intel

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Volume 3 (3A, 3B, 3C, & 3D):
System Programming Guide

NOTE: The Intel 64 and IA-32 Architectures Software Developer's Manual consists of four volumes:
Basic Architecture, Order Number 253665; Instruction Set Reference A-Z, Order Number 325383;
System Programming Guide, Order Number 325384; Model-Specific Registers, Order Number 335592.
Refer to all four volumes when evaluating your design needs.

Order Number: 325384-086US
December 2024

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.
No product or component can be absolutely secure.
Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability,
fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of
dealing, or usage in trade.

Code names are used by Intel to identify products, technologies, or services that are in development and not publicly
available. These are not “commercial” names and not intended to function as trademarks.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document, with
the sole exception that a) you may publish an unmodified copy and b) code included in this document is licensed subject to
the Zero-Clause BSD open source license (0BSD), https://opensource.org/licenses/0BSD. You may create software
implementations based on this document and in compliance with the foregoing that are intended to execute on the Intel
product(s) referenced in this document. No rights are granted to create modifications or derivatives of this document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other
names and brands may be claimed as the property of others.

https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD

CONTENTS

PAGE
CHAPTER 1
ABOUT THIS MANUAL
1.1 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDEottt et e et e e et 1-1
CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW
2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE.ttt ettt et e e e e e ees 2-1
2.1.1 Global and Local DesCriptor Tables. . ..ot e i e e e e i 2-3
2.1.1.1 Global and Local Descriptor Tables in 1A-328 MOGE. v et 2-4
2.1.2 System Segments, Segment Descriptors, and GateS vttt e 2-4
2.1.2.1 GATES N LA-32E MO . .ottt e e e ettt e e e e e 2-4
213 Task-State Segments and Task Gates. uu ittt st e e e 2-5
2.1.3.1 Task-State Segments N IA-32€ MOGE.ot e 2-5
214 Interrupt and EXCeption Handling.ot e e 2-5
2.1.4.1 Interrupt and Exception Handling 1A-326 MOAE.o ittt e 2-5
215 =TT YA = T = T T= 0 T=T o 2-6
2.1.51 Memory Management in IA-328 MOGEot i e e 2-6
2.1.6 I (=] T =T 3 1= 2-6
2.16.1 System Registers iNTA-328 MOE. vt e e 2-7
21.7 OthEr Sy S M RS OUNCES . . .ottt it it e e et e et e ettt et e et i 2-7
2.2 MODES OF OPERATION. . .ottt ettt e et et e e e et e e e et et e e et et e e e et e 2-7
2.2.1 Extended Feature ENable ReGISTer. v e e 2-9
2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER. ...\ttt it 2-9
2.3.1 System Flags and Fields iN 1A-328 MOGE viii e e 2-11
24 MEMORY-MANAGEMENT REGISTERS . ..ottt ittt e e e e e 2-11
241 Global Descriptor Table Register (GDTR) v vttt e e e nanaes 2-12
24.2 Local Descriptor Table Register (LDTR) ...\ vvi ittt et e e e e 2-12
243 IDTR Interrupt Descriptor Table REGISTer. v 2-12
244 LI 15 =T[5 (= (2 S 2-13
2.5 CONTROL REGISTERS .. .ttt ettt e et e et e e e et e e e et e e et et es 2-13
2.5.1 CPUID Qualification of Control Register FIags. vvirt e e ens 2-20
2.6 EXTENDED CONTROL REGISTERS (INCLUDING XCRO) . vt v vttt ettt e e ettt e e e e e e e e e e e 2-20
2.7 PROTECTION-KEY RIGHTS REGISTERS (PKRU AND IA32_PKRS). ..ttt 2-22
2.8 SYSTEM INSTRUCTION SUMM ARY ..ttt ittt ittt ettt et e e e e e e 2-23
2.8.1 Loading and Storing SYSTeM ReGISTEIS ...\ i it i i e it e e 2-24
282 Verifying Of ACCESS PriVilEgES . . oottt e e e e e e 2-24
283 Loading and Storing DebUg ReGISTErSottt e 2-25
284 Invalidating Caches and TUBS it i e e e e e 2-25
285 CONTrOlliNg ThE PrOCES SO v vttt ettt ettt e e e e e e e e e e 2-26
2.86 Reading Performance-Monitoring and Time-Stamp COUNTErSo.vriei i ens 2-26
2.86.1 Reading Counters in B4-Bit MOGE.ottt i i i e e i e e 2-27
287 Reading and Writing Model-Specific REGISTEIS vttt e e 2-27
2.8.7.1 Reading and Writing Model-Specific Registers in 64-BitModec.ccoiiiiiii i 2-27
288 ENabling Processor EXTENAed STates.ttt i i e i e 2-27
CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT
3.1 MEMORY MANAGEMENT OVERVIEW ...ttt et et e e e e e e e e e s 3-1
3.2 USING SEGMEN T S Lttt ettt ettt st ettt e e e e e et e e e et e e e 3-2
3.2.1 2= 1] ol = 1 o T = 3-3
3.2.2 Protected FIat MOdel.o e e e 3-3
3.23 MUIE-SEMENT MOAEl . ..o e e e e 3-4
324 SegmeENtation N JA-328 MOottt e ettt e 3-5
3.25 Paging and SEgMIEN A O . ..ottt e e 3-5
33 PHY SICAL ADDRESS SPACE. ..\ttt ettt ettt e e e e e 3-6

Vol. 3A i

CONTENTS

3.3.1 Intel® 64 Processors and Physical Address SPate vvvviii ittt ettt e 3-6
34 LOGICAL AND LINEAR ADDRESSES . . vttt ittt ettt e e e e e e e e e 3-6
34.1 Logical Address Translation iN JA-328 MOottt i e e e e e 3-7
34.2 A Y=< A1 =T o (o] 5 3-7
343 Y= 1= A =T =] 3-8
344 Segment Loading INStructions iN [A-328 MOde.t e e 3-9
345 Y= 0= Lol) o5 3-9
3.4.5.1 Code- and Data-Segment DeSCriptOr TYPES. .. vttt ettt et et e et e 3-12
35 SY STEM DESCRIPTOR TY PES ..ttt ittt e e e et e e e e 3-13
3.5.1 Segment DeSCriPIOr TablES.ttt e e e 3-14
3.5.2 Segment Descriptor Tables i IA-326 MOGEvuit it e e e 3-16
CHAPTER 4

LINEAR-ADDRESS PRE-PROCESSING

4.1 ENABLING AND ENUMERATION . . 1ttt t sttt et et e e st e e e e e et e e et e et e e n e 4-1
4.2 MODE-BASED ACCESSES AND LINEAR-ADDRESS-SPACE PARTITIONINGot e ee s 4-1
43 LINEAR-ADDRESS-SPACE SEPARATION (LASS) ..ttt ittt ittt e et et e e 4-2
431 Enumeration and ENabling.oi i 4-2
432 Operation of Linear-Address-Space Separation (LASS) vvuittit i 4-2
44 LINEAR-ADDRESS MASKING .. vttt ettt et ettt e e s e e e e e e e et et e et 4-3
441 Enumeration, Enabling, and ConfigUrationt i i e e e 4-3
44.2 Treatment of Data AcCesses With LAM ACHIVE u ettt eas 4-4
443 PagiNg IMtEraCTiONSottt et e e e 4-4
45 CANONICAUTY CHECKING . . ottt ettt e e e sttt e e e et e e et et e e et n ey 4-4
451 i F=T 0 T A Vol =Y L PP 4-5
452 Loads of the Instruction Pointer (RIP). e 4-5
453 System Registers Containing Linear AdArESSeS. v vttt ittt ittt et a et i e 4-5
454 TUB-INValidation INSTTUCTIONS . . v\ttt e ettt et ettt e e e 4-7
CHAPTER 5

PAGING

5.1 PAGING MODES AND CONTROL BITS . vttt ettt ettt e et e e e et et e et 5-1
5.1.1 FOUN Paging MOGES . ..ottt ittt et e ettt et e e e 5-1
5.1.2 Paging-Mode ENabDliNg.o v vt e 5-3
513 Paging-Mode MOdifiers.ot e e e i 5-4
514 Enumeration of Paging Features DY CPUIDo .ii it e et et 5-5
52 HIERARCHICAL PAGING STRUCTURES: AN OVERVIEW.ottt e 5-7
53 o = I I o] 5-9
54 P PAGING . . ottt e e e e e e 5-14
54.1 el I R0] (=] 5P 5-14
54.2 Linear-Address Translation With PAE Paging i e e e et i e 5-15
55 4-LEVEL PAGING AND 5-LEVEL PAGING . . e vttt et ettt et e e et et e e e e e e e e e e 5-20
55.1 Ordinary Paging and HLAT Pagingo v vvvtitttt ettt e ettt e e et e e 5-20
55.2 Use of CR3 with Ordinary 4-Level Pagingand 5-Level Pagingcoiiiiiiiiii i ie e 5-20
553 Use of HLATP with HLAT 4-Level Paging and 5-Level Paging.ooiuiiiiii i 5-22
554 Linear-Address Translation with 4-Level Paging and 5-Level Paging. ... 5-22
555 RESTArt Of HLAT Paging. ov ittt ettt ettt e e e e ettt e ettt 5-33
56 ACCESS RIGHT S, ettt e e e e et e e e et e e e et e e e e e 5-33
56.1 Determination Of ACCESS RIGNTS .. .o u it e e e 5-33
56.2 01 =T o T =) 5-36
57 PAGE-FAULT EXCEPTIONS .ttt et e e e e e e e e et e et et 5-37
58 ACCESSED AND DIRTY FLAGS .ttt ittt ittt ettt e e et e e e e en s 5-39
59 PAGING AND MEMORY TYPING .\ttt ittt ettt et e e et e e e e e e e e es 5-39
5.9.1 Paging and Memory Typing When the PAT is Not Supported (Pentium Pro and Pentium Il Processors).............. 5-40
59.2 Paging and Memory Typing When the PAT is Supported (Pentium lll and More Recent Processor Families).......... 5-40
593 Caching Paging-Related Information about Memory TYPINGoveiniri i ens 5-41
5.10 CACHING TRANSLATION INFORMATION . . .o ettt ettt et et e e et et e e et e e et en s 5-41
5.10.1 Process-Context Identifiers (PCIDS) vv ittt e e e e e e 5-41
5.10.2 Translation Lookaside BUTFfErs (TLBS)vure ittt e aens 5-42
5.10.2.1 Page Numbers, Page Frames, and Page Offsetsvuvuiuiriir it et e i eaas 5-42
5.10.2.2 Caching Translations IN TLBS ... v vttt e et e e e e 5-43
5.10.23 DETAIlS OF TLB USB . .ttt ittt ittt et e e e e e e et e e e e 5-43

iv Vol. 3A

5.10.24 GlODal PGS . . vttt e
5.10.3 Paging-StrUCIUTE CaCNES. . . .ottt e e e e
5.10.31 Caches for Paging StrUCTUNESottt ettt et e ettt e aeas
5.103.2 Using the Paging-Structure Caches to Translate Linear Addressesovvviiiiivinnenenenanns
5.1033 Multiple Cached Entries for a Single Paging-Structure Entry.coviiiiiii i
5104 Invalidation of TLBs and Paging-Structure Caches..........c.ccoiiii i i
5.104.1 Operations that Invalidate TLBs and Paging-Structure Cachescvviiiiiiii it
5.104.2 Recommended INValidation.ottt e
51043 Optional INValidation.ot e
5.104.4 Delayed INValidation ov ot e e
5.105 Propagation of Paging-Structure Changes to Multiple Processorsccovvviviiiiiiiiiiiinninenan.
5.11 INTERACTIONS WITH VIRTUAL-MACHINE EXTENSIONS (VMX). .ottt
5111 LV I = 1T
511.2 VMX Support for Address Translationee i e
5.12 USING PAGING FOR VIRTUAL MEMORY ..ottt ettt et e e e e e et
5.13 MAPPING SEGMENTS TO PAGES . . ottt et ettt e e e e a e
CHAPTER 6

PROTECTION

6.1 ENABLING AND DISABLING SEGMENT AND PAGE PROTECTION . .. vttt
6.2 FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND PAGE-LEVEL PROTECTIONvvvviiii i
6.2.1 Code-Segment Descriptor in 64-bit MOdevui i e
6.3 LIMIT CHECKING . vttt sttt ey
6.3.1 Limit Checking in 64-Dit Modeo e e e
6.4 TYPE CHECKING . . ettt ettt e e e e e e e et e e e e e e
6.4.1 Null Segment Selector Checkingvve i e
6.4.1.1 NULL Segment Checking in 64-bit Modeot e i
6.5 PRIVILEGE LEVELS. . ..ttt ettt e e et e e e et e e e et e e e e a et
6.6 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA SEGMENTS ...ttt
6.6.1 Accessing Data in Code SEgmMENTSo v ittt i i e e
6.7 PRIVILEGE LEVEL CHECKING WHEN LOADING THE SSREGISTER. v v et
6.8 PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING PROGRAM CONTROL BETWEEN CODE SEGMENTS

6.8.1 Direct Calls or Jumps 10 Code SEgmMENTS. ...\ttt i e e e e
6.8.1.1 Accessing Nonconforming Code SegmentS vv it e
6.8.1.2 Accessing Conforming Code SegMENTS.ttt e
6.8.2 (0= (=T) (o) =3
6.8.3 (0| -) (=
6.8.3.1 IA-328 MOAE Call GatS .ottt ettt ettt e e
6.84 Accessing a Code Segment Through @ Call Gate ..ot e e i
6.8.5 STACK SWITCNING .« .o e
6.8.5.1 Stack Switching in B4-DItMode. e
6.86 Returning from a Called ProCeaUIE . ..ottt et e
6.8.7 Performing Fast Calls to System Procedures with the SYSENTER and SYSEXIT Instructions
6.8.7.1 SYSENTER and SYSEXIT Instructions in 1A-32€ MOdE oo vt
6.8.8 Fast System Calls in 64-Bit MOde.o e
6.9 PRIVILEGED INSTRUCTIONS . . . ettt ettt et et e e et et e et e e et e et a e et
6.10 POINTER VAU D AT ON Lottt et e e e e e e e e e et e e e et
6.10.1 Checking Access Rights (LAR INSTIUCTION) v et e
6.10.2 Checking Read/Write Rights (VERR and VERW INSTructions)..........cooviiiviviiiiiiiiiiiiiininnenns
6.10.3 Checking That the Pointer Offset Is Within Limits (LSL Instruction)............coooviiiiiiiininn.
6.104 Checking Caller Access Privileges (ARPL INSTrUCtioN). . ..ot
6.10.5 CRECKING Al GNmIE N, . ottt e e e e e e e e
6.11 PAGE-LEVEL PROTECTION .ttt ittt et et et e ettt e e et
6.11.1 Page-Protection FIagsot e
6.11.2 Restricting Addressable DOmMain. u vttt e
6.11.3 PG T P ittt e e
6.114 Combining Protection of Both Levels of Page Tables ... e
6.11.5 Overrides t0 Page ProteCtionv. it et e
6.12 COMBINING PAGE AND SEGMENT PROTECTION. ..\ttt ittt e e e e
6.13 PAGE-LEVEL PROTECTION AND EXECUTE-DISABLE BIT ..ttt e
6.13.1 Detecting and Enabling the Execute-Disable Capability ...t e
6.13.2 Execute-Disable Page ProteCtionc.vu i e
6.13.3 Reserved Bit CheCKingot i e e e e e
6.134 EXCEPTION HandlinNgot

CONTENTS

PAGE

CONTENTS

PAGE
CHAPTER 7
INTERRUPT AND EXCEPTION HANDLING
7.1 INTERRUPT AND EXCEPTION OVERVIEW . . v vttt ettt et e et e e e e et e et e e et et et e e n e 7-1
7.2 EXCEPTION AND INTERRUPT VECTORS ...ttt ettt ettt et e e et et e e et e e et e a e e 7-1
73 SOURCES OF INTERRUP TS ittt it sttt e e e e e e e e 7-2
731 [=3 = I Y (=T 00 £ 7-2
73.2 Maskable HardWare IMterTUD TS . ..ottt ettt ettt ettt ettt e e e e 7-3
733 SOTtWArE-GENEIatEd M O TUP TS, . o\ ottt e ettt e 7-4
74 SOURCES OF EXCEPTIONS. ottt ettt et ettt et e e et e e e e e e e e e e 7-4
741 0T [) 0T = ot~ o] 1 P 7-4
74.2 SOTtWAre-GENErated EXCE P ONS. . . vttt ettt et e ettt e 7-4
743 = T TR O Y= T = ol =T 0] 1 T 3 7-4
75 EXCEPTION CLASSIFICATIONS L ottt ettt et et ettt e e e et e e et et e e e et e e n e e s 7-5
76 PROGRAM OR TASK RES T AR T . .ottt ittt et et ettt e e et e e e et et e e a e e e a e e s 7-5
77 NONMASKABLE INTERRUPT (NMI) ..ttt ittt ettt e e e e e e e et e 7-6
7.7.1 Handling MU DIE NMISo e e ettt et e ettt et et e ettt 7-6
78 ENABLING AND DISABLING INTERRUP T S . . .ottt ettt e e e e et e e e eans 7-6
781 Masking Maskable Hardware IntermUD S . ..ot i e e e 7-7
78.2 Masking INStrUCTION BreaKDOintSottt ittt ettt e et e et e 7-7
783 Masking Exceptions and Interrupts When Switching Stacks ... 7-8
79 PRIORITIZATION OF CONCURRENT EVENT S 11ttt e et e e e 7-8
7.10 INTERRUPT DESCRIPTOR TABLE (IDT) + vttt ettt ettt et e et et et e ettt e e e et et et et et n e 7-9
7.1 DT DESCRIPTORS ..ttt ettt ettt et e e e e e e e e e e e 7-10
7.12 EXCEPTION AND INTERRUPT HANDUING . . ottt ettt et e et e e e e e e et es 7-11
7121 Exception- or Interrupt-Handler ProCeaUIES. ittt et e et 7-12
71211 Shadow Stack Usage on Transfers to Interrupt and Exception HandlingRoutinescovvivvinnnn 7-14
7.121.2 Protection of Exception- and Interrupt-Handler Procedures.ooiiiiiii i 7-16
71213 Flag Usage By Exception- or Interrupt-Handler Procedure.o e 7-17
7.12.2 I U TaSKS . o ottt i e e e e 7-17
7.13 ERROR CODE ...ttt ettt e et ettt e e e e e 7-18
7.14 EXCEPTION AND INTERRUPT HANDULING IN B4-BIT MODEttt ettt e es 7-19
7.14.1 (S = o Ta | 7-19
7.14.2 B4-Bit MOGE STaCK Frame . ..ottt e e e et e e e e e 7-20
7.143 IRET N IA-32E MO . . oottt ettt et e et e e e et e e et e e e 7-21
7144 Stack SWItChING IN JA-328 MOGE . ..ttt e e e e e 7-21
7.145 INErTUPT STaCK TablE . . ot i e e e e 7-22
7.15 EXCEPTION AND INTERRUPT REFERENCE\ttt t ettt ettt e e e e e e ettt e e 7-23
Interrupt O—Divide Error EXCEPLioN (HDE). ...\ v vttt e 7-24
Interrupt 1—Debug EXCEPLION (HDB)\ttt ettt e 7-25
INtErTUPT 2—NMI I O TUDT .« oo i it e e et e e et e 7-27
Interrupt 3—Breakpoint EXCeption (HBP).ot e 7-28
Interrupt 4—0verflow EXCEPTION (BOF) ...\ttt 7-29
Interrupt 5—BOUND Range Exceeded Exception (HBR)c.vviiiiiini i 7-30
Interrupt 6—Invalid Opcode EXCEPLION (HUD) ov vttt e e e 7-31
Interrupt 7—Device Not Available Exception (ENM). e 7-32
Interrupt 8—Double Fault EXCEPLION (HDF)t e e 7-33
Interrupt 9—CoprocesSOr SEGMENT OV UM . . .\ttt ittt ettt ettt et ettt et ettt ettt a e aeaeeas 7-35
Interrupt 10—INvalid TSS EXCOPION (BTS) .ttt ittt e e e e 7-36
Interrupt 11—Segment Not Present (BN P)ttt e e 7-38
Interrupt 12—Stack Fault EXCEPTION (HSS) .. i vttt e e 7-40
Interrupt 13—General Protection EXception (HGP).oou i 7-41
Interrupt 14—Page-Fault EXCEPtiON (HPF). e e e 7-44
Interrupt 16—x87 FPU Floating-Point Error (HMF).ot e 7-48
Interrupt 17—Alignment Check EXCEPTION (BEAC)ttt e e e aees 7-50
Interrupt 18—Machine-Check EXCEpPtion (HMO) ... v vttt e e e 7-52
Interrupt 19—SIMD Floating-Point EXCEPTION (HXM) ...t e 7-53
Interrupt 20—Virtualization EXCEPLion (HVE)oeiri e 7-55
Interrupt 21—Control Protection EXCeption (HCP)irii i e 7-56
Interrupts 32 10 255—User Defined INtermUPTS.ot e e 7-58

vi Vol. 3A

CONTENTS

PAGE
CHAPTER 8

USER INTERRUPTS

8.1 INT RO DUCTION. sttt ettt e et et e e e et e e et e e et e et et e e e e et e e e 8-1
8.2 ENUMERATION AND ENABLUING. . .« v et e ettt et et et e e e e e e e et et e e e e et e e et et e e s 8-1
83 USER-INTERRUPT STATE AND USER-INTERRUPT MSRS ..ttt ittt et e ey 8-1
8.3.1 USEr- N erTUD T S At oo i i e e e 8-2
83.2 USEr- N e UD T MO RS . L ottt e et e e e e 8-2
84 EVALUATION AND DELIVERY OF USER INTERRUPTS.ttt ettt e e 8-3
84.1 User-INtermUpt RECOGMITION. . ..ottt i e et e et e e e e 8-3
84.2 USEr-INtermUDT DEIVEIY . oottt e e e e e e e e 8-4
8.5 USER-INTERRUPT NOTIFICATION IDENTIFICATION AND PROCESSING. . ..ottt et 8-5
8.5.1 User-Interrupt Notification Identification i 8-6
85.2 User-Interrupt Notification ProCeSSiNg. . .. cv it e e e e et 8-6
8.6 USER-INTERRUPT INSTRUCTIONS . ..ttt ettt et ettt e e et e e et e et aeas 8-7
8.7 FLEXIBLE UPDATES OF UIF BY UIRET .. .ottt it ettt ettt et e e e e e e et e et et e e e et 8-7
8.8 USE R RIS Lottt st e e e e e e e 8-7
CHAPTER 9

TASK MANAGEMENT

9.1 TASK MANAGEMENT OVERVIEW ..\ttt ittt st e e e e e e e e e e e e 9-1
9.1.1 I 151 10Tt (= 9-1
9.1.2 L5) = (= 9-2
9.1.3 EXECUTING @ TaSK . vttt e e 9-2
9.2 TASK MANAGEMENT DATA STRUCTURES . . .ttt e e e 9-3
9.2.1 TasK-STaTE SEGMENT (TS) ottt ittt ittt et e et e e e e 9-3
9.2.2 QLIS 3= o (o 9-5
9.23 TSS Descriptor i B4-Dit MOGE. i i e e e 9-6
9.24 B QRS0 3 (= P 9-7
9.25 LG T 1 (= 0] o] 9-8
93 TASK S T CHING . ottt et et e e e et e e e e e e 9-9
9.4 TASK LINKING .« ettt e et et e e e et e e e et e e e e 9-15
94.1 Use of Busy Flag To Prevent Recursive Task SWItChing.vuiriii i 9-16
94.2 MOodifyiNg Task LiNKagES oottt ettt e ettt e e et e e e e et s 9-16
95 TASK ADDRESS SPACE. . .. ittt ettt e e 9-16
9.5.1 Mapping Tasks to the Linear and Physical Address SPates ... vv vttt et aaes 9-17
95.2 Task LOGIiCal AdArESS SPaCE . . it i ettt i it et e e e e s 9-18
96 16-BIT TASK-STATE SEGMENT (1SS) .« ittt ittt e et e et e e e 9-18
9.7 TASK MANAGEMENT IN B4-BIT MODE ...\ ottt ettt ittt 9-19
CHAPTER 10

MULTIPLE-PROCESSOR MANAGEMENT

10.1 LOCKED ATOMIC OPERATIONS .ttt ettt ettt e ettt et e e et e e et et e et et e e e e eens 10-1
10.1.1 Guaranteed AtOmMIC DD atiONS . . .ttt ettt ettt ettt e e e 10-2
10.1.2 BUS LOCKING . . vttt i e e e 10-3
10.1.2.1 AUTOMATIC LOCKING. . oottt et e e e e ettt et e e e e e 10-3
10.1.2.2 Software Controlled Bus LOCKING v vttt e 10-4
10.1.2.3 Features 10 Disable BUS LOCKS.o .v ettt 10-4
10.1.3 Handling Self- and Cross-Modifying Code. vttt e e ettt 10-5
10.1.4 Effects of a LOCK Operation on Internal Processor Cachest e 10-6
10.2 MEMORY ORDERING .. vttt t sttt et ettt ettt e e e e 10-6
10.2.1 Memory Ordering in the Intel® Pentium® and INtel486™ ProCeSSOrS ...\ vttt et i i aaenas 10-7
10.2.2 Memory Ordering in P6 and More Recent Processor Families.oviir e 10-7
10.2.3 Examples lllustrating the Memory-0rdering PrinCiples e et 10-9
10.2.3.1 Assumptions, Terminology, and NOTationouiuiuiiiii i e ettt 10-9
10.2.3.2 Neither Loads Nor Stores Are Reordered with Like Operations.vuvuiiiiiii ittt 10-10
10.23.3 Stores Are Not Reordered With Earlier LOadsovvviuniii et 10-10
10.234 Loads May Be Reordered with Earlier Stores to Different Locations............cooviiiiiiiiiiiii i 10-11
10.2.3.5 Intra-Processor Forwarding IS AllOWET.ottt e 10-12
10.23.6 Stores Are Transitively Visible e s 10-12
10.2.3.7 Stores Are Seen in a Consistent Order by Other ProCessors.v. vttt eeae 10-13
10.23.8 Locked INStructions Have @ Total Order. ... v vttt e e 10-13
10.23.9 Loads and Stores Are Not Reordered with Locked INSTructions.coveiiiii i 10-13

Vol. 3A Vii

CONTENTS

10.2.4 Fast-String Operation and OUT-0f-Order STOMES . ..o\ vttt ittt ettt eaaaas 10-14
10.24.1 Memory-Ordering Model for String Operations on Write-Back (WB)Memory............covviviiiiiiiinn. 10-14
10.24.2 Examples lllustrating Memory-Ordering Principles for String Operationsccociiiiiiiiiiiiean.s, 10-15
10.2.5 Strengthening or Weakening the Memory-Ordering Model ..ot e 10-17
103 SERIALIZING INSTRUCTIONS. . . ottt ettt sttt e e et e e e e e e e e e e e 10-18
104 MULTIPLE-PROCESSOR (MP) INITIALIZATION L o ettt et et e et et e et 10-20
10.4.1 BSP N0 AP PrOCESSOMS & v vttt ettt ettt ettt et et et e et et e e e e e e e 10-20
104.2 MP Initialization Protocol Requirements and RestriCtions.ouir it e 10-21
104.3 MP Initialization Protocol Algorithm for MP SyStemSottt e et aeaeaas 10-21
104.4 MP INitialiZation EXAMI DI, . ..ottt e e 10-22
10.4.4.1 Typical BSP INitialization SEQUENCE vv it e e 10-22
1044.2 Typical AP INitialization SEQUENCE it i e e e 10-24
10.4.5 Identifying Logical Processors inan MP SYSTemMttt i e i i et e 10-25
10.5 INTEL® HYPER-THREADING TECHNOLOGY AND INTEL® MULTI-CORE TECHNOLOGYvviviiiiiiiiiiiieeeen 10-26
10.6 DETECTING HARDWARE MULTI-THREADING SUPPORT AND TOPOLOGY. .. vttt e ettt ee i iaaaaas 10-26
10.6.1 Initializing Processors Supporting Intel® Hyper-Threading Technology ... i 10-27
10.6.2 INitialiZING MUI-C0rE PrOCESS OIS & vttt ettt ettt e e e e e e e e e e e e eas 10-27
10.6.3 Executing Multiple Threads on an Intel® 64 or IA-32 Processor Supporting Hardware Multi-Threading............. 10-28
10.6.4 Handling Interrupts on an IA-32 Processor Supporting Hardware Multi-Threading..............cccoiiiiiiiinnn, 10-28
10.7 INTEL® HYPER-THREADING TECHNOLOGY ARCHITECTUREttt 10-28
10.7.1 State of the LOGICal PrOCESSOrS. . ..ttt et et ettt e e e e ettt 10-29
10.7.2 O U oy [0 = 10-30
10.7.3 Memory Type Range Registers (MTRR) i it e e e s 10-30
10.7.4 Page AttriDUTE Table (P AT). . ettt e e e et e e e e e 10-30
10.7.5 [P Tol o TN O Y=l Qo g =Tt (= 10-30
10.7.6 Debug RegiSters and EXTENSIONS. . ..t v vttt ittt et ettt ettt e et e et e e e 10-31
10.7.7 Performance Monitoring CoUNM ISo .ottt et ettt e e e ettt e e e e et 10-31
10.7.8 [A32_MISC_ENABLE MSR. . .ottt ittt e e e e e et e e e e 10-31
10.7.9 [1= T Y0 =T e PP 10-31
10.7.10 SEaliZING NS TUCT ONS . . o oot i et et e e e e 10-31
10.7.11 MICrOCOdE UPdate RESOUNCES . . v vttt ettt et et ettt e e et et e e e e e ettt n e nenanas 10-31
10.7.12 Sl MOdIfYING L0, . vttt e e e e e e 10-32
10.7.13 Implementation-Specific Intel® HT Technology Facilities. ... e 10-32
10.7.13.1 o 0 Tol Yo 0 ol =TS 10-32
10.7.13.2 Processor Translation Lookaside BUfers (TLBS). ... ovuveii ittt 10-32
10.7.133 TRl MONIE 0T . . ettt e e e e e e e e 10-33
10.7.134 External Signal Compatibilityov o e 10-33
10.8 MULTI-CORE ARCHITECTURE . . .ottt ettt e et e et e e et e et et eens 10-33
10.8.1 [fof= T I o o Tal =TS0 S U0 Lo 10-34
10.8.2 Memory Type RaNge REGIStErS (MTRR) vitti ettt ettt ettt e e et 10-34
10.8.3 Performance Monitoring COUNM OISttt et ettt et e e e e e 10-34
1084 A2 _MISC _ENABLE MO R, . ittt ettt e e e e e et e e e 10-34
10.8.5 MICrOCOdE UPdate RESOUNCES . . v vttt ettt ettt e ettt e ettt e e et e ettt e e e e et enanas 10-34
109 PROGRAMMING CONSIDERATIONS FOR HARDWARE MULTI-THREADING CAPABLE PROCESSORSovvvvvinn 10-35
10.9.1 Hierarchical Mapping of Shared RESOUICES it ittt ettt et ettt aenenanas 10-35
10.9.2 Hierarchical Mapping of CPUID Extended Topology Leat.ouiriiiiii i e eeas 10-37
10.9.3 Hierarchical ID of Logical Processors in an MP SYSTem viu ittt 10-40
10.9.3.1 Hierarchical ID of Logical Processors With X2APICIDouiii i et 10-41
10.9.4 Algorithm for Three-Domain Mappings of APIC Dottt e e e 10-42
10.9.5 Identifying Topological Relationships in an MP System.t e e 10-46
10.10 MANAGEMENT OF IDLE AND BLOCKED CONDITIONS ..\ttt ittt ettt ettt eans 10-49
10.10.1 L0 oo 10-49
10.10.2 PAUSE NS UCTION . ettt et ettt et e e e e e e 10-49
10.103 Detecting Support MONITOR/MWAIT INStrUCHION. . vttt e e et enes 10-50
10.104 MONITOR/MWAIT IS UCTION .« e vttt ettt et e e et et et et e et et e et e e e 10-50
10.10.5 Monitor/Mwait Address Range Determinationovuuut et e e 10-51
10.10.6 Required Operating SYSTem SUD POtottt ittt e et ettt e e e 10-52
10.10.6.1 Use the PAUSE Instruction in SPin-Wait LOOPS. ... v vttt et ettt ieaees 10-52
10.10.6.2 Potential Usage of MONITOR/MWAIT in CO IdIE LOOPS. . vt v vttt ettt 10-52
10.10.6.3 Halt IdIe LOGICAl PrOCESSOTSttt ettt ettt et et e et e et et e i en s 10-54
10.10.64 Potential Usage of MONITOR/MWAIT in CT 1dIe LOOPS. . .. c vttt ettt ettt eaa e 10-54
10.10.6.5 Guidelines for Scheduling Threads on Logical Processors Sharing Execution Resources...........coovvvvvvenen. 10-55
10.10.6.6 Eliminate Execution-Based TimiNg LOOPS.ttt ettt et e 10-55
10.10.6.7 Place Locks and Semaphores in Aligned, 128-Byte Blocks of MeMOry........ovv it e e 10-55
10117 MP INITIALIZATION FOR P6 FAMILY PROCESSORS . . .ottt ettt e 10-55

viii Vol. 3A

CONTENTS

PAGE

10.11.1 Overview of the MP Initialization Process for P6 Family Processorsvviiiiiii it eineneienas 10-56
10.11.2 MP Initialization Protocol AlQOrithm. e 10-56
10.11.21 Error Detection and Handling During the MP Initialization Protocol ... e 10-58
CHAPTER 11

PROCESSOR MANAGEMENT AND INITIALIZATION

11.1 INITIALIZATION OVERVIEW .ottt e e e e e et et e et et e e et eees 11-1
11.1.1 PrOCESSOr STate AfTEr RESET . ittt e 11-2
11.1.2 Processor BUilt-In SEIf-TeSt (BIST). ...ttt ittt e et e e e e 11-5
11.1.3 Model and SteppinNg INfOrmMatioN.ttt e e 11-5
11.1.4 FIrSt INSTrUCTION EXECUTEM. . ..ottt e e e e e e e et aaas 11-5
11.2 XB7 FPU INIT AU ZATION ottt ettt et e et et e et e e e e et e e et et e e e aaas 11-5
11.2.1 Configuring the X87 FPU ENViEONmMENT. . ..ttt et e e e ees 11-6
11.2.2 Setting the Processor for x87 FPU Software EMUIGtionoiuii e 11-6
11.3 CACHE ENABLING. . ottt ettt s e e et e e e e e e e e 11-7
114 MODEL-SPECIFIC REGISTERS (MSRS) . . . ittt ettt e et e e e e ens 11-7
115 MEMORY TYPE RANGE REGISTERS (MTRRS). . vttt ettt ettt ettt a e 11-8
116 INITIALIZING SSE/SSE2/SSEI/SSSES EXTENSIONS. .« .ottt et e e e e 11-8
11.7 SOFTWARE INITIALIZATION FOR REAL-ADDRESS MODE OPERATION ...\ttt 11-8
11.7.1 REAI-AATESS MOGE DT .ttt ettt e e e e e e e e e e e 11-8
11.7.2 NMIEINterrUPT HaNAlnNg. .. oo e i e e e e it et e 11-9
11.8 SOFTWARE INITIALIZATION FOR PROTECTED-MODE OPERATION ...ttt e 11-9
11.8.1 Protected-Mode System Data SITUCTUTES ettt e e e 11-9
11.8.2 Initializing Protected-Mode Exceptions and INtemmUPTS . ..o vttt i e e e e 11-10
11.83 INIIAlIZING PagiNg. . oo e e 11-10
11.84 INitiAliZiNg MUIITASKING. . . .o .o e e e e e 11-10
11.85 INIHAlIZING [A-328 MOGEot i e e e e e e e 11-11
11.8.5.1 I1A-32e Mode SYSTEM Data STTUCTUMES ...ttt ittt e et 11-11
11.85.2 IA-32e Mode INterrupts and EXCEPLIONS.ttt e e e 11-12
11853 64-bit Mode and Compatibility Mode Operation.ot i i e e 11-12
11854 Switching Out of IA-32 M0ode OPEration ov vttt e 11-12
11.9 [0 Y 11-13
11.9.1 SWITChING 10 Protected MOde ... i i e e e e e e 11-13
11.9.2 Switching Back t0 REal-AAArESS MOGEo v ettt e 11-14
11.10 INITIALIZATION AND MODE SWITCHING EXAMPLE\ttt ettt e e 11-14
11.10.1 F A=Y 0] L= 7= T = 11-16
11.10.2 STARTUPR. ASM LiSTiNgG v ottt ettt sttt e e e e e e e et e et et e e e 11-16
11.10.3 MAIN.ASM SOUMCE COQB . v vttt et ettt et ettt et et e e et e et e et e e et et e e e 11-25
11.104 SUPPOMTING FilBS . . oottt i it e e e 11-25
11.1T MICROCODE UPDATE FACILITIES. . . .ottt ettt et et et e e et e e e e e 11-27
11.111 ol o Yoo [= L0 a = = 11-28
11.11.2 Optional Extended Signature Table.o i e e e e 11-31
11.11.3 ProcesSOr IdentifiCatioN.t e 11-32
11.114 PlatfOrm IdentifiCatioN . . .o 11-32
11.115 Microcode Update CheCKSUM e i et et e e e 11-33
11.11.6 [Tal o Talo T LI 0T = =3 I = Ta 1= 11-34
11.11.6.1 Hard Resets in Update Loading. vvveie ittt e e 11-35
11.11.6.2 Update in @ MURI PIrOCESSOr Sy S M . . oottt ittt et e et et e ettt 11-35
11.11.6.3 Update in a System Supporting Intel Hyper-Threading Technologycoovviiiiiiiiiiii i 11-35
11.11.64 Update in a System Supporting Dual-Core Technology.ouiiiii e 11-35
11.11.65 Update Loader ENNanCemBntS ..ottt it ettt e e e 11-35
11.11.7 Update Signature and VerifiCation.v i e e 11-36
11.11.71 Determining the SIgNature. e e e e 11-36
11.11.7.2 Authenticating the Update. . ..o i e e 11-37
11.11.8 Optional Processor Microcode Update SpPecifications.vvuit i 11-37
11.11.81 Responsibilities 0f the BIOSo e 11-38
11.11.8.2 Responsibilities of the Calling Program ...t i ettt i ae e 11-39
11.11.83 Microcode Update FUNCHIONSttt e e et e e e et ettt 11-42
11.11.84 INT 15H-DaSEA IO a0, . . ottt e e e e e e 11-42
11.11.85 FUNCION OOH—PrESENCE TS, . vttt ettt et e e e e et 11-42
11.11.86 Function OTH—Write Microcode Update Datac.vririiii it it aees 11-43
11.11.87 Function 02H—Microcode Update CONTIOL.vr et e 11-46
11.11.88 Function 03H—Read Microcode Update Data.o.iiiii i e et e 11-47
11.11.89 RETUNN CO0BS vttt ettt ettt e et e e e e e e 11-48

Vol. 3A iX

CONTENTS

PAGE
CHAPTER 12
ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
121 LOCAL AND 170 APIC OVERVIEW . . vttt ettt et e e e e e e e et e e e e e 12-1
12.2 SYSTEM BUS VS, APIC BUS .ottt et e ettt e e e 12-3
123 THE INTEL® 82489DX EXTERNAL APIC, THE APIC, THE XAPIC, AND THE X2APICot 12-4
124 LOC AL APIC ittt e e e e e e e 12-4
12.4.1 The Local APIC BIOCK Diagram ... v ettt e e ettt e et e et e e e e et et e e e et 12-4
124.2 Presence Of the LOCal APIC.o ettt e e e e e 12-7
1243 Enabling or Disabling the Local APIC i i et e et i e 12-7
1244 [or= | 2 (O = (W o T 1o 12-8
12.4.5 Relocating the LoCal APIC REGIS OIS ..\ttt ettt e e e e 12-9
1246 [Tor= 2 [12-9
1247 [Tor= | (O = | (S 12-10
124.7.1 Local APIC State After POWEr-Up OF RESETottt e e 12-10
124.7.2 Local APIC State After It Has Been Software Disabledo.vvuv i 12-10
124.7.3 Local APIC State After an INIT Reset (“Wait-for-SIPI" State)vvvi i 12-10
124.7.4 Local APIC State After It Receives an INIT-Deassert IPlt e 12-11
1248 (0Tt A o [O VT o o N =T (= 12-11
125 HANDLUING LOCAL INTERRUP TS ottt ettt et et e e e e e et eanes 12-12
12.5.1 [or=] Y=ot (o = = 12-12
12.5.2 RV 1 Ta B (=T o] Y= Ton (o] 12-15
1253 30T = T T 12-15
1254 (O T 1T 12-16
12.5.4.1 TS C-DEAANINE MO . . .ottt ettt e e e e e e e e e e 12-17
1255 [Yot I) (=T o 00 2 Yol =T) = ol 12-18
126 ISSUING INTERPROCESSOR INTERRUP T S, . ettt ettt ettt et et e eens 12-19
12.6.1 Interrupt Command ReGISTEr (ICR)ttt e e e e e et e 12-19
12.6.2 Determining [Pl Destination\ ittt i ettt e e 12-22
12.6.2.1 PhYSICal DEStiNATioN MOGE ..\ttt e e e 12-23
126.2.2 L0gical Destination MOde.ot e i e e 12-23
12.6.2.3 Broadcast/Self Delivery MOv it e et e 12-25
126.24 LOWEST Priority DeliVery MOottt e 12-25
12.6.3 T L= AL YA T eI o= o = 12-26
12.7 SYSTEM AND APIC BUS ARBITRATION ..ottt ettt ettt et e e e e e e e et e e e e e e 12-26
12.8 HANDLUING INTERRUP TS .ottt ittt ettt et e et et e ettt eas 12-26
12.8.1 Interrupt Handling with the Pentium 4 and Intel Xeon ProCesSorsv ittt ittt aaas 12-27
12.8.2 Interrupt Handling with the P6 Family and Pentium Processorsovvuiririiiii it i it eeaens 12-27
1283 Interrupt, Task, and ProCeSSOr Priority . ..ottt e e e e e 12-28
12.8.3.1 Task AN ProCeS SO PriOritiES. . v vttt e e e e e e e 12-29
1284 Interrupt Acceptance for FiIXed IMTemTUDTS.ottt e e e e e e 12-30
12.85 Signaling Interrupt Servicing ComPlETiONo v ittt e e 12-31
1286 Task Priority N IA-328 MOQE . ..o i e e e e 12-31
12.8.6.1 Interaction of Task Priorities between CRB and APIC o ittt e 12-32
129 SPURIOUS INTERRUPT . . ettt sttt et e ettt et e et e et et e e et e e et e e e eees 12-32
1210 APIC BUS MESSAGE PASSING MECHANISM AND PROTOCOL (P6 FAMILY, PENTIUM PROCESSORS)ovvvvvvvnnnn 12-33
12.10.1 BUS MBS0 F Ot S, L o ittt t et e e e e e e e e e 12-34
1217 MESSAGE SIGNALLED INTERRUPTS . ..ttt ettt et e et ettt e et et e e e eeens 12-34
12111 Message Address REgiSTEr FOMmMat.ttt it it ettt e et ettt e 12-34
1211.2 Message Data Register FOMmMat.ttt e e ettt e 12-35
12012 EXTENDED XAPIC (X2APIC). . . vttt ettt ettt e et et et e e et et et et e et eens 12-36
12121 Detecting and ENabliNg X2APIC MOGE i vttt i e e e e 12-37
12.12.1.1 INSTrUCtiONS t0 ACCESS APIC REGISTEIS. . .\ttt sttt et ettt et e e 12-37
12.12.1.2 X2APIC REGISTEr AUMESS SPaCE .ottt ettt ettt e e e e e e e 12-38
121213 ReServed Bit CReCKINg . ..ot ottt et e e et e e e 12-40
12.12.2 X2APIC Register AVailabiliTyov i e e e e 12-40
12123 MSR ACCESS IN X2APIC MOGE. . . .ottt ettt e e e e e et 12-40
12124 VM-Exit Controls for MSRS and X2APIC REGISTEISttt ittt ettt et ettt ittt aenenans 12-41
12125 D A o (O =1 (= I [L 12-41
12.12.5.1 D (O | =1 12-41
D A e O i (=Tl (== 12-42
X2APIC Transitions From X2APIC MO ovi ittt e ettt eees 12-42
X2APIC Transitions From Disabled MOdevuiie e e e 12-43
State Changes From XAPIC Mode t0 X2APIC MOv it i ettt ettt e e 12-43
12.12.6 Routing of Device INterrupts in X2APIC MOGe.o v vv it e i e 12-43

X Vol. 3A

CONTENTS

PAGE

12.12.7 Initialization Dy SYSTEM SO AIEt e e 12-43
12.12.8 CPUID Extensions And Topology ENUMEration.ttt e e 12-43
12.12.8.1 Consistency of APICIDS and CPUIDo .iui ittt e ettt 12-44
12129 ICR Operation in X2APIC MO, . ..o\ttt ittt e et e et e e e e e e 12-44
12.1210 Determining IPI Destination in X2APICMOTEiiiiiii e 12-45
12.12.10.1 Logical Destination Mode in X2APIC MOGe.o .i ittt i e e e e e e 12-45
12.12.10.2 Deriving Logical x2APIC ID from the Local X2APICID. u e et 12-46
L0 1 T N o I8 o (=1 =Y 12-47
12.13 APIC BUS MESSAGE FORMAT S, ittt ittt ettt et et e e e et et e e e 12-47
12.13.1 BUS MESSa0E FOMMIaTS .« vttt ittt e et e e e e e e 12-47
12.13.2 L0 T T 12-47
12.13.2.1 1) 0] o (7= T = 12-48
12.13.2.2 Non-focused LoWeSt Priority MESSage.ottt ettt et ettt 12-49
12.13.23 APIC BUS STatUS Gyl ottt ittt et e e e e e e e 12-50
CHAPTER 13

MEMORY CACHE CONTROL

13.1 INTERNAL CACHES, TLBS, AND BUFFERS ...\ttt sttt e e e e e e e aes 13-1
13.2 CACHING TERMINOLOGY . ..t ttt ettt et et e ettt e e e e e e e et et e e et et e e e e et e e a e aenes 13-5
133 METHODS OF CACHING AV AILABLE. . ..ottt et e e e e e e e e e 13-6
13.3.1 Buffering of Write Combining Memory LOCationsuiriii et 13-8
13.3.2 CRO0SING @ MmO Y Ty D Lottt ittt ettt ettt et e e e et e e et e e e e 13-8
1333 Code Fetches in UNCacheable MemMOTYv . e e 13-9
134 CACHE CONTROL PROTOCOL . .t vttt vttt et e et et e it et e e et et e e et et e e et e e e et aaas 13-9
135 CACHE CONTROL & v vttt et et e e et e e e et e e e et e et r e et e e r e et e e et e e i a e e e 13-10
13.5.1 Cache Control Registers and Bitsvuii e e e 13-10
13.5.2 Precedence Of CaChe COMTr0lS. v ittt ettt ettt et e e et e e et e ettt 13-13
13.5.2.1 Selecting Memory Types for Pentium Pro and Pentium Il Processorsco.vviiiiiiiiiiiiininiienannns 13-14
13.5.2.2 Selecting Memory Types for Pentium lll and More Recent Processor Families...........covvviviviiiiiiinnnnn, 13-15
13.5.23 Writing Values Across Pages with Different Memory TYPeS. .. cv.vr it it aeien 13-16
1353 Preventing Caching.o e 13-16
13.54 Disabling and Enabling the L3 Cacheo e 13-17
13.5.5 Cache Management IS UG ONS. . .. ottt it ettt et e et e et e 13-17
13.5.6 LT Data Cache ConteXt MOGE.ottt ettt e e et e ettt 13-18
13.5.6.1 APtV MO . . o v ittt e e e 13-18
13.56.2 ST MO . .o ettt et e e 13-18
136 SELF-MODIFYING CODE ..\ttt ettt et et e et e e et e et e et e e et e e e et e e 13-18
13.7 IMPLICIT CACHING (PENTIUM 4, INTEL® XEON®, AND P6 FAMILY PROCESSORS) ...\t vi vt ii i 13-19
138 EXPLICIT CACHING. oottt et e e e e e e e e et e e e e e e 13-19
139 INVALIDATING THE TRANSLATION LOOKASIDE BUFFERS (TLBS) . ..\ttt ettt ettt iaeaenes 13-19
1310 STORE BUFFER. ..ttt ettt ettt et e e e e e e et e et e e e e e 13-20
13,117 MEMORY TYPE RANGE REGISTERS (MTRRS). ..ttt ittt ettt ettt e e e 13-20
13.11.1 MTRR Feature IdentifiCationue ettt 13-21
13.11.2 Setting Memory Ranges With MTRRS e e 13-22
13.11.2.1 IA32 _MTRR _DEF _TYPE MR . .ttt ittt e et e e e e e e 13-22
13.11.2.2 FIXEA RANGE M RRS . .ottt ittt e e e e e e e e e 13-23
13.11.23 Variable RANGE M R RS, . . ittt et e e s 13-23
13.11.24 System-Management Range Register INterfaceoc vt e e 13-25
13.11.3 Example Base and Mask CalCUlationsovirie e e e 13-26
13.11.31 Base and Mask Calculations for Greater-Than 36-bit Physical Address Support............coviviiiiinnn. 13-27
13114 Range Size and Alignment ReqQUITEMIENT i i i e e e e 13-28
13.11.4.1 I 3 =T =T 1= ol 13-28
13.11.5 S T £ 2 (P 13-29
13.116 = = o] o T T=T 0 T YA Y/ =T3P 13-29
13.11.7 MTRR Maintenance Programming INterface v e e 13-29
13.11.71 MemTyPEGEt() FUNCLION . ..ottt et e ettt e et e e e en s 13-29
13.11.7.2 MemTYPESET() FUNCHION ...ttt e et e e e e e et e 13-31
13.11.8 MTRR Considerations iN MP Sy StemMIS i .ttt ettt et e e et eas 13-32
13.11.9 Large Page Size CoNSIAErationsv. ettt ettt et e et et e 13-33
1312 PAGE ATTRIBUTE TABLE (P AT . ittt ettt ettt ettt et e e ettt e et e e e 13-33
13.12.1 Detecting SUPPOrt Tor the PAT FEaTUME. i ittt e e e e et eaens 13-34
13.12.2 L P o N I Y P 13-34
13.12.3 Selecting a Memory Type from the PAT ... ettt 13-35
13124 Programming the PAT ..o i i e e e 13-35

Vol. 3A Xi

CONTENTS

13.125 PAT Compatibility With Earlier IA-32 ProCeSSOrS . . .\ttt t ittt ettt ettt anenanas 13-36
CHAPTER 14

INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING

14.1 EMULATION OF THE MMX INSTRUCTION SET ..ttt ittt ettt e 14-1
14.2 THE MMX STATE AND MMX REGISTER ALIASING . .ttt e 14-1
14.2.1 Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR Instructions on the x87 FPU TagWordcovvvnnn. 14-3
14.3 SAVING AND RESTORING THE MMX STATE AND REGISTERS ...\ttt e 14-3
144 SAVING MMX STATE ON TASK OR CONTEXT SWITCHES. . ..ottt e 14-4
145 EXCEPTIONS THAT CAN OCCUR WHEN EXECUTING MMX INSTRUCTIONS.ttt 14-4
14.5.1 Effect of MMX Instructions on Pending x87 Floating-Point EXCeptions.c.vveiiiii e 14-5
146 DEBUGGING MMX CODE . . vttt ettt et e et e e et e e e st e e s e e e e et et et e e e 14-5
CHAPTER 15

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR EXTENDED
STATES

15.1 PROVIDING OPERATING SYSTEM SUPPORT FOR SSE EXTENSIONS.o 15-1
15.1.1 Adding Support to an Operating System for SSE EXTENSIONSv.vt it 15-2
15.1.2 CheCKing TOT CPU SUP PO T . ..ottt ittt ettt ettt e et e ettt e e e e ettt e e e e e ettt nenanaes 15-2
15.1.3 Initialization of the SSE EXTENSIONS\ttt e e 15-2
15.1.4 Providing Non-Numeric Exception Handlers for Exceptions Generated by the SSE Instructions..................... 15-4
15.1.5 Providing a Handler for the SIMD Floating-Point EXception (HEXM)vviriiii e 15-5
15.1.5.1 Numeric Error flag and IGNNEHo e e 15-6
15.2 EMULATION OF SSE EXTENSIONS . .. ottt ettt e e e e e e e e e e e 15-6
153 SAVING AND RESTORING SSE ST AT E ittt ettt e e e e e e 15-6
154 DESIGNING OS FACILITIES FOR SAVING X87 FPU, SSE, AND EXTENDED STATES ON TASK OR CONTEXT SWITCHES.... 15-6
15.4.1 Using the TS Flag to Control the Saving of the x87 FPU and SSEState ... e 15-7
155 THE XSAVE FEATURE SET AND PROCESSOR EXTENDED STATE MANAGEMENT ... oviiiii i 15-7
15.5.1 Checking the Support for XSAVE FEature SET .. . v. ittt e e 15-8
155.2 Determining the XSAVE Managed Feature States And The Required BufferSize ..., 15-8
1553 Enable the Use Of XSAVE Feature Set And XSAVE State Components........oviiiiiiiiii it iiineienass 15-9
1554 Provide an Initialization for the XSAVE State ComPONENtSvtitit it 15-9
1555 Providing the Required EXception Handlersou i e 15-9
156 INTEROPERABILITY OF THE XSAVE FEATURE SET AND FXSAVE/FXRSTOR ..\ vtiii i 15-9
15.7 THE XSAVE FEATURE SET AND PROCESSOR SUPERVISOR STATE MANAGEMENT ..o 15-10
158 SYSTEM PROGRAMMING FOR XSAVE MANAGED FEATURESttt 15-10
15.8.1 Intel® Advanced Vector EXensions (INtel® AVX)ot e 15-11
15.8.2 Intel® Advanced Vector Extensions 512 (Intel® AVX-5T2) ... oot e 15-11
CHAPTER 16

POWER AND THERMAL MANAGEMENT

16.1 ENHANCED INTEL SPEEDSTEP® TECHNOLOGY ...ttt e ettt e e e e e e e e e et es 16-1
16.1.1 Software Interface For Initiating Performance State Transitionscovrir it 16-1
16.2 P-STATE HARDWARE COORDINATION. . .o vttt ettt e et et e e e e e et e e et et es 16-1
16.3 SYSTEM SOFTWARE CONSIDERATIONS AND OPPORTUNISTIC PROCESSOR PERFORMANCE OPERATION 16-3
16.3.1 Intel® Dynamic Acceleration TeChNOIOgY. v i e e e 16-3
16.3.2 System Software Interfaces for Opportunistic Processor Performance Operation..........cocovviiiiiinininnnns. 16-3
16.3.2.1 Discover Hardware Support and Enabling of Opportunistic Processor Performance Operation................... 16-3
16.3.2.2 0S Control of Opportunistic Processor Performance Operation............ooiiiiiiiii it iiiiiii e eanns 16-4
16.3.2.3 Required Changes to 0S Power Management P-State POliCYovvviiiiii e 16-4
16.3.3 INtel® TUrDO BOOST TECRNMOIOGY .. .ottt e e e e e e e e e et i ae e 16-5
16.3.4 Performance and Energy Bias Hint SUPPOto it e e e 16-5
164 HARDWARE-CONTROLLED PERFORMANCE STATES (HWP)ttt 16-5
16.4.1 HWP Programming INTer acesottt et e et e ettt 16-6
164.2 ENaDlING H P e e 16-7
16.4.3 HWP Performance Range and Dynamic Capabilitiesvvvr i e 16-7
1644 MaNagING HWP . .. e e 16-8
16.4.4.1 IA32_HWP_REQUEST MSR (Address: 774H Logical Processor SCOPE) vvvviiii e ieiiieiieieeneenns 16-8
16.4.4.2 IA32_HWP_REQUEST_PKG MSR (Address: 772H Package SCOPE). ... vv vttt i in e 16-11
16.4.4.3 IA32_HWP_PECI_REQUEST_INFO MSR (Address 775H Package SCope)vviiiiiiii i 16-11
164.4.4 IA32_HWP_CTL MSR (Address: 776H Logical ProCesSor SCOPE). . .. vttt ettintieei e eneineiaeianennees 16-12

Xii Vol. 3A

CONTENTS

PAGE

1645 HWP FEEADACK . . vttt ettt e e e e e 16-13
16.4.5.1 Non-Architectural HWP FEEADACK v e e 16-15
16.4.6 1T N0y or= 1o PP 16-16
16.4.7 Idle Logical Processor Impact 0N COre FrEQUENCYt tv ettt ettt ettt ettt e ettt e e aeaa e enanas 16-16
1648 Fast Write of Uncore MSR (Model Specific FEatUre). ... ovvve i e 16-17
16.4.8.1 FAST_UNCORE_MSRS_CAPABILITY (Address: 65FH, Logical Processor SCope)ovvvvivviniieniinnnnnes 16-17
16.4.8.2 FAST_UNCORE_MSRS_CTL (Address: 657H, Logical Processor SCOPE) ... vvvvvvvirviiieineineiiiniininenns 16-17
16483 FAST_UNCORE_MSRS_STATUS (Address: 65EH, Logical Processor SCOPe).........vvvviiiiiiiiiniinninenn. 16-18
1649 Fast_IA32_HWP _REQUEST CPUID . . .ttt e et ettt e et e e e 16-18
16.4.10 Recommendations for OS use of HWP CONtrolS. ovuvui st 16-18
16.5 HARDWARE DUTY CYCLING (HDC) .ottt vttt e ettt e e et e e e et et e et e e et e a e eenes 16-20
16.5.1 Hardware Duty Cycling Programming INTerfaces.ooviriri i e e ittt 16-20
16.5.2 Package level ENabling HDC oot e e e e e 16-21
16.5.3 Logical-Processor LeVel HDC Control. . ..o uvu ittt e e e e e e enens 16-22
16.5.4 | O (=T L f= oY o T =] 16-22
16.5.4.1 JAB 2 THREAD ST AL L vttt sttt e e e e e e e e e e e 16-22
16.54.2 Non-Architectural HDC ReSidenCy COoUNTEIS v vttt ettt e ettt eaees 16-23
16.5.5 MPERF and APERF Counters Under HDCot e enens 16-25
16.6 HARDWARE FEEDBACK INTERFACE AND INTEL® THREAD DIRECTOR ...ttt et iaeeans 16-25
16.6.1 Hardware Feedback Interface Table StrUCTUME v it 16-25
16.6.2 Intel® Thread Director Table StrUCTUNEot et et enens 16-27
16.6.3 Intel® Thread Director USage MOGEL.vii ittt e e ettt eaanas 16-30
16.6.4 Hardware Feedback INterface Pointer e e 16-31
16.6.5 Hardware Feedback Interface Configurationooiriii i e ettt 16-31
16.6.6 Hardware Feedback Interface NOtifiCationso.vur vt e e i 16-32
16.6.7 Hardware Feedback Interface and Intel® Thread Director Structure DynamicUpdate............oovvviiviinnnn.n. 16-33
16.6.8 Logical Processor Scope Intel® Thread Director Configuration ... e 16-33
16.6.9 Implicit Reset of Package and Logical Processor Scope Configuration MSRSoviiiiiii i 16-34
16.6.10 Logical Processor Scope Intel® Thread Director Run Time Characteristicsvvvvviiiiiiiiiiiiii i, 16-34
16.6.11 LOGiCal ProCesSSOr SCOPE HisSTOrY . ..ottt ittt i e et e e e e e e 16-34
16.6.11.1 €nabling Intel® Thread Director History ReSETt et 16-35
16.6.11.2 Implicit Intel® Thread Director History RESETttt e e 16-35
16.7 MWAIT EXTENSIONS FOR ADVANCED POWER MANAGEMENT ...\ttt ittt e 16-35
16.8 THERMAL MONITORING AND PROTECTION. . v ettt ettt ettt et e e e et et e e e et e e e e e e 16-36
16.8.1 Catastrophic SNUTAOWN DETECIOT . . . v\ttt et et e e e e 16-37
16.8.2 LI L= .0 =1 3T o P 16-37
16.8.2.1 B L= = Lo T T o P 16-37
16.8.2.2 TREMMIAl MONITOr 2. .ttt ettt et e et e e e et e e s 16-37
16.8.2.3 Two Methods for ENabling TM2 . ..o e i ettt 16-37
16.8.2.4 Performance State Transitions and Thermal MoniToringvviiiii i e ea s 16-38
16.8.2.5 Thermal Status INfOrmMation. e e e e 16-38
16.8.2.6 Adaptive ThEMMAl MOniTOr ..ottt et e e e e 16-39
16.83 Software Controlled Clock MOdUIBTION vttt e e 16-40
16.8.3.1 Extension of Software Controlled Clock Modulation ..o e 16-41
16.84 Detection of Thermal Monitor and Software Controlled Clock Modulation Facilitiescovvviiiiiiiinnninnns 16-41
16.84.1 Detection of Software Controlled Clock Modulation EXTENSIONvuveevi e 16-41
16.8.5 On Die Digital TREMMIAl SBNSO S . . v vttt ettt ettt et e e e ettt e e st 16-42
16.8.5.1 Digital Thermal SeNSOr ENUMEratiON.ttt ettt ettt it ans 16-42
16.8.5.2 Reading The Digital SENSOr . ..o\ttt e 16-42
16.8.6 Power Limit NOtifiCationo v e e e 16-45
16.9 PACKAGE LEVEL THERMAL MANAGEMENT . ..ottt ittt et e et et e et e e e e e 16-45
16.9.1 Support for Passive and ACtiVe COONING vu ettt e 16-47
16.10 PLATFORM SPECIFIC POWER MANAGEMENT SUPPORT ...\ttt ettt e 16-48
16.10.1 Y IR0 (= = (o P 16-48
16.10.2 RAPL Domains and Platform SpeCifiCityo.vve et e e 16-49
16.10.3 Package RAPL DOmMIain . . vttt ettt ettt et e s et e e e e e e 16-50
16.104 PPO/PPT RAPL DOMINS .ot vttt vttt ettt e et e e e e et e e et e e e e et et et e et et e et e e 16-52
16.10.5 DRAM RAPL DOMIGIN .+ v vttt et e ettt e et e e e e e et e e et e et e e e e n e et e et i n e e et 16-54
CHAPTER 17

MACHINE-CHECK ARCHITECTURE

17.1 MACHINE-CHECK ARCHITECTUREottt ettt e e e e e e e e 17-1
17.2 COMPATIBILITY WITH PENTIUM PROCESSOR . . . ot ettt ittt e et et e e e et e e e et 17-1
17.3 MACHINE-CHECK MRS ..ttt ittt e et et e e e et e e et et e e et et et et et e ees 17-2

Vol. 3A Xiii

CONTENTS

17.3.1 Machine-Check GIODal CONTIOl MSRS.o v ittt ettt e et ettt e eens 17-2
17.3.1.1 A2 MG LA MR . ittt it e e e e e e e e e 17-2
17.3.1.2 A2 MG ST ATUS MO R . ittt ittt e e e e e e e et e 17-4
17313 N O T O I) P 17-4
173.1.4 A2 MG EXT T MO R ittt ittt e e e e e e e e e 17-4
17315 Enabling Local Maching CReCK ot i i i e e e e e et i 17-5
17.3.2 Error-Reporting RegiSTer BanKs.ttt et e e e 17-5
17.3.2.1 N [O Y 17-5
17.3.2.2 A3 MO ST ATUS MRS ottt ittt et e e e e 17-6
17.3.23 A2 MU AR MO RS . . vttt ittt ettt e e et e e e e e e e e 17-9
17324 1 [T S O Y S R 17-9
17.3.25 L O O 8 Y 4 17-11
17.3.26 IA32_MCG Extended Machine Check STate MSRSttt e e 17-12
1733 Mapping of the Pentium Processor Machine-Check Errors to the Machine-Check Architecture...................... 17-13
17.4 ENHANCED CACHE ERROR REPORTING. . . .t vttt ettt et e et e et ettt e et e et et e et n e 17-13
175 CORRECTED MACHINE CHECK ERROR INTERRUPT ..\ttt ettt e e e et e e e e et e e et in e eans 17-14
17.5.1 0 (Ol oo A o (O [=] = Lol 17-14
17.5.2 System Software Recommendation for Managing CMCI and Machine Check Resources.covvvivnnnt. 17-15
17.5.2.1 (O T]2 o 17-15
17.5.2.2 CMCI Threshold Management. . ..ottt ettt e e e et e e e et e 17-16
175.23 0 [Ty =T 0 o = T T = 17-16
176 RECOVERY OF UNCORRECTED RECOVERABLE (UCR) ERRORS ...\ttt e eieanes 17-16
17.6.1 Detection of SOftware Ermor RECOVENY SUPPOMT. ..o\ttt e e e iaas 17-16
17.6.2 UCR Error Reporting and LOGging . .« ..o v ittt ittt ettt et e ettt et e e e et et 17-16
1763 L0 [=y o Tl 0= T o= o 17-17
1764 UCR Ermor OVerWIItE RUIES . . ottt et et ettt et ettt et e e 17-18
17.7 MACHINE-CHECK AV AL ABIL T Y. L ettt et e e e e e e e e e et e e e e e 17-19
17.8 MACHINE-CHECK INITIAUZATION L oottt et e e e et et et e et et e a e e 17-19
179 INTERPRETING THE MCA ERROR CODES. . . . ettt ettt ittt et ettt e et ettt e e s 17-20
17.9.1 I 10 S = o 0T [17-20
17.9.2 000330 o TU e S 3 o T[S 17-21
17.9.2.1 Correction Report FIltering (F) Bit. vt e e 17-21
17.9.2.2 Transaction Type (TT) SUD-FIeld.o e ens 17-22
17.9.23 LeVel (LL) SUD-FIEldot 17-22
17924 Request (RRRR) SUD-FIield.t e e e 17-22
17.9.2.5 LU T o Y =] o] =T ot A o o 17-23
17.9.2.6 Memory Controller and Extended MEeMOMY EITOIS v vttt et ettt et ettt n e eeees 17-24
17.9.3 Architecturally Defined UCR BITOrS ... vttt ittt e e e ettt e e et et nees 17-24
17.9.3.1 Architecturally Defined SRAD EITOrS . .. vttt ittt et ettt e e e ettt e 17-24
17.93.2 Architecturally Defined SRAR EITOrS vttt ittt ettt ettt e ettt e et eaens 17-25
1794 MURIDIE MO A B 0TS . o v ettt sttt et ettt ettt e e e e ettt e e e e e e e e e aas 17-27
1795 Machine-Check Error Codes INterpretationot i i e e i e 17-28
17.10 GUIDELINES FOR WRITING MACHINE-CHECK SOFTWARE . ..o\ttt et eans 17-28
17.10.1 Machine-Check EXCeption Handlero e e e 17-28
17.10.2 Pentium Processor Machine-Check Exception Handling. e 17-29
17.10.3 Logging Correctable Maching-Chetk ErTOrS ... v .ttt e et e et enaaas 17-30
17104 Machine-Check Software Handler Guidelines for Error RECOVEMY.vvviu it 17-31
17.104.1 Machine-Check Exception Handler for Error RECOVETYvieiiii ittt e e ieeees 17-31
17.104.2 Corrected Machine-Check Handler for Error RECOVEIY. vvv ittt ens 17-35
CHAPTER 18

INTERPRETING MACHINE CHECK ERROR CODES

18.1 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY 06H, MACHINE ERROR CODES FOR MACHINE CHECK... 18-1
18.2 INCREMENTAL DECODING INFORMATION: INTEL® CORE™ 2 PROCESSOR FAMILY,

MACHINE ERROR CODES FOR MACHINE CHECKttt et e es 18-3
18.2.1 Model-Specific Machine Check Error Codes for Intel® Xeon® Processor 7400 Seriesovviviiiiiiiininnnnnen. 18-5
18.2.1.1 Processor Machine Check Status Register, Incremental MCA Error Code Definition..................ccoiint. 18-6
18.2.2 Intel® Xeon® Processor 7400 Model Specific Error Code Field . ..ot e 18-6
18.2.2.1 Processor Model Specific Error Code Field, Type B: Bus and Interconnect Error Codes.c..covvivvninn.. 18-6
18.2.2.2 Processor Model Specific Error Code Field, Type C: Cache Bus Controller Error Codescoovvvvivnenannnn. 18-7
183 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR 3400, 3500, 5500 SERIES,

MACHINE ERROR CODES FOR MACHINE CHECK ...\ttt et e e e 18-7
18.3.1 Intel® QPI Maching ChECK BrTOrS. . . vttt ettt ettt e e e e e e e e ettt r et e e 18-8
18.3.2 INternal Maching CRECK ErTOrS . ..ttt ettt e e e e e e e e e e 18-9

Xiv Vol. 3A

CONTENTS

PAGE

18.3.3 [T=T 0 o Y O 0 o] | =Tl o 3 18-9
184 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR E5 FAMILY, MACHINE ERROR CODES FOR

MACHINE CHECK . . .ttt sttt et e e e et e e e e et e e e e e e e e et e e e et 18-10
18.4.1 INterNal Maching CNECK ErTOrS . . v ettt ettt ettt et et e e et et et et e et et et n e e 18-10
18.4.2 Intel® QP Maching ChECK BITOIS ...ttt sttt et e e e e et e e e e 18-11
184.3 Integrated Memory Controller Maching ChecK BrTOrS. .. .o vt i e e ettt enes 18-11
185 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR E5 V2 AND INTEL® XEON® PROCESSOR

€7 V2 FAMILIES, MACHINE ERROR CODES FOR MACHINE CHECK.ottt e eieaas 18-13
18.5.1 L= = T Tl T T O Y= Q= o Y 18-13
18.5.2 Integrated Memory Controller Machine Check ErmOrs.ot e e s 18-14
18.5.3 Home Agent Maching CheCK ErTOrS ... vttt e e e 18-15
186 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR E5 V3 FAMILY,

MACHINE ERROR CODES FOR MACHINE CHECK . ..\ttt et sttt et e e e e e e e e e e in e et 18-15
18.6.1 INternal Maching CRECK ErTOrSttt e et ettt ettt et et et e et e et a e 18-16
18.6.2 Intel® QP Maching ChECK ErTOrS . ..ottt ettt e et e e e et enens 18-17
18.6.3 Integrated Memory Controller Machine Check Ermors.ottt e e s 18-17
18.6.4 Home Agent Maching CheCK ErTOrS ... vttt e e e s 18-19
18.7 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR D FAMILY,

MACHINE ERROR CODES FOR MACHINE CHECK . ..\ttt ettt et et e e et n e e 18-19
18.7.1 INternal Maching CRECK ErTOrSttt ettt ettt ettt et e et et e et et et e e e 18-19
18.7.2 Integrated Memory Controller Maching ChecK ErTOrS.ottt i e et eaes 18-20
18.8 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR E5 V4 FAMILY,

MACHINE ERROR CODES FOR MACHINE CHECKttt et e et e a e e 18-21
18.8.1 Integrated Memory Controller Maching CheCK ErTOrS.ottt i e ettt e eaes 18-21
18.8.2 Home Agent Maching CheCk EITOrS u ittt et e ettt n et eanas 18-21
189 INCREMENTAL DECODING INFORMATION: INTEL® XEON® SCALABLE PROCESSOR FAMILY,

MACHINE ERROR CODES FOR MACHINE CHECK . ..\ttt ettt et e et e e e e 18-22
18.9.1 INternal Maching CRECK ErTOrS . . vttt ettt ettt ettt et et e e et et e et et e e a e e s 18-22
18.9.2 Interconnect Maching ChECK ErTOrS . .. v vttt et et e e et e ettt ees 18-24
18.9.3 Integrated Memory Controller Maching ChecK ErTOrS.ottt i e e it eaes 18-25
1894 3 B = O =l S P 18-26
18.9.5 Home Agent Maching CheCK ErTOrS ... v vttt e e e e e e eaas 18-27
18.10 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH CPUID DISPLAYFAMILY_DISPLAYMODEL

SIGNATURE 06_5FH, MACHINE ERROR CODES FOR MACHINE CHECK\ ov it 18-28
18.10.1 Integrated Memory Controller Machine Check Ermors. ... oottt e e 18-28
18.11 INCREMENTAL DECODING INFORMATION: 3RD GENERATION INTEL® XEON® SCALABLE PROCESSOR FAMILY,

MACHINE ERROR CODES FOR MACHINE CHECK . ..\ttt ettt et et e e e e e e e e e eans 18-28
18.11.1 INternal Maching CRECK ErTOrSttt sttt ettt ettt et ettt e et et e s 18-29
18.11.2 Interconnect Maching ChECK ErTOrSttt ettt e ettt a e aens 18-31
18.11.3 Integrated Memory Controller Machine Check Ermors. . ..ottt e ens 18-32
18114 P i g = O =Tl S o 18-36
18.12 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH CPUID DISPLAYFAMILY_DISPLAYMODEL

SIGNATURE 06_86H, MACHINE ERROR CODES FOR MACHINE CHECK v ittt 18-36
18.12.1 Integrated Memory Controller Machine Check Ermors. ... v vu it e e 18-36
18.12.2 M2M MaChing CRECK B TS, .ottt et ettt e e et e e e e ettt e e e ettt e e e r e eenens 18-37
18.13 INCREMENTAL DECODING INFORMATION: 4TH GENERATION INTEL® XEON® SCALABLE PROCESSOR FAMILY,

MACHINE ERROR CODES FOR MACHINE CHECKttt et e et et e e e e e a e e 18-37
18.13.1 INternNal Maching CRECK ErTOrS . ..ttt ittt et et e e et et eenens 18-37
18.13.2 Interconnect Maching CRECK ErTOrS . .. v vttt ettt ettt e e et e et et e e 18-39
18.13.3 Integrated Memory Controller Machine Check Ermors. ... oottt e e 18-41
18134 M2M MaChing CRBCK B 0TS, . ettt et ettt et et et e e e e e ettt e e e ettt e et e e 18-43
18.13.5 High Bandwidth Memory Machine Check ErTOrs.o e et eas 18-44
18.14 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY OFH, MACHINE ERROR CODES FOR MACHINE CHECK.. 18-44
18.14.1 Model-Specific Machine Check Error Codes for the Intel® Xeon® Processor MP 7100 Series.ocovvvvivnennnn... 18-45
18.14.1.1 Processor Machine Check Status Register MCA Error Code Definition.............coiiiiiiiiiiiii i, 18-46
18.14.2 Other_INfo Field (Al MCA ErTOr Ty DS . . v vttt ettt ettt ettt et e et e et et e a ey 18-47
18.14.3 Processor Model Specific Error Code Field.oo i e e e 18-48
18.14.3.1 (O = o i Y/ = 2 W IR o o 18-48
18.14.3.2 Processor Model Specific Error Code Field Type B: Bus and Interconnect Errorcoovvvvviviniiiinnnnnnns 18-48
18.14.33 Processor Model Specific Error Code Field Type C: Cache Bus Controller Efror..........covviviviiiiinnn. 18-49

Vol. 3A Xv

CONTENTS

PAGE

CHAPTER 19
DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT)
FEATURES

19.1 OVERVIEW OF DEBUG SUPPORT FACILITIES . .ottt ittt et et e e e e e et e 19-1
19.2 DEBUG REGISTE RS . . ottt sttt st e e e e e et e e e e e e e et e et e 19-2
19.2.1 Debug Address Registers (DRO-DR3). ... u ittt e e e e 19-4
19.2.2 Debug Registers DR @nd DRSttt e e et e e 19-4
19.2.3 Debug Status ReGISTEr (DRB) v ettt et et e e e 15-4
19.2.4 DEbUg CoNTrol REGISTEN (DR 7) .+ vttt ettt e e ettt e e e ettt e e e 19-4
19.25 Breakpoint Field RECOGNITION o .t e e e 19-6
19.26 Debug Registers and INTel® B4 PrOCeSSOrS. . ..\ttt ittt ettt ettt et ettt e 19-7
193 DEBUG EXCEPTIONS ..ttt ettt e e et et e e e et e e 19-7
19.3.1 Debug Exception (HDB)—INterrupt Vettor 1.t 19-7
19.3.1.1 Instruction-Breakpoint EXception Conditionouir it i i e e 19-9
19.3.1.2 Data Memory and I/0 Breakpoint Exception CoNditionsvuiiii i e 19-10
193.1.3 General-Detect EXCeption CONAItIONu ittt e e e 19-10
19314 Single-Step EXCePtioN CoNAitionottt e e e 19-11
19.3.1.5 Task-Switch EXCEPTION CoNAitionottt e e e 19-11
19.3.1.6 L0) =10 R W ol g =1 =T o 19-11
19.3.2 Breakpoint Exception (HBP)—INterrupt Vector 3.o e 19-11
1933 Debug Exceptions, Breakpoint Exceptions, and Restricted Transactional Memory (RTM)ovvvviiiiiiinnnn, 19-12
194 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING OVERVIEW ...\ vv et eieaas 19-12
19.4.1 N = 8 O I Y 19-13
19.4.2 Monitoring Branches, EXceptions, and INtermUPTS ... v vt 19-14
1943 Single-SteppiNg ON BranChiest e e 19-14
1944 BranCh Tra08 MBS Sa0ES . . ot vttt ittt et et e e e e e e e e 19-15
19.4.4.1 Branch Trace Message VisiDilityo.vuiu e e 19-15
1945 BranCh Trace StOre (BT S) ..ottt et e e 19-15
19.4.6 CPL-Qualified Branch Trace Mechanismiuit e e e 19-15
19.4.7 Freezing LBR and Performance Counters 0N PMIot 19-15
1948 LBR STaCK vttt ettt e e e e e e e e e 19-17
19.4.8.1 LBR STack and INTel® B4 PrOCESSOrS . . o .ottt ettt ettt e e e e e e e e e e 15-18
19.4.8.2 LBR Stack @and IA-32 PrOCESSOMS . . v vttt et et ettt ettt e e et et e e e et e e e 19-19
19.4.83 Last Exception Records and Intel 64 ArChiteCtUreo v e 19-19
19.4.9 BTS @GN0 DS SAVE AT . . ottt ittt ettt e e e e e e e e e 19-19
19.4.9.1 64 Bit FOrmMat Of the DS Saue AT a .. .ottt e e e e 19-22
19.4.9.2 Setting UP the DS SaVe ArBa . ..ottt 19-24
19.4.9.3 Setting Up the BT S BUI el ...t e e et ettt 19-25
19.49.4 Setting Up CPL-QUalified BT S, ..ottt e e e e 19-26
19.4.95 Writing the DS Interrupt Service ROUTINE.o .o u i e 19-26
195 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™ 2 DUO AND INTEL ATOM® PROCESSORS) .. 19-27
19.5.1 L2 Y - o 19-27
19.5.2 LBR Stack in Intel Atom® Processors based on the Silvermont Microarchitecture ...t 19-28
19.6 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING FOR PROCESSORS BASED ON

GOLDMONT MICROARCHITECTURE. . .\ttt et ettt e e et et e e e e e e et e e e et a e et 19-28
19.7 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING FOR PROCESSORS BASED ON

GOLDMONT PLUS MICROARCHITECTURE . . vttt et ettt et et e e e et e e e ettt e e s 19-29

19.8 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR INTEL® XEON PHI™ PROCESSOR 7200/5200/3200... 19-29
19.9 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR PROCESSORS BASED ON NEHALEM

MICRO AR CHITECTURE. . . sttt vttt et ettt e e e e e e e 19-29
19.9.1 LBR S 0K .+ o vttt ettt i e e e e e 19-30
19.9.2 Filtering of Last BranCh RECOTAS.o . vttt 19-31
19.10 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR PROCESSORS BASED ON SANDY BRIDGE

MICRO AR CHITECTURE. . . v vttt ittt ettt et e et e et e e ettt e ettt et e e 19-31
19.11 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING FOR PROCESSORS BASED ON HASWELL

MICRO AR CHITECTURE. . . ittt vttt et e et e et e et e e e e 19-32
19.11.1 LBR StaCK BNt et « oottt ittt e e e 19-33
19.12 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING FOR PROCESSORS BASED ON SKYLAKE

MICRO AR CHITECTURE. . .ttt ittt et et e et et e e e e e e e e 19-33
19.12.1 MS R _LBR _INFO X MR .ottt ittt e e e 19-34
19.12.2 Streamlined Freeze_LBRS_ON_PMI Operationv.urie ettt 19-34
19.123 LBR Behavior and DD C-State ..ttt e e e e e e 19-35
19.13 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING

(PROCESSORS BASED ON INTEL NETBURST® MICROARCHITECTURE). .« vttt v vt e e aaaaaes 19-35

Xxvi Vol. 3A

CONTENTS

PAGE

19.13.1 MSR _DEBUGCTLA MR .ottt sttt sttt et e et e e e ettt et e et e e 19-35
19.13.2 LBR Stack for Processors Based on Intel NetBurst® Microarchitectureooovviiiiiiii i 19-36
19.13.3 LaSt EXCEPTION RECOMASttt ittt it e et ettt et e e e e 19-37
19.14 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™ SOLO AND INTEL® CORE™

DUO PROCES SO RS . v vttt vttt ettt ettt e e e ettt et e e e e e e e e 19-38
19.15 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PENTIUMM PROCESSORS). ...t vo v vivieiei e 19-39
19.16 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (P6 FAMILY PROCESSORS)vvviviiiii i 19-40
19.16.1 DEBUGCTLMSR REGISTET . . o vttt vttt ettt et ettt e et e e e e ettt et e e e et e 19-40
19.16.2 Last Branch and Last EXCEPtiON MO RS ittt i it e e i e 19-41
19.16.3 Monitoring Branches, EXCeptions, and INTeITUDTS vv vttt et 19-42
1977 TIME-STAMP COUNTER . .ottt ettt ettt ettt et et e e et e et et e e e e e 19-42
19.17.1 LN T L 19-43
19.17.2 IA32_TSC_AUX Register and RDTSCP SUPDOMt . ..ttt ittt ettt ettt et eaens 19-43
19.17.3 Time-Stamp CoUNter A USTmIENT. . .ttt et e et e e 19-44
19.17.4 INVarianTt TIME-KEEPING . . o oottt i e e e e e e e e 19-44
19.18 INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) MONITORING FEATURESoiviii i 19-44
19.18.1 Overview of Cache Monitoring Technology and Memory Bandwidth Monitoringcovviiiiiivinniinn 19-45
19.18.2 Enabling Monitoring: USage FIOWo ettt e e e e e e 19-45
19.18.3 Enumeration and Detecting Support of Cache Monitoring Technology and Memory Bandwidth Monitoring. 19-46
19.184 Monitoring Resource Type and Capability EnUMEration ..o e 19-46
19.18.5 Feature-SpPeCific BMUMEBIATIONottt e e e e et e e e e et e 19-47
19.18.5.1 Cache Monitoring TECANOIOGYo vttt ettt e e e e e e et n i eaees 19-48
19.185.2 Memory Bandwidth MOnitOmiNgG. v vttt e e e 19-48
19.186 Monitoring Resource RMID ASSOCiation ... vuu ittt ittt e et ettt e 19-49
19.18.7 Monitoring Resource Selection and Reporting INfrastructure. ... i e 19-50
19.18.8 Monitoring Programming COoNSIAErationSo vttt ettt e e e e 19-51
19.18.8.1 Monitoring Dynamic ConfigUIation.ottt e e e e 19-51
19.18.8.2 Monitoring Operation With Power Saving FEatUreSovvu ittt 19-52
19.18.8.3 Monitoring Operation with Other Operating ModesSovvu i e e 19-52
19.1884 Monitoring Operation With RAS FEatUNESottt i e e e e i it enes 19-52
19.19 INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) ALLOCATION FEATURES.cvviiiiiii e 19-52
19.19.1 Introduction to Cache Allocation TeChNOIOgY (CAT) ..ttt e e eas 19-52
19.19.2 Cache Allocation Technology ArCNITEC UM ... vttt e e et i a e 19-53
19.19.3 Code and Data Prioritization (CDP) TECANOIOGYttt v ettt ettt e et 19-56
19.194 Enabling Cache Allocation Technology Usage FIOWo.vuiriuirir e e 19-57
19.194.1 Enumeration and Detection Support of Cache Allocation Technology ...t 19-58
19.19.4.2 Cache Allocation Technology: Resource Type and Capability Enumeration ...t 19-58
19.194.3 Cache Allocation Technology: Cache Mask Configuration........ ..o e 19-61
191944 Class of Service to Cache Mask Association: Common Across Allocation Features.covvvvvviiviiienennns 19-62
19.19.5 Code and Data Prioritization (CDP): Enumerating and Enabling L3 CDP Technologyc..cvvvviiviiiinnnnns, 19-62
19.19.5.1 Mapping Between L3 CDP Masks and CAT Masksvvviutii et eaees 19-63
19.196 Code and Data Prioritization (CDP): Enumerating and Enabling L2 CDP Technologyccoviviiiiiiinnnn, 19-63
19.19.6.1 Mapping Between L2 CDP Masks and L2 CAT Masks.oviuiiii ittt 19-64
19.19.6.2 Common L2 and L3 CDP Programming Considerationsvuuirinit it neieiei e 19-64
19.196.3 Cache Allocation Technology Dynamic Configuration ...ttt ieees 19-64
19.19.64 Cache Allocation Technology Operation With Power Saving Features.co.vviiiiiiiiiiiiiiiii i 19-65
19.19.6.5 Cache Allocation Technology Operation with Other OperatingModes. ..o it 19-65
19.19.6.6 Associating Threads with CAT/CDP Classes 0f SErViCe ovvv it et 19-65
19.19.7 Introduction to Memory Bandwidth AllOCation.vuin it e i e 19-66
19.19.7.1 Memory Bandwidth Allocation ENUMEIation.vuit ittt e 19-66
19.19.7.2 Memory Bandwidth Allocation Configuration. ..o et 19-67
19.19.7.3 Memory Bandwidth Allocation Usage ConSiderationsovuiuiritiriierii it ienei i eennns 19-68
19.20 INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FOR NON-CPU AGENTSoviiii i 19-69
19.20.1 Non-CPU Agent Intel® RDT Features Enumeration Details. e e e 19-69
19.20.1.1 CPUID-Based Enumeration for Non-CPU Agent Intel® RDT Feature........oovvrir ittt ieineeanns 19-69
19.20.1.2 O I TU T 1= = 1o 19-70
19.20.2 Non-CPU Agent Intel® RDT Feature Enable MSR i e e e e 19-70
CHAPTER 20
LAST BRANCH RECORDS
20.1 BEH AV IO R .ottt e e e e 20-1
20.1.1 [T o 1=l 1< = 1o Y 20-1
20.1.2 {000 10 U= o 20-2
20.1.2.1 ENAbIiNG @Nd Disablingottt e e 20-2

Vol. 3A Xvii

CONTENTS

20.1.2.2 L2 1= o 1 3 20-2
20.1.23 Branch Type Enabling and Filtering v v vv et e e 20-2
20.1.24 Call- S aCK MO, . . ottt et e e e 20-3
Call-Stack Mode and LBR FrEEZEottt t ettt ettt e e e 20-3
20.1.25 81 I 1= 20-4
20.1.3 T alo] e [D | - S PP 20-4
20.1.3.1 e 1= P 20-4
20.1.3.2 2= o I 0= 20-4
20.1.3.3 Yol =0 I3 3= P 20-4
20.1.34 Mispredict INfOrmatioN e e e 20-5
20.1.35 Nl TS X I O MatiON .ttt e e e e e 20-5
20.1.36 LBR EVENT LOGING .+ . ettt ettt ettt et ettt e et et e e et e e e e e 20-5
20.1.4 Interaction With Other ProCeSS0r FEatUNES.ttt e e et aeaenes 20-5
20.1.4.1]| 20-5
20.14.2 SMM TranSTer MONITOr (STM) ..ttt e e e e e e e 20-5
20.14.3 X Lttt e e e e e e 20-6
20.1.44 =] Y) G 20-6
20.145 DEDUG EXCEPTIONS . . vttt ettt e e e e e e e e e 20-6
20.1.46] 20-6
20.1.4.7 1 20-6
20.1438 Processor Event-Based Sampling (PEBS)o v i 20-6
20.2) 20-7
20.3 FAST LBR READ ACCESS .. ettt ettt ettt ettt et e e et et et et et et e e e e 20-7
20.4 O I [| G 20-7
20.4.1 Branch Trace Store on INtel ATOM® PrOCESSOIS ... v vttt ettt et et e et neanaes 20-7
204.2 N a2 5 G I 20-7
2043 A2 PERF _CAP ABILITIES. ..\ttt ettt ettt e et e e 20-7
CHAPTER 21
PERFORMANCE MONITORING
21.1 PERFORMANCE MONITORING OVERVIEW. . .\ vttt ettt et e e e e e e e et a e e 21-1
21.2 ARCHITECTURAL PERFORMANCE MONITORING. . . ottt ettt e e e et nen s 21-2
21.2.1 Architectural Performance Monitoring Version Tot ettt aeees 21-3
21.2.2 Architectural Performance Monitoring Version 2iuiriritii ittt 21-5
21.23 Architectural Performance Monitoring Version 3ttt e 21-9
21.2.3.1 AnyThread Counting and Software EVOIUTION.coi i et 21-11
21.24 Architectural Performance Monitoring Version 4 e e e e e 21-12
21.24.1 Enhancement in IA32_PERF_GLOBAL _STATUS ittt 21-12
21.24.2 IA32_PERF_GLOBAL_STATUS_RESET and IA32_PERF_GLOBAL_STATUS_SETMSRS.......covviiiiiininnnn, 21-13
21243 [A32_PERF_GLOBAL _INUSE MSR ...ttt ettt e et e e et et es 21-14
21.25 Architectural Performance Monitoring Version 5 21-15
21.2.51 ANYThread Mode DEPreCation . .. vttt it e e et e e e e 21-15
21.25.2 Fixed CoUNTEr ENUMIEIATiON « .o\ttt ettt et et et et e e et 21-15
21.253 [o] E= T INY=T o = = 1 T 21-15
21.26 Architectural Performance Monitoring Version 6o.i i e ettt 21-15
21.2.6.1 Performance Monitoring MSR AllaSingvuirirt i e e e e 21-16
21.26.2 Ut MaSK 2 et e e e e 21-18
21.26.3 BQUAL Flag . . o v ettt e e e e 21-18
21.2.7 Pre-defined Architectural Performance EVeNTSttt ettt e e et 21-18
21.2.8 Full-Width Writes to Performance Counter REGISTEISttt e aas 21-20
21.29 Scalable ENUMEration ArChitECIUMEt e et 21-21
21.2.8.1 CPUID SUD-LEaTING. o vttt ettt e e e e e e 21-21
21.29.2 RePOrting Per LOgiCal PrOCESSOr . . vttt ettt e e e e e e 21-21
21.293 General-Purpose CoUNTers BitmaD ov i e i et e 21-22
21.294 Fixed-Function Counters True-VieW Bitmapovii e e e e 21-22
21.29.5 Architectural Performance Monitoring EVENts BitmMap. ovvv i 21-22
21.296 LI TN (0] €31 =T 0 [21-22
21.3 PERFORMANCE MONITORING (INTEL® CORE™ PROCESSORS AND INTEL® XEON® PROCESSORS)vvvvvvivviivennns 21-23
21.3.1 Performance Monitoring for Processors Based on Nehalem Microarchitecture.cooovi i i nnn, 21-23
21.3.1.1 Enhancements of Performance Monitoring in the Processor Core.ovuviiiiiiiiiii e 21-24
21.3.1.2 Performance Monitoring Facility in the UNCOreovi i et 21-31
21.3.1.3 Intel® Xeon® Processor 7500 Series Performance Monitoring Facility ..o 21-36
2132 Performance Monitoring for Processors Based on Westmere Microarchitecture ...t 21-37

Xxviii Vol. 3A

CONTENTS

PAGE

2133 Intel® Xeon® Processor €7 Family Performance Monitoring Facility ... 21-38
2134 Performance Monitoring for Processors Based on Sandy Bridge Microarchitecturecoociiiiveninnnn 21-38
21.3.4.1 Global Counter Control Facilities in Sandy Bridge Microarchitecture. ...t e 21-39
2134.2 (000U =T 00 = =T ol =T ol P 21-41
21343 Full Width Writes to Performance COUNTEIS u vttt s ettt et e eeaes 21-41
21344 PEBS Support in Sandy Bridge Microarchitecture e 21-41
21345 Off-core Response Performance MonitoriNgouuueii it ettt n e 21-46
21346 Uncore Performance Monitoring Facilities in the Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, and

INtel® Core™ i3-2XXX PrOCESSOr SIS ..\ttt sttt ettt e e e ettt e e e aees 21-49
21347 Intel® Xeon® Processor €5 Family Performance Monitoring Facility ... 21-51
213438 Intel® Xeon® Processor €5 Family Uncore Performance Monitoring Facilityocoviiiiiiii i, 21-52
2135 3rd Generation Intel® Core™ Processor Performance Monitoring Facility. ... 21-52
21.35.1 Intel® Xeon® Processor E5 v2 and €7 v2 Family Uncore Performance Monitoring Facility....................... 21-52
2136 4th Generation Intel® Core™ Processor Performance Monitoring Facility ..o 21-52
21.3.6.1 Processor Event Based Sampling (PEBS) Facility.oouiirmi 21-53
21.36.2 PEBS Data FOrmat. . oottt ettt e e e e 21-54
21.36.3 PEBS Data Address Profilingovi i e 21-55
21364 Off-core Response Performance Monitoringo.vuieiiiii i i ettt 21-56
21365 Performance Monitoring and INtel® TS X, ... u ittt e et e 21-58
21.36.6 Uncore Performance Monitoring Facilities in the 4th Generation Intel® Core™ Processorscooovvvvn.. 21-60
21.3.6.7 Intel® Xeon® Processor E5 v3 Family Uncore Performance Monitoring Facility................ooovoiiiiin.t. 21-60
21.3.7 5th Generation Intel® Core™ Processor and Intel® Core™ M Processor Performance Monitoring Facility 21-61
2138 6th Generation, 7th Generation and 8th Generation Intel® Core™ Processor Performance Monitoring Facility 21-62
21.3.8.1 Processor Event Based Sampling (PEBS) Facility.ooniirmi e 21-63
21382 Frontend Retired Facilityovi i e e e et e 21-66
21383 Off-core Response Performance MONITOMNGvvvvtu it e e 21-68
21384 Uncore Performance Monitoring Facilities on Intel® Core™ Processors Based on

CaNNON Lake MiCroarChiTE O UM, ..ottt e e e et e e e e e e e 21-71
2139 10th Generation Intel® Core™ Processor Performance Monitoring Facility ..o 21-71
21.3.9.1 Processor Event Based Sampling (PEBS) Facility.ooniimi 21-72
21392 Off-core Response Performance MonitoriNgouiuiiii ittt n e 21-72
21393 PErfOrMANCE MBS .ottt ettt e e e e e e e e 21-74
21.3.10 12th and 13th Generation Intel® Core™ Processors, and 4th and 5th Generation

Intel® Xeon® Scalable Processor Family Performance Monitoring Facility ..., 21-75

21.3.10.1 P-core Performance Monitoring Unit.o.ou e e e 21-75
21.3.10.2 E-core Performance Monitoring Unit.ouu i e e e et 21-78
21.3.10.3 Unhalted REfErENCE CYCIBS ..ottt ettt e e e ettt ettt e eeaes 21-80
21.3.11 Intel® Series 2 Core™ Ultra Processor Performance Monitoring Facilityoooi i 21-81
21.3.11.1 P-core Performance Monitoring Unit.oo et ettt 21-81
213.11.2 E-core Performance Monitoring Unit.ouie e e e e 21-82
21.4 PERFORMANCE MONITORING (INTEL® XEON™ PHI PROCESSORS) . .. vttt ettt iaeeens 21-82
21.4.1 Intel® Xeon Phi™ Processor 7200/5200/3200 Performance Monitoring.covvvrveiiiiiiei it eaeens 21-83
214.1.1 Enhancements of Performance Monitoring in the Intel® Xeon Phi™ Processor Tile ...t 21-83
215 PERFORMANCE MONITORING (INTEL ATOM® PROCESSORS) . .. vttt ettt 21-87
2151 Performance Monitoring (45 nm and 32 nm Intel ATOM® PrOCESSOIS) .. vvvvv vttt i n it ieeieeieas 21-87
2152 Performance Monitoring for Silvermont Microarchitectureo e e e 21-87
21.5.2.1 Enhancements of Performance Monitoring in the Processor Coreo.vuiuiuiiiiiii it iieiiii e 21-87
21522 (0] el =l R{=E o] T TN VT3 21-89
21523 Average Offcore Request Latency MeasUremMENT.ttt e et i e eeeaes 21-92
2153 Performance Monitoring for Goldmont MicroarchiteCtureovvvii i e e 21-92
21.53.1 Processor Event Based Sampling (PEBS)ot e 21-93
21532 (0] ol =l R {EE o] ST VT3 21-96
21533 Average Offcore Request Latency MeasuremMENt.ttt e 21-97
2154 Performance Monitoring for Goldmont Plus Microarchitecturecccoiiii i e 21-98
21.5.4.1 EXTENAEA PEBS. . .ttt 21-98
2155 Performance Monitoring for Tremont MicroarchiteCturevvvv v e 21-98
21.5.5.1 APtV PEBS . .ttt ettt e e e 21-99
21552 PEBS 0oUtpUL 10 INTEI® PrOCESSOr Trate . o vt vttt vttt ettt et e e ettt e e e et ettt e e n e enees 21-99
21553 Precise Distribution Support on Fixed CoUNter Ovuititii e 21-101
21554 Compatibility Enhancements to Offcore Response MSRS. ...t 21-101
216 PERFORMANCE MONITORING (LEGACY INTEL PROCESSORS) . . . v vttt e ettt 21-103
21.6.1 Performance Monitoring (Intel® Core™ Solo and Intel® Core™ DUO ProCessors).......vvvv v iniiniiinenanns 21-103
21.6.2 Performance Monitoring (Processors Based on Intel® Core™ Microarchitecture)............c.cocvvviviiiinninnn, 21-104
21.6.2.1 Fixed-function Performance CoUMTErS v ittt e e 21-105
21.6.2.2 Global Counter CoNtrol FAClItiESo v et 21-106

Vol. 3A Xix

CONTENTS

216.23 At Rt T MM B BN .\ttt ittt ettt e e e e e 21-108
21.6.24 Processor Event Based Sampling (PEBS)o.iuiiii s 21-108
2163 Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture).............covvvviiniinnnn. 21-111
21.6.3.1 ES R MO RS . sttt e e e 21-114
216.3.2 o (ol =T ol O T (=] P 21-115
21633 0 2 Y P 21-116
21634 Debug STOre (DS) MECNANI S . .. vttt ettt et e et 21-118
21635 Programming the Performance Counters for Non-Retirement Events............covviiiiii i 21-118
21636 At-RetiremMEnt COUNMTING. . . vttt et e e et e e e e 21-124
216.3.7 Tagging Mechanism for Replay_BVeNTo i e e e e 21-125
21638 Processor Event-Based Sampling (PEBS)ovitiitr e e e 21-126
21639 Operating System IMPlCationSo i i i e e e 21-127
2164 Performance Monitoring and Intel® Hyper-Threading Technology in Processors Based on
Intel NetBUrst® MiCroarChiteC UM, . ..ottt 21-127

21.6.4.1 ES R MO RS . 1ttt ittt e e e e e 21-127
2164.2 00 2 Y P 21-128
21643 [A32_PEBS _ENABLE MSR . .ttt e e e s 21-130
21644 Performance Monitoring EVENTSttt et e e e 21-130
21645 Counting Clocks on systems with Intel® Hyper-Threading Technology in Processors Based on

Intel NetBUrst® MiCroarChiteC UM,ttt e e 21-131
21.6.5 Performance Monitoring and Dual-Core TeChNOIOgYoviiiii et 21-132
21.6.6 Performance Monitoring on 64-bit Intel® Xeon® Processor MP with Up to 8-MByte L3 Cache 21-132
21.6.7 Performance Monitoring on L3 and Caching Bus Controller Sub-Systems..........cccoviiiiiiiiii i 21-134
21.6.7.1 Overview of Performance Monitoring with L3/Caching Bus Controllercoiiiiiiiiiiiiiinnanns. 21-136
21.6.7.2 0] O Y =T 0 =T - =P 21-137
21.6.7.3 O N O Y= A = o 21-138
21674 LY =B Y =T) (=T (o =P 21-139
21.6.75 Common EVent Control INterace ..ot e e e e e s 21-140
2168 Performance Monitoring (P6 Family ProCESSOr)vv ittt e e 21-140
21.6.8.1 PerfEVESel0 and PerfEUtSeIT MRS . ..ttt e e s 21-141
21682 PerfCtrO and PerfCtrT MSRS ...ttt e e s 21-142
21683 Starting and Stopping the Performance-Monitoring COUNTErsSot e 21-142
21684 Event and Time-Stamp Monitoring SOfFIWaAreo e et e 21-142
21685 MoNitoring CoUNTEr OVe T IO, . .o\ttt e e et 21-143
2169 Performance Monitoring (PENtiUM PrOCESSOIS) . ..o v vttt ettt ettt e 21-143
21.6.9.1 Control and Event Select RegiSter (CESR) ettt ne e 21-144
2169.2 Use of the Performance-Monitoring Pins.ot e et 21-144
21693 oY= £ O3 =T 21-145
21.7 COUNTING CLOCKS ittt ettt et ettt e e e e e e e e e e e et e e e et e e et e eees 21-145
21.7.1 Non-Halted Reference ClOCKTICKS v v ettt 21-146
21.7.2 Cycle Counting and Opportunistic Processor Operation.vu vttt 21-146
21.73 Determining the Processor Base FreqQUENCY o. vttt i e ittt it aeaaas 21-147
21.7.3.1 For Intel® Processors Based on Sandy Bridge, Ivy Bridge, Haswell, and Broadwell Microarchitectures.......... 21-147
21.73.2 For Intel® Processors Based on Nehalem Microarchitecture.vvvveiiiii i 21-147
21733 For Intel Atom® Processors Based on Silvermont Microarchitecture (Including Intel Processors Based on

LY Ty a ol o= T a2 (= (=) 21-147
21734 For Intel® Core™ 2 Processor Family and for Intel® Xeon® Processors Based on Intel Core Microarchitecture ... 21-147
21.8 IA32_PERF_CAPABILITIES MSR ENUMERATION. . . 1ttt e ettt et e e et e e e et eees 21-148
21.8.1 Filtering of SMM Handler OVerheado.ir i e e e e 21-149
21.9 o =2 B 21-149
21.9.1 EXTENAEA PEBS . . i e 21-149
21.9.2 APtV PEBS ..ottt et e e e 21-151
21.9.2.1 Adaptive_Record Counter CONTIOluuu ettt et e e e 21-152
219.2.2 PEBS RECOMA FOMmMIat. . ottt ettt et e et e e e e e e e e e 21-153
219.23 MS R _PEBS D AT A C G, ittt ettt ettt e e et e e e e e e e 21-157
219.24 PEBS RECOMA EXAMIPIES. . v vttt ettt et et e e e e e e e e e 21-160
2193 Precise Distribution of Instructions Retired (PDIR) Facility.covuviii i 21-162
2194 RedUCEA SKId PEBS ...ttt e e e 21-162
2195 EPT-Friendly PEBSttt e e e e e 21-163
21.9.6 PDist: Precise DistriDULION. ... v v e s 21-163
219.7 L0ad LatenCy FaCility . ..ottt e e e e e 21-163
2198 StOrE LatenCy FaCility . . oottt e 21-165
2199 Timed Processor Event Based Sampling. c.vuitii et e e 21-166
21.9.10 CoUNTErS SNAPSNOTEING. . ..ottt e e e e et e e e s 21-166
21.9.11 LU (o N oW =] (=1 o - T 21-166

XX Vol. 3A

CONTENTS

PAGE
219.11.1 DISCOVETY AN IMEI a0, . ..ottt ettt e ettt e s 21-166
219.11.2 Configuration @nd Behavior 21-167
CHAPTER 22
8086 EMULATION
22.1 REAL-ADDRESS MODE . . .ottt ittt et ettt e e et e et et et e e e e 22-1
22.1.1 Address Translation in Real-Address MOGE.ttt e 22-2
22.1.2 Registers Supported in Real-Address MOde 22-3
22.1.3 Instructions Supported in Real-Address MOo it e e e 22-3
2214 Interrupt and EXception Handling.o v i e e 22-4
22.2 VIRTUAL-BOBE MODE. . . .ottt ettt ettt e et et e et et e e e et e e et e e et e e e e 22-5
22.2.1 ENAbliNG VirtUal-8086 MOGEottt it et e e 22-6
22.2.2 Structure of @ VIrtual-8086 Task.vvii et e 22-7
22.2.3 Paging of Virtual-8086 Tasks vuititt ettt ettt e 22-7
2224 Protection within @ Virtual-B086 Taskovuiiiii i e i 22-8
22.2.5 ENtering Virtual-8086 MOde . ..o\ttt e e e 22-8
22.2.6 Leaving Virtual-8086 MOGEottt e e 22-9
22.2.7 SN IV IS T UCTIONS . . . v vttt e e e et e e e e 22-10
22.2.8 VirtUal-8086 MOGE /0. . .ot e e e e e 22-10
22.2.8.1 /0-POrt-MapPed /0 . ..ottt et e 22-11
22.28.2 MEmMOTY-MapPPEA /0 . . e e e e 22-11
22.28.3 SPECIAl /O BU S, ottt e e e e 22-11
223 INTERRUPT AND EXCEPTION HANDLING IN VIRTUAL-8086 MODE.ttt et vttt e i e ineiaaieaas 22-11
22.3.1 Class 1—Hardware Interrupt and Exception Handling in Virtual-8086 Mode.............cociiii i 22-12
22.3.1.1 Handling an Interrupt or Exception Through a Protected-Mode Trap or InterruptGate..............covvvnns, 22-12
223.1.2 Handling an Interrupt or Exception With an 8086 Program Interrupt or ExceptionHandler 22-14
22313 Handling an Interrupt or Exception Through a Task Gatevviiiii i i i eas 22-14
22.3.2 Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt Mechanism..... 22-15
2233 Class 3—Software Interrupt Handling in Virtual-B086 Modecouiiiiii e 22-16
22.3.3.1 Method 1: Software Interrupt Handlingo e 22-18
22332 Methods 2 and 3: Software Interrupt Handling. ... 22-18
22333 Method 4: Software Interrupt Handlingoooo i e 22-19
22334 Method 5: Software Interrupt Handlingo i 22-19
22335 Method 6: Software Interrupt Handlingovi e e e 22-19
224 PROTECTED-MODE VIRTUAL INTERRUP TS ottt ettt e et e e e ey 22-20
CHAPTER 23
MIXING 16-BIT AND 32-BIT CODE
23.1 DEFINING 16-BIT AND 32-BIT PROGRAM MODULES.ttt ettt e ees 23-1
23.2 MIXING 16-BIT AND 32-BIT OPERATIONS WITHIN A CODE SEGMENT ...ttt 23-2
233 SHARING DATA AMONG MIXED-SIZE CODE SEGMENT S . .ttt ettt e 23-3
234 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE SEGMENTS ..ottt 23-3
234.1 C0ode-SegMENT POINTEr SiZe ..\ttt e e e e 23-4
234.2 Stack Management for CoNtrol TranS elttt e ettt 23-4
234.2.1 Controlling the Operand-Size Attribute Fora Call........ ..ot i et 23-5
234.2.2 Passing Parameters With @ Gate ... ov vt e e 23-6
2343 LN (=T N O o I = (= 23-6
234.4 =T 1 = (T =0 S = o 23-6
2345 WtiNg INTEr a0 PrOCEAUNES. . .ottt e e e e e e e e 23-6
CHAPTER 24
ARCHITECTURE COMPATIBILITY
24.1 PROCESSOR FAMILIES AND CATEGORIES. ..ottt ettt e e e e e e e e e e 24-1
24.2 RESERV D BITS ..ottt ettt e et e e e e e e e e 24-2
243 ENABLING NEW FUNCTIONS AND MODESttt ettt ettt e e et ettt e ees 24-2
24.4 DETECTING THE PRESENCE OF NEW FEATURES THROUGH SOFTWARE\ttt 24-2
24.5 INTEL MMX TECHNOLOGY . . vttt ettt ettt e e et e e e e e et e e et et et et et et et e e n e eees 24-2
24.6 STREAMING SIMD EXTENSIONS (SSE) . .ottt ittt ettt et e e e e e e ey 24-3
24.7 STREAMING SIMD EXTENSIONS 2 (SSE2). vttt ittt ettt e e e e e e 24-3
24.8 STREAMING SIMD EXTENSIONS 3 (SSE D). vttt ittt ittt ettt ettt 24-3
24.9 ADDITIONAL STREAMING SIMD EXTENSIONS . ..ttt e ey 24-3

Vol. 3A XxXi

CONTENTS

2410 INTEL HYPER-THREADING TECHNOLOGY . . .ottt ettt et ettt e et et et e et et e e et e e et e e e 24-3
2417 MULTI-CORE TECHNOLOGY . o ittt ettt e et et e e e e et e e e et e e et e e et et e et 24-4
2412 SPECIFIC FEATURES OF DUAL-CORE PROCESSOR ... ttttt sttt et e e et et e e et et e 24-4
2413 NEW INSTRUCTIONS IN THE PENTIUM AND LATER IA-32 PROCESSORSottt 24-4
24.13.1 Instructions Added Prior 10 the Pentium ProCeSSOr u ettt e e e 24-4
2414 OBSOLETE INSTRUCTIONS .ottt ettt et et e e e et e e e et e e et e e et e et 24-5
2415 UNDEFINED OPCODES. . ..ttt ettt ettt et et e e et et e e et et et et et et et e e et e e 24-5
2416 NEW FLAGS IN THE EFLAGS REGISTER . ..ottt ettt it e e e e e e e e e 24-6
24.16.1 Using EFLAGS Flags to Distinguish Between 32-Bit IA-32 Processors.ovvit ittt ettt 24-6
2417 STACK OPERATIONS AND USER SOFTWARE.ttt et ittt et et e et e e et et 24-7
24.17.1 PUSH S .o e e 24-7
24.17.2 EFLAGS PUShEd 0N the STaCK . . v v et e e e e e e e e 24-7
2418 XB7 FPU ittt e e e e e e e 24-7
24.18.1 Control REGISTEr CRO FlagsS . . o\ vttt ettt et e et e e e e e e 24-8
24.18.2 XB7 FPU STatUs WO, . . oottt ettt et ettt e e e et e 24-8
24.18.2.1 Condition Code FIags (CO through C3) ... v vttt et 24-8
24.18.2.2 STACK FAUIE g .o e ettt e e e 24-8
24183 X87 FPU CONTrOl WOT . . oottt ettt e et e e e st e e e e et r e r et 24-9
24.184 D 37 o o U I LT T 24-9
24185 [= T I 1= P 24-9
24.18.5.1 NGNS, L ettt e e e e e e e e e 24-9
24.185.2 Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal FOrmats.ovvviiiiiii it i ieiieieienanns 24-9
24.18.6 FloatiNg-POINt EXCEPIONS .« v ettt et e e e e e e e 24-10
24.18.6.1 Denormal Operand EXCEPLION (HD) vttt e e e 24-10
24.186.2 Numeric Overflow EXCEPTION (HO) ...\ vvt ittt ettt et e e et 24-10
24.186.3 Numeric Underflow EXCEPLiON (HU) ovir it e 24-10
24.186.4 o qor= n 1[0 I =T al =T =] = 24-10
24.18.6.5 CS aNd EIP FOr FPU EXCEPTIONS « o\ttt sttt et et e e ettt e e e e et ettt ettt 24-11
24.18.6.6 o I =0T 0 = PP 24-11
24.186.7 Assertion 0f the FERRH Pinot e e e 24-11
24.18.6.8 Invalid Operation EXCeption ON DENOMMALS\ v vttt ettt n e aeaes 24-11
24.186.9 Alignment Check EXCEPTIONS (HAC) ... ivtt ittt ettt e e 24-11
24.186.10 Segment Not Present Exception DUring FLDENV i i 24-12
24.186.11 Device Not Available EXCEPtioN (HNM)ttt 24-12
24.186.12 Coprocessor Segment OVermUN EXCEPION v\ttt ettt et e e eas 24-12
24.18.6.13 General Protection EXCEPLioON (HGP)t e 24-12
24.186.14 Floating-Point Error EXCEPtion (HMF) e 24-12
24.18.7 Changes 10 Floating-Point INStrUCIONSo\ v vt e 24-12
24.18.7.1 FDIV, FPREM, and FSQRT INSTrUCHIONS. . . .o\ttt ettt e e e e et et a e eeaes 24-12
24.18.7.2 (Y O I [y Tox o 24-12
24.18.7.3 FPREMT INStrUCTION. « vttt ettt et e et et e e et e e e e e e 24-13
24.18.7.4 L N Ty o o o 24-13
24.18.7.5 FUCOM, FUCOMP, and FUCOMPP INSTIUCHIONS. . .o\ v v vttt ettt et et e e et et e e e e e enen 24-13
24.18.7.6 (17 Ty« ot T 24-13
24.18.7.7) [0 Q07T o1 24-13
24.18.7.8 FSIN, FCOS, and FSINCOS INSTTUCTIONS. .+ . vt vttt ettt ettt et et e et e e e en 24-13
24.18.7.9 FPATAN IS UCTION. « oottt ettt e et et et e e et e e et e e e e 24-13
24.18.7.10) I T T T T 24-13
24.18.7.11 I T oo 24-14
24.18.7.12 FXTRACT INS IUCTION ettt ettt et e et et e et e et et e e e ee s 24-14
24.18.7.13 L0ad CoNSTaNT INStrUCTIONS. ..ottt e e 24-14
24.18.7.14 (oA i 3 or o 24-14
24.18.7.15 FSAVE and FSTENV INStrUCTIONS. . .o v ettt ettt e e e e e e e ee e 24-14
24.18.8 TransceNdental INSITUCTIONS. et e e e e e e 24-14
24.18.9 Obsolete Instructions and Undefined OPCOdeS. ov vttt et et iaaas 24-15
24.18.10 WAIT/FWAIT Prefix Differences e e e e e 24-15
24.18.11 Operands Split Across Segments and/or Pageso ov it i i i e e 24-15
24.18.12 FPU INStruction SYNCRMONIZation. ov .ttt et et e e 24-15
2419 SERIALIZING INSTRUCTIONS. . .ottt ettt ettt et et e et et et et et et et et e s 24-16
2420 FPU AND MATH COPROCESSOR INITIALIZATION . . o vttt ettt e ettt e ettt e s 24-16
24.20.1 Intel® 387 and Intel® 287 Math Coprocessor Initialization. i 24-16
24.20.2 Intel486 SX Processor and Intel 487 SX Math Coprocessor Initialization ..ot 24-16
24.2T1 CONTROL REGISTERS ..ttt ittt ittt et e e e e e et e e e et e e et e e s 24-17
24.22 MEMORY MANAGEMENT FACILITIES ...ttt ettt et ettt et et et e e et et ettt e e e 24-19
24.22.1 New Memory Management Control FIags.o vttt e e 24-19

XXxii Vol. 3A

CONTENTS

PAGE

24.22.1.1 Physical Memory Addressing EXTENSION. u .ttt e ettt 24-19
24.22.1.2 (00 = I =T 24-19
24.22.1.3 LArgEr PagE SizZBS ..ottt i it e e e e e e 24-19
24.22.2 CD and NW Cache Control FIags o.ivititt i ettt e ettt a e enaaas 24-19
24.22.3 Descriptor TYPES aNd COMTONTS. . ..\ttt ettt e e et et e et e ettt e 24-19
24.22.4 Changes in Segment DesCriPIor LOadso v ittt i et e e e 24-20
e B 0 = = 11 o L P 24-20
24.23.1 Differences in Debug Register DRBttt e e 24-20
24.23.2 Differences in DEDUG REGISTEI DR7ttt it et et e ettt 24-20
24.23.3 Debug Registers DRA @nd DRt ittt et et e e e e e e 24-20
24.24 RECOGNITION OF BREAKPOINTS ..ttt ettt ettt et e e e et e e e et e e e et a s 24-20
24.25 EXCEPTIONS AND/OR EXCEPTION CONDITIONS ..\ttt ettt et et e e e e e et 24-21
24.25.1 MaChinE-CheCk ATCNI B U, v\ttt e e ettt e 24-22
24.25.2 PrIOMIY OF EXCEPTIONS. . . vttt ettt e et e e e e e e 24-22
24.25.3 Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers..........cccoviviiiiiiiinnnnnnnnn. 24-22
24,26 INTERRUP TS Lottt ettt et et ettt et e e et et e e e e e e e e 24-27
24.26.1 INterrUPt Propagation Delay.ov ettt e e e e 24-27
24.26.2 NV 1 =T o a1 3 24-27
24.26.3 83 P 24-27
24.27 ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC) .. vttt ettt eeens 24-27
24.27.1 Software Visible Differences Between the Local APIC and the 82489DXovvviivii it 24-28
24.27.2 New Features Incorporated in the Local APIC for the P6 Family and Pentium Processors................coovvvn.n. 24-28
24.27.3 New Features Incorporated in the Local APIC of the Pentium 4 and Intel Xeon Processors.cocovvvvven.n. 24-28
24.28 TASK SWITCHING AND T S, ittt ittt ettt et e e e e e et e e e et e s 24-28
24.28.1 P6 Family and Pentium ProCessor TS . .. ittt it i e e e e e e e 24-29
24.28.2 BT Ton (o 1 =T 24-29
24.28.3 Order 0f Reads/WTeS 10 The TS .ottt e e e e e e 24-29
24.284 Using A 16-Bit TSS With 32-Bit CONStrUCTS. ...\ttt e e et eaens 24-29
24.28.5 Differences in 1/0 Map Base AQAreSSeS vttt ittt e e e 24-29
24.29 CACHE MANAGEMENT Lottt ittt st et et e e e e et e e e e e e e e e 24-30
24.29.1 Self-Modifying Code with Cache Enabled.ot e et 24-30
24.29.2 DisabliNg the L3 Cathe. . .ottt e e e e 24-31
24,30 PAGING .ottt e e e e e e e 24-31
24.30.1 LI L= =T L= 24-31
24.30.2 OB T T =T 24-31
24.30.3 Enabling and Disabling Pagingo vttt i e e e 24-32
2431 STACK OPERATIONS AND SUPERVISOR SOFTWARE . ..o\ttt sttt et ettt e et e s 24-32
24.31.1 SElECtOr PUSNES @Nd POPS. .. oottt e e e 24-32
2431.2 ErTOr CO0E PUSIIESottt e e e e e e 24-32
24313 Fault Handling Effects on the STack ..o e e 24-33
24314 Interlevel RET/IRET From a 16-Bit INterrupt or Call Gate.vvvv vt e e 24-33
2432 MIXING 16- AND 32-BIT SEGMEN T S . o\ttt ittt e e e e e e e et e 24-33
2433 SEGMENT AND ADDRESS WRAPAROUNDttt ettt et et e e e e e et e e e e e n et e s 24-33
24.33.1 SEgMENT WIraPAMOUNG. . . ottt ettt e e e e e e e 24-34
2434 STORE BUFFERS AND MEMORY ORDERING . . .0\ttt e et ettt et e e et et e e e e e n e eas 24-34
24.35 BUS LOCKING . . vttt et st e e e e e et e e e e et e e e e et e e et e e e e e e 24-35
2436 BUS HOLD ...ttt ettt e e e e e e 24-35
2437 MODEL-SPECIFIC EXTENSIONS TO THE IA-32 .o oottt ettt et ettt 24-35
24.37.1 MOdEI-SPECITIC REGIS OIS . . ittt it e et e e e e e 24-36
24.37.2 RDMSR and WRMSR INSTIUCTIONS ..ottt ettt ettt e e et e e et e e et e et e s 24-36
24373 Memory TYPe RaNGE REGISTEISttt i i it e e e et e e e 24-36
24374 Machine-Check Exception and ArChiTECTUNEttt e et eaens 24-36
24.37.5 Performance-MonitOriNg COUNTEIS. . ..ttt t et ettt e st ens 24-37
2438 TWO WAYS TO RUN INTEL 286 PROCESSOR TASKS ..ttt ettt et e ettt e 24-37
2439 INITIAL STATE OF PENTIUM, PENTIUM PRO AND PENTIUM 4 PROCESSORS it 24-37
CHAPTER 25

INTRODUCTION TO VIRTUAL MACHINE EXTENSIONS

25.1 OV RV LB .ttt ettt e e e e e e e e e 25-1
25.2 VIRTUAL MACHINE ARCHITECTURE. ..\ttt ittt ettt e et e e e et a s 25-1
253 INTRODUCTION TO VMX OPERATION . . . ottt ittt ettt e e e et e e et e et et e et et e e e e aees 25-1
254 LIFE CYCLE OF VMM SOF T W AR E . . o ettt ittt e ettt e e e 25-2
25.5 VIRTUAL-MACHINE CONTROL STRUCTURE. . ..ttt ettt ettt et e et et e et 25-2
25.6 DISCOVERING SUPPORT FOR VM X, 1 ettt ettt e et et e e e e et e e et et e e et e et et e e e e 25-2

Vol. 3A XxXiii

CONTENTS

PAGE

25.7 ENABLING AND ENTERING VMX OPERATION ..ttt e ettt et e e e et e e e e e e e e et e e a e e 25-3
25.8 RESTRICTIONS ON VMX OPERATION . . .ttt ettt ettt et et et e 25-3
CHAPTER 26

VIRTUAL MACHINE CONTROL STRUCTURES

26.1 OV RV B ottt et e e e e e e e e 26-1
26.2 FORMAT OF THE VMUES REGION. . . .ttt ettt et et e e et e et es 26-2
26.3 ORGANIZATION OF VMCS DA T A Lottt ittt e et e e e e e e e e e 26-3
26.4 GUES T - ST AT E ARE A L ittt ittt et e e e e e e e e e e e et e e e 26-4
26.4.1 GUEST REGISTET STaTE. . ottt vttt e e e e e e e e e 26-4
26.4.2 GUESTE NN R EGIS O STt . ..ottt e e 26-6
26.5 HO ST oS T AT E AR A oottt ettt e e e e e et e e e et e e e e 26-8
26.6 VM-EXECUTION CONTROL FIELDSottt ettt e et et e e et e e e et e ee s 26-9
26.6.1 Pin-Based VM-EXECULION CONTIOIS. . .o\ttt t ettt et ettt sttt e e e e ettt e e et e a e 26-9
26.6.2 Processor-Based VM-EXeCUtioN ConMEr0lSttt it e et et e e e 26-10
26.6.3 EXCEPTION BItmMaD .« ottt ittt e e e e e e e 26-14
26.6.4 1/O-BItMaD AQATESSES . . . vttt ettt et et e e et e et et e e e e e e 26-14
26.6.5 Time-Stamp Counter Offset and MU PIEr e it 26-14
26.6.6 Guest/Host Masks and Read Shadows for CROANd CR4ottt e 26-14
26.6.7 (813 B I Ty T A 8o o 26-14
26.6.8 Controls for APIC VirtUalization.ot e e e et e 26-15
26.6.9 MO R - BIEMIAD AQAIESS. o vttt sttt ettt et e e e e e e e e e e e e 26-16
26.6.10 EXECUTIVE-VMOS POIM T vttt ittt et et e et e e e e e e e e e 26-16
26.6.11 Extended-Page-Table PoINter (EPTP)ot et 26-17
26.6.12 Virtual-Processor Identifier (VPID)ttt e et 26-17
26.6.13 Controls for PAUSE-LOOP EXITING vvte ittt ettt et et e et et e et et 26-17
26.6.14 RV N Vo o o I o 1 o 3 26-18
26.6.15 VMCS Shadowing Bitmap AQQrESSESttt ettt ettt e e e e et e e e e e 26-18
26.6.16 ENCLS-EXITING BIEMIaD .« + v v vttt ettt et et ettt e e e e 26-18
26.6.17 ENCLV - EXITING BIEMIaD. o vttt ettt et e e e e et et e e e e 26-18
26.6.18 PCONFIG-EXITING BItmMIap. . . . vttt ettt ettt et e et et e et e e 26-18
26.6.19 Control Field for Page-Modification LOGgingc.veiiiiii e et 26-19
26.6.20 Controls for Virtualization EXCEPTIONS.ttt et e et ettt 26-19
26.6.21 XS S EXITING BItMIaD . ot vttt et e e 26-19
26.6.22 Sub-Page-Permission-Table Pointer (SPPTP) e 26-19
26.6.23 Fields Related to Hypervisor-Managed Linear-Address Translationcoo i e 26-20
26.6.24 Fields Related 10 PASID Translation. u ittt e 26-20
26.6.25 Sy W oo I V=T 10 o 1] 26-20
26.6.26 Fields Controlling Virtualization of the IA32_SPEC_CTRLMSRottt it ieas 26-21
26.7 VM-EXIT CONTROL FIELDS . . . ottt ettt et et et e e et et e e et e e e a e e aees 26-21
26.7.1 R B 3 e) o) 3 26-21
26.7.2 VM-EXit CONTrolS TOr MRS ...ttt e e et ettt e e e ettt e 26-22
26.8 VM-ENTRY CONTROL FIELDSottt ettt et e e ettt e e e e e e e a e 26-23
26.8.1 VM-BNTTY CONIOIS . .ottt e e e 26-23
26.8.2 VM-ENTrY CoNtrolS TOT MRS . ..o\ttt ittt ettt e e et e e e e e ettt 26-24
26.8.3 VM-Entry Controls for EVent INECtiON. v ettt e et e e 26-24
26.9 VM-EXIT INFORMATION FIELDS . . . vttt ettt ettt e et e et e e e e e e e 26-25
26.9.1 Basic VM-EXit INfOrmation.o e e 26-26
26.9.2 Information for VM Exits Due 10 Vectored EVENTSttt e e 26-27
26.93 Information for VM Exits That Occur During Event Deliveryo.vvii e 26-27
26.94 Information for VM Exits Due 10 INStruction EXeCULiON.oe et 26-28
26.9.5 VM-INSTrUCTION ErTOr Field. .. oo e e e e e e e e e 26-29
26.10 VMCS TYPES: ORDINARY AND SHAD W . . 1ttt e ettt ettt e et e e e et et et e e e e e et e e 26-29
26.11 SOFTWARE USE OF THE VMCS AND RELATED STRUCTURES ...ttt e eaes 26-29
26.11.1 Software Use of Virtual-Machine Control STrUCTUMES. ov vttt e 26-29
26.11.2 VMREAD, VMWRITE, and Encodings 0f VMCS Fields vvvivni et e 26-30
26.11.3 INIAlIZING @ VMO e e e e e 26-32
26.11.4 Software ACCesS 10 Related STTUCTUNESttt e ettt eeaes 26-32
26.11.5 AT AV (=T o 26-32

XXiv Vol. 3A

CONTENTS

PAGE
CHAPTER 27

VMX NON-ROOT OPERATION

27.1 INSTRUCTIONS THAT CAUSE VM EXIT S . ottt ittt ettt ettt e e e e e e e e e 27-1
27.1.1 Relative Priority of FAuIts and VM EXItS.ottt e e e e 27-1
27.1.2 Instructions That Cause VM Exits Unconditionallyooiniiini e 27-2
27.1.3 Instructions That Cause VM Exits Conditionally.ooiuiii i i i i i et eas 27-2
27.2 OTHER CAUSES OF VM EXITS ittt ettt et e e e e e e e e e ee s 27-6
27.3 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-ROOT OPERATIONottt 27-7
27.4 OTHER CHANGES IN VMX NON-ROOT OPERATION. . .ttt ettt ettt et 27-14
27.4.1 VBN BlOCKING . oottt e e e e e 27-14
27.4.2 Treatment Of Task SWItCRESo e e e 27-14
2743 SHAdOW-STaCK UPAates . . oo i i e e e e 27-15
27.5 FEATURES SPECIFIC TO VMX NON-ROOT OPERATION ...ttt ettt ettt e et et e e e e e e ineiaeieans 27-15
27.5.1 RV DG o == T T oo I 2T P 27-15
275.2 oV o I = o N =T 27-16
2753 Translation of Guest-Physical Addresses Using EPTt ettt 27-17
2754 Translation of Guest-Physical Addresses Used by Intel Processor Tratevvvvvr it vrvnniiiii i inineneianns 27-17
27.5.4.1 Guest-Physical Address Translation for Intel PT: Details ...t e 27-17
27.54.2 Trace-Address Pre-Translation (TAP T). . v .ttt ettt e 27-17
27.5.5 L (O T {0 12 o A 27-18
2756 RV N 0 oo 27-18
27.56.1 ENADIING VM FUNCHIONS. . .ottt e e e ettt e e e e e 27-18
27.56.2 General Operation of the VMFUNC INSTrUCTION ... v ittt e 27-18
27.56.3 EP TP SWITCNING .« .ot e 27-19
27.5.7 VirtUAl Zation EXCEPTIONS .« .\ttt ettt e et e e 27-20
27.5.7.1 Convertible EPT VI0lationso v ettt e e e e e e 27-21
27572 Virtualization-Exception INformationc.i i e 27-21
27573 Delivery of Virtualization EXCEPTIONSo vit ittt ettt 27-22
27.5.8 AN | =0] o 27-22
27.6 UNRES TRICTED GUES TS &t ittt ettt et e e e et e e et e e e et e e e e et e et et et 27-23
CHAPTER 28

VM ENTRIES

28.1 BASIC VM-ENTRY CHECK S, . .ttt ittt ettt e e e e e et et e et ettt e aees 28-2
28.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA . .ottt sttt et e et e e 28-2
28.2.1 Checks ON VMX CONTTOIS . . vttt et e et ettt 28-2
28.2.1.1 VM-Execution CoNtrol FIldSvu et 28-2
28.2.1.2 VM-EXIt CONTrOl FIElaS . v ettt e e e e e e e e 28-5
28.2.1.3 VM-ENtrY Control FIElaS. . oot e i e et et e e 28-6
28.2.2 Checks on Host Control Registers, MSRS, and SSPuiuii i e 28-7
28.2.3 Checks on Host Segment and Descriptor-Table Registers ..ot e 28-7
28.2.4 Checks Related 10 AdAress-SPate Size. .. vttt i i i e e e e e s 28-8
283 CHECKING AND LOADING GUEST STATE .ottt e ittt et e e et 28-8
28.3.1 CRECKS ON The GUEST STaT8 A 3. .t vttt ettt ettt et ettt e e e e e e e s 28-8
28.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRS. ...t e i 28-9
28.3.1.2 Checks 0N GUEST SEGMENT REGISTEIS. . v\ttt ettt et et et aees 28-10
28.3.1.3 Checks on Guest Descriptor-Table REGISTerS ve i e 28-12
283.14 Checks on GUESE RIP, RFLAGS, @Nd SSP ...\ttt et e e et 28-12
28.3.1.5 Checks 0N GUEST NON-REGISTEr STate ...\ v vttt e 28-13
28.3.1.6 Checks on Guest Page-Directory-Pointer-Table ENTrieso e 28-15
28.3.2 L0adiNg GUEST STat . .ottt i it i e e e 28-15
28.3.2.1 Loading Guest Control Registers, Debug Registers, and MSRSovi i e 28-15
28.3.2.2 Loading Guest Segment Registers and Descriptor-Table Registers ..o i 28-17
28.3.2.3 Loading GUest RIP, RSP, RFLAGS, @nd SSP ...\ttt et e 28-17
28324 Loading Page-Directory-Pointer-Table ENtries. v vt 28-18
28.3.25 Updating NON-RegiSter STate. ..ot e e 28-18
2833 Clearing Address-Range MoOnitOring. . ..o vv vttt it e et e e e e 28-18
284 LOADING MRS . .ttt ettt e e e e e e e e e e e e 28-18
28.5 TRACE-ADDRESS PRE-TRANSLATION (T AP T . s ettt ittt ettt et e e e e e e e 28-19
286 BV ENT INJECTION. .« ettt ettt et et ettt et e e e et e e et et e e et e e e 28-19
28.6.1 LY=oy (o] =Y LS VT 0 =Tt 1 o T 28-19
28.6.1.1 Details of Vectored-EVent INJECHION.t e 28-20
28.6.1.2 VM EXits DUMNG EVENT e CtiON . .ot e e e 28-21

Vol. 3A XXV

CONTENTS

286.1.3 Event Injection for VM Entries to Real-Address Modeo.vviii it et 28-22
28.6.2 Injection of Pending MTF VM EXitS.t e et 28-22
28.7 SPECIAL FEATURES OF VM ENTRY ..ttt ittt et e ettt e e et 28-22
28.7.1 Nt TUP I DIl Y StatE .. oottt e i e 28-23
28.7.2 ot 1Y V) = 1 (= 28-23
28.7.3 Delivery of Pending Debug Exceptions after VM ENtryooinii i et ieaas 28-24
28.7.4 RV D == T o o I T 28-25
28.75 Interrupt-Window Exiting and Virtual-Interrupt DeliVeryouiiii e 28-25
28.7.6 NME-WINAOW EXITING v et e ettt et e ettt et e e et e e et e e e et e e 28-25
28.7.7 VM Exits Induced by the TPR Threshold.o e e e 28-25
28.7.8 PENAING MTF VM EXITS o\ttt ittt e s e ettt e e e et e e e e 28-26
28.7.9 VM Entries and Advanced Debugging FeatUMSottt it et e e 28-26
28.7.10 User-Interrupt Recognition After VM ENTry. . ..ot e ettt 28-26
28.8 VM-ENTRY FAILURES DURING OR AFTER LOADING GUEST STATEttt eie s 28-26
28.9 MACHINE-CHECK EVENTS DURING VM ENTRY L.ttt ettt et et et 28-27
CHAPTER 29

VM EXITS

29.1 ARCHITECTURAL STATE BEFORE A VM EXIT .ottt et 29-1
29.2 RECORDING VM-EXIT INFORMATION AND UPDATING VM-ENTRY CONTROL FIELDSot 29-4
29.2.1 Basic VM- EXIt INfOrmIation. .. v e 29-4
29.2.2 Information for VM Exits Due t0 Vectored EVENTSoviuiit et 29-12
29.2.3 Information About NMI Unblocking DUe tO IRETo e 29-13
29.24 Information for VM Exits During EVent DeliVEryouiiiiii i e e 29-14
29.25 Information for VM Exits Due 10 INStruction EXECULION. v v e et 29-15
29.3 SAVING GUEST ST AT E ottt ittt e e et e e e e e e e e e e e e e 29-23
29.3.1 Saving Control Registers, Debug Registers, and MSRS.ot i e e e e e 29-23
29.3.2 Saving Segment Registers and Descriptor-Table RegiSTerSvv vt 29-24
2933 SaviNg RIP, RSP, RFLAGS, AN SO . . ittt ittt e e e e e e e e e 29-24
2934 SaVING NON-REGISTEr S AT ..ottt i e it e e e 29-26
29.4 SAVING MO RS e e e e e 29-28
29.5 LOADING HOST ST AT E ittt ettt ettt et e e e e e e e e e e e e et e e e e e 29-28
29.5.1 Loading Host Control Registers, Debug Registers, MSRSo i e e 29-29
29.5.2 Loading Host Segment and Descriptor-Table REGISTErSvu vttt i 29-30
2953 Loading Host RIP, RSP, RFLAGS, @Nd SSPttt ettt ittt i et e e 29-31
2954 Checking and Loading Host Page-Directory-Pointer-Table Entries ... e 29-31
29.5.5 Updating NON-ReGISTEr STatE . . vttt ettt e et e et e e e e e 29-32
29.5.6 Clearing Address-Range MONItOMiNG.o v vttt ettt et et 29-32
29.6 LOADING MRS . ittt et e e e e e e e e e 29-32
29.7 LT A 20 29-33
29.8 MACHINE-CHECK EVENTS DURING VM EXIT Lottt ittt et et e e e 29-33
29.9 USER-INTERRUPT RECOGNITION AFTER VM EXIT . . ottt t ettt ettt et 29-34
CHAPTER 30

VMX SUPPORT FOR ADDRESS TRANSLATION

30.1 VIRTUAL PROCESSOR IDENTIFIERS (VPIDS) ..t e vttt ittt ettt e ettt e et e e en s 30-1
30.2 HYPERVISOR-MANAGED LINEAR-ADDRESS TRANSLATION (HLAT). . vttt et et 30-1
303 THE EXTENDED PAGE TABLE MECHANISM (EP T). . vttt ettt e e e e e 30-1
30.3.1 o 1Y YT 30-2
30.3.2 EPT Translation MEChaniSmmottt e e e e e e e e e e 30-3
3033 o]l I T N =T T £ 30-10
30.3.3.1 EP T MISCONMTIGUITIONS & o\ttt ittt e e e e e e e e e 30-10
30332 LS Y10 = T L 30-12
30.3.3.3 Prioritization of EPT Misconfigurations and EPT Violationscooviiiiii i i e 30-15
3034 SUD-Page Wit P IS SIONS. . o\ttt ettt ettt e e e s e e e e e e 30-16
30.3.4.1 Write Accesses That Are Eligible for Sub-Page Write Permissions.ovuiriiii e 30-17
30.34.2 Determining an Access's Sub-Page Write PermisSSion.iu ittt it 30-17
30.3.5 Accessed and Dirty Flags for EP Tt e 30-18
30.3.6 Page-Modification LOGGINGo v ettt ittt ettt et et et et e e 30-19
30.3.7 [=T o =T o T TV LY/ T P 30-19
30.3.7.1 Memory Type Used for Accessing EPT Paging STrUCTUNES vv vt e 30-19
303.7.2 Memory Type Used for Translated Guest-Physical Addressesvvvviiii i i 30-19

XXvi Vol. 3A

CONTENTS

PAGE
30.4 CACHING TRANSLATION INFORMATION. . .ottt ettt ettt et et e e e et e e e e e e et ees 30-20
30.4.1 Information That May Be Cached e i 30-20
30.4.2 Creating and Using Cached Translation INnformation. it ieaas 30-21
304.3 Invalidating Cached Translation INformation.t e 30-22
30.4.3.1 Operations that Invalidate Cached Mappings vv ittt e 30-22
304.3.2 Operations that Need Not Invalidate Cached Mappings ..ot e i 30-24
30.4.33 Guidelines for Use of the INVVPID INStrUCTON. vttt e naaas 30-24
30434 Guidelines for Use of the INVEPT INSTrUCTION. . ..o v vttt e e 30-25
CHAPTER 31
APIC VIRTUALIZATION AND VIRTUAL INTERRUPTS
31.1 R TU AL AP ST AT E ittt ettt e e e e e e e e e et e 31-1
31.1.1 VirtUAIZEA AP C REGISTEIS v ittt ittt ettt et e e e e e e e e e e e 31-2
31.1.2 TP R VITTUAI ZatION . oot e e e e e e e 31-2
31.1.3 PPR VItUal Zation oottt e e e e e e e e e s 31-2
31.1.4 (SO T (U= 112 1o 31-3
31.1.5 Sl P VITtUAlIZatION .« .. oottt e e e e 31-3
31.1.6 1 IRV (U= 2= T o 31-3
31.1.6.1 ViIrtUal- I UPT POSTiNg. . vttt e e 31-4
31.1.6.2 IPI Virtualization Using Virtual-Interrupt POSTiNgovviei i 31-4
31.2 EVALUATION AND DELIVERY OF VIRTUAL INTERRUP TS ..ottt et et ees 31-5
31.2.1 Evaluation of Pending Virtual INtermUDES ..o v vttt e 31-5
31.2.2 VirtUl- INTErTUPT DElIVEIY . . ettt e e e e e 31-6
31.2.3 Virtualizing User-Interrupt Notificationso ettt 31-6
31.3 VIRTUALIZING CR8-BASED TPR ACCESSESottt t et et aaes 31-7
314 VIRTUALIZING MEMORY-MAPPED APIC ACCESSES .. ittt e e e s 31-7
31.4.1 Priority Of APIC-ACCESS VM EXITS ..\ttt ittt ittt e it e e e et e ettt 31-8
314.2 Virtualizing Reads from the APIC-ACCESS Page .. .o v vvii ittt e 31-9
3143 Virtualizing Writes 10 the APIC-ACCESS Page. vttt e 31-10
31.4.3.1 Determining Whether a Write Accessis Virtualized. ... e e e e 31-10
31432 APIC- W EMUIGTION . . ettt e e e e e e e 31-11
31433 AP T VM EXIES oo vttt sttt e e e e e e e e e e 31-12
3144 Instruction-Specific CoNSIAEratioNSii it i e et e 31-12
3145 Issues Pertaining to Page Size and TLB Management. .. .o . vu vttt e enens 31-13
31.4.6 APIC Accesses Not Directly Resulting From Linear AddreSSesvvvriiei i 31-13
31.4.6.1 Guest-Physical Accesses 10 the APIC-ACCESS Page. .. .o i e e e e e 31-14
3146.2 Physical Accesses 10 The APIC-ACCESS Paget . ittt e 31-14
315 VIRTUALIZING MSR-BASED APIC ACCESSES ..ttt ittt e e e e e 31-15
31.6 POSTED-INTERRUPT PROCESSING. . . vttt ettt ettt e e et e e e et e e e e e et 31-16
31.7 VIRTUALIZING SENDUIPL . . . e ettt e ettt e e et e e e et e e e et et e e e 31-17
CHAPTER 32
VMX INSTRUCTION REFERENCE
32.1 OV RV B .ttt et s e e e e e e e e 32-1
32.2 CONV ENTIONS Lottt et e e e e e e e e e 32-2
323 VMX INSTRUCTIONS . . ettt e ettt et et e et et et e e e e et et e e et e e aanas 32-2
INVEPT— Invalidate Translations Derived from EPT ettt 32-3
INVVPID— Invalidate Translations Based on VPIDo e 32-6
LY Y R = o IRV o3 (o P 32-9
VMCLEAR—Clear Virtual-Machine Control STTUCTUNE v et 32-11
VMFUNC—INVOKE VM UNCHION. .. et e e e 32-13
VMLAUNCH/VMRESUME—Launch/Resume Virtual Machingouiuiiii it 32-14
VMPTRLD—Load Pointer to Virtual-Machine Control STructureovivi e 32-17
VMPTRST—Store Pointer to Virtual-Machine Control STructureo 32-19
VMREAD—Read Field from Virtual-Machine Control STrUCTUME. . ..o . vv vt 32-21
VMRESUME—Resume Virtual Machingooui e e 32-23
VMWRITE—Write Field to Virtual-Machine Control STrUCtUreo 32-24
VMXOFF—LEaVe VMX OPIatiON . ..ttt sttt ettt et ettt et es 32-26
VMXON—ENTEr VMX OPeration. . ..ottt et ettt ettt e e e et e e et et es 32-28
324 VM INSTRUCTION ERROR NUMBERS ittt ettt e ettt et et e e e e e 32-31

Vol. 3A XXvii

CONTENTS

PAGE

CHAPTER 33

SYSTEM MANAGEMENT MODE

33.1 SYSTEM MANAGEMENT MODE OVERVIEW. . ..\ttt ettt e e e e e e 33-1
33.1.1 System Management Mode and VMX Operationuuir ettt ettt e et 33-2
33.2 SYSTEM MANAGEMENT INTERRUPT (SMI) ...ttt ittt et et e e e 33-2
333 SWITCHING BETWEEN SMM AND THE OTHER PROCESSOR OPERATING MODES.ov it 33-2
33.3.1 ENEEMiNG SMM Lo e e e 33-2
33.3.2 EXITING FIOM QMM it e e e e 33-3
334 SR A L e e e e 33-4
334.1 SMRAM SEaTE SAVE M. 1+ttt vttt ettt e e e e e 33-4
33.4.1.1 SMRAM State Save Map and Intel 64 Architecture.ot e 33-6
334.2 SMRAM Ca0NING vt vttt ettt et e e e e e e e e e 33-8
334.2.1 System Management Range Registers (SMRR) vttt e 33-9
335 SMI HANDLER EXECUTION ENVIRONMENT . ..ottt ettt e nen s 33-9
33.5.1 Initial SMM EXECULION ENVITONMIENTttt ettt e e e et e e e e et 33-9
33.5.2 SMI Handler Operating Mode SWItChiNg o.oviti e e e et 33-10
33.5.3 Control-flow Enforcement Technology INTEraCtioNS. vv ittt e i e 33-11
336 EXCEPTIONS AND INTERRUPTS WITHIN SMM. . .. oottt et 33-11
337 MANAGING SYNCHRONOUS AND ASYNCHRONOUS SYSTEM MANAGEMENT INTERRUPTS ... 33-12
33.7.1 FLO Iy = 1 =N 0] =T 1= = 1o 33-12
33.8 NMIEHANDLUING WHILE IN SMM . e e e e e e e e e e e e 33-13
339 SMM REVISION IDENTIFIER . . .ottt ettt ettt e e e et e e e e e e et e e et a e aees 33-13
3310 AUT O HALT REST AR ettt ittt ettt et e et et e e et et et et et ettt e s 33-14
33.10.1 Executing the HLT InStruction in SMM ... o i e e e i e e 33-14
33171 SMBASE RELOCATION. . vttt ettt ettt et et et e e et et e e et et et et et e et e e 33-14
3312 O INSTRUCTION RES T AR .ttt ettt ettt et e et et et e e et et et et et et et et e e eens 33-15
33.12.1 Back-to-Back SMI Interrupts When I/0 Instruction Restart Is BeingUsed ...t 33-16
33.13 SMM MULTIPLE-PROCESSOR CONSIDERATIONS. . .ttt ettt ettt et e ettt e s 33-16
33.14 DEFAULT TREATMENT OF SMIS AND SMM WITH VMX OPERATION AND SMX OPERATIONc.covvvviiiinennnn. 33-16
33.14.1 Default Treatment Of SMI DEIIVETY.o i e e et ettt ettt aaens 33-17
33.14.2 Default Treatment Of ROM L.t e e 33-18
33.14.3 Protection 0f CRAVMXE N SMM . ..o e e e 33-19
33.144 VMXOFF and SMIUNDIOCKING .+ ot vt e ettt e e e e e e e e et e e et et e 33-19
33.15 DUAL-MONITOR TREATMENT OF SMIS AND SMM ...ttt e eans 33-19
33.15.1 Dual-Monitor TreatMenT OVEIVIBW. . . v .ttt ettt e e et et e et et et et et et e e et e e e 33-19
33.15.2 SIMM VM EXITS vttt ettt et e e e e e e e e e 33-20
33.15.2.1 Architectural State Before @ VM EXit i it e 33-20
33.15.2.2 Updating the Current-VMCS and Executive-VMCS POINTErS. .. ov i 33-20
33.15.2.3 Recording VM-Exit INformation e e e 33-20
33.15.24 SAVING GUEST STaTE ..\ttt ettt ittt e ettt ettt e e e e e e 33-21
33.15.25 1000 = Yo) 1= (=P 33-21
33.15.3 Operation of the SMM-TransSTer MONITOro e ettt e ittt aenanas 33-22
33.154 VM Entries that Return from SMM . ..o e e e e 33-22
33.15.4.1 Checks on the Executive-VMCS Pointer FIeldvui e e 33-22
33.15.4.2 Checks on VM-Execution Control FIeldsvi oo e e 33-22
33.154.3 Checks on VM-ENtry Control Fields.ov i et et e e e e e 33-23
33.1544 Checks 0N the GUEST STat ATBattt ettt e e e et 33-23
33.15.4.5 L0ading GUEST STaT . .ot i et i e e e 33-23
33.15.4.6 {V D o == T T o o I 3T 33-23
33.154.7 Updating the Current-VMCS and SMM-Transfer VMCS PoINters. ..ot 33-24
33.15.4.8 VM EXits INdUCEA DY VM BNty . oo i e e e e ettt i e 33-24
33.154.9) =] o Tt T 33-24
33.154.10 Failures of VM Entries That Return from SMM. i 33-24
33.15.5 Enabling the Dual-Monitor Treatment.o i i i i e e e i e 33-25
33.15.6 Activating the DUal-Monitor TreatmEnt ottt et e ettt ettt 33-26
33.15.6.1 Il CNBCKS & . vttt e e e e e e e 33-26
33.15.6.2 Updating the Current-VMCS and Executive-VMCS Pointers. ... ov vttt e e 33-27
33.15.6.3 SAVING GUEST STaTE ..\ttt ittt ittt e et et et e e e e e 33-27
33.15.6.4 SAVING MO RS .ttt e e e e 33-27
33.156.5 L0adiNG HOSt STate . .ottt e e e e e 33-27
33.15.6.6 L0BAING MO RS vttt ettt e e e e 33-29
33.15.7 Deactivating the DUual-Monitor Treatment.ttt e e e 33-29
33.16 SMI AND PROCESSOR EXTENDED STATE MANAGEMENT . ..ottt e 33-29
33.17 MODEL-SPECIFIC SYSTEM MANAGEMENT ENHANCEMENT ...ttt eans 33-30

Xxxviii Vol. 3A

CONTENTS

PAGE
33.17.1 SMM Handler Code ACCESS COMTIOl. .. v vttt ettt et ettt et et et e et 33-30
33.17.2 SMIDelivery Delay REPOMTING v ettt ettt e e et ettt e 33-30
33.17.3 2] Lo Tt (=T Y i [2=T o 33-30
CHAPTER 34
INTEL® PROCESSOR TRACE
34.1 OV RV B ..ttt e et e e e e e e e e e e 34-1
34.1.1 Features and Capabilitieso e s 34-1
34.1.1.1 o (ol Y U0 1 0 = 34-1
34.2 INTEL® PROCESSOR TRACE OPERATIONAL MODEL. . . . vttt e et et et e e ettt e ens 34-2
34.2.1 Change of Flow Instruction (COFI) TraCing. v ettt et aens 34-2
34.2.1.1)T Ton I 1 = 0 P 34-3
34.2.1.2 o= A =T] =T 0 34-3
34.2.1.3 L I 1 Y =T 34-4
34.2.2 Software Trace Instrumentation With PTWRITE e e 34-4
34.2.3 oL V=T o A - [34-4
3424 oY= o S I o T 34-5
34.2.5 I Lol =N 11T 34-5
34.2.5.1 Filtering by Current Privilege Level (CPL)vuitiritt e e 34-5
34.25.2 FIEMING DY CR 3 ..ttt ittt e e e e 34-5
34253 FIEIING DY P Lttt e e 34-6
34.2.6 Packet Generation ENable CONTIOIS v ittt et e e e e e 34-7
34.26.1 Packet ENable (PaCKETEN)ottt e et e e e 34-7
34.2.6.2 Trigger ENable (TrigQerEn)ttt ettt e e e e e et 34-8
34.26.3 Context ENADIE (COMTEXTEN). .o\ttt ittt ettt et s e et et e e 34-8
34264 Branch Enable (BranChEn).ou it e s 34-8
34.2.6.5 Filter ENable (FIHEIEN) . . ottt et e e e e et e e 34-8
34.2.7 = o= 51U P 34-9
34.2.7.1 SiNGIE RANGE OUTPUL. . . .ttt e 34-9
34.2.7.2 Table of Physical AdAresses (TOPA) ... u vttt ettt e e e et 34-10
Single Output Region TOPA IMplementation.v. vttt e iaas 34-12
TOPA Table ENtry FOrmat . . ottt et e e e e e e e 34-12
TOP A ST 0P ittt e e e e 34-13
TOP A Pl et e e e 34-13
o I o 0=~ V= 4T 34-14
ToPA PMI and Single Output Region ToPA Implementation.ouiiiiii i i 34-14
ToPA PMI and XSAVES/XRSTORS State Handling.vvei e e 34-15
B0 72 N = 0 34-15
34.2.7.3 Trace TranSPOrt SUDSY S M. . ..ttt ettt et ettt et e ettt e e 34-16
34274 =TSy o (=0 i =T 03T Y ol =S 34-16
Modifications to Restricted MemMOrY REGIONS v vttt e e e e eneas 34-16
34.2.8 Enabling and Configuration MO RSttt e 34-17
34.2.8.1 (7=T =T T @] T (=T o 0 34-17
34.28.2 L G 1 Y R P 34-17
34283 Enabling and Disabling Packet Generation with TraceEnvviiiiiii i e 34-20
Disabling Packet Gemeration. .. .ottt ittt i ettt e e e e e 34-21
(01 p L= Y (=T (o I VA 1 I 34-21
34284 IAB 2 _RTIT_STATUS MR ittt ittt ittt ettt e et e et e e e et e e en s 34-21
34.285 IA32_RTIT_ADDRN_A and IA32_RTIT_ADDRN_B MSRSttt ittt 34-22
34.2.86 IA3 2 RTIT R _MAT CH MR .ttt ettt e e e e e e e e 34-22
34.2.8.7 IA32_RTIT_OUTPUT _BASE MSR. ...ttt e e e e e e iaaaes 34-23
34.2.88 IA32_RTIT_OUTPUT _MASK _PTRS MR . ittt e e 34-23
34.29 Interaction of Intel® Processor Trace and Other Processor FEAtUreS u.vvuvu ittt in it iniei s 34-24
34.2.9.1 Intel® Transactional Synchronization Extensions (INtel® TSX) e 34-24
34.29.2 TS X AN P FIEIING .ottt et e e et e e e e 34-25
34.293 System Management Mode (SMM) e e 34-25
34294 Virtual-Maching EXTENSIONS (VMX). . .o v vttt ettt et e et et e et et et et e e e s 34-26
34.295 Intel® Software Guard EXtensions (INTEI% SGX). ...ttt e e 34-26
34.29.6 SENTER/ENTERACCS aNd ACM ..ottt ittt e e e e e e e 34-26
34.2.9.7 Intel® Memory Protection EXtensions (INtel® MPX) vui it e 34-26
34.3 CONFIGURATION AND PROGRAMMING GUIDELINE oottt ettt et et et 34-26
34.3.1 Detection of Intel Processor Trace and Capability Enumeration. ... 34-26

Vol. 3A XxXiX

CONTENTS

PAGE

34.3.1.1 Packet Decoding Of RIP VEISUS LIP. ittt e e e ettt e eaes 34-30
343.1.2 Model Specific Capability RESTHCTIONSttt e e e e 34-30
34.3.2 Enabling and Configuration of Trace Packet Generation.ouiuiiii i it neaaaas 34-30
34.3.2.1 ENADIiNg Packet GeNerationt e e e 34-30
34322 Disabling Packet GeNeration.ov.ee ittt e e e e e 34-31
3433 FIUSRING Trace QUL DUL ..o i i i e e et e et e ettt e 34-31
3434 T RS T . it e e e e 34-31
3435 Context SWItCh CONSIABraTiON . v vttt et ettt e e e e 34-31
34.3.5.1 Manual Trace Configuration Context SWitch. e 34-31
3435.2 Trace Configuration Context Switch Using XSAVES/XRSTORS.ttt e 34-32
34.3.6 CYCIE-ACCUMATE MOGE. . v vttt vttt ettt et e e e et e e e e e e 34-32
34.36.1 0o = o T) (] 34-33
343.6.2 O[T o (=) Y= = L ol 34-33
343.6.3 CYCIE TREESNOIAS ...ttt e e e e e 34-33
34.3.7 Decoder SYNChronization (PSB+). u ettt et e e e e e 34-34
3438 LR =T a2 =T V7= o1V 34-35
34.3.8.1 Overflow IMPact 0N ENaDIES. ...t s 34-35
34.3.8.2 Overflow Impact on TiIMING Packets. v i e e ettt 34-35
3439 B I 53 1o 34-36
343.10 (]8T 1o = N = o PP 34-36
34.4 TRACE PACKETS AND DAT A TYPES . .o ittt ittt e e e e 34-36
34.4.1 Packet Relationships and Ordeming.o v vt ii ittt e ettt e 34-36
34.41.1 PaCKET BIOCKS ..\ttt ettt e e e 34-37

DeCoder IMPlCatiONS . . ottt i e e e 34-37
344.2 PaCKET DI M tONS . vttt et e e e 34-38
344.2.1 Taken/Not-taken (TNT) PacKetttt et e e eas 34-39
344.2.2 TarGET P (TIP) PaCK et . o v ottt ettt e e e e e et e e e 34-40

| 00 T =TS o 34-40

Indirect Transfer Compression for RetUMNS (RET) ... v vttt 34-41
34423 D=3 =T 1= S 34-42
34424 Packet Generation Enable (TIP.PGE) Packetc.iiuiini e 34-43
344.2.5 Packet Generation Disable (TIP.PGD) Packet.oviri et 34-44
344.2.6 FIOW Update (FUP) PacKet. . ..ottt e ettt e e 34-45

FUP P Payload . oottt et e e e 34-45
344.2.7 Paging INformation (PIP) Packet vt e 34-47
34.4.28 (0] o =1 £ 34-47

R[] S =T o = o = 34-48

R[] S I G = T (=) P 34-49
344.2.9 TrACES 0D PaCKET. . o e e 34-50
34.4.2.10 Core:Bus Ratio (CBR) PaCKET.t vttt ettt et ettt e e e 34-50
344.2.11 Timestamp Counter (TSC) Packet.t e e e e e 34-51
344.2.12 Mini Time Counter (MTC) Packeto e ettt ienaes 34-52
34.4.2.13 TSC/MTC AlIGNMENT (TMA) PacKet . ..ot e e e 34-53
344214 Cycle CoUNt (CY0) PatKet. . .o vttt e e e e e e e e e e e 34-54
34.4.2.15 R O o Vol (= 34-55
34.4.2.16 OVEMTIOW (OVF) PaCKet. o ottt et e e e e e e et e e e 34-56
344217 Packet Stream Boundary (PSB) Packet.vuirii e 34-56
34.4.2.18 POBEND PatKeT. . .ottt t ettt e e e 34-57
34.4.2.19 MaiNtenaNCe (MNT) PacKeT. .ottt e e e e e e e 34-58
34.4.2.20 PAD PaCK et ..\ttt e e e 34-58
34.4.2.21 PTWRITE (PTW) PacKet ..ottt e e e e e 34-59
34.4.2.22 EXecUtion STOP (EXSTOP) Packet . ..o v ottt e e 34-60
34.4.2.23 M AL PaCK O ottt e e e e 34-61
34.4.2.24 Power ENtry (PWRE) Packet. e e e e 34-62
34.4.2.25 Power EXit (PWRX) PacKeT . ..ottt et 34-63
34.4.2.26 BIOCk BEGIN PaCKet (BBP).ottt ittt st et e 34-64
34.4.2.27 BIOCK HEM PACKET (BIP) vttt ettt et e e e e e e e e 34-65

BIP State Value ENCOAINGS .. .ottt ettt e ettt et e et e e 34-65
34.4.2.28 BIOCK ENA PaCKEt (BEP). . .ottt ettt et e 34-70
34.4.2.29 Control Flow Event (CFE) Packet. s 34-71

CFE Packet Type and Vector Fieldsot e e e et e e e ees 34-71
34.4.2.30 EVENt Data (EVD) PacKeT. . ..ottt 34-73
34.5 TRACING IN VMX OPERATION ..\ttt ettt ettt e e e et e e et et 34-73
34.5.1 VMX-Specific Packets and VMCS CONTIOIS v e e i 34-74

XXX Vol. 3A

CONTENTS

PAGE
345.2 Managing Trace Packet Generation Across VMX TranSitionsvviiite it i i eeeaens 34-74
34.5.2.1 I ASY (] F= I o 34-75
345.2.2 LN =TSy 0 Y I =T S 34-75
34.5.2.3 EMUIGLION Of INTel PT Traced State ...ttt e e e 34-76
34524 1) O P 34-76
34525 FRIlEd VM BN Y Lottt e e e e e 34-76
34.5.2.6 LT G 2 T 34-77
34.6 TRACING AND SMM TRANSFER MONITOR (STM) . . ettt ittt ettt et 34-77
34.7 PACKET GENERATION SCENARIDS . . .ottt ettt e e e e e e e e 34-77
34.8 SOFTWARE CONSIDERATIONS . .ttt ettt ettt e e e et e e et e e et 34-81
34.8.1 TrACING SMM COQB . v vttt e e e e e e e e e e e e e e 34-81
34.8.2 Cooperative Transition of Multiple Trace Collection AQENTSvu ittt et eaeneaas 34-81
34.8.3 L= 0 T 02T P 34-81
34.8.3.1 Time Domain RelationShiPSot e e e 34-82
34.8.3.2 Estimating TSC Within INTel P ... i i it e et e e 34-82
34.8.3.3 MX TS C Mani DU Gt ON . ..ottt e e e e e 34-83
34834 Calculating Frequency With INTel P ..o e e 34-83
CHAPTER 35
INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS
35.1 OV RV B .ttt ettt s e e e e e e e e e 35-1
35.2 ENCLAVE INTERACTION AND PROTECTION. . . vttt ettt et e e e et e e e e e et et eeas 35-1
353 ENCLAVE LIFE CYCLE « vttt ittt s e et e e e e e e e e e e e e e e et e e e 35-2
354 DATA STRUCTURES AND ENCLAVE OPERATION. . ..ttt t ettt ettt e e e aees 35-2
355 ENCLAVE PAGE CACHE. . .ottt ettt e et e e e et e e e et et e et et e e et eees 35-2
35.5.1 ENclave Page Cache Map (EPCM).t e e e 35-3
35.6 ENCLAVE INSTRUCTIONS AND INTEL® SGX . ottt ittt ettt e et e e e e e e e et e e et eees 35-3
357 DISCOVERING SUPPORT FOR INTEL® SGX AND ENABLING ENCLAVE INSTRUCTIONSo 35-4
35.7.1 Intel® SGX Opt-In ConfigUIation.ot s 35-5
35.7.2 Intel® SGX ReSOUrCe ENUMEration LEaVESttt ittt ittt e e et r e aeaens 35-5
358 INTEL® SGX INTERACTIONS WITH CONTROL-FLOW ENFORCEMENT TECHNOLOGY ...\t eeiaeen 35-7
35.8.1 CET N ENCIAVES MO . .ottt e e e e e e 35-7
35.8.2 Operations Not Supported on Shadow Stack Pages.t e e e et 35-8
35.8.3 Indirect Branch Tracking - Legacy Compatibility Treatment e i 35-8
CHAPTER 36
ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
36.1 OVERVIEW OF ENCLAVE EXECUTION ENVIRONMENT ..\ttt ettt et e e et 36-1
36.2 TERMINOLOGY vttt ettt ettt e e e e et e e et e e e e e e e 36-1
36.3 ACCESS-CONTROL REQUIREMENT S . ..ottt ettt e e e e e e anes 36-1
36.4 SEGMENT-BASED ACCESS CONTROL . 44ttt t ettt e et et e e e et e e e et e e e e e e e e s 36-2
36.5 PAGE-BASED ACCESS CONTROL 4 vttt ettt e et et e e et e e e e et e e e et et e e et et e e e eees 36-2
36.5.1 Access-control for Accesses that Originate from Non-SGX INSTructions ..o 36-2
36.5.2 Memory Accesses that Split ACross ELRANGEottt i i i e i i ettt et e 36-2
36.5.3 IMIDlICIT VS, EXPlCIT ACCES S S, . vt vttt ettt ettt et ettt e e e ettt e et ettt e 36-3
36.5.3.1 (Lo Yol =Y =13 36-3
36.5.3.2 00T ol Aol =T = 36-3
36.6 INTEL® SGX DATA STRUCTURES OVERVIEW. . .o\ttt ettt ettt et e ees 36-4
36.7 SGX ENCLAVE CONTROL STRUCTURE (SECS) . ..ttt ettt ettt e e et 36-5
36.7.1 AT RIBUT ES ..ottt ittt et e e e e e e e e e e e e 36-6
36.7.2 SECSIMISCSELECT FIIA . v ettt et ettt e e ettt et et et et e e 36-6
36.7.3 SECS.CET_ATTRIBUTES Field. . oottt ettt e e e e e et ees 36-6
36.8 THREAD CONTROUL STRUCTURE (TS) © vttt ittt ettt st ittt e et et e e et e e e e e e e e s 36-7
36.8.1 L 1 36-8
36.8.2 State Save Area Off St (DS S A . . ittt e e e e 36-8
36.8.3 Current State Save Area Frame (CSSA) ...t e e e e 36-8
36.8.4 Number of State Save Area Frames (NSSA) . .. vttt ettt e e e 36-8
36.9 STATE SAVE AREA (SSA) FRAME . ..ttt e e e e e 36-8
36.9.1 L0 2)G (= o 3 36-9
36.9.1.1 EXITINF O ottt e e e e e e e e e e 36-10
36.9.1.2 VECTOR Field Definitionttt e et ees 36-10
36.9.2 1Y (= o 36-11

Vol. 3A XXXi

CONTENTS

36.9.2.1 Loy O 1) ot (1 = 36-11
36.9.2.2 Page FaUIt ErmOr COMe.ottt e e e e e e e e e e 36-12
36.10 CET STATE SAVE AREA FRAMEttt ittt e e e e e e e e e 36-12
36.117 PAGE INFORMATION (PAGEINFO) . .ttt sttt e ettt e e ettt et e e et et e et e e eees 36-12
36.12 SECURITY INFORMATION (SECINFO). . vttt ettt ettt ittt et e et e ettt e 36-12
36.12.1 SECINF O F A S . ottt ettt e e e e e e e e e 36-13
36.12.2 PAGE _TYPE Field Defimition . .o v vttt ettt e e et e et 36-13
36.13 PAGING CRYPTO METADATA (POMD). e vttt ettt et ettt e e e et e e e et e s 36-13
36.14 ENCLAVE SIGNATURE STRUCTURE (SIGSTRUCT . . ot vttt ettt e ettt e e e et e e e e e et eaes 36-14
36.15 EINIT TOKEN STRUCTURE (EINITTOKEN) ..\ o vttt ettt ettt et e e et e et et e et e e e s 36-15
36.16 REPORT (REPORT ..ttt sttt ettt ettt et et e e et et e e et et et et et e et 36-16
36.16.1 REP O R T D AT A ittt ettt et e e e e e 36-17
36.17 REPORT TARGET INFO (TARGETINFO) .. vt ttt ettt et et ettt et et e e et e et e e e e e 36-17
36.18 KEY REQUEST (KEYREQUEST) ..ttt ettt et ettt e et et e et et et st et ettt et e e eeens 36-17
36.18.1 KEY REQUEST KBYNGMIES . v vttt ettt ettt e ettt ettt e e et et et e e e et a s 36-18
36.18.2 KeY ReqUEST PoliCY StTUCTUNE .. .ottt ettt ettt et enens 36-18
36.19 VERSION ARRAY (VA . ittt ittt ittt et e et et e et et ettt e 36-19
36.20 ENCLAVE PAGE CACHE MAP (EPCM). . ittt ettt et ettt e e ettt et et e e e 36-19
36.2T READ INFO (RDINFO) . . .ttt sttt ettt et et e et et e e et et e e et e e et et e e et et et e e e 36-19
36.21.1 RDINFO STatUS STTUCTUIE. . o vttt ettt ettt e e e et et et et e et e et e e 36-20
36.21.2 I N O = T R (s ot (1= 36-20
CHAPTER 37

ENCLAVE OPERATION

37.1 CONSTRUCTING AN ENCLAVE .ottt et et et e e e e e e et e e et et es 37-1
37.1.1 BORE AT E . . ittt ettt e e e e e e 37-2
37.1.2 EADD and EEXTEND INteraction v ettt et ettt e e e e et e e e e e e 37-2
37.1.3 LAV I =T = T o 37-2
3714 Intel® SGX Launch Control Configurationiuiirie i e 37-3
37.2 ENCLAVE ENTRY AND EXITING .ot o vttt ettt et et e e et e e s e et e e e e e e e e e e as 37-3
37.2.1 Controlled ENTrY AN EXIT. . oottt e e e e e e e e 37-3
37.2.2 Asynchronous ENCIAVE EXIT (AEX). ittt e e e e e e e 37-4
37.23 RESUMING EXECULION ATTEE AE X . . ottt ettt ettt aenanaes 37-4
37.2.3.1 ERESUME M erattion .ottt ettt ettt et et e e 37-5
37.23.2 Asynchronous Enclave Exit Notify and EDECCSSA i e 37-5
373 CALLING ENCLAVE PROCEDURES ...ttt e e ettt e e sttt 37-6
37.3.1 (=] o 000 1Yo P 37-6
3732 REGISTOr PrES B aTiON. o .ttt et e e e e e e 37-6
3733 RetUMNING 10 Caller. .ot i i i et ettt e e e e 37-6
37.4 INTEL® SGX KEY AND AT TESTATION . ..ttt ettt e et et e e et et e e e et e et et e s 37-6
37.4.1 Enclave Measurement and Identification e 37-6
37.4.1.1 MREN C LAV E. . sttt e e e e 37-6
374.1.2 MRSIGNER. . .t e e e e e 37-7
37413 CONFIGID. vttt et e e e e e e e e e e 37-7
37.4.2 Security Version NUMDEIS (SVN). . .ottt eneaes 37-7
37.4.2.1 [T = AL IY =Tal T Y Y =T (o P 37-8
37422 Hardware SECUMTY VerSION.ttt e e e e e 37-8
374.23 (000 NN [1 Y=ol Uy Y =T o 37-8
3743 B S ettt e e e e 37-8
37.43.1 SEaliNG ENCIAVE Data. . ..ot e 37-9
37432 Using REPORTS for LoCal Attestationovt ittt e ettt ettt e i eaeas 37-9
375 EPC AND MANAGEMENT OF EPC PAGES .. .ottt e e e s 37-10
37.5.1 EPC IMPIEMENTATION & . ettt et e e e e e 37-10
37.5.2 0S Management Of EPC Pages. v vttt ettt et e e 37-10
37.5.2.1 Enhancement t0 Managing EPC Pages vviiit ittt e 37-10
3753 BVICHION OF ENCIAVE Pages . ..o e e 37-10
3754 L0ading an ENCIaVE Pageo i e e e 37-11
3755 BVICTION OF @N SECS Page. . ..ot ittt e e e e e e 37-11
3756 EVICtION OF @ VerSioN ArTay Page ov ittt 37-12
3757 AlloCating @ REQUIAI Page i e e 37-12
37.5.8 o Tor= o T O =T = 37-12
3759 TrMIMING 3P0, . . ittt e e e e 37-13
37.5.10 Restricting the EPCM Permissions 0f @ Page.ottt e ettt it aeas 37-13
37.5.11 Extending the EPCM Permissions 0f @ Page o ittt i e e et e iaas 37-14

XxXii Vol. 3A

CONTENTS

PAGE
37.5.12 VMM OVersubSCription OF EPCo e e e e e 37-14
376 CHANGES TO INSTRUCTION BEHAVIOR INSIDE AN ENCLAVE . ..ottt et e 37-14
37.6.1 1T 0 = N Iy T o L 37-15
37.6.2 RDRAND and RDSEED INSTIUCTIONS. . vt vttt ettt et et et e et et e e et e e et et e e n e e 37-15
37.6.3 oI o TSy 0 on o 37-15
3764 Executions of INTT and INT3 INSide @n ENCIAVE. v ettt e e 37-16
37.6.5 INVD Handling when Enclaves Are ENabIed.oviiii e et 37-16
CHAPTER 38
ENCLAVE EXITING EVENTS
38.1 COMPATIBLE SWITCH TO THE EXITING STACK OF AEX. ..ttt ittt et e 38-1
38.2 ST ATE SAVING BY AEX ittt et e e e 38-2
383 SYNTHETIC STATE ON ASYNCHRONOUS ENCLAVE EXIT ...ttt ettt et 38-3
38.3.1 Processor Synthetic State on Asynchronous Enclave EXit.o 38-3
38.3.2 Synthetic State for EXTENAE FEATUMESttt e e ettt ieaans 38-3
38.3.3 SYNTNETIC STAte TOr MISC FEATUMES. . . . vttt ettt et e e e e e e 38-4
384 AEX FLOIN Lottt et e e e e e 38-4
38.4.1 AEX Operational Detail.t e 38-5
CHAPTER 39
INTEL® SGX INSTRUCTION REFERENCES
39.1 INTEL® SGX INSTRUCTION SYNTAX AND OPERATIONottt ettt e e e et e eees 39-1
39.1.1 ENCLS RegiSTer USagl SUMIMIAIY &\ttt ittt ittt ettt e et ettt e ettt e e et et ettt e ettt et a et ie e anans 39-1
39.1.2 ENCLU Register USage SUMMAIY . .. v ettt ittt te ettt i e et et ettt ettt e ettt et ettt e e et n et eeaeaens 39-2
39.1.3 ENCLY RegiSter USage SUMMIIY « vttt ettt ettt e ettt ettt e et ettt et e aans 39-2
39.14 INFOrmMation @Nd EMTOr COOES .\ttt ettt ettt et et e et e e e e et et e e e e 39-2
39.1.5 INEEINAl CREGS ..ttt ettt ettt ettt e et et e et et e e e e e e e e 39-3
39.1.6 Concurrent Operation RESIIICTIONS. . ..t \ vttt ettt et e e e 39-4
39.1.6.1 Concurrency Tables of Intel® SGX INSTrUCHIONS.ot e ettt ie e 394
39.2 INTEL® SGX INSTRUCTION REFERENCE. . . . ittt t ettt e et e e et e e et e et eens 39-8
ENCLS—Execute an Enclave System Function of Specified Leaf Number.............cocoiiiiiiii i 39-9
ENCLU—Execute an Enclave User Function of Specified Leaf Number ... 39-11
ENCLV—Execute an Enclave VMM Function of Specified Leaf Number..............cociiiiiiii i 39-14
393 INTEL® SGX SYSTEM LEAF FUNCTION REFERENCEttt t ettt et et e 39-16
EADD—Add a Page to an Uninitialized ENCIAVeovnii e e 39-17
EAUG—Add a Page to an Initialized ENCIaVeov et e 39-22
EBLOCK—Mark @ page in EPC as BIOCkedouiiiii e 39-27
ECREATE—Create an SECS page inthe Enclave Page Cacheot e e e 39-30
EDBGRD—Read From a DebuUg ENCIaVe. . ..o e e e 39-36
EDBGWR—Write 10 @ DEDUG ENCIAVE oo e e e e 39-40
EEXTEND—Extend Uninitialized Enclave Measurement by 256 Bytes. ..o vt 39-44
EINIT—Initialize an ENClave fOr EXECULIONo v ittt e e s 39-47
ELDB/ELDU/ELDBC/ELDUC—Load an EPC Page and Mark its State........vvviiiiiiii i i 39-55
EMODPR—Restrict the Permissions of an EPC Pagec.iviiiiiii i ettt ae s 39-61
EMODT—Change the Type of an EPC Pageoviiiiii it e e ettt eaens 39-64
[¥ [a A= Fo 2 o= 39-67
ERDINFO—Read Type and Status Information About an EPC Page........vviriiiiii i e 39-69
EREMOVE—Remove a page from the EPC oot e e 39-73
ETRACK—ACLiVates EBLOCK ChECKS .. vttt et e e e e enens 39-77
ETRACKC—ACtivates EBLOCK CNECKS . ..ottt ittt e ettt ettt et e et 39-80
EWB—Invalidate an EPC Page and Write out to Main MemOrYottt et e s 39-84
39.4 INTEL® SGX USER LEAF FUNCTION REFERENCE.o\ttt ettt et ettt eas 39-89
EACCEPT—ACCept Changes t0 an EPC Page v vi it e e e e ens 39-90
EACCEPTCOPY—Initialize @ PeNding Pageo o i 39-95
EDECCSSA—DDECrEemMENTS TS CS S A L ittt et e e e e e 39-99
EENTER—ENTErS @n ENCIAVE. .. .o\ e e e et 39-103
BEXIT—EXITS AN ENCIAVE ..ottt et et e e e e 39-112
EGETKEY—Retrieves a CryptographiCc KeYot e e 39-115
EMODPE—Extend an EPC Page PermiSSiONS ... uuit ettt et i 39-125
EREPORT—Create a Cryptographic Report of the ENClave.o v e 39-128

Vol. 3A Xxxiii

CONTENTS

ERESUME—RE-ENTErS AN ENCIaVe . oottt et e e e e e 39-133
39.5 INTEL® SGX VIRTUALIZATION LEAF FUNCTION REFERENCE oottt 39-145
EDECVIRTCHILD—Decrement VIRTCHILDCNT iN SECS . .. vttt e e et 39-146
EINCVIRTCHILD—Increment VIRTCHILDCNT in SECS. .. .ottt ettt 39-150
ESETCONTEXT—Set the ENCLAVECONTEXT Field iN SECS. v ittt 39-153
CHAPTER 40
INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
40.1 INTEL® SGX AVAILABILITY IN VARIOUS PROCESSOR MODES. . . .ottt ettt et 40-1
40.2 N N 2 S AV 2 O 40-1
40.2.1 AVaIlaDIltY OF Il SOX L.t e e e 40-1
40.2.2 Intel SGX Launch Control Configurationouu e e e e 40-1
403 INTERACTIONS WITH SEGMENT ATION ..ttt sttt et ettt et et e et e e e et e e e 40-1
40.3.1 A Yo 1<) [=] = [on 1 {0 40-1
40.3.2 Interactions of Intel® SGX Instructions with Segment, Operand, and Addressing Prefixescovovvvent 40-2
403.3 Interaction of Intel® SGX Instructions with Segmentationo 40-2
4034 Interactions of Enclave Execution with Segmentation ... e 40-2
404 INTERACTIONS WITH PAGING. . . oottt ettt et et e e et et et et et e et et et a et 40-2
40.5 INTERACTIONS WITH VMK Lttt e e e e e e e e e et e e 40-3
40.5.1 VMM Controls to Configure Guest Support of INtel® SGX. it e 40-3
40.5.2 Interactions with the Extended Page Table Mechanism (EPT)vuiiii i e 40-3
4053 Interactions With APIC VirtUalization.ov vt e e e e s 40-4
4054 Interactions With VT and SGX COMCUIMT BNCY . . ottt ittt ettt ettt e e ittt e e e et e ettt et et a et enees 40-4
40.5.5 VirtUal Child TracKing .. v vttt e e e e e e e e e 40-5
40.5.6 Handling EPCM Entry Lock CONFIICES. v e e e 40-5
40.5.7 000 31 (TG A I = o (o 40-6
406 INTEL® SGX INTERACTIONS WITH ARCHITECTURALLY-VISIBLE EVENTSot 40-6
40.7 INTERACTIONS WITH THE PROCESSOR EXTENDED STATE AND MISCELLANEOUS STATE . ..vviviii i 40-6
40.7.1 Requirements and ArChiteCtUrE VeV I, . ..o\ttt ittt e it e e ettt i 40-6
40.7.2 Relevant Fields in Various Data STrUCTUMESo .ottt e e eens 40-7
40.7.2.1 SECS AT TRIBUT ES X RM . ottt ettt et e e e e e e e e 40-7
40.7.2.2 SECS S S AR R AMESIZE ..\ttt e e e 40-8
40.7.2.3 XS AV E AT M S A ittt e e e e e 40-8
40.7.2.4 MISC AT N S A ittt ittt e e e e 40-8
40.7.2.5 SIS TRUCT RIS, .« v vttt ettt e ettt et e e et et e e e e e e 40-8
40.7.2.6 REPORT.ATTRIBUTES.XFRM and REPORT.MISCSELECT\ttt 40-9
40.7.2.7 KEY REQUES T . . ittt it e e e e e e e 40-9
40.7.3 Processor Extended States and ENCLS ECREAT E]ttt i i e ittt eens 40-9
40.7.4 Processor Extended States and ENCLUIEENTER] ouiuit ittt e 40-9
40.7.4.1 FAUI CRECKING. .« . ot vttt e e e e e e 40-9
40.74.2 SEATE L0aING ..ottt e e e s 40-9
40.7.5 Processor Extended States and AEX.ttt e 40-10
40.7.5.1 I = LT 171 T 40-10
40.7.5.2 SEATE S YMTNESIS .ottt e e e 40-10
40.7.6 Processor Extended States and ENCLU[ERESUME].ottt 40-10
40.7.6.1 FAUI CRECKING. « . oottt s e e e 40-10
40.7.6.2 SEATE L0aING ..ottt e e e e e e 40-10
40.7.7 Processor Extended States and ENCLU EEXIT] ... ov vttt e e e 40-10
40.7.8 Processor Extended States and ENCLU[EREPORT]. vriiii e 40-11
40.7.9 Processor Extended States and ENCLULEGETKEYottt i i e et 40-11
408 INTERACTIONS WITH SMM Lttt et et eens 40-11
40.8.1 Availability of Intel® SGX INStructions iN SMM oo 40-11
40.8.2 SMIWhile INSIAE @N ENCIAVE.o e e e e e e e e 40-11
40.8.3 SMRAM Synthetic State of AEX Triggered By SML.o vt e 40-11
409 INTERACTIONS OF INIT, SIPI, AND WAIT-FOR-SIPIWITH INTEL® SGX. ..ot v ettt et eeaas 40-12
40.10 INTERACTIONS WITH DM A ittt ettt e e e e e e e e e e 40-12
40.TT INTERACTIONS WITH TXT L ettt ettt e e e et e e ettt et e e e et e e et e e e e e 40-12
40.111 Enclaves Created Prior to Execution of GETSEC. vt e e aas 40-12
40.11.2 Interaction of GETSEC With INtel® SGX ..t et e e et 40-12
40.11.3 Interactions with Authenticated Code Modules (ACMS).ttt e 40-13
40.12 INTERACTIONS WITH CACHING OF LINEAR-ADDRESS TRANSLATIONS ..\ i ittt 40-13
40.13 INTERACTIONS WITH INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL®TSX) +vvvvvvviiinnnnns 40-13
40.13.1 [L o B I = T 40-14

XXXiv Vol. 3A

CONTENTS

PAGE

40.14 INTEL® SGX INTERACTIONS WITH S ST AT ES. ettt ittt e e e e e 40-14
40.15 INTEL® SGX INTERACTIONS WITH MACHINE CHECK ARCHITECTURE (MCA) ...t i et it 40-14
40.15.1 INtEractions WIith MCA BVENES e e e e e et enens 40-14
40.15.2 Machine Check ENDIES (JA32_MUI_CTL) tturt ittt ettt et ettt et 40-14
40.15.3 CRAIME .. ittt e e e e e 40-14
40.16 INTEL® SGX INTERACTIONS WITH PROTECTED MODE VIRTUAL INTERRUPTS. ...ttt 40-15
40.17 INTEL SGX INTERACTION WITH PROTECTION KEYS . . .ttt ettt e e e e e 40-15
CHAPTER 41

ENCLAVE CODE DEBUG AND PROFILING

41.1 CONFIGURATION AND CONTROLS oottt ittt ettt st et e ettt e e 41-1
41.1.1 Debug Enclave vs. Production ENCIaVe it e e e e 41-1
41.1.2 B0 To) R = T T) P 41-1
4113 Debugging an Enclave That Uses Asynchronous Enclave Exit Notify. ... 41-1
41.2 SINGLE STEP DEBUG . . ottt ettt et et e et et e e e ettt e e et e e e e 41-1
41.2.1 Single Stepping ENCLS INStruction LEafS v vt e 41-1
41.2.2 Single Stepping ENCLU INStruction Leats.o e 41-2
41.23 Single-Stepping Enclave ENtry With Opt-0Ut ENtrY oo e e i e 41-2
41.2.3.1 Single STEPPING WITNOUT AEX . . .ottt e e e e e 41-2
41.23.2 Single Step Preempted by AEX Due to NON-SMIEVENTo e 41-2
41.24 RELAGS. TF Treatment On AEX ..ottt ittt e ettt e e e ettt a e a e aeaens 41-3
41.25 Restriction on Setting of TF after an Opt-0Out ENTryo vt e 41-3
41.26 Trampoline Code CONSIAEIATIONS.\ttt e et e et et et e et e e e e 41-3
413 CODE AND DAT A BREAKPOINT S, 1ttt ettt ettt et et ettt et e e e aaas 41-3
41.3.1 BrEaK PO T SUP P S S 0N, . 1t vttt ettt ettt e e et e e 41-3
413.2 Reporting of Instruction Breakpoint on Next InstructiononaDebug Trapc.vvviiiii i 41-4
4133 o (=T 1 1= 00 G 41-4
4134 Breakpoint Matching in Intel® SGX INStruCtion FIOWS v e i e e 41-4
414 CONSIDERATION OF THE INTT AND INT3 INSTRUCTIONS ...ttt ittt ety 41-4
41.4.1 Behavior of INTT and INT3 INSide an ENClave.o vt e 41-4
41.4.2 (=] T oo =T O T3 Ty (u 1= = o 41-4
4143 RV o T =T o= 1o 1P 41-5
415 BRANCH TRACING . .ottt ettt ettt e ettt et e e e e e e e et e e e 41-5
41.5.1 2 I =T 02 T=T 0 41-5
41.5.2 L1021 == 10T | N 41-5
41.5.2.1 LBR Stack 0N Opt-in B Y oottt ettt e e e e e 41-5
41522 LBR STaCK 0N OPt-0Ut BTy oottt e e e e e 41-6
41523 Mispredict Bit, Record Type, and Filtering.oviii i i 41-7
416 INTERACTION WITH PERFORMANCE MONITORING. . . 4ottt et ettt et et e et aaes 41-7
41.6.1 IA32_PERF_GLOBAL_STATUS ENN@NCEMENT. . .\ttt ettt ettt e et e et e e e e 41-7
416.2 Performance Monitoring With Opt-in ENTrY . ..o .o e 41-7
41.6.3 Performance Monitoring With Opt-0Ut ENtrYot e e et 41-8
4164 Enclave Exit and Performance MoniTOmiNG. vv vttt e e 41-8
416.5 PEBS Record Generation on INtel® SGX INStrUCTIONS.o vttt e 41-8
41.6.6 Exception-Handling on PEBS/BTS Loads/Stores after AEXiv it ettt 41-8
41.6.6.1 Other Interactions with Performance Monitoring.ov. v it 41-9
APPENDIX A

VMX CAPABILITY REPORTING FACILITY

A1 BASIC VMX INFORMATION ..ottt it ettt et et et e et e e e et e e e et et e e e e eaas A-1
A2 RESERVED CONTROLS AND DEFAULT SETTINGS ...ttt ettt et ettt e e et et e a e A-2
A3 VM-EXECUTION CONTROLS ..ttt ettt e et e e et et e e e e e et e e e e es A-2
A3.1 Pin-Based VM-EXecUtion CONTIOISttt e e e e ettt nenenens A-2
A3.2 Primary Processor-Based VM-EXeCUTion CONTrOlS.vuvt ittt ettt aenens A-3
A33 Secondary Processor-Based VM-EXeCUtion CONTrolSv v ettt aeaas A-4
A34 Tertiary Processor-Based VM-EXecUtion CONTIOIS ... ouuut ittt enas A-4
A4 VM-EXIT CONTROLS ottt ittt ettt e e e e e e e e e e e e et e e e e e es A-4
A4 PrMArY VM-EXiT CONtrOlS o . ottt e e e e e e e e e A-4
A4z SeCoNdary VM-EXIt CONTIOIS. ..ottt ettt e e et et e et A-5
A5 VM-ENTRY CONT ROLS . ..ottt ettt et et e et e e e et e e et et e e e e e e A-5
A6 MISCELLANEOUS DA T A ittt ettt et e e e et e e e et et et e et e e e A-6
A7 VMX-FIXED BITS IN CRO. .. v e vttt ettt e et e et e e e e e e e e e e e et et e e e eas A-7

Vol. 3A XXXV

CONTENTS

A8 M- XD BITS IN R . .ottt it et e et e e et e e A-7
A9 UMES ENUMER ATION L ittt ittt e e e e A-7
A10 VPID AND BPT AP ABIL T S . ottt ittt e ettt e e e A-8
A1 M FUN T IONS . Lttt et e ettt ettt et e e et e e e A-9
APPENDIX B

FIELD ENCODING IN VMCS

B.1 TB-B T FIELDS .. vttt ittt et e e e e e B-1
B.1.1 LS 1 00 o I =] 3 B-1
B.1.2 T BBt GUEST-STatE FIIAS ...ttt ittt e et et e et e e B-1
B.1.3 TB-Bit HOST-STate FIlS v ittt ittt i i i i e i e e i et et e e B-2
B.2 BA-BIT FIBLDS . .o ittt et e e e e e e B-2
B.2.1 B4-Bit CONIrOl IS . o\ ottt et et et e e B-2
B.2.2 64-Bit Read-Only Data Field.ttt e e e e e B-5
B.2.3 B4 Bit GUEST-STaTE FIBIAS .. ittt i i it it e e e e e e e B-5
B.2.4 B4-Bit HOSt-STate FIBIAS vttt ittt it it ettt e e e e B-6
B3 B2 BIT FIELDS . oottt e e e B-7
B.3.1 g = {1 000) 0 I = o B-7
B.3.2 32-Bit Read-Only Data Fields. ...ttt e e B-8
B33 32-Bit GUEST-STatE FIBIAS v vttt ittt et e e i e e e e e B-8
B34 32-Bit HOST-State Il .ottt i e B-9
B4 NATURAL-WIDTH FIELDS. . oottt ittt it ettt ettt ettt e et e ettt B-9
B.4.1 NAtUFaI-WIdEh CoNtrol FIEIAS. . .\ vttt i e e e e e et et e e e, B-9
B.4.2 Natural-Width Read-Only Data Fieldsooiirii i i i e ittt i eans B-10
B4.3 Natural-Width GUEST-STate Fieldsot i ettt et e B-10
B4.4 NatUTBI-WIAth HOST-STate FildS . v vttt ittt e e e e it i i et e aes B-11
APPENDIX C

VMX BASIC EXIT REASONS

XXXVi Vol. 3A

CONTENTS

PAGE
FIGURES

Figure 2-1. IA-32 System-Level Registers and Data StrUCTUMES. . ..o v vttt e eeas 2-2
Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode and 4-Level Pagingcovviiiiiiiiiiinnn 2-3
Figure 2-3. Transitions Among the Processor's Operating MOGESo vriti ittt enens 2-8
Figure 2-4. IAZ2_EFER MSR LAy 0UL. . o\ttt ettt e e e e e e e e e e e 2-9
Figure 2-5. System FIags in the EFLAGS ReGISTar.ttt e 2-10
Figure 2-6. Memory Management REGIS OISttt ettt ettt e 2-12
Figure 2-7. (000 o I B =T 0 3 =Y P 2-14
Figure 2-8. RO ettt e e e e e e e e 2-21
Figure 2-9. Format of Protection-Key Rights REGISTErSot e ettt 2-22
Figure 2-10. WBINVD Invalidation of Shared and Non-Shared Cache Hierarchy ..o i 2-26
Figure 3-1. Segmentation @Nd Paging. vttt e e 3-2
Figure 3-2. Flat MOl . . e e e e e 3-3
Figure 3-3. Protected FIat MOl e 3-4
Figure 3-4. MUIt-SEMENT MOEl e e 3-5
Figure 3-5. Logical Address to Linear Address TransIationc.v it i e e ettt 3-7
Figure 3-6. I Y= 1= Y=Y (o] 3-7
Figure 3-7. A= 1= A =T 3 =] 3-8
Figure 3-8. I Y100 T L 0 () 3-10
Figure 3-9. Segment Descriptor When Segment-Present FIag Is Clear.o e 3-11
Figure 3-10. Global and Local DesCriptor Tables. v .o e e e eens 3-15
Figure 3-17. Pseudo-Destriplor FOmmats ...ttt e e et e e et et e 3-16
Figure 5-1. Enabling and Changing Paging MOGES v v vttt e e e e e 5-4
Figure 5-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging. ..o 5-10
Figure 5-4. Formats of CR3 and Paging-Structure Entries with 32-BitPagingcociiiiiiii i 5-11
Figure 5-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Pagingccooviiiiiiiiiiii it 5-11
Figure 5-5. Linear-Address Translation to a 4-KByte Page using PAEPaging..........cooviiiiii e 5-16
Figure 5-6. Linear-Address Translation to a 2-MByte Page USing PAE Paging.ccovvuiiiiiii it i cie e 5-17
Figure 5-7. Formats of CR3 and Paging-Structure Entries with PAEPAging ..ot e 5-19
Figure 5-8. Linear-Address Translation to a 4-KByte Page Using 4-Level Pagingcoviiiiiiiii i 5-22
Figure 5-9. Linear-Address Translation to a 2-MByte Page using 4-Level Paging ..ot i 5-23
Figure 5-10. Linear-Address Translation to a 1-GByte Page using 4-Level Paging. ..ot 5-23
Figure 5-11. Formats of CR3 and Paging-Structure Entries with 4-Level Paging and 5-Level Paging......................... 5-32
Figure 5-12. Page-Fault Brror COQeottt it e ettt e e e e e et e et e e e 5-37
Figure 5-13. Memory Management Convention That Assigns a Page Table to Each Segment............coviviiiiiiiiinnn, 5-55
Figure 6-1. Descriptor Fields Used for ProteCtion.oouiire e 6-3
Figure 6-2. Descriptor Fields with Flags used in IA-328 MOdecoiii i e e e e i e 6-4
Figure 6-3. PrOtECTION RINGS .\ttt e e e e 6-7
Figure 6-4. Privilege Check fOr Data ACCESSttt ettt e e e e e e e e e 6-8
Figure 6-5. Examples of Accessing Data Segments From Various Privilege Levels. ... 6-9
Figure 6-6. Privilege Check for Control Transfer Without Usinga Gate.vviriei i 6-11
Figure 6-7. Examples of Accessing Conforming and Nonconforming Code Segments From Various Privilege Levels.......... 6-12
Figure 6-8. {06 = L= L= ol {5 (o 6-13
Figure 6-9. Call-Gate DesCriptor iN IA-326 MOttt ettt e e e e 6-14
Figure 6-10. Call-Gate MeCh@NISM.ottt ettt e e e e et et e e e 6-15
Figure 6-11. Privilege Check for Control Transfer with Call Gatec..iviiiiiii i it ieieaaas 6-16
Figure 6-12. Example of Accessing Call Gates At Various Privilege Levels 6-17
Figure 6-13. Stack Switching During an Interprivilege-Level Callo e 6-19
Figure 6-14. MSRs Used by SYSCALL and SYSRET ...ttt e e e e 6-23
Figure 6-15. Use of RPL to Weaken Privilege Level of Called Procedure.ovviiiiii it i e 6-26
Figure 7-1. Relationship of the IDTR aNd IDTt e 7-10
Figure 7-2. 1 O (= =T 0 (o] 3 7-11
Figure 7-3. INterTUPT ProCedUre Call ... ottt e e e 7-12
Figure 7-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routines ..ot 7-13
Figure 7-5. Shadow Stack Usage on Transfers to Interrupt and Exception-Handling Routines.....................ooeee 7-15
Figure 7-6. INtermUPT Task SWItCN. . ..o e e 7-18
Figure 7-7. o o L= 7-19
Figure 7-8. (O | I = =0 1= ol 0 (o] 7-20
Figure 7-9. IA-32e Mode Stack Usage After Privilege Level Change.coovuiriiiiii e e 7-22
Figure 7-10. Interrupt Shadow Stack Table. oe e e e 7-23
Figure 7-17. Page-Fault Brror COQeottt it i et e et e e e e e et e et e e 7-46
Figure 7-12. Exception Error Code INformationvuiuiii i e e e e 7-56
Figure 9-1. SHTUCTUNE OF @ TaSK . .ttt e et 9-2

Vol. 3A XXXVii

CONTENTS

Figure 9-2.
Figure 9-3.
Figure 9-4.
Figure 9-5.
Figure 9-6.
Figure 9-7.
Figure 9-8.
Figure 9-9.
Figure 9-10.
Figure 9-11.
Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 10-4.
Figure 10-5.
Figure 10-6.
Figure 10-7.
Figure 10-8.
Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.
Figure 11-5.
Figure 11-6.
Figure 11-7.
Figure 11-8.
Figure 11-9.
Figure 12-1.
Figure 12-2.
Figure 12-3.
Figure 12-4.
Figure 12-5.
Figure 12-6.
Figure 12-7.
Figure 12-8.
Figure 12-9.
Figure 12-10.
Figure 12-11.
Figure 12-12.
Figure 12-13.
Figure 12-14.
Figure 12-15.
Figure 12-16.
Figure 12-17.
Figure 12-18.
Figure 12-19.
Figure 12-20.
Figure 12-21.
Figure 12-22.
Figure 12-23.
Figure 12-24.
Figure 12-25.
Figure 12-26.
Figure 12-27.
Figure 12-28.
Figure 12-29.
Figure 12-30.
Figure 13-1.
Figure 13-2.
Figure 13-3.
Figure 13-4.
Figure 13-5.
Figure 13-6.
Figure 13-7.
Figure 13-8.

XXXviii Vol. 3A

32-Bit Task-State SegmMENT (T8). ..ttt ittt e e e e e 9-4
LI 310 L= o1 (o) 9-6
Format of TSS and LDT Descriptors in 64-bit Modeo e ens 9-7
LI QR (=T 1 (P 9-8
LI G T 1 = L= o 0] o 9-8
Task Gates Referencing the Same TasK v i e e e e e ettt aenanas 9-9
NSO TaSKS. . vttt ettt e e e e e 9-15
Overlapping Linear-to-Physical Mappings.o v ettt e 9-17
IS = L I YN o33 | 9-19
B4-BIt TSS MMt ittt e e e e e e 9-20
Example of Write Ordering in Multiple-Processor SYStemMS. ... v vttt e e 10-8
Interpretation of APICID in Early MP Sy StemISttt ettt e 10-26
Local APICs and I/0 APIC in MP System Supporting Intel HT Technologycocoiiiiiiiiiiiii et 10-28
IA-32 Processor with Two Logical Processors Supporting Intel HT Technology..........c.covviiiiiiiiiiiinnnn, 10-29
Generalized Seven-Domain Interpretation of the APICID. e 10-36
Conceptual Six-Domain Topology and 32-bit APIC ID CompOSition.vvvvr it eiieieeeans 10-37
Topological Relationships Between Hierarchical IDs in a Hypothetical MP Platformcooviints 10-40
MP System With Multiple Pentium 1l ProCESSOrS. . ..ottt i e ettt e enes 10-57
Contents of CRO Register after RESET 'ttt e i e et ettt e aaas 11-2
Version Information in the EDX Register after RESEt vvviii i e i 11-5
ProCESSOr STate AT O ROt .o\ttt e e e 11-15
Constructing Temporary GDT and Switching to Protected Mode (Lines 162-172 of ListFile)................... 11-23
Moving the GDT, IDT, and TSS from ROM to RAM (Lines 196-261 of ListFile)covvviiiiiiiinns, 11-24
Task Switching (Lines 282-296 0f LIST FIlE) . ..o\t v vttt ettt e e 11-25
ApPPIYING MICroCode UPdatesottt it e ettt e e e e e 11-28
Microcode Update Write Operation FIOW [T]. ... vt e 11-45
Microcode Update Write Operation FIOW [2]ot i e et e 11-46
Relationship of Local APIC and I/0 APIC In Single-Processor SYSTEMSvviritieii it iiiiieienanns 12-2
Local APICs and 1/0 APIC When Intel Xeon Processors Are Used in Multiple-Processor Systems 12-3
Local APICs and I/0 APIC When P6 Family Processors Are Used in Multiple-Processor Systems.................. 12-3
[Tor= o [OY oyU= 12-5
IA32_APIC_BASE MSR (APIC_BASE_MSR NP6 Family).ovnveiie i 12-9
[Tt A o [1N =T (= 12-9
[Yot Y o O =T o I =T] =] 12-11
LOCal VECEOr TablE (LN T) ettt et et e e e e e e e e e e e e e e 12-13
Error Status ReGISTEr (ESR). ..o\ttt e e 12-15
Divide Configuration ReGIS el ...ttt e e e et e 12-17
Initial Count and Current CoUNT REGISTEIS ..o\ttt e e 12-17
Interrupt Command RegiSter (ICR) v ittt e e e e 12-19
Logical Destination REGISTET (LDR) v v vttt ettt ettt e et et 12-24
Destination FOrmat Register (DFR)iu ittt e e 12-24
Arbitration Priority Register (APR). et e 12-25
Interrupt Acceptance Flow Chart for the Local APIC (Pentium 4 and Intel Xeon Processors)............covvven.. 12-27
Interrupt Acceptance Flow Chart for the Local APIC (P6 Family and Pentium Processors)............cocovvnvns. 12-28
Task-Priority REGiSTEr (TPR). .. vttt e e e e e et 12-29
Processor-Priority REGiSter (PPR). vttt et e e e e e 12-29
IRR, ISR, N0 TR REGIS OIS . . ottt vttt ettt e e s e et e e e e e e e 12-30
o0 I =0] =] 12-31
[0S (=T) (= 12-32
Spurious-Interrupt Vector ReGiSter (SVR) .. vt e e e e 12-33
Layout of the MSI Message Address REGISTErv ittt et ettt it aeaanans 12-34
Layout of the MSI Message Data RegiSTer.ttt et e et eaaes 12-36
IA32_APIC_BASE MSR SUPPOrting X2APIC. . ..ttt ittt e e e e 12-37
Local Xx2APIC State Transitions with IA32_APIC_BASE, INIT, andReseto 12-42
Interrupt Command Register (ICR) iN X2APIC MO,o v ittt it 12-45
Logical Destination Register in X2APIC MOt vt ittt e e 12-46
B0 I | I =T = 12-47
Cache Structure of the Pentium 4 and Intel Xeon ProCeSSOrSvvvvtit et 13-1
Cache Structure of the INtel Core i7 PrOCESSOMSttt ettt e e e 13-2
Cache-Control Registers and Bits Available in Intel 64 and IA-32 Processorscvovvvrviviviiineienennnnns 13-11
Mapping Physical Memory With MTRRSo e e e e 13-21
A2 _MTRRCAP RIS O, . . ottt ittt ettt et et e et et et et et e 13-22
A2 _MTRR _DEF _TYPE MO R ..ttt ettt e e e e e 13-23
IA32_MTRR_PHYSBASEN and IA32_MTRR_PHYSMASKn Variable-Range Register Pair 13-25
IA32_SMRR_PHYSBASE and IA32_SMRR_PHYSMASK SMRR Pair v vttt 13-26

Figure 13-9.
Figure 14-1.
Figure 14-2.
Figure 16-1.
Figure 16-2.
Figure 16-3.
Figure 16-4.
Figure 16-5.
Figure 16-6.
Figure 16-7.
Figure 16-8.
Figure 16-9.

Figure 16-10.
Figure 16-11.
Figure 16-12.
Figure 16-13.
Figure 16-14.
Figure 16-15.
Figure 16-16.
Figure 16-17.
Figure 16-18.
Figure 16-19.
Figure 16-20.
Figure 16-21.
Figure 16-22.
Figure 16-23.
Figure 16-24.
Figure 16-25.

Figure 16-26.
Figure 16-27.
Figure 16-28.
Figure 16-29.
Figure 16-30.
Figure 16-31.
Figure 16-32.
Figure 16-33.
Figure 16-34.
Figure 16-35.
Figure 16-36.
Figure 16-37.
Figure 16-38.
Figure 16-39.
Figure 16-40.
Figure 16-41.
Figure 16-42.
Figure 16-43.
Figure 16-44.
Figure 16-45.
Figure 16-46.
Figure 16-47.

Figure 17-1.
Figure 17-2.
Figure 17-3.
Figure 17-4.
Figure 17-5.
Figure 17-6.
Figure 17-7.
Figure 17-8.
Figure 17-9.

Figure 17-10.

Figure 19-1.
Figure 19-2.
Figure 19-3.
Figure 19-4.

A3 P AT MO R .ttt e e
Mapping of MMX Registers to Floating-Point Registers ..o
Mapping of MMX Registers to x87 FPU Data Register Stackcccoiiiiiian..
IA32_MPERF MSR and IA32_APERF MSR for P-state Coordinationcovvvvvnnn.
A3 PERF _CT L REGIS O L ittt ettt et e e e e e e
IA32_ENERGY _PERF_BIAS REGISTON ..\ttt ettt ittt e e
IA32_PM_ENABLE MSR ...ttt e
IA32_HWP_CAPABILITIES REGISTEI ..\t vv vttt ittt e
IA32 _HWP _REQUEST REGISTEI . . v\ vttt et ettt et e e
IA32_HWP_REQUEST _PKG REGISTEI . .ottt ettt ittt
IA32_HWP_PECI_REQUEST_INFO MSR. . ..\ttt
IA32 _HWP _STATUS MR L.ttt e e
IA32_THERM_STATUS Register With HWP Feedback...............coiviiiiiiiiiiinnns
MSR P PERF MSR . .ttt e
IA32_HWP_INTERRUPT MSR. ..\ttt et e
FAST_UNCORE_MSRS_CAPABILITY MSR. .. ettt
FAST_UNCORE_MSRS _CTULMSR . ..ttt
FAST_UNCORE_MSRS_STATUS MSR ..ttt it
IA32_PKG _HDC _CTU MR . ittt e e e
IAB2 PM_CTLT MR, .ttt e e e e
IA32_THREAD _STALL MSR ottt e e e
MSR_CORE_HDC_RESIDENCY MSR. ...ttt ettt e e
MSR_PKG_HDC_SHALLOW_RESIDENCY MSR ...\ttt
MSR_PKG_HDC_DEEP_RESIDENCY MSR. ...\ttt i
MSR_PKG_HDC_CONFIG MSR. .. .ottt et et e e
Example of Effective Frequency Reduction and Forced Idle Period of HDC...................
Processor Modulation Through Stop-Clock Mechanism.............ccooiiiiiiiiii e

MSR_THERMZ2_CTL Register On Processors with CPUID Family/Model/Stepping

Signature Encoded as OX69N 0r OXBDN v vt i it
MSR_THERM2_CTL Register for Supporting TM2. ... ot
IA32_THERM_STATUS MSR. . ittt et e e
IA32_THERM_INTERRUPT MSR ...ttt e e
IA32_CLOCK_MODULATION MSR .. ettt ettt e e e e e
IA32_CLOCK_MODULATION MSR with Clock Modulation Extensionc..ovvvvivninnn.
IA32_THERM _STATUS ReGISTOr . .\ttt ittt e
IA32_THERM_INTERRUPT REGISTEN v\ttt ittt ettt et
IA32_PACKAGE_THERM_STATUS REGISTET .\ttt ettt
IA32_PACKAGE_THERM_INTERRUPT ReGISTErttt
MSR_RAPL_POWER _UNIT REGISTOM . .\ vttt vttt ettt e e e
MSR_PKG_POWER _LIMIT REGISTEI. . o\ttt ettt et e et et et
MSR_PKG_ENERGY_STATUS MSR . .ottt e
MSR_PKG_POWER _INFO REGISTEI . .o\ttt et ettt e
MSR_PKG_PERF_STATUS MSR . ..ttt e e
MSR_PPO_POWER_LIMIT/MSR_PP1_POWER_LIMIT Register.ovvvirviniiniiinnnnn.
MSR_PPO_ENERGY_STATUS/MSR_PP1_ENERGY_STATUSMSR.......coviiiiiiiiiiininn
MSR_PPO_POLICY/MSR_PP1_POLICY REGISTEN ..\t v ettt
MSR_PPO_PERF_STATUS MSR .. ittt
MSR_DRAM_POWER _LIMIT REGISTOI . . vttt vttt ettt e
MSR_DRAM_ENERGY _STATUS MSR . ..ottt e
MSR_DRAM_POWER_INFO REGISTEr ...ttt ettt ettt e e
MSR_DRAM_PERF_STATUS MSR ...ttt e
MaChing-CheCk MSRS ... e e e
IA3 2 _MCG _CAP REGISTBI . o\ttt vttt ettt e e e
IA32 _MCG ST ATUS RIS Ottt vttt ettt ettt e e e e e
IA32_MCG_EXT _CTL REGIS O . . vttt ettt et e
LA a0 O I =T £ (=T
IA32 MU _STATUS REGIS O, vttt ettt ettt e e e e
IA32_MUi_ADDR MSR. . .ottt e
UCR Support in IA32_MCi_MISC REGISTEI. ..ttt
L i (O O B =Y £ (]
L O 2= T Yo
DEDUG REGIS OIS, vttt ettt et e e e
DR6/DR7 Layout on Processors Supporting Intel® 64 Architecturecoovvvvinnnne.
IA32_DEBUGCTL MSR for Processors Based on Intel® Core™ Microarchitecture
64-bit Address Layout 0f LBRMSRt

CONTENTS

PAGE

Vol. 3A XXXix

CONTENTS

Figure 19-5.
Figure 19-6.
Figure 19-7.
Figure 19-8.
Figure 19-9.

Figure 19-10.
Figure 19-11.
Figure 19-12.
Figure 19-13.
Figure 19-14.
Figure 19-15.
Figure 19-16.
Figure 19-17.
Figure 19-18.
Figure 19-19.
Figure 19-20.
Figure 19-21.
Figure 19-22.
Figure 19-23.
Figure 19-24.
Figure 19-25.
Figure 19-26.
Figure 19-27.
Figure 19-28.
Figure 19-29.
Figure 19-30.
Figure 19-31.
Figure 19-32.
Figure 19-33.
Figure 19-34.
Figure 19-35.
Figure 19-36.
Figure 19-37.
Figure 19-38.
Figure 19-39.
Figure 19-40.

Figure 21-1.
Figure 21-2.
Figure 21-3.
Figure 21-4.
Figure 21-5.
Figure 21-6.
Figure 21-7.
Figure 21-8.
Figure 21-9.

Figure 21-10.
Figure 21-11.
Figure 21-12.
Figure 21-13.
Figure 21-14.

Figure 21-15.
Figure 21-16.
Figure 21-17.
Figure 21-18.
Figure 21-19.
Figure 21-20.
Figure 21-21.
Figure 21-22.
Figure 21-23.
Figure 21-24.
Figure 21-25.
Figure 21-26.
Figure 21-27.
Figure 21-28.

x| Vol. 3A

DS SaVE ATBa XMl . . vttt ettt e 19-21
32-bit Branch Trace ReCOrd FOMmMat. . ..o v vttt ettt e et e iaaas 19-22
PEBS RECOMA FOMmMIat. . ittt ettt et e et e e e et e e e e e 19-22
IA-32e Mode DS Save Ara EXamMPIE ...ttt ettt et e e e 19-23
64-bit Branch Trace ReCOrd FOmmMat. . .. v vttt ettt e e e 19-23
64-bit PEBS RECOTA FOMMIAt . ..ttt ettt e e e et r et e e e 19-24
IA32_DEBUGCTL MSR for Processors Based on Nehalem Microarchitecture..........oovvviiviiiiiiiniinnnnn. 19-30
MSR_DEBUGCTLA MSR for Pentium 4 and Intel XE0N ProCeSSOrS . . v vv vttt ittt it i it ieennens 19-36
LBR MSR Branch Record Layout for the Pentium 4 and Intel® Xeon® Processor Family 19-37
IA32_DEBUGCTL MSR for Intel® Core™ Solo and Intel® Core™ DUO ProCESSOrS .. .v v vvvi v niieiiennennn 19-38
LBR Branch Record Layout for the Intel® Core™ Solo and Intel® Core™ Duo Processor..........ovvvevviinvnnnnn. 19-39
MSR_DEBUGCTLB MSR for PENtiUM M PrOCESSOTS . ..o vttt et ettt te e et et e et e nens 159-40
LBR Branch Record Layout for the Pentium M ProCesSor.ovu ittt i e e 19-40
DEBUGCTLMSR Register (P6 Family PrOCESSOMS) . .. v vttt ettt ettt ettt 19-41
Platform Shared Resource Monitoring Usage FIoW.ouiui i et ee s 19-46
CPUID.(EAX=0FH, ECX=0H) Monitoring Resource Type ENUMEration.ovvvervuiiinii e iniiniienienns 19-47
L3 Cache Monitoring Capability Enumeration Data (CPUID.(EAX=0FH, ECX=TH))..........coiviiiiiiiiiiinnnns 19-47
L3 Cache Monitoring Capability Enumeration Event Type Bit Vector (CPUID.(EAX=0FH, ECX=1H)).............. 19-48
IA32_POR _ASSOC MR ..ttt e e 19-49
IA32_QM_EVTSEL and IA32_QM_CTR MSRS. . . ettt ittt ettt en 19-51
Software Usage of Cache Monitoring RESOUNCES. ovitte ittt ittt ettt eeeae s 19-51
Cache Allocation Technology Enables Allocation of More Resources to High Priority Applications............... 19-53
Examples of Cache Capacity Bitmasks.ovvuie e e 19-54
Class of Service and Cache Capacity Bitmasksotiii i ettt aeaeans 19-55
Code and Data Capacity Bitmasks Of CDP. ottt e i i e eas 19-57
Cache Allocation Technology Usage FIoWttt e ea 19-57
CPUID.(EAX=10H, ECX=0H) Available Resource Type Identification............ccooivuiiiiiiiiiiiiiiii s 19-58
L3 Cache Allocation Technology and CDP ENUMEration.vvut et n i eeees 19-59
L2 Cache AlIoCation TECANOIOGYttt ettt e et e e e e e e e e 19-60
IA32_PQR_ASSOC, IA32_L3 MASK M MRS . .\ttt ittt ettt et et e e e 19-61
A2 L2 MASK N MRS ittt ettt et e e e e 19-61
Layout OF IA32_L3_Q0S L G ottt ettt e et et e et e e 19-62
LayoUt OF IA32 L2 Q0 L G ottt ittt et ettt et e e et e e et e e 19-64
CPUID.(EAX=10H, ECX=3H) MBA Feature Details Identification............cooiiiiiii i s 19-67
IA32_L2_QoS_Ext_BW_Thrtl_n MSR Definition.couiiriii e 19-68
Layout of the IA32_L3_I0_RDT_CFG MSR for Enabling Non-CPU Agent Intel*RDT............cccviviiinnnnt. 19-71
Layout OF A3 2 _PERFEVTSELX MSRS ...\ttt e e e e 21-4
Layout of IA32_FIXED_CTR_CTRU MSR ...ttt e 21-6
Layout of IA32_PERF_GLOBAL _CTRLU MSR ..ttt ittt et e 21-7
Layout of IA32_PERF_GLOBAL_STATUS MSR ...ttt 21-8
Layout of IA32_PERF_GLOBAL_OVF_CTRUMSR. ...ttt e e 21-9
Layout of IA32_PERFEVTSELx MSRs Supporting Architectural Performance Monitoring Version3.............. 21-9
IA32_FIXED_CTR_CTRL MSR Supporting Architectural Performance Monitoring Version3..................... 21-10
Layout of Global Performance Monitoring Control MSR.t e 21-10
Global Performance Monitoring Overflow Status and Control MSRSt e 21-11
IA32_PERF_GLOBAL_STATUS MSR and Architectural Perfmon Version 4., 21-13
IA32_PERF_GLOBAL_STATUS_RESET MSR and Architectural Perfmon Version 4covoivviinnnn. 21-13
IA32_PERF_GLOBAL_STATUS_SET MSR and Architectural Perfmon Version 4c.covviivniiiniinnnann. 21-14
IA32_PERF_GLOBAL_INUSE MSR and Architectural Perfmon Version 4..........c.oovviiiiiiiiiiiiniienenn, 21-14
IA32_PMC_GPx_CFG_A MSR (also known as IA32_PERFEVTSELX)

Supporting Architectural Performance Monitoring Version 6oovriii i 21-17
IA32_FIXED_CTR_CTRL MSR Supporting Architectural Performance Monitoring Version6..................... 21-17
IA32_PERF_GLOBAL _STATUS MR .. ittt e e e e e e e e 21-23
Layout Of IA32_PEBS_ENABLE MSR ...ttt et e e e 21-25
PEBS Programming EnViEOnmMENtottt ettt e e e e 21-27
Layout OF MSR_PEBS LD _LAT MR . . .ttt ittt e e e e e e e 21-29
Layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 to Configure Off-core Response Events.......... 21-30
Layout of MSR_UNCORE_PERF_GLOBAL_CTRLMSR ...ttt sttt ittt 21-32
Layout of MSR_UNCORE_PERF_GLOBAL_STATUS MSR ...ttt 21-33
Layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRLMSR. ..\ttt e 21-33
Layout of MSR_UNCORE_PERFEVTSELX MSRS ...\ttt et 21-34
Layout of MSR_UNCORE_FIXED_CTR_CTRLMSR ...ttt e e 21-34
Layout of MSR_UNCORE_ADDR_OPCODE_MATCH MSR ...\ttt 21-35
Distributed Units of the Uncore of Intel® Xeon® Processor 7500 SEMES vvvvrviiriii it iieiienennn 21-36
IA32_PERF_GLOBAL_CTRL MSR in Sandy Bridge MicroarchiteCture.o.vvviiii it ici i ieeas 21-39

Figure 21-29.
Figure 21-30.
Figure 21-31.
Figure 21-32.
Figure 21-33.
Figure 21-34.
Figure 21-35.
Figure 21-36.
Figure 21-37.
Figure 21-38.
Figure 21-39.
Figure 21-40.
Figure 21-41.
Figure 21-42.
Figure 21-43.
Figure 21-44.
Figure 21-45.
Figure 21-46.
Figure 21-47.
Figure 21-48.
Figure 21-49.

Figure 21-50.
Figure 21-51.
Figure 21-52.
Figure 21-53.

Figure 21-54.
Figure 21-55.
Figure 21-56.
Figure 21-57.
Figure 21-58.
Figure 21-59.
Figure 21-60.
Figure 21-61.
Figure 21-62.
Figure 21-63.
Figure 21-64.
Figure 21-65.
Figure 21-66.
Figure 21-67.
Figure 21-68.
Figure 21-69.
Figure 21-70.
Figure 21-71.
Figure 21-72.
Figure 21-73.

Figure 22-1.
Figure 22-2.
Figure 22-3.
Figure 22-4.
Figure 22-5.
Figure 23-1.
Figure 24-1.
Figure 25-1.
Figure 26-1.
Figure 30-1.
Figure 32-1.
Figure 32-2.
Figure 33-1.
Figure 33-2.
Figure 33-3.
Figure 33-4.
Figure 33-5.
Figure 34-1.

CONTENTS

IA32_PERF_GLOBAL_STATUS MSR in Sandy Bridge Microarchitecture.cociiiiiiiiiiiiiiii i, 21-40
IA32_PERF_GLOBAL_OVF_CTRL MSR in Sandy Bridge Microarchitecturecovviiiiiiiiinenen. 21-41
Layout O IA32_PEBS _ENABLE MSRttt e 21-43
Request_Type Fields for MSR_OFFCORE_ RSP _X ...\ iuit ittt e e 21-47
Response_Supplier and Snoop Info Fields for MSR_OFFCORE_RSP_X.......c.vvriiiiiiiii e 21-48
Layout of Uncore PERFEVTSEL MSR for a C-Box Unit orthe ARBURIt.........covviiiiiiiiiii e 21-49
Layout of MSR_UNC_PERF_GLOBAL_CTRLMSR for UNCOre. ... v vttt ettt i ettt ieie e 21-50
Layout of IA32_PERFEVTSELX MSRs Supporting Intel TSX. 21-59
IA32_PERF_GLOBAL_STATUS MSR in Broadwell Microarchitecture.covvviiiiii i ieieeenes 21-61
IA32_PERF_GLOBAL_OVF_CTRL MSR in Broadwell microarchitectureovvvvviiiiiiii i, 21-61
MSR_PERF_METRICS DefiMition . .. v vttt ettt e e e e e e e 21-74
PERF_METRICS MSR Definition for 12th Generation Intel® Core™ Processor P-core.........covovviviiviinnnnnn, 21-76
Deducing Implied Level 2 Metrics in the Core PMU for12th Generation Intel® Core™ Processor P-core. 21-77
Request_Type Fields for MSR_OFFCORE_RSPX ... vitit ittt e 21-90
Response_Supplier and Snoop Info Fields for MSR_OFFCORE_RSPXcviiiiii it 21-91
IA32_PEBS_ENABLE MSR with PEBS Output to Intel® Processor TraCecovvvvriiiiiiiiiiieieiiinenenn. 21-100
Layout Of IA32_FIXED_CTR_CTRU MSR . ..ttt e e e 21-106
Layout of MSR_PERF_GLOBAL _CTRL MSR ...ttt ittt 21-107
Layout of MSR_PERF_GLOBAL _STATUS MSR .. ittt e 21-107
Layout of MSR_PERF_GLOBAL_OVF_CTRUMSR. ...\ttt e 21-108
Event Selection Control Register (ESCR) for Pentium 4

and Intel® Xeon® Processors without Intel HT Technology Support ... 21-114
Performance Counter (Pentium 4 and Intel® Xe0on® ProCESSOIS) « .. vt ittt ei it eiennenans 21-116
Counter Configuration Control Register (CCCR) ... v v vttt ettt e e eees 21-117
Effects Of EAge FIlEMiNgot e e e 21-120
Event Selection Control Register (ESCR) for the Pentium 4 Processor, Intel® Xeon® Processor, and

Intel® Xeon® Processor MP Supporting Hyper-Threading Technology ...t 21-128
Counter Configuration Control Register (CCCR)\ vt vttt ettt e eens 21-129
Block Diagram of 64-bit Intel® Xeon® Processor MP with 8-MByte L3o 21-132
MSR_IFSB_IBUSQX, Addresses: TO7CCH aNd TO7ZCDH.\ vuit ettt 21-133
MSR_IFSB_ISNPQXx, Addresses: TO7CEH aNd TO7CFH. ouitt e 21-133
MSR_EFSB_DRDYx, Addresses: 107D0OH and TO7ZDTHottt 21-134
MSR_IFSB_CTL6, Address: 107D2H; MSR_IFSB_CNTR7, Address: TO7D3H.covvviiiiiiiiiiii i 21-134
Block Diagram of the Intel® Xeon® Processor 7400 SeriesS. ... vvvvvr ittt ittt aneens 21-135
Block Diagram of the Intel® Xeon® Processor 7100 SErieS.vvvu vttt et 21-136
MSR_EMON_L3_CTR_CTLO/1, Addresses: TOZCCH/TO7ZCDH ... vt 21-137
MSR_EMON_L3_CTR_CTL2/3, Addresses: TOZ7CEH/TO7ZCFH. .. .vvniri e 21-139
MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: T07D0OH-TO7D3H.covriiiiii e 21-139
PerfEVISEl0 and PerfEUtSelT MRS, . .ttt ittt ettt e e 21-141
CESR MSR (Pentium ProceSSOr ONIY). .o v vttt et e ettt et e et et e et e 21-144
Layout of IA32_PERF_CAPABILITIES MSR. . ..ttt e 21-149
Layout O IA32_PEBS_ENABLE MSR ...ttt ittt e e e e 21-150
PEBS Programming ENVIcONmMIENtottt ettt ettt e 21-151
Layout of IA32_PerfEvtSelX MSR Supporting Adaptive PEBSot e 21-152
Layout of IA32_FIXED_CTR_CTRL MSR Supporting Adaptive PEBSo 21-153
Legacy MSR _PEBS D AT A L G ..ttt ettt ettt et e e et e e e e 21-157
MSR_PEBS_DATA_CFGIN PEBS_FMT =6 ..ottt et e 21-158
Real-Address Mode Address Translationvuvr e e 22-3
Interrupt Vector Table in Real-Address MOGE ovvuiriti ettt 22-5
Entering and Leaving Virtual-8086 MOGE v vttt 22-9
Privilege Level O Stack After Interrupt or Exception in Virtual-8086 Mode.cccvviiiiiiiiiiienanns, 22-13
Software Interrupt Redirection Bit Map in TSS i i et 22-18
Stack after Far 16-and 32-Bit Callso.viei e 23-5
1/0 Map Base Address DifferenCeS. . .. v i ettt ittt e ettt e e 24-30
Interaction of @ Virtual-Machine Monitor and GUESTS. vt ittt 25-2
SEATES OF UM X ottt e e e e e 26-2
Formats of EPTP and EPT Paging-Structure ENtriesc.vuiiii i et e e 30-13
1NN LY o =YY) (o] 32-3
LA A AT o oY 0] o 32-6
SMRAM USEQE. . . ettt ittt ettt et et e e e e e e e e 33-4
SMM ReVISION IQE Nt IO . . oottt e e e e e 33-13
AUTO HALT ReSTart FIld . . . oottt e e e e e et 33-14
SMBASE RelOCation FIeld. . ..ottt e e e e e 33-15
/0 INSTrUCtion ReSTArt FIEld.ottt e e e e e 33-15
TOPA MemOry USTration . . oottt et ettt e e e e e e e e 34-11

Vol. 3A xli

CONTENTS

Figure 34-2.
Figure 34-3.
Figure 35-1.
Figure 37-1.
Figure 37-2.
Figure 37-3.
Figure 38-1.
Figure 38-2.
Figure 39-1.
Figure 41-1.
Figure 41-2.
Figure 41-3.
Figure 41-4.

xlii Vol. 3A

LayoUT OF TOPA Table BNty . . oottt et e e et et e et es 34-12
Interpreting Tabular Definition of Packet FOrmMat.vuir i e 34-38
An Enclave Within the Application’s Virtual Address SPaceot i e e e 35-1
ENCIAVE MEMIOTY LAY OUT. . .ttt ittt e ettt et e e e e e e e e e e ey 37-1
Measurement Flow of ENCIaVe Build ProCESS vv vt e 37-7
1) 09, Moo= 2 1 1= = 1 1 0 37-9
Exit Stack Just After Interrupt with Stack Switch. ... e e 38-1
THE S A STaCK. .« vttt e e e e 38-2
Relationships Between SECS, SIGSTRUCT, and EINITTOKENot e i 39-47
Single Stepping With Opt-0ut ENTrY - NO AEXttt e et 41-2
Single Stepping with Opt-out Entry -AEX Due to Non-SMI Event Before Single-Step Boundary 41-3
LBR Stack Interaction With Opt-in ENtry.ot e e 41-6
LBR Stack Interaction With Opt-0Ut ENTrYou ottt et 41-7

CONTENTS

PAGE
TABLES
Table 2-1. IA32_EFER MSR I Ommation . .. ov ettt et e e 2-9
Table 2-2. Action Taken By x87 FPU Instructions for Different Combinations of EM, MP,and TSccoviiintn, 2-16
Table 2-3. SUMMANY Of SYSTEM INSTTUCTHIONSottt ettt e n e eaaas 2-23
Table 3-1. Code- anNd Data-SegmENt Ty DS . . vttt vttt ettt ettt et e et e e e 3-12
Table 3-2. System-Segment and Gate-DesCriplor TYPESttt 3-14
Table 5-1. Properties of Different Paging MOGesSoviiiiii i et e 5-2
Table 5-2. Paging Structures in the Different Paging ModeSo vttt e 5-8
Table 5-3. Use of CR3 With 32-Bit Pagingcviieiii it e e e 5-12
Table 5-4. Format of a 32-Bit Page-Directory Entry that Mapsa4-MBytePage ..ot 5-12
Table 5-6. Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page ... 5-13
Table 5-5. Format of a 32-Bit Page-Directory Entry that ReferencesaPage Tablecooviiiiiiiiii i, 5-13
Table 5-7. Use OF CR3 With PAE Paging ... v vttt et e ettt ettt et ettt a e eaees 5-14
Table 5-8. Format of a PAE Page-Directory-Pointer-Table Entry (PDPTE)oviviiiiii i 5-15
Table 5-9. Format of a PAE Page-Directory Entry that Maps a 2-MByte Page.ooviiiiiiii e 5-17
Table 5-10. Format of a PAE Page-Directory Entry that ReferencesaPage Table ... 5-18
Table 5-11. Format of a PAE Page-Table Entry that Maps @ 4-KByte Page.vviiiiiii i 5-18
Table 5-12. Use of CR3 with 4-Level Paging and 5-level Pagingand CRAPCIDE =0coviriiiiiii i 5-20
Table 5-13. Use of CR3 with 4-Level Paging and 5-Level Pagingand CRA.PCIDE =1cviririiiiii it 5-21
Table 5-14. Format of a PML5 Entry (PML5E) that ReferencesaPML4 Table.........covi i 5-26
Table 5-15. Format of a PML4 Entry (PML4E) that References a Page-Directory-Pointer Table.....................coiiit 5-26
Table 5-16. Format of a Page-Directory-Pointer-Table Entry (PDPTE) that Mapsa 1-GBytePage............c.ocovvvvviinnnn 5-27
Table 5-17. Format of a Page-Directory-Pointer-Table Entry (PDPTE) that References a Page Directory.................... 5-28
Table 5-18. Format of a Page-Directory Entry that Mapsa 2-MByte Pageo 5-29
Table 5-19. Format of a Page-Directory Entry that ReferencesaPage Table............ccciiiiiiiiiiii i 5-30
Table 5-20. Format of a Page-Table Entry that Maps @ 4-KByte Pageovvviiii it 5-31
Table 6-1. Privilege Check RUIES TOr Call Gates.t ve ettt e e e 6-16
Table 6-2. 64-Bit-Mode Stack Layout After Far CALL with CPLChange. ... e 6-19
Table 6-3. Combined Page-Directory and Page-Table Protection.o.vuvuri et 6-29
Table 6-4. Extended Feature ENable MSR (JA32_EFER).ii it 6-30
Table 6-6. 4-KByte Page Level Protection Matrix with Execute-Disable Bit Capability with PAEPaging.................... 6-31
Table 6-7. 2-MByte Page Level Protection with Execute-Disable Bit Capability with PAE Paging................oooovints 6-31
Table 6-5. Page Level Protection Matrix with Execute-Disable Bit Capability with 4-Level Pagingt 6-31
Table 6-9. Reserved Bit Checking with Execute-Disable Bit Capability NotEnabled ..., 6-32
Table 6-8. Page Level Protection Matrix with Execute-Disable Bit Capability Enabled...............cccoviiiiiininninns, 6-32
Table 7-1. Protected-Mode EXCeptions and INTEITUPTSt it it e 7-2
Table 7-2. Priority AMONg CoNCUM Nt BV EMTS .ottt it i it et e et ettt 7-8
Table 7-3. Debug Exception Conditions and Corresponding EXCeption Classes .. .vvvvir ittt 7-25
Table 7-4. Interrupt and EXCEPLION ClasSeSttt e e e e e 7-33
Table 7-5. Conditions for Generating a Double Fault i i ettt 7-34
Table 7-6. INVAlId TSS CONAITIONS ..\ttt et e e e e e e e e e 7-36
Table 7-7. Alignment Requirements BY Data TyPe v vt e e 7-50
Table 7-8. SIMD Floating-Point EXCEPTiONS Priority. ..o .v ot e i e e e 7-54
Table 8-1. Format of User Posted-Interrupt Descriptor — UPID. ou et eas 8-5
Table 9-1. Exception Conditions Checked Duringa Task SWItcho e 9-13
Table 9-2. Effect of a Task Switch on Busy Flag, NT Flag, Previous Task Link Field,and TSFlag................coooveatt 9-15
Table 10-1. Broadcast INIT-SIPI-SIPI Sequence and Choice of TIMEOUTS. ... vttt it vttt e e 10-24
Table 10-2. Initial APIC IDs for the Logical Processors in a System that has Four Intel Xeon MP Processors Supporting

Intel Hyper-Threading TeChN0IogYo.viii i e e i it eaes 10-40
Table 10-3. Initial APIC IDs for the Logical Processors in a System that has Two Physical Processors Supporting Dual-Core

and Intel Hyper-Threading TEChNOIOGYo v ii et e 10-41
Table 10-4. Example of Possible x2APIC ID Assignment in a System that has Two Physical Processors Supporting x2APIC

and Intel Hyper-Threading TeChNOIOQYo vvviutt e e e 10-41
Table 10-5. Boot Phase IPI Message FOmMat.vrie et e e e ee e 10-56
Table 11-1. IA-32 and Intel® 64 Processor States Following Power-up, Reset, or INIT ... 11-2
Table 11-2. Variance of RESET Values in Selected Intel Architecture Processors.v.vv v 11-4
Table 11-3. Recommended Settings of EM and MP Flags on IA-32 ProCESSOrS vv vt et 11-6
Table 11-4. Software Emulation Settings of EM, MP, and NE FIagscoiiiiiii i it 11-7
Table 11-5. Main Initialization Steps in STARTUP.ASM Source Listingoviiiiiiii it 11-16
Table 11-6. Relationship Between BLD Item and ASM SOUMCE File. . ..o v v v 11-27
Table 11-7. Microcode Update Field Definitionsc.ovi e e e 11-28
Table 11-8. MiCrocode Update FOMmMat. . .. ov ottt e e et e e 11-30
Table 11-9. Extended Processor Signature Table Header STruCtUre. . ..o vt 11-31

Vol. 3A xliii

CONTENTS

Table 11-10.
Table 11-11.
Table 11-12.
Table 11-13.
Table 11-14.
Table 11-15.
Table 11-16.
Table 11-17.
Table 11-18.
Table 11-19.
Table 12-1.
Table 12-2.
Table 12-3.
Table 12-4.
Table 12-5.
Table 12-6.
Table 12-7.
Table 12-8.
Table 12-9.
Table 12-10.
Table 12-11.
Table 13-1.
Table 13-2.
Table 13-3.

Table 13-4.
Table 13-5.
Table 13-6.
Table 13-7.
Table 13-8.
Table 13-9.
Table 13-10.
Table 13-11.
Table 13-12.
Table 14-1.
Table 14-3.
Table 14-2.
Table 15-1.
Table 15-2.
Table 15-3.
Table 16-1.
Table 16-2.
Table 16-3.
Table 16-4.
Table 16-5.
Table 16-6.
Table 16-7.
Table 16-8.
Table 16-9.
Table 16-10.
Table 16-11.
Table 16-12.
Table 17-1.
Table 17-2.
Table 17-3.
Table 17-4.
Table 17-5.
Table 17-6.
Table 17-7.
Table 17-8.
Table 17-9.
Table 17-10.
Table 17-11.
Table 17-12.
Table 17-13.

xliv Vol. 3A

PrOCESSOr SIgNAtUNE STTUCTUNE ..\ttt et et e e ettt et a e aees 11-31
PrOCESSOT FlagS. . ettt e e e e e 11-33
Microcode Update SiIgnatureo i e e e e 11-37
Microcode Update FUNCHIONSttt ettt e e e ettt 11-42
Parameters for The PrESEnCE ToSt. . vttt ettt et e a e 11-42
Parameters for the Write Update Data FUNCHION.ottt ae s 11-43
Parameters for the Control Update Sub-fUNCHiono e 11-47
MNEMONIC ValUBS . . v vttt ettt e s et e e e e e e 11-47
Parameters for the Read Microcode Update Data FUNCHION.oviii e 11-47
RetUMN Code DEfinitioNS. . . vttt e e e e e 11-49
LOCal APIC REGISTEr AdArESS MaD . vttt ettt ettt et e s et e e e e e 12-6
LI Tore A o O T =Y gl 1 T T 12-17
Valid Combinations for Pentium 4 and Intel Xeon Processors Local xAPIC Interrupt Command Register. 12-21
Valid Combinations for the P6 Family Processor Local APIC Interrupt Command Register 12-22
X2APIC Operating Mode Configurationsovui it e e e ettt 12-37
Local APIC Register Address Map Supported by X2APICttt 12-38
MSR/MMIO Interface of a Local x2APIC in Different Modes of Operationcoovvviiiviiiiniienennnnns 12-40
EOIMESSA0E (T4 QYIS vttt ettt et e et e e e e et e e e e e 12-47
SNOTEMESSAGE (21 CYCIES) vttt ettt ettt e e et e e e e e et e et e e 12-48
Non-Focused Lowest Priority Message (34 CYCles) .. ovvviuiii it i 12-49
APIC Bus Status Cycles Interpretationot i i i e 12-51
Characteristics of the Caches, TLBs, Store Buffer, and Write Combining Buffer in Intel 64 and IA-32 Processors . 13-2
Memory Types and Their PropErtiES vttt ettt e e e aaas 13-6
Methods of Caching Available in Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium M, Pentium 4, Intel Xeon,

P6 Family, and PentiUm PrOCESSOrS . . . vttt ettt ettt e sttt e e e et et 13-7
MEST CaCRE LINE STatES vttt ettt e e e et 13-9
Cache OPerating MOGESttt it i e e e e e e e e 13-12
Effective Page-Level Memory Type for Pentium Pro and Pentium Il Processorscovvvviiiiiennnns. 13-14
Effective Page-Level Memory Types for Pentium lll and More Recent Processor Families...................... 13-15
Memory Types That Can Be ENcoded iIN MTRRS.ottt i e e et eas 13-21
Address Mapping for Fixed-Range MTRRS.ttt i e e e e e e 13-24
Memory Types That Can Be Encoded With PATo i 13-34
Selection of PAT Entries with PAT, PCD, and PWT FIags. cooviii i 13-35
Memory Type Setting of PAT Entries Following a Power-up or Reset..........coviiiii it 13-35
Action Taken By MMX Instructions for Different Combinations of EM, MP,and TScoviiiiiiinnnns 14-1
Effect of the MMX, x87 FPU, and FXSAVE/FXRSTOR Instructions on the x87 FPU TagWord. 14-3
Effects of MMX INStructions 0N X87 FPU Statettt e 14-3
Action Taken for Combinations of OSFXSR, OSXMMEXCPT, SSE, SSE2, SSE3, EM,MP, and TS.................... 15-3
Action Taken for Combinations of OSFXSR, SSSE3, SSE4, EM, and TS ...ttt i 15-4
CPUID.(EAX=0DH, ECX=T) EAX Bit ASSIGNMMIENT. . .\ttt ettt ettt et e e e aees 15-8
Architectural and Non-Architectural MSRs Related tO HWP. 16-6
IA32_HWP_CTUMSR Bit O BERaVIOr v vttt ettt ettt e e e e e e 16-13
Architectural and non-Architecture MSRs Related TO HDCo v v i it 16-21
Hardware Feedback INterface StrUCTUTE oot e 16-25
Hardware Feedback Interface Global Header STruCTUrE ... ov v v vt 16-26
Hardware Feedback Interface Logical Processor Entry Structure . ..ottt ci i eaens 16-26
Intel® Thread Director Table StrUCTUNEottt e e e e 16-27
Intel® Thread Director Global Header STrUCTUMe v vt 16-28
Intel® Thread Director Logical Processor ENtry STrUCTUME.o v e aa e 16-29
IA32_HW_FEEDBACK_CONFIG Control OptionS. . ..o v e vttt e ettt et e et et e et e e e e 16-32
On-Demand Clock Modulation Duty Cycle Field ENCOdingovvviriii i i i 16-40
RAPL MSR Interfaces and RAPL DOMaiNS. . ..o v vttt ettt ettt et ettt e i enns 16-50
Bits 54:53 in IA32_MCi_STATUS MSRs when IA32_MCG_CAP[11]=1andUC=0.......c.cooovviiiiiiiianiinnns 17-7
Overwrite Rules fOr EN@DIEd EITOrS . ..o\ v ettt ettt et e e e e e e 17-8
Address Mode iN TA3 2 _ MU _MISC B Bttt ettt et et e 17-10
Address Mode iN TA3 2 _ MU _MISC B B . .ottt vttt e e e 17-11
Extended Machine Check State MSRs in Processors Without Support for Intel® 64 Architecture................ 17-12
Extended Machine Check State MSRs In Processors With Support for Intel® 64 Architecture 17-12
(O S ol O RS o= 1o 0 17-18
Overwrite Rules for UC, CE, aNd UCR EITOMS ... v ittt sttt et it ie e e ettt et e e eaenens 17-18
IA32_MCi_Status [15:0] Simple Error Code ENCOAING.o vuvi ittt iaiaaas 17-21
IA32_MCi_Status [15:0] Compound Error Code ENCOAING. ... vv v vttt aa e 17-21
Encoding for TT (Transaction Type) Sub-Fieldo e 17-22
Level Encoding for LL (Memory Hierarchy Level) Sub-Fieldo e 17-22
Encoding of Request (RRRR) SUD-Field.ove e e i e 17-23

CONTENTS

PAGE
Table 17-14. Encodings of PP, T, and Il SUD-FIelds oot e e e e s 17-23
Table 17-15. Encodings of MMM and CCCC SUD-FIEIAS.t v vttt e 17-24
Table 17-16. MCA Compound Error Code ENcoding for SRAD BITOTS vvtitt ittt ettt eeaens 17-24
Table 17-17. 1A32_MCi_STATUS VaIUEs fOr SRAD EITOTS . ..ttt e ettt et e et e e e et et et e enens 17-25
Table 17-18. 1A32_MCG_STATUS Flag INdication fOr SRAD ErTOrS v vttt ettt et aenens 17-25
Table 17-20. 1A32_MCi_STATUS Values for All Defined SRAR EMTOrSt vtt ettt ittt ie et nena 17-26
Table 17-19. MCA Compound Error Code ENcoding for SRAR EITOrS. ...\ vv vttt e e aens 17-26
Table 17-21. 1A32_MCG_STATUS Flag Indication for SRAR ErTOrS v vttt ettt e aeaens 17-27
Table 18-1. CPUID DisplayFamily_DisplayModel Signatures for Processor Family 06Hcoiiiiiiiiiinnn.s 18-1
Table 18-2. Incremental Decoding Information: Processor Family 06H Machine Error Codes for Machine Check.............. 18-1
Table 18-3. CPUID DisplayFamily_DisplayModel Signatures for Processors Based on Intel® Core™ Microarchitecture......... 18-3
Table 18-4. Incremental Bus Error Codes of Machine Check for Processors Based on Intel® Core™ Microarchitecture 18-4
Table 18-5. Incremental MCA Error Code Types for Intel® Xeon® Processor 7400cvviririiiiii it iinnenennns 18-6
Table 18-6. Type B: Bus and INterconneCt Error COUES v ittt et e e 18-6
Table 18-7. Type C: Cache Bus Controller Error Codes . ..o vi ittt it e e i e et ne e 18-7
Table 18-8. Intel® QPI Machine Check Error Codes for IA32_MCO_STATUS and IA32_MC1_STATUScooviiiiiiiininnnn 18-8
Table 18-9. Intel® QPI Machine Check Error Codes for IA32_MCO_MISCand IA32_MCT_MISC........ccvviiiiiiiiniiines 18-8
Table 18-10. Machine Check Error Codes for IA32_MC7 _STATUS L.ttt e e 18-9
Table 18-11. Incremental Memory Controller Error Codes of Machine Check for IA32_MC8_STATUSccovvvivvnnann. 18-9
Table 18-12. Incremental Memory Controller Error Codes of Machine Check for IA32_MC8_MISC............covvvviiiininnn. 18-10
Table 18-13. Machine Check Error Codes for IA32_MCA_STATUS ... it e e 18-10
Table 18-14. Intel® QPI MC Error Codes for IA32_MC6_STATUS and IA32_MC7_STATUS ... it 18-11
Table 18-15. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 8, 11) vvviuiiiriiiii et 18-12
Table 18-16. Intel IMC MC Error Codes for IA32_MCIi_MISC (i= 8, T1) ..t vu ittt ittt 18-12
Table 18-17. Machine Check Error Codes for IA32_MCA_STATUS ...t 18-13
Table 18-18. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 9—16). . ..ottt et 18-14
Table 18-19. Intel IMC MC Error Codes for IA32_MCi_MISC (1= 9—T6) . ..ttt it 18-15
Table 18-20. Machine Check Error Codes for IA32_MCA_STATUS ..ot 18-16
Table 18-21. Intel® QPI MC Error Codes for IA32_MCi_STATUS (i =5,20, 21) .. oviriiiiiii it e et 18-17
Table 18-22. Intel IMC MC Error Codes for IA32_MCI_STATUS (1= 9—16). .ot vvviiit it e 18-18
Table 18-23. Intel IMC MC Error Codes for IA32_MCI_MISC (i= G—T6) . ..t vviieet ittt 18-18
Table 18-24. Machine Check Error Codes for IA32_MCA_STATUS ... e 18-19
Table 18-25. Intel IMC MC Error Codes for IA32_MCI_STATUS (1= 9—10). ...t vvvit it 18-20
Table 18-26. Intel IMC MC Error Codes for IA32_MCI_STATUS (1= 9—16). ..ttt vvtitti et e e 18-21
Table 18-27. Intel HA MC Error Codes for IA32_MCi_MISC (= 7, 8). ...t vvv vttt e e e 18-22
Table 18-28. Machine Check Error Codes for IA32_MCA_STATUS .. it e e 18-22
Table 18-29. Interconnect MC Error Codes for IA32_MCi_STATUS (i=5, 12, 19) e vttt 18-24
Table 18-30. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 13—=18) ..ottt e 18-26
Table 18-31. MZ2M MC Error Codes for IA32_MCi_STATUS (1= 7, 8) « vt vttt it 18-27
Table 18-32. Intel HA MC Error Codes for IA32_MCI_MISC (1= 7, 8). .. v vttt ettt ee s 18-27
Table 18-33. Intel IMC MC Error Codes for IA32_MCi_STATUS (= 7, 8). .o vviii ittt e 18-28
Table 18-34. Machine Check Error Codes for IA32_MCA_STATUS .. it e 18-29
Table 18-35. Interconnect MC Error Codes for IA32_MCi_STATUS (i1=5, 7, 8) ... viiiiiii i 18-31
Table 18-36. MSRs Reporting MC Error Codes by CPUID DisplayFamily_DisplaySignaturecoooviviiiiiiiiinnnnn. 18-32
Table 18-37. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 13—14,17—18,21-22,25—26).covviiiiiininnnn, 18-33
Table 18-38. Additional Information Reported in IA32_MCi_MISC (i= 13—14,17—18,21—22,25—26)covt . 18-35
Table 18-39. M2Z2M MC Error Codes for IA32_MCi_STATUS (i= 12, 16,20, 24) ... vviiiii i 18-36
Table 18-40. Machine Check Error Codes for IA32_MCA_STATUS .. ittt e 18-37
Table 18-41. Interconnect MC Error Codes for IA32_MCS ST ATUS ... ittt e 18-40
Table 18-42. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 13—20) ...t vttt i ens 18-41
Table 18-43. Additional Information Reported in IA32_MCi_MISC (i= 13—20) vttt 18-43
Table 18-44. MZ2M MC Error Codes for IA32_MC T2 _STATUS ..\ttt e e 18-44
Table 18-45. Incremental Decoding Information: Processor Family OFH, Machine Error Codes for Machine Check............. 18-45
Table 18-46. MCi_STATUS Register Bit Definition c.vui e e 18-46
Table 18-47. Incremental MCA Error Code for Intel® Xeon® Processor MP 7100vvvrveiiin i nenn 18-47
Table 18-48. Other Information Field Bit Definition. ..o e e 18-47
Table 18-49. TyYPE Ai L3 ErTOr COQES .t vttt ittt ittt ettt ettt e e e et e et et et ettt enen 18-48
Table 18-50. Type B: Bus and INterconnect Error COUBS v ittt ittt ettt ittt ettt e et aeaens 18-48
Table 18-51. Type C: Cache Bus Controller Error CoeS v vttt et ens 18-49
Table 18-52. Decoding Family OFH Machine Check Codes for Cache Hierarchy Errors.........c.oooovviiiiiiiiiiiiiiinnenn. 18-50
Table 19-1. BreaKpOiNT EXAMIDIES . .o\ttt ittt e e e e 19-6
Table 19-2. Debug EXCEPTION CONAitiONS. . v v ettt ettt et e e e e e 19-9
Table 19-4. LBR Stack Size and TOS PoINter RANGE.o vttt 19-17
Table 19-3. Legacy and Streamlined Operation with Freeze_Perfmon_On_PMI = 1, Counter Overflowed.................. 19-17
Table 19-5. IA32_DEBUGCTL FIag ENCOINGS . . . ot e vttt ettt ettt et s et e e et e aeas 19-25

Vol. 3A Xlv

CONTENTS

Table 19-6.
Table 19-7.
Table 19-8.
Table 19-9

Table 19-10.
Table 19-11.
Table 19-12.
Table 19-13.
Table 19-14.
Table 19-15.
Table 19-16.
Table 19-17.
Table 19-18.
Table 19-19.
Table 19-20.

Table 20-1.
Table 20-2.
Table 20-3.
Table 20-4.
Table 21-1.
Table 21-2.
Table 21-3.
Table 21-4.
Table 21-5.
Table 21-6.
Table 21-7.
Table 21-8.
Table 21-9.

Table 21-10.
Table 21-11.
Table 21-12.
Table 21-13.
Table 21-14.
Table 21-16.
Table 21-15.
Table 21-17.
Table 21-18.
Table 21-19.
Table 21-20.
Table 21-21.
Table 21-22.
Table 21-23.
Table 21-24.
Table 21-25.
Table 21-26.
Table 21-27.
Table 21-28.
Table 21-29.
Table 21-30.
Table 21-31.
Table 21-32.
Table 21-33.
Table 21-34.
Table 21-35.
Table 21-36.
Table 21-37.
Table 21-38.
Table 21-39.
Table 21-40.
Table 21-41.
Table 21-42.
Table 21-43.

Table 21-45.
Table 21-44.

xlvi Vol. 3A

CPL-Qualified Branch Trace Store ENCOGINGS v vttt ettt ettt et et ieans 19-26
MSR_LASTBRANCH_x_TO_IP for the Goldmont MicroarchiteCture.vvviiiiii it 19-28
MSR_LASTBRANCH X _FROM P ottt e e e e e 19-30
MSR _LASTBRANCH X T O IP .ottt ettt et e e e e e e e et e e e et 19-31
LBR Stack Size and TOS POINtEr RANGEo v vt 19-31
MSR_LBR_SELECT for Nehalem MicroarchiteCturevvuii i 19-31
MSR_LBR_SELECT for Sandy Bridge Microarchitecture e 19-32
MSR_LBR_SELECT for Haswell MicroarChiteCtureov et e 19-32
MSR_LASTBRANCH_x_FROM_IP with TSX INformation.oviri i i 19-33
LBR Stack Size and TOS POINter RaNGE ovivi ittt et 19-34
MSR _LBR _INF O X ot ettt ettt ettt e e e e e e e e e e 19-34
LBR MSR Stack Size and TOS Pointer Range for the Pentium® 4 and the Intel® Xeon® Processor Family......... 19-37
Monitoring SUPPOrTEd EVENT DSttt e e e e e e e 19-49
Re-indexing of CLOS Numbers and Mapping to CAT/CDP Mask MSRS.vuiriiii ittt 19-63
MBA Delay Value MO RS ..ttt e e e e e e 19-68
LBR IP Values for Various Operationsvuut ettt e e e ettt e e e e ettt e e ne e enanas 20-2
Branch Type Fitering Details.ttt e s e s 20-3
IA32_LBR_x_INFO and IA32_LER_INFO Branch Type ENCOdingS. viiriiiii it it e it eaans 20-4
LBRIVMUES FHlaS. . o v vttt ettt e e e e e e e et e e e e e 20-6
Association of Fixed-Function Performance Counters with Architectural Performance Events 21-7
New Performance Monitoring MSR Naming Detailsouieiriiiii et 21-16
UMask and Event Select Encodings for Pre-Defined Architectural Performance Events 21-18
PEBS Record Format for Intel Core i7 Processor Familyvvuv it 21-25
Data Source Encoding for Load Latency RECOdc..iuiiiiiii i et 21-29
Off-Core Response EVENt ENCOGING vvitit ittt et ettt e e ettt e aenees 21-30
MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition.cooovviviiiii i 21-30
Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCH ... vvitii i i 21-35
UNCOTE PMU MR UMM Y vttt ittt et ettt et et ettt e e ettt e e e e ettt a it eas 21-37
Uncore PMU MSR Summary for Intel® Xeon® Processor E7 Family.oovvuiii it 21-38
(000 = O o = o 21-39
PEBS FaCility COmIPamiSOn .o v ettt ettt ettt e e ettt e e e e e et e e e e 21-42
PEBS Performance Events for Sandy Bridge Microarchitecture. ... e 21-43
Layout of Data Source Field of Load Latency ReCOrdooiiiiii i et ae e 21-45
Off-Core Response EVENt ENCOGING vvttit ittt ettt e ettt et nens 21-46
Layout of Precise Store Information INPEBS ReCOrd. ..o e 21-46
MSR_OFFCORE_RSP_x Request_Type Field Definition...........cciiiiiiiii i 21-47
MSR_OFFCORE_RSP_x Response Supplier Info Field Definition. ... 21-48
MSR_OFFCORE_RSP_x Snoop Info Field Definition.vuvurrr it 21-49
UNCOTE PMU MO R UMM Y oottt ittt ittt ettt e ettt e ettt e ettt e et a e ittt aanan 21-50
MSR_OFFCORE_RSP_x Supplier Info Field Definitions.ouvuii i 21-51
Uncore PMU MSR Summary for Intel® Xeon® Processor ES Family. ...t 21-52
(000 =38 O o = o 21-53
PEBS FaCility COmIPamiSOn v vttt ettt ettt e ettt e e e e e et e e e e e 21-53
PEBS Record Format for 4th Generation Intel Core Processor Family ..ot 21-54
Precise Events That Supports Data Linear Address Profiling ... 21-55
Layout of Data Linear Address Information INPEBS ReCOMdcviiiiiii i 21-56
MSR_OFFCORE_RSP_x Request_Type Definition (Haswell Microarchitecture)covvviviiiiiiiiinnnn 21-56
MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signatures: 06_3CH, 06_46H) 21-57
MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signature: 06_45H)covvviiiviinnnn. 21-57
MSR_OFFCORE_RSP_x Supplier Info Field Definition.o i 21-58
TX Abort Information Field Defimitionovvvr i e 21-60
UNCOME PMU MR SUMIMI Y vttt ittt ettt ettt et et e e ettt e ettt e e e e e it r et ae s 21-60
(000 o [@003 o= i Yo P 21-62
PEBS FaCility COmMIPariSOn & vttt ettt et ettt et e e e et e e e e e e e 21-63
PEBS Record Format for the 6th Generation, 7th Generation, and 8th Generation Intel Core Processor Families 21-64
Precise Events for the Skylake, Kaby Lake, and Coffee Lake Microarchitecturescovvvviiiniinnnnn. 21-65
Layout of Data Linear Address Information INPEBS RecOrdoviiiiii i 21-66
FrontEnd_Retired Sub-Event Encodings Supported by MSR_PEBS_FRONTEND.EVTSEL.............ccvvvvnnt. 21-67
MSR_PEBS_FRONTEND LayOUL. . ..ottt ettt ettt e et et e e et et e e et e et et e e e e 21-67

MSR_OFFCORE_RSP_x Request_Type Definition (Skylake, Kaby Lake, and Coffee Lake Microarchitectures)21-68
MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signatures: 06_4EH, 06_5€H, 06_8EH, 06_9€H)...21-68
MSR_OFFCORE_RSP_x Snoop Info Field Definition

(CPUID Signatures: 06_4€H, 06_5€EH, 06_8EH, 06_9E, 06_55H)cciiiiiiiii e 21-69
MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signature: 06_55H)cooovviiiviiinn. 21-70
MSR_OFFCORE_RSP_x Request_Type Definition (Intel® Xeon® Scalable Processor Family) 21-70

CONTENTS

PAGE

Table 21-46. MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signature: 06_55H, Steppings Ox5H - OxFH) 21-71
Table 21-48. MSR_OFFCORE_RSP_x Request_Type Definition (Processors Based on Ice Lake Microarchitecture)............ 21-72
Table 21-47. Core PMU Summary of the Ice Lake Microarchitecture. ... e 21-72
Table 21-49. MSR_OFFCORE_RSP_x Supplier Info Field Definition (Processors Based on Ice Lake Microarchitecture)......... 21-73
Table 21-50. MSR_OFFCORE_RSP_x Snoop Info Field Definition (Processors Based on Ice Lake Microarchitecture)........... 21-74
Table 21-51. Core PMU Summary of the Golden Cove Microarchit@Cture.vvii it e 21-76
Table 21-52. Special Performance Monitoring Events with Counter Restrictions ...t i, 21-77
Table 21-53. Core PMU Summary of the Gracemont MicroarChitectureovv v e 21-78
Table 21-54. E-core PEBS Memory Access INTo ENCOAINGovnii i ittt 21-78
Table 21-55. E-core PEBS Data SOUMCE ENCOGINGSt v v vttt ittt ettt ettt et e e et ettt e et eaens 21-79
Table 21-56. MSR_OFFCORE_RSPx Request Type Definition.ouvuvuri i e 21-80
Table 21-57. Core PMU Summary of the Lion Cove Microarchitecture ... i 21-81
Table 21-58. Performance Monitoring Events with Counter Restrictions in Lion Cove PMU...............cociiiiiinnnt s, 21-82
Table 21-59. Core PMU Summary of the Skymont Microarchitecturecooviii i e 21-82
Table 21-60. PEBS Performance Events for Knights Landing Microarchitecture ...t 21-84
Table 21-61. PEBS Record Format for Knights Landing Microarchitecture ..ottt 21-84
Table 21-62. OffCore Response EVENT ENCOMING . ..o .ottt et e ens 21-85
Table 21-63. Bit fields of the MSR_OFFCORE_RESP [0, 1] REGISTEIS. 1 v\ttt vttt ettt aa 21-85
Table 21-64. PEBS Performance Events for the Silvermont Microarchitecture ... e 21-88
Table 21-66. OffCore Response EVENt ENCOTING . ..o vvvitit ittt e e e e 21-89
Table 21-65. PEBS Record Format for the Silvermont Microarchitecture.oovivi i e 21-89
Table 21-67. MSR_OFFCORE_RSPx Request_Type Field Definition.ot e 21-90
Table 21-68. MSR_OFFCORE_RSP_x Response Supplier Info Field Definition. ... i 21-91
Table 21-69. MSR_OFFCORE_RSPx Snoop Info Field Definition.ooiiiii i e 21-91
Table 21-70. Core PMU Comparison Between the Goldmont and Silvermont Microarchitectures.cccovvvvven... 21-92
Table 21-71. Precise Events Supported by the Goldmont Microarchitecture ..o e 21-94
Table 21-72. PEBS Record Format for the Goldmont MicroarchiteCture.vv vt e e 21-95
Table 21-73. MSR_OFFCORE_RSPx Request_Type Field Definition.ot e 21-96
Table 21-74. MSR_OFFCORE_RSPx For L2 Miss and Outstanding ReqQUESTSvvvrvtit it eaens 21-97
Table 21-75. Core PMU Comparison Between the Goldmont Plus and Goldmont Microarchitecturescovvvent 21-98
Table 21-76. Core PMU Comparison Between the Tremont and Goldmont Plus Microarchitectures...................coo.ts. 21-99
Table 21-77. New Fields in IA32_PEBS_ENABLEooi it e e e e 21-100
Table 21-78. MSR_OFFCORE_RSPx Request Type Definition.co.veiiiiii i e 21-101
Table 21-79. MSR_OFFCORE_RSPx Response Type Definitionouuuiiiii i 21-102
Table 21-80. MSR_OFFCORE_RSPx Snoop INfo Definition.o.vuii e i 21-102
Table 21-81. Core Specificity Encoding within a Non-Architectural Umask ...t e 21-103
Table 21-82. Agent Specificity Encoding within a Non-Architectural Umask. ... 21-104
Table 21-83. HW Prefetch Qualification Encoding within a Non-ArchitecturalUmask ..ot 21-104
Table 21-84. MESI Qualification Definitions within @ Non-Architectural Umask ... e 21-104
Table 21-85. Bus Snoop Qualification Definitions within @ Non-Architectural Umask. ..o 21-105
Table 21-86. Snoop Type Qualification Definitions within a Non-ArchitecturalUmask ..., 21-105
Table 21-87. At-Retirement Performance Events for Intel Core Microarchitecturecooviii i 21-108
Table 21-88. PEBS Performance Events for Intel Core MicroarchiteCtureovvvi vt 21-109
Table 21-89. Requirements 10 Program PEBSo e e e 21-110
Table 21-90. Performance Counter MSRs and Associated CCCR and ESCR MSRs

(Processors Based on Intel NetBurst MicroarChiteCture)ovvvvvvvi e 21-111
Table 21-91. BVENT EXAMIDIE . ittt et e e e e e e e e e 21-118
Table 21-92. CCR Names and Bit POSIIONSttt e e e eeaees 21-122
Table 21-93. Effect of Logical Processor and CPL Qualification for Logical-Processor-Specific (TS) Events.................. 21-130
Table 21-94. Effect of Logical Processor and CPL Qualification for Non-logical-Processor-specific (TI) Events............... 21-131
Table 21-95. Nominal Core Crystal Clock FrEQUENCYttt ettt ettt eans 21-147
Table 21-96. BasiC IN 0 GrOUD . .. vttt ettt ettt ettt e e e e e e 21-153
Table 21-97. MemOry ACCESS INT0 GrOUD . . vttt ettt et e e e e e e e 21-154
Table 21-98. Updated Memory ACCESS INTO GrOUDt v ittt ittt et et ettt ettt e a et eeaeas 21-155
Table 21-99. GPRs in Ice Lake MiCroarChitettUre . ..ottt e e e e e e e e 21-156
TaADIE 2T-TO0. XMIMS. .ottt ettt e et ettt e e e et e e e e e e e 21-156
= o)L= I 21-157
Table 21-102. MSR_PEBS _CFG Programming. . ..o .ottt ettt e et ettt e e e e ettt ettt e r e eeaenes 21-158
Table 21-T03. COUNTEIS GrOUD .t vttt ettt ettt et et e ettt e e e e st ettt e e e e e et ettt e e et e e e e 21-159
Table 21-T04. PEBS Record EXaMPIE Tttt e e e e 21-160
Table 21-T05. PEBS RECOTd EXAMPIE 2 ..ottt ittt ettt e ettt et e et e et aeaes 21-162
Table 21-106. Data Source Encoding for Memory Accesses (Ice Lake and Later Microarchitectures)............covvvvvinnne 21-164
Table 21-107. Data Source Encoding for Memory Accesses (Lion Cove and Next Generation Microarchitectures)............. 21-164
Table 21-T08. PEBS BasiC INT0 GrOUDttt ittt ettt ettt e e ettt e e e e e e et ettt e e et n e e e 21-166
Table 22-1. Real-Address Mode EXCeptions and INTEITUPTS ... vv vttt e 22-6

Vol. 3A Xlvii

CONTENTS

Table 22-2.
Table 23-1.
Table 24-1.
Table 24-3.
Table 24-2.

Table 24-4.
Table 24-5.
Table 24-6.
Table 24-7.
Table 24-8.
Table 24-9.

Table 24-10.

Table 26-1.
Table 26-2.
Table 26-3.
Table 26-4.
Table 26-5.
Table 26-6.
Table 26-7.
Table 26-8.
Table 26-9

Table 26-10.
Table 26-11.
Table 26-12.
Table 26-13.
Table 26-14.
Table 26-15.
Table 26-16.
Table 26-17.
Table 26-18.
Table 26-19.
Table 26-20.
Table 26-21.

Table 27-1.
Table 29-1.
Table 29-2.
Table 29-3.
Table 29-4.
Table 29-5.
Table 29-6.
Table 29-7.
Table 29-8.
Table 29-9

Table 29-10.
Table 29-11.
Table 29-12.
Table 29-13.
Table 29-14.

Table 29-15.
Table 29-16.

Table 30-1.
Table 30-2.
Table 30-3.
Table 30-4.
Table 30-5.
Table 30-6.
Table 30-7.
Table 31-1.
Table 31-2.
Table 32-1.
Table 33-1.
Table 33-2.
Table 33-3.

xlviii Vol. 3A

Software Interrupt Handling Methods While in Virtual-8086 Modecoiiiiivi i 22-17
Characteristics of 16-Bit and 32-Bit Program Modulesovii i e 23-1
New Instruction in the Pentium Processor and Later [A-32 Processorsvvviiieiiiiiiiiiieieiennns 24-4
EM and MP FIag INterpretationttt e e e 24-17
Recommended Values of the EM, MP, and NE Flags for Intel486 SX Microprocessor/Intel 487 SX

[I 0] o 0T Ty o) V£ =] 1 24-17
Exception Conditions for Legacy SIMD/MMX Instructions with FP Exception and 16-Byte Alignment 24-22
Exception Conditions for Legacy SIMD/MMX Instructions with XMM and FP Exception...............ccoovvnnns 24-23
Exception Conditions for Legacy SIMD/MMX Instructions with XMM and without FP Exception................. 24-24
Exception Conditions for SIMD/MMX Instructions with Memory Referenceccoviviiiiiiiiiiennnn., 24-25
Exception Conditions for Legacy SIMD/MMX Instructions without FP Exceptionccoviviiiiiinnnns, 24-26
Exception Conditions for Legacy SIMD/MMX Instructions without Memory Reference 24-27
Processor State Following Power-up/Reset/INIT for Pentium, Pentium Pro and Pentium 4 Processors. 24-37
FOrmat Of the VMCS REGIONottt e e e e e e e aaas 26-2
FOrmMat Of ACCESS RIGNTS . ..ottt et ettt e e ettt e e ettt a et 26-4
Format of INTerrUpti DIty STate.o e e 26-6
Format of Pending-DebUg-EXCePTiONS.\ v vttt 26-7
Definitions of Pin-Based VM-EXeCUtion CONtrolS. ovue ittt e e e eaa 26-10
Definitions of Primary Processor-Based VM-Execution CoONtrolsc.oviiiiiiiiii i i ennnes 26-10
Definitions of Secondary Processor-Based VM-Execution CONtrols.ovvuvuiniiii it ciienans 26-12
Definitions of Tertiary Processor-Based VM-Execution Controls.ocoviiiiii i i 26-13
Format of Extended-Page-Table Pointer. e e e 26-17
Definitions of VM-FUNCHON CONTIOIS cu ittt ee s 26-18
Format of Sub-Page-Permission-Table PoINterouiiii i et 26-19
Format of Hypervisor-Managed Linear-Address Translation Pointercooviiiiiiiiiiiiii i 26-20
Definitions of Primary VM-EXit CONtrolS. vttt e i 26-21
Definitions of Secondary VM-EXit CONTIOlSvii e ettt 26-22
FOrmMat OF AN MO R BNy, oottt ettt et e ettt e e 26-23
Definitions Of VM-ENtry CONTrOlS ...\ v ittt et s st e e 26-23
Format of the VM-Entry Interruption-Information Fieldcco i e 26-25
FOrmMat OF EXIT REASOM . vttt ettt e e e et e e et e e e 26-26
Format of the VM-Exit Interruption-Information Field.o e 26-27
Format of the IDT-Vectoring Information Field ... e 26-28
Structure of VMCS Component ENCOAING ov vt e ettt ettt et et 26-30
Format of the Virtualization-Exception INfOrmMation Areavvi i e i 27-21
Exit Qualification for DEDUG EXCEPTIONS . . .\ttt vttt ettt e e e 29-4
Exit Qualification for Task SWItCRES ... v i e e 29-5
Exit Qualification for CONTrOl-REGISTEr ACCESSES . ..ttt t ettt ettt et aaas 29-7
Exit QUAlIfication TOr MOV DR ...ttt e e e e e 29-8
Exit QUalification fOr /0 INSTUCTIONS. . ..o vttt ettt e e e e e e e 29-9
Exit Qualification for APIC-Access VM Exits from Linear Accesses and Guest-Physical Accesses................. 29-9
Exit Qualification for EPT Violations vuiuri e e e e 29-11
Format of the VM-Exit Instruction-Information Field as Used for INSand OUTScoviiiiiiinnnnn. 29-16
Format of the VM-Exit Instruction-Information Field as Used for INVEPT, INVPCID, and INVVPID 29-17
Format of the VM-Exit Instruction-Information Field as Used for LIDT, LGDT, SIDT, or SGDT...........cvvvnn. 29-18
Format of the VM-Exit Instruction-Information Field as Used for LLDT, LTR, SLDT,andSTR.................... 29-19
Format of the VM-Exit Instruction-Information Field as Used for RDRAND and RDSEED........................ 29-20
Format of the VM-Exit Instruction-Information Field as Used for TPAUSE and UMWAITcoovvvnn. 29-20
Format of the VM-Exit Instruction-Information Field as Used for VMCLEAR, VMPTRLD, VMPTRST,

VMXON, XRSTORS, @nd XSAVES . ..ottt 29-21
Format of the VM-Exit Instruction-Information Field as Used for VMREAD and VMWRITE 29-22
Format of the VM-Exit Instruction-Information Field as Used for LOADIWKEYccvvviiiiiiinininnn. 29-23
Format of an EPT PML5 Entry (PML5E) that References an EPTPML4 Table..........ccovviiiiiiiiiiiiiiiinnnn, 30-4
Format of an EPT PML4 Entry (PML4E) that References an EPT Page-Directory-Pointer Table.................. 30-5
Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that Maps a 1-GByte Page....................t 30-6
Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that References an EPT Page Directory......... 30-7
Format of an EPT Page-Directory Entry (PDE) that Mapsa 2-MBytePage...........covvviiiiiiiiii i 30-8
Format of an EPT Page-Directory Entry (PDE) that References an EPT Page Tablecovvvvvninnt 30-9
Format of an EPT Page-Table Entry that Maps @ 4-KByte Page.ovviiiiii i i 30-11
Format of Posted-Interrupt Descriptor (PID).vri e 31-4
Format of Posted-Interrupt DesCriptor (PID). ... v . vttt et 31-16
VM-INSTrUCION BrTOr NUMIDETS . . .ttt aans 32-31
SMRAM SEatE SAVE M. . ottt e 33-5
Processor Signatures and 64-bit SMRAM State Save Map FOrmat.ovvviiii i 33-6
SMRAM State Save Map for Intel 64 ArChiteCtUre ... vv v e e s 33-7

Table 34-3.
Table 34-4.
Table 34-5.
Table 34-6.
Table 34-7.
Table 34-8

Table 34-10.

Table 34-9.

Table 34-11.
Table 34-12.
Table 34-13.
Table 34-14.
Table 34-15.
Table 34-16.
Table 34-18.
Table 34-19.
Table 34-20.
Table 34-21.
Table 34-22.
Table 34-23.
Table 34-24.
Table 34-25.
Table 34-26.
Table 34-27.
Table 34-28.
Table 34-29.
Table 34-30.
Table 34-31.
Table 34-32.
Table 34-33.
Table 34-34.
Table 34-35.
Table 34-36.
Table 34-37.
Table 34-38.
Table 34-39.
Table 34-40.
Table 34-41.
Table 34-42.
Table 34-43.
Table 34-44.
Table 34-45.
Table 34-46.
Table 34-47.
Table 34-48.
Table 34-49.
Table 34-50.
Table 34-51.
Table 34-52.
Table 34-53.
Table 34-54.
Table 34-55.
Table 34-56.
Table 34-57.
Table 34-58.
Table 34-59.

Processor Register Initialization in SMM. e
I/0 Instruction Information in the SMM State Save Map........o i
1/0 InStruction Type ENCOAINGS . ..o v vttt it e i e e
AUto HALT Restart FIag ValUesot et
I/0 Instruction Restart Field ValUes. vu vt e

Exit Qualification for SMIs That Arrive Immediately After the Retirement of an I/0 Instruction

FOrmat Of MSEG HEAAET . .. ettt ettt e e e e e e
COFI Type for Branch INStrUCTIONS vttt e
IP Filtering Packet EXamIIet e e e
TOPA Table ENtry Fieldsovov i e e e e
Algorithm to Manage Intel PT ToPA PMl and XSAVES/XRSTORS. ...t
Behavior on Restricted MmOy ACCESS. . vttt ittt ittt i ettt et ie s
1 I O Y R PP
IA32 _RTIT _STATUS MSR ..t e e e
IA32 _RTIT _OUTPUT _BASE MSR. ..ttt e
TSX Packet Scenarios with BranChBN=T i e
IA32_RTIT_OUTPUT_MASK _PTRS MSR. ...ttt
CPUID Leaf 14H Enumeration of Intel Processor Trace Capabilities................cooiiiiiiiinn..
CPUID Leaf 14H, sub-leaf TH Enumeration of Intel Processor Trace Capabilities.....................
An lllustrative CYC Packet EXAmMIPIE. . ..o .v ittt e
Compound Packet EVeNt SUMMIArY ..ot e et
Packets Forbidden Between BBP and BEPoviiiiiii i
TNT Packet Definitionooui e e
FUP/TIP IP RECONSTIUCTION . . . v v vttt e e ettt e et e e e nees
TNT Examples With Deferred TIPS, ... vttt e e e i ens
TIP.PGE Packet Defimitionottt e e e e
TIP.PGD Packet Defimition. vttt e e
FUP Packet Definitionvuuirie e e e e
FUP Cases and IP Payload.ovvuitt e e e
PIP Packet Definmition ...ttt
General FOrm 0f MODE Packetsvuii et e
MODE.EXeC Packet Definition. vv ettt e e e e
MODE.TSX Packet Definitionvuuu ittt e e e
TraceStop Packet Definitiono
CBR Packet Definitionuuei it e
TSC PACKET DEfintiON. .\ttt ettt e e e
MTC Packet Definition v vttt e e
TMA Packet Defimitiono e e
Cycle Count Packet Definitionooii i e e it
VMCS Packet Definmition vv st e
OVF Packet Definitionvu ettt et e e e e
PSB Packet Defimition ... v ettt ettt
PSBEND Packet Defimitionttt e e e
MNT Packet Definition. e
PAD Packet Defimition ..o v vttt
PTW Packet Definmition. .. oot e
EXSTOP Packet Definitionouie e e
MWAIT Packet Defimition. v ot e e e e
PWRE Packet Defimition. . .o v vttt ettt e e e e e
PWRX Packet Definitionuei et et
Block Begin Packet Definitionouiuieii i e
Block Item Packet Defimitionvuu et e
BIP ENCOGINGS . ot vttt et e e e e
Block End Packet Definmitionovi e e
Control Flow Event Packet Defimition.v.vu i i
CFE Packet Type and Vector Fields Details.ovvuvv i
Event Data Packet Defimition.vvu et e e
VMX Controls FOr INtel ProCeSSOr TraCe .. v vttt ettt ettt et et
Packets on VMX Transitions (System-Wide Tracing)covvviririiiiiiiiiiiiiiiiiiinieienns
Packets on @ Failed VM ENErY ... e
Packet Generation under Different Example Operationsc.ccovrvriiiiiiiii e,
Packet Generation with Operations That Alter the Value of PacketEn...............ccoovvvivninns,
Examples of PTWRITE when Trigger€n && PTWEN IS True.......oovieiiiii s
Examples of Power Event Trace when Trigger€n && PwrEvtEnis True................cvvvivnnns,
Event Trace Examples when Triggerén && ContextEn && EventEnis Truecovvvvnnn,

CONTENTS

Vol. 3A Xxlix

CONTENTS

Table 36-5.
Table 36-6.
Table 36-7.
Table 36-8.
Table 36-9

Table 36-10.
Table 36-11.
Table 36-12.
Table 36-13.
Table 36-14.
Table 36-15.
Table 36-16.
Table 36-17.
Table 36-18.
Table 36-19.
Table 36-20.
Table 36-22.
Table 36-21.
Table 36-23.
Table 36-24.
Table 36-25.
Table 36-26.
Table 36-27.
Table 36-28.
Table 36-29.
Table 36-30.
Table 36-31.

Table 37-1.
Table 38-1.
Table 39-1.
Table 39-2.
Table 39-3.
Table 39-4.
Table 39-5.
Table 39-6.
Table 39-7.
Table 39-8.
Table 39-9

Table 39-10.
Table 39-11.
Table 39-12.
Table 39-13.
Table 39-14.
Table 39-15.
Table 39-16.
Table 39-17.
Table 39-18.
Table 39-19.
Table 39-20.
Table 39-21.
Table 39-22.
Table 39-23.
Table 39-24.
Table 39-25.

| Vol.3A

Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGXT................coovviat 35-3
Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX2...................cooeett 35-4
VMX Operation and Supervisor Mode Enclave Instruction Leaf Functions in Long-Form of OVERSUB 35-4
Intel® SGX Opt-in and ENabling BENaVIor.t e e e 35-5
CPUID Leaf 12H, Sub-Leaf O Enumeration of Intel® SGX Capabilitiescovviiiiiii i 35-5
CPUID Leaf 12H, Sub-Leaf 1 Enumeration of Intel® SGX Capabilitiesccooiiiiiii e 35-6
CPUID Leaf 12H, Sub-Leaf Index 2 or Higher Enumeration of Intel* SGX Resources.............cooovvivvnnnnnn. 35-6
List of Implicit and Explicit Memory Access by Intel® SGX Enclave Instructions.ccovoviiiiininns 36-3
Layout of SGX Enclave Control STructure (SECS). .. vttt et 36-5
LayoUT OFf ATTRIBUTES StTUCTUME. .. o\ttt t ettt e et ettt e e ettt r e n et eaeas 36-6
Bit Vector Layout of MISCSELECT Field of Extended INformationcovvvveiii i e 36-6
Bit Vector Layout of CET_ATTRIBUTES Field of Extended Information. ..., 36-7
Layout of Thread Control STrUCTUNE (TCS) . . v vttt ettt e e e e 36-7
LayoUT OF TCSIFLAGS Il . oottt e e e e s e e e e e e e 36-8
Top-t0-Bottom Layout Of @n SSA Framiettt et et e e e et 36-9
Layout of GPRSGX Portion of the State Save ArBavvii i ettt et aaas 36-9
Layout Of EXITINFO Field. . .. vou e e e e e e e e 36-10
Lo Cor= n 110 V=Tt () 36-10
Layout of MISC region of the State Save ArBa.v. i e e e 36-11
LayoUT OF EXINFO StTUCTUME. . oottt e e e ettt a e 36-11
Layout Of CET State Save ArBa Fram . ..ottt ettt ettt et e e e ettt ae e aees 36-12
Layout of PAGEINFO Data StrUCTUNE . . ottt t ettt e e et aees 36-12
Layout Of SECINFO Data StrUCTUME. . .. vttt ettt a e 36-12
Layout Of SECINFO.FLAGS Field. . ..ottt et e e e e e ea s 36-13
SUPPOEEA PAGE T PE. ..ottt e et ettt e e e 36-13
LayoUT OF PCMD Data StrUCTUNE .ttt e e e e e e e 36-14
Layout of Enclave Signature Structure (SIGSTRUCT). .. v vttt e 36-14
LI 1Yo T 0) = 0] 36-16
Layout of EINIT Token (EINITTOKEN) ...ttt e e es 36-16
Layout of TARGETINFO Data StrUCTUNEottt et et et e ettt e i eaees 36-17
Layout of KEYREQUEST Data StrUCTUMEottt e ettt ettt e e ettt e eens 36-18
Supported KEYNGME ValUeS.ottt et e e e e 36-18
Layout Of KEYPOLICY FIeld. ..o v ettt e et et e e e e ee s 36-18
Layout of Version Array Data StrUCTUME.o vttt e ettt et aees 36-19
Content of an Enclave Page Cache Map ENtrY . ..o vttt e e 36-19
LayoUT OF RDINFO StrUCTUNE. . ..ottt ittt ettt et e et e e e e e ettt e e a e eeaees 36-20
Layout 0f RDINFO STATUS StrUCUNE . . . ittt ettt e et ettt aeen 36-20
Layout OFf RDINFO FLAGS STrUCTUN . v vttt ettt e e e s et e ettt e e a e 36-20
lllegal INStructions INSIde an ENCIaVEot i e e e i e 37-15
GPR, x87 Synthetic States on Asynchronous ENClave EXit.o.vviii i e 38-3
Register Usage of Privileged Enclave Instruction Leaf FUNCLIONScoiiii e 39-1
Register Usage of Unprivileged Enclave Instruction Leaf FUNCLIONS. ...t 39-2
Register Usage of Virtualization Operation Enclave Instruction Leaf Functions..................ccoiiiiiiinnn, 39-2
€rror or Information Codes for Intel® SGX INSTIUCTIONS v vttt e 39-2
LISt Of INTEMNal CREG . ..ottt e 39-3
Base CoNCUMENCY RESITICTIONS\ttt ettt e e ettt ettt r e aaeas 39-5
Additional CoNCUMMENCY RESTTICTIONS .\ttt e e e i 39-6
Base Concurrency Restrictions 0f BADD.ttt ettt e et e 39-17
Additional Concurrency ReStrictions O EADD.ttt ettt et 39-18
Base Concurrency Restrictions 0f EAUG. vttt e e 39-22
Additional Concurrency Restrictions 0f EAUG. ottt e ettt 39-23
EBLOCK ReTUMN Value M RAX . .ttt ettt e e e e e et e e ee s 39-27
Base Concurrency Restrictions of EBLOCK vttt i ea e 39-27
Additional Concurrency Restrictions of EBLOCKttt e 39-28
Base Concurrency Restrictions 0f ECREATE ittt e e ettt aees 39-30
Additional Concurrency Restrictions 0f ECREATE v ittt e e e 39-31
EDBGRD RetUMN Value im R A X ..ttt e e e e e e e 39-36
Base Concurrency Restrictions 0f EDBGRD vuititittt ettt r e eaeaes 39-37
Additional Concurrency Restrictions of EDBGRDcvivieiiiii i i 39-37
EDBGWR RetUINN Value in R A . . ettt et e e 39-40
Base Concurrency Restrictions of EDBGWR.iuiii e ettt 39-41
Additional Concurrency Restrictions 0f EDBGWR. ve it i 39-41
Base Concurrency Restrictions of EEXTEND.ieiiii i i e 39-44
Additional Concurrency Restrictions 0f EEXTEND.ottt i eaeas 39-45
EINIT RetUIN Value N R A o e e e e e e e 39-48

Table 39-26.
Table 39-27.
Table 39-28.
Table 39-29.
Table 39-30.
Table 39-31.
Table 39-32.
Table 39-33.
Table 39-34.
Table 39-35.
Table 39-36.
Table 39-37.
Table 39-38.
Table 39-39.
Table 39-40.
Table 39-41.
Table 39-42.
Table 39-43.
Table 39-44.
Table 39-45.
Table 39-46.
Table 39-47.
Table 39-48.
Table 39-49.
Table 39-50.
Table 39-51.
Table 39-52.
Table 39-53.
Table 39-54.
Table 39-55.
Table 39-56.
Table 39-57.
Table 39-58.
Table 39-59.
Table 39-60.
Table 39-61.
Table 39-62.
Table 39-63.
Table 39-64.
Table 39-65.
Table 39-66.
Table 39-67.
Table 39-68.
Table 39-69.
Table 39-70.
Table 39-71.
Table 39-72.
Table 39-73.
Table 39-74.
Table 39-75.
Table 39-76.
Table 39-77.
Table 39-78.
Table 39-79.
Table 39-80.
Table 39-81.

Table 40-1.
Table 40-2.
Table 40-3.
Table A-1.
Table B-1.
Table B-2.
Table B-3.
Table B-4.
Table B-5.

Base Concurrency Restrictions of EINIT.o e
Additional Concurrency Restrictions of ENIT ... s
ELDB/ELDU/ELDBC/ELBUC Return Value in RAX vt
Base Concurrency Restrictions of ELDB/ELDU/ELDBC/ELBUC.vvvvvvvnvnnnnt.
Additional Concurrency Restrictions of ELDB/ELDU/ELDBC/ELBUC.cvvvvnvnen.
EMODPR Return Value in RAX. ..ttt e e
Base Concurrency Restrictions of EMODPRcooiiiiiiii it
Additional Concurrency Restrictions of EMODPR ..ot
EMODT Return Value in RAX . .. e e e
Base Concurrency Restrictions of EMODT ee e
Additional Concurrency Restrictions of EMODT........oviiiiiii i
Base Concurrency Restrictions of EPA. e
Additional Concurrency Restrictions of EPAot e
ERDINFO Return Value in RAX .. vt
Base Concurrency Restrictions of ERDINFO ..ot iieeens
Additional Concurrency Restrictions of ERDINFOcoiiiiiiiii i
EREMOVE Return Value in RAX. ..o
Base Concurrency Restrictions of EREMOVE ..ot ieeens
Additional Concurrency Restrictions of EREMOVE ...
ETRACK Return Value in RAX ...t
Base Concurrency Restrictions of ETRACK e
Additional Concurrency Restrictions of ETRACKottt
ETRACKC Return Value in RAXt
Base Concurrency Restrictions of ETRACKC.ot
Additional Concurrency Restrictions of ETRACKC. ...ttt
EWB Return Value in RAX. ..t
Base Concurrency RestrictionS of EWBt e
Additional Concurrency Restrictions of EWB
EACCEPT Return Value in RAX .. .t
Base Concurrency Restrictions of EACCEPT ... iiii e eeee
Additional Concurrency Restrictions of EACCEPTot
EACCEPTCOPY Return Value i RAXot
Base Concurrency Restrictions of EACCEPTCOPY.oiiiiiii e
Additional Concurrency Restrictions of EACCEPTCOPY........cvviiiviiiiiii e,
Base Concurrency Restrictions of EDECCSSA. ... vi e
Additional Concurrency Restrictions of EDECCSSA. ..o it aeaas
Base Concurrency Restrictions of EENTERt
Additional Concurrency Restrictions of EENTERt
Base Concurrency Restrictions of EEXIT e
Additional Concurrency Restrictions of EEXIT ...t
KBY DBIIVatION .« vttt et e e e e
EGETKEY Return Value in RAX .. .
Base Concurrency Restrictions of EGETKEY ...t
Additional Concurrency Restrictions of EGETKEY ..o
Base Concurrency Restrictions of EMODPE.coiiiiiii it eiiieees
Additional Concurrency Restrictions of EMODPE. ..ot
Base Concurrency Restrictions of EREPORT. ...
Additional Concurrency Restrictions of EREPORT. ...ttt
Base Concurrency Restrictions of ERESUME. e
Additional Concurrency Restrictions of ERESUME. ...t
Base Concurrency Restrictions of EDECVIRTCHILD ...,
Additional Concurrency Restrictions of EDECVIRTCHILDc.ovviiiiinininnnn.n.
Base Concurrency Restrictions of EINCVIRTCHILDvvviiii i
Additional Concurrency Restrictions of EINCVIRTCHILDcooiviiiiiiennnn.n.
Base Concurrency Restrictions of ESETCONTEXToviriiiiiii i iiiciiieennns
Additional Concurrency Restrictions of ESETCONTEXTovviviiiiiiiiiiiiiiiiianns
SGX Conflict Exit QUAlIfICatioN. ov vt
SMRAM Synthetic States on Asynchronous Enclave Exit................cociiiiiinn...
Layout of the IA32_SGX_SVN_STATUSMSR. ... e
Memory Types Recommended for VMCS and Related Data Structures...................
Encoding for 16-Bit Control Fields (0000_00XX_XXXX_XXXOB)........vvvuriuniinnninnns
Encodings for 16-Bit Guest-State Fields (0000_T0XX_XXXX_XXX0B)
Encodings for 16-Bit Host-State Fields (0000_T1XX_XXXX_XXX0B)c...ovunes
Encodings for 64-Bit Control Fields (001 0_00XX_XXXX_XXXAD)vvvirviriininiinnns

Encodings for 64-Bit Read-Only Data Field (0010_01xx_xxxX_xxxAb)

CONTENTS

Vol. 3A li

CONTENTS

Table B-6.
Table B-7.
Table B-8.
Table B-9.

Table B-10.
Table B-11.
Table B-12.
Table B-13.
Table B-14.
Table B-15.

Table C-1.

li Vol. 3A

Encodings for 64-Bit Guest-State Fields (0010_TOXX_XXXX_XXXAD).vvvvii i B-5
Encodings for 64-Bit Host-State Fields (00T0_11TXX_XXXX_XXXAD).ouii e B-6
€ncodings for 32-Bit Control Fields (0100_00XX_XXXX_XXXOB) . ..\ttt enenainaiennens B-7
Encodings for 32-Bit Read-Only Data Fields (0TO0_0TXX_XXXX_XXXOB) ...\ vuiittrnitiiieieiniieneiniiannns B-8
€ncodings for 32-Bit Guest-State Fields (0T00_TOXX_XXXX_XXXOB).vvririiii e B-8
Encoding for 32-Bit Host-State Field (0TO0_TTXX_XXXX_XXXOB). ...\ 'vuuitirttii i B-9
Encodings for Natural-Width Control Fields (0T 10_00XX_XXXX_XXXOB). ...\ tuuuttrniiteiinineneiniiannns B-9
Encodings for Natural-Width Read-Only Data Fields (0110_01XX_XXXX_XXXO0B)...........covviiiiiniiinin... B-10
Encodings for Natural-Width Guest-State Fields (07 710_TOXX_XXXX_XXX0B)vvvvriiiiiiiiiiii i B-10
Encodings for Natural-Width Host-State Fields (01 T0_TTXX_XXXX_XXXOB) ...\ t\viririiinii e B-11
BaSIC EXIT REBSOMS. . vttt e e e e C-1

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System Programming Guide, Part
1 (order number 253668), the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B: System
Programming Guide, Part 2 (order number 253669), the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3C: System Programming Guide, Part 3 (order number 326019), and the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3D:System Programming Guide, Part 4 (order number
332831) are part of a set that describes the architecture and programming environment of Intel 64 and IA-32
Architecture processors. The other volumes in this set are:

* Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (order number
253665).

* Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D: Instruction Set
Reference (order numbers 253666, 253667, 326018, and 334569).

®* The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model-Specific Registers
(order number 335592).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture
and programming environment of Intel 64 and IA-32 processors. The Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volumes 2A, 2B, 2C, & 2D, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who write operating systems or exec-
utives. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C, & 3D, describe
the operating-system support environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3B, and Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, address the programming
environment for classes of software that host operating systems. The Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 4, describes the model-specific registers of Intel 64 and IA-32 processors.

1.1 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE

A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all volumes of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, with chapter-specific details for the current volume.

Chapter 2 — System Architecture Overview. Describes the modes of operation used by Intel 64 and IA-32
processors and the mechanisms provided by the architectures to support operating systems and executives,
including the system-oriented registers and data structures and the system-oriented instructions. The steps neces-
sary for switching between real-address and protected modes are also identified.

Chapter 3 — Protected-Mode Memory Management. Describes the data structures, registers, and instructions
that support segmentation and paging. The chapter explains how they can be used to implement a “flat” (unseg-
mented) memory model or a segmented memory model.

Chapter 4 — Linear-Address Pre-Processing. Describes the processes to which linear addresses are subject
prior to translation changing. These include fault checking for linear-address-space separation (LASS) and canoni-
cality, as well as linear-address masking (LAM).

Chapter 5 — Paging. Describes the paging modes supported by Intel 64 and IA-32 processors.

Chapter 6 — Protection. Describes the support for page and segment protection provided in the Intel 64 and IA-
32 architectures. This chapter also explains the implementation of privilege rules, stack switching, pointer valida-
tion, user mode, and supervisor mode.

Chapter 7 — Interrupt and Exception Handling. Describes the basic interrupt mechanisms defined in the Intel
64 and IA-32 architectures, shows how interrupts and exceptions relate to protection, and describes how the archi-
tecture handles each exception type. Reference information for each exception is given in this chapter. Includes

Vol. 3A 1-1

ABOUT THIS MANUAL

programming the LINTO and LINT1 inputs and gives an example of how to program the LINTO and LINT1 pins for
specific interrupt vectors.

Chapter 8 — User Interrupts. Describes user interrupts supported by Intel 64 and IA-32 processors.

Chapter 9 — Task Management. Describes mechanisms the Intel 64 and IA-32 architectures provide to support
multitasking and inter-task protection.

Chapter 10 — Multiple-Processor Management. Describes the instructions and flags that support multiple
processors with shared memory, memory ordering, and Intel® Hyper-Threading Technology. Includes MP initializa-
tion for P6 family processors and gives an example of how to use the MP protocol to boot P6 family processors in an
MP system.

Chapter 11 — Processor Management and Initialization. Defines the state of an Intel 64 or IA-32 processor
after reset initialization. This chapter also explains how to set up an Intel 64 or IA-32 processor for real-address
mode operation and protected- mode operation, and how to switch between modes.

Chapter 12 — Advanced Programmable Interrupt Controller (APIC). Describes the programming interface
to the local APIC and gives an overview of the interface between the local APIC and the I/O APIC. Includes APIC bus
message formats and describes the message formats for messages transmitted on the APIC bus for P6 family and
Pentium processors.

Chapter 13 — Memory Cache Control. Describes the general concept of caching and the caching mechanisms
supported by the Intel 64 or IA-32 architectures. This chapter also describes the memory type range registers
(MTRRs) and how they can be used to map memory types of physical memory. Information on using the new cache
control and memory streaming instructions introduced with the Pentium Ill, Pentium 4, and Intel Xeon processors is
also given.

Chapter 14 — Intel® MMX™ Technology System Programming. Describes those aspects of the Intel® MMX™
technology that must be handled and considered at the system programming level, including: task switching,
exception handling, and compatibility with existing system environments.

Chapter 15 — System Programming For Instruction Set Extensions And Processor Extended States.
Describes the operating system requirements to support SSE/SSE2/SSE3/SSSE3/SSE4 extensions, including task
switching, exception handling, and compatibility with existing system environments. The latter part of this chapter
describes the extensible framework of operating system requirements to support processor extended states.
Processor extended state may be required by instruction set extensions beyond those of
SSE/SSE2/SSE3/SSSE3/SSE4 extensions.

Chapter 16 — Power and Thermal Management. Describes facilities of Intel 64 and IA-32 architecture used for
power management and thermal monitoring.

Chapter 17 — Machine-Check Architecture. Describes the machine-check architecture and machine-check
exception mechanism found in the Pentium 4, Intel Xeon, and P6 family processors. Additionally, a signaling mech-
anism for software to respond to hardware corrected machine check error is covered.

Chapter 18 — Interpreting Machine-Check Error Codes. Gives an example of how to interpret the error codes
for a machine-check error that occurred on a P6 family processor.

Chapter 19 — Debug, Branch Profile, TSC, and Resource Monitoring Features. Describes the debugging
registers and other debug mechanism provided in Intel 64 or IA-32 processors. This chapter also describes the
time-stamp counter.

Chapter 20 — Last Branch Records. Describes the Last Branch Records (architectural feature).

Chapter 21 — Performance Monitoring. Describes the Intel 64 and IA-32 architectures’ facilities for monitoring
performance.

Chapter 22 — 8086 Emulation. Describes the real-address and virtual-8086 modes of the IA-32 architecture.

Chapter 23 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and 32-bit code modules within the
same program or task.

Chapter 24 — IA-32 Architecture Compatibility. Describes architectural compatibility among IA-32 proces-
sors.

Chapter 25 — Introduction to Virtual Machine Extensions. Describes the basic elements of virtual machine
architecture and the virtual machine extensions for Intel 64 and IA-32 Architectures.

1-2 Vol.3A

ABOUT THIS MANUAL

Chapter 26 — Virtual Machine Control Structures. Describes components that manage VMX operation. These
include the working-VMCS pointer and the controlling-VMCS pointer.

Chapter 27 — VMX Non-Root Operation. Describes the operation of a VMX non-root operation. Processor oper-
ation in VMX non-root mode can be restricted programmatically such that certain operations, events or conditions
can cause the processor to transfer control from the guest (running in VMX non-root mode) to the monitor software
(running in VMX root mode).

Chapter 28 — VM Entries. Describes VM entries. VM entry transitions the processor from the VMM running in
VMX root-mode to a VM running in VMX non-root mode. VM-Entry is performed by the execution of VMLAUNCH or
VMRESUME instructions.

Chapter 29 — VM Exits. Describes VM exits. Certain events, operations or situations while the processor is in VMX
non-root operation may cause VM-exit transitions. In addition, VM exits can also occur on failed VM entries.

Chapter 30 — VMX Support for Address Translation. Describes virtual-machine extensions that support
address translation and the virtualization of physical memory.

Chapter 31 — APIC Virtualization and Virtual Interrupts. Describes the VMCS including controls that enable
the virtualization of interrupts and the Advanced Programmable Interrupt Controller (APIC).

Chapter 32 — VMX Instruction Reference. Describes the virtual-machine extensions (VMX). VMX is intended
for a system executive to support virtualization of processor hardware and a system software layer acting as a host
to multiple guest software environments.

Chapter 33 — System Management Mode. Describes Intel 64 and IA-32 architectures’ system management
mode (SMM) facilities.

Chapter 34 — Intel® Processor Trace. Describes details of Intel® Processor Trace.

Chapter 35 — Introduction to Intel® Software Guard Extensions. Provides an overview of the Intel® Soft-
ware Guard Extensions (Intel® SGX) set of instructions.

Chapter 36 — Enclave Access Control and Data Structures. Describes Enclave Access Control procedures and
defines various Intel SGX data structures.

Chapter 37 — Enclave Operation. Describes enclave creation and initialization, adding pages and measuring an
enclave, and enclave entry and exit.

Chapter 38 — Enclave Exiting Events. Describes enclave-exiting events (EEE) and asynchronous enclave exit
(AEX).

Chapter 39 — SGX Instruction References. Describes the supervisor and user level instructions provided by
Intel SGX.

Chapter 40 — Intel® SGX Interactions with IA32 and Intel® 64 Architecture. Describes the Intel SGX
collection of enclave instructions for creating protected execution environments on processors supporting IA32 and
Intel 64 architectures.

Chapter 41 — Enclave Code Debug and Profiling. Describes enclave code debug processes and options.

Appendix A — VMX Capability Reporting Facility. Describes the VMX capability MSRs. Support for specific VMX
features is determined by reading capability MSRs.

Appendix B — Field Encoding in VMCS. Enumerates all fields in the VMCS and their encodings. Fields are
grouped by width (16-bit, 32-bit, etc.) and type (guest-state, host-state, etc.).

Appendix C — VM Basic Exit Reasons. Describes the 32-bit fields that encode reasons for a VM exit. Examples
of exit reasons include, but are not limited to: software interrupts, processor exceptions, software traps, NMIs,
external interrupts, and triple faults.

Vol.3A 1-3

ABOUT THIS MANUAL

1-4 Vol. 3A

CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW

IA-32 architecture (beginning with the Intel386 processor family) provides extensive support for operating-system
and system-development software. This support offers multiple modes of operation, which include:

®* Real mode, protected mode, virtual 8086 mode, and system management mode. These are sometimes
referred to as legacy modes.

Intel 64 architecture supports almost all the system programming facilities available in IA-32 architecture and
extends them to a new operating mode (IA-32e mode) that supports a 64-bit programming environment. IA-32e
mode allows software to operate in one of two sub-modes:

® 64-bit mode supports 64-bit OS and 64-bit applications

®* Compatibility mode allows most legacy software to run; it co-exists with 64-bit applications under a 64-bit OS.
The IA-32 system-level architecture includes features to assist in the following operations:
® Memory management.

®* Protection of software modules.

® Multitasking.

®* Exception and interrupt handling.

® Multiprocessing.

®* Cache management.

® Hardware resource and power management.

®* Debugging and performance monitoring.

This chapter provides a description of each part of this architecture. It also describes the system registers that are
used to set up and control the processor at the system level and gives a brief overview of the processor’s system-
level (operating system) instructions.

Many features of the system-level architecture are used only by system programmers. However, application
programmers may need to read this chapter and the following chapters in order to create a reliable and secure
environment for application programs.

This overview and most subsequent chapters of this book focus on protected-mode operation of the IA-32 architec-
ture. IA-32e mode operation of the Intel 64 architecture, as it differs from protected mode operation, is also
described.

All Intel 64 and IA-32 processors enter real-address mode following a power-up or reset (see Chapter 11,
“Processor Management and Initialization”). Software then initiates the switch from real-address mode to
protected mode. If IA-32e mode operation is desired, software also initiates a switch from protected mode to IA-
32e mode.

2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE

System-level architecture consists of a set of registers, data structures, and instructions designed to support basic
system-level operations such as memory management, interrupt and exception handling, task management, and
control of multiple processors.

Figure 2-1 provides a summary of system registers and data structures that applies to 32-bit modes. System regis-
ters and data structures that apply to IA-32e mode are shown in Figure 2-2.

Vol. 3A 2-1

SYSTEM ARCHITECTURE OVERVIEW

EFLAGS Register Physical Address > Code, Data or
: Linear Address Stack Segment
Control Regls.tersCR4 S—>S | Task-State
egment Selector Segment (TSS)
CR2 - o
- CRO Global Descriptor Stack
Task Register Table (GDT)
[Segment Sel. | - »| Seg. Desc. | Irgerrupt Handler
| Code |
Current- — »
Interrupt TSS Seg. Sel.} - »{ TSS Desc. TSS || Stack
Vector S D
- - - - > Seg. Desc.
Interrupt Descriptor | 4 Task-State
Table (IDT) I - »{ TSS Desc. Segment_(T_S?) Task
. - = Code
Interrupt Gatet — — = | LDT Desc. — - " P Data
[i
Task Gate |- - - - - Stack
GDTR
»| Trap Gate [- -~ .
‘ Local Descriptor Exception Handler
b Table (LDT) T Code |
‘ Current- — » Stack
IDTR Call-Gate -»| Seg. Desc. TSS |_
Segment Selector
| - > CallGate | |- - 1 Protected Procedure
XCRO < Current- — =Code
LDTR |=
TSS |_ Stack
Linear Address Space Linear Address
/’—>| Dir | Table Offset |
Linear Addr. Page Directory Page Table Page
Physical Addr.
Pg. Dir. Entry Pg. Tbl. Entry
> —|—> —|—>
0 This page mapping example is for 4-KByte pages
and 32-bit paging.
*Physical Address

Figure 2-1. IA-32 System-Level Registers and Data Structures

2-2 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

RFLAGS
Physica Iiddress - Code, Data or Stack
Control Register Linear Address Segment (Base =0)
CR8 Task-State
CR4 Segment Selector Segment (TSS)
CR3 i >
CR2
CR1
CRO :
Global D t
Task Register OTa?)Ie (englTp) or
[Segment Sel. | - »| Seg. Desc. — Irgelrrupt Handler
NULL - - aS0de]
Interrupt TR } - »{ TSSDesc. L Stack
Vector
. - — - - » Seg. Desc.
Interrupt Descriptor |
Table (IDT) I — — »| Seg.Desc. | Interr. Handler
Interrupt Gat ' Current TSS Code
nterrupt Gate| - — - LDT Desc. — urren
Interrupt Gate | - - - ‘ Stack
GDTR IST—
> Trap Gate [— -~ .
! Local Descriptor Exception Handler
! >
e Table (LDT) NULL [Code |
! Stack
IDTR Call-Gate L Seg Desc. L
Segment Selector
| F-> CallGate | —|- - N Protected Procedure
XCRO s NULL - — ;Code

|_ Stack

Linear Address Space Linear Address
J—>| PML4 | Dir. Pointer | Directory | Table |Offset |
Linear Addr.
PML4 Pg. Dir. Ptr.| Page Dir. Page Table Page

Physical

PMLA4. Pg. Dir. Page Tbl Addr.
Entry Entry Entry
>

0 This page mapping example is for 4-KByte pages
and 4-level paging.
*Physical Address

Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode and 4-Level Paging

2.1.1 Global and Local Descriptor Tables

When operating in protected mode, all memory accesses pass through either the global descriptor table (GDT) or
an optional local descriptor table (LDT) as shown in Figure 2-1. These tables contain entries called segment

descriptors. Segment descriptors provide the base address of segments well as access rights, type, and usage
information.

Vol. 3A 2-3

SYSTEM ARCHITECTURE OVERVIEW

Each segment descriptor has an associated segment selector. A segment selector provides the software that uses
it with an index into the GDT or LDT (the offset of its associated segment descriptor), a global/local flag (deter-
mines whether the selector points to the GDT or the LDT), and access rights information.

To access a byte in a segment, a segment selector and an offset must be supplied. The segment selector provides
access to the segment descriptor for the segment (in the GDT or LDT). From the segment descriptor, the processor
obtains the base address of the segment in the linear address space. The offset then provides the location of the
byte relative to the base address. This mechanism can be used to access any valid code, data, or stack segment,
provided the segment is accessible from the current privilege level (CPL) at which the processor is operating. The
CPL is defined as the protection level of the currently executing code segment.

See Figure 2-1. The solid arrows in the figure indicate a linear address, dashed lines indicate a segment selector,
and the dotted arrows indicate a physical address. For simplicity, many of the segment selectors are shown as
direct pointers to a segment. However, the actual path from a segment selector to its associated segment is always
through a GDT or LDT.

The linear address of the base of the GDT is contained in the GDT register (GDTR); the linear address of the LDT is
contained in the LDT register (LDTR).

2.1.1.1 Global and Local Descriptor Tables in IA-32e Mode

GDTR and LDTR registers are expanded to 64-bits wide in both IA-32e sub-modes (64-bit mode and compatibility
mode). For more information: see Section 3.5.2, “"Segment Descriptor Tables in IA-32e Mode.”

Global and local descriptor tables are expanded in 64-bit mode to support 64-bit base addresses, (16-byte LDT
descriptors hold a 64-bit base address and various attributes). In compatibility mode, descriptors are not
expanded.

2.1.2 System Segments, Segment Descriptors, and Gates

Besides code, data, and stack segments that make up the execution environment of a program or procedure, the
architecture defines two system segments: the task-state segment (TSS) and the LDT. The GDT is not considered
a segment because it is not accessed by means of a segment selector and segment descriptor. TSSs and LDTs have
segment descriptors defined for them.

The architecture also defines a set of special descriptors called gates (call gates, interrupt gates, trap gates, and
task gates). These provide protected gateways to system procedures and handlers that may operate at a different
privilege level than application programs and most procedures. For example, a CALL to a call gate can provide
access to a procedure in a code segment that is at the same or a numerically lower privilege level (more privileged)
than the current code segment. To access a procedure through a call gate, the calling procedure! supplies the
selector for the call gate. The processor then performs an access rights check on the call gate, comparing the CPL
with the privilege level of the call gate and the destination code segment pointed to by the call gate.

If access to the destination code segment is allowed, the processor gets the segment selector for the destination
code segment and an offset into that code segment from the call gate. If the call requires a change in privilege
level, the processor also switches to the stack for the targeted privilege level. The segment selector for the new
stack is obtained from the TSS for the currently running task. Gates also facilitate transitions between 16-bit and
32-bit code segments, and vice versa.

2.1.2.1 Gates in IA-32e Mode

In IA-32e mode, the following descriptors are 16-byte descriptors (expanded to allow a 64-bit base): LDT descrip-
tors, 64-bit TSSs, call gates, interrupt gates, and trap gates.

Call gates facilitate transitions between 64-bit mode and compatibility mode. Task gates are not supported in IA-
32e mode. On privilege level changes, stack segment selectors are not read from the TSS. Instead, they are set to
NULL.

1. The word “procedure” is commonly used in this document as a general term for a logical unit or block of code (such as a program, pro-
cedure, function, or routine).

2-4 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

2.1.3 Task-State Segments and Task Gates

The TSS (see Figure 2-1) defines the state of the execution environment for a task. It includes the state of general-
purpose registers, segment registers, the EFLAGS register, the EIP register, and segment selectors with stack
pointers for three stack segments (one stack for each privilege level). The TSS also includes the segment selector
for the LDT associated with the task and the base address of the paging-structure hierarchy.

All program execution in protected mode happens within the context of a task (called the current task). The
segment selector for the TSS for the current task is stored in the task register. The simplest method for switching
to a task is to make a call or jump to the new task. Here, the segment selector for the TSS of the new task is given
in the CALL or JMP instruction. In switching tasks, the processor performs the following actions:

Stores the state of the current task in the current TSS.

2. Loads the task register with the segment selector for the new task.
3. Accesses the new TSS through a segment descriptor in the GDT.
4. Loads the state of the new task from the new TSS into the general-purpose registers, the segment registers,

the LDTR, control register CR3 (base address of the paging-structure hierarchy), the EFLAGS register, and the
EIP register.

5. Begins execution of the new task.

A task can also be accessed through a task gate. A task gate is similar to a call gate, except that it provides access
(through a segment selector) to a TSS rather than a code segment.

2.1.3.1 Task-State Segments in IA-32e Mode

Hardware task switches are not supported in IA-32e mode. However, TSSs continue to exist. The base address of
a TSS is specified by its descriptor.

A 64-bit TSS holds the following information that is important to 64-bit operation:
® Stack pointer addresses for each privilege level.

®* Pointer addresses for the interrupt stack table.

* Offset address of the I0-permission bitmap (from the TSS base).

The task register is expanded to hold 64-bit base addresses in IA-32e mode. See also: Section 9.7, “Task Manage-
ment in 64-bit Mode.”

2.1.4 Interrupt and Exception Handling

External interrupts, software interrupts and exceptions are handled through the interrupt descriptor table (IDT).
The IDT stores a collection of gate descriptors that provide access to interrupt and exception handlers. Like the
GDT, the IDT is not a segment. The linear address for the base of the IDT is contained in the IDT register (IDTR).

Gate descriptors in the IDT can be interrupt, trap, or task gate descriptors. To access an interrupt or exception
handler, the processor first receives an interrupt vector from internal hardware, an external interrupt controller, or
from software by means of an INT n, INTO, INT3, INT1, or BOUND instruction. The interrupt vector provides an
index into the IDT. If the selected gate descriptor is an interrupt gate or a trap gate, the associated handler proce-
dure is accessed in a manner similar to calling a procedure through a call gate. If the descriptor is a task gate, the
handler is accessed through a task switch.

2.1.4.1 Interrupt and Exception Handling IA-32e Mode

In IA-32e mode, interrupt gate descriptors are expanded to 16 bytes to support 64-bit base addresses. This is true
for 64-bit mode and compatibility mode.

The IDTR register is expanded to hold a 64-bit base address. Task gates are not supported.

Vol. 3A 2-5

SYSTEM ARCHITECTURE OVERVIEW

2.1.5 Memory Management

System architecture supports either direct physical addressing of memory or virtual memory (through paging).
When physical addressing is used, a linear address is treated as a physical address. When paging is used: all code,
data, stack, and system segments (including the GDT and IDT) can be paged with only the most recently accessed
pages being held in physical memory.

The location of pages (sometimes called page frames) in physical memory is contained in the paging structures.
These structures reside in physical memory (see Figure 2-1 for the case of 32-bit paging).

The base physical address of the paging-structure hierarchy is contained in control register CR3. The entries in the
paging structures determine the physical address of the base of a page frame, access rights and memory manage-
ment information.

To use this paging mechanism, a linear address is broken into parts. The parts provide separate offsets into the
paging structures and the page frame. A system can have a single hierarchy of paging structures or several. For
example, each task can have its own hierarchy.

2.1.5.1 Memory Management in IA-32e Mode

In IA-32e mode, physical memory pages are managed by a set of system data structures. In both compatibility
mode and 64-bit mode, four or five levels of system data structures are used (see Chapter 5, “Paging”). These
include the following:

®* The page map level 5 (PML5) — An entry in the PML5 table contains the physical address of the base of a
PML4 table, access rights, and memory management information. The base physical address of the PML5 table
is stored in CR3. The PMLS5 table is used only with 5-level paging.

* A page map level 4 (PML4) — An entry in a PML4 table contains the physical address of the base of a page
directory pointer table, access rights, and memory management information. With 4-level paging, there is only
one PML4 table and its base physical address is stored in CR3.

* A set of page directory pointer tables — An entry in a page directory pointer table contains the physical
address of the base of a page directory table, access rights, and memory management information.

* Sets of page directories — An entry in a page directory table contains the physical address of the base of a
page table, access rights, and memory management information.

®* Sets of page tables — An entry in a page table contains the physical address of a page frame, access rights,
and memory management information.

2.1.6 System Registers

To assist in initializing the processor and controlling system operations, the system architecture provides system
flags in the EFLAGS register and several system registers:

®* The system flags and IOPL field in the EFLAGS register control task and mode switching, interrupt handling,
instruction tracing, and access rights. See also: Section 2.3, "System Flags and Fields in the EFLAGS Register.

®* The control registers (CR0O, CR2, CR3, and CR4) contain a variety of flags and data fields for controlling system-
level operations. Other flags in these registers are used to indicate support for specific processor capabilities
within the operating system or executive. See also: Chapter 2, "Control Registers,” and Section 2.6, “Extended
Control Registers (Including XCR0O).”

® The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for use in debugging programs
and systems software. See also: Chapter 19, "Debug, Branch Profile, TSC, and Intel® Resource Director
Technology (Intel® RDT) Features.”

®* The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes (limits) of their respective tables.
See also: Section 2.4, "Memory-Management Registers.”

”

® The task register contains the linear address and size of the TSS for the current task. See also: Section 2.4,
“Memory-Management Registers.”

®* Model-specific registers (not shown in Figure 2-1).

2-6 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

The model-specific registers (MSRs) are a group of registers available primarily to operating-system or executive
procedures (that is, code running at privilege level 0). These registers control items such as the debug extensions,
the performance-monitoring counters, the machine- check architecture, and the memory type ranges (MTRRs).

The number and function of these registers varies among different members of the Intel 64 and IA-32 processor
families. See also: Section 11.4, "Model-Specific Registers (MSRs),” and Chapter 2, "Model-Specific Registers
(MSRs),” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

Most systems restrict access to system registers (other than the EFLAGS register) by application programs.
Systems can be designed, however, where all programs and procedures run at the most privileged level (privilege
level 0). In such a case, application programs would be allowed to modify the system registers.

2.1.6.1 System Registers in IA-32e Mode

In IA-32e mode, the four system-descriptor-table registers (GDTR, IDTR, LDTR, and TR) are expanded in hardware
to hold 64-bit base addresses. EFLAGS becomes the 64-bit RFLAGS register. CRO-CR4 are expanded to 64 bits.
CR8 becomes available. CR8 provides read-write access to the task priority register (TPR) so that the operating
system can control the priority classes of external interrupts.

In 64-bit mode, debug registers DRO-DR7 are 64 bits. In compatibility mode, address-matching in DRO-DR3 is
also done at 64-bit granularity.

On systems that support IA-32e mode, the extended feature enable register (IA32_EFER) is available. This model-
specific register controls activation of IA-32e mode and other IA-32e mode operations. In addition, there are
several model-specific registers that govern IA-32e mode instructions:

* 1IA32_KERNEL_GS_BASE — Used by SWAPGS instruction.
® IA32_LSTAR — Used by SYSCALL instruction.

* 1IA32_FMASK — Used by SYSCALL instruction.

® IA32_STAR — Used by SYSCALL and SYSRET instruction.

2.1.7 Other System Resources

Besides the system registers and data structures described in the previous sections, system architecture provides
the following additional resources:

® Operating system instructions (see also: Section 2.8, “System Instruction Summary”).
® Performance-monitoring counters (not shown in Figure 2-1).
* Internal caches and buffers (not shown in Figure 2-1).

Performance-monitoring counters are event counters that can be programmed to count processor events such as
the number of instructions decoded, the number of interrupts received, or the number of cache loads.

The processor provides several internal caches and buffers. The caches are used to store both data and instruc-
tions. The buffers are used to store things like decoded addresses to system and application segments and write
operations waiting to be performed. See also: Chapter 13, *"Memory Cache Control.”

2.2 MODES OF OPERATION

The IA-32 architecture supports three operating modes and one quasi-operating mode:

®* Protected mode — This is the native operating mode of the processor. It provides a rich set of architectural
features, flexibility, high performance and backward compatibility to existing software base.

®* Real-address mode — This operating mode provides the programming environment of the Intel 8086
processor, with a few extensions (such as the ability to switch to protected or system management mode).

* System management mode (SMM) — SMM is a standard architectural feature in all IA-32 processors,
beginning with the Intel386 SL processor. This mode provides an operating system or executive with a
transparent mechanism for implementing power management and OEM differentiation features. SMM is
entered through activation of an external system interrupt pin (SMI#), which generates a system management

Vol. 3A 2-7

SYSTEM ARCHITECTURE OVERVIEW

interrupt (SMI). In SMM, the processor switches to a separate address space while saving the context of the
currently running program or task. SMM-specific code may then be executed transparently. Upon returning
from SMM, the processor is placed back into its state prior to the SMI.

Virtual-8086 mode — In protected mode, the processor supports a quasi-operating mode known as virtual-
8086 mode. This mode allows the processor execute 8086 software in a protected, multitasking environment.

Intel 64 architecture supports all operating modes of IA-32 architecture and IA-32e modes:

* IA-32e mode — In IA-32e mode, the processor supports two sub-modes: compatibility mode and 64-bit
mode. 64-bit mode provides 64-bit linear addressing and support for physical address space larger than 64
GBytes. Compatibility mode allows most legacy protected-mode applications to run unchanged.

Figure 2-3 shows how the processor moves between operating modes.

SMI#

Real-Address
Mode

Reset
or
Reset or _ RSM
PE=0 T PE=1
SMI#
Reset
Protected Mode RSN System
Management

LME=1, CRO.PG=1" g4 Mode
:\ s
See -
RSM
VM=0 VM=1
* See Section 10.8.5
Virtual-8086 See Section 10.8.5.4

Mode

Figure 2-3. Transitions Among the Processor’'s Operating Modes

The processor is placed in real-address mode following power-up or a reset. The PE flag in control register CRO then
controls whether the processor is operating in real-address or protected mode. See also: Section 11.9, "Mode
Switching,” and Section 5.1.2, “Paging-Mode Enabling.”

The VM flag in the EFLAGS register determines whether the processor is operating in protected mode or virtual-
8086 mode. Transitions between protected mode and virtual-8086 mode are generally carried out as part of a task
switch or a return from an interrupt or exception handler. See also: Section 22.2.5, “Entering Virtual-8086 Mode.”

The LMA bit (IA32_EFER.LMA[bit 10]) determines whether the processor is operating in IA-32e mode. When
running in IA-32e mode, 64-bit or compatibility sub-mode operation is determined by CS.L bit of the code segment.
The processor enters into IA-32e mode from protected mode by enabling paging and setting the LME bit
(IA32_EFER.LME[Dbit 8]). See also: Chapter 11, “Processor Management and Initialization.”

The processor switches to SMM whenever it receives an SMI while the processor is in real-address, protected,
virtual-8086, or IA-32e modes. Upon execution of the RSM instruction, the processor always returns to the mode
it was in when the SMI occurred.

2-8 Vol.3A

2.2.1

SYSTEM ARCHITECTURE OVERVIEW

Extended Feature Enable Register

The IA32_EFER MSR provides several fields related to IA-32e mode enabling and operation. It also provides one
field that relates to page-access right modification (see Section 5.6, “"Access Rights”). The layout of the
IA32_EFER MSR is shown in Figure 2-4.

63 121110 9 8 7 1.0

IA32_EFER

Execute Disable Bit Enable

1A-32e Mode Active

1A-32e Mode Enable

SYSCALL Enable

D Reserved

Figure 2-4. IA32_EFER MSR Layout

Table 2-1. IA32_EFER MSR Information

Bit Description
0 SYSCALL Enable: IA32_EFER.SCE (R/W)
Enables SYSCALL/SYSRET instructions in 64-bit mode.
7:1 Reserved.
8 IA-32e Mode Enable: IA32_EFER.LME (R/W)
Enables IA-32e mode operation.
9 Reserved.
10 IA-32e Mode Active: IA32_EFER.LMA (R)
Indicates IA-32e mode is active when set.
11 Execute Disable Bit Enable: IA32_EFER.NXE (R/W)
Enables page access restriction by preventing instruction fetches from PAE pages with the XD bit set (See Section 5.6).
63:12 Reserved.
2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER

The system flags and IOPL field of the EFLAGS register control I/O, maskable hardware interrupts, debugging, task
switching, and the virtual-8086 mode (see Figure 2-5). Only privileged code (typically operating system or execu-
tive code) should be allowed to modify these bits.

The system flags and IOPL are:

TF

Trap (bit 8) — Set to enable single-step mode for debugging; clear to disable single-step mode. In single-
step mode, the processor generates a debug exception after each instruction. This allows the execution
state of a program to be inspected after each instruction. If an application program sets the TF flag using a

Vol. 3A 2-9

SYSTEM ARCHITECTURE OVERVIEW

IF

IOPL

NT

RF

VM

POPF, POPFD, or IRET instruction, a debug exception is generated after the instruction that follows the
POPF, POPFD, or IRET.

31 222120191817 161514 131211109 8 7 6 5 4 3 2 1 0

VIVIAlv]R] [n] 6 ool |t]s|z| (Al |el.|c

Reserved (set to 0) D'L;_CMFOT b |EIFIFIFIEIEIOIF|O[F|1]F
L

ID — Identification FlagQ

VIP — Virtual Interrupt Pending
VIF — Virtual Interrupt Flag
AC — Alignment Check / Access Control
VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag
IOPL— /O Privilege Level
IF — Interrupt Enable Flag
TF — Trap Flag

D Reserved

Figure 2-5. System Flags in the EFLAGS Register

Interrupt enable (bit 9) — Controls the response of the processor to maskable hardware interrupt
requests (see also: Section 7.3.2, “"Maskable Hardware Interrupts”). The flag is set to respond to maskable
hardware interrupts; cleared to inhibit maskable hardware interrupts. The IF flag does not affect the gener-
ation of exceptions or nonmaskable interrupts (NMI interrupts). The CPL, IOPL, and the state of the VME
flag in control register CR4 determine whether the IF flag can be modified by the CLI, STI, POPF, POPFD,
and IRET.

I/0 privilege level field (bits 12 and 13) — Indicates the I/O privilege level (IOPL) of the currently
running program or task. The CPL of the currently running program or task must be less than or equal to
the IOPL to access the I/O address space. The POPF and IRET instructions can modify this field only when
operating at a CPL of 0.

The IOPL is also one of the mechanisms that controls the modification of the IF flag and the handling of
interrupts in virtual-8086 mode when virtual mode extensions are in effect (when CR4.VME = 1). See also:
Chapter 20, “Input/Output,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
1.

Nested task (bit 14) — Controls the chaining of interrupted and called tasks. The processor sets this flag
on calls to a task initiated with a CALL instruction, an interrupt, or an exception. It examines and modifies
this flag on returns from a task initiated with the IRET instruction. The flag can be explicitly set or cleared
with the POPF/POPFD instructions; however, changing to the state of this flag can generate unexpected
exceptions in application programs.

See also: Section 9.4, “Task Linking.”

Resume (bit 16) — Controls the processor’s response to instruction-breakpoint conditions. When set, this
flag temporarily disables debug exceptions (#DB) from being generated for instruction breakpoints
(although other exception conditions can cause an exception to be generated). When clear, instruction
breakpoints will generate debug exceptions.

The primary function of the RF flag is to allow the restarting of an instruction following a debug exception
that was caused by an instruction breakpoint condition. Here, debug software must set this flag in the
EFLAGS image on the stack just prior to returning to the interrupted program with IRETD (to prevent the
instruction breakpoint from causing another debug exception). The processor then automatically clears
this flag after the instruction returned to has been successfully executed, enabling instruction breakpoint
faults again.

See also: Section 19.3.1.1, “Instruction-Breakpoint Exception Condition.”
Virtual-8086 mode (bit 17) — Set to enable virtual-8086 mode; clear to return to protected mode.

2-10 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

See also: Section 22.2.1, “Enabling Virtual-8086 Mode.”

AC Alignment check or access control (bit 18) — If the AM bit is set in the CRO register, alignment
checking of user-mode data accesses is enabled if and only if this flag is 1. An alignment-check exception
is generated when reference is made to an unaligned operand, such as a word at an odd byte address or a
doubleword at an address which is not an integral multiple of four. Alignment-check exceptions are gener-
ated only in user mode (privilege level 3). Memory references that default to privilege level 0, such as
segment descriptor loads, do not generate this exception even when caused by instructions executed in
user-mode.

The alignment-check exception can be used to check alignment of data. This is useful when exchanging
data with processors which require all data to be aligned. The alignment-check exception can also be used
by interpreters to flag some pointers as special by misaligning the pointer. This eliminates overhead of
checking each pointer and only handles the special pointer when used.

If the SMAP bit is set in the CR4 register, explicit supervisor-mode data accesses to user-mode pages are
allowed if and only if this bit is 1. See Section 5.6, “Access Rights.”

VIF Virtual Interrupt (bit 19) — Contains a virtual image of the IF flag. This flag is used in conjunction with
the VIP flag. The processor only recognizes the VIF flag when either the VME flag or the PVI flag in control
register CR4 is set and the IOPL is less than 3. (The VME flag enables the virtual-8086 mode extensions;
the PVI flag enables the protected-mode virtual interrupts.)

See also: Section 22.3.3.5, “"Method 6: Software Interrupt Handling,” and Section 22.4, “Protected-Mode
Virtual Interrupts.”

VIP Virtual interrupt pending (bit 20) — Set by software to indicate that an interrupt is pending; cleared to
indicate that no interrupt is pending. This flag is used in conjunction with the VIF flag. The processor reads
this flag but never modifies it. The processor only recognizes the VIP flag when either the VME flag or the
PVI flag in control register CR4 is set and the IOPL is less than 3. The VME flag enables the virtual-8086
mode extensions; the PVI flag enables the protected-mode virtual interrupts.

See Section 22.3.3.5, "Method 6: Software Interrupt Handling,” and Section 22.4, “Protected-Mode Virtual
Interrupts.”

ID Identification (bit 21) — The ability of a program or procedure to set or clear this flag indicates support
for the CPUID instruction.

2.3.1 System Flags and Fields in IA-32e Mode

In 64-bit mode, the RFLAGS register expands to 64 bits with the upper 32 bits reserved. System flags in RFLAGS
(64-bit mode) or EFLAGS (compatibility mode) are shown in Figure 2-5.

In IA-32e mode, the processor does not allow the VM bit to be set because virtual-8086 mode is not supported
(attempts to set the bit are ignored). Also, the processor will not set the NT bit. The processor does, however, allow
software to set the NT bit (note that an IRET causes a general protection fault in IA-32e mode if the NT bit is set).

In IA-32e mode, the SYSCALL/SYSRET instructions have a programmable method of specifying which bits are
cleared in RFLAGS/EFLAGS. These instructions save/restore EFLAGS/RFLAGS.

2.4 MEMORY-MANAGEMENT REGISTERS

The processor provides four memory-management registers (GDTR, LDTR, IDTR, and TR) that specify the locations
of the data structures which control segmented memory management (see Figure 2-6). Special instructions are
provided for loading and storing these registers.

Vol. 3A 2-11

SYSTEM ARCHITECTURE OVERVIEW

System Table Registers

47(79) 16 15 0
GDTR 32(64)-bit Linear Base Address 16-Bit Table Limit
IDTR 32(64)-bit Linear Base Address 16-Bit Table Limit
System Segment Segment Descriptor Registers (Automatically Loaded)
Registers
0 Attributes
Task [seq. Sel 32(64)-bit Linear Base Add s t Limit
Register eg. Sel. (64)-bit Linear Base ress egment Limi
LDTR Seg. Sel. 32(64)-bit Linear Base Address Segment Limit

Figure 2-6. Memory Management Registers

2.4.1 Global Descriptor Table Register (GDTR)

The GDTR register holds the base address (32 bits in protected mode; 64 bits in IA-32e mode) and the 16-bit table
limit for the GDT. The base address specifies the linear address of byte 0 of the GDT;, the table limit specifies the
number of bytes in the table.

The LGDT and SGDT instructions load and store the GDTR register, respectively. On power up or reset of the
processor, the base address is set to the default value of 0 and the limit is set to OFFFFH. A new base address must
be loaded into the GDTR as part of the processor initialization process for protected-mode operation.

See also: Section 3.5.1, "Segment Descriptor Tables.”

2.4.2 Local Descriptor Table Register (LDTR)

The LDTR register holds the 16-bit segment selector, base address (32 bits in protected mode; 64 bits in IA-32e
mode), segment limit, and descriptor attributes for the LDT. The base address specifies the linear address of byte
0 of the LDT segment; the segment limit specifies the humber of bytes in the segment. See also: Section 3.5.1,
“Segment Descriptor Tables.”

The LLDT and SLDT instructions load and store the segment selector part of the LDTR register, respectively. The
segment that contains the LDT must have a segment descriptor in the GDT. When the LLDT instruction loads a
segment selector in the LDTR: the base address, limit, and descriptor attributes from the LDT descriptor are auto-
matically loaded in the LDTR.

When a task switch occurs, the LDTR is automatically loaded with the segment selector and descriptor for the LDT
for the new task. The contents of the LDTR are not automatically saved prior to writing the new LDT information
into the register.

On power up or reset of the processor, the segment selector and base address are set to the default value of 0 and
the limit is set to OFFFFH.

2.4.3 IDTR Interrupt Descriptor Table Register

The IDTR register holds the base address (32 bits in protected mode; 64 bits in IA-32e mode) and 16-bit table limit
for the IDT. The base address specifies the linear address of byte 0 of the IDT; the table limit specifies the number
of bytes in the table. The LIDT and SIDT instructions load and store the IDTR register, respectively. On power up or
reset of the processor, the base address is set to the default value of 0 and the limit is set to OFFFFH. The base
address and limit in the register can then be changed as part of the processor initialization process.

See also: Section 7.10, “Interrupt Descriptor Table (IDT).”

2-12 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

24.4 Task Register (TR)

The task register holds the 16-bit segment selector, base address (32 bits in protected mode; 64 bits in IA-32e
mode), segment limit, and descriptor attributes for the TSS of the current task. The selector references the TSS
descriptor in the GDT. The base address specifies the linear address of byte 0 of the TSS; the segment limit speci-
fies the number of bytes in the TSS. See also: Section 9.2.4, “Task Register.”

The LTR and STR instructions load and store the segment selector part of the task register, respectively. When the
LTR instruction loads a segment selector in the task register, the base address, limit, and descriptor attributes from
the TSS descriptor are automatically loaded into the task register. On power up or reset of the processor, the base
address is set to the default value of 0 and the limit is set to OFFFFH.

When a task switch occurs, the task register is automatically loaded with the segment selector and descriptor for
the TSS for the new task. The contents of the task register are not automatically saved prior to writing the new TSS
information into the register.

2.5 CONTROL REGISTERS

Control registers (CR0, CR1, CR2, CR3, and CR4; see Figure 2-7) determine operating mode of the processor and
the characteristics of the currently executing task. These registers are 32 bits in all 32-bit modes and compatibility
mode.

In 64-bit mode, control registers are expanded to 64 bits. The MOV CRn instructions are used to manipulate the
register bits. Operand-size prefixes for these instructions are ignored. The following is also true:

®* The control registers can be read and loaded (or modified) using the move-to-or-from-control-registers forms
of the MOV instruction. In protected mode, the MOV instructions allow the control registers to be read or loaded
(at privilege level 0 only). This restriction means that application programs or operating-system procedures
(running at privilege levels 1, 2, or 3) are prevented from reading or loading the control registers.

®* Some of the bits in CRO and CR4 are reserved and must be written with zeros. Attempting to set any reserved
bits in CRO[31:0] is ignored. Attempting to set any reserved bits in CRO[63:32] results in a general-protection
exception, #GP(0). Attempting to set any reserved bits in CR4 results in a general-protection exception,
#GP(0).

® All 64 bits of CR2 are writable by software.

® Bitsin CR3 in the range 63:MAXPHYADDR that are reserved (see Figure 2-7) must be zero. Attempting to set
any of them results in #GP(0).

® The MOV CR2 instruction does not check that address written to CR2 is canonical.

®* A 64-bit capable processor will retain the upper 32 bits of each control register when transitioning out of IA-32e
mode.

®* On a 64-bit capable processor, an execution of MOV to CR outside of 64-bit mode zeros the upper 32 bits of the
control register.

® Register CR8 is available in 64-bit mode only.

The control registers are summarized below, and each architecturally defined control field in these control registers
is described individually. In Figure 2-7, the width of the register in 64-bit mode is indicated in parenthesis (except
for CRO).

® CRO — Contains system control flags that control operating mode and states of the processor.
® CR1 — Reserved.
® CR2 — Contains the page-fault linear address (the linear address that caused a page fault).

® CR3 — Contains the physical address of the base of the paging-structure hierarchy and two flags (PCD and
PWT). Only the most-significant bits (less the lower 12 bits) of the base address are specified; the lower 12 bits
of the address are assumed to be 0. The first paging structure must thus be aligned to a page (4-KByte)
boundary. The PCD and PWT flags control caching of that paging structure in the processor’s internal data
caches (they do not control TLB caching of page-directory information).

When using the physical address extension, the CR3 register contains the base address of the page-directory-
pointer table. With 4-level paging and 5-level paging, the CR3 register contains the base address of the PML4

Vol.3A 2-13

SYSTEM ARCHITECTURE OVERVIEW

table and PML5 table, respectively. If PCIDs are enabled, CR3 has a format different from that illustrated in
Figure 2-7. See Section 5.5, “4-Level Paging and 5-Level Paging.”

When linear-address masking is supported, CR3 includes two bits that control the masking of user pointers
(see Section 4.4, “Linear-Address Masking.”

See also: Chapter 5, “Paging.”

CR4 — Contains a group of flags that enable several architectural extensions, and indicate operating system or
executive support for specific processor capabilities. Bits CR4[63:32] can only be used for IA-32e mode only

features that are enabled after entering 64-bit mode. Bits CR4[63:32] do not have any effect outside of IA-32e
mode.

CR8 — Provides read and write access to the Task Priority Register (TPR). It specifies the priority threshold
value that operating systems use to control the priority class of external interrupts allowed to interrupt the

processor. This register is available only in 64-bit mode. However, interrupt filtering continues to apply in
compatibility mode.

31 29 28 27 26 25 24 2322 21 20 19 18 17 16 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0
u P
|PCP|\S/|,\S/IK c ,\S/Imk,\l‘,]l PIPIM| P Pl ITIPV
Reserved NIKIE|K LIE|L I x| x |5l C|G|C|A|S||S|V|M|CR4
T|S|T|E D E|E|E|E|E D|I|E
P|P E|E|7|P
R E
L Reserved L Reserved L OSFXSR
LAM_SUP FSGSBASE OSXMMEXCPT
OSXSAVE
63 62 61 12 1 54 32 0
P|P
Page-Directory Base Reserved C | W | Reserved |CR3
D|T
LLAM_U57
——LAM_U48
63 0
Page-Fault Linear Address CR2
31 30 29 28 19 18 17 16 15 6 54 3 2 1 0
P|C|N A w N|E|T|E|M|P
clpolw Reserved M P Reserved ElTlsImlIpPlE CRO
LReserved

Figure 2-7. Control Registers

2-14 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

The flags in control registers are:
CRO.PG

Paging (bit 31 of CRO) — Enables paging when set; disables paging when clear. When paging is
disabled, all linear addresses are treated as physical addresses. The PG flag has no effect if the PE flag (bit
0 of register CRO) is not also set; setting the PG flag when the PE flag is clear causes a general-protection
exception (#GP). See also: Chapter 5, “Paging.”

On Intel 64 processors, enabling and disabling IA-32e mode operation also requires modifying CRO.PG.
CR0O.CD

Cache Disable (bit 30 of CRO) — When the CD and NW flags are clear, caching of memory locations for
the whole of physical memory in the processor’s internal (and external) caches is enabled. When the CD
flag is set, caching is restricted as described in Table 13-5. To prevent the processor from accessing and
updating its caches, the CD flag must be set and the caches must be invalidated so that no cache hits can
occur.

See also: Section 13.5.3, “Preventing Caching,” and Section 13.5, “Cache Control.”

CRO.NW
Not Write-through (bit 29 of CR0O) — When the NW and CD flags are clear, write-back (for Pentium 4,
Intel Xeon, P6 family, and Pentium processors) or write-through (for Intel486 processors) is enabled for
writes that hit the cache and invalidation cycles are enabled. See Table 13-5 for detailed information about
the effect of the NW flag on caching for other settings of the CD and NW flags.

CR0O.AM
Alignment Mask (bit 18 of CR0O) — Enables automatic alignment checking when set; disables alignment
checking when clear. Alignment checking is performed only when the AM flag is set, the AC flag in the
EFLAGS register is set, CPL is 3, and the processor is operating in either protected or virtual-8086 mode.

CRO.WP
Write Protect (bit 16 of CR0O) — When set, inhibits supervisor-level procedures from writing into read-
only pages; when clear, allows supervisor-level procedures to write into read-only pages (regardless of the
U/S bit setting; see Section 5.1.3 and Section 5.6). This flag facilitates implementation of the copy-on-
write method of creating a new process (forking) used by operating systems such as UNIX. This flag must
be set before software can set CR4.CET, and it cannot be cleared as long as CR4.CET = 1 (see below).

CRO.NE
Numeric Error (bit 5 of CR0) — Enables the native (internal) mechanism for reporting x87 FPU errors
when set; enables the PC-style x87 FPU error reporting mechanism when clear. When the NE flag is clear
and the IGNNE# input is asserted, x87 FPU errors are ignored. When the NE flag is clear and the IGNNE#
input is deasserted, an unmasked x87 FPU error causes the processor to assert the FERR# pin to generate
an external interrupt and to stop instruction execution immediately before executing the next waiting
floating-point instruction or WAIT/FWAIT instruction.

The FERR# pin is intended to drive an input to an external interrupt controller (the FERR# pin emulates the
ERROR# pin of the Intel 287 and Intel 387 DX math coprocessors). The NE flag, IGNNE# pin, and FERR#
pin are used with external logic to implement PC-style error reporting. Using FERR# and IGNNE# to handle
floating-point exceptions is deprecated by modern operating systems; this non-native approach also limits
newer processors to operate with one logical processor active.

See also: Section 8.7, "Handling x87 FPU Exceptions in Software,” in Chapter 8, “Programming with the
x87 FPU,” and Appendix A, “EFLAGS Cross-Reference,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1.

CRO.ET
Extension Type (bit 4 of CR0) — Reserved in the Pentium 4, Intel Xeon, P6 family, and Pentium proces-
sors. In the Pentium 4, Intel Xeon, and P6 family processors, this flag is hardcoded to 1. In the Intel386
and Intel486 processors, this flag indicates support of Intel 387 DX math coprocessor instructions when
set.

CRO.TS
Task Switched (bit 3 of CR0O) — Allows the saving of the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4
context on a task switch to be delayed until an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction is

Vol.3A 2-15

SYSTEM ARCHITECTURE OVERVIEW

actually executed by the new task. The processor sets this flag on every task switch and tests it when
executing x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

e Ifthe TS flag is set and the EM flag (bit 2 of CRO) is clear, a device-not-available exception (#NM) is
raised prior to the execution of any x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction; with the
exception of PAUSE, PREFETCHhA, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and POPCNT.
See the paragraph below for the special case of the WAIT/FWAIT instructions.

¢ Ifthe TS flag is set and the MP flag (bit 1 of CR0O) and EM flag are clear, an #NM exception is not raised
prior to the execution of an x87 FPU WAIT/FWAIT instruction.

¢ Ifthe EM flag is set, the setting of the TS flag has no effect on the execution of x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

Table 2-2 shows the actions taken when the processor encounters an x87 FPU instruction based on the
settings of the TS, EM, and MP flags. Table 14-1 and 15-1 show the actions taken when the processor
encounters an MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction.

The processor does not automatically save the context of the x87 FPU, XMM, and MXCSR registers on a
task switch. Instead, it sets the TS flag, which causes the processor to raise an #NM exception whenever it
encounters an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction in the instruction stream for the
new task (with the exception of the instructions listed above).

The fault handler for the #NM exception can then be used to clear the TS flag (with the CLTS instruction)
and save the context of the x87 FPU, XMM, and MXCSR registers. If the task never encounters an x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction, the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4
context is never saved.

Table 2-2. Action Taken By x87 FPU Instructions for Different Combinations of EM, MP, and TS

CRO Flags x87 FPU Instruction Type

EM MP TS Floating-Point WAIT/FWAIT
0 0 0 Execute Execute.

0 0 1 #NM Exception Execute.

0 1 0 Execute Execute.

0 1 1 #NM Exception #NM exception.
1 0 0 #NM Exception Execute.

1 0 1 #NM Exception Execute.

1 1 0 #NM Exception Execute.

1 1 1 #NM Exception #NM exception.

CRO.EM

Emulation (bit 2 of CR0O) — Indicates that the processor does not have an internal or external x87 FPU when set;
indicates an x87 FPU is present when clear. This flag also affects the execution of
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

When the EM flag is set, execution of an x87 FPU instruction generates a device-not-available exception
(#NM). This flag must be set when the processor does not have an internal x87 FPU or is not connected to
an external math coprocessor. Setting this flag forces all floating-point instructions to be handled by soft-
ware emulation. Table 11-3 shows the recommended setting of this flag, depending on the IA-32 processor
and x87 FPU or math coprocessor present in the system. Table 2-2 shows the interaction of the EM, MP, and
TS flags.

Also, when the EM flag is set, execution of an MMX instruction causes an invalid-opcode exception (#UD)
to be generated (see Table 14-1). Thus, if an IA-32 or Intel 64 processor incorporates MMX technology, the
EM flag must be set to 0 to enable execution of MMX instructions.

Similarly for SSE/SSE2/SSE3/SSSE3/SSE4 extensions, when the EM flag is set, execution of most
SSE/SSE2/SSE3/SSSE3/SSE4 instructions causes an invalid opcode exception (#UD) to be generated (see

2-16 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

Table 15-1). If an IA-32 or Intel 64 processor incorporates the SSE/SSE2/SSE3/SSSE3/SSE4 extensions,
the EM flag must be set to 0 to enable execution of these extensions. SSE/SSE2/SSE3/SSSE3/SSE4
instructions not affected by the EM flag include: PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI,
CLFLUSH, CRC32, and POPCNT.

CR0O.MP
Monitor Coprocessor (bit 1 of CR0O) — Controls the interaction of the WAIT (or FWAIT) instruction with
the TS flag (bit 3 of CRO). If the MP flag is set, a WAIT instruction generates a device-not-available exception
(#NM) if the TS flag is also set. If the MP flag is clear, the WAIT instruction ignores the setting of the TS flag.
Table 11-3 shows the recommended setting of this flag, depending on the IA-32 processor and x87 FPU or
math coprocessor present in the system. Table 2-2 shows the interaction of the MP, EM, and TS flags.

CRO.PE
Protection Enable (bit 0 of CRO) — Enables protected mode when set; enables real-address mode when
clear. This flag does not enable paging directly. It only enables segment-level protection. To enable paging,
both the PE and PG flags must be set.

See also: Section 11.9, “"Mode Switching.”

CR3.PCD
Page-level Cache Disable (bit 4 of CR3) — Controls the memory type used to access the first paging
structure of the current paging-structure hierarchy. See Section 5.9, “Paging and Memory Typing.” This bit
is not used if paging is disabled, with PAE paging, or with 4-level paging! or 5-level paging if CR4.PCIDE=1.

CR3.PWT
Page-level Write-Through (bit 3 of CR3) — Controls the memory type used to access the first paging
structure of the current paging-structure hierarchy. See Section 5.9, "Paging and Memory Typing.” This bit
is not used if paging is disabled, with PAE paging, or with 4-level paging or 5-level paging if CR4.PCIDE=1.

CR3.LAM_U57
User LAM57 enable (bit 61 of CR3) — When set, enables LAM57 (masking of linear-address bits 62:57)
for user pointers and overrides CR3.LAM_U48. See Section 4.4, “Linear-Address Masking.”

CR3.LAM_U48
User LAM48 enable (bit 62 of CR3) — When set and CR3.LAM_U57 is clear, enables LAM48 (masking of
linear-address bits 62:48) for user pointers. See Section 4.4, “Linear-Address Masking.”

CR4.VME
Virtual-8086 Mode Extensions (bit 0 of CR4) — Enables interrupt- and exception-handling extensions
in virtual-8086 mode when set; disables the extensions when clear. Use of the virtual mode extensions can
improve the performance of virtual-8086 applications by eliminating the overhead of calling the virtual-
8086 monitor to handle interrupts and exceptions that occur while executing an 8086 program and,
instead, redirecting the interrupts and exceptions back to the 8086 program’s handlers. It also provides
hardware support for a virtual interrupt flag (VIF) to improve reliability of running 8086 programs in multi-
tasking and multiple-processor environments.

See also: Section 22.3, “Interrupt and Exception Handling in Virtual-8086 Mode.”

CR4.PVI
Protected-Mode Virtual Interrupts (bit 1 of CR4) — Enables hardware support for a virtual interrupt
flag (VIF) in protected mode when set; disables the VIF flag in protected mode when clear.

See also: Section 22.4, “Protected-Mode Virtual Interrupts.”

CR4.TSD
Time Stamp Disable (bit 2 of CR4) — Restricts the execution of the RDTSC instruction to procedures
running at privilege level 0 when set; allows RDTSC instruction to be executed at any privilege level when
clear. This bit also applies to the RDTSCP instruction if supported (if CPUID.80000001H:EDX[27] = 1).

CR4.DE
Debugging Extensions (bit 3 of CR4) — References to debug registers DR4 and DR5 cause an unde-
fined opcode (#UD) exception to be generated when set; when clear, processor aliases references to regis-
ters DR4 and DR5 for compatibility with software written to run on earlier IA-32 processors.

1. Earlier versions of this manual used the term “|A-32e paging” to identify 4-level paging.

Vol.3A 2-17

SYSTEM ARCHITECTURE OVERVIEW

See also: Section 19.2.2, “"Debug Registers DR4 and DR5.”

CR4.PSE
Page Size Extensions (bit 4 of CR4) — Enables 4-MByte pages with 32-bit paging when set; restricts
32-bit paging to pages of 4 KBytes when clear.

See also: Section 5.3, "32-Bit Paging.”

CR4.PAE
Physical Address Extension (bit 5 of CR4) — When set, enables paging to produce physical addresses
with more than 32 bits. When clear, restricts physical addresses to 32 bits. PAE must be set before entering
IA-32e mode.

See also: Chapter 5, “Paging.”

CR4.MCE
Machine-Check Enable (bit 6 of CR4) — Enables the machine-check exception when set; disables the
machine-check exception when clear.

See also: Chapter 17, “"Machine-Check Architecture.”

CR4.PGE
Page Global Enable (bit 7 of CR4) — (Introduced in the P6 family processors.) Enables the global page
feature when set; disables the global page feature when clear. The global page feature allows frequently
used or shared pages to be marked as global to all users (done with the global flag, bit 8, in a page-direc-
tory-pointer-table entry, a page-directory entry, or a page-table entry). Global pages are not flushed from
the translation-lookaside buffer (TLB) on a task switch or a write to register CR3.

When enabling the global page feature, paging must be enabled (by setting the PG flag in control register
CRO) before the PGE flag is set. Reversing this sequence may affect program correctness, and processor
performance will be impacted.

See also: Section 5.10, “Caching Translation Information.”

CR4.PCE
Performance-Monitoring Counter Enable (bit 8 of CR4) — Enables execution of the RDPMC instruc-
tion for programs or procedures running at any protection level when set; RDPMC instruction can be
executed only at protection level 0 when clear.

CR4.0SFXSR
Operating System Support for FXSAVE and FXRSTOR instructions (bit 9 of CR4) — When set, this
flag: (1) indicates to software that the operating system supports the use of the FXSAVE and FXRSTOR
instructions, (2) enables the FXSAVE and FXRSTOR instructions to save and restore the contents of the
XMM and MXCSR registers along with the contents of the x87 FPU and MMX registers, and (3) enables the
processor to execute SSE/SSE2/SSE3/SSSE3/SSE4 instructions, with the exception of the PAUSE,
PREFETCHA, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and POPCNT.

If this flag is clear, the FXSAVE and FXRSTOR instructions will save and restore the contents of the x87 FPU
and MMX registers, but they may not save and restore the contents of the XMM and MXCSR registers. Also,
the processor will generate an invalid opcode exception (#UD) if it attempts to execute any
SSE/SSE2/SSE3 instruction, with the exception of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE,
MOVNTI, CLFLUSH, CRC32, and POPCNT. The operating system or executive must explicitly set this flag.

NOTE

CPUID feature flag FXSR indicates availability of the FXSAVE/FXRSTOR instructions. The OSFXSR
bit provides operating system software with a means of enabling FXSAVE/FXRSTOR to save/restore
the contents of the X87 FPU, XMM, and MXCSR registers. Consequently OSFXSR bit indicates that
the operating system provides context switch support for SSE/SSE2/SSE3/SSSE3/SSE4.

CR4.0SXMMEXCPT
Operating System Support for Unmasked SIMD Floating-Point Exceptions (bit 10 of CR4) —
When set, indicates that the operating system supports the handling of unmasked SIMD floating-point
exceptions through an exception handler that is invoked when a SIMD floating-point exception (#XM) is

2-18 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

generated. SIMD floating-point exceptions are only generated by SSE/SSE2/SSE3/SSE4.1 SIMD floating-
point instructions.

The operating system or executive must explicitly set this flag. If this flag is not set, the processor will
generate an invalid opcode exception (#UD) whenever it detects an unmasked SIMD floating-point excep-
tion.

CR4.UMIP
User-Mode Instruction Prevention (bit 11 of CR4) — When set, the following instructions cannot be
executed if CPL > 0: SGDT, SIDT, SLDT, SMSW, and STR. An attempt at such execution causes a general-
protection exception (#GP).

CR4.LA57
57-bit linear addresses (bit 12 of CR4) — When set in IA-32e mode, the processor uses 5-level paging
to translate 57-bit linear addresses. When clear in IA-32e mode, the processor uses 4-level paging to
translate 48-bit linear addresses. This bit cannot be modified in IA-32e mode.

See also: Chapter 5, “Paging.”

CR4.VMXE
VMX-Enable Bit (bit 13 of CR4) — Enables VMX operation when set. See Chapter 25, “Introduction to
Virtual Machine Extensions.”

CR4.SMXE
SMX-Enable Bit (bit 14 of CR4) — Enables SMX operation when set. See Chapter 7, “Safer Mode Exten-
sions Reference,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2D.

CR4.FSGSBASE
FSGSBASE-Enable Bit (bit 16 of CR4) — Enables the instructions RDFSBASE, RDGSBASE, WRFSBASE,
and WRGSBASE.

CR4.PCIDE
PCID-Enable Bit (bit 17 of CR4) — Enables process-context identifiers (PCIDs) when set. See Section
5.10.1, “Process-Context Identifiers (PCIDs).” Applies only in IA-32e mode (if IA32_EFER.LMA = 1).

CR4.0SXSAVE
XSAVE and Processor Extended States-Enable Bit (bit 18 of CR4) — When set, this flag: (1) indi-
cates (via CPUID.01H:ECX.0OSXSAVE[bit 27]) that the operating system supports the use of the XGETBV,
XSAVE, and XRSTOR instructions by general software; (2) enables the XSAVE and XRSTOR instructions to
save and restore the x87 FPU state (including MMX registers), the SSE state (XMM registers and MXCSR),
along with other processor extended states enabled in XCRO; (3) enables the processor to execute XGETBV
and XSETBYV instructions in order to read and write XCRO. See Section 2.6 and Chapter 15, "System
Programming for Instruction Set Extensions and Processor Extended States.”

CR4.KL
Key-Locker-Enable Bit (bit 19 of CR4) — When set, the LOADIWKEY instruction is enabled; in addition,
if support for the AES Key Locker instructions has been activated by system firmware,
CPUID.19H:EBX.AESKLE[bit 0] is enumerated as 1 and the AES Key Locker instructions are enabled.!
When clear, CPUID.19H:EBX.AESKLE[bit 0] is enumerated as 0 and execution of any Key Locker instruction
causes an invalid-opcode exception (#UD).

CR4.SMEP
SMEP-Enable Bit (bit 20 of CR4) — Enables supervisor-mode execution prevention (SMEP) when set.
See Section 5.6, “Access Rights.”

CR4.SMAP
SMAP-Enable Bit (bit 21 of CR4) — Enables supervisor-mode access prevention (SMAP) when set. See
Section 5.6, “Access Rights.”

CR4.PKE
Enable protection keys for user-mode pages (bit 22 of CR4) — 4-level paging and 5-level paging

1. Software can check CPUID.19H:EBX.AESKLE[bit O] after setting CR4.KL to determine whether the AES Key Locker instructions have
been enabled. Note that some processors may allow enabling of those instructions without activation by system firmware. Some
processors may not support use of the AES Key Locker instructions in system-management mode (SMM). Those processors enumer-
ate CPUID.19H:EBX.AESKLE[bit O] as 0 in SMM regardless of the setting of CR4.KL.

Vol.3A 2-19

SYSTEM ARCHITECTURE OVERVIEW

associate each user-mode linear address with a protection key. When set, this flag indicates (via
CPUID.(EAX=07H,ECX=0H):ECX.OSPKE [bit 4]) that the operating system supports use of the PKRU
register to specify, for each protection key, whether user-mode linear addresses with that protection key
can be read or written. This bit also enables access to the PKRU register using the RDPKRU and WRPKRU
instructions.

CR4.CET
Control-flow Enforcement Technology (bit 23 of CR4) — Enables control-flow enforcement tech-
nology when set. See Chapter 18, “Control-flow Enforcement Technology (CET),” of the IA-32 Intel/® Archi-
tecture Software Developer’s Manual, Volume 1. This flag can be set only if CRO.WP is set, and it must be
clear before CR0O.WP can be cleared (see below).

CR4.PKS
Enable protection keys for supervisor-mode pages (bit 24 of CR4) — 4-level paging and 5-level
paging associate each supervisor-mode linear address with a protection key. When set, this flag allows use
of the IA32_PKRS MSR to specify, for each protection key, whether supervisor-mode linear addresses with
that protection key can be read or written.

CR4.UINTR
User Interrupts Enable Bit (bit 25 of CR4) — Enables user interrupts when set, including user-interrupt
delivery, user-interrupt notification identification, and the user-interrupt instructions.

CR4.LAM_SUP
Supervisor LAM enable (bit 28 of CR4) — When set, enables LAM (linear-address masking) for super-
visor pointers. See Section 4.4, “Linear-Address Masking.”

CR8.TPL
Task Priority Level (bit 3:0 of CR8) — This sets the threshold value corresponding to the highest-
priority interrupt to be blocked. A value of 0 means all interrupts are enabled. This field is available in 64-
bit mode. A value of 15 means all interrupts will be disabled.

2.5.1 CPUID Qualification of Control Register Flags

Not all flags in control register CR4 are implemented on all processors. With the exception of the PCE flag, they can
be qualified with the CPUID instruction to determine if they are implemented on the processor before they are
used.

The CR8 register is available on processors that support Intel 64 architecture.

2.6 EXTENDED CONTROL REGISTERS (INCLUDING XCRO)

If CPUID.01H:ECX.XSAVE[bit 26] is 1, the processor supports one or more extended control registers (XCRs).
Currently, the only such register defined is XCRO. This register specifies the set of processor state components for
which the operating system provides context management, e.g., x87 FPU state, SSE state, AVX state. The OS
programs XCRO to reflect the features for which it provides context management.

2-20 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

63 18 17 M0 9 8 7 6 5 4 3 2 1 0

Reserved for XCRO bit vector expansion
Reserved / Future processor extended states
TILEDATA state
TILECONFIG state
PKRU state
Hi16_ZMM state
ZMM_Hi256 state
Opmask state
BNDCSR state
BNDREG state
AVX state
SSE state
X87 FPU/MMX state (must be 1)

|:| Reserved (must be 0)

Figure 2-8. XCRO

Software can access XCRO only if CR4.0SXSAVE[bit 18] = 1. (This bit is also readable as
CPUID.01H:ECX.0OSXSAVE[bit 27].) Software can use CPUID leaf function ODH to enumerate the bits in XCRO that
the processor supports (see CPUID instruction in Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A). Each supported state component is represented by a bit in XCR0O. System software enables state
components by loading an appropriate bit mask value into XCRO using the XSETBV instruction.

As each bit in XCRO (except bit 63) corresponds to a processor state component, XCRO thus provides support for
up to 63 sets of processor state components. Bit 63 of XCRO is reserved for future expansion and will not represent
a processor state component.

Currently, XCRO defines support for the following state components:

XCRO0.X87 (bit 0): This bit 0 must be 1. An attempt to write 0 to this bit causes a #GP exception.

XCRO.SSE (bit 1): If 1, the XSAVE feature set can be used to manage MXCSR and the XMM registers (XMMO-
XMM15 in 64-bit mode; otherwise XMM0-XMM7).

XCRO.AVX (bit 2): If 1, Intel AVX instructions can be executed and the XSAVE feature set can be used to
manage the upper halves of the YMM registers (YMMO0-YMM15 in 64-bit mode; otherwise YMMO-YMM7).

XCRO.BNDREG (bit 3): If 1, Intel MPX instructions can be executed and the XSAVE feature set can be used to
manage the bounds registers BNDO-BND3.

XCRO.BNDCSR (bit 4): If 1, Intel MPX instructions can be executed and the XSAVE feature set can be used to
manage the BNDCFGU and BNDSTATUS registers.

XCRO.opmask (bit 5): If 1, Intel AVX-512 instructions can be executed and the XSAVE feature set can be used
to manage the opmask registers kO-k7.

XCR0.ZMM_Hi256 (bit 6): If 1, Intel AVX-512 instructions can be executed and the XSAVE feature set can be
used to manage the upper halves of the lower ZMM registers (ZMM0-ZMM15 in 64-bit mode; otherwise ZMMO-
ZMM7).

XCRO.Hi16_ZMM (bit 7): If 1, Intel AVX-512 instructions can be executed and the XSAVE feature set can be
used to manage the upper ZMM registers (ZMM16-ZMM31, only in 64-bit mode).

XCRO.PKRU (bit 9): If 1, the XSAVE feature set can be used to manage the PKRU register (see Section 2.7).

XCRO.TILECFG (bit 17): If 1, and if XCRO.TILEDATA is also 1, Intel AMX instructions can be executed and the
XSAVE feature set can be used to manage TILECFG.

Vol. 3A 2-21

SYSTEM ARCHITECTURE OVERVIEW

® XCRO.TILEDATA (bit 18): If 1, and if XCRO.TILECFG is also 1, Intel AMX instructions can be executed and the
XSAVE feature set can be used to manage TILEDATA.

An attempt to use XSETBV to write to XCRO results in general-protection exceptions (#GP) if it would do any of the
following:

® Seta bit reserved in XCRO for a given processor (as determined by the contents of EAX and EDX after executing
CPUID with EAX=0DH, ECX= 0H).

® Clear XCR0.x87.

® Clear XCRO.SSE and set XCRO.AVX.

® (Clear XCR0.AVX and set any of XCR0O.opmask, XCR0.ZMM_Hi256, or XCRO.Hi16_ZMM.

® Set either XCRO.BNDREG or XCR0O.BNDCSR while not setting the other.

® Set any of XCR0O.opmask, XCR0.ZMM_Hi256, and XCR0.Hi16_ZMM while not setting all of them.
® Set either XCRO.TILECFG or XCRO.TILEDATA while not setting the other.

After reset, all bits (except bit 0) in XCRO are cleared to zero; XCR0O[0] is set to 1.

2.7 PROTECTION-KEY RIGHTS REGISTERS (PKRU AND IA32_PKRS)

Processors may support either or both of two protection-key rights registers: PKRU for user-mode pages and the
IA32_PKRS MSR (MSR index 6E1H) for supervisor-mode pages. 4-level paging and 5-level paging associate a 4-bit
protection key with each page. The protection-key rights registers determine accessibility based on a page’s
protection key.

If CPUID.(EAX=07H,ECX=0H):ECX.PKU [bit 3] = 1, the processor supports the protection-key feature for user-
mode pages. When CR4.PKE = 1, software can use the protection-key rights register for user pages (PKRU)
to specify the access rights for user-mode pages for each protection key.

If CPUID.(EAX=07H,ECX=0H):ECX.PKS [bit 31] = 1, the processor supports the protection-key feature for super-
visor-mode pages. When CR4.PKS = 1, software can use the protection-key rights register for supervisor
pages (the IA32_PKRS MSR) to specify the access rights for supervisor-mode pages for each protection key.

3130292827 26252423222120191817 161514131211 10 9 8 7 6 5 4 3 2 1 0 Bit Position

WIA|WAIWAI WA WA|WAIWA WA WA WAIWA WA|WA WA WA|WA
bpp/bD/DDDDDDDDDDDDDDDDDDDD|DDD|DIDD|D
15(15| 14|14/ 13|13 12/ 12| 11/11{1010|9 |9 |8 |8 |7 |7 |6 |6 |5|5|4 (4|3 |3 |2(2|1|1|0 |0

Figure 2-9. Format of Protection-Key Rights Registers

The format of each protection-key rights register is given in Figure 2-9. Each contains 16 pairs of disable controls
to prevent data accesses to linear addresses (user-mode or supervisor-mode, depending on the register) based on
their protection keys. Each protection key i (0 </ < 15) is associated with two bits in each protection-key rights
register:

®* Bit 2/, shown as “AD/” (access disable): if set, the processor prevents any data accesses to linear addresses
(user-mode or supervisor-mode, depending on the register) with protection key i.

® Bit 2i+1, shown as “WD/” (write disable): if set, the processor prevents write accesses to linear addresses
(user-mode or supervisor-mode, depending on the register) with protection key /.

(Bits 63:32 of the IA32_PKRS MSR are reserved and must be zero.)

See Section 5.6.2, “Protection Keys,"” for details of how the processor uses the protection-key rights registers to
control accesses to linear addresses.

Software can read and write PKRU using the RDPKRU and WRPKRU instructions. The IA32_PKRS MSR can be read
and written with the RDMSR and WRMSR instructions. Writes to the IA32_PKRS MSR using WRMSR are not serial-
izing.

2-22 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

2.8 SYSTEM INSTRUCTION SUMMARY

System instructions handle system-level functions such as loading system registers, managing the cache,
managing interrupts, or setting up the debug registers. Many of these instructions can be executed only by oper-
ating-system or executive procedures (that is, procedures running at privilege level 0). Others can be executed at
any privilege level and are thus available to application programs.

Table 2-3 lists the system instructions and indicates whether they are available and useful for application
programs. These instructions are described in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 2A, 2B, 2C, & 2D.

Table 2-3. Summary of System Instructions

Useful to Protected from
Instruction Description Application? Application?
LLDT Load LDT Register No Yes
SLDT Store LDT Register No If CR4.UMIP =1
LGDT Load GDT Register No Yes
SGDT Store GDT Register No If CR4.UMIP =1
LTR Load Task Register No Yes
STR Store Task Register No If CR4.UMIP =1
LIDT Load IDT Register No Yes
SIDT Store IDT Register No If CR4.UMIP =1
MOV CRn Load and store control registers No Yes
SMSW Store MSW Yes If CR4.UMIP = 1
LMSW Load MSW No Yes
CLTS Clear TS flag in CRO No Yes
ARPL Adjust RPL Yes'-> No
LAR Load Access Rights Yes No
LSL Load Segment Limit Yes No
VERR Verify for Reading Yes No
VERW Verify for Writing Yes No
MOV DRn Load and store debug registers No Yes
INVD Invalidate cache, no writeback No Yes
WBINVD Invalidate cache, with writeback No Yes
INVLPG Invalidate TLB entry No Yes
HLT Halt Processor No Yes
LOCK (Prefix) Bus Lock Yes No
RSM Return from system management mode No Yes
RDMSR3 Read Model-Specific Registers No Yes
WRMSR3 Write Model-Specific Registers No Yes
RDPMC* Read Performance-Monitoring Counter Yes Yes?
RDTSC3 Read Time-Stamp Counter Yes Yes?
RDTSCP’ Read Serialized Time-Stamp Counter Yes Yes?
XGETBV Return the state of XCRO Yes No
XSETBV Enable one or more processor extended states No® Yes

Vol. 3A 2-23

SYSTEM ARCHITECTURE OVERVIEW

Table 2-3. Summary of System Instructions (Contd.)

Useful to Protected from
Instruction Description Application? Application?

NOTES:

1. Useful to application programs running at a CPL of 1 or 2.

2. The TSD and PCE flags in control register CR4 control access to these instructions by application programs running at a CPL of 3.

3. These instructions were introduced into the IA-32 Architecture with the Pentium processor.

4., This instruction was introduced into the IA-32 Architecture with the Pentium Pro processor and the Pentium processor with MMX technol-
ogy.

5. This instruction is not supported in 64-bit mode.

6. Application uses XGETBV to query which set of processor extended states are enabled.

7.RDTSCP is introduced in Intel Core i7 processor.

2.8.1 Loading and Storing System Registers

The GDTR, LDTR, IDTR, and TR registers each have a load and store instruction for loading data into and storing
data from the register:

®* LGDT (Load GDTR Register) — Loads the GDT base address and limit from memory into the GDTR register.
® SGDT (Store GDTR Register) — Stores the GDT base address and limit from the GDTR register into memory.
® LIDT (Load IDTR Register) — Loads the IDT base address and limit from memory into the IDTR register.

® SIDT (Store IDTR Register) — Stores the IDT base address and limit from the IDTR register into memory.

®* LLDT (Load LDTR Register) — Loads the LDT segment selector and segment descriptor from memory into
the LDTR. (The segment selector operand can also be located in a general-purpose register.)

® SLDT (Store LDTR Register) — Stores the LDT segment selector from the LDTR register into memory or a
general-purpose register.

®* LTR (Load Task Register) — Loads segment selector and segment descriptor for a TSS from memory into the
task register. (The segment selector operand can also be located in a general-purpose register.)

® STR (Store Task Register) — Stores the segment selector for the current task TSS from the task register into
memory or a general-purpose register.

The LMSW (load machine status word) and SMSW (store machine status word) instructions operate on bits 0
through 15 of control register CRO. These instructions are provided for compatibility with the 16-bit Intel 286
processor. Programs written to run on 32-bit IA-32 processors should not use these instructions. Instead, they
should access the control register CRO using the MOV CR instruction.

The CLTS (clear TS flag in CRO) instruction is provided for use in handling a device-not-available exception (#NM)
that occurs when the processor attempts to execute a floating-point instruction when the TS flag is set. This
instruction allows the TS flag to be cleared after the x87 FPU context has been saved, preventing further #NM
exceptions. See Section 2.5, “Control Registers,” for more information on the TS flag.

The control registers (CRO, CR1, CR2, CR3, CR4, and CR8) are loaded using the MOV instruction. The instruction
loads a control register from a general-purpose register or stores the content of a control register in a general-
purpose register.

2.8.2 Verifying of Access Privileges

The processor provides several instructions for examining segment selectors and segment descriptors to determine
if access to their associated segments is allowed. These instructions duplicate some of the automatic access rights
and type checking done by the processor, thus allowing operating-system or executive software to prevent excep-
tions from being generated.

The ARPL (adjust RPL) instruction adjusts the RPL (requestor privilege level) of a segment selector to match that of
the program or procedure that supplied the segment selector. See Section 6.10.4, "Checking Caller Access Privi-
leges (ARPL Instruction),” for a detailed explanation of the function and use of this instruction. Note that ARPL is
not supported in 64-bit mode.

2-24 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

The LAR (load access rights) instruction verifies the accessibility of a specified segment and loads access rights
information from the segment’s segment descriptor into a general-purpose register. Software can then examine
the access rights to determine if the segment type is compatible with its intended use. See Section 6.10.1,
“Checking Access Rights (LAR Instruction),” for a detailed explanation of the function and use of this instruction.

The LSL (load segment limit) instruction verifies the accessibility of a specified segment and loads the segment
limit from the segment’s segment descriptor into a general-purpose register. Software can then compare the
segment limit with an offset into the segment to determine whether the offset lies within the segment. See Section
6.10.3, “Checking That the Pointer Offset Is Within Limits (LSL Instruction),” for a detailed explanation of the func-
tion and use of this instruction.

The VERR (verify for reading) and VERW (verify for writing) instructions verify if a selected segment is readable or
writable, respectively, at a given CPL. See Section 6.10.2, "Checking Read/Write Rights (VERR and VERW Instruc-
tions),” for a detailed explanation of the function and use of these instructions.

2.83 Loading and Storing Debug Registers

Internal debugging facilities in the processor are controlled by a set of 8 debug registers (DR0-DR7). The MOV
instruction allows setup data to be loaded to and stored from these registers.

On processors that support Intel 64 architecture, debug registers DRO-DR7 are 64 bits. In 32-bit modes and
compatibility mode, writes to a debug register fill the upper 32 bits with zeros. Reads return the lower 32 bits. In
64-bit mode, the upper 32 bits of DR6-DR7 are reserved and must be written with zeros. Writing one to any of the
upper 32 bits causes an exception, #GP(0).

In 64-bit mode, MOV DRn instructions read or write all 64 bits of a debug register (operand-size prefixes are
ignored). All 64 bits of DRO-DR3 are writable by software. However, MOV DRn instructions do not check that
addresses written to DRO-DR3 are in the limits of the implementation. Address matching is supported only on valid
addresses generated by the processor implementation.

2.84 Invalidating Caches and TLBs

The processor provides several instructions for use in explicitly invalidating its caches and TLB entries. The INVD
(invalidate cache with no writeback) instruction invalidates all data and instruction entries in the internal caches
and sends a signal to the external caches indicating that they should also be invalidated.

The WBINVD (invalidate cache with writeback) instruction performs the same function as the INVD instruction,
except that it writes back modified lines in its internal caches to memory before it invalidates the caches. After
invalidating the caches local to the executing logical processor or processor core, WBINVD signals caches higher in
the cache hierarchy (caches shared with the invalidating logical processor or core) to write back any data they have
in modified state at the time of instruction execution and to invalidate their contents.

Note, non-shared caches may not be written back nor invalidated. In Figure 2-10 below, if code executing on either
LPO or LP1 were to execute a WBINVD, the shared L1 and L2 for LPO/LP1 will be written back and invalidated as will
the shared L3. However, the L1 and L2 caches not shared with LPO and LP1 will not be written back nor invalidated.

Vol.3A 2-25

SYSTEM ARCHITECTURE OVERVIEW

Not Written back and

not Invalidated
Logical Processors | LPO LP1 | LP2 ‘LPB LP4 ’LPS LP6 |LP7 | — —

L1 & L2 Cache _]
Written back < P

& Invalidated el

W

Execution Engine

L3 Cache Written back and Invalidated

Uncore

QPI
t

Figure 2-10. WBINVD Invalidation of Shared and Non-Shared Cache Hierarchy

The INVLPG (invalidate TLB entry) instruction invalidates (flushes) the TLB entry for a specified page.

2.8.5 Controlling the Processor

The HLT (halt processor) instruction stops the processor until an enabled interrupt (such as NMI or SMI, which are
normally enabled), a debug exception, the BINIT# signal, the INIT# signal, or the RESET# signal is received. The
processor generates a special bus cycle to indicate that the halt mode has been entered.

Hardware may respond to this signal in a number of ways. An indicator light on the front panel may be turned on.
An NMI interrupt for recording diagnostic information may be generated. Reset initialization may be invoked (note
that the BINIT# pin was introduced with the Pentium Pro processor). If any hon-wake events are pending during

shutdown, they will be handled after the wake event from shutdown is processed (for example, A20M# interrupts).

The LOCK prefix invokes a locked (atomic) read-modify-write operation when modifying a memory operand. This
mechanism is used to allow reliable communications between processors in multiprocessor systems, as described
below:

® In the Pentium processor and earlier IA-32 processors, the LOCK prefix causes the processor to assert the
LOCK# signal during the instruction. This always causes an explicit bus lock to occur.

® Inthe Pentium 4, Intel Xeon, and P6 family processors, the locking operation is handled with either a cache lock
or bus lock. If a memory access is cacheable and affects only a single cache line, a cache lock is invoked and
the system bus and the actual memory location in system memory are not locked during the operation. Here,
other Pentium 4, Intel Xeon, or P6 family processors on the bus write-back any modified data and invalidate
their caches as necessary to maintain system memory coherency. If the memory access is not cacheable
and/or it crosses a cache line boundary, the processor’'s LOCK# signal is asserted and the processor does not
respond to requests for bus control during the locked operation.

The RSM (return from SMM) instruction restores the processor (from a context dump) to the state it was in prior to
a system management mode (SMM) interrupt.

2.8.6 Reading Performance-Monitoring and Time-Stamp Counters

The RDPMC (read performance-monitoring counter) and RDTSC (read time-stamp counter) instructions allow
application programs to read the processor’s performance-monitoring and time-stamp counters, respectively.
Processors based on Intel NetBurst® microarchitecture have eighteen 40-bit performance-monitoring counters; P6
family processors have two 40-bit counters. Intel Atom® processors and most of the processors based on the Intel
Core microarchitecture support two types of performance monitoring counters: programmable performance coun-
ters similar to those available in the P6 family, and three fixed-function performance monitoring counters. Details

2-26 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

of programmable and fixed-function performance monitoring counters for each processor generation are described
in Chapter 20, “Last Branch Records.”

The programmable performance counters can support counting either the occurrence or duration of events. Events
that can be monitored on programmable counters generally are model specific (except for architectural perfor-
mance events enumerated by CPUID leaf 0AH); they may include the number of instructions decoded, interrupts
received, or the number of cache loads. Individual counters can be set up to monitor different events. Use the
system instruction WRMSR to set up values in one of the IA32_PERFEVTSELx MSR, in one of the 45 ESCRs and one
of the 18 CCCR MSRs (for Pentium 4 and Intel Xeon processors); or in the PerfEvtSel0 or the PerfEvtSell MSR (for
the P6 family processors). The RDPMC instruction loads the current count from the selected counter into the
EDX:EAX registers.

Fixed-function performance counters record only specific events that are defined at: https://perfmon-
events.intel.com/, and the width/number of fixed-function counters are enumerated by CPUID leaf OAH.

The time-stamp counter is a model-specific 64-bit counter that is reset to zero each time the processor is reset. If
not reset, the counter will increment ~9.5 x 1010 times per year when the processor is operating at a clock rate
of 3GHz. At this clock frequency, it would take over 190 years for the counter to wrap around. The RDTSC
instruction loads the current count of the time-stamp counter into the EDX:EAX registers.

See Section 21.1, “Performance Monitoring Overview,” and Section 19.17, “Time-Stamp Counter,” for more infor-
mation about the performance monitoring and time-stamp counters.

The RDTSC instruction was introduced into the IA-32 architecture with the Pentium processor. The RDPMC instruc-
tion was introduced into the IA-32 architecture with the Pentium Pro processor and the Pentium processor with
MMX technology. Earlier Pentium processors have two performance-monitoring counters, but they can be read only
with the RDMSR instruction, and only at privilege level 0.

2.8.6.1 Reading Counters in 64-Bit Mode

In 64-bit mode, RDTSC operates the same as in protected mode. The count in the time-stamp counter is stored in
EDX:EAX (or RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32] cleared).

RDPMC requires an index to specify the offset of the performance-monitoring counter. In 64-bit mode for Pentium
4 or Intel Xeon processor families, the index is specified in ECX[30:0]. The current count of the performance-moni-
toring counter is stored in EDX:EAX (or RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32] cleared).

2.8.7 Reading and Writing Model-Specific Registers

The RDMSR (read model-specific register) and WRMSR (write model-specific register) instructions allow a
processor’s 64-bit model-specific registers (MSRs) to be read and written, respectively. The MSR to be read or
written is specified by the value in the ECX register.

RDMSR reads the value from the specified MSR to the EDX:EAX registers; WRMSR writes the value in the EDX:EAX
registers to the specified MSR. RDMSR and WRMSR were introduced into the IA-32 architecture with the Pentium
processor.

See Section 11.4, “Model-Specific Registers (MSRs),” for more information.

2.8.7.1 Reading and Writing Model-Specific Registers in 64-Bit Mode

RDMSR and WRMSR require an index to specify the address of an MSR. In 64-bit mode, the index is 32 bits; it is
specified using ECX.

2.8.8 Enabling Processor Extended States

The XSETBYV instruction is required to enable OS support of individual processor extended states in XCRO (see
Section 2.6).

Vol. 3A 2-27

https://perfmon-events.intel.com/

SYSTEM ARCHITECTURE OVERVIEW

2-28 Vol. 3A

CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT

This chapter describes the Intel 64 and IA-32 architecture’s protected-mode memory management facilities,
including the physical memory requirements, segmentation mechanism, and paging mechanism.

See also: Chapter 6, “Protection,” (for a description of the processor’s protection mechanism) and Chapter 22,
“8086 Emulation,” (for a description of memory addressing protection in real-address and virtual-8086 modes).

3.1 MEMORY MANAGEMENT OVERVIEW

The memory management facilities of the IA-32 architecture are divided into two parts: segmentation and paging.
Segmentation provides a mechanism of isolating individual code, data, and stack modules so that multiple
programs (or tasks) can run on the same processor without interfering with one another. Paging provides a mech-
anism for implementing a conventional demand-paged, virtual-memory system where sections of a program’s
execution environment are mapped into physical memory as needed. Paging can also be used to provide isolation
between multiple tasks. When operating in protected mode, some form of segmentation must be used. There is
no mode bit to disable segmentation. The use of paging, howeuver, is optional.

These two mechanisms (segmentation and paging) can be configured to support simple single-program (or single-
task) systems, multitasking systems, or multiple-processor systems that used shared memory.

As shown in Figure 3-1, segmentation provides a mechanism for dividing the processor’s addressable memory
space (called the linear address space) into smaller protected address spaces called segments. Segments can
be used to hold the code, data, and stack for a program or to hold system data structures (such as a TSS or LDT).
If more than one program (or task) is running on a processor, each program can be assigned its own set of
segments. The processor then enforces the boundaries between these segments and ensures that one program
does not interfere with the execution of another program by writing into the other program’s segments. The
segmentation mechanism also allows typing of segments so that the operations that may be performed on a partic-
ular type of segment can be restricted.

All the segments in a system are contained in the processor’s linear address space. To locate a byte in a particular
segment, a logical address (also called a far pointer) must be provided. A logical address consists of a segment
selector and an offset. The segment selector is a unique identifier for a segment. Among other things it provides an
offset into a descriptor table (such as the global descriptor table, GDT) to a data structure called a segment
descriptor. Each segment has a segment descriptor, which specifies the size of the segment, the access rights and
privilege level for the segment, the segment type, and the location of the first byte of the segment in the linear
address space (called the base address of the segment). The offset part of the logical address is added to the base
address for the segment to locate a byte within the segment. The base address plus the offset thus forms a linear
address in the processor’s linear address space.

Vol. 3A 3-1

PROTECTED-MODE MEMORY MANAGEMENT

Logical Address
(or Far Pointer)

Segment l

Selector Offset Linear Address
| | | | Space
; Linear Address
Global Descriptor - .
Table (GDT) Dir | Table | Offset | Zr&;és“uecsasl
Space
Segment
Segment Page Table Page
Descriptor(— | | (|| || || r~""""7
Rt D I O Y Page Directory Phy. Addr.
ﬂ|—> Lin. Addr. Eniry s
A Entry -

SegmentJ g

Base Address

|~— Page

}7 Segmentation I Paging I

Figure 3-1. Segmentation and Paging

If paging is not used, the linear address space of the processor is mapped directly into the physical address space
of processor. The physical address space is defined as the range of addresses that the processor can generate on
its address bus.

Because multitasking computing systems commonly define a linear address space much larger than it is economi-
cally feasible to contain all at once in physical memory, some method of “virtualizing” the linear address space is
needed. This virtualization of the linear address space is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space is simulated with a small
amount of physical memory (RAM and ROM) and some disk storage. When using paging, each segment is divided
into pages (typically 4 KBytes each in size), which are stored either in physical memory or on the disk. The oper-
ating system or executive maintains a page directory and a set of page tables to keep track of the pages. When a
program (or task) attempts to access an address location in the linear address space, the processor uses the page
directory and page tables to translate the linear address into a physical address and then performs the requested
operation (read or write) on the memory location.

If the page being accessed is not currently in physical memory, the processor interrupts execution of the program
(by generating a page-fault exception). The operating system or executive then reads the page into physical
memory from the disk and continues executing the program.

When paging is implemented properly in the operating-system or executive, the swapping of pages between phys-
ical memory and the disk is transparent to the correct execution of a program. Even programs written for 16-bit IA-
32 processors can be paged (transparently) when they are run in virtual-8086 mode.

3.2 USING SEGMENTS

The segmentation mechanism supported by the IA-32 architecture can be used to implement a wide variety of
system designs. These designs range from flat models that make only minimal use of segmentation to protect

3-2 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

programs to multi-segmented models that employ segmentation to create a robust operating environment in
which multiple programs and tasks can be executed reliably.

The following sections give several examples of how segmentation can be employed in a system to improve
memory management performance and reliability.

3.2.1 Basic Flat Model

The simplest memory model for a system is the basic “flat model,” in which the operating system and application
programs have access to a continuous, unsegmented address space. To the greatest extent possible, this basic flat
model hides the segmentation mechanism of the architecture from both the system designer and the application

programmer.

To implement a basic flat memory model with the IA-32 architecture, at least two segment descriptors must be
created, one for referencing a code segment and one for referencing a data segment (see Figure 3-2). Both of
these segments, however, are mapped to the entire linear address space: that is, both segment descriptors have
the same base address value of 0 and the same segment limit of 4 GBytes. By setting the segment limit to 4
GBytes, the segmentation mechanism is kept from generating exceptions for out of limit memory references, even
if no physical memory resides at a particular address. ROM (EPROM) is generally located at the top of the physical
address space, because the processor begins execution at FFFF_FFFOH. RAM (DRAM) is placed at the bottom of the
address space because the initial base address for the DS data segment after reset initialization is 0.

3.2.2 Protected Flat Model

The protected flat model is similar to the basic flat model, except the segment limits are set to include only the
range of addresses for which physical memory actually exists (see Figure 3-3). A general-protection exception
(#GP) is then generated on any attempt to access nonexistent memory. This model provides a minimum level of
hardware protection against some kinds of program bugs.

Linear Address Space
(or Physical Memory)

FS
GS

Segment »

Registers Code FFFFFFFFH
Code- and Data-Segment

Descriptors
Not Present
I T

Access Limit Data and
Base Address | - Stack 0

Figure 3-2. Flat Model

Vol. 3A 3-3

PROTECTED-MODE MEMORY MANAGEMENT

Segment Linear Address Space
Descriptors (or Physical Memory)
Segment imit ——
Registers Access Limit Code FFFEFFFFH
Base Address —
Not Present
>
Memory 1/0
Access | Limit |
> Base Address
Data and
Stack
0

L.
y

Figure 3-3. Protected Flat Model

More complexity can be added to this protected flat model to provide more protection. For example, for the paging
mechanism to provide isolation between user and supervisor code and data, four segments need to be defined:
code and data segments at privilege level 3 for the user, and code and data segments at privilege level O for the
supervisor. Usually these segments all overlay each other and start at address 0 in the linear address space. This
flat segmentation model along with a simple paging structure can protect the operating system from applications,
and by adding a separate paging structure for each task or process, it can also protect applications from each other.
Similar designs are used by several popular multitasking operating systems.

3.23 Multi-Segment Model

A multi-segment model (such as the one shown in Figure 3-4) uses the full capabilities of the segmentation mech-
anism to provide hardware enforced protection of code, data structures, and programs and tasks. Here, each
program (or task) is given its own table of segment descriptors and its own segments. The segments can be
completely private to their assigned programs or shared among programs. Access to all segments and to the
execution environments of individual programs running on the system is controlled by hardware.

3-4 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

Segment Segment Linear Address Space
Registers Descriptors (or Physical Memory)
IC—l—Sl - Ac;ess A\ Limit
ase Address) Stack
[ss | » Access | Limit
Base Address
Access [Limit
DS >
Base Address Code
E > Access \ Limit
Base Address
Data
E > Access \ Limit
Base Address
Data
Access \ Limit
GS >
: Base Address
— Data
Access \ Limit
Base Address A
Access \ Limit
Base Address
— Data
Access [Limit
Base Address
Access \ Limit
Base Address T

Figure 3-4. Multi-Segment Model

Access checks can be used to protect not only against referencing an address outside the limit of a segment, but
also against performing disallowed operations in certain segments. For example, since code segments are desig-
nated as read-only segments, hardware can be used to prevent writes into code segments. The access rights infor-
mation created for segments can also be used to set up protection rings or levels. Protection levels can be used to
protect operating-system procedures from unauthorized access by application programs.

3.24 Segmentation in IA-32e Mode

In IA-32e mode of Intel 64 architecture, the effects of segmentation depend on whether the processor is running
in compatibility mode or 64-bit mode. In compatibility mode, segmentation functions just as it does using legacy
16-bit or 32-bit protected mode semantics.

In 64-bit mode, segmentation is generally (but not completely) disabled, creating a flat 64-bit linear-address
space. The processor treats the segment base of CS, DS, ES, SS as zero, creating a linear address that is equal to
the effective address. The FS and GS segments are exceptions. These segment registers (which hold the segment
base) can be used as additional base registers in linear address calculations. They facilitate addressing local data
and certain operating system data structures.

Note that the processor does not perform segment limit checks at runtime in 64-bit mode.

3.25 Paging and Segmentation

Paging can be used with any of the segmentation models described in Figures 3-2, 3-3, and 3-4. The processor’s
paging mechanism divides the linear address space (into which segments are mapped) into pages (as shown in
Figure 3-1). These linear-address-space pages are then mapped to pages in the physical address space. The
paging mechanism offers several page-level protection facilities that can be used with or instead of the segment-

Vol. 3A 3-5

PROTECTED-MODE MEMORY MANAGEMENT

protection facilities. For example, it lets read-write protection be enforced on a page-by-page basis. The paging
mechanism also provides two-level user-supervisor protection that can also be specified on a page-by-page basis.

3.3 PHYSICAL ADDRESS SPACE

In protected mode, the IA-32 architecture provides a normal physical address space of 4 GBytes (232bytes). This
is the address space that the processor can address on its address bus. This address space is flat (unsegmented),
with addresses ranging continuously from 0 to FFFFFFFFH. This physical address space can be mapped to read-
write memory, read-only memory, and memory mapped I/O. The memory mapping facilities described in this
chapter can be used to divide this physical memory up into segments and/or pages.

Starting with the Pentium Pro processor, the IA-32 architecture also supports an extension of the physical address
space to 236 bytes (64 GBytes); with a maximum physical address of FFFFFFFFFH. This extension is invoked in
either of two ways:

® Using the physical address extension (PAE) flag, located in bit 5 of control register CR4.
® Using the 36-bit page size extension (PSE-36) feature (introduced in the Pentium Ill processors).

Physical address support has since been extended beyond 36 bits. See Chapter 5, “Paging,” for more information
about 36-bit physical addressing.

3.3.1 Intel® 64 Processors and Physical Address Space

On processors that support Intel 64 architecture (CPUID.80000001H:EDX[29] = 1), the size of the physical
address range is implementation-specific and indicated by CPUID.80000008H:EAX[bits 7-0].

For the format of information returned in EAX, see "CPUID—CPU Identification” in Chapter 3 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2A. See also: Chapter 5, “Paging.”

3.4 LOGICAL AND LINEAR ADDRESSES

At the system-architecture level in protected mode, the processor uses two stages of address translation to arrive
at a physical address: logical-address translation and linear address space paging.

Even with the minimum use of segments, every byte in the processor’s address space is accessed with a logical
address. A logical address consists of a 16-bit segment selector and a 32-bit offset (see Figure 3-5). The segment
selector identifies the segment the byte is located in and the offset specifies the location of the byte in the segment
relative to the base address of the segment.

The processor translates every logical address into a linear address. A linear address is a 32-bit address in the
processor’s linear address space. Like the physical address space, the linear address space is a flat (unsegmented),
232_pyte address space, with addresses ranging from 0 to FFFFFFFFH. The linear address space contains all the
segments and system tables defined for a system.

To translate a logical address into a linear address, the processor does the following:

1. Uses the offset in the segment selector to locate the segment descriptor for the segment in the GDT or LDT and
reads it into the processor. (This step is needed only when a new segment selector is loaded into a segment
register.)

2. Examines the segment descriptor to check the access rights and range of the segment to ensure that the
segment is accessible and that the offset is within the limits of the segment.

3. Adds the base address of the segment from the segment descriptor to the offset to form a linear address.

3-6 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

15 0 31(63) 0
Seg. Selector | Offset (Effective Address) |

Logical
Address

Descriptor Table

Segment

Base Address
! i
Descriptor .

31(63) 0
Linear Address |

Figure 3-5. Logical Address to Linear Address Translation

If paging is not used, the processor maps the linear address directly to a physical address (that is, the linear
address goes out on the processor’s address bus). If the linear address space is paged, a second level of address
translation is used to translate the linear address into a physical address.

See also: Chapter 5, “Paging.”

3.4.1 Logical Address Translation in IA-32e Mode

In IA-32e mode, an Intel 64 processor uses the steps described above to translate a logical address to a linear
address. In 64-bit mode, the offset and base address of the segment are 64-bits instead of 32 bits. The linear
address format is also 64 bits wide and is subject to linear-address pre-processing (see Chapter 4).

Each code segment descriptor provides an L bit. This bit allows a code segment to execute 64-bit code or legacy
32-bit code by code segment.

34.2 Segment Selectors

A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not point directly to the segment,
but instead points to the segment descriptor that defines the segment. A segment selector contains the following
items:

Index (Bits 3 through 15) — Selects one of 8192 descriptors in the GDT or LDT. The processor multiplies
the index value by 8 (the number of bytes in a segment descriptor) and adds the result to the base
address of the GDT or LDT (from the GDTR or LDTR register, respectively).

TI (table indicator) flag
(Bit 2) — Specifies the descriptor table to use: clearing this flag selects the GDT; setting this flag
selects the current LDT.

15 3210
Index ‘”RPL|

Table Indicator
0=GDT
1=LDT

Requested Privilege Level (RPL)

Figure 3-6. Segment Selector

Vol. 3A 3-7

PROTECTED-MODE MEMORY MANAGEMENT

Requested Privilege Level (RPL)
(Bits 0 and 1) — Specifies the privilege level of the selector. The privilege level can range from 0 to
3, with 0 being the most privileged level. See Section 6.5, “Privilege Levels,” for a description of the
relationship of the RPL to the CPL of the executing program (or task) and the descriptor privilege
level (DPL) of the descriptor the segment selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points to this entry of the GDT (that
is, a segment selector with an index of 0 and the TI flag set to 0) is used as a “null segment selector.” The processor
does not generate an exception when a segment register (other than the CS or SS registers) is loaded with a null
selector. It does, however, generate an exception when a segment register holding a null selector is used to access
memory. A null selector can be used to initialize unused segment registers. Loading the CS or SS register with a null
segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable, but the values of selectors are
usually assigned or modified by link editors or linking loaders, not application programs.

343 Segment Registers

To reduce address translation time and coding complexity, the processor provides registers for holding up to 6
segment selectors (see Figure 3-7). Each of these segment registers support a specific kind of memory reference
(code, stack, or data). For virtually any kind of program execution to take place, at least the code-segment (CS),
data-segment (DS), and stack-segment (SS) registers must be loaded with valid segment selectors. The processor
also provides three additional data-segment registers (ES, FS, and GS), which can be used to make additional data
segments available to the currently executing program (or task).

For a program to access a segment, the segment selector for the segment must have been loaded in one of the
segment registers. So, although a system can define thousands of segments, only 6 can be available for immediate
use. Other segments can be made available by loading their segment selectors into these registers during program
execution.

Visible Part Hidden Part
Segment Selector Base Address, Limit, Access Information | CS
SS
DS
ES
FS
GS

Figure 3-7. Segment Registers

Every segment register has a “visible” part and a “hidden” part. (The hidden part is sometimes referred to as a
“descriptor cache” or a “shadow register.”) When a segment selector is loaded into the visible part of a segment
register, the processor also loads the hidden part of the segment register with the base address, segment limit, and
access control information from the segment descriptor pointed to by the segment selector. The information cached
in the segment register (visible and hidden) allows the processor to translate addresses without taking extra bus
cycles to read the base address and limit from the segment descriptor. In systems in which multiple processors
have access to the same descriptor tables, it is the responsibility of software to reload the segment registers when
the descriptor tables are modified. If this is not done, an old segment descriptor cached in a segment register might
be used after its memory-resident version has been modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS instructions. These instructions
explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL, JMP, and RET instructions, the SYSENTER
and SYSEXIT instructions, and the IRET, INT n, INTO, INT3, and INT1 instructions. These instructions change

3-8 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

the contents of the CS register (and sometimes other segment registers) as an incidental part of their
operation.

The MOV instruction can also be used to store the visible part of a segment register in a general-purpose register.

344 Segment Loading Instructions in IA-32e Mode

Because ES, DS, and SS segment registers are not used in 64-bit mode, their fields (base, limit, and attribute) in
segment descriptor registers are ignored. Some forms of segment load instructions are also invalid (for example,
LDS, POP ES). Address calculations that reference the ES, DS, or SS segments are treated as if the segment base
is zero.

The processor performs linear-address pre-processing (Chapter 4) instead of performing limit checks. Mode
switching does not change the contents of the segment registers or the associated descriptor registers. These
registers are also not changed during 64-bit mode execution, unless explicit segment loads are performed.

In order to set up compatibility mode for an application, segment-load instructions (MOV to Sreg, POP Sreg) work
normally in 64-bit mode. An entry is read from the system descriptor table (GDT or LDT) and is loaded in the hidden
portion of the segment register. The descriptor-register base, limit, and attribute fields are all loaded. However, the
contents of the data and stack segment selector and the descriptor registers are ignored.

When FS and GS segment overrides are used in 64-bit mode, their respective base addresses are used in the linear
address calculation: (FS or GS).base + index + displacement. FS.base and GS.base are then expanded to the full
linear-address size supported by the implementation. The resulting effective address calculation can wrap across
positive and negative addresses; the resulting address is subject to linear-address pre-processing.

In 64-bit mode, memory accesses using FS-segment and GS-segment overrides are not checked for a runtime limit
nor subjected to attribute-checking. Normal segment loads (MOV to Sreg and POP Sreg) into FS and GS load a
standard 32-bit base value in the hidden portion of the segment register. The base address bits above the standard
32 bits are cleared to 0 to allow consistency for implementations that use less than 64 bits.

The hidden descriptor register fields for FS.base and GS.base are physically mapped to MSRs in order to load all
address bits supported by a 64-bit implementation. Software with CPL = 0 (privileged software) can load all
supported linear-address bits into FS.base or GS.base using WRMSR. Addresses written into the 64-bit FS.base
and GS.base registers must be in canonical form. A WRMSR instruction that attempts to write a non-canonical
address to those registers causes a #GP fault. See Section 4.5.2.

When in compatibility mode, FS and GS overrides operate as defined by 32-bit mode behavior regardless of the
value loaded into the upper 32 linear-address bits of the hidden descriptor register base field. Compatibility mode
ignores the upper 32 bits when calculating an effective address.

A new 64-bit mode instruction, SWAPGS, can be used to load GS base. SWAPGS exchanges the kernel data struc-
ture pointer from the IA32_KERNEL_GS_BASE MSR with the GS base register. The kernel can then use the GS
prefix on normal memory references to access the kernel data structures. An attempt to write a non-canonical
value (using WRMSR) to the IA32_KERNEL_GS_BASE MSR causes a #GP fault; see Section 4.5.2.

3.4.5 Segment Descriptors

A segment descriptor is a data structure in a GDT or LDT that provides the processor with the size and location of
a segment, as well as access control and status information. Segment descriptors are typically created by
compilers, linkers, loaders, or the operating system or executive, but not application programs. Figure 3-8 illus-
trates the general descriptor format for all types of segment descriptors.

Vol. 3A 3-9

PROTECTED-MODE MEMORY MANAGEMENT

31 242322212019 161514 1312 11 8 7 0
D A| Seg. D
Base 31:24 G|/ |L|v| Limt [Pl P |S| Type Base 23:16 4
B L| 19:16 L
31 1615 0
Base Address 15:00 Segment Limit 15:00 0
L — 64-bit code segment (IA-32e mode only)
AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)
DPL — Descriptor privilege level
G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)
TYPE — Segment type

Figure 3-8. Segment Descriptor

The flags and fields in a segment descriptor are as follows:

Segment limit field

Specifies the size of the segment. The processor puts together the two segment limit fields to form
a 20-bit value. The processor interprets the segment limit in one of two ways, depending on the
setting of the G (granularity) flag:

e If the granularity flag is clear, the segment size can range from 1 byte to 1 MByte, in byte incre-
ments.

e If the granularity flag is set, the segment size can range from 4 KBytes to 4 GBytes, in 4-KByte
increments.

The processor uses the segment limit in two different ways, depending on whether the segment is
an expand-up or an expand-down segment. See Section 3.4.5.1, "Code- and Data-Segment
Descriptor Types,” for more information about segment types. For expand-up segments, the offset
in a logical address can range from 0 to the segment limit. Offsets greater than the segment limit
generate general-protection exceptions (#GP, for all segments other than SS) or stack-fault excep-
tions (#SS for the SS segment). For expand-down segments, the segment limit has the reverse
function; the offset can range from the segment limit plus 1 to FFFFFFFFH or FFFFH, depending on
the setting of the B flag. Offsets less than or equal to the segment limit generate general-protection
exceptions or stack-fault exceptions. Decreasing the value in the segment limit field for an expand-
down segment allocates new memory at the bottom of the segment's address space, rather than at
the top. IA-32 architecture stacks always grow downwards, making this mechanism convenient for
expandable stacks.

Base address fields

Type field

3-10 Vol. 3A

Defines the location of byte 0 of the segment within the 4-GByte linear address space. The
processor puts together the three base address fields to form a single 32-bit value. Segment base
addresses should be aligned to 16-byte boundaries. Although 16-byte alignment is not required,
this alignment allows programs to maximize performance by aligning code and data on 16-byte
boundaries.

Indicates the segment or gate type and specifies the kinds of access that can be made to the
segment and the direction of growth. The interpretation of this field depends on whether the
descriptor type flag specifies an application (code or data) descriptor or a system descriptor. The
encoding of the type field is different for code, data, and system descriptors (see Figure 6-1). See
Section 3.4.5.1, "Code- and Data-Segment Descriptor Types,” for a description of how this field is
used to specify code and data-segment types.

PROTECTED-MODE MEMORY MANAGEMENT

S (descriptor type) flag
Specifies whether the segment descriptor is for a system segment (S flag is clear) or a code or data
segment (S flag is set).

DPL (descriptor privilege level) field
Specifies the privilege level of the segment. The privilege level can range from 0 to 3, with 0 being
the most privileged level. The DPL is used to control access to the segment. See Section 6.5, “Priv-
ilege Levels,” for a description of the relationship of the DPL to the CPL of the executing code
segment and the RPL of a segment selector.

P (segment-present) flag
Indicates whether the segment is present in memory (set) or not present (clear). If this flag is clear,
the processor generates a segment-not-present exception (#NP) when a segment selector that
points to the segment descriptor is loaded into a segment register. Memory management software
can use this flag to control which segments are actually loaded into physical memory at a given
time. It offers a control in addition to paging for managing virtual memory.

Figure 3-9 shows the format of a segment descriptor when the segment-present flag is clear. When
this flag is clear, the operating system or executive is free to use the locations marked “Available” to
store its own data, such as information regarding the whereabouts of the missing segment.

D/B (default operation size/default stack pointer size and/or upper bound) flag
Performs different functions depending on whether the segment descriptor is an executable code
segment, an expand-down data segment, or a stack segment. (This flag should always be set to 1
for 32-bit code and data segments and to O for 16-bit code and data segments.)

o Executable code segment. The flag is called the D flag and it indicates the default length for
effective addresses and operands referenced by instructions in the segment. If the flag is set,
32-bit addresses and 32-bit or 8-bit operands are assumed; if it is clear, 16-bit addresses and
16-bit or 8-bit operands are assumed.

The instruction prefix 66H can be used to select an operand size other than the default, and the
prefix 67H can be used select an address size other than the default.

o Stack segment (data segment pointed to by the SS register). The flag is called the B (big)
flag and it specifies the size of the stack pointer used for implicit stack operations (such as
pushes, pops, and calls). If the flag is set, a 32-bit stack pointer is used, which is stored in the
32-bit ESP register; if the flag is clear, a 16-bit stack pointer is used, which is stored in the 16-
bit SP register. If the stack segment is set up to be an expand-down data segment (described in
the next paragraph), the B flag also specifies the upper bound of the stack segment.

+ Expand-down data segment. The flag is called the B flag and it specifies the upper bound of
the segment. If the flag is set, the upper bound is FFFFFFFFH (4 GBytes); if the flag is clear, the
upper bound is FFFFH (64 KBytes).

31 161514 1312 11 8 7 0
Available o P |S| Type Available 4
L
31 0
Available 0

Figure 3-9. Segment Descriptor When Segment-Present Flag Is Clear

G (granularity) flag
Determines the scaling of the segment limit field. When the granularity flag is clear, the segment
limit is interpreted in byte units; when flag is set, the segment limit is interpreted in 4-KByte units.
(This flag does not affect the granularity of the base address; it is always byte granular.) When the
granularity flag is set, the twelve least significant bits of an offset are not tested when checking the

Vol. 3A 3-11

PROTECTED-MODE MEMORY MANAGEMENT

offset against the segment limit. For example, when the granularity flag is set, a limit of 0 results in
valid offsets from 0 to 4095.

L (64-bit code segment) flag
In IA-32e mode, bit 21 of the second doubleword of the segment descriptor indicates whether a
code segment contains native 64-bit code. A value of 1 indicates instructions in this code segment
are executed in 64-bit mode. A value of 0 indicates the instructions in this code segment are
executed in compatibility mode. If the L-bit is set, then the D-bit must be cleared. Bit 21 is not used
outside IA-32e mode (or for data segments). Because an attempt to activate IA-32e mode will fault
if the current CS has the L-bit set (see Section 11.8.5), software operating outside IA-32e mode
should avoid loading CS from a descriptor that sets the L-bit.

Available and reserved bits
Bit 20 of the second doubleword of the segment descriptor is available for use by system software.

3.4.5.1 Code- and Data-Segment Descriptor Types

When the S (descriptor type) flag in a segment descriptor is set, the descriptor is for either a code or a data
segment. The highest order bit of the type field (bit 11 of the second double word of the segment descriptor) then
determines whether the descriptor is for a data segment (clear) or a code segment (set).

For data segments, the three low-order bits of the type field (bits 8, 9, and 10) are interpreted as accessed (A),
write-enable (W), and expansion-direction (E). See Table 3-1 for a description of the encoding of the bits in the
type field for code and data segments. Data segments can be read-only or read/write segments, depending on the
setting of the write-enable bit.

Table 3-1. Code- and Data-Segment Types

Type Field Descriptor Description
Decimal 1 | 10| 9 8 Type
€ W A
0 0 0 0 0 Data Read-Only
1 0 0 0 1 Data Read-Only, accessed
2 0 0 1 0 Data Read/Write
3 0 0 1 1 Data Read/Write, accessed
4 0 1 0 0 Data Read-Only, expand-down
5 0 1 0 1 Data Read-Only, expand-down, accessed
6 0 1 1 0 Data Read/Write, expand-down
7 0 1 1 1 Data Read/Write, expand-down, accessed
C R A
8 1 0 0 0 Code Execute-Only
1 0 0 1 Code Execute-Only, accessed
10 1 0 1 0 Code Execute/Read
11 1 0 1 1 Code Execute/Read, accessed
12 1 1 0 0 Code Execute-Only, conforming
13 1 1 0 1 Code Execute-Only, conforming, accessed
14 1 1 1 0 Code Execute/Read, conforming
15 1 1 1 1 Code Execute/Read, conforming, accessed

Stack segments are data segments which must be read/write segments. Loading the SS register with a segment
selector for a nonwritable data segment generates a general-protection exception (#GP). If the size of a stack
segment needs to be changed dynamically, the stack segment can be an expand-down data segment (expansion-

3-12 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

direction flag set). Here, dynamically changing the segment limit causes stack space to be added to the bottom of
the stack. If the size of a stack segment is intended to remain static, the stack segment may be either an expand-
up or expand-down type.

The accessed bit indicates whether the segment has been accessed since the last time the operating-system or
executive cleared the bit. The processor sets this bit whenever it loads a segment selector for the segment into a
segment register, assuming that the type of memory that contains the segment descriptor supports processor
writes. The bit remains set until explicitly cleared. This bit can be used both for virtual memory management and
for debugging.

For code segments, the three low-order bits of the type field are interpreted as accessed (A), read enable (R), and
conforming (C). Code segments can be execute-only or execute/read, depending on the setting of the read-enable
bit. An execute/read segment might be used when constants or other static data have been placed with instruction
code in a ROM. Here, data can be read from the code segment either by using an instruction with a CS override
prefix or by loading a segment selector for the code segment in a data-segment register (the DS, ES, FS, or GS
registers). In protected mode, code segments are not writable.

Code segments can be either conforming or nonconforming. A transfer of execution into a more-privileged
conforming segment allows execution to continue at the current privilege level. A transfer into a nonconforming
segment at a different privilege level results in a general-protection exception (#GP), unless a call gate or task gate
is used (see Section 6.8.1, “"Direct Calls or Jumps to Code Segments,” for more information on conforming and
nonconforming code segments). System utilities that do not access protected facilities and handlers for some types
of exceptions (such as, divide error or overflow) may be loaded in conforming code segments. Utilities that need to
be protected from less privileged programs and procedures should be placed in nonconforming code segments.

NOTE

Execution cannot be transferred by a call or a jump to a less-privileged (numerically higher
privilege level) code segment, regardless of whether the target segment is a conforming or
nonconforming code segment. Attempting such an execution transfer will result in a general-
protection exception.

All data segments are nonconforming, meaning that they cannot be accessed by less privileged programs or proce-
dures (code executing at numerically higher privilege levels). Unlike code segments, however, data segments can
be accessed by more privileged programs or procedures (code executing at humerically lower privilege levels)
without using a special access gate.

If the segment descriptors in the GDT or an LDT are placed in ROM, the processor can enter an indefinite loop if
software or the processor attempts to update (write to) the ROM-based segment descriptors. To prevent this
problem, set the accessed bits for all segment descriptors placed in a ROM. Also, remove operating-system or
executive code that attempts to modify segment descriptors located in ROM.

3.5 SYSTEM DESCRIPTOR TYPES

When the S (descriptor type) flag in a segment descriptor is clear, the descriptor type is a system descriptor. The
processor recognizes the following types of system descriptors:

® Local descriptor-table (LDT) segment descriptor.
® Task-state segment (TSS) descriptor.

® Call-gate descriptor.

®* Interrupt-gate descriptor.

®* Trap-gate descriptor.

®* Task-gate descriptor.

These descriptor types fall into two categories: system-segment descriptors and gate descriptors. System-
segment descriptors point to system segments (LDT and TSS segments). Gate descriptors are in themselves
“gates,” which hold pointers to procedure entry points in code segments (call, interrupt, and trap gates) or which
hold segment selectors for TSS’s (task gates).

Vol.3A 3-13

PROTECTED-MODE MEMORY MANAGEMENT

Table 3-2 shows the encoding of the type field for system-segment descriptors and gate descriptors. Note that
system descriptors in IA-32e mode are 16 bytes instead of 8 bytes.

Table 3-2. System-Segment and Gate-Descriptor Types

Type Field Description
Decimal 11 10 9 8 32-Bit Mode IA-32e Mode
0 0 0 0 0 Reserved Reserved
1 0 0 0 1 16-bit TSS (Available) Reserved
2 0 0 1 0 LDT LDT
3 0 0 1 1 16-bit TSS (Busy) Reserved
4 0 1 0 0 16-bit Call Gate Reserved
5 0 1 0 1 Task Gate Reserved
6 0 1 1 0 16-bit Interrupt Gate Reserved
7 0 1 1 1 16-bit Trap Gate Reserved
8 1 0 0 0 Reserved Reserved
9 1 0 0 1 32-bit TSS (Available) 64-bit TSS (Available)
10 1 0 1 0 Reserved Reserved
11 1 0 1 1 32-bit TSS (Busy) 64-bit TSS (Busy)
12 1 1 0 0 32-bit Call Gate 64-bit Call Gate
13 1 1 0 1 Reserved Reserved
14 1 1 1 0 32-bit Interrupt Gate 64-bit Interrupt Gate
15 1 1 1 1 32-bit Trap Gate 64-bit Trap Gate

See also: Section 3.5.1, "Segment Descriptor Tables,” and Section 9.2.2, “TSS Descriptor,” (for more information
on the system-segment descriptors); see Section 6.8.3, “Call Gates,” Section 7.11, “IDT Descriptors,” and Section
9.2.5, “Task-Gate Descriptor,” (for more information on the gate descriptors).

3.5.1 Segment Descriptor Tables

A segment descriptor table is an arra
length and can contain up to 8192 (2

® The global descriptor table (GDT).

® The local descriptor tables (LDT).

3-14 Vol. 3A

of segment descriptors (see Figure 3-10). A descriptor table is variable in
) 8-byte descriptors. There are two kinds of descriptor tables:

PROTECTED-MODE MEMORY MANAGEMENT

Global Local
Descriptor Descriptor
Table (GDT) Table (LDT)
N ¢ ¢
I TI=0 TI=1
Segment
Selector
56 56
48 48
40 40
32 32
24 24
16 16
8 8
First Descriptor in
GDT is Not Used 0 0
GDTR Register LDTR Register
Limit | Limit
| Base Address Base Address
Seg. Sel.

Figure 3-10. Global and Local Descriptor Tables

Each system must have one GDT defined, which may be used for all programs and tasks in the system. Optionally,
one or more LDTs can be defined. For example, an LDT can be defined for each separate task being run, or some or
all tasks can share the same LDT.

The GDT is not a segment itself; instead, it is a data structure in linear address space. The base linear address and
limit of the GDT must be loaded into the GDTR register (see Section 2.4, "Memory-Management Registers”). The

base address of the GDT should be aligned on an eight-byte boundary to yield the best processor performance. The
limit value for the GDT is expressed in bytes. As with segments, the limit value is added to the base address to get
the address of the last valid byte. A limit value of 0 results in exactly one valid byte. Because segment descriptors
are always 8 bytes long, the GDT limit should always be one less than an integral multiple of eight (that is, 8N - 1).

The first descriptor in the GDT is not used by the processor. A segment selector to this “null descriptor” does not
generate an exception when loaded into a data-segment register (DS, ES, FS, or GS), but it always generates a
general-protection exception (#GP) when an attempt is made to access memory using the descriptor. By initializing
the segment registers with this segment selector, accidental reference to unused segment registers can be guar-
anteed to generate an exception.

The LDT is located in a system segment of the LDT type. The GDT must contain a segment descriptor for the LDT
segment. If the system supports multiple LDTs, each must have a separate segment selector and segment
descriptor in the GDT. The segment descriptor for an LDT can be located anywhere in the GDT. See Section 3.5,
“System Descriptor Types,” for information on the LDT segment-descriptor type.

An LDT is accessed with its segment selector. To eliminate address translations when accessing the LDT, the
segment selector, base linear address, limit, and access rights of the LDT are stored in the LDTR register (see
Section 2.4, "Memory-Management Registers”).

When the GDTR register is stored (using the SGDT instruction), a 48-bit “pseudo-descriptor” is stored in memory
(see top diagram in Figure 3-11). To avoid alignment check faults in user mode (privilege level 3), the pseudo-
descriptor should be located at an odd word address (that is, address MOD 4 is equal to 2). This causes the

Vol.3A 3-15

PROTECTED-MODE MEMORY MANAGEMENT

processor to store an aligned word, followed by an aligned doubleword. User-mode programs normally do not store
pseudo-descriptors, but the possibility of generating an alignment check fault can be avoided by aligning pseudo-
descriptors in this way. The same alignment should be used when storing the IDTR register using the SIDT instruc-
tion. When storing the LDTR or task register (using the SLDT or STR instruction, respectively), the pseudo-
descriptor should be located at a doubleword address (that is, address MOD 4 is equal to 0).

a7 16 15 0
| 32-bitBaseAddress | Limit |

79 16 15 0
| 64-bitBaseAddress | Limit |

Figure 3-11. Pseudo-Descriptor Formats

3.5.2 Segment Descriptor Tables in IA-32e Mode

In IA-32e mode, a segment descriptor table can contain up to 8192 (213) 8-byte descriptors. An entry in the
segment descriptor table can be 8 bytes. System descriptors are expanded to 16 bytes (occupying the space of two

entries).

GDTR and LDTR registers are expanded to hold 64-bit base address. The corresponding pseudo-descriptor is 80
bits. (see the bottom diagram in Figure 3-11).

The following system descriptors expand to 16 bytes:
— Call gate descriptors (see Section 6.8.3.1, “IA-32e Mode Call Gates”).
— IDT gate descriptors (see Section 7.14.1, “64-Bit Mode IDT").
— LDT and TSS descriptors (see Section 9.2.3, “TSS Descriptor in 64-bit mode”).

3-16 Vol. 3A

CHAPTER 4
LINEAR-ADDRESS PRE-PROCESSING

As described in Chapter 3, “Protected-Mode Memory Management,” software accesses to memory typically use
logical addresses. The processor uses segmentation, as detailed in Section 3.4, to generate linear addresses from
logical addresses. Linear addresses are then translated to physical addresses using paging, as described in Chapter
5, “Paging.”

In IA-32e mode (if IA32_EFER.LMA = 1), linear addresses may undergo some pre-processing before being trans-
lated through paging.! Some of this pre-processing is done only if enabled by software, but some occurs uncondi-
tionally. Specifically, linear addresses are subject to pre-processing in IA-32e mode as follows:

1. Linear-address-space separation (LASS). This is a feature that, when enabled by software, may limit the
linear addresses that are accessible by software, generating faults for accesses out of range.

2. Linear-address masking (LAM). This is a feature that, when enabled by software, masks certain linear-
address bits.

3. Canonicality checking. As will be detailed in Chapter 5, paging does not translate all 64 bits of a linear
address. Each linear address must be canonical, meaning that the untranslated bits have a fixed value.
Memory accesses using a hon-canonical address generate faults.

Both LASS and canonicality checking can generate faults. For any specific memory access, the two features
generate the same fault. For that reason, the relative order of that checking is not defined and cannot be deter-
mined by software.

4.1 ENABLING AND ENUMERATION

Software enables LASS by setting CR4.LASS[bit 27]. Enabling of LAM is based on three different bits:
CR3.LAM_U48[bit 62], CR3.LAM_U57[bit 61], and CR4.LAM_SUP[bit 28]. The use of these bits is explained in
Section 4.4. Canonicality checking is not enabled by software and is always performed in 64-bit mode.

The processor enumerates support for LASS with CPUID.(EAX=07H,ECX=1):EAX.LASS[bit 6]. If this bit is enumer-
ated as 1, software can set CR4.LASS.

The processor enumerates support for LAM with CPUID.(EAX=07H,ECX=1):EAX.LAM[bit 26]. If this bit is enumer-
ated as 1, software can set CR3.LAM_U48, CR3.LAM_U57, and CR4.LAM_SUP.

4.2 MODE-BASED ACCESSES AND LINEAR-ADDRESS-SPACE PARTITIONING

Every access to a linear address is either a supervisor-mode access or a user-mode access. For all instruction
fetches and most data accesses, this distinction is determined by the current privilege level (CPL): accesses made
while CPL < 3 are supervisor-mode accesses, while accesses made while CPL = 3 are user-mode accesses.

Some operations implicitly access system data structures with linear addresses; the resulting accesses to those
data structures are supervisor-mode accesses regardless of CPL. Such accesses include the following: accesses to
the global descriptor table (GDT) or local descriptor table (LDT) to load a segment descriptor; accesses to the inter-
rupt descriptor table (IDT) when delivering an interrupt or exception; accesses to the task-state segment (TSS) as
part of a task switch or change of CPL; and accesses to a user posted-interrupt descriptor (UPID) during user-inter-
rupt notification processing. Such accesses are called implicit supervisor-mode accesses regardless of CPL.
Other accesses made while CPL < 3 are called explicit supervisor-mode accesses.?

1. The presentation in this chapter focuses on 64-bit addresses. 32-bit and 16-bit addresses can also be used in IA-32e mode. For the
purposes of this chapter, the upper bits of such addresses (32 bits and 48 bits, respectively) are treated as if they were all zero.

2. The WRUSS instruction is an exception; although it can be executed only if CPL = O, the processor treats its shadow-stack accesses
as user-mode accesses.

Vol. 3A 4-1

LINEAR-ADDRESS PRE-PROCESSING

Some 64-bit operating systems partition the 64-bit linear-address space into a supervisor portion and a user
portion. Specifically, the upper half of the linear-address space (comprising addresses in which bit 63 is 1) is used
for supervisor instructions and data, while the lower half (addresses in which bit 63 is 0) is for user instructions and
data.

The LASS and LAM features are designed for operating systems that establish such linear-address-space parti-
tioning. However, the features are defined and may be used even if such partitioning is not in effect.

4.3 LINEAR-ADDRESS-SPACE SEPARATION (LASS)

The access rights determined by paging (see Section 5.6) are based on whether a linear address is a supervisor-
mode address or a user-mode address. Paging provides protection by preventing user-mode accesses to super-
visor-mode addresses; in addition, there are paging features that can prevent supervisor-mode accesses to user-
mode addresses.

These paging-based protections prevent malicious software from directly reading or writing memory inappropri-
ately. However, they require the processor to traverse a hierarchy of paging structures in memory. Unprivileged
software may be able to use the timing information resulting from this traversal to determine details about the
paging structures, the layout of supervisor memory, or its use by supervisor software.

Linear-address-space separation (LASS) is an independent mechanism that can enforce mode-based protection
without traversing the paging structures. Because LASS provides this protection as part of linear-address pre-
processing, unprivileged software is denied paging-based timing information.

An operating system can use LASS to provide protections corresponding to the mode-based paging protections if it
has established the linear-address-space partitioning outlined in Section 4.2.

4.3.1 Enumeration and Enabling
The processor enumerates support for LASS with CPUID.(EAX=07H,ECX=1):EAX.LASS[bit 6].

Software enables LASS by setting CR4.LASS[bit 27]. CR4.LASS can be set to 1 if
CPUID.(EAX=07H,ECX=1):EAX.LASS[bit 6] is enumerated as 1.

The operation of LASS is also affected by the paging-mode bit CR4.SMAP[bit 21], which enables supervisor-access
prevention. LASS enforces the equivalent of supervisor-mode execution prevention regardless of the setting of
CR4.SMEP[bit 17]. See Section 4.3.2 for details.

4.3.2 Operation of Linear-Address-Space Separation (LASS)

This section describes the operation of linear-address-space separation (LASS). This operation applies only in
IA-32e mode (if IA32_EFER.LMA = 1) and only if CR4.LASS = 1.

As indicated earlier, LASS enforces protections similar to those enforced by paging. Violations of these protections
are called LASS violations.

LASS violations typically result in faults. In most cases, an access causing a LASS violation results in a general
protection exception (#GP); for stack accesses (those due to stack-oriented instructions, as well as accesses that
implicitly or explicitly use the SS segment register), a stack fault (#SS) is generated. In either case, a null error
code is produced.

Some accesses are not subject to faults due to LASS violations. These include prefetches (e.g., those resulting from
execution of one of the PREFETCHA instructions), executions of the CLDEMOTE instruction, and accesses resulting
from the speculative fetch or execution of an instruction. Such an access may cause a LASS violation; if it does, the
access is not performed but no fault occurs.

The remainder of this section describes how LASS applies to different types of accesses to linear addresses. The
items below discuss specific LASS violations based on bit 63 of a linear address. For a linear address with only 32
bits (or 16 bits), the processor treats bit 63 as if it were 0; this includes accesses in compatibility mode.

® A user-mode data access causes a LASS violation if it would access a linear address of which bit 63 is 1.

4-2 Vol.3A

LINEAR-ADDRESS PRE-PROCESSING

®* A supervisor-mode data access causes a LASS violation if it would access a linear address of which bit 63 is 0,
supervisor-mode access protection is enabled (by setting CR4.SMAP), and either RFLAGS.AC = 0 or the access
is an implicit supervisor-mode access.

®* A user-mode instruction fetch causes a LASS violation if it would fetch an instruction using a linear address of
which bit 63 is 1.

®* Asupervisor-mode instruction fetch causes a LASS violation if it would accesses a linear address of which bit 63
is 0. (Unlike paging, this behavior of LASS applies regardless of the setting of CR4.SMEP.)

LASS for instruction fetches applies when the linear address in RIP is used to load an instruction from memory.
Unlike canonicality checking (see Section 4.5.2), LASS does not apply to branch instructions that load RIP. A
branch instruction can load RIP with an address that would violate LASS. Only when the address is used to fetch an
instruction will a LASS violation occur, generating a #GP. (The return instruction pointer of the #GP handler is the
address that incurred the LASS violation.)

4.4 LINEAR-ADDRESS MASKING

This section describes linear-address masking (LAM). LAM modifies linear addresses before they are subject to
canonicality checking as described in Section 4.5. Doing so allows untranslated linear-address bits to contain arbi-
trary values.

In IA-32e mode, linear address have 64 bits and are translated either with 4-level paging, which translates the low
48 bits of each linear address, or with 5-level paging, which translates 57 bits. The upper linear-address bits are
reserved by canonicality checking (see Section 4.5).

Software usages that associate metadata with a pointer might benefit from being able to place metadata in the
upper (untranslated) bits of the pointer itself. However, the canonicality enforcement mentioned earlier implies
that software would have to mask the metadata bits in a pointer (making it canonical) before using it as a linear
address to access memory. LAM allows software to use pointers with metadata without having to mask the meta-
data bits. With LAM enabled, the processor masks the metadata bits in a pointer before using it as a linear address
to access memory.

LAM applies only in 64-bit mode and only to addresses used for data accesses. It does not apply to addresses used
for instruction fetches or to those being loaded into the RIP register (e.g., as targets of jump and call instructions).

4.4.1 Enumeration, Enabling, and Configuration

The processor enumerates support for LAM with CPUID.(EAX=07H,ECX=1):EAX.LAM[bit 26].

Enabling and configuration of LAM is controlled by the following control-register bits: CR3.LAM_U48[bit 62],
CR3.LAM_U57[bit 61], and CR4.LAM_SUP[bit 28]. The use of these control bits is explained below.

LAM supports configurations that differ regarding which linear-address bits are masked and can be used for meta-
data. With LAM48, linear-address bits 62:48 are masked (resulting in a LAM width of 15); with LAM57, linear-
address bits 62:57 are masked (a LAM width of 6).

Like LASS, LAM was designed for operating systems that establish the linear-address-space partitioning outlined in
Section 4.2: linear addresses that clear bit 63 are used for user memory, while those that set bit 63 are for super-
visor memory. For LAM, the identification of an address as user or supervisor is based solely on the value of bit 63
and does not depend on the CPL.

LAM and the LAM width can be configured independently for user and supervisor addresses (as identified in the
previous paragraph, using bit 63). CR3.LAM_U48 and CR3.LAM_U57 enable and configure LAM for user addresses:

® If CR3.LAM_U48 = CR3.LAM_U57 = 0, LAM is not enabled for user addresses.
® If CR3.LAM_U48 = 1 and CR3.LAM_U57 = 0, LAM48 is enabled for user addresses (a LAM width of 15).

* IfCR3.LAM_U57 =1, LAM57 is enabled for user addresses (a LAM width of 6; CR3.LAM_U48 is ignored in this
case).

CR4.LAM_SUP enables and configures LAM for supervisor addresses:
®* If CR4.LAM_SUP = 0, LAM is not enabled for supervisor addresses.

Vol. 3A 4-3

LINEAR-ADDRESS PRE-PROCESSING

* IfCR4.LAM_SUP = 1, LAM is enabled for supervisor addresses with a width determined by the paging mode
(see Section 5.1.1):

— If 4-level paging is enabled, LAM48 is enabled for supervisor addresses (a LAM width of 15).
— If 5-level paging is enabled, LAM57 is enabled for supervisor addresses (a LAM width of 6).

4.4.2 Treatment of Data Accesses with LAM Active

When LAM is active, linear addresses used to access data are masked before they are subject to the canonicality
checking identified in Section 4.5. Specifically, LAM modifies a linear address by extending the value of one address
bit (depending on the LAM width) over others:

® When LAM48 is enabled (see Section 4.4.1), the processor modifies each linear address to replace each of
bits 62:48 with the value of bit 47.

®* When LAM57 is enabled, each of bits 62:57 is replaced by the value of bit 56 (bits 56:48 are not modified).

443 Paging Interactions

As explained in Section 4.4.2, LAM masks certain bits in a linear address before that address is translated by
paging.

In most cases, the address bits in the masked positions are not used by address translation. However, if 5-level
paging is active and LAM48 is enabled for user pointers, bit 47 of a user pointer is extended over bits 62:48 to form
a linear address, and bits 56:48 are used by 5-level paging.

Page faults report the faulting linear address in CR2. Because LAM masking applies before paging, the faulting
linear address recorded in CR2 reflects the result of that masking and does not contain any masked metadata.

The INVLPG, INVPCID, and INVVPID instructions can be used to invalidate any translation lookaside buffer (TLB)
entries for specified linear addresses. LAM does not apply to those addresses, although those addresses are subject
to canonicality checking (see Section 4.5.4).

4.5 CANONICALITY CHECKING

Memory accesses in IA-32e mode can use 64-bit linear addresses. As detailed in Section 5.5.4, 4-level paging
translates the low 48 bits of each linear address, while 5-level paging translates the low 57 bits. The remaining
upper bits (bits 63:48 with 4-level paging; bits 63:57 with 5-level paging) are not translated.

IA-32e mode accounts for the fact that address bits are not translated (and thus should be reserved) with the
concept of canonicality. In general, a linear address is canonical if the untranslated bits are a sign-extension of
the most significant translated bit. More specifically, there are two types of canonicality:

®* Alinear address is paging canonical if it is canonical for the current paging mode: a linear address is canonical
for 4-level paging (48-bit canonical) if bits 63:47 of the address are identical; it is canonical for 5-level paging
(57-bit canonical) if bits 63:56 are identical.

®* Alinear address is CPU canonical if it is canonical relative to the widest linear address supported by the
processor: 48-bit canonical if the processor supports only 4-level paging and 57-bit canonical if the processor
supports 5-level paging.

Unlike LASS and LAM, there is no control to enable canonicality checking. It always applies (as described in this

section) when 64-bit linear addresses are used.

Section 4.5.1 and Section 4.5.2 explain canonicality checking for accesses to memory using linear addresses and
for loads of the instruction pointer, respectively. Section 4.5.3 details how canonicality checking applies to certain
system registers that contain linear addresses. Section 4.5.4 explains the role of canonicality checking by instruc-
tions that invalidate TLB entries.

4-4 Vol. 3A

LINEAR-ADDRESS PRE-PROCESSING

NOTE

Section 4.5.2 and Section 4.5.3 discuss the canonicality checking performed by the WRMSR
instruction. The WRMSRLIST and WRMSRNS instructions perform the same canonicality checking in
corresponding situations. (Similarly, the characterization of RDMSR in Section 4.5.3 applies also to
RDMSRLIST.)

451 Memory Accesses

An access to memory using a linear address is allowed only if the address is paging canonical; if it is not, a canon-
icality violation occurs. In most cases, an access causing a canonicality violation results in a general protection
exception (#GP); for stack accesses (those due to stack-oriented instructions, as well as accesses that implicitly or
explicitly use the SS segment register), a stack fault (#SS) is generated. In either case, a null error code is
produced.

When LAM is enabled, canonicality checking is performed after masking of the linear address. This implies that the
requirements of canonicality on an original (unmasked) linear address used to access data are effectively relaxed
when LAM is enabled:

®* With LAM48, bit 63 and bit 47 of the original linear address must be identical.
®* With LAM57 and 4-level paging, bit 63 and bits 56:47 of the original linear address must be identical.
®* With LAM57 and 5-level paging, bit 63 and bit 56 of the original linear address must be identical.

While LAM applies only to data accesses, canonicality checking applies both data accesses and instruction fetches.

45.2 Loads of the Instruction Pointer (RIP)

In 64-bit mode, the RIP register contains the linear address of the instruction pointer. Operations that load RIP
(including both instructions such as JMP as well as control transfers through the IDT) check first whether the value
to be loaded is paging canonical. If it is not, the operation does not modify RIP and instead causes a #GP. (This #GP
is delivered as a fault, meaning that the return instruction pointer of the fault handler is the address of the faulting
instruction and not the non-canonical address whose load was attempted.)

This treatment applies to the SYSRET and SYSEXIT instructions, which load RIP from RCX and RDX, respectively.
The SYSCALL and SYSENTER instructions load RIP from the IA32_LSTAR and IA32_SYSENTER_EIP MSRs, respec-
tively. On processors that support only 4-level paging, these instructions do not check explicitly that the values
being loaded are paging canonical. This is because the WRMSR instruction ensures that these MSRs necessarily
contain values that are CPU canonical, which is the same as being paging canonical on processors that support only
4-level paging. On processors that support 5-level paging, the checking by WRMSR is relaxed to ensure only 57-bit
canonicality. (See Section 4.5.3 for the treatment of WRMSR.) On such processors, an execution of SYSCALL or
SYSENTER with 4-level paging checks that the value being loaded into RIP is 48-bit canonical (paging canonical).

453 System Registers Containing Linear Addresses

In addition to RIP, the CPU maintains numerous other registers that hold linear addresses:

® GDTR and IDTR (in their base-address portions).

® LDTR, TR, FS, and GS (in the base-address portions of their hidden descriptor caches).

®* Control register CR2, which holds the linear address causing a page fault.

®* The debug-address registers (DRO through DR3), which hold the linear addresses of breakpoints.

* The following MSRs: IA32_BNDCFGS, IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE,
IA32_INTERRUPT_SSP_TABLE_ADDR, IA32_KERNEL_GS_BASE, IA32_LSTAR, IA32_PLO_SSP, IA32_PL1_SSP,
IA32_PL2_SSP, IA32_PL3_SSP, IA32_RTIT_ADDRO_A, IA32_RTIT_ADDRO_B, IA32_RTIT_ADDR1_A,
IA32_RTIT_ADDR1_B, IA32_RTIT_ADDR2_A, IA32_RTIT_ADDR2_B, IA32_RTIT_ADDR3_A,
IA32_RTIT_ADDR3_B, IA32_S_CET, IA32_SYSENTER_EIP, IA32_SYSENTER_ESP, IA32_UINTR_HANDLER,
IA32_UINTR_PD, IA32_UINTR_STACKADJUST, IA32_U_CET, and IA32_UINTR_TT.

® The x87 FPU instruction pointer (FIP).

Vol. 3A 4-5

LINEAR-ADDRESS PRE-PROCESSING

* The user-mode configuration register BNDCFGU, used by Intel® MPX.

With a few exceptions, the processor ensures that the addresses in these registers are always canonical in the
following ways:

® Some instructions fault on attempts to load a linear-address register with a non-canonical address:

— An execution of the LGDT or LIDT instruction causes a general-protection exception (#GP) if the base
address specified in the instruction’s memory operand is not canonical.

— An execution of the LLDT or LTR instruction causes a #GP if the base address to be loaded from the GDT is
not canonical.

— An execution of WRFSBASE or WRGSBASE causes a #GP if it would load the base address of either FS or GS
with a non-canonical address.

— An execution of WRMSR causes a #GP if it would load any of the following MSRs with a non-canonical
address: IA32_BNDCFGS, IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE,
IA32_INTERRUPT_SSP_TABLE_ADDR, IA32_KERNEL_GS_BASE, IA32_LSTAR, IA32_PLO_SSP,
IA32_PL1_SSP, IA32_PL2_SSP, IA32_PL3_SSP, IA32_RTIT_ADDRO_A, IA32_RTIT_ADDRO_B,
IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B, IA32_RTIT_ADDR2_A, IA32_RTIT_ADDR2_B,
IA32_RTIT_ADDR3_A, IA32_RTIT_ADDR3_B, IA32_S_CET, IA32_SYSENTER_EIP, IA32_SYSENTER_ESP,
IA32_UINTR_HANDLER, IA32_UINTR_PD, IA32_UINTR_STACKADJUST, IA32_U_CET, and
IA32_UINTR_TT.!

— An execution of XRSTORS causes a #GP if it would load any of the following MSRs with a non-canonical
address: IA32_PL0O_SSP, IA32_PL1_SSP, IA32_PL2_SSP, IA32_PL3_SSP, IA32_RTIT_ADDRO_A,
IA32_RTIT_ADDRO_B, IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B, IA32_RTIT_ADDR2_A,
IA32_RTIT_ADDR2_B, IA32_RTIT_ADDR3_A, IA32_RTIT_ADDR3_B, IA32_U_CET,
IA32_UINTR_HANDLER, IA32_UINTR_PD, IA32_UINTR_STACKADJUST, or IA32_UINTR_TT.

With a small number of exceptions, this enforcement checks for CPU canonicality and is thus independent of the
current paging mode. Thus, a processor that supports 5-level paging will allow the instructions mentioned
above to load these registers with addresses that are 57-bit canonical but not 48-bit canonical, even if 4-level
paging is active. (As a result, instructions that store these values — SGDT, SIDT, SLDT, STR, RDFSBASE,
RDGSBASE, RDMSR, XSAVE, XSAVEC, XSAVEOPT, and XSAVES — may save addresses that are 57-bit canonical
but not 48-bit canonical, even if 4-level paging is active.)

The WRFSBASE and WRGSBASE instructions, which load the base address of FS and GS, respectively, operate
differently. An execution of either of these instructions causes a #GP if it would load a base address with an
address that is not paging canonical. Thus, if 4-level paging is active, these instructions do not allow loading of
addresses that are 57-bit canonical but not 48-bit canonical.

® The FXRSTOR, XRSTOR, and XRSTORS instructions ignore attempts to load some of these registers with non-
canonical addresses:

— Loads of FIP ignore any bits in the memory image beyond the enumerated maximum linear-address width.
The processor sign-extends the most significant bit (e.g., bit 56 on processors that support 5-level paging)
to ensure that FIP is always CPU canonical.

— Loads of BNDCFGU (by XRSTOR or XRSTORS) ignore any bits in the memory image beyond the enumerated
maximum linear-address width. The processor sign-extends the most significant bit to ensure that
BNDCFGU is always CPU canonical.

® Every non-control x87 instruction loads FIP. The value loaded is always paging canonical.

® CR2 can be loaded with the MOV to CR instruction. The instruction allows that register to be loaded with a non-
canonical address. The MOV from CR instruction will return for CR2 the value last loaded into that register by a
page fault or with the MOV to CR instruction, even if (for the latter case) the address is not canonical. Page
faults load CR2 only with linear addresses that are paging canonical.

®* DRO through DR3 can be loaded with the MOV to DR instruction. The instruction allows those registers to be
loaded with non-canonical addresses. The MOV from DR instruction will return for a debug register the value

1. Such canonicality checking may apply also when the WRMSR instruction is used to load some non-architec-
tural MSRs (not listed here) that hold a linear address.

4-6 Vol. 3A

LINEAR-ADDRESS PRE-PROCESSING

last loaded into that register with the MOV to DR instruction, even if the address is not canonical. Breakpoint
address matching is supported only for linear addresses that are paging canonical.

454 TULB-Invalidation Instructions

The Intel 64 architecture includes three instructions that may invalidate TLB entries for the linear address of an
instruction operand: INVLPG, INVPCID, and INVVPID. The following items describe how they are affected by
canonicality.

The INVLPG instruction takes a memory operand. It invalidates any TLB entries that the logical processor is
caching for the linear address of that operand for the current linear address space. The instruction does not
fault if that address is not paging canonical. However, no invalidation is performed because the processor does
not cache TLB entries for addresses that are not paging canonical.

The INVPCID instruction takes a register operand (INVPCID type) and a memory operand (INVPCID
descriptor). If the INVPCID type is 0, the instruction invalidates any TLB entries that the logical processor is
caching for the linear address and PCID specified in the INVPCID descriptor. If the linear address is not CPU
canonical, the instruction causes a #GP. If the processor supports 5-level paging, the instruction will not cause
such a #GP for an address that is 57-bit canonical, regardless of paging mode, even if 4-level paging is active
and the address is not 48-bit canonical.

The INVVPID instruction takes a register operand (INVVPID type) and a memory operand (INVVPID
descriptor). If the INVPCID type is 0, the instruction invalidates any TLB entries that the logical processor is
caching for the linear address and VPID specified in the INVVPID descriptor. If the linear address is not CPU
canonical, the instruction fails.! If the processor supports 5-level paging, the instruction will not fail for an
address that is 57-bit canonical, regardless of paging mode, even if 4-level paging is active and the address is
not 48-bit canonical.

LAM does not apply to the linear addresses that these instructions use to invalidate TLB entries.

1.

INVVPID is a VMX instruction. In response to certain conditions, execution of a VMX instruction may fail, meaning that it does not
complete its normal operation. When a VMX instruction fails, control passes to the next instruction (rather than to a fault handler)
and a flag is set to report the failure.

Vol. 3A 4-7

LINEAR-ADDRESS PRE-PROCESSING

4-8 Vol. 3A

CHAPTER 5
PAGING

Chapter 3 explains how segmentation converts logical addresses to linear addresses. Paging (or linear-address
translation) is the process of translating linear addresses so that they can be used to access memory or I/O
devices. Paging translates each linear address to a physical address and determines, for each translation, what
accesses to the linear address are allowed (the address’s access rights) and the type of caching used for such
accesses (the address’s memory type).

Intel-64 processors support four different paging modes. These modes are identified and defined in Section 5.1.
Section 5.2 gives an overview of the translation mechanism that is used in all modes. Section 5.3, Section 5.4, and
Section 5.5 discuss the four paging modes in detail.

Section 5.6 details how paging determines and uses access rights. Section 5.7 discusses exceptions that may be
generated by paging (page-fault exceptions). Section 5.8 considers data which the processor writes in response to
linear-address accesses (accessed and dirty flags).

Section 5.9 describes how paging determines the memory types used for accesses to linear addresses. Section
5.10 provides details of how a processor may cache information about linear-address translation. Section 5.11
outlines interactions between paging and certain VMX features. Section 5.12 gives an overview of how paging can
be used to implement virtual memory.

5.1 PAGING MODES AND CONTROL BITS

Paging behavior is controlled by the following control bits:
®* The WP and PG flags in control register CRO (bit 16 and bit 31, respectively).

®* The PSE, PAE, PGE, LA57, PCIDE, SMEP, SMAP, PKE, CET, and PKS flags in control register CR4 (bit 4, bit 5,
bit 7, bit 12, bit 17, bit 20, bit 21, bit 22, bit 23, and bit 24, respectively).

® The LME and NXE flags in the IA32_EFER MSR (bit 8 and bit 11, respectively).
®* The AC flag in the EFLAGS register (bit 18).
® The “enable HLAT"” VM-execution control (tertiary processor-based VM-execution control bit 1; see Section

26.6.2, “Processor-Based VM-Execution Controls,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C).

Software enables paging by using the MOV to CRO instruction to set CRO.PG. Before doing so, software should
ensure control register CR3 contains the physical address of the first paging structure that the processor will use
for linear-address translation (see Section 5.2) and that structure is initialized as desired. See Table 5-3, Table 5-7,
and Table 5-12 for the use of CR3 in the different paging modes.

Section 5.1.1 describes how the values of CR0.PG, CR4.PAE, CR4.LA57, and IA32_EFER.LME determine whether
paging is enabled and, if so, which of four paging modes is in use. Section 5.1.2 explains how to manage these bits
to establish or make changes in paging modes. Section 5.1.3 discusses how CR0.WP, CR4.PSE, CR4.PGE,
CR4.PCIDE, CR4.SMEP, CR4.SMAP, CR4.PKE, CR4.CET, CR4.PKS, and IA32_EFER.NXE modify the operation of the
different paging modes.

5.1.1 Four Paging Modes

If CRO.PG = 0, paging is not used. The logical processor treats all linear addresses as if they were physical
addresses. CR4.PAE, CR4.LA57, and IA32_EFER.LME are ignored by the processor, as are CR0.WP, CR4.PSE,
CR4.PGE, CR4.SMEP, CR4.SMAP, and IA32_EFER.NXE. (CR4.CET is also ignored insofar as it affects linear-address
access rights.)

Paging is enabled if CRO.PG = 1. Paging can be enabled only if protection is enabled (CRO.PE = 1). If paging is
enabled, one of four paging modes is used. The values of CR4.PAE, CR4.LA57, and IA32_EFER.LME determine
which paging mode is used:

Vol. 3A 5-1

PAGING

If CR4.PAE = 0, 32-bit paging is used. 32-bit paging is detailed in Section 5.3. 32-bit paging uses CR0.WP,
CR4.PSE, CR4.PGE, CR4.SMEP, CR4.SMAP, and CR4.CET as described in Section 5.1.3 and Section 5.6.

If CR4.PAE = 1 and IA32_EFER.LME = 0, PAE paging is used. PAE paging is detailed in Section 5.4. PAE paging
uses CR0.WP, CR4.PGE, CR4.SMEP, CR4.SMAP, CR4.CET, and IA32_EFER.NXE as described in Section 5.1.3 and
Section 5.6.

If CR4.PAE = 1, IA32_EFER.LME = 1, and CR4.LA57 = 0, 4-level paging! is used.2 4-level paging is detailed
in Section 5.5 (along with 5-level paging). 4-level paging uses CR0.WP, CR4.PGE, CR4.PCIDE, CR4.SMEP,
CR4.SMAP, CR4.PKE, CR4.CET, CR4.PKS, and IA32_EFER.NXE as described in Section 5.1.3 and Section 5.6.

If CR4.PAE = 1, IA32_EFER.LME = 1, and CR4.LA57 = 1, 5-level paging is used. 5-level paging is detailed in
Section 5.5 (along with 4-level paging). 5-level paging uses CR0.WP, CR4.PGE, CR4.PCIDE, CR4.SMEP,
CR4.SMAP, CR4.PKE, CR4.CET, CR4.PKS, and IA32_EFER.NXE as described in Section 5.1.3 and Section 5.6.

NOTE

32-bit paging and PAE paging can be used only in legacy protected mode (IA32_EFER.LME = 0). In
contrast, 4-level paging and 5-level paging can be used only IA-32e mode (IA32_EFER.LME = 1).

The four paging modes differ with regard to the following details:

Linear-address width. The size of the linear addresses that can be translated.
Physical-address width. The size of the physical addresses produced by paging.

Page size. The granularity at which linear addresses are translated. Linear addresses on the same page are
translated to corresponding physical addresses on the same page.

Support for execute-disable access rights. In some paging modes, software can be prevented from fetching
instructions from pages that are otherwise readable.

Support for PCIDs. With 4-level paging and 5-level paging, software can enable a facility by which a logical
processor caches information for multiple linear-address spaces. The processor may retain cached information
when software switches between different linear-address spaces.

Support for protection keys. With 4-level paging and 5-level paging, each linear address is associated with a
protection key. Software can use the protection-key rights registers to disable, for each protection key, how
certain accesses to linear addresses associated with that protection key.

Table 5-1 illustrates the principal differences between the four paging modes.

Table 5-1. Properties of Different Paging Modes

. i Supports

Paging PGin | PAEIn | LMEin LAS7in | oo :ggf' Page 2upborts | peiDs and
Mode CRO CR4 IA32_EFER | CR4 width width? Sizes Disable? E(r;;’;e?ctlon
None 0 N/A N/A N/A 32 32 N/A No No
32-bit 1 0 02 N/A 32 Up to 40° j 5%4 No No

4KB 5
PAE 1 1 0 N/A 32 Upto 52 >MB Yes No

4KB
4-level 1 1 1 0 48 Up to 52 2MB Yes® Yes’

1GB®

1. Earlier versions of this manual used the term “IA-32e paging” to identify 4-level paging.

2. The LMA flag in the IA32_EFER MSR (bit 10) is a status bit that indicates whether the logical processor is in IA-32e mode (and thus
uses either 4-level paging or 5-level paging). The processor always sets IA32_EFER.LMA to CRO.PG & IA32_EFER.LME. Software can-

not directly modify IA32_EFER.LMA; an execution of WRMSR to the IA32_EFER MSR ignores bit 10 of its source operand.

5-2 Vol. 3A

PAGING

Table 5-1. Properties of Different Paging Modes (Contd.)

.) Supports
Paging || PGin | PAEin | LMEin LAs7in | g | RRYS- Page 2upports | paiDs and
Mode CRO CR4 IA32_EFER | CR4 Width Width? Sizes Disable? E‘rac;ltsg'ctlon
4KB
5-level 1 1 1 1 57 Up to 52 2MB Yes® Yes’
1GB®
NOTES:

1. The physical-address width is always bounded by MAXPHYADDR; see Section 5.1.4.

2. The processor ensures that IA32_EFER.LME must be O if CRO.PG = 1 and CR4.PAE = 0.

3. 32-bit paging supports physical-address widths of more than 32 bits only for 4-MByte pages and only if the PSE-36 mechanism is
supported; see Section 5.1.4 and Section 5.3.

4, 32-bit paging uses 4-MByte pages only if CR4.PSE = 1; see Section 5.3.

5. Execute-disable access rights are applied only if IA32_EFER.NXE = 1; see Section 5.6.

6. Processors that support 4-level paging or 5-level paging do not necessarily support 1-GByte pages; see Section 5.1.4.

7.PCIDs are used only if CR4.PCIDE = 1; see Section 5.10.1. Protection keys are used only if certain conditions hold; see Section 5.6.2.

Because 32-bit paging and PAE paging are used only in legacy protected mode and because legacy protected mode
cannot produce linear addresses larger than 32 bits, 32-bit paging and PAE paging translate 32-bit linear
addresses.

4-level paging and 5-level paging are used only in IA-32e mode. IA-32e mode has two sub-modes:

®* Compatibility mode. This sub-mode uses only 32-bit linear addresses. In this sub-mode, 4-level paging and 5-
level paging treat bits 63:32 of such an address as all 0. These addresses are subject to linear-address pre-
processing, specifically linear-address-space separation (Section 4.3).

® 64-bit mode. This sub-mode produces 64-bit linear addresses. These addresses are then subject to linear-
address pre-processing (Chapter 4). As part of this, the processor enforces canonicality (Section 4.5),
ensuring that the upper bits of such an address are identical: bits 63:47 for 4-level paging and bits 63:56 for
5-level paging. 4-level paging (respectively, 5-level paging) does not use bits 63:48 (respectively, bits 63:57)
of such addresses.

5.1.2 Paging-Mode Enabling

If CRO.PG = 1, a logical processor is in one of four paging modes, depending on the values of CR4.PAE,
IA32_EFER.LME, and CR4.LA57. Figure 5-1 illustrates how software can enable these modes and make transitions
between them. The following items identify certain limitations and other details:

®* IA32_EFER.LME cannot be modified while paging is enabled (CR0.PG = 1). Attempts to do so using WRMSR
cause a general-protection exception (#GP(0)).

®* Paging cannot be enabled (by setting CRO.PG to 1) while CR4.PAE = 0 and IA32_EFER.LME = 1. Attempts to do
so using MOV to CRO cause a general-protection exception (#GP(0)).

® One nodein Figure 5-1 is labeled “IA-32e mode.” This node represents either 4-level paging (if CR4.LA57 = 0)
or 5-level paging (if CR4.LA57 = 1). As noted in the following items, software cannot modify CR4.LA57
(effecting transition between 4-level paging and 5-level paging) without first disabling paging.

® CR4.PAE and CR4.LA57 cannot be modified while either 4-level paging or 5-level paging is in use (when
CRO.PG = 1 and IA32_EFER.LME = 1). Attempts to do so using MOV to CR4 cause a general-protection
exception (#GP(0)).

* Regardless of the current paging mode, software can disable paging by clearing CR0.PG with MOV to CRO.!

1. If the logical processor is in 64-bit mode or if CR4.PCIDE = 1, an attempt to clear CRO.PG causes a general-protection exception
(#GP). Software should transition to compatibility mode and clear CR4.PCIDE before attempting to disable paging.

Vol. 3A 5-3

PAGING

No Paging SetPG 32-bit Paging
PG=0 PG=1
PAE=0 PAE=0
LME=0 Clear PG LME=0
&
= o
= 8
=
m Clear PAE
Set PAE
!— 0Pag|ng —! !_No%lng_ —!
PG| | Pe=0
, PAESO0 o PAEET
L WE=1 L _ME=0
T -
&
sete| =l | §
v Clear PAE =
Set PAE
#GP
™ Nobay |
| PG=0 |
, PAE=T
L WE=1

SetPG

Clear PAE

SetPG

#GP

Set LME f

PAE Paging
PG=1
PAE =1
LME=0

#GP

ClearPAE |
1

PG=1
PAE=1
LME=1

|
|
Clear PG v

#GP

Figure 5-1. Enabling and Changing Paging Modes

® Software can transition between 32-bit paging and PAE paging by changing the value of CR4.PAE with MOV to

CR4.

®* Software cannot transition directly between 4-level paging (or 5-level paging) and any of other paging mode.
It must first disable paging (by clearing CR0.PG with MOV to CRQO), then set CR4.PAE, IA32_EFER.LME, and
CR4.LA57 to the desired values (with MOV to CR4 and WRMSR), and then re-enable paging (by setting CRO.PG
with MOV to CRO). As noted earlier, an attempt to modify CR4.PAE, IA32_EFER.LME, or CR.LA57 while 4-level

4-level Paging

ERRLE)

paging or 5-level paging is enabled causes a general-protection exception (#GP(0)).

®* VMKX transitions allow transitions between paging modes that are not possible using MOV to CR or WRMSR. This
is because VMX transitions can load CRO, CR4, and IA32_EFER in one operation. See Section 5.11.1.

5.1.3 Paging-Mode Modifiers

Details of how each paging mode operates are determined by the following control bits:

®* The WP flag in CRO (bit 16).

®* The PSE, PGE, PCIDE, SMEP, SMAP, PKE, CET, and PKS flags in CR4 (bit 4, bit 7, bit 17, bit 20, bit 21, bit 22,

bit 23, and bit 24, respectively).

® The NXE flag in the IA32_EFER MSR (bit 11).
®* The “enable HLAT” VM-execution control (tertiary processor-based VM-execution control bit 1).

5-4 Vol. 3A

PAGING

CRO.WP allows pages to be protected from supervisor-mode writes. If CRO.WP = 0, supervisor-mode write
accesses are allowed to linear addresses with read-only access rights; if CRO.WP = 1, they are not. (User-mode
write accesses are never allowed to linear addresses with read-only access rights, regardless of the value of
CRO.WP.) Section 5.6 explains how access rights are determined, including the definition of supervisor-mode and
user-mode accesses.

CR4.PSE enables 4-MByte pages for 32-bit paging. If CR4.PSE = 0, 32-bit paging can use only 4-KByte pages; if
CR4.PSE = 1, 32-bit paging can use both 4-KByte pages and 4-MByte pages. See Section 5.3 for more information.
(PAE paging, 4-level paging, and 5-level paging can use multiple page sizes regardless of the value of CR4.PSE.)

CR4.PGE enables global pages. If CR4.PGE = 0, no translations are shared across address spaces; if CR4.PGE = 1,
specified translations may be shared across address spaces. See Section 5.10.2.4 for more information.

CR4.PCIDE enables process-context identifiers (PCIDs) for 4-level paging and 5-level paging. PCIDs allow a logical
processor to cache information for multiple linear-address spaces. See Section 5.10.1 for more information.

CR4.SMEP allows pages to be protected from supervisor-mode instruction fetches. If CR4.SMEP = 1, software
operating in supervisor mode cannot fetch instructions from linear addresses that are accessible in user mode.
Section 5.6 explains how access rights are determined, including the definition of supervisor-mode accesses and
user-mode accessibility.

CR4.SMAP allows pages to be protected from supervisor-mode data accesses. If CR4.SMAP = 1, software oper-
ating in supervisor mode cannot access data at linear addresses that are accessible in user mode. Software can
override this protection by setting EFLAGS.AC. Section 5.6 explains how access rights are determined, including
the definition of supervisor-mode accesses and user-mode accessibility.

CR4.PKE and CR4.PKS enable specification of access rights based on protection keys. 4-level paging and 5-level
paging associate each linear address with a protection key. When CR4.PKE = 1, the PKRU register specifies, for
each protection key, whether user-mode linear addresses with that protection key can be read or written. When
CR4.PKS = 1, the IA32_PKRS MSR does the same for supervisor-mode linear addresses. See Section 5.6 for more
information.

CR4.CET enables control-flow enforcement technology, including the shadow-stack feature. If CR4.CET =1,
certain memory accesses are identified as shadow-stack accesses and certain linear addresses translate to
shadow-stack pages. Section 5.6 explains how access rights are determined for these accesses and pages. (The
processor allows CR4.CET to be set only if CRO.WP is also set.)

IA32_EFER.NXE enables execute-disable access rights for PAE paging, 4-level paging, and 5-level paging. If
IA32_EFER.NXE = 1, instruction fetches can be prevented from specified linear addresses (even if data reads from
the addresses are allowed). Section 5.6 explains how access rights are determined. (IA32_EFER.NXE has no effect
with 32-bit paging. Software that wants to use this feature to limit instruction fetches from readable pages must
use PAE paging, 4-level paging, or 5-level paging.)

The “enable HLAT” VM-execution control enables HLAT paging for 4-level paging and 5-level paging. HLAT paging
does not use control register CR3 to identify the address of the first paging structure used for linear-address trans-
lation; instead, that structure is located using a field in the virtual-machine control structure (VMCS). In addition,
HLAT paging interprets certain bits in paging-structure entries differently than ordinary paging. See Section 5.5 for
details.

5.14 Enumeration of Paging Features by CPUID

Software can discover support for different paging features using the CPUID instruction:

® PSE: page-size extensions for 32-bit paging.
If CPUID.01H:EDX.PSE [bit 3] = 1, CR4.PSE may be set to 1, enabling support for 4-MByte pages with 32-bit
paging (see Section 5.3).

® PAE: physical-address extension.

If CPUID.0O1H:EDX.PAE [bit 6] = 1, CR4.PAE may be set to 1, enabling PAE paging (this setting is also required
for 4-level paging and 5-level paging).

®* PGE: global-page support.
If CPUID.01H:EDX.PGE [bit 13] = 1, CR4.PGE may be set to 1, enabling the global-page feature (see Section
5.10.2.4).

Vol. 3A 5-5

PAGING

®* PAT: page-attribute table.
If CPUID.01H:EDX.PAT [bit 16] = 1, the 8-entry page-attribute table (PAT) is supported. When the PAT is
supported, three bits in certain paging-structure entries select a memory type (used to determine type of
caching used) from the PAT (see Section 5.9.2).

® PSE-36: page-size extensions with 40-bit physical-address extension.
If CPUID.0O1H:EDX.PSE-36 [bit 17] = 1, the PSE-36 mechanism is supported, indicating that translations using
4-MByte pages with 32-bit paging may produce physical addresses with up to 40 bits (see Section 5.3).

® PCID: process-context identifiers.
If CPUID.01H:ECX.PCID [bit 17] = 1, CR4.PCIDE may be set to 1, enabling process-context identifiers (see
Section 5.10.1).

® SMEP: supervisor-mode execution prevention.
If CPUID.(EAX=07H,ECX=0H):EBX.SMEP [bit 7] = 1, CR4.SMEP may be set to 1, enabling supervisor-mode
execution prevention (see Section 5.6).

® SMAP: supervisor-mode access prevention.
If CPUID.(EAX=07H,ECX=0H):EBX.SMAP [bit 20] = 1, CR4.SMAP may be set to 1, enabling supervisor-mode
access prevention (see Section 5.6).

® PKU: protection keys for user-mode pages.
If CPUID.(EAX=07H,ECX=0H):ECX.PKU [bit 3] = 1, CR4.PKE may be set to 1, enabling protection keys for
user-mode pages (see Section 5.6).

® OSPKE: enabling of protection keys for user-mode pages.

CPUID.(EAX=07H,ECX=0H):ECX.0OSPKE [bit 4] returns the value of CR4.PKE. Thus, protection keys for user-
mode pages are enabled if this flag is 1 (see Section 5.6).

® CET: control-flow enforcement technology.
If CPUID.(EAX=07H,ECX=0H):ECX.CET_SS [bit 7] = 1, CR4.CET may be set to 1, enabling shadow-stack
pages (see Section 5.6).

® LA57: 57-bit linear addresses and 5-level paging.
If CPUID.(EAX=07H,ECX=0):ECX.LA57 [bit 16] = 1, CR4.LA57 may be set to 1, enabling 5-level paging.

® PKS: protection keys for supervisor-mode pages.
If CPUID.(EAX=07H,ECX=0H):ECX.PKS [bit 31] = 1, CR4.PKS may be set to 1, enabling protection keys for
supervisor-mode pages (see Section 5.6).

®* NX: execute disable.
If CPUID.80000001H:EDX.NX [bit 20] = 1, IA32_EFER.NXE may be set to 1, allowing software to disable
execute access to selected pages (see Section 5.6). (Processors that do not support CPUID function
80000001H do not allow IA32_EFER.NXE to be set to 1.)

®* PagelGB: 1-GByte pages.
If CPUID.80000001H:EDX.PagelGB [bit 26] = 1, 1-GByte pages may be supported with 4-level paging and 5-
level paging (see Section 5.5).

®* LM: IA-32e mode support.
If CPUID.80000001H:EDX.LM [bit 29] = 1, IA32_EFER.LME may be set to 1, enabling IA-32e mode (with either

4-level paging or 5-level paging). (Processors that do not support CPUID function 80000001H do not allow
IA32_EFER.LME to be set to 1.)

® CPUID.80000008H:EAX[7:0] reports the physical-address width supported by the processor. (For processors
that do not support CPUID function 80000008H, the width is generally 36 if CPUID.01H:EDX.PAE [bit 6] = 1
and 32 otherwise.) This width is referred to as MAXPHYADDR. MAXPHYADDR is at most 52.

® CPUID.80000008H:EAX[15:8] reports the linear-address width supported by the processor. Generally, this
value is reported as follows:

— If CPUID.80000001H:EDX.LM [bit 29] = 0, the value is reported as 32.

— If CPUID.80000001H:EDX.LM [bit 29] = 1 and CPUID.(EAX=07H,ECX=0):ECX.LA57 [bit 16] = 0, the
value is reported as 48.

— If CPUID.(EAX=07H,ECX=0):ECX.LA57 [bit 16] = 1, the value is reported as 57.
(Processors that do not support CPUID function 80000008H, support a linear-address width of 32.)

5-6 Vol.3A

PAGING

5.2 HIERARCHICAL PAGING STRUCTURES: AN OVERVIEW

All four paging modes translate linear addresses using hierarchical paging structures. This section provides an
overview of their operation. Section 5.3, Section 5.4, Section 5.5, and Section 5.6 provide details for the four
paging modes.

Every paging structure is 4096 Bytes in size and comprises a number of individual entries. With 32-bit paging,
each entry is 32 bits (4 bytes); there are thus 1024 entries in each structure. With the other paging modes, each
entry is 64 bits (8 bytes); there are thus 512 entries in each structure. (PAE paging includes one exception, a
paging structure that is 32 bytes in size, containing 4 64-bit entries.)

The processor uses the upper portion of a linear address to identify a series of paging-structure entries. The last of
these entries identifies the physical address of the region to which the linear address translates (called the page
frame). The lower portion of the linear address (called the page offset) identifies the specific address within that
region to which the linear address translates.

Each paging-structure entry contains a physical address, which is either the address of another paging structure or
the address of a page frame. In the first case, the entry is said to reference the other paging structure; in the
latter, the entry is said to map a page.

The first paging structure used for any translation is located at the physical address in CR3.1 A linear address is
translated using the following iterative procedure. A portion of the linear address (initially the uppermost bits)
selects an entry in a paging structure (initially the one located using CR3). If that entry references another paging
structure, the process continues with that paging structure and with the portion of the linear address immediately
below that just used. If instead the entry maps a page, the process completes: the physical address in the entry is
that of the page frame and the remaining lower portion of the linear address is the page offset.

The following items give an example for each of the four paging modes (each example locates a 4-KByte page
frame):

* With 32-bit paging, each paging structure comprises 1024 = 210 entries. For this reason, the translation
process uses 10 bits at a time from a 32-bit linear address. Bits 31:22 identify the first paging-structure entry
and bits 21:12 identify a second. The latter identifies the page frame. Bits 11:0 of the linear address are the
page offset within the 4-KByte page frame. (See Figure 5-2 for an illustration.)

* With PAE paging, the first paging structure comprises only 4 = 22 entries. Translation thus begins by using
bits 31:30 from a 32-bit linear address to identify the first paging-structure entry. Other paging structures
comprise 512 =22 entries, so the process continues by using 9 bits at a time. Bits 29:21 identify a second
paging-structure entry and bits 20:12 identify a third. This last identifies the page frame. (See Figure 5-5 for
an illustration.)

* With 4-level paging, each paging structure comprises 512 = 22 entries and translation uses 9 bits at a time
from a 48-bit linear address. Bits 47:39 identify the first paging-structure entry, bits 38:30 identify a second,
bits 29:21 a third, and bits 20:12 identify a fourth. Again, the last identifies the page frame. (See Figure 5-8
for an illustration.)

®* 5-level paging is similar to 4-level paging except that 5-level paging translates 57-bit linear addresses.
Bits 56:48 identify the first paging-structure entry, while the remaining bits are used as with 4-level paging.

The translation process in each of the examples above completes by identifying a page frame; the page frame is
part of the translation of the original linear address. In some cases, however, the paging structures may be
configured so that the translation process terminates before identifying a page frame. This occurs if the process
encounters a paging-structure entry that is marked “not present” (because its P flag — bit 0 — is clear) or in which
a reserved bit is set. In this case, there is no translation for the linear address; an access to that address causes a
page-fault exception (see Section 5.7).

In the examples above, a paging-structure entry maps a page with a 4-KByte page frame when only 12 bits remain
in the linear address; entries identified earlier always reference other paging structures. That may not apply in
other cases. The following items identify when an entry maps a page and when it references another paging struc-
ture:

* If more than 12 bits remain in the linear address, bit 7 (PS — page size) of the current paging-structure entry
is consulted. If the bit is 0, the entry references another paging structure; if the bit is 1, the entry maps a page.

1. If HLAT paging is in use, a different mechanism is used to identify the first paging structure. See Section 5.5 for more information.

Vol. 3A 5-7

PAGING

* Ifonly 12 bits remain in the linear address, the current paging-structure entry always maps a page (bit 7 is
used for other purposes).

If a paging-structure entry maps a page when more than 12 bits remain in the linear address, the entry identifies
a page frame larger than 4 KBytes. For example, 32-bit paging uses the upper 10 bits of a linear address to locate
the first paging-structure entry; 22 bits remain. If that entry maps a page, the page frame is 222 Bytes = 4 MBytes.
32-bit paging can use 4-MByte pages if CR4.PSE = 1. The other paging modes can use 2-MByte pages (regardless
of the value of CR4.PSE). 4-level paging and 5-level paging can use 1-GByte pages if the processor supports them
(see Section 5.1.4).

Paging structures are given different names based on their uses in the translation process. Table 5-2 gives the
names of the different paging structures. It also provides, for each structure, the source of the physical address
used to locate it (CR3 or a different paging-structure entry); the bits in the linear address used to select an entry
from the structure; and details of whether and how such an entry can map a page.

Table 5-2. Paging Structures in the Different Paging Modes

Physical . .
. Entry . Bits Selecting .
Paging Structure Paging Mode Address of Page Mapping
Name Structure Entry
32-bit, PAE, 4-level N/A
PML5 table PML5E
5-level CR3! 56:48 N/A (PS must be 0)
32-bit, PAE N/A
PML4 table PML4€E 4-level CR3!
47:39 N/A (PS must be 0)
5-level PML5E
32-bit N/A
Page-directory- PDPTE | PAE CR3 31:30 N/A (PS must be 0)
pointer table
4-level, 5-level PML4E 38:30 1-GByte page if PS=12
32-bit CR3 31:22 4-MByte page if PS=13
Page directory PDE
PAE, 4-level, 5-level | PDPTE 29:21 2-MByte page if PS=1
32-bit 21:12
Page table PTE PDE 4-KByte page
PAE, 4-level, 5-level 20:12

NOTES:
1. If HLAT paging is in use, a different mechanism is used to identify the first paging structure. See Section 5.5 for more information.
2. Not all processors support 1-GByte pages; see Section 5.1.4.

3. 32-bit paging ignores the PS flag in a PDE (and uses the entry to reference a page table) unless CR4.PSE = 1. Not all processors sup-
port 4-MByte pages with 32-bit paging; see Section 5.1.4.

5-8 Vol.3A

PAGING

5.3 32-BIT PAGING

A logical processor uses 32-bit paging if CRO.PG = 1 and CR4.PAE = 0. 32-bit paging translates 32-bit linear
addresses to 40-bit physical addresses.! Although 40 bits corresponds to 1 TByte, linear addresses are limited to
32 bits; at most 4 GBytes of linear-address space may be accessed at any given time.

32-bit paging uses a hierarchy of paging structures to produce a translation for a linear address. CR3 is used to
locate the first paging-structure, the page directory. Table 5-3 illustrates how CR3 is used with 32-bit paging.

32-bit paging may map linear addresses to either 4-KByte pages or 4-MByte pages. Figure 5-2 illustrates the
translation process when it uses a 4-KByte page; Figure 5-3 covers the case of a 4-MByte page. The following
items describe the 32-bit paging process in more detail as well has how the page size is determined:

®* A 4-KByte naturally aligned page directory is located at the physical address specified in bits 31:12 of CR3 (see
Table 5-3). A page directory comprises 1024 32-bit entries (PDEs). A PDE is selected using the physical address
defined as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from CR3.

— Bits 11:2 are bits 31:22 of the linear address.
— Bits 1:0 are 0.

Because a PDE is identified using bits 31:22 of the linear address, it controls access to a 4-Mbyte region of the
linear-address space. Use of the PDE depends on CR4.PSE and the PDE’s PS flag (bit 7):

®* If CR4.PSE = 1 and the PDE's PS flag is 1, the PDE maps a 4-MByte page (see Table 5-4). The final physical
address is computed as follows:

— Bits 39:32 are bits 20:13 of the PDE.
— Bits 31:22 are bits 31:22 of the PDE.?
— Bits 21:0 are from the original linear address.

®* If CR4.PSE = 0 or the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the physical
address specified in bits 31:12 of the PDE (see Table 5-5). A page table comprises 1024 32-bit entries (PTEs).
A PTE is selected using the physical address defined as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PDE.

— Bits 11:2 are bits 21:12 of the linear address.
— Bits 1:0 are 0.

®* Because a PTE is identified using bits 31:12 of the linear address, every PTE maps a 4-KByte page (see
Table 5-6). The final physical address is computed as follows:

— Bits 39:32 are all 0.
— Bits 31:12 are from the PTE.
— Bits 11:0 are from the original linear address.

If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the entry is used neither to refer-
ence another paging-structure entry nor to map a page. There is no translation for a linear address whose transla-
tion would use such a paging-structure entry; a reference to such a linear address causes a page-fault exception
(see Section 5.7).

1. Bits in the range 39:32 are 0 in any physical address used by 32-bit paging except those used to map 4-MByte pages. If the proces-
sor does not support the PSE-36 mechanism, this is true also for physical addresses used to map 4-MByte pages. If the processor
does support the PSE-36 mechanism and MAXPHYADDR < 40, bits in the range 39:MAXPHYADDR are 0 in any physical address used
to map a 4-MByte page. (The corresponding bits are reserved in PDEs.) See Section 5.1.4 for how to determine MAXPHYADDR and
whether the PSE-36 mechanism is supported.

2. The upper bits in the final physical address do not all come from corresponding positions in the PDE; the physical-address bits in the
PDE are not all contiguous.

Vol. 3A 5-9

PAGING

With 32-bit paging, there are reserved bits only if CR4.PSE = 1:

* Ifthe P flag and the PS flag (bit 7) of a PDE are both 1, the bits reserved depend on MAXPHYADDR, and whether
the PSE-36 mechanism is supported:!

— If the PSE-36 mechanism is not supported, bits 21:13 are reserved.

— If the PSE-36 mechanism is supported, bits 21:(M-19) are reserved, where M is the minimum of 40 and
MAXPHYADDR.

* If the PAT is not supported:?

— Ifthe P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.
(If CR4.PSE = 0, no bits are reserved with 32-bit paging.)

A reference using a linear address that is successfully translated to a physical address is performed only if allowed
by the access rights of the translation; see Section 5.6.

Linear Address
31 22 21 12 11 0

Directory Table Offset

12 4-KByte Page

10 10 Page Table Physical Address
Page Directory

PTE

Y

20

Y

PDE with PS=0

20

My oy

3
CR3

Figure 5-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

1. See Section 5.1.4 for how to determine MAXPHYADDR and whether the PSE-36 mechanism is supported.
2. See Section 5.1.4 for how to determine whether the PAT is supported.

5-10 Vol. 3A

Linear Address

31 22 21

| Directory

| Offset

]

10 Page Directory

PDE with PS=1

22 4-MByte Page

Physical Address

18

A .
>
by
>
2

3

CR3

Y

Figure 5-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

PAGING

Figure 5-4 gives a summary of the formats of CR3 and the paging-structure entries with 32-bit paging. For the
paging structure entries, it identifies separately the format of entries that map pages, those that reference other
paging structures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are high-
lighted because they determine how such an entry is used.

31]30]29]28]27]26]25]24]23]22]21]20]19]18]17]16]15]14]13]12]11]10] 918|716 |5

2(1]0

Address of page directory’

Ignored

Ignored

CR3

Bits 31:22 of address
of 4MB page frame

Reserved
(must be Q)

Bits 39:32 of
address

A | Ignored | G

|=—
o
>

|=—a

PDE:
4MB

page

Address of page table

Ignored

(=]
ta)
>

OMNT©UW| OMNTU|] OMNTO|d

—4S V| 4SS W] A= 7O|w

n-<Cc| n-C
|=—a

E~3| =~=

PDE:

page
table

Ignored

(=)

PDE:
not
present

Address of 4KB page frame

P
Ignored |[G|A|[D|A
T

OMN™©

—H= 70

wn-<Cc
S~
|=—a

PTE:
4KB

page

Ignored

(=)

PTE:
not
present

Figure 5-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging

NOTES:

1. CR3 has 64 bits on processors supporting the Intel-64 architecture. These bits are ignored with 32-bit paging.

2. This example illustrates a processor in which MAXPHYADDR is 36. If this value is larger or smaller, the number of bits reserved in
positions 20:13 of a PDE mapping a 4-MByte page will change.

Vol. 3A 5-11

PAGING

Table 5-3. Use of CR3 with 32-Bit Paging

Bit Contents

Position(s)

2.0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page directory during linear-
address translation (see Section 5.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page directory during linear-
address translation (see Section 5.9)

11:5 Ignored

31:12 Physical address of the 4-KByte aligned page directory used for linear-address translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)

Table 5-4. Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 4-MByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 4-MByte page referenced by this entry (see Section 5.6)

2 (U/S) gsse)r/supervisor; if 0, user-mode accesses are not allowed to the 4-MByte page referenced by this entry (see Section

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-MByte page referenced by
this entry (see Section 5.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-MByte page referenced by
this entry (see Section 5.9)

5(A) Accessed; indicates whether software has accessed the 4-MByte page referenced by this entry (see Section 5.8)

6 (D) Dirty; indicates whether software has written to the 4-MByte page referenced by this entry (see Section 5.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 5-5)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 5.10); ignored otherwise

119 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-MByte page referenced by this
entry (see Section 5.9.2); otherwise, reserved (must be 0)'

(M-20):13 Bits (M-1):32 of physical address of the 4-MByte page referenced by this entry?

21:(M-19) Reserved (must be 0)

31:22 Bits 31:22 of physical address of the 4-MByte page referenced by this entry

NOTES:

1. See Section 5.1.4 for how to determine whether the PAT is supported.

2. If the PSE-36 mechanism is not supported, M is 32, and this row does not apply. If the PSE-36 mechanism is supported, M is the min-
imum of 40 and MAXPHYADDR (this row does not apply if MAXPHYADDR = 32). See Section 5.1.4 for how to determine MAXPHY-
ADDR and whether the PSE-36 mechanism is supported.

5-12 Vol. 3A

PAGING

Table 5-5. Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte region controlled by this entry (see Section 5.6)

2 (U/S) gségr/supervisor; if 0, user-mode accesses are not allowed to the 4-MByte region controlled by this entry (see Section

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 5.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 5.9)

5(A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 5.8)

6 Ignored

7 (PS) If CR4.PSE = 1, must be 0 (otherwise, this entry maps a 4-MByte page; see Table 5-4); otherwise, ignored

118 Ignored

31:12 Physical address of 4-KByte aligned page table referenced by this entry

Table 5-6. Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page

Bit Contents

Position(s)

0P Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 5.6)

2 (U/S) UsGe)r/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section
5.

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 5.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 5.9)

5(A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 5.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 5.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 5.9.2); otherwise, reserved (must be 0)'

8 (Q) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 5.10); ignored otherwise

11:9 Ignored

31:12 Physical address of the 4-KByte page referenced by this entry

NOTES:

1. See Section 5.1.4 for how to determine whether the PAT is supported.

Vol.3A 5-13

PAGING

54 PAE PAGING

A logical processor uses PAE paging if CRO.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 0. PAE paging translates
32-bit linear addresses to 52-bit physical addresses.! Although 52 bits corresponds to 4 PBytes, linear addresses
are limited to 32 bits; at most 4 GBytes of linear-address space may be accessed at any given time.

With PAE paging, a logical processor maintains a set of four (4) PDPTE registers, which are loaded from an address
in CR3. Linear address are translated using 4 hierarchies of in-memory paging structures, each located using one
of the PDPTE registers. (This is different from the other paging modes, in which there is one hierarchy referenced
by CR3.)

Section 5.4.1 discusses the PDPTE registers. Section 5.4.2 describes linear-address translation with PAE paging.

54.1 PDPTE Registers

When PAE paging is used, CR3 references the base of a 32-Byte page-directory-pointer table. Table 5-7 illus-
trates how CR3 is used with PAE paging.

Table 5-7. Use of CR3 with PAE Paging

Bit Contents

Position(s)

4.0 Ignored

315 Physical address of the 32-Byte aligned page-directory-pointer table used for linear-address translation
63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)

The page-directory-pointer-table comprises four (4) 64-bit entries called PDPTEs. Each PDPTE controls access to a
1-GByte region of the linear-address space. Corresponding to the PDPTEs, the logical processor maintains a set of
four (4) internal, non-architectural PDPTE registers, called PDPTEQ, PDPTE1, PDPTE2, and PDPTE3. The logical
processor loads these registers from the PDPTEs in memory as part of certain operations:

® If PAE paging would be in use following an execution of MOV to CRO or MOV to CR4 (see Section 5.1.1) and the
instruction is modifying any of CR0.CD, CR0.NW, CR0O.PG, CR4.PAE, CR4.PGE, CR4.PSE, or CR4.SMEP; then the
PDPTEs are loaded from the address in CR3.

* If MOV to CR3 is executed while the logical processor is using PAE paging, the PDPTEs are loaded from the
address being loaded into CR3.

* If PAE paging is in use and a task switch changes the value of CR3, the PDPTEs are loaded from the address in
the new CR3 value.

® Certain VMX transitions load the PDPTE registers. See Section 5.11.1.

Table 5-8 gives the format of a PDPTE. If any of the PDPTEs sets both the P flag (bit 0) and any reserved bit, the
MOV to CR instruction causes a general-protection exception (#GP(0)) and the PDPTEs are not loaded.2 As shown
in Table 5-8, bits 2:1, 8:5, and 63:MAXPHYADDR are reserved in the PDPTEs.

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be O in any physical address used by PAE paging. (The corresponding
bits are reserved in the paging-structure entries.) See Section 5.1.4 for how to determine MAXPHYADDR.

2. 0On some processors, reserved bits are checked even in PDPTEs in which the P flag (bit 0) is O.

5-14 Vol. 3A

PAGING

Table 5-8. Format of a PAE Page-Directory-Pointer-Table Entry (PDPTE)

Bit Contents

Position(s)

0P Present; must be 1 to reference a page directory

2:1 Reserved (must be 0)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page directory referenced by

this entry (see Section 5.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page directory referenced by
this entry (see Section 5.9)

8.5 Reserved (must be 0)

11:9 Ignored

M-1)12 Physical address of 4-KByte aligned page directory referenced by this en'[ry1

63:M Reserved (must be 0)

NOTES:
1. Mis an abbreviation for MAXPHYADDR, which is at most 52; see Section 5.1.4.

54.2 Linear-Address Translation with PAE Paging

PAE paging may map linear addresses to either 4-KByte pages or 2-MByte pages. Figure 5-5 illustrates the trans-
lation process when it produces a 4-KByte page; Figure 5-6 covers the case of a 2-MByte page. The following items
describe the PAE paging process in more detail as well has how the page size is determined:

® Bits 31:30 of the linear address select a PDPTE register (see Section 5.4.1); this is PDPTE/, where j is the value
of bits 31:30.1 Because a PDPTE register is identified using bits 31:30 of the linear address, it controls access
to a 1-GByte region of the linear-address space. If the P flag (bit 0) of PDPTE/ is 0, the processor ignores bits
63:1, and there is no mapping for the 1-GByte region controlled by PDPTEi. A reference using a linear address
in this region causes a page-fault exception (see Section 5.7).

* Ifthe P flag of PDPTEi is 1, 4-KByte naturally aligned page directory is located at the physical address specified
in bits 51:12 of PDPTE/ (see Table 5-8 in Section 5.4.1). A page directory comprises 512 64-bit entries (PDEs).
A PDE is selected using the physical address defined as follows:

— Bits 51:12 are from PDPTEi.
— Bits 11:3 are bits 29:21 of the linear address.
— Bits 2:0 are 0.

Because a PDE is identified using bits 31:21 of the linear address, it controls access to a 2-Mbyte region of the
linear-address space. Use of the PDE depends on its PS flag (bit 7):

* Ifthe PDE’s PS flagis 1, the PDE maps a 2-MByte page (see Table 5-9). The final physical address is computed
as follows:

— Bits 51:21 are from the PDE.
— Bits 20:0 are from the original linear address.

* Ifthe PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the physical address specified in
bits 51:12 of the PDE (see Table 5-10). A page table comprises 512 64-bit entries (PTEs). A PTE is selected
using the physical address defined as follows:

— Bits 51:12 are from the PDE.

1. With PAE paging, the processor does not use CR3 when translating a linear address (as it does in the other paging modes). It does
not access the PDPTEs in the page-directory-pointer table during linear-address translation.

Vol.3A 5-15

PAGING

— Bits 11:3 are bits 20:12 of the linear address.
— Bits 2:0 are 0.

® Because a PTE is identified using bits 31:12 of the linear address, every PTE maps a 4-KByte page (see
Table 5-11). The final physical address is computed as follows:

— Bits 51:12 are from the PTE.
— Bits 11:0 are from the original linear address.

If the P flag (bit 0) of a PDE or a PTE is O or if a PDE or a PTE sets any reserved bit, the entry is used neither to
reference another paging-structure entry nor to map a page. There is no translation for a linear address whose
translation would use such a paging-structure entry; a reference to such a linear address causes a page-fault
exception (see Section 5.7).

The following bits are reserved with PAE paging:
* If the P flag (bit 0) of a PDE or a PTE is 1, bits 62:MAXPHYADDR are reserved.
* Ifthe P flag and the PS flag (bit 7) of a PDE are both 1, bits 20:13 are reserved.
* IfIA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63) is reserved.
* If the PAT is not supported:!
— Ifthe P flag of a PTE is 1, bit 7 is reserved.
— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

A reference using a linear address that is successfully translated to a physical address is performed only if allowed
by the access rights of the translation; see Section 5.6.

Linear Address
3130 29 21 20 12 11 0

Directory Pointer —>| | Directory Table Offset

‘ 12 4-KByte Page

Page Table Physical Address

Page Directory 9
9 PTE

»| PDE with PS=0

40

Y

PDPTE Registers

40

— > |PDPTE value

Figure 5-5. Linear-Address Translation to a 4-KByte Page using PAE Paging

1. See Section 5.1.4 for how to determine whether the PAT is supported.

5-16 Vol. 3A

PAGING

Linear Address
31 30 29 21 20 0
—>| | Directory Offset

Directory
Pointer

21 2-MByte Page

Page Directory Physical Address

PDPTE Registers

Y

—»| PDE with PS=1

»| PDPTE value >
40

31

Figure 5-6. Linear-Address Translation to a 2-MByte Page using PAE Paging

Table 5-9. Format of a PAE Page-Directory Entry that Maps a 2-MByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 2-MByte page referenced by this entry (see Section 5.6)

2 (U/S) Usse)r/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte page referenced by this entry (see Section
5.

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 2-MByte page referenced by
this entry (see Section 5.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 2-MByte page referenced by this
entry (see Section 5.9)

5(A) Accessed; indicates whether software has accessed the 2-MByte page referenced by this entry (see Section 5.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by this entry (see Section 5.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 5-10)

8 (Q) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 5.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 2-MByte page referenced by this
entry (see Section 5.9.2); otherwise, reserved (must be 0)'

20:13 Reserved (must be 0)

(M-1):21 Physical address of the 2-MByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte page controlled by
this entry; see Section 5.6); otherwise, reserved (must be 0)

NOTES:

1. See Section 5.1.4 for how to determine whether the PAT is supported.

Vol.3A 5-17

PAGING

Table 5-10. Format of a PAE Page-Directory Entry that References a Page Table

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if O, writes may not be allowed to the 2-MByte region controlled by this entry (see Section 5.6)

2 (U/S) User/supervisor; if O, user-mode accesses are not allowed to the 2-MByte region controlled by this entry (see
Section 5.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 5.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 5.9)

5(A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 5.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 2-MByte page; see Table 5-9)

11:8 Ignored

M-1)12 Physical address of 4-KByte aligned page table referenced by this entry

62M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte region controlled
by this entry; see Section 5.6); otherwise, reserved (must be 0)

Table 5-11. Format of a PAE Page-Table Entry that Maps a 4-KByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 5.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section
5.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by
this entry (see Section 5.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 5.9)

5(A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 5.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 5.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 5.9.2); otherwise, reserved (must be 0)'

8(Q) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 5.10); ignored otherwise

5-18 Vol. 3A

PAGING

Table 5-11. Format of a PAE Page-Table Entry that Maps a 4-KByte Page (Contd.)

Bit Contents
Position(s)
11:9 Ignored

(M-1)12 Physical address of the 4-KByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 4-KByte page controlled by
this entry; see Section 5.6); otherwise, reserved (must be 0)

NOTES:
1. See Section 5.1.4 for how to determine whether the PAT is supported.

Figure 5-7 gives a summary of the formats of CR3 and the paging-structure entries with PAE paging. For the paging
structure entries, it identifies separately the format of entries that map pages, those that reference other paging
structures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are highlighted
because they determine how a paging-structure entry is used.

6[6]6]6]5(5]5[5(5[5]5|5]5 M! [M-1 3(3[3[2[2[2]2[2[2]2[2]2[2|T[T|T[T]T[T[T[T]T]1
3(2|1/0|9/8|7|6|5|4|3|2]|1 2(1|0(9|8|7|6/5|4|3|2|1|0|9/8|7|6|5|4|3|2|1|0|9/8|7|6|5/4|3(2|1|0
Ignored? Address of page-directory-pointer table Ignored CR3
PIPIRs || PoPTE:
Reserved? Address of page directory Ign. | Rsvd. IS‘!I'\I vd 1 presen't
PDTPE:
Ignored 0 not
present
X P PIP|,IR PDE:
D Reserved pddress of Reserved |A| Ign. |G[1[D|alcw| /(1] 2MB
4 Pag T D|T{=\W page
X Il |PP U R PDE:
D Reserved Address of page table Ign. |0|g|A|C W/S /{1] page
n| [D|T{ W table
PDE:
Ignored 0 not
present
X P P|P U R PTE:
D Reserved Address of 4KB page frame Ign. [G|A|DIA|C W/S /|1] 4KB
T DT |W page
PTE:
Ignored 0 not
present
Figure 5-7. Formats of CR3 and Paging-Structure Entries with PAE Paging
NOTES:

1. Mis an abbreviation for MAXPHYADDR.

2. CR3 has 64 bits only on processors supporting the Intel-64 architecture. These bits are ignored with PAE paging.
3. Reserved fields must be 0.

4. If IA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63) is reserved.

Vol. 3A 5-19

PAGING

5.5 4-LEVEL PAGING AND 5-LEVEL PAGING

Because the operation of 4-level paging and 5-level paging is very similar, they are described together in this
section. The following items highlight the distinctions between the two paging modes:

®* Alogical processor uses 4-level paging if CRO.PG = 1, CR4.PAE = 1, IA32_EFER.LME = 1, and CR4.LA57 = 0.
4-level paging translates 48-bit linear addresses to 52-bit physical addresses.! Although 52 bits corresponds to
4 PBytes, linear addresses are limited to 48 bits; at most 256 TBytes of linear-address space may be accessed
at any given time.

®* Alogical processor uses 5-level paging if CRO.PG = 1, CR4.PAE = 1, IA32_EFER.LME = 1, and CR4.LA57 = 1.
5-level paging translates 57-bit linear addresses to 52-bit physical addresses. Thus, 5-level paging supports a
linear-address space sufficient to access the entire physical-address space.

5.5.1 Ordinary Paging and HLAT Paging

There are two forms of 4-level paging and 5-level paging that differ principally with regard to how linear-address
translation identifies the first paging structure.

The normal form is called ordinary paging, and it uses CR3 to locate the first paging structure, similar to what is
done for 32-bit paging. Section 5.5.2 provides details of this use of CR3.

An alternative form of paging may be used with the VMX feature called hypervisor-managed linear-address trans-
lation (HLAT). Called HLAT paging, this form is used only in VMX non-root operation and only if the “enable HLAT”
VM-execution control is 1.2 HLAT paging locates the first paging structure using a VM-execution control field in the
VMCS called the HLAT pointer (HLATP). Section 5.5.3 provides details.

Whether HLAT paging is used to translate a specific linear address depends on the address and on the value of a
VM-execution control field in the VMCS called the HLAT prefix size:

* If the HLAT prefix size is zero, every linear address is translated using HLAT paging.

* If the HLAT prefix size is not zero, a linear address is translated using HLAT paging if bit 63 of the address is 1.3
The address is translated using ordinary paging if bit 63 of the address is 0.

In some cases, HLAT paging may specify that a translation of a linear address must be restarted. When this occurs,
the linear address is then translated using ordinary paging (starting with a paging structure identified using CR3).
The situations leading to this restart are detailed in Section 5.5.4, and additional details of the restart process are
given in Section 5.5.5.

5.5.2 Use of CR3 with Ordinary 4-Level Paging and 5-Level Paging

Ordinary 4-level paging and 5-level paging each translate linear addresses using a hierarchy of in-memory paging
structures located using the contents of CR3, which is used to locate the first paging structure. For 4-level paging,
this is the PML4 table, and for 5-level paging it is the PML5 table. Use of CR3 with 4-level paging and 5-level paging
depends on whether process-context identifiers (PCIDs) have been enabled by setting CR4.PCIDE:

® Table 5-12 illustrates how CR3 is used with 4-level paging and 5-level paging if CR4.PCIDE = 0.

Table 5-12. Use of CR3 with 4-Level Paging and 5-level Paging and CR4.PCIDE = 0

Bit Contents
Position(s)
2.0 Ignored

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used by 4-level paging. (The correspond-
ing bits are reserved in the paging-structure entries.) See Section 5.1.4 for how to determine MAXPHYADDR.

2. HLAT paging is used only with 4-level paging and 5-level paging. It is never used with 32-bit paging or PAE paging, regardless of the
value of the “enable HLAT" VM-execution control.

3. This behavior applies if the CPU enumerates a maximum HLAT prefix size of 1 in I1A32_VMX_EPT_VPID_CAP[53:48] (see Appendix
A.10). Behavior when a different value is enumerated is not currently defined.

5-20 Vol. 3A

PAGING

Table 5-12. Use of CR3 with 4-Level Paging and 5-level Paging and CR4.PCIDE = 0 (Contd.)

Bit Contents

Position(s)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the PML4 table or PML5 table
during linear-address translation (see Section 5.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the PML4 table or PML5 table during
linear-address translation (see Section 5.9.2)

11:5 Ignored

M-1:12 Physical address of the 4-KByte aligned PML4 table or PML5 table used for linear-address translation’

60:M Reserved (must be 0)

61 Enables LAM57 for user pointers; Section 4.4.2

62 Enables LAM48 for user pointers; ignored if bit 61 is set.2

63 Reserved (must be 0)3

NOTES:

1. Mis an abbreviation for MAXPHYADDR, which is at most 52; see Section 5.1.4.
2. LAMis not a paging feature.
3. See Section 5.10.4.1 for use of bit 63 of the source operand of the MOV to CR3 instruction.

® Table 5-13 illustrates how CR3 is used with 4-level paging and 5-level paging if CR4.PCIDE = 1.

Table 5-13. Use of CR3 with 4-Level Paging and 5-Level Paging and CR4.PCIDE = 1

Bit Contents
Position(s)
11:0 PCID (see Section 5.10.1)’
M-1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address translation?
60:M Reserved (must be 0)
61 Enables LAM57 for user pointers; Section 443
62 Enables LAM48 for user pointers; ignored if bit 61 is set.3
63 Reserved (must be 0)*
NOTES:

1. Section 5.9.2 explains how the processor determines the memory type used to access the PML4 table during linear-address transla-
tion with CR4.PCIDE = 1.

2. Mis an abbreviation for MAXPHYADDR, which is at most 52; see Section 5.1.4.

3. LAMis not a paging feature.

4, See Section 5.10.4.1 for use of bit 63 of the source operand of the MOV to CR3 instruction.

After software modifies the value of CR4.PCIDE, the logical processor immediately begins using CR3 as specified
for the new value. For example, if software changes CR4.PCIDE from 1 to 0, the current PCID immediately changes
from CR3[11:0] to O00H (see also Section 5.10.4.1). In addition, the logical processor subsequently determines
the memory type used to access the PML4 table using CR3.PWT and CR3.PCD, which had been bits 4:3 of the PCID.

Vol. 3A 5-21

PAGING

5.5.3 Use of HLATP with HLAT 4-Level Paging and 5-Level Paging

With HLAT paging, 4-level paging and 5-level paging each translate linear addresses using a hierarchy of in-
memory paging structures located using the value of HLATP (a VM-execution control field in the VMCS), which is
used to locate the first paging structure. For 4-level paging, this is the PML4 table, and for 5-level paging it is the
PMLS5 table.

HLATP has the same format as that given for CR3 in Table 5-12, with the exception that bits 2:0 and bits 11:5 are
reserved and must be zero (these bits are checked by VM entry). HLATP does not contain a PCID value. HLAT
paging with CR4.PCIDE = 1 uses the PCID value in CR3[11:0].

5.5.4 Linear-Address Translation with 4-Level Paging and 5-Level Paging

4-level paging and 5-level paging may map linear addresses to 4-KByte pages, 2-MByte pages, or 1-GByte pages.!
Figure 5-8illustrates the translation process for 4-level paging when it produces a 4-KByte page; Figure 5-9 covers
the case of a 2-MByte page, and Figure 5-10 the case of a 1-GByte page. (The process for 5-level paging is similar.)

Linear Address

47 39 38 3029 2120 121 0
| PML4 | Directory Ptr Directory Table Offset
] | 9 .
9 12_4-KByte Page
Physical Addr
PTE -
Page-Directory- PDE with PS=0 > 40
Pointer Table 40 Page Table
Page-Directory
L»{PDPTE 40
9
40
» PML4E
40

CR3 or HLATP

Figure 5-8. Linear-Address Translation to a 4-KByte Page Using 4-Level Paging

1. Not all processors support 1-GByte pages; see Section 5.1.4.

5-22 Vol. 3A

PAGING

Linear Address

47 39 38 3029 2120 0
| PML4 ‘ Directory Ptr Directory Offset
9
2-MByte Page
Physical Addr
Page-Directory- PDE with PS=1 >
Pointer Table 31
Page-Directory
‘> PDPTE
40
9
40
—>»| PML4E
—>
40

CR3 or HLATP

Figure 5-9. Linear-Address Translation to a 2-MByte Page using 4-Level Paging

Linear Address
47 39 38 30 29 0
| PML4 | Directory Ptr Offset

Page-Directory- 1-GByte Page

Pointer Table

+ Physical Addr

> PDPTE with PS=1 >
22

A

40

—>»| PML4E

o
40

CR3 or HLATP

Figure 5-10. Linear-Address Translation to a 1-GByte Page using 4-Level Paging

Vol. 3A 5-23

PAGING

4-level paging and 5-level paging associate with each linear address a protection key. Section 5.6 explains how
the processor uses the protection key in its determination of the access rights of each linear address.

The remainder of this section describes the translation process used by 4-level paging and 5-level paging in more
detail, as well has how the page size and protection key are determined. Because the process used by the two
paging modes is similar, they are described together, with any differences identified, in the following items:

®* With 5-level paging, a 4-KByte naturally aligned PMLS5 table is located at the physical address specified in
bits 51:12 of CR3 (see Table 5-12). (4-level paging does not use a PML5 table and omits this step.) A PML5
table comprises 512 64-bit entries (PML5Es). A PML5E is selected using the physical address defined as follows:

— Bits 51:12 are from CR3 or HLATP.
— Bits 11:3 are bits 56:48 of the linear address.
— Bits 2:0 are all 0.

Because a PML5E is identified using bits 56:48 of the linear address, it controls access to a 256-TByte region of
the linear-address space.

With HLAT paging, if bit 11 of the PML5E is 1, translation is restarted with ordinary paging with a maximum
page size of 256-TBytes (see Section 5.5.5). Otherwise, the translation process continues as described in the
next item.

®* A 4-KByte naturally aligned PML4 table is located at the physical address specified in bits 51:12 of CR3 (for 4-
level paging; see Table 5-12) or in bits 51:12 of the PML5E (for 5-level paging; see Table 5-14). A PML4 table
comprises 512 64-bit entries (PML4Es). A PMLAE is selected using the physical address defined as follows:

— Bits 51:12 are from CR3 or the HLATP (for 4-level paging) or in bits 51:12 of the PML5E (for 5-level
paging).

— Bits 11:3 are bits 47:39 of the linear address.

— Bits 2:0 are all 0.

Because a PMLA4E is identified using bits 47:39 of the linear address, it controls access to a 512-GByte region of
the linear-address space.

With HLAT paging, if bit 11 of the PML4E is 1, translation is restarted with ordinary paging with a maximum
page size of 512-GBytes (see Section 5.5.5). Otherwise, the translation process continues as described in the
next item.

®* A 4-KByte naturally aligned page-directory-pointer table is located at the physical address specified in
bits 51:12 of the PML4E (see Table 5-15). A page-directory-pointer table comprises 512 64-bit entries
(PDPTEs). A PDPTE is selected using the physical address defined as follows:

— Bits 51:12 are from the PML4E.
— Bits 11:3 are bits 38:30 of the linear address.
— Bits 2:0 are all 0.

Because a PDPTE is identified using bits 47:30 of the linear address, it controls access to a 1-GByte region of the
linear-address space.

With HLAT paging, if bit 11 of the PDPTE is 1, translation is restarted with ordinary paging with a maximum page
size of 1-GByte (see Section 5.5.5). Otherwise, the translation process continues as described below.

Use of the PDPTE depends on its PS flag (bit 7):1

* Ifthe PDPTE’s PS flag is 1, the PDPTE maps a 1-GByte page (see Table 5-16). The final physical address is
computed as follows:

— Bits 51:30 are from the PDPTE.
— Bits 29:0 are from the original linear address.
The linear address’s protection key is the value of bits 62:59 of the PDPTE (see Section 5.6.2).

1. The PS flag of a PDPTE is reserved and must be O (if the P flag is 1) if 1-GByte pages are not supported. See Section 5.1.4 for how
to determine whether 1-GByte pages are supported.

5-24 Vol. 3A

PAGING

* Ifthe PDPTE’s PS flag is 0, a 4-KByte naturally aligned page directory is located at the physical address
specified in bits 51:12 of the PDPTE (see Table 5-17). A page directory comprises 512 64-bit entries (PDEs). A
PDE is selected using the physical address defined as follows:

— Bits 51:12 are from the PDPTE.
— Bits 11:3 are bits 29:21 of the linear address.
— Bits 2:0 are all 0.

Because a PDE is identified using bits 47:21 of the linear address, it controls access to a 2-MByte region of the
linear-address space.

With HLAT paging, if bit 11 of the PDE is 1, translation is restarted with ordinary paging with a maximum page size
of 2-MBytes (see Section 5.5.5). Otherwise, the translation process continues as described below.

Use of the PDE depends on its PS flag:

* Ifthe PDE'sPSflagis 1, the PDE maps a 2-MByte page (see Table 5-18). The final physical address is computed
as follows:

— Bits 51:21 are from the PDE.
— Bits 20:0 are from the original linear address.
The linear address’s protection key is the value of bits 62:59 of the PDE (see Section 5.6.2).

* Ifthe PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the physical address specified in
bits 51:12 of the PDE (see Table 5-19). A page table comprises 512 64-bit entries (PTEs). A PTE is selected
using the physical address defined as follows:

— Bits 51:12 are from the PDE.
— Bits 11:3 are bits 20:12 of the linear address.
— Bits 2:0 are all 0.

®* Because a PTE is identified using bits 47:12 of the linear address, every PTE maps a 4-KByte page (see
Table 5-20).

With HLAT paging, if bit 11 of the PTE is 1, translation is restarted with ordinary paging with a maximum page
size of 4-KBytes (see Section 5.5.5). Otherwise, the final physical address is computed as follows:

— Bits 51:12 are from the PTE.
— Bits 11:0 are from the original linear address.
The linear address’s protection key is the value of bits 62:59 of the PTE (see Section 5.6.2).

If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the entry is used neither to refer-
ence another paging-structure entry nor to map a page. There is no translation for a linear address whose transla-
tion would use such a paging-structure entry; a reference to such a linear address causes a page-fault exception
(see Section 5.7).

The following bits in a paging-structure entry are reserved with 4-level paging and 5-level paging (assuming that
the entry’s P flag is 1):

®* Bits 51:MAXPHYADDR are reserved in every paging-structure entry.

® The PSflag is reserved in a PML5E or a PML4E.

* If 1-GByte pages are not supported, the PS flag is reserved in a PDPTE.1

®* Ifthe PSflagin a PDPTE is 1, bits 29:13 of the entry are reserved.

* Ifthe PSflagin a PDE is 1, bits 20:13 of the entry are reserved.

* IfIA32_EFER.NXE = 0, the XD flag (bit 63) is reserved in every paging-structure entry.

A reference using a linear address that is successfully translated to a physical address is performed only if allowed
by the access rights of the translation; see Section 5.6.

1. See Section 5.1.4 for how to determine whether 1-GByte pages are supported.

Vol. 3A 5-25

PAGING

Figure 5-11 gives a summary of the formats of CR3 and the 4-level and 5-level paging-structure entries. For the
paging structure entries, it identifies separately the format of entries that map pages, those that reference other
paging structures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are highlighted
because they determine how a paging-structure entry is used.

Table 5-14. Format of a PML5 Entry (PML5E) that References a PML4 Table

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a PML4 table

1 (R/W) Read/write; if 0, writes may not be allowed to the 256-TByte region controlled by this entry (see Section 5.6)

2 (U/S) User/supervisor; if O, user-mode accesses are not allowed to the 256-TByte region controlled by this entry (see
Section 5.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the PML4 table referenced by this

entry (see Section 5.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the PML4 table referenced by this
entry (see Section 5.9.2)

5(A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 5.8)

6 Ignored

7 (PS) Reserved (must be 0)

10:8 Ignored

11 (R) For ordinary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary
paging)

M-1:12 Physical address of 4-KByte aligned PML4 table referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 256-TByte region

controlled by this entry; see Section 5.6); otherwise, reserved (must be 0)

Table 5-15. Format of a PML4 Entry (PML4E) that References a Page-Directory-Pointer Table

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a page-directory-pointer table

1 (R/W) Read/write; if O, writes may not be allowed to the 512-GByte region controlled by this entry (see Section 5.6)

2 (U/S) User/supervisor; if O, user-mode accesses are not allowed to the 512-GByte region controlled by this entry (see
Section 5.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page-directory-pointer table

referenced by this entry (see Section 5.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page-directory-pointer table
referenced by this entry (see Section 5.9.2)

5(A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 5.8)

6 Ignored

5-26 Vol. 3A

PAGING

Table 5-15. Format of a PML4 Entry (PML4E) that References a Page-Directory-Pointer Table (Contd.)

Bit Contents

Position(s)

7 (PS) Reserved (must be 0)

10:8 Ignored

11 (R) For ordinary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary
paging)

M-1:12 Physical address of 4-KByte aligned page-directory-pointer table referenced by this entry

51M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 512-GByte region
controlled by this entry; see Section 5.6); otherwise, reserved (must be 0)

Table 5-16. Format of a Page-Directory-Pointer-Table Entry (PDPTE) that Maps a 1-GByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 1-GByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 1-GByte page referenced by this entry (see Section 5.6)

2 (U/S) Use)r/supervisor; if 0, user-mode accesses are not allowed to the 1-GByte page referenced by this entry (see Section
5.6

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 1-GByte page referenced by this
entry (see Section 5.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 1-GByte page referenced by this
entry (see Section 5.9.2)

5(A) Accessed; indicates whether software has accessed the 1-GByte page referenced by this entry (see Section 5.8)

6 (D) Dirty; indicates whether software has written to the 1-GByte page referenced by this entry (see Section 5.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page directory; see Table 5-17)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 5.10); ignored otherwise

10:9 Ignored

11 (R) For ordinary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary
paging)

12 (PAT) glgirzeﬁtly determines the memory type used to access the 1-GByte page referenced by this entry (see Section

29:13 Reserved (must be 0)

(M-1):30 Physical address of the 1-GByte page referenced by this entry

Vol. 3A 5-27

PAGING

Table 5-16. Format of a Page-Directory-Pointer-Table Entry (PDPTE) that Maps a 1-GByte Page (Contd.)

Bit Contents

Position(s)

51:M Reserved (must be 0)

58:52 Ignored

62:59 Protection key; if CR4.PKE = 1 or CR4.PKS = 1, this may control the page's access rights (see Section 5.6.2); otherwise,
it is ignored and not used to control access rights.

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 1-GByte page controlled by
this entry; see Section 5.6); otherwise, reserved (must be 0)

NOTES:

1. The PAT is supported on all processors that support 4-level paging.

Table 5-17. Format of a Page-Directory-Pointer-Table Entry (PDPTE) that References a Page Directory

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a page directory

1 (R/W) Read/write; if O, writes may not be allowed to the 1-GByte region controlled by this entry (see Section 5.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 1-GByte region controlled by this entry (see Section
5.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page directory referenced by
this entry (see Section 5.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page directory referenced by
this entry (see Section 5.9.2)

5(A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 5.8)

6 Ignored

7 (PS) Page size; must be O (otherwise, this entry maps a 1-GByte page; see Table 5-16)

10:8 Ignored

11 (R) For ordinary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary
paging)

M-1)12 Physical address of 4-KByte aligned page directory referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 1-GByte region controlled
by this entry; see Section 5.6); otherwise, reserved (must be 0)

5-28 Vol. 3A

PAGING

Table 5-18. Format of a Page-Directory Entry that Maps a 2-MByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 2-MByte page referenced by this entry (see Section 5.6)

2 (U/S) Use)r/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte page referenced by this entry (see Section
5.6

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 2-MByte page referenced by
this entry (see Section 5.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 2-MByte page referenced by
this entry (see Section 5.9.2)

5(A) Accessed; indicates whether software has accessed the 2-MByte page referenced by this entry (see Section 5.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by this entry (see Section 5.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 5-19)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 5.10); ignored otherwise

10:9 Ignored

11 (R) For ordinary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary
paging)

12 (PAT) Indire)ctly determines the memory type used to access the 2-MByte page referenced by this entry (see Section
5.9.2

20:13 Reserved (must be 0)

(M-1):21 Physical address of the 2-MByte page referenced by this entry

51M Reserved (must be 0)
58:52 Ignored
62:59 Protection key; if CR4.PKE = 1 or CR4.PKS = 1, this may control the page’s access rights (see Section 5.6.2);

otherwise, it is ignored and not used to control access rights.

63 (XD) IfIA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte page controlled by
this entry; see Section 5.6); otherwise, reserved (must be 0)

Vol. 3A 5-29

PAGING

Table 5-19. Format of a Page-Directory Entry that References a Page Table

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if O, writes may not be allowed to the 2-MByte region controlled by this entry (see Section 5.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte region controlled by this entry (see Section
5.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 5.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 5.9.2)

5(A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 5.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 2-MByte page; see Table 5-18)

10:8 Ignored

11 (R) For ordinary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary
paging)

M-1)12 Physical address of 4-KByte aligned page table referenced by this entry

51M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte region controlled
by this entry; see Section 5.6); otherwise, reserved (must be 0)

5-30 Vol. 3A

PAGING

Table 5-20. Format of a Page-Table Entry that Maps a 4-KByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 5.6)

2 (U/S) Use)r/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section
5.6

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by

this entry (see Section 5.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 5.9.2)

5(A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 5.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 5.8)

7 (PAT) Indirectly determines the memory type used to access the 4-KByte page referenced by this entry (see Section 5.9.2)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 5.10); ignored otherwise

10:9 Ignored

11 (R) For lord)inary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary
paging

M-1)12 Physical address of the 4-KByte page referenced by this entry

51M Reserved (must be 0)
58:52 Ignored
62:59 Protection key; if CR4.PKE = 1 or CR4.PKS = 1, this may control the page’s access rights (see Section 5.6.2);

otherwise, it is ignored and not used to control access rights.

63 (XD) IfIA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 4-KByte page controlled by
this entry; see Section 5.6); otherwise, reserved (must be 0)

Vol. 3A 5-31

PAGING

5
6

-
-
-
-

M! [M-1 3(3(3(2(2|2|2[2]2|2]2|2]|2[1[T]|1|1|1]|1

5|5(5/5(5
7|6/5/4(3/2]1 2/1/0/9/8|7/6|5|4/3|2|1/0/9|8|7|6/5]|4/3/2|{1|0/9/8|7/6|5

N Ul

Address of PML4 table (4-level paging)

2
Reserved or PML5 table (5-level paging)

Ignored Ign. CR3

RS

[
PML5E:
Ign. vdﬁ A

R
/S\//\I 1 present

OMNTU|] OO TO|bD
—5 v| 4= o|w

woO X

Ignored Rsvd. Address of PML4 table

PML5E:
not
present

(=]

Ignored

PML4E:

Ignored Rsvd. Address of page-directory-pointer table present

Ign. vd

o0 —
>
oNnT

PML4E:
not
present

(=]

Ignored

PDPTE:
1GB

page

X| Prot. Address of
5 Ignored Rsvd. 11¢B page frame

|=—
o
>
|=—

P
Reserved /_-|§ R|{lgn.|G

PDPTE:

page
directory

|=—

Ignored Rsvd. Address of page directory R| Ign.

(=)
(=]
>
ONTU| ONT

—S v| 45 ©
S~ =~2

PDTPE:
not
present

(=]

Ignored

PDE:
2MB

page

X| Prot. Address of
Ignored Rsvd. 2MB page frame

|=—

Reserved /_-|§ R|{lgn.|G|1|D|A

PDE:

page
table

|=—

Ignored Rsvd. Address of page table R| Ign.

(=)
(=]
>
ONTU| ONT

—S v| 45 ©
S~ =~2

PDE:
not
present

(=]

Ignored

PTE:
4KB

page

X| Prot. Ignored Rsvd. Address of 4KB page frame Rilgn.|G

—A> 0
[w]
>

OMN ™o

—S T
=
(2]

=~=
Id

PTE:
Ignored 0 not
present

Figure 5-11. Formats of CR3 and Paging-Structure Entries with 4-Level Paging and 5-Level Paging

NOTES:
1. Mis an abbreviation for MAXPHYADDR.

2.Reserved fields must be 0. On processors that support linear-address masking (see Section 4.4), bits 62:61 configure that feature and
may be set to 1. Because linear-address masking is not a paging feature, those bits are not illustrated here.

3. If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1, the XD flag (bit 63) is reserved.
4.Bit 11 is R (restart) only for HLAT paging; it is ignored for ordinary paging.
5. The protection key is used only if software has enabled the appropriate feature; see Section 5.6.2. It is ignored otherwise.

5-32 Vol. 3A

PAGING

5.5.5 Restart of HLAT Paging

As noted in Section 5.5.1, HLAT paging may specify that a translation of a linear address must be restarted. Specif-
ically, this occurs when HLAT paging encounters a paging-structure entry that sets bit 11 (see Section 5.5.4).

When this occurs, translation of the linear address is restarted using ordinary paging (starting with a paging struc-
ture identified using CR3). The restarted translation proceeds just as if the HLAT feature were not enabled. The
entire linear address is translated again, including those portions that had been used by HLAT paging prior to the
restart.

The process of restarting HLAT paging (using ordinary paging) always specifies a maximum page size to be used
when a resulting translation is cached in the TLBs. This maximum page size depends on the level of the paging-
structure entry that restarts the translation by setting bit 11; details are given in Section 5.5.4. The page size of
the translation produced by the restarted process is never greater than this maximum page size. See Section
5.10.2.2 for more discussion.

5.6 ACCESS RIGHTS

There is a translation for a linear address if the processes described in Section 5.3, Section 5.4.2, and Section 5.5
(depending upon the paging mode) completes and produces a physical address. Whether an access is permitted by
a translation is determined by the access rights specified by the paging-structure entries controlling the transla-
tion; 1 paging-mode modifiers in CR0O, CR4, and the IA32_EFER MSR; EFLAGS.AC; and the mode of the access.

Section 5.6.1 describes how the processor determines the access rights for each linear address. Section 5.6.2
provides additional information about how protection keys contribute to access-rights determination. (They do so
only with 4-level paging and 5-level paging, and only if CR4.PKE = 1 or CR4.PKS = 1.)

NOTE

If HLAT paging is restarted, permissions are determined only by the access rights specified by the
paging-structure entries that the subsequent ordinary paging used to translate the linear address.
The access rights specified by the entries used earlier by HLAT paging do not apply.

5.6.1 Determination of Access Rights

Every access to a linear address is either a supervisor-mode access or a user-mode access. For all instruction
fetches and most data accesses, this distinction is determined by the current privilege level (CPL): accesses made
while CPL < 3 are supervisor-mode accesses, while accesses made while CPL = 3 are user-mode accesses.

Some operations implicitly access system data structures with linear addresses; the resulting accesses to those
data structures are supervisor-mode accesses regardless of CPL. Examples of such accesses include the following:
accesses to the global descriptor table (GDT) or local descriptor table (LDT) to load a segment descriptor; accesses
to the interrupt descriptor table (IDT) when delivering an interrupt or exception; and accesses to the task-state
segment (TSS) as part of a task switch or change of CPL. All these accesses are called implicit supervisor-mode
accesses regardless of CPL. Other accesses made while CPL < 3 are called explicit supervisor-mode accesses.

Access rights are also controlled by the mode of a linear address as specified by the paging-structure entries
controlling the translation of the linear address. If the U/S flag (bit 2) is 0 in at least one of the paging-structure
entries, the address is a supervisor-mode address. Otherwise, the address is a user-mode address.

When the shadow-stack feature of control-flow enforcement technology (CET) is enabled, certain accesses to
linear addresses are considered shadow-stack accesses (see Section 18.2, "Shadow Stacks,” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1). Like ordinary data accesses, each shadow-stack
access is defined as being either a user access or a supervisor access. In general, a shadow-stack access is a user
access if CPL = 3 and a supervisor access if CPL < 3. The WRUSS instruction is an exception; although it can be
executed only if CPL = 0, the processor treats its shadow-stack accesses as user accesses.

1. With PAE paging, the PDPTEs do not determine access rights.

Vol. 3A 5-33

PAGING

Shadow-stack accesses are allowed only to shadow-stack addresses. A linear address is a shadow-stack
address if the following are true of the translation of the linear address: (1) the R/W flag (bit 1) is 0 and the dirty
flag (bit 6) is 1 in the paging-structure entry that maps the page containing the linear address; and (2) the R/W
flag is 1 in every other paging-structure entry controlling the translation of the linear address.

The following items detail how paging determines access rights (only the items noted explicitly apply to shadow-
stack accesses):

NOTE

Many of the items below refer to an address with a protection key for which read (or write) access
is permitted. Section 5.6.2 provides details on when a protection key will permit (or not permit) a
data access (read or write) to a linear address using that protection key.

® For supervisor-mode accesses:

— Data may be read (implicitly or explicitly) from any supervisor-mode address with a protection key for
which read access is permitted.

— Data reads from user-mode pages.
Access rights depend on the value of CR4.SMAP:

* If CR4.SMAP = 0, data may be read from any user-mode address with a protection key for which read
access is permitted.

e If CR4.SMAP = 1, access rights depend on the value of EFLAGS.AC and whether the access is implicit or
explicit:
— If EFLAGS.AC = 1 and the access is explicit, data may be read from any user-mode address with a
protection key for which read access is permitted.
— If EFLAGS.AC = 0 or the access is implicit, data may not be read from any user-mode address.

— Data writes to supervisor-mode addresses.
Access rights depend on the value of CR0.WP:

¢ If CRO.WP = 0, data may be written to any supervisor-mode address with a protection key for which
write access is permitted.

¢ If CRO.WP = 1, data may be written to any supervisor-mode address with a translation for which the
R/W flag (bit 1) is 1 in every paging-structure entry controlling the translation and with a protection key
for which write access is permitted; data may not be written to any supervisor-mode address with a
translation for which the R/W flag is 0 in any paging-structure entry controlling the translation.

— Data writes to user-mode addresses.
Access rights depend on the value of CR0O.WP:

e If CRO.WP = 0, access rights depend on the value of CR4.SMAP:

— If CR4.SMAP = 0, data may be written to any user-mode address with a protection key for which
write access is permitted.

— If CR4.SMAP = 1, access rights depend on the value of EFLAGS.AC and whether the access is
implicit or explicit:

e If EFLAGS.AC = 1 and the access is explicit, data may be written to any user-mode address
with a protection key for which write access is permitted.

e If EFLAGS.AC = 0 or the access is implicit, data may not be written to any user-mode address.
e If CRO.WP = 1, access rights depend on the value of CR4.SMAP:

— If CR4.SMAP = 0, data may be written to any user-mode address with a translation for which the
R/W flag is 1 in every paging-structure entry controlling the translation and with a protection key
for which write access is permitted; data may not be written to any user-mode address with a
translation for which the R/W flag is 0 in any paging-structure entry controlling the translation.

— If CR4.SMAP = 1, access rights depend on the value of EFLAGS.AC and whether the access is
implicit or explicit:

5-34 Vol. 3A

PAGING

e If EFLAGS.AC = 1 and the access is explicit, data may be written to any user-mode address
with a translation for which the R/W flag is 1 in every paging-structure entry controlling the
translation and with a protection key for which write access is permitted; data may not be
written to any user-mode address with a translation for which the R/W flag is 0 in any paging-
structure entry controlling the translation.

e If EFLAGS.AC = 0 or the access is implicit, data may not be written to any user-mode address.
Instruction fetches from supervisor-mode addresses.

* For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from any supervisor-mode
address.

* For other paging modes with IA32_EFER.NXE = 1, instructions may be fetched from any supervisor-
mode address with a translation for which the XD flag (bit 63) is 0 in every paging-structure entry
controlling the translation; instructions may not be fetched from any supervisor-mode address with a
translation for which the XD flag is 1 in any paging-structure entry controlling the translation.

Instruction fetches from user-mode addresses.
Access rights depend on the values of CR4.SMEP:

e If CR4.SMEP = 0, access rights depend on the paging mode and the value of IA32_EFER.NXE:

— For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from any user-mode
address.

— For other paging modes with IA32_EFER.NXE = 1, instructions may be fetched from any user-
mode address with a translation for which the XD flag is 0 in every paging-structure entry
controlling the translation; instructions may not be fetched from any user-mode address with a
translation for which the XD flag is 1 in any paging-structure entry controlling the translation.

* If CR4.SMEP = 1, instructions may not be fetched from any user-mode address.

Supervisor-mode shadow-stack accesses are allowed only to supervisor-mode shadow-stack addresses
(see above).

®* For user-mode accesses:

Data reads.
Access rights depend on the mode of the linear address:

* Data may be read from any user-mode address with a protection key for which read access is
permitted.

¢ Data may not be read from any supervisor-mode address.

Data writes.
Access rights depend on the mode of the linear address:

* Data may be written to any user-mode address with a translation for which the R/W flag is 1 in every
paging-structure entry controlling the translation and with a protection key for which write access is
permitted.

* Data may not be written to any supervisor-mode address.

Instruction fetches.
Access rights depend on the mode of the linear address, the paging mode, and the value of
IA32_EFER.NXE:

* For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from any user-mode address.

* For other paging modes with IA32_EFER.NXE = 1, instructions may be fetched from any user-mode
address with a translation for which the XD flag is 0 in every paging-structure entry controlling the
translation.

* Instructions may not be fetched from any supervisor-mode address.

User-mode shadow-stack accesses made outside enclave mode are allowed only to user-mode shadow-
stack addresses (see above). User-mode shadow-stack accesses made in enclave mode are treated like
ordinary data accesses (see above).

Vol.3A 5-35

PAGING

A processor may cache information from the paging-structure entries in TLBs and paging-structure caches (see
Section 5.10). These structures may include information about access rights. The processor may enforce access
rights based on the TLBs and paging-structure caches instead of on the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change access rights, the processor might
not use that change for a subsequent access to an affected linear address (see Section 5.10.4.3). See Section
5.10.4.2 for how software can ensure that the processor uses the modified access rights.

5.6.2 Protection Keys

4-level paging and 5-level paging associate a 4-bit protection key with each linear address (the protection key
located in bits 62:59 of the paging-structure entry that mapped the page containing the linear address; see Section
5.5). Two protection key features control accesses to linear addresses based on their protection keys:

®* IfCR4.PKE =1, the PKRU register determines, for each protection key, whether user-mode addresses with that
protection key may be read or written.

® If CR4.PKS = 1, the IA32_PKRS MSR (MSR index 6E1H) determines, for each protection key, whether
supervisor-mode addresses with that protection key may be read or written.

32-bit paging and PAE paging do not associate linear addresses with protection keys. For the purposes of Section
5.6.1, reads and writes are implicitly permitted for all protection keys with either of those paging modes.

The PKRU register (protection-key rights for user pages) is a 32-bit register with the following format: for each i
(0 ?i?15), PKRU[2/] is the access-disable bit for protection key i (ADi); PKRU[2/+1] is the write-disable bit for
protection key i (WDJ). The IA32_PKRS MSR has the same format (bits 63:32 of the MSR are reserved and must be
zero).

Software can use the RDPKRU and WRPKRU instructions with ECX = 0 to read and write PKRU. In addition, the
PKRU register is XSAVE-managed state and can thus be read and written by instructions in the XSAVE feature set.
See Chapter 13, “Managing State Using the XSAVE Feature Set,” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for more information about the XSAVE feature set.

Software can use the RDMSR and WRMSR instructions to read and write the IA32_PKRS MSR. Writes to the
IA32_PKRS MSR using WRMSR are not serializing. The IA32_PKRS MSR is not XSAVE-managed.

How a linear address’s protection key controls access to the address depends on the mode of the linear address:

®* Alinear address’s protection key controls only data accesses to the address. It does not in any way affect
instructions fetches from the address.

®* If CR4.PKE = 0, the protection key of a user-mode address does not control data accesses to the address (for
the purposes of Section 5.6.1, reads and writes of user-mode addresses are implicitly permitted for all
protection keys).

If CR4.PKE = 1, use of the protection key i of a user-mode address depends on the value of the PKRU register:
— If AD/ = 1, no data accesses are permitted.
— If WD/ = 1, permission may be denied to certain data write accesses:

* User-mode write accesses are not permitted.

* Supervisor-mode write accesses are not permitted if CRO.WP = 1. (If CRO.WP = 0, WD/ does not affect
supervisor-mode write accesses to user-mode addresses with protection key i.)

* If CR4.PKS = 0, the protection key of a supervisor-mode address does not control data accesses to the address
(for the purposes of Section 5.6.1, reads and writes of supervisor-mode addresses are implicitly permitted for
all protection keys).

If CR4.PKS = 1, use of the protection key / of a supervisor-mode address depends on the value of the
IA32_PKRS MSR:

— If AD/ = 1, no data accesses are permitted.

— If WD/ = 1, write accesses are not permitted if CRO.WP = 1. (If CRO.WP = 0, IA32_PKRS.WDi does not
affect write accesses to supervisor-mode addresses with protection key i.)

Protection keys apply to shadow-stack accesses just as they do to ordinary data accesses.

5-36 Vol. 3A

PAGING

5.7 PAGE-FAULT EXCEPTIONS

Accesses using linear addresses may cause page-fault exceptions (#PF; exception 14). An access to a linear
address may cause a page-fault exception for either of two reasons: (1) there is no translation for the linear
address; or (2) there is a translation for the linear address, but its access rights do not permit the access.

As noted in Section 5.3, Section 5.4.2, and Section 5.5, there is no translation for a linear address if the translation
process for that address would use a paging-structure entry in which the P flag (bit 0) is 0 or one that sets a
reserved bit.! If there is a translation for a linear address, its access rights are determined as specified in Section
5.6.

When Intel® Software Guard Extensions (Intel® SGX) are enabled, the processor may deliver exception 14 for
reasons unrelated to paging. See Section 36.3, “Access-control Requirements,” and Section 36.20, “"Enclave Page
Cache Map (EPCM),” in Chapter 36, “Enclave Access Control and Data Structures.” Such an exception is called an
SGX-induced page fault. The processor uses the error code to distinguish SGX-induced page faults from ordinary
page faults.

When a page fault occurs, the processor loads the CR2 register with the linear address that generated the excep-
tion. If linear-address masking had been in effect (Section 4.4), the address recorded reflects the result of that
masking and does not contain any masked metadata. If the page-fault exception occurred during execution of an
instruction in enclave mode (and not during delivery of an event incident to enclave mode), bits 11:0 of the address
are cleared.

Figure 5-12 illustrates the error code that the processor provides on delivery of a page-fault exception. The
following items explain how the bits in the error code describe the nature of the page-fault exception:

31

—

5

0
o

anj+
AASY |«
sin|~
HM| =

6 5
g 2k
Reserved 4

7
z
Reserved =

P 0 The fault was caused by a non-present page.
1 The fault was caused by a page-level protection violation.

WIR 0 The access causing the fault was a read.
The access causing the fault was a write.

-

u/s A supervisor-mode access caused the fault.

A user-mode access caused the fault.

- O

RSVD 0 The fault was not caused by reserved bit violation.
The fault was caused by a reserved bit set to 1 in some
paging-structure entry.

-

I/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.
PK 0 The fault was not caused by protection keys.
1 There was a protection-key violation.
SS 0 The fault was not caused by a shadow-stack access.
1 The fault was caused by a shadow-stack access.
HLAT 0 The fault occurred during ordinary paging or due to access rights.
1 The fault occurred during HLAT paging.
SGX The fault is not related to SGX.

- O

The fault resulted from violation of SGX-specific access-control
requirements.

Figure 5-12. Page-Fault Error Code

1. If HLAT paging encounters a paging-structure entry that sets a reserved bit, there is no translation even if the bit 11 of the entry
indicates a restart. In this case, there is a page fault and the translation is not restarted.

Vol. 3A 5-37

PAGING

* P flag (bit 0).
This flag is 0 if there is no translation for the linear address because the P flag was 0 in one of the paging-
structure entries used to translate that address.

* W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; otherwise, it is 0. This flag describes
the access causing the page-fault exception, not the access rights specified by paging.

* U/S (bit 2).
If a user-mode access caused the page-fault exception, this flag is 1; it is 0 if a supervisor-mode access did so.
This flag describes the access causing the page-fault exception, not the access rights specified by paging. User-
mode and supervisor-mode accesses are defined in Section 5.6.

®* RSVD flag (bit 3).
This flag is 1 if there is no translation for the linear address because a reserved bit was set in one of the paging-
structure entries used to translate that address. (Because reserved bits are not checked in a paging-structure
entry whose P flag is 0, bit 3 of the error code can be set only if bit 0 is also set.1)

Bits reserved in the paging-structure entries are reserved for future functionality. Software developers should
be aware that such bits may be used in the future and that a paging-structure entry that causes a page-fault
exception on one processor might not do so in the future.

* 1I/D flag (bit 4).
This flag is 1 if (1) the access causing the page-fault exception was an instruction fetch; and (2) either
(a) CR4.SMEP = 1; or (b) both (i) CR4.PAE = 1 (either PAE paging, 4-level paging, or 5-level paging is in use);
and (ii) IA32_EFER.NXE = 1. Otherwise, the flag is 0. This flag describes the access causing the page-fault
exception, not the access rights specified by paging.

®* PK flag (bit 5).
This flag is 1 only for data accesses and only with 4-level paging and 5-level paging. In these cases, the setting
depends on the mode of the address being accessed:

— For accesses to supervisor-mode addresses, the flag is set if (1) CR4.PKS = 1; (2) the linear address has
protection key i; and (3) the IA32_PKRS MSR (see Section 5.6.2) is such that either (a) AD/ = 1; or (b) the
following all hold: (i) WDi = 1; (ii) the access is a write access; and (iii) either CRO.WP = 1 or the access
causing the page-fault exception was a user-mode access. (Note that this flag may be set on page faults
due to user-mode accesses to supervisor-mode addresses.)

— For accesses to user-mode addresses, the flag is set if (1) CR4.PKE = 1; (2) the linear address has
protection key i; and (3) the PKRU register (see Section 5.6.2) is such that either (a) AD/ = 1; or (b) the
following all hold: (i) WDi = 1; (ii) the access is a write access; and (iii) either CRO.WP = 1 or the access
causing the page-fault exception was a user-mode access.

® SS (bit 6).
If the access causing the page-fault exception was a shadow-stack access (including shadow-stack accesses in
enclave mode), this flag is 1; otherwise, it is 0. This flag describes the access causing the page-fault exception,
not the access rights specified by paging.

® HLAT (bit 7).
This flag is 1 if there is no translation for the linear address using HLAT paging because, in one of the paging-
structure entries used to translate that address, either the P flag was 0 or a reserved bit was set. An error code
will set this flag only if it clears bit 0 or sets bit 3. This flag will not be set by a page fault resulting from a
violation of access rights, nor for one encountered during ordinary paging, including the case in which there has
been a restart of HLAT paging.

® SGXflag (bit 15).
This flag is 1 if the exception is unrelated to paging and resulted from violation of SGX-specific access-control
requirements. Because such a violation can occur only if there is no ordinary page fault, this flag is set only if
the P flag (bit 0) is 1 and the RSVD flag (bit 3) and the PK flag (bit 5) are both 0.

Page-fault exceptions occur only due to an attempt to use a linear address. Failures to load the PDPTE registers
with PAE paging (see Section 5.4.1) cause general-protection exceptions (#GP(0)) and not page-fault exceptions.

1. Some past processors had errata for some page faults that occur when there is no translation for the linear address because the P
flag was 0 in one of the paging-structure entries used to translate that address. Due to these errata, some such page faults pro-
duced error codes that cleared bit O (P flag) and set bit 3 (RSVD flag).

5-38 Vol. 3A

PAGING

5.8 ACCESSED AND DIRTY FLAGS

For any paging-structure entry that is used during linear-address translation, bit 5 is the accessed flag.! For
paging-structure entries that map a page (as opposed to referencing another paging structure), bit 6 is the dirty
flag. These flags are provided for use by memory-management software to manage the transfer of pages and
paging structures into and out of physical memory.

Whenever the processor uses a paging-structure entry as part of linear-address translation, it sets the accessed
flag in that entry (if it is not already set).

Whenever there is a write to a linear address, the processor sets the dirty flag (if it is not already set) in the paging-
structure entry that identifies the final physical address for the linear address (either a PTE or a paging-structure
entry in which the PS flag is 1).

The previous two paragraphs apply also to HLAT paging. If HLAT paging encounters a paging-structure entry that
sets bit 11, indicating a restart, the processor will set the accessed flag in that entry; it will not set the dirty flag
because, if an entry indicates a restart, it does identify the final physical address for the linear address being trans-
lated.

NOTE

If software on one logical processor writes to a page while software on another logical processor
concurrently clears the R/W flag in the paging-structure entry that maps the page, execution on
some processors may result in the entry’s dirty flag being set (due to the write on the first logical
processor) and the entry’s R/W flag being clear (due to the update to the entry on the second
logical processor). This will never occur on a processor that supports control-flow enforcement
technology (CET). Specifically, a processor that supports CET will never set the dirty flag in a
paging-structure entry in which the R/W flag is clear.

Memory-management software may clear these flags when a page or a paging structure is initially loaded into
physical memory. These flags are "“sticky,” meaning that, once set, the processor does not clear them; only soft-
ware can clear them.

A processor may cache information from the paging-structure entries in TLBs and paging-structure caches (see
Section 5.10). This fact implies that, if software changes an accessed flag or a dirty flag from 1 to 0, the processor
might not set the corresponding bit in memory on a subsequent access using an affected linear address (see
Section 5.10.4.3). See Section 5.10.4.2 for how software can ensure that these bits are updated as desired.

NOTE

The accesses used by the processor to set these flags may or may not be exposed to the
processor’s self-modifying code detection logic. If the processor is executing code from the same
memory area that is being used for the paging structures, the setting of these flags may or may not
result in an immediate change to the executing code stream.

5.9 PAGING AND MEMORY TYPING

The memory type of a memory access refers to the type of caching used for that access. Chapter 13, "Memory
Cache Control,” provides many details regarding memory typing in the Intel-64 and IA-32 architectures. This
section describes how paging contributes to the determination of memory typing.

The way in which paging contributes to memory typing depends on whether the processor supports the Page
Attribute Table (PAT; see Section 13.12).2 Section 5.9.1 and Section 5.9.2 explain how paging contributes to
memory typing depending on whether the PAT is supported.

1. With PAE paging, the PDPTEs are not used during linear-address translation but only to load the PDPTE registers for some execu-
tions of the MOV CR instruction (see Section 5.4.1). For this reason, the PDPTEs do not contain accessed flags with PAE paging.

2. The PAT is supported on Pentium Ill and more recent processor families. See Section 5.1.4 for how to determine whether the PAT is
supported.

Vol. 3A 5-39

PAGING

5.9.1 Paging and Memory Typing When the PAT is Not Supported (Pentium Pro and Pentium
Il Processors)

NOTE

The PAT is supported on all processors that support 4-level paging or 5-level paging. Thus, this
section applies only to 32-bit paging and PAE paging.

If the PAT is not supported, paging contributes to memory typing in conjunction with the memory-type range regis-
ters (MTRRs) as specified in Table 13-6 in Section 13.5.2.1.

For any access to a physical address, the table combines the memory type specified for that physical address by the
MTRRs with a PCD value and a PWT value. The latter two values are determined as follows:

® For an access to a PDE with 32-bit paging, the PCD and PWT values come from CR3.
® For an access to a PDE with PAE paging, the PCD and PWT values come from the relevant PDPTE register.
® For an access to a PTE, the PCD and PWT values come from the relevant PDE.

® For an access to the physical address that is the translation of a linear address, the PCD and PWT values come
from the relevant PTE (if the translation uses a 4-KByte page) or the relevant PDE (otherwise).

® With PAE paging, the UC memory type is used when loading the PDPTEs (see Section 5.4.1).

5.9.2 Paging and Memory Typing When the PAT is Supported (Pentium Ill and More Recent
Processor Families)

If the PAT is supported, paging contributes to memory typing in conjunction with the PAT and the memory-type

range registers (MTRRs) as specified in Table 13-7 in Section 13.5.2.2.

The PAT is a 64-bit MSR (IA32_PAT; MSR index 277H) comprising eight (8) 8-bit entries (entry i comprises
bits 8i+7:8i of the MSR).

For any access to a physical address, the table combines the memory type specified for that physical address by the
MTRRs with a memory type selected from the PAT. Table 13-11 in Section 13.12.3 specifies how a memory type is
selected from the PAT. Specifically, it comes from entry i of the PAT, where i is defined as follows:

® For an access to an entry in a paging structure whose address is in CR3 (e.g., the PML4 table with 4-level
paging):
— For 4-level paging or 5-level paging with CR4.PCIDE =1,/ = 0.
— Otherwise, i = 2*PCD+PWT, where the PCD and PWT values come from CR3.

® For an access to a PDE with PAE paging, i = 2*PCD+PWT, where the PCD and PWT values come from the
relevant PDPTE register.

® For an access to a paging-structure entry X whose address is in another paging-structure entry Y, i =
2*PCD+PWT, where the PCD and PWT values come from Y.

® For an access to the physical address that is the translation of a linear address, i = 4*PAT+2*PCD+PWT, where
the PAT, PCD, and PWT values come from the relevant PTE (if the translation uses a 4-KByte page), the relevant
PDE (if the translation uses a 2-MByte page or a 4-MByte page), or the relevant PDPTE (if the translation uses
a 1-GByte page).

* With PAE paging, the WB memory type is used when loading the PDPTEs (see Section 5.4.1).1

1. Some older IA-32 processors used the UC memory type when loading the PDPTEs. Some processors may use the UC memory type if
CRO.CD =1 or if the MTRRs are disabled. These behaviors are model-specific and not architectural.

5-40 Vol. 3A

PAGING

5.9.3 Caching Paging-Related Information about Memory Typing

A processor may cache information from the paging-structure entries in TLBs and paging-structure caches (see
Section 5.10). These structures may include information about memory typing. The processor may use memory-
typing information from the TLBs and paging-structure caches instead of from the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change the memory-typing bits, the
processor might not use that change for a subsequent translation using that entry or for access to an affected
linear address. See Section 5.10.4.2 for how software can ensure that the processor uses the modified memory

typing.

5.10 CACHING TRANSLATION INFORMATION

The Intel-64 and IA-32 architectures may accelerate the address-translation process by caching data from the
paging structures on the processor. Because the processor does not ensure that the data that it caches are always
consistent with the structures in memory, it is important for software developers to understand how and when the
processor may cache such data. They should also understand what actions software can take to remove cached
data that may be inconsistent and when it should do so. This section provides software developers information
about the relevant processor operation.

Section 5.10.1 introduces process-context identifiers (PCIDs), which a logical processor may use to distinguish
information cached for different linear-address spaces. Section 5.10.2 and Section 5.10.3 describe how the
processor may cache information in translation lookaside buffers (TLBs) and paging-structure caches, respectively.
Section 5.10.4 explains how software can remove inconsistent cached information by invalidating portions of the
TLBs and paging-structure caches. Section 5.10.5 describes special considerations for multiprocessor systems.

5.10.1 Process-Context Identifiers (PCIDs)

Process-context identifiers (PCIDs) are a facility by which a logical processor may cache information for multiple
linear-address spaces. The processor may retain cached information when software switches to a different linear-
address space with a different PCID (e.g., by loading CR3; see Section 5.10.4.1 for details).

A PCID is a 12-bit identifier. Non-zero PCIDs are enabled by setting the PCIDE flag (bit 17) of CR4. If CR4.PCIDE =
0, the current PCID is always 000H; otherwise, the current PCID is the value of bits 11:0 of CR3.! Not all proces-
sors allow CR4.PCIDE to be set to 1; see Section 5.1.4 for how to determine whether this is allowed.

The processor ensures that CR4.PCIDE can be 1 only in IA-32e mode (thus, 32-bit paging and PAE paging use only
PCID 000H). In addition, software can change CR4.PCIDE from 0 to 1 only if CR3[11:0] = 000H. These require-
ments are enforced by the following limitations on the MOV CR instruction:

®* MOV to CR4 causes a general-protection exception (#GP) if it would change CR4.PCIDE from 0 to 1 and either
IA32_EFER.LMA = 0 or CR3[11:0] = 000H.

® MOV to CRO causes a general-protection exception if it would clear CRO.PG to 0 while CR4.PCIDE = 1.

When a logical processor creates entries in the TLBs (Section 5.10.2) and paging-structure caches (Section
5.10.3), it associates those entries with the current PCID. When using entries in the TLBs and paging-structure
caches to translate a linear address, a logical processor uses only those entries associated with the current PCID
(see Section 5.10.2.4 for an exception).

If CR4.PCIDE = 0, a logical processor does not cache information for any PCID other than 000H. This is because
(1) if CR4.PCIDE = 0, the logical processor will associate any newly cached information with the current PCID,
000H; and (2) if MOV to CR4 clears CR4.PCIDE, all cached information is invalidated (see Section 5.10.4.1).

1. Note that, while HLAT paging (Section 5.5.3) does not use CR3 to locate the first paging structure, it does use the PCID in CR3[11:0]
when CR4.PCIDE = 1.

Vol. 3A 5-41

PAGING

NOTE

In revisions of this manual that were produced when no processors allowed CR4.PCIDE to be set to
1, Section 5.10, “Caching Translation Information,” discussed the caching of translation information
without any reference to PCIDs. While the section now refers to PCIDs in its specification of this
caching, this documentation change is not intended to imply any change to the behavior of
processors that do not allow CR4.PCIDE to be set to 1.

5.10.2 Translation Lookaside Buffers (TLBs)

A processor may cache information about the translation of linear addresses in translation lookaside buffers (TLBs).
In general, TLBs contain entries that map page numbers to page frames; these terms are defined in Section
5.10.2.1. Section 5.10.2.2 describes how information may be cached in TLBs, and Section 5.10.2.3 gives details of
TLB usage. Section 5.10.2.4 explains the global-page feature, which allows software to indicate that certain trans-
lations should receive special treatment when cached in the TLBs.

5.10.2.1 Page Numbers, Page Frames, and Page Offsets

Section 5.3, Section 5.4.2, and Section 5.5 give details of how the different paging modes translate linear
addresses to physical addresses. Specifically, the upper bits of a linear address (called the page number) deter-
mine the upper bits of the physical address (called the page frame); the lower bits of the linear address (called the
page offset) determine the lower bits of the physical address. The boundary between the page nhumber and the
page offset is determined by the page size. Specifically:

®* 32-bit paging:
— If the translation does not use a PTE (because CR4.PSE = 1 and the PS flag is 1 in the PDE used), the page
size is 4 MBytes and the page number comprises bits 31:22 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page number comprises bits 31:12 of
the linear address.

®* PAE paging:

— If the translation does not use a PTE (because the PS flag is 1 in the PDE used), the page size is 2 MBytes
and the page number comprises bits 31:21 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page number comprises bits 31:12 of
the linear address.

® 4-level paging and 5-level paging:

— If the translation does not use a PDE (because the PS flag is 1 in the PDPTE used), the page size is 1 GByte
and the page number comprises bits 47:30 of the linear address.

— If the translation does use a PDE but does not uses a PTE (because the PS flag is 1 in the PDE used), the
page size is 2 MBytes and the page number comprises bits 47:21 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page number comprises bits 47:12 of
the linear address.

— The page size identified by the preceding items may be reduced if there has been a restart of HLAT paging
(see Section 5.5.5). Restart of HLAT paging always specifies a maximum page size; this page size is
determined by the level of the paging-structure entry that caused the restart. The page size used by the
translation is the minimum of the maximum page size specified by the restart and the page size determined
by the restarted translation (as specified by the previous items).

For example, suppose that HLAT paging encounters a PDE that sets bit 11, indicating a restart. As a result,
the restart uses a maximum page size of 2 MBytes. Suppose that the restarted translation encounters a
PDPTE that sets bit 7, indicating a 1-GByte page. In this case, the translation produced will have a page size
of 2 MBytes (the smaller of the two sizes).

5-42 Vol. 3A

PAGING

5.10.2.2 Caching Translations in TLBs

The processor may accelerate the paging process by caching individual translations in translation lookaside
buffers (TLBs). Each entry in a TLB is an individual translation. Each translation is referenced by a page number.
It contains the following information from the paging-structure entries used to translate linear addresses with the
page number:

®* The physical address corresponding to the page number (the page frame).

®* The access rights from the paging-structure entries used to translate linear addresses with the page number
(see Section 5.6):

— The logical-AND of the R/W flags.

— The logical-AND of the U/S flags.

— The logical-OR of the XD flags (necessary only if IA32_EFER.NXE = 1).
— The protection key (only with 4-level paging and 5-level paging).

® Attributes from a paging-structure entry that identifies the final page frame for the page number (either a PTE
or a paging-structure entry in which the PS flag is 1):

— The dirty flag (see Section 5.8).
— The memory type (see Section 5.9).

(TLB entries may contain other information as well. A processor may implement multiple TLBs, and some of these
may be for special purposes, e.g., only for instruction fetches. Such special-purpose TLBs may not contain some of
this information if it is not necessary. For example, a TLB used only for instruction fetches need not contain infor-
mation about the R/W and dirty flags.)

As noted in Section 5.10.1, any TLB entries created by a logical processor are associated with the current PCID.

Processors need not implement any TLBs. Processors that do implement TLBs may invalidate any TLB entry at any
time. Software should not rely on the existence of TLBs or on the retention of TLB entries.

5.10.2.3 Details of TLB Use

Because the TLBs cache entries only for linear addresses with translations, there can be a TLB entry for a page
number only if the P flag is 1 and the reserved bits are 0 in each of the paging-structure entries used to translate
that page number. In addition, the processor does not cache a translation for a page number unless the accessed
flag is 1 in each of the paging-structure entries used during translation; before caching a translation, the processor
sets any of these accessed flags that is not already 1.

Subject to the limitations given in the previous paragraph, the processor may cache a translation for any linear
address, even if that address is not used to access memory. For example, the processor may cache translations
required for prefetches and for accesses that result from speculative execution that would never actually occur in
the executed code path.

If the page number of a linear address corresponds to a TLB entry associated with the current PCID, the processor
may use that TLB entry to determine the page frame, access rights, and other attributes for accesses to that linear
address. In this case, the processor may not actually consult the paging structures in memory. The processor may
retain a TLB entry unmodified even if software subsequently modifies the relevant paging-structure entries in
memory. See Section 5.10.4.2 for how software can ensure that the processor uses the modified paging-structure
entries.

If the paging structures specify a translation using a page larger than 4 KBytes, some processors may cache
multiple smaller-page TLB entries for that translation. Each such TLB entry would be associated with a page
number corresponding to the smaller page size (e.g., bits 47:12 of a linear address with 4-level paging), even
though part of that page number (e.g., bits 20:12) is part of the offset with respect to the page specified by the
paging structures. The upper bits of the physical address in such a TLB entry are derived from the physical address
in the PDE used to create the translation, while the lower bits come from the linear address of the access for which
the translation is created. There is no way for software to be aware that multiple translations for smaller pages
have been used for a large page. For example, an execution of INVLPG for a linear address on such a page invali-
dates any and all smaller-page TLB entries for the translation of any linear address on that page.

Vol. 3A 5-43

PAGING

If software modifies the paging structures so that the page size used for a 4-KByte range of linear addresses
changes, the TLBs may subsequently contain multiple translations for the address range (one for each page size).
A reference to a linear address in the address range may use any of these translations. Which translation is used
may vary from one execution to another, and the choice may be implementation-specific.

5.10.2.4 Global Pages

The Intel-64 and IA-32 architectures also allow for global pages when the PGE flag (bit 7) is 1 in CR4. If the G flag
(bit 8) is 1 in a paging-structure entry that maps a page (either a PTE or a paging-structure entry in which the PS
flag is 1), any TLB entry cached for a linear address using that paging-structure entry is considered to be global.
Because the G flag is used only in paging-structure entries that map a page, and because information from such
entries is not cached in the paging-structure caches, the global-page feature does not affect the behavior of the
paging-structure caches.

A logical processor may use a global TLB entry to translate a linear address, even if the TLB entry is associated with
a PCID different from the current PCID.

5.10.3 Paging-Structure Caches

In addition to the TLBs, a processor may cache other information about the paging structures in memory.

5.10.3.1 Caches for Paging Structures

A processor may support any or all of the following paging-structure caches:

* PML5E cache (5-level paging only). Each PML5E-cache entry is referenced by a 9-bit value and is used for
linear addresses for which bits 56:48 have that value. The entry contains information from the PML5E used to
translate such linear addresses:

— The physical address from the PML5E (the address of the PML4 table).
— The value of the R/W flag of the PML5E.

— The value of the U/S flag of the PML5E.

— The value of the XD flag of the PML5E.

— The values of the PCD and PWT flags of the PML5E.

The following items detail how a processor may use the PML5E cache:

— If the processor has a PML5E-cache entry for a linear address, it may use that entry when translating the
linear address (instead of the PML5E in memory).

— The processor does not create a PML5E-cache entry unless the P flag is 1 and all reserved bits are 0 in the
PML5E in memory.

— The processor does not create a PML5E-cache entry unless the accessed flag is 1 in the PML5E in memory;
before caching a translation, the processor sets the accessed flag if it is not already 1.

— The processor may create a PML5E-cache entry even if there are no translations for any linear address that
might use that entry (e.g., because the P flags are 0 in all entries in the referenced PML4 table).

— If the processor creates a PML5E-cache entry, the processor may retain it unmodified even if software
subsequently modifies the corresponding PML5E in memory.

®* PMLA4E cache (4-level paging and 5-level paging only). The use of the PML4E cache depends on the paging
mode:

— For 4-level paging, each PML4E-cache entry is referenced by a 9-bit value and is used for linear addresses
for which bits 47:39 have that value.

— For 5-level paging, each PML4E-cache entry is referenced by an 18-bit value and is used for linear
addresses for which bits 56:39 have that value.

A PML4E-cache entry contains information from the PML5E and PML4E used to translate the relevant linear
addresses (for 4-level paging, the PML5E does not apply):

5-44 Vol. 3A

PAGING

The physical address from the PML4E (the address of the page-directory-pointer table).
The logical-AND of the R/W flags in the PML5E and the PML4E.

The logical-AND of the U/S flags in the PML5E and the PML4E.

The logical-OR of the XD flags in the PML5E and the PML4E.

The values of the PCD and PWT flags of the PML4E.

The following items detail how a processor may use the PML4E cache:

If the processor has a PML4E-cache entry for a linear address, it may use that entry when translating the
linear address (instead of the PML5E and PML4E in memory).

The processor does not create a PML4E-cache entry unless the P flags are 1 and all reserved bits are 0 in
the PML5E and the PML4E in memory.

The processor does not create a PML4E-cache entry unless the accessed flags are 1 in the PML5E and the
PML4E in memory; before caching a translation, the processor sets any accessed flags that are not already
1.

The processor may create a PML4E-cache entry even if there are no translations for any linear address that
might use that entry (e.g., because the P flags are 0 in all entries in the referenced page-directory-pointer
table).

If the processor creates a PML4E-cache entry, the processor may retain it unmodified even if software
subsequently modifies the corresponding PML4E in memory.

PDPTE cache (4-level paging and 5-level paging only).! The use of the PML4E cache depends on the paging

mode:

For 4-level paging, each PDPTE-cache entry is referenced by an 18-bit value and is used for linear
addresses for which bits 47:30 have that value.

For 5-level paging, each PDPTE-cache entry is referenced by a 27-bit value and is used for linear addresses
for which bits 56:30 have that value.

A PDPTE-cache entry contains information from the PML5E, PML4E, PDPTE used to translate the relevant linear
addresses (for 4-level paging, the PML5E does not apply):

The physical address from the PDPTE (the address of the page directory). (No PDPTE-cache entry is created
for a PDPTE that maps a 1-GByte page.)

The logical-AND of the R/W flags in the PML5E, PML4E, and PDPTE.
The logical-AND of the U/S flags in the PML5E, PML4E, and PDPTE.
The logical-OR of the XD flags in the PML5E, PML4E, and PDPTE.
The values of the PCD and PWT flags of the PDPTE.

The following items detail how a processor may use the PDPTE cache:

If the processor has a PDPTE-cache entry for a linear address, it may use that entry when translating the
linear address (instead of the PML5E, PML4E, and PDPTE in memory).

The processor does not create a PDPTE-cache entry unless the P flags are 1, the PS flags are 0, and the
reserved bits are 0 in the PML5E, PML4E, and PDPTE in memory.

The processor does not create a PDPTE-cache entry unless the accessed flags are 1 in the PML5E, PML4E,
and PDPTE in memory; before caching a translation, the processor sets any accessed flags that are not
already 1.

The processor may create a PDPTE-cache entry even if there are no translations for any linear address that
might use that entry.

If the processor creates a PDPTE-cache entry, the processor may retain it unmodified even if software
subsequently modifies the corresponding PML5E, PML4E, or PDPTE in memory.

1. With PAE paging, the PDPTEs are stored in internal, non-architectural registers. The operation of these registers is described in Sec-
tion 5.4.1 and differs from that described here.

Vol. 3A 5-45

PAGING

®* PDE cache. The use of the PDE cache depends on the paging mode:

For 32-bit paging, each PDE-cache entry is referenced by a 10-bit value and is used for linear addresses for
which bits 31:22 have that value.

For PAE paging, each PDE-cache entry is referenced by an 11-bit value and is used for linear addresses for
which bits 31:21 have that value.

For 4-level paging, each PDE-cache entry is referenced by a 27-bit value and is used for linear addresses for
which bits 47:21 have that value.

For 5-level paging, each PDE-cache entry is referenced by a 36-bit value and is used for linear addresses for
which bits 56:21 have that value.

A PDE-cache entry contains information from the PML5E, PML4E, PDPTE, and PDE used to translate the relevant
linear addresses (for 32-bit paging and PAE paging, only the PDE applies; for 4-level paging, the PML5E does
not apply):

The physical address from the PDE (the address of the page table). (No PDE-cache entry is created for a
PDE that maps a page.)

The logical-AND of the R/W flags in the PML5E, PML4E, PDPTE, and PDE.
The logical-AND of the U/S flags in the PML5E, PML4E, PDPTE, and PDE.
The logical-OR of the XD flags in the PML5E, PML4E, PDPTE, and PDE.
The values of the PCD and PWT flags of the PDE.

The following items detail how a processor may use the PDE cache (references below to PML5Es, PML4Es, and
PDPTEs apply only to 4-level paging and to 5-level paging, as appropriate):

If the processor has a PDE-cache entry for a linear address, it may use that entry when translating the
linear address (instead of the PML5E, PML4E, PDPTE, and PDE in memory).

The processor does not create a PDE-cache entry unless the P flags are 1, the PS flags are 0, and the
reserved bits are 0 in the PML5E, PML4E, PDPTE, and PDE in memory.

The processor does not create a PDE-cache entry unless the accessed flag is 1 in the PML5E, PML4E, PDPTE,
and PDE in memory; before caching a translation, the processor sets any accessed flags that are not
already 1.

The processor may create a PDE-cache entry even if there are no translations for any linear address that
might use that entry.

If the processor creates a PDE-cache entry, the processor may retain it unmodified even if software subse-
quently modifies the corresponding PML5E, PML4E, PDPTE, or PDE in memory.

Information from a paging-structure entry can be included in entries in the paging-structure caches for other
paging-structure entries referenced by the original entry. For example, if the R/W flag is 0 in a PML4E, then the R/W
flag will be 0 in any PDPTE-cache entry for a PDPTE from the page-directory-pointer table referenced by that
PML4E. This is because the R/W flag of each such PDPTE-cache entry is the logical-AND of the R/W flags in the
appropriate PML4E and PDPTE.

On processors that support HLAT paging (see Section 5.5.1), each entry in a paging-structure cache indicates
whether the entry was cached during ordinary paging or HLAT paging. When the processor commences linear-
address translation using ordinary paging (respectively, HLAT paging), it will use only entries that indicate that they
were cached during ordinary paging (respectively, HLAT paging).

Entries that were cached during HLAT paging also include the restart flag (bit 11) of the original paging-structure
entry. When the processor commences HLAT paging using such an entry, it immediately restarts (using ordinary
paging) if this cached restart flag is 1.

The paging-structure caches contain information only from paging-structure entries that reference other paging
structures (and not those that map pages). Because the G flag is not used in such paging-structure entries, the
global-page feature does not affect the behavior of the paging-structure caches.

The processor may create entries in paging-structure caches for translations required for prefetches and for
accesses that are a result of speculative execution that would never actually occur in the executed code path.

5-46 Vol. 3A

PAGING

As noted in Section 5.10.1, any entries created in paging-structure caches by a logical processor are associated
with the current PCID.

A processor may or may not implement any of the paging-structure caches. Software should rely on neither their
presence nor their absence. The processor may invalidate entries in these caches at any time. Because the
processor may create the cache entries at the time of translation and not update them following subsequent modi-
fications to the paging structures in memory, software should take care to invalidate the cache entries appropri-
ately when causing such modifications. The invalidation of TLBs and the paging-structure caches is described in
Section 5.10.4.

5.10.3.2 Using the Paging-Structure Caches to Translate Linear Addresses

When a linear address is accessed, the processor uses a procedure such as the following to determine the physical
address to which it translates and whether the access should be allowed:

* If the processor finds a TLB entry that is for the page number of the linear address and that is associated with
the current PCID (or which is global), it may use the physical address, access rights, and other attributes from
that entry.

® If the processor does not find a relevant TLB entry, it may use the upper bits of the linear address to select an
entry from the PDE cache that is associated with the current PCID (Section 5.10.3.1 indicates which bits are
used in each paging mode). It can then use that entry to complete the translation process (locating a PTE, etc.)
as if it had traversed the PDE (and, for 4-level paging and 5-level paging, the PDPTE, PML4E, and PML5E, as
appropriate) corresponding to the PDE-cache entry.

®* The following items apply when 4-level paging or 5-level paging is used:

— If the processor does not find a relevant TLB entry or PDE-cache entry, it may use the upper bits of the
linear address (for 4-level paging, bits 47:30; for 5-level paging, bits 56:30) to select an entry from the
PDPTE cache that is associated with the current PCID. It can then use that entry to complete the translation
process (locating a PDE, etc.) as if it had traversed the PDPTE, the PML4E, and (for 5-level paging) the
PML5E corresponding to the PDPTE-cache entry.

— If the processor does not find a relevant TLB entry, PDE-cache entry, or PDPTE-cache entry, it may use the
upper bits of the linear address (for 4-level paging, bits 47:39; for 5-level paging, bits 56:39) to select an
entry from the PML4E cache that is associated with the current PCID. It can then use that entry to complete
the translation process (locating a PDPTE, etc.) as if it had traversed the corresponding PML4E.

— With 5-level paging, if the processor does not find a relevant TLB entry, PDE-cache entry, PDPTE-cache
entry, or PML4E-cache entry, it may use bits 56:48 of the linear address to select an entry from the PML5E
cache that is associated with the current PCID. It can then use that entry to complete the translation
process (locating a PML4E, etc.) as if it had traversed the corresponding PML5E.

(Any of the above steps would be skipped if the processor does not support the cache in question.)

If the processor does not find a TLB or paging-structure-cache entry for the linear address, it uses the linear
address to traverse the entire paging-structure hierarchy, as described in Section 5.3, Section 5.4.2, and Section
5.5.

5.10.3.3 Multiple Cached Entries for a Single Paging-Structure Entry

The paging-structure caches and TLBs may contain multiple entries associated with a single PCID and with infor-
mation derived from a single paging-structure entry. The following items give some examples for 4-level paging:

® Suppose that two PML4Es contain the same physical address and thus reference the same page-directory-
pointer table. Any PDPTE in that table may result in two PDPTE-cache entries, each associated with a different
set of linear addresses. Specifically, suppose that the nlth and n,™ entries in the PML4 table contain the same
physical address. This implies that the physical address in the mt" PDPTE in the page-directory-pointer table
would appear in the PDPTE-cache entries associated with both p; and p,, where (p; » 9) = ny, (p2 » 9) = ny,
and (p; & 1FFH) = (p, & 1FFH) = m. This is because both PDPTE-cache entries use the same PDPTE, one
resulting from a reference from the n; PML4E and one from the n," PML4E.

® Suppose that the first PML4E (i.e., the one in position 0) contains the physical address X in CR3 (the physical
address of the PML4 table). This implies the following:

Vol. 3A 5-47

PAGING

— Any PML4-cache entry associated with linear addresses with 0 in bits 47:39 contains address X.

— Any PDPTE-cache entry associated with linear addresses with 0 in bits 47:30 contains address X. This is
because the translation for a linear address for which the value of bits 47:30 is 0 uses the value of
bits 47:39 (0) to locate a page-directory-pointer table at address X (the address of the PML4 table). It then
uses the value of bits 38:30 (also 0) to find address X again and to store that address in the PDPTE-cache
entry.

— Any PDE-cache entry associated with linear addresses with 0 in bits 47:21 contains address X for similar
reasons.

— Any TLB entry for page number 0 (associated with linear addresses with 0 in bits 47:12) translates to page
frame X » 12 for similar reasons.

The same PML4E contributes its address X to all these cache entries because the self-referencing nature of the
entry causes it to be used as a PML4E, a PDPTE, a PDE, and a PTE.

5.10.4 Invalidation of TLBs and Paging-Structure Caches

As noted in Section 5.10.2 and Section 5.10.3, the processor may create entries in the TLBs and the paging-struc-
ture caches when linear addresses are translated, and it may retain these entries even after the paging structures
used to create them have been modified. To ensure that linear-address translation uses the modified paging struc-
tures, software should take action to invalidate any cached entries that may contain information that has since
been modified.

5.10.4.1 Operations that Invalidate TLBs and Paging-Structure Caches

The following instructions invalidate entries in the TLBs and the paging-structure caches:

INVLPG. This instruction takes a single operand, which is a linear address. The instruction invalidates any TLB
entries that are for a page number corresponding to the linear address and that are associated with the current
PCID. It also invalidates any global TLB entries with that page number, regardless of PCID (see Section
5.10.2.4).1 INVLPG also invalidates all entries in all paging-structure caches associated with the current PCID,
regardless of the linear addresses to which they correspond.

INVPCID. The operation of this instruction is based on instruction operands, called the INVPCID type and the
INVPCID descriptor. Four INVPCID types are currently defined:

— Individual-address. If the INVPCID type is 0, the logical processor invalidates mappings—except global
translations—associated with the PCID specified in the INVPCID descriptor and that would be used to
translate the linear address specified in the INVPCID descriptor.Z (The instruction may also invalidate global
translations, as well as mappings associated with other PCIDs and for other linear addresses.)

— Single-context. If the INVPCID type is 1, the logical processor invalidates all mappings—except global
translations—associated with the PCID specified in the INVPCID descriptor. (The instruction may also
invalidate global translations, as well as mappings associated with other PCIDs.)

— All-context, including globals. If the INVPCID type is 2, the logical processor invalidates
mappings—including global translations—associated with all PCIDs.

— All-context. If the INVPCID type is 3, the logical processor invalidates mappings—except global transla-
tions—associated with all PCIDs. (The instruction may also invalidate global translations.)

See Chapter 3 of the Intel 64 and IA-32 Architecture Software Developer’s Manual, Volume 2A for details of the
INVPCID instruction.

MOV to CRO. The instruction invalidates all TLB entries (including global entries) and all entries in all paging-
structure caches (for all PCIDs) if it changes the value of CRO.PG from 1 to 0.

MOV to CR3. The behavior of the instruction depends on the value of CR4.PCIDE:

If the paging structures map the linear address using a page larger than 4 KBytes and there are multiple TLB entries for that page
(see Section 5.10.2.3), the instruction invalidates all of them.

If the paging structures map the linear address using a page larger than 4 KBytes and there are multiple TLB entries for that page
(see Section 5.10.2.3), the instruction invalidates all of them.

5-48 Vol. 3A

PAGING

— If CR4.PCIDE = 0, the instruction invalidates all TLB entries associated with PCID 000H except those for
global pages. It also invalidates all entries in all paging-structure caches associated with PCID 000H.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 0, the instruction invalidates all TLB
entries associated with the PCID specified in bits 11:0 of the instruction’s source operand except those for
global pages. It also invalidates all entries in all paging-structure caches associated with that PCID. It is not
required to invalidate entries in the TLBs and paging-structure caches that are associated with other PCIDs.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 1, the instruction is not required to
invalidate any TLB entries or entries in paging-structure caches.

MOV to CR4. The behavior of the instruction depends on the bits being modified:

— The instruction invalidates all TLB entries (including global entries) and all entries in all paging-structure
caches (for all PCIDs) if (1) it changes the value of CR4.PGE;! or (2) it changes the value of the CR4.PCIDE
from 1 to 0.

— Theinstruction invalidates all TLB entries and all entries in all paging-structure caches for the current PCID
if (1) it changes the value of CR4.PAE; or (2) it changes the value of CR4.SMEP from 0 to 1.

Task switch. If a task switch changes the value of CR3, it invalidates all TLB entries associated with PCID 000H
exceptzthose for global pages. It also invalidates all entries in all paging-structure caches associated with PCID
000H.

VMX transitions. See Section 5.11.1.

The processor is always free to invalidate additional entries in the TLBs and paging-structure caches. The following
are some examples:

INVLPG may invalidate TLB entries for pages other than the one corresponding to its linear-address operand. It
may invalidate TLB entries and paging-structure-cache entries associated with PCIDs other than the current
PCID.

INVPCID may invalidate TLB entries for pages other than the one corresponding to the specified linear address.
It may invalidate TLB entries and paging-structure-cache entries associated with PCIDs other than the
specified PCID.

MOV to CRO may invalidate TLB entries even if CRO.PG is not changing. For example, this may occur if either
CRO.CD or CRO.NW is modified.

MOV to CR3 may invalidate TLB entries for global pages. If CR4.PCIDE = 1 and bit 63 of the instruction’s source
operand is 0, it may invalidate TLB entries and entries in the paging-structure caches associated with PCIDs
other than the PCID it is establishing. It may invalidate entries if CR4.PCIDE = 1 and bit 63 of the instruction’s
source operand is 1.

MOV to CR4 may invalidate TLB entries when changing CR4.PSE or when changing CR4.SMEP from 1 to 0.

On a processor supporting Hyper-Threading Technology, invalidations performed on one logical processor may
invalidate entries in the TLBs and paging-structure caches used by other logical processors.

(Other instructions and operations may invalidate entries in the TLBs and the paging-structure caches, but the
instructions identified above are recommended.)

In addition to the instructions identified above, page faults invalidate entries in the TLBs and paging-structure
caches. In particular, a page-fault exception resulting from an attempt to use a linear address will invalidate any
TLB entries that are for a page number corresponding to that linear address and that are associated with the
current PCID. It also invalidates all entries in the paging-structure caches that would be used for that linear address
and that are associated with the current PCID.3 These invalidations ensure that the page-fault exception will not
recur (if the faulting instruction is re-executed) if it would not be caused by the contents of the paging structures

If CR4.PGE is changing from O to 1, there were no global TLB entries before the execution; if CR4.PGE is changing from 1 to O, there
will be no global TLB entries after the execution.

Task switches do not occur in IA-32e mode and thus cannot occur with 4-level paging. Since CR4.PCIDE can be set only with 4-level
paging, task switches occur only with CR4.PCIDE = 0.

Unlike INVLPG, page faults need not invalidate all entries in the paging-structure caches, only those that would be used to translate
the faulting linear address.

Vol. 3A 5-49

PAGING

in memory (and if, therefore, it resulted from cached entries that were not invalidated after the paging structures
were modified in memory).

As noted in Section 5.10.2, some processors may choose to cache multiple smaller-page TLB entries for a transla-
tion specified by the paging structures to use a page larger than 4 KBytes. There is no way for software to be aware
that multiple translations for smaller pages have been used for a large page. The INVLPG instruction and page
faults provide the same assurances that they provide when a single TLB entry is used: they invalidate all TLB
entries corresponding to the translation specified by the paging structures.

5.10.4.2 Recommended Invalidation

The following items provide some recommendations regarding when software should perform invalidations:

* If software modifies a paging-structure entry that maps a page (rather than referencing another paging
structure), it should execute INVLPG for any linear address with a page number whose translation uses that
paging-structure entry.1

(If the paging-structure entry may be used in the translation of different page numbers — see Section 5.10.3.3
— software should execute INVLPG for linear addresses with each of those page numbers; alternatively, it could
use MOV to CR3 or MOV to CR4.)

* If software modifies a paging-structure entry that references another paging structure, it may use one of the
following approaches depending upon the types and number of translations controlled by the modified entry:

— Execute INVLPG for linear addresses with each of the page numbers with translations that would use the
entry. However, if no page numbers that would use the entry have translations (e.g., because the P flags are
0 in all entries in the paging structure referenced by the modified entry), it remains necessary to execute
INVLPG at least once.

— Execute MOV to CR3 if the modified entry controls no global pages.
— Execute MOV to CR4 to modify CR4.PGE.

* If CR4.PCIDE = 1 and software modifies a paging-structure entry that does not map a page or in which the G
flag (bit 8) is 0, additional steps are required if the entry may be used for PCIDs other than the current one. Any
one of the following suffices:

— Execute MOV to CR4 to modify CR4.PGE, either immediately or before again using any of the affected
PCIDs. For example, software could use different (previously unused) PCIDs for the processes that used the
affected PCIDs.

— For each affected PCID, execute MOV to CR3 to make that PCID current (and to load the address of the
appropriate PML4 table). If the modified entry controls no global pages and bit 63 of the source operand to
MOV to CR3 was 0, no further steps are required. Otherwise, execute INVLPG for linear addresses with each
of the page numbers with translations that would use the entry; if no page numbers that would use the
entry have translations, execute INVLPG at least once.

* If software using PAE paging modifies a PDPTE, it should reload CR3 with the register’s current value to ensure
that the modified PDPTE is loaded into the corresponding PDPTE register (see Section 5.4.1).

* If the nature of the paging structures is such that a single entry may be used for multiple purposes (see Section
5.10.3.3), software should perform invalidations for all of these purposes. For example, if a single entry might
serve as both a PDE and PTE, it may be necessary to execute INVLPG with two (or more) linear addresses, one
that uses the entry as a PDE and one that uses it as a PTE. (Alternatively, software could use MOV to CR3 or
MOV to CR4.)

® As noted in Section 5.10.2, the TLBs may subsequently contain multiple translations for the address range if
software modifies the paging structures so that the page size used for a 4-KByte range of linear addresses
changes. A reference to a linear address in the address range may use any of these translations.

Software wishing to prevent this uncertainty should not write to a paging-structure entry in a way that would
change, for any linear address, both the page size and either the page frame, access rights, or other attributes.
It can instead use the following algorithm: first clear the P flag in the relevant paging-structure entry (e.g.,

1. One execution of INVLPG is sufficient even for a page with size greater than 4 KBytes.

5-50 Vol. 3A

PAGING

PDE); then invalidate any translations for the affected linear addresses (see above); and then modify the
relevant paging-structure entry to set the P flag and establish modified translation(s) for the new page size.

Software should clear bit 63 of the source operand to a MOV to CR3 instruction that establishes a PCID that had
been used earlier for a different linear-address space (e.g., with a different value in bits 51:12 of CR3). This
ensures invalidation of any information that may have been cached for the previous linear-address space.

This assumes that both linear-address spaces use the same global pages and that it is thus not necessary to
invalidate any global TLB entries. If that is not the case, software should invalidate those entries by executing
MOV to CR4 to modify CR4.PGE.

5.10.4.3 Optional Invalidation

The following items describe cases in which software may choose not to invalidate and the potential consequences
of that choice:

If a paging-structure entry is modified to change the P flag from 0 to 1, no invalidation is necessary. This is
because no TLB entry or paging-structure cache entry is created with information from a paging-structure
entry in which the P flag is 0.1

If a paging-structure entry is modified to change the accessed flag from 0 to 1, no invalidation is necessary
(assuming that an invalidation was performed the last time the accessed flag was changed from 1 to 0). This is
because no TLB entry or paging-structure cache entry is created with information from a paging-structure
entry in which the accessed flag is 0.

If a paging-structure entry is modified to change the R/W flag from 0 to 1, failure to perform an invalidation
may result in a “spurious” page-fault exception (e.g., in response to an attempted write access) but no other
adverse behavior. Such an exception will occur at most once for each affected linear address (see Section
5.10.4.1).

If CR4.SMEP = 0 and a paging-structure entry is modified to change the U/S flag from 0 to 1, failure to perform
an invalidation may result in a “spurious” page-fault exception (e.g., in response to an attempted user-mode
access) but no other adverse behavior. Such an exception will occur at most once for each affected linear
address (see Section 5.10.4.1).

If a paging-structure entry is modified to change the XD flag from 1 to O, failure to perform an invalidation may
result in a “spurious” page-fault exception (e.g., in response to an attempted instruction fetch) but no other
adverse behavior. Such an exception will occur at most once for each affected linear address (see Section
5.10.4.1).

If a paging-structure entry is modified to change the accessed flag from 1 to 0, failure to perform an invali-
dation may result in the processor not setting that bit in response to a subsequent access to a linear address
whose translation uses the entry. Software cannot interpret the bit being clear as an indication that such an
access has not occurred.

If software modifies a paging-structure entry that identifies the final physical address for a linear address
(either a PTE or a paging-structure entry in which the PS flag is 1) to change the dirty flag from 1 to 0, failure
to perform an invalidation may result in the processor not setting that bit in response to a subsequent write to
a linear address whose translation uses the entry. Software cannot interpret the bit being clear as an indication
that such a write has not occurred.

The read of a paging-structure entry in translating an address being used to fetch an instruction may appear to
execute before an earlier write to that paging-structure entry if there is no serializing instruction between the
write and the instruction fetch. Note that the invalidating instructions identified in Section 5.10.4.1 are all
serializing instructions.

Section 5.10.3.3 describes situations in which a single paging-structure entry may contain information cached
in multiple entries in the paging-structure caches. Because all entries in these caches are invalidated by any
execution of INVLPG, it is not necessary to follow the modification of such a paging-structure entry by
executing INVLPG multiple times solely for the purpose of invalidating these multiple cached entries. (It may be
necessary to do so to invalidate multiple TLB entries.)

If it is also the case that no invalidation was performed the last time the P flag was changed from 1 to O, the processor may use a
TLB entry or paging-structure cache entry that was created when the P flag had earlier been 1.

Vol. 3A 5-51

PAGING

5.10.4.4 Delayed Invalidation

Required invalidations may be delayed under some circumstances. Software developers should understand that,
between the modification of a paging-structure entry and execution of the invalidation instruction recommended in
Section 5.10.4.2, the processor may use translations based on either the old value or the new value of the paging-
structure entry. The following items describe some of the potential consequences of delayed invalidation:

* If a paging-structure entry is modified to change the P flag from 1 to 0, an access to a linear address whose
translation is controlled by this entry may or may not cause a page-fault exception.

* If a paging-structure entry is modified to change the R/W flag from 0 to 1, write accesses to linear addresses
whose translation is controlled by this entry may or may not cause a page-fault exception.

* If a paging-structure entry is modified to change the U/S flag from 0 to 1, user-mode accesses to linear
addresses whose translation is controlled by this entry may or may not cause a page-fault exception.

® If a paging-structure entry is modified to change the XD flag from 1 to O, instruction fetches from linear
addresses whose translation is controlled by this entry may or may not cause a page-fault exception.

As noted in Section 10.1.1, an x87 instruction or an SSE instruction that accesses data larger than a quadword may
be implemented using multiple memory accesses. If such an instruction stores to memory and invalidation has
been delayed, some of the accesses may complete (writing to memory) while another causes a page-fault excep-
tion.! In this case, the effects of the completed accesses may be visible to software even though the overall instruc-
tion caused a fault.

In some cases, the consequences of delayed invalidation may not affect software adversely. For example, when
freeing a portion of the linear-address space (by marking paging-structure entries “not present”), invalidation
using INVLPG may be delayed if software does not re-allocate that portion of the linear-address space or the
memory that had been associated with it. However, because of speculative execution (or errant software), there
may be accesses to the freed portion of the linear-address space before the invalidations occur. In this case, the
following can happen:

® Reads can occur to the freed portion of the linear-address space. Therefore, invalidation should not be delayed
for an address range that has read side effects.

® The processor may retain entries in the TLBs and paging-structure caches for an extended period of time.
Software should not assume that the processor will not use entries associated with a linear address simply
because time has passed.

® As noted in Section 5.10.3.1, the processor may create an entry in a paging-structure cache even if there are
no translations for any linear address that might use that entry. Thus, if software has marked “not present” all
entries in a page table, the processor may subsequently create a PDE-cache entry for the PDE that references
that page table (assuming that the PDE itself is marked “present”).

* If software attempts to write to the freed portion of the linear-address space, the processor might not generate
a page fault. (Such an attempt would likely be the result of a software error.) For that reason, the page frames
previously associated with the freed portion of the linear-address space should not be reallocated for another
purpose until the appropriate invalidations have been performed.

5.10.5 Propagation of Paging-Structure Changes to Multiple Processors

As noted in Section 5.10.4, software that modifies a paging-structure entry may need to invalidate entries in the
TLBs and paging-structure caches that were derived from the modified entry before it was modified. In a system
containing more than one logical processor, software must account for the fact that there may be entries in the
TLBs and paging-structure caches of logical processors other than the one used to modify the paging-structure
entry. The process of propagating the changes to a paging-structure entry is commonly referred to as “TLB shoot-
down.”

TLB shootdown can be done using memory-based semaphores and/or interprocessor interrupts (IPI). The following
items describe a simple but inefficient example of a TLB shootdown algorithm for processors supporting the
Intel-64 and IA-32 architectures:

1. If the accesses are to different pages, this may occur even if invalidation has not been delayed.

5-52 Vol. 3A

PAGING

1. Begin barrier: Stop all but one logical processor; that is, cause all but one to execute the HLT instruction or to
enter a spin loop.

Allow the active logical processor to change the necessary paging-structure entries.

Allow all logical processors to perform invalidations appropriate to the modifications to the paging-structure
entries.

4. Allow all logical processors to resume normal operation.

Alternative, performance-optimized, TLB shootdown algorithms may be developed; however, software developers
must take care to ensure that the following conditions are met:

* Alllogical processors that are using the paging structures that are being modified must participate and perform
appropriate invalidations after the modifications are made.

* If the modifications to the paging-structure entries are made before the barrier or if there is no barrier, the
operating system must ensure one of the following: (1) that the affected linear-address range is not used
between the time of modification and the time of invalidation; or (2) that it is prepared to deal with the conse-
quences of the affected linear-address range being used during that period. For example, if the operating
system does not allow pages being freed to be reallocated for another purpose until after the required invalida-
tions, writes to those pages by errant software will not unexpectedly modify memory that is in use.

® Software must be prepared to deal with reads, instruction fetches, and prefetch requests to the affected linear-
address range that are a result of speculative execution that would never actually occur in the executed code
path.

When multiple logical processors are using the same linear-address space at the same time, they must coordinate
before any request to modify the paging-structure entries that control that linear-address space. In these cases,
the barrier in the TLB shootdown routine may not be required. For example, when freeing a range of linear
addresses, some other mechanism can assure no logical processor is using that range before the request to free it
is made. In this case, a logical processor freeing the range can clear the P flags in the PTEs associated with the
range, free the physical page frames associated with the range, and then signal the other logical processors using
that linear-address space to perform the necessary invalidations. All the affected logical processors must complete
their invalidations before the linear-address range and the physical page frames previously associated with that
range can be reallocated.

5.11 INTERACTIONS WITH VIRTUAL-MACHINE EXTENSIONS (VMX)

The architecture for virtual-machine extensions (VMX) includes features that interact with paging. Section 5.11.1
discusses ways in which VMX-specific control transfers, called VMX transitions specially affect paging. Section
5.11.2 gives an overview of VMX features specifically designed to support address translation.

5.11.1 VMX Transitions

The VMX architecture defines two control transfers called VM entries and VM exits; collectively, these are called
VMX transitions. VM entries and VM exits are described in detail in Chapter 27 and Chapter 28, respectively, in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C. The following items identify
paging-related details:

®* VMX transitions modify the CRO and CR4 registers and the IA32_EFER MSR concurrently. For this reason, they
allow transitions between paging modes that would not otherwise be possible:

— VM entries allow transitions from 4-level paging directly to either 32-bit paging or PAE paging.

— VM exits allow transitions from either 32-bit paging or PAE paging directly to 4-level paging or 5-level
paging.
® VMX transitions that result in PAE paging load the PDPTE registers (see Section 5.4.1) as follows:

— VM entries load the PDPTE registers either from the physical address being loaded into CR3 or from the
virtual-machine control structure (VMCS); see Section 28.3.2.4.

— VM exits load the PDPTE registers from the physical address being loaded into CR3; see Section 29.5.4.

Vol. 3A 5-53

PAGING

®* VMX transitions invalidate the TLBs and paging-structure caches based on certain control settings. See Section
28.3.2.5 and Section 29.5.5 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

5.11.2 VMX Support for Address Translation

Chapter 30, “VMX Support for Address Translation,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3C, describes two features of the virtual-machine extensions (VMX) that interact directly with
paging. These are virtual-processor identifiers (VPIDs) and the extended page table mechanism (EPT).

VPIDs provide a way for software to identify to the processor the address spaces for different “virtual processors.”
The processor may use this identification to maintain concurrently information for multiple address spaces in its
TLBs and paging-structure caches, even when non-zero PCIDs are not being used. See Section 30.1 for details.

When EPT is in use, the addresses in the paging-structures are not used as physical addresses to access memory
and memory-mapped I/O. Instead, they are treated as guest-physical addresses and are translated through a set
of EPT paging structures to produce physical addresses. EPT can also specify its own access rights and memory

typing; these are used on conjunction with those specified in this chapter. See Section 30.3 for more information.

Both VPIDs and EPT may change the way that a processor maintains information in TLBs and paging structure
caches and the ways in which software can manage that information. Some of the behaviors documented in Section
5.10 may change. See Section 30.4 for details.

5.12 USING PAGING FOR VIRTUAL MEMORY

With paging, portions of the linear-address space need not be mapped to the physical-address space; data for the
unmapped addresses can be stored externally (e.g., on disk). This method of mapping the linear-address space is
referred to as virtual memory or demand-paged virtual memory.

Paging divides the linear address space into fixed-size pages that can be mapped into the physical-address space
and/or external storage. When a program (or task) references a linear address, the processor uses paging to trans-
late the linear address into a corresponding physical address if such an address is defined.

If the page containing the linear address is not currently mapped into the physical-address space, the processor
generates a page-fault exception as described in Section 5.7. The handler for page-fault exceptions typically directs
the operating system or executive to load data for the unmapped page from external storage into physical memory
(perhaps writing a different page from physical memory out to external storage in the process) and to map it using
paging (by updating the paging structures). When the page has been loaded into physical memory, a return from
the exception handler causes the instruction that generated the exception to be restarted.

Paging differs from segmentation through its use of fixed-size pages. Unlike segments, which usually are the same
size as the code or data structures they hold, pages have a fixed size. If segmentation is the only form of address
translation used, a data structure present in physical memory will have all of its parts in memory. If paging is used,
a data structure can be partly in memory and partly in disk storage.

5.13 MAPPING SEGMENTS TO PAGES

The segmentation and paging mechanisms provide support for a wide variety of approaches to memory manage-
ment. When segmentation and paging are combined, segments can be mapped to pages in several ways. To imple-
ment a flat (unsegmented) addressing environment, for example, all the code, data, and stack modules can be
mapped to one or more large segments (up to 4-GBytes) that share same range of linear addresses (see Figure 3-2
in Section 3.2.2). Here, segments are essentially invisible to applications and the operating-system or executive. If
paging is used, the paging mechanism can map a single linear-address space (contained in a single segment) into
virtual memory. Alternatively, each program (or task) can have its own large linear-address space (contained in its
own segment), which is mapped into virtual memory through its own paging structures.

Segments can be smaller than the size of a page. If one of these segments is placed in a page which is not shared
with another segment, the extra memory is wasted. For example, a small data structure, such as a 1-Byte sema-
phore, occupies 4 KBytes if it is placed in a page by itself. If many semaphores are used, it is more efficient to pack
them into a single page.

5-54 Vol. 3A

PAGING

The Intel-64 and IA-32 architectures do not enforce correspondence between the boundaries of pages and
segments. A page can contain the end of one segment and the beginning of another. Similarly, a segment can
contain the end of one page and the beginning of another.

Memory-management software may be simpler and more efficient if it enforces some alignment between page and
segment boundaries. For example, if a segment which can fit in one page is placed in two pages, there may be
twice as much paging overhead to support access to that segment.

One approach to combining paging and segmentation that simplifies memory-management software is to give
each segment its own page table, as shown in Figure 5-13. This convention gives the segment a single entry in the
page directory, and this entry provides the access control information for paging the entire segment.

Page Frames

LDT Page Directory Page Tables »
PTE —
PTE >
PTE -
Seg. Descript.—» PDE 4|—>
Seg. Descript.—» PDE >
PTE >

-
PTE —‘

Figure 5-13. Memory Management Convention That Assigns a Page Table to Each Segment

Vol. 3A 5-55

PAGING

5-56 Vol. 3A

CHAPTER 6
PROTECTION

In protected mode, the Intel 64 and IA-32 architectures provide a protection mechanism that operates at both the
segment level and the page level. This protection mechanism provides the ability to limit access to certain
segments or pages based on privilege levels (four privilege levels for segments and two privilege levels for pages).
For example, critical operating-system code and data can be protected by placing them in more privileged
segments than those that contain applications code. The processor’s protection mechanism will then prevent appli-
cation code from accessing the operating-system code and data in any but a controlled, defined manner.

Segment and page protection can be used at all stages of software development to assist in localizing and detecting
design problems and bugs. It can also be incorporated into end-products to offer added robustness to operating
systems, utilities software, and applications software.

When the protection mechanism is used, each memory reference is checked to verify that it satisfies various
protection checks. All checks are made before the memory cycle is started; any violation results in an exception.
Because checks are performed in parallel with address translation, there is no performance penalty. The protection
checks that are performed fall into the following categories:

® Limit checks.

®* Type checks.

® Privilege level checks.

® Restriction of addressable domain.

® Restriction of procedure entry-points.
® Restriction of instruction set.

All protection violation results in an exception being generated. See Chapter 7, “Interrupt and Exception Handling,”
for an explanation of the exception mechanism. This chapter describes the protection mechanism and the viola-
tions which lead to exceptions.

The following sections describe the protection mechanism available in protected mode. See Chapter 22, *8086
Emulation,” for information on protection in real-address and virtual-8086 mode.

6.1 ENABLING AND DISABLING SEGMENT AND PAGE PROTECTION

Setting the PE flag in register CRO causes the processor to switch to protected mode, which in turn enables the
segment-protection mechanism. Once in protected mode, there is no control bit for turning the protection mecha-
nism on or off. The part of the segment-protection mechanism that is based on privilege levels can essentially be
disabled while still in protected mode by assigning a privilege level of 0 (most privileged) to all segment selectors
and segment descriptors. This action disables the privilege level protection barriers between segments, but other
protection checks such as limit checking and type checking are still carried out.

Page-level protection is automatically enabled when paging is enabled (by setting the PG flag in register CR0O). Here
again there is no mode bit for turning off page-level protection once paging is enabled. However, page-level protec-
tion can be disabled by performing the following operations:

¢ (Clear the WP flag in control register CRO.
®* Set the read/write (R/W) and user/supervisor (U/S) flags for each page-directory and page-table entry.
This action makes each page a writable, user page, which in effect disables page-level protection.

Vol. 3A 6-1

PROTECTION

6.2 FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND PAGE-LEVEL

PROTECTION

The processor’s protection mechanism uses the following fields and flags in the system data structures to control
access to segments and pages:

Descriptor type (S) flag — (Bit 12 in the second doubleword of a segment descriptor.) Determines if the
segment descriptor is for a system segment or a code or data segment.

Type field — (Bits 8 through 11 in the second doubleword of a segment descriptor.) Determines the type of
code, data, or system segment.

Limit field — (Bits 0 through 15 of the first doubleword and bits 16 through 19 of the second doubleword of a
segment descriptor.) Determines the size of the segment, along with the G flag and E flag (for data segments).

G flag — (Bit 23 in the second doubleword of a segment descriptor.) Determines the size of the segment, along
with the limit field and E flag (for data segments).

E flag — (Bit 10 in the second doubleword of a data-segment descriptor.) Determines the size of the segment,
along with the limit field and G flag.

Descriptor privilege level (DPL) field — (Bits 13 and 14 in the second doubleword of a segment descriptor.)
Determines the privilege level of the segment.

Requested privilege level (RPL) field — (Bits 0 and 1 of any segment selector.) Specifies the requested
privilege level of a segment selector.

Current privilege level (CPL) field — (Bits 0 and 1 of the CS segment register.) Indicates the privilege level
of the currently executing program or procedure. The term current privilege level (CPL) refers to the setting of
this field.

User/supervisor (U/S) flag — (Bit 2 of paging-structure entries.) Determines the type of page: user or
supervisor.

Read/write (R/W) flag — (Bit 1 of paging-structure entries.) Determines the type of access allowed to a
page: read-only or read/write.

Execute-disable (XD) flag — (Bit 63 of certain paging-structure entries.) Determines the type of access
allowed to a page: executable or not-executable.

Figure 6-1 shows the location of the various fields and flags in the data-, code-, and system-segment descriptors;
Figure 3-6 shows the location of the RPL (or CPL) field in a segment selector (or the CS register); and Chapter 5
identifies the locations of the U/S, R/W, and XD flags in the paging-structure entries.

6-2 Vol. 3A

PROTECTION

Data-Segment Descriptor

31 2423 22 212019 16 15 14 13 12 11 8 7 0
Base 3124 |6[Blo|v| HmiL Ip| p P Base 23:16 |4
L : L |10 | E ‘W| A
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0

Code-Segment Descriptor

31 242322 212019 16 15 14 13 12 11 8 7 0
Base31:24 |G[plo|v| Hmt lp| p P Base 23116 |4
L : L |1 1|C‘R|A
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0

System-Segment Descriptor

31 242322212019 1615141312 11 8 7 0
. Limit D _
Base 31:24 G 0 . P| P |0| Type Base 23:16 4
19:16 L
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0

A Accessed E Expansion Direction
AVL Available to Sys. Programmers G Granularity

B Big R Readable

Cc Conforming LIMIT Segment Limit

D Default W Writable

DPL Descriptor Privilege Level P Present

D Reserved

Figure 6-1. Descriptor Fields Used for Protection

Many different styles of protection schemes can be implemented with these fields and flags. When the operating
system creates a descriptor, it places values in these fields and flags in keeping with the particular protection style
chosen for an operating system or executive. Application programs do not generally access or modify these fields
and flags.

The following sections describe how the processor uses these fields and flags to perform the various categories of
checks described in the introduction to this chapter.

6.2.1 Code-Segment Descriptor in 64-bit Mode

Code segments continue to exist in 64-bit mode even though, for address calculations, the segment base is treated
as zero. Some code-segment (CS) descriptor content (the base address and limit fields) is ignored; the remaining
fields function normally (except for the readable bit in the type field).

Code segment descriptors and selectors are needed in IA-32e mode to establish the processor’s operating mode
and execution privilege-level. The usage is as follows:

Vol. 3A 6-3

PROTECTION

®* IA-32e mode uses a previously unused bit in the CS descriptor. Bit 53 is defined as the 64-bit (L) flag and is
used to select between 64-bit mode and compatibility mode when IA-32e mode is active (IA32_EFER.LMA = 1).
See Figure 6-2.

— If CS.L = 0 and IA-32e mode is active, the processor is running in compatibility mode. In this case, CS.D
selects the default size for data and addresses. If CS.D = 0, the default data and address size is 16 bits. If
CS.D = 1, the default data and address size is 32 bits.

— If CS.L = 1 and IA-32e mode is active, the only valid setting is CS.D = 0. This setting indicates a default
operand size of 32 bits and a default address size of 64 bits. The CS.L = 1 and CS.D = 1 bit combination is
reserved for future use and a #GP fault will be generated on an attempt to use a code segment with these
bits set in IA-32e mode.

* In IA-32e mode, the CS descriptor’s DPL is used for execution privilege checks (as in legacy 32-bit mode).

Code-Segment Descriptor

31 242322 212019 1615141312 11 8 7 0

A D Type
G|D|L|V Pl P i 4
L

L 1|C‘R|A

-

31 0

A Accessed

AVL Available to Sys. Programmer's G Granularity
C Conforming R Readable
D Default P Present
DPL Descriptor Privilege Level

L 64-Bit Flag

Figure 6-2. Descriptor Fields with Flags used in IA-32e Mode

6.3 LIMIT CHECKING

The limit field of a segment descriptor prevents programs or procedures from addressing memory locations outside
the segment. The effective value of the limit depends on the setting of the G (granularity) flag (see Figure 6-1). For
data segments, the limit also depends on the E (expansion direction) flag and the B (default stack pointer size
and/or upper bound) flag. The E flag is one of the bits in the type field when the segment descriptor is for a data-
segment type.

When the G flag is clear (byte granularity), the effective limit is the value of the 20-bit limit field in the segment
descriptor. Here, the limit ranges from 0 to FFFFFH (1 MByte). When the G flag is set (4-KByte page granularity),
the processor scales the value in the limit field by a factor of 212 (4 KBytes). In this case, the effective limit ranges
from FFFH (4 KBytes) to FFFFFFFFH (4 GBytes). Note that when scaling is used (G flag is set), the lower 12 bits of
a segment offset (address) are not checked against the limit; for example, note that if the segment limit is O,
offsets 0 through FFFH are still valid.

For all types of segments except expand-down data segments, the effective limit is the last address that is allowed
to be accessed in the segment, which is one less than the size, in bytes, of the segment. The processor causes a
general-protection exception (or, if the segment is SS, a stack-fault exception) any time an attempt is made to
access the following addresses in a segment:

®* A byte at an offset greater than the effective limit

®* A word at an offset greater than the (effective-limit - 1)

®* A doubleword at an offset greater than the (effective-limit - 3)
®* A guadword at an offset greater than the (effective-limit - 7)

6-4 Vol. 3A

PROTECTION

®* A double quadword at an offset greater than the (effective limit - 15)

When the effective limit is FFFFFFFFH (4 GBytes), these accesses may or may not cause the indicated exceptions.
Behavior is implementation-specific and may vary from one execution to another.

For expand-down data segments, the segment limit has the same function but is interpreted differently. Here, the
effective limit specifies the last address that is not allowed to be accessed within the segment; the range of valid
offsets is from (effective-limit + 1) to FFFFFFFFH if the B flag is set and from (effective-limit + 1) to FFFFH if the B
flag is clear. An expand-down segment has maximum size when the segment limit is 0.

Limit checking catches programming errors such as runaway code, runaway subscripts, and invalid pointer calcu-
lations. These errors are detected when they occur, so identification of the cause is easier. Without limit checking,
these errors could overwrite code or data in another segment.

In addition to checking segment limits, the processor also checks descriptor table limits. The GDTR and IDTR regis-
ters contain 16-bit limit values that the processor uses to prevent programs from selecting a segment descriptors
outside the respective descriptor tables. The LDTR and task registers contain 32-bit segment limit value (read from
the segment descriptors for the current LDT and TSS, respectively). The processor uses these segment limits to
prevent accesses beyond the bounds of the current LDT and TSS. See Section 3.5.1, "Segment Descriptor Tables,”
for more information on the GDT and LDT limit fields; see Section 7.10, “Interrupt Descriptor Table (IDT),” for more
information on the IDT limit field; and see Section 9.2.4, “Task Register,” for more information on the TSS segment
limit field.

6.3.1 Limit Checking in 64-bit Mode

In 64-bit mode, the processor does not perform runtime limit checking on code or data segments. However, the
processor does check descriptor-table limits.

6.4 TYPE CHECKING

Segment descriptors contain type information in two places:
®* The S (descriptor type) flag.
®* The type field.

The processor uses this information to detect programming errors that result in an attempt to use a segment or
gate in an incorrect or unintended manner.

The S flag indicates whether a descriptor is a system type or a code or data type. The type field provides 4 addi-
tional bits for use in defining various types of code, data, and system descriptors. Table 3-1 shows the encoding of
the type field for code and data descriptors; Table 3-2 shows the encoding of the field for system descriptors.

The processor examines type information at various times while operating on segment selectors and segment
descriptors. The following list gives examples of typical operations where type checking is performed (this list is not
exhaustive):

* When a segment selector is loaded into a segment register — Certain segment registers can contain only
certain descriptor types, for example:

— The CS register only can be loaded with a selector for a code segment.

— Segment selectors for code segments that are not readable or for system segments cannot be loaded into
data-segment registers (DS, ES, FS, and GS).

— Only segment selectors of writable data segments can be loaded into the SS register.
®* When a segment selector is loaded into the LDTR or task register — For example:

— The LDTR can only be loaded with a selector for an LDT.

— The task register can only be loaded with a segment selector for a TSS.

®* When instructions access segments whose descriptors are already loaded into segment registers —
Certain segments can be used by instructions only in certain predefined ways, for example:

— No instruction may write into an executable segment.

Vol. 3A 6-5

PROTECTION

— No instruction may write into a data segment if it is not writable.
— No instruction may read an executable segment unless the readable flag is set.

®* When an instruction operand contains a segment selector — Certain instructions can access segments
or gates of only a particular type, for example:

— A far CALL or far JMP instruction can only access a segment descriptor for a conforming code segment,
nonconforming code segment, call gate, task gate, or TSS.

— The LLDT instruction must reference a segment descriptor for an LDT.
— The LTR instruction must reference a segment descriptor for a TSS.

— The LAR instruction must reference a segment or gate descriptor for an LDT, TSS, call gate, task gate, code
segment, or data segment.

— The LSL instruction must reference a segment descriptor for a LDT, TSS, code segment, or data segment.
— IDT entries must be interrupt, trap, or task gates.
®* During certain internal operations — For example:

— On a far call or far jump (executed with a far CALL or far JMP instruction), the processor determines the
type of control transfer to be carried out (call or jump to another code segment, a call or jump through a
gate, or a task switch) by checking the type field in the segment (or gate) descriptor pointed to by the
segment (or gate) selector given as an operand in the CALL or JMP instruction. If the descriptor type is for
a code segment or call gate, a call or jump to another code segment is indicated; if the descriptor type is for
a TSS or task gate, a task switch is indicated.

— On a call or jump through a call gate (or on an interrupt- or exception-handler call through a trap or
interrupt gate), the processor automatically checks that the segment descriptor being pointed to by the
gate is for a code segment.

— On a call or jump to a new task through a task gate (or on an interrupt- or exception-handler call to a new
task through a task gate), the processor automatically checks that the segment descriptor being pointed to
by the task gate is for a TSS.

— On acall or jump to a new task by a direct reference to a TSS, the processor automatically checks that the
segment descriptor being pointed to by the CALL or JMP instruction is for a TSS.

— On return from a nested task (initiated by an IRET instruction), the processor checks that the previous task
link field in the current TSS points to a TSS.

6.4.1 Null Segment Selector Checking

Attempting to load a null segment selector (see Section 3.4.2, “"Segment Selectors”) into the CS or SS segment
register generates a general-protection exception (#GP). A null segment selector can be loaded into the DS, ES,
FS, or GS register, but any attempt to access a segment through one of these registers when it is loaded with a null
segment selector results in a #GP exception being generated. Loading unused data-segment registers with a null
segment selector is a useful method of detecting accesses to unused segment registers and/or preventing
unwanted accesses to data segments.

6.4.1.1 NULL Segment Checking in 64-bit Mode

In 64-bit mode, the processor does not perform runtime checking on NULL segment selectors. The processor does
not cause a #GP fault when an attempt is made to access memory where the referenced segment register has a
NULL segment selector.

6.5 PRIVILEGE LEVELS

The processor’s segment-protection mechanism recognizes 4 privilege levels, numbered from 0 to 3. The greater
numbers mean lesser privileges. Figure 6-3 shows how these levels of privilege can be interpreted as rings of
protection.

6-6 Vol. 3A

PROTECTION

The center (reserved for the most privileged code, data, and stacks) is used for the segments containing the critical
software, usually the kernel of an operating system. Outer rings are used for less critical software. (Systems that
use only 2 of the 4 possible privilege levels should use levels 0 and 3.)

Protection Rings

Operating

System

Kernel

Operating System
Services N__\

Applications

Figure 6-3. Protection Rings

The processor uses privilege levels to prevent a program or task operating at a lesser privilege level from accessing
a segment with a greater privilege, except under controlled situations. When the processor detects a privilege level
violation, it generates a general-protection exception (#GP).

To carry out privilege-level checks between code segments and data segments, the processor recognizes the
following three types of privilege levels:

Current privilege level (CPL) — The CPL is the privilege level of the currently executing program or task. It
is stored in bits 0 and 1 of the CS and SS segment registers. Normally, the CPL is equal to the privilege level of
the code segment from which instructions are being fetched. The processor changes the CPL when program
control is transferred to a code segment with a different privilege level. The CPL is treated slightly differently
when accessing conforming code segments. Conforming code segments can be accessed from any privilege
level that is equal to or numerically greater (less privileged) than the DPL of the conforming code segment.
Also, the CPL is not changed when the processor accesses a conforming code segment that has a different
privilege level than the CPL.

Descriptor privilege level (DPL) — The DPL is the privilege level of a segment or gate. It is stored in the DPL
field of the segment or gate descriptor for the segment or gate. When the currently executing code segment
attempts to access a segment or gate, the DPL of the segment or gate is compared to the CPL and RPL of the
segment or gate selector (as described later in this section). The DPL is interpreted differently, depending on
the type of segment or gate being accessed:

— Data segment — The DPL indicates the numerically highest privilege level that a program or task can have
to be allowed to access the segment. For example, if the DPL of a data segment is 1, only programs running
at a CPL of 0 or 1 can access the segment.

— Nonconforming code segment (without using a call gate) — The DPL indicates the privilege level that
a program or task must be at to access the segment. For example, if the DPL of a nonconforming code
segment is 0, only programs running at a CPL of 0 can access the segment.

— Call gate — The DPL indicates the numerically highest privilege level that the currently executing program
or task can be at and still be able to access the call gate. (This is the same access rule as for a data
segment.)

— Conforming code segment and nonconforming code segment accessed through a call gate — The
DPL indicates the numerically lowest privilege level that a program or task can have to be allowed to access
the segment. For example, if the DPL of a conforming code segment is 2, programs running at a CPL of 0 or
1 cannot access the segment.

Vol. 3A 6-7

PROTECTION

— TSS — The DPL indicates the numerically highest privilege level that the currently executing program or
task can be at and still be able to access the TSS. (This is the same access rule as for a data segment.)

®* Requested privilege level (RPL) — The RPL is an override privilege level that is assigned to segment
selectors. It is stored in bits 0 and 1 of the segment selector. The processor checks the RPL along with the CPL
to determine if access to a segment is allowed. Even if the program or task requesting access to a segment has
sufficient privilege to access the segment, access is denied if the RPL is not of sufficient privilege level. That is,
if the RPL of a segment selector is numerically greater than the CPL, the RPL overrides the CPL, and vice versa.
The RPL can be used to ensure that privileged code does not access a segment on behalf of an application
program unless the program itself has access privileges for that segment. See Section 6.10.4, “Checking Caller
Access Privileges (ARPL Instruction),” for a detailed description of the purpose and typical use of the RPL.

Privilege levels are checked when the segment selector of a segment descriptor is loaded into a segment register.
The checks used for data access differ from those used for transfers of program control among code segments;
therefore, the two kinds of accesses are considered separately in the following sections.

6.6 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA SEGMENTS

To access operands in a data segment, the segment selector for the data segment must be loaded into the data-
segment registers (DS, ES, FS, or GS) or into the stack-segment register (SS). (Segment registers can be loaded
with the MOV, POP, LDS, LES, LFS, LGS, and LSS instructions.) Before the processor loads a segment selector into
a segment register, it performs a privilege check (see Figure 6-4) by comparing the privilege levels of the currently
running program or task (the CPL), the RPL of the segment selector, and the DPL of the segment’s segment
descriptor. The processor loads the segment selector into the segment register if the DPL is numerically greater
than or equal to both the CPL and the RPL. Otherwise, a general-protection fault is generated and the segment
register is not loaded.

CS Register
CPL

Segment Selector
For Data Segment

RPL

Privilege

Data-Segment Descriptor
Check

DPL

YYY

Figure 6-4. Privilege Check for Data Access

Figure 6-5 shows four procedures (located in codes segments A, B, C, and D), each running at different privilege
levels and each attempting to access the same data segment.

1. The procedure in code segment A is able to access data segment E using segment selector E1, because the CPL
of code segment A and the RPL of segment selector E1 are equal to the DPL of data segment E.

2. The procedure in code segment B is able to access data segment E using segment selector E2, because the CPL
of code segment B and the RPL of segment selector E2 are both numerically lower than (more privileged) than
the DPL of data segment E. A code segment B procedure can also access data segment E using segment
selector E1.

3. The procedure in code segment C is not able to access data segment E using segment selector E3 (dotted line),
because the CPL of code segment C and the RPL of segment selector E3 are both numerically greater than (less
privileged) than the DPL of data segment E. Even if a code segment C procedure were to use segment selector

6-8 Vol. 3A

PROTECTION

E1l or E2, such that the RPL would be acceptable, it still could not access data segment E because its CPL is not
privileged enough.

4. The procedure in code segment D should be able to access data segment E because code segment D’s CPL is
numerically less than the DPL of data segment E. However, the RPL of segment selector E3 (which the code
segment D procedure is using to access data segment E) is numerically greater than the DPL of data segment
E, so access is not allowed. If the code segment D procedure were to use segment selector E1 or E2 to access
the data segment, access would be allowed.

egmen egme el. F — — — — 4
,—

m RPL=3|

Lowest Privilege

|
|
|
I
I
|
Code !

I. E1 - Data
SegmentA| | Segment S|—%PL=2 *| SegmentE| !
CPL=2 >DpL=2] '
~|DPL=2 I
I
I
Segr(r)w((je?ltB— Segment Sel. E2 I
RPL=1 '
CPL=1 '
|
|
Code

Segment D

CPL=0

m Highest Privilege

Figure 6-5. Examples of Accessing Data Segments From Various Privilege Levels

As demonstrated in the previous examples, the addressable domain of a program or task varies as its CPL changes.
When the CPL is 0, data segments at all privilege levels are accessible; when the CPL is 1, only data segments at
privilege levels 1 through 3 are accessible; when the CPL is 3, only data segments at privilege level 3 are acces-
sible.

The RPL of a segment selector can always override the addressable domain of a program or task. When properly
used, RPLs can prevent problems caused by accidental (or intensional) use of segment selectors for privileged data
segments by less privileged programs or procedures.

It is important to note that the RPL of a segment selector for a data segment is under software control. For
example, an application program running at a CPL of 3 can set the RPL for a data- segment selector to 0. With the
RPL set to 0, only the CPL checks, not the RPL checks, will provide protection against deliberate, direct attempts to
violate privilege-level security for the data segment. To prevent these types of privilege-level-check violations, a
program or procedure can check access privileges whenever it receives a data-segment selector from another
procedure (see Section 6.10.4, “"Checking Caller Access Privileges (ARPL Instruction)”).

6.6.1 Accessing Data in Code Segments

In some instances it may be desirable to access data structures that are contained in a code segment. The
following methods of accessing data in code segments are possible:

®* Load a data-segment register with a segment selector for a nonconforming, readable, code segment.
®* Load a data-segment register with a segment selector for a conforming, readable, code segment.

®* Use a code-segment override prefix (CS) to read a readable, code segment whose selector is already loaded in
the CS register.

The same rules for accessing data segments apply to method 1. Method 2 is always valid because the privilege
level of a conforming code segment is effectively the same as the CPL, regardless of its DPL. Method 3 is always
valid because the DPL of the code segment selected by the CS register is the same as the CPL.

Vol. 3A 6-9

PROTECTION

6.7 PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS REGISTER

Privilege level checking also occurs when the SS register is loaded with the segment selector for a stack segment.
Here all privilege levels related to the stack segment must match the CPL; that is, the CPL, the RPL of the stack-
segment selector, and the DPL of the stack-segment descriptor must be the same. If the RPL and DPL are not equal
to the CPL, a general-protection exception (#GP) is generated.

6.8 PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING PROGRAM CONTROL
BETWEEN CODE SEGMENTS

To transfer program control from one code segment to another, the segment selector for the destination code
segment must be loaded into the code-segment register (CS). As part of this loading process, the processor exam-
ines the segment descriptor for the destination code segment and performs various limit, type, and privilege
checks. If these checks are successful, the CS register is loaded, program control is transferred to the new code
segment, and program execution begins at the instruction pointed to by the EIP register.

Program control transfers are carried out with the JMP, CALL, RET, SYSENTER, SYSEXIT, SYSCALL, SYSRET, INT n,
and IRET instructions, as well as by the exception and interrupt mechanisms. Exceptions, interrupts, and the IRET
instruction are special cases discussed in Chapter 7, “Interrupt and Exception Handling.” This chapter discusses
only the JMP, CALL, RET, SYSENTER, SYSEXIT, SYSCALL, and SYSRET instructions.

A JMP or CALL instruction can reference another code segment in any of four ways:

®* The target operand contains the segment selector for the target code segment.

®* The target operand points to a call-gate descriptor, which contains the segment selector for the target code
segment.

®* The target operand points to a TSS, which contains the segment selector for the target code segment.

®* Thetarget operand points to a task gate, which points to a TSS, which in turn contains the segment selector for
the target code segment.

The following sections describe first two types of references. See Section 9.3, “Task Switching,” for information on
transferring program control through a task gate and/or TSS.

The SYSENTER and SYSEXIT instructions are special instructions for making fast calls to and returns from operating
system or executive procedures. These instructions are discussed in Section 6.8.7, “Performing Fast Calls to
System Procedures with the SYSENTER and SYSEXIT Instructions.”

The SYCALL and SYSRET instructions are special instructions for making fast calls to and returns from operating
system or executive procedures in 64-bit mode. These instructions are discussed in Section 6.8.8, “Fast System
Calls in 64-Bit Mode.”

6.8.1 Direct Calls or Jumps to Code Segments

The near forms of the JMP, CALL, and RET instructions transfer program control within the current code segment,
so privilege-level checks are not performed. The far forms of the JMP, CALL, and RET instructions transfer control
to other code segments, so the processor does perform privilege-level checks.

When transferring program control to another code segment without going through a call gate, the processor
examines four kinds of privilege level and type information (see Figure 6-6):

®* The CPL. (Here, the CPL is the privilege level of the calling code segment; that is, the code segment that
contains the procedure that is making the call or jump.)

6-10 Vol. 3A

PROTECTION

CS Register

CPL

Segment Selector
For Code Segment

RPL
Destination Code > Privilege
Segment Descriptor »| Check

DPL| |C

Figure 6-6. Privilege Check for Control Transfer Without Using a Gate

®* The DPL of the segment descriptor for the destination code segment that contains the called procedure.
®* The RPL of the segment selector of the destination code segment.

®* The conforming (C) flag in the segment descriptor for the destination code segment, which determines whether
the segment is a conforming (C flag is set) or nonconforming (C flag is clear) code segment. See Section
3.4.5.1, “Code- and Data-Segment Descriptor Types,” for more information about this flag.

The rules that the processor uses to check the CPL, RPL, and DPL depends on the setting of the C flag, as described
in the following sections.

6.8.1.1 Accessing Nonconforming Code Segments

When accessing nonconforming code segments, the CPL of the calling procedure must be equal to the DPL of the

destination code segment; otherwise, the processor generates a general-protection exception (#GP). For example

in Figure 6-7:

® Code segment Cis a nonconforming code segment. A procedure in code segment A can call a procedure in code
segment C (using segment selector C1) because they are at the same privilege level (CPL of code segment A is
equal to the DPL of code segment C).

®* A procedure in code segment B cannot call a procedure in code segment C (using segment selector C2 or C1)
because the two code segments are at different privilege levels.

Vol. 3A 6-11

PROTECTION

Code Segment Sel. D2 |

Segment B RPL=3
— | SegmentSel.C2 |- - - - - A

CPL=3 RPL=3

Lowest Privilege

| SegmentSel. C1 —>»{ Code
Code RPL=2 Segment C

Segment A
CPL=2 || Segment Sel. D1 DPL=2

[RPL=2 Nonconforming

Code Segment
Y
Code
Segment D
DPL=1
Conforming
Code Segment

m Highest Privilege

Figure 6-7. Examples of Accessing Conforming and Nonconforming Code Segments From Various Privilege Levels

The RPL of the segment selector that points to a nonconforming code segment has a limited effect on the privilege
check. The RPL must be numerically less than or equal to the CPL of the calling procedure for a successful control
transfer to occur. So, in the example in Figure 6-7, the RPLs of segment selectors C1 and C2 could legally be set to
0, 1, or 2, but not to 3.

When the segment selector of a nonconforming code segment is loaded into the CS register, the privilege level field
is not changed; that is, it remains at the CPL (which is the privilege level of the calling procedure). This is true, even
if the RPL of the segment selector is different from the CPL.

6.8.1.2 Accessing Conforming Code Segments

When accessing conforming code segments, the CPL of the calling procedure may be numerically equal to or
greater than (less privileged) the DPL of the destination code segment; the processor generates a general-protec-
tion exception (#GP) only if the CPL is less than the DPL. (The segment selector RPL for the destination code
segment is not checked if the segment is a conforming code segment.)

In the example in Figure 6-7, code segment D is a conforming code segment. Therefore, calling procedures in both
code segment A and B can access code segment D (using either segment selector D1 or D2, respectively), because
they both have CPLs that are greater than or equal to the DPL of the conforming code segment. For conforming
code segments, the DPL represents the numerically lowest privilege level that a calling procedure may
be at to successfully make a call to the code segment.

(Note that segments selectors D1 and D2 are identical except for their respective RPLs. But since RPLs are not
checked when accessing conforming code segments, the two segment selectors are essentially interchangeable.)

When program control is transferred to a conforming code segment, the CPL does not change, even if the DPL of
the destination code segment is less than the CPL. This situation is the only one where the CPL may be different
from the DPL of the current code segment. Also, since the CPL does not change, no stack switch occurs.

Conforming segments are used for code modules such as math libraries and exception handlers, which support
applications but do not require access to protected system facilities. These modules are part of the operating
system or executive software, but they can be executed at numerically higher privilege levels (less privileged
levels). Keeping the CPL at the level of a calling code segment when switching to a conforming code segment

6-12 Vol. 3A

PROTECTION

prevents an application program from accessing nonconforming code segments while at the privilege level (DPL) of
a conforming code segment and thus prevents it from accessing more privileged data.

Most code segments are nonconforming. For these segments, program control can be transferred only to code
segments at the same level of privilege, unless the transfer is carried out through a call gate, as described in the
following sections.

6.8.2 Gate Descriptors

To provide controlled access to code segments with different privilege levels, the processor provides special set of
descriptors called gate descriptors. There are four kinds of gate descriptors:

® (Call gates
¢ Trap gates
® Interrupt gates
®* Task gates

Task gates are used for task switching and are discussed in Chapter 9, “Task Management.” Trap and interrupt
gates are special kinds of call gates used for calling exception and interrupt handlers. The are described in Chapter
7, “Interrupt and Exception Handling.” This chapter is concerned only with call gates.

6.8.3 Call Gates

Call gates facilitate controlled transfers of program control between different privilege levels. They are typically
used only in operating systems or executives that use the privilege-level protection mechanism. Call gates are also
useful for transferring program control between 16-bit and 32-bit code segments, as described in Section 23.4,
“Transferring Control Among Mixed-Size Code Segments.”

Figure 6-8 shows the format of a call-gate descriptor. A call-gate descriptor may reside in the GDT or in an LDT, but
not in the interrupt descriptor table (IDT). It performs six functions:

®* It specifies the code segment to be accessed.
® It defines an entry point for a procedure in the specified code segment.
* It specifies the privilege level required for a caller trying to access the procedure.

31 1615141312 11 87 6 54 0
D Type
Offset in Segment 31:16 Pl P P 000 Iée(z)rﬁr??. 4
L [of1 ‘ 1 |o ‘ 0
31 16 15 0
Segment Selector Offset in Segment 15:00 0

DPL Descriptor Privilege Level
P Gate Valid

Figure 6-8. Call-Gate Descriptor

® If a stack switch occurs, it specifies the number of optional parameters to be copied between stacks.

* It defines the size of values to be pushed onto the target stack: 16-bit gates force 16-bit pushes and 32-bit
gates force 32-bit pushes.

* It specifies whether the call-gate descriptor is valid.

The segment selector field in a call gate specifies the code segment to be accessed. The offset field specifies the
entry point in the code segment. This entry point is generally to the first instruction of a specific procedure. The DPL
field indicates the privilege level of the call gate, which in turn is the privilege level required to access the selected

Vol.3A 6-13

PROTECTION

procedure through the gate. The P flag indicates whether the call-gate descriptor is valid. (The presence of the code
segment to which the gate points is indicated by the P flag in the code segment’s descriptor.) The parameter count
field indicates the number of parameters to copy from the calling procedures stack to the new stack if a stack
switch occurs (see Section 6.8.5, “Stack Switching”). The parameter count specifies the nhumber of words for 16-
bit call gates and doublewords for 32-bit call gates.

Note that the P flag in a gate descriptor is normally always set to 1. If it is set to 0, a not present (#NP) exception
is generated when a program attempts to access the descriptor. The operating system can use the P flag for special
purposes. For example, it could be used to track the number of times the gate is used. Here, the P flag is initially
set to 0 causing a trap to the not-present exception handler. The exception handler then increments a counter and
sets the P flag to 1, so that on returning from the handler, the gate descriptor will be valid.

6.8.3.1 IA-32e Mode Call Gates

Call-gate descriptors in 32-bit mode provide a 32-bit offset for the instruction pointer (EIP); 64-bit extensions
double the size of 32-bit mode call gates in order to store 64-bit instruction pointers (RIP). See Figure 6-9:

®* The first eight bytes (bytes 7:0) of a 64-bit mode call gate are similar but not identical to legacy 32-bit mode
call gates. The parameter-copy-count field has been removed.

®* Bytes 11:8 hold the upper 32 bits of the target-segment offset in canonical form. A general-protection
exception (#GP) is generated if software attempts to use a call gate with a target offset that is not in canonical
form.

® 16-byte descriptors may reside in the same descriptor table with 16-bit and 32-bit descriptors. A type field,
used for consistency checking, is defined in bits 12:8 of the 64-bit descriptor’s highest dword (cleared to zero).
A general-protection exception (#GP) results if an attempt is made to access the upper half of a 64-bit mode
descriptor as a 32-bit mode descriptor.

31 131211109 8 7 0
Type
Reserved Reserved 12
oJo[o[o[o
31 0
Offset in Segment 63:31 8
31 161514131211 8 7 0
D Type
Offset in Segment 31:16 Pl P i 0 4
L |of1 |1 ‘0 | 0
31 16 15 0
Segment Selector Offset in Segment 15:00 0
DPL Descriptor Privilege Level
P Gate Valid

Figure 6-9. Call-Gate Descriptor in IA-32e Mode

®* Target code segments referenced by a 64-bit call gate must be 64-bit code segments (CS.L = 1, CS.D = 0). If
not, the reference generates a general-protection exception, #GP (CS selector).

® Only 64-bit mode call gates can be referenced in IA-32e mode (64-bit mode and compatibility mode). The
legacy 32-bit mode call gate type (OCH) is redefined in IA-32e mode as a 64-bit call-gate type; no 32-bit call-
gate type exists in IA-32e mode.

6-14 Vol. 3A

PROTECTION

® If a far call references a 16-bit call gate type (04H) in IA-32e mode, a general-protection exception (#GP) is
generated.

When a call references a 64-bit mode call gate, actions taken are identical to those taken in 32-bit mode, with the
following exceptions:

® Stack pushes are made in eight-byte increments.
® A 64-bit RIP is pushed onto the stack.
® Parameter copying is not performed.

Use a matching far-return instruction size for correct operation (returns from 64-bit calls must be performed with
a 64-bit operand-size return to process the stack correctly).

6.8.4 Accessing a Code Segment Through a Call Gate

To access a call gate, a far pointer to the gate is provided as a target operand in a CALL or JMP instruction. The
segment selector from this pointer identifies the call gate (see Figure 6-10); the offset from the pointer is required,
but not used or checked by the processor. (The offset can be set to any value.)

When the processor has accessed the call gate, it uses the segment selector from the call gate to locate the
segment descriptor for the destination code segment. (This segment descriptor can be in the GDT or the LDT.) It
then combines the base address from the code-segment descriptor with the offset from the call gate to form the
linear address of the procedure entry point in the code segment.

As shown in Figure 6-11, four different privilege levels are used to check the validity of a program control transfer
through a call gate:

® The CPL (current privilege level).

®* The RPL (requestor privilege level) of the call gate’s selector.

®* The DPL (descriptor privilege level) of the call gate descriptor.

®* The DPL of the segment descriptor of the destination code segment.

The C flag (conforming) in the segment descriptor for the destination code segment is also checked.

Far Pointer to Call Gate

Segment Selector | | Offset
Required but not used by processor

Descriptor Table

= Offset Call-Gate
Segment Selector Offset Descriptor
»| Base Base | Code-Segment
+)< Base Descriptor

Procedure
Entry Point

Figure 6-10. Call-Gate Mechanism

Vol.3A 6-15

PROTECTION

CS Register

CPL

Call-Gate Selector

RPL

Call Gate (Descriptor) Privilege

Check

DPL

YYVYY

Destination Code-
Segment Descriptor

DPL

Figure 6-11. Privilege Check for Control Transfer with Call Gate

The privilege checking rules are different depending on whether the control transfer was initiated with a CALL or a
JMP instruction, as shown in Table 6-1.

Table 6-1. Privilege Check Rules for Call Gates
Instruction Privilege Check Rules
CALL CPL < call gate DPL; RPL < call gate DPL

Destination conforming code segment DPL < CPL

Destination nonconforming code segment DPL < CPL
JMP CPL < call gate DPL; RPL < call gate DPL

Destination conforming code segment DPL < CPL

Destination nonconforming code segment DPL = CPL

The DPL field of the call-gate descriptor specifies the numerically highest privilege level from which a calling proce-
dure can access the call gate; that is, to access a call gate, the CPL of a calling procedure must be equal to or less
than the DPL of the call gate. For example, in Figure 6-15, call gate A has a DPL of 3. So calling procedures at all
CPLs (0 through 3) can access this call gate, which includes calling procedures in code segments A, B, and C. Call
gate B has a DPL of 2, so only calling procedures at a CPL or 0, 1, or 2 can access call gate B, which includes calling
procedures in code segments B and C. The dotted line shows that a calling procedure in code segment A cannot
access call gate B.

The RPL of the segment selector to a call gate must satisfy the same test as the CPL of the calling procedure; that
is, the RPL must be less than or equal to the DPL of the call gate. In the example in Figure 6-15, a calling procedure
in code segment C can access call gate B using gate selector B2 or B1, but it could not use gate selector B3 to
access call gate B.

If the privilege checks between the calling procedure and call gate are successful, the processor then checks the
DPL of the code-segment descriptor against the CPL of the calling procedure. Here, the privilege check rules vary
between CALL and JMP instructions. Only CALL instructions can use call gates to transfer program control to more
privileged (numerically lower privilege level) nonconforming code segments; that is, to nonconforming code
segments with a DPL less than the CPL. A JMP instruction can use a call gate only to transfer program control to a
nonconforming code segment with a DPL equal to the CPL. CALL and JMP instruction can both transfer program
control to a more privileged conforming code segment; that is, to a conforming code segment with a DPL less than
or equal to the CPL.

6-16 Vol. 3A

PROTECTION

If a call is made to a more privileged (numerically lower privilege level) nonconforming destination code segment,
the CPL is lowered to the DPL of the destination code segment and a stack switch occurs (see Section 6.8.5, “Stack
Switching”). If a call or jump is made to a more privileged conforming destination code segment, the CPL is not
changed and no stack switch occurs.

Code || Gate Selector A > Call
Segment A RPL=3 Gate A
CPL=3] Gate Selector B3 | — — — — . DPL=3
RPL=3 |
Lowest Privilege \‘/
SGSn‘i‘éﬁt B| | Gate Selector B1 GCta”B
RPL=2[> ¢
CPL=2 »| DPL=2
Segoae ¢ Gate Selector B2
egment C|— Gate Selector |
CPL=1 RELT
No Stack Stack Switch
Switch Occurs Occurs
\d Y
Code Code
Segment D Segment E
DPL=0 DPL=0
Conforming Nonconforming
m Highest Privilege Code Segment Code Segment

Figure 6-12. Example of Accessing Call Gates At Various Privilege Levels

Call gates allow a single code segment to have procedures that can be accessed at different privilege levels. For
example, an operating system located in a code segment may have some services which are intended to be used
by both the operating system and application software (such as procedures for handling character I/0). Call gates
for these procedures can be set up that allow access at all privilege levels (0 through 3). More privileged call gates
(with DPLs of 0 or 1) can then be set up for other operating system services that are intended to be used only by
the operating system (such as procedures that initialize device drivers).

6.8.5 Stack Switching

Whenever a call gate is used to transfer program control to a more privileged nonconforming code segment (that
is, when the DPL of the nonconforming destination code segment is less than the CPL), the processor automatically
switches to the stack for the destination code segment’s privilege level. This stack switching is carried out to
prevent more privileged procedures from crashing due to insufficient stack space. It also prevents less privileged
procedures from interfering (by accident or intent) with more privileged procedures through a shared stack.

Each task must define up to 4 stacks: one for applications code (running at privilege level 3) and one for each of
the privilege levels 2, 1, and 0 that are used. (If only two privilege levels are used [3 and 0], then only two stacks
must be defined.) Each of these stacks is located in a separate segment and is identified with a segment selector
and an offset into the stack segment (a stack pointer).

The segment selector and stack pointer for the privilege level 3 stack is located in the SS and ESP registers, respec-
tively, when privilege-level-3 code is being executed and is automatically stored on the called procedure’s stack
when a stack switch occurs.

Pointers to the privilege level 0, 1, and 2 stacks are stored in the TSS for the currently running task (see

Figure 9-2). Each of these pointers consists of a segment selector and a stack pointer (loaded into the ESP
register). These initial pointers are strictly read-only values. The processor does not change them while the task is
running. They are used only to create new stacks when calls are made to more privileged levels (numerically lower

Vol.3A 6-17

PROTECTION

privilege levels). These stacks are disposed of when a return is made from the called procedure. The next time the
procedure is called, a new stack is created using the initial stack pointer. (The TSS does not specify a stack for priv-
ilege level 3 because the processor does not allow a transfer of program control from a procedure running at a CPL
of 0, 1, or 2 to a procedure running at a CPL of 3, except on a return.)

The operating system is responsible for creating stacks and stack-segment descriptors for all the privilege levels to
be used and for loading initial pointers for these stacks into the TSS. Each stack must be read/write accessible (as
specified in the type field of its segment descriptor) and must contain enough space (as specified in the limit field)
to hold the following items:

® The contents of the SS, ESP, CS, and EIP registers for the calling procedure.
® The parameters and temporary variables required by the called procedure.
® The EFLAGS register and error code, when implicit calls are made to an exception or interrupt handler.

The stack will need to require enough space to contain many frames of these items, because procedures often call
other procedures, and an operating system may support nesting of multiple interrupts. Each stack should be large
enough to allow for the worst case nesting scenario at its privilege level.

(If the operating system does not use the processor’s multitasking mechanism, it still must create at least one TSS
for this stack-related purpose.)

When a procedure call through a call gate results in a change in privilege level, the processor performs the following
steps to switch stacks and begin execution of the called procedure at a new privilege level:

1. Uses the DPL of the destination code segment (the new CPL) to select a pointer to the new stack (segment
selector and stack pointer) from the TSS.

2. Reads the segment selector and stack pointer for the stack to be switched to from the current TSS. Any limit
violations detected while reading the stack-segment selector, stack pointer, or stack-segment descriptor cause
an invalid TSS (#TS) exception to be generated.

3. Checks the stack-segment descriptor for the proper privileges and type and generates an invalid TSS (#TS)
exception if violations are detected.

4. Temporarily saves the current values of the SS and ESP registers.
Loads the segment selector and stack pointer for the new stack in the SS and ESP registers.

Pushes the temporarily saved values for the SS and ESP registers (for the calling procedure) onto the new stack
(see Figure 6-13).

7. Copies the number of parameter specified in the parameter count field of the call gate from the calling
procedure’s stack to the new stack. If the count is 0, no parameters are copied.

Pushes the return instruction pointer (the current contents of the CS and EIP registers) onto the new stack.

Loads the segment selector for the new code segment and the new instruction pointer from the call gate into
the CS and EIP registers, respectively, and begins execution of the called procedure.

See the description of the CALL instruction in Chapter 3, “Instruction Set Reference, A-L,”, in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2A, for a detailed description of the privilege level
checks and other protection checks that the processor performs on a far call through a call gate.

6-18 Vol. 3A

Calling Procedure’s Stack

Parameter 1

Parameter 2

Parameter 3

<— ESP

Called Procedure’s Stack

Calling SS

Calling ESP

Parameter 1

PROTECTION

Parameter 2

Parameter 3

Calling CS

Calling EIP <<«— ESP

Figure 6-13. Stack Switching During an Interprivilege-Level Call

The parameter count field in a call gate specifies the number of data items (up to 31) that the processor should
copy from the calling procedure’s stack to the stack of the called procedure. If more than 31 data items need to be
passed to the called procedure, one of the parameters can be a pointer to a data structure, or the saved contents
of the SS and ESP registers may be used to access parameters in the old stack space. The size of the data items
passed to the called procedure depends on the call gate size, as described in Section 6.8.3, “Call Gates.”

6.8.5.1 Stack Switching in 64-bit Mode

Although protection-check rules for call gates are unchanged from 32-bit mode, stack-switch changes in 64-bit
mode are different.

When stacks are switched as part of a 64-bit mode privilege-level change through a call gate, a new SS (stack
segment) descriptor is not loaded; 64-bit mode only loads an inner-level RSP from the TSS. The new SS is forced
to NULL and the SS selector’s RPL field is forced to the new CPL. The new SS is set to NULL in order to handle
nested far transfers (far CALL, INTn, interrupts, and exceptions). The old SS and RSP are saved on the new stack.

On a subsequent far RET, the old SS is popped from the stack and loaded into the SS register. See Table 6-2.

Table 6-2. 64-Bit-Mode Stack Layout After Far CALL with CPL Change

32-bit Mode IA-32e mode
0ld SS Selector +12 +24 0Old SS Selector
Old ESP +8 +16 Old RSP
CS Selector +4 +8 0Old CS Selector
EP 0 ESP RSP 0 RIP
< 4 Bytes > < 8Bytes >

In 64-bit mode, stack operations resulting from a privilege-level-changing far call or far return are eight-bytes wide
and change the RSP by eight. The mode does not support the automatic parameter-copy feature found in 32-bit
mode. The call-gate count field is ignored. Software can access the old stack, if necessary, by referencing the old
stack-segment selector and stack pointer saved on the new process stack.

In 64-bit mode, far RET is allowed to load a NULL SS under certain conditions. If the target mode is 64-bit mode
and the target CPL # 3, IRET allows SS to be loaded with a NULL selector. If the called procedure itself is inter-
rupted, the NULL SS is pushed on the stack frame. On the subsequent far RET, the NULL SS on the stack acts as a
flag to tell the processor not to load a new SS descriptor.

Vol. 3A 6-19

PROTECTION

6.8.6 Returning from a Called Procedure

The RET instruction can be used to perform a near return, a far return at the same privilege level, and a far return
to a different privilege level. This instruction is intended to execute returns from procedures that were called with
a CALL instruction. It does not support returns from a JMP instruction, because the JMP instruction does not save a
return instruction pointer on the stack.

A near return only transfers program control within the current code segment; therefore, the processor performs
only a limit check. When the processor pops the return instruction pointer from the stack into the EIP register, it
checks that the pointer does not exceed the limit of the current code segment.

On a far return at the same privilege level, the processor pops both a segment selector for the code segment being
returned to and a return instruction pointer from the stack. Under normal conditions, these pointers should be
valid, because they were pushed on the stack by the CALL instruction. However, the processor performs privilege
checks to detect situations where the current procedure might have altered the pointer or failed to maintain the
stack properly.

A far return that requires a privilege-level change is only allowed when returning to a less privileged level (that is,
the DPL of the return code segment is numerically greater than the CPL). The processor uses the RPL field from the
CS register value saved for the calling procedure (see Figure 6-13) to determine if a return to a numerically higher
privilege level is required. If the RPL is numerically greater (less privileged) than the CPL, a return across privilege
levels occurs.

The processor performs the following steps when performing a far return to a calling procedure (see Figures 6-2
and 6-4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of the
stack contents prior to and after a return):

1. Checks the RPL field of the saved CS register value to determine if a privilege level change is required on the
return.

2. Loads the CS and EIP registers with the values on the called procedure’s stack. (Type and privilege level checks
are performed on the code-segment descriptor and RPL of the code- segment selector.)

3. (If the RET instruction includes a parameter count operand and the return requires a privilege level change.)
Adds the parameter count (in bytes obtained from the RET instruction) to the current ESP register value (after
popping the CS and EIP values), to step past the parameters on the called procedure’s stack. The resulting
value in the ESP register points to the saved SS and ESP values for the calling procedure’s stack. (Note that the
byte count in the RET instruction must be chosen to match the parameter count in the call gate that the calling
procedure referenced when it made the original call multiplied by the size of the parameters.)

4. (If the return requires a privilege level change.) Loads the SS and ESP registers with the saved SS and ESP
values and switches back to the calling procedure’s stack. The SS and ESP values for the called procedure’s
stack are discarded. Any limit violations detected while loading the stack-segment selector or stack pointer
cause a general-protection exception (#GP) to be generated. The new stack-segment descriptor is also checked
for type and privilege violations.

5. (If the RET instruction includes a parameter count operand.) Adds the parameter count (in bytes obtained from
the RET instruction) to the current ESP register value, to step past the parameters on the calling procedure’s
stack. The resulting ESP value is not checked against the limit of the stack segment. If the ESP value is beyond
the limit, that fact is not recognized until the next stack operation.

6. (If the return requires a privilege level change.) Checks the contents of the DS, ES, FS, and GS segment
registers. If any of these registers refer to segments whose DPL is less than the new CPL (excluding conforming
code segments), the segment register is loaded with a null segment selector.

See the description of the RET instruction in Chapter 4 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2B, for a detailed description of the privilege level checks and other protection checks that
the processor performs on a far return.

6.8.7 Performing Fast Calls to System Procedures with the SYSENTER and SYSEXIT
Instructions

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture in the Pentium II processors
for the purpose of providing a fast (low overhead) mechanism for calling operating system or executive procedures.

6-20 Vol. 3A

PROTECTION

SYSENTER is intended for use by user code running at privilege level 3 to access operating system or executive
procedures running at privilege level 0. SYSEXIT is intended for use by privilege level 0 operating system or exec-
utive procedures for fast returns to privilege level 3 user code. SYSENTER can be executed from privilege levels 3,
2,1, or 0; SYSEXIT can only be executed from privilege level 0.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not constitute a call/return pair.
This is because SYSENTER does not save any state information for use by SYSEXIT on a return.

The target instruction and stack pointer for these instructions are not specified through instruction operands.
Instead, they are specified through parameters entered in MSRs and general-purpose registers.

For SYSENTER, target fields are generated using the following sources:

®* Target code segment — Reads this from IA32_SYSENTER_CS.

®* Target instruction — Reads this from IA32_SYSENTER_EIP.

® Stack segment — Computed by adding 8 to the value in IA32_SYSENTER_CS.

¢ Stack pointer — Reads this from the IA32_SYSENTER_ESP.

For SYSEXIT, target fields are generated using the following sources:

®* Target code segment — Computed by adding 16 to the value in the IA32_SYSENTER_CS.
®* Target instruction — Reads this from EDX.

* Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.

® Stack pointer — Reads this from ECX.

The SYSENTER and SYSEXIT instructions perform “fast” calls and returns because they force the processor into a
predefined privilege level 0 state when SYSENTER is executed and into a predefined privilege level 3 state when
SYSEXIT is executed. By forcing predefined and consistent processor states, the nhumber of privilege checks ordi-
narily required to perform a far call to another privilege levels are greatly reduced. Also, by predefining the target
context state in MSRs and general-purpose registers eliminates all memory accesses except when fetching the
target code.

Any additional state that needs to be saved to allow a return to the calling procedure must be saved explicitly by
the calling procedure or be predefined through programming conventions.

6.8.7.1 SYSENTER and SYSEXIT Instructions in IA-32e Mode

For Intel 64 processors, the SYSENTER and SYSEXIT instructions are enhanced to allow fast system calls from user
code running at privilege level 3 (in compatibility mode or 64-bit mode) to 64-bit executive procedures running at
privilege level 0. IA32_SYSENTER_EIP MSR and IA32_SYSENTER_ESP MSR are expanded to hold 64-bit addresses.
If IA-32e mode is inactive, only the lower 32-bit addresses stored in these MSRs are used. The WRMSR instruction
ensures that the addresses stored in these MSRs are canonical. Note that, in 64-bit mode, IA32_SYSENTER_CS
must not contain a NULL selector.

When SYSENTER transfers control, the following fields are generated and bits set:

®* Target code segment — Reads non-NULL selector from IA32_SYSENTER_CS.

®* New CS attributes — CS base = 0, CS limit = FFFFFFFFH.

®* Target instruction — Reads 64-bit canonical address from IA32_SYSENTER_EIP.
®* Stack segment — Computed by adding 8 to the value from IA32_SYSENTER_CS.
® Stack pointer — Reads 64-bit canonical address from IA32_SYSENTER_ESP.

®* New SS attributes — SS base = 0, SS limit = FFFFFFFFH.

When the SYSEXIT instruction transfers control to 64-bit mode user code using REX.W, the following fields are
generated and bits set:

®* Target code segment — Computed by adding 32 to the value in IA32_SYSENTER_CS.
®* New CS attributes — L-bit = 1 (go to 64-bit mode).

®* Target instruction — Reads 64-bit canonical address in RDX.

® Stack segment — Computed by adding 40 to the value of IA32_SYSENTER_CS.

Vol. 3A 6-21

PROTECTION

* Stack pointer — Update RSP using 64-bit canonical address in RCX.

When SYSEXIT transfers control to compatibility mode user code when the operand size attribute is 32 bits, the
following fields are generated and bits set:

®* Target code segment — Computed by adding 16 to the value in IA32_SYSENTER_CS.
®* New CS attributes — L-bit = 0 (go to compatibility mode).

®* Target instruction — Fetch the target instruction from 32-bit address in EDX.

®* Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.

® Stack pointer — Update ESP from 32-bit address in ECX.

6.8.8 Fast System Calls in 64-Bit Mode

The SYSCALL and SYSRET instructions are designed for operating systems that use a flat memory model (segmen-
tation is not used). The instructions, along with SYSENTER and SYSEXIT, are suited for IA-32e mode operation.
SYSCALL and SYSRET, however, are not supported in compatibility mode (or in protected mode). Use CPUID to
check if SYSCALL and SYSRET are available (CPUID.80000001H.EDX[bit 11] = 1).

SYSCALL is intended for use by user code running at privilege level 3 to access operating system or executive
procedures running at privilege level 0. SYSRET is intended for use by privilege level 0 operating system or execu-
tive procedures for fast returns to privilege level 3 user code.

Stack pointers for SYSCALL/SYSRET are not specified through model specific registers. The clearing of bits in
RFLAGS is programmable rather than fixed. SYSCALL/SYSRET save and restore the RFLAGS register.

For SYSCALL, the processor saves RFLAGS into R11 and the RIP of the next instruction into RCX; it then gets the
privilege-level 0 target code segment, instruction pointer, stack segment, and flags as follows:

®* Target code segment — Reads a non-NULL selector from IA32_STAR[47:32].

®* Target instruction pointer — Reads a 64-bit address from IA32_LSTAR. (The WRMSR instruction ensures
that the value of the IA32_LSTAR MSR is canonical.)

* Stack segment — Computed by adding 8 to the value in IA32_STAR[47:32].

®* Flags — The processor sets RFLAGS to the logical-AND of its current value with the complement of the value in
the IA32_FMASK MSR.

When SYSRET transfers control to 64-bit mode user code using REX.W, the processor gets the privilege level 3
target code segment, instruction pointer, stack segment, and flags as follows:

®* Target code segment — Reads a non-NULL selector from IA32_STAR[63:48] + 16.
®* Target instruction pointer — Copies the value in RCX into RIP.

* Stack segment — IA32_STAR[63:48] + 8.

® EFLAGS — Loaded from R11.

When SYSRET transfers control to 32-bit mode user code using a 32-bit operand size, the processor gets the priv-
ilege level 3 target code segment, instruction pointer, stack segment, and flags as follows:

®* Target code segment — Reads a non-NULL selector from IA32_STAR[63:48].
®* Target instruction pointer — Copies the value in ECX into EIP.

®* Stack segment — IA32_STAR[63:48] + 8.

® EFLAGS — Loaded from R11.

It is the responsibility of the OS to ensure the descriptors in the GDT/LDT correspond to the selectors loaded by
SYSCALL/SYSRET (consistent with the base, limit, and attribute values forced by the instructions).

See Figure 6-14 for the layout of IA32_STAR, IA32_LSTAR, and IA32_FMASK.

6-22 Vol. 3A

PROTECTION

63 3231 Y

Reserved SYSCALL EFLAGS Mask

IA32_FMASK
63 0

Target RIP for 64-bit Mode Calling Program

IA32_LSTAR
63 48 47 32 31 0
SYSRET CS and SS | SYSCALL CS and SS Reserved
IA32_STAR

Figure 6-14. MSRs Used by SYSCALL and SYSRET

The SYSCALL instruction does not save the stack pointer, and the SYSRET instruction does not restore it. It is likely
that the OS system-call handler will change the stack pointer from the user stack to the OS stack. If so, it is the
responsibility of software first to save the user stack pointer. This might be done by user code, prior to executing
SYSCALL, or by the OS system-call handler after SYSCALL.

Because the SYSRET instruction does not modify the stack pointer, it is necessary for software to switch back to the
user stack. The OS may load the user stack pointer (if it was saved after SYSCALL) before executing SYSRET,; alter-
natively, user code may load the stack pointer (if it was saved before SYSCALL) after receiving control from
SYSRET.

If the OS loads the stack pointer before executing SYSRET, it must ensure that the handler of any interrupt or
exception delivered between restoring the stack pointer and successful execution of SYSRET is not invoked with the
user stack. It can do so using approaches such as the following:

* External interrupts. The OS can prevent an external interrupt from being delivered by clearing EFLAGS.IF
before loading the user stack pointer.

®* Nonmaskable interrupts (NMIs). The OS can ensure that the NMI handler is invoked with the correct stack by
using the interrupt stack table (IST) mechanism for gate 2 (NMI) in the IDT (see Section 7.14.5, “Interrupt
Stack Table”).

®* General-protection exceptions (#GP). The SYSRET instruction generates #GP(0) if the value of RCX is not
canonical. The OS can address this possibility using one or more of the following approaches:

— Confirming that the value of RCX is canonical before executing SYSRET.
— Using paging to ensure that the SYSCALL instruction will never save a non-canonical value into RCX.
— Using the IST mechanism for gate 13 (#GP) in the IDT.

6.9 PRIVILEGED INSTRUCTIONS

Some of the system instructions (called “privileged instructions”) are protected from use by application programs.
The privileged instructions control system functions (such as the loading of system registers). They can be

executed only when the CPL is 0 (most privileged). If one of these instructions is executed when the CPL is not O,
a general-protection exception (#GP) is generated. The following system instructions are privileged instructions:

® LGDT — Load GDT register.
® LLDT — Load LDT register.

Vol. 3A 6-23

PROTECTION

® LTR — Load task register.

® LIDT — Load IDT register.

® MOV (control registers) — Load and store control registers.
® LMSW — Load machine status word.

® CLTS — Clear task-switched flag in register CRO.

® MOV (debug registers) — Load and store debug registers.
® INVD — Invalidate cache, without writeback.

* WBINVD — Invalidate cache, with writeback.

® INVLPG —Invalidate TLB entry.

® HLT— Halt processor.

®* RDMSR — Read Model-Specific Registers.

®* WRMSR —Write Model-Specific Registers.

®* RDPMC — Read Performance-Monitoring Counter.

® RDTSC — Read Time-Stamp Counter.

Some of the privileged instructions are available only in the more recent families of Intel 64 and IA-32 processors
(see Section 24.13, “New Instructions In the Pentium and Later IA-32 Processors”).

The PCE and TSD flags in register CR4 (bits 4 and 2, respectively) enable the RDPMC and RDTSC instructions,
respectively, to be executed at any CPL.

6.10 POINTER VALIDATION

When operating in protected mode, the processor validates all pointers to enforce protection between segments
and maintain isolation between privilege levels. Pointer validation consists of the following checks:

Checking access rights to determine if the segment type is compatible with its use.
Checking read/write rights.

Checking if the pointer offset exceeds the segment limit.

Checking if the supplier of the pointer is allowed to access the segment.

u A W N

Checking the offset alignment.

The processor automatically performs first, second, and third checks during instruction execution. Software must
explicitly request the fourth check by issuing an ARPL instruction. The fifth check (offset alignment) is performed
automatically at privilege level 3 if alignment checking is turned on. Offset alignment does not affect isolation of

privilege levels.

6.10.1 Checking Access Rights (LAR Instruction)

When the processor accesses a segment using a far pointer, it performs an access rights check on the segment
descriptor pointed to by the far pointer. This check is performed to determine if type and privilege level (DPL) of the
segment descriptor are compatible with the operation to be performed. For example, when making a far call in
protected mode, the segment-descriptor type must be for a conforming or nonconforming code segment, a call
gate, a task gate, or a TSS. Then, if the call is to a nonconforming code segment, the DPL of the code segment must
be equal to the CPL, and the RPL of the code segment’s segment selector must be less than or equal to the DPL. If
type or privilege level are found to be incompatible, the appropriate exception is generated.

To prevent type incompatibility exceptions from being generated, software can check the access rights of a
segment descriptor using the LAR (load access rights) instruction. The LAR instruction specifies the segment
selector for the segment descriptor whose access rights are to be checked and a destination register. The instruc-
tion then performs the following operations:

1. Check that the segment selector is not null.

6-24 Vol. 3A

PROTECTION

2. Checks that the segment selector points to a segment descriptor that is within the descriptor table limit (GDT
or LDT).

3. Checks that the segment descriptor is a code, data, LDT, call gate, task gate, or TSS segment-descriptor type.

If the segment is not a conforming code segment, checks if the segment descriptor is visible at the CPL (that
is, if the CPL and the RPL of the segment selector are less than or equal to the DPL).

5. If the privilege level and type checks pass, loads the second doubleword of the segment descriptor into the
destination register (masked by the value O0FXFFOOH, where X indicates that the corresponding 4 bits are
undefined) and sets the ZF flag in the EFLAGS register. If the segment selector is not visible at the current
privilege level or is an invalid type for the LAR instruction, the instruction does not modify the destination
register and clears the ZF flag.

Once loaded in the destination register, software can perform additional checks on the access rights information.

6.10.2 Checking Read/Write Rights (VERR and VERW Instructions)

When the processor accesses any code or data segment it checks the read/write privileges assigned to the
segment to verify that the intended read or write operation is allowed. Software can check read/write rights using
the VERR (verify for reading) and VERW (verify for writing) instructions. Both these instructions specify the
segment selector for the segment being checked. The instructions then perform the following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within the descriptor table limit (GDT
or LDT).

3. Checks that the segment descriptor is a code or data-segment descriptor type.

If the segment is not a conforming code segment, checks if the segment descriptor is visible at the CPL (that
is, if the CPL and the RPL of the segment selector are less than or equal to the DPL).

5. Checks that the segment is readable (for the VERR instruction) or writable (for the VERW) instruction.

The VERR instruction sets the ZF flag in the EFLAGS register if the segment is visible at the CPL and readable; the
VERW sets the ZF flag if the segment is visible and writable. (Code segments are never writable.) The ZF flag is
cleared if any of these checks fail.

6.10.3 Checking That the Pointer Offset Is Within Limits (LSL Instruction)

When the processor accesses any segment it performs a limit check to ensure that the offset is within the limit of
the segment. Software can perform this limit check using the LSL (load segment limit) instruction. Like the LAR
instruction, the LSL instruction specifies the segment selector for the segment descriptor whose limit is to be
checked and a destination register. The instruction then performs the following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within the descriptor table limit (GDT
or LDT).

3. Checks that the segment descriptor is a code, data, LDT, or TSS segment-descriptor type.

If the segment is not a conforming code segment, checks if the segment descriptor is visible at the CPL (that
is, if the CPL and the RPL of the segment selector less than or equal to the DPL).

5. Ifthe privilege level and type checks pass, loads the unscrambled limit (the limit scaled according to the setting
of the G flag in the segment descriptor) into the destination register and sets the ZF flag in the EFLAGS register.
If the segment selector is not visible at the current privilege level or is an invalid type for the LSL instruction,
the instruction does not modify the destination register and clears the ZF flag.

Once loaded in the destination register, software can compare the segment limit with the offset of a pointer.

Vol. 3A 6-25

PROTECTION

6.10.4 Checking Caller Access Privileges (ARPL Instruction)

The requestor’s privilege level (RPL) field of a segment selector is intended to carry the privilege level of a calling
procedure (the calling procedure’s CPL) to a called procedure. The called procedure then uses the RPL to determine
if access to a segment is allowed. The RPL is said to “weaken” the privilege level of the called procedure to that of
the RPL.

Operating-system procedures typically use the RPL to prevent less privileged application programs from accessing
data located in more privileged segments. When an operating-system procedure (the called procedure) receives a
segment selector from an application program (the calling procedure), it sets the segment selector’s RPL to the
privilege level of the calling procedure. Then, when the operating system uses the segment selector to access its
associated segment, the processor performs privilege checks using the calling procedure’s privilege level (stored in
the RPL) rather than the numerically lower privilege level (the CPL) of the operating-system procedure. The RPL
thus ensures that the operating system does not access a segment on behalf of an application program unless that
program itself has access to the segment.

Figure 6-15 shows an example of how the processor uses the RPL field. In this example, an application program
(located in code segment A) possesses a segment selector (segment selector D1) that points to a privileged data
structure (that is, a data structure located in a data segment D at privilege level 0).

The application program cannot access data segment D, because it does not have sufficient privilege, but the oper-
ating system (located in code segment C) can. So, in an attempt to access data segment D, the application
program executes a call to the operating system and passes segment selector D1 to the operating system as a
parameter on the stack. Before passing the segment selector, the (well behaved) application program sets the RPL
of the segment selector to its current privilege level (which in this example is 3). If the operating system attempts
to access data segment D using segment selector D1, the processor compares the CPL (which is now 0 following
the call), the RPL of segment selector D1, and the DPL of data segment D (which is 0). Since the RPL is greater than
the DPL, access to data segment D is denied. The processor’s protection mechanism thus protects data segment D
from access by the operating system, because application program’s privilege level (represented by the RPL of
segment selector B) is greater than the DPL of data segment D.

Passed as a
parameter on
the stack.
Application Program \
Segmant A Gate Selector B Call S t Sel. D1
egmentA| | Gate Selector | _| Segment Sel.
CPL=3 RPL=3 Gate B " RPL=3
DPL=3 |
Lowest Privilege | |
!
|
I
| |
| |
Access 1
| not |
| allowed '
| J
| N
Code - = — Data
Operating | Segment C Segment Sel. D2
| g . | | Segment D
System RPL=0
DPL=0 —
Access DPL=0
m Highest Privilege allowed

Figure 6-15. Use of RPL to Weaken Privilege Level of Called Procedure

6-26 Vol. 3A

PROTECTION

Now assume that instead of setting the RPL of the segment selector to 3, the application program sets the RPL to
0 (segment selector D2). The operating system can now access data segment D, because its CPL and the RPL of
segment selector D2 are both equal to the DPL of data segment D.

Because the application program is able to change the RPL of a segment selector to any value, it can potentially use
a procedure operating at a numerically lower privilege level to access a protected data structure. This ability to
lower the RPL of a segment selector breaches the processor’s protection mechanism.

Because a called procedure cannot rely on the calling procedure to set the RPL correctly, operating-system proce-
dures (executing at numerically lower privilege-levels) that receive segment selectors from numerically higher
privilege-level procedures need to test the RPL of the segment selector to determine if it is at the appropriate level.
The ARPL (adjust requested privilege level) instruction is provided for this purpose. This instruction adjusts the RPL
of one segment selector to match that of another segment selector.

The example in Figure 6-15 demonstrates how the ARPL instruction is intended to be used. When the operating-
system receives segment selector D2 from the application program, it uses the ARPL instruction to compare the
RPL of the segment selector with the privilege level of the application program (represented by the code-segment
selector pushed onto the stack). If the RPL is less than application program’s privilege level, the ARPL instruction
changes the RPL of the segment selector to match the privilege level of the application program (segment selector
D1). Using this instruction thus prevents a procedure running at a numerically higher privilege level from
accessing numerically lower privilege-level (more privileged) segments by lowering the RPL of a segment selector.

Note that the privilege level of the application program can be determined by reading the RPL field of the segment
selector for the application-program’s code segment. This segment selector is stored on the stack as part of the call
to the operating system. The operating system can copy the segment selector from the stack into a register for
use as an operand for the ARPL instruction.

6.10.5 Checking Alignment

When the CPL is 3, alignment of memory references can be checked by setting the AM flag in the CRO register and
the AC flag in the EFLAGS register. Unaligned memory references generate alignment exceptions (#AC). The
processor does not generate alignment exceptions when operating at privilege level 0, 1, or 2. See Table 7-7 for a
description of the alignment requirements when alignment checking is enabled.

6.11 PAGE-LEVEL PROTECTION

Page-level protection can be used alone or applied to segments. When page-level protection is used with the flat
memory model, it allows supervisor code and data (the operating system or executive) to be protected from user
code and data (application programs). It also allows pages containing code to be write protected. When the
segment- and page-level protection are combined, page-level read/write protection allows more protection granu-
larity within segments.

With page-level protection (as with segment-level protection) each memory reference is checked to verify that
protection checks are satisfied. All checks are made before the memory cycle is started, and any violation prevents
the cycle from starting and results in a page-fault exception being generated. Because checks are performed in
parallel with address translation, there is no performance penalty.

The processor performs two page-level protection checks:
® Restriction of addressable domain (supervisor and user modes).
® Page type (read only or read/write).

Violations of either of these checks results in a page-fault exception being generated. See Chapter 7, “Interrupt
14—Page-Fault Exception (#PF),” for an explanation of the page-fault exception mechanism. This chapter
describes the protection violations which lead to page-fault exceptions.

Vol. 3A 6-27

PROTECTION

6.11.1 Page-Protection Flags

Protection information for pages is contained in two flags in a paging-structure entry (see Chapter 5): the
read/write flag (bit 1) and the user/supervisor flag (bit 2). The protection checks use the flags in all paging struc-
tures.

6.11.2 Restricting Addressable Domain

The page-level protection mechanism allows restricting access to pages based on two privilege levels:

® Supervisor mode (U/S flag is 0)—(Most privileged) For the operating system or executive, other system
software (such as device drivers), and protected system data (such as page tables).

® User mode (U/S flag is 1)—(Least privileged) For application code and data.

The segment privilege levels map to the page privilege levels as follows. If the processor is currently operating at
aCPLof 0, 1, or 2, itis in supervisor mode; if it is operating at a CPL of 3, itis in user mode. When the processor is
in supervisor mode, it can access all pages; when in user mode, it can access only user-level pages. (Note that the
WP flag in control register CRO modifies the supervisor permissions, as described in Section 6.11.3, “Page Type.”)

Note that to use the page-level protection mechanism, code and data segments must be set up for at least two
segment-based privilege levels: level 0 for supervisor code and data segments and level 3 for user code and data
segments. (In this model, the stacks are placed in the data segments.) To minimize the use of segments, a flat
memory model can be used (see Section 3.2.1, “Basic Flat Model”).

Here, the user and supervisor code and data segments all begin at address zero in the linear address space and
overlay each other. With this arrangement, operating-system code (running at the supervisor level) and application
code (running at the user level) can execute as if there are no segments. Protection between operating-system and
application code and data is provided by the processor’s page-level protection mechanism.

6.11.3 Page Type

The page-level protection mechanism recognizes two page types:
® Read-only access (R/W flag is 0).
® Read/write access (R/W flag is 1).

When the processor is in supervisor mode and the WP flag in register CRO is clear (its state following reset initial-
ization), all pages are both readable and writable (write-protection is ignored). When the processor is in user mode,
it can write only to user-mode pages that are read/write accessible. User-mode pages which are read/write or
read-only are readable; supervisor-mode pages are neither readable nor writable from user mode. A page-fault
exception is generated on any attempt to violate the protection rules.

Starting with the P6 family, Intel processors allow user-mode pages to be write-protected against supervisor-mode
access. Setting CR0O.WP = 1 enables supervisor-mode sensitivity to write protected pages. If CRO.WP = 1, read-
only pages are not writable from any privilege level. This supervisor write-protect feature is useful for imple-
menting a “copy-on-write” strategy used by some operating systems, such as UNIX*, for task creation (also called
forking or spawning). When a new task is created, it is possible to copy the entire address space of the parent task.
This gives the child task a complete, duplicate set of the parent's segments and pages. An alternative copy-on-
write strategy saves memory space and time by mapping the child's segments and pages to the same segments
and pages used by the parent task. A private copy of a page gets created only when one of the tasks writes to the
page. By using the WP flag and marking the shared pages as read-only, the supervisor can detect an attempt to
write to a page, and can copy the page at that time.

6.11.4 Combining Protection of Both Levels of Page Tables

For any one page, the protection attributes of its page-directory entry (first-level page table) may differ from those
of its page-table entry (second-level page table). The processor checks the protection for a page in both its page-
directory and the page-table entries. Table 6-3 shows the protection provided by the possible combinations of
protection attributes when the WP flag is clear.

6-28 Vol. 3A

PROTECTION

6.11.5 Overrides to Page Protection

The following types of memory accesses are checked as if they are privilege-level 0 accesses, regardless of the CPL
at which the processor is currently operating:

® Access to segment descriptors in the GDT, LDT, or IDT.

®* Access to an inner-privilege-level stack during an inter-privilege-level call or a call to in exception or interrupt
handler, when a change of privilege level occurs.

6.12 COMBINING PAGE AND SEGMENT PROTECTION

When paging is enabled, the processor evaluates segment protection first, then evaluates page protection. If the
processor detects a protection violation at either the segment level or the page level, the memory access is not

carried out and an exception is generated. If an exception is generated by segmentation, no paging exception is
generated.

Page-level protections cannot be used to override segment-level protection. For example, a code segment is by
definition not writable. If a code segment is paged, setting the R/W flag for the pages to read-write does not make
the pages writable. Attempts to write into the pages will be blocked by segment-level protection checks.

Page-level protection can be used to enhance segment-level protection. For example, if a large read-write data
segment is paged, the page-protection mechanism can be used to write-protect individual pages.

Table 6-3. Combined Page-Directory and Page-Table Protection

Page-Directory Entry Page-Table Entry Combined Effect

Privilege Access Type Privilege Access Type Privilege Access Type
User Read-Only User Read-Only User Read-Only
User Read-Only User Read-Write User Read-Only
User Read-Write User Read-Only User Read-Only
User Read-Write User Read-Write User Read/Write
User Read-Only Supervisor Read-Only Supervisor Read/Write*
User Read-Only Supervisor Read-Write Supervisor Read/Write*
User Read-Write Supervisor Read-Only Supervisor Read/Write*
User Read-Write Supervisor Read-Write Supervisor Read/Write
Supervisor Read-Only User Read-Only Supervisor Read/Write*
Supervisor Read-Only User Read-Write Supervisor Read/Write*
Supervisor Read-Write User Read-Only Supervisor Read/Write*
Supervisor Read-Write User Read-Write Supervisor Read/Write
Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write*
Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write*
Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write*
Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write
NOTE:

* If CRO.WP = 1, access type is determined by the R/W flags of the page-directory and page-table entries. IF CRO.WP = O, supervisor
privilege permits read-write access.

Vol. 3A 6-29

PROTECTION

6.13 PAGE-LEVEL PROTECTION AND EXECUTE-DISABLE BIT

In addition to page-level protection offered by the U/S and R/W flags, paging structures used with PAE paging, 4-
level paging,! and 5-level paging provide the execute-disable bit (see Chapter 5, “*Paging”). This bit offers addi-
tional protection for data pages.

An Intel 64 or IA-32 processor with the execute-disable bit capability can prevent data pages from being used by
malicious software to execute code. This capability is provided in:

® 32-bit protected mode with PAE enabled.
®* IA-32e mode.

While the execute-disable bit capability does not introduce new instructions, it does require operating systems to
use a PAE-enabled environment and establish a page-granular protection policy for memory pages.

If the execute-disable bit of a memory page is set, that page can be used only as data. An attempt to execute code
from a memory page with the execute-disable bit set causes a page-fault exception.

The execute-disable capability is not supported with 32-bit paging. Existing page-level protection mechanisms (see
Section 6.11, “Page-Level Protection”) continue to apply to memory pages independent of the execute-disable
setting.

6.13.1 Detecting and Enabling the Execute-Disable Capability

Software can detect the presence of the execute-disable capability using the CPUID instruction.
CPUID.80000001H:EDX.NX [bit 20] = 1 indicates the capability is available.

If the capability is available, software can enable it by setting IA32_EFER.NXE[bit 11] to 1. IA32_EFER is available
if CPUID.80000001H.EDX[bit 20 or 29] = 1.

If the execute-disable capability is not available, a write to set IA32_EFER.NXE produces a #GP exception. See
Table 6-4.

Table 6-4. Extended Feature Enable MSR (IA32_EFER)

63:12 11 10 9 8 7:1 0
Reserved Execute-disable bit | IA-32e mode Reserved IA-32e mode Reserved SysCall enable (SCE)
enable (NXE) active (LMA) enable (LME)

6.13.2 Execute-Disable Page Protection

The execute-disable bit in the paging structures enhances page protection for data pages. Instructions cannot be
fetched from a memory page if IA32_EFER.NXE =1 and the execute-disable bit is set in any of the paging-structure
entries used to map the page. Table 6-5 lists the valid usage of a page in relation to the value of execute-disable bit
(bit 63) of the corresponding entry in each level of the paging structures. Execute-disable protection can be acti-
vated using the execute-disable bit at any level of the paging structure, irrespective of the corresponding entry in
other levels. When execute-disable protection is not activated, the page can be used as code or data.

1. Earlier versions of this manual used the term “IA-32e paging” to identify 4-level paging.

6-30 Vol. 3A

PROTECTION

Table 6-5. Page Level Protection Matrix with Execute-Disable Bit Capability with 4-Level Paging

Execute Disable Bit Value (Bit 63) Valid Usage
PML4 PDP PDE PTE

Bit63 =1 * * * Data

* Bit63=1 * * Data

* * Bit63=1 * Data

* * * Bit63=1 Data
Bit63=0 Bit63=0 Bit63=0 Bit63=0 Data/Code
NOTES:

* Value not checked.

In legacy PAE-enabled mode, Table 6-6 and Table 6-7 show the effect of setting the execute-disable bit for code

and data pages.

Table 6-6. 4-KByte Page Level Protection Matrix with Execute-Disable Bit Capability with PAE Paging

Execute Disable Bit Value (Bit 63) Valid Usage
PDE PTE

Bit63=1 * Data

* Bit63 =1 Data
Bit63=0 Bit63=0 Data/Code
NOTE:

* Value not checked.

Table 6-7. 2-MByte Page Level Protection with Execute-Disable Bit Capability with PAE Paging

Execute Disable Bit Value (Bit 63) Valid Usage
PDE

Bit63=1 Data
Bit63=0 Data/Code

6.13.3 Reserved Bit Checking

The processor enforces reserved bit checking in paging data structure entries. The bits being checked varies with
paging mode and may vary with the size of physical address space.

Table 6-8 shows the reserved bits that are checked when the execute disable bit capability is enabled (CR4.PAE = 1

and IA32_EFER.NXE = 1). Table 6-8 and Table 6-9 show the following paging modes:
®* Non-PAE 4-KByte paging: 4-KByte-page only paging (CR4.PAE = 0, CR4.PSE = 0).

®* PSE36: 4-KByte and 4-MByte pages (CR4.PAE = 0, CR4.PSE = 1).
®* PAE: 4-KByte and 2-MByte pages (CR4.PAE = 1, CR4.PSE = X).

The reserved bit checking depends on the physical address size supported by the implementation, which is
reported in CPUID.80000008H. See the table note.

Vol. 3A 6-31

PROTECTION

Table 6-8. Page Level Protection Matrix with Execute-Disable Bit Capability Enabled

Mode Paging Mode Check Bits
32-bit 4-KByte paging (non-PAE) No reserved bits checked
PSE36 - PDE, 4-MByte page Bit[21]
PSE36 - PDE, 4-KByte page No reserved bits checked
PSE36 - PTE No reserved bits checked
PAE - PDP table entry Bits [63:MAXPHYADDR] & [8:5] & [2:1] *
PAE - PDE, 2-MByte page Bits [62:MAXPHYADDR] & [20:13] *
PAE - PDE, 4-KByte page Bits [62:MAXPHYADDR] *
PAE - PTE Bits [62:MAXPHYADDR] *
64-bit PML5E Bits [51:MAXPHYADDR] *
PML4E Bits [51:MAXPHYADDR] *
PDPTE Bits [51:MAXPHYADDR] *
PDE, 2-MByte page Bits [51:MAXPHYADDR] & [20:13] *
PDE, 4-KByte page Bits [51:MAXPHYADDR] *
PTE Bits [51:MAXPHYADDR] *
NOTES:

* MAXPHYADDR is the maximum physical address size and is indicated by CPUID.8B0000008H:EAX[bits 7-0].

If execute disable bit capability is not enabled or not available, reserved bit checking in 64-bit mode includes bit 63
and additional bits. This and reserved bit checking for legacy 32-bit paging modes are shown in Table 6-10.

Table 6-9. Reserved Bit Checking with Execute-Disable Bit Capability Not Enabled

Mode Paging Mode Check Bits
32-bit KByte paging (non-PAE) No reserved bits checked
PSE36 - PDE, 4-MByte page Bit[21]
PSE36 - PDE, 4-KByte page No reserved bits checked
PSE36 - PTE No reserved bits checked
PAE - PDP table entry Bits [63:MAXPHYADDR] & [8:5] & [2:1]*
PAE - PDE, 2-MByte page Bits [63:MAXPHYADDR] & [20:13]*
PAE - PDE, 4-KByte page Bits [63:MAXPHYADDR]*
PAE - PTE Bits [63:MAXPHYADDR]*
64-bit PML5€E Bit [63], bits [51:MAXPHYADDR]*
PML4E Bit [63], bits [51:MAXPHYADDR]*
PDPTE Bit [63], bits [51:MAXPHYADDR]*
PDE, 2-MByte page Bit [63], bits [51:MAXPHYADDR] & [20:13]*
PDE, 4-KByte page Bit [63], bits [51:MAXPHYADDR]*
PTE Bit [63], bits [51:MAXPHYADDR]*
NOTES:

* MAXPHYADDR is the maximum physical address size and is indicated by CPUID.80000008H:EAX[bits 7-0].

6.13.4 Exception Handling

When execute disable bit capability is enabled (IA32_EFER.NXE = 1), conditions for a page fault to occur include
the same conditions that apply to an Intel 64 or IA-32 processor without execute disable bit capability plus the

6-32 Vol. 3A

PROTECTION

following new condition: an instruction fetch to a linear address that translates to physical address in a memory
page that has the execute-disable bit set.

An Execute Disable Bit page fault can occur at all privilege levels. It can occur on any instruction fetch, including
(but not limited to): near branches, far branches, CALL/RET/INT/IRET execution, sequential instruction fetches,
and task switches. The execute-disable bit in the page translation mechanism is checked only when:

® IA32_EFER.NXE = 1.

®* The instruction translation look-aside buffer (ITLB) is loaded with a page that is not already present in the ITLB.

Vol. 3A 6-33

PROTECTION

6-34 Vol. 3A

CHAPTER 7
INTERRUPT AND EXCEPTION HANDLING

This chapter describes the interrupt and exception-handling mechanism when operating in protected mode on an
Intel 64 or IA-32 processor. Most of the information provided here also applies to interrupt and exception mecha-
nisms used in real-address, virtual-8086 mode, and 64-bit mode.

Chapter 22, “"8086 Emulation,” describes information specific to interrupt and exception mechanisms in real-
address and virtual-8086 mode. Section 7.14, “Exception and Interrupt Handling in 64-bit Mode,” describes infor-
mation specific to interrupt and exception mechanisms in IA-32e mode and 64-bit sub-mode.

7.1 INTERRUPT AND EXCEPTION OVERVIEW

Interrupts and exceptions are events that indicate that a condition exists somewhere in the system, the processor,
or within the currently executing program or task that requires the attention of a processor. They typically result in
a forced transfer of execution from the currently running program or task to a special software routine or task
called an interrupt handler or an exception handler. The action taken by a processor in response to an interrupt or
exception is referred to as servicing or handling the interrupt or exception.

Interrupts occur at random times during the execution of a program, in response to signals from hardware. System
hardware uses interrupts to handle events external to the processor, such as requests to service peripheral devices.
Software can also generate interrupts by executing the INT n instruction.

Exceptions occur when the processor detects an error condition while executing an instruction, such as division by
zero. The processor detects a variety of error conditions including protection violations, page faults, and internal
machine faults. The machine-check architecture of the Pentium 4, Intel Xeon, P6 family, and Pentium processors
also permits a machine-check exception to be generated when internal hardware errors and bus errors are
detected.

When an interrupt is received or an exception is detected, the currently running procedure or task is suspended
while the processor executes an interrupt or exception handler. When execution of the handler is complete, the
processor resumes execution of the interrupted procedure or task. The resumption of the interrupted procedure or
task happens without loss of program continuity, unless recovery from an exception was not possible or an inter-
rupt caused the currently running program to be terminated.

This chapter describes the processor’s interrupt and exception-handling mechanism, when operating in protected
mode. A description of the exceptions and the conditions that cause them to be generated is given at the end of this
chapter.

7.2 EXCEPTION AND INTERRUPT VECTORS

To aid in handling exceptions and interrupts, each architecturally defined exception and each interrupt condition
requiring special handling by the processor is assigned a unique identification number, called a vector number. The
processor uses the vector number assigned to an exception or interrupt as an index into the interrupt descriptor
table (IDT). The table provides the entry point to an exception or interrupt handler (see Section 7.10, “Interrupt
Descriptor Table (IDT)").

The allowable range for vector numbers is 0 to 255. Vector numbers in the range 0 through 31 are reserved by the
Intel 64 and IA-32 architectures for architecture-defined exceptions and interrupts. Not all of the vector numbers
in this range have a currently defined function. The unassigned vector numbers in this range are reserved. Do not
use the reserved vector numbers.

Vector numbers in the range 32 to 255 are designated as user-defined interrupts and are not reserved by the Intel
64 and IA-32 architecture. These interrupts are generally assigned to external I/O devices to enable those devices
to send interrupts to the processor through one of the external hardware interrupt mechanisms (see Section 7.3,
“Sources of Interrupts”).

Vol. 3A 7-1

INTERRUPT AND EXCEPTION HANDLING

Table 7-1 shows vector number assignments for architecturally defined exceptions and for the NMI interrupt. This
table gives the exception type (see Section 7.5, “"Exception Classifications”) and indicates whether an error code is
saved on the stack for the exception. The source of each predefined exception and the NMI interrupt is also given.

7.3 SOURCES OF INTERRUPTS

The processor receives interrupts from two sources:
® External (hardware generated) interrupts.
® Software-generated interrupts.

7.3.1 External Interrupts

External interrupts are received through pins on the processor or through the local APIC. The primary interrupt pins
on Pentium 4, Intel Xeon, P6 family, and Pentium processors are the LINT[1:0] pins, which are connected to the
local APIC (see Chapter 12, “"Advanced Programmable Interrupt Controller (APIC)”). When the local APIC is
enabled, the LINT[1:0] pins can be programmed through the APIC’s local vector table (LVT) to be associated with
any of the processor’s exception or interrupt vectors.

When the local APIC is global/hardware disabled, these pins are configured as INTR and NMI pins, respectively.
Asserting the INTR pin signals the processor that an external interrupt has occurred. The processor reads from the
system bus the interrupt vector number provided by an external interrupt controller, such as an 8259A (see Section
7.2, “Exception and Interrupt Vectors”). Asserting the NMI pin signals a non-maskable interrupt (NMI), which is
assigned to interrupt vector 2.

Table 7-1. Protected-Mode Exceptions and Interrupts

Vector | Mnemonic | Description Type Error Source
Code

0 #DE Divide Error Fault No DIV and IDIV instructions.

1 #DB Debug Exception Fault/ Trap No Instruction, data, and 1/0 breakpoints;
single-step; and others.

2 — NMI Interrupt Interrupt No Nonmaskable external interrupt.

3 #BP Breakpoint Trap No INT3 instruction.

4 #OF Overflow Trap No INTO instruction.

5 #BR BOUND Range Exceeded Fault No BOUND instruction.

6 #UD Invalid Opcode (Undefined Opcode) | Fault No UD instruction or reserved opcode.

7 #NM Device Not Available (No Math Fault No Floating-point or WAIT/FWAIT instruction.

Coprocessor)
8 #DF Double Fault Abort Yes Any instruction that can generate an
(zero) exception, an NM|, or an INTR.
9 Coprocessor Segment Overrun Fault No Floating-point instruction.!
(reserved)

10 #TS Invalid TSS Fault Yes Task switch or TSS access.

11 #NP Segment Not Present Fault Yes Loading segment registers or accessing
system segments.

12 #SS Stack-Segment Fault Fault Yes Stack operations and SS register loads.

13 #GP General Protection Fault Yes Any memory reference and other
protection checks.

14 #PF Page Fault Fault Yes Any memory reference.

7-2 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Table 7-1. Protected-Mode Exceptions and Interrupts (Contd.)

Vector | Mnemonic | Description Type Error Source
Code
15 — (Intel reserved. Do not use.) No
16 #MF x87 FPU Floating-Point Error (Math | Fault No x87 FPU floating-point or WAIT/FWAIT
Fault) instruction.

17 #AC Alignment Check Fault Yes Any data reference in memory.

18 #MC Machine Check Abort No Error codes (if any) and source are model
dependent’

19 #XM SIMD Floating-Point Exception Fault No SSE/SSEZ2/SSES3 floating-point
instructions®

20 #VE Virtualization Exception Fault No EPT violations®

21 #CP Control Protection Exception Fault Yes RET, IRET, RSTORSSP, and SETSSBSY
instructions can generate this exception.
When CET indirect branch tracking is
enabled, this exception can be generated
due to a missing ENDBRANCH instruction
at target of an indirect call or jump.

22-31 | — Intel reserved. Do not use.

32-255 | — User Defined (Non-reserved) Interrupt External interrupt or INT ninstruction.

Interrupts
NOTES:

1. Processors after the Intel386 processor do not generate this exception.

2. This exception was introduced in the Intel486 processor.

3. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.

4. This exception was introduced in the Pentium Ill processor.

5. This exception can occur only on processors that support the 1-setting of the "EPT-violation #VE" VM-execution control.

The processor’s local APIC is normally connected to a system-based I/O APIC. Here, external interrupts received at
the I/O APIC's pins can be directed to the local APIC through the system bus (Pentium 4, Intel Core Duo, Intel Core
2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6 family and Pentium processors). The I/O APIC
determines the vector number of the interrupt and sends this number to the local APIC. When a system contains
multiple processors, processors can also send interrupts to one another by means of the system bus (Pentium 4,
Intel Core Duo, Intel Core 2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6 family and Pentium
processors).

The LINT[1:0] pins are not available on the Intel486 processor and earlier Pentium processors that do not contain
an on-chip local APIC. These processors have dedicated NMI and INTR pins. With these processors, external inter-
rupts are typically generated by a system-based interrupt controller (8259A), with the interrupts being signaled
through the INTR pin.

Note that several other pins on the processor can cause a processor interrupt to occur. However, these interrupts
are not handled by the interrupt and exception mechanism described in this chapter. These pins include the
RESET#, FLUSH#, STPCLK#, SMI#, R/S#, and INIT# pins. Whether they are included on a particular processor is
implementation dependent. Pin functions are described in the data books for the individual processors. The SMI#
pin is described in Chapter 33, "System Management Mode.”

7.3.2 Maskable Hardware Interrupts

Any external interrupt that is delivered to the processor by means of the INTR pin or through the local APIC is called
a maskable hardware interrupt. Maskable hardware interrupts that can be delivered through the INTR pin include
all IA-32 architecture defined interrupt vectors from 0 through 255; those that can be delivered through the local
APIC include interrupt vectors 16 through 255.

Vol.3A 7-3

INTERRUPT AND EXCEPTION HANDLING

The IF flag in the EFLAGS register permits all maskable hardware interrupts to be masked as a group (see Section
7.8.1, “"Masking Maskable Hardware Interrupts”). Note that when interrupts 0 through 15 are delivered through the
local APIC, the APIC indicates the receipt of an illegal vector.

7.3.3 Software-Generated Interrupts

The INT n instruction permits interrupts to be generated from within software by supplying an interrupt vector
number as an operand. For example, the INT 35 instruction forces an implicit call to the interrupt handler for inter-
rupt 35.

Any of the interrupt vectors from 0 to 255 can be used as a parameter in this instruction. If the processor’s
predefined NMI vector is used, however, the response of the processor will not be the same as it would be from an
NMI interrupt generated in the normal manner. If vector number 2 (the NMI vector) is used in this instruction, the
NMI interrupt handler is called, but the processor’'s NMI-handling hardware is not activated.

Interrupts generated in software with the INT n instruction cannot be masked by the IF flag in the EFLAGS register.

7.4 SOURCES OF EXCEPTIONS

The processor receives exceptions from three sources:
® Processor-detected program-error exceptions.

® Software-generated exceptions.

® Machine-check exceptions.

7.4.1 Program-Error Exceptions

The processor generates one or more exceptions when it detects program errors during the execution in an appli-
cation program or the operating system or executive. Intel 64 and IA-32 architectures define a vector number for
each processor-detectable exception. Exceptions are classified as faults, traps, and aborts (see Section 7.5,
“Exception Classifications”).

7.4.2 Software-Generated Exceptions

The INTO, INT1, INT3, and BOUND instructions permit exceptions to be generated in software. These instructions
allow checks for exception conditions to be performed at points in the instruction stream. For example, INT3 causes
a breakpoint exception to be generated.

The INT n instruction can be used to emulate exceptions in software; but there is a limitation.! If INT n provides a
vector for one of the architecturally-defined exceptions, the processor generates an interrupt to the correct vector
(to access the exception handler) but does not push an error code on the stack. This is true even if the associated
hardware-generated exception normally produces an error code. The exception handler will still attempt to pop an
error code from the stack while handling the exception. Because no error code was pushed, the handler will pop off
and discard the EIP instead (in place of the missing error code). This sends the return to the wrong location.

7.4.3 Machine-Check Exceptions

The P6 family and Pentium processors provide both internal and external machine-check mechanisms for checking
the operation of the internal chip hardware and bus transactions. These mechanisms are implementation depen-

dent. When a machine-check error is detected, the processor signals a machine-check exception (vector 18) and

returns an error code.

1. The INT ninstruction has opcode CD following by an immediate byte encoding the value of n. In contrast, INT1 has opcode F1 and
INT3 has opcode CC.

7-4 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

See Chapter 7, “Interrupt 18 —Machine-Check Exception (#MC),” and Chapter 17, “Machine-Check Architecture,”
for more information about the machine-check mechanism.

7.5 EXCEPTION CLASSIFICATIONS

Exceptions are classified as faults, traps, or aborts depending on the way they are reported and whether the
instruction that caused the exception can be restarted without loss of program or task continuity.

®* Faults — A fault is an exception that can generally be corrected and that, once corrected, allows the program
to be restarted with no loss of continuity. When a fault is reported, the processor restores the machine state to
the state prior to the beginning of execution of the faulting instruction. The return address (saved contents of
the CS and EIP registers) for the fault handler points to the faulting instruction, rather than to the instruction
following the faulting instruction.

®* Traps — Atrap is an exception that is reported immediately following the execution of the trapping instruction.
Traps allow execution of a program or task to be continued without loss of program continuity. The return
address for the trap handler points to the instruction to be executed after the trapping instruction.

®* Aborts — An abort is an exception that does not always report the precise location of the instruction causing
the exception and does not allow a restart of the program or task that caused the exception. Aborts are used to
report severe errors, such as hardware errors and inconsistent or illegal values in system tables.

NOTE

One exception subset normally reported as a fault is not restartable. Such exceptions result in loss
of some processor state. For example, executing a POPAD instruction where the stack frame
crosses over the end of the stack segment causes a fault to be reported. In this situation, the
exception handler sees that the instruction pointer (CS:EIP) has been restored as if the POPAD
instruction had not been executed. However, internal processor state (the general-purpose
registers) will have been modified. Such cases are considered programming errors. An application
causing this class of exceptions should be terminated by the operating system.

7.6 PROGRAM OR TASK RESTART

To allow the restarting of program or task following the handling of an exception or an interrupt, all exceptions
(except aborts) are guaranteed to report exceptions on an instruction boundary. All interrupts are guaranteed to be
taken on an instruction boundary.

For fault-class exceptions, the return instruction pointer (saved when the processor generates an exception) points
to the faulting instruction. So, when a program or task is restarted following the handling of a fault, the faulting
instruction is restarted (re-executed). Restarting the faulting instruction is commonly used to handle exceptions
that are generated when access to an operand is blocked. The most common example of this type of fault is a page-
fault exception (#PF) that occurs when a program or task references an operand located on a page that is not in
memory. When a page-fault exception occurs, the exception handler can load the page into memory and resume
execution of the program or task by restarting the faulting instruction. To ensure that the restart is handled trans-
parently to the currently executing program or task, the processor saves the necessary registers and stack pointers
to allow a restart to the state prior to the execution of the faulting instruction.

For trap-class exceptions, the return instruction pointer points to the instruction following the trapping instruction.
If a trap is detected during an instruction which transfers execution, the return instruction pointer reflects the
transfer. For example, if a trap is detected while executing a JMP instruction, the return instruction pointer points
to the destination of the JMP instruction, not to the next address past the JMP instruction. All trap exceptions allow
program or task restart with no loss of continuity. For example, the overflow exception is a trap exception. Here,
the return instruction pointer points to the instruction following the INTO instruction that tested EFLAGS.OF (over-
flow) flag. The trap handler for this exception resolves the overflow condition. Upon return from the trap handler,
program or task execution continues at the instruction following the INTO instruction.

The abort-class exceptions do not support reliable restarting of the program or task. Abort handlers are designed
to collect diagnostic information about the state of the processor when the abort exception occurred and then shut
down the application and system as gracefully as possible.

Vol.3A 7-5

INTERRUPT AND EXCEPTION HANDLING

Interrupts rigorously support restarting of interrupted programs and tasks without loss of continuity. The return
instruction pointer saved for an interrupt points to the next instruction to be executed at the instruction boundary
where the processor took the interrupt. If the instruction just executed has a repeat prefix, the interrupt is taken
at the end of the current iteration with the registers set to execute the next iteration.

The ability of a P6 family processor to speculatively execute instructions does not affect the taking of interrupts by
the processor. Interrupts are taken at instruction boundaries located during the retirement phase of instruction
execution; so they are always taken in the “in-order” instruction stream. See Chapter 2, “Intel® 64 and IA-32
Architectures,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more informa-
tion about the P6 family processors’ microarchitecture and its support for out-of-order instruction execution.

Note that the Pentium processor and earlier IA-32 processors also perform varying amounts of prefetching and
preliminary decoding. With these processors as well, exceptions and interrupts are not signaled until actual “in-
order” execution of the instructions. For a given code sample, the signaling of exceptions occurs uniformly when
the code is executed on any family of IA-32 processors (except where new exceptions or new opcodes have been
defined).

7.7 NONMASKABLE INTERRUPT (NMI)

The nonmaskable interrupt (NMI) can be generated in either of two ways:
®* External hardware asserts the NMI pin.

®* The processor receives a message on the system bus (Pentium 4, Intel Core Duo, Intel Core 2, Intel Atom, and
Intel Xeon processors) or the APIC serial bus (P6 family and Pentium processors) with a delivery mode NMI.

When the processor receives a NMI from either of these sources, the processor handles it immediately by calling
the NMI handler pointed to by interrupt vector number 2. The processor also invokes certain hardware conditions
to ensure that no other interrupts, including NMI interrupts, are received until the NMI handler has completed
executing (see Section 7.7.1, “"Handling Multiple NMIs").

Also, when an NMI is received from either of the above sources, it cannot be masked by the IF flag in the EFLAGS
register.

It is possible to issue a maskable hardware interrupt (through the INTR pin) to vector 2 to invoke the NMI interrupt
handler; however, this interrupt will not truly be an NMI interrupt. A true NMI interrupt that activates the
processor’s NMI-handling hardware can only be delivered through one of the mechanisms listed above.

7.7.1 Handling Multiple NMIs

While an NMI interrupt handler is executing, the processor blocks delivery of subsequent NMIs until the next execu-
tion of the IRET instruction. This blocking of NMIs prevents nested execution of the NMI handler. It is recommended
that the NMI interrupt handler be accessed through an interrupt gate to disable maskable hardware interrupts (see
Section 7.8.1, “"Masking Maskable Hardware Interrupts”).

An execution of the IRET instruction unblocks NMIs even if the instruction causes a fault. For example, if the IRET
instruction executes with EFLAGS.VM = 1 and IOPL of less than 3, a general-protection exception is generated (see
Section 22.2.7, “Sensitive Instructions”). In such a case, NMIs are unmasked before the exception handler is
invoked.

7.8 ENABLING AND DISABLING INTERRUPTS

The processor inhibits the generation of some interrupts, depending on the state of the processor and of the IF and
RF flags in the EFLAGS register, as described in the following sections.

7-6 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

7.8.1 Masking Maskable Hardware Interrupts

The IF flag can disable the servicing of maskable hardware interrupts received on the processor’s INTR pin or
through the local APIC (see Section 7.3.2, “"Maskable Hardware Interrupts”). When the IF flag is clear, the
processor inhibits interrupts delivered to the INTR pin or through the local APIC from generating an internal inter-
rupt request; when the IF flag is set, interrupts delivered to the INTR or through the local APIC pin are processed
as normal external interrupts.

The IF flag does not affect non-maskable interrupts (NMIs) delivered to the NMI pin or delivery mode NMI
messages delivered through the local APIC, nor does it affect processor generated exceptions. As with the other
flags in the EFLAGS register, the processor clears the IF flag in response to a hardware reset.

The fact that the group of maskable hardware interrupts includes the reserved interrupt and exception vectors 0
through 32 can potentially cause confusion. Architecturally, when the IF flag is set, an interrupt for any of the
vectors from 0 through 32 can be delivered to the processor through the INTR pin and any of the vectors from 16
through 32 can be delivered through the local APIC. The processor will then generate an interrupt and call the
interrupt or exception handler pointed to by the vector number. So for example, it is possible to invoke the page-
fault handler through the INTR pin (by means of vector 14); however, this is not a true page-fault exception. It is
an interrupt. As with the INT n instruction (see Section 7.4.2, “Software-Generated Exceptions”), when an inter-
rupt is generated through the INTR pin to an exception vector, the processor does not push an error code on the
stack, so the exception handler may not operate correctly.

The IF flag can be set or cleared with the STI (set interrupt-enable flag) and CLI (clear interrupt-enable flag)
instructions, respectively. These instructions may be executed only if the CPL is equal to or less than the IOPL. A
general-protection exception (#GP) is generated if they are executed when the CPL is greater than the IOPL.! If
IF = 0, maskable hardware interrupts remain inhibited on the instruction boundary following an execution of STI.?
The inhibition ends after delivery of another event (e.g., exception) or the execution of the next instruction.

The IF flag is also affected by the following operations:

®* The PUSHF instruction stores all flags on the stack, where they can be examined and modified. The POPF
instruction can be used to load the modified flags back into the EFLAGS register.

®* Task switches and the POPF and IRET instructions load the EFLAGS register; therefore, they can be used to
modify the setting of the IF flag.

®* When an interrupt is handled through an interrupt gate, the IF flag is automatically cleared, which disables
maskable hardware interrupts. (If an interrupt is handled through a trap gate, the IF flag is not cleared.)

See the descriptions of the CLI, STI, PUSHF, POPF, and IRET instructions in Chapter 3, “Instruction Set Reference,
A-L,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, and Chapter 4, “Instruc-
tion Set Reference, M-U,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for a
detailed description of the operations these instructions are allowed to perform on the IF flag.

7.8.2 Masking Instruction Breakpoints

The RF (resume) flag in the EFLAGS register controls the response of the processor to instruction-breakpoint condi-
tions (see the description of the RF flag in Section 2.3, "System Flags and Fields in the EFLAGS Register”).

When set, it prevents an instruction breakpoint from generating a debug exception (#DB); when clear, instruction
breakpoints will generate debug exceptions. The primary function of the RF flag is to prevent the processor from
going into a debug exception loop on an instruction-breakpoint. See Section 19.3.1.1, “Instruction-Breakpoint
Exception Condition,” for more information on the use of this flag.

As noted in Section 7.8.3, execution of the MOV or POP instruction to load the SS register suppresses any instruc-
tion breakpoint on the next instruction (just as if EFLAGS.RF were 1).

1. The effect of the IOPL on these instructions is modified slightly when the virtual mode extension is enabled by setting the VME flag
in control register CR4: see Section 22.3, “Interrupt and Exception Handling in Virtual-8086 Mode.” Behavior is also impacted by the
PVI flag: see Section 22.4, “Protected-Mode Virtual Interrupts.”

2. Nonmaskable interrupts and system-management interrupts may also be inhibited on the instruction boundary following such an
execution of STI.

Vol.3A 7-7

INTERRUPT AND EXCEPTION HANDLING

7.8.3 Masking Exceptions and Interrupts When Switching Stacks

To switch to a different stack segment, software often uses a pair of instructions, for example:

MOV SS, AX
MOV ESP, StackTop

(Software might also use the POP instruction to load SS and ESP.)

If an interrupt or exception occurs after the new SS segment descriptor has been loaded but before the ESP register
has been loaded, these two parts of the logical address into the stack space are inconsistent for the duration of the
interrupt or exception handler (assuming that delivery of the interrupt or exception does not itself load a new stack
pointer).

To account for this situation, the processor prevents certain events from being delivered after execution of a MOV
to SS instruction or a POP to SS instruction. The following items provide details:

®* Any instruction breakpoint on the next instruction is suppressed (as if EFLAGS.RF were 1).

®* Any data breakpoint on the MOV to SS instruction or POP to SS instruction is inhibited until the instruction
boundary following the next instruction.

®* Any single-step trap that would be delivered following the MOV to SS instruction or POP to SS instruction
(because EFLAGS.TF is 1) is suppressed.

® The suppression and inhibition ends after delivery of an exception or the execution of the next instruction.

® If a sequence of consecutive instructions each loads the SS register (using MOV or POP), only the first is
guaranteed to inhibit or suppress events in this way.

Intel recommends that software use the LSS instruction to load the SS register and ESP together. The problem
identified earlier does not apply to LSS, and the LSS instruction does not inhibit events as detailed above.

7.9 PRIORITIZATION OF CONCURRENT EVENTS

If more than one event is pending at an instruction boundary (between execution of instructions), the processor
services them in a predictable order. Table 7-2 shows the priority among classes of event sources.

Table 7-2. Priority Among Concurrent Events

Priority Description

1 (Highest) Hardware Reset and Machine Checks
- RESET
- Machine Check (#MC)

2 Trap on Task Switch
- T flag in TSS is set (#DB)

3 External Hardware Interventions
- FLUSH

- STOPCLK

- SMI

-INIT

4 Traps on the Previous Instruction
- Trap-class Debug Exceptions (#DB due to TF flag set or data/I-O breakpoint)

Nonmaskable Interrupts (NMI) 1

6 Maskable Hardware Interrupts 1

Fault-class Debug Exceptions (#DB due to instruction breakpoint)

7-8 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Table 7-2. Priority Among Concurrent Events (Contd.)

Priority Description

8 Faults from Fetching Next Instruction
- Code-Segment Limit Violation (#GP)
- Code Page Fault (#PF)

9 (Lowest) Faults from Decoding the Next Instruction

- Control protection exception due to missing ENDBRANCH at target of an indirect call or jump (#CP)
- Instruction length > 15 bytes (#GP)

- Invalid Opcode (#UD)

- Coprocessor Not Available (#NM)

NOTE
1. The Intel® 486 processor and earlier processors group nonmaskable and maskable interrupts in the same priority class.

The processor first services a pending event from the class which has the highest priority, transferring execution to
the first instruction of the handler. Lower priority exceptions are discarded; lower priority interrupts are held
pending. Discarded exceptions may be re-generated when the event handler returns execution to the point in the
program or task where the original event occurred. While the priority among the classes listed in Table 7-2 is
consistent across processor implementations, the priority of events within a class is implementation-dependent
and may vary from processor to processor.

Table 7-2 specifies the prioritization of events that may be pending at an instruction boundary. It does not specify
the prioritization of faults that arise during instruction execution or event delivery (these include #BR, #TS, #NP,

#SS, #GP, #PF, #AC, #MF, #XM, #VE, or #CP). It also does not apply to the events generated by the “Call to Inter-
rupt Procedure” instructions (INT n, INTO, INT3, and INT1), as these events are integral to the execution of those
instructions and do not occur between instructions.

7.10 INTERRUPT DESCRIPTOR TABLE (IDT)

The interrupt descriptor table (IDT) associates each exception or interrupt vector with a gate descriptor for the
procedure or task used to service the associated exception or interrupt. Like the GDT and LDTs, the IDT is an array
of 8-byte descriptors (in protected mode). Unlike the GDT, the first entry of the IDT may contain a descriptor. To
form an index into the IDT, the processor scales the exception or interrupt vector by eight (the number of bytes in
a gate descriptor). Because there are only 256 interrupt or exception vectors, the IDT need not contain more than
256 descriptors. It can contain fewer than 256 descriptors, because descriptors are required only for the interrupt
and exception vectors that may occur. All empty descriptor slots in the IDT should have the present flag for the
descriptor set to 0.

The base addresses of the IDT should be aligned on an 8-byte boundary to maximize performance of cache line
fills. The limit value is expressed in bytes and is added to the base address to get the address of the last valid byte.
A limit value of 0 results in exactly 1 valid byte. Because IDT entries are always eight bytes long, the limit should
always be one less than an integral multiple of eight (that is, 8N - 1).

The IDT may reside anywhere in the linear address space. As shown in Figure 7-1, the processor locates the IDT
using the IDTR register. This register holds both a 32-bit base address and 16-bit limit for the IDT.

The LIDT (load IDT register) and SIDT (store IDT register) instructions load and store the contents of the IDTR
register, respectively. The LIDT instruction loads the IDTR register with the base address and limit held in a
memory operand. This instruction can be executed only when the CPL is 0. It normally is used by the initialization
code of an operating system when creating an IDT. An operating system also may use it to change from one IDT to
another. The SIDT instruction copies the base and limit value stored in IDTR to memory. This instruction can be
executed at any privilege level.

If a vector references a descriptor beyond the limit of the IDT, a general-protection exception (#GP) is generated.

Vol.3A 7-9

INTERRUPT AND EXCEPTION HANDLING

NOTE

Because interrupts are delivered to the processor core only once, an incorrectly configured IDT
could result in incomplete interrupt handling and/or the blocking of interrupt delivery.

IA-32 architecture rules need to be followed for setting up IDTR base/limit/access fields and each
field in the gate descriptors. The same apply for the Intel 64 architecture. This includes implicit
referencing of the destination code segment through the GDT or LDT and accessing the stack.

IDTR Register
47 16 15 0

IDT Base Address | IDT Limit

i Interrupt

Descriptor Table (IDT
@ - p (IDT)

Gate for

Interrupt #n (n—1)+8
Gate for

Interrupt #3 16
Gate for

Interrupt #2 8
Gate for

> Interrupt #1 0
31 0

Figure 7-1. Relationship of the IDTR and IDT

7.11 IDT DESCRIPTORS

The IDT may contain any of three kinds of gate descriptors:
® Task-gate descriptor

® Interrupt-gate descriptor

* Trap-gate descriptor

Figure 7-2 shows the formats for the task-gate, interrupt-gate, and trap-gate descriptors. The format of a task
gate used in an IDT is the same as that of a task gate used in the GDT or an LDT (see Section 9.2.5, “Task-Gate
Descriptor”). The task gate contains the segment selector for a TSS for an exception and/or interrupt handler task.

Interrupt and trap gates are very similar to call gates (see Section 6.8.3, “Call Gates”). They contain a far pointer
(segment selector and offset) that the processor uses to transfer program execution to a handler procedure in an
exception- or interrupt-handler code segment. These gates differ in the way the processor handles the IF flag in the
EFLAGS register (see Section 7.12.1.3, “Flag Usage By Exception- or Interrupt-Handler Procedure”).

7-10 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Task Gate
31 16 15 14 13 12 8 7 0
D
Pl P 0010 1 4
L
31 16 15 0
TSS Segment Selector 0
Interrupt Gate
31 16 15 14 13 12 8 7 5 4 0
D
Offset 31..16 Pl P |OD110|0O0O0 4
L
31 16 15 0
Segment Selector Offset 15..0 0
Trap Gate
31 16 15 14 13 12 8 7 5 4 0
D
Offset 31..16 Pl P|OD111|{000 4
L
31 16 15 0
Segment Selector Offset 15..0 0
DPL Descriptor Privilege Level
Offset Offset to procedure entry point
P Segment Present flag

Selector Segment Selector for destination code segment
Size of gate: 1 = 32 bits; 0 = 16 bits

D
D Reserved
Figure 7-2. IDT Gate Descriptors

7.12 EXCEPTION AND INTERRUPT HANDLING

The processor handles calls to exception- and interrupt-handlers similar to the way it handles calls with a CALL
instruction to a procedure or a task. When responding to an exception or interrupt, the processor uses the excep-
tion or interrupt vector as an index to a descriptor in the IDT. If the index points to an interrupt gate or trap gate,
the processor calls the exception or interrupt handler in a manner similar to a CALL to a call gate (see Section
6.8.2, “"Gate Descriptors,” through Section 6.8.6, “"Returning from a Called Procedure”). If index points to a task
gate, the processor executes a task switch to the exception- or interrupt-handler task in a manner similar to a CALL
to a task gate (see Section 9.3, “Task Switching”).

Vol. 3A 7-11

INTERRUPT AND EXCEPTION HANDLING

7.12.1 Exception- or Interrupt-Handler Procedures

An interrupt gate or trap gate references an exception- or interrupt-handler procedure that runs in the context of
the currently executing task (see Figure 7-3). The segment selector for the gate points to a segment descriptor for
an executable code segment in either the GDT or the current LDT. The offset field of the gate descriptor points to

the beginning of the exception- or interrupt-handling procedure.

Destination
IDT Code Segment
Interrupt
Offset Procedure
Interrupt > Interrupt or —>@—>

Vector Trap Gate

>
Segment Selector
GDT or LDT
Base
Address
- Segment
- Descriptor

Figure 7-3. Interrupt Procedure Call

7-12 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

When the processor performs a call to the exception- or interrupt-handler procedure:

* If the handler procedure is going to be executed at a numerically lower privilege level, a stack switch occurs.
When the stack switch occurs:

a. The segment selector and stack pointer for the stack to be used by the handler are obtained from the TSS
for the currently executing task. On this new stack, the processor pushes the stack segment selector and
stack pointer of the interrupted procedure.

b. The processor then saves the current state of the EFLAGS, CS, and EIP registers on the new stack (see
Figure 7-4).

c. If an exception causes an error code to be saved, it is pushed on the new stack after the EIP value.
® If the handler procedure is going to be executed at the same privilege level as the interrupted procedure:

a. The processor saves the current state of the EFLAGS, CS, and EIP registers on the current stack (see Figure
7-4).

b. If an exception causes an error code to be saved, it is pushed on the current stack after the EIP value.

Stack Usage with No
Privilege-Level Change
Interrupted Procedure’s
and Handler’s Stack

<«— ESP Before

EFLAGS Transfer to Handler
CS
EIP

Error Code |[«——ESP After
Transfer to Handler

Stack Usage with
Privilege-Level Change

Interrupted Procedure’s Handler's Stack

Stack
<<——ESP Before
Transfer to Handler Ss
ESP
EFLAGS
CS
EIP

ESP After——>» Error Code
Transfer to Handler

Figure 7-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routines

To return from an exception- or interrupt-handler procedure, the handler must use the IRET (or IRETD) instruction.
The IRET instruction is similar to the RET instruction except that it restores the saved flags into the EFLAGS
register. The IOPL field of the EFLAGS register is restored only if the CPL is 0. The IF flag is changed only if the CPL
is less than or equal to the IOPL. See Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A, for a description of the complete operation performed by the
IRET instruction.

If a stack switch occurred when calling the handler procedure, the IRET instruction switches back to the interrupted
procedure’s stack on the return.

Vol.3A 7-13

INTERRUPT AND EXCEPTION HANDLING

7.12.1.1 Shadow Stack Usage on Transfers to Interrupt and Exception Handling Routines

When the processor performs a call to the exception- or interrupt-handler procedure:

* If the handler procedure is going to be execute at a numerically lower privilege level, a shadow stack switch
occurs. When the shadow stack switch occurs:

a. On a transfer from privilege level 3, if shadow stacks are enabled at privilege level 3 then the SSP is saved
to the IA32_PL3_SSP MSR.

b. If shadow stacks are enabled at the privilege level where the handler will execute then the shadow stack for
the handler is obtained from one of the following MSRs based on the privilege level at which the handler
executes.

e IA32_PL2_SSP if handler executes at privilege level 2.
e IA32_PL1_SSP if handler executes at privilege level 1.
e IA32_PLO_SSP if handler executes at privilege level 0.

c. The SSP obtained is then verified to ensure it points to a valid supervisory shadow stack that is not currently
active by verifying a supervisor shadow stack token at the address pointed to by the SSP. The operations
performed to verify and acquire the supervisor shadow stack token by making it busy are as described in
Section 18.2.3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

d. On this new shadow stack, the processor pushes the CS, LIP (CS.base + EIP), and SSP of the interrupted
procedure if the interrupted procedure was executing at privilege level less than 3; see Figure 7-5.1

® If the handler procedure is going to be executed at the same privilege level as the interrupted procedure and
shadow stacks are enabled at current privilege level:

a. The processor saves the current state of the CS, LIP (CS.base + EIP), and SSP registers on the current
shadow stack; see Figure 7-5.

1. If any of these pushes leads to an exception or a VM exit, the supervisor shadow-stack token remains busy.

7-14 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Shadow Stack Usage with
No Privilege-Level Change

Interrupted Procedure’s
and Handler's Shadow Stack

«— SSP Before

CS

LIP

SSP

<«— SSP After

Shadow Stack

Shadow Stack Usage with Privilege-

Transfer to Handler

Transfer to Handler

Level Change from Level 3

Interrupted Procedure’s

SSP Before
<+— Transfer to Handler

Shadow Stack

Shadow Stack Usage with Privilege-

Transfer to Handler

Handler's Shadow Stack

SSP After —»

Supervisor
Shadow Stack
Token

Level Change from Level 2 or 1

Interrupted Procedure’s

SSP Before
4— Transfer to Handler

Transfer to Handler

Handler's Shadow Stack

Supervisor
Shadow Stack
Token

CS

LIP

SSP After —»|

SSP

Figure 7-5. Shadow Stack Usage on Transfers to Interrupt and Exception-Handling Routines

To return from an exception- or interrupt-handler procedure, the handler must use the IRET (or IRETD) instruction.

When executing a return from an interrupt or exception handler from the same privilege level as the interrupted
procedure, the processor performs these actions to enforce return address protection:

Restores the CS and EIP registers to their values prior to the interrupt or exception.

Vol.3A 7-15

INTERRUPT AND EXCEPTION HANDLING

If shadow stack is enabled:

— Compares the values on shadow stack at address SSP+8 (the LIP) and SSP+16 (the CS) to the CS and
(CS.base + EIP) popped from the stack and causes a control protection exception (#CP(FAR-RET/IRET)) if
they do not match.

— Pops the top-of-stack value (the SSP prior to the interrupt or exception) from shadow stack into SSP
register.

When executing a return from an interrupt or exception handler from a different privilege level than the interrupted
procedure, the processor performs the actions below.

* If shadow stack is enabled at current privilege level:
— If SSPis not aligned to 8 bytes then causes a control protection exception (#CP(FAR-RET/IRET)).
— If privilege level of the procedure being returned to is less than 3 (returning to supervisor mode):

* Compares the values on shadow stack at address SSP+8 (the LIP) and SSP+16 (the CS) to the CS and
(CS.base + EIP) popped from the stack and causes a control protection exception (#CP(FAR-RET/IRET))
if they do not match.

* Temporarily saves the top-of-stack value (the SSP of the procedure being returned to) internally.

— If a busy supervisor shadow stack token is present at address SSP+24, then marks the token free using
operations described in section Section 18.2.3 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1.

— If the privilege level of the procedure being returned to is less than 3 (returning to supervisor mode),
restores the SSP register from the internally saved value.

— If the privilege level of the procedure being returned to is 3 (returning to user mode) and shadow stack is
enabled at privilege level 3, then restores the SSP register with value of IA32_PL3_SSP MSR.

7.12.1.2 Protection of Exception- and Interrupt-Handler Procedures

The privilege-level protection for exception- and interrupt-handler procedures is similar to that used for ordinary
procedure calls when called through a call gate (see Section 6.8.4, “Accessing a Code Segment Through a Call
Gate”). The processor does not permit transfer of execution to an exception- or interrupt-handler procedure in a
less privileged code segment (numerically greater privilege level) than the CPL.

An attempt to violate this rule results in a general-protection exception (#GP). The protection mechanism for
exception- and interrupt-handler procedures is different in the following ways:

® Because interrupt and exception vectors have no RPL, the RPL is not checked on implicit calls to exception and
interrupt handlers.

®* The processor checks the DPL of the interrupt or trap gate only if an exception or interrupt is generated with an
INT n, INT3, or INTO instruction.! Here, the CPL must be less than or equal to the DPL of the gate. This
restriction prevents application programs or procedures running at privilege level 3 from using a software
interrupt to access critical exception handlers, such as the page-fault handler, providing that those handlers are
placed in more privileged code segments (numerically lower privilege level). For hardware-generated interrupts
and processor-detected exceptions, the processor ignores the DPL of interrupt and trap gates.

Because exceptions and interrupts generally do not occur at predictable times, these privilege rules effectively
impose restrictions on the privilege levels at which exception and interrupt- handling procedures can run. Either of
the following techniques can be used to avoid privilege-level violations.

®* The exception or interrupt handler can be placed in a conforming code segment. This technique can be used for
handlers that only need to access data available on the stack (for example, divide error exceptions). If the
handler needs data from a data segment, the data segment needs to be accessible from privilege level 3, which
would make it unprotected.

® The handler can be placed in a nonconforming code segment with privilege level 0. This handler would always
run, regardless of the CPL that the interrupted program or task is running at.

1. This check is not performed by execution of the INT1 instruction (opcode F1); it would be performed by execution of INT 1 (opcode
CD 01).

7-16 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

7.12.1.3 Flag Usage By Exception- or Interrupt-Handler Procedure

When accessing an exception or interrupt handler through either an interrupt gate or a trap gate, the processor

clears the TF flag in the EFLAGS register after it saves the contents of the EFLAGS register on the stack. (On calls
to exception and interrupt handlers, the processor also clears the VM, RF, and NT flags in the EFLAGS register, after
they are saved on the stack.) Clearing the TF flag prevents instruction tracing from affecting interrupt response and
ensures that no single-step exception will be delivered after delivery to the handler. A subsequent IRET instruction
restores the TF (and VM, RF, and NT) flags to the values in the saved contents of the EFLAGS register on the stack.

The only difference between an interrupt gate and a trap gate is the way the processor handles the IF flag in the
EFLAGS register. When accessing an exception- or interrupt-handling procedure through an interrupt gate, the
processor clears the IF flag to prevent other interrupts from interfering with the current interrupt handler. A subse-
guent IRET instruction restores the IF flag to its value in the saved contents of the EFLAGS register on the stack.
Accessing a handler procedure through a trap gate does not affect the IF flag.

7.12.2 Interrupt Tasks

When an exception or interrupt handler is accessed through a task gate in the IDT, a task switch results. Handling
an exception or interrupt with a separate task offers several advantages:

®* The entire context of the interrupted program or task is saved automatically.

®* A new TSS permits the handler to use a new privilege level 0 stack when handling the exception or interrupt. If
an exception or interrupt occurs when the current privilege level 0 stack is corrupted, accessing the handler
through a task gate can prevent a system crash by providing the handler with a new privilege level 0 stack.

®* The handler can be further isolated from other tasks by giving it a separate address space. This is done by
giving it a separate LDT.

The disadvantage of handling an interrupt with a separate task is that the amount of machine state that must be
saved on a task switch makes it slower than using an interrupt gate, resulting in increased interrupt latency.

A task gate in the IDT references a TSS descriptor in the GDT (see Figure 7-6). A switch to the handler task is
handled in the same manner as an ordinary task switch (see Section 9.3, “Task Switching”). The link back to the
interrupted task is stored in the previous task link field of the handler task’s TSS. If an exception caused an error
code to be generated, this error code is copied to the stack of the new task.

When exception- or interrupt-handler tasks are used in an operating system, there are actually two mechanisms
that can be used to dispatch tasks: the software scheduler (part of the operating system) and the hardware sched-
uler (part of the processor's interrupt mechanism). The software scheduler needs to accommodate interrupt tasks
that may be dispatched when interrupts are enabled.

Vol.3A 7-17

INTERRUPT AND EXCEPTION HANDLING

NOTE

Because IA-32 architecture tasks are not re-entrant, an interrupt-handler task must disable
interrupts between the time it completes handling the interrupt and the time it executes the IRET
instruction. This action prevents another interrupt from occurring while the interrupt task’s TSS is
still marked busy, which would cause a general-protection (#GP) exception.

TSS for Interrupt-

IDT Handling Task
Interrupt
Vector Task Gate
TSS Selector 1SS
Base
GDT Address

Y

TSS Descriptor

Figure 7-6. Interrupt Task Switch

7.13 ERROR CODE

When an exception condition is related to a specific segment selector or IDT vector, the processor pushes an error
code onto the stack of the exception handler (whether it is a procedure or task). The error code has the format
shown in Figure 7-7. The error code resembles a segment selector; however, instead of a TI flag and RPL field, the
error code contains 3 flags:

EXT External event (bit 0) — When set, indicates that the exception occurred during delivery of an
event external to the program, such as an interrupt or an earlier exception.! The bit is cleared if the
exception occurred during delivery of a software interrupt (INT n, INT3, or INTO).

IDT Descriptor location (bit 1) — When set, indicates that the index portion of the error code refers
to a gate descriptor in the IDT; when clear, indicates that the index refers to a descriptor in the GDT
or the current LDT.

TI GDT/LDT (bit 2) — Only used when the IDT flag is clear. When set, the TI flag indicates that the
index portion of the error code refers to a segment or gate descriptor in the LDT; when clear, it indi-
cates that the index refers to a descriptor in the current GDT.

1. The bitis also set if the exception occurred during delivery of INT1.

7-18 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

31 3

Reserved Segment Selector Index

—Xxm| o

—Ho—| =

Figure 7-7. Error Code

The segment selector index field provides an index into the IDT, GDT, or current LDT to the segment or gate
selector being referenced by the error code. In some cases the error code is null (all bits are clear except possibly
EXT). A null error code indicates that the error was not caused by a reference to a specific segment or that a null
segment selector was referenced in an operation.

The format of the error code is different for page-fault exceptions (#PF). See the “Interrupt 14—Page-Fault Excep-
tion (#PF)"” section in this chapter.

The format of the error code is different for control protection exceptions (#CP). See the “Interrupt 21—Control
Protection Exception (#CP)” section in this chapter.

The error code is pushed on the stack as a doubleword or word (depending on the default interrupt, trap, or task
gate size). To keep the stack aligned for doubleword pushes, the upper half of the error code is reserved. Note that
the error code is not popped when the IRET instruction is executed to return from an exception handler, so the
handler must remove the error code before executing a return.

Error codes are not pushed on the stack for exceptions that are generated externally (with the INTR or LINT[1:0]
pins) or the INT n instruction, even if an error code is normally produced for those exceptions.

7.14 EXCEPTION AND INTERRUPT HANDLING IN 64-BIT MODE

In 64-bit mode, interrupt and exception handling is similar to what has been described for non-64-bit modes. The
following are the exceptions:

* All interrupt handlers pointed by the IDT are in 64-bit code (this does not apply to the SMI handler).
®* The size of interrupt-stack pushes is fixed at 64 bits; and the processor uses 8-byte, zero extended stores.

® The stack pointer (SS:RSP) is pushed unconditionally on interrupts. In legacy modes, this push is conditional
and based on a change in current privilege level (CPL).

® The new SS is set to NULL if there is a change in CPL.

®* IRET behavior changes.

® There is a new interrupt stack-switch mechanism and a new interrupt shadow stack-switch mechanism.
®* The alignment of interrupt stack frame is different.

7.14.1 64-Bit Mode IDT

Interrupt and trap gates are 16 bytes in length to provide a 64-bit offset for the instruction pointer (RIP). The 64-
bit RIP referenced by interrupt-gate descriptors allows an interrupt service routine to be located anywhere in the
linear-address space. See Figure 7-8.

Vol.3A 7-19

INTERRUPT AND EXCEPTION HANDLING

Interrupt/Trap Gate
31 0
Reserved 12
31 0
Offset 63..32 8
31 161514 13 12 11 8 7 54 2 0
Offset 31..16 P B 0| TYPE 0 0 Ofo|o]| IST |4
L
31 16 15 0
Segment Selector Offset 15..0 0
DPL Descriptor Privilege Level
Offset Offset to procedure entry point
P Segment Present flag
Selector Segment Selector for destination code segment
IST Interrupt Stack Table

Figure 7-8. 64-Bit IDT Gate Descriptors

In 64-bit mode, the IDT index is formed by scaling the interrupt vector by 16. The first eight bytes (bytes 7:0) of a
64-bit mode interrupt gate are similar but not identical to legacy 32-bit interrupt gates. The type field (bits 11:8 in
bytes 7:4) is described in Table 3-2. The Interrupt Stack Table (IST) field (bits 4:0 in bytes 7:4) is used by the stack
switching mechanisms described in Section 7.14.5, “Interrupt Stack Table.” Bytes 11:8 hold the upper 32 bits of
the target RIP (interrupt segment offset) in canonical form. A general-protection exception (#GP) is generated if
software attempts to reference an interrupt gate with a target RIP that is not in canonical form.

The target code segment referenced by the interrupt gate must be a 64-bit code segment (CS.L = 1, CS.D = 0). If
the target is not a 64-bit code segment, a general-protection exception (#GP) is generated with the IDT vector
number reported as the error code.

Only 64-bit interrupt and trap gates can be referenced in IA-32e mode (64-bit mode and compatibility mode).
Legacy 32-bit interrupt or trap gate types (OEH or OFH) are redefined in IA-32e mode as 64-bit interrupt and trap
gate types. No 32-bit interrupt or trap gate type exists in IA-32e mode. If a reference is made to a 16-bit interrupt
or trap gate (06H or 07H), a general-protection exception (#GP(0)) is generated.

7.14.2 64-Bit Mode Stack Frame

In legacy mode, the size of an IDT entry (16 bits or 32 bits) determines the size of interrupt-stack-frame pushes.
SS:ESP is pushed only on a CPL change. In 64-bit mode, the size of interrupt stack-frame pushes is fixed at eight
bytes. This is because only 64-bit mode gates can be referenced. 64-bit mode also pushes SS:RSP unconditionally,
rather than only on a CPL change.

When shadow stacks are enabled at the interrupt handler’s privilege level and the interrupted procedure was not
executing at a privilege level 3, then the processor pushes the CS:LIP:SSP of the interrupted procedure on the
shadow stack of the interrupt handler (where LIP is the linear address of the return address).

Aside from error codes, pushing SS:RSP unconditionally presents operating systems with a consistent interrupt-
stackframe size across all interrupts. Interrupt service-routine entry points that handle interrupts generated by the
INTn instruction or external INTR# signal can push an additional error code place-holder to maintain consistency.

In legacy mode, the stack pointer may be at any alignment when an interrupt or exception causes a stack frame to
be pushed. This causes the stack frame and succeeding pushes done by an interrupt handler to be at arbitrary
alignments. In IA-32e mode, the RSP is aligned to a 16-byte boundary before pushing the stack frame. The stack
frame itself is aligned on a 16-byte boundary when the interrupt handler is called. The processor can arbitrarily
realign the new RSP on interrupts because the previous (possibly unaligned) RSP is unconditionally saved on the
newly aligned stack. The previous RSP will be automatically restored by a subsequent IRET.

7-20 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Aligning the stack permits exception and interrupt frames to be aligned on a 16-byte boundary before interrupts
are re-enabled. This allows the stack to be formatted for optimal storage of 16-byte XMM registers, which enables
the interrupt handler to use faster 16-byte aligned loads and stores (MOVAPS rather than MOVUPS) to save and
restore XMM registers.

Although the RSP alignment is always performed when LMA = 1, it is only of consequence for the kernel-mode case
where there is no stack switch or IST used. For a stack switch or IST, the OS would have presumably put suitably
aligned RSP values in the TSS.

7.14.3 IRET in IA-32e Mode

In IA-32e mode, IRET executes with an 8-byte operand size. There is nothing that forces this requirement. The
stack is formatted in such a way that for actions where IRET is required, the 8-byte IRET operand size works
correctly.

Because interrupt stack-frame pushes are always eight bytes in IA-32e mode, an IRET must pop eight byte items
off the stack. This is accomplished by preceding the IRET with a 64-bit operand-size prefix. The size of the pop is
determined by the address size of the instruction. The SS/ESP/RSP size adjustment is determined by the stack
size.

IRET pops SS:RSP unconditionally off the interrupt stack frame only when it is executed in 64-bit mode. In compat-
ibility mode, IRET pops SS:RSP off the stack only if there is a CPL change. This allows legacy applications to
execute properly in compatibility mode when using the IRET instruction. 64-bit interrupt service routines that exit
with an IRET unconditionally pop SS:RSP off of the interrupt stack frame, even if the target code segment is
running in 64-bit mode or at CPL = 0. This is because the original interrupt always pushes SS:RSP.

When shadow stacks are enabled and the target privilege level is not 3, the CS:LIP from the shadow stack frame is
compared to the return linear address formed by CS:EIP from the stack. If they do not match then the processor
caused a control protection exception (#CP(FAR-RET/IRET)), else the processor pops the SSP of the interrupted
procedure from the shadow stack. If the target privilege level is 3 and shadow stacks are enabled at privilege level
3, then the SSP for the interrupted procedure is restored from the IA32_PL3_SSP MSR.

In IA-32e mode, IRET is allowed to load a NULL SS under certain conditions. If the target mode is 64-bit mode and
the target CPL ? 3, IRET allows SS to be loaded with a NULL selector. As part of the stack switch mechanism, an
interrupt or exception sets the new SS to NULL, instead of fetching a new SS selector from the TSS and loading the
corresponding descriptor from the GDT or LDT. The new SS selector is set to NULL in order to properly handle
returns from subsequent nested far transfers. If the called procedure itself is interrupted, the NULL SS is pushed
on the stack frame. On the subsequent IRET, the NULL SS on the stack acts as a flag to tell the processor not to
load a new SS descriptor.

7.14.4 Stack Switching in IA-32e Mode

The IA-32 architecture provides a mechanism to automatically switch stack frames in response to an interrupt. The
64-bit extensions of Intel 64 architecture implement a modified version of the legacy stack-switching mechanism
and an alternative stack-switching mechanism called the interrupt stack table (IST).

In IA-32 modes, the legacy IA-32 stack-switch mechanism is unchanged. In IA-32e mode, the legacy stack-switch
mechanism is modified. When stacks are switched as part of a 64-bit mode privilege-level change (resulting from
an interrupt), a new SS descriptor is not loaded. IA-32e mode loads only an inner-level RSP from the TSS. The new
SS selector is forced to NULL and the SS selector’s RPL field is set to the new CPL. The new SS is set to NULL in
order to handle nested far transfers (far CALL, INT, interrupts, and exceptions). The old SS and RSP are saved on
the new stack (Figure 7-9). On the subsequent IRET, the old SS is popped from the stack and loaded into the SS
register.

In summary, a stack switch in IA-32e mode works like the legacy stack switch, except that a new SS selector is not
loaded from the TSS. Instead, the new SS is forced to NULL.

Vol. 3A 7-21

INTERRUPT AND EXCEPTION HANDLING

Legacy Mode Stack Usage with IA-32e Mode
Privilege-Level Change
Handler’s Stack Handler’s Stack

+20 SS SS +40

+16 ESP RSP +32

+12 EFLAGS RFLAGS +24

+8 cS CS +16

+4 EIP RIP +8

0 Error Code | <«— Stack Pointer After —| Error Code 0

Transfer to Handler

Figure 7-9. IA-32e Mode Stack Usage After Privilege Level Change

7.14.5 Interrupt Stack Table

In IA-32e mode, a new interrupt stack table (IST) mechanism is available as an alternative to the modified legacy
stack-switching mechanism described above. This mechanism unconditionally switches stacks when it is enabled.

It can be enabled on an individual interrupt-vector basis using a field in the IDT entry. This means that some inter-
rupt vectors can use the modified legacy mechanism and others can use the IST mechanism.

The IST mechanism is only available in IA-32e mode. It is part of the 64-bit mode TSS. The motivation for the IST
mechanism is to provide a method for specific interrupts (such as NMI, double-fault, and machine-check) to always
execute on a known good stack. In legacy mode, interrupts can use the task-switch mechanism to set up a known-
good stack by accessing the interrupt service routine through a task gate located in the IDT. However, the legacy
task-switch mechanism is not supported in IA-32e mode.

The IST mechanism provides up to seven IST pointers in the TSS. The pointers are referenced by an interrupt-gate
descriptor in the interrupt-descriptor table (IDT); see Figure 7-8. The gate descriptor contains a 3-bit IST index
field that provides an offset into the IST section of the TSS. Using the IST mechanism, the processor loads the value
pointed by an IST pointer into the RSP.

When an interrupt occurs, the new SS selector is forced to NULL and the SS selector’s RPL field is set to the new
CPL. The old SS, RSP, RFLAGS, CS, and RIP are pushed onto the new stack. Interrupt processing then proceeds as
normal. If the IST index is zero, the modified legacy stack-switching mechanism described above is used.

To support this stack-switching mechanism with shadow stacks enabled, the processor provides an MSR,
IA32_INTERRUPT_SSP_TABLE, to program the linear address of a table of seven shadow stack pointers that are
selected using the IST index from the gate descriptor. To switch to a shadow stack selected from the interrupt
shadow stack table pointed to by the IA32_INTERRUPT_SSP_TABLE, the processor requires that the shadow stack
addresses programmed into this table point to a supervisor shadow stack token; see Figure 7-10.

7-22 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

IST7 SSP

56
IST6 SSP

48
IST5 SSP

40
IST4 SSP

32
IST3 SSP

24
IST2 SSP

16
IST1 SSP

8

> Not used; available
0
IA32_INTERRUPT_SSP_TABLE

Figure 7-10. Interrupt Shadow Stack Table

7.15 EXCEPTION AND INTERRUPT REFERENCE

The following sections describe conditions which generate exceptions and interrupts. They are arranged in the
order of vector numbers. The information contained in these sections are as follows:

Exception Class — Indicates whether the exception class is a fault, trap, or abort type. Some exceptions can
be either a fault or trap type, depending on when the error condition is detected. (This section is not applicable
to interrupts.)

Description — Gives a general description of the purpose of the exception or interrupt type. It also describes
how the processor handles the exception or interrupt.

Exception Error Code — Indicates whether an error code is saved for the exception. If one is saved, the
contents of the error code are described. (This section is not applicable to interrupts.)

Saved Instruction Pointer — Describes which instruction the saved (or return) instruction pointer points to.
It also indicates whether the pointer can be used to restart a faulting instruction.

Program State Change — Describes the effects of the exception or interrupt on the state of the currently
running program or task and the possibilities of restarting the program or task without loss of continuity.

Vol.3A 7-23

INTERRUPT AND EXCEPTION HANDLING

Interrupt 0—Divide Error Exception (#DE)

Exception Class Fault.

Description

Indicates the divisor operand for a DIV or IDIV instruction is 0 or that the result cannot be represented in the
number of bits specified for the destination operand.

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany the divide error, because the exception occurs before the faulting
instruction is executed.

7-24 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 1—Debug Exception (#DB)

Exception Class Trap or Fault. The exception handler can distinguish between traps or faults by exam-
ining the contents of DR6 and the other debug registers.

Description

Indicates that one or more of several debug-exception conditions has been detected. Whether the exception is a
fault or a trap depends on the condition (see Table 7-3). See Chapter 19, “Debug, Branch Profile, TSC, and Intel®
Resource Director Technology (Intel® RDT) Features,” for detailed information about the debug exceptions.

Table 7-3. Debug Exception Conditions and Corresponding Exception Classes

Exception Condition Exception Class
Instruction fetch breakpoint Fault

Data read or write breakpoint Trap

I/0 read or write breakpoint Trap

General detect condition (in conjunction with in-circuit emulation) Fault
Single-step Trap
Task-switch Trap

Execution of INT1? Trap
NOTES:

1. Hardware vendors may use the INT1 instruction for hardware debug. For that reason, Intel recommends software vendors instead
use the INT3 instruction for software breakpoints.

Exception Error Code
None. An exception handler can examine the debug registers to determine which condition caused the exception.

Saved Instruction Pointer
Fault — Saved contents of CS and EIP registers point to the instruction that generated the exception.

Trap — Saved contents of CS and EIP registers point to the instruction following the instruction that generated the
exception.

Program State Change

Fault — A program-state change does not accompany the debug exception, because the exception occurs before
the faulting instruction is executed. The program can resume normal execution upon returning from the debug
exception handler.

Trap — A program-state change does accompany the debug exception, because the instruction or task switch being
executed is allowed to complete before the exception is generated. However, the new state of the program is not
corrupted and execution of the program can continue reliably.

The following items detail the treatment of debug exceptions on the instruction boundary following execution of the
MOV or the POP instruction that loads the SS register:

* If EFLAGS.TFis 1, no single-step trap is generated.

* If the instruction encounters a data breakpoint, the resulting debug exception is delivered after completion of
the instruction after the MOV or POP. This occurs even if the next instruction is INT n, INT3, or INTO.

® Any instruction breakpoint on the instruction after the MOV or POP is suppressed (as if EFLAGS.RF were 1).

Any debug exception inside an RTM region causes a transactional abort and, by default, redirects control flow to the
fallback instruction address. If advanced debugging of RTM transactional regions has been enabled, any transac-
tional abort due to a debug exception instead causes execution to roll back to just before the XBEGIN instruction

Vol.3A 7-25

INTERRUPT AND EXCEPTION HANDLING

and then delivers a #DB. See Section 17.3.7, "RTM-Enabled Debugger Support,” of Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1.

7-26 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 2—NMI Interrupt

Exception Class Not applicable.

Description

The nonmaskable interrupt (NMI) is generated externally by asserting the processor’s NMI pin or through an NMI
request set by the I/O APIC to the local APIC. This interrupt causes the NMI interrupt handler to be called.

Exception Error Code
Not applicable.

Saved Instruction Pointer

The processor always takes an NMI interrupt on an instruction boundary. The saved contents of CS and EIP regis-
ters point to the next instruction to be executed at the point the interrupt is taken. See Section 7.5, “Exception
Classifications,” for more information about when the processor takes NMI interrupts.

Program State Change

The instruction executing when an NMI interrupt is received is completed before the NMI is generated. A program
or task can thus be restarted upon returning from an interrupt handler without loss of continuity, provided the
interrupt handler saves the state of the processor before handling the interrupt and restores the processor’s state
prior to a return.

Vol.3A 7-27

INTERRUPT AND EXCEPTION HANDLING

Interrupt 3—Breakpoint Exception (#BP)

Exception Class Trap.

Description

Indicates that a breakpoint instruction (INT3, opcode CC) was executed, causing a breakpoint trap to be gener-
ated. Typically, a debugger sets a breakpoint by replacing the first opcode byte of an instruction with the opcode for
the INT3 instruction. (The INT3 instruction is one byte long, which makes it easy to replace an opcode in a code
segment in RAM with the breakpoint opcode.) The operating system or a debugging tool can use a data segment
mapped to the same physical address space as the code segment to place an INT3 instruction in places where it is
desired to call the debugger.

With the P6 family, Pentium, Intel486, and Intel386 processors, it is more convenient to set breakpoints with the
debug registers. (See Section 19.3.2, “"Breakpoint Exception (#BP)—Interrupt Vector 3,” for information about the
breakpoint exception.) If more breakpoints are needed beyond what the debug registers allow, the INT3 instruction
can be used.

Any breakpoint exception inside an RTM region causes a transactional abort and, by default, redirects control flow
to the fallback instruction address. If advanced debugging of RTM transactional regions has been enabled, any
transactional abort due to a break exception instead causes execution to roll back to just before the XBEGIN
instruction and then delivers a debug exception (#DB) — not a breakpoint exception. See Section 17.3.7, “"RTM-
Enabled Debugger Support,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

A breakpoint exception can also be generated by executing the INT n instruction with an operand of 3. The action
of this instruction (INT 3) is slightly different than that of the INT3 instruction (see “INT n/INTO/INT3/INT1—Call to
Interrupt Procedure” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A).

Exception Error Code
None.

Saved Instruction Pointer
Saved contents of CS and EIP registers point to the instruction following the INT3 instruction.

Program State Change

Even though the EIP points to the instruction following the breakpoint instruction, the state of the program is
essentially unchanged because the INT3 instruction does not affect any register or memory locations. The
debugger can thus resume the suspended program by replacing the INT3 instruction that caused the breakpoint
with the original opcode and decrementing the saved contents of the EIP register. Upon returning from the
debugger, program execution resumes with the replaced instruction.

7-28 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 4—O0verflow Exception (#0F)

Exception Class Trap.

Description

Indicates that an overflow trap occurred when an INTO instruction was executed. The INTO instruction checks the
state of the OF flag in the EFLAGS register. If the OF flag is set, an overflow trap is generated.

Some arithmetic instructions (such as the ADD and SUB) perform both signed and unsigned arithmetic. These
instructions set the OF and CF flags in the EFLAGS register to indicate signed overflow and unsigned overflow,
respectively. When performing arithmetic on signed operands, the OF flag can be tested directly or the INTO
instruction can be used. The benefit of using the INTO instruction is that if the overflow exception is detected, an
exception handler can be called automatically to handle the overflow condition.

Exception Error Code
None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction following the INTO instruction.

Program State Change

Even though the EIP points to the instruction following the INTO instruction, the state of the program is essentially
unchanged because the INTO instruction does not affect any register or memory locations. The program can thus
resume normal execution upon returning from the overflow exception handler.

Vol. 3A 7-29

INTERRUPT AND EXCEPTION HANDLING

Interrupt 5—BOUND Range Exceeded Exception (#BR)

Exception Class Fault.

Description

Indicates that a BOUND-range-exceeded fault occurred when a BOUND instruction was executed. The BOUND
instruction checks that a signed array index is within the upper and lower bounds of an array located in memory. If
the array index is not within the bounds of the array, a BOUND-range-exceeded fault is generated.

Exception Error Code

None.

Saved Instruction Pointer
The saved contents of CS and EIP registers point to the BOUND instruction that generated the exception.

Program State Change

A program-state change does not accompany the bounds-check fault, because the operands for the BOUND
instruction are not modified. Returning from the BOUND-range-exceeded exception handler causes the BOUND
instruction to be restarted.

7-30 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 6—Invalid Opcode Exception (#UD)

Exception Class Fault.

Description
Indicates that the processor did one of the following things:
® Attempted to execute an invalid or reserved opcode.

®* Attempted to execute an instruction with an operand type that is invalid for its accompanying opcode; for
example, the source operand for a LES instruction is not a memory location.

* Attempted to execute an MMX or SSE/SSE2/SSE3 instruction on an Intel 64 or IA-32 processor that does not
support the MMX technology or SSE/SSE2/SSE3/SSSE3 extensions, respectively. CPUID feature flags MMX (bit
23), SSE (bit 25), SSE2 (bit 26), SSE3 (ECX, bit 0), SSSE3 (ECX, bit 9) indicate support for these extensions.

® Attempted to execute an MMX instruction or SSE/SSE2/SSE3/SSSE3 SIMD instruction (with the exception of
the MOVNTI, PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, CLFLUSH, MONITOR, and MWAIT instructions)
when the EM flag in control register CRO is set (1).

* Attempted to execute an SSE/SE2/SSE3/SSSE3 instruction when the OSFXSR bit in control register CR4 is
clear (0). Note this does not include the following SSE/SSE2/SSE3 instructions: MASKMOVQ, MOVNTQ,
MOVNTI, PREFETCHh, SFENCE, LFENCE, MFENCE, and CLFLUSH; or the 64-bit versions of the PAVGB, PAVGW,
PEXTRW, PINSRW, PMAXSW, PMAXUB, PMINSW, PMINUB, PMOVMSKB, PMULHUW, PSADBW, PSHUFW, PADDQ,
PSUBQ, PALIGNR, PABSB, PABSD, PABSW, PHADDD, PHADDSW, PHADDW, PHSUBD, PHSUBSW, PHSUBW,
PMADDUBSM, PMULHRSW, PSHUFB, PSIGNB, PSIGND, and PSIGNW.

®* Attempted to execute an SSE/SSE2/SSE3/SSSE3 instruction on an Intel 64 or IA-32 processor that caused a
SIMD floating-point exception when the OSXMMEXCPT bit in control register CR4 is clear (0).

®* Executed a UDO, UD1 or UD2 instruction. Note that even though it is the execution of the UDO, UD1 or UD2
instruction that causes the invalid opcode exception, the saved instruction pointer will still points at the UDO,
UD1 or UD2 instruction.

* Detected a LOCK prefix that precedes an instruction that may not be locked or one that may be locked but the
destination operand is not a memory location.

® Attempted to execute an LLDT, SLDT, LTR, STR, LSL, LAR, VERR, VERW, or ARPL instruction while in real-
address or virtual-8086 mode.

® Attempted to execute the RSM instruction when not in SMM mode.

In Intel 64 and IA-32 processors that implement out-of-order execution microarchitectures, this exception is not
generated until an attempt is made to retire the result of executing an invalid instruction; that is, decoding and
speculatively attempting to execute an invalid opcode does not generate this exception. Likewise, in the Pentium
processor and earlier IA-32 processors, this exception is not generated as the result of prefetching and preliminary
decoding of an invalid instruction. (See Section 7.5, “Exception Classifications,” for general rules for taking of inter-
rupts and exceptions.)

The opcodes D6 and F1 are undefined opcodes reserved by the Intel 64 and IA-32 architectures. These opcodes,
even though undefined, do not generate an invalid opcode exception.

Exception Error Code
None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany an invalid-opcode fault, because the invalid instruction is not
executed.

Vol. 3A 7-31

INTERRUPT AND EXCEPTION HANDLING

Interrupt 7—Device Not Available Exception (#NM)

Exception Class Fault.

Description
Indicates one of the following things:
The device-not-available exception is generated by either of three conditions:

® The processor executed an x87 FPU floating-point instruction while the EM flag in control register CRO was set
(1). See the paragraph below for the special case of the WAIT/FWAIT instruction.

® The processor executed a WAIT/FWAIT instruction while the MP and TS flags of register CRO were set,
regardless of the setting of the EM flag.

® The processor executed an x87 FPU, MMX, or SSE/SSE2/SSE3 instruction (with the exception of MOVNTI,
PAUSE, PREFETCHhA, SFENCE, LFENCE, MFENCE, and CLFLUSH) while the TS flag in control register CRO was set
and the EM flag is clear.

The EM flag is set when the processor does not have an internal x87 FPU floating-point unit. A device-not-available
exception is then generated each time an x87 FPU floating-point instruction is encountered, allowing an exception
handler to call floating-point instruction emulation routines.

The TS flag indicates that a context switch (task switch) has occurred since the last time an x87 floating-point,
MMX, or SSE/SSE2/SSE3 instruction was executed; but that the context of the x87 FPU, XMM, and MXCSR registers
were not saved. When the TS flag is set and the EM flag is clear, the processor generates a device-not-available
exception each time an x87 floating-point, MMX, or SSE/SSE2/SSE3 instruction is encountered (with the exception
of the instructions listed above). The exception handler can then save the context of the x87 FPU, XMM, and MXCSR
registers before it executes the instruction. See Section 2.5, “Control Registers,” for more information about the TS
flag.

The MP flag in control register CRO is used along with the TS flag to determine if WAIT or FWAIT instructions should
generate a device-not-available exception. It extends the function of the TS flag to the WAIT and FWAIT instruc-
tions, giving the exception handler an opportunity to save the context of the x87 FPU before the WAIT or FWAIT
instruction is executed. The MP flag is provided primarily for use with the Intel 286 and Intel386 DX processors. For
programs running on the Pentium 4, Intel Xeon, P6 family, Pentium, or Intel486 DX processors, or the Intel 487 SX
coprocessors, the MP flag should always be set; for programs running on the Intel486 SX processor, the MP flag
should be clear.

Exception Error Code
None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point instruction or the WAIT/FWAIT instruction
that generated the exception.

Program State Change

A program-state change does not accompany a device-not-available fault, because the instruction that generated
the exception is not executed.

If the EM flag is set, the exception handler can then read the floating-point instruction pointed to by the EIP and call
the appropriate emulation routine.

If the MP and TS flags are set or the TS flag alone is set, the exception handler can save the context of the x87 FPU,
clear the TS flag, and continue execution at the interrupted floating-point or WAIT/FWAIT instruction.

7-32 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 8—Double Fault Exception (#DF)

Exception Class Abort.

Description

Indicates that the processor detected a second exception while calling an exception handler for a prior exception.
Normally, when the processor detects another exception while trying to call an exception handler, the two excep-
tions can be handled serially. If, however, the processor cannot handle them serially, it signals the double-fault
exception. To determine when two faults need to be signalled as a double fault, the processor divides the excep-
tions into three classes: benign exceptions, contributory exceptions, and page faults (see Table 7-4).

Table 7-4. Interrupt and Exception Classes

Class Vector Number Description
Benign Exceptions and Interrupts 1 Debug
2 NMI Interrupt
3 Breakpoint
4 Overflow
5 BOUND Range Exceeded
6 Invalid Opcode
7 Device Not Available
9 Coprocessor Segment Overrun
16 Floating-Point Error
17 Alignment Check
18 Machine Check
19 SIMD floating-point
All INT n
All INTR
Contributory Exceptions 0 Divide Error
10 Invalid TSS
11 Segment Not Present
12 Stack Fault
13 General Protection
21 Control Protection
Page Faults 14 Page Fault
20 Virtualization Exception

Table 7-5 shows the various combinations of exception classes that cause a double fault to be generated. A double-
fault exception falls in the abort class of exceptions. The program or task cannot be restarted or resumed. The
double-fault handler can be used to collect diagnostic information about the state of the machine and/or, when
possible, to shut the application and/or system down gracefully or restart the system.

Vol.3A 7-33

INTERRUPT AND EXCEPTION HANDLING

A segment or page fault may be encountered while prefetching instructions; however, this behavior is outside the
domain of Table 7-5. Any further faults generated while the processor is attempting to transfer control to the appro-
priate fault handler could still lead to a double-fault sequence.

Table 7-5. Conditions for Generating a Double Fault

. . Second Exception
First Exception - -
Benign Contributory Page Fault
Benign Handle Exceptions Serially Handle Exceptions Serially Handle Exceptions Serially
Contributory Handle Exceptions Serially Generate a Double Fault Handle Exceptions Serially
Page Fault Handle Exceptions Serially Generate a Double Fault Generate a Double Fault
Double Fault Handle Exceptions Serially Enter Shutdown Mode Enter Shutdown Mode

If another contributory or page fault exception occurs while attempting to call the double-fault handler, the
processor enters shutdown mode. This mode is similar to the state following execution of an HLT instruction. In this
mode, the processor stops executing instructions until an NMI interrupt, SMI interrupt, hardware reset, or INIT# is
received. The processor generates a special bus cycle to indicate that it has entered shutdown mode. Software
designers may need to be aware of the response of hardware when it goes into shutdown mode. For example, hard-
ware may turn on an indicator light on the front panel, generate an NMI interrupt to record diagnostic information,
invoke reset initialization, generate an INIT initialization, or generate an SMI. If any events are pending during
shutdown, they will be handled after an wake event from shutdown is processed (for example, A20M# interrupts).

If a shutdown occurs while the processor is executing an NMI interrupt handler, then only a hardware reset can
restart the processor. Likewise, if the shutdown occurs while executing in SMM, a hardware reset must be used to
restart the processor.

Exception Error Code

Zero. The processor always pushes an error code of 0 onto the stack of the double-fault handler.

Saved Instruction Pointer

The saved contents of CS and EIP registers are undefined.

Program State Change

A program-state following a double-fault exception is undefined. The program or task cannot be resumed or
restarted. The only available action of the double-fault exception handler is to collect all possible context informa-
tion for use in diagnostics and then close the application and/or shut down or reset the processor.

If the double fault occurs when any portion of the exception handling machine state is corrupted, the handler
cannot be invoked and the processor must be reset.

7-34 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 9—Coprocessor Segment Overrun

Exception Class Abort. (Intel reserved; do not use. Recent IA-32 processors do not generate this
exception.)

Description

Indicates that an Intel386 CPU-based systems with an Intel 387 math coprocessor detected a page or segment
violation while transferring the middle portion of an Intel 387 math coprocessor operand. The P6 family, Pentium,
and Intel486 processors do not generate this exception; instead, this condition is detected with a general protec-
tion exception (#GP), interrupt 13.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state following a coprocessor segment-overrun exception is undefined. The program or task cannot
be resumed or restarted. The only available action of the exception handler is to save the instruction pointer and
reinitialize the x87 FPU using the FNINIT instruction.

Vol.3A 7-35

INTERRUPT AND EXCEPTION HANDLING

Interrupt 10—Invalid TSS Exception (#TS)

Exception Class Fault.

Description

Indicates that there was an error related to a TSS. Such an error might be detected during a task switch or during
the execution of instructions that use information from a TSS. Table 7-6 shows the conditions that cause an invalid

TSS exception to be generated.

Table 7-6. Invalid TSS Conditions

Error Code Index

Invalid Condition

TSS segment selector index

The TSS segment limit is less than 67H for 32-bit TSS or less than 2CH for 16-bit TSS.

TSS segment selector index

During an IRET task switch, the Tl flag in the TSS segment selector indicates the LDT.

TSS segment selector index

During an IRET task switch, the TSS segment selector exceeds descriptor table limit.

TSS segment selector index

During an IRET task switch, the busy flag in the TSS descriptor indicates an inactive task.

TSS segment selector index

During a task switch, an attempt to access data in a TSS results in a limit violation or
canonical fault.

TSS segment selector index

During an IRET task switch, the backlink is a NULL selector.

TSS segment selector index

During an IRET task switch, the backlink points to a descriptor which is not a busy TSS.

TSS segment selector index

The new TSS descriptor is beyond the GDT limit.

TSS segment selector index

The new TSS selector is null on an attempt to lock the new TSS.

TSS segment selector index

The new TSS selector has the Tl bit set on an attempt to lock the new TSS.

TSS segment selector index

The new TSS descriptor is not an available TSS descriptor on an attempt to lock the new
TSS.

LDT segment selector index

LDT not valid or not present.

Stack segment selector index

The stack segment selector exceeds descriptor table limit.

Stack segment selector index

The stack segment selector is NULL.

Stack segment selector index

The stack segment descriptor is a non-data segment.

Stack segment selector index

The stack segment is not writable.

Stack segment selector index

The stack segment DPL ? CPL.

Stack segment selector index

The stack segment selector RPL ? CPL.

Code segment selector index

The code segment selector exceeds descriptor table limit.

Code segment selector index

The code segment selector is NULL.

Code segment selector index

The code segment descriptor is not a code segment type.

Code segment selector index

The nonconforming code segment DPL ? CPL.

Code segment selector index

The conforming code segment DPL is greater than CPL.

Data segment selector index

The data segment selector exceeds the descriptor table limit.

Data segment selector index

The data segment descriptor is not a readable code or data type.

Data segment selector index

The data segment descriptor is a nonconforming code type and RPL > DPL.

Data segment selector index

The data segment descriptor is a nonconforming code type and CPL > DPL.

TSS segment selector index

The TSS segment descriptor/upper descriptor is beyond the GDT segment limit.

TSS segment selector index

The TSS segment descriptor is not an available TSS type.

TSS segment selector index

The TSS segment descriptor is an available 286 TSS type in IA-32e mode.

7-36 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Table 7-6. Invalid TSS Conditions (Contd.)

Error Code Index Invalid Condition
TSS segment selector index The TSS segment upper descriptor is not the correct type.
TSS segment selector index The TSS segment descriptor contains a non-canonical base.

This exception can generated either in the context of the original task or in the context of the new task (see Section
9.3, “Task Switching”). Until the processor has completely verified the presence of the new TSS, the exception is
generated in the context of the original task. Once the existence of the new TSS is verified, the task switch is
considered complete. Any invalid-TSS conditions detected after this point are handled in the context of the new
task. (A task switch is considered complete when the task register is loaded with the segment selector for the new
TSS and, if the switch is due to a procedure call or interrupt, the previous task link field of the new TSS references
the old TSS.)

The invalid-TSS handler must be a task called using a task gate. Handling this exception inside the faulting TSS
context is not recommended because the processor state may not be consistent.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that caused the violation is pushed
onto the stack of the exception handler. If the EXT flag is set, it indicates that the exception was caused by an event
external to the currently running program (for example, if an external interrupt handler using a task gate
attempted a task switch to an invalid TSS).

Saved Instruction Pointer

If the exception condition was detected before the task switch was carried out, the saved contents of CS and EIP
registers point to the instruction that invoked the task switch. If the exception condition was detected after the task
switch was carried out, the saved contents of CS and EIP registers point to the first instruction of the new task.

Program State Change

The ability of the invalid-TSS handler to recover from the fault depends on the error condition than causes the fault.
See Section 9.3, “Task Switching,” for more information on the task switch process and the possible recovery
actions that can be taken.

If an invalid TSS exception occurs during a task switch, it can occur before or after the commit-to-new-task point.
If it occurs before the commit point, no program state change occurs. If it occurs after the commit point (when the
segment descriptor information for the new segment selectors have been loaded in the segment registers), the
processor will load all the state information from the new TSS before it generates the exception. During a task
switch, the processor first loads all the segment registers with segment selectors from the TSS, then checks their
contents for validity. If an invalid TSS exception is discovered, the remaining segment registers are loaded but not
checked for validity and therefore may not be usable for referencing memory. The invalid TSS handler should not
rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS registers without causing
another exception. The exception handler should load all segment registers before trying to resume the new task;
otherwise, general-protection exceptions (#GP) may result later under conditions that make diagnosis more diffi-
cult. The Intel recommended way of dealing situation is to use a task for the invalid TSS exception handler. The task
switch back to the interrupted task from the invalid-TSS exception-handler task will then cause the processor to
check the registers as it loads them from the TSS.

Vol.3A 7-37

INTERRUPT AND EXCEPTION HANDLING

Interrupt 11—Segment Not Present (#NP)

Exception Class Fault.

Description

Indicates that the present flag of a segment or gate descriptor is clear. The processor can generate this exception
during any of the following operations:

®* While attempting to load CS, DS, ES, FS, or GS registers. [Detection of a not-present segment while loading the
SS register causes a stack fault exception (#SS) to be generated.] This situation can occur while performing a
task switch.

®* While attempting to load the LDTR using an LLDT instruction. Detection of a not-present LDT while loading the
LDTR during a task switch operation causes an invalid-TSS exception (#TS) to be generated.

®* When executing the LTR instruction and the TSS is marked not present.
®* While attempting to use a gate descriptor or TSS that is marked segment-not-present, but is otherwise valid.

An operating system typically uses the segment-not-present exception to implement virtual memory at the
segment level. If the exception handler loads the segment and returns, the interrupted program or task resumes
execution.

A not-present indication in a gate descriptor, however, does not indicate that a segment is not present (because
gates do not correspond to segments). The operating system may use the present flag for gate descriptors to
trigger exceptions of special significance to the operating system.

A contributory exception or page fault that subsequently referenced a not-present segment would cause a double
fault (#DF) to be generated instead of #NP.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that caused the violation is pushed
onto the stack of the exception handler. If the EXT flag is set, it indicates that the exception resulted from either:

®* an external event (NMI or INTR) that caused an interrupt, which subsequently referenced a not-present
segment

®* a benign exception that subsequently referenced a not-present segment

The IDT flag is set if the error code refers to an IDT entry. This occurs when the IDT entry for an interrupt being
serviced references a not-present gate. Such an event could be generated by an INT instruction or a hardware
interrupt.

Saved Instruction Pointer

The saved contents of CS and EIP registers normally point to the instruction that generated the exception. If the
exception occurred while loading segment descriptors for the segment selectors in a new TSS, the CS and EIP
registers point to the first instruction in the new task. If the exception occurred while accessing a gate descriptor,
the CS and EIP registers point to the instruction that invoked the access (for example a CALL instruction that refer-
ences a call gate).

Program State Change

If the segment-not-present exception occurs as the result of loading a register (CS, DS, SS, ES, FS, GS, or LDTR),
a program-state change does accompany the exception because the register is not loaded. Recovery from this
exception is possible by simply loading the missing segment into memory and setting the present flag in the
segment descriptor.

If the segment-not-present exception occurs while accessing a gate descriptor, a program-state change does not
accompany the exception. Recovery from this exception is possible merely by setting the present flag in the gate
descriptor.

If a segment-not-present exception occurs during a task switch, it can occur before or after the commit-to-new-
task point (see Section 9.3, “Task Switching”). If it occurs before the commit point, no program state change

7-38 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

occurs. If it occurs after the commit point, the processor will load all the state information from the new TSS
(without performing any additional limit, present, or type checks) before it generates the exception. The segment-
not-present exception handler should not rely on being able to use the segment selectors found in the CS, SS, DS,
ES, FS, and GS registers without causing another exception. (See the Program State Change description for “Inter-
rupt 10—Invalid TSS Exception (#TS)” in this chapter for additional information on how to handle this situation.)

Vol. 3A 7-39

INTERRUPT AND EXCEPTION HANDLING

Interrupt 12—Stack Fault Exception (#SS)

Exception Class Fault.

Description
Indicates that one of the following stack related conditions was detected:

* Alimit violation is detected during an operation that refers to the SS register. Operations that can cause a limit
violation include stack-oriented instructions such as POP, PUSH, CALL, RET, IRET, ENTER, and LEAVE, as well as
other memory references which implicitly or explicitly use the SS register (for example, MOV AX, [BP+6] or
MOV AX, SS:[EAX+6]). The ENTER instruction generates this exception when there is not enough stack space
for allocating local variables.

®* A not-present stack segment is detected when attempting to load the SS register. This violation can occur
during the execution of a task switch, a CALL instruction to a different privilege level, a return to a different
privilege level, an LSS instruction, or a MOV or POP instruction to the SS register.

® A canonical violation is detected in 64-bit mode during an operation that reference memory using the stack
pointer register containing a non-canonical memory address.

Recovery from this fault is possible by either extending the limit of the stack segment (in the case of a limit viola-
tion) or loading the missing stack segment into memory (in the case of a not-present violation.

In the case of a canonical violation that was caused intentionally by software, recovery is possible by loading the
correct canonical value into RSP. Otherwise, a canonical violation of the address in RSP likely reflects some register
corruption in the software.

Exception Error Code

If the exception is caused by a not-present stack segment or by overflow of the new stack during an inter-privilege-
level call, the error code contains a segment selector for the segment that caused the exception. Here, the excep-
tion handler can test the present flag in the segment descriptor pointed to by the segment selector to determine
the cause of the exception. For a normal limit violation (on a stack segment already in use) the error code is set to
0.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the exception.
However, when the exception results from attempting to load a not-present stack segment during a task switch, the
CS and EIP registers point to the first instruction of the new task.

Program State Change

A program-state change does not generally accompany a stack-fault exception, because the instruction that gener-
ated the fault is not executed. Here, the instruction can be restarted after the exception handler has corrected the
stack fault condition.

If a stack fault occurs during a task switch, it occurs after the commit-to-new-task point (see Section 9.3, “Task
Switching”). Here, the processor loads all the state information from the new TSS (without performing any addi-
tional limit, present, or type checks) before it generates the exception. The stack fault handler should thus not rely
on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS registers without causing
another exception. The exception handler should check all segment registers before trying to resume the new
task; otherwise, general protection faults may result later under conditions that are more difficult to diagnose. (See
the Program State Change description for “Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for additional
information on how to handle this situation.)

7-40 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 13—General Protection Exception (#GP)

Exception Class Fault.

Description

Indicates that the processor detected one of a class of protection violations called “general-protection violations.”
The conditions that cause this exception to be generated comprise all the protection violations that do not cause
other exceptions to be generated (such as, invalid-TSS, segment-not-present, stack-fault, or page-fault excep-
tions). The following conditions cause general-protection exceptions to be generated:

Exceeding the segment limit when accessing the CS, DS, ES, FS, or GS segments.

Exceeding the segment limit when referencing a descriptor table (except during a task switch or a stack
switch).

Transferring execution to a segment that is not executable.
Writing to a code segment or a read-only data segment.
Reading from an execute-only code segment.

Loading the SS register with a segment selector for a read-only segment (unless the selector comes from a TSS
during a task switch, in which case an invalid-TSS exception occurs).

Loading the SS, DS, ES, FS, or GS register with a segment selector for a system segment.

Loading the DS, ES, FS, or GS register with a segment selector for an execute-only code segment.
Loading the SS register with the segment selector of an executable segment or a null segment selector.
Loading the CS register with a segment selector for a data segment or a null segment selector.
Accessing memory using the DS, ES, FS, or GS register when it contains a null segment selector.
Switching to a busy task during a call or jump to a TSS.

Using a segment selector on a non-IRET task switch that points to a TSS descriptor in the current LDT. TSS
descriptors can only reside in the GDT. This condition causes a #TS exception during an IRET task switch.

Violating any of the privilege rules described in Chapter 6, “Protection.”

Exceeding the instruction length limit of 15 bytes (this only can occur when redundant prefixes are placed
before an instruction).

Loading the CRO register with a set PG flag (paging enabled) and a clear PE flag (protection disabled).
Loading the CRO register with a set NW flag and a clear CD flag.
Referencing an entry in the IDT (following an interrupt or exception) that is not an interrupt, trap, or task gate.

Attempting to access an interrupt or exception handler through an interrupt or trap gate from virtual-8086
mode when the handler’s code segment DPL is greater than 0.

Attempting to write a 1 into a reserved bit of CR4.

Attempting to execute a privileged instruction when the CPL is not equal to 0 (see Section 6.9, “Privileged
Instructions,” for a list of privileged instructions).

Attempting to execute SGDT, SIDT, SLDT, SMSW, or STR when CR4.UMIP = 1 and the CPL is not equal to 0.
Writing to a reserved bit in an MSR.
Accessing a gate that contains a null segment selector.

Executing the INT n instruction when the CPL is greater than the DPL of the referenced interrupt, trap, or task
gate.

The segment selector in a call, interrupt, or trap gate does not point to a code segment.

The segment selector operand in the LLDT instruction is a local type (TI flag is set) or does not point to a
segment descriptor of the LDT type.

The segment selector operand in the LTR instruction is local or points to a TSS that is not available.
The target code-segment selector for a call, jump, or return is null.

Vol. 3A 7-41

INTERRUPT AND EXCEPTION HANDLING

* If the PAE and/or PSE flag in control register CR4 is set and the processor detects any reserved bits in a page-
directory-pointer-table entry set to 1. These bits are checked during a write to control registers CR0, CR3, or
CR4 that causes a reloading of the page-directory-pointer-table entry.

* Attempting to write a non-zero value into the reserved bits of the MXCSR register.

®* Executing an SSE/SSE2/SSE3 instruction that attempts to access a 128-bit memory location that is not aligned
on a 16-byte boundary when the instruction requires 16-byte alignment. This condition also applies to the stack
segment.

A program or task can be restarted following any general-protection exception. If the exception occurs while
attempting to call an interrupt handler, the interrupted program can be restartable, but the interrupt may be lost.

Exception Error Code

The processor pushes an error code onto the exception handler's stack. If the fault condition was detected while
loading a segment descriptor, the error code contains a segment selector to or IDT vector number for the
descriptor; otherwise, the error code is 0. The source of the selector in an error code may be any of the following:

® An operand of the instruction.

® A selector from a gate which is the operand of the instruction.
®* A selector from a TSS involved in a task switch.

®* IDT vector number.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

In general, a program-state change does not accompany a general-protection exception, because the invalid
instruction or operation is not executed. An exception handler can be designed to correct all of the conditions that
cause general-protection exceptions and restart the program or task without any loss of program continuity.

If a general-protection exception occurs during a task switch, it can occur before or after the commit-to-new-task
point (see Section 9.3, “Task Switching”). If it occurs before the commit point, no program state change occurs. If
it occurs after the commit point, the processor will load all the state information from the new TSS (without
performing any additional limit, present, or type checks) before it generates the exception. The general-protection
exception handler should thus not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS,
and GS registers without causing another exception. (See the Program State Change description for “Interrupt
10—Invalid TSS Exception (#TS)” in this chapter for additional information on how to handle this situation.)

General Protection Exception in 64-bit Mode

The following conditions cause general-protection exceptions in 64-bit mode:

® If the memory address is in a non-canonical form.

* If a segment descriptor memory address is in non-canonical form.

* If the target offset in a destination operand of a call or jmp is in a non-canonical form.
* If a code segment or 64-bit call gate overlaps non-canonical space.

* If the code segment descriptor pointed to by the selector in the 64-bit gate doesn't have the L-bit set and the
D-bit clear.

® If the EFLAGS.NT bit is set in IRET.

* If the stack segment selector of IRET is null when going back to compatibility mode.

* If the stack segment selector of IRET is null going back to CPL3 and 64-bit mode.

® If a null stack segment selector RPL of IRET is not equal to CPL going back to non-CPL3 and 64-bit mode.
* If the proposed new code segment descriptor of IRET has both the D-bit and the L-bit set.

7-42 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

If the segment descriptor pointed to by the segment selector in the destination operand is a code segment and
it has both the D-bit and the L-bit set.

If the segment descriptor from a 64-bit call gate is in non-canonical space.

If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit call-gate.
If the type field of the upper 64 bits of a 64-bit call gate is not 0.

If an attempt is made to load a null selector in the SS register in compatibility mode.

If an attempt is made to load null selector in the SS register in CPL3 and 64-bit mode.

If an attempt is made to load a null selector in the SS register in non-CPL3 and 64-bit mode where RPL is not
equal to CPL.

If an attempt is made to clear CR0O.PG while IA-32e mode is enabled.
If an attempt is made to set a reserved bit in CR3, CR4 or CR8.

Vol.3A 7-43

INTERRUPT AND EXCEPTION HANDLING

Interrupt 14—Page-Fault Exception (#PF)

Exception Class Fault.

Description

Indicates that, with paging enabled (the PG flag in the CRO register is set), the processor detected one of the
following conditions while using the page-translation mechanism to translate a linear address to a physical
address:

The P (present) flag in a page-directory or page-table entry needed for the address translation is clear,
indicating that a page table or the page containing the operand is not present in physical memory.

The procedure does not have sufficient privilege to access the indicated page (that is, a procedure running in
user mode attempts to access a supervisor-mode page). If the SMAP flag is set in CR4, a page fault may also
be triggered by code running in supervisor mode that tries to access data at a user-mode address. If either the
PKE flag or the PKS flag is set in CR4, the protection-key rights registers may cause page faults on data
accesses to linear addresses with certain protection keys.

Code running in user mode attempts to write to a read-only page. If the WP flag is set in CRO, the page fault
will also be triggered by code running in supervisor mode that tries to write to a read-only page.

An instruction fetch to a linear address that translates to a physical address in a memory page with the
execute-disable bit set (for information about the execute-disable bit, see Chapter 5, “Paging”). If the SMEP
flag is set in CR4, a page fault will also be triggered by code running in supervisor mode that tries to fetch an
instruction from a user-mode address.

One or more reserved bits in paging-structure entry are set to 1. See description below of RSVD error code flag.

"

A shadow-stack access is made to a page that is not a shadow-stack page. See Section 18.2, "Shadow Stacks,
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, and Section 5.6, “Access
Rights.”

An enclave access violates one of the specified access-control requirements. See Section 36.3, “"Access-control
Requirements,” and Section 36.20, “Enclave Page Cache Map (EPCM),” in Chapter 36, “Enclave Access Control
and Data Structures.” In this case, the exception is called an SGX-induced page fault. The processor uses the
error code (below) to distinguish SGX-induced page faults from ordinary page faults.

The exception handler can recover from page-not-present conditions and restart the program or task without any
loss of program continuity. It can also restart the program or task after a privilege violation, but the problem that
caused the privilege violation may be uncorrectable.

See also: Section 5.7, “Page-Fault Exceptions.”

Exception Error Code

Yes (special format). The processor provides the page-fault handler with two items of information to aid in diag-
nosing the exception and recovering from it:

An error code on the stack. The error code for a page fault has a format different from that for other exceptions
(see Figure 7-11). The processor establishes the bits in the error code as follows:

— P flag (bit 0).
This flag is 0 if there is no translation for the linear address because the P flag was 0 in one of the paging-
structure entries used to translate that address.

— W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; otherwise, it is 0. This flag
describes the access causing the page-fault exception, not the access rights specified by paging.

— U/S (bit 2).
If a user-mode access caused the page-fault exception, this flag is 1; it is 0 if a supervisor-mode access did
so. This flag describes the access causing the page-fault exception, not the access rights specified by

paging.

7-44 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

— RSVD flag (bit 3).
This flag is 1 if there is no translation for the linear address because a reserved bit was set in one of the
paging-structure entries used to translate that address.

— 1I/D flag (bit 4).
This flag is 1 if the access causing the page-fault exception was an instruction fetch. This flag describes the
access causing the page-fault exception, not the access rights specified by paging.

— PKflag (bit 5).
This flag is 1 if the access causing the page-fault exception was a data access to a linear address with a
protection key for which the protection-key rights registers disallow access.

— SS (bit 6).
If the access causing the page-fault exception was a shadow-stack access (including shadow-stack
accesses in enclave mode), this flag is 1; otherwise, it is 0. This flag describes the access causing the page-
fault exception, not the access rights specified by paging.

— HLAT (bit 7).
This flag is 1 if there is no translation for the linear address using HLAT paging because, in one of the
paging-structure entries used to translate that address, either the P flag was 0 or a reserved bit was set. An
error code will set this flag only if it clears bit 0 or sets bit 3. This flag will not be set by a page fault resulting
from a violation of access rights, nor for one encountered during ordinary paging, including the case in
which there has been a restart of HLAT paging.

— SGX flag (bit 15).
This flag is 1 if the exception is unrelated to paging and resulted from violation of SGX-specific access-
control requirements. Because such a violation can occur only if there is no ordinary page fault, this flag is
set only if the P flag (bit 0) is 1 and the RSVD flag (bit 3) and the PK flag (bit 5) are both 0.

See Section 5.6, “Access Rights,” and Section 5.7, “Page-Fault Exceptions,” for more information about page-
fault exceptions and the error codes that they produce.

Vol.3A 7-45

INTERRUPT AND EXCEPTION HANDLING

®* The contents of the CR2 register. The processor loads the CR2 register with the linear address that generated
the exception. If linear-address masking had been in effect (Section 4.4), the address recorded reflects the
result of that masking and does not contain any masked metadata. If the page-fault exception occurred during
execution of an instruction in enclave mode (and not during delivery of an event incident to enclave mode), bits
11:0 of the address are cleared.

The page-fault handler can use this address to locate the corresponding paging-structure entries. Another page
fault can potentially occur during execution of the page-fault handler; the handler should save the contents of
the CR2 register before a second page fault can occur.! If a page fault is caused by a page-level protection

violation, the accessed flags in paging-structure entries may be set when the fault occurs (behavior is model-

31 15 76543210
7 HIAEEEISER
Reserved £ Reserved |3”|7|% 2oz
P 0 The fault was caused by a non-present page.
1 The fault was caused by a page-level protection violation.
WIR 0 The access causing the fault was a read.
1 The access causing the fault was a write.
u/s 0 A supervisor-mode access caused the fault.
1 Auser-mode access caused the fault.
RSVD 0 The fault was not caused by reserved bit violation.
1 The fault was caused by a reserved bit set to 1 in some
paging-structure entry.
1/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.
PK 0 The fault was not caused by protection keys.
1 There was a protection-key violation.
SS 0 The fault was not caused by a shadow-stack access.
1 The fault was caused by a shadow-stack access.
HLAT 0 The fault occurred during ordinary paging or due to access rights.
1 The fault occurred during HLAT paging.
SGX 0 The fault is not related to SGX.

-

The fault resulted from violation of SGX-specific access-control

requirements.

Figure 7-11. Page-Fault Error Code

specific and not architecturally defined).

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the exception. If the
page-fault exception occurred during a task switch, the CS and EIP registers may point to the first instruction of the

new task (as described in the following “"Program State Change” section).

1. Processors update CR2 whenever a page fault is detected. If a second page fault occurs while an earlier page fault is being deliv-
ered, the faulting linear address of the second fault will overwrite the contents of CR2 (replacing the previous address). These
updates to CR2 occur even if the page fault results in a double fault or occurs during the delivery of a double fault.

7-46 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Program State Change

A program-state change does not normally accompany a page-fault exception, because the instruction that causes
the exception to be generated is not executed. After the page-fault exception handler has corrected the violation
(for example, loaded the missing page into memory), execution of the program or task can be resumed.

When a page-fault exception is generated during a task switch, the program-state may change, as follows. During
a task switch, a page-fault exception can occur during any of following operations:

®* While writing the state of the original task into the TSS of that task.

®* While reading the GDT to locate the TSS descriptor of the new task.

®* While reading the TSS of the new task.

®* While reading segment descriptors associated with segment selectors from the new task.

®* While reading the LDT of the new task to verify the segment registers stored in the new TSS.

In the last two cases the exception occurs in the context of the new task. The instruction pointer refers to the first
instruction of the new task, not to the instruction which caused the task switch (or the last instruction to be
executed, in the case of an interrupt). If the design of the operating system permits page faults to occur during
task-switches, the page-fault handler should be called through a task gate.

If a page fault occurs during a task switch, the processor will load all the state information from the new TSS
(without performing any additional limit, present, or type checks) before it generates the exception. The page-fault
handler should thus not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS
registers without causing another exception. (See the Program State Change description for “Interrupt 10—Invalid
TSS Exception (#TS)"” in this chapter for additional information on how to handle this situation.)

Additional Exception-Handling Information

Special care should be taken to ensure that an exception that occurs during an explicit stack switch does not cause
the processor to use an invalid stack pointer (SS:ESP). Software written for 16-bit IA-32 processors often use a
pair of instructions to change to a new stack, for example:

MOV SS, AX
MOV SP, StackTop

When executing this code on one of the 32-bit IA-32 processors, it is possible to get a page fault, general-protec-
tion fault (#GP), or alignment check fault (#AC) after the segment selector has been loaded into the SS register
but before the ESP register has been loaded. At this point, the two parts of the stack pointer (SS and ESP) are
inconsistent. The new stack segment is being used with the old stack pointer.

The processor does not use the inconsistent stack pointer if the exception handler switches to a well defined stack
(that is, the handler is a task or a more privileged procedure). However, if the exception handler is called at the
same privilege level and from the same task, the processor will attempt to use the inconsistent stack pointer.

In systems that handle page-fault, general-protection, or alignment check exceptions within the faulting task (with
tra