the processor attempts to execute a floating-point instruction when the TS flag is set. This
instruction allows the TS flag to be cleared after the x87 FPU context has been saved, preventing further #NM
exceptions. See Section 2.5, “Control Registers,” for more information on the TS flag.

The control registers (CRO, CR1, CR2, CR3, CR4, and CR8) are loaded using the MOV instruction. The instruction
loads a control register from a general-purpose register or stores the content of a control register in a general-
purpose register.

2.8.2 Verifying of Access Privileges

The processor provides several instructions for examining segment selectors and segment descriptors to determine
if access to their associated segments is allowed. These instructions duplicate some of the automatic access rights
and type checking done by the processor, thus allowing operating-system or executive software to prevent excep-
tions from being generated.

The ARPL (adjust RPL) instruction adjusts the RPL (requestor privilege level) of a segment selector to match that of
the program or procedure that supplied the segment selector. See Section 5.10.4, “"Checking Caller Access
Privileges (ARPL Instruction),” for a detailed explanation of the function and use of this instruction. Note that
ARPL is not supported in 64-bit mode.

2-24 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

The LAR (load access rights) instruction verifies the accessibility of a specified segment and loads access rights
information from the segment’s segment descriptor into a general-purpose register. Software can then examine
the access rights to determine if the segment type is compatible with its intended use. See Section 5.10.1,
“Checking Access Rights (LAR Instruction),” for a detailed explanation of the function and use of this instruc-
tion.

The LSL (load segment limit) instruction verifies the accessibility of a specified segment and loads the segment
limit from the segment’s segment descriptor into a general-purpose register. Software can then compare the
segment limit with an offset into the segment to determine whether the offset lies within the segment. See
Section 5.10.3, “"Checking That the Pointer Offset Is Within Limits (LSL Instruction),” for a detailed expla-
nation of the function and use of this instruction.

The VERR (verify for reading) and VERW (verify for writing) instructions verify if a selected segment is readable or
writable, respectively, at a given CPL. See Section 5.10.2, “"Checking Read/Write Rights (VERR and VERW
Instructions),” for a detailed explanation of the function and use of these instructions.

2.8.3 Loading and Storing Debug Registers

Internal debugging facilities in the processor are controlled by a set of 8 debug registers (DR0-DR7). The MOV
instruction allows setup data to be loaded to and stored from these registers.

On processors that support Intel 64 architecture, debug registers DRO-DR7 are 64 bits. In 32-bit modes and
compatibility mode, writes to a debug register fill the upper 32 bits with zeros. Reads return the lower 32 bits. In
64-bit mode, the upper 32 bits of DR6-DR7 are reserved and must be written with zeros. Writing one to any of the
upper 32 bits causes an exception, #GP(0).

In 64-bit mode, MOV DRn instructions read or write all 64 bits of a debug register (operand-size prefixes are
ignored). All 64 bits of DRO-DR3 are writable by software. However, MOV DRn instructions do not check that
addresses written to DR0O-DR3 are in the limits of the implementation. Address matching is supported only on valid
addresses generated by the processor implementation.

2.8.4 Invalidating Caches and TLBs

The processor provides several instructions for use in explicitly invalidating its caches and TLB entries. The INVD
(invalidate cache with no writeback) instruction invalidates all data and instruction entries in the internal caches
and sends a signal to the external caches indicating that they should also be invalidated.

The WBINVD (invalidate cache with writeback) instruction performs the same function as the INVD instruction,
except that it writes back modified lines in its internal caches to memory before it invalidates the caches. After
invalidating the caches local to the executing logical processor or processor core, WBINVD signals caches higherin
the cache hierarchy (caches shared with the invalidating logical processor or core) to write back any data they have
in modified state at the time of instruction execution and to invalidate their contents.

Note, non-shared caches may not be written back nor invalidated. In Figure 2-10 below, if code executing on either
LPO or LP1 were to execute a WBINVD, the shared L1 and L2 for LPO/LP1 will be written back and invalidated as will
the shared L3. However, the L1 and L2 caches not shared with LPO and LP1 will not be written back nor invalidated.

Vol.3A 2-25

SYSTEM ARCHITECTURE OVERVIEW

Not Written back and

not Invalidated
Logical Processors | LPO LP1 | LP2 ‘LPB LP4 ’LPS LP6 |LP7 | — —

L1 & L2 Cache _]
Written back < P

& Invalidated el

A

Execution Engine

L3 Cache Written back and Invalidated

Uncore

QPI
t

Figure 2-10. WBINVD Invalidation of Shared and Non-Shared Cache Hierarchy

The INVLPG (invalidate TLB entry) instruction invalidates (flushes) the TLB entry for a specified page.

2.8.5 Controlling the Processor

The HLT (halt processor) instruction stops the processor until an enabled interrupt (such as NMI or SMI, which are
normally enabled), a debug exception, the BINIT# signal, the INIT# signal, or the RESET# signal is received. The
processor generates a special bus cycle to indicate that the halt mode has been entered.

Hardware may respond to this signal in a number of ways. An indicator light on the front panel may be turned on.
An NMI interrupt for recording diagnostic information may be generated. Reset initialization may be invoked (note
that the BINIT# pin was introduced with the Pentium Pro processor). If any hon-wake events are pending during

shutdown, they will be handled after the wake event from shutdown is processed (for example, A20M# interrupts).

The LOCK prefix invokes a locked (atomic) read-modify-write operation when modifying a memory operand. This
mechanism is used to allow reliable communications between processors in multiprocessor systems, as described
below:

® In the Pentium processor and earlier IA-32 processors, the LOCK prefix causes the processor to assert the
LOCK# signal during the instruction. This always causes an explicit bus lock to occur.

® Inthe Pentium 4, Intel Xeon, and P6 family processors, the locking operation is handled with either a cache lock
or bus lock. If a memory access is cacheable and affects only a single cache line, a cache lock is invoked and
the system bus and the actual memory location in system memory are not locked during the operation. Here,
other Pentium 4, Intel Xeon, or P6 family processors on the bus write-back any modified data and invalidate
their caches as necessary to maintain system memory coherency. If the memory access is not cacheable
and/or it crosses a cache line boundary, the processor’'s LOCK# signal is asserted and the processor does not
respond to requests for bus control during the locked operation.

The RSM (return from SMM) instruction restores the processor (from a context dump) to the state it was in prior to
a system management mode (SMM) interrupt.

2.8.6 Reading Performance-Monitoring and Time-Stamp Counters

The RDPMC (read performance-monitoring counter) and RDTSC (read time-stamp counter) instructions allow
application programs to read the processor’s performance-monitoring and time-stamp counters, respectively.
Processors based on Intel NetBurst® microarchitecture have eighteen 40-bit performance-monitoring counters; P6
family processors have two 40-bit counters. Intel Atom® processors and most of the processors based on the Intel
Core microarchitecture support two types of performance monitoring counters: programmable performance coun-
ters similar to those available in the P6 family, and three fixed-function performance monitoring counters. Details

2-26 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

of programmable and fixed-function performance monitoring counters for each processor generation are described
in Chapter 20, “Performance Monitoring.”

The programmable performance counters can support counting either the occurrence or duration of events. Events
that can be monitored on programmable counters generally are model specific (except for architectural perfor-
mance events enumerated by CPUID leaf 0AH); they may include the number of instructions decoded, interrupts
received, or the number of cache loads. Individual counters can be set up to monitor different events. Use the
system instruction WRMSR to set up values in one of the IA32_PERFEVTSELx MSR, in one of the 45 ESCRs and one
of the 18 CCCR MSRs (for Pentium 4 and Intel Xeon processors); or in the PerfEvtSel0 or the PerfEvtSell MSR (for
the P6 family processors). The RDPMC instruction loads the current count from the selected counter into the
EDX:EAX registers.

Fixed-function performance counters record only specific events that are defined at: https://perfmon-
events.intel.com/, and the width/number of fixed-function counters are enumerated by CPUID leaf 0AH.

The time-stamp counter is a model-specific 64-bit counter that is reset to zero each time the processor is reset. If
not reset, the counter will increment ~9.5 x 1010 times per year when the processor is operating at a clock rate
of 3GHz. At this clock frequency, it would take over 190 years for the counter to wrap around. The RDTSC
instruction loads the current count of the time-stamp counter into the EDX:EAX registers.

See Section 20.1, “Performance Monitoring Overview,” and Section 18.17, “Time-Stamp Counter,” for more infor-
mation about the performance monitoring and time-stamp counters.

The RDTSC instruction was introduced into the IA-32 architecture with the Pentium processor. The RDPMC instruc-
tion was introduced into the IA-32 architecture with the Pentium Pro processor and the Pentium processor with
MMX technology. Earlier Pentium processors have two performance-monitoring counters, but they can be read only
with the RDMSR instruction, and only at privilege level 0.

2.8.6.1 Reading Counters in 64-Bit Mode

In 64-bit mode, RDTSC operates the same as in protected mode. The count in the time-stamp counter is stored in
EDX:EAX (or RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32] cleared).

RDPMC requires an index to specify the offset of the performance-monitoring counter. In 64-bit mode for Pentium
4 or Intel Xeon processor families, the index is specified in ECX[30:0]. The current count of the performance-moni-
toring counter is stored in EDX:EAX (or RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32] cleared).

2.8.7 Reading and Writing Model-Specific Registers

The RDMSR (read model-specific register) and WRMSR (write model-specific register) instructions allow a
processor’s 64-bit model-specific registers (MSRs) to be read and written, respectively. The MSR to be read or
written is specified by the value in the ECX register.

RDMSR reads the value from the specified MSR to the EDX:EAX registers; WRMSR writes the value in the EDX:EAX
registers to the specified MSR. RDMSR and WRMSR were introduced into the IA-32 architecture with the Pentium
processor.

See Section 10.4, “Model-Specific Registers (MSRs),"” for more information.

2.8.7.1 Reading and Writing Model-Specific Registers in 64-Bit Mode

RDMSR and WRMSR require an index to specify the address of an MSR. In 64-bit mode, the index is 32 bits; it is
specified using ECX.

2.8.8 Enabling Processor Extended States

The XSETBYV instruction is required to enable OS support of individual processor extended states in XCRO (see
Section 2.6).

Vol. 3A 2-27

https://perfmon-events.intel.com/

SYSTEM ARCHITECTURE OVERVIEW

2-28 Vol. 3A

CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT

This chapter describes the Intel 64 and IA-32 architecture’s protected-mode memory management facilities,
including the physical memory requirements, segmentation mechanism, and paging mechanism.

See also: Chapter 5, “Protection,” (for a description of the processor’s protection mechanism) and Chapter 21,
“8086 Emulation,” (for a description of memory addressing protection in real-address and virtual-8086 modes).

3.1 MEMORY MANAGEMENT OVERVIEW

The memory management facilities of the IA-32 architecture are divided into two parts: segmentation and paging.
Segmentation provides a mechanism of isolating individual code, data, and stack modules so that multiple
programs (or tasks) can run on the same processor without interfering with one another. Paging provides a mech-
anism for implementing a conventional demand-paged, virtual-memory system where sections of a program’s
execution environment are mapped into physical memory as needed. Paging can also be used to provide isolation
between multiple tasks. When operating in protected mode, some form of segmentation must be used. There is
no mode bit to disable segmentation. The use of paging, howeuver, is optional.

These two mechanisms (segmentation and paging) can be configured to support simple single-program (or single-
task) systems, multitasking systems, or multiple-processor systems that used shared memory.

As shown in Figure 3-1, segmentation provides a mechanism for dividing the processor’s addressable memory
space (called the linear address space) into smaller protected address spaces called segments. Segments can
be used to hold the code, data, and stack for a program or to hold system data structures (such as a TSS or LDT).
If more than one program (or task) is running on a processor, each program can be assigned its own set of
segments. The processor then enforces the boundaries between these segments and ensures that one program
does not interfere with the execution of another program by writing into the other program’s segments. The
segmentation mechanism also allows typing of segments so that the operations that may be performed on a partic-
ular type of segment can be restricted.

All the segments in a system are contained in the processor’s linear address space. To locate a byte in a particular
segment, a logical address (also called a far pointer) must be provided. A logical address consists of a segment
selector and an offset. The segment selector is a unique identifier for a segment. Among other things it provides an
offset into a descriptor table (such as the global descriptor table, GDT) to a data structure called a segment
descriptor. Each segment has a segment descriptor, which specifies the size of the segment, the access rights and
privilege level for the segment, the segment type, and the location of the first byte of the segment in the linear
address space (called the base address of the segment). The offset part of the logical address is added to the base
address for the segment to locate a byte within the segment. The base address plus the offset thus forms a linear
address in the processor’s linear address space.

Vol. 3A 3-1

PROTECTED-MODE MEMORY MANAGEMENT

Logical Address
(or Far Pointer)

Segment l

Selector Offset Linear Address
| | | | Space
; Linear Address
Global Descriptor - .
Table (GDT) Dir | Table | Offset | Zr&;és“uecsasl
Space
Segment
Segment Page Table Page
Descriptor(— | | (|| || || r~""""7
S Y Page Directory Phy. Addr.
ﬂ|—> Lin. Addr. Eniry e
A Entry >

SegmentJ g

Base Address

|~— Page

}7 Segmentation I Paging I

Figure 3-1. Segmentation and Paging

If paging is not used, the linear address space of the processor is mapped directly into the physical address space
of processor. The physical address space is defined as the range of addresses that the processor can generate on
its address bus.

Because multitasking computing systems commonly define a linear address space much larger than it is economi-
cally feasible to contain all at once in physical memory, some method of “virtualizing” the linear address space is
needed. This virtualization of the linear address space is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space is simulated with a small
amount of physical memory (RAM and ROM) and some disk storage. When using paging, each segment is divided
into pages (typically 4 KBytes each in size), which are stored either in physical memory or on the disk. The oper-
ating system or executive maintains a page directory and a set of page tables to keep track of the pages. When a
program (or task) attempts to access an address location in the linear address space, the processor uses the page
directory and page tables to translate the linear address into a physical address and then performs the requested
operation (read or write) on the memory location.

If the page being accessed is not currently in physical memory, the processor interrupts execution of the program
(by generating a page-fault exception). The operating system or executive then reads the page into physical
memory from the disk and continues executing the program.

When paging is implemented properly in the operating-system or executive, the swapping of pages between phys-
ical memory and the disk is transparent to the correct execution of a program. Even programs written for 16-bit IA-
32 processors can be paged (transparently) when they are run in virtual-8086 mode.

3.2 USING SEGMENTS

The segmentation mechanism supported by the IA-32 architecture can be used to implement a wide variety of
system designs. These designs range from flat models that make only minimal use of segmentation to protect

3-2 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

programs to multi-segmented models that employ segmentation to create a robust operating environment in
which multiple programs and tasks can be executed reliably.

The following sections give several examples of how segmentation can be employed in a system to improve
memory management performance and reliability.

3.2.1 Basic Flat Model

The simplest memory model for a system is the basic “flat model,” in which the operating system and application
programs have access to a continuous, unsegmented address space. To the greatest extent possible, this basic flat
model hides the segmentation mechanism of the architecture from both the system designer and the application

programmer.

To implement a basic flat memory model with the IA-32 architecture, at least two segment descriptors must be
created, one for referencing a code segment and one for referencing a data segment (see Figure 3-2). Both of
these segments, however, are mapped to the entire linear address space: that is, both segment descriptors have
the same base address value of 0 and the same segment limit of 4 GBytes. By setting the segment limit to 4
GBytes, the segmentation mechanism is kept from generating exceptions for out of limit memory references, even
if no physical memory resides at a particular address. ROM (EPROM) is generally located at the top of the physical
address space, because the processor begins execution at FFFF_FFFOH. RAM (DRAM) is placed at the bottom of the
address space because the initial base address for the DS data segment after reset initialization is 0.

3.2.2 Protected Flat Model

The protected flat model is similar to the basic flat model, except the segment limits are set to include only the
range of addresses for which physical memory actually exists (see Figure 3-3). A general-protection exception
(#GP) is then generated on any attempt to access nonexistent memory. This model provides a minimum level of
hardware protection against some kinds of program bugs.

Linear Address Space
(or Physical Memory)

FS
GS

Segment >

Registers Code FFFFFFFFH
Code- and Data-Segment

Descriptors
Not Present
I T

Access Limit Data and
Base Address | > Stack 0

Figure 3-2. Flat Model

Vol. 3A 3-3

PROTECTED-MODE MEMORY MANAGEMENT

Segment Linear Address Space
Descriptors (or Physical Memory)
Segment imit ——>
Registers Access Limit Code FFFEFFFFH
Base Address E—

S
Not Present

. Memory 1/0
Access Limit J

D Base Address

Data and
Stack

»
Al

GS 0

L
’ o

Figure 3-3. Protected Flat Model

More complexity can be added to this protected flat model to provide more protection. For example, for the paging
mechanism to provide isolation between user and supervisor code and data, four segments need to be defined:
code and data segments at privilege level 3 for the user, and code and data segments at privilege level O for the
supervisor. Usually these segments all overlay each other and start at address 0 in the linear address space. This
flat segmentation model along with a simple paging structure can protect the operating system from applications,
and by adding a separate paging structure for each task or process, it can also protect applications from each other.
Similar designs are used by several popular multitasking operating systems.

3.23 Multi-Segment Model

A multi-segment model (such as the one shown in Figure 3-4) uses the full capabilities of the segmentation mech-
anism to provide hardware enforced protection of code, data structures, and programs and tasks. Here, each
program (or task) is given its own table of segment descriptors and its own segments. The segments can be
completely private to their assigned programs or shared among programs. Access to all segments and to the
execution environments of individual programs running on the system is controlled by hardware.

3-4 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

Segment Segment Linear Address Space
Registers Descriptors (or Physical Memory)
IC—l—Sl > Ac;ess A\ Limit
ase Address) Stack
[ss | » Access | Limit
Base Address
Access [Limit
DS >
Base Address Code
E - Access \ Limit
Base Address
Data
E > Access \ Limit
Base Address
Data
Access \ Limit
GS >
: Base Address
— Data
Access \ Limit
Base Address A
Access \ Limit
Base Address
— Data
Access [Limit
Base Address
Access \ Limit
Base Address T

Figure 3-4. Multi-Segment Model

Access checks can be used to protect not only against referencing an address outside the limit of a segment, but
also against performing disallowed operations in certain segments. For example, since code segments are desig-
nated as read-only segments, hardware can be used to prevent writes into code segments. The access rights infor-
mation created for segments can also be used to set up protection rings or levels. Protection levels can be used to
protect operating-system procedures from unauthorized access by application programs.

3.24 Segmentation in IA-32e Mode

In IA-32e mode of Intel 64 architecture, the effects of segmentation depend on whether the processor is running
in compatibility mode or 64-bit mode. In compatibility mode, segmentation functions just as it does using legacy
16-bit or 32-bit protected mode semantics.

In 64-bit mode, segmentation is generally (but not completely) disabled, creating a flat 64-bit linear-address
space. The processor treats the segment base of CS, DS, ES, SS as zero, creating a linear address that is equal to
the effective address. The FS and GS segments are exceptions. These segment registers (which hold the segment
base) can be used as additional base registers in linear address calculations. They facilitate addressing local data
and certain operating system data structures.

Note that the processor does not perform segment limit checks at runtime in 64-bit mode.

3.25 Paging and Segmentation

Paging can be used with any of the segmentation models described in Figures 3-2, 3-3, and 3-4. The processor’s
paging mechanism divides the linear address space (into which segments are mapped) into pages (as shown in
Figure 3-1). These linear-address-space pages are then mapped to pages in the physical address space. The
paging mechanism offers several page-level protection facilities that can be used with or instead of the segment-

Vol. 3A 3-5

PROTECTED-MODE MEMORY MANAGEMENT

protection facilities. For example, it lets read-write protection be enforced on a page-by-page basis. The paging
mechanism also provides two-level user-supervisor protection that can also be specified on a page-by-page basis.

3.3 PHYSICAL ADDRESS SPACE

In protected mode, the IA-32 architecture provides a normal physical address space of 4 GBytes (232bytes). This
is the address space that the processor can address on its address bus. This address space is flat (unsegmented),
with addresses ranging continuously from 0 to FFFFFFFFH. This physical address space can be mapped to read-
write memory, read-only memory, and memory mapped I/O. The memory mapping facilities described in this
chapter can be used to divide this physical memory up into segments and/or pages.

Starting with the Pentium Pro processor, the IA-32 architecture also supports an extension of the physical address
space to 236 bytes (64 GBytes); with a maximum physical address of FFFFFFFFFH. This extension is invoked in
either of two ways:

® Using the physical address extension (PAE) flag, located in bit 5 of control register CR4.
® Using the 36-bit page size extension (PSE-36) feature (introduced in the Pentium Ill processors).

Physical address support has since been extended beyond 36 bits. See Chapter 4, “Paging,” for more information
about 36-bit physical addressing.

3.3.1 Intel® 64 Processors and Physical Address Space

On processors that support Intel 64 architecture (CPUID.80000001H:EDX[29] = 1), the size of the physical
address range is implementation-specific and indicated by CPUID.80000008H:EAX[bits 7-0].

For the format of information returned in EAX, see "CPUID—CPU Identification” in Chapter 3 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2A. See also: Chapter 4, “Paging.”

3.4 LOGICAL AND LINEAR ADDRESSES

At the system-architecture level in protected mode, the processor uses two stages of address translation to arrive
at a physical address: logical-address translation and linear address space paging.

Even with the minimum use of segments, every byte in the processor’s address space is accessed with a logical
address. A logical address consists of a 16-bit segment selector and a 32-bit offset (see Figure 3-5). The segment
selector identifies the segment the byte is located in and the offset specifies the location of the byte in the segment
relative to the base address of the segment.

The processor translates every logical address into a linear address. A linear address is a 32-bit address in the
processor’s linear address space. Like the physical address space, the linear address space is a flat (unsegmented),
232_pyte address space, with addresses ranging from 0 to FFFFFFFFH. The linear address space contains all the
segments and system tables defined for a system.

To translate a logical address into a linear address, the processor does the following:

1. Uses the offset in the segment selector to locate the segment descriptor for the segment in the GDT or LDT and
reads it into the processor. (This step is needed only when a new segment selector is loaded into a segment
register.)

2. Examines the segment descriptor to check the access rights and range of the segment to ensure that the
segment is accessible and that the offset is within the limits of the segment.

3. Adds the base address of the segment from the segment descriptor to the offset to form a linear address.

3-6 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

15 0 31(63) 0
Seg. Selector | Offset (Effective Address) |

Logical
Address

Descriptor Table

Segment

Base Address
H R — . s +
Descriptor .

31(63) 0
Linear Address |

Figure 3-5. Logical Address to Linear Address Translation

If paging is not used, the processor maps the linear address directly to a physical address (that is, the linear
address goes out on the processor’s address bus). If the linear address space is paged, a second level of address
translation is used to translate the linear address into a physical address.

See also: Chapter 4, “Paging.”

3.4.1 Logical Address Translation in IA-32e Mode

In IA-32e mode, an Intel 64 processor uses the steps described above to translate a logical address to a linear
address. In 64-bit mode, the offset and base address of the segment are 64-bits instead of 32 bits. The linear
address format is also 64 bits wide and is subject to the canonical form requirement.

Each code segment descriptor provides an L bit. This bit allows a code segment to execute 64-bit code or legacy
32-bit code by code segment.

34.2 Segment Selectors

A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not point directly to the segment,
but instead points to the segment descriptor that defines the segment. A segment selector contains the following
items:

Index (Bits 3 through 15) — Selects one of 8192 descriptors in the GDT or LDT. The processor multiplies
the index value by 8 (the number of bytes in a segment descriptor) and adds the result to the base
address of the GDT or LDT (from the GDTR or LDTR register, respectively).

TI (table indicator) flag
(Bit 2) — Specifies the descriptor table to use: clearing this flag selects the GDT; setting this flag
selects the current LDT.

15 3210
Index ‘”RPL|

Table Indicator
0=GDT
1=LDT

Requested Privilege Level (RPL)

Figure 3-6. Segment Selector

Vol. 3A 3-7

PROTECTED-MODE MEMORY MANAGEMENT

Requested Privilege Level (RPL)
(Bits 0 and 1) — Specifies the privilege level of the selector. The privilege level can range from 0 to
3, with 0 being the most privileged level. See Section 5.5, “Privilege Levels,” for a description of the
relationship of the RPL to the CPL of the executing program (or task) and the descriptor privilege
level (DPL) of the descriptor the segment selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points to this entry of the GDT (that
is, a segment selector with an index of 0 and the TI flag set to 0) is used as a “null segment selector.” The processor
does not generate an exception when a segment register (other than the CS or SS registers) is loaded with a null
selector. It does, however, generate an exception when a segment register holding a null selector is used to access
memory. A null selector can be used to initialize unused segment registers. Loading the CS or SS register with a null
segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable, but the values of selectors are
usually assigned or modified by link editors or linking loaders, not application programs.

343 Segment Registers

To reduce address translation time and coding complexity, the processor provides registers for holding up to 6
segment selectors (see Figure 3-7). Each of these segment registers support a specific kind of memory reference
(code, stack, or data). For virtually any kind of program execution to take place, at least the code-segment (CS),
data-segment (DS), and stack-segment (SS) registers must be loaded with valid segment selectors. The processor
also provides three additional data-segment registers (ES, FS, and GS), which can be used to make additional data
segments available to the currently executing program (or task).

For a program to access a segment, the segment selector for the segment must have been loaded in one of the
segment registers. So, although a system can define thousands of segments, only 6 can be available forimmediate
use. Other segments can be made available by loading their segment selectors into these registers during program
execution.

Visible Part Hidden Part
Segment Selector Base Address, Limit, Access Information | CS
SS
DS
ES
FS
GS

Figure 3-7. Segment Registers

Every segment register has a “visible” part and a “hidden” part. (The hidden part is sometimes referred to as a
“descriptor cache” or a “shadow register.”) When a segment selector is loaded into the visible part of a segment
register, the processor also loads the hidden part of the segment register with the base address, segment limit, and
access control information from the segment descriptor pointed to by the segment selector. The information cached
in the segment register (visible and hidden) allows the processor to translate addresses without taking extra bus
cycles to read the base address and limit from the segment descriptor. In systems in which multiple processors
have access to the same descriptor tables, it is the responsibility of software to reload the segment registers when
the descriptor tables are modified. If this is not done, an old segment descriptor cached in a segment register might
be used after its memory-resident version has been modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS instructions. These instructions
explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL, JMP, and RET instructions, the SYSENTER
and SYSEXIT instructions, and the IRET, INT n, INTO, INT3, and INT1 instructions. These instructions change

3-8 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

the contents of the CS register (and sometimes other segment registers) as an incidental part of their
operation.

The MOV instruction can also be used to store the visible part of a segment register in a general-purpose register.

344 Segment Loading Instructions in IA-32e Mode

Because ES, DS, and SS segment registers are not used in 64-bit mode, their fields (base, limit, and attribute) in
segment descriptor registers are ignored. Some forms of segment load instructions are also invalid (for example,
LDS, POP ES). Address calculations that reference the ES, DS, or SS segments are treated as if the segment base
is zero.

The processor checks that all linear-address references are in canonical form instead of performing limit checks.
Mode switching does not change the contents of the segment registers or the associated descriptor registers.
These registers are also not changed during 64-bit mode execution, unless explicit segment loads are performed.

In order to set up compatibility mode for an application, segment-load instructions (MOV to Sreg, POP Sreg) work
normally in 64-bit mode. An entry is read from the system descriptor table (GDT or LDT) and is loaded in the hidden
portion of the segment register. The descriptor-register base, limit, and attribute fields are all loaded. However, the
contents of the data and stack segment selector and the descriptor registers are ignored.

When FS and GS segment overrides are used in 64-bit mode, their respective base addresses are used in the linear
address calculation: (FS or GS).base + index + displacement. FS.base and GS.base are then expanded to the full
linear-address size supported by the implementation. The resulting effective address calculation can wrap across
positive and negative addresses; the resulting linear address must be canonical.

In 64-bit mode, memory accesses using FS-segment and GS-segment overrides are not checked for a runtime limit
nor subjected to attribute-checking. Normal segment loads (MOV to Sreg and POP Sreg) into FS and GS load a
standard 32-bit base value in the hidden portion of the segment register. The base address bits above the standard
32 bits are cleared to 0 to allow consistency for implementations that use less than 64 bits.

The hidden descriptor register fields for FS.base and GS.base are physically mapped to MSRs in order to load all
address bits supported by a 64-bit implementation. Software with CPL = 0 (privileged software) can load all
supported linear-address bits into FS.base or GS.base using WRMSR. Addresses written into the 64-bit FS.base
and GS.base registers must be in canonical form. A WRMSR instruction that attempts to write a non-canonical
address to those registers causes a #GP fault.

When in compatibility mode, FS and GS overrides operate as defined by 32-bit mode behavior regardless of the
value loaded into the upper 32 linear-address bits of the hidden descriptor register base field. Compatibility mode
ignores the upper 32 bits when calculating an effective address.

A new 64-bit mode instruction, SWAPGS, can be used to load GS base. SWAPGS exchanges the kernel data struc-
ture pointer from the IA32_KERNEL_GS_BASE MSR with the GS base register. The kernel can then use the GS
prefix on normal memory references to access the kernel data structures. An attempt to write a non-canonical
value (using WRMSR) to the IA32_KERNEL_GS_BASE MSR causes a #GP fault.

3.4.5 Segment Descriptors

A segment descriptor is a data structure in a GDT or LDT that provides the processor with the size and location of
a segment, as well as access control and status information. Segment descriptors are typically created by
compilers, linkers, loaders, or the operating system or executive, but not application programs. Figure 3-8 illus-
trates the general descriptor format for all types of segment descriptors.

Vol. 3A 3-9

PROTECTED-MODE MEMORY MANAGEMENT

31 242322212019 161514 1312 11 8 7 0
D A| Seg. D
Base 31:24 G|/ |L|v| Limt [Pl P |S| Type Base 23:16 4
B L| 19:16 L
31 1615 0
Base Address 15:00 Segment Limit 15:00 0
L — 64-bit code segment (IA-32e mode only)
AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)
DPL — Descriptor privilege level
G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)
TYPE — Segment type

Figure 3-8. Segment Descriptor

The flags and fields in a segment descriptor are as follows:

Segment limit field

Specifies the size of the segment. The processor puts together the two segment limit fields to form
a 20-bit value. The processor interprets the segment limit in one of two ways, depending on the
setting of the G (granularity) flag:

e If the granularity flag is clear, the segment size can range from 1 byte to 1 MByte, in byte incre-
ments.

e If the granularity flag is set, the segment size can range from 4 KBytes to 4 GBytes, in 4-KByte
increments.

The processor uses the segment limit in two different ways, depending on whether the segment is
an expand-up or an expand-down segment. See Section 3.4.5.1, "Code- and Data-Segment
Descriptor Types,” for more information about segment types. For expand-up segments, the offset
in a logical address can range from 0 to the segment limit. Offsets greater than the segment limit
generate general-protection exceptions (#GP, for all segments other than SS) or stack-fault excep-
tions (#SS for the SS segment). For expand-down segments, the segment limit has the reverse
function; the offset can range from the segment limit plus 1 to FFFFFFFFH or FFFFH, depending on
the setting of the B flag. Offsets less than or equal to the segment limit generate general-protection
exceptions or stack-fault exceptions. Decreasing the value in the segment limit field for an expand-
down segment allocates new memory at the bottom of the segment's address space, rather than at
the top. IA-32 architecture stacks always grow downwards, making this mechanism convenient for
expandable stacks.

Base address fields

Type field

3-10 Vol. 3A

Defines the location of byte 0 of the segment within the 4-GByte linear address space. The
processor puts together the three base address fields to form a single 32-bit value. Segment base
addresses should be aligned to 16-byte boundaries. Although 16-byte alignment is not required,
this alignment allows programs to maximize performance by aligning code and data on 16-byte
boundaries.

Indicates the segment or gate type and specifies the kinds of access that can be made to the
segment and the direction of growth. The interpretation of this field depends on whether the
descriptor type flag specifies an application (code or data) descriptor or a system descriptor. The
encoding of the type field is different for code, data, and system descriptors (see Figure 5-1). See
Section 3.4.5.1, "Code- and Data-Segment Descriptor Types,” for a description of how this field is
used to specify code and data-segment types.

PROTECTED-MODE MEMORY MANAGEMENT

S (descriptor type) flag
Specifies whether the segment descriptor is for a system segment (S flag is clear) or a code or data
segment (S flag is set).

DPL (descriptor privilege level) field
Specifies the privilege level of the segment. The privilege level can range from 0 to 3, with 0 being
the most privileged level. The DPL is used to control access to the segment. See Section 5.5, “Priv-
ilege Levels,” for a description of the relationship of the DPL to the CPL of the executing code
segment and the RPL of a segment selector.

P (segment-present) flag
Indicates whether the segment is present in memory (set) or not present (clear). If this flag is clear,
the processor generates a segment-not-present exception (#NP) when a segment selector that
points to the segment descriptor is loaded into a segment register. Memory management software
can use this flag to control which segments are actually loaded into physical memory at a given
time. It offers a control in addition to paging for managing virtual memory.

Figure 3-9 shows the format of a segment descriptor when the segment-present flag is clear. When
this flag is clear, the operating system or executive is free to use the locations marked “Available” to
store its own data, such as information regarding the whereabouts of the missing segment.

D/B (default operation size/default stack pointer size and/or upper bound) flag
Performs different functions depending on whether the segment descriptor is an executable code
segment, an expand-down data segment, or a stack segment. (This flag should always be set to 1
for 32-bit code and data segments and to O for 16-bit code and data segments.)

o Executable code segment. The flag is called the D flag and it indicates the default length for
effective addresses and operands referenced by instructions in the segment. If the flag is set,
32-bit addresses and 32-bit or 8-bit operands are assumed; if it is clear, 16-bit addresses and
16-bit or 8-bit operands are assumed.

The instruction prefix 66H can be used to select an operand size other than the default, and the
prefix 67H can be used select an address size other than the default.

o Stack segment (data segment pointed to by the SS register). The flag is called the B (big)
flag and it specifies the size of the stack pointer used for implicit stack operations (such as
pushes, pops, and calls). If the flag is set, a 32-bit stack pointer is used, which is stored in the
32-bit ESP register; if the flag is clear, a 16-bit stack pointer is used, which is stored in the 16-
bit SP register. If the stack segment is set up to be an expand-down data segment (described in
the next paragraph), the B flag also specifies the upper bound of the stack segment.

+ Expand-down data segment. The flag is called the B flag and it specifies the upper bound of
the segment. If the flag is set, the upper bound is FFFFFFFFH (4 GBytes); if the flag is clear, the
upper bound is FFFFH (64 KBytes).

31 161514 1312 11 8 7 0
Available o P |S| Type Available 4
L
31 0
Available 0

Figure 3-9. Segment Descriptor When Segment-Present Flag Is Clear

G (granularity) flag
Determines the scaling of the segment limit field. When the granularity flag is clear, the segment
limit is interpreted in byte units; when flag is set, the segment limit is interpreted in 4-KByte units.
(This flag does not affect the granularity of the base address; it is always byte granular.) When the
granularity flag is set, the twelve least significant bits of an offset are not tested when checking the

Vol. 3A 3-11

PROTECTED-MODE MEMORY MANAGEMENT

offset against the segment limit. For example, when the granularity flag is set, a limit of 0 results in
valid offsets from 0 to 4095.

L (64-bit code segment) flag
In IA-32e mode, bit 21 of the second doubleword of the segment descriptor indicates whether a
code segment contains native 64-bit code. A value of 1 indicates instructions in this code segment
are executed in 64-bit mode. A value of 0 indicates the instructions in this code segment are
executed in compatibility mode. If the L-bit is set, then the D-bit must be cleared. Bit 21 is not used
outside IA-32e mode (or for data segments). Because an attempt to activate IA-32e mode will fault
if the current CS has the L-bit set (see Section 10.8.5), software operating outside IA-32e mode
should avoid loading CS from a descriptor that sets the L-bit.

Available and reserved bits
Bit 20 of the second doubleword of the segment descriptor is available for use by system software.

3.4.5.1 Code- and Data-Segment Descriptor Types

When the S (descriptor type) flag in a segment descriptor is set, the descriptor is for either a code or a data
segment. The highest order bit of the type field (bit 11 of the second double word of the segment descriptor) then
determines whether the descriptor is for a data segment (clear) or a code segment (set).

For data segments, the three low-order bits of the type field (bits 8, 9, and 10) are interpreted as accessed (A),
write-enable (W), and expansion-direction (E). See Table 3-1 for a description of the encoding of the bits in the
type field for code and data segments. Data segments can be read-only or read/write segments, depending on the
setting of the write-enable bit.

Table 3-1. Code- and Data-Segment Types

Type Field Descriptor Description
Decimal 1 | 10| 9 8 Type
€ W A
0 0 0 0 0 Data Read-Only
1 0 0 0 1 Data Read-Only, accessed
2 0 0 1 0 Data Read/Write
3 0 0 1 1 Data Read/Write, accessed
4 0 1 0 0 Data Read-Only, expand-down
5 0 1 0 1 Data Read-Only, expand-down, accessed
6 0 1 1 0 Data Read/Write, expand-down
7 0 1 1 1 Data Read/Write, expand-down, accessed
C R A
8 1 0 0 0 Code Execute-Only
1 0 0 1 Code Execute-Only, accessed
10 1 0 1 0 Code Execute/Read
11 1 0 1 1 Code Execute/Read, accessed
12 1 1 0 0 Code Execute-Only, conforming
13 1 1 0 1 Code Execute-Only, conforming, accessed
14 1 1 1 0 Code Execute/Read, conforming
15 1 1 1 1 Code Execute/Read, conforming, accessed

Stack segments are data segments which must be read/write segments. Loading the SS register with a segment
selector for a nonwritable data segment generates a general-protection exception (#GP). If the size of a stack
segment needs to be changed dynamically, the stack segment can be an expand-down data segment (expansion-

3-12 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

direction flag set). Here, dynamically changing the segment limit causes stack space to be added to the bottom of
the stack. If the size of a stack segment is intended to remain static, the stack segment may be either an expand-
up or expand-down type.

The accessed bit indicates whether the segment has been accessed since the last time the operating-system or
executive cleared the bit. The processor sets this bit whenever it loads a segment selector for the segment into a
segment register, assuming that the type of memory that contains the segment descriptor supports processor
writes. The bit remains set until explicitly cleared. This bit can be used both for virtual memory management and
for debugging.

For code segments, the three low-order bits of the type field are interpreted as accessed (A), read enable (R), and
conforming (C). Code segments can be execute-only or execute/read, depending on the setting of the read-enable
bit. An execute/read segment might be used when constants or other static data have been placed with instruction
code in a ROM. Here, data can be read from the code segment either by using an instruction with a CS override
prefix or by loading a segment selector for the code segment in a data-segment register (the DS, ES, FS, or GS
registers). In protected mode, code segments are not writable.

Code segments can be either conforming or nonconforming. A transfer of execution into a more-privileged
conforming segment allows execution to continue at the current privilege level. A transfer into a nonconforming
segment at a different privilege level results in a general-protection exception (#GP), unless a call gate or task gate
is used (see Section 5.8.1, “"Direct Calls or Jumps to Code Segments,” for more information on conforming and
nonconforming code segments). System utilities that do not access protected facilities and handlers for some types
of exceptions (such as, divide error or overflow) may be loaded in conforming code segments. Utilities that need to
be protected from less privileged programs and procedures should be placed in nonconforming code segments.

NOTE

Execution cannot be transferred by a call or a jump to a less-privileged (numerically higher
privilege level) code segment, regardless of whether the target segment is a conforming or
nonconforming code segment. Attempting such an execution transfer will result in a general-
protection exception.

All data segments are nonconforming, meaning that they cannot be accessed by less privileged programs or proce-
dures (code executing at numerically higher privilege levels). Unlike code segments, however, data segments can
be accessed by more privileged programs or procedures (code executing at humerically lower privilege levels)
without using a special access gate.

If the segment descriptors in the GDT or an LDT are placed in ROM, the processor can enter an indefinite loop if
software or the processor attempts to update (write to) the ROM-based segment descriptors. To prevent this
problem, set the accessed bits for all segment descriptors placed in a ROM. Also, remove operating-system or
executive code that attempts to modify segment descriptors located in ROM.

3.5 SYSTEM DESCRIPTOR TYPES

When the S (descriptor type) flag in a segment descriptor is clear, the descriptor type is a system descriptor. The
processor recognizes the following types of system descriptors:

® Local descriptor-table (LDT) segment descriptor.
® Task-state segment (TSS) descriptor.

® Call-gate descriptor.

®* Interrupt-gate descriptor.

®* Trap-gate descriptor.

®* Task-gate descriptor.

These descriptor types fall into two categories: system-segment descriptors and gate descriptors. System-
segment descriptors point to system segments (LDT and TSS segments). Gate descriptors are in themselves
“gates,” which hold pointers to procedure entry points in code segments (call, interrupt, and trap gates) or which
hold segment selectors for TSS’s (task gates).

Vol.3A 3-13

PROTECTED-MODE MEMORY MANAGEMENT

Table 3-2 shows the encoding of the type field for system-segment descriptors and gate descriptors. Note that
system descriptors in IA-32e mode are 16 bytes instead of 8 bytes.

Table 3-2. System-Segment and Gate-Descriptor Types

Type Field Description
Decimal 11 10 9 8 32-Bit Mode IA-32e Mode
0 0 0 0 0 Reserved Reserved
1 0 0 0 1 16-bit TSS (Available) Reserved
2 0 0 1 0 LDT LDT
3 0 0 1 1 16-bit TSS (Busy) Reserved
4 0 1 0 0 16-bit Call Gate Reserved
5 0 1 0 1 Task Gate Reserved
6 0 1 1 0 16-bit Interrupt Gate Reserved
7 0 1 1 1 16-bit Trap Gate Reserved
8 1 0 0 0 Reserved Reserved
9 1 0 0 1 32-bit TSS (Available) 64-bit TSS (Available)
10 1 0 1 0 Reserved Reserved
11 1 0 1 1 32-bit TSS (Busy) 64-bit TSS (Busy)
12 1 1 0 0 32-bit Call Gate 64-bit Call Gate
13 1 1 0 1 Reserved Reserved
14 1 1 1 0 32-bit Interrupt Gate 64-bit Interrupt Gate
15 1 1 1 1 32-bit Trap Gate 64-bit Trap Gate

See also: Section 3.5.1, "Segment Descriptor Tables,” and Section 8.2.2, “TSS Descriptor,” (for more information
on the system-segment descriptors); see Section 5.8.3, "Call Gates,” Section 6.11, “IDT Descriptors,” and Section
8.2.5, “Task-Gate Descriptor,” (for more information on the gate descriptors).

3.5.1 Segment Descriptor Tables

A segment descriptor table is an arra
length and can contain up to 8192 (2

® The global descriptor table (GDT).

® The local descriptor tables (LDT).

3-14 Vol. 3A

of segment descriptors (see Figure 3-10). A descriptor table is variable in
) 8-byte descriptors. There are two kinds of descriptor tables:

PROTECTED-MODE MEMORY MANAGEMENT

Global Local
Descriptor Descriptor
Table (GDT) Table (LDT)
N ¢ ¢
I TI=0 TI=1
Segment
Selector
56 56
48 48
40 40
32 32
24 24
16 16
8 8
First Descriptor in
GDT is Not Used 0 0
GDTR Register LDTR Register
Limit | Limit
| Base Address Base Address
Seg. Sel.

Figure 3-10. Global and Local Descriptor Tables

Each system must have one GDT defined, which may be used for all programs and tasks in the system. Optionally,
one or more LDTs can be defined. For example, an LDT can be defined for each separate task being run, or some or
all tasks can share the same LDT.

The GDT is not a segment itself; instead, it is a data structure in linear address space. The base linear address and
limit of the GDT must be loaded into the GDTR register (see Section 2.4, "Memory-Management Registers”). The

base address of the GDT should be aligned on an eight-byte boundary to yield the best processor performance. The
limit value for the GDT is expressed in bytes. As with segments, the limit value is added to the base address to get
the address of the last valid byte. A limit value of 0 results in exactly one valid byte. Because segment descriptors
are always 8 bytes long, the GDT limit should always be one less than an integral multiple of eight (that is, 8N - 1).

The first descriptor in the GDT is not used by the processor. A segment selector to this “null descriptor” does not
generate an exception when loaded into a data-segment register (DS, ES, FS, or GS), but it always generates a
general-protection exception (#GP) when an attempt is made to access memory using the descriptor. By initializing
the segment registers with this segment selector, accidental reference to unused segment registers can be guar-
anteed to generate an exception.

The LDT is located in a system segment of the LDT type. The GDT must contain a segment descriptor for the LDT
segment. If the system supports multiple LDTs, each must have a separate segment selector and segment
descriptor in the GDT. The segment descriptor for an LDT can be located anywhere in the GDT. See Section 3.5,
“System Descriptor Types,” for information on the LDT segment-descriptor type.

An LDT is accessed with its segment selector. To eliminate address translations when accessing the LDT, the
segment selector, base linear address, limit, and access rights of the LDT are stored in the LDTR register (see
Section 2.4, "Memory-Management Registers”).

When the GDTR register is stored (using the SGDT instruction), a 48-bit “pseudo-descriptor” is stored in memory
(see top diagram in Figure 3-11). To avoid alignment check faults in user mode (privilege level 3), the pseudo-
descriptor should be located at an odd word address (that is, address MOD 4 is equal to 2). This causes the

Vol.3A 3-15

PROTECTED-MODE MEMORY MANAGEMENT

processor to store an aligned word, followed by an aligned doubleword. User-mode programs normally do not store
pseudo-descriptors, but the possibility of generating an alignment check fault can be avoided by aligning pseudo-
descriptors in this way. The same alignment should be used when storing the IDTR register using the SIDT instruc-
tion. When storing the LDTR or task register (using the SLDT or STR instruction, respectively), the pseudo-
descriptor should be located at a doubleword address (that is, address MOD 4 is equal to 0).

a7 16 15 0
| 32-bitBaseAddress | Limit |

79 16 15 0
| 64-bitBaseAddress | Limit |

Figure 3-11. Pseudo-Descriptor Formats

3.5.2 Segment Descriptor Tables in IA-32e Mode

In IA-32e mode, a segment descriptor table can contain up to 8192 (213) 8-byte descriptors. An entry in the
segment descriptor table can be 8 bytes. System descriptors are expanded to 16 bytes (occupying the space of two

entries).

GDTR and LDTR registers are expanded to hold 64-bit base address. The corresponding pseudo-descriptor is 80
bits. (see the bottom diagram in Figure 3-11).

The following system descriptors expand to 16 bytes:
— Call gate descriptors (see Section 5.8.3.1, “IA-32e Mode Call Gates”).
— IDT gate descriptors (see Section 6.14.1, “64-Bit Mode IDT").
— LDT and TSS descriptors (see Section 8.2.3, “"TSS Descriptor in 64-bit mode”).

3-16 Vol. 3A

CHAPTER 4
PAGING

Chapter 3 explains how segmentation converts logical addresses to linear addresses. Paging (or linear-address
translation) is the process of translating linear addresses so that they can be used to access memory or I/O
devices. Paging translates each linear address to a physical address and determines, for each translation, what
accesses to the linear address are allowed (the address’s access rights) and the type of caching used for such
accesses (the address’s memory type).

Intel-64 processors support four different paging modes. These modes are identified and defined in Section 4.1.
Section 4.2 gives an overview of the translation mechanism that is used in all modes. Section 4.3, Section 4.4, and
Section 4.5 discuss the four paging modes in detail.

Section 4.6 details how paging determines and uses access rights. Section 4.7 discusses exceptions that may be
generated by paging (page-fault exceptions). Section 4.8 considers data which the processor writes in response to
linear-address accesses (accessed and dirty flags).

Section 4.9 describes how paging determines the memory types used for accesses to linear addresses. Section
4.10 provides details of how a processor may cache information about linear-address translation. Section 4.11
outlines interactions between paging and certain VMX features. Section 4.12 gives an overview of how paging can
be used to implement virtual memory.

4.1 PAGING MODES AND CONTROL BITS

Paging behavior is controlled by the following control bits:
®* The WP and PG flags in control register CRO (bit 16 and bit 31, respectively).

®* The PSE, PAE, PGE, LA57, PCIDE, SMEP, SMAP, PKE, CET, and PKS flags in control register CR4 (bit 4, bit 5,
bit 7, bit 12, bit 17, bit 20, bit 21, bit 22, bit 23, and bit 24, respectively).

® The LME and NXE flags in the IA32_EFER MSR (bit 8 and bit 11, respectively).
®* The AC flag in the EFLAGS register (bit 18).

® The “enable HLAT"” VM-execution control (tertiary processor-based VM-execution control bit 1; see Section
25.6.2, “Processor-Based VM-Execution Controls,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C).

Software enables paging by using the MOV to CRO instruction to set CRO.PG. Before doing so, software should
ensure that control register CR3 contains the physical address of the first paging structure that the processor will
use for linear-address translation (see Section 4.2) and that that structure is initialized as desired. See Table 4-3,
Table 4-7, and Table 4-12 for the use of CR3 in the different paging modes.

Section 4.1.1 describes how the values of CR0.PG, CR4.PAE, CR4.LA57, and IA32_EFER.LME determine whether
paging is enabled and, if so, which of four paging modes is in use. Section 4.1.2 explains how to manage these bits
to establish or make changes in paging modes. Section 4.1.3 discusses how CR0.WP, CR4.PSE, CR4.PGE,
CR4.PCIDE, CR4.SMEP, CR4.SMAP, CR4.PKE, CR4.CET, CR4.PKS, and IA32_EFER.NXE modify the operation of the
different paging modes.

4.1.1 Four Paging Modes

If CRO.PG = 0, paging is not used. The logical processor treats all linear addresses as if they were physical
addresses. CR4.PAE, CR4.LA57, and IA32_EFER.LME are ignored by the processor, as are CR0.WP, CR4.PSE,
CR4.PGE, CR4.SMEP, CR4.SMAP, and IA32_EFER.NXE. (CR4.CET is also ignored insofar as it affects linear-address
access rights.)

Paging is enabled if CRO.PG = 1. Paging can be enabled only if protection is enabled (CRO.PE = 1). If paging is
enabled, one of four paging modes is used. The values of CR4.PAE, CR4.LA57, and IA32_EFER.LME determine
which paging mode is used:

Vol. 3A 4-1

PAGING

If CR4.PAE = 0, 32-bit paging is used. 32-bit paging is detailed in Section 4.3. 32-bit paging uses CR0O.WP,
CR4.PSE, CR4.PGE, CR4.SMEP, CR4.SMAP, and CR4.CET as described in Section 4.1.3 and Section 4.6.

If CR4.PAE = 1 and IA32_EFER.LME = 0, PAE paging is used. PAE paging is detailed in Section 4.4. PAE paging
uses CR0.WP, CR4.PGE, CR4.SMEP, CR4.SMAP, CR4.CET, and IA32_EFER.NXE as described in Section 4.1.3 and
Section 4.6.

If CR4.PAE = 1, IA32_EFER.LME = 1, and CR4.LA57 = 0, 4-level paging! is used.2 4-level paging is detailed
in Section 4.5 (along with 5-level paging). 4-level paging uses CR0.WP, CR4.PGE, CR4.PCIDE, CR4.SMEP,
CR4.SMAP, CR4.PKE, CR4.CET, CR4.PKS, and IA32_EFER.NXE as described in Section 4.1.3 and Section 4.6.

If CR4.PAE = 1, IA32_EFER.LME = 1, and CR4.LA57 = 1, 5-level paging is used. 5-level paging is detailed in
Section 4.5 (along with 4-level paging). 5-level paging uses CR0.WP, CR4.PGE, CR4.PCIDE, CR4.SMEP,
CR4.SMAP, CR4.PKE, CR4.CET, CR4.PKS, and IA32_EFER.NXE as described in Section 4.1.3 and Section 4.6.

NOTE

32-bit paging and PAE paging can be used only in legacy protected mode (IA32_EFER.LME = 0). In
contrast, 4-level paging and 5-level paging can be used only IA-32e mode (IA32_EFER.LME = 1).

The four paging modes differ with regard to the following details:

Linear-address width. The size of the linear addresses that can be translated.
Physical-address width. The size of the physical addresses produced by paging.

Page size. The granularity at which linear addresses are translated. Linear addresses on the same page are
translated to corresponding physical addresses on the same page.

Support for execute-disable access rights. In some paging modes, software can be prevented from fetching
instructions from pages that are otherwise readable.

Support for PCIDs. With 4-level paging and 5-level paging, software can enable a facility by which a logical
processor caches information for multiple linear-address spaces. The processor may retain cached information
when software switches between different linear-address spaces.

Support for protection keys. With 4-level paging and 5-level paging, each linear address is associated with a
protection key. Software can use the protection-key rights registers to disable, for each protection key, how
certain accesses to linear addresses associated with that protection key.

Table 4-1 illustrates the principal differences between the four paging modes.

Table 4-1. Properties of Different Paging Modes

. i Supports

Paging PGin | PAEIn | LMEin LAS7in | oo :ggf' Page 2upborts | peiDs and
Mode CRO CR4 IA32_EFER | CR4 width width? Sizes Disable? E(r;;’;e?ctlon
None 0 N/A N/A N/A 32 32 N/A No No
32-bit 1 0 02 N/A 32 Up to 40° j 5%4 No No

4 KB 5
PAE 1 1 0 N/A 32 Upto 52 >MB Yes No

4 KB
4-level 1 1 1 0 48 Up to 52 2MB Yes® Yes’

1GB®

1. Earlier versions of this manual used the term “IA-32e paging” to identify 4-level paging.

2. The LMA flag in the IA32_EFER MSR (bit 10) is a status bit that indicates whether the logical processor is in IA-32e mode (and thus
uses either 4-level paging or 5-level paging). The processor always sets IA32_EFER.LMA to CRO.PG & IA32_EFER.LME. Software can-

not directly modify IA32_EFER.LMA; an execution of WRMSR to the IA32_EFER MSR ignores bit 10 of its source operand.

4-2 Vol.3A

PAGING

Table 4-1. Properties of Different Paging Modes (Contd.)

.) Supports
Paging || PGin | PAEin | LMEin LAs7in | g | RRYS- Page 2upports | peiDs and
Mode CRO CR4 IA32_EFER | CR4 Width Width? Sizes Disable? E‘rac;lt;ctlon
4KB
5-level 1 1 1 1 57 Up to 52 2MB Yes® Yes’
1GB®
NOTES:

1. The physical-address width is always bounded by MAXPHYADDR; see Section 4.1.4.

2. The processor ensures that IA32_EFER.LME must be O if CRO.PG = 1 and CR4.PAE = 0.

3. 32-bit paging supports physical-address widths of more than 32 bits only for 4-MByte pages and only if the PSE-36 mechanism is
supported; see Section 4.1.4 and Section 4.3.

4, 32-bit paging uses 4-MByte pages only if CR4.PSE = 1; see Section 4.3.

5. Execute-disable access rights are applied only if IA32_EFER.NXE = 1; see Section 4.6.

6. Processors that support 4-level paging or 5-level paging do not necessarily support 1-GByte pages; see Section 4.1.4.

7.PCIDs are used only if CR4.PCIDE = 1; see Section 4.10.1. Protection keys are used only if certain conditions hold; see Section 4.6.2.

Because 32-bit paging and PAE paging are used only in legacy protected mode and because legacy protected mode
cannot produce linear addresses larger than 32 bits, 32-bit paging and PAE paging translate 32-bit linear
addresses.

4-level paging and 5-level paging are used only in IA-32e mode. IA-32e mode has two sub-modes:

®* Compatibility mode. This sub-mode uses only 32-bit linear addresses. In this sub-mode, 4-level paging and 5-
level paging treat bits 63:32 of such an address as all 0.

® 64-bit mode. While this sub-mode produces 64-bit linear addresses, the processor enforces canonicality,
meaning that the upper bits of such an address are identical: bits 63:47 for 4-level paging and bits 63:56 for
5-level paging. 4-level paging (respectively, 5-level paging) does not use bits 63:48 (respectively, bits 63:57)
of such addresses.

4.1.2 Paging-Mode Enabling

If CRO.PG = 1, a logical processor is in one of four paging modes, depending on the values of CR4.PAE,
IA32_EFER.LME, and CR4.LA57. Figure 4-1 illustrates how software can enable these modes and make transitions
between them. The following items identify certain limitations and other details:

®* IA32_EFER.LME cannot be modified while paging is enabled (CR0O.PG = 1). Attempts to do so using WRMSR
cause a general-protection exception (#GP(0)).

® Paging cannot be enabled (by setting CRO.PG to 1) while CR4.PAE = 0 and IA32_EFER.LME = 1. Attempts to do
so using MOV to CRO cause a general-protection exception (#GP(0)).

® One node in Figure 4-1 is labeled “IA-32e mode.” This node represents either 4-level paging (if CR4.LA57 = 0)
or 5-level paging (if CR4.LA57 = 1). As noted in the following items, software cannot modify CR4.LA57
(effecting transition between 4-level paging and 5-level paging) without first disabling paging.

® CRA4.PAE and CR4.LA57 cannot be modified while either 4-level paging or 5-level paging is in use (when
CRO.PG = 1 and IA32_EFER.LME = 1). Attempts to do so using MOV to CR4 cause a general-protection
exception (#GP(0)).

* Regardless of the current paging mode, software can disable paging by clearing CR0.PG with MOV to CRO.!

® Software can transition between 32-bit paging and PAE paging by changing the value of CR4.PAE with MOV to
CR4.

1. If the logical processor is in 64-bit mode or if CR4.PCIDE = 1, an attempt to clear CRO.PG causes a general-protection exception
(#GP). Software should transition to compatibility mode and clear CR4.PCIDE before attempting to disable paging.

Vol. 3A 4-3

PAGING

#GP #GP

Set LMA, Sel LMEf

No Pagin SetPG -bit Pagi PAE
ging 32-bit Paging Set PAE Paging
PG=0 PG=1 PG=1
PAE=0 PAE=0 PAE-= 1
Clear PG LME=0 Clear PAE LME=0
w
€ o #GP
= 8
=
m ClearPAE SetPG |
Set PAE Clear PAE |
!— 0 Paging —! !_ No Paging —! 4level Paging
PG| | PG=0 PG=1
| OPAE=0 , o PAEET PAE =1
L U=t L _WE=0 | LE =1
& SetPG o
setpol =| | § g
- (=
v Clear PAE m Clear PG m
40P Set PAE v
#GP
!— No P_aging_ —!
| PG=0 |
| oPEst
L _ME=1

Figure 4-1. Enabling and Changing Paging Modes

® Software cannot transition directly between 4-level paging (or 5-level paging) and any of other paging mode.
It must first disable paging (by clearing CR0.PG with MOV to CRO), then set CR4.PAE, IA32_EFER.LME, and
CR4.LA57 to the desired values (with MOV to CR4 and WRMSR), and then re-enable paging (by setting CRO.PG
with MOV to CRO). As noted earlier, an attempt to modify CR4.PAE, IA32_EFER.LME, or CR.LA57 while 4-level
paging or 5-level paging is enabled causes a general-protection exception (#GP(0)).

®* VMX transitions allow transitions between paging modes that are not possible using MOV to CR or WRMSR. This
is because VMX transitions can load CR0O, CR4, and IA32_EFER in one operation. See Section 4.11.1.

4.1.3 Paging-Mode Modifiers
Details of how each paging mode operates are determined by the following control bits:

* The WP flag in CRO (bit 16).

®* The PSE, PGE, PCIDE, SMEP, SMAP, PKE, CET, and PKS flags in CR4 (bit 4, bit 7, bit 17, bit 20, bit 21, bit 22,
bit 23, and bit 24, respectively).

® The NXE flag in the IA32_EFER MSR (bit 11).
®* The “enable HLAT” VM-execution control (tertiary processor-based VM-execution control bit 1).

CRO.WP allows pages to be protected from supervisor-mode writes. If CRO.WP = 0, supervisor-mode write
accesses are allowed to linear addresses with read-only access rights; if CRO.WP = 1, they are not. (User-mode
write accesses are never allowed to linear addresses with read-only access rights, regardless of the value of

4-4 Vol. 3A

PAGING

CR0O.WP.) Section 4.6 explains how access rights are determined, including the definition of supervisor-mode and
user-mode accesses.

CR4.PSE enables 4-MByte pages for 32-bit paging. If CR4.PSE = 0, 32-bit paging can use only 4-KByte pages; if
CR4.PSE = 1, 32-bit paging can use both 4-KByte pages and 4-MByte pages. See Section 4.3 for more information.
(PAE paging, 4-level paging, and 5-level paging can use multiple page sizes regardless of the value of CR4.PSE.)

CR4.PGE enables global pages. If CR4.PGE = 0, no translations are shared across address spaces; if CR4.PGE =1,
specified translations may be shared across address spaces. See Section 4.10.2.4 for more information.

CR4.PCIDE enables process-context identifiers (PCIDs) for 4-level paging and 5-level paging. PCIDs allow a logical
processor to cache information for multiple linear-address spaces. See Section 4.10.1 for more information.

CR4.SMEP allows pages to be protected from supervisor-mode instruction fetches. If CR4.SMEP = 1, software
operating in supervisor mode cannot fetch instructions from linear addresses that are accessible in user mode.
Section 4.6 explains how access rights are determined, including the definition of supervisor-mode accesses and
user-mode accessibility.

CR4.SMAP allows pages to be protected from supervisor-mode data accesses. If CR4.SMAP = 1, software oper-
ating in supervisor mode cannot access data at linear addresses that are accessible in user mode. Software can
override this protection by setting EFLAGS.AC. Section 4.6 explains how access rights are determined, including
the definition of supervisor-mode accesses and user-mode accessibility.

CR4.PKE and CR4.PKS enable specification of access rights based on protection keys. 4-level paging and 5-level
paging associate each linear address with a protection key. When CR4.PKE = 1, the PKRU register specifies, for
each protection key, whether user-mode linear addresses with that protection key can be read or written. When
CR4.PKS = 1, the IA32_PKRS MSR does the same for supervisor-mode linear addresses. See Section 4.6 for more
information.

CR4.CET enables control-flow enforcement technology, including the shadow-stack feature. If CR4.CET = 1,
certain memory accesses are identified as shadow-stack accesses and certain linear addresses translate to
shadow-stack pages. Section 4.6 explains how access rights are determined for these accesses and pages. (The
processor allows CR4.CET to be set only if CRO.WP is also set.)

IA32_EFER.NXE enables execute-disable access rights for PAE paging, 4-level paging, and 5-level paging. If
IA32_EFER.NXE = 1, instruction fetches can be prevented from specified linear addresses (even if data reads from
the addresses are allowed). Section 4.6 explains how access rights are determined. (IA32_EFER.NXE has no effect
with 32-bit paging. Software that wants to use this feature to limit instruction fetches from readable pages must
use PAE paging, 4-level paging, or 5-level paging.)

The “enable HLAT” VM-execution control enables HLAT paging for 4-level paging and 5-level paging. HLAT paging
does not use control register CR3 to identify the address of the first paging structure used for linear-address trans-
lation; instead, that structure is located using a field in the virtual-machine control structure (VMCS). In addition,
HLAT paging interprets certain bits in paging-structure entries differently than ordinary paging. See Section 4.5 for
details.

4.1.4 Enumeration of Paging Features by CPUID

Software can discover support for different paging features using the CPUID instruction:

® PSE: page-size extensions for 32-bit paging.
If CPUID.01H:EDX.PSE [bit 3] = 1, CR4.PSE may be set to 1, enabling support for 4-MByte pages with 32-bit
paging (see Section 4.3).

®* PAE: physical-address extension.
If CPUID.01H:EDX.PAE [bit 6] = 1, CR4.PAE may be set to 1, enabling PAE paging (this setting is also required
for 4-level paging and 5-level paging).

®* PGE: global-page support.
If CPUID.O1H:EDX.PGE [bit 13] = 1, CR4.PGE may be set to 1, enabling the global-page feature (see Section
4.10.2.4).

®* PAT: page-attribute table.
If CPUID.01H:EDX.PAT [bit 16] = 1, the 8-entry page-attribute table (PAT) is supported. When the PAT is

Vol. 3A 4-5

PAGING

supported, three bits in certain paging-structure entries select a memory type (used to determine type of
caching used) from the PAT (see Section 4.9.2).

® PSE-36: page-size extensions with 40-bit physical-address extension.
If CPUID.01H:EDX.PSE-36 [bit 17] = 1, the PSE-36 mechanism is supported, indicating that translations using
4-MByte pages with 32-bit paging may produce physical addresses with up to 40 bits (see Section 4.3).

® PCID: process-context identifiers.
If CPUID.01H:ECX.PCID [bit 17] = 1, CR4.PCIDE may be set to 1, enabling process-context identifiers (see
Section 4.10.1).

® SMEP: supervisor-mode execution prevention.
If CPUID.(EAX=07H,ECX=0H):EBX.SMEP [bit 7] = 1, CR4.SMEP may be set to 1, enabling supervisor-mode
execution prevention (see Section 4.6).

® SMAP: supervisor-mode access prevention.
If CPUID.(EAX=07H,ECX=0H):EBX.SMAP [bit 20] = 1, CR4.SMAP may be set to 1, enabling supervisor-mode
access prevention (see Section 4.6).

® PKU: protection keys for user-mode pages.
If CPUID.(EAX=07H,ECX=0H):ECX.PKU [bit 3] = 1, CR4.PKE may be set to 1, enabling protection keys for
user-mode pages (see Section 4.6).

® OSPKE: enabling of protection keys for user-mode pages.
CPUID.(EAX=07H,ECX=0H):ECX.OSPKE [bit 4] returns the value of CR4.PKE. Thus, protection keys for user-
mode pages are enabled if this flag is 1 (see Section 4.6).

® CET: control-flow enforcement technology.
If CPUID.(EAX=07H,ECX=0H):ECX.CET_SS [bit 7] = 1, CR4.CET may be set to 1, enabling shadow-stack
pages (see Section 4.6).

® LA57: 57-bit linear addresses and 5-level paging.
If CPUID.(EAX=07H,ECX=0):ECX.LA57 [bit 16] = 1, CR4.LA57 may be set to 1, enabling 5-level paging.

® PKS: protection keys for supervisor-mode pages.

If CPUID.(EAX=07H,ECX=0H):ECX.PKS [bit 31] = 1, CR4.PKS may be set to 1, enabling protection keys for
supervisor-mode pages (see Section 4.6).

®* NX: execute disable.
If CPUID.80000001H:EDX.NX [bit 20] = 1, IA32_EFER.NXE may be set to 1, allowing software to disable
execute access to selected pages (see Section 4.6). (Processors that do not support CPUID function
80000001H do not allow IA32_EFER.NXE to be set to 1.)

® PagelGB: 1-GByte pages.
If CPUID.80000001H:EDX.Pagel1GB [bit 26] = 1, 1-GByte pages may be supported with 4-level paging and 5-
level paging (see Section 4.5).

® LM: IA-32e mode support.
If CPUID.80000001H:EDX.LM [bit 29] = 1, IA32_EFER.LME may be set to 1, enabling IA-32e mode (with either
4-level paging or 5-level paging). (Processors that do not support CPUID function 80000001H do not allow
IA32_EFER.LME to be set to 1.)

® CPUID.80000008H:EAX[7:0] reports the physical-address width supported by the processor. (For processors
that do not support CPUID function 80000008H, the width is generally 36 if CPUID.01H:EDX.PAE [bit 6] = 1
and 32 otherwise.) This width is referred to as MAXPHYADDR. MAXPHYADDR is at most 52.

® CPUID.80000008H:EAX[15:8] reports the linear-address width supported by the processor. Generally, this
value is reported as follows:

— If CPUID.80000001H:EDX.LM [bit 29] = 0O, the value is reported as 32.

— If CPUID.80000001H:EDX.LM [bit 29] = 1 and CPUID.(EAX=07H,ECX=0):ECX.LA57 [bit 16] = 0, the
value is reported as 48.

— If CPUID.(EAX=07H,ECX=0):ECX.LA57 [bit 16] = 1, the value is reported as 57.
(Processors that do not support CPUID function 80000008H, support a linear-address width of 32.)

4-6 Vol. 3A

PAGING

4.2 HIERARCHICAL PAGING STRUCTURES: AN OVERVIEW

All four paging modes translate linear addresses using hierarchical paging structures. This section provides an
overview of their operation. Section 4.3, Section 4.4, Section 4.5, and Section 4.6 provide details for the four
paging modes.

Every paging structure is 4096 Bytes in size and comprises a number of individual entries. With 32-bit paging,
each entry is 32 bits (4 bytes); there are thus 1024 entries in each structure. With the other paging modes, each
entry is 64 bits (8 bytes); there are thus 512 entries in each structure. (PAE paging includes one exception, a
paging structure that is 32 bytes in size, containing 4 64-bit entries.)

The processor uses the upper portion of a linear address to identify a series of paging-structure entries. The last of
these entries identifies the physical address of the region to which the linear address translates (called the page
frame). The lower portion of the linear address (called the page offset) identifies the specific address within that
region to which the linear address translates.

Each paging-structure entry contains a physical address, which is either the address of another paging structure or
the address of a page frame. In the first case, the entry is said to reference the other paging structure; in the
latter, the entry is said to map a page.

The first paging structure used for any translation is located at the physical address in CR3.1 A linear address is
translated using the following iterative procedure. A portion of the linear address (initially the uppermost bits)
selects an entry in a paging structure (initially the one located using CR3). If that entry references another paging
structure, the process continues with that paging structure and with the portion of the linear address immediately
below that just used. If instead the entry maps a page, the process completes: the physical address in the entry is
that of the page frame and the remaining lower portion of the linear address is the page offset.

The following items give an example for each of the four paging modes (each example locates a 4-KByte page
frame):

* With 32-bit paging, each paging structure comprises 1024 = 210 entries. For this reason, the translation
process uses 10 bits at a time from a 32-bit linear address. Bits 31:22 identify the first paging-structure entry
and bits 21:12 identify a second. The latter identifies the page frame. Bits 11:0 of the linear address are the
page offset within the 4-KByte page frame. (See Figure 4-2 for an illustration.)

* With PAE paging, the first paging structure comprises only 4 = 22 entries. Translation thus begins by using
bits 31:30 from a 32-bit linear address to identify the first paging-structure entry. Other paging structures
comprise 512 =22 entries, so the process continues by using 9 bits at a time. Bits 29:21 identify a second
paging-structure entry and bits 20:12 identify a third. This last identifies the page frame. (See Figure 4-5 for
an illustration.)

* With 4-level paging, each paging structure comprises 512 = 22 entries and translation uses 9 bits at a time
from a 48-bit linear address. Bits 47:39 identify the first paging-structure entry, bits 38:30 identify a second,
bits 29:21 a third, and bits 20:12 identify a fourth. Again, the last identifies the page frame. (See Figure 4-8
for an illustration.)

®* 5-level paging is similar to 4-level paging except that 5-level paging translates 57-bit linear addresses.
Bits 56:48 identify the first paging-structure entry, while the remaining bits are used as with 4-level paging.

The translation process in each of the examples above completes by identifying a page frame; the page frame is
part of the translation of the original linear address. In some cases, however, the paging structures may be
configured so that the translation process terminates before identifying a page frame. This occurs if the process
encounters a paging-structure entry that is marked “not present” (because its P flag — bit 0 — is clear) or in which
a reserved bit is set. In this case, there is no translation for the linear address; an access to that address causes a
page-fault exception (see Section 4.7).

In the examples above, a paging-structure entry maps a page with a 4-KByte page frame when only 12 bits remain
in the linear address; entries identified earlier always reference other paging structures. That may not apply in
other cases. The following items identify when an entry maps a page and when it references another paging struc-
ture:

* If more than 12 bits remain in the linear address, bit 7 (PS — page size) of the current paging-structure entry
is consulted. If the bit is 0, the entry references another paging structure; if the bit is 1, the entry maps a page.

1. If HLAT paging is in use, a different mechanism is used to identify the first paging structure. See Section 4.5 for more information.

Vol. 3A 4-7

PAGING

* Ifonly 12 bits remain in the linear address, the current paging-structure entry always maps a page (bit 7 is
used for other purposes).

If a paging-structure entry maps a page when more than 12 bits remain in the linear address, the entry identifies
a page frame larger than 4 KBytes. For example, 32-bit paging uses the upper 10 bits of a linear address to locate
the first paging-structure entry; 22 bits remain. If that entry maps a page, the page frame is 222 Bytes = 4 MBytes.
32-bit paging can use 4-MByte pages if CR4.PSE = 1. The other paging modes can use 2-MByte pages (regardless
of the value of CR4.PSE). 4-level paging and 5-level paging can use 1-GByte pages if the processor supports them
(see Section 4.1.4).

Paging structures are given different names based on their uses in the translation process. Table 4-2 gives the
names of the different paging structures. It also provides, for each structure, the source of the physical address
used to locate it (CR3 or a different paging-structure entry); the bits in the linear address used to select an entry
from the structure; and details of whether and how such an entry can map a page.

Table 4-2. Paging Structures in the Different Paging Modes

Physical . .
. Entry . Bits Selecting .
Paging Structure Paging Mode Address of Page Mapping
Name Structure Entry
32-bit, PAE, 4-level N/A
PML5 table PML5E
5-level CR3! 56:48 N/A (PS must be 0)
32-bit, PAE N/A
PML4 table PML4€E 4-level CR3!
47:39 N/A (PS must be 0)
5-level PML5E
32-bit N/A
Page-directory- PDPTE | PAE CR3 31:30 N/A (PS must be 0)
pointer table
4-level, 5-level PML4E 38:30 1-GByte page if PS=12
32-bit CR3 31:22 4-MByte page if PS=13
Page directory PDE
PAE, 4-level, 5-level | PDPTE 29:21 2-MByte page if PS=1
32-bit 21:12
Page table PTE PDE 4-KByte page
PAE, 4-level, 5-level 20:12

NOTES:
1. If HLAT paging is in use, a different mechanism is used to identify the first paging structure. See Section 4.5 for more information.
2. Not all processors support 1-GByte pages; see Section 4.1.4.

3. 32-bit paging ignores the PS flag in a PDE (and uses the entry to reference a page table) unless CR4.PSE = 1. Not all processors sup-
port 4-MByte pages with 32-bit paging; see Section 4.1.4.

4-8 Vol. 3A

PAGING

4.3 32-BIT PAGING

A logical processor uses 32-bit paging if CRO.PG = 1 and CR4.PAE = 0. 32-bit paging translates 32-bit linear
addresses to 40-bit physical addresses.! Although 40 bits corresponds to 1 TByte, linear addresses are limited to
32 bits; at most 4 GBytes of linear-address space may be accessed at any given time.

32-bit paging uses a hierarchy of paging structures to produce a translation for a linear address. CR3 is used to
locate the first paging-structure, the page directory. Table 4-3 illustrates how CR3 is used with 32-bit paging.

32-bit paging may map linear addresses to either 4-KByte pages or 4-MByte pages. Figure 4-2 illustrates the
translation process when it uses a 4-KByte page; Figure 4-3 covers the case of a 4-MByte page. The following
items describe the 32-bit paging process in more detail as well has how the page size is determined:

®* A 4-KByte naturally aligned page directory is located at the physical address specified in bits 31:12 of CR3 (see
Table 4-3). A page directory comprises 1024 32-bit entries (PDEs). A PDE is selected using the physical address
defined as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from CR3.

— Bits 11:2 are bits 31:22 of the linear address.
— Bits 1:0 are 0.

Because a PDE is identified using bits 31:22 of the linear address, it controls access to a 4-Mbyte region of the
linear-address space. Use of the PDE depends on CR4.PSE and the PDE’s PS flag (bit 7):

®* If CR4.PSE = 1 and the PDE's PS flag is 1, the PDE maps a 4-MByte page (see Table 4-4). The final physical
address is computed as follows:

— Bits 39:32 are bits 20:13 of the PDE.
— Bits 31:22 are bits 31:22 of the PDE.?
— Bits 21:0 are from the original linear address.

®* If CR4.PSE = 0 or the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the physical
address specified in bits 31:12 of the PDE (see Table 4-5). A page table comprises 1024 32-bit entries (PTEs).
A PTE is selected using the physical address defined as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PDE.

— Bits 11:2 are bits 21:12 of the linear address.
— Bits 1:0 are 0.

®* Because a PTE is identified using bits 31:12 of the linear address, every PTE maps a 4-KByte page (see
Table 4-6). The final physical address is computed as follows:

— Bits 39:32 are all 0.
— Bits 31:12 are from the PTE.
— Bits 11:0 are from the original linear address.

If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the entry is used neither to refer-
ence another paging-structure entry nor to map a page. There is no translation for a linear address whose transla-
tion would use such a paging-structure entry; a reference to such a linear address causes a page-fault exception
(see Section 4.7).

1. Bits in the range 39:32 are 0 in any physical address used by 32-bit paging except those used to map 4-MByte pages. If the proces-
sor does not support the PSE-36 mechanism, this is true also for physical addresses used to map 4-MByte pages. If the processor
does support the PSE-36 mechanism and MAXPHYADDR < 40, bits in the range 39:MAXPHYADDR are 0 in any physical address used
to map a 4-MByte page. (The corresponding bits are reserved in PDEs.) See Section 4.1.4 for how to determine MAXPHYADDR and
whether the PSE-36 mechanism is supported.

2. The upper bits in the final physical address do not all come from corresponding positions in the PDE; the physical-address bits in the
PDE are not all contiguous.

Vol. 3A 4-9

PAGING

With 32-bit paging, there are reserved bits only if CR4.PSE = 1:

* Ifthe P flag and the PS flag (bit 7) of a PDE are both 1, the bits reserved depend on MAXPHYADDR, and whether
the PSE-36 mechanism is supported:!

— If the PSE-36 mechanism is not supported, bits 21:13 are reserved.

— If the PSE-36 mechanism is supported, bits 21:(M-19) are reserved, where M is the minimum of 40 and
MAXPHYADDR.

* If the PAT is not supported:?

— Ifthe P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.
(If CR4.PSE = 0, no bits are reserved with 32-bit paging.)

A reference using a linear address that is successfully translated to a physical address is performed only if allowed
by the access rights of the translation; see Section 4.6.

Linear Address
31 22 21 12 11 0

Directory Table Offset

12 4-KByte Page

10 10 Page Table Physical Address
Page Directory

PTE

Y

20

Y

PDE with PS=0

20

Ny y

3

CR3

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

1. See Section 4.1.4 for how to determine MAXPHYADDR and whether the PSE-36 mechanism is supported.
2. See Section 4.1.4 for how to determine whether the PAT is supported.

4-10 Vol. 3A

Linear Address

31 22 21

| Directory

| Offset

]

10 Page Directory

PDE with PS=1

22 4-MByte Page

Physical Address

18

>
?
2

3

CR3

Y

Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

PAGING

Figure 4-4 gives a summary of the formats of CR3 and the paging-structure entries with 32-bit paging. For the
paging structure entries, it identifies separately the format of entries that map pages, those that reference other
paging structures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are high-
lighted because they determine how such an entry is used.

31]30]29]28]27]26]25]24]23]22]21]20]19]18]17]16]15]14]13]12]11]10] 918|716 |5

2(1]0

Address of page directory’

Ignored

Ignored

CR3

Bits 31:22 of address
of 4MB page frame

Reserved
(must be Q)

Bits 39:32 of
address

A | Ignored | G

|=—
o
>

|=—a

PDE:
4MB

page

Address of page table

Ignored

(=]
ta)
>

OMNT©UW| ONTU|] OMNTO|d

—4S V| 4SS W] A= 7O|w

n-<Cc| n-C
|=—a

E~3| =~=

PDE:

page
table

Ignored

(=)

PDE:
not
present

Address of 4KB page frame

P
Ignored |[G|A|[D|A
T

OMN™©

—H= 70

wn-<Cc
S~
|=—a

PTE:
4KB

page

Ignored

(=)

PTE:
not
present

Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging

NOTES:

1. CR3 has 64 bits on processors supporting the Intel-64 architecture. These bits are ignored with 32-bit paging.

2. This example illustrates a processor in which MAXPHYADDR is 36. If this value is larger or smaller, the number of bits reserved in
positions 20:13 of a PDE mapping a 4-MByte page will change.

Vol. 3A 4-11

PAGING

Table 4-3. Use of CR3 with 32-Bit Paging

Bit Contents

Position(s)

2.0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page directory during linear-
address translation (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page directory during linear-
address translation (see Section 4.9)

11:5 Ignored

31:12 Physical address of the 4-KByte aligned page directory used for linear-address translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)

Table 4-4. Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 4-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte page referenced by this entry (see Section 4.6)

2 (U/S) gsse)r/supervisor; if 0, user-mode accesses are not allowed to the 4-MByte page referenced by this entry (see Section

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-MByte page referenced by
this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-MByte page referenced by
this entry (see Section 4.9)

5(A) Accessed; indicates whether software has accessed the 4-MByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-MByte page referenced by this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-5)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

119 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-MByte page referenced by this
entry (see Section 4.9.2); otherwise, reserved (must be 0)'

(M-20):13 Bits (M-1):32 of physical address of the 4-MByte page referenced by this entry?

21:(M-19) Reserved (must be 0)

31:22 Bits 31:22 of physical address of the 4-MByte page referenced by this entry

NOTES:

1. See Section 4.1.4 for how to determine whether the PAT is supported.

2. If the PSE-36 mechanism is not supported, M is 32, and this row does not apply. If the PSE-36 mechanism is supported, M is the min-
imum of 40 and MAXPHYADDR (this row does not apply if MAXPHYADDR = 32). See Section 4.1.4 for how to determine MAXPHY-
ADDR and whether the PSE-36 mechanism is supported.

4-12 Vol. 3A

PAGING

Table 4-5. Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if O, writes may not be allowed to the 4-MByte region controlled by this entry (see Section 4.6)

2 (U/S) gze)r/supervisor; if 0, user-mode accesses are not allowed to the 4-MByte region controlled by this entry (see Section

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9)

5(A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) If CR4.PSE = 1, must be 0 (otherwise, this entry maps a 4-MByte page; see Table 4-4); otherwise, ignored

118 Ignored

31:12 Physical address of 4-KByte aligned page table referenced by this entry

Table 4-6. Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page

Bit Contents

Position(s)

0P Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)

2 (U/S) UsGe)r/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section
4.

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9)

5(A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9.2); otherwise, reserved (must be 0)'

8 (Q) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

31:12 Physical address of the 4-KByte page referenced by this entry

NOTES:

1. See Section 4.1.4 for how to determine whether the PAT is supported.

Vol.3A 4-13

PAGING

4.4 PAE PAGING

A logical processor uses PAE paging if CRO.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 0. PAE paging translates
32-bit linear addresses to 52-bit physical addresses.! Although 52 bits corresponds to 4 PBytes, linear addresses
are limited to 32 bits; at most 4 GBytes of linear-address space may be accessed at any given time.

With PAE paging, a logical processor maintains a set of four (4) PDPTE registers, which are loaded from an address
in CR3. Linear address are translated using 4 hierarchies of in-memory paging structures, each located using one
of the PDPTE registers. (This is different from the other paging modes, in which there is one hierarchy referenced
by CR3.)

Section 4.4.1 discusses the PDPTE registers. Section 4.4.2 describes linear-address translation with PAE paging.

4.4.1 PDPTE Registers

When PAE paging is used, CR3 references the base of a 32-Byte page-directory-pointer table. Table 4-7 illus-
trates how CR3 is used with PAE paging.

Table 4-7. Use of CR3 with PAE Paging

Bit Contents

Position(s)

4.0 Ignored

315 Physical address of the 32-Byte aligned page-directory-pointer table used for linear-address translation
63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)

The page-directory-pointer-table comprises four (4) 64-bit entries called PDPTEs. Each PDPTE controls access to a
1-GByte region of the linear-address space. Corresponding to the PDPTEs, the logical processor maintains a set of
four (4) internal, non-architectural PDPTE registers, called PDPTEQ, PDPTE1, PDPTE2, and PDPTE3. The logical
processor loads these registers from the PDPTEs in memory as part of certain operations:

® If PAE paging would be in use following an execution of MOV to CRO or MOV to CR4 (see Section 4.1.1) and the
instruction is modifying any of CR0.CD, CR0.NW, CR0O.PG, CR4.PAE, CR4.PGE, CR4.PSE, or CR4.SMEP; then the
PDPTEs are loaded from the address in CR3.

* If MOV to CR3 is executed while the logical processor is using PAE paging, the PDPTEs are loaded from the
address being loaded into CR3.

* If PAE paging is in use and a task switch changes the value of CR3, the PDPTEs are loaded from the address in
the new CR3 value.

® Certain VMX transitions load the PDPTE registers. See Section 4.11.1.

Table 4-8 gives the format of a PDPTE. If any of the PDPTEs sets both the P flag (bit 0) and any reserved bit, the
MOV to CR instruction causes a general-protection exception (#GP(0)) and the PDPTEs are not loaded.2 As shown
in Table 4-8, bits 2:1, 8:5, and 63:MAXPHYADDR are reserved in the PDPTEs.

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be O in any physical address used by PAE paging. (The corresponding
bits are reserved in the paging-structure entries.) See Section 4.1.4 for how to determine MAXPHYADDR.

2. 0On some processors, reserved bits are checked even in PDPTEs in which the P flag (bit 0) is O.

4-14 Vol. 3A

PAGING

Table 4-8. Format of a PAE Page-Directory-Pointer-Table Entry (PDPTE)

Bit Contents

Position(s)

0P Present; must be 1 to reference a page directory

2:1 Reserved (must be 0)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page directory referenced by

this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page directory referenced by
this entry (see Section 4.9)

8.5 Reserved (must be 0)

11:9 Ignored

M-1)12 Physical address of 4-KByte aligned page directory referenced by this en'[ry1

63:M Reserved (must be 0)

NOTES:
1. Mis an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

44.2 Linear-Address Translation with PAE Paging

PAE paging may map linear addresses to either 4-KByte pages or 2-MByte pages. Figure 4-5 illustrates the trans-
lation process when it produces a 4-KByte page; Figure 4-6 covers the case of a 2-MByte page. The following items
describe the PAE paging process in more detail as well has how the page size is determined:

® Bits 31:30 of the linear address select a PDPTE register (see Section 4.4.1); this is PDPTE/, where j is the value
of bits 31:30.1 Because a PDPTE register is identified using bits 31:30 of the linear address, it controls access
to a 1-GByte region of the linear-address space. If the P flag (bit 0) of PDPTE/ is 0, the processor ignores bits
63:1, and there is no mapping for the 1-GByte region controlled by PDPTEi. A reference using a linear address
in this region causes a page-fault exception (see Section 4.7).

* Ifthe P flag of PDPTEi is 1, 4-KByte naturally aligned page directory is located at the physical address specified
in bits 51:12 of PDPTE/ (see Table 4-8 in Section 4.4.1). A page directory comprises 512 64-bit entries (PDEs).
A PDE is selected using the physical address defined as follows:

— Bits 51:12 are from PDPTEi.
— Bits 11:3 are bits 29:21 of the linear address.
— Bits 2:0 are 0.

Because a PDE is identified using bits 31:21 of the linear address, it controls access to a 2-Mbyte region of the
linear-address space. Use of the PDE depends on its PS flag (bit 7):

* Ifthe PDE’s PS flagis 1, the PDE maps a 2-MByte page (see Table 4-9). The final physical address is computed
as follows:

— Bits 51:21 are from the PDE.
— Bits 20:0 are from the original linear address.

* Ifthe PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the physical address specified in
bits 51:12 of the PDE (see Table 4-10). A page table comprises 512 64-bit entries (PTEs). A PTE is selected
using the physical address defined as follows:

— Bits 51:12 are from the PDE.

1. With PAE paging, the processor does not use CR3 when translating a linear address (as it does in the other paging modes). It does
not access the PDPTEs in the page-directory-pointer table during linear-address translation.

Vol. 3A 4-15

PAGING

— Bits 11:3 are bits 20:12 of the linear address.
— Bits 2:0 are 0.

® Because a PTE is identified using bits 31:12 of the linear address, every PTE maps a 4-KByte page (see
Table 4-11). The final physical address is computed as follows:

— Bits 51:12 are from the PTE.
— Bits 11:0 are from the original linear address.

If the P flag (bit 0) of a PDE or a PTE is O or if a PDE or a PTE sets any reserved bit, the entry is used neither to
reference another paging-structure entry nor to map a page. There is no translation for a linear address whose
translation would use such a paging-structure entry; a reference to such a linear address causes a page-fault
exception (see Section 4.7).

The following bits are reserved with PAE paging:
* If the P flag (bit 0) of a PDE or a PTE is 1, bits 62:MAXPHYADDR are reserved.
* Ifthe P flag and the PS flag (bit 7) of a PDE are both 1, bits 20:13 are reserved.
* IfIA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63) is reserved.
* If the PAT is not supported:!
— Ifthe P flag of a PTE is 1, bit 7 is reserved.
— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

A reference using a linear address that is successfully translated to a physical address is performed only if allowed
by the access rights of the translation; see Section 4.6.

Linear Address
3130 29 21 20 12 11 0

Directory Pointer —>| | Directory Table Offset

‘ 12 4-KByte Page

Page Table Physical Address

Page Directory 9
PTE 7*
9 40

»| PDE with PS=0

Y

PDPTE Registers

40

— > |PDPTE value

Figure 4-5. Linear-Address Translation to a 4-KByte Page using PAE Paging

1. See Section 4.1.4 for how to determine whether the PAT is supported.

4-16 Vol. 3A

PAGING

Linear Address
31 30 29 21 20 0
—>| | Directory Offset

Directory
Pointer

21 2-MByte Page

Page Directory Physical Address

PDPTE Registers

—>»| PDE with PS=1

»| PDPTE value >
40

\

31

Figure 4-6. Linear-Address Translation to a 2-MByte Page using PAE Paging

Table 4-9. Format of a PAE Page-Directory Entry that Maps a 2-MByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 2-MByte page referenced by this entry (see Section 4.6)

2 (U/S) Usse)r/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte page referenced by this entry (see Section
4.

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 2-MByte page referenced by
this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 2-MByte page referenced by this
entry (see Section 4.9)

5(A) Accessed; indicates whether software has accessed the 2-MByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-10)

8 (Q) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 2-MByte page referenced by this
entry (see Section 4.9.2); otherwise, reserved (must be 0)'

20:13 Reserved (must be 0)

(M-1):21 Physical address of the 2-MByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte page controlled by
this entry; see Section 4.6); otherwise, reserved (must be 0)

NOTES:

1. See Section 4.1.4 for how to determine whether the PAT is supported.

Vol.3A 4-17

PAGING

Table 4-10. Format of a PAE Page-Directory Entry that References a Page Table

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if O, writes may not be allowed to the 2-MByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if O, user-mode accesses are not allowed to the 2-MByte region controlled by this entry (see
Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9)

5(A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 2-MByte page; see Table 4-9)

11:8 Ignored

M-1)12 Physical address of 4-KByte aligned page table referenced by this entry

62M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte region controlled
by this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-11. Format of a PAE Page-Table Entry that Maps a 4-KByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by
this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9)

5(A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9.2); otherwise, reserved (must be 0)'

8(Q) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

4-18 Vol. 3A

PAGING

Table 4-11. Format of a PAE Page-Table Entry that Maps a 4-KByte Page (Contd.)

Bit Contents
Position(s)
11:9 Ignored

(M-1)12 Physical address of the 4-KByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 4-KByte page controlled by
this entry; see Section 4.6); otherwise, reserved (must be 0)

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

Figure 4-7 gives a summary of the formats of CR3 and the paging-structure entries with PAE paging. For the paging
structure entries, it identifies separately the format of entries that map pages, those that reference other paging
structures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are highlighted
because they determine how a paging-structure entry is used.

6(6[6/6[5[5]5[5[5[5]5[5[5 M! [M-1 3(3[3[2[2[2]2[2[2]2[2]2[2|T[T|T[T]T[T[T[T]T]1
3|2(1]0|9/8|7|6|5(4|3|2|1 2/1/0|9|8|7/6|5|4/3|2|1|0/9|8|7|6/5|4|3(2|/1]|0/9/8|7|6/5|4|3|2|1|0
Ignored? Address of page-directory-pointer table Ignored CR3
PIPIRs || PoPTE:
Reserved? Address of page directory Ign. | Rsvd. IS‘!I'\I vd 1 presen't
PDTPE:
Ignored 0 not
present
X P PIP|,IR PDE:
D Reserved pddress of Reserved |A| Ign. |G[1[D|Alcw| /(1] 2MB
4 Pag T D|T{=\W page
X I| [P|P U R PDE:
D Reserved Address of page table Ign. |0|g|A|C W/S /{1] page
n| [D|T{ W table
PDE:
Ignored 0 not
present
X P P|P U R PTE:
D Reserved Address of 4KB page frame Ign. [G|A|DIA|C W/S /|1] 4KB
T DT |W page
PTE:
Ignored 0 not
present
Figure 4-7. Formats of CR3 and Paging-Structure Entries with PAE Paging
NOTES:

1. Mis an abbreviation for MAXPHYADDR.

2. CR3 has 64 bits only on processors supporting the Intel-64 architecture. These bits are ignored with PAE paging.
3. Reserved fields must be 0.

4. 1f IA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63) is reserved.

Vol. 3A 4-19

PAGING

4.5 4-LEVEL PAGING AND 5-LEVEL PAGING

Because the operation of 4-level paging and 5-level paging is very similar, they are described together in this
section. The following items highlight the distinctions between the two paging modes:

®* Alogical processor uses 4-level paging if CRO.PG = 1, CR4.PAE = 1, IA32_EFER.LME = 1, and CR4.LA57 = 0.
4-level paging translates 48-bit linear addresses to 52-bit physical addresses.! Although 52 bits corresponds to
4 PBytes, linear addresses are limited to 48 bits; at most 256 TBytes of linear-address space may be accessed
at any given time.

®* Alogical processor uses 5-level paging if CRO.PG = 1, CR4.PAE = 1, IA32_EFER.LME = 1, and CR4.LA57 = 1.
5-level paging translates 57-bit linear addresses to 52-bit physical addresses. Thus, 5-level paging supports a
linear-address space sufficient to access the entire physical-address space.

4.5.1 Ordinary Paging and HLAT Paging

There are two forms of 4-level paging and 5-level paging that differ principally with regard to how linear-address
translation identifies the first paging structure.

The normal form is called ordinary paging, and it uses CR3 to locate the first paging structure, similar to what is
done for 32-bit paging. Section 4.5.2 provides details of this use of CR3.

An alternative form of paging may be used with the VMX feature called hypervisor-managed linear-address trans-
lation (HLAT). Called HLAT paging, this form is used only in VMX non-root operation and only if the “enable HLAT”
VM-execution control is 1.2 HLAT paging locates the first paging structure using a VM-execution control field in the
VMCS called the HLAT pointer (HLATP). Section 4.5.3 provides details.

Whether HLAT paging is used to translate a specific linear address depends on the address and on the value of a
VM-execution control field in the VMCS called the HLAT prefix size:

* If the HLAT prefix size is zero, every linear address is translated using HLAT paging.

* If the HLAT prefix size is not zero, a linear address is translated using HLAT paging if bit 63 of the address is 1.3
The address is translated using ordinary paging if bit 63 of the address is 0.

In some cases, HLAT paging may specify that a translation of a linear address must be restarted. When this occurs,
the linear address is then translated using ordinary paging (starting with a paging structure identified using CR3).
The situations leading to this restart are detailed in Section 4.5.4, and additional details of the restart process are
given in Section 4.5.5.

4.5.2 Use of CR3 with Ordinary 4-Level Paging and 5-Level Paging

Ordinary 4-level paging and 5-level paging each translate linear addresses using a hierarchy of in-memory paging
structures located using the contents of CR3, which is used to locate the first paging structure. For 4-level paging,
this is the PML4 table, and for 5-level paging it is the PML5 table. Use of CR3 with 4-level paging and 5-level paging
depends on whether process-context identifiers (PCIDs) have been enabled by setting CR4.PCIDE:

® Table 4-12 illustrates how CR3 is used with 4-level paging and 5-level paging if CR4.PCIDE = 0.

Table 4-12. Use of CR3 with 4-Level Paging and 5-level Paging and CR4.PCIDE = 0

Bit Contents
Position(s)
2.0 Ignored

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used by 4-level paging. (The correspond-
ing bits are reserved in the paging-structure entries.) See Section 4.1.4 for how to determine MAXPHYADDR.

2. HLAT paging is used only with 4-level paging and 5-level paging. It is never used with 32-bit paging or PAE paging, regardless of the
value of the “enable HLAT" VM-execution control.

3. This behavior applies if the CPU enumerates a maximum HLAT prefix size of 1 in I1A32_VMX_EPT_VPID_CAP[53:48] (see Appendix
A.10). Behavior when a different value is enumerated is not currently defined.

4-20 Vol. 3A

PAGING

Table 4-12. Use of CR3 with 4-Level Paging and 5-level Paging and CR4.PCIDE = 0 (Contd.)

Bit Contents

Position(s)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the PML4 table or PML5 table
during linear-address translation (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the PML4 table or PML5 table during
linear-address translation (see Section 4.9.2)

11:5 Ignored

M-1:12 Physical address of the 4-KByte aligned PML4 table or PML5 table used for linear-address translation’

63:M Reserved (must be 0)

NOTES:

1. Mis an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

®* Table 4-13 illustrates how CR3 is used with 4-level paging and 5-level paging if CR4.PCIDE = 1.

Table 4-13. Use of CR3 with 4-Level Paging and 5-Level Paging and CR4.PCIDE = 1

Bit Contents
Position(s)
11:0 PCID (see Section 4.10.1)
M-1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address translation?
63:M Reserved (must be 0)3
NOTES:

1. Section 4.9.2 explains how the processor determines the memory type used to access the PML4 table during linear-address transla-
tion with CR4.PCIDE = 1.

2. Mis an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

3. See Section 4.10.4.1 for use of bit 63 of the source operand of the MOV to CR3 instruction.

After software modifies the value of CR4.PCIDE, the logical processor immediately begins using CR3 as specified
for the new value. For example, if software changes CR4.PCIDE from 1 to 0, the current PCID immediately changes
from CR3[11:0] to 000H (see also Section 4.10.4.1). In addition, the logical processor subsequently determines
the memory type used to access the PML4 table using CR3.PWT and CR3.PCD, which had been bits 4:3 of the PCID.

453 Use of HLATP with HLAT 4-Level Paging and 5-Level Paging

With HLAT paging, 4-level paging and 5-level paging each translate linear addresses using a hierarchy of in-
memory paging structures located using the value of HLATP (a VM-execution control field in the VMCS), which is
used to locate the first paging structure. For 4-level paging, this is the PML4 table, and for 5-level paging it is the
PMLS table.

HLATP has the same format as that given for CR3 in Table 4-12, with the exception that bits 2:0 and bits 11:5 are
reserved and must be zero (these bits are checked by VM entry). HLATP does not contain a PCID value. HLAT
paging with CR4.PCIDE = 1 uses the PCID value in CR3[11:0].

Vol. 3A 4-21

PAGING

4.5.4 Linear-Address Translation with 4-Level Paging and 5-Level Paging

4-level paging and 5-level paging may map linear addresses to 4-KByte pages, 2-MByte pages, or 1-GByte pages.!
Figure 4-8 illustrates the translation process for 4-level paging when it produces a 4-KByte page; Figure 4-9 covers
the case of a 2-MByte page, and Figure 4-10 the case of a 1-GByte page. (The process for 5-level paging is similar.)

Linear Address

47 39 38 3029 2120 121 0
| PML4 | Directory Ptr Directory Table Offset
] | 5 .
9 12 _4-KByte Page
Physical Addr
PTE >
Page-Directory- PDE with PS=0 > 40
Pointer Table 40 Page Table
Page-Directory
L»{PDPTE 40
9
40
> PML4E
40

CR3 or HLATP

Figure 4-8. Linear-Address Translation to a 4-KByte Page Using 4-Level Paging

1. Not all processors support 1-GByte pages; see Section 4.1.4.

4-22 Vol. 3A

PAGING

Linear Address

47 39 38 3029 2120 0
| PML4 ‘ Directory Ptr Directory Offset
9
2-MByte Page
Physical Addr
Page-Directory- PDE with PS=1 >
Pointer Table 31
Page-Directory
‘> PDPTE
40
9
40
—>»| PML4E
—>
40

CR3 or HLATP

Figure 4-9. Linear-Address Translation to a 2-MByte Page using 4-Level Paging

Linear Address
47 39 38 30 29 0
| PML4 | Directory Ptr Offset

Page-Directory- 1-GByte Page

Pointer Table

+ Physical Addr

> PDPTE with PS=1 >
22

A

40

—>»| PML4E

—
40

CR3 or HLATP

Figure 4-10. Linear-Address Translation to a 1-GByte Page using 4-Level Paging

Vol. 3A 4-23

PAGING

4-level paging and 5-level paging associate with each linear address a protection key. Section 4.6 explains how
the processor uses the protection key in its determination of the access rights of each linear address.

The remainder of this section describes the translation process used by 4-level paging and 5-level paging in more
detail, as well has how the page size and protection key are determined. Because the process used by the two
paging modes is similar, they are described together, with any differences identified, in the following items:

®* With 5-level paging, a 4-KByte naturally aligned PMLS5 table is located at the physical address specified in
bits 51:12 of CR3 (see Table 4-12). (4-level paging does not use a PML5 table and omits this step.) A PML5
table comprises 512 64-bit entries (PML5Es). A PML5E is selected using the physical address defined as follows:

— Bits 51:12 are from CR3 or HLATP.
— Bits 11:3 are bits 56:48 of the linear address.
— Bits 2:0 are all 0.

Because a PML5E is identified using bits 56:48 of the linear address, it controls access to a 256-TByte region of
the linear-address space.

With HLAT paging, if bit 11 of the PML5E is 1, translation is restarted with ordinary paging with a maximum
page size of 256-TBytes (see Section 4.5.5). Otherwise, the translation process continues as described in the
next item.

®* A 4-KByte naturally aligned PML4 table is located at the physical address specified in bits 51:12 of CR3 (for 4-
level paging; see Table 4-12) or in bits 51:12 of the PML5E (for 5-level paging; see Table 4-14). A PML4 table
comprises 512 64-bit entries (PML4Es). A PMLAE is selected using the physical address defined as follows:

— Bits 51:12 are from CR3 or the HLATP (for 4-level paging) or in bits 51:12 of the PML5E (for 5-level
paging).

— Bits 11:3 are bits 47:39 of the linear address.

— Bits 2:0 are all 0.

Because a PMLA4E is identified using bits 47:39 of the linear address, it controls access to a 512-GByte region of
the linear-address space.

With HLAT paging, if bit 11 of the PML4E is 1, translation is restarted with ordinary paging with a maximum
page size of 512-GBytes (see Section 4.5.5). Otherwise, the translation process continues as described in the
next item.

®* A 4-KByte naturally aligned page-directory-pointer table is located at the physical address specified in
bits 51:12 of the PML4E (see Table 4-15). A page-directory-pointer table comprises 512 64-bit entries
(PDPTEs). A PDPTE is selected using the physical address defined as follows:

— Bits 51:12 are from the PML4E.
— Bits 11:3 are bits 38:30 of the linear address.
— Bits 2:0 are all 0.

Because a PDPTE is identified using bits 47:30 of the linear address, it controls access to a 1-GByte region of the
linear-address space.

With HLAT paging, if bit 11 of the PDPTE is 1, translation is restarted with ordinary paging with a maximum page
size of 1-GByte (see Section 4.5.5). Otherwise, the translation process continues as described below.

Use of the PDPTE depends on its PS flag (bit 7):1

* If the PDPTE’s PS flag is 1, the PDPTE maps a 1-GByte page (see Table 4-16). The final physical address is
computed as follows:

— Bits 51:30 are from the PDPTE.
— Bits 29:0 are from the original linear address.
The linear address’s protection key is the value of bits 62:59 of the PDPTE (see Section 4.6.2).

1. The PS flag of a PDPTE is reserved and must be O (if the P flag is 1) if 1-GByte pages are not supported. See Section 4.1.4 for how
to determine whether 1-GByte pages are supported.

4-24 Vol. 3A

PAGING

* Ifthe PDPTE’s PS flag is 0, a 4-KByte naturally aligned page directory is located at the physical address
specified in bits 51:12 of the PDPTE (see Table 4-17). A page directory comprises 512 64-bit entries (PDEs). A
PDE is selected using the physical address defined as follows:

— Bits 51:12 are from the PDPTE.
— Bits 11:3 are bits 29:21 of the linear address.
— Bits 2:0 are all 0.

Because a PDE is identified using bits 47:21 of the linear address, it controls access to a 2-MByte region of the
linear-address space.

With HLAT paging, if bit 11 of the PDE is 1, translation is restarted with ordinary paging with a maximum page size
of 2-MBytes (see Section 4.5.5). Otherwise, the translation process continues as described below.

Use of the PDE depends on its PS flag:

* Ifthe PDE'sPSflagis 1, the PDE maps a 2-MByte page (see Table 4-18). The final physical address is computed
as follows:

— Bits 51:21 are from the PDE.
— Bits 20:0 are from the original linear address.
The linear address’s protection key is the value of bits 62:59 of the PDE (see Section 4.6.2).

* Ifthe PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the physical address specified in
bits 51:12 of the PDE (see Table 4-19). A page table comprises 512 64-bit entries (PTEs). A PTE is selected
using the physical address defined as follows:

— Bits 51:12 are from the PDE.
— Bits 11:3 are bits 20:12 of the linear address.
— Bits 2:0 are all 0.

®* Because a PTE is identified using bits 47:12 of the linear address, every PTE maps a 4-KByte page (see
Table 4-20).

With HLAT paging, if bit 11 of the PTE is 1, translation is restarted with ordinary paging with a maximum page
size of 4-KBytes (see Section 4.5.5). Otherwise, the final physical address is computed as follows:

— Bits 51:12 are from the PTE.
— Bits 11:0 are from the original linear address.
The linear address’s protection key is the value of bits 62:59 of the PTE (see Section 4.6.2).

If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the entry is used neither to refer-
ence another paging-structure entry nor to map a page. There is no translation for a linear address whose transla-
tion would use such a paging-structure entry; a reference to such a linear address causes a page-fault exception
(see Section 4.7).

The following bits in a paging-structure entry are reserved with 4-level paging and 5-level paging (assuming that
the entry’s P flag is 1):

®* Bits 51:MAXPHYADDR are reserved in every paging-structure entry.

® The PSflag is reserved in a PML5E or a PML4E.

* If 1-GByte pages are not supported, the PS flag is reserved in a PDPTE.1

®* Ifthe PSflagin a PDPTE is 1, bits 29:13 of the entry are reserved.

* Ifthe PSflagin a PDE is 1, bits 20:13 of the entry are reserved.

* IfIA32_EFER.NXE = 0, the XD flag (bit 63) is reserved in every paging-structure entry.

A reference using a linear address that is successfully translated to a physical address is performed only if allowed
by the access rights of the translation; see Section 4.6.

1. See Section 4.1.4 for how to determine whether 1-GByte pages are supported.

Vol. 3A 4-25

PAGING

Figure 4-11 gives a summary of the formats of CR3 and the 4-level and 5-level paging-structure entries. For the
paging structure entries, it identifies separately the format of entries that map pages, those that reference other
paging structures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are highlighted
because they determine how a paging-structure entry is used.

Table 4-14. Format of a PML5 Entry (PML5E) that References a PML4 Table

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a PML4 table

1 (R/W) Read/write; if 0, writes may not be allowed to the 256-TByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if O, user-mode accesses are not allowed to the 256-TByte region controlled by this entry (see
Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the PML4 table referenced by this

entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the PML4 table referenced by this
entry (see Section 4.9.2)

5(A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Reserved (must be 0)

10:8 Ignored

11 (R) For ordinary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary
paging)

M-1:12 Physical address of 4-KByte aligned PML4 table referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 256-TByte region

controlled by this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-15. Format of a PML4 Entry (PML4E) that References a Page-Directory-Pointer Table

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a page-directory-pointer table

1 (R/W) Read/write; if O, writes may not be allowed to the 512-GByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if O, user-mode accesses are not allowed to the 512-GByte region controlled by this entry (see
Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page-directory-pointer table

referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page-directory-pointer table
referenced by this entry (see Section 4.9.2)

5(A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

4-26 Vol.3A

PAGING

Table 4-15. Format of a PML4 Entry (PML4E) that References a Page-Directory-Pointer Table (Contd.)

Bit Contents

Position(s)

7 (PS) Reserved (must be 0)

10:8 Ignored

11 (R) For ordinary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary
paging)

M-1:12 Physical address of 4-KByte aligned page-directory-pointer table referenced by this entry

51M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 512-GByte region
controlled by this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-16. Format of a Page-Directory-Pointer-Table Entry (PDPTE) that Maps a 1-GByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 1-GByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 1-GByte page referenced by this entry (see Section 4.6)

2 (U/S) Use)r/supervisor; if 0, user-mode accesses are not allowed to the 1-GByte page referenced by this entry (see Section
46

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 1-GByte page referenced by this
entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 1-GByte page referenced by this
entry (see Section 4.9.2)

5(A) Accessed; indicates whether software has accessed the 1-GByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 1-GByte page referenced by this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page directory; see Table 4-17)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

10:9 Ignored

11 (R) For ordinary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary
paging)

12 (PAT) I:girzeﬁtly determines the memory type used to access the 1-GByte page referenced by this entry (see Section

29:13 Reserved (must be 0)

(M-1):30 Physical address of the 1-GByte page referenced by this entry

Vol. 3A 4-27

PAGING

Table 4-16. Format of a Page-Directory-Pointer-Table Entry (PDPTE) that Maps a 1-GByte Page (Contd.)

Bit Contents

Position(s)

51:M Reserved (must be 0)

58:52 Ignored

62:59 Protection key; if CR4.PKE = 1 or CR4.PKS = 1, this may control the page's access rights (see Section 4.6.2); otherwise,
it is ignored and not used to control access rights.

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 1-GByte page controlled by
this entry; see Section 4.6); otherwise, reserved (must be 0)

NOTES:

1. The PAT is supported on all processors that support 4-level paging.

Table 4-17. Format of a Page-Directory-Pointer-Table Entry (PDPTE) that References a Page Directory

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a page directory

1 (R/W) Read/write; if O, writes may not be allowed to the 1-GByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 1-GByte region controlled by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page directory referenced by
this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page directory referenced by
this entry (see Section 4.9.2)

5(A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be O (otherwise, this entry maps a 1-GByte page; see Table 4-16)

10:8 Ignored

11 (R) For ordinary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary
paging)

M-1)12 Physical address of 4-KByte aligned page directory referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 1-GByte region controlled
by this entry; see Section 4.6); otherwise, reserved (must be 0)

4-28 Vol. 3A

PAGING

Table 4-18. Format of a Page-Directory Entry that Maps a 2-MByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 2-MByte page referenced by this entry (see Section 4.6)

2 (U/S) Use)r/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte page referenced by this entry (see Section
46

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 2-MByte page referenced by
this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 2-MByte page referenced by
this entry (see Section 4.9.2)

5(A) Accessed; indicates whether software has accessed the 2-MByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-19)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

10:9 Ignored

11 (R) For ordinary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary
paging)

12 (PAT) Indire)ctly determines the memory type used to access the 2-MByte page referenced by this entry (see Section
49.2

20:13 Reserved (must be 0)

(M-1):21 Physical address of the 2-MByte page referenced by this entry

51M Reserved (must be 0)
58:52 Ignored
62:59 Protection key; if CR4.PKE = 1 or CR4.PKS = 1, this may control the page’s access rights (see Section 4.6.2);

otherwise, it is ignored and not used to control access rights.

63 (XD) IfIA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte page controlled by
this entry; see Section 4.6); otherwise, reserved (must be 0)

Vol. 3A 4-29

PAGING

Table 4-19. Format of a Page-Directory Entry that References a Page Table

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if O, writes may not be allowed to the 2-MByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte region controlled by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9.2)

5(A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be O (otherwise, this entry maps a 2-MByte page; see Table 4-18)

10:8 Ignored

11 (R) For ordinary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary
paging)

M-1)12 Physical address of 4-KByte aligned page table referenced by this entry

51M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte region controlled
by this entry; see Section 4.6); otherwise, reserved (must be 0)

4-30 Vol. 3A

PAGING

Table 4-20. Format of a Page-Table Entry that Maps a 4-KByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)

2 (U/S) Use)r/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section
46

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by

this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9.2)

5(A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

7 (PAT) Indirectly determines the memory type used to access the 4-KByte page referenced by this entry (see Section 4.9.2)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

10:9 Ignored

11 (R) For lord)inary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary
paging

M-1)12 Physical address of the 4-KByte page referenced by this entry

51M Reserved (must be 0)
58:52 Ignored
62:59 Protection key; if CR4.PKE = 1 or CR4.PKS = 1, this may control the page’s access rights (see Section 4.6.2);

otherwise, it is ignored and not used to control access rights.

63 (XD) IfIA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 4-KByte page controlled by
this entry; see Section 4.6); otherwise, reserved (must be 0)

Vol. 3A 4-31

PAGING

5
6

-
-
-
-

M! [M-1 3(3(3[2(2|2|2[2]2|2]2|2]|2[1[T]|1|1|T]|1

5|5(5/5(5
7|6/5/4(3/2]1 2/1/0/9|8|7/6|5|4/3|2|1/0/9|8|7|6/5|4/3/2|1|0/9/8/7/6|5

N Ul

Address of PML4 table (4-level paging)

2
Reserved or PML5 table (5-level paging)

Ignored Ign. CR3

RS

[
PML5E:
Ign. vdﬁ A

R
/S\//\I 1 present

OMNO|] OO O|h
—45 v| 4 o|w

wo X

Ignored Rsvd. Address of PML4 table

PML5E:
not
present

(=]

Ignored

PML4E:

Ignored Rsvd. Address of page-directory-pointer table present

Ign. vd

S0 —
>
oNnT

PML4E:
not
present

(=]

Ignored

PDPTE:
1GB

page

X| Prot. Address of
5 Ignored Rsvd. 11¢B page frame

|=—
o
>
|=—

P
Reserved /_-|§ R|lgn.|G

PDPTE:

page
directory

|=—

Ignored Rsvd. Address of page directory R| Ign.

(=)
(=]
>
ONTU| ONT

—S v| 45 ©
S~ =~2

PDTPE:
not
present

(=]

Ignored

PDE:
2MB

page

X| Prot. Address of
Ignored Rsvd. 2MB page frame

|=—

Reserved /_-|§ R|{lgn.|G|1|D|A

PDE:

page
table

|=—

Ignored Rsvd. Address of page table R| Ign.

(=)
(=]
>
ONTU| ONT

—S v| 45 ©
S~ =~2

PDE:
not
present

(=]

Ignored

PTE:
4KB

page

X| Prot. Ignored Rsvd. Address of 4KB page frame Rilgn.|G

—A> 0
[w]
>

oMo

—S T
=
(V2]

=~=
|~

PTE:
Ignored 1] not
present

Figure 4-11. Formats of CR3 and Paging-Structure Entries with 4-Level Paging and 5-Level Paging
NOTES:
1. Mis an abbreviation for MAXPHYADDR.
2. Reserved fields must be 0.
3. If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1, the XD flag (bit 63) is reserved.
4.Bit 11 is R (restart) only for HLAT paging; it is ignored for ordinary paging.
5. The protection key is used only if software has enabled the appropriate feature; see Section 4.6.2. It is ignored otherwise.

4-32 Vol. 3A

PAGING

455 Restart of HLAT Paging

As noted in Section 4.5.1, HLAT paging may specify that a translation of a linear address must be restarted. Specif-
ically, this occurs when HLAT paging encounters a paging-structure entry that sets bit 11 (see Section 4.5.4).

When this occurs, translation of the linear address is restarted using ordinary paging (starting with a paging struc-
ture identified using CR3). The restarted translation proceeds just as if the HLAT feature were not enabled. The
entire linear address is translated again, including those portions that had been used by HLAT paging prior to the
restart.

The process of restarting HLAT paging (using ordinary paging) always specifies a maximum page size to be used
when a resulting translation is cached in the TLBs. This maximum page size depends on the level of the paging-
structure entry that restarts the translation by setting bit 11; details are given in Section 4.5.4. The page size of
the translation produced by the restarted process is never greater than this maximum page size. See Section
4.10.2.2 for more discussion.

4.6 ACCESS RIGHTS

There is a translation for a linear address if the processes described in Section 4.3, Section 4.4.2, and Section 4.5
(depending upon the paging mode) completes and produces a physical address. Whether an access is permitted by
a translation is determined by the access rights specified by the paging-structure entries controlling the transla-
tion; 1 paging-mode modifiers in CR0O, CR4, and the IA32_EFER MSR; EFLAGS.AC; and the mode of the access.

Section 4.6.1 describes how the processor determines the access rights for each linear address. Section 4.6.2
provides additional information about how protection keys contribute to access-rights determination. (They do so
only with 4-level paging and 5-level paging, and only if CR4.PKE = 1 or CR4.PKS = 1.)

NOTE

If HLAT paging is restarted, permissions are determined only by the access rights specified by the
paging-structure entries that the subsequent ordinary paging used to translate the linear address.
The access rights specified by the entries used earlier by HLAT paging do not apply.

4.6.1 Determination of Access Rights

Every access to a linear address is either a supervisor-mode access or a user-mode access. For all instruction
fetches and most data accesses, this distinction is determined by the current privilege level (CPL): accesses made
while CPL < 3 are supervisor-mode accesses, while accesses made while CPL = 3 are user-mode accesses.

Some operations implicitly access system data structures with linear addresses; the resulting accesses to those
data structures are supervisor-mode accesses regardless of CPL. Examples of such accesses include the following:
accesses to the global descriptor table (GDT) or local descriptor table (LDT) to load a segment descriptor; accesses
to the interrupt descriptor table (IDT) when delivering an interrupt or exception; and accesses to the task-state
segment (TSS) as part of a task switch or change of CPL. All these accesses are called implicit supervisor-mode
accesses regardless of CPL. Other accesses made while CPL < 3 are called explicit supervisor-mode accesses.

Access rights are also controlled by the mode of a linear address as specified by the paging-structure entries
controlling the translation of the linear address. If the U/S flag (bit 2) is 0 in at least one of the paging-structure
entries, the address is a supervisor-mode address. Otherwise, the address is a user-mode address.

When the shadow-stack feature of control-flow enforcement technology (CET) is enabled, certain accesses to
linear addresses are considered shadow-stack accesses (see Section 17.2, "Shadow Stacks,” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1). Like ordinary data accesses, each shadow-stack
access is defined as being either a user access or a supervisor access. In general, a shadow-stack access is a user
access if CPL = 3 and a supervisor access if CPL < 3. The WRUSS instruction is an exception; although it can be
executed only if CPL = 0, the processor treats its shadow-stack accesses as user accesses.

1. With PAE paging, the PDPTEs do not determine access rights.

Vol. 3A 4-33

PAGING

Shadow-stack accesses are allowed only to shadow-stack addresses. A linear address is a shadow-stack
address if the following are true of the translation of the linear address: (1) the R/W flag (bit 1) is 0 and the dirty
flag (bit 6) is 1 in the paging-structure entry that maps the page containing the linear address; and (2) the R/W
flag is 1 in every other paging-structure entry controlling the translation of the linear address.

The following items detail how paging determines access rights (only the items noted explicitly apply to shadow-
stack accesses):

NOTE

Many of the items below refer to an address with a protection key for which read (or write) access
is permitted. Section 4.6.2 provides details on when a protection key will permit (or not permit) a
data access (read or write) to a linear address using that protection key.

® For supervisor-mode accesses:

— Data may be read (implicitly or explicitly) from any supervisor-mode address with a protection key for
which read access is permitted.

— Data reads from user-mode pages.
Access rights depend on the value of CR4.SMAP:

* If CR4.SMAP = 0, data may be read from any user-mode address with a protection key for which read
access is permitted.

e If CR4.SMAP = 1, access rights depend on the value of EFLAGS.AC and whether the access is implicit or
explicit:
— If EFLAGS.AC = 1 and the access is explicit, data may be read from any user-mode address with a
protection key for which read access is permitted.
— If EFLAGS.AC = 0 or the access is implicit, data may not be read from any user-mode address.

— Data writes to supervisor-mode addresses.
Access rights depend on the value of CR0.WP:

¢ If CRO.WP = 0, data may be written to any supervisor-mode address with a protection key for which
write access is permitted.

¢ If CRO.WP = 1, data may be written to any supervisor-mode address with a translation for which the
R/W flag (bit 1) is 1 in every paging-structure entry controlling the translation and with a protection key
for which write access is permitted; data may not be written to any supervisor-mode address with a
translation for which the R/W flag is 0 in any paging-structure entry controlling the translation.

— Data writes to user-mode addresses.
Access rights depend on the value of CR0O.WP:

e If CRO.WP = 0, access rights depend on the value of CR4.SMAP:

— If CR4.SMAP = 0, data may be written to any user-mode address with a protection key for which
write access is permitted.

— If CR4.SMAP = 1, access rights depend on the value of EFLAGS.AC and whether the access is
implicit or explicit:

e If EFLAGS.AC = 1 and the access is explicit, data may be written to any user-mode address
with a protection key for which write access is permitted.

e If EFLAGS.AC = 0 or the access is implicit, data may not be written to any user-mode address.
e If CRO.WP = 1, access rights depend on the value of CR4.SMAP:

— If CR4.SMAP = 0, data may be written to any user-mode address with a translation for which the
R/W flag is 1 in every paging-structure entry controlling the translation and with a protection key
for which write access is permitted; data may not be written to any user-mode address with a
translation for which the R/W flag is 0 in any paging-structure entry controlling the translation.

— If CR4.SMAP = 1, access rights depend on the value of EFLAGS.AC and whether the access is
implicit or explicit:

4-34 Vol. 3A

PAGING

e If EFLAGS.AC = 1 and the access is explicit, data may be written to any user-mode address
with a translation for which the R/W flag is 1 in every paging-structure entry controlling the
translation and with a protection key for which write access is permitted; data may not be
written to any user-mode address with a translation for which the R/W flag is 0 in any paging-
structure entry controlling the translation.

e If EFLAGS.AC = 0 or the access is implicit, data may not be written to any user-mode address.
Instruction fetches from supervisor-mode addresses.

* For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from any supervisor-mode
address.

* For other paging modes with IA32_EFER.NXE = 1, instructions may be fetched from any supervisor-
mode address with a translation for which the XD flag (bit 63) is 0 in every paging-structure entry
controlling the translation; instructions may not be fetched from any supervisor-mode address with a
translation for which the XD flag is 1 in any paging-structure entry controlling the translation.

Instruction fetches from user-mode addresses.
Access rights depend on the values of CR4.SMEP:

e If CR4.SMEP = 0, access rights depend on the paging mode and the value of IA32_EFER.NXE:

— For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from any user-mode
address.

— For other paging modes with IA32_EFER.NXE = 1, instructions may be fetched from any user-
mode address with a translation for which the XD flag is 0 in every paging-structure entry
controlling the translation; instructions may not be fetched from any user-mode address with a
translation for which the XD flag is 1 in any paging-structure entry controlling the translation.

* If CR4.SMEP = 1, instructions may not be fetched from any user-mode address.

Supervisor-mode shadow-stack accesses are allowed only to supervisor-mode shadow-stack addresses
(see above).

®* For user-mode accesses:

Data reads.
Access rights depend on the mode of the linear address:

* Data may be read from any user-mode address with a protection key for which read access is
permitted.

¢ Data may not be read from any supervisor-mode address.

Data writes.
Access rights depend on the mode of the linear address:

* Data may be written to any user-mode address with a translation for which the R/W flag is 1 in every
paging-structure entry controlling the translation and with a protection key for which write access is
permitted.

* Data may not be written to any supervisor-mode address.

Instruction fetches.
Access rights depend on the mode of the linear address, the paging mode, and the value of
IA32_EFER.NXE:

* For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from any user-mode address.

* For other paging modes with IA32_EFER.NXE = 1, instructions may be fetched from any user-mode
address with a translation for which the XD flag is 0 in every paging-structure entry controlling the
translation.

* Instructions may not be fetched from any supervisor-mode address.

User-mode shadow-stack accesses made outside enclave mode are allowed only to user-mode shadow-
stack addresses (see above). User-mode shadow-stack accesses made in enclave mode are treated like
ordinary data accesses (see above).

Vol. 3A 4-35

PAGING

A processor may cache information from the paging-structure entries in TLBs and paging-structure caches (see
Section 4.10). These structures may include information about access rights. The processor may enforce access
rights based on the TLBs and paging-structure caches instead of on the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change access rights, the processor might
not use that change for a subsequent access to an affected linear address (see Section 4.10.4.3). See Section
4.10.4.2 for how software can ensure that the processor uses the modified access rights.

4.6.2 Protection Keys

4-level paging and 5-level paging associate a 4-bit protection key with each linear address (the protection key
located in bits 62:59 of the paging-structure entry that mapped the page containing the linear address; see Section
4.5). Two protection key features control accesses to linear addresses based on their protection keys:

®* IfCR4.PKE =1, the PKRU register determines, for each protection key, whether user-mode addresses with that
protection key may be read or written.

® If CR4.PKS = 1, the IA32_PKRS MSR (MSR index 6E1H) determines, for each protection key, whether
supervisor-mode addresses with that protection key may be read or written.

32-bit paging and PAE paging do not associate linear addresses with protection keys. For the purposes of Section
4.6.1, reads and writes are implicitly permitted for all protection keys with either of those paging modes.

The PKRU register (protection-key rights for user pages) is a 32-bit register with the following format: for each i
(0 =i = 15), PKRU[2/] is the access-disable bit for protection key i (AD/); PKRU[2/+1] is the write-disable bit
for protection key i (WDJ). The IA32_PKRS MSR has the same format (bits 63:32 of the MSR are reserved and must
be zero).

Software can use the RDPKRU and WRPKRU instructions with ECX = 0 to read and write PKRU. In addition, the
PKRU register is XSAVE-managed state and can thus be read and written by instructions in the XSAVE feature set.
See Chapter 13, “Managing State Using the XSAVE Feature Set,” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for more information about the XSAVE feature set.

Software can use the RDMSR and WRMSR instructions to read and write the IA32_PKRS MSR. Writes to the
IA32_PKRS MSR using WRMSR are not serializing. The IA32_PKRS MSR is not XSAVE-managed.

How a linear address’s protection key controls access to the address depends on the mode of the linear address:

®* Alinear address’s protection key controls only data accesses to the address. It does not in any way affect
instructions fetches from the address.

®* If CR4.PKE = 0, the protection key of a user-mode address does not control data accesses to the address (for
the purposes of Section 4.6.1, reads and writes of user-mode addresses are implicitly permitted for all
protection keys).

If CR4.PKE = 1, use of the protection key i of a user-mode address depends on the value of the PKRU register:
— If AD/ = 1, no data accesses are permitted.
— If WD/ = 1, permission may be denied to certain data write accesses:

* User-mode write accesses are not permitted.

* Supervisor-mode write accesses are not permitted if CRO.WP = 1. (If CRO.WP = 0, WD/ does not affect
supervisor-mode write accesses to user-mode addresses with protection key i.)

* If CR4.PKS = 0, the protection key of a supervisor-mode address does not control data accesses to the address
(for the purposes of Section 4.6.1, reads and writes of supervisor-mode addresses are implicitly permitted for
all protection keys).

If CR4.PKS = 1, use of the protection key / of a supervisor-mode address depends on the value of the
IA32_PKRS MSR:

— If AD/ = 1, no data accesses are permitted.

— If WD/ = 1, write accesses are not permitted if CRO.WP = 1. (If CRO.WP = 0, IA32_PKRS.WDi does not
affect write accesses to supervisor-mode addresses with protection key i.)

Protection keys apply to shadow-stack accesses just as they do to ordinary data accesses.

4-36 Vol. 3A

PAGING

4.7 PAGE-FAULT EXCEPTIONS

Accesses using linear addresses may cause page-fault exceptions (#PF; exception 14). An access to a linear
address may cause a page-fault exception for either of two reasons: (1) there is no translation for the linear
address; or (2) there is a translation for the linear address, but its access rights do not permit the access.

As noted in Section 4.3, Section 4.4.2, and Section 4.5, there is no translation for a linear address if the translation
process for that address would use a paging-structure entry in which the P flag (bit 0) is 0 or one that sets a
reserved bit.! If there is a translation for a linear address, its access rights are determined as specified in Section
4.6.

When Intel® Software Guard Extensions (Intel® SGX) are enabled, the processor may deliver exception 14 for
reasons unrelated to paging. See Section 35.3, “Access-control Requirements,” and Section 35.20, “"Enclave Page
Cache Map (EPCM),” in Chapter 35, “"Enclave Access Control and Data Structures.” Such an exception is called an
SGX-induced page fault. The processor uses the error code to distinguish SGX-induced page faults from ordinary
page faults.

Figure 4-12 illustrates the error code that the processor provides on delivery of a page-fault exception. The
following items explain how the bits in the error code describe the nature of the page-fault exception:

31

—

5

0
o

anj+
AASY |«
sin|~
HIM| =

6 5
w1
[Z]FS

7
8 z
Reserved 3 Reserved =

P 0 The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

N

WIR 0 The access causing the fault was a read.
The access causing the fault was a write.

-

u/s 0 A supervisor-mode access caused the fault.
1 Auser-mode access caused the fault.
RSVD 0 The fault was not caused by reserved bit violation.
1 The fault was caused by a reserved bit set to 1 in some
paging-structure entry.
I/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.
PK 0 The fault was not caused by protection keys.
1 There was a protection-key violation.
SS 0 The fault was not caused by a shadow-stack access.
1 The fault was caused by a shadow-stack access.
HLAT 0 The fault occurred during ordinary paging or due to access rights.
1 The fault occurred during HLAT paging.
SGX The fault is not related to SGX.

- O

The fault resulted from violation of SGX-specific access-control
requirements.

Figure 4-12. Page-Fault Error Code

* P flag (bit 0).
This flag is 0 if there is no translation for the linear address because the P flag was 0 in one of the paging-
structure entries used to translate that address.

1. If HLAT paging encounters a paging-structure entry that sets a reserved bit, there is no translation even if the bit 11 of the entry
indicates a restart. In this case, there is a page fault and the translation is not restarted.

Vol. 3A 4-37

PAGING

* W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; otherwise, it is 0. This flag describes
the access causing the page-fault exception, not the access rights specified by paging.

* U/S (bit 2).
If a user-mode access caused the page-fault exception, this flag is 1; it is 0 if a supervisor-mode access did so.
This flag describes the access causing the page-fault exception, not the access rights specified by paging. User-
mode and supervisor-mode accesses are defined in Section 4.6.

®* RSVD flag (bit 3).
This flag is 1 if there is no translation for the linear address because a reserved bit was set in one of the paging-
structure entries used to translate that address. (Because reserved bits are not checked in a paging-structure
entry whose P flag is 0, bit 3 of the error code can be set only if bit 0 is also set.)

Bits reserved in the paging-structure entries are reserved for future functionality. Software developers should
be aware that such bits may be used in the future and that a paging-structure entry that causes a page-fault
exception on one processor might not do so in the future.

* 1I/D flag (bit 4).
This flag is 1 if (1) the access causing the page-fault exception was an instruction fetch; and (2) either
(a) CR4.SMEP = 1; or (b) both (i) CR4.PAE = 1 (either PAE paging, 4-level paging, or 5-level paging is in use);
and (ii) IA32_EFER.NXE = 1. Otherwise, the flag is 0. This flag describes the access causing the page-fault
exception, not the access rights specified by paging.

®* PKflag (bit 5).
This flag is 1 only for data accesses and only with 4-level paging and 5-level paging. In these cases, the setting
depends on the mode of the address being accessed:

— For accesses to supervisor-mode addresses, the flag is set if (1) CR4.PKS = 1; (2) the linear address has
protection key i; and (3) the IA32_PKRS MSR (see Section 4.6.2) is such that either (a) AD/ = 1; or (b) the
following all hold: (i) WDi = 1; (ii) the access is a write access; and (iii) either CRO.WP = 1 or the access
causing the page-fault exception was a user-mode access. (Note that this flag may be set on page faults
due to user-mode accesses to supervisor-mode addresses.)

— For accesses to user-mode addresses, the flag is set if (1) CR4.PKE = 1; (2) the linear address has
protection key i; and (3) the PKRU register (see Section 4.6.2) is such that either (a) AD/ = 1; or (b) the
following all hold: (i) WDi = 1; (ii) the access is a write access; and (iii) either CRO.WP = 1 or the access
causing the page-fault exception was a user-mode access.

® SS (bit 6).
If the access causing the page-fault exception was a shadow-stack access (including shadow-stack accesses in
enclave mode), this flag is 1; otherwise, it is 0. This flag describes the access causing the page-fault exception,
not the access rights specified by paging.

* HLAT (bit 7).
This flag is 1 if there is no translation for the linear address using HLAT paging because, in one of the paging-
structure entries used to translate that address, either the P flag was 0 or a reserved bit was set. An error code
will set this flag only if it clears bit 0 or sets bit 3. This flag will not be set by a page fault resulting from a
violation of access rights, nor for one encountered during ordinary paging, including the case in which there has
been a restart of HLAT paging.

® SGXflag (bit 15).
This flag is 1 if the exception is unrelated to paging and resulted from violation of SGX-specific access-control
requirements. Because such a violation can occur only if there is no ordinary page fault, this flag is set only if
the P flag (bit 0) is 1 and the RSVD flag (bit 3) and the PK flag (bit 5) are both 0.

Page-fault exceptions occur only due to an attempt to use a linear address. Failures to load the PDPTE registers
with PAE paging (see Section 4.4.1) cause general-protection exceptions (#GP(0)) and not page-fault exceptions.

1. Some past processors had errata for some page faults that occur when there is no translation for the linear address because the P
flag was 0 in one of the paging-structure entries used to translate that address. Due to these errata, some such page faults pro-
duced error codes that cleared bit O (P flag) and set bit 3 (RSVD flag).

4-38 Vol. 3A

PAGING

4.8 ACCESSED AND DIRTY FLAGS

For any paging-structure entry that is used during linear-address translation, bit 5 is the accessed flag.! For
paging-structure entries that map a page (as opposed to referencing another paging structure), bit 6 is the dirty
flag. These flags are provided for use by memory-management software to manage the transfer of pages and
paging structures into and out of physical memory.

Whenever the processor uses a paging-structure entry as part of linear-address translation, it sets the accessed
flag in that entry (if it is not already set).

Whenever there is a write to a linear address, the processor sets the dirty flag (if it is not already set) in the paging-
structure entry that identifies the final physical address for the linear address (either a PTE or a paging-structure
entry in which the PS flag is 1).

The previous two paragraphs apply also to HLAT paging. If HLAT paging encounters a paging-structure entry that
sets bit 11, indicating a restart, the processor will set the accessed flag in that entry; it will not set the dirty flag
because, if an entry indicates a restart, it does identify the final physical address for the linear address being trans-
lated.

NOTE

If software on one logical processor writes to a page while software on another logical processor
concurrently clears the R/W flag in the paging-structure entry that maps the page, execution on
some processors may result in the entry’s dirty flag being set (due to the write on the first logical
processor) and the entry’s R/W flag being clear (due to the update to the entry on the second
logical processor). This will never occur on a processor that supports control-flow enforcement
technology (CET). Specifically, a processor that supports CET will never set the dirty flag in a
paging-structure entry in which the R/W flag is clear.

Memory-management software may clear these flags when a page or a paging structure is initially loaded into
physical memory. These flags are "“sticky,” meaning that, once set, the processor does not clear them; only soft-
ware can clear them.

A processor may cache information from the paging-structure entries in TLBs and paging-structure caches (see
Section 4.10). This fact implies that, if software changes an accessed flag or a dirty flag from 1 to 0, the processor
might not set the corresponding bit in memory on a subsequent access using an affected linear address (see
Section 4.10.4.3). See Section 4.10.4.2 for how software can ensure that these bits are updated as desired.

NOTE

The accesses used by the processor to set these flags may or may not be exposed to the
processor’s self-modifying code detection logic. If the processor is executing code from the same
memory area that is being used for the paging structures, the setting of these flags may or may not
result in an immediate change to the executing code stream.

4.9 PAGING AND MEMORY TYPING

The memory type of a memory access refers to the type of caching used for that access. Chapter 12, “Memory
Cache Control,” provides many details regarding memory typing in the Intel-64 and IA-32 architectures. This
section describes how paging contributes to the determination of memory typing.

The way in which paging contributes to memory typing depends on whether the processor supports the Page
Attribute Table (PAT; see Section 12.12).2 Section 4.9.1 and Section 4.9.2 explain how paging contributes to
memory typing depending on whether the PAT is supported.

1. With PAE paging, the PDPTEs are not used during linear-address translation but only to load the PDPTE registers for some execu-
tions of the MOV CR instruction (see Section 4.4.1). For this reason, the PDPTEs do not contain accessed flags with PAE paging.

2. The PAT is supported on Pentium Il and more recent processor families. See Section 4.1.4 for how to determine whether the PAT is
supported.

Vol. 3A 4-39

PAGING

4.9.1 Paging and Memory Typing When the PAT is Not Supported (Pentium Pro and Pentium
Il Processors)

NOTE

The PAT is supported on all processors that support 4-level paging or 5-level paging. Thus, this
section applies only to 32-bit paging and PAE paging.

If the PAT is not supported, paging contributes to memory typing in conjunction with the memory-type range regis-
ters (MTRRs) as specified in Table 12-6 in Section 12.5.2.1.

For any access to a physical address, the table combines the memory type specified for that physical address by the
MTRRs with a PCD value and a PWT value. The latter two values are determined as follows:

® For an access to a PDE with 32-bit paging, the PCD and PWT values come from CR3.
® For an access to a PDE with PAE paging, the PCD and PWT values come from the relevant PDPTE register.
® For an access to a PTE, the PCD and PWT values come from the relevant PDE.

® For an access to the physical address that is the translation of a linear address, the PCD and PWT values come
from the relevant PTE (if the translation uses a 4-KByte page) or the relevant PDE (otherwise).

® With PAE paging, the UC memory type is used when loading the PDPTEs (see Section 4.4.1).

4.9.2 Paging and Memory Typing When the PAT is Supported (Pentium Il and More Recent
Processor Families)

If the PAT is supported, paging contributes to memory typing in conjunction with the PAT and the memory-type

range registers (MTRRSs) as specified in Table 12-7 in Section 12.5.2.2.

The PAT is a 64-bit MSR (IA32_PAT; MSR index 277H) comprising eight (8) 8-bit entries (entry i comprises
bits 8i+7:8i of the MSR).

For any access to a physical address, the table combines the memory type specified for that physical address by the
MTRRs with a memory type selected from the PAT. Table 12-11 in Section 12.12.3 specifies how a memory type is
selected from the PAT. Specifically, it comes from entry i of the PAT, where i is defined as follows:

® For an access to an entry in a paging structure whose address is in CR3 (e.g., the PML4 table with 4-level
paging):
— For 4-level paging or 5-level paging with CR4.PCIDE =1,/ = 0.
— Otherwise, i = 2*PCD+PWT, where the PCD and PWT values come from CR3.

® For an access to a PDE with PAE paging, i = 2*PCD+PWT, where the PCD and PWT values come from the
relevant PDPTE register.

® For an access to a paging-structure entry X whose address is in another paging-structure entry Y, i =
2*PCD+PWT, where the PCD and PWT values come from Y.

® For an access to the physical address that is the translation of a linear address, i = 4*PAT+2*PCD+PWT, where
the PAT, PCD, and PWT values come from the relevant PTE (if the translation uses a 4-KByte page), the relevant
PDE (if the translation uses a 2-MByte page or a 4-MByte page), or the relevant PDPTE (if the translation uses
a 1-GByte page).

* With PAE paging, the WB memory type is used when loading the PDPTEs (see Section 4.4.1).1

1. Some older IA-32 processors used the UC memory type when loading the PDPTEs. Some processors may use the UC memory type if
CRO.CD =1 or if the MTRRs are disabled. These behaviors are model-specific and not architectural.

4-40 Vol. 3A

PAGING

493 Caching Paging-Related Information about Memory Typing

A processor may cache information from the paging-structure entries in TLBs and paging-structure caches (see
Section 4.10). These structures may include information about memory typing. The processor may use memory-
typing information from the TLBs and paging-structure caches instead of from the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change the memory-typing bits, the
processor might not use that change for a subsequent translation using that entry or for access to an affected
linear address. See Section 4.10.4.2 for how software can ensure that the processor uses the modified memory
typing.

410 CACHING TRANSLATION INFORMATION

The Intel-64 and IA-32 architectures may accelerate the address-translation process by caching data from the
paging structures on the processor. Because the processor does not ensure that the data that it caches are always
consistent with the structures in memory, it is important for software developers to understand how and when the
processor may cache such data. They should also understand what actions software can take to remove cached
data that may be inconsistent and when it should do so. This section provides software developers information
about the relevant processor operation.

Section 4.10.1 introduces process-context identifiers (PCIDs), which a logical processor may use to distinguish
information cached for different linear-address spaces. Section 4.10.2 and Section 4.10.3 describe how the
processor may cache information in translation lookaside buffers (TLBs) and paging-structure caches, respectively.
Section 4.10.4 explains how software can remove inconsistent cached information by invalidating portions of the
TLBs and paging-structure caches. Section 4.10.5 describes special considerations for multiprocessor systems.

4.10.1 Process-Context Identifiers (PCIDs)

Process-context identifiers (PCIDs) are a facility by which a logical processor may cache information for multiple
linear-address spaces. The processor may retain cached information when software switches to a different linear-
address space with a different PCID (e.g., by loading CR3; see Section 4.10.4.1 for details).

A PCID is a 12-bit identifier. Non-zero PCIDs are enabled by setting the PCIDE flag (bit 17) of CR4. If CR4.PCIDE =
0, the current PCID is always 000H; otherwise, the current PCID is the value of bits 11:0 of CR3.! Not all proces-
sors allow CR4.PCIDE to be set to 1; see Section 4.1.4 for how to determine whether this is allowed.

The processor ensures that CR4.PCIDE can be 1 only in IA-32e mode (thus, 32-bit paging and PAE paging use only
PCID 000H). In addition, software can change CR4.PCIDE from 0 to 1 only if CR3[11:0] = 000H. These require-
ments are enforced by the following limitations on the MOV CR instruction:

®* MOV to CR4 causes a general-protection exception (#GP) if it would change CR4.PCIDE from 0 to 1 and either
IA32_EFER.LMA = 0 or CR3[11:0] = 000H.

® MOV to CRO causes a general-protection exception if it would clear CRO.PG to 0 while CR4.PCIDE = 1.

When a logical processor creates entries in the TLBs (Section 4.10.2) and paging-structure caches (Section
4.10.3), it associates those entries with the current PCID. When using entries in the TLBs and paging-structure
caches to translate a linear address, a logical processor uses only those entries associated with the current PCID
(see Section 4.10.2.4 for an exception).

If CR4.PCIDE = 0, a logical processor does not cache information for any PCID other than 000H. This is because
(1) if CR4.PCIDE = 0, the logical processor will associate any newly cached information with the current PCID,
000H; and (2) if MOV to CR4 clears CR4.PCIDE, all cached information is invalidated (see Section 4.10.4.1).

1. Note that, while HLAT paging (Section 4.5.3) does not use CR3 to locate the first paging structure, it does use the PCID in CR3[11:0]
when CR4.PCIDE = 1.

Vol. 3A 4-41

PAGING

NOTE

In revisions of this manual that were produced when no processors allowed CR4.PCIDE to be set to
1, Section 4.10, “Caching Translation Information,” discussed the caching of translation information
without any reference to PCIDs. While the section now refers to PCIDs in its specification of this
caching, this documentation change is not intended to imply any change to the behavior of
processors that do not allow CR4.PCIDE to be set to 1.

4.10.2 Translation Lookaside Buffers (TLBs)

A processor may cache information about the translation of linear addresses in translation lookaside buffers (TLBs).
In general, TLBs contain entries that map page numbers to page frames; these terms are defined in Section
4.10.2.1. Section 4.10.2.2 describes how information may be cached in TLBs, and Section 4.10.2.3 gives details of
TLB usage. Section 4.10.2.4 explains the global-page feature, which allows software to indicate that certain trans-
lations should receive special treatment when cached in the TLBs.

4.10.2.1 Page Numbers, Page Frames, and Page Offsets

Section 4.3, Section 4.4.2, and Section 4.5 give details of how the different paging modes translate linear
addresses to physical addresses. Specifically, the upper bits of a linear address (called the page number) deter-
mine the upper bits of the physical address (called the page frame); the lower bits of the linear address (called the
page offset) determine the lower bits of the physical address. The boundary between the page nhumber and the
page offset is determined by the page size. Specifically:

®* 32-bit paging:
— If the translation does not use a PTE (because CR4.PSE = 1 and the PS flag is 1 in the PDE used), the page
size is 4 MBytes and the page number comprises bits 31:22 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page number comprises bits 31:12 of
the linear address.

®* PAE paging:

— If the translation does not use a PTE (because the PS flag is 1 in the PDE used), the page size is 2 MBytes
and the page number comprises bits 31:21 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page number comprises bits 31:12 of
the linear address.

® 4-level paging and 5-level paging:

— If the translation does not use a PDE (because the PS flag is 1 in the PDPTE used), the page size is 1 GByte
and the page number comprises bits 47:30 of the linear address.

— If the translation does use a PDE but does not uses a PTE (because the PS flag is 1 in the PDE used), the
page size is 2 MBytes and the page number comprises bits 47:21 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page number comprises bits 47:12 of
the linear address.

— The page size identified by the preceding items may be reduced if there has been a restart of HLAT paging
(see Section 4.5.5). Restart of HLAT paging always specifies a maximum page size; this page size is
determined by the level of the paging-structure entry that caused the restart. The page size used by the
translation is the minimum of the maximum page size specified by the restart and the page size determined
by the restarted translation (as specified by the previous items).

For example, suppose that HLAT paging encounters a PDE that sets bit 11, indicating a restart. As a result,
the restart uses a maximum page size of 2 MBytes. Suppose that the restarted translation encounters a
PDPTE that sets bit 7, indicating a 1-GByte page. In this case, the translation produced will have a page size
of 2 MBytes (the smaller of the two sizes).

4-42 \Vol. 3A

PAGING

4.10.2.2 Caching Translations in TLBs

The processor may accelerate the paging process by caching individual translations in translation lookaside
buffers (TLBs). Each entry in a TLB is an individual translation. Each translation is referenced by a page number.
It contains the following information from the paging-structure entries used to translate linear addresses with the
page number:

®* The physical address corresponding to the page number (the page frame).

®* The access rights from the paging-structure entries used to translate linear addresses with the page number
(see Section 4.6):

— The logical-AND of the R/W flags.

— The logical-AND of the U/S flags.

— The logical-OR of the XD flags (necessary only if IA32_EFER.NXE = 1).
— The protection key (only with 4-level paging and 5-level paging).

® Attributes from a paging-structure entry that identifies the final page frame for the page number (either a PTE
or a paging-structure entry in which the PS flag is 1):

— The dirty flag (see Section 4.8).
— The memory type (see Section 4.9).

(TLB entries may contain other information as well. A processor may implement multiple TLBs, and some of these
may be for special purposes, e.g., only for instruction fetches. Such special-purpose TLBs may not contain some of
this information if it is not necessary. For example, a TLB used only for instruction fetches need not contain infor-
mation about the R/W and dirty flags.)

As noted in Section 4.10.1, any TLB entries created by a logical processor are associated with the current PCID.

Processors need not implement any TLBs. Processors that do implement TLBs may invalidate any TLB entry at any
time. Software should not rely on the existence of TLBs or on the retention of TLB entries.

4.10.2.3 Details of TLB Use

Because the TLBs cache entries only for linear addresses with translations, there can be a TLB entry for a page
number only if the P flag is 1 and the reserved bits are 0 in each of the paging-structure entries used to translate
that page number. In addition, the processor does not cache a translation for a page number unless the accessed
flag is 1 in each of the paging-structure entries used during translation; before caching a translation, the processor
sets any of these accessed flags that is not already 1.

Subject to the limitations given in the previous paragraph, the processor may cache a translation for any linear
address, even if that address is not used to access memory. For example, the processor may cache translations
required for prefetches and for accesses that result from speculative execution that would never actually occur in
the executed code path.

If the page number of a linear address corresponds to a TLB entry associated with the current PCID, the processor
may use that TLB entry to determine the page frame, access rights, and other attributes for accesses to that linear
address. In this case, the processor may not actually consult the paging structures in memory. The processor may
retain a TLB entry unmodified even if software subsequently modifies the relevant paging-structure entries in
memory. See Section 4.10.4.2 for how software can ensure that the processor uses the modified paging-structure
entries.

If the paging structures specify a translation using a page larger than 4 KBytes, some processors may cache
multiple smaller-page TLB entries for that translation. Each such TLB entry would be associated with a page
number corresponding to the smaller page size (e.g., bits 47:12 of a linear address with 4-level paging), even
though part of that page number (e.g., bits 20:12) is part of the offset with respect to the page specified by the
paging structures. The upper bits of the physical address in such a TLB entry are derived from the physical address
in the PDE used to create the translation, while the lower bits come from the linear address of the access for which
the translation is created. There is no way for software to be aware that multiple translations for smaller pages
have been used for a large page. For example, an execution of INVLPG for a linear address on such a page invali-
dates any and all smaller-page TLB entries for the translation of any linear address on that page.

Vol. 3A 4-43

PAGING

If software modifies the paging structures so that the page size used for a 4-KByte range of linear addresses
changes, the TLBs may subsequently contain multiple translations for the address range (one for each page size).
A reference to a linear address in the address range may use any of these translations. Which translation is used
may vary from one execution to another, and the choice may be implementation-specific.

4.10.2.4 Global Pages

The Intel-64 and IA-32 architectures also allow for global pages when the PGE flag (bit 7) is 1 in CR4. If the G flag
(bit 8) is 1 in a paging-structure entry that maps a page (either a PTE or a paging-structure entry in which the PS
flag is 1), any TLB entry cached for a linear address using that paging-structure entry is considered to be global.
Because the G flag is used only in paging-structure entries that map a page, and because information from such
entries is not cached in the paging-structure caches, the global-page feature does not affect the behavior of the
paging-structure caches.

A logical processor may use a global TLB entry to translate a linear address, even if the TLB entry is associated with
a PCID different from the current PCID.

4.10.3 Paging-Structure Caches

In addition to the TLBs, a processor may cache other information about the paging structures in memory.

4.10.3.1 Caches for Paging Structures

A processor may support any or all of the following paging-structure caches:

* PML5E cache (5-level paging only). Each PML5E-cache entry is referenced by a 9-bit value and is used for
linear addresses for which bits 56:48 have that value. The entry contains information from the PML5E used to
translate such linear addresses:

— The physical address from the PML5E (the address of the PML4 table).
— The value of the R/W flag of the PML5E.

— The value of the U/S flag of the PML5E.

— The value of the XD flag of the PML5E.

— The values of the PCD and PWT flags of the PML5E.

The following items detail how a processor may use the PML5E cache:

— If the processor has a PML5E-cache entry for a linear address, it may use that entry when translating the
linear address (instead of the PML5E in memory).

— The processor does not create a PML5E-cache entry unless the P flag is 1 and all reserved bits are 0 in the
PML5E in memory.

— The processor does not create a PML5E-cache entry unless the accessed flag is 1 in the PML5E in memory;
before caching a translation, the processor sets the accessed flag if it is not already 1.

— The processor may create a PML5E-cache entry even if there are no translations for any linear address that
might use that entry (e.g., because the P flags are 0 in all entries in the referenced PML4 table).

— If the processor creates a PML5E-cache entry, the processor may retain it unmodified even if software
subsequently modifies the corresponding PML5E in memory.

®* PMLA4E cache (4-level paging and 5-level paging only). The use of the PML4E cache depends on the paging
mode:

— For 4-level paging, each PML4E-cache entry is referenced by a 9-bit value and is used for linear addresses
for which bits 47:39 have that value.

— For 5-level paging, each PML4E-cache entry is referenced by an 18-bit value and is used for linear
addresses for which bits 56:39 have that value.

A PML4E-cache entry contains information from the PML5E and PML4E used to translate the relevant linear
addresses (for 4-level paging, the PML5E does not apply):

4-44 \Vol. 3A

PAGING

The physical address from the PML4E (the address of the page-directory-pointer table).
The logical-AND of the R/W flags in the PML5E and the PML4E.

The logical-AND of the U/S flags in the PML5E and the PML4E.

The logical-OR of the XD flags in the PML5E and the PML4E.

The values of the PCD and PWT flags of the PML4E.

The following items detail how a processor may use the PML4E cache:

If the processor has a PML4E-cache entry for a linear address, it may use that entry when translating the
linear address (instead of the PML5E and PML4E in memory).

The processor does not create a PML4E-cache entry unless the P flags are 1 and all reserved bits are 0 in
the PML5E and the PML4E in memory.

The processor does not create a PML4E-cache entry unless the accessed flags are 1 in the PML5E and the
PML4E in memory; before caching a translation, the processor sets any accessed flags that are not already
1.

The processor may create a PML4E-cache entry even if there are no translations for any linear address that
might use that entry (e.g., because the P flags are 0 in all entries in the referenced page-directory-pointer
table).

If the processor creates a PML4E-cache entry, the processor may retain it unmodified even if software
subsequently modifies the corresponding PML4E in memory.

PDPTE cache (4-level paging and 5-level paging only).! The use of the PML4E cache depends on the paging

mode:

For 4-level paging, each PDPTE-cache entry is referenced by an 18-bit value and is used for linear
addresses for which bits 47:30 have that value.

For 5-level paging, each PDPTE-cache entry is referenced by a 27-bit value and is used for linear addresses
for which bits 56:30 have that value.

A PDPTE-cache entry contains information from the PML5E, PML4E, PDPTE used to translate the relevant linear
addresses (for 4-level paging, the PML5E does not apply):

The physical address from the PDPTE (the address of the page directory). (No PDPTE-cache entry is created
for a PDPTE that maps a 1-GByte page.)

The logical-AND of the R/W flags in the PML5E, PML4E, and PDPTE.
The logical-AND of the U/S flags in the PML5E, PML4E, and PDPTE.
The logical-OR of the XD flags in the PML5E, PML4E, and PDPTE.
The values of the PCD and PWT flags of the PDPTE.

The following items detail how a processor may use the PDPTE cache:

If the processor has a PDPTE-cache entry for a linear address, it may use that entry when translating the
linear address (instead of the PML5E, PML4E, and PDPTE in memory).

The processor does not create a PDPTE-cache entry unless the P flags are 1, the PS flags are 0, and the
reserved bits are 0 in the PML5E, PML4E, and PDPTE in memory.

The processor does not create a PDPTE-cache entry unless the accessed flags are 1 in the PML5E, PML4E,
and PDPTE in memory; before caching a translation, the processor sets any accessed flags that are not
already 1.

The processor may create a PDPTE-cache entry even if there are no translations for any linear address that
might use that entry.

If the processor creates a PDPTE-cache entry, the processor may retain it unmodified even if software
subsequently modifies the corresponding PML5E, PML4E, or PDPTE in memory.

1. With PAE paging, the PDPTEs are stored in internal, non-architectural registers. The operation of these registers is described in Sec-
tion 4.4.1 and differs from that described here.

Vol. 3A 4-45

PAGING

®* PDE cache. The use of the PDE cache depends on the paging mode:

For 32-bit paging, each PDE-cache entry is referenced by a 10-bit value and is used for linear addresses for
which bits 31:22 have that value.

For PAE paging, each PDE-cache entry is referenced by an 11-bit value and is used for linear addresses for
which bits 31:21 have that value.

For 4-level paging, each PDE-cache entry is referenced by a 27-bit value and is used for linear addresses for
which bits 47:21 have that value.

For 5-level paging, each PDE-cache entry is referenced by a 36-bit value and is used for linear addresses for
which bits 56:21 have that value.

A PDE-cache entry contains information from the PML5E, PML4E, PDPTE, and PDE used to translate the relevant
linear addresses (for 32-bit paging and PAE paging, only the PDE applies; for 4-level paging, the PML5E does

not apply):

The physical address from the PDE (the address of the page table). (No PDE-cache entry is created for a
PDE that maps a page.)

The logical-AND of the R/W flags in the PML5E, PML4E, PDPTE, and PDE.
The logical-AND of the U/S flags in the PML5E, PML4E, PDPTE, and PDE.
The logical-OR of the XD flags in the PML5E, PML4E, PDPTE, and PDE.
The values of the PCD and PWT flags of the PDE.

The following items detail how a processor may use the PDE cache (references below to PML5Es, PML4Es, and
PDPTEs apply only to 4-level paging and to 5-level paging, as appropriate):

If the processor has a PDE-cache entry for a linear address, it may use that entry when translating the
linear address (instead of the PML5E, PML4E, PDPTE, and PDE in memory).

The processor does not create a PDE-cache entry unless the P flags are 1, the PS flags are 0, and the
reserved bits are 0 in the PML5E, PML4E, PDPTE, and PDE in memory.

The processor does not create a PDE-cache entry unless the accessed flag is 1 in the PML5E, PML4E, PDPTE,
and PDE in memory; before caching a translation, the processor sets any accessed flags that are not
already 1.

The processor may create a PDE-cache entry even if there are no translations for any linear address that
might use that entry.

If the processor creates a PDE-cache entry, the processor may retain it unmodified even if software subse-
quently modifies the corresponding PML5E, PML4E, PDPTE, or PDE in memory.

Information from a paging-structure entry can be included in entries in the paging-structure caches for other
paging-structure entries referenced by the original entry. For example, if the R/W flag is 0 in a PML4E, then the R/W
flag will be 0 in any PDPTE-cache entry for a PDPTE from the page-directory-pointer table referenced by that
PML4E. This is because the R/W flag of each such PDPTE-cache entry is the logical-AND of the R/W flags in the
appropriate PML4E and PDPTE.

On processors that support HLAT paging (see Section 4.5.1), each entry in a paging-structure cache indicates
whether the entry was cached during ordinary paging or HLAT paging. When the processor commences linear-
address translation using ordinary paging (respectively, HLAT paging), it will use only entries that indicate that they
were cached during ordinary paging (respectively, HLAT paging).

Entries that were cached during HLAT paging also include the restart flag (bit 11) of the original paging-structure
entry. When the processor commences HLAT paging using such an entry, it immediately restarts (using ordinary
paging) if this cached restart flag is 1.

The paging-structure caches contain information only from paging-structure entries that reference other paging
structures (and not those that map pages). Because the G flag is not used in such paging-structure entries, the
global-page feature does not affect the behavior of the paging-structure caches.

The processor may create entries in paging-structure caches for translations required for prefetches and for
accesses that are a result of speculative execution that would never actually occur in the executed code path.

4-46 Vol. 3A

PAGING

As noted in Section 4.10.1, any entries created in paging-structure caches by a logical processor are associated
with the current PCID.

A processor may or may not implement any of the paging-structure caches. Software should rely on neither their
presence nor their absence. The processor may invalidate entries in these caches at any time. Because the
processor may create the cache entries at the time of translation and not update them following subsequent modi-
fications to the paging structures in memory, software should take care to invalidate the cache entries appropri-
ately when causing such modifications. The invalidation of TLBs and the paging-structure caches is described in
Section 4.10.4.

4.10.3.2 Using the Paging-Structure Caches to Translate Linear Addresses

When a linear address is accessed, the processor uses a procedure such as the following to determine the physical
address to which it translates and whether the access should be allowed:

* If the processor finds a TLB entry that is for the page number of the linear address and that is associated with
the current PCID (or which is global), it may use the physical address, access rights, and other attributes from
that entry.

® If the processor does not find a relevant TLB entry, it may use the upper bits of the linear address to select an
entry from the PDE cache that is associated with the current PCID (Section 4.10.3.1 indicates which bits are
used in each paging mode). It can then use that entry to complete the translation process (locating a PTE, etc.)
as if it had traversed the PDE (and, for 4-level paging and 5-level paging, the PDPTE, PML4E, and PML5E, as
appropriate) corresponding to the PDE-cache entry.

®* The following items apply when 4-level paging or 5-level paging is used:

— If the processor does not find a relevant TLB entry or PDE-cache entry, it may use the upper bits of the
linear address (for 4-level paging, bits 47:30; for 5-level paging, bits 56:30) to select an entry from the
PDPTE cache that is associated with the current PCID. It can then use that entry to complete the translation
process (locating a PDE, etc.) as if it had traversed the PDPTE, the PML4E, and (for 5-level paging) the
PML5E corresponding to the PDPTE-cache entry.

— If the processor does not find a relevant TLB entry, PDE-cache entry, or PDPTE-cache entry, it may use the
upper bits of the linear address (for 4-level paging, bits 47:39; for 5-level paging, bits 56:39) to select an
entry from the PML4E cache that is associated with the current PCID. It can then use that entry to complete
the translation process (locating a PDPTE, etc.) as if it had traversed the corresponding PML4E.

— With 5-level paging, if the processor does not find a relevant TLB entry, PDE-cache entry, PDPTE-cache
entry, or PML4E-cache entry, it may use bits 56:48 of the linear address to select an entry from the PML5E
cache that is associated with the current PCID. It can then use that entry to complete the translation
process (locating a PML4E, etc.) as if it had traversed the corresponding PML5E.

(Any of the above steps would be skipped if the processor does not support the cache in question.)

If the processor does not find a TLB or paging-structure-cache entry for the linear address, it uses the linear
address to traverse the entire paging-structure hierarchy, as described in Section 4.3, Section 4.4.2, and Section
4.5,

4.10.3.3 Multiple Cached Entries for a Single Paging-Structure Entry

The paging-structure caches and TLBs may contain multiple entries associated with a single PCID and with infor-
mation derived from a single paging-structure entry. The following items give some examples for 4-level paging:

® Suppose that two PML4Es contain the same physical address and thus reference the same page-directory-
pointer table. Any PDPTE in that table may result in two PDPTE-cache entries, each associated with a different
set of linear addresses. Specifically, suppose that the nlth and n,™ entries in the PML4 table contain the same
physical address. This implies that the physical address in the mt" PDPTE in the page-directory-pointer table
would appear in the PDPTE-cache entries associated with both p; and p,, where (p; » 9) = ny, (p2 » 9) = ny,
and (p; & 1FFH) = (p, & 1FFH) = m. This is because both PDPTE-cache entries use the same PDPTE, one
resulting from a reference from the n; PML4E and one from the n," PML4E.

® Suppose that the first PML4E (i.e., the one in position 0) contains the physical address X in CR3 (the physical
address of the PML4 table). This implies the following:

Vol. 3A 4-47

PAGING

— Any PML4-cache entry associated with linear addresses with 0 in bits 47:39 contains address X.

— Any PDPTE-cache entry associated with linear addresses with 0 in bits 47:30 contains address X. This is
because the translation for a linear address for which the value of bits 47:30 is 0 uses the value of
bits 47:39 (0) to locate a page-directory-pointer table at address X (the address of the PML4 table). It then
uses the value of bits 38:30 (also 0) to find address X again and to store that address in the PDPTE-cache
entry.

— Any PDE-cache entry associated with linear addresses with 0 in bits 47:21 contains address X for similar
reasons.

— Any TLB entry for page number 0 (associated with linear addresses with 0 in bits 47:12) translates to page
frame X » 12 for similar reasons.

The same PML4E contributes its address X to all these cache entries because the self-referencing nature of the
entry causes it to be used as a PML4E, a PDPTE, a PDE, and a PTE.

4.10.4 Invalidation of TLBs and Paging-Structure Caches

As noted in Section 4.10.2 and Section 4.10.3, the processor may create entries in the TLBs and the paging-struc-
ture caches when linear addresses are translated, and it may retain these entries even after the paging structures
used to create them have been modified. To ensure that linear-address translation uses the modified paging struc-
tures, software should take action to invalidate any cached entries that may contain information that has since
been modified.

4.10.4.1 Operations that Invalidate TLBs and Paging-Structure Caches

The following instructions invalidate entries in the TLBs and the paging-structure caches:

INVLPG. This instruction takes a single operand, which is a linear address. The instruction invalidates any TLB
entries that are for a page number corresponding to the linear address and that are associated with the current
PCID. It also invalidates any global TLB entries with that page number, regardless of PCID (see Section
4.10.2.4).1 INVLPG also invalidates all entries in all paging-structure caches associated with the current PCID,
regardless of the linear addresses to which they correspond.

INVPCID. The operation of this instruction is based on instruction operands, called the INVPCID type and the
INVPCID descriptor. Four INVPCID types are currently defined:

— Individual-address. If the INVPCID type is 0, the logical processor invalidates mappings—except global
translations—associated with the PCID specified in the INVPCID descriptor and that would be used to
translate the linear address specified in the INVPCID descriptor.Z (The instruction may also invalidate global
translations, as well as mappings associated with other PCIDs and for other linear addresses.)

— Single-context. If the INVPCID type is 1, the logical processor invalidates all mappings—except global
translations—associated with the PCID specified in the INVPCID descriptor. (The instruction may also
invalidate global translations, as well as mappings associated with other PCIDs.)

— All-context, including globals. If the INVPCID type is 2, the logical processor invalidates
mappings—including global translations—associated with all PCIDs.

— All-context. If the INVPCID type is 3, the logical processor invalidates mappings—except global transla-
tions—associated with all PCIDs. (The instruction may also invalidate global translations.)

See Chapter 3 of the Intel 64 and IA-32 Architecture Software Developer’s Manual, Volume 2A for details of the
INVPCID instruction.

MOV to CRO. The instruction invalidates all TLB entries (including global entries) and all entries in all paging-
structure caches (for all PCIDs) if it changes the value of CRO.PG from 1 to 0.

MOV to CR3. The behavior of the instruction depends on the value of CR4.PCIDE:

If the paging structures map the linear address using a page larger than 4 KBytes and there are multiple TLB entries for that page
(see Section 4.10.2.3), the instruction invalidates all of them.

If the paging structures map the linear address using a page larger than 4 KBytes and there are multiple TLB entries for that page
(see Section 4.10.2.3), the instruction invalidates all of them.

4-48 Vol. 3A

PAGING

— If CR4.PCIDE = 0, the instruction invalidates all TLB entries associated with PCID 000H except those for
global pages. It also invalidates all entries in all paging-structure caches associated with PCID 000H.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 0, the instruction invalidates all TLB
entries associated with the PCID specified in bits 11:0 of the instruction’s source operand except those for
global pages. It also invalidates all entries in all paging-structure caches associated with that PCID. It is not
required to invalidate entries in the TLBs and paging-structure caches that are associated with other PCIDs.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 1, the instruction is not required to
invalidate any TLB entries or entries in paging-structure caches.

MOV to CR4. The behavior of the instruction depends on the bits being modified:

— The instruction invalidates all TLB entries (including global entries) and all entries in all paging-structure
caches (for all PCIDs) if (1) it changes the value of CR4.PGE;! or (2) it changes the value of the CR4.PCIDE
from 1 to 0.

— The instruction invalidates all TLB entries and all entries in all paging-structure caches for the current PCID
if (1) it changes the value of CR4.PAE; or (2) it changes the value of CR4.SMEP from 0 to 1.

Task switch. If a task switch changes the value of CR3, it invalidates all TLB entries associated with PCID 000H
exceptzthose for global pages. It also invalidates all entries in all paging-structure caches associated with PCID
000H.

VMX transitions. See Section 4.11.1.

The processor is always free to invalidate additional entries in the TLBs and paging-structure caches. The following
are some examples:

INVLPG may invalidate TLB entries for pages other than the one corresponding to its linear-address operand. It
may invalidate TLB entries and paging-structure-cache entries associated with PCIDs other than the current
PCID.

INVPCID may invalidate TLB entries for pages other than the one corresponding to the specified linear address.
It may invalidate TLB entries and paging-structure-cache entries associated with PCIDs other than the
specified PCID.

MOV to CRO may invalidate TLB entries even if CRO.PG is not changing. For example, this may occur if either
CRO.CD or CRO.NW is modified.

MOV to CR3 may invalidate TLB entries for global pages. If CR4.PCIDE = 1 and bit 63 of the instruction’s source
operand is 0, it may invalidate TLB entries and entries in the paging-structure caches associated with PCIDs
other than the PCID it is establishing. It may invalidate entries if CR4.PCIDE = 1 and bit 63 of the instruction’s
source operand is 1.

MOV to CR4 may invalidate TLB entries when changing CR4.PSE or when changing CR4.SMEP from 1 to 0.

On a processor supporting Hyper-Threading Technology, invalidations performed on one logical processor may
invalidate entries in the TLBs and paging-structure caches used by other logical processors.

(Other instructions and operations may invalidate entries in the TLBs and the paging-structure caches, but the
instructions identified above are recommended.)

In addition to the instructions identified above, page faults invalidate entries in the TLBs and paging-structure
caches. In particular, a page-fault exception resulting from an attempt to use a linear address will invalidate any
TLB entries that are for a page number corresponding to that linear address and that are associated with the
current PCID. It also invalidates all entries in the paging-structure caches that would be used for that linear address
and that are associated with the current PCID.3 These invalidations ensure that the page-fault exception will not
recur (if the faulting instruction is re-executed) if it would not be caused by the contents of the paging structures

If CR4.PGE is changing from O to 1, there were no global TLB entries before the execution; if CR4.PGE is changing from 1 to O, there
will be no global TLB entries after the execution.

Task switches do not occur in IA-32e mode and thus cannot occur with 4-level paging. Since CR4.PCIDE can be set only with 4-level
paging, task switches occur only with CR4.PCIDE = 0.

Unlike INVLPG, page faults need not invalidate all entries in the paging-structure caches, only those that would be used to translate
the faulting linear address.

Vol. 3A 4-49

PAGING

in memory (and if, therefore, it resulted from cached entries that were not invalidated after the paging structures
were modified in memory).

As noted in Section 4.10.2, some processors may choose to cache multiple smaller-page TLB entries for a transla-
tion specified by the paging structures to use a page larger than 4 KBytes. There is no way for software to be aware
that multiple translations for smaller pages have been used for a large page. The INVLPG instruction and page
faults provide the same assurances that they provide when a single TLB entry is used: they invalidate all TLB
entries corresponding to the translation specified by the paging structures.

4.10.4.2 Recommended Invalidation

The following items provide some recommendations regarding when software should perform invalidations:

* If software modifies a paging-structure entry that maps a page (rather than referencing another paging
structure), it should execute INVLPG for any linear address with a page number whose translation uses that
paging-structure entry.1

(If the paging-structure entry may be used in the translation of different page numbers — see Section 4.10.3.3
— software should execute INVLPG for linear addresses with each of those page numbers; alternatively, it could
use MOV to CR3 or MOV to CR4.)

* If software modifies a paging-structure entry that references another paging structure, it may use one of the
following approaches depending upon the types and number of translations controlled by the modified entry:

— Execute INVLPG for linear addresses with each of the page numbers with translations that would use the
entry. However, if no page numbers that would use the entry have translations (e.g., because the P flags are
0 in all entries in the paging structure referenced by the modified entry), it remains necessary to execute
INVLPG at least once.

— Execute MOV to CR3 if the modified entry controls no global pages.
— Execute MOV to CR4 to modify CR4.PGE.

* If CR4.PCIDE = 1 and software modifies a paging-structure entry that does not map a page or in which the G
flag (bit 8) is 0, additional steps are required if the entry may be used for PCIDs other than the current one. Any
one of the following suffices:

— Execute MOV to CR4 to modify CR4.PGE, either immediately or before again using any of the affected
PCIDs. For example, software could use different (previously unused) PCIDs for the processes that used the
affected PCIDs.

— For each affected PCID, execute MOV to CR3 to make that PCID current (and to load the address of the
appropriate PML4 table). If the modified entry controls no global pages and bit 63 of the source operand to
MOV to CR3 was 0, no further steps are required. Otherwise, execute INVLPG for linear addresses with each
of the page numbers with translations that would use the entry; if no page numbers that would use the
entry have translations, execute INVLPG at least once.

* If software using PAE paging modifies a PDPTE, it should reload CR3 with the register’s current value to ensure
that the modified PDPTE is loaded into the corresponding PDPTE register (see Section 4.4.1).

* If the nature of the paging structures is such that a single entry may be used for multiple purposes (see Section
4.10.3.3), software should perform invalidations for all of these purposes. For example, if a single entry might
serve as both a PDE and PTE, it may be necessary to execute INVLPG with two (or more) linear addresses, one
that uses the entry as a PDE and one that uses it as a PTE. (Alternatively, software could use MOV to CR3 or
MOV to CR4.)

® As noted in Section 4.10.2, the TLBs may subsequently contain multiple translations for the address range if
software modifies the paging structures so that the page size used for a 4-KByte range of linear addresses
changes. A reference to a linear address in the address range may use any of these translations.

Software wishing to prevent this uncertainty should not write to a paging-structure entry in a way that would
change, for any linear address, both the page size and either the page frame, access rights, or other attributes.
It can instead use the following algorithm: first clear the P flag in the relevant paging-structure entry (e.g.,

1. One execution of INVLPG is sufficient even for a page with size greater than 4 KBytes.

4-50 Vol. 3A

PAGING

PDE); then invalidate any translations for the affected linear addresses (see above); and then modify the
relevant paging-structure entry to set the P flag and establish modified translation(s) for the new page size.

Software should clear bit 63 of the source operand to a MOV to CR3 instruction that establishes a PCID that had
been used earlier for a different linear-address space (e.g., with a different value in bits 51:12 of CR3). This
ensures invalidation of any information that may have been cached for the previous linear-address space.

This assumes that both linear-address spaces use the same global pages and that it is thus not necessary to
invalidate any global TLB entries. If that is not the case, software should invalidate those entries by executing
MOV to CR4 to modify CR4.PGE.

4.10.4.3 Optional Invalidation

The following items describe cases in which software may choose not to invalidate and the potential consequences
of that choice:

If a paging-structure entry is modified to change the P flag from 0 to 1, no invalidation is necessary. This is
because no TLB entry or paging-structure cache entry is created with information from a paging-structure
entry in which the P flag is 0.1

If a paging-structure entry is modified to change the accessed flag from 0 to 1, no invalidation is necessary
(assuming that an invalidation was performed the last time the accessed flag was changed from 1 to 0). This is
because no TLB entry or paging-structure cache entry is created with information from a paging-structure
entry in which the accessed flag is 0.

If a paging-structure entry is modified to change the R/W flag from 0 to 1, failure to perform an invalidation
may result in a “spurious” page-fault exception (e.g., in response to an attempted write access) but no other
adverse behavior. Such an exception will occur at most once for each affected linear address (see Section
4.10.4.1).

If CR4.SMEP = 0 and a paging-structure entry is modified to change the U/S flag from 0 to 1, failure to perform
an invalidation may result in a “spurious” page-fault exception (e.g., in response to an attempted user-mode
access) but no other adverse behavior. Such an exception will occur at most once for each affected linear
address (see Section 4.10.4.1).

If a paging-structure entry is modified to change the XD flag from 1 to O, failure to perform an invalidation may
result in a “spurious” page-fault exception (e.g., in response to an attempted instruction fetch) but no other
adverse behavior. Such an exception will occur at most once for each affected linear address (see Section
4.10.4.1).

If a paging-structure entry is modified to change the accessed flag from 1 to 0, failure to perform an invali-
dation may result in the processor not setting that bit in response to a subsequent access to a linear address
whose translation uses the entry. Software cannot interpret the bit being clear as an indication that such an
access has not occurred.

If software modifies a paging-structure entry that identifies the final physical address for a linear address
(either a PTE or a paging-structure entry in which the PS flag is 1) to change the dirty flag from 1 to 0, failure
to perform an invalidation may result in the processor not setting that bit in response to a subsequent write to
a linear address whose translation uses the entry. Software cannot interpret the bit being clear as an indication
that such a write has not occurred.

The read of a paging-structure entry in translating an address being used to fetch an instruction may appear to
execute before an earlier write to that paging-structure entry if there is no serializing instruction between the
write and the instruction fetch. Note that the invalidating instructions identified in Section 4.10.4.1 are all
serializing instructions.

Section 4.10.3.3 describes situations in which a single paging-structure entry may contain information cached
in multiple entries in the paging-structure caches. Because all entries in these caches are invalidated by any
execution of INVLPG, it is not necessary to follow the modification of such a paging-structure entry by
executing INVLPG multiple times solely for the purpose of invalidating these multiple cached entries. (It may be
necessary to do so to invalidate multiple TLB entries.)

If it is also the case that no invalidation was performed the last time the P flag was changed from 1 to O, the processor may use a
TLB entry or paging-structure cache entry that was created when the P flag had earlier been 1.

Vol. 3A 4-51

PAGING

4.10.4.4 Delayed Invalidation

Required invalidations may be delayed under some circumstances. Software developers should understand that,
between the modification of a paging-structure entry and execution of the invalidation instruction recommended in
Section 4.10.4.2, the processor may use translations based on either the old value or the new value of the paging-
structure entry. The following items describe some of the potential consequences of delayed invalidation:

* If a paging-structure entry is modified to change the P flag from 1 to 0, an access to a linear address whose
translation is controlled by this entry may or may not cause a page-fault exception.

* If a paging-structure entry is modified to change the R/W flag from 0 to 1, write accesses to linear addresses
whose translation is controlled by this entry may or may not cause a page-fault exception.

* If a paging-structure entry is modified to change the U/S flag from 0 to 1, user-mode accesses to linear
addresses whose translation is controlled by this entry may or may not cause a page-fault exception.

® If a paging-structure entry is modified to change the XD flag from 1 to O, instruction fetches from linear
addresses whose translation is controlled by this entry may or may not cause a page-fault exception.

As noted in Section 9.1.1, an x87 instruction or an SSE instruction that accesses data larger than a quadword may
be implemented using multiple memory accesses. If such an instruction stores to memory and invalidation has
been delayed, some of the accesses may complete (writing to memory) while another causes a page-fault excep-
tion.! In this case, the effects of the completed accesses may be visible to software even though the overall instruc-
tion caused a fault.

In some cases, the consequences of delayed invalidation may not affect software adversely. For example, when
freeing a portion of the linear-address space (by marking paging-structure entries “not present”), invalidation
using INVLPG may be delayed if software does not re-allocate that portion of the linear-address space or the
memory that had been associated with it. However, because of speculative execution (or errant software), there
may be accesses to the freed portion of the linear-address space before the invalidations occur. In this case, the
following can happen:

® Reads can occur to the freed portion of the linear-address space. Therefore, invalidation should not be delayed
for an address range that has read side effects.

® The processor may retain entries in the TLBs and paging-structure caches for an extended period of time.
Software should not assume that the processor will not use entries associated with a linear address simply
because time has passed.

®* As noted in Section 4.10.3.1, the processor may create an entry in a paging-structure cache even if there are
no translations for any linear address that might use that entry. Thus, if software has marked “not present” all
entries in a page table, the processor may subsequently create a PDE-cache entry for the PDE that references
that page table (assuming that the PDE itself is marked “present”).

* If software attempts to write to the freed portion of the linear-address space, the processor might not generate
a page fault. (Such an attempt would likely be the result of a software error.) For that reason, the page frames
previously associated with the freed portion of the linear-address space should not be reallocated for another
purpose until the appropriate invalidations have been performed.

4.10.5 Propagation of Paging-Structure Changes to Multiple Processors

As noted in Section 4.10.4, software that modifies a paging-structure entry may need to invalidate entries in the
TLBs and paging-structure caches that were derived from the modified entry before it was modified. In a system
containing more than one logical processor, software must account for the fact that there may be entries in the
TLBs and paging-structure caches of logical processors other than the one used to modify the paging-structure
entry. The process of propagating the changes to a paging-structure entry is commonly referred to as “TLB shoot-
down.”

TLB shootdown can be done using memory-based semaphores and/or interprocessor interrupts (IPI). The following
items describe a simple but inefficient example of a TLB shootdown algorithm for processors supporting the
Intel-64 and IA-32 architectures:

1. If the accesses are to different pages, this may occur even if invalidation has not been delayed.

4-52 Vol. 3A

PAGING

1. Begin barrier: Stop all but one logical processor; that is, cause all but one to execute the HLT instruction or to
enter a spin loop.

Allow the active logical processor to change the necessary paging-structure entries.

Allow all logical processors to perform invalidations appropriate to the modifications to the paging-structure
entries.

4. Allow all logical processors to resume normal operation.

Alternative, performance-optimized, TLB shootdown algorithms may be developed; however, software developers
must take care to ensure that the following conditions are met:

* Alllogical processors that are using the paging structures that are being modified must participate and perform
appropriate invalidations after the modifications are made.

* If the modifications to the paging-structure entries are made before the barrier or if there is no barrier, the
operating system must ensure one of the following: (1) that the affected linear-address range is not used
between the time of modification and the time of invalidation; or (2) that it is prepared to deal with the conse-
quences of the affected linear-address range being used during that period. For example, if the operating
system does not allow pages being freed to be reallocated for another purpose until after the required invalida-
tions, writes to those pages by errant software will not unexpectedly modify memory that is in use.

® Software must be prepared to deal with reads, instruction fetches, and prefetch requests to the affected linear-
address range that are a result of speculative execution that would never actually occur in the executed code
path.

When multiple logical processors are using the same linear-address space at the same time, they must coordinate
before any request to modify the paging-structure entries that control that linear-address space. In these cases,
the barrier in the TLB shootdown routine may not be required. For example, when freeing a range of linear
addresses, some other mechanism can assure no logical processor is using that range before the request to free it
is made. In this case, a logical processor freeing the range can clear the P flags in the PTEs associated with the
range, free the physical page frames associated with the range, and then signal the other logical processors using
that linear-address space to perform the necessary invalidations. All the affected logical processors must complete
their invalidations before the linear-address range and the physical page frames previously associated with that
range can be reallocated.

4.11 INTERACTIONS WITH VIRTUAL-MACHINE EXTENSIONS (VMX)

The architecture for virtual-machine extensions (VMX) includes features that interact with paging. Section 4.11.1
discusses ways in which VMX-specific control transfers, called VMX transitions specially affect paging. Section
4.11.2 gives an overview of VMX features specifically designed to support address translation.

4.11.1 VMX Transitions

The VMX architecture defines two control transfers called VM entries and VM exits; collectively, these are called
VMX transitions. VM entries and VM exits are described in detail in Chapter 27 and Chapter 28, respectively, in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C. The following items identify
paging-related details:

®* VMX transitions modify the CRO and CR4 registers and the IA32_EFER MSR concurrently. For this reason, they
allow transitions between paging modes that would not otherwise be possible:

— VM entries allow transitions from 4-level paging directly to either 32-bit paging or PAE paging.

— VM exits allow transitions from either 32-bit paging or PAE paging directly to 4-level paging or 5-level
paging.
®* VMX transitions that result in PAE paging load the PDPTE registers (see Section 4.4.1) as follows:

— VM entries load the PDPTE registers either from the physical address being loaded into CR3 or from the
virtual-machine control structure (VMCS); see Section 27.3.2.4.

— VM exits load the PDPTE registers from the physical address being loaded into CR3; see Section 28.5.4.

Vol. 3A 4-53

PAGING

®* VMX transitions invalidate the TLBs and paging-structure caches based on certain control settings. See Section
27.3.2.5 and Section 28.5.5 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

4.11.2 VMX Support for Address Translation

Chapter 29, “VMX Support for Address Translation,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3C, describes two features of the virtual-machine extensions (VMX) that interact directly with
paging. These are virtual-processor identifiers (VPIDs) and the extended page table mechanism (EPT).

VPIDs provide a way for software to identify to the processor the address spaces for different “virtual processors.”
The processor may use this identification to maintain concurrently information for multiple address spaces in its
TLBs and paging-structure caches, even when non-zero PCIDs are not being used. See Section 29.1 for details.

When EPT is in use, the addresses in the paging-structures are not used as physical addresses to access memory
and memory-mapped I/O. Instead, they are treated as guest-physical addresses and are translated through a set
of EPT paging structures to produce physical addresses. EPT can also specify its own access rights and memory

typing; these are used on conjunction with those specified in this chapter. See Section 29.3 for more information.

Both VPIDs and EPT may change the way that a processor maintains information in TLBs and paging structure
caches and the ways in which software can manage that information. Some of the behaviors documented in Section
4.10 may change. See Section 29.4 for details.

4.12 USING PAGING FOR VIRTUAL MEMORY

With paging, portions of the linear-address space need not be mapped to the physical-address space; data for the
unmapped addresses can be stored externally (e.g., on disk). This method of mapping the linear-address space is
referred to as virtual memory or demand-paged virtual memory.

Paging divides the linear address space into fixed-size pages that can be mapped into the physical-address space
and/or external storage. When a program (or task) references a linear address, the processor uses paging to trans-
late the linear address into a corresponding physical address if such an address is defined.

If the page containing the linear address is not currently mapped into the physical-address space, the processor
generates a page-fault exception as described in Section 4.7. The handler for page-fault exceptions typically directs
the operating system or executive to load data for the unmapped page from external storage into physical memory
(perhaps writing a different page from physical memory out to external storage in the process) and to map it using
paging (by updating the paging structures). When the page has been loaded into physical memory, a return from
the exception handler causes the instruction that generated the exception to be restarted.

Paging differs from segmentation through its use of fixed-size pages. Unlike segments, which usually are the same
size as the code or data structures they hold, pages have a fixed size. If segmentation is the only form of address
translation used, a data structure present in physical memory will have all of its parts in memory. If paging is used,
a data structure can be partly in memory and partly in disk storage.

413 MAPPING SEGMENTS TO PAGES

The segmentation and paging mechanisms provide support for a wide variety of approaches to memory manage-
ment. When segmentation and paging are combined, segments can be mapped to pages in several ways. To imple-
ment a flat (unsegmented) addressing environment, for example, all the code, data, and stack modules can be
mapped to one or more large segments (up to 4-GBytes) that share same range of linear addresses (see Figure 3-2
in Section 3.2.2). Here, segments are essentially invisible to applications and the operating-system or executive. If
paging is used, the paging mechanism can map a single linear-address space (contained in a single segment) into
virtual memory. Alternatively, each program (or task) can have its own large linear-address space (contained in its
own segment), which is mapped into virtual memory through its own paging structures.

Segments can be smaller than the size of a page. If one of these segments is placed in a page which is not shared
with another segment, the extra memory is wasted. For example, a small data structure, such as a 1-Byte sema-
phore, occupies 4 KBytes if it is placed in a page by itself. If many semaphores are used, it is more efficient to pack
them into a single page.

4-54 Vol. 3A

PAGING

The Intel-64 and IA-32 architectures do not enforce correspondence between the boundaries of pages and
segments. A page can contain the end of one segment and the beginning of another. Similarly, a segment can
contain the end of one page and the beginning of another.

Memory-management software may be simpler and more efficient if it enforces some alignment between page and
segment boundaries. For example, if a segment which can fit in one page is placed in two pages, there may be
twice as much paging overhead to support access to that segment.

One approach to combining paging and segmentation that simplifies memory-management software is to give
each segment its own page table, as shown in Figure 4-13. This convention gives the segment a single entry in the
page directory, and this entry provides the access control information for paging the entire segment.

Page Frames

LDT Page Directory Page Tables >
PTE —
PTE >
PTE -
Seg. Descript.—>» PDE 4|—>
Seg. Descript.—> PDE >

PTE |1 =

PTE —‘

L

Figure 4-13. Memory Management Convention That Assigns a Page Table to Each Segment

Vol. 3A 4-55

PAGING

4-56 Vol. 3A

CHAPTER 5
PROTECTION

In protected mode, the Intel 64 and IA-32 architectures provide a protection mechanism that operates at both the
segment level and the page level. This protection mechanism provides the ability to limit access to certain
segments or pages based on privilege levels (four privilege levels for segments and two privilege levels for pages).
For example, critical operating-system code and data can be protected by placing them in more privileged
segments than those that contain applications code. The processor’s protection mechanism will then prevent appli-
cation code from accessing the operating-system code and data in any but a controlled, defined manner.

Segment and page protection can be used at all stages of software development to assist in localizing and detecting
design problems and bugs. It can also be incorporated into end-products to offer added robustness to operating
systems, utilities software, and applications software.

When the protection mechanism is used, each memory reference is checked to verify that it satisfies various
protection checks. All checks are made before the memory cycle is started; any violation results in an exception.
Because checks are performed in parallel with address translation, there is no performance penalty. The protection
checks that are performed fall into the following categories:

® Limit checks.

®* Type checks.

® Privilege level checks.

® Restriction of addressable domain.

® Restriction of procedure entry-points.
® Restriction of instruction set.

All protection violation results in an exception being generated. See Chapter 6, “Interrupt and Exception Handling,”
for an explanation of the exception mechanism. This chapter describes the protection mechanism and the viola-
tions which lead to exceptions.

The following sections describe the protection mechanism available in protected mode. See Chapter 21, *8086
Emulation,” for information on protection in real-address and virtual-8086 mode.

5.1 ENABLING AND DISABLING SEGMENT AND PAGE PROTECTION

Setting the PE flag in register CRO causes the processor to switch to protected mode, which in turn enables the
segment-protection mechanism. Once in protected mode, there is no control bit for turning the protection mecha-
nism on or off. The part of the segment-protection mechanism that is based on privilege levels can essentially be
disabled while still in protected mode by assigning a privilege level of 0 (most privileged) to all segment selectors
and segment descriptors. This action disables the privilege level protection barriers between segments, but other
protection checks such as limit checking and type checking are still carried out.

Page-level protection is automatically enabled when paging is enabled (by setting the PG flag in register CR0O). Here
again there is no mode bit for turning off page-level protection once paging is enabled. However, page-level protec-
tion can be disabled by performing the following operations:

¢ (Clear the WP flag in control register CRO.
®* Set the read/write (R/W) and user/supervisor (U/S) flags for each page-directory and page-table entry.
This action makes each page a writable, user page, which in effect disables page-level protection.

Vol. 3A 5-1

PROTECTION

5.2 FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND PAGE-LEVEL

PROTECTION

The processor’s protection mechanism uses the following fields and flags in the system data structures to control
access to segments and pages:

Descriptor type (S) flag — (Bit 12 in the second doubleword of a segment descriptor.) Determines if the
segment descriptor is for a system segment or a code or data segment.

Type field — (Bits 8 through 11 in the second doubleword of a segment descriptor.) Determines the type of
code, data, or system segment.

Limit field — (Bits 0 through 15 of the first doubleword and bits 16 through 19 of the second doubleword of a
segment descriptor.) Determines the size of the segment, along with the G flag and E flag (for data segments).

G flag — (Bit 23 in the second doubleword of a segment descriptor.) Determines the size of the segment, along
with the limit field and E flag (for data segments).

E flag — (Bit 10 in the second doubleword of a data-segment descriptor.) Determines the size of the segment,
along with the limit field and G flag.

Descriptor privilege level (DPL) field — (Bits 13 and 14 in the second doubleword of a segment descriptor.)
Determines the privilege level of the segment.

Requested privilege level (RPL) field — (Bits 0 and 1 of any segment selector.) Specifies the requested
privilege level of a segment selector.

Current privilege level (CPL) field — (Bits 0 and 1 of the CS segment register.) Indicates the privilege level
of the currently executing program or procedure. The term current privilege level (CPL) refers to the setting of
this field.

User/supervisor (U/S) flag — (Bit 2 of paging-structure entries.) Determines the type of page: user or
supervisor.

Read/write (R/W) flag — (Bit 1 of paging-structure entries.) Determines the type of access allowed to a
page: read-only or read/write.

Execute-disable (XD) flag — (Bit 63 of certain paging-structure entries.) Determines the type of access
allowed to a page: executable or not-executable.

Figure 5-1 shows the location of the various fields and flags in the data-, code-, and system-segment descriptors;
Figure 3-6 shows the location of the RPL (or CPL) field in a segment selector (or the CS register); and Chapter 4
identifies the locations of the U/S, R/W, and XD flags in the paging-structure entries.

5-2 Vol. 3A

PROTECTION

Data-Segment Descriptor

31 2423 22 212019 16 15 14 13 12 11 8 7 0
Base 3124 |6[Blo|v| HmiL Ip| p P Base 23:16 |4
L : L |10 | E ‘W| A
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0

Code-Segment Descriptor

31 242322 212019 16 15 14 13 12 11 8 7 0
Base31:24 |G[plo|v| Hmt lp| p P Base 23116 |4
L : L |1 1|C‘R|A
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0

System-Segment Descriptor

31 242322212019 1615141312 11 8 7 0
. Limit D _
Base 31:24 G 0 . P| P |0| Type Base 23:16 4
19:16 L
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0

A Accessed E Expansion Direction
AVL Available to Sys. Programmers G Granularity

B Big R Readable

Cc Conforming LIMIT Segment Limit

D Default W Writable

DPL Descriptor Privilege Level P Present

D Reserved

Figure 5-1. Descriptor Fields Used for Protection

Many different styles of protection schemes can be implemented with these fields and flags. When the operating
system creates a descriptor, it places values in these fields and flags in keeping with the particular protection style
chosen for an operating system or executive. Application programs do not generally access or modify these fields
and flags.

The following sections describe how the processor uses these fields and flags to perform the various categories of
checks described in the introduction to this chapter.

5.2.1 Code-Segment Descriptor in 64-bit Mode

Code segments continue to exist in 64-bit mode even though, for address calculations, the segment base is treated
as zero. Some code-segment (CS) descriptor content (the base address and limit fields) is ignored; the remaining
fields function normally (except for the readable bit in the type field).

Code segment descriptors and selectors are needed in IA-32e mode to establish the processor’s operating mode
and execution privilege-level. The usage is as follows:

Vol. 3A 5-3

PROTECTION

®* IA-32e mode uses a previously unused bit in the CS descriptor. Bit 53 is defined as the 64-bit (L) flag and is
used to select between 64-bit mode and compatibility mode when IA-32e mode is active (IA32_EFER.LMA = 1).
See Figure 5-2.

— If CS.L = 0 and IA-32e mode is active, the processor is running in compatibility mode. In this case, CS.D
selects the default size for data and addresses. If CS.D = 0, the default data and address size is 16 bits. If
CS.D = 1, the default data and address size is 32 bits.

— If CS.L = 1 and IA-32e mode is active, the only valid setting is CS.D = 0. This setting indicates a default
operand size of 32 bits and a default address size of 64 bits. The CS.L = 1 and CS.D = 1 bit combination is
reserved for future use and a #GP fault will be generated on an attempt to use a code segment with these
bits set in IA-32e mode.

* In IA-32e mode, the CS descriptor’s DPL is used for execution privilege checks (as in legacy 32-bit mode).

Code-Segment Descriptor

31 242322 212019 1615141312 11 8 7 0

A D Type
G|D|L|V Pl P i 4
L

L 1|C‘R|A

-

31 0

A Accessed

AVL Available to Sys. Programmer's G Granularity
C Conforming R Readable
D Default P Present
DPL Descriptor Privilege Level

L 64-Bit Flag

Figure 5-2. Descriptor Fields with Flags used in IA-32e Mode

53 LIMIT CHECKING

The limit field of a segment descriptor prevents programs or procedures from addressing memory locations outside
the segment. The effective value of the limit depends on the setting of the G (granularity) flag (see Figure 5-1). For
data segments, the limit also depends on the E (expansion direction) flag and the B (default stack pointer size
and/or upper bound) flag. The E flag is one of the bits in the type field when the segment descriptor is for a data-
segment type.

When the G flag is clear (byte granularity), the effective limit is the value of the 20-bit limit field in the segment
descriptor. Here, the limit ranges from 0 to FFFFFH (1 MByte). When the G flag is set (4-KByte page granularity),
the processor scales the value in the limit field by a factor of 212 (4 KBytes). In this case, the effective limit ranges
from FFFH (4 KBytes) to FFFFFFFFH (4 GBytes). Note that when scaling is used (G flag is set), the lower 12 bits of
a segment offset (address) are not checked against the limit; for example, note that if the segment limit is O,
offsets 0 through FFFH are still valid.

For all types of segments except expand-down data segments, the effective limit is the last address that is allowed
to be accessed in the segment, which is one less than the size, in bytes, of the segment. The processor causes a
general-protection exception (or, if the segment is SS, a stack-fault exception) any time an attempt is made to
access the following addresses in a segment:

®* A byte at an offset greater than the effective limit

®* A word at an offset greater than the (effective-limit - 1)

®* A doubleword at an offset greater than the (effective-limit - 3)
®* A guadword at an offset greater than the (effective-limit - 7)

5-4 Vol. 3A

PROTECTION

®* A double quadword at an offset greater than the (effective limit - 15)

When the effective limit is FFFFFFFFH (4 GBytes), these accesses may or may not cause the indicated exceptions.
Behavior is implementation-specific and may vary from one execution to another.

For expand-down data segments, the segment limit has the same function but is interpreted differently. Here, the
effective limit specifies the last address that is not allowed to be accessed within the segment; the range of valid
offsets is from (effective-limit + 1) to FFFFFFFFH if the B flag is set and from (effective-limit + 1) to FFFFH if the B
flag is clear. An expand-down segment has maximum size when the segment limit is 0.

Limit checking catches programming errors such as runaway code, runaway subscripts, and invalid pointer calcu-
lations. These errors are detected when they occur, so identification of the cause is easier. Without limit checking,
these errors could overwrite code or data in another segment.

In addition to checking segment limits, the processor also checks descriptor table limits. The GDTR and IDTR regis-
ters contain 16-bit limit values that the processor uses to prevent programs from selecting a segment descriptors
outside the respective descriptor tables. The LDTR and task registers contain 32-bit segment limit value (read from
the segment descriptors for the current LDT and TSS, respectively). The processor uses these segment limits to
prevent accesses beyond the bounds of the current LDT and TSS. See Section 3.5.1, "Segment Descriptor Tables,”
for more information on the GDT and LDT limit fields; see Section 6.10, “Interrupt Descriptor Table (IDT),” for more
information on the IDT limit field; and see Section 8.2.4, “Task Register,” for more information on the TSS segment
limit field.

5.3.1 Limit Checking in 64-bit Mode

In 64-bit mode, the processor does not perform runtime limit checking on code or data segments. However, the
processor does check descriptor-table limits.

5.4 TYPE CHECKING

Segment descriptors contain type information in two places:
®* The S (descriptor type) flag.
®* The type field.

The processor uses this information to detect programming errors that result in an attempt to use a segment or
gate in an incorrect or unintended manner.

The S flag indicates whether a descriptor is a system type or a code or data type. The type field provides 4 addi-
tional bits for use in defining various types of code, data, and system descriptors. Table 3-1 shows the encoding of
the type field for code and data descriptors; Table 3-2 shows the encoding of the field for system descriptors.

The processor examines type information at various times while operating on segment selectors and segment
descriptors. The following list gives examples of typical operations where type checking is performed (this list is not
exhaustive):

* When a segment selector is loaded into a segment register — Certain segment registers can contain only
certain descriptor types, for example:

— The CS register only can be loaded with a selector for a code segment.

— Segment selectors for code segments that are not readable or for system segments cannot be loaded into
data-segment registers (DS, ES, FS, and GS).

— Only segment selectors of writable data segments can be loaded into the SS register.
®* When a segment selector is loaded into the LDTR or task register — For example:

— The LDTR can only be loaded with a selector for an LDT.

— The task register can only be loaded with a segment selector for a TSS.

®* When instructions access segments whose descriptors are already loaded into segment registers —
Certain segments can be used by instructions only in certain predefined ways, for example:

— No instruction may write into an executable segment.

Vol. 3A 5-5

PROTECTION

— No instruction may write into a data segment if it is not writable.
— No instruction may read an executable segment unless the readable flag is set.

®* When an instruction operand contains a segment selector — Certain instructions can access segments
or gates of only a particular type, for example:

— A far CALL or far JMP instruction can only access a segment descriptor for a conforming code segment,
nonconforming code segment, call gate, task gate, or TSS.

— The LLDT instruction must reference a segment descriptor for an LDT.
— The LTR instruction must reference a segment descriptor for a TSS.

— The LAR instruction must reference a segment or gate descriptor for an LDT, TSS, call gate, task gate, code
segment, or data segment.

— The LSL instruction must reference a segment descriptor for a LDT, TSS, code segment, or data segment.
— IDT entries must be interrupt, trap, or task gates.
®* During certain internal operations — For example:

— On a far call or far jump (executed with a far CALL or far JMP instruction), the processor determines the
type of control transfer to be carried out (call or jump to another code segment, a call or jump through a
gate, or a task switch) by checking the type field in the segment (or gate) descriptor pointed to by the
segment (or gate) selector given as an operand in the CALL or JMP instruction. If the descriptor type is for
a code segment or call gate, a call or jump to another code segment is indicated; if the descriptor type is for
a TSS or task gate, a task switch is indicated.

— On a call or jump through a call gate (or on an interrupt- or exception-handler call through a trap or
interrupt gate), the processor automatically checks that the segment descriptor being pointed to by the
gate is for a code segment.

— On a call or jump to a new task through a task gate (or on an interrupt- or exception-handler call to a new
task through a task gate), the processor automatically checks that the segment descriptor being pointed to
by the task gate is for a TSS.

— On acall or jump to a new task by a direct reference to a TSS, the processor automatically checks that the
segment descriptor being pointed to by the CALL or JMP instruction is for a TSS.

— On return from a nested task (initiated by an IRET instruction), the processor checks that the previous task
link field in the current TSS points to a TSS.

5.4.1 Null Segment Selector Checking

Attempting to load a null segment selector (see Section 3.4.2, “"Segment Selectors”) into the CS or SS segment
register generates a general-protection exception (#GP). A null segment selector can be loaded into the DS, ES,
FS, or GS register, but any attempt to access a segment through one of these registers when it is loaded with a null
segment selector results in a #GP exception being generated. Loading unused data-segment registers with a null
segment selector is a useful method of detecting accesses to unused segment registers and/or preventing
unwanted accesses to data segments.

5.4.1.1 NULL Segment Checking in 64-bit Mode

In 64-bit mode, the processor does not perform runtime checking on NULL segment selectors. The processor does
not cause a #GP fault when an attempt is made to access memory where the referenced segment register has a
NULL segment selector.

5.5 PRIVILEGE LEVELS

The processor’s segment-protection mechanism recognizes 4 privilege levels, numbered from 0 to 3. The greater
numbers mean lesser privileges. Figure 5-3 shows how these levels of privilege can be interpreted as rings of
protection.

5-6 Vol.3A

PROTECTION

The center (reserved for the most privileged code, data, and stacks) is used for the segments containing the critical
software, usually the kernel of an operating system. Outer rings are used for less critical software. (Systems that
use only 2 of the 4 possible privilege levels should use levels 0 and 3.)

Protection Rings

Operating

System

Kernel

Operating System
Services N__\

Applications

Figure 5-3. Protection Rings

The processor uses privilege levels to prevent a program or task operating at a lesser privilege level from accessing
a segment with a greater privilege, except under controlled situations. When the processor detects a privilege level
violation, it generates a general-protection exception (#GP).

To carry out privilege-level checks between code segments and data segments, the processor recognizes the
following three types of privilege levels:

Current privilege level (CPL) — The CPL is the privilege level of the currently executing program or task. It
is stored in bits 0 and 1 of the CS and SS segment registers. Normally, the CPL is equal to the privilege level of
the code segment from which instructions are being fetched. The processor changes the CPL when program
control is transferred to a code segment with a different privilege level. The CPL is treated slightly differently
when accessing conforming code segments. Conforming code segments can be accessed from any privilege
level that is equal to or numerically greater (less privileged) than the DPL of the conforming code segment.
Also, the CPL is not changed when the processor accesses a conforming code segment that has a different
privilege level than the CPL.

Descriptor privilege level (DPL) — The DPL is the privilege level of a segment or gate. It is stored in the DPL
field of the segment or gate descriptor for the segment or gate. When the currently executing code segment
attempts to access a segment or gate, the DPL of the segment or gate is compared to the CPL and RPL of the
segment or gate selector (as described later in this section). The DPL is interpreted differently, depending on
the type of segment or gate being accessed:

— Data segment — The DPL indicates the numerically highest privilege level that a program or task can have
to be allowed to access the segment. For example, if the DPL of a data segment is 1, only programs running
at a CPL of 0 or 1 can access the segment.

— Nonconforming code segment (without using a call gate) — The DPL indicates the privilege level that
a program or task must be at to access the segment. For example, if the DPL of a nonconforming code
segment is 0, only programs running at a CPL of 0 can access the segment.

— Call gate — The DPL indicates the numerically highest privilege level that the currently executing program
or task can be at and still be able to access the call gate. (This is the same access rule as for a data
segment.)

— Conforming code segment and nonconforming code segment accessed through a call gate — The
DPL indicates the numerically lowest privilege level that a program or task can have to be allowed to access
the segment. For example, if the DPL of a conforming code segment is 2, programs running at a CPL of 0 or
1 cannot access the segment.

Vol. 3A 5-7

PROTECTION

— TSS — The DPL indicates the numerically highest privilege level that the currently executing program or
task can be at and still be able to access the TSS. (This is the same access rule as for a data segment.)

®* Requested privilege level (RPL) — The RPL is an override privilege level that is assigned to segment
selectors. It is stored in bits 0 and 1 of the segment selector. The processor checks the RPL along with the CPL
to determine if access to a segment is allowed. Even if the program or task requesting access to a segment has
sufficient privilege to access the segment, access is denied if the RPL is not of sufficient privilege level. That is,
if the RPL of a segment selector is numerically greater than the CPL, the RPL overrides the CPL, and vice versa.
The RPL can be used to ensure that privileged code does not access a segment on behalf of an application
program unless the program itself has access privileges for that segment. See Section 5.10.4, “Checking Caller
Access Privileges (ARPL Instruction),” for a detailed description of the purpose and typical use of the RPL.

Privilege levels are checked when the segment selector of a segment descriptor is loaded into a segment register.
The checks used for data access differ from those used for transfers of program control among code segments;
therefore, the two kinds of accesses are considered separately in the following sections.

5.6 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA SEGMENTS

To access operands in a data segment, the segment selector for the data segment must be loaded into the data-
segment registers (DS, ES, FS, or GS) or into the stack-segment register (SS). (Segment registers can be loaded
with the MOV, POP, LDS, LES, LFS, LGS, and LSS instructions.) Before the processor loads a segment selector into
a segment register, it performs a privilege check (see Figure 5-4) by comparing the privilege levels of the currently
running program or task (the CPL), the RPL of the segment selector, and the DPL of the segment’s segment
descriptor. The processor loads the segment selector into the segment register if the DPL is numerically greater
than or equal to both the CPL and the RPL. Otherwise, a general-protection fault is generated and the segment
register is not loaded.

CS Register
CPL

Segment Selector
For Data Segment

RPL

Y

Privilege

Data-Segment Descriptor
Check

DPL

vy

Figure 5-4. Privilege Check for Data Access

Figure 5-5 shows four procedures (located in codes segments A, B, C, and D), each running at different privilege
levels and each attempting to access the same data segment.

1. The procedure in code segment A is able to access data segment E using segment selector E1, because the CPL
of code segment A and the RPL of segment selector E1 are equal to the DPL of data segment E.

2. The procedure in code segment B is able to access data segment E using segment selector E2, because the CPL
of code segment B and the RPL of segment selector E2 are both numerically lower than (more privileged) than
the DPL of data segment E. A code segment B procedure can also access data segment E using segment
selector E1.

3. The procedure in code segment C is not able to access data segment E using segment selector E3 (dotted line),
because the CPL of code segment C and the RPL of segment selector E3 are both numerically greater than (less
privileged) than the DPL of data segment E. Even if a code segment C procedure were to use segment selector

5-8 Vol.3A

PROTECTION

E1l or E2, such that the RPL would be acceptable, it still could not access data segment E because its CPL is not
privileged enough.

4. The procedure in code segment D should be able to access data segment E because code segment D’s CPL is
numerically less than the DPL of data segment E. However, the RPL of segment selector E3 (which the code
segment D procedure is using to access data segment E) is numerically greater than the DPL of data segment
E, so access is not allowed. If the code segment D procedure were to use segment selector E1 or E2 to access
the data segment, access would be allowed.

Segrmont || Segment Sel_E3 '
egmen egmentSel. E3 | _ _ _ _ . |
CPL=3 RPL=3 | |
Lowest Privilege \"/ :
I
Code I
> Data
SegmentA| | Segment SI—??IPELLZ > SegmentE| !
CPL=2 - I
> |DPL=2 I
I
I
Segr(r)w((je?ltB_ Segment Sel. E2 :
RPL=1
CPL=1 I
I
I
Code
Segment D
CPL=0

m Highest Privilege

Figure 5-5. Examples of Accessing Data Segments From Various Privilege Levels

As demonstrated in the previous examples, the addressable domain of a program or task varies as its CPL changes.
When the CPL is 0, data segments at all privilege levels are accessible; when the CPL is 1, only data segments at
privilege levels 1 through 3 are accessible; when the CPL is 3, only data segments at privilege level 3 are acces-
sible.

The RPL of a segment selector can always override the addressable domain of a program or task. When properly
used, RPLs can prevent problems caused by accidental (or intensional) use of segment selectors for privileged data
segments by less privileged programs or procedures.

It is important to note that the RPL of a segment selector for a data segment is under software control. For
example, an application program running at a CPL of 3 can set the RPL for a data- segment selector to 0. With the
RPL set to 0, only the CPL checks, not the RPL checks, will provide protection against deliberate, direct attempts to
violate privilege-level security for the data segment. To prevent these types of privilege-level-check violations, a
program or procedure can check access privileges whenever it receives a data-segment selector from another
procedure (see Section 5.10.4, “Checking Caller Access Privileges (ARPL Instruction)”).

5.6.1 Accessing Data in Code Segments

In some instances it may be desirable to access data structures that are contained in a code segment. The
following methods of accessing data in code segments are possible:

®* Load a data-segment register with a segment selector for a nonconforming, readable, code segment.
®* Load a data-segment register with a segment selector for a conforming, readable, code segment.

®* Use a code-segment override prefix (CS) to read a readable, code segment whose selector is already loaded in
the CS register.

The same rules for accessing data segments apply to method 1. Method 2 is always valid because the privilege
level of a conforming code segment is effectively the same as the CPL, regardless of its DPL. Method 3 is always
valid because the DPL of the code segment selected by the CS register is the same as the CPL.

Vol. 3A 5-9

PROTECTION

5.7 PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS REGISTER

Privilege level checking also occurs when the SS register is loaded with the segment selector for a stack segment.
Here all privilege levels related to the stack segment must match the CPL; that is, the CPL, the RPL of the stack-
segment selector, and the DPL of the stack-segment descriptor must be the same. If the RPL and DPL are not equal
to the CPL, a general-protection exception (#GP) is generated.

5.8 PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING PROGRAM CONTROL
BETWEEN CODE SEGMENTS

To transfer program control from one code segment to another, the segment selector for the destination code
segment must be loaded into the code-segment register (CS). As part of this loading process, the processor exam-
ines the segment descriptor for the destination code segment and performs various limit, type, and privilege
checks. If these checks are successful, the CS register is loaded, program control is transferred to the new code
segment, and program execution begins at the instruction pointed to by the EIP register.

Program control transfers are carried out with the JMP, CALL, RET, SYSENTER, SYSEXIT, SYSCALL, SYSRET, INT n,
and IRET instructions, as well as by the exception and interrupt mechanisms. Exceptions, interrupts, and the IRET
instruction are special cases discussed in Chapter 6, “Interrupt and Exception Handling.” This chapter discusses
only the JMP, CALL, RET, SYSENTER, SYSEXIT, SYSCALL, and SYSRET instructions.

A JMP or CALL instruction can reference another code segment in any of four ways:

®* The target operand contains the segment selector for the target code segment.

®* The target operand points to a call-gate descriptor, which contains the segment selector for the target code
segment.

®* The target operand points to a TSS, which contains the segment selector for the target code segment.

®* Thetarget operand points to a task gate, which points to a TSS, which in turn contains the segment selector for
the target code segment.

The following sections describe first two types of references. See Section 8.3, “Task Switching,” for information on
transferring program control through a task gate and/or TSS.

The SYSENTER and SYSEXIT instructions are special instructions for making fast calls to and returns from operating
system or executive procedures. These instructions are discussed in Section 5.8.7, “Performing Fast Calls to
System Procedures with the SYSENTER and SYSEXIT Instructions.”

The SYCALL and SYSRET instructions are special instructions for making fast calls to and returns from operating
system or executive procedures in 64-bit mode. These instructions are discussed in Section 5.8.8, “Fast System
Calls in 64-Bit Mode.”

5.8.1 Direct Calls or Jumps to Code Segments

The near forms of the JMP, CALL, and RET instructions transfer program control within the current code segment,
so privilege-level checks are not performed. The far forms of the JMP, CALL, and RET instructions transfer control
to other code segments, so the processor does perform privilege-level checks.

When transferring program control to another code segment without going through a call gate, the processor
examines four kinds of privilege level and type information (see Figure 5-6):

®* The CPL. (Here, the CPL is the privilege level of the calling code segment; that is, the code segment that
contains the procedure that is making the call or jump.)

5-10 Vol. 3A

PROTECTION

CS Register

CPL

Segment Selector
For Code Segment

DPL| |C

RPL
Destination Code > Privilege
Segment Descriptor »| Check

Figure 5-6. Privilege Check for Control Transfer Without Using a Gate

®* The DPL of the segment descriptor for the destination code segment that contains the called procedure.
®* The RPL of the segment selector of the destination code segment.

®* The conforming (C) flag in the segment descriptor for the destination code segment, which determines whether
the segment is a conforming (C flag is set) or nonconforming (C flag is clear) code segment. See Section
3.4.5.1, “Code- and Data-Segment Descriptor Types,” for more information about this flag.

The rules that the processor uses to check the CPL, RPL, and DPL depends on the setting of the C flag, as described
in the following sections.

5.8.1.1 Accessing Nonconforming Code Segments

When accessing nonconforming code segments, the CPL of the calling procedure must be equal to the DPL of the

destination code segment; otherwise, the processor generates a general-protection exception (#GP). For example

in Figure 5-7:

® Code segment Cis a nonconforming code segment. A procedure in code segment A can call a procedure in code
segment C (using segment selector C1) because they are at the same privilege level (CPL of code segment A is
equal to the DPL of code segment C).

®* A procedure in code segment B cannot call a procedure in code segment C (using segment selector C2 or C1)
because the two code segments are at different privilege levels.

Vol. 3A 5-11

PROTECTION

Code Segment Sel. D2 |

Segment B RPL=3
— | SegmentSel.C2 |- - - - - A

CPL=3 RPL=3

Lowest Privilege

| SegmentSel. C1 —>»{ Code
Code RPL=2 Segment C

Segment A
CPL=2 || Segment Sel. D1 DPL=2

[RPL=2 Nonconforming

Code Segment
Y
Code
Segment D
DPL=1
Conforming
Code Segment

m Highest Privilege

Figure 5-7. Examples of Accessing Conforming and Nonconforming Code Segments From Various Privilege Levels

The RPL of the segment selector that points to a nonconforming code segment has a limited effect on the privilege
check. The RPL must be numerically less than or equal to the CPL of the calling procedure for a successful control
transfer to occur. So, in the example in Figure 5-7, the RPLs of segment selectors C1 and C2 could legally be set to
0, 1, or 2, but not to 3.

When the segment selector of a nonconforming code segment is loaded into the CS register, the privilege level field
is not changed; that is, it remains at the CPL (which is the privilege level of the calling procedure). This is true, even
if the RPL of the segment selector is different from the CPL.

5.8.1.2 Accessing Conforming Code Segments

When accessing conforming code segments, the CPL of the calling procedure may be numerically equal to or
greater than (less privileged) the DPL of the destination code segment; the processor generates a general-protec-
tion exception (#GP) only if the CPL is less than the DPL. (The segment selector RPL for the destination code
segment is not checked if the segment is a conforming code segment.)

In the example in Figure 5-7, code segment D is a conforming code segment. Therefore, calling procedures in both
code segment A and B can access code segment D (using either segment selector D1 or D2, respectively), because
they both have CPLs that are greater than or equal to the DPL of the conforming code segment. For conforming
code segments, the DPL represents the numerically lowest privilege level that a calling procedure may
be at to successfully make a call to the code segment.

(Note that segments selectors D1 and D2 are identical except for their respective RPLs. But since RPLs are not
checked when accessing conforming code segments, the two segment selectors are essentially interchangeable.)

When program control is transferred to a conforming code segment, the CPL does not change, even if the DPL of
the destination code segment is less than the CPL. This situation is the only one where the CPL may be different
from the DPL of the current code segment. Also, since the CPL does not change, no stack switch occurs.

Conforming segments are used for code modules such as math libraries and exception handlers, which support
applications but do not require access to protected system facilities. These modules are part of the operating
system or executive software, but they can be executed at numerically higher privilege levels (less privileged
levels). Keeping the CPL at the level of a calling code segment when switching to a conforming code segment

5-12 Vol. 3A

PROTECTION

prevents an application program from accessing nonconforming code segments while at the privilege level (DPL) of
a conforming code segment and thus prevents it from accessing more privileged data.

Most code segments are nonconforming. For these segments, program control can be transferred only to code
segments at the same level of privilege, unless the transfer is carried out through a call gate, as described in the
following sections.

5.8.2 Gate Descriptors

To provide controlled access to code segments with different privilege levels, the processor provides special set of
descriptors called gate descriptors. There are four kinds of gate descriptors:

® (Call gates
¢ Trap gates
® Interrupt gates
®* Task gates

Task gates are used for task switching and are discussed in Chapter 8, "Task Management.” Trap and interrupt
gates are special kinds of call gates used for calling exception and interrupt handlers. The are described in Chapter
6, “Interrupt and Exception Handling.” This chapter is concerned only with call gates.

5.8.3 Call Gates

Call gates facilitate controlled transfers of program control between different privilege levels. They are typically
used only in operating systems or executives that use the privilege-level protection mechanism. Call gates are also
useful for transferring program control between 16-bit and 32-bit code segments, as described in Section 22.4,
“Transferring Control Among Mixed-Size Code Segments.”

Figure 5-8 shows the format of a call-gate descriptor. A call-gate descriptor may reside in the GDT or in an LDT, but
not in the interrupt descriptor table (IDT). It performs six functions:

®* It specifies the code segment to be accessed.
® It defines an entry point for a procedure in the specified code segment.
* It specifies the privilege level required for a caller trying to access the procedure.

31 1615141312 11 87 6 54 0
D Type
Offset in Segment 31:16 Pl P P 000 Iée(z)rﬁr??. 4
L [of1 ‘ 1 |o ‘ 0
31 16 15 0
Segment Selector Offset in Segment 15:00 0

DPL Descriptor Privilege Level
P Gate Valid

Figure 5-8. Call-Gate Descriptor

® If a stack switch occurs, it specifies the number of optional parameters to be copied between stacks.

* It defines the size of values to be pushed onto the target stack: 16-bit gates force 16-bit pushes and 32-bit
gates force 32-bit pushes.

* It specifies whether the call-gate descriptor is valid.

The segment selector field in a call gate specifies the code segment to be accessed. The offset field specifies the
entry point in the code segment. This entry point is generally to the first instruction of a specific procedure. The DPL
field indicates the privilege level of the call gate, which in turn is the privilege level required to access the selected

Vol.3A 5-13

PROTECTION

procedure through the gate. The P flag indicates whether the call-gate descriptor is valid. (The presence of the code
segment to which the gate points is indicated by the P flag in the code segment’s descriptor.) The parameter count
field indicates the number of parameters to copy from the calling procedures stack to the new stack if a stack
switch occurs (see Section 5.8.5, “Stack Switching”). The parameter count specifies the number of words for 16-
bit call gates and doublewords for 32-bit call gates.

Note that the P flag in a gate descriptor is normally always set to 1. If it is set to 0, a not present (#NP) exception
is generated when a program attempts to access the descriptor. The operating system can use the P flag for special
purposes. For example, it could be used to track the number of times the gate is used. Here, the P flag is initially
set to 0 causing a trap to the not-present exception handler. The exception handler then increments a counter and
sets the P flag to 1, so that on returning from the handler, the gate descriptor will be valid.

5.8.3.1 IA-32e Mode Call Gates

Call-gate descriptors in 32-bit mode provide a 32-bit offset for the instruction pointer (EIP); 64-bit extensions
double the size of 32-bit mode call gates in order to store 64-bit instruction pointers (RIP). See Figure 5-9:

®* The first eight bytes (bytes 7:0) of a 64-bit mode call gate are similar but not identical to legacy 32-bit mode
call gates. The parameter-copy-count field has been removed.

®* Bytes 11:8 hold the upper 32 bits of the target-segment offset in canonical form. A general-protection
exception (#GP) is generated if software attempts to use a call gate with a target offset that is not in canonical
form.

® 16-byte descriptors may reside in the same descriptor table with 16-bit and 32-bit descriptors. A type field,
used for consistency checking, is defined in bits 12:8 of the 64-bit descriptor’s highest dword (cleared to zero).
A general-protection exception (#GP) results if an attempt is made to access the upper half of a 64-bit mode
descriptor as a 32-bit mode descriptor.

31 131211109 8 7 0
Type
Reserved Reserved 12
oJo[o[o[o
31 0
Offset in Segment 63:31 8
31 161514131211 8 7 0
D Type
Offset in Segment 31:16 Pl P i 0 4
L |of1 |1 ‘0 | 0
31 16 15 0
Segment Selector Offset in Segment 15:00 0
DPL Descriptor Privilege Level
P Gate Valid

Figure 5-9. Call-Gate Descriptor in IA-32e Mode

®* Target code segments referenced by a 64-bit call gate must be 64-bit code segments (CS.L = 1, CS.D = 0). If
not, the reference generates a general-protection exception, #GP (CS selector).

® Only 64-bit mode call gates can be referenced in IA-32e mode (64-bit mode and compatibility mode). The
legacy 32-bit mode call gate type (OCH) is redefined in IA-32e mode as a 64-bit call-gate type; no 32-bit call-
gate type exists in IA-32e mode.

5-14 Vol. 3A

PROTECTION

® If a far call references a 16-bit call gate type (04H) in IA-32e mode, a general-protection exception (#GP) is
generated.

When a call references a 64-bit mode call gate, actions taken are identical to those taken in 32-bit mode, with the
following exceptions:

® Stack pushes are made in eight-byte increments.
® A 64-bit RIP is pushed onto the stack.
® Parameter copying is not performed.

Use a matching far-return instruction size for correct operation (returns from 64-bit calls must be performed with
a 64-bit operand-size return to process the stack correctly).

5.8.4 Accessing a Code Segment Through a Call Gate

To access a call gate, a far pointer to the gate is provided as a target operand in a CALL or JMP instruction. The
segment selector from this pointer identifies the call gate (see Figure 5-10); the offset from the pointer is required,
but not used or checked by the processor. (The offset can be set to any value.)

When the processor has accessed the call gate, it uses the segment selector from the call gate to locate the
segment descriptor for the destination code segment. (This segment descriptor can be in the GDT or the LDT.) It
then combines the base address from the code-segment descriptor with the offset from the call gate to form the
linear address of the procedure entry point in the code segment.

As shown in Figure 5-11, four different privilege levels are used to check the validity of a program control transfer
through a call gate:

® The CPL (current privilege level).

®* The RPL (requestor privilege level) of the call gate’s selector.

®* The DPL (descriptor privilege level) of the call gate descriptor.

®* The DPL of the segment descriptor of the destination code segment.

The C flag (conforming) in the segment descriptor for the destination code segment is also checked.

Far Pointer to Call Gate

Segment Selector | | Offset
Required but not used by processor

Descriptor Table

= Offset Call-Gate
Segment Selector Offset Descriptor
>| Base Base | Code-Segment
(?4 Base Descriptor
Procedure
Entry Point

Figure 5-10. Call-Gate Mechanism

Vol.3A 5-15

PROTECTION

CS Register

CPL

Call-Gate Selector

RPL

Call Gate (Descriptor) Privilege

Check

DPL

YYVYY

Destination Code-
Segment Descriptor

DPL

Figure 5-11. Privilege Check for Control Transfer with Call Gate

The privilege checking rules are different depending on whether the control transfer was initiated with a CALL or a
JMP instruction, as shown in Table 5-1.
Table 5-1. Privilege Check Rules for Call Gates
Instruction Privilege Check Rules
CALL CPL < call gate DPL; RPL < call gate DPL

Destination conforming code segment DPL < CPL

Destination nonconforming code segment DPL < CPL
JMP CPL < call gate DPL; RPL < call gate DPL

Destination conforming code segment DPL < CPL

Destination nonconforming code segment DPL = CPL

The DPL field of the call-gate descriptor specifies the numerically highest privilege level from which a calling proce-
dure can access the call gate; that is, to access a call gate, the CPL of a calling procedure must be equal to or less
than the DPL of the call gate. For example, in Figure 5-15, call gate A has a DPL of 3. So calling procedures at all
CPLs (0 through 3) can access this call gate, which includes calling procedures in code segments A, B, and C. Call
gate B has a DPL of 2, so only calling procedures at a CPL or 0, 1, or 2 can access call gate B, which includes calling
procedures in code segments B and C. The dotted line shows that a calling procedure in code segment A cannot
access call gate B.

The RPL of the segment selector to a call gate must satisfy the same test as the CPL of the calling procedure; that
is, the RPL must be less than or equal to the DPL of the call gate. In the example in Figure 5-15, a calling procedure
in code segment C can access call gate B using gate selector B2 or B1, but it could not use gate selector B3 to
access call gate B.

If the privilege checks between the calling procedure and call gate are successful, the processor then checks the
DPL of the code-segment descriptor against the CPL of the calling procedure. Here, the privilege check rules vary
between CALL and JMP instructions. Only CALL instructions can use call gates to transfer program control to more
privileged (numerically lower privilege level) nonconforming code segments; that is, to nonconforming code
segments with a DPL less than the CPL. A JMP instruction can use a call gate only to transfer program control to a
nonconforming code segment with a DPL equal to the CPL. CALL and JMP instruction can both transfer program
control to a more privileged conforming code segment; that is, to a conforming code segment with a DPL less than
or equal to the CPL.

5-16 Vol. 3A

PROTECTION

If a call is made to a more privileged (numerically lower privilege level) nonconforming destination code segment,
the CPL is lowered to the DPL of the destination code segment and a stack switch occurs (see Section 5.8.5, “Stack
Switching”). If a call or jump is made to a more privileged conforming destination code segment, the CPL is not
changed and no stack switch occurs.

Code || Gate Selector A > Call
Segment A RPL=3 Gate A
CPL=3] Gate Selector B3 | — — — — . DPL=3
RPL=3 |
Lowest Privilege \‘/
SGSn‘i‘éﬁt B| | Gate Selector B1 GCta”B
RPL=2[> ¢
CPL=2 »| DPL=2
Segoae ¢ Gate Selector B2
egment C|— Gate Selector |
CPL=1 RELT
No Stack Stack Switch
Switch Occurs Occurs
\i Y
Code Code
Segment D Segment E
DPL=0 DPL=0
Conforming Nonconforming
m Highest Privilege Code Segment Code Segment

Figure 5-12. Example of Accessing Call Gates At Various Privilege Levels

Call gates allow a single code segment to have procedures that can be accessed at different privilege levels. For
example, an operating system located in a code segment may have some services which are intended to be used
by both the operating system and application software (such as procedures for handling character I/0). Call gates
for these procedures can be set up that allow access at all privilege levels (0 through 3). More privileged call gates
(with DPLs of 0 or 1) can then be set up for other operating system services that are intended to be used only by
the operating system (such as procedures that initialize device drivers).

5.8.5 Stack Switching

Whenever a call gate is used to transfer program control to a more privileged nonconforming code segment (that
is, when the DPL of the nonconforming destination code segment is less than the CPL), the processor automatically
switches to the stack for the destination code segment’s privilege level. This stack switching is carried out to
prevent more privileged procedures from crashing due to insufficient stack space. It also prevents less privileged
procedures from interfering (by accident or intent) with more privileged procedures through a shared stack.

Each task must define up to 4 stacks: one for applications code (running at privilege level 3) and one for each of
the privilege levels 2, 1, and 0 that are used. (If only two privilege levels are used [3 and 0], then only two stacks
must be defined.) Each of these stacks is located in a separate segment and is identified with a segment selector
and an offset into the stack segment (a stack pointer).

The segment selector and stack pointer for the privilege level 3 stack is located in the SS and ESP registers, respec-
tively, when privilege-level-3 code is being executed and is automatically stored on the called procedure’s stack
when a stack switch occurs.

Pointers to the privilege level 0, 1, and 2 stacks are stored in the TSS for the currently running task (see

Figure 8-2). Each of these pointers consists of a segment selector and a stack pointer (loaded into the ESP
register). These initial pointers are strictly read-only values. The processor does not change them while the task is
running. They are used only to create new stacks when calls are made to more privileged levels (numerically lower

Vol.3A 5-17

PROTECTION

privilege levels). These stacks are disposed of when a return is made from the called procedure. The next time the
procedure is called, a new stack is created using the initial stack pointer. (The TSS does not specify a stack for priv-
ilege level 3 because the processor does not allow a transfer of program control from a procedure running at a CPL
of 0, 1, or 2 to a procedure running at a CPL of 3, except on a return.)

The operating system is responsible for creating stacks and stack-segment descriptors for all the privilege levels to
be used and for loading initial pointers for these stacks into the TSS. Each stack must be read/write accessible (as
specified in the type field of its segment descriptor) and must contain enough space (as specified in the limit field)
to hold the following items:

® The contents of the SS, ESP, CS, and EIP registers for the calling procedure.
® The parameters and temporary variables required by the called procedure.
® The EFLAGS register and error code, when implicit calls are made to an exception or interrupt handler.

The stack will need to require enough space to contain many frames of these items, because procedures often call
other procedures, and an operating system may support nesting of multiple interrupts. Each stack should be large
enough to allow for the worst case nesting scenario at its privilege level.

(If the operating system does not use the processor’s multitasking mechanism, it still must create at least one TSS
for this stack-related purpose.)

When a procedure call through a call gate results in a change in privilege level, the processor performs the following
steps to switch stacks and begin execution of the called procedure at a new privilege level:

1. Uses the DPL of the destination code segment (the new CPL) to select a pointer to the new stack (segment
selector and stack pointer) from the TSS.

2. Reads the segment selector and stack pointer for the stack to be switched to from the current TSS. Any limit
violations detected while reading the stack-segment selector, stack pointer, or stack-segment descriptor cause
an invalid TSS (#TS) exception to be generated.

3. Checks the stack-segment descriptor for the proper privileges and type and generates an invalid TSS (#TS)
exception if violations are detected.

4. Temporarily saves the current values of the SS and ESP registers.
Loads the segment selector and stack pointer for the new stack in the SS and ESP registers.

Pushes the temporarily saved values for the SS and ESP registers (for the calling procedure) onto the new stack
(see Figure 5-13).

7. Copies the number of parameter specified in the parameter count field of the call gate from the calling
procedure’s stack to the new stack. If the count is 0, no parameters are copied.

Pushes the return instruction pointer (the current contents of the CS and EIP registers) onto the new stack.

Loads the segment selector for the new code segment and the new instruction pointer from the call gate into
the CS and EIP registers, respectively, and begins execution of the called procedure.

See the description of the CALL instruction in Chapter 3, “Instruction Set Reference, A-L,”, in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2A, for a detailed description of the privilege level
checks and other protection checks that the processor performs on a far call through a call gate.

5-18 Vol. 3A

Calling Procedure’s Stack

Parameter 1

Parameter 2

Parameter 3

<— ESP

Called Procedure’s Stack

Calling SS

Calling ESP

Parameter 1

PROTECTION

Parameter 2

Parameter 3

Calling CS

Calling EIP <«—ESP

Figure 5-13. Stack Switching During an Interprivilege-Level Call

The parameter count field in a call gate specifies the number of data items (up to 31) that the processor should
copy from the calling procedure’s stack to the stack of the called procedure. If more than 31 data items need to be
passed to the called procedure, one of the parameters can be a pointer to a data structure, or the saved contents
of the SS and ESP registers may be used to access parameters in the old stack space. The size of the data items
passed to the called procedure depends on the call gate size, as described in Section 5.8.3, “Call Gates.”

5.8.5.1 Stack Switching in 64-bit Mode

Although protection-check rules for call gates are unchanged from 32-bit mode, stack-switch changes in 64-bit
mode are different.

When stacks are switched as part of a 64-bit mode privilege-level change through a call gate, a new SS (stack
segment) descriptor is not loaded; 64-bit mode only loads an inner-level RSP from the TSS. The new SS is forced
to NULL and the SS selector’s RPL field is forced to the new CPL. The new SS is set to NULL in order to handle
nested far transfers (far CALL, INTn, interrupts, and exceptions). The old SS and RSP are saved on the new stack.

On a subsequent far RET, the old SS is popped from the stack and loaded into the SS register. See Table 5-2.

Table 5-2. 64-Bit-Mode Stack Layout After Far CALL with CPL Change

32-bit Mode IA-32e mode
0ld SS Selector +12 +24 0Old SS Selector
Old ESP +8 +16 Old RSP
CS Selector +4 +8 0Old CS Selector
EP 0 ESP RSP 0 RIP
< 4 Bytes > < 8Bytes >

In 64-bit mode, stack operations resulting from a privilege-level-changing far call or far return are eight-bytes wide
and change the RSP by eight. The mode does not support the automatic parameter-copy feature found in 32-bit
mode. The call-gate count field is ignored. Software can access the old stack, if necessary, by referencing the old
stack-segment selector and stack pointer saved on the new process stack.

In 64-bit mode, far RET is allowed to load a NULL SS under certain conditions. If the target mode is 64-bit mode
and the target CPL # 3, IRET allows SS to be loaded with a NULL selector. If the called procedure itself is inter-
rupted, the NULL SS is pushed on the stack frame. On the subsequent far RET, the NULL SS on the stack acts as a
flag to tell the processor not to load a new SS descriptor.

Vol. 3A 5-19

PROTECTION

5.8.6 Returning from a Called Procedure

The RET instruction can be used to perform a near return, a far return at the same privilege level, and a far return
to a different privilege level. This instruction is intended to execute returns from procedures that were called with
a CALL instruction. It does not support returns from a JMP instruction, because the JMP instruction does not save a
return instruction pointer on the stack.

A near return only transfers program control within the current code segment; therefore, the processor performs
only a limit check. When the processor pops the return instruction pointer from the stack into the EIP register, it
checks that the pointer does not exceed the limit of the current code segment.

On a far return at the same privilege level, the processor pops both a segment selector for the code segment being
returned to and a return instruction pointer from the stack. Under normal conditions, these pointers should be
valid, because they were pushed on the stack by the CALL instruction. However, the processor performs privilege
checks to detect situations where the current procedure might have altered the pointer or failed to maintain the
stack properly.

A far return that requires a privilege-level change is only allowed when returning to a less privileged level (that is,
the DPL of the return code segment is numerically greater than the CPL). The processor uses the RPL field from the
CS register value saved for the calling procedure (see Figure 5-13) to determine if a return to a numerically higher
privilege level is required. If the RPL is numerically greater (less privileged) than the CPL, a return across privilege
levels occurs.

The processor performs the following steps when performing a far return to a calling procedure (see Figures 6-2
and 6-4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of the
stack contents prior to and after a return):

1. Checks the RPL field of the saved CS register value to determine if a privilege level change is required on the
return.

2. Loads the CS and EIP registers with the values on the called procedure’s stack. (Type and privilege level checks
are performed on the code-segment descriptor and RPL of the code- segment selector.)

3. (If the RET instruction includes a parameter count operand and the return requires a privilege level change.)
Adds the parameter count (in bytes obtained from the RET instruction) to the current ESP register value (after
popping the CS and EIP values), to step past the parameters on the called procedure’s stack. The resulting
value in the ESP register points to the saved SS and ESP values for the calling procedure’s stack. (Note that the
byte count in the RET instruction must be chosen to match the parameter count in the call gate that the calling
procedure referenced when it made the original call multiplied by the size of the parameters.)

4. (If the return requires a privilege level change.) Loads the SS and ESP registers with the saved SS and ESP
values and switches back to the calling procedure’s stack. The SS and ESP values for the called procedure’s
stack are discarded. Any limit violations detected while loading the stack-segment selector or stack pointer
cause a general-protection exception (#GP) to be generated. The new stack-segment descriptor is also checked
for type and privilege violations.

5. (If the RET instruction includes a parameter count operand.) Adds the parameter count (in bytes obtained from
the RET instruction) to the current ESP register value, to step past the parameters on the calling procedure’s
stack. The resulting ESP value is not checked against the limit of the stack segment. If the ESP value is beyond
the limit, that fact is not recognized until the next stack operation.

6. (If the return requires a privilege level change.) Checks the contents of the DS, ES, FS, and GS segment
registers. If any of these registers refer to segments whose DPL is less than the new CPL (excluding conforming
code segments), the segment register is loaded with a null segment selector.

See the description of the RET instruction in Chapter 4 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2B, for a detailed description of the privilege level checks and other protection checks that
the processor performs on a far return.

5.8.7 Performing Fast Calls to System Procedures with the SYSENTER and SYSEXIT
Instructions

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture in the Pentium II processors
for the purpose of providing a fast (low overhead) mechanism for calling operating system or executive procedures.

5-20 Vol. 3A

PROTECTION

SYSENTER is intended for use by user code running at privilege level 3 to access operating system or executive
procedures running at privilege level 0. SYSEXIT is intended for use by privilege level 0 operating system or exec-
utive procedures for fast returns to privilege level 3 user code. SYSENTER can be executed from privilege levels 3,
2,1, or 0; SYSEXIT can only be executed from privilege level 0.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not constitute a call/return pair.
This is because SYSENTER does not save any state information for use by SYSEXIT on a return.

The target instruction and stack pointer for these instructions are not specified through instruction operands.
Instead, they are specified through parameters entered in MSRs and general-purpose registers.

For SYSENTER, target fields are generated using the following sources:

®* Target code segment — Reads this from IA32_SYSENTER_CS.

®* Target instruction — Reads this from IA32_SYSENTER_EIP.

® Stack segment — Computed by adding 8 to the value in IA32_SYSENTER_CS.

¢ Stack pointer — Reads this from the IA32_SYSENTER_ESP.

For SYSEXIT, target fields are generated using the following sources:

®* Target code segment — Computed by adding 16 to the value in the IA32_SYSENTER_CS.
®* Target instruction — Reads this from EDX.

* Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.

® Stack pointer — Reads this from ECX.

The SYSENTER and SYSEXIT instructions perform “fast” calls and returns because they force the processor into a
predefined privilege level 0 state when SYSENTER is executed and into a predefined privilege level 3 state when
SYSEXIT is executed. By forcing predefined and consistent processor states, the nhumber of privilege checks ordi-
narily required to perform a far call to another privilege levels are greatly reduced. Also, by predefining the target
context state in MSRs and general-purpose registers eliminates all memory accesses except when fetching the
target code.

Any additional state that needs to be saved to allow a return to the calling procedure must be saved explicitly by
the calling procedure or be predefined through programming conventions.

5.8.7.1 SYSENTER and SYSEXIT Instructions in IA-32e Mode

For Intel 64 processors, the SYSENTER and SYSEXIT instructions are enhanced to allow fast system calls from user
code running at privilege level 3 (in compatibility mode or 64-bit mode) to 64-bit executive procedures running at
privilege level 0. IA32_SYSENTER_EIP MSR and IA32_SYSENTER_ESP MSR are expanded to hold 64-bit addresses.
If IA-32e mode is inactive, only the lower 32-bit addresses stored in these MSRs are used. The WRMSR instruction
ensures that the addresses stored in these MSRs are canonical. Note that, in 64-bit mode, IA32_SYSENTER_CS
must not contain a NULL selector.

When SYSENTER transfers control, the following fields are generated and bits set:

®* Target code segment — Reads non-NULL selector from IA32_SYSENTER_CS.

®* New CS attributes — CS base = 0, CS limit = FFFFFFFFH.

®* Target instruction — Reads 64-bit canonical address from IA32_SYSENTER_EIP.
®* Stack segment — Computed by adding 8 to the value from IA32_SYSENTER_CS.
® Stack pointer — Reads 64-bit canonical address from IA32_SYSENTER_ESP.

®* New SS attributes — SS base = 0, SS limit = FFFFFFFFH.

When the SYSEXIT instruction transfers control to 64-bit mode user code using REX.W, the following fields are
generated and bits set:

®* Target code segment — Computed by adding 32 to the value in IA32_SYSENTER_CS.
®* New CS attributes — L-bit = 1 (go to 64-bit mode).

®* Target instruction — Reads 64-bit canonical address in RDX.

® Stack segment — Computed by adding 40 to the value of IA32_SYSENTER_CS.

Vol. 3A 5-21

PROTECTION

* Stack pointer — Update RSP using 64-bit canonical address in RCX.

When SYSEXIT transfers control to compatibility mode user code when the operand size attribute is 32 bits, the
following fields are generated and bits set:

®* Target code segment — Computed by adding 16 to the value in IA32_SYSENTER_CS.
®* New CS attributes — L-bit = 0 (go to compatibility mode).

®* Target instruction — Fetch the target instruction from 32-bit address in EDX.

®* Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.

® Stack pointer — Update ESP from 32-bit address in ECX.

5.8.8 Fast System Calls in 64-Bit Mode

The SYSCALL and SYSRET instructions are designed for operating systems that use a flat memory model (segmen-
tation is not used). The instructions, along with SYSENTER and SYSEXIT, are suited for IA-32e mode operation.
SYSCALL and SYSRET, however, are not supported in compatibility mode (or in protected mode). Use CPUID to
check if SYSCALL and SYSRET are available (CPUID.80000001H.EDX[bit 11] = 1).

SYSCALL is intended for use by user code running at privilege level 3 to access operating system or executive
procedures running at privilege level 0. SYSRET is intended for use by privilege level 0 operating system or execu-
tive procedures for fast returns to privilege level 3 user code.

Stack pointers for SYSCALL/SYSRET are not specified through model specific registers. The clearing of bits in
RFLAGS is programmable rather than fixed. SYSCALL/SYSRET save and restore the RFLAGS register.

For SYSCALL, the processor saves RFLAGS into R11 and the RIP of the next instruction into RCX; it then gets the
privilege-level 0 target code segment, instruction pointer, stack segment, and flags as follows:

®* Target code segment — Reads a non-NULL selector from IA32_STAR[47:32].

®* Target instruction pointer — Reads a 64-bit address from IA32_LSTAR. (The WRMSR instruction ensures
that the value of the IA32_LSTAR MSR is canonical.)

* Stack segment — Computed by adding 8 to the value in IA32_STAR[47:32].

®* Flags — The processor sets RFLAGS to the logical-AND of its current value with the complement of the value in
the IA32_FMASK MSR.

When SYSRET transfers control to 64-bit mode user code using REX.W, the processor gets the privilege level 3
target code segment, instruction pointer, stack segment, and flags as follows:

®* Target code segment — Reads a non-NULL selector from IA32_STAR[63:48] + 16.
®* Target instruction pointer — Copies the value in RCX into RIP.

* Stack segment — IA32_STAR[63:48] + 8.

® EFLAGS — Loaded from R11.

When SYSRET transfers control to 32-bit mode user code using a 32-bit operand size, the processor gets the priv-
ilege level 3 target code segment, instruction pointer, stack segment, and flags as follows:

®* Target code segment — Reads a non-NULL selector from IA32_STAR[63:48].
®* Target instruction pointer — Copies the value in ECX into EIP.

®* Stack segment — IA32_STAR[63:48] + 8.

® EFLAGS — Loaded from R11.

It is the responsibility of the OS to ensure the descriptors in the GDT/LDT correspond to the selectors loaded by
SYSCALL/SYSRET (consistent with the base, limit, and attribute values forced by the instructions).

See Figure 5-14 for the layout of IA32_STAR, IA32_LSTAR, and IA32_FMASK.

5-22 Vol. 3A

PROTECTION

63 3231 Y

Reserved SYSCALL EFLAGS Mask

IA32_FMASK
63 0

Target RIP for 64-bit Mode Calling Program

IA32_LSTAR
63 48 47 32 31 0
SYSRET CS and SS | SYSCALL CS and SS Reserved
IA32_STAR

Figure 5-14. MSRs Used by SYSCALL and SYSRET

The SYSCALL instruction does not save the stack pointer, and the SYSRET instruction does not restore it. It is likely
that the OS system-call handler will change the stack pointer from the user stack to the OS stack. If so, it is the
responsibility of software first to save the user stack pointer. This might be done by user code, prior to executing
SYSCALL, or by the OS system-call handler after SYSCALL.

Because the SYSRET instruction does not modify the stack pointer, it is necessary for software to switch back to the
user stack. The OS may load the user stack pointer (if it was saved after SYSCALL) before executing SYSRET,; alter-
natively, user code may load the stack pointer (if it was saved before SYSCALL) after receiving control from
SYSRET.

If the OS loads the stack pointer before executing SYSRET, it must ensure that the handler of any interrupt or
exception delivered between restoring the stack pointer and successful execution of SYSRET is not invoked with the
user stack. It can do so using approaches such as the following:

* External interrupts. The OS can prevent an external interrupt from being delivered by clearing EFLAGS.IF
before loading the user stack pointer.

®* Nonmaskable interrupts (NMIs). The OS can ensure that the NMI handler is invoked with the correct stack by
using the interrupt stack table (IST) mechanism for gate 2 (NMI) in the IDT (see Section 6.14.5, “Interrupt
Stack Table”).

®* General-protection exceptions (#GP). The SYSRET instruction generates #GP(0) if the value of RCX is not
canonical. The OS can address this possibility using one or more of the following approaches:

— Confirming that the value of RCX is canonical before executing SYSRET.
— Using paging to ensure that the SYSCALL instruction will never save a non-canonical value into RCX.
— Using the IST mechanism for gate 13 (#GP) in the IDT.

5.9 PRIVILEGED INSTRUCTIONS

Some of the system instructions (called “privileged instructions”) are protected from use by application programs.
The privileged instructions control system functions (such as the loading of system registers). They can be

executed only when the CPL is 0 (most privileged). If one of these instructions is executed when the CPL is not O,
a general-protection exception (#GP) is generated. The following system instructions are privileged instructions:

® LGDT — Load GDT register.
® LLDT — Load LDT register.

Vol. 3A 5-23

PROTECTION

® LTR — Load task register.

® LIDT — Load IDT register.

® MOV (control registers) — Load and store control registers.
® LMSW — Load machine status word.

® CLTS — Clear task-switched flag in register CRO.

® MOV (debug registers) — Load and store debug registers.
® INVD — Invalidate cache, without writeback.

* WBINVD — Invalidate cache, with writeback.

® INVLPG —Invalidate TLB entry.

® HLT— Halt processor.

®* RDMSR — Read Model-Specific Registers.

®* WRMSR —Write Model-Specific Registers.

®* RDPMC — Read Performance-Monitoring Counter.

® RDTSC — Read Time-Stamp Counter.

Some of the privileged instructions are available only in the more recent families of Intel 64 and IA-32 processors
(see Section 23.13, “New Instructions In the Pentium and Later IA-32 Processors”).

The PCE and TSD flags in register CR4 (bits 4 and 2, respectively) enable the RDPMC and RDTSC instructions,
respectively, to be executed at any CPL.

5.10 POINTER VALIDATION

When operating in protected mode, the processor validates all pointers to enforce protection between segments
and maintain isolation between privilege levels. Pointer validation consists of the following checks:

Checking access rights to determine if the segment type is compatible with its use.
Checking read/write rights.

Checking if the pointer offset exceeds the segment limit.

Checking if the supplier of the pointer is allowed to access the segment.

u A W N

Checking the offset alignment.

The processor automatically performs first, second, and third checks during instruction execution. Software must
explicitly request the fourth check by issuing an ARPL instruction. The fifth check (offset alignment) is performed
automatically at privilege level 3 if alignment checking is turned on. Offset alignment does not affect isolation of

privilege levels.

5.10.1 Checking Access Rights (LAR Instruction)

When the processor accesses a segment using a far pointer, it performs an access rights check on the segment
descriptor pointed to by the far pointer. This check is performed to determine if type and privilege level (DPL) of the
segment descriptor are compatible with the operation to be performed. For example, when making a far call in
protected mode, the segment-descriptor type must be for a conforming or nonconforming code segment, a call
gate, a task gate, or a TSS. Then, if the call is to a nonconforming code segment, the DPL of the code segment must
be equal to the CPL, and the RPL of the code segment’s segment selector must be less than or equal to the DPL. If
type or privilege level are found to be incompatible, the appropriate exception is generated.

To prevent type incompatibility exceptions from being generated, software can check the access rights of a
segment descriptor using the LAR (load access rights) instruction. The LAR instruction specifies the segment
selector for the segment descriptor whose access rights are to be checked and a destination register. The instruc-
tion then performs the following operations:

1. Check that the segment selector is not null.

5-24 Vol. 3A

PROTECTION

2. Checks that the segment selector points to a segment descriptor that is within the descriptor table limit (GDT
or LDT).

3. Checks that the segment descriptor is a code, data, LDT, call gate, task gate, or TSS segment-descriptor type.

If the segment is not a conforming code segment, checks if the segment descriptor is visible at the CPL (that
is, if the CPL and the RPL of the segment selector are less than or equal to the DPL).

5. If the privilege level and type checks pass, loads the second doubleword of the segment descriptor into the
destination register (masked by the value O0FXFFOOH, where X indicates that the corresponding 4 bits are
undefined) and sets the ZF flag in the EFLAGS register. If the segment selector is not visible at the current
privilege level or is an invalid type for the LAR instruction, the instruction does not modify the destination
register and clears the ZF flag.

Once loaded in the destination register, software can perform additional checks on the access rights information.

5.10.2 Checking Read/Write Rights (VERR and VERW Instructions)

When the processor accesses any code or data segment it checks the read/write privileges assigned to the
segment to verify that the intended read or write operation is allowed. Software can check read/write rights using
the VERR (verify for reading) and VERW (verify for writing) instructions. Both these instructions specify the
segment selector for the segment being checked. The instructions then perform the following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within the descriptor table limit (GDT
or LDT).

3. Checks that the segment descriptor is a code or data-segment descriptor type.

If the segment is not a conforming code segment, checks if the segment descriptor is visible at the CPL (that
is, if the CPL and the RPL of the segment selector are less than or equal to the DPL).

5. Checks that the segment is readable (for the VERR instruction) or writable (for the VERW) instruction.

The VERR instruction sets the ZF flag in the EFLAGS register if the segment is visible at the CPL and readable; the
VERW sets the ZF flag if the segment is visible and writable. (Code segments are never writable.) The ZF flag is
cleared if any of these checks fail.

5.10.3 Checking That the Pointer Offset Is Within Limits (LSL Instruction)

When the processor accesses any segment it performs a limit check to ensure that the offset is within the limit of
the segment. Software can perform this limit check using the LSL (load segment limit) instruction. Like the LAR
instruction, the LSL instruction specifies the segment selector for the segment descriptor whose limit is to be
checked and a destination register. The instruction then performs the following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within the descriptor table limit (GDT
or LDT).

3. Checks that the segment descriptor is a code, data, LDT, or TSS segment-descriptor type.

If the segment is not a conforming code segment, checks if the segment descriptor is visible at the CPL (that
is, if the CPL and the RPL of the segment selector less than or equal to the DPL).

5. Ifthe privilege level and type checks pass, loads the unscrambled limit (the limit scaled according to the setting
of the G flag in the segment descriptor) into the destination register and sets the ZF flag in the EFLAGS register.
If the segment selector is not visible at the current privilege level or is an invalid type for the LSL instruction,
the instruction does not modify the destination register and clears the ZF flag.

Once loaded in the destination register, software can compare the segment limit with the offset of a pointer.

Vol. 3A 5-25

PROTECTION

5.10.4 Checking Caller Access Privileges (ARPL Instruction)

The requestor’s privilege level (RPL) field of a segment selector is intended to carry the privilege level of a calling
procedure (the calling procedure’s CPL) to a called procedure. The called procedure then uses the RPL to determine
if access to a segment is allowed. The RPL is said to “weaken” the privilege level of the called procedure to that of
the RPL.

Operating-system procedures typically use the RPL to prevent less privileged application programs from accessing
data located in more privileged segments. When an operating-system procedure (the called procedure) receives a
segment selector from an application program (the calling procedure), it sets the segment selector’s RPL to the
privilege level of the calling procedure. Then, when the operating system uses the segment selector to access its
associated segment, the processor performs privilege checks using the calling procedure’s privilege level (stored in
the RPL) rather than the numerically lower privilege level (the CPL) of the operating-system procedure. The RPL
thus ensures that the operating system does not access a segment on behalf of an application program unless that
program itself has access to the segment.

Figure 5-15 shows an example of how the processor uses the RPL field. In this example, an application program
(located in code segment A) possesses a segment selector (segment selector D1) that points to a privileged data
structure (that is, a data structure located in a data segment D at privilege level 0).

The application program cannot access data segment D, because it does not have sufficient privilege, but the oper-
ating system (located in code segment C) can. So, in an attempt to access data segment D, the application
program executes a call to the operating system and passes segment selector D1 to the operating system as a
parameter on the stack. Before passing the segment selector, the (well behaved) application program sets the RPL
of the segment selector to its current privilege level (which in this example is 3). If the operating system attempts
to access data segment D using segment selector D1, the processor compares the CPL (which is now 0 following
the call), the RPL of segment selector D1, and the DPL of data segment D (which is 0). Since the RPL is greater than
the DPL, access to data segment D is denied. The processor’s protection mechanism thus protects data segment D
from access by the operating system, because application program’s privilege level (represented by the RPL of
segment selector B) is greater than the DPL of data segment D.

Passed as a
parameter on
the stack.
Application Program \
Segmant A Gate Selector B Call S t Sel. D1
egmentA| | Gate Selector | _| Segment Sel.
CPL=3 RPL=3 Gate B " RPL=3
- DPL=3 | T
Lowest Privilege | |
!
|
I
| |
| |
Access 1
| not |
| allowed '
| J
| N
Code - = — Data
Operating | Segment C Segment Sel. D2 Segment D
System > RPL=O$
DPL=0 —
Access DPL=0
m Highest Privilege allowed

Figure 5-15. Use of RPL to Weaken Privilege Level of Called Procedure

5-26 Vol. 3A

PROTECTION

Now assume that instead of setting the RPL of the segment selector to 3, the application program sets the RPL to
0 (segment selector D2). The operating system can now access data segment D, because its CPL and the RPL of
segment selector D2 are both equal to the DPL of data segment D.

Because the application program is able to change the RPL of a segment selector to any value, it can potentially use
a procedure operating at a numerically lower privilege level to access a protected data structure. This ability to
lower the RPL of a segment selector breaches the processor’s protection mechanism.

Because a called procedure cannot rely on the calling procedure to set the RPL correctly, operating-system proce-
dures (executing at numerically lower privilege-levels) that receive segment selectors from numerically higher
privilege-level procedures need to test the RPL of the segment selector to determine if it is at the appropriate level.
The ARPL (adjust requested privilege level) instruction is provided for this purpose. This instruction adjusts the RPL
of one segment selector to match that of another segment selector.

The example in Figure 5-15 demonstrates how the ARPL instruction is intended to be used. When the operating-
system receives segment selector D2 from the application program, it uses the ARPL instruction to compare the
RPL of the segment selector with the privilege level of the application program (represented by the code-segment
selector pushed onto the stack). If the RPL is less than application program’s privilege level, the ARPL instruction
changes the RPL of the segment selector to match the privilege level of the application program (segment selector
D1). Using this instruction thus prevents a procedure running at a numerically higher privilege level from
accessing numerically lower privilege-level (more privileged) segments by lowering the RPL of a segment selector.

Note that the privilege level of the application program can be determined by reading the RPL field of the segment
selector for the application-program’s code segment. This segment selector is stored on the stack as part of the call
to the operating system. The operating system can copy the segment selector from the stack into a register for
use as an operand for the ARPL instruction.

5.10.5 Checking Alignment

When the CPL is 3, alignment of memory references can be checked by setting the AM flag in the CRO register and
the AC flag in the EFLAGS register. Unaligned memory references generate alignment exceptions (#AC). The
processor does not generate alignment exceptions when operating at privilege level 0, 1, or 2. See Table 6-7 for a
description of the alignment requirements when alignment checking is enabled.

5.11 PAGE-LEVEL PROTECTION

Page-level protection can be used alone or applied to segments. When page-level protection is used with the flat
memory model, it allows supervisor code and data (the operating system or executive) to be protected from user
code and data (application programs). It also allows pages containing code to be write protected. When the
segment- and page-level protection are combined, page-level read/write protection allows more protection granu-
larity within segments.

With page-level protection (as with segment-level protection) each memory reference is checked to verify that
protection checks are satisfied. All checks are made before the memory cycle is started, and any violation prevents
the cycle from starting and results in a page-fault exception being generated. Because checks are performed in
parallel with address translation, there is no performance penalty.

The processor performs two page-level protection checks:
® Restriction of addressable domain (supervisor and user modes).
® Page type (read only or read/write).

Violations of either of these checks results in a page-fault exception being generated. See Chapter 6, “Interrupt
14—Page-Fault Exception (#PF),” for an explanation of the page-fault exception mechanism. This chapter
describes the protection violations which lead to page-fault exceptions.

Vol. 3A 5-27

PROTECTION

5.11.1 Page-Protection Flags

Protection information for pages is contained in two flags in a paging-structure entry (see Chapter 4): the
read/write flag (bit 1) and the user/supervisor flag (bit 2). The protection checks use the flags in all paging struc-
tures.

5.11.2 Restricting Addressable Domain

The page-level protection mechanism allows restricting access to pages based on two privilege levels:

® Supervisor mode (U/S flag is 0)—(Most privileged) For the operating system or executive, other system
software (such as device drivers), and protected system data (such as page tables).

® User mode (U/S flag is 1)—(Least privileged) For application code and data.

The segment privilege levels map to the page privilege levels as follows. If the processor is currently operating at
aCPLof 0, 1, or 2, itis in supervisor mode; if it is operating at a CPL of 3, itis in user mode. When the processor is
in supervisor mode, it can access all pages; when in user mode, it can access only user-level pages. (Note that the
WP flag in control register CRO modifies the supervisor permissions, as described in Section 5.11.3, “Page Type."”)

Note that to use the page-level protection mechanism, code and data segments must be set up for at least two
segment-based privilege levels: level 0 for supervisor code and data segments and level 3 for user code and data
segments. (In this model, the stacks are placed in the data segments.) To minimize the use of segments, a flat
memory model can be used (see Section 3.2.1, “Basic Flat Model”).

Here, the user and supervisor code and data segments all begin at address zero in the linear address space and
overlay each other. With this arrangement, operating-system code (running at the supervisor level) and application
code (running at the user level) can execute as if there are no segments. Protection between operating-system and
application code and data is provided by the processor’s page-level protection mechanism.

5.11.3 Page Type

The page-level protection mechanism recognizes two page types:
® Read-only access (R/W flag is 0).
® Read/write access (R/W flag is 1).

When the processor is in supervisor mode and the WP flag in register CRO is clear (its state following reset initial-
ization), all pages are both readable and writable (write-protection is ignored). When the processor is in user mode,
it can write only to user-mode pages that are read/write accessible. User-mode pages which are read/write or
read-only are readable; supervisor-mode pages are neither readable nor writable from user mode. A page-fault
exception is generated on any attempt to violate the protection rules.

Starting with the P6 family, Intel processors allow user-mode pages to be write-protected against supervisor-mode
access. Setting CR0O.WP = 1 enables supervisor-mode sensitivity to write protected pages. If CRO.WP = 1, read-
only pages are not writable from any privilege level. This supervisor write-protect feature is useful for imple-
menting a “copy-on-write” strategy used by some operating systems, such as UNIX*, for task creation (also called
forking or spawning). When a new task is created, it is possible to copy the entire address space of the parent task.
This gives the child task a complete, duplicate set of the parent's segments and pages. An alternative copy-on-
write strategy saves memory space and time by mapping the child's segments and pages to the same segments
and pages used by the parent task. A private copy of a page gets created only when one of the tasks writes to the
page. By using the WP flag and marking the shared pages as read-only, the supervisor can detect an attempt to
write to a page, and can copy the page at that time.

5.11.4 Combining Protection of Both Levels of Page Tables

For any one page, the protection attributes of its page-directory entry (first-level page table) may differ from those
of its page-table entry (second-level page table). The processor checks the protection for a page in both its page-
directory and the page-table entries. Table 5-3 shows the protection provided by the possible combinations of
protection attributes when the WP flag is clear.

5-28 Vol. 3A

PROTECTION

5.11.5 Overrides to Page Protection

The following types of memory accesses are checked as if they are privilege-level 0 accesses, regardless of the CPL
at which the processor is currently operating:

® Access to segment descriptors in the GDT, LDT, or IDT.

®* Access to an inner-privilege-level stack during an inter-privilege-level call or a call to in exception or interrupt
handler, when a change of privilege level occurs.

5.12 COMBINING PAGE AND SEGMENT PROTECTION

When paging is enabled, the processor evaluates segment protection first, then evaluates page protection. If the
processor detects a protection violation at either the segment level or the page level, the memory access is not

carried out and an exception is generated. If an exception is generated by segmentation, no paging exception is
generated.

Page-level protections cannot be used to override segment-level protection. For example, a code segment is by
definition not writable. If a code segment is paged, setting the R/W flag for the pages to read-write does not make
the pages writable. Attempts to write into the pages will be blocked by segment-level protection checks.

Page-level protection can be used to enhance segment-level protection. For example, if a large read-write data
segment is paged, the page-protection mechanism can be used to write-protect individual pages.

Table 5-3. Combined Page-Directory and Page-Table Protection

Page-Directory Entry Page-Table Entry Combined Effect

Privilege Access Type Privilege Access Type Privilege Access Type
User Read-Only User Read-Only User Read-Only
User Read-Only User Read-Write User Read-Only
User Read-Write User Read-Only User Read-Only
User Read-Write User Read-Write User Read/Write
User Read-Only Supervisor Read-Only Supervisor Read/Write*
User Read-Only Supervisor Read-Write Supervisor Read/Write*
User Read-Write Supervisor Read-Only Supervisor Read/Write*
User Read-Write Supervisor Read-Write Supervisor Read/Write
Supervisor Read-Only User Read-Only Supervisor Read/Write*
Supervisor Read-Only User Read-Write Supervisor Read/Write*
Supervisor Read-Write User Read-Only Supervisor Read/Write*
Supervisor Read-Write User Read-Write Supervisor Read/Write
Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write*
Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write*
Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write*
Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write
NOTE:

* If CRO.WP = 1, access type is determined by the R/W flags of the page-directory and page-table entries. IF CRO.WP = O, supervisor
privilege permits read-write access.

Vol. 3A 5-29

PROTECTION

5.13 PAGE-LEVEL PROTECTION AND EXECUTE-DISABLE BIT

In addition to page-level protection offered by the U/S and R/W flags, paging structures used with PAE paging, 4-
level paging,! and 5-level paging provide the execute-disable bit (see Chapter 4, “Paging”). This bit offers addi-
tional protection for data pages.

An Intel 64 or IA-32 processor with the execute-disable bit capability can prevent data pages from being used by
malicious software to execute code. This capability is provided in:

® 32-bit protected mode with PAE enabled.
®* IA-32e mode.

While the execute-disable bit capability does not introduce new instructions, it does require operating systems to
use a PAE-enabled environment and establish a page-granular protection policy for memory pages.

If the execute-disable bit of a memory page is set, that page can be used only as data. An attempt to execute code
from a memory page with the execute-disable bit set causes a page-fault exception.

The execute-disable capability is not supported with 32-bit paging. Existing page-level protection mechanisms (see
Section 5.11, “Page-Level Protection”) continue to apply to memory pages independent of the execute-disable
setting.

5.13.1 Detecting and Enabling the Execute-Disable Capability

Software can detect the presence of the execute-disable capability using the CPUID instruction.
CPUID.80000001H:EDX.NX [bit 20] = 1 indicates the capability is available.

If the capability is available, software can enable it by setting IA32_EFER.NXE[bit 11] to 1. IA32_EFER is available
if CPUID.80000001H.EDX[bit 20 or 29] = 1.

If the execute-disable capability is not available, a write to set IA32_EFER.NXE produces a #GP exception. See
Table 5-4.

Table 5-4. Extended Feature Enable MSR (IA32_EFER)

63:12 11 10 9 8 7:1 0
Reserved Execute-disable bit | IA-32e mode Reserved IA-32e mode Reserved SysCall enable (SCE)
enable (NXE) active (LMA) enable (LME)

5.13.2 Execute-Disable Page Protection

The execute-disable bit in the paging structures enhances page protection for data pages. Instructions cannot be
fetched from a memory page if IA32_EFER.NXE =1 and the execute-disable bit is set in any of the paging-structure
entries used to map the page. Table 5-5 lists the valid usage of a page in relation to the value of execute-disable bit
(bit 63) of the corresponding entry in each level of the paging structures. Execute-disable protection can be acti-
vated using the execute-disable bit at any level of the paging structure, irrespective of the corresponding entry in
other levels. When execute-disable protection is not activated, the page can be used as code or data.

1. Earlier versions of this manual used the term “IA-32e paging” to identify 4-level paging.

5-30 Vol. 3A

PROTECTION

Table 5-5. Page Level Protection Matrix with Execute-Disable Bit Capability with 4-Level Paging

Execute Disable Bit Value (Bit 63) Valid Usage
PML4 PDP PDE PTE

Bit63 =1 * * * Data

* Bit63=1 * * Data

* * Bit63=1 * Data

* * * Bit63=1 Data
Bit63=0 Bit63=0 Bit63=0 Bit63=0 Data/Code
NOTES:

* Value not checked.

In legacy PAE-enabled mode, Table 5-6 and Table 5-7 show the effect of setting the execute-disable bit for code

and data pages.

Table 5-6. 4-KByte Page Level Protection Matrix with Execute-Disable Bit Capability with PAE Paging

Execute Disable Bit Value (Bit 63) Valid Usage
PDE PTE

Bit63=1 * Data

* Bit63 =1 Data
Bit63=0 Bit63=0 Data/Code
NOTE:

* Value not checked.

Table 5-7. 2-MByte Page Level Protection with Execute-Disable Bit Capability with PAE Paging

Execute Disable Bit Value (Bit 63) Valid Usage
PDE

Bit63=1 Data
Bit63=0 Data/Code

5.13.3 Reserved Bit Checking

The processor enforces reserved bit checking in paging data structure entries. The bits being checked varies with
paging mode and may vary with the size of physical address space.

Table 5-8 shows the reserved bits that are checked when the execute disable bit capability is enabled (CR4.PAE = 1

and IA32_EFER.NXE = 1). Table 5-8 and Table 5-9 show the following paging modes:
®* Non-PAE 4-KByte paging: 4-KByte-page only paging (CR4.PAE = 0, CR4.PSE = 0).

®* PSE36: 4-KByte and 4-MByte pages (CR4.PAE = 0, CR4.PSE = 1).
®* PAE: 4-KByte and 2-MByte pages (CR4.PAE = 1, CR4.PSE = X).

The reserved bit checking depends on the physical address size supported by the implementation, which is
reported in CPUID.80000008H. See the table note.

Vol. 3A 5-31

PROTECTION

Table 5-8. Page Level Protection Matrix with Execute-Disable Bit Capability Enabled

Mode Paging Mode Check Bits
32-bit 4-KByte paging (non-PAE) No reserved bits checked
PSE36 - PDE, 4-MByte page Bit[21]
PSE36 - PDE, 4-KByte page No reserved bits checked
PSE36 - PTE No reserved bits checked
PAE - PDP table entry Bits [63:MAXPHYADDR] & [8:5] & [2:1] *
PAE - PDE, 2-MByte page Bits [62:MAXPHYADDR] & [20:13] *
PAE - PDE, 4-KByte page Bits [62:MAXPHYADDR] *
PAE - PTE Bits [62:MAXPHYADDR] *
64-bit PML5E Bits [51:MAXPHYADDR] *
PML4E Bits [51:MAXPHYADDR] *
PDPTE Bits [51:MAXPHYADDR] *
PDE, 2-MByte page Bits [51:MAXPHYADDR] & [20:13] *
PDE, 4-KByte page Bits [51:MAXPHYADDR] *
PTE Bits [51:MAXPHYADDR] *
NOTES:

* MAXPHYADDR is the maximum physical address size and is indicated by CPUID.8B0000008H:EAX[bits 7-0].

If execute disable bit capability is not enabled or not available, reserved bit checking in 64-bit mode includes bit 63
and additional bits. This and reserved bit checking for legacy 32-bit paging modes are shown in Table 5-10.

Table 5-9. Reserved Bit Checking with Execute-Disable Bit Capability Not Enabled

Mode Paging Mode Check Bits
32-bit KByte paging (non-PAE) No reserved bits checked
PSE36 - PDE, 4-MByte page Bit[21]
PSE36 - PDE, 4-KByte page No reserved bits checked
PSE36 - PTE No reserved bits checked
PAE - PDP table entry Bits [63:MAXPHYADDR] & [8:5] & [2:1]*
PAE - PDE, 2-MByte page Bits [63:MAXPHYADDR] & [20:13]*
PAE - PDE, 4-KByte page Bits [63:MAXPHYADDR]*
PAE - PTE Bits [63:MAXPHYADDR]*
64-bit PML5€E Bit [63], bits [51:MAXPHYADDR]*
PML4E Bit [63], bits [51:MAXPHYADDR]*
PDPTE Bit [63], bits [51:MAXPHYADDR]*
PDE, 2-MByte page Bit [63], bits [51:MAXPHYADDR] & [20:13]*
PDE, 4-KByte page Bit [63], bits [51:MAXPHYADDR]*
PTE Bit [63], bits [51:MAXPHYADDR]*
NOTES:

* MAXPHYADDR is the maximum physical address size and is indicated by CPUID.80000008H:EAX[bits 7-0].

5.13.4 Exception Handling

When execute disable bit capability is enabled (IA32_EFER.NXE = 1), conditions for a page fault to occur include
the same conditions that apply to an Intel 64 or IA-32 processor without execute disable bit capability plus the

5-32 Vol. 3A

PROTECTION

following new condition: an instruction fetch to a linear address that translates to physical address in a memory
page that has the execute-disable bit set.

An Execute Disable Bit page fault can occur at all privilege levels. It can occur on any instruction fetch, including
(but not limited to): near branches, far branches, CALL/RET/INT/IRET execution, sequential instruction fetches,
and task switches. The execute-disable bit in the page translation mechanism is checked only when:

® IA32_EFER.NXE = 1.

®* The instruction translation look-aside buffer (ITLB) is loaded with a page that is not already present in the ITLB.

Vol. 3A 5-33

PROTECTION

5-34 Vol. 3A

CHAPTER 6
INTERRUPT AND EXCEPTION HANDLING

This chapter describes the interrupt and exception-handling mechanism when operating in protected mode on an
Intel 64 or IA-32 processor. Most of the information provided here also applies to interrupt and exception mecha-
nisms used in real-address, virtual-8086 mode, and 64-bit mode.

Chapter 21, 8086 Emulation,” describes information specific to interrupt and exception mechanisms in real-
address and virtual-8086 mode. Section 6.14, “Exception and Interrupt Handling in 64-bit Mode,” describes infor-
mation specific to interrupt and exception mechanisms in IA-32e mode and 64-bit sub-mode.

6.1 INTERRUPT AND EXCEPTION OVERVIEW

Interrupts and exceptions are events that indicate that a condition exists somewhere in the system, the processor,
or within the currently executing program or task that requires the attention of a processor. They typically result in
a forced transfer of execution from the currently running program or task to a special software routine or task
called an interrupt handler or an exception handler. The action taken by a processor in response to an interrupt or
exception is referred to as servicing or handling the interrupt or exception.

Interrupts occur at random times during the execution of a program, in response to signals from hardware. System
hardware uses interrupts to handle events external to the processor, such as requests to service peripheral devic