intel)

Intel® 64 and IA-32 Architectures
Software Developer’'s Manual

Combined Volumes:
1, 2A, 2B, 2C, 3A, 3B, 3C and 3D

NOTE: This document contains all eight volumes of the Intel 64 and IA-32 Architectures Software
Developer’s Manual: Basic Architecture, Instruction Set Reference A-M, Instruction Set Reference N-
Z, Instruction Set Reference, and the System Programming Guide, Parts 1, 2, 3 and 4. Refer to all
seven volumes when evaluating your design needs.

Order Number: 325462-056US
September 2015



Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Learn
more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting
from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products
described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject
matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifica-
tions. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is subject to change
without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-
800-548-4725, or by visiting http://www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation in the U.S.
and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 1997-2015, Intel Corporation. All Rights Reserved.


http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

intel.

Intel® 64 and IA-32 Architectures
Software Developer’'s Manual

Volume 1:
Basic Architecture

NOTE: The Intef® 64 and IA-32 Architectures Software Developer’s Manual consists of eight volumes:
Basic Architecture, Order Number 253665; Instruction Set Reference A-M, Order Number 253666;
Instruction Set Reference N-Z, Order Number 253667; Instruction Set Reference, Order Number
326018; System Programming Guide, Part 1, Order Number 253668; System Programming Guide, Part
2, Order Number 253669; System Programming Guide, Part 3, Order Number 326019; System
Programming Guide, Part 4, Order Number 332831. Refer to all eight volumes when evaluating your
design needs.

Order Number: 253665-056US
September 2015



Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Learn
more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting
from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products
described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject
matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifica-
tions. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is subject to change
without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-
800-548-4725, or by visiting http://www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation in the U.S.
and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 1997-2015, Intel Corporation. All Rights Reserved.


http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

CONTENTS

PAGE
CHAPTER 1
ABOUT THIS MANUAL
1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL .. ... .vetetet et et e et e e e 1-1
1.2 OVERVIEW OF VOLUME T: BASIC ARCHITECTURE . .. .ottt ettt et e e e et et e et e e et e e 1-3
13 NOTATIONAL CONVENTIONS . . . .ottt et e et e e et et et et e et e et e et e e 1-5
1.3.1 Bit AN BYTe OMer. ..ttt i e e e e e e 1-5
13.2 Reserved Bits and Software Compatibility .........ooioiiii i e 1-5
1.3.2.1 LISy om0 1= = [ T 1-5
133 Hexadecimal and Binary NUMIDEIS . ... ot e e e 1-6
134 SegMENTEA AQArESSING .« vttt ettt e et e e e e e 1-6
135 A New Syntax for CPUID, CR, aNd MSR ValUBS . . . ..ottt ettt e ettt e ettt ettt aenens 1-6
136 [ Cal= 51103 1-7
14 RELATED LITERATURE . . ottt ettt ettt et e e et et et et ettt 1-8
CHAPTER 2
INTEL® 64 AND IA-32 ARCHITECTURES
2.1 BRIEF HISTORY OF INTEL® 64 AND IA-32 ARCHITECTURE . ...\ ut ittt et eee et et e e e et e 2-1
2.1.1 16-bit Processors and Segmentation (1078) .. ... v e 2-1
2.1.2 The INTEl® 286 ProCESSOr (1982). ... vttt ettt ettt ettt et e et et e e e e et e 2-1
2.13 THe INteI386 ™ ProCeSSOr (1985) . ... .ttt ettt ettt et e et et et et e et et 2-1
2.14 THhe INtEl486 ™ ProceSSOr (1989) ... ... ettt ettt et e et e et e e ettt e e 2-2
2.15 The Intel® Pentium® Processor (1993). ... ... vttt ettt e ettt e ettt e 2-2
216 The P6 Family of Processors (1995-1999) . ... .ttt e 2-2
21.7 The Intel® Pentium® 4 Processor Family (2000-2006). . ...« ....uuterete ettt ettt eeaaans 2-3
218 The Intel® Xeon® Processor 2200 7 T 2-3
2.19 The Intel® Pentium® M Processor (2003-2006) .. ... ...vuutttnrt ettt it et ettt et et 2-3
2.1.10 The Intel® Pentium® Processor Extreme Edition (2005) ... ......verteet et ettt ettt 2-4
2.1.11 The Intel® Core™ Duo and Intel® Core™ Solo Processors (2006-2007) ........vveeee et e eeeeieeiaas 2-4
2.1.12 The Intel® Xeon® Processor 5100, 5300 Series and Intel® Core™2 Processor Family (2006) ............ovevvevnn.. 2-4
2.1.13 The Intel® Xeon® Processor 5200, 5400, 7400 Series and Intel® Core™2 Processor Family (2007).................. 2-5
2.1.14 The Intel® Atom™ Processor Family (2008) . . ... .. .. .reete et ettt et ettt e e e et e et 2-5
2.1.15 The Intel® Atom™ Processor Family Based on Silvermont Microarchitecture (2013)......vovvireerieiieiieiiennns 2-5
2.1.16 The Intel® Core™i7 Processor Family (2008) . . ... ..tuurrtt ettt ettt e et e 2-5
2.1.17 The Intel® Xeon® Processor 7500 SEres (2010) . .. ...ttt ettt ettt et e e et 2-6
2.1.18 2010 Intel® Core™ Processor Family (20T0) .. ... uv ettt ettt et et ettt et e 2-6
2.1.19 The Intel® Xeon® Processor 5600 SEMES (20T0) . ... ... trterttte ettt ettt ettt et ettt 2-6
2.1.20 The Second Generation Intel® Core™ Processor Family (20T7) ... ... .vtueee ettt et ettt eieaaans 2-6
2.1.21 The Third Generation Intel® Core™ Processor Family (2012) ... .. uvurtnt ettt et ettt 2-7
2.1.22 The Fourth Generation Intel® Core™ Processor Family (2013) .. ... ue ettt et ettt 2-7
2.2 MORE ON SPECIFIC ADVANCES . .. ittt et et e et e e et 2-7
2.2.1 PE Family MIiCroarChiteCUre. .. vttt e e e e e e 2-7
2.2.2 INtel NEtBUISE® MICrOArCRItECUNE .. ...\ttt ettt ettt ettt e e e ettt ettt 2-8
2.2.2.1 The Front ENd Pipeline. . ..ot e e e e 2-10
2.2.2.2 L 10y L0 O (=T =Tl o I 2-11
2.2.2.3 R = 1= L T 2-11
223 INtEl® Core ™ MICTOICITECTUIE. . .o\ttt ettt et et et e et et et e e e e e e et et e 2-11
2.2.3.1 T oL = T 2-12
2232 ool o X 0o P 2-13
224 INtEI® AOM ™ MICTOATCITECTUIE . ..ttt ettt ettt ettt e et et e e ettt ettt 2-13
2.2.5 Intel® Microarchitecture Code Name NERGIBM . ... ... .v ettt ettt et e et et e 2-13
2.26 Intel® Microarchitecture Code Name SaNAY BRIGGE. . ... ... vttt ettt e e 2-14
2.2.7 SIMD IS TUCTIONS . . v ettt ettt e et e e e et e e e e e e e e 2-15
2.2.8 Intel® Hyper-Threading TeChNOlOgy . . . ... v .o e e i 2-17

Vol. 1 iii



CONTENTS

PAGE
2.2.8.1 Some IMPlemMENtation NOTES ...\ttt e ettt e e e s 2-18
2.2.9 10 T = I =TT ] o T Y P 2-19
2.2.10 INEEI® B4 ATCRITECTUTE « ... vttt ettt ettt e e e e e e e e e e e e e 2-21
2211 Intel® Virtualization Technology (INteI® VT) . .. ...t e et 2-21
2.3 INTEL® 64 AND IA-32 PROCESSOR GENERATIONS. . ..\ttt ettt et e ee et e ettt e e ettt e 2-21
CHAPTER 3
BASIC EXECUTION ENVIRONMENT
3.1 MODES OF OPERATION. . . vttt e ettt et et et et e e e et e e e et et e e et e e 3-1
3.1.1 INEEI® B4 ATCHITECTUIE . ...\ttt et et et e et et e e e et e e e e e e e e e 3-1
3.2 OVERVIEW OF THE BASIC EXECUTION ENVIRONMENT ..\ttt ettt et et 3-2
3.2.1 64-Bit Mode EXECULION ENVITONMENT . . ..ottt et s e e e e e 3-5
33 MEMORY ORGANIZATION Lottt ettt e e e e e e e et e e e e e e e et e 3-6
3.3.1 IA-32 MEMOTY MOGEIS. . . oottt e e ettt e e 3-7
33.2 Paging and VirtUal MEmMOrY . . oo ettt e e e e e e 3-8
333 Memory Organization iN B4-Bit MOGE . ... ... ii i e 3-8
334 Modes of Operation vs. Memory MOGEL. . .. ... et e e 39
335 32-Bit and 16-Bit Address and Operand Sizes .. .....iviiiiii i i i i e e 3-9
336 Extended Physical Addressing in Protected Mode ... ....cciiiiiiii i i e e 3-9
337 Address Calculations iN B4-Bit MOGE . . ..o . vttt e e 3-10
3.3.7.1 (0= o) (or= T A T =13 [ 3-10
3.4 BASIC PROGRAM EXECUTION REGISTERS ..ttt ettt et e e 3-10
3.4.1 GENEral-PUMPOSE REGIS IS . o\ttt e e e e e e 3-11
34.1.1 General-Purpose Registers in 64-Bit MOde . ... ..ottt e e e e e 3-12
34.2 Y00 1T (=03 (=T 5T 3-13
34.2.1 Segment Registers iN B4-Bit MOGe. . ... ..ottt et e e e e s 3-15
343 o I O =T 3 =] P 3-15
34.3.1 SEATUS FlagS . v vttt e e s 3-16
3432 )] T 3-17
3433 System FIags and IOP L Field. . ... ..o i e e e 3-17
3434 RFLAGS Register in 64-Bit MOe. . . ..ottt e e 3-18
35 INSTRUCTION POINTER .. sttt e sttt ettt e e e e et e e e et e e e e et e et et e e e e e e aaas 3-18
3.5.1 INStruction POINter i B4-Bit MOGE . . . ... v it e e e e 3-18
3.6 OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES ...\ttt ettt e 3-18
3.6.1 Operand Size and Address Size in 64-Bit MOde . .......o.iiii e 3-19
3.7 OPERAND ADDRESSING . . sttt ettt ettt e ettt e e e e e e 3-19
3.7.1 IMMEAIate OPEraNAS . . . ottt ittt et et e e e e e e 3-20
37.2 RS0 (=T 1T = T £ 3-20
3.7.2.1 Register Operands in B4-Bit MOGe . ... ... vu ittt e s 3-21
373 [ 1= T V0 0= o= L P 3-21
3.7.3.1 Memory 0perands iN B64-Bit MOGE . ..o it e 3-21
374 SPECITYING @ SEGMENT SEIBCTOT ..\ttt e e e e 3-21
3.74.1 Segmentation N B4-Bit MO . ....o.ii i i i e e e 3-22
375 SPECITYING AN OF BT . ..ttt e e e e e e 3-22
3.7.5.1 Specifying an Offset iN B4-Bit MOGE . ... .ottt e e 3-24
376 Assembler and Compiler Addressing MOGeS . ... v. ittt e 3-24
3.7.7 7O o] Va1 =7 3-24
CHAPTER 4
DATA TYPES
4.1 FUND AMEN T AL DAT A Ty PE S, Lttt ettt ettt et et e e e et e e e et n e et 4-1
411 Alignment of Words, Doublewords, Quadwords, and Double QUadwords ... e, 4-2
4.2 NUMERIC DA T A TY PES . ottt e e e e et e e et et e e e et e s 4-2
4.2.1 (=T = 4-3
4.2.1.1 03 1= [ (== 3 4-3
42.1.2 ) 0 0 =T N (=T 0= 4-4
422 FloatiNg-POINt Data Ty DS, .« ot ottt ittt e e ettt e e e e e e 4-4
43 POINTER DA T A TYPES ...ttt e e ettt et e e e et et e e et e 4-6
431 Pointer Data Types iN B4-Bit MOGE . ...\ ov ittt e e e e 4-7

iv Vol. 1



CONTENTS

PAGE

4.4 BIT FIELD AT A TY P, ottt ettt e e et e e e et e e e et et e e et et e e e e 4-7
4.5 ST RING DA T A TY PES o e e e e e e e e e et 4-8
4.6 PACKED SIMD DAT A TYPES ..ottt et e e e e e e e e e e e 4-8
46.1 B64-Bit SIMD Packed Data Ty PO . v ettt ettt e e e e e 4-8
46.2 128-Bit Packed SIMD Data Ty DS, ot ettt ettt ettt ettt et e e et e e et e e et et e et r e e 4-8
4.7 BCD AND PACKED BCD INTEGERS. . . . vttt ettt e ettt e e e e et e e et et e et et e e et e eaas 4-9
4.8 REAL NUMBERS AND FLOATING-POINT FORMAT S . .ottt ettt ettt ettt e et eens 4-11
481 REAl NUM DT Sy S O L o\ttt e et e e 4-11
482 Floating-Point FOMmIat .. oot e e e e 4-11
48.2.1 [N fo g =1 =T I N LU T ] =T P 4-13
4822 2 E= Y=l =t o] =T 4-13
483 Real Number and Non-nUmMbEr ENCOGINGS . . ..o\ttt ettt ettt ittt ettt eans 4-13
483.1 Y10 1= 7= o 4-14
483.2 Normalized and Denormalized Finite NUMDETS . ... .ottt i 4-14
4833 Y1 [ 1= I T T =T3P 4-15
4834 NGNS Lttt e e e e e 4-15
4835 Operating on SNaNs and QNaNS. . . ... e e 4-16
483.6 Using SNaNs and QNaNs in APPlICAtIONS . .. .. .vuv ittt 4-16
483.7 QNaN Floating-Point INAefinite . . ..o vttt e e e e e 4-17
4838 Half-Precision FIoating-Point Operation. . ... ..vuiei i e 4-17
484 ROUNAING .« vttt e e e e e 4-17
4841 Rounding Control (RC) FIEIAS . .. ... vt 4-18
484.2 Truncation with SSE and SSE2 Conversion INSTrUCTIONS . ... ..ottt e 4-18
49 OVERVIEW OF FLOATING-POINT EXCEPTIONS. . .ttt ittt et ettt et e e e 4-18
491 Floating-Point EXCeption CoNditionS . ... .ciei ittt e e e e e s 4-19
49.1.1 INvalid Operation EXCEPTION (H1) . ..o\ttt e e e 4-20
49.1.2 Denormal Operand EXCEPTION (HD). ... v vttt e e e 4-20
4913 Divide-By-Zero EXCEPLiON (HZ) .. ..ot s 4-20
4914 Numeric Overflow EXCEPTION (H0) . ... v ittt ettt et e e e e e 4-20
49.1.5 Numeric Underflow EXCEPTION (HU) . ..o v i it e 4-21
49.1.6 Inexact-Result (Precision) EXCEPTION (BP) ... v .ttt ettt e 4-22
49.2 Floating-Point EXCEPTION PriOriTY . .\ v vttt et e e e e s 4-23
493 Typical Actions of a Floating-Point Exception Handler ....... ... e 4-23
CHAPTER 5

INSTRUCTION SET SUMMARY

5.1 GENERAL-PURPOSE INSTRUCTIONS ..ottt ettt sttt et et et e e et e e e et et e e et e 5-3
5.1.1 B = =T S =T 3 1 (om0 P 5-3
5.1.2 BiNary Arithmetic INSTrUCHIONS. . ..ottt e e e e e e e 5-4
513 Decimal Arithmetic INSTIUCTIONS . ...ttt e e e e e e et ens 5-4
514 (T Tor= |1 £ oy o 0 5-4
515 Shift aNd ROTATE INSTTUCTIONS. « v vttt et ettt e e e e e e e e 5-4
516 Bit and Byte INS UG ONS. ..ot i e e e 5-5
517 (000 o =T Y =T [ 3 £ oy o 5-5
518 I3 L1 T ] {0 oo 5-6
5.1.9 7O N [y Ton o 0 3 5-7
5.1.10 ENter aNd LEaVe IS rUCHIONS. . . oottt ettt e e e et e e e 5-7
5.1.11 Flag Control (EFLAG) INSTrUCTIONS . . ..ottt ettt ettt et e e et e e e e e ettt e e eees 5-7
51.12 Segment RegISTEr IS UG ONS . oottt i i ettt e et e e 5-7
5113 MiSCEIIANEOUS INSTIUCTIONS & . .o\ttt e ettt et e e et et e e et e et et e et e e e et n e e 5-8
51.14 User Mode Extended Sate Save/Restore INSTTUCTIONS. . . ... vt ittt 5-8
5.1.15 Random Number Generator INSITUCTIONS . . ...ttt ettt et e e e et eas 5-8
5.1.16 BMIT, Bl ittt e e e e 5-8
5.1.16.1 Detection of VEX-encoded GPR Instructions, LZCNT and TZCNT, PREFETCHW ..o 5-9
5.2 XB7 FPU INSTRUCTIONS . . oottt t et e et e e e e et e et e e et e e e e 5-9
5.2.1 X87 FPU Data Transfer INStrUCTIONS . . ..o v ottt e e e e e e e e 5-9
522 X87 FPU BasiC Arithmetic INStrUCTiONS . ..ottt et e e e e e et e e 5-9
5.23 X87 FPU ComMPariSOn INSTMUCTIONS . ... v vttt ettt ettt ettt e e et a e 5-10
524 X87 FPU Transcendental INSTrUCTiONS. . . ..o v vttt ettt ettt et 5-11



CONTENTS

525 X87 FPU Load ConStants INSTTUCTIONS . . .o v vttt ettt et e e et et et e eens 5-11
526 X87 FPU Control INStrUCTIONS . . o\ttt et e e et et e e e 5-11
53 X87 FPU AND SIMD STATE MANAGEMENT INSTRUCTIONS . .. .ottt 5-12
54 MM INS TRUC T ION S . . oottt e ettt e e et e e e e e e e e e 5-12
54.1 MMX Data Transter INStrUCHIONS . . vttt e e ettt e e e e e e 5-12
542 MMX CONVEISION INStIUCTIONS. L . o\ttt et e e e et e et et et et et e et e e e eees 5-12
543 MMX Packed Arithmetic INStrUCIONS . ... vttt et 5-13
544 MMX ComMParisON NSt TUCTIONS .ottt e e e e e e e e 5-13
545 1 W T o= I Y o P 5-13
546 MMX Shift and ROTate INSTTUCTIONS ..\ttt e e e e e e e aes 5-13
54.7 MMX State Management IS UG ONS . .. .ottt i e it e e 5-14
55 S B INSTRUCTIONS . .ttt ettt ettt e e et e e e et e e et e e e e et e e e e e 5-14
55.1 SSE SIMD Single-Precision Floating-Point INSTrUCtioNS. .. ... ou it e 5-14
5511 SSE Data Transfer INSTTUCTIONS . ..ottt e e e e e e e 5-14
551.2 SSE Packed Arithmetic INSTIUCHIONS . . ... v et e 5-15
5513 SSE ComParison INSTTUCTIONS . ... v ettt et e et et e et et e e 5-15
5514 SSE LOGICal IS UG ONS . . ottt ettt e e et e e e e e 5-15
55.15 SSE Shuffle and Unpack INStrUCTIONS. . . ... et e e e e e ettt ettt 5-15
5516 Y = 0oy 1Y 7= o o T T T ) o o 5-16
55.2 SSE MXCSR State Management INStrUCTIONS. ... v vttt e e 5-16
553 SSE 64-Bit SIMD INteger INStrUCTIONS .« .\ttt e e e 5-16
554 SSE Cacheability Control, Prefetch, and Instruction Ordering INStructions ... 5-16
56 S B INSTRUCTION S . . ottt ettt e e et et e e e et e e e et e e e e 5-17
56.1 SSE2 Packed and Scalar Double-Precision Floating-Point INStructions. ... i 5-17
56.1.1 SSEZ2 Data MoVEMENt INSTTUCTIONS . « . vttt ettt ettt et e e et e et et e et 5-17
56.1.2 SSE2 Packed Arithmetic INSTIUCTIONS. . .. v .ttt e e e e e e 5-18
56.1.3 SSE2 LOGICal INSTTUCHIONS. .« vttt ettt e e e ettt e e 5-18
56.14 SSE2 COmMPAre INSITUCTIONS. . ..ttt 5-18
56.1.5 SSE2 Shuffle and Unpack INStrUCHIONS . ... ..ot e ettt aes 5-18
56.1.6 I = o] 1Y 7= Sy (o o N [ 1y T o 5-19
56.2 SSE2 Packed Single-Precision Floating-Point INSTtructions . ...t e 5-19
56.3 SSE2 128-Bit SIMD INteger INStrUCTIONS . ..ottt ettt et e e 5-19
564 SSE2 Cacheability Control and Ordering INStrUCTIONS . . ..o vttt e 5-20
57 S B INSTRUCTION S . ettt ettt e ettt e e e e et e e e e e et et e e 5-20
571 SSE3 x87-FP Integer Conversion INStrUCTION ... ... e e it e e i 5-20
57.2 SSE3 Specialized 128-bit Unaligned Data Load INStrucCtion ...ttt e et 5-20
573 SSE3 SIMD Floating-Point Packed ADD/SUB INSTrUCTIONS . ... ov vttt e i eieaes 5-21
574 SSE3 SIMD Floating-Point Horizontal ADD/SUB INSTrUCTIONS . .. vttt e aaes 5-21
5.75 SSE3 SIMD Floating-Point LOAD/MOVE/DUPLICATE INStrUCTIONS . . o\ v vttt 5-21
576 SSE3 Agent Synchronization INSTIUCTIONS . .. ...t e 5-21
58 SUPPLEMENTAL STREAMING SIMD EXTENSIONS 3 (SSSE3) INSTRUCTIONS . ..ot ivti et 5-21
5.8.1 Horizontal Addition/SUDTraCtioN . . ..o . e e 5-22
58.2 Packed ADSOIUTE ValUBS. . . .. ..ottt e e e e e 5-22
583 Multiply and Add Packed Signed and UnsSigned BYTeS . .....cvuitititi e 5-22
584 Packed Multiply High with RoUnd and SCale . ... ..ovini e e 5-22
585 Packed ShUTIE BYtes . ... e 5-23
586 PaCKEA SIgN .ot e e e e e 5-23
58.7 Packed AlIGn RIGNT. .. i i e e e e e 5-23
59 SSEA INSTRUCTIONS . . oottt ettt ettt e et et e e et e e e e et et e et e e 5-23
5.10 SSEA. T INSTRUCTIONS . . ettt ettt e e e e e e e et e e et e e e e a e aanes 5-24
5.10.1 DWOrd MUHIPIY INStrUCTIONS & .ottt et e e ettt ettt e e e e e 5-24
5.10.2 Floating-Point Dot Product INSTIUCTIONS . .. ... e e e ens 5-24
5.10.3 Streaming Load HINt INSTrUCTION . . .. .o e e 5-24
5104 Packed Blending NS rUCTIONS . . ..ottt ittt e ettt e e e e 5-24
5.105 Packed Integer MIN/MAX INSTrUCHONS. .. ..ottt ettt et e e ettt iaeaes 5-24
5.10.6 Floating-Point Round Instructions with Selectable RoundingMode. . ... e 5-25
5.10.7 Insertion and Extractions from XMM REGISTEIS . ... v v vttt e e 5-25
5.10.8 Packed Integer FOrmMat CONVEISIONS . . ...ttt ettt ettt e e et e et et et et et e et nees 5-25
5.10.9 Improved Sums of Absolute Differences (SAD) for 4-Byte BIOCKS . ........ovviinii e 5-26

vi Vol. 1



CONTENTS

PAGE
5.10.10 HOMIZONTal SBaMCN .ttt e e e e e e 5-26
5.10.11 PaCKE TS, . ittt e e 5-26
5.10.12 Packed Qword EQuality COMPAETISOMNS .. ...ttt ettt et et e e e et et et et e et 5-26
5.10.13 Dword Packing With Unsigned Saturation . . ........uuuieie e e 5-26
5.11 SSE4. 2 INSTRUCTION SET . .ttt ettt e ettt e e et e et 5-26
511.1 String and Text Processing INSTIUCTIONS ... ... i. it i e et aes 5-26
511.2 Packed Comparison SIMD integer INSTrUCTiON . .. ...t e e e e 5-27
5.12 AESNIAND PCLMULGDQ . .« oottt ettt et et e e et e e e et e e e et e e et et et e e e et e e i a e et 5-27
5.13 INTEL® ADVANCED VECTOR EXTENSIONS (INTEL® AVX). . vttt ettt et et et eens 5-27
5.14 16-BIT FLOATING-POINT CONVERSION .. ittt ittt ettt et ettt et e e e e e e 5-27
5.15 FUSED-MULTIPLY-ADD (FMA) .ottt ittt et e et e e e et e e e e s e e e e et eaes 5-28
5.16 INTEL® ADVANCED VECTOR EXTENSIONS 2 (INTEL® AV X2) vttt ittt ettt eaes 5-28
517 INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (TSX) 11ttt ettt ettt eeans 5-28
5.18 SYSTEM INSTRUCTIONS. . ..ttt ettt e e e e e et e e e a e eaenas 5-28
5.19 64-BIT MODE INSTRUCTIONS. . . . ittt ettt et e et e e et et e e e e et e e e e a e e 5-29
5.20 VIRTUAL-MACHINE EXTENSIONS Lottt e e e e e e e e ey 5-30
5.21 SAFER MODE EXTENSIONS . . ittt et e et et e et e 5-30
5.22 INTEL® MEMORY PROTECTION EXTENSIONS. . .ttt ittt e ettt e e e eaes 5-31
5.23 INTEL® SECURITY GUARD EXTENSIONS . ..ottt ettt e ettt e e et eans 5-31
CHAPTER 6
PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
6.1 PROCEDURE CALL TYPES ottt ittt ittt et e e e e e e e e e e e e e e e e 6-1
6.2 ST A K S Lttt e e e e e e e 6-1
6.2.1 SETHING UP @ SHaCK. ..ottt i e e e e e e 6-2
6.2.2 1) = 1o QA 0T 1= 3 6-2
6.2.3 Address-Size AttriDULES FOr STaCK ACCESSES. . v\ttt ittt e e e e e e 6-3
6.24 Procedure LinKing INfommation .. .....o o s e e 6-3
6.24.1 StACK-FramE Base POIM e ..ottt ettt e e 6-3
6.24.2 RETUMN INStrUCTION POINE . . . ettt e et e e e e et et 6-3
6.2.5 Stack Behavior in 64-Bit MO ... ... e e 6-4
6.3 CALLING PROCEDURES USING CALL AND RET .ttt ettt et et ettt e ettt e e e e et e e et et eaas 6-4
6.3.1 N (= [ =T e ] 00 = = 1 o 6-4
6.3.2 [ T O B T Vo (= B 07T o 6-4
6.3.3 ST 11T (T = 7Y 6-5
6.3.3.1 Passing Parameters Through the General-Purpose Registers ...t e 6-5
6.33.2 Passing Parameters 0N the STacK. . .. .o.o i i i e e e 6-5
6.3.3.3 Passing Parameters in an Argument List. .. ...t e e e e e 6-6
6.34 Saving Procedure State INformation . . ... e e 6-6
6.3.5 Calls 0 OTher Privilege LBVEIS. ..o ittt e e e e e 6-6
6.3.6 CALL and RET Operation Between Privilege Levels. .. ... e 6-7
6.3.7 Branch FUNCLIONS IN B4-Bit MOGE . . ... .ot e e e e e e e 6-9
6.4 INTERRUPTS AND EXCEP TIONS ..ottt ittt et ittt et et e e et e e e e et et et e e ety 6-9
6.4.1 Call and Return Operation for Interrupt or Exception Handling Procedures. ...........ccooviiiiiiiiiiiiiiniennns 6-10
6.4.2 Calls to Interrupt or EXCeption Handler Tasks ... .vvvuiuittt e e e 6-13
6.4.3 Interrupt and Exception Handling in Real-Address MOde .. ...o.vvir it e 6-13
644 INT n, INTO, INT 3, and BOUND INSTrUCTIONS .« . vt v vt ettt ettt ettt e e et et ettt et enaees 6-13
6.4.5 Handling Floating-Point EXCEPIiONS . .. ..ottt i it it it e e 6-14
6.4.6 Interrupt and Exception Behavior in 64-Bit Mode. . ... ..ot e e e 6-14
6.5 PROCEDURE CALLS FOR BLOCK-STRUCTURED LANGUAGES. . . ..ottt et 6-14
6.5.1 EN T ER IS UG ON . . ettt ettt e e e et et et et e e 6-14
6.5.2 LI o 1 3 £ oy o 6-19
CHAPTER 7
PROGRAMMING WITH
GENERAL-PURPOSE INSTRUCTIONS
7.1 PROGRAMMING ENVIRONMENT FOR GP INSTRUCTIONS ..\ttt ettt e e et ieans 7-1
7.2 PROGRAMMING ENVIRONMENT FOR GP INSTRUCTIONS IN 64-BIT MODE .. ...oviiei et ineiaeieaas 7-1
73 SUMMARY OF GP INSTRUCTIONS . . . oottt ettt e e et e e et eees 7-2

Vol. 1 vii



CONTENTS

7.3.1
7.3.1.1
73.1.2
7313
7314
7315
73.16
7.3.1.7
732
73.2.1
7322
7323
7324
7.3.25
733
7.33.1
733.2
734
735
736
7.36.1
736.2
7363
737
7.3.7.1
7372
7373
7374
738
7381
7382
7383
7384
7385
739
7391
739.2
7393
7394
7.3.10
7.3.11
7312
7313
7.3.13.1
73.13.2
73133
7314
7.3.15
7.3.15.1
7.3.15.2
7.3.153
73.154
7.3.16
7.3.16.1
73.16.2
73.16.3
73.164
7317
73171

viii Vol. 1

Data TranSTer INSITUCTIONS ..ottt et ettt e et ettt e e e e e 7-2
General Data MovemEnt INSTrUCTIONS ...\ttt ettt 7-3
EXCNANGE INSTTUCTIONS . . vttt et et e et et e e e e e 7-4
Exchange INStructions in B4-Bit MOe. . .. ..o oot e e 7-5
Stack ManipUlation NS rUCTIONS. . ..ottt e et et e 7-5
Stack Manipulation INStructions in 64-Bit Mode. . ... ...t e 7-7
Type CONVETSION INSTTUCTIONS .o\ttt ettt ettt ettt et e ettt n ey 7-7
Type Conversion INStructions in 64-Bit MOde. . ... ..ottt e e e 7-8

BINary ArthmEtic IS UG ONS . . .ottt e e e et e e e e e 7-8
Addition and SUDTraCtioN INSTTUCTIONS . . ...ttt e e e e e 7-8
Increment and Decrement INStrUCTIONS. .. ..t i i et e i e 7-8
Increment and Decrement Instructions in 64-Bit Mode. . ... ..ot e 7-8
Comparison and Sign Change INStrUCTiIONS . .. ..ottt e e e ettt aenaaas 7-8
Multiplication and DiViSion INSTrUCHIONS. ...\t v e e e e 7-9

Decimal AMTRMEtiC INStTUCTIONS. . . o\ttt e e e e e e e 7-9
Packed BCD AdjuStmMENt INSTIUCTIONS . ... vttt e e e e e e ee s 7-9
Unpacked BCD Adjustment InStrUCtiONS . .. ..ottt i e e e e 7-9

Decimal Arithmetic INStructions in 64-Bit MOde. .. ..ottt i e et e e e 7-10

[0 or= N 0 3 1 ot 1T 7-10

Shift aNd ROTaTE INSTTUCTIONS . . .ottt e e e e e e e e e e 7-10
) 1 8 S T o 7-10
DOUDIE- SNt ISt UCTIONS. . ottt e e e et e e 7-12
ROTATE NS U ONS . .ottt ittt et e e e e e 7-13

Bit and Byte INS UG ONS . . oot e i i e 7-13
Bit Test and Modify INSTrUCHIONS . ... .. e e e e et ettt 7-14
2 Y or= T N Sy T o 0 P 7-14
Byte Set on Condition INStrUCTIONS. . ...ttt e e e e e 7-14
=Y A« T o 7-14

Control TranSTer INSTTUCTIONS . . .. ottt ettt e e ettt ettt et e ettt ienens 7-14
Unconditional Transfer INStrUCIONS. . . ... .ot et e et et ettt e i eaeas 7-14
Conditional TransTer INStTUCTIONS . ...\ it e e et et 7-15
Control Transfer INStructions in 64-Bit Mode . ... ..ot e e 7-17
Software INtermUPT INSTTUCTIONS . .ot e e 7-17
Software Interrupt Instructions in 64-bit Mode and CompatibilityMode. ... 7-18

R0 (T 0 0= = L o 1 7-18
SETING IS UG ONS . o oo i i it e e et e e e e e 7-18
Repeated StrHNG OPEratioNS . . ..o\ttt ittt ettt et e e e e e 7-19
[ Y (1 TRV 0= =1 o P 7-19
String Operations iN B4-Bit MOde . ... oottt e e e 7-20

70 T TSy oo LS P 7-20

/0 INStrUCtioNS N B4-Bit MO .. ..o i it e e 7-20

ENter aNd Leave NS rUCTIONS . . .ottt it et e et et e e e e e e e 7-21

FIag Control (EFLAG) INStrUCTIONS . .o\ttt ettt e et e et et et et et et et e e eees 7-21
Carry and Direction FIag INStrUCTIONS. . ...ttt e e e 7-21
EFLAGS Transter INStrUCTIONS .\ttt et e st e e e e e e e 7-21
INterrupt FIag INSTIUCTIONS . ...ttt e e e e 7-22

Flag Control (RFLAG) Instructions in 64-Bit MOde . .. ... e i e 7-22

Segment RegiSTer ISt UCTIONS .. it i i e et e et e e 7-22
Segment-Register Load and Store INSTrUCHIONS . . ..o .ottt e e e 7-22
Far Control Trans er INStrUCTIONS . ... v vttt e e e et aaas 7-22
Software INtermUPT INSTTUCTIONS . ot e e e e e 7-23
L0ad Far POINter IS rUCTIONS. .. ottt e e e s et e et e e e 7-23

MiSCEIIANEOUS INSTTUCTIONS .\ttt ettt et e ettt e e e e et et et e ettt e n e ees 7-23
Address Computation INSTrUCTION . . ..o et i e e i e 7-23
Table LOOKUP INStTUCTIONS . . vttt ettt ettt e et et et e e e e e e ettt e e et aees 7-23
Processor ldentification INSTrUCTiON. ... ..o e e e e e 7-23
No-Operation and Undefined INSTruCtionS . . ... v vt e e 7-23

Random Number Generator INSTTUCTIONS .. ... u vttt sttt et et eaes 7-24
RO R AN D vttt et e e e e e e e e 7-24



CONTENTS

PAGE

7317.2 DAY = = 7-24
CHAPTER 8
PROGRAMMING WITH THE X87 FPU
8.1 X87 FPU EXECUTION ENVIRONMEN T . .ottt ettt ettt e e e et e e e e e e e 8-1
8.1.1 x87 FPU in 64-Bit Mode and Compatibility Mode . ... ..ot e e e e e e 8-1
8.1.2 XB7 FPU Data ReGIS OIS ..o\ttt ittt ettt ettt ettt e e et e e e e 8-1
8.1.2.1 Parameter Passing With the x87 FPU Register Stack....... ..o e 8-3
813 XB7 FPU STatUsS REGIS O . o\ vttt ittt e e e e e e e et e e e e e 8-4
8.1.3.1 TOP OF STACK (TOP) PO . . vttt ettt et e ettt e e e e e et e ens 8-4
8.1.3.2 Condition COAE FIAGS . ... v ettt et e e e e e e 8-4
8133 X87 FPU Floating-Point EXCEPTION Flags .. ..o vt i e e e e 8-5
8134 1) = 0 =T 1 =T 8-6
814 Branching and Conditional Moves on Condition COAES. . ... . vitit ittt eeaas 8-6
8.15 XB87 FPU CoNTrol WOrd . . .ottt et e e et e e e e e 8-7
8.1.5.1 x87 FPU Floating-Point EXCepTion Mask BilS ... ..vuviri i e e 8-7
8.1.5.2 Precision Control FIEld . .. ..o v e e e e e e e e 8-7
8153 Rounding Control Field. .. ... i e e et e e e 8-8
8.16 0T YA 0o o I =T 8-8
8.1.7 XB7 FPU Tag WO ..ottt et ettt e ettt e e e e e 8-8
8.1.8 x87 FPU Instruction and Data (Operand) POINTErS . ... ov vttt e e 8-9
8.1.9 LaSt INSTTUCHION OPCOME. . . ottt ettt et e e e e e e e e e e 8-10
8.1.9.1 Fopcode Compatibility SUD-MOdE. . ... .ot e 8-10
8.1.10 Saving the x87 FPU’s State with FSTENV/FENSTENV and FSAVE/FNSAVE. ... ..vv i 8-11
8.1.11 Saving the X87 FPU's State With FXSAVE. ... . i i e e e i 8-12
8.2 XB7 FPU DA T A TY PES .ottt et e e e e e e e e e e e e 8-13
8.2.1 a0 L= T =T 8-14
8.2.2 Unsupported Double Extended-Precision

Floating-Point Encodings and Pseudo-Denormals. ........c.ovuiio i 8-14
83 XB6 FPU INSTRUCTION SET ...ttt ittt ettt ettt e et e et e e et e e et e n e 8-15
8.3.1 ESCAPE (ESC) INSTTUCTIONS & .ottt et ettt e ettt e e e e e et e e e e ettt e 8-15
83.2 X87 FPU INSTrUCTION OPBranas ..o\ i ittt ettt ettt et e e e ettt e e et a e ees 8-15
833 B = =T S =T [ £ oy o 0 P 8-16
834 L0ad CoNSTaNT INSTTUCTIONS. . ..o v st ettt et e et et e et et e et e e e e 8-18
835 BasiC AMTRMEtiC NSt UCTIONS . . .ottt e e e e e 8-18
8.3.6 Comparison and Classification INSTrUCHIONS . ... ..o e ettt 8-19
8.3.6.1 Branching on the X87 FPU Condition CodeS . .. ..ottt i i e ittt et eans 8-20
83.7 B To T a3 = o ol [ o 0T o 3 8-21
838 AP PIOXIMAtION OF P L.t e e e 8-21
83.9 Logarithmic, Exponential, and SCale. . ... ..ottt e 8-22
8.3.10 Transcendental INSTTUCTION ACCUTACY . . ..ttt ettt e e e e e et et e ettt e e eens 8-22
8.3.11 X87 FPU CoNtrol INSTrUCTIONS. . v vttt et ettt et e e e e e e et e et n e nees 8-24
83.12 Waiting vs. NoN-Waiting INStrUCTIONS. . ... i e e et et e e 8-24
83.13 Unsupported X87 FPU INStrUCTIONS . .. ..ottt t ettt ettt ettt e e ettt a it aees 8-25
84 X87 FPU FLOATING-POINT EXCEPTION HANDUING . . .ottt ettt e aenas 8-25
84.1 Arithmetic vs. Non-arithmetic INSTrUCTIONS .. .. ..o v e e 8-25
85 X87 FPU FLOATING-POINT EXCEPTION CONDITIONS ..\ttt ettt ittt et e e e e 8-26
8.5.1 INValid OPeration EXCEPTION . ..o\ttt i ettt e et e e e e 8-27
8.5.1.1 Stack Overflow or Underflow EXCepPtion (H1S) . ..o virii i e e 8-27
85.1.2 Invalid Arithmetic Operand EXCEPLioN (FIA) ...\ u ittt e e 8-27
85.2 Denormal Operand EXCEPTION (HD). . ... vttt e 8-28
853 Divide-By-Zero EXCOPTION (HZ) . ..o v vttt ittt ettt e 8-29
854 Numeric Overflow EXCEPTION (H0) ... ...ttt et e e e e 8-29
855 Numeric Underflow EXCeption (HU) . ... ... e 8-30
856 Inexact-Result (Precision) EXCEPLION (HP) . ...t e 8-31
8.6 X87 FPU EXCEPTION SYNCHRONIZATION. . .ttt ettt ettt et et e e e et e e e et e e n e n e ey 8-31
8.7 HANDLING X87 FPU EXCEPTIONS IN SOFTWARE . . .ttt ettt e e eens 8-32
8.7.1 1 = LAY/ o T 8-32
8.7.2 MS-DOS* Compatibility SUD-MOGE . ... v ittt e e e e e e 8-33



CONTENTS

PAGE
8.7.3 Handling x87 FPU EXCEPTIONS IN SOt .. ..\ttt et e e et ae e 8-33
CHAPTER 9
PROGRAMMING WITH INTEL® MMX™ TECHNOLOGY
9.1 OVERVIEW OF MMX TECHNOLOGY . . ottt t et et e e e e et e e et e e e et et e e et e 9-1
9.2 THE MMX TECHNOLOGY PROGRAMMING ENVIRONMENT .ttt e e 9-1
9.2.1 MMX Technology in 64-Bit Mode and Compatibility Mode ..........coiiiiiii i e 9-2
9.2.2 1 BT (=T 9-2
9.2.3 1 QD = = Y =Y 9-3
9.24 i T= LoV = = o 0T £ 9-3
9.25 Single Instruction, Multiple Data (SIMD) Execution Model . ........oveir i e 9-4
93 SATURATION AND WRAPAROUND MODES ...ttt t ittt ettt it e e et e e et 9-4
9.4 1 B A I I 10 P 9-5
9.4.1 [ = =T S =T S € oy o 9-6
94.2 AT RMETIC NS TUCTIONS. . ottt e e e e e e e e 9-6
9453 {000 = TR T T S ot 9-7
944 (0o 1Y £=T 5] Fo L I ] o N oo L3 9-7
945 L8]0 = T 0 S T o L 9-7
946 [ ot I T 1S3 o 0T o L 9-7
94.7 ] 31 oy o T 9-8
94.8 [ 1 NN [y oo 9-8
95 COMPATIBILITY WITH X87 FPU ARCHITECTURE . . . .ottt ettt ettt et e aaas 9-8
9.5.1 MMX Instructions and the X87 FPU Tag Word ... ... vttt 9-8
96 WRITING APPLICATIONS WITH MMX CODE. . . ottt ettt ettt et et et et e e e e e e 9-8
9.6.1 Checking for MMX Technology SUPPOIT ... . ittt ettt et e ettt ettt eaens 9-8
96.2 Transitions Between X87 FPU and MMX COQB. . ... vttt ittt ettt nees 9-9
96.3 USING the EMMS INSTrUC 0N .ottt e e sttt e e e e e e e 9-9
964 Mixing MMX and X87 FPU INSTrUCTIONS . . o\ttt ettt et e e e e e e 9-10
9.6.5 Interfacing With MMX COde. . .. oo e e e e 9-10
96.6 Using MMX Code in a Multitasking Operating System EnVironment. ... ...t it 9-10
96.7 Exception HandliNg in MM X Q00 ... i ittt it e it et e e et i e 9-11
9.6.8 REGISTET M DINg . . ottt et et e e e e e 9-11
96.9 Effect of Instruction Prefixes on MMX INSTTUCTIONS ... .o v vttt e 9-11
CHAPTER 10
PROGRAMMING WITH INTEL®
STREAMING SIMD EXTENSIONS (INTEL® SSE)
10.1 OVERVIEW OF SSE EXTENSIONS . . oottt ettt ettt e e e e e e e e aaaes 10-1
10.2 SSE PROGRAMMING ENVIRONMENT ..ottt ettt ettt et et e e et e e et e e r e e aanes 10-2
10.2.1 SSE in 64-Bit Mode and Compatibility MOGE . ... vi i e 10-3
10.2.2 D =T (= P 10-3
1023 MXCSR Control @nd Status REGISTEr. . ... .ttt e e e e e 10-3
10.2.3.1 SIMD Floating-Point Mask and FIag Bits . .......oviiii i i e i i i e i 10-4
10.23.2 SIMD Floating-Point Rounding Control Field . ... ..ot i i e it 10-4
10.233 L 1 0 R o 10-4
10.23.4 DENOTMIAIS AT ZBI0S .« ottt ettt et et et et et e e e e e e e e 10-5
10.2.4 Compatibility of SSE Extensions with SSE2/SSE3/MMX and the XB7 FPU. ... ..o 10-5
103 S B AT A TY PES Lottt e e e 10-5
104 SSE INSTRUCTION SET .t sttt ettt ettt e e et e e e e et et e e et e et et e e e e e a e 10-6
104.1 SSE Packed and Scalar FIoating-Point INStrUCTiONS . ... .ot i i e e e e e e 10-6
10.4.1.1 SSE Data MoVemMENT INSTTUCTIONS . . ..ottt ettt et ettt et e et et e e e 10-7
104.1.2 SSE AMtRMEtiIC INSTTUCTIONS .o\ttt e e e et et e e e e e e 10-8
104.2 I = W Tu or= N0 3 1 Tt 3P 10-9
10.4.2.1 SSE ComParisOn INSTTUCTIONS . ..ottt ettt et et e et et e et e e enees 10-9
104.2.2 SSE Shuffle and Unpack INSTTUCTIONS . . . ... vt e e 10-9
104.3 BN = 0o 1Y 7= S Lo o N Y o w1 o 10-11
104.4 SSE 64-Bit SIMD INteger INSTTUCTIONS ... 'ttt e ettt e 10-11
1045 MXCSR State Management INStrUCTIONS . .. ..ottt et et et 10-12
10.4.6 Cacheability Control, Prefetch, and Memory Ordering INStruCtionNS .. .. .. vv v eiaas 10-12

X Vol. 1



CONTENTS

PAGE

10.4.6.1 Cacheability Control INSTrUCTIONS ...\ttt et e e e e et n e ienees 10-12
10.4.6.2 Caching of Temporal vs. Non-Temporal Data .. .....oviuiiiii e e 10-12
104.6.3 PREFET CHR INStrUCHIONS . o vttt ettt e e e e e e e e e 10-13
104.6.4 Y =N O Ty« Tt T 10-14
10.5 FXSAVE AND FXRSTOR INSTRUCTIONS . . .ttt et ettt et et e e e e e et e e et et 10-14
10.5.1 Ly YN T 10-14
10.5.1.1 DS 7 = (=S P 10-15
10.5.1.2 B ) =1 (= 10-16
10.5.2 OPEraTiON OF F XS AV B . .. ittt e e e e e e 10-16
10.5.3 OPEration Of FXRSTOR L.ttt ittt sttt e e e e e e e e e 10-17
10.6 HANDLING SSE INSTRUCTION EXCEPTIONS ...ttt ittt e e et e e e e e 10-17
10.7 WRITING APPLICATIONS WITH THE SSE EXTENSIONS. . ..ottt 10-17
CHAPTER 11
PROGRAMMING WITH INTEL®
STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)
11.1 OVERVIEW OF SSE2 EXTENSIONS ..ottt ettt ettt e e e et e e ey 11-1
11.2 SSE2 PROGRAMMING ENVIRONMEN T . . sttt e et ettt ettt e et e e 11-2
11.2.1 SSEZ in 64-Bit Mode and Compatibility MOde. . .. ..ot e e 11-3
11.2.2 Compatibility of SSE2 Extensions with SSE, MMX

Technology and x87 FPU Programming ENVIFONMENT. . ... u ettt e eaes 11-3
11.2.3 DENOrMaAlS-ATE-ZEI0S Flag . . oottt e e e 11-3
11.3 S B DA T A TY PSS . .o ittt e et e e e e e e e 11-3
114 S B2 INSTRUCTIONS ottt ettt e e e e e e e e e e e e e et e e 11-4
11.4.1 Packed and Scalar Double-Precision Floating-Point INStructions . ... i eas 11-4
11.4.1.1 Data MoVEMENT INSTrUCTIONS . v\ vttt ettt et et e e et e 11-5
11.4.1.2 SSE2 AMtRMETIC INSITUCTIONS .« . vttt e e e e e e et e 11-6
11.4.1.3 Y =gl W o o= N ] ot o L 11-7
114.1.4 SSE2 ComPariSON INSTTUCTIONS. . ..ottt ettt et e et et e et e e et e e e 11-7
11.4.1.5 SSE2 Shuffle and Unpack INStrUCTIONS .. ... e et et ettt e e i eaaas 11-7
11.4.1.6 SSE2 ConVErSION INSTIUCTIONS . .\ttt ettt e e ettt e e e et e e e et et e e e n e n e e e nanns 11-9
11.4.2 SSE2 64-Bit and 128-Bit SIMD Integer INSTrUCtioNS. . ... ..vvir i e et ieaas 11-10
1143 128-Bit SIMD Integer INStruCtion EXTENSIONS . . .\ttt ettt ettt et 11-11
1144 Cacheability Control and Memory Ordering INStrUCTIONS . .. ..o v ' vttt e i iaaas 11-12
11.4.4.1 L Y 0 3T T 11-12
11.44.2 Cacheability Control INStrUCTIONS ..\ttt et e et it et it as 11-12
11443 Memory Ordering INSTrUCTIONS. . ..ottt i e et e e e e e e 11-12
11.44.4 PaUS . et e e e 11-12
1145 BraNCN HINES L oo e 11-13
115 SSE, SSE2, AND SSE3 EXCEPTIONS ...ttt 11-13
11.5.1 SIMD Floating-Point EXCEPLIONS . ...ttt e e e e e 11-13
11.5.2 SIMD Floating-Point EXCeption ConditionsS. . .. .ottt i e e e e 11-14
11.5.2.1 Invalid Operation EXCEPLION (H) . ... v e e e e 11-14
11.5.2.2 Denormal-0Operand EXCEPLION (HD) ... vvvvritt ettt et e e 11-15
11523 Divide-By-Zero EXCOPTION (HZ) ... v vttt e e e 11-15
11524 Numeric Overflow EXCEPTION (HO) . ...ttt 11-15
11.5.25 Numeric Underflow EXCeption (HU) . .....c.oieiini e 11-16
11.5.26 Inexact-Result (Precision) EXCEPLIoN (HP) .. ....ov i e e 11-16
1153 Generating SIMD Floating-Point EXCEPTIONS .. ..o vt i i e et e e 11-16
11.5.3.1 Handling Masked EXCEPTIONS . ...\ttt ettt e e ettt e e e e e 11-16
11.53.2 Handling Unmasked EXCEPTIONS . ... u ittt e e e e 11-17
11533 Handling Combinations of Masked and Unmasked EXCEPTIONS ... ...vv vttt eieaas 11-18
1154 Handling SIMD Floating-Point EXceptions in SOftware. ..ot e 11-18
1155 Interaction of SIMD and x87 FPU Floating-Point EXCEPLIONS. .. ... .vv ittt 11-18
11.6 WRITING APPLICATIONS WITH SSE/SSE2 EXTENSIONS ..ttt e 11-19
11.6.1 General Guidelines for Using SSE/SSE2 EXTENSIONS .. ... vuvtitttt ettt ettt aeneneaaas 11-19
11.6.2 ChecKing TOr SSE/SSE 2 SUP DO T . .\ttt t ettt ettt et et e ettt e e et 11-19
11.6.3 Checking for the DAZ FIag in the MXCSR REGISTEI . ...t v vttt e 11-20
11.6.4 INitialization O SSE/SSEZ EXTENSIONS . .\ vttt ettt ettt et e e e et 11-20



CONTENTS

11.6.5 Saving and Restoring the SSE/SSE2 STate. .. . v vttt e e et 11-20
11.6.6 Guidelines for Writing t0 The MXCSR REGISTEr . ...t v ittt e s 11-21
11.6.7 Interaction of SSE/SSEZ Instructions with x87 FPU and MMX INStructions ...........oovviiiiiiiiiiiiiieenn, 11-21
1168 Compatibility of SIMD and x87 FPU Floating-Point Data TYPesS ........ovriiiii e 11-22
1169 Mixing Packed and Scalar Floating-Point and 128-Bit SIMD Integer InstructionsandData......................... 11-22
11.6.10 Interfacing with SSE/SSE2 Procedures and FUNCTIONS. .. .. .ov vttt et eaens 11-23
11.6.10.1 Passing Parameters in XMM ReGISTOIS .. ...ttt ittt ettt e e ettt ettt 11-23
11.6.10.2 Saving XMM Register State on a Procedure or FUNCtion Call. ..ot 11-23
11.6.103 Caller-Save Recommendation for Procedure and Function Calls. . ........ooovuiiiiiii e 11-24
11.6.11 Updating Existing MMX Technology Routines Using 128-Bit SIMD Integer Instructions. ...............ccoovvinnt 11-24
11.6.12 Branching on Arithmetic Operations .. ..o .v i i e e e e 11-24
11.6.13 Cacheability HINT INSTrUCTIONS. . .ottt ittt et ettt et e et e ettt ettt it ne e 11-25
11.6.14 Effect of Instruction Prefixes on the SSE/SSE2 INStIUCTIONS. ... v vt vttt 11-25
CHAPTER 12

PROGRAMMING WITH INTEL® SSE3, SSSE3,

INTEL® SSE4 AND INTEL® AESNI

121 PROGRAMMING ENVIRONMENT AND DAT A TYPES . ittt e e s 12-1
12.1.1 SSE3, SSSE3, SSE4 in 64-Bit Mode and Compatibility Mode. . .....vvvvi e 12-1
12.1.2 Compatibility of SSE3/SSSE3 with MMX Technology, the x87 FPU Environment, and SSE/SSE2 Extensions.......... 12-1
12.1.3 Horizontal and ASYmMMEtriC PrOCESSING. . ..ottt ettt e e e e e e e 12-1
12.2 OVERVIEW OF SSE3 INSTRUCTIONS ...ttt ettt et e e e et e e et e aenes 12-2
123 SSE S INSTRUCTION S . . ottt ettt e e ettt e e e e e et e e e e e e 12-2
12.3.1 x87 FPU Instruction for INteger ConMVEISION . .. .. .v ittt e ettt e e ettt nenenans 12-3
123.2 SIMD Integer Instruction for Specialized 128-bit UnalignedDataload .............ccoiiiiiiiiiii i 12-3
1233 SIMD Floating-Point Instructions That Enhance LOAD/MOVE/DUPLICATE Performance. ..........covvvivnvinnnnnns. 12-3
1234 SIMD Floating-Point Instructions Provide Packed Addition/Subtraction............coovrviiiiiiiii i 12-4
12.3.5 SIMD Floating-Point Instructions Provide Horizontal Addition/Subtraction.............cccovivii i 12-4
1236 Two Thread Synchronization INSTTUCTIONS . .. .. et e ens 12-5
124 WRITING APPLICATIONS WITH SSE3 EXTENSIONS . ..ottt ittt it e 12-5
12.4.1 Guidelines for UsiNg SSE3 EXTONSIONS . . ..\ttt t ittt ettt ettt e e e e et et e e ettt 12-5
124.2 [ g T Tal T 0 J {o TSI =55 T U o0 12-5
124.3 Enable FTZ and DAZ for SIMD Floating-Point ComMpPUIation .....v.vuiriti i 12-6
1244 Programming SSE3 with SSE/SSE2 EXTENSIONS ... v ittt e 12-6
125 OVERVIEW OF SSSES INSTRUCTIONS .ottt ittt et ettt e ettt aaas 12-6
126 SSSEB INSTRUCTIONS. . .ttt ettt e e e e e e e e e e e e e e et e e e 12-6
12.6.1 Horizontal Addition/SUDTIaCtioN . .. .o .ot e e 12-7
12.6.2 Packed ADSOIUTE ValUBS. . . .. ..ot e e 12-7
1263 Multiply and Add Packed Signed and UnSigned ByTeS . .....cvuitititi e 12-8
1264 Packed Multiply High with RoUnd and SCale ... . v i e e 12-8
12.6.5 Packed SHUTTIE By S . .ottt e 12-8
12.6.6 = Lo (0 ) [ 12-8
12.6.7 Packed AlIGN RIGNT. oottt e e 12-8
12.7 WRITING APPLICATIONS WITH SSSE3 EXTENSIONS . . .ottt ettt 12-9
12.7.1 Guidelines for UsiNg SSSE3 EXTBNSIONS. . ..ottt 12-9
12.7.2 CheCKing TOr SSSE S SUP PO . v ottt ettt e e e ettt e 12-9
12.8 SSE3/SSSES AND SSE4 EXCEPTIONS. . .ttt e ettt et e e e e e e e e s e e 12-9
12.8.1 Device Not Available (DNA) EXCEPTIONS. . ...ttt ettt et e e e et ne e 12-9
12.8.2 Numeric Error flag and IGNNEH . . .. ... i i it e e e e e e 12-9
1283 [0 1o 12-10
1284 IEEE 754 Compliance of SSE4.1 Floating-Point INStructions. . ... vv vt e 12-10
129 SSEA OVERVIEW . . .ottt e e e e e e et e e e e e e e e 12-10
1210 SSEA. T INSTRUCTION SET L.ttt ittt ettt e ettt et e e e et e e e e s 12-11
12.10.1 Dword MURIPIY INSTIUCTIONS . ..o e e e e 12-11
12.10.2 Floating-Point Dot Product INStrUCtiONS . .. oot i e e e ettt 12-11
12.10.3 Streaming Load Hint INSTrUCtiON . .. ..ot e et s 12-12
12104 Packed Blending INStrUCHIONS . . ..ottt ettt e et e e e 12-15
12.10.5 Packed Integer MIN/MAX NS UG ONS. ..ottt ettt ettt et e et et aas 12-15
12.10.6 Floating-Point Round Instructions with Selectable RoundingMode. ........ ..o 12-15

Xii Vol. 1



CONTENTS

PAGE
12.10.7 Insertion and Extractions from XMM REGISTEIS . . ... v ittt e e ettt eaens 12-16
12.10.8 Packed Integer FOrmMat COMVEISIONS ...\ttt t ettt ettt ettt et ettt ettt e e e e e e 12-16
12.109 Improved Sums of Absolute Differences (SAD) for 4-Byte BlOckS. .........oovniiiiii 12-17
121010  HOMZONTal SEaMCN .\ttt e e e e e e e e e 12-17
L0 1 O I T - Vol =T =1 P 12-18
12.10.12  Packed Qword EQUality COMPAISONS . ... v vttt ettt et et et et e et et e et et e e e e en s 12-18
12.10.13  Dword Packing With Unsigned Saturation. ..........ooiiiii i i e et ens 12-18
T2.1T  SSEA 2 INSTRUCTION SET . sttt ettt e et e et e e et et e e e e ee s 12-18
12111 String and Text Processing INSTrUCTIONS .. ... v ittt e e iaas 12-18
121111 Memory Operand AlIGNMENT . . ...ttt e e e e 12-19
12.11.2 Packed Comparison SIMD Integer INStrUCtiON . .. ..o u i i e e it e 12-19
12.12  WRITING APPLICATIONS WITH SSE4 EXTENSIONS . . .ottt ittt e e e e 12-19
12.12.1 Guidelines for UsiNg SSE4 EXTENSIONS. ...\t \ vttt ettt ettt e ettt e e ettt n e eaaas 12-19
12.12.2 (0 Tal oI (o TS =2 U1 oo P 12-20
12.12.3 CRECKING TOI SS B4 2 SUP DO T . . o\ ittt ettt e e e e e e e e e e e e 12-20
T2.13  AESNI OV ERVIEW. .. oottt e e e e e e e e 12-20
12.13.1 Little-Endian Architecture and Big-Endian Specification (FIPS 197) ... .ovvii i 12-20
12.13.1.1 AES Data Structure in INtel 64 ArChiteCtUNE. ..ottt e 12-21
12.13.2 AES Transformations aNd FUNCLIONS . . . ..o vttt et et et et aees 12-22
12.13.3 OB 0 12-25
12134 Checking TOr ABSINI SUP PO . . . o\ttt et e e e e e e et e e e 12-26
CHAPTER 13
MANAGING STATE USING THE XSAVE FEATURE SET
13.1 XSAVE-SUPPORTED FEATURES AND STATE-COMPONENT BITMAPS. . ..ottt 13-1
13.2 ENUMERATION OF CPU SUPPORT FOR XSAVE INSTRUCTIONS AND XSAVE-SUPPORTED FEATURES ................e. 13-2
133 ENABLING THE XSAVE FEATURE SET AND XSAVE-ENABLED FEATURES. . ... i 13-4
134 XS AV E AR B A . it e e e e e 13-6
13.4.1 Legacy Region OF @n XSAVE ATEa . ...ttt ettt et e e e 13-6
134.2 D Sl T T T 13-7
1343 Extended Region Of N XS AV E Al a . ... ittt ettt ettt e e ettt e e et s 13-8
135 XS AV E-MAN A GED ST AT E Lttt ettt e et e e e e e e e e e e 13-8
13.5.1 DS 7 = 1 (= 13-9
13.5.2 IR ) =1 (= 13-9
13.5.3 LY =1 (= 13-10
1354 1 G = (=P 13-10
1355 LY 1 - | (< 13-11
1356 el I = (=P 13-11
1357 e S0 ) - = 13-12
136 PROCESSOR TRACKING OF XSAVE-MANAGED STATE ..ottt ettt ettt 13-12
13.7 OPERATION OF XS AV . .\ttt ittt s et e e e e e e e e e e e e e e 13-14
138 OPERATION OF XRST O R .. ittt ettt ettt et et et e e et e e e e 13-14
13.8.1 StanNdard FOMmM Of XRSTOR . ...ttt sttt ettt et et e e e e et e e e e 13-15
13.8.2 Compacted FOrm Of XRST O R . ...ttt ittt e et ettt ettt e ettt aaaas 13-15
13.8.3 XRSTOR and the Init and Modified Optimizations . . .......uuittr e e 13-16
139 OPERATION OF XS AV E O T ittt ittt e e e et et e e et e e e et e e e e ee s 13-16
1310 OPERATION OF XSAVEC .ottt ittt e et e e e e e e e e 13-18
T3.TT  OPERATION OF XSAVES ottt ittt e e e e e e e e e 13-18
13,12  OPERATION OF XRSTORS . .ttt ittt ettt et ettt e et et a e 13-20
13.13  MEMORY ACCESSES BY THE XSAVE FEATURE SET .\ttt ettt et 13-21
CHAPTER 14
PROGRAMMING WITH AVX, FMA AND AVX2
14.1 INTEL AVX OV ERVIEW . . .ottt ittt ettt e e e e e e e e e et e e e e e 14-1
14.1.1 256-Bit Wide SIMD ReGiSter SUPPOTT . ...ttt ettt ettt et 14-1
14.1.2 INSTrUCtioN SYNTaX ENNaNCEMIENES . . o ettt e e e e s 14-2
14.1.3 VEX Prefix INnstruction ENCOdINg SUPPOMT ...\ttt e et 14-2
14.2 FUNCTIONAL OV ERVIEW . . o ettt ettt et et e e et et e e et e e et et et et et et e e e eees 14-3
14.2.1 256-bit Floating-Point Arithmetic Processing ENhancements. .. .ov vt 14-9

Vol. 1 xiii



CONTENTS

PAGE
14.2.2 256-bit Non-Arithmetic Instruction ENhaNCEMENTS ...\ vt it e ees 14-9
14.2.3 Arithmetic Primitives for 128-bit Vector and Scalar procesSing. ... .vvvvvritvriir it en it 14-11
14.2.4 Non-Arithmetic Primitives for 128-bit Vector and Scalar Processing..........oouvvriiiiiiiiiiiiii i 14-13
143 DETECTION OF AVX INSTRUCTIONS ..ottt ittt et et ettt e e e e e et e e et 14-15
14.3.1 Detection of VEX-Encoded AES and VPCLMULQDQ . . ..o viiii ettt et e et e et 14-17
144 HALF-PRECISION FLOATING-POINT CONVERSION . . .ttt ettt ettt e e e e e e e e s 14-18
14.4.1 Detection Of FTOC INSTIUCTIONS . . ..ottt sttt st ettt et et et e et e et et ettt n e e 14-20
145 FUSED-MULTIPLY-ADD (FMA) EXTENSIONS. . . ottt e e e e e eenes 14-21
14.5.1 FMA Instruction Operand Order and Arithmetic BENaVIor. . .....o.vuirii i 14-22
145.2 Fused-Multiply-ADD (FMA) NUMEriC BENaVIOr. . ... .. e 14-22
1453 =] C=Ton oo ) 1S 14-25
146 OV ERVIE W OF AV X2 . .ottt ettt et et e e e e e et e e e et e et e 14-26
14.6.1 AVX2 and 256-bit Vector INteger ProCESSING . ...ttt ettt ettt e 14-26
14.7 PROMOTED VECTOR INTEGER INSTRUCTIONS IN AV X2 . . ettt 14-26
14.7.1 D= C=Ton o o ) 2 14-32
148 ACCESSING YMM REGISTERS ..ttt ittt s e e e e e e e e e e e e e 14-33
149 MEMORY AL GNMEN T Lottt et e e e e e e e e e e e e e e 14-33
1410  SIMD FLOATING-POINT EXCEPTIONS . . .ottt ettt ettt ettt ettt et e e e e e et et eaes 14-35
TATT  EMULATION Lttt et et e et et e et et e e et e e e e 14-35
1412  WRITING AVX FLOATING-POINT EXCEPTION HANDLERS . . ..ottt e 14-35
1413  GENERAL PURPOSE INSTRUCTION SET ENHANCEMENTS. . ...ttt 14-36
CHAPTER 15
PROGRAMMING WITH INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS
15.1 OV RV B ottt ettt e e e e e e e 15-1
15.2 INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS ...ttt e n e eaaas 15-1
15.2.1 HLE SOftWare I At . . oot e e e e e 15-2
15.2.2 LB T T N [ =] = Lol 15-3
153 INTEL® TSX APPLICATION PROGRAMMING MODEL .. vttt ettt et e et e e e e e e e e aes 15-3
15.3.1 Detection of Transactional Synchronization SUPPOrt. ... ..ot et 15-3
15.3.1.1 [ 7= =T Lo T ) [ S oo 15-3
153.1.2 [ 7= =T o o I ST T 15-3
153.1.3 Detection Of XTEST INSITUCTION. . . .o\ttt e e e e 15-3
15.3.2 Querying Transactional EXECUTION STaTUS ... ...ttt e i aes 15-4
1533 RequiremMents fOr HLE LOCKS .. ... .ou ittt et et et et ens 15-4
1534 TraNSACTIONAl NS TN, . o\ ottt i i e e et e e e e e e s 15-4
15.34.1 HLE NeSting and Elision .. ..o vo i e ittt et e et ettt e 15-4
1534.2 I 8 N1 1 15-5
15343 NeStiNG HLE @nd R M. ..o e e e e e ey 15-5
1535 RTM Abort Status Definition .. ....ou e e e 15-5
1536 L =T 1 TV F=T o T 15-5
153.7 RTM-ENabled DEDUGGEr SUP PO . . .ttt ettt ittt ettt et e ettt e et et e ettt ettt i ans 15-6
1538 Programming ConSiderations .. ..ottt ettt et e e e e e e 15-6
15.3.8.1 INStruction Based CoNSIAerationS . . ... v vttt ettt ettt et e e et e e e 15-6
15382 RUNTIME CONSIAOratiONS . . . o\ttt e e et e e e e e 15-7
CHAPTER 16
INTEL* MEMORY PROTECTION EXTENSIONS
16.1 INTEL® MEMORY PROTECTION EXTENSIONS (INTEL® MPX) ..ttt ettt et et aaes 16-1
16.2 INTRODUCTION . Lttt ettt ettt ettt e e et e e e e et e e et e e e e et e e et e e e 16-1
16.3 INTEL MPX PROGRAMMING ENVIRONMENT ..\ttt ettt et ettt e et ettt e e 16-1
16.3.1 Detection and Enumeration of Intel MPX INterfaces. .. ..ot e 16-2
16.3.2 BOUNAS REGIS TS . o .ottt ettt ettt et e e e ettt e e e e e e e 16-2
16.3.3 Configuration @nd STatUs REGISTErS . . ... v ittt e e e e 16-3
1634 Read and Write 10 A2 BN CFGS . ...ttt ittt ettt ettt e e e e 16-4
164 INTEL MPX INSTRUCTION SUMM A RY . . . v sttt ettt ettt ettt e e e e e e e ettt e e et e et e e a e 16-4
16.4.1 Sy N o o I = Voo a1 16-5
16.4.2 USAQE aNd EXAMIDIES . . vttt ittt e e e e e e e 16-5
16.4.3 Loading and Storing Bounds USiNG TransIation. ... ..ovvuiu et e e 16-6

Xiv Vol. 1



CONTENTS

PAGE

16.5 INTERACTIONS WITH INTEL MP X . oottt ettt e e et et et e e et aens 16-9
16.5.1 INtel MPX and Operating MOdes . ... v ittt et e e 16-9
16.5.2 Intel MPX Support for Pointer Operations with Branching. ...........oovoiiiii s 16-10
16.5.3 CALL, RET, IMP and Al JCC . v vttt ettt ettt et ettt e e e e e e e et e e e et 16-10
16.5.4 BOUND Instruction and INtel MPX .. ... e e e 16-11
16.5.5 Programming ConSIQerationS . . ... v ittt ittt ettt et e e e e e e 16-11
16.5.6 Intel MPX and SystemM Manage MO . . ..c.vviiti ittt et e e e 16-11
16.5.7 SUPPOrt O INTEl MP X N VMCS L e e e e e e e 16-11
16.5.8 SUPPOrt Of INtel MPX N INtel T XK. o ittt e e e e e 16-12
CHAPTER 17
INPUT/OUTPUT
17.1 /O PORT ADDRESSING. . .ottt t sttt ettt e e e e e e e e e e e e 17-1
17.2 /O PORT HARD W A RE. . . .ottt sttt ettt e e e e e e e e et e e et e e e et e e 17-1
17.3 /0 ADDRESS SPACE . .ttt ettt e e e e e e 17-1
17.3.1 MEmMOrY-MapPed /0 .t e e 17-2
17.4 O INSTRUCTION . ittt ettt et e e e e e e e e e et e e et et e e et 17-3
175 PROTECTED-MODE 1/ 1 ittt ettt e e ettt e e e e e e e et e e 17-3
17.5.1 O PrIVIIEGE LBV . . ettt i i i e et e e e e e 17-3
17.5.2 /0 PErmMISSION Bit MaD . . oottt e et e e e e 17-4
17.6 ORDERING 1/ ettt et e e e e e e e e e e e e e 17-5
CHAPTER 18
PROCESSOR IDENTIFICATION AND FEATURE DETERMINATION
18.1 USING THE CPUID INSTRUCTION. . . o vttt ettt ettt e e et e e e e e e et e e et e e e e a e 18-1
18.1.1 NOTES 0N WEME 10 STaMt . . oottt e e e e e e e e e s 18-1
18.1.2 Identification Of EQrlier IA-32 PrOCESSOTS . . v\ttt sttt ettt ettt et et e e et et e et e aees 18-1
APPENDIX A
EFLAGS CROSS-REFERENCE
A1 EFLAGS AND INSTRUCTIONS . . ottt ettt et et e ettt e e et et e e e A-1
APPENDIX B
EFLAGS CONDITION CODES
B.1 CONDITION CODES. . ot ettt ettt ettt et e e e ettt et e e e e et e e e e et et e et et e e n e e B-1
APPENDIX C
FLOATING-POINT EXCEPTIONS SUMMARY
C1 OV RV B oottt ettt e e e e e e e e e C-1
C2 XB7 FPU INSTRUCTIONS . . .ottt et e e e et e e e e C-1
Cc3 SSE INSTRUCTIONS . . ottt et e e e e e e e et e e e e e e e e e e e e C-3
C4 SSE2 INSTRUCTIONS .ottt ettt et et e e e e e e e e et e e e e e e et es C-5
C5 SSES INSTRUCTIONS ..ottt ettt e et e e e et e e e et e e e et e e e Cc-7
C6 SSSEB INSTRUCTIONS ..ottt e e et e et e e e et e e e et e e r e e e n e e e C-7
C7 SSE4 INSTRUCTIONS ottt s e e e e e et e e et e e e et e e e e c-7
APPENDIX D
GUIDELINES FOR WRITING X87 FPU
EXCEPTION HANDLERS
D.1 MS-DOS COMPATIBILITY SUB-MODE FOR HANDLING X87 FPU EXCEPTIONS. . ...ttt D-1
D.2 IMPLEMENTATION OF THE MS-DOS* COMPATIBILITY SUB-MODE IN THE INTEL486™, PENTIUM®, AND P6 PROCESSOR FAMILY,

AND PENTIUM® 4 PROCESSORS ..ttt ittt et e et e e e e e e e e e e e e D-2
D.21 MS-DOS* Compatibility Sub-mode in the Intel486™ and Pentium® Processors. ... .. vvvv vt iiciieienns D-2
D.2.1.1 Basic Rules: When FERRH IS GeNErated . ... ..o vttt e e aeens D-3
D.2.1.2 Recommended External Hardware to Support the MS-DOS* Compatibility Sub-mode...................cooients D-4
D.2.1.3 No-Wait x87 FPU Instructions Can Get x87 FPU Interrupt in Window. ... D-5
D.2.2 MS-DOS* Compatibility Sub-mode in the P6 Family

LTl =T 100 o o T =17 P D-7

Vol. T Xxv



CONTENTS

PAGE

D3 RECOMMENDED PROTOCOL FOR MS-DOS* COMPATIBILITY HANDLERS ...\ttt D-7
D.3.1 Floating-Point Exceptions and Their Defaults. . ... vu it e e e D-8
D3.2 Two Options for Handling NUMETIC EXCEPTIONS . . ..o vttt e e e D-8
D.3.2.1 Automatic Exception Handling: Using Masked EXCEPLIONS ... o.vuiiii e D-8
D.3.2.2 Software EXception Handling. . .. ... oot e i e e D-9
D33 Synchronization Required for Use of x87 FPU Exception Handlers .............coiiiiiiiiiiii it iiiiieess D-10
D.3.3.1 Exception Synchronization: What, Why, and When . ... e e D-10
D33.2 Exception SYNChronization EXamMIPIES . ...\ttt e s D-11
D333 Proper EXCeption SYNCAIONiZation . . ... . v .ttt e e s D-11
D34 x87 FPU Exception Handling EXGMPIES .. ..o . ettt e D-12
D35 Need for Storing State of IGNNE# Circuit If Using x87 FPUand SMM ... ... D-15
D.3.6 Considerations When x87 FPU Shared Between Tasks. . ... .vv.vii e nenenaes D-15
D.36.1 Speculatively Deferring x87 FPU Saves, General OVEIVIBW . .....vuvrit vttt i it eeeaes D-16
D.36.2 Tracking X87 FPU OWNershiD. . .o v v ettt e e e e D-16
D363 Interaction of x87 FPU State Saves and Floating-Point Exception Association ............c.covviiiivininininns. D-17
D36.4 Interrupt Routing From the Kernel. .. ... e D-18
D.3.6.5 Special Considerations for Operating Systems that Support Streaming SIMD Extensions........................ D-19
D4 DIFFERENCES FOR HANDLERS USING NATIVE MODE. . ..ttt te ettt et et e e e e e et D-19
D.4.1 Origin with the Intel 286 and Intel 287, and Intel386 and Intel 387 Processors ..........coovvviiiiviinnenennnns. D-19
D4.2 Changes with Intel486, Pentium and Pentium Pro Processors with CRONE[bIt5]=1........covviiiiiiiiiiniiinns, D-20
D43 Considerations When x87 FPU Shared Between Tasks Using Native Mode..........oooviiiiiii i D-20
APPENDIX E

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS

€1 TWO OPTIONS FOR HANDLING FLOATING-POINT EXCEPTIONS ...ttt ettt E-1
€2 SOFTWARE EXCEPTION HANDUING . .. vttt ettt e e e e et e e e e et e e e e et e e e e e e e E-1
€3 EXCEPTION SYNCHRONIZATION . . oottt ettt ettt e e et et e e et et et e e a e e a e aens E-3
€4 SIMD FLOATING-POINT EXCEPTIONS AND THE IEEE STANDARD 754 . .. oo E-3
€4.1 Floating-Point EMUIGTION . ... e et E-3
€E4.2 SSE/SSEZ2/SSE3 Response To Floating-Point EXCEPTIONS ... ovv et e i e e E-4
€4.2.1 NV 0= ol ol = n 1 1 ] T E-5
€4.2.2 Results of Operations with NaN Operands or a NaN Result for SSE/SSE2/SSE3 Numeric Instructions.............. E-5
€4.23 Condition Codes, Exception Flags, and Response for Masked and Unmasked Numeric Exceptions.................. €-9
€4.3 Example SIMD Floating-Point Emulation Implementation ... ...t e E-15

Xxvi Vol. 1



CONTENTS

PAGE

FIGURES

Figure 1-1. Bit ANd By OTaer . .ttt e e e e e 1-5
Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation. . ........ovuverieii e eee s 1-7
Figure 2-1. The P6 Processor Microarchitecture with Advanced Transfer Cache Enhancement.................cocoviennt. 2-8
Figure 2-2. The Intel NetBurst MiCroarChiteCtUNE . ..ottt e ettt aaas 2-10
Figure 2-3. The Intel Core Microarchitecture Pipeline Functionality . ...........coi i e 2-12
Figure 2-4. SIMD Extensions, Register Layouts, and Data Ty PeS . . v . vuttitit sttt 2-17
Figure 2-5. Comparison of an |A-32 Processor Supporting Hyper-Threading Technology and a Traditional Dual Processor System?2-

18

Figure 2-6. Intel 64 and IA-32 Processors that Support DUal-Core. . .....ovi i e it 2-19
Figure 2-7. Intel 64 Processors that SUPPOrt QUAA-COme . .. ... uv et 2-20
Figure 2-8. 1R (I O N 7 = o Tal =Ty o 2-20
Figure 3-1. IA-32 Basic Execution Environment for Non-64-bit Modes . .......ovvi i e 3-3
Figure 3-2. 64-Bit Mode EXECUTION ENVITONMIENT L ...ttt ettt et et 3-6
Figure 3-3. Three Memory Management MOdeIS. ... ... e 3-8
Figure 3-4. General System and Application Programming Registers. .. ...t e i e 3-11
Figure 3-5. Alternate General-PUrpose Register NamEs. . ...ttt i i e e e i i 3-12
Figure 3-6. Use of Segment Registers for Flat Memory Model. ....... ..o e 3-14
Figure 3-7. Use of Segment Registers in Segmented Memory Model. ... ... e 3-14
Figure 3-8. L AGS REGIS O .+ vttt ettt e e s ettt e e e 3-16
Figure 3-9. Memory OPerand AdArESS ... ... vu ittt et e e 3-21
Figure 3-10. Memory Operand Address in B4-Bit MOGE. . .....ov it i i e et 3-21
Figure 3-11.  Offset (or Effective Address) ComPULETION. . ...\ v vttt ettt e a e eae 3-23
Figure 4-1. (LU Ta =TTl T D = T I =L 4-1
Figure 4-2. Bytes, Words, Doublewords, Quadwords, and Double Quadwords in Memory.........ovvviiiiiinii e 4-2
Figure 4-3. N U =T ol 7= 1 = T Y 0= 4-3
Figure 4-4. oo p =T =1 = T LY/ 0= 4-6
Figure 4-5. POINTErS IN B4-Bit MOGE. . ..ottt i e et e e e e s 4-7
Figure 4-6. Bit Fild Data Ty P . vttt ittt ittt e e e e e e 4-7
Figure 4-7. B4-Bit Packed SIMD Data Ty PES . . ot ottt ettt ettt e et ettt e e e e e e 4-8
Figure 4-8. 128-Bit Packed SIMD Data Ty P S, . vttt ettt ettt ettt ettt e e e e e 4-9
Figure 4-9. 2 1= = T XY 0T3P 4-10
Figure 4-10.  Binary Real NUMDEr SYS e ..ttt ee 4-12
Figure 4-11.  Binary FIoating-Point FOmmat. .. ..ot i i e et e e et et et 4-12
Figure 4-12.  Real NUMDErs and NaN S . ...t i i e ettt et et e ettt ne e 4-14
Figure 6-1. R0) = 1o Q) T £ = 6-2
Figure 6-2. Stack 0N NEAr ANd Far CallS . . ..ottt e 6-5
Figure 6-3. PrOtECTION RINGS vttt e e e e e 6-6
Figure 6-4. Stack Switch on a Call to a Different Privilege Level . ..... ... e 6-8
Figure 6-5. Stack Usage on Transfers to Interrupt and Exception Handling Routines ..............c.coiiiiiiiiiiiiiieann, 6-12
Figure 6-6. N LTSy (=0 0Tl =T [0 =P 6-16
Figure 6-7. Stack Frame After Entering the MAIN ProCeaUME . .. .. vttt eaaas 6-17
Figure 6-8. Stack Frame After ENtering ProCeadUrE A. ... oottt e e 6-17
Figure 6-9. Stack Frame After Entering Procedure B. ... ..ot e 6-18
Figure 6-10.  Stack Frame After ENtering Procedure C. .. ....ve e e 6-19
Figure 7-1. Operation of the PUSH INSTrUCHION .. ....o.i i e e ettt et 7-5
Figure 7-2. Operation of the PUSHA INStrUCTION . . ... o e e ettt e it eaenes 7-6
Figure 7-3. Operation of The POP INSTrUCTION. .. ...t e et n e eaes 7-6
Figure 7-4. Operation of The POPA INStrUCTION ...\ vttt e e e 7-7
Figure 7-5. YT 4 (T Lo 7-7
Figure 7-6. SHU/SAL INSTrUCTION OPration . ... v ettt ettt et e et et et e et et e et e 7-11
Figure 7-7. SHR INSTrUCTION OPEIation .. ...ttt ettt e e e e e et 7-11
Figure 7-8. SAR NS UCHION P atiON .« o\ttt ittt ittt e e et e e e e e e 7-12
Figure 7-9. SHLD and SHRD INStrucCtion Operations . .. ... v vttt ettt ettt ettt e e ettt n e e eanas 7-12
Figure 7-10.  ROL, ROR, RCL, and RCR INStruction Operations .. ......uuuvtirititri ittt e e ne i eiananas 7-13
Figure 7-11.  Flags Affected by the PUSHF, POPF, PUSHFD, and POPFD INStructions ........ovvviiiii it i 7-21
Figure 8-1. X87 FPU EXeCUtion ENVIFONMIENT . . ..ottt et et ee s 8-2
Figure 8-2. X87 FPU Data Register STack ... ..ovi it e e 8-2

Vol. 1 Xxvii



CONTENTS

Figure 8-3.
Figure 8-4.
Figure 8-5.
Figure 8-6.
Figure 8-7.
Figure 8-8.
Figure 8-9.

Figure 8-10.
Figure 8-11.
Figure 8-12.
Figure 8-13.

Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.

Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 10-4.
Figure 10-5.
Figure 10-6.
Figure 10-7.
Figure 10-8.
Figure 10-9.
Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.
Figure 11-5.
Figure 11-6.
Figure 11-7.
Figure 11-8.
Figure 11-9.
Figure 12-1.
Figure 12-2.
Figure 12-3.
Figure 12-4.
Figure 12-5.
Figure 14-1.
Figure 14-2.
Figure 14-3.
Figure 14-4,
Figure 16-1.
Figure 16-2.
Figure 16-3.
Figure 16-4.
Figure 16-5.
Figure 16-6.
Figure 17-1.
Figure 17-2.

Figure D-1.

Figure D-2.
Figure D-3.
Figure D-4.
Figure D-5.
Figure D-6.
Figure E-1.

Xxviii Vol. 1

Example x87 FPU Dot Product Computation . .......ouiuiriitir i ettt 8-3
XB7 FPU STatus WOrd. . ..ottt et ettt e e et e e 8-4
Moving the Condition Codes to the EFLAGS RegiSter. .. ...vuvir i 8-6
XB87 FPU CONtrol WO . . vttt ettt e e ettt e e e e et et e e e e 8-7
XB7 FPU Tag WOrd .. e ittt ittt et e et e e e e 8-8
Contents 0f XB87 FPU OpCO0e REGISTEIS . . ..o\ttt ittt et e ettt ittt ettt n e eaanns 8-10
Protected Mode x87 FPU State Image in Memory, 32-Bit Format.............ov it 8-11
Real Mode x87 FPU State Image in Memory, 32-Bit FOrmat ... i 8-12
Protected Mode x87 FPU State Image in Memory, 16-Bit Format. ..o i 8-12
Real Mode x87 FPU State Image in Memory, 16-Bit FOrmat . ...... ..o 8-12
XB7 FPU Data Ty Pe FOrmats ..ot i ittt ittt ettt ettt e et e e ettt et ettt 8-13
MMX Technology EXeCUtioN ENVITONMIENT . .. .ttt e e it 9-2
1 B =T (=] Y 9-3
Data Types Introduced with the MMX TeChNOIOgY . . . ..o v v vttt i 9-3
SIMD EXECULION MO I . ..ottt e e e e e e e e e 9-4
Y ool W o T = 1Y/ o] 11 =T ) 10-2
D | =T (=T 10-3
MXCSR CoNtrol/STatUs ReGISTEr . .\ttt i i e e et e e i e 10-4
128-Bit Packed Single-Precision Floating-Point Data TYPe ......oviiiii et aes 10-6
Packed Single-Precision Floating-Point Operation. .. .....ouvuiuiiiirr i it 10-7
Scalar Single-Precision FIoating-Point Operation. ... ...ouveiiiii i 10-7
SHUFPS Instruction, Packed Shuffle Operation ..........oouiiirii i e 10-10
UNPCKHPS Instruction, High Unpack and Interleave Operation ...ttt cici e 10-10
UNPCKLPS Instruction, Low Unpack and Interleave Operation...........c.vv ittt ci e 10-10
Steaming SIMD Extensions 2 EXecUtion ENVIFONMENT . .. ...ttt e e e 11-2
Data Types Introduced with the SSE2 EXTENSIONS .. ...ttt e aaas 11-4
Packed Double-Precision Floating-Point Operations. .. .....ouvuitiirr it 11-5
Scalar Double-Precision Floating-Point Operations. . ........ovrii i e 11-5
SHUFPD Instruction, Packed Shuffle Operation . ........c.veiiiiii i ettt 11-8
UNPCKHPD Instruction, High Unpack and Interleave Operation . .........ccovviiiiiiiii it ci e 11-8
UNPCKLPD Instruction, Low Unpack and Interleave Operation. . .........ccoouiuiiiiii it iiiieieiananns 11-8
SSE and SSEZ2 ConVersion INSTTUCTIONS . . ..ttt e et e e 11-9
Example Masked Response for Packed Operations. . ... ..vu vttt 1117
Asymmetric Processing in ADDSUBPD . .. ...ttt e 12-2
Horizontal Data Movement in HADDPD. . .. ...t e e ettt r e 12-2
Horizontal Data Movement in PHADDD. . . ...ttt et ettt et e e aens 12-7
MP S ADBW OB atiON & .ttt ettt ettt et e e ettt e e e e e e e e 12-17
e ) = 1 (= 101 12-20
256-Bit Wide SIMD REGIS O . . ot vttt ettt et ettt e e e e e e e 14-2
General Procedural Flow of Application Detection of AVX. .. ...ii i e 14-15
General Procedural Flow of Application Detection of FIOat-16..........c.oviiiii i 14-20
Immediate Byte for FMA INSITUCHIONS . . ..ottt e et ettt 14-23
Layout of the Bounds Registers BNDO-BND 3. .. ......uiuii ittt ittt ittt n i eanas 16-2
Common Layout of the Bound Configuration Registers BNDCFGU and BNDCFGS. ...........ccoviiiiviiiiininnnn, 16-3
Layout of the Bound Status Registers BNDSTATUS ... uiuiiiiir it aaas 16-3
Bound Paging Structure and Address Translation in 64-bitMode ... e 16-7
Layout 0 @ BoUNA DirECTOrY ENtry. .o v vttt ettt et e et e e e e e e 16-8
Bound Paging Structure and Address Translationin 32-bitMode ...t i 16-9
MEMOTY-MaPPEA /0 ot e e e e 17-2
/0 PEmMISSION Bt MaD . o v ittt e e e e e 17-4
Recommended Circuit for MS-DOS Compatibility x87 FPU

EXCEPLION HaNAING . oo e e D-4
Behavior of Signals During x87 FPU Exception Handling . ..........c.viniii e D-5
Timing of Receipt of EXternal INtermUPT . . ... o et e D-6
Arithmetic Example Using INfinity .. ..o e e e D-9
General Program Flow for DNA Exception Handler. . ........oviii i et D-17
Program Flow for a Numeric Exception Dispatch ROUTINE ......vvvii i e D-18
Control Flow for Handling Unmasked Floating-Point EXCEPLIONS . ......vvvvee i E-4



CONTENTS

PAGE

TABLES

Table 2-1. Key Features 0f MOSt RECENT IA-32 PrOCESSOMS . vt v vttt vttt ettt ettt e e e et n e eees 2-22
Table 2-2. Key Features of Most Recent INtel 64 ProCeSSOrS . .. v vttt et eaes 2-22
Table 2-3. Key Features of Previous Generations of [A-32 ProCeSSOrS . ... v vttt ens 2-28
Table 3-1. INSETUCHION PO SIZES . . v vttt et e e e e e 3-10
Table 3-2. Addressable General PUrPOSE REGISTEIS .. ... uitt ettt ettt ettt e eaeas 3-13
Table 3-3. Effective Operand- and Address-Size AtIrDULES ... vt e e 3-19
Table 3-4. Effective Operand- and Address-Size Attributes in 64-BitMode. ... ...t 3-19
Table 3-5. Default Segment SeleCtioN RUIBS . . ... oo e e 3-22
Table 4-1. Y o =Yoo= T=T = ol Ta o 4-4
Table 4-2. Length, Precision, and Range of Floating-Point Data TYPeS .. ..o.vviiiii i e 4-5
Table 4-3. Floating-Point Number and NaN ENCOdINGS. .. ..o vv it ettt aenens 4-5
Table 4-4. Packed Decimal Integer ENCOdINGS ...\ ov vttt e e et 4-10
Table 4-5. Real and Floating-Point NUMDEr NOtation. . ... .vu ittt e 4-12
Table 4-6. DENOrMAl ZaTiON PrOCESS. v vt vttt ettt e et e e e e e e 4-15
Table 4-7. Rules for HAaNdING NaNS . .. ..o e e e et ettt et ettt 4-16
Table 4-8. Rounding Modes and Encoding of Rounding Control (RC) Field. .........vviriiiii e 4-18
Table 4-10. Masked Responses 10 NUMEriC OVerflow . ......ou it e et 4-21
Table 4-11. Numeric Underflow (Normalized) Thresholds. ..o e 4-21
Table 4-9. Numeric Overflow TRreShOIdS. . . ..o . e e 4-21
Table 5-1. Instruction Groups in INtel 64 aNd [A-32 PrOCESSOMS . .. v vttt ettt et aenens 5-1
Table 5-2. Recent Instruction Set Extensions Introduction in Intel 64 and IA-32 Processors. . ......vvvvviiiiieinnnenn. 5-2
Table 5-3. Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGXT ....................co..es. 5-31
Table 6-1. EXCEPTIONS AN M O T U DTS, . o\ttt ettt et e et e e e e e 6-10
Table 7-1. MOVE INSTTUCTION O atiONS .« v ottt ettt ettt e e e e et e e e e ettt 7-3
Table 7-2. Conditional MoVE INSTIUCTIONS . ...ttt ettt et e et et e ettt et eas 7-4
Table 7-3. Bit Test and Modify INSTTUCTIONS. . . ... v e e e 7-14
Table 7-4. Conditional JUMP NS rUCTIONS ...ttt it i e e et e e e s 7-16
Table 8-1. Condition Code INterPrEtation . ...ttt et e e e 8-5
Table 8-2. Precision Control FIEld (PC). ..o v vttt ettt e e e e e e e et e e e e 8-8
Table 8-3. Unsupported Double Extended-Precision Floating-Point Encodings and Pseudo-Denormals ..................... 8-14
Table 8-5. Floating-Point Conditional MoVe INStrUCTIONS . ... v\ vttt e 8-17
Table 8-4. Data TranS e NS UCT ONS L vttt e e e e e e e 8-17
Table 8-6. Setting of x87 FPU Condition Code Flags for Floating-Point Number Comparisons............c..covivvninnnn... 8-20
Table 8-7. Setting of EFLAGS Status Flags for Floating-Point Number Comparisons. ............coooiiiiiiiiii i 8-20
Table 8-8. TEST Instruction Constants for Conditional Branching ...........coviiii i e 8-21
Table 8-9. Arithmetic and Non-arithmetic INSTIUCTIONS . ... ..o vt e e e 8-26
Table 8-10. Invalid Arithmetic Operations and the

Masked Responses to Them 8-28

Table 8-11. Divide-By-Zero Conditions and the Masked Responses to Them. ... ..ot 8-29
Table 9-1. Data Range Limits for Saturation. .. .....ouii i e e e e et et e 9-5
Table 9-2. MM X INSTTUCTION ST SUMIMIAIY . vttt ettt ettt e e e e e e e e ettt e e et aenens 9-6
Table 9-3. Effect of Prefixes on MMX INSTTUCHIONS . . ..o vt e e e 9-11
Table 10-1. PREFETCHh Instructions Caching HINtS . ... ovv ettt e 10-13
Table 10-2. FOrmMAT OF AN FX S AV E AT a ..ottt e e e e e e e e e et e e 10-15
Table 11-1. Masked Responses of SSE/SSE2/SSE3 Instructions to Invalid Arithmetic Operations .......................... 11-14
Table 11-2. SSE and SSE2 State Following a Power-up/Reset or INIT ... . i e 11-20
Table 11-3. Effect of Prefixes on SSE, SSE2, and SSE3 INSTrUCTIONS . .. oot v vt 11-26
Table 12-1.  SIMD numeric exceptions signaled by SSE4. 1. . ... .ot i e e 12-10
Table 12-2. Enhanced 32-bit SIMD Multiply Supported by SSEA.T . ... it 12-11
Table 12-3.  Blend Field Size and Control Modes Supported by SSEA.T ... ... it 12-15
Table 12-4.  Enhanced SIMD Integer MIN/MAX Instructions Supported by SSE4.T. ... vt 12-15
Table 12-5. New SIMD Integer conversions supported by SSE4.1 ... .. i i e 12-16
Table 12-6. New SIMD Integer Conversions Supported by SSE4.T .. .. . i e 12-17
Table 12-7. Enhanced SIMD Pack SUPPOMt DY SSEA. T ... e e e 12-18
Table 12-8. Byte and 32-bit Word Representation of @ 128-bit State ... e 12-21
Table 12-9.  Matrix Representation of @ 128-Dit State. . ......oor it e 12-21
Table 12-10. Little Endian Representation 0f @ 128-bit State. .....ovvuiiiii i e 12-22

Vol.1 Xix



CONTENTS

Table 12-11.
Table 12-12.
Table 12-13.
Table 12-15.
Table 12-14.
Table 13-1.
Table 14-1.
Table 14-2.
Table 14-3.
Table 14-4.
Table 14-5.
Table 14-6.
Table 14-7.
Table 14-8.
Table 14-9.
Table 14-10.
Table 14-12.
Table 14-13.
Table 14-14.
Table 14-11.
Table 14-15.
Table 14-16.
Table 14-17.
Table 14-18.
Table 14-19.
Table 14-20.
Table 14-21.
Table 14-22.
Table 14-23.
Table 15-1.
Table 16-1.
Table 16-2.
Table 16-3.
Table 16-4.
Table 17-1.
Table A-1.
Table A-2.
Table B-1.
Table C-1.
Table C-2.
Table C-3.
Table C-4.
Table C-5.
Table C-6.
Table E-1.

Table E-2.

Table E-3.

Table E-4.
Table E-5.
Table E-6.
Table E-7.
Table E-8.

Table E-9.

Table E-10.
Table E-11.

XX Vol. 1

PAGE
Little Endian Representation 0f @ 4x4 Byte MatriX . .....oviriuiiiii i et 12-22
The ShiftROWS TransSformMation. . . ... vttt e e e ees 12-23
Look-up Table Associated with S-Box Transformation . ........ovvii e 12-23
Look-up Table Associated with INnVS-Box Transformation ..o 12-25
The INVShiftROWS Trans OrmMation . ... v .ttt e e 12-25
Format of the Legacy Region 0f @n XSAVE ArBa. ... ...vuir ittt it et e e aaas 13-6
Promoted SSE/SSE2/SSE3/SSSES/SSES INSTIUCTIONS. ..o v vt ettt ettt et 14-3
Promoted 256-Bit and 128-bit Arithmetic AVX INSTrUCTIONS. ... ..ottt 14-9
Promoted 256-bit and 128-bit Data Movement AVX INSTrUCtiONS. . ..o vvvv v 14-9
256-bit AVX INStruction ENNaNCEMENT . ..o\ttt e 14-10
Promotion of Legacy SIMD ISA to 128-bit Arithmetic AVX instruction ...t 14-11
128-bit AVX INStruction ENN@nCemMeNT. . ..ottt e e e 14-13
Promotion of Legacy SIMD ISA to 128-bit Non-Arithmetic AVX instruction................cocoviiiiiiiinn.s. 14-14
Immediate Byte Encoding for 16-bit Floating-Point Conversion INStructions. ..........coovvi i iiiiniiianns 14-18
Non-Numerical Behavior for VCVTPHZPS, VCVTPSZ2PH .. ..o e 14-18
Invalid Operation for VCVTPHZPS, VOV T PS2PH . ...ttt e e 14-18
Underflow Condition for VOV T PS2PH. ... ot e 14-19
Overflow Condition for VOV T PS2PH . ...ttt e e e s 14-19
INexact Condition fOr VOV TP S 2PH . ...t e e e 14-19
Denormal Condition SUMIMIAIY ... vttt e et e e e et e e 14-19
FMA NSITUCTIONS vttt ettt ettt et e e et et e et e e e e e e 14-21
Rounding Behavior of Zero Result in FMA Operation. ..........ovuiii i 14-24
FMA NUMETIC BENAVIO . . . o oo e e e e e e e e es 14-24
Promoted Vector Integer SIMD INStructions in AV X 2. .. .. ov it i e e e e 14-27
VEX-Only SIMD Instructions in AVX and AV X2 . ... v ittt 14-30
New Primitive in AVXZ INSTTUCTIONS . ..ot 14-31
Alignment Faulting Conditions when Memory Access is Not Aligned ....... ..ot 14-34
Instructions Requiring Explicitly AlIGned MEMOTY . . ..o .t e e 14-34
Instructions Not Requiring Explicit Memory Alignment .. ... i i i 14-35
RTM AbOrt STatus Definition . ..o e e e e 15-5
Error Code Definition 0f BND ST ATUS. ...\ttt e e 16-4
INtel MPX INStrUCTION SUMIMIA Y .ottt et s et e e e e e e e eaees 16-5
Effective Address Size of Intel MPX Instructions with 67H Prefix.........cooiiiii i 16-10
Bounds Register INIT Behavior Due to BND Prefix with Branch Instructions .............cooviiiiiiiiininn, 16-11
/0 INSTrUCtion Serialization. . ... . o e e e 17-5
C0des DeSCriDING FIagS. . . oo vttt it e et e e e e e e e e A-1
EFLAGS CroSS- RO BIEMCE. . vttt ettt ettt e e A-1
EFLAGS CoNITION COABS . . vttt ettt ettt ettt e e et e e e et e e e et e e e e e e B-1
X87 FPU and SIMD Floating-Point EXCEPTIONS. . .\ v ettt e C-1
Exceptions Generated with x87 FPU Floating-Point INStructions ...t C-1
Exceptions Generated With SSE INSTrUCTIONS ... .. vttt i i i e it ittt ieaaas 3
Exceptions Generated With SSEZ INSTrUCTIONS . . .. .ttt i e e et e it aaas C-5
Exceptions Generated With SSE3 INStrUCTIONS . ...\ttt et aens c-7
Exceptions Generated With SSE4 INStrUCTIONS . ...ttt e e e eas C-8

ADDPS, ADDSS, SUBPS, SUBSS, MULPS, MULSS, DIVPS, DIVSS, ADDPD, ADDSD, SUBPD, SUBSD, MULPD, MULSD, DIVPD,
DIVSD, ADDSUBPS, ADDSUBPD, HADDPS, HADDPD, HSUBPS, HSUBPDE-5

CMPPS.EQ, CMPSS.EQ, CMPPS.ORD, CMPSS.ORD,

CMPPD.EQ, CMPSD.€Q, CMPPD.ORD, CMPSD.ORDE-6

CMPPS.NEQ, CMPSS.NEQ, CMPPS.UNORD, CMPSS.UNORD, CMPPD.NEQ, CMPSD.NEQ,

CMPPD.UNORD, CMPSD.UNORDE-6

CMPPS.LT, CMPSS.LT, CMPPS.LE, CMPSS.LE, CMPPD.LT, CMPSD.LT, CMPPD.LE, CMPSD.LE...........coovivin E-6
CMPPS.NLT, CMPSS.NLT, CMPPS.NLE, CMPSS.NLE, CMPPD.NLT, CMPSD.NLT, CMPPD.NLE, CMPSD.NLE ............... E-7
COMISS, COMISD . . ottt e e e e E-7
UCOMISS, UCOMISD . .ot e e e e e e e e E-7

CVTPS2PI, CVTSSZSI, CVTTPS2PI, CVTTSS2SI, CVTPD2PI, CVTSD2SI, CVTTPD2PI, CVTTSDZ2SI, CVTPS2DQ, CVTTPS2DQ,
CVTPD2DQ, CVTTPDZDQE-7

MAXPS, MAXSS, MINPS, MINSS, MAXPD, MAXSD, MINPD, MINSD ...t €-8
SQRTPS, SQRTSS, SARTPD, SQRTSD . . .ottt ittt e E-8
CVTPS 2P, CV TS 2D . . ittt e e e e e e e e E-8



CONTENTS

PAGE
Table -T2, CVUTPD2PS, CV TSl 2SS, ittt ittt et e e e e e E-8
Table €-13. Hl - IVl OPBIatiONS & . vttt ettt e e e E-9
Table E-T4. HZ - DIVIAE-DY-ZEI0. . ..ottt e E-11
Table E-15. HD - DenOrmMal OPEIaNd. . ... ettt et et e e e et e e e e e E-12
Table E-16. HO - NUMEMIC OV IO oottt e e e e e e e e E-13
Table E-17. W [0 o T=T ool 0 =T o E-14
Table E-18.  #HP - INeXaCt RESUIL (PrECISION) . v\ttt ettt et et es E-15

Vol. 1 XXi



CONTENTS

PAGE

xXii Vol. 1



CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (order number
253665) is part of a set that describes the architecture and programming environment of Intel® 64 and IA-32
architecture processors. Other volumes in this set are:

® The Intel® 64 and I1A-32 Architectures Software Developer’'s Manual, Volumes 2A, 2B & 2C: Instruction Set
Reference (order numbers 253666, 253667 and 326018).

® The Intel® 64 and IA-32 Architectures Software Developer’'s Manual, Volumes 3A, 3B & 3C: System
Programming Guide (order numbers 253668, 253669 and 326019).

The Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture
and programming environment of Intel 64 and IA-32 processors. The Intel® 64 and 1A-32 Architectures Software
Developer’'s Manual, Volumes 2A, 2B & 2C, describe the instruction set of the processor and the opcode structure.
These volumes apply to application programmers and to programmers who write operating systems or executives.
The Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volumes 3A, 3B & 3C, describe the oper-
ating-system support environment of Intel 64 and IA-32 processors. These volumes target operating-system and
BIOS designers. In addition, the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B,
addresses the programming environment for classes of software that host operating systems.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:

* pentium® processors

® P6 family processors

* pentium® 4 processors

*  pentium® M processors

* Intel® Xeon® processors

* pentium® D processors

*  Pentium® processor Extreme Editions

®  64-bit Intel® Xeon® processors

* Intel® Core™ Duo processor

* Intel® Core™ Solo processor

® Dual-Core Intel® Xeon® processor LV

* Intel® Core™2 Duo processor

* Intel® Core™2 Quad processor Q6000 series

* Intel® Xeon® processor 3000, 3200 series

* Intel® Xeon® processor 5000 series

* Intel® Xeon® processor 5100, 5300 series

* Intel® Core™2 Extreme processor X7000 and X6800 series
* Intel® Core™2 Extreme processor QX6000 series
* Intel® Xeon® processor 7100 series

* Intel® Pentium® Dual-Core processor

* Intel® Xeon® processor 7200, 7300 series

* Intel® Xeon® processor 5200, 5400, 7400 series

Vol. T 1-1



ABOUT THIS MANUAL

* Intel® Core™2 Extreme processor QX9000 and X9000 series

* Intel® Core™2 Quad processor Q9000 series

® Intel® Core™2 Duo processor ES000, T9000 series

* Intel® Atom™ processor family

* Intel® Core™ i7 processor

® Intel® Core™i5 processor

* Intel® Xeon® processor E7-8800/4800/2800 product families

® Intel® Core™ i7-3930K processor

® 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
* Intel® Xeon® processor E3-1200 product family

* Intel® Xeon® processor E5-2400/1400 product family

* Intel® Xeon® processor E5-4600/2600/1600 product family

® 3rd generation Intel® Core™ processors

* Intel® Xeon® processor E3-1200 v2 product family

* Intel® Xeon® processor E5-2400/1400 v2 product families

* Intel® Xeon® processor E5-4600/2600/1600 v2 product families
* Intel® Xeon® processor E7-8800/4800/2800 v2 product families
®  4th generation Intel® Core™ processors

® The Intel® Core™ M processor family

® Intel® Core™ i7-59xx Processor Extreme Edition

® Intel® Core™ i7-49xx Processor Extreme Edition

* Intel® Xeon® processor E3-1200 v3 product family

* Intel® Xeon® processor E5-2600/1600 v3 product families

® 5th generation Intel® Core™ processors

* Intel® Atom™ processor Z8000 series

® Intel® Atom™ processor Z3400 series

* Intel® Atom™ processor Z3500 series

® 6th generation Intel® Core™ processors

* Intel® Xeon® processor E3-1500m v5 product family

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® 11, and Pentium® 11l Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200 and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microarchi-
tecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processor QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on Enhanced
Intel® Core™ microarchitecture.

The Intel® Atom™ processor family is based on the Intel® Atom™ microarchitecture and supports Intel 64 archi-
tecture.

1-2 Vol. 1



ABOUT THIS MANUAL

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Intel®
microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32nm version of Intel®
microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and various
Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code name Westmere. These processors
support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2XxX,
Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code
name Sandy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2 product
family and the 3rd generation Intel® Core™ processors are based on the Intel® microarchitecture code name Ivy
Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Intel® microarchitecture
code name Ivy Bridge-E and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based on
the Intel® microarchitecture code name Haswell and support Intel 64 architecture.

The Intel® Core™ M processor family and 5th generation Intel® Core™ processors are based on the Intel® micro-
architecture code name Broadwell and support Intel 64 architecture.

The Intel® Xeon® processor E3-1500m v5 product family and 6th generation Intel® Core™ processors are based
on the Intel® microarchitecture code name Skylake and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme
Edition are based on the Intel® microarchitecture code name Haswell-E and support Intel 64 architecture.

The Intel® Atom™ processor Z8000 series is based on the Intel microarchitecture code name Airmont.

The Intel® Atom™ processor Z3400 series and the Intel® Atom™ processor Z3500 series are based on the Intel
microarchitecture code name Silvermont.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors, Pentium®
Dual-Core processor, hewer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architec-
ture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit microproces-
sors. Intel® 64 architecture is the instruction set architecture and programming environment which is the superset
of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

1.2 OVERVIEW OF VOLUME 1: BASIC ARCHITECTURE

A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all five volumes of the Intel® 64 and 1A-32 Architectures
Software Developer’s Manual. It also describes the notational conventions in these manuals and lists related Intel
manuals and documentation of interest to programmers and hardware designers.

Chapter 2 — Intel® 64 and I1A-32 Architectures. Introduces the Intel 64 and IA-32 architectures along with
the families of Intel processors that are based on these architectures. It also gives an overview of the common
features found in these processors and brief history of the Intel 64 and IA-32 architectures.

Chapter 3 — Basic Execution Environment. Introduces the models of memory organization and describes the
register set used by applications.

Chapter 4 — Data Types. Describes the data types and addressing modes recognized by the processor; provides
an overview of real numbers and floating-point formats and of floating-point exceptions.

Vol.1T 1-3



ABOUT THIS MANUAL

Chapter 5 — Instruction Set Summary. Lists all Intel 64 and IA-32 instructions, divided into technology groups.

Chapter 6 — Procedure Calls, Interrupts, and Exceptions. Describes the procedure stack and mechanisms
provided for making procedure calls and for servicing interrupts and exceptions.

Chapter 7 — Programming with General-Purpose Instructions. Describes basic load and store, program
control, arithmetic, and string instructions that operate on basic data types, general-purpose and segment regis-
ters; also describes system instructions that are executed in protected mode.

Chapter 8 — Programming with the x87 FPU. Describes the x87 floating-point unit (FPU), including floating-
point registers and data types; gives an overview of the floating-point instruction set and describes the processor's
floating-point exception conditions.

Chapter 9 — Programming with Intel® MMX™ Technology. Describes Intel MMX technology, including MMX
registers and data types; also provides an overview of the MMX instruction set.

Chapter 10 — Programming with Intel® Streaming SIMD Extensions (Intel® SSE). Describes SSE exten-
sions, including XMM registers, the MXCSR register, and packed single-precision floating-point data types; provides
an overview of the SSE instruction set and gives guidelines for writing code that accesses the SSE extensions.

Chapter 11 — Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2). Describes SSE2
extensions, including XMM registers and packed double-precision floating-point data types; provides an overview
of the SSE2 instruction set and gives guidelines for writing code that accesses SSE2 extensions. This chapter also
describes SIMD floating-point exceptions that can be generated with SSE and SSE2 instructions. It also provides
general guidelines for incorporating support for SSE and SSE2 extensions into operating system and applications
code.

Chapter 12 — Programming with Intel® Streaming SIMD Extensions 3 (Intel® SSE3), Supplemental
Streaming SIMD Extensions 3 (SSSE3), Intel® Streaming SIMD Extensions 4 (Intel® SSE4) and Intel®
AES New Instructions (Intel® AESNI). Provides an overview of the SSE3 instruction set, Supplemental SSE3,
SSE4, AESNI instructions, and guidelines for writing code that accesses these extensions.

Chapter 13 — Managing State Using the XSAVE Feature Set. Describes the XSAVE feature set instructions
and explains how software can enable the XSAVE feature set and XSAVE-enabled features.

Chapter 14 — Programming with AVX, FMA and AVX2. Provides an overview of the Intel® AVX instruction set,
FMA and Intel AVX2 extensions and gives guidelines for writing code that accesses these extensions.

Chapter 15 — Programming with Intel Transactional Synchronization Extensions. Describes the instruc-
tion extensions that support lock elision techniques to improve the performance of multi-threaded software with
contended locks.

Chapter 16 — Input/Output. Describes the processor’s I/O mechanism, including I/O port addressing, I/0O
instructions, and I/0 protection mechanisms.

Chapter 17 — Processor lIdentification and Feature Determination. Describes how to determine the CPU
type and features available in the processor.

Appendix A — EFLAGS Cross-Reference. Summarizes how the IA-32 instructions affect the flags in the EFLAGS
register.

Appendix B — EFLAGS Condition Codes. Summarizes how conditional jump, move, and ‘byte set on condition
code’ instructions use condition code flags (OF, CF, ZF, SF, and PF) in the EFLAGS register.

Appendix C — Floating-Point Exceptions Summary. Summarizes exceptions raised by the x87 FPU floating-
point and SSE/SSE2/SSE3 floating-point instructions.

Appendix D — Guidelines for Writing x87 FPU Exception Handlers. Describes how to design and write MS-
DOS* compatible exception handling facilities for FPU exceptions (includes software and hardware requirements
and assembly-language code examples). This appendix also describes general techniques for writing robust FPU
exception handlers.

Appendix E — Guidelines for Writing SIMD Floating-Point Exception Handlers. Gives guidelines for writing
exception handlers for exceptions generated by SSE/SSE2/SSE3 floating-point instructions.

1-4 Vol. 1



1.3 NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic representation of instructions, and for
hexadecimal and binary numbers. This notation is described below.

1.3.1 Bit and Byte Order

ABOUT THIS MANUAL

Inillustrations of data structures in memory, smaller addresses appear toward the bottom of the figure; addresses
increase toward the top. Bit positions are numbered from right to left. The numerical value of a set bit is equal to
two raised to the power of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this means

the bytes of a word are numbered starting from the least significant byte. See Figure 1-1.

Highest

Data Structure

Address 32 24 23 16 15

8

7

0

Byte 3

Byte 2

Byte 1

Byte O

-«— Bit offset
28

24

20

16

12

8

4

0
Lowest
% Address

Byte Offset

Figure 1-1. Bit and Byte Order

1.3.2 Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When bits are marked as
reserved, it is essential for compatibility with future processors that software treat these bits as having a future,
though unknown, effect. The behavior of reserved bits should be regarded as not only undefined, but unpredict-

able.

Software should follow these guidelines in dealing with reserved bits:
® Do not depend on the states of any reserved bits when testing the values of registers that contain such bits.

Mask out the reserved bits before testing.
®* Do not depend on the states of any reserved bits when storing to memory or to a register.

® Do not depend on the ability to retain information written into any reserved bits.

® When loading a register, always load the reserved bits with the values indicated in the documentation, if any,
or reload them with values previously read from the same register.

1.3.2.1 Instruction Operands

NOTE

Avoid any software dependence upon the state of reserved bits in Intel 64 and IA-32 registers.
Depending upon the values of reserved register bits will make software dependent upon the
unspecified manner in which the processor handles these bits. Programs that depend upon
reserved values risk incompatibility with future processors.

When instructions are represented symbolically, a subset of the IA-32 assembly language is used. In this subset,

an instruction has the following format:

Vol. 1

1-5



ABOUT THIS MANUAL

label: mnemonic argument1, argument2, argument3
where:
® A label is an identifier which is followed by a colon.
® A mnemonic is a reserved name for a class of instruction opcodes which have the same function.

® The operands argumentl, argument2, and argument3 are optional. There may be from zero to three
operands, depending on the opcode. When present, they take the form of either literals or identifiers for data
items. Operand identifiers are either reserved names of registers or are assumed to be assigned to data items
declared in another part of the program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the source and the left
operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is the destination operand,
and SUBTOTAL is the source operand. Some assembly languages put the source and destination in reverse order.

1.3.3 Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by the character H (for
example, OF82EH). A hexadecimal digit is a character from the following set: 0, 1, 2, 3,4,5,6,7,8,9, A, B, C, D,
E, and F.

Base 2 (binary) numbers are represented by a string of 1s and Os, sometimes followed by the character B (for
example, 1010B). The “"B” designation is only used in situations where confusion as to the type of humber might
arise.

1.3.4 Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a sequence of bytes.
Whether one or more bytes are being accessed, a byte address is used to locate the byte or bytes memory. The
range of memory that can be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing where a program may have many
independent address spaces, called segments. For example, a program can keep its code (instructions) and stack
in separate segments. Code addresses would always refer to the code space, and stack addresses would always
refer to the stack space. The following notation is used to specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment pointed by the DS
register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS register points to the
code segment and the EIP register contains the address of the instruction.

CSEIP

1.3.5 A New Syntax for CPUID, CR, and MSR Values

Obtain feature flags, status, and system information by using the CPUID instruction, by checking control register
bits, and by reading model-specific registers. We are moving toward a new syntax to represent this information.
See Figure 1-2.

1-6 Vol. 1



ABOUT THIS MANUAL

CPUID Input and Output
CPUID.01H:ECX.SSE [bit 25] =1

Input values for EAX & ECX registers;
If only one value, EAX is implied.

Output register and feature flag or field
name with bit position(s)

Value (or range) of output

Control Register Values
CR4.0SFXSRIbit 9] = 1

Example CR name i
Feature flag or field name
with bit position(s)

Value (or range) of output
Model-Specific Register Values

IA32_MISC_ENABLES.ENABLEFOPCODE[bit 2] = 1

Example MSR name i
Feature flag or field name with bit position(s)
Value (or range) of output

OM17732

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation

1.3.6 Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example, an attempt to
divide by zero generates an exception. However, some exceptions, such as breakpoints, occur under other condi-
tions. Some types of exceptions may provide error codes. An error code reports additional information about the
error. An example of the notation used to show an exception and error code is shown below:

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a type of fault is
reported. Under some conditions, exceptions that produce error codes may not be able to report an accurate code.
In this case, the error code is zero, as shown below for a general-protection exception:

#GP(0)

Vol. 1T 1-7



ABOUT THIS MANUAL

1.4 RELATED LITERATURE

Literature related to Intel 64 and IA-32 processors is listed and viewable on-line at:

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

See also:

The data sheet for a particular Intel 64 or IA-32 processor
The specification update for a particular Intel 64 or IA-32 processor

Intel® C++ Compiler documentation and online help:
http://software.intel.com/en-us/articles/intel-compilers/

Intel® Fortran Compiler documentation and online help:
http://software.intel.com/en-us/articles/intel-compilers/

Intel® Software Development Tools:
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

Intel® 64 and IA-32 Architectures Software Developer’s Manual (in three or seven volumes):
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

Intel® 64 and IA-32 Architectures Optimization Reference Manual:
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-
manual.html

Intel 64 Architecture x2APIC Specification:

http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specifi-
cation.html

Intel® Trusted Execution Technology Measured Launched Environment Programming Guide:
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html

Developing Multi-threaded Applications: A Platform Consistent Approach:
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applica-
tions.pdf

Using Spin-Loops on Intel® pPentium® 4 Processor and Intel® Xeon® Processor:
http://software.intel.com/en-us/articles/ap949-using-spin-loops-on-intel-pentiumr-4-processor-and-intel-
xeonr-processor/

Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

Literature related to selected features in future Intel processors are available at:

Intel® Architecture Instruction Set Extensions Programming Reference
https://software.intel.com/en-us/isa-extensions

Intel® Software Guard Extensions (Intel® SGX) Programming Reference
https://software.intel.com/en-us/isa-extensions/intel-sgx

More relevant links are:

Intel® Developer Zone:

https://software.intel.com/en-us

Developer centers:
http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
Processor support general link:

http://www.intel.com/support/processors/

Software products and packages:
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

Intel® Hyper-Threading Technology (Intel® HT Technology):
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm

1-8 Vol. 1


http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specification.html
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
https://software.intel.com/en-us
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
http://www.intel.com/support/processors/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm
http://developer.intel.com/technology/hyperthread/
https://software.intel.com/en-us
https://software.intel.com/en-us/articles/resource-center/
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://software.intel.com/en-us/articles/intel-compilers/
https://software.intel.com/en-us/isa-extensions/intel-sgx
https://software.intel.com/en-us/isa-extensions
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applications.pdf

CHAPTER 2
INTEL® 64 AND IA-32 ARCHITECTURES

The exponential growth of computing power and ownership has made the computer one of the most important
forces shaping business and society. Intel 64 and IA-32 architectures have been at the forefront of the computer
revolution and is today the preferred computer architecture, as measured by computers in use and the total
computing power available in the world.

2.1 BRIEF HISTORY OF INTEL® 64 AND IA-32 ARCHITECTURE

The following sections provide a summary of the major technical evolutions from IA-32 to Intel 64 architecture:
starting from the Intel 8086 processor to the latest Intel® Core® 2 Duo, Core 2 Quad and Intel Xeon processor
5300 and 7300 series. Object code created for processors released as early as 1978 still executes on the latest
processors in the Intel 64 and IA-32 architecture families.

2.1.1 16-bit Processors and Segmentation (1978)

The IA-32 architecture family was preceded by 16-bit processors, the 8086 and 8088. The 8086 has 16-bit regis-
ters and a 16-bit external data bus, with 20-bit addressing giving a 1-MByte address space. The 8088 is similar to
the 8086 except it has an 8-bit external data bus.

The 8086/8088 introduced segmentation to the IA-32 architecture. With segmentation, a 16-bit segment register
contains a pointer to a memory segment of up to 64 KBytes. Using four segment registers at a time, 8086/8088

processors are able to address up to 256 KBytes without switching between segments. The 20-bit addresses that
can be formed using a segment register and an additional 16-bit pointer provide a total address range of 1 MByte.

2.1.2 The Intel® 286 Processor (1982)

The Intel 286 processor introduced protected mode operation into the IA-32 architecture. Protected mode uses the
segment register content as selectors or pointers into descriptor tables. Descriptors provide 24-bit base addresses
with a physical memory size of up to 16 MBytes, support for virtual memory management on a segment swapping
basis, and a humber of protection mechanisms. These mechanisms include:

® Segment limit checking
® Read-only and execute-only segment options
® Four privilege levels

2.1.3 The Intel386™ Processor (1985)

The Intel386 processor was the first 32-bit processor in the IA-32 architecture family. It introduced 32-bit registers
for use both to hold operands and for addressing. The lower half of each 32-bit Intel386 register retains the prop-
erties of the 16-bit registers of earlier generations, permitting backward compatibility. The processor also provides
a virtual-8086 mode that allows for even greater efficiency when executing programs created for 8086/8088
processors.

In addition, the Intel386 processor has support for:

® A 32-bit address bus that supports up to 4-GBytes of physical memory

® A segmented-memory model and a flat memory model

® Paging, with a fixed 4-KByte page size providing a method for virtual memory management
® Support for parallel stages

Vol. 1T 2-1



INTEL® 64 AND IA-32 ARCHITECTURES

2.1.4 The Intel486™ Processor (1989)

The Intel486™ processor added more parallel execution capability by expanding the Intel386 processor’s instruc-
tion decode and execution units into five pipelined stages. Each stage operates in parallel with the others on up to
five instructions in different stages of execution.

In addition, the processor added:

® An 8-KByte on-chip first-level cache that increased the percent of instructions that could execute at the scalar
rate of one per clock

® Anintegrated x87 FPU
® Power saving and system management capabilities

2.1.5 The Intel® Pentium® Processor (1993)

The introduction of the Intel Pentium processor added a second execution pipeline to achieve superscalar perfor-
mance (two pipelines, known as u and v, together can execute two instructions per clock). The on-chip first-level
cache doubled, with 8 KBytes devoted to code and another 8 KBytes devoted to data. The data cache uses the MESI
protocol to support more efficient write-back cache in addition to the write-through cache previously used by the
Intel486 processor. Branch prediction with an on-chip branch table was added to increase performance in looping
constructs.

In addition, the processor added:

® Extensions to make the virtual-8086 mode more efficient and allow for 4-MByte as well as 4-KByte pages
® Internal data paths of 128 and 256 bits add speed to internal data transfers

® Burstable external data bus was increased to 64 bits

® An APIC to support systems with multiple processors

® A dual processor mode to support glueless two processor systems

A subsequent stepping of the Pentium family introduced Intel MMX technology (the Pentium Processor with MMX
technology). Intel MMX technology uses the single-instruction, multiple-data (SIMD) execution model to perform
parallel computations on packed integer data contained in 64-bit registers.

See Section 2.2.7, “SIMD Instructions.”

2.1.6 The P6 Family of Processors (1995-1999)

The P6 family of processors was based on a superscalar microarchitecture that set new performance standards;
see also Section 2.2.1, “P6 Family Microarchitecture.” One of the goals in the design of the P6 family microarchitec-
ture was to exceed the performance of the Pentium processor significantly while using the same 0.6-micrometer,
four-layer, metal BICMOS manufacturing process. Members of this family include the following:

® The Intel Pentium Pro processor is three-way superscalar. Using parallel processing techniques, the
processor is able on average to decode, dispatch, and complete execution of (retire) three instructions per
clock cycle. The Pentium Pro introduced the dynamic execution (micro-data flow analysis, out-of-order
execution, superior branch prediction, and speculative execution) in a superscalar implementation. The
processor was further enhanced by its caches. It has the same two on-chip 8-KByte 1st-Level caches as the
Pentium processor and an additional 256-KByte Level 2 cache in the same package as the processor.

® The Intel Pentium 11 processor added Intel MMX technology to the P6 family processors along with new
packaging and several hardware enhancements. The processor core is packaged in the single edge contact
cartridge (SECC). The Level | data and instruction caches were enlarged to 16 KBytes each, and Level 2 cache
sizes of 256 KBytes, 512 KBytes, and 1 MByte are supported. A half-frequency backside bus connects the Level
2 cache to the processor. Multiple low-power states such as AutoHALT, Stop-Grant, Sleep, and Deep Sleep are
supported to conserve power when idling.

® The Pentium 11 Xeon processor combined the premium characteristics of previous generations of Intel
processors. This includes: 4-way, 8-way (and up) scalability and a 2 MByte 2nd-Level cache running on a full-
frequency backside bus.

2-2 Vol.1



INTEL® 64 AND IA-32 ARCHITECTURES

® The Intel Celeron processor family focused on the value PC market segment. Its introduction offers an
integrated 128 KBytes of Level 2 cache and a plastic pin grid array (P.P.G.A.) form factor to lower system design
cost.

® The Intel Pentium Il processor introduced the Streaming SIMD Extensions (SSE) to the IA-32 architecture.
SSE extensions expand the SIMD execution model introduced with the Intel MMX technology by providing a
new set of 128-bit registers and the ability to perform SIMD operations on packed single-precision floating-
point values. See Section 2.2.7, “"SIMD Instructions.”

® The Pentium lll Xeon processor extended the performance levels of the IA-32 processors with the
enhancement of a full-speed, on-die, and Advanced Transfer Cache.

2.1.7 The Intel® Pentium® 4 Processor Family (2000-2006)

The Intel Pentium 4 processor family is based on Intel NetBurst microarchitecture; see Section 2.2.2, “Intel
NetBurst® Microarchitecture.”

The Intel Pentium 4 processor introduced Streaming SIMD Extensions 2 (SSE2); see Section 2.2.7, "SIMD Instruc-
tions.” The Intel Pentium 4 processor 3.40 GHz, supporting Hyper-Threading Technology introduced Streaming
SIMD Extensions 3 (SSE3); see Section 2.2.7, “"SIMD Instructions.”

Intel 64 architecture was introduced in the Intel Pentium 4 Processor Extreme Edition supporting Hyper-Threading
Technology and in the Intel Pentium 4 Processor 6xx and 5xx sequences.

Intel® Virtualization Technology (Intel® VT) was introduced in the Intel Pentium 4 processor 672 and 662.

2.1.8 The Intel® Xeon® Processor (2001- 2007)

Intel Xeon processors (with exception for dual-core Intel Xeon processor LV, Intel Xeon processor 5100 series) are
based on the Intel NetBurst microarchitecture; see Section 2.2.2, “Intel NetBurst® Microarchitecture.” As a family,
this group of IA-32 processors (more recently Intel 64 processors) is designed for use in multi-processor server
systems and high-performance workstations.

The Intel Xeon processor MP introduced support for Intel® Hyper-Threading Technology; see Section 2.2.8, “Intel®
Hyper-Threading Technology.”

The 64-bit Intel Xeon processor 3.60 GHz (with an 800 MHz System Bus) was used to introduce Intel 64 architec-
ture. The Dual-Core Intel Xeon processor includes dual core technology. The Intel Xeon processor 70xx series
includes Intel Virtualization Technology.

The Intel Xeon processor 5100 series introduces power-efficient, high performance Intel Core microarchitecture.
This processor is based on Intel 64 architecture; it includes Intel Virtualization Technology and dual-core tech-
nology. The Intel Xeon processor 3000 series are also based on Intel Core microarchitecture. The Intel Xeon
processor 5300 series introduces four processor cores in a physical package, they are also based on Intel Core
microarchitecture.

2.1.9 The Intel® Pentium® M Processor (2003-2006)

The Intel Pentium M processor family is a high performance, low power mobile processor family with microarchi-
tectural enhancements over previous generations of IA-32 Intel mobile processors. This family is designed for
extending battery life and seamless integration with platform innovations that enable new usage models (such as
extended mobility, ultra thin form-factors, and integrated wireless networking).

Its enhanced microarchitecture includes:
® Support for Intel Architecture with Dynamic Execution

® A high performance, low-power core manufactured using Intel’s advanced process technology with copper
interconnect

® On-die, primary 32-KByte instruction cache and 32-KByte write-back data cache
® On-die, second-level cache (up to 2 MByte) with Advanced Transfer Cache Architecture

Vol.1 2-3



INTEL® 64 AND IA-32 ARCHITECTURES

® Advanced Branch Prediction and Data Prefetch Logic

® Support for MMX technology, Streaming SIMD instructions, and the SSE2 instruction set
® A 400 or 533 MHz, Source-Synchronous Processor System Bus

® Advanced power management using Enhanced Intel SpeedStep® technology

2.1.10 The Intel® Pentium® Processor Extreme Edition (2005)

The Intel Pentium processor Extreme Edition introduced dual-core technology. This technology provides advanced
hardware multi-threading support. The processor is based on Intel NetBurst microarchitecture and supports SSE,
SSE2, SSE3, Hyper-Threading Technology, and Intel 64 architecture.

See also:

® Section 2.2.2, “Intel NetBurst® Microarchitecture”

®  Section 2.2.3, “Intel® Core™ Microarchitecture”

® Section 2.2.7, “SIMD Instructions”

® Section 2.2.8, “Intel® Hyper-Threading Technology”
® Section 2.2.9, “Multi-Core Technology”

® Section 2.2.10, “Intel® 64 Architecture”

2.1.11  The Intel® Core™ Duo and Intel® Core™ Solo Processors (2006-2007)

The Intel Core Duo processor offers power-efficient, dual-core performance with a low-power design that extends
battery life. This family and the single-core Intel Core Solo processor offer microarchitectural enhancements over
Pentium M processor family.

Its enhanced microarchitecture includes:

® Intel® Smart Cache which allows for efficient data sharing between two processor cores

® Improved decoding and SIMD execution

* Intel® Dynamic Power Coordination and Enhanced Intel® Deeper Sleep to reduce power consumption
* Intel® Advanced Thermal Manager which features digital thermal sensor interfaces

® Support for power-optimized 667 MHz bus

The dual-core Intel Xeon processor LV is based on the same microarchitecture as Intel Core Duo processor, and
supports IA-32 architecture.

2.1.12  The Intel® Xeon® Processor 5100, 5300 Series and Intel® Core™2 Processor Family
(2006)

The Intel Xeon processor 3000, 3200, 5100, 5300, and 7300 series, Intel Pentium Dual-Core, Intel Core 2 Extreme,
Intel Core 2 Quad processors, and Intel Core 2 Duo processor family support Intel 64 architecture; they are based
on the high-performance, power-efficient Intel® Core microarchitecture built on 65 nm process technology. The
Intel Core microarchitecture includes the following innovative features:

* Intel® Wide Dynamic Execution to increase performance and execution throughput

* Intel® Intelligent Power Capability to reduce power consumption

* Intel® Advanced Smart Cache which allows for efficient data sharing between two processor cores
® Intel® Smart Memory Access to increase data bandwidth and hide latency of memory accesses

* Intel® Advanced Digital Media Boost which improves application performance using multiple generations of
Streaming SIMD extensions

The Intel Xeon processor 5300 series, Intel Core 2 Extreme processor QX6800 series, and Intel Core 2 Quad
processors support Intel quad-core technology.

2-4 Vol.1



INTEL® 64 AND IA-32 ARCHITECTURES

2.1.13  The Intel® Xeon® Processor 5200, 5400, 7400 Series and Intel® Core™ 2 Processor
Family (2007)

The Intel Xeon processor 5200, 5400, and 7400 series, Intel Core 2 Quad processor Q9000 Series, Intel Core 2 Duo
processor E8000 series support Intel 64 architecture; they are based on the Enhanced Intel® Core microarchitec-
ture using 45 nm process technology. The Enhanced Intel Core microarchitecture provides the following improved
features:

® A radix-16 divider, faster OS primitives further increases the performance of Intel® Wide Dynamic Execution.

® Improves Intel® Advanced Smart Cache with Up to 50% larger level-two cache and up to 50% increase in way-
set associativity.

* A 128-bit shuffler engine significantly improves the performance of Intel® Advanced Digital Media Boost and
SSE4.

Intel Xeon processor 5400 series and Intel Core 2 Quad processor Q9000 Series support Intel quad-core tech-
nology. Intel Xeon processor 7400 series offers up to six processor cores and an L3 cache up to 16 MBytes.

2.1.14 The Intel® Atom™ Processor Family (2008)

The first generation of Intel® Atom™ processors are built on 45 nm process technology. They are based on a new
microarchitecture, Intel® Atom™ microarchitecture, which is optimized for ultra low power devices. The Intel®
Atom™ microarchitecture features two in-order execution pipelines that minimize power consumption, increase
battery life, and enable ultra-small form factors. The initial Intel Atom Processor family and subsequent generations including
Intel Atom processor D2000, N2000, E2000, 22000, C1000 series provide the following features:

® Enhanced Intel® SpeedStep® Technology
* Intel® Hyper-Threading Technology
® Deep Power Down Technology with Dynamic Cache Sizing

® Support for instruction set extensions up to and including Supplemental Streaming SIMD Extensions 3
(SSSE3).

* Support for Intel® Virtualization Technology
® Support for Intel® 64 Architecture (excluding Intel Atom processor Z5xx Series)

2.1.15 The Intel® Atom™ Processor Family Based on Silvermont Microarchitecture (2013)

Intel Atom Processor C2xxx, E3xxx, S1xxx series are based on the Silvermont microarchitecture. Processors based on the Silvermont
microarchitecture supports instruction set extensions up to and including SSE4.2, AESNI, and PCLMULQDQ.

2.1.16  The Intel® Core™i7 Processor Family (2008)

The Intel Core i7 processor 900 series support Intel 64 architecture; they are based on Intel® microarchitecture
code name Nehalem using 45 nm process technology. The Intel Core i7 processor and Intel Xeon processor 5500
series include the following innovative features:

® Intel® Turbo Boost Technology converts thermal headroom into higher performance.

® Intel® HyperThreading Technology in conjunction with Quadcore to provide four cores and eight threads.
® Dedicated power control unit to reduce active and idle power consumption.

® Integrated memory controller on the processor supporting three channel of DDR3 memory.

® 8 MB inclusive Intel® Smart Cache.

* Intel® QuickPath interconnect (QPI) providing point-to-point link to chipset.

® Support for SSE4.2 and SSE4.1 instruction sets.

® Second generation Intel Virtualization Technology.

Vol.1 2-5



INTEL® 64 AND IA-32 ARCHITECTURES

2.1.17  The Intel® Xeon® Processor 7500 Series (2010)

The Intel Xeon processor 7500 and 6500 series are based on Intel microarchitecture code name Nehalem using 45
nm process technology. They support the same features described in Section 2.1.16, plus the following innovative
features:

® Up to eight cores per physical processor package.
® Up to 24 MB inclusive Intel® Smart Cache.

* Provides Intel® Scalable Memory Interconnect (Intel® SMI) channels with Intel® 7500 Scalable Memory Buffer
to connect to system memory.

® Advanced RAS supporting software recoverable machine check architecture.

2.1.18 2010 Intel® Core™ Processor Family (2010)

2010 Intel Core processor family spans Intel Core i7, i5 and i3 processors. They are based on Intel® microarchitec-
ture code name Westmere using 32 nm process technology. The innovative features can include:

® Deliver smart performance using Intel Hyper-Threading Technology plus Intel Turbo Boost Technology.
® Enhanced Intel Smart Cache and integrated memory controller.

® Intelligent power gating.

® Repartitioned platform with on-die integration of 45nm integrated graphics.

® Range of instruction set support up to AESNI, PCLMULQDQ, SSE4.2 and SSE4.1.

2.1.19  The Intel® Xeon® Processor 5600 Series (2010)

The Intel Xeon processor 5600 series are based on Intel microarchitecture code nhame Westmere using 32 nm
process technology. They support the same features described in Section 2.1.16, plus the following innovative
features:

® Up to six cores per physical processor package.

® Up to 12 MB enhanced Intel® Smart Cache.

® Support for AESNI, PCLMULQDQ, SSE4.2 and SSE4.1 instruction sets.
® Flexible Intel Virtualization Technologies across processor and I/0.

2.1.20 The Second Generation Intel® Core™ Processor Family (2011)

The Second Generation Intel Core processor family spans Intel Core i7, i5 and i3 processors based on the Sandy
Bridge microarchitecture. They are built from 32 nm process technology and have innovative features including:

® Intel Turbo Boost Technology for Intel Core i5 and i7 processors

® Intel Hyper-Threading Technology.

® Enhanced Intel Smart Cache and integrated memory controller.

® Processor graphics and built-in visual features like Intel® Quick Sync Video, Intel® Insider™ etc.

® Range of instruction set support up to AVX, AESNI, PCLMULQDQ, SSE4.2 and SSE4.1.

Intel Xeon processor E3-1200 product family is also based on the Sandy Bridge microarchitecture.

Intel Xeon processor E5-2400/1400 product families are based on the Sandy Bridge-EP microarchitecture.

Intel Xeon processor E5-4600/2600/1600 product families are based on the Sandy Bridge-EP microarchitecture
and provide support for multiple sockets.

2-6 Vol.1



INTEL® 64 AND IA-32 ARCHITECTURES

2.1.21  The Third Generation Intel® Core™ Processor Family (2012)

The Third Generation Intel Core processor family spans Intel Core i7, i5 and i3 processors based on the Ivy Bridge
microarchitecture. The Intel Xeon processor E7-8800/4800/2800 v2 product families and Intel Xeon processor E3-
1200 v2 product family are also based on the Ivy Bridge microarchitecture.

The Intel Xeon processor E5-2400/1400 v2 product families are based on the Ivy Bridge-EP microarchitecture.

The Intel Xeon processor E5-4600/2600/1600 v2 product families are based on the Ivy Bridge-EP microarchitec-
ture and provide support for multiple sockets.

2.1.22 The Fourth Generation Intel® Core™ Processor Family (2013)

The Fourth Generation Intel Core processor family spans Intel Core i7, i5 and i3 processors based on the Haswell
microarchitecture. Intel Xeon processor E3-1200 v3 product family is also based on the Haswell microarchitecture.

2.2 MORE ON SPECIFIC ADVANCES

The following sections provide more information on major innovations.

2.2.1 P6 Family Microarchitecture

The Pentium Pro processor introduced a new microarchitecture commonly referred to as P6 processor microarchi-
tecture. The P6 processor microarchitecture was later enhanced with an on-die, Level 2 cache, called Advanced
Transfer Cache.

The microarchitecture is a three-way superscalar, pipelined architecture. Three-way superscalar means that by
using parallel processing techniques, the processor is able on average to decode, dispatch, and complete execution
of (retire) three instructions per clock cycle. To handle this level of instruction throughput, the P6 processor family
uses a decoupled, 12-stage superpipeline that supports out-of-order instruction execution.

Figure 2-1 shows a conceptual view of the P6 processor microarchitecture pipeline with the Advanced Transfer
Cache enhancement.

Vol.1 2-7



INTEL® 64 AND IA-32 ARCHITECTURES

s System Bus a

i ———  Frequently used
BusUmt .. Less frequently used
2nd Level Cache 1st Level Cache
On-die, 8-way 4-way, low latency

........ 7 _’I‘

{  FrontEnd
W
Execution
Instruction Execution
Fetch/
Decode r<) F:ache > Out-of-Order =) Retirement
Microcode Core
ROM
N N

Branch History Update

-4 BTSs/Branch Prediction

OM16520

Figure 2-1. The P6 Processor Microarchitecture with Advanced Transfer Cache Enhancement

To ensure a steady supply of instructions and data for the instruction execution pipeline, the P6 processor microar-
chitecture incorporates two cache levels. The Level 1 cache provides an 8-KByte instruction cache and an 8-KByte
data cache, both closely coupled to the pipeline. The Level 2 cache provides 256-KByte, 512-KByte, or 1-MByte
static RAM that is coupled to the core processor through a full clock-speed 64-bit cache bus.

The centerpiece of the P6 processor microarchitecture is an out-of-order execution mechanism called dynamic
execution. Dynamic execution incorporates three data-processing concepts:

Deep branch prediction allows the processor to decode instructions beyond branches to keep the instruction
pipeline full. The P6 processor family implements highly optimized branch prediction algorithms to predict the
direction of the instruction.

Dynamic data flow analysis requires real-time analysis of the flow of data through the processor to
determine dependencies and to detect opportunities for out-of-order instruction execution. The out-of-order
execution core can monitor many instructions and execute these instructions in the order that best optimizes
the use of the processor’s multiple execution units, while maintaining the data integrity.

Speculative execution refers to the processor’s ability to execute instructions that lie beyond a conditional
branch that has not yet been resolved, and ultimately to commit the results in the order of the original
instruction stream. To make speculative execution possible, the P6 processor microarchitecture decouples the
dispatch and execution of instructions from the commitment of results. The processor’s out-of-order execution
core uses data-flow analysis to execute all available instructions in the instruction pool and store the results in
temporary registers. The retirement unit then linearly searches the instruction pool for completed instructions
that no longer have data dependencies with other instructions or unresolved branch predictions. When
completed instructions are found, the retirement unit commits the results of these instructions to memory
and/or the IA-32 registers (the processor’s eight general-purpose registers and eight x87 FPU data registers)
in the order they were originally issued and retires the instructions from the instruction pool.

2.2.2 Intel NetBurst® Microarchitecture

The Intel NetBurst microarchitecture provides:

2-8 Vol.1



INTEL® 64 AND IA-32 ARCHITECTURES

® The Rapid Execution Engine
— Arithmetic Logic Units (ALUs) run at twice the processor frequency
— Basic integer operations can dispatch in 1/2 processor clock tick
® Hyper-Pipelined Technology
— Deep pipeline to enable industry-leading clock rates for desktop PCs and servers
— Frequency headroom and scalability to continue leadership into the future
® Advanced Dynamic Execution
— Deep, out-of-order, speculative execution engine
* Up to 126 instructions in flight
* Up to 48 loads and 24 stores in pipeline!
— Enhanced branch prediction capability
®* Reduces the misprediction penalty associated with deeper pipelines
* Advanced branch prediction algorithm
® 4K-entry branch target array
® New cache subsystem
— First level caches
* Advanced Execution Trace Cache stores decoded instructions
* Execution Trace Cache removes decoder latency from main execution loops
* Execution Trace Cache integrates path of program execution flow into a single line
* Low latency data cache
— Second level cache
* Full-speed, unified 8-way Level 2 on-die Advance Transfer Cache
* Bandwidth and performance increases with processor frequency
® High-performance, quad-pumped bus interface to the Intel NetBurst microarchitecture system bus
— Supports quad-pumped, scalable bus clock to achieve up to 4X effective speed
— Capable of delivering up to 8.5 GBytes of bandwidth per second
® Superscalar issue to enable parallelism
® Expanded hardware registers with renaming to avoid register name space limitations
® 64-byte cache line size (transfers data up to two lines per sector)

Figure 2-2 is an overview of the Intel NetBurst microarchitecture. This microarchitecture pipeline is made up of
three sections: (1) the front end pipeline, (2) the out-of-order execution core, and (3) the retirement unit.

1. Intel 64 and IA-32 processors based on the Intel NetBurst microarchitecture at 90 nm process can handle more than 24 stores in
flight.

Vol.1T 2-9



INTEL® 64 AND IA-32 ARCHITECTURES

System Bus
< > —» Frequently used paths
A . Less frequently used
-> paths
Bus Unit
r—— - ————-= 1
3rd Level Cache |
| Optional
b e = — ¢ _____ 1
2nd Level Cache 1st Level Cache
8-Way 4-way
|
6 Front End \
Trace Cache 2RI
Fetch/Decode == Microcode ROM »| Out-Of-Order » Retirement
Core
7 f
Branch History Update
BTBs/Branch Prediction <
OoM16521

Figure 2-2. The Intel NetBurst Microarchitecture

2.2.2.1 The Front End Pipeline

The front end supplies instructions in program order to the out-of-order execution core. It performs a humber of
functions:

® Prefetches instructions that are likely to be executed

® Fetches instructions that have not already been prefetched

® Decodes instructions into micro-operations

® Generates microcode for complex instructions and special-purpose code
® Delivers decoded instructions from the execution trace cache

® Predicts branches using highly advanced algorithm

The pipeline is designed to address common problems in high-speed, pipelined microprocessors. Two of these
problems contribute to major sources of delays:

® time to decode instructions fetched from the target
® wasted decode bandwidth due to branches or branch target in the middle of cache lines

The operation of the pipeline’s trace cache addresses these issues. Instructions are constantly being fetched and
decoded by the translation engine (part of the fetch/decode logic) and built into sequences of micro-ops called
traces. At any time, multiple traces (representing prefetched branches) are being stored in the trace cache. The
trace cache is searched for the instruction that follows the active branch. If the instruction also appears as the first
instruction in a pre-fetched branch, the fetch and decode of instructions from the memory hierarchy ceases and the
pre-fetched branch becomes the new source of instructions (see Figure 2-2).

The trace cache and the translation engine have cooperating branch prediction hardware. Branch targets are
predicted based on their linear addresses using branch target buffers (BTBs) and fetched as soon as possible.

2-10 Vol. 1



INTEL® 64 AND IA-32 ARCHITECTURES

2.2.2.2 Out-0f-Order Execution Core

The out-of-order execution core’s ability to execute instructions out of order is a key factor in enabling parallelism.
This feature enables the processor to reorder instructions so that if one micro-op is delayed, other micro-ops may
proceed around it. The processor employs several buffers to smooth the flow of micro-ops.

The core is designed to facilitate parallel execution. It can dispatch up to six micro-ops per cycle (this exceeds trace
cache and retirement micro-op bandwidth). Most pipelines can start executing a new micro-op every cycle, so
several instructions can be in flight at a time for each pipeline. A humber of arithmetic logical unit (ALU) instruc-
tions can start at two per cycle; many floating-point instructions can start once every two cycles.

2.2.2.3 Retirement Unit

The retirement unit receives the results of the executed micro-ops from the out-of-order execution core and
processes the results so that the architectural state updates according to the original program order.

When a micro-op completes and writes its result, it is retired. Up to three micro-ops may be retired per cycle. The
Reorder Buffer (ROB) is the unit in the processor which buffers completed micro-ops, updates the architectural
state in order, and manages the ordering of exceptions. The retirement section also keeps track of branches and
sends updated branch target information to the BTB. The BTB then purges pre-fetched traces that are no longer
needed.

2.2.3 Intel® Core™ Microarchitecture

Intel Core microarchitecture introduces the following features that enable high performance and power-efficient
performance for single-threaded as well as multi-threaded workloads:

* Intel® Wide Dynamic Execution enable each processor core to fetch, dispatch, execute in high bandwidths
to support retirement of up to four instructions per cycle.

— Fourteen-stage efficient pipeline

— Three arithmetic logical units

— Four decoders to decode up to five instruction per cycle

— Macro-fusion and micro-fusion to improve front-end throughput

— Peak issue rate of dispatching up to six micro-ops per cycle

— Peak retirement bandwidth of up to 4 micro-ops per cycle

— Advanced branch prediction

— Stack pointer tracker to improve efficiency of executing function/procedure entries and exits

¢ Intel® Advanced Smart Cache delivers higher bandwidth from the second level cache to the core, and
optimal performance and flexibility for single-threaded and multi-threaded applications.

— Large second level cache up to 4 MB and 16-way associativity
— Optimized for multicore and single-threaded execution environments
— 256 bit internal data path to improve bandwidth from L2 to first-level data cache

* Intel® Smart Memory Access prefetches data from memory in response to data access patterns and reduces
cache-miss exposure of out-of-order execution.

— Hardware prefetchers to reduce effective latency of second-level cache misses
— Hardware prefetchers to reduce effective latency of first-level data cache misses
— Memory disambiguation to improve efficiency of speculative execution execution engine

* Intel® Advanced Digital Media Boost improves most 128-bit SIMD instruction with single-cycle throughput
and floating-point operations.

— Single-cycle throughput of most 128-bit SIMD instructions
— Up to eight floating-point operation per cycle

Vol.1 2-11



INTEL® 64 AND IA-32 ARCHITECTURES

— Three issue ports available to dispatching SIMD instructions for execution

Intel Core 2 Extreme, Intel Core 2 Duo processors and Intel Xeon processor 5100 series implement two processor
cores based on the Intel Core microarchitecture, the functionality of the subsystems in each core are depicted in
Figure 2-3.

| Instruction Fetch and PreDecode I{
| Instruction Queue |
Micro- +
code )| Decode |
ROM \ 4
1 ,l
Shared L2 Cache
| Rename/Alloc | Up to 10.7 GB/s
FSB
|
Retirement Unit
(Re-Order Buffer)
| Scheduler |
ALU ALU ALU
Branch FAdd FMul Load Store
MMX/SSE/FP MMX/SSE MMX/SSE
Move l l
L1D Cache and DTLB |

Figure 2-3. The Intel Core Microarchitecture Pipeline Functionality

2.2.3.1 The Front End

The front end of Intel Core microarchitecture provides several enhancements to feed the Intel Wide Dynamic
Execution engine:

® Instruction fetch unit prefetches instructions into an instruction queue to maintain steady supply of instruction
to the decode units.

® Four-wide decode unit can decode 4 instructions per cycle or 5 instructions per cycle with Macrofusion.

® Macrofusion fuses common sequence of two instructions as one decoded instruction (micro-ops) to increase
decoding throughput.

® Microfusion fuses common sequence of two micro-ops as one micro-ops to improve retirement throughput.
® Instruction queue provides caching of short loops to improve efficiency.
® Stack pointer tracker improves efficiency of executing procedure/function entries and exits.

® Branch prediction unit employs dedicated hardware to handle different types of branches for improved branch
prediction.

® Advanced branch prediction algorithm directs instruction fetch unit to fetch instructions likely in the architec-
tural code path for decoding.

2-12 Vol. 1



INTEL® 64 AND IA-32 ARCHITECTURES

2.2.3.2 Execution Core

The execution core of the Intel Core microarchitecture is superscalar and can process instructions out of order to
increase the overall rate of instructions executed per cycle (IPC). The execution core employs the following feature
to improve execution throughput and efficiency:

® Up to six micro-ops can be dispatched to execute per cycle

® Up to four instructions can be retired per cycle

® Three full arithmetic logical units

® SIMD instructions can be dispatched through three issue ports

® Most SIMD instructions have 1-cycle throughput (including 128-bit SIMD instructions)

® Up to eight floating-point operation per cycle

® Many long-latency computation operation are pipelined in hardware to increase overall throughput
® Reduced exposure to data access delays using Intel Smart Memory Access

2.24 Intel® Atom™ Microarchitecture

Intel Atom microarchitecture maximizes power-efficient performance for single-threaded and multi-threaded
workloads by providing:

¢ Advanced Micro-Ops Execution

— Single-micro-op instruction execution from decode to retirement, including instructions with register-only,
load, and store semantics.

— Sixteen-stage, in-order pipeline optimized for throughput and reduced power consumption.
— Dual pipelines to enable decode, issue, execution and retirement of two instructions per cycle.
— Advanced stack pointer to improve efficiency of executing function entry/returns.
* Intel® Smart Cache
— Second level cache is 512 KB and 8-way associativity.
— Optimized for multi-threaded and single-threaded execution environments
— 256 bit internal data path between L2 and L1 data cache improves high bandwidth.
® Efficient Memory Access

— Efficient hardware prefetchers to L1 and L2, speculatively loading data likely to be requested by processor
to reduce cache miss impact.

* Intel® Digital Media Boost
— Two issue ports for dispatching SIMD instructions to execution units.
— Single-cycle throughput for most 128-bit integer SIMD instructions
— Up to six floating-point operations per cycle
— Up to two 128-bit SIMD integer operations per cycle

— Safe Instruction Recognition (SIR) to allow long-latency floating-point operations to retire out of order with
respect to integer instructions.

2.2.5 Intel® Microarchitecture Code Name Nehalem

Intel microarchitecture code name Nehalem provides the foundation for many innovative features of Intel Core i7
processors. It builds on the success of 45nm Intel Core microarchitecture and provides the following feature
enhancements:

® Enhanced processor core

— Improved branch prediction and recovery from misprediction.

Vol.1 2-13



INTEL® 64 AND IA-32 ARCHITECTURES

Enhanced loop streaming to improve front end performance and reduce power consumption.
Deeper buffering in out-of-order engine to extract parallelism.
Enhanced execution units to provide acceleration in CRC, string/text processing and data shuffling.

®  Smart Memory Access

Integrated memory controller provides low-latency access to system memory and scalable memory
bandwidth

New cache hierarchy organization with shared, inclusive L3 to reduce snoop traffic
Two level TLBs and increased TLB size.

Fast unaligned memory access.

® HyperThreading Technology

Provides two hardware threads (logical processors) per core.

Takes advantage of 4-wide execution engine, large L3, and massive memory bandwidth.

® Dedicated Power management Innovations

2.2.6
Intel®

Integrated microcontroller with optimized embedded firmware to manage power consumption.
Embedded real-time sensors for temperature, current, and power.

Integrated power gate to turn off/on per-core power consumption

Versatility to reduce power consumption of memory, link subsystems.

Intel® Microarchitecture Code Name Sandy Bridge

microarchitecture code name Sandy Bridge builds on the successes of Intel® Core™ microarchitecture and

Intel microarchitecture code name Nehalem. It offers the following innovative features:
® Intel Advanced Vector Extensions (Intel AVX)

256-bit floating-point instruction set extensions to the 128-bit Intel Streaming SIMD Extensions, providing
up to 2X performance benefits relative to 128-bit code.

Non-destructive destination encoding offers more flexible coding techniques.

Supports flexible migration and co-existence between 256-bit AVX code, 128-bit AVX code and legacy 128-
bit SSE code.

® Enhanced front-end and execution engine

New decoded Icache component that improves front-end bandwidth and reduces branch misprediction
penalty.

Advanced branch prediction.

Additional macro-fusion support.

Larger dynamic execution window.

Multi-precision integer arithmetic enhancements (ADC/SBB, MUL/IMUL).

LEA bandwidth improvement.

Reduction of general execution stalls (read ports, writeback conflicts, bypass latency, partial stalls).
Fast floating-point exception handling.

XSAVE/XRSTORE performance improvements and XSAVEOPT new instruction.

® Cache hierarchy improvements for wider data path

Doubling of bandwidth enabled by two symmetric ports for memory operation.
Simultaneous handling of more in-flight loads and stores enabled by increased buffers.
Internal bandwidth of two loads and one store each cycle.

2-14 Vol. 1



INTEL® 64 AND IA-32 ARCHITECTURES

— Improved prefetching.
— High bandwidth low latency LLC architecture.
— High bandwidth ring architecture of on-die interconnect.

For additional information on Intel® Advanced Vector Extensions (AVX), see Section 5.13, “Intel® Advanced Vector
Extensions (Intel® AVX)” and Chapter 14, “Programming with AVX, FMA and AVX2” in Intel® 64 and 1A-32 Archi-
tectures Software Developer’'s Manual, Volume 1.

2.2.7 SIMD Instructions

Beginning with the Pentium II and Pentium with Intel MMX technology processor families, six extensions have been
introduced into the Intel 64 and IA-32 architectures to perform single-instruction multiple-data (SIMD) operations.
These extensions include the MMX technology, SSE extensions, SSE2 extensions, SSE3 extensions, Supplemental
Streaming SIMD Extensions 3, and SSE4. Each of these extensions provides a group of instructions that perform
SIMD operations on packed integer and/or packed floating-point data elements.

SIMD integer operations can use the 64-bit MMX or the 128-bit XMM registers. SIMD floating-point operations use
128-bit XMM registers. Figure 2-4 shows a summary of the various SIMD extensions (MMX technology, SSE, SSE2,
SSE3, SSSE3, and SSE4), the data types they operate on, and how the data types are packed into MMX and XMM
registers.

The Intel MMX technology was introduced in the Pentium II and Pentium with MMX technology processor families.
MMX instructions perform SIMD operations on packed byte, word, or doubleword integers located in MMX registers.
These instructions are useful in applications that operate on integer arrays and streams of integer data that lend
themselves to SIMD processing.

SSE extensions were introduced in the Pentium Il processor family. SSE instructions operate on packed single-
precision floating-point values contained in XMM registers and on packed integers contained in MMX registers.
Several SSE instructions provide state management, cache control, and memory ordering operations. Other SSE
instructions are targeted at applications that operate on arrays of single-precision floating-point data elements (3-
D geometry, 3-D rendering, and video encoding and decoding applications).

SSE2 extensions were introduced in Pentium 4 and Intel Xeon processors. SSE2 instructions operate on packed
double-precision floating-point values contained in XMM registers and on packed integers contained in MMX and
XMM registers. SSE2 integer instructions extend IA-32 SIMD operations by adding new 128-bit SIMD integer oper-
ations and by expanding existing 64-bit SIMD integer operations to 128-bit XMM capability. SSE2 instructions also
provide new cache control and memory ordering operations.

SSE3 extensions were introduced with the Pentium 4 processor supporting Hyper-Threading Technology (built on
90 nm process technology). SSE3 offers 13 instructions that accelerate performance of Streaming SIMD Exten-
sions technology, Streaming SIMD Extensions 2 technology, and x87-FP math capabilities.

SSSE3 extensions were introduced with the Intel Xeon processor 5100 series and Intel Core 2 processor family.
SSSE3 offer 32 instructions to accelerate processing of SIMD integer data.

SSE4 extensions offer 54 instructions. 47 of them are referred to as SSE4.1 instructions. SSE4.1 are introduced
with Intel Xeon processor 5400 series and Intel Core 2 Extreme processor QX9650. The other 7 SSE4 instructions
are referred to as SSE4.2 instructions.

AESNI and PCLMULQDQ introduce 7 new instructions. Six of them are primitives for accelerating algorithms based
on AES encryption/decryption standard, referred to as AESNI.

The PCLMULQDQ instruction accelerates general-purpose block encryption, which can perform carry-less multipli-
cation for two binary numbers up to 64-bit wide.

Intel 64 architecture allows four generations of 128-bit SIMD extensions to access up to 16 XMM registers. IA-32
architecture provides 8 XMM registers.

Intel® Advanced Vector Extensions offers comprehensive architectural enhancements over previous generations of
Streaming SIMD Extensions. Intel AVX introduces the following architectural enhancements:

® Support for 256-bit wide vectors and SIMD register set.

® 256-bit floating-point instruction set enhancement with up to 2X performance gain relative to 128-bit
Streaming SIMD extensions.

Vol.1 2-15



INTEL® 64 AND IA-32 ARCHITECTURES

® Instruction syntax support for generalized three-operand syntax to improve instruction programming flexibility
and efficient encoding of new instruction extensions.

® Enhancement of legacy 128-bit SIMD instruction extensions to support three operand syntax and to simplify
compiler vectorization of high-level language expressions.

® Support flexible deployment of 256-bit AVX code, 128-bit AVX code, legacy 128-bit code and scalar code.

In addition to performance considerations, programmers should also be cognizant of the implications of VEX-
encoded AVX instructions with the expectations of system software components that manage the processor state
components enabled by XCRO. For additional information see Section 2.3.10.1, “Vector Length Transition and
Programming Considerations” in Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2A.

See also:
® Section 5.4, "MMX™ Instructions,” and Chapter 9, “"Programming with Intel® MMX™ Technology”

® Section 5.5, "SSE Instructions,” and Chapter 10, “Programming with Intel® Streaming SIMD Extensions
(Intel® SSE)”

® Section 5.6, "SSE2 Instructions,” and Chapter 11, “"Programming with Intel® Streaming SIMD Extensions 2
(Intel® SSE2)”

® Section 5.7, "SSE3 Instructions”, Section 5.8, "Supplemental Streaming SIMD Extensions 3 (SSSE3) Instruc-
tions”, Section 5.9, “"SSE4 Instructions”, and Chapter 12, “Programming with Intel® SSE3, SSSE3, Intel®
SSE4 and Intel® AESNI”

2-16 Vol. 1



INTEL® 64 AND IA-32 ARCHITECTURES

SIMD Extension Register Layout Data Type

MMX Registers
MMX Technology - SSSE3 I:I:I:I:I:I]Il 8 Packed Byte Integers

|:|:|:|:| 4 Packed Word Integers
|:|:| 2 Packed Doubleword Integers

Quadword

SSE - AVX

XMM Registers

4 Packed Single-Precision
| | | | | Floating-Point Values

2 Packed Double-Precision
| | | Floating-Point Values

||||||||||||||||| 16 Packed Byte Integers

8 Packed Word Integers

4 Packed Doubleword
Integers

|
| 2 Quadword Integers
| Double Quadword

AVX
YMM Registers

[T T T T T [ T | 8PackedSPFPValues

| | | [ | 4Packed DP FP Values
| | | 2128+bitData

Figure 2-4. SIMD Extensions, Register Layouts, and Data Types

2.2.8 Intel® Hyper-Threading Technology

Intel Hyper-Threading Technology (Intel HT Technology) was developed to improve the performance of IA-32
processors when executing multi-threaded operating system and application code or single-threaded applications
under multi-tasking environments. The technology enables a single physical processor to execute two or more
separate code streams (threads) concurrently using shared execution resources.

Intel HT Technology is one form of hardware multi-threading capability in IA-32 processor families. It differs from
multi-processor capability using separate physically distinct packages with each physical processor package mated
with a physical socket. Intel HT Technology provides hardware multi-threading capability with a single physical
package by using shared execution resources in a processor core.

Architecturally, an IA-32 processor that supports Intel HT Technology consists of two or more logical processors,
each of which has its own IA-32 architectural state. Each logical processor consists of a full set of IA-32 data regis-
ters, segment registers, control registers, debug registers, and most of the MSRs. Each also has its own advanced
programmable interrupt controller (APIC).

Figure 2-5 shows a comparison of a processor that supports Intel HT Technology (implemented with two logical
processors) and a traditional dual processor system.

Vol.1 2-17



INTEL® 64 AND IA-32 ARCHITECTURES

IA-32 Processor Supporting
Hyper-Threading Technology

AS| |AS |AS| |AS|

Traditional Multiple Processor (MP) System

Processor Core Processor Core Processor Core
1A-32 processor 1A-32 processor IA-32 processor
Two logical Each processor is a
processors that share separate physical
a single core package
ya N ya N
N\ 7 N\ 7

AS = |A-32 Architectural State

OM16522

Figure 2-5. Comparison of an IA-32 Processor Supporting Hyper-Threading Technology and a Traditional Dual
Processor System

Unlike a traditional MP system configuration that uses two or more separate physical IA-32 processors, the logical
processors in an IA-32 processor supporting Intel HT Technology share the core resources of the physical
processor. This includes the execution engine and the system bus interface. After power up and initialization, each
logical processor can be independently directed to execute a specified thread, interrupted, or halted.

Intel HT Technology leverages the process and thread-level parallelism found in contemporary operating systems
and high-performance applications by providing two or more logical processors on a single chip. This configuration
allows two or more threads! to be executed simultaneously on each a physical processor. Each logical processor
executes instructions from an application thread using the resources in the processor core. The core executes these
threads concurrently, using out-of-order instruction scheduling to maximize the use of execution units during each
clock cycle.

2.2.8.1 Some Implementation Notes

All Intel HT Technology configurations require:

® A processor that supports Intel HT Technology

® A chipset and BIOS that utilize the technology

® Operating system optimizations

See http://www.intel.com/products/ht/hyperthreading_more.htm for information.

At the firmware (BIOS) level, the basic procedures to initialize the logical processors in a processor supporting Intel
HT Technology are the same as those for a traditional DP or MP platform. The mechanisms that are described in the
Multiprocessor Specification, Version 1.4 to power-up and initialize physical processors in an MP system also apply
to logical processors in a processor that supports Intel HT Technology.

An operating system designed to run on a traditional DP or MP platform may use CPUID to determine the presence
of hardware multi-threading support feature and the number of logical processors they provide.

Although existing operating system and application code should run correctly on a processor that supports Intel HT
Technology, some code modifications are recommended to get the optimum benefit. These modifications are
discussed in Chapter 7, "Multiple-Processor Management,” Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 3A.

1. In the remainder of this document, the term “thread” will be used as a general term for the terms “process” and “thread.”

2-18 Vol. 1



INTEL® 64 AND IA-32 ARCHITECTURES

2.2.9 Multi-Core Technology

Multi-core technology is another form of hardware multi-threading capability in IA-32 processor families. Multi-
core technology enhances hardware multi-threading capability by providing two or more execution cores in a phys-
ical package.

The Intel Pentium processor Extreme Edition is the first member in the IA-32 processor family to introduce multi-
core technology. The processor provides hardware multi-threading support with both two processor cores and Intel
Hyper-Threading Technology. This means that the Intel Pentium processor Extreme Edition provides four logical
processors in a physical package (two logical processors for each processor core). The Dual-Core Intel Xeon
processor features multi-core, Intel Hyper-Threading Technology and supports multi-processor platforms.

The Intel Pentium D processor also features multi-core technology. This processor provides hardware multi-
threading support with two processor cores but does not offer Intel Hyper-Threading Technology. This means that
the Intel Pentium D processor provides two logical processors in a physical package, with each logical processor
owning the complete execution resources of a processor core.

The Intel Core 2 processor family, Intel Xeon processor 3000 series, Intel Xeon processor 5100 series, and Intel
Core Duo processor offer power-efficient multi-core technology. The processor contains two cores that share a
smart second level cache. The Level 2 cache enables efficient data sharing between two cores to reduce memory
traffic to the system bus.

Intel Core Duo Processor
Intel Core 2 Duo Processor

Intel Pentium dual-core Processor Pentium D Processor

Architectual State

Architectual State

Execution Engine

Execution Engine

Local APIC

Local APIC

Second Level Cache

Architectual State

Architectual State

Execution Engine

Execution Engine

Local APIC

Local APIC

Bus Interface

Bus Interface

Bus Interface

: !

System Bus

System Bus
Pentium Processor Extreme Edition

Architectual
State

Architectual
State

Architectual
State

Architectual
State

Execution Engine Execution Engine

Local APIC Local APIC Local APIC Local APIC

Bus Interface Bus Interface

1

System Bus

OM19809

Figure 2-6. Intel 64 and IA-32 Processors that Support Dual-Core

The Pentium® dual-core processor is based on the same technology as the Intel Core 2 Duo processor family.

The Intel Xeon processor 7300, 5300 and 3200 series, Intel Core 2 Extreme Quad-Core processor, and Intel Core
2 Quad processors support Intel quad-core technology. The Quad-core Intel Xeon processors and the Quad-Core
Intel Core 2 processor family are also in Figure 2-7.

Vol.1 2-19



INTEL® 64 AND IA-32 ARCHITECTURES

Intel Core 2 Extreme Quad-core Processor
Intel Core 2 Quad Processor
Intel Xeon Processor 3200 Series
Intel Xeon Processor 5300 Series

Architectual State

Architectual State

Architectual State

Architectual State

Execution Engine

Execution Engine

Execution Engine

Execution Engine

Local APIC

Local APIC

Local APIC

Local APIC

Second Level Cache Second Level Cache

Bus Interface Bus Interface

System Bus

OM19810

Figure 2-7. Intel 64 Processors that Support Quad-Core

Intel Core i7 processors support Intel quad-core technology, Intel HyperThreading Technology, provides Intel
QuickPath interconnect link to the chipset and have integrated memory controller supporting three channel to
DDR3 memory.

Intel Core i7 Processor

Logical | Logical | Logical | Logical | Logical | Logical | Logical | Logical
Proces | Proces | Proces | Proces | Proces | Proces | Proces | Proces
sor sor sor sor sor sor sor sor
L1 and L2 L1 and L2 L1 and L2 L1 and L2

Execution Engine | Execution Engine | Execution Engine | Execution Engine

Third Level Cache

QuickPath Interconnect (QPI) Interface, Integrated Memory Controller

QPI IMC

DDR3

Chipset
OM19810b

Figure 2-8. Intel Core i7 Processor

2-20 Vol. 1



INTEL® 64 AND IA-32 ARCHITECTURES

2.2.10 Intel® 64 Architecture

Intel 64 architecture increases the linear address space for software to 64 bits and supports physical address space
up to 46 bits. The technology also introduces a new operating mode referred to as IA-32e mode.

IA-32e mode operates in one of two sub-modes: (1) compatibility mode enables a 64-bit operating system to run
most legacy 32-bit software unmodified, (2) 64-bit mode enables a 64-bit operating system to run applications
written to access 64-bit address space.

In the 64-bit mode, applications may access:

® 64-bit flat linear addressing

® 8 additional general-purpose registers (GPRs)

® 8 additional registers for streaming SIMD extensions (SSE, SSE2, SSE3 and SSSE3)
® 64-bit-wide GPRs and instruction pointers

® uniform byte-register addressing

® fast interrupt-prioritization mechanism

® anew instruction-pointer relative-addressing mode

An Intel 64 architecture processor supports existing IA-32 software because it is able to run all non-64-bit legacy
modes supported by IA-32 architecture. Most existing IA-32 applications also run in compatibility mode.

2.2.11 Intel® Virtualization Technology (Intel® VT)

Intel® Virtualization Technology for Intel 64 and IA-32 architectures provide extensions that support virtualization.
The extensions are referred to as Virtual Machine Extensions (VMX). An Intel 64 or IA-32 platform with VMX can
function as multiple virtual systems (or virtual machines). Each virtual machine can run operating systems and
applications in separate partitions.

VMX also provides programming interface for a new layer of system software (called the Virtual Machine Monitor
(VMM)) used to manage the operation of virtual machines. Information on VMX and on the programming of VMMs
is in Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3C.

Intel Core i7 processor provides the following enhancements to Intel Virtualization Technology:

® Virtual processor ID (VPID) to reduce the cost of VMM managing transitions.

® Extended page table (EPT) to reduce the number of transitions for VMM to manage memory virtualization.
® Reduced latency of VM transitions.

2.3 INTEL® 64 AND IA-32 PROCESSOR GENERATIONS

In the mid-1960s, Intel cofounder and Chairman Emeritus Gordon Moore had this observation: “... the number of
transistors that would be incorporated on a silicon die would double every 18 months for the next several years.”
Over the past three and half decades, this prediction known as “Moore's Law” has continued to hold true.

The computing power and the complexity (or roughly, the number of transistors per processor) of Intel architecture
processors has grown in close relation to Moore's law. By taking advantage of new process technology and new
microarchitecture designs, each new generation of IA-32 processors has demonstrated frequency-scaling head-
room and new performance levels over the previous generation processors.

Vol.1 2-21



INTEL® 64 AND IA-32 ARCHITECTURES

The key features of the Intel Pentium 4 processor, Intel Xeon processor, Intel Xeon processor MP, Pentium lli
processor, and Pentium Il Xeon processor with advanced transfer cache are shown in Table 2-1. Older generation
IA-32 processors, which do not employ on-die Level 2 cache, are shown in Table 2-2.

Table 2-1. Key Features of Most Recent IA-32 Processors

Intel Date Micro-architecture | Top-Bin Clock | Tran- Register System Max. On-Die
Processor Intro- Fre-quency at | sistors Sizes! Bus Band- | Extern. Caches?
duced Intro- width Addr.
duction Space
Intel Pentium | 2004 Intel Pentium M 2.00 GHz 140 M GP: 32 3.2 GB/s 4GB L1: 64 KB
M Processor FPU: 80 L2: 2 MB
Processor MMX: 64
7553 XMM: 128
Intel Core Duo | 2006 Improved Intel 2.16 GHz 152M GP: 32 5.3 GB/s 4GB L1:64 KB
Processor Pentium M FPU: 80 L2: 2 MB
T26003 Processor MMX: 64 (2MB Total)
Microarchitecture; XMM: 128
Dual Core;
Intel Smart Cache,
Advanced Thermal
Manager
Intel Atom 2008 Intel Atom 1.86 GHz - 47M GP: 32 Upto4.2 |4GB L1:56 KB*
Processor Microarchitecture; | 800 MHz FPU: 80 GB/s L2: 512KB
Z5xx series Intel Virtualization MMX: 64
Technology. XMM: 128
NOTES:
1. The register size and external data bus size are given in bits.
2. First level cache is denoted using the abbreviation L1, 2nd level cache is denoted as L2. The size
of L1 includes the first-level data cache and the instruction cache where applicable, but
does not include the trace cache.
3. Intel processor numbers are not a measure of performance. Processor numbers differentiate
features within each processor family, not across different processor families.
See http://www.intel.com/products/processor_number for details.
4. In Intel Atom Processor, the size of L1 instruction cache is 32 KBytes, L1 data cache is 24 KBytes.
Table 2-2. Key Features of Most Recent Intel 64 Processors
Intel Date Micro-architec- Highest Tran- Register System Max. On-Die
Processor Intro- ture Processor sistors | Sizes Bus/QPI Extern. Caches
duced Base Fre- Link Addr.
quency at Speed Space
Intro-
duction
64-bit Intel 2004 Intel NetBurst 3.60 GHz 125M | GP: 32,64 6.4 GB/s 64 GB 12K pop
Xeon Microarchitecture; FPU: 80 Execution
Processor Intel Hyper- MMX: 64 Trace Cache;
with 800 MHz Threading XMM: 128 16 KB L1;
System Bus Technology; Intel 1MBL2
64 Architecture
64-bit Intel 2005 Intel NetBurst 3.33 GHz 675M GP: 32,64 53GB/s! [1024GB | 12K pop
Xeon Microarchitecture; FPU: 80 (17B) Execution
Processor MP Intel Hyper- MMX: 64 Trace Cache;
with 8MB L3 Threading XMM: 128 16 KBLT;
Technology; Intel 1MBLZ,
64 Architecture 8MB L3

2-22 Vol. 1




Table 2-2. Key Features of Most Recent Intel 64 Processors (Contd.)

INTEL® 64 AND IA-32 ARCHITECTURES

Intel Date Micro-architec- Highest Tran- Register System Max. On-Die
Processor Intro- ture Processor sistors | Sizes Bus/QPI Extern. Caches
duced Base Fre- Link Addr.
quency at Speed Space
Intro-
duction
Intel Pentium | 2005 Intel NetBurst 3.73 GHz 164M | GP:32,64 8.5 GB/s 64 GB 12K pop
4 Microarchitecture; FPU: 80 Execution
Processor Intel Hyper- MMX: 64 Trace Cache;
Extreme Threading XMM: 128 16 KB L1;
Edition Technology; Intel 2MBL2
Supporting 64 Architecture
Hyper-
Threading
Technology
Intel Pentium | 2005 Intel NetBurst 3.20 GHz 230 M GP: 32,64 6.4 GB/s 64 GB 12K pop
Processor Microarchitecture; FPU: 80 Execution
Extreme Intel Hyper- MMX: 64 Trace Cache;
Edition 840 Threading XMM: 128 16 KBLT;
Technology; Intel TMB L2
64 Architecture; (2MB Total)
Dual-core 2
Dual-CoreIntel | 2005 Intel NetBurst 3.00 GHz 321M GP: 32,64 6.4 GB/s 64 GB 12K pop
Xeon Microarchitecture; FPU: 80 Execution
Processor Intel Hyper- MMX: 64 Trace Cache;
7041 Threading XMM: 128 16 KB LT;
Technology; Intel 2MB L2
64 Architecture; (4MB Total)
Dual-core 3
Intel Pentium | 2005 Intel NetBurst 3.80 GHz 164 M GP: 32,64 6.4 GB/s 64 GB 12K pop
4 Microarchitecture; FPU: 80 Execution
Processor 672 Intel Hyper- MMX: 64 Trace Cache;
Threading XMM: 128 16 KB LT;
Technology; Intel 2MB L2
64 Architecture;
Intel Virtualization
Technology.
Intel Pentium | 2006 Intel NetBurst 3.46 GHz 376M GP: 32,64 8.5 GB/s 64 GB 12K pop
Processor Microarchitecture; FPU: 80 Execution
Extreme Intel 64 MMX: 64 Trace Cache;
Edition 955 Architecture; Dual XMM: 128 16 KB LT;
Core; 2MB L2
Intel Virtualization (4MB Total)
Technology.
Intel Core 2 2006 Intel Core 2.93 GHz 291M | GP: 32,64 8.5 GB/s 64 GB L1:64 KB
Extreme Microarchitecture; FPU: 80 L2: 4MB
Processor Dual Core; MMX: 64 (4MB Total)
X6800 Intel 64 XMM: 128

Architecture;

Intel Virtualization
Technology.

Vol.1 2-23




INTEL® 64 AND IA-32 ARCHITECTURES

Table 2-2. Key Features of Most Recent Intel 64 Processors (Contd.)

Intel Date Micro-architec- Highest Tran- Register System Max. On-Die
Processor Intro- ture Processor sistors | Sizes Bus/QPI Extern. Caches
duced Base Fre- Link Addr.
quency at Speed Space
Intro-
duction
Intel Xeon 2006 Intel Core 3.00 GHz 291M GP: 32,64 10.6GB/s | 64GB L1:64 KB
Processor Microarchitecture; FPU: 80 L2:4MB
5160 Dual Core; MMX: 64 (4MB Total)
Intel 64 XMM: 128
Architecture;
Intel Virtualization
Technology.
Intel Xeon 2006 Intel NetBurst 3.40 GHz 1.3B GP: 32,64 128GB/s |64 GB L1:64 KB
Processor Microarchitecture; FPU: 80 L2: 1TMB
7140 Dual Core; MMX: 64 (2MB Total)
Intel 64 XMM: 128 L3: 16 MB
Architecture; (16MB Total)
Intel Virtualization
Technology.
Intel Core 2 2006 Intel Core 2.66 GHz 582M GP: 32,64 8.5 GB/s 64 GB L1:64 KB
Extreme Microarchitecture; FPU: 80 L2:4MB
Processor Quad Core; MMX: 64 (4MB Total)
QX6700 Intel 64 XMM: 128
Architecture;
Intel Virtualization
Technology.
Quad-core 2006 Intel Core 2.66 GHz 582 M GP: 32,64 106 GB/s | 256 GB L1:64 KB
Intel Xeon Microarchitecture; FPU: 80 L2: 4MB (8
Processor Quad Core; MMX: 64 MB Total)
5355 Intel 64 XMM: 128
Architecture;
Intel Virtualization
Technology.
Intel Core 2 2007 Intel Core 3.00 GHz 291 M GP: 32,64 106 GB/s |64 GB L1:64 KB
Duo Processor Microarchitecture; FPU: 80 L2: 4MB
€6850 Dual Core; MMX: 64 (4MB Total)
Intel 64 XMM: 128
Architecture;
Intel Virtualization
Technology;
Intel Trusted
Execution
Technology
Intel Xeon 2007 Intel Core 2.93 GHz 582M | GP:32,64 8.5 GB/s 1024 GB | L1:64 KB
Processor Microarchitecture; FPU: 80 L2:4MB
7350 Quad Core; MMX: 64 (8MB Total)
Intel 64 XMM: 128

Architecture;

Intel Virtualization
Technology.

2-24 Vol. 1




INTEL® 64 AND IA-32 ARCHITECTURES

Table 2-2. Key Features of Most Recent Intel 64 Processors (Contd.)

Intel Date Micro-architec- Highest Tran- Register System Max. On-Die
Processor Intro- ture Processor sistors | Sizes Bus/QPI Extern. Caches
duced Base Fre- Link Addr.
quency at Speed Space
Intro-
duction
Intel Xeon 2007 Enhanced Intel 3.00 GHz 820M |GP:32,64 128 GB/s | 256 GB L1:64 KB
Processor Core FPU: 80 L2: 6MB
5472 Microarchitecture; MMX: 64 (12MB Total)
Quad Core; XMM: 128
Intel 64
Architecture;
Intel Virtualization
Technology.
Intel Atom 2008 Intel Atom 2.0-1.60 47 M GP: 32,64 Upto4.2 Up to L1:56 KB*
Processor Microarchitecture; | GHz FPU: 80 GB/s 64GB L2:512KB
Intel 64 MMX: 64
Architecture; XMM: 128
Intel Virtualization
Technology.
Intel Xeon 2008 Enhanced Intel 2.67 GHz 198B GP: 32,64 8.5 GB/s 1024 GB | L1:64 KB
Processor Core FPU: 80 L2: 3MB
7460 Microarchitecture; MMX: 64 (SMB Total)
Six Cores; XMM: 128 L3: 16MB
Intel 64
Architecture;
Intel Virtualization
Technology.
Intel Atom 2008 Intel Atom 1.60 GHz 94 M GP: 32,64 Upto4.2 Up to L1: 56 KB>
Processor 330 Microarchitecture; FPU: 80 GB/s 64GB L2: 512KB
Intel 64 MMX: 64 (TMB Total)
Architecture; XMM: 128
Dual core;
Intel Virtualization
Technology.
Intel Corei7- | 2008 Intel 3.20 GHz 731 M | GP: 32,64 QP1:64 64 GB L1:64 KB
965 microarchitecture FPU: 80 GT/s; L2: 256KB
Processor code name MMX: 64 Memory: L3: 8MB
Extreme Nehalem; XMM: 128 25 GB/s
Edition Quadcore;
HyperThreading
Technology; Intel
QPI; Intel 64

Architecture;

Intel Virtualization
Technology.

Vol.1 2-25



INTEL® 64 AND IA-32 ARCHITECTURES

Table 2-2. Key Features of Most Recent Intel 64 Processors (Contd.)

Intel Date Micro-architec- Highest Tran- Register System Max. On-Die
Processor Intro- ture Processor sistors | Sizes Bus/QPI Extern. Caches
duced Base Fre- Link Addr.
quency at Speed Space
Intro-
duction
Intel Corei7- | 2010 Intel Turbo Boost | 2.66 GHz 383M | GP:32,64 64 GB L1:64 KB
620M Technology, Intel FPU: 80 L2: 256KB
Processor microarchitecture MMX: 64 L3: 4MB
code name XMM: 128
Westmere;
Dualcore;
HyperThreading
Technology; Intel
64 Architecture;
Intel Virtualization
Technology.,
Integrated graphics
Intel Xeon- 2010 Intel Turbo Boost 3.33 GHz 1.1B GP: 32,64 QPl: 6.4 1TB L1:64 KB
Processor Technology, Intel FPU: 80 GT/s; 32 L2: 256KB
5680 microarchitecture MMX: 64 GB/s L3: 12MB
code name XMM: 128
Westmere; Six core;
HyperThreading
Technology; Intel
64 Architecture;
Intel Virtualization
Technology.
Intel Xeon- 2010 Intel Turbo Boost | 2.26 GHz 2.3B GP: 32,64 QP1:6.4 16 TB L1:64 KB
Processor Technology, Intel FPU: 80 GT/s; L2: 256KB
7560 microarchitecture MMX: 64 Memory: L3: 24MB
code name XMM: 128 76 GB/s
Nehalem; Eight
core;
HyperThreading
Technology; Intel
64 Architecture;
Intel Virtualization
Technology.
Intel Corei7- | 2011 Intel Turbo Boost | 3.40 GHz 995M | GP: 32,64 DMI: 5 64 GB L1:64 KB
2600K Technology, Intel FPU: 80 GT/s; L2: 256KB
Processor microarchitecture MMX: 64 Memory: L3: 8MB
code name Sandy XMM: 128 21 GB/s
Bridge; Four core; YMM: 256

HyperThreading
Technology; Intel
64 Architecture;

Intel Virtualization
Technology.,
Processor graphics,
Quicksync Video

2-26 Vol. 1




Table 2-2. Key Features of Most Recent Intel 64 Processors (Contd.)

INTEL® 64 AND IA-32 ARCHITECTURES

Intel Date Micro-architec- Highest Tran- Register System Max. On-Die
Processor Intro- ture Processor sistors | Sizes Bus/QPI Extern. Caches
duced Base Fre- Link Addr.
quency at Speed Space
Intro-
duction
Intel Xeon- 2011 Intel Turbo Boost | 3.50 GHz GP: 32,64 DMI: 5 17TB L1:64 KB
Processor €3- Technology, Intel FPU: 80 GT/s; L2: 256KB
1280 microarchitecture MMX: 64 Memory: L3: 8MB
code name Sandy XMM: 128 21 GB/s
Bridge; Four core; YMM: 256
HyperThreading
Technology; Intel
64 Architecture;
Intel Virtualization
Technology.
Intel Xeon- 2011 Intel Turbo Boost 2.40 GHz 2.2B GP: 32,64 QP 6.4 16TB L1:64 KB
Processor E7- Technology, Intel FPU: 80 GT/s; L2: 256KB
8870 microarchitecture MMX: 64 Memory: L3: 30MB
code name XMM: 128 102 GB/s

Westmere; Ten
core;
HyperThreading
Technology; Intel
64 Architecture;

Intel Virtualization
Technology.

NOTES:

1. The 64-bit Intel Xeon Processor MP with an 8-MByte L3 supports a multi-processor platform with a dual system bus; this creates a
platform bandwidth with 10.6 GBytes.

2. In Intel Pentium Processor Extreme Edition 840, the size of on-die cache is listed for each core. The total size of L2 in the physical
package in 2 MBytes.

3. In Dual-Core Intel Xeon Processor 7041, the size of on-die cache is listed for each core. The total size of L2 in the physical package in

4 MBytes.

4. In Intel Atom Processor, the size of L1 instruction cache is 32 KBytes, L1 data cache is 24 KBytes.
5. In Intel Atom Processor, the size of L1 instruction cache is 32 KBytes, L1 data cache is 24 KBytes.

Vol. 1 2-27



INTEL® 64 AND IA-32 ARCHITECTURES

Table 2-3. Key Features of Previous Generations of IA-32 Processors

Intel Date Max. Clock Tran- Register Ext. Data Max. Caches
Processor Intro- Frequency/ sistors Sizes' Bus Size? Extern.
duced Technology at Addr.
Introduction Space
8086 1978 8 MHz 29K 16 GP 16 1MB None
Intel 286 1982 12.5 MHz 134 K 16 GP 16 16 MB Note 3
Intel386 DX 1985 20 MHz 275K 32 GP 32 4GB Note 3
Processor
Intel486 DX 1989 25 MHz 1.2M 32 GP 32 4GB L1:8KB
Processor 80 FPU
Pentium Processor 1993 60 MHz 31M 32 GP 64 4GB L1:16 KB
80 FPU
Pentium Pro 1995 200 MHz 55M 32 GP 64 64 GB L1:16 KB
Processor 80 FPU L2: 256 KB or
512 KB
Pentium Il Processor | 1997 266 MHz 7M 32 GP 64 64 GB L1:32KB
80 FPU L2: 256 KB or
64 MMX 512 KB
Pentium Ill Processor | 1999 500 MHz 82M 32 GP 64 64 GB L1:32KB
80 FPU L2: 512 KB
64 MMX
128 XMM
Pentium Ill and 1999 700 MHz 28 M 32 GP 64 64 GB L1:32KB
Pentium Ill Xeon 80 FPU L2: 256 KB
Processors 64 MMX
128 XMM
Pentium 4 Processor | 2000 1.50 GHz, Intel 42 M 32 GP 64 64 GB 12K pop
NetBurst 80 FPU Execution
Microarchitecture 64 MMX Trace Cache;
128 XMM L1:8KB
L2: 256 KB
Intel Xeon Processor | 2001 1.70 GHz, Intel 42 M 32 GP 64 64 GB 12K pop
NetBurst 80 FPU Execution
Microarchitecture 64 MMX Trace Cache;
128 XMM L1:8KB
L2:512KB
Intel Xeon Processor | 2002 2.20 GHz, Intel 55M 32 GP 64 64 GB 12K pop
NetBurst 80 FPU Execution
Microarchitecture, 64 MMX Trace Cache;
HyperThreading 128 XMM L1: 8KB
Technology L2:512KB
Pentium M Processor | 2003 1.60 GHz, Intel 77M 32 GP 64 4GB L1: 64KB
NetBurst 80 FPU L2: 1 MB
Microarchitecture 64 MMX
128 XMM

2-28 Vol. 1




INTEL® 64 AND IA-32 ARCHITECTURES

Table 2-3. Key Features of Previous Generations of IA-32 Processors (Contd.)

Intel Pentium 4 2004 3.40 GHz, Intel 125M 32GP 64 64 GB 12K pop
Processor NetBurst 80 FPU Execution
Supporting Hyper- Microarchitecture, 64 MMX Trace Cache;
Threading HyperThreading 128 XMM L1: 16KB
Technology at 90 nm Technology L2: 1 MB
process
NOTE:

1. The register size and external data bus size are given in bits. Note also that each 32-bit general-purpose (GP) registers can be

addressed as an 8- or a 16-bit data registers in all of the processors.

2. Internal data paths are 2 to 4 times wider than the external data bus for each processor.

Vol.1 2-29




INTEL® 64 AND IA-32 ARCHITECTURES

2-30 Vol. 1



CHAPTER 3
BASIC EXECUTION ENVIRONMENT

This chapter describes the basic execution environment of an Intel 64 or IA-32 processor as seen by assembly-
language programmers. It describes how the processor executes instructions and how it stores and manipulates
data. The execution environment described here includes memory (the address space), general-purpose data
registers, segment registers, the flag register, and the instruction pointer register.

3.1 MODES OF OPERATION

The IA-32 architecture supports three basic operating modes: protected mode, real-address mode, and system
management mode. The operating mode determines which instructions and architectural features are accessible:

® Protected mode — This mode is the native state of the processor. Among the capabilities of protected mode
is the ability to directly execute “real-address mode” 8086 software in a protected, multi-tasking environment.
This feature is called virtual-8086 mode, although it is not actually a processor mode. Virtual-8086 mode is
actually a protected mode attribute that can be enabled for any task.

® Real-address mode — This mode implements the programming environment of the Intel 8086 processor with
extensions (such as the ability to switch to protected or system management mode). The processor is placed in
real-address mode following power-up or a reset.

® System management mode (SMM) — This mode provides an operating system or executive with a
transparent mechanism for implementing platform-specific functions such as power management and system
security. The processor enters SMM when the external SMM interrupt pin (SMI#) is activated or an SMI is
received from the advanced programmable interrupt controller (APIC).

In SMM, the processor switches to a separate address space while saving the basic context of the currently
running program or task. SMM-specific code may then be executed transparently. Upon returning from SMM,
the processor is placed back into its state prior to the system management interrupt. SMM was introduced with
the Intel386" SL and Intel486" SL processors and became a standard IA-32 feature with the Pentium
processor family.

3.1.1 Intel® 64 Architecture

Intel 64 architecture adds IA-32e mode. IA-32e mode has two sub-modes.
These are:

® Compatibility mode (sub-mode of 1A-32e mode) — Compatibility mode permits most legacy 16-bit and
32-bit applications to run without re-compilation under a 64-bit operating system. For brevity, the compatibility
sub-mode is referred to as compatibility mode in IA-32 architecture. The execution environment of compati-
bility mode is the same as described in Section 3.2. Compatibility mode also supports all of the privilege levels
that are supported in 64-bit and protected modes. Legacy applications that run in Virtual 8086 mode or use
hardware task management will not work in this mode.

Compatibility mode is enabled by the operating system (OS) on a code segment basis. This means that a single
64-bit OS can support 64-bit applications running in 64-bit mode and support legacy 32-bit applications (not
recompiled for 64-bits) running in compatibility mode.

Compatibility mode is similar to 32-bit protected mode. Applications access only the first 4 GByte of linear-
address space. Compatibility mode uses 16-bit and 32-bit address and operand sizes. Like protected mode, this
mode allows applications to access physical memory greater than 4 GByte using PAE (Physical Address Exten-
sions).

® 64-bit mode (sub-mode of 1A-32e mode) — This mode enables a 64-bit operating system to run applica-
tions written to access 64-bit linear address space. For brevity, the 64-bit sub-mode is referred to as 64-bit
mode in IA-32 architecture.

Vol. 1T 3-1



BASIC EXECUTION ENVIRONMENT

64-bit mode extends the number of general purpose registers and SIMD extension registers from 8 to 16.
General purpose registers are widened to 64 bits. The mode also introduces a new opcode prefix (REX) to
access the register extensions. See Section 3.2.1 for a detailed description.

64-bit mode is enabled by the operating system on a code-segment basis. Its default address size is 64 bits and
its default operand size is 32 bits. The default operand size can be overridden on an instruction-by-instruction
basis using a REX opcode prefix in conjunction with an operand size override prefix.

REX prefixes allow a 64-bit operand to be specified when operating in 64-bit mode. By using this mechanism,
many existing instructions have been promoted to allow the use of 64-bit registers and 64-bit addresses.

3.2 OVERVIEW OF THE BASIC EXECUTION ENVIRONMENT

Any program or task running on an IA-32 processor is given a set of resources for executing instructions and for
storing code, data, and state information. These resources (described briefly in the following paragraphs and
shown in Figure 3-1) make up the basic execution environment for an IA-32 processor.

An Intel 64 processor supports the basic execution environment of an IA-32 processor, and a similar environment
under IA-32e mode that can execute 64-bit programs (64-bit sub-mode) and 32-bit programs (compatibility sub-
mode).

The basic execution environment is used jointly by the application programs and the operating system or executive
running on the processor.

Address space — Any task or program running on an IA-32 processor can address a linear address space of
up to 4 GBytes (232 bytes) and a physical address space of up to 64 GBytes (236 bytes). See Section 3.3.6,
“Extended Physical Addressing in Protected Mode,” for more information about addressing an address space
greater than 4 GBytes.

Basic program execution registers — The eight general-purpose registers, the six segment registers, the
EFLAGS register, and the EIP (instruction pointer) register comprise a basic execution environment in which to
execute a set of general-purpose instructions. These instructions perform basic integer arithmetic on byte,
word, and doubleword integers, handle program flow control, operate on bit and byte strings, and address
memory. See Section 3.4, “"Basic Program Execution Registers,” for more information about these registers.

Xx87 FPU registers — The eight x87 FPU data registers, the x87 FPU control register, the status register, the
x87 FPU instruction pointer register, the x87 FPU operand (data) pointer register, the x87 FPU tag register, and
the x87 FPU opcode register provide an execution environment for operating on single-precision, double-
precision, and double extended-precision floating-point values, word integers, doubleword integers, quadword
integers, and binary coded decimal (BCD) values. See Section 8.1, “"x87 FPU Execution Environment,” for more
information about these registers.

MMX registers — The eight MMX registers support execution of single-instruction, multiple-data (SIMD)
operations on 64-bit packed byte, word, and doubleword integers. See Section 9.2, "“The MMX Technology
Programming Environment,” for more information about these registers.

XMM registers — The eight XMM data registers and the MXCSR register support execution of SIMD operations
on 128-bit packed single-precision and double-precision floating-point values and on 128-bit packed byte,
word, doubleword, and quadword integers. See Section 10.2, “"SSE Programming Environment,” for more
information about these registers.

YMM registers — The YMM data registers support execution of 256-bit SIMD operations on 256-bit packed
single-precision and double-precision floating-point values and on 256-bit packed byte, word, doubleword, and
quadword integers.

Bounds registers — Each of the BNDO-BND3 register stores the lower and upper bounds (64 bits each)
associated with the pointer to a memory buffer. They support execution of the Intel MPX instructions.

BNDCFGU and BNDSTATUS— BNDCFGU configures user mode MPX operations on bounds checking.
BNDSTATUS provides additional information on the #BR caused by an MPX operation.

3-2 Vol.1



BASIC EXECUTION ENVIRONMENT

Basic Program Execution Registers Address Space*
i ) 2732 -1
Eight 32-bit
Registers General-Purpose Registers
SRlég}se}[et:g Segment Registers
| 32-bits |  EFLAGS Register
| 32-bits | EIP (Instruction Pointer Register)

FPU Registers

E:ght_so-bit Floating-Point
egisters Data Registers 0
*The address space can be
Control Register flat or segmer?ted. Using
Status Register the physical address
extension mechanism, a
Tag Register physical address space of
:I Opcode Register (11-bits) 2736 - 1 can be addressed.
| 48 bits |  FPU Instruction Pointer Register
its ata (Operand) Pointer Register
48 bi FPU Data (O d) Poi Regi
MMX Registers Bounds Registers
Eight 64-bit Four 128-bit Registers
Registers MMX Registers
BNDCFGU ‘ ‘ BNDSTATUS
XMM Registers
Eight 128-bit
Registers XMM Registers
| 32-bits | MXCSR Register
YMM Registers
Eight 256-bit
Registers YMM Registers

Figure 3-1. IA-32 Basic Execution Environment for Non-64-bit Modes

Vol.1T 3-3



BASIC EXECUTION ENVIRONMENT

Stack — To support procedure or subroutine calls and the passing of parameters between procedures or
subroutines, a stack and stack management resources are included in the execution environment. The stack
(not shown in Figure 3-1) is located in memory. See Section 6.2, “Stacks,” for more information about stack
structure.

In addition to the resources provided in the basic execution environment, the IA-32 architecture provides the
following resources as part of its system-level architecture. They provide extensive support for operating-system
and system-development software. Except for the I/O ports, the system resources are described in detail in the
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volumes 3A & 3B.

1/0 ports — The IA-32 architecture supports a transfers of data to and from input/output (I/O) ports. See
Chapter 17, “Input/Output,” in this volume.

Control registers — The five control registers (CRO through CR4) determine the operating mode of the
processor and the characteristics of the currently executing task. See Chapter 2, "System Architecture
Overview,” in the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A.

Memory management registers — The GDTR, IDTR, task register, and LDTR specify the locations of data
structures used in protected mode memory management. See Chapter 2, "System Architecture Overview,” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Debug registers — The debug registers (DRO through DR7) control and allow monitoring of the processor’s
debugging operations. See in the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3B.

Memory type range registers (MTRRs) — The MTRRs are used to assign memory types to regions of
memory. See the sections on MTRRs in the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volumes 3A & 3B.

Machine specific registers (MSRs) — The processor provides a variety of machine specific registers that are
used to control and report on processor performance. Virtually all MSRs handle system related functions and
are not accessible to an application program. One exception to this rule is the time-stamp counter. The MSRs
are described in Chapter 35, “"Model-Specific Registers (MSRs),” of the Intel® 64 and 1A-32 Architectures
Software Developer’s Manual, Volume 3C.

Machine check registers — The machine check registers consist of a set of control, status, and error-
reporting MSRs that are used to detect and report on hardware (machine) errors. See Chapter 15, “Machine-
Check Architecture,” of the Intel® 64 and I1A-32 Architectures Software Developer’s Manual, Volume 3A.

Performance monitoring counters — The performance monitoring counters allow processor performance
events to be monitored. See Chapter 18, “Performance Monitoring,” in the Intel® 64 and 1A-32 Architectures
Software Developer’s Manual, Volume 3B.

The remainder of this chapter describes the organization of memory and the address space, the basic program
execution registers, and addressing modes. Refer to the following chapters in this volume for descriptions of the
other program execution resources shown in Figure 3-1:

x87 FPU registers — See Chapter 8, “"Programming with the x87 FPU.”
MMX Registers — See Chapter 9, “Programming with Intel® MMX™ Technology.”

XMM registers — See Chapter 10, “Programming with Intel® Streaming SIMD Extensions (Intel® SSE),”
Chapter 11, “Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2),” and Chapter 12,
“Programming with Intel® SSE3, SSSE3, Intel® SSE4 and Intel® AESNI.”

YMM registers — See Chapter 14, “Programming with AVX, FMA and AVX2".

BND registers, BNDCFGU, BNDSTATUS — See Chapter 13, "Managing State Using the XSAVE Feature Set,”
and Chapter 16, “Intel® MPX".

Stack implementation and procedure calls — See Chapter 6, “Procedure Calls, Interrupts, and Exceptions.”

3-4 Vol.1



BASIC EXECUTION ENVIRONMENT

3.2.1 64-Bit Mode Execution Environment

The execution environment for 64-bit mode is similar to that described in Section 3.2. The following paragraphs
describe the differences that apply.

Address space — A task or program running in 64-bit mode on an IA-32 processor can address linear address
space of up to 2% bytes (subject to the canonical addressing requirement described in Section 3.3.7.1) and
physical address space of up to 24 bytes. Software can query CPUID for the physical address size supported
by a processor.

Basic program execution registers — The number of general-purpose registers (GPRs) available is 16.
GPRs are 64-bits wide and they support operations on byte, word, doubleword and quadword integers.
Accessing byte registers is done uniformly to the lowest 8 bits. The instruction pointer register becomes 64
bits. The EFLAGS register is extended to 64 bits wide, and is referred to as the RFLAGS register. The upper 32
bits of RFLAGS is reserved. The lower 32 bits of RFLAGS is the same as EFLAGS. See Figure 3-2.

XMM registers — There are 16 XMM data registers for SIMD operations. See Section 10.2, "SSE Programming
Environment,” for more information about these registers.

YMM registers — There are 16 YMM data registers for SIMD operations. See Chapter 14, “"Programming with
AVX, FMA and AVX2” for more information about these registers.

BND registers, BNDCFGU, BNDSTATUS — See Chapter 13, "Managing State Using the XSAVE Feature Set,”
and Chapter 16, “Intel® MPX".

Stack — The stack pointer size is 64 bits. Stack size is not controlled by a bit in the SS descriptor (as it is in
non-64-bit modes) nor can the pointer size be overridden by an instruction prefix.

Control registers — Control registers expand to 64 bits. A new control register (the task priority register: CR8
or TPR) has been added. See Chapter 2, “"Intel® 64 and IA-32 Architectures,” in this volume.

Debug registers — Debug registers expand to 64 bits. See Chapter 17, “Debug, Branch Profile, TSC, and
Quality of Service,” in the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A.

Vol.1T 3-5



BASIC EXECUTION ENVIRONMENT

Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

Basic Program Execution Registers Address Space
Sixteen 64-bit 27641
Registers General-Purpose Registers
Six 16-bit )
Registers Segment Registers
[ 64-bits | RFLAGS Register
| 64-bits | RIP (Instruction Pointer Register)

FPU Registers

Eight 80-bit Floatin .
f g-Point
Registers Data Registers
its ontrol Register
Control Regi
16 bits tatus Register
Status Regi
its ag Register
Tag Regi

[ ] Opcode Register (11-bits)
|
|

[ 64 bits FPU Instruction Pointer Register
| 64 bits FPU Data (Operand) Pointer Register
MMX Registers Bounds Registers
Eight 64-bit Four 128-bit Registers
Registers MMX Registers
BNDCFGU | | BNDSTATUS
XMM Registers
Sixteen 128-bit
Registers XMM Registers
| 32-bits | MXCSR Register
YMM Registers
Sixteen 256-bit
Registers YMM Registers

Figure 3-2. 64-Bit Mode Execution Environment

3.3 MEMORY ORGANIZATION

The memory that the processor addresses on its bus is called physical memory. Physical memory is organized as
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address. The physical
address space ranges from zero to a maximum of 236 _1 (64 GBytes) if the processor does not support Intel
64 architecture. Intel 64 architecture introduces a changes in physical and linear address space; these are
described in Section 3.3.3, Section 3.3.4, and Section 3.3.7.

3-6 Vol.1



BASIC EXECUTION ENVIRONMENT

Virtually any operating system or executive designed to work with an IA-32 or Intel 64 processor will use the
processor’s memory management facilities to access memory. These facilities provide features such as segmenta-
tion and paging, which allow memory to be managed efficiently and reliably. Memory management is described in
detail in Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volume 3A. The following paragraphs describe the basic methods of addressing memory when
memory management is used.

3.3.1 IA-32 Memory Models

When employing the processor’'s memory management facilities, programs do not directly address physical
memory. Instead, they access memory using one of three memory models: flat, segmented, or real address mode:

Flat memory model — Memory appears to a program as a single, continuous address space (Figure 3-3). This
space is called a linear address space. Code, data, and stacks are all contained in this address space. Linear
address space is byte addressable, with addresses running contiguously from 0 to 232 _ 1 (if not in 64-bit
mode). An address for any byte in linear address space is called a linear address.

Segmented memory model — Memory appears to a program as a group of independent address spaces
called segments. Code, data, and stacks are typically contained in separate segments. To address a byte in a
segment, a program issues a logical address. This consists of a segment selector and an offset (logical
addresses are often referred to as far pointers). The segment selector identifies the segment to be accessed
and the offset identifies a byte in the address space of the segment. Programs running on an IA-32 processor
can address up to 16,383 segments of different sizes and types, and each segment can be as large as 232
bytes.

Internally, all the segments that are defined for a system are mapped into the processor’s linear address space.
To access a memory location, the processor thus translates each logical address into a linear address. This
translation is transparent to the application program.

The primary reason for using segmented memory is to increase the reliability of programs and systems. For
example, placing a program’s stack in a separate segment prevents the stack from growing into the code or
data space and overwriting instructions or data, respectively.

Real-address mode memory model — This is the memory model for the Intel 8086 processor. It is
supported to provide compatibility with existing programs written to run on the Intel 8086 processor. The real-
address mode uses a specific implementation of segmented memory in which the linear address space for the
program and the operating system/executive consists of an array of segments of up to 64 KBytes in size each.
The maximum size of the linear address space in real-address mode is 220 bytes.

See also: Chapter 20, "8086 Emulation,” Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 3B.

Vol.1 3-7



BASIC EXECUTION ENVIRONMENT

Flat Model
Linear Address

!
>

Linear
Address
Space*

Segmented Model

Segments

i Linear
Offset (effective address) Addrecs
. l:l—> Space*
A(Lj%?'ecssl Segment Selector >
Real-Address Mode Model
Linear Address
Offset Space Divided  — —

Into Equal
i Sized Segments | _ _ |
A(Lj?j%g:sag! Segment Selector ‘

Yy

* The linear address space r
can be paged when using the
flat or segmented model.

Figure 3-3. Three Memory Management Models

3.3.2 Paging and Virtual Memory

With the flat or the segmented memory model, linear address space is mapped into the processor’s physical
address space either directly or through paging. When using direct mapping (paging disabled), each linear address
has a one-to-one correspondence with a physical address. Linear addresses are sent out on the processor’s address
lines without translation.

When using the IA-32 architecture’s paging mechanism (paging enabled), linear address space is divided into
pages which are mapped to virtual memory. The pages of virtual memory are then mapped as needed into physical
memory. When an operating system or executive uses paging, the paging mechanism is transparent to an applica-
tion program. All that the application sees is linear address space.

In addition, IA-32 architecture’s paging mechanism includes extensions that support:
® Physical Address Extensions (PAE) to address physical address space greater than 4 GBytes.
® Page Size Extensions (PSE) to map linear address to physical address in 4-MBytes pages.

See also: Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volume 3A.

3.3.3 Memory Organization in 64-Bit Mode

Intel 64 architecture supports physical address space greater than 64 GBytes; the actual physical address size of
IA-32 processors is implementation specific. In 64-bit mode, there is architectural support for 64-bit linear address
space. However, processors supporting Intel 64 architecture may implement less than 64-bits (see Section
3.3.7.1). The linear address space is mapped into the processor physical address space through the PAE paging
mechanism.

3-8 Vol.1



BASIC EXECUTION ENVIRONMENT

3.34 Modes of Operation vs. Memory Model

When writing code for an IA-32 or Intel 64 processor, a programmer needs to know the operating mode the
processor is going to be in when executing the code and the memory model being used. The relationship between
operating modes and memory models is as follows:

® Protected mode — When in protected mode, the processor can use any of the memory models described in
this section. (The real-addressing mode memory model is ordinarily used only when the processor is in the
virtual-8086 mode.) The memory model used depends on the design of the operating system or executive.
When multitasking is implemented, individual tasks can use different memory models.

® Real-address mode — When in real-address mode, the processor only supports the real-address mode
memory model.

® System management mode — When in SMM, the processor switches to a separate address space, called the
system management RAM (SMRAM). The memory model used to address bytes in this address space is similar
to the real-address mode model. See Chapter 34, "System Management Mode,” in the Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 3C, for more information on the memory model used in
SMM.

® Compatibility mode — Software that needs to run in compatibility mode should observe the same memory
model as those targeted to run in 32-bit protected mode. The effect of segmentation is the same as it is in 32-
bit protected mode semantics.

® 64-bit mode — Segmentation is generally (but not completely) disabled, creating a flat 64-bit linear-address
space. Specifically, the processor treats the segment base of CS, DS, ES, and SS as zero in 64-bit mode (this
makes a linear address equal an effective address). Segmented and real address modes are not available in 64-
bit mode.

3.3.5 32-Bit and 16-Bit Address and Operand Sizes

IA-32 processors in protected mode can be configured for 32-bit or 16-bit address and operand sizes. With 32-bit
address and operand sizes, the maximum linear address or segment offset is FFFFFFFFH (232-1); operand sizes are
typically 8 bits or 32 bits. With 16-bit address and operand sizes, the maximum linear address or segment offset is
FFFFH (216-1); operand sizes are typically 8 bits or 16 bits.

When using 32-bit addressing, a logical address (or far pointer) consists of a 16-bit segment selector and a 32-bit
offset; when using 16-bit addressing, an address consists of a 16-bit segment selector and a 16-bit offset.

Instruction prefixes allow temporary overrides of the default address and/or operand sizes from within a program.

When operating in protected mode, the segment descriptor for the currently executing code segment defines the
default address and operand size. A segment descriptor is a system data structure not normally visible to applica-
tion code. Assembler directives allow the default addressing and operand size to be chosen for a program. The
assembler and other tools then set up the segment descriptor for the code segment appropriately.

When operating in real-address mode, the default addressing and operand size is 16 bits. An address-size override
can be used in real-address mode to enable 32-bit addressing. However, the maximum allowable 32-bit linear
address is still 000FFFFFH (220-1).

3.3.6 Extended Physical Addressing in Protected Mode

Beginning with P6 family processors, the IA-32 architecture supports addressing of up to 64 GBytes (23° bytes) of
physical memory. A program or task could not address locations in this address space directly. Instead, it
addresses individual linear address spaces of up to 4 GBytes that mapped to 64-GByte physical address space
through a virtual memory management mechanism. Using this mechanism, an operating system can enable a
program to switch 4-GByte linear address spaces within 64-GByte physical address space.

The use of extended physical addressing requires the processor to operate in protected mode and the operating
system to provide a virtual memory management system. See “36-Bit Physical Addressing Using the PAE Paging
Mechanism” in Chapter 3, “Protected-Mode Memory Management,” of the Intel® 64 and I1A-32 Architectures Soft-
ware Developer’s Manual, Volume 3A.

Vol.1T 3-9



BASIC EXECUTION ENVIRONMENT

3.3.7 Address Calculations in 64-Bit Mode

In most cases, 64-bit mode uses flat address space for code, data, and stacks. In 64-bit mode (if there is no
address-size override), the size of effective address calculations is 64 bits. An effective-address calculation uses a
64-bit base and index registers and sign-extend displacements to 64 bits.

In the flat address space of 64-bit mode, linear addresses are equal to effective addresses because the base
address is zero. In the event that FS or GS segments are used with a non-zero base, this rule does not hold. In 64-
bit mode, the effective address components are added and the effective address is truncated (See for example the
instruction LEA) before adding the full 64-bit segment base. The base is never truncated, regardless of addressing
mode in 64-bit mode.

The instruction pointer is extended to 64 bits to support 64-bit code offsets. The 64-bit instruction pointer is called
the RIP. Table 3-1 shows the relationship between RIP, EIP, and IP.

Table 3-1. Instruction Pointer Sizes

Bits 63:32 ‘ Bits 31:16 Bits 15:0
16-bit instruction pointer Not Modified IP
32-bit instruction pointer Zero Extension ‘ EIP
64-bit instruction pointer RIP

Generally, displacements and immediates in 64-bit mode are not extended to 64 bits. They are still limited to 32
bits and sign-extended during effective-address calculations. In 64-bit mode, however, support is provided for 64-
bit displacement and immediate forms of the MOV instruction.

All 16-bit and 32-bit address calculations are zero-extended in IA-32e mode to form 64-bit addresses. Address
calculations are first truncated to the effective address size of the current mode (64-bit mode or compatibility
mode), as overridden by any address-size prefix. The result is then zero-extended to the full 64-bit address width.
Because of this, 16-bit and 32-bit applications running in compatibility mode can access only the low 4 GBytes of
the 64-bit mode effective addresses. Likewise, a 32-bit address generated in 64-bit mode can access only the low
4 GBytes of the 64-bit mode effective addresses.

3.3.7.1 Canonical Addressing

In 64-bit mode, an address is considered to be in canonical form if address bits 63 through to the most-significant
implemented bit by the microarchitecture are set to either all ones or all zeros.

Intel 64 architecture defines a 64-bit linear address. Implementations can support less. The first implementation of
IA-32 processors with Intel 64 architecture supports a 48-bit linear address. This means a canonical address must
have bits 63 through 48 set to zeros or ones (depending on whether bit 47 is a zero or one).

Although implementations may not use all 64 bits of the linear address, they should check bits 63 through the

most-significant implemented bit to see if the address is in canonical form. If a linear-memory reference is not in
canonical form, the implementation should generate an exception. In most cases, a general-protection exception
(#GP) is generated. However, in the case of explicit or implied stack references, a stack fault (#SS) is generated.

Instructions that have implied stack references, by default, use the SS segment register. These include PUSH/POP-
related instructions and instructions using RSP/RBP as base registers. In these cases, the canonical fault is #SS.

If an instruction uses base registers RSP/RBP and uses a segment override prefix to specify a non-SS segment, a

canonical fault generates a #GP (instead of an #SS). In 64-bit mode, only FS and GS segment-overrides are appli-
cable in this situation. Other segment override prefixes (CS, DS, ES and SS) are ignored. Note that this also means
that an SS segment-override applied to a “non-stack” register reference is ignored. Such a sequence still produces
a #GP for a canonical fault (and not an #SS).

3.4 BASIC PROGRAM EXECUTION REGISTERS

IA-32 architecture provides 16 basic program execution registers for use in general system and application
programing (see Figure 3-4). These registers can be grouped as follows:

3-10 Vol. 1



BASIC EXECUTION ENVIRONMENT

® General-purpose registers. These eight registers are available for storing operands and pointers.
® Segment registers. These registers hold up to six segment selectors.

® EFLAGS (program status and control) register. The EFLAGS register report on the status of the program
being executed and allows limited (application-program level) control of the processor.

® EIP (instruction pointer) register. The EIP register contains a 32-bit pointer to the next instruction to be
executed.

3.4.1 General-Purpose Registers

The 32-bit general-purpose registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP are provided for holding the
following items:

® Operands for logical and arithmetic operations
® Operands for address calculations
® Memory pointers

Although all of these registers are available for general storage of operands, results, and pointers, caution should
be used when referencing the ESP register. The ESP register holds the stack pointer and as a general rule should
not be used for another purpose.

Many instructions assign specific registers to hold operands. For example, string instructions use the contents of

the ECX, ESI, and EDI registers as operands. When using a segmented memory model, some instructions assume
that pointers in certain registers are relative to specific segments. For instance, some instructions assume that a

pointer in the EBX register points to a memory location in the DS segment.

31 General-Purpose Registers

EAX
EBX
ECX
EDX
Esl

EDI

EBP
ESP

Segment Registers
15 0

cs
DS
SS
€S
FS
GS

31Program Status and Control Register

| | EFLAGS

31 Instruction Pointer 0
| | ep

Figure 3-4. General System and Application Programming Registers

Vol.1T 3-11



BASIC EXECUTION ENVIRONMENT

The special uses of general-purpose registers by instructions are described in Chapter 5, “Instruction Set
Summary,” in this volume. See also: Chapter 3 and Chapter 4 of Intel® 64 and 1A-32 Architectures Software Devel-
oper’s Manual, Volumes 2A & 2B. The following is a summary of special uses:

® EAX — Accumulator for operands and results data

® EBX — Pointer to data in the DS segment

® ECX — Counter for string and loop operations

® EDX — I/O pointer

® ESI — Pointer to data in the segment pointed to by the DS register; source pointer for string operations

® EDI — Pointer to data (or destination) in the segment pointed to by the ES register; destination pointer for
string operations

® ESP — Stack pointer (in the SS segment)
® EBP — Pointer to data on the stack (in the SS segment)

As shown in Figure 3-5, the lower 16 bits of the general-purpose registers map directly to the register set found in
the 8086 and Intel 286 processors and can be referenced with the names AX, BX, CX, DX, BP, SI, DI, and SP. Each
of the lower two bytes of the EAX, EBX, ECX, and EDX registers can be referenced by the names AH, BH, CH, and
DH (high bytes) and AL, BL, CL, and DL (low bytes).

General-Purpose Registers
31 1615 87 0 16-bit 32-bit

AH AL AX EAX

BH BL BX EBX

CH CL CX ECX

DH DL DX EDX
BP EBP
S| €Sl
DI €Dl
SP €SP

Figure 3-5. Alternate General-Purpose Register Names

3.4.1.1 General-Purpose Registers in 64-Bit Mode

In 64-bit mode, there are 16 general purpose registers and the default operand size is 32 bits. However, general-
purpose registers are able to work with either 32-bit or 64-bit operands. If a 32-bit operand size is specified: EAX,
EBX, ECX, EDX, EDI, ESI, EBP, ESP, R8D - R15D are available. If a 64-bit operand size is specified: RAX, RBX, RCX,
RDX, RDI, RSI, RBP, RSP, R8-R15 are available. RBD-R15D/R8-R15 represent eight new general-purpose registers.
All of these registers can be accessed at the byte, word, dword, and qword level. REX prefixes are used to generate
64-bit operand sizes or to reference registers R8-R15.

Registers only available in 64-bit mode (R8-R15 and XMM8-XMM15) are preserved across transitions from 64-bit
mode into compatibility mode then back into 64-bit mode. However, values of R8-R15 and XMM8-XMM15 are unde-
fined after transitions from 64-bit mode through compatibility mode to legacy or real mode and then back through
compatibility mode to 64-bit mode.

3-12 Vol. 1



BASIC EXECUTION ENVIRONMENT

Table 3-2. Addressable General Purpose Registers

Register Type Without REX With REX

Byte Registers AL, BL, CL, DL, AH, BH, CH, DH AL, BL, CL, DL, DIL, SIL, BPL, SPL, R8L - R15L

Word Registers AX, BX, CX, DX, DI, SI, BP, SP AX, BX, CX, DX, DI, S, BP, SP, R8W - R15W
Doubleword Registers EAX, EBX, ECX, EDX, EDI, €SI, EBP, ESP | EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP, R8D - R15D
Quadword Registers N.A. RAX, RBX, RCX, RDX, RDI, RS, RBP, RSP, R8 - R15

In 64-bit mode, there are limitations on accessing byte registers. An instruction cannot reference legacy high-
bytes (for example: AH, BH, CH, DH) and one of the new byte registers at the same time (for example: the low
byte of the RAX register). However, instructions may reference legacy low-bytes (for example: AL, BL, CL or DL)
and new byte registers at the same time (for example: the low byte of the R8 register, or RBP). The architecture
enforces this limitation by changing high-byte references (AH, BH, CH, DH) to low byte references (BPL, SPL, DIL,
SIL: the low 8 bits for RBP, RSP, RDI and RSI) for instructions using a REX prefix.

When in 64-bit mode, operand size determines the number of valid bits in the destination general-purpose
register:

® 64-bit operands generate a 64-bit result in the destination general-purpose register.

® 32-bit operands generate a 32-bit result, zero-extended to a 64-bit result in the destination general-purpose
register.

® 8-bit and 16-bit operands generate an 8-bit or 16-bit result. The upper 56 bits or 48 bits (respectively) of the
destination general-purpose register are not modified by the operation. If the result of an 8-bit or 16-bit
operation is intended for 64-bit address calculation, explicitly sign-extend the register to the full 64-bits.

Because the upper 32 bits of 64-bit general-purpose registers are undefined in 32-bit modes, the upper 32 bits of
any general-purpose register are not preserved when switching from 64-bit mode to a 32-bit mode (to protected
mode or compatibility mode). Software must not depend on these bits to maintain a value after a 64-bit to 32-bit
mode switch.

34.2 Segment Registers

The segment registers (CS, DS, SS, ES, FS, and GS) hold 16-bit segment selectors. A segment selector is a special
pointer that identifies a segment in memory. To access a particular segment in memory, the segment selector for
that segment must be present in the appropriate segment register.

When writing application code, programmers generally create segment selectors with assembler directives and
symbols. The assembler and other tools then create the actual segment selector values associated with these
directives and symbols. If writing system code, programmers may need to create segment selectors directly. See
Chapter 3, “"Protected-Mode Memory Management,” in the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 3A.

How segment registers are used depends on the type of memory management model that the operating system or
executive is using. When using the flat (unsegmented) memory model, segment registers are loaded with segment
selectors that point to overlapping segments, each of which begins at address 0 of the linear address space (see
Figure 3-6). These overlapping segments then comprise the linear address space for the program. Typically, two
overlapping segments are defined: one for code and another for data and stacks. The CS segment register points
to the code segment and all the other segment registers point to the data and stack segment.

When using the segmented memory model, each segment register is ordinarily loaded with a different segment
selector so that each segment register points to a different segment within the linear address space (see

Figure 3-7). At any time, a program can thus access up to six segments in the linear address space. To access a
segment not pointed to by one of the segment registers, a program must first load the segment selector for the
segment to be accessed into a segment register.

Vol.1 3-13



BASIC EXECUTION ENVIRONMENT

Linear Address
Space for Program
Segment Registers Overlapping
Segments
of up to
Bz | 4 GBytes
sS —| Beginning at
ES Address O
FS —
GS —
The segment selector in >

each segment register
points to an overlapping
segment in the linear
address space.

Figure 3-6. Use of Segment Registers for Flat Memory Model

Code
. Segment
Segment Registers
Data
cs Segment
DS Stack
SS Segment
B —— - All segments
FS » are mapped
Gs o to the same
- linear-address
space
Data
Segment
Data
Segment
- Data
Segment
R

Figure 3-7. Use of Segment Registers in Segmented Memory Model

Each of the segment registers is associated with one of three types of storage: code, data, or stack. For example,
the CS register contains the segment selector for the code segment, where the instructions being executed are
stored. The processor fetches instructions from the code segment, using a logical address that consists of the
segment selector in the CS register and the contents of the EIP register. The EIP register contains the offset within
the code segment of the next instruction to be executed. The CS register cannot be loaded explicitly by an applica-
tion program. Instead, it is loaded implicitly by instructions or internal processor operations that change program
control (such as, procedure calls, interrupt handling, or task switching).

The DS, ES, FS, and GS registers point to four data segments. The availability of four data segments permits effi-
cient and secure access to different types of data structures. For example, four separate data segments might be
created: one for the data structures of the current module, another for the data exported from a higher-level
module, a third for a dynamically created data structure, and a fourth for data shared with another program. To
access additional data segments, the application program must load segment selectors for these segments into the
DS, ES, FS, and GS registers, as needed.

The SS register contains the segment selector for the stack segment, where the procedure stack is stored for the
program, task, or handler currently being executed. All stack operations use the SS register to find the stack

3-14 Vol. 1



BASIC EXECUTION ENVIRONMENT

segment. Unlike the CS register, the SS register can be loaded explicitly, which permits application programs to set
up multiple stacks and switch among them.

See Section 3.3, "Memory Organization,” for an overview of how the segment registers are used in real-address
mode.

The four segment registers CS, DS, SS, and ES are the same as the segment registers found in the Intel 8086 and
Intel 286 processors and the FS and GS registers were introduced into the IA-32 Architecture with the Intel386™
family of processors.

3.4.2.1 Segment Registers in 64-Bit Mode

In 64-bit mode: CS, DS, ES, SS are treated as if each segment base is 0, regardless of the value of the associated
segment descriptor base. This creates a flat address space for code, data, and stack. FS and GS are exceptions.
Both segment registers may be used as additional base registers in linear address calculations (in the addressing
of local data and certain operating system data structures).

Even though segmentation is generally disabled, segment register loads may cause the processor to perform
segment access assists. During these activities, enabled processors will still perform most of the legacy checks on
loaded values (even if the checks are not applicable in 64-bit mode). Such checks are needed because a segment
register loaded in 64-bit mode may be used by an application running in compatibility mode.

Limit checks for CS, DS, ES, SS, FS, and GS are disabled in 64-bit mode.

343 EFLAGS Register

The 32-bit EFLAGS register contains a group of status flags, a control flag, and a group of system flags. Figure 3-8
defines the flags within this register. Following initialization of the processor (either by asserting the RESET pin or
the INIT pin), the state of the EFLAGS register is 00000002H. Bits 1, 3, 5, 15, and 22 through 31 of this register
are reserved. Software should not use or depend on the states of any of these bits.

Some of the flags in the EFLAGS register can be modified directly, using special-purpose instructions (described in
the following sections). There are no instructions that allow the whole register to be examined or modified directly.

The following instructions can be used to move groups of flags to and from the procedure stack or the EAX register:
LAHF, SAHF, PUSHF, PUSHFD, POPF, and POPFD. After the contents of the EFLAGS register have been transferred to
the procedure stack or EAX register, the flags can be examined and modified using the processor’s bit manipulation
instructions (BT, BTS, BTR, and BTC).

When suspending a task (using the processor’s multitasking facilities), the processor automatically saves the state
of the EFLAGS register in the task state segment (TSS) for the task being suspended. When binding itself to a new
task, the processor loads the EFLAGS register with data from the new task’s TSS.

When a call is made to an interrupt or exception handler procedure, the processor automatically saves the state of
the EFLAGS registers on the procedure stack. When an interrupt or exception is handled with a task switch, the
state of the EFLAGS register is saved in the TSS for the task being suspended.

Vol.1 3-15



BASIC EXECUTION ENVIRONMENT

313029 2827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

ViV

| A|VIR N
OOOOOOOOOOD;;CMFO

ID Flag (1D} ‘
Virtual Interrupt Pending (VIP)
Virtual Interrupt Flag (VIF)
(AC)

X

X

X

X Alignment Check / Access Control (AC
X Virtual-8086 Mode (VM)
X Resume Flag (RF)
X Nested Task (NT)
X 1/O Privilege Level (IOPL)
S Overflow Flag (OF)
C Direction Flag (DF)
X
X
S
S
S
S
S
S
C
X

olp|t|T[s|z| |Al,|P
FIF FIF|OF|O|F|

4
rUO-—

Interrupt Enable Flag (IF)
Trap Flag (TF)
Sign Flag (SF)
Zero Flag (ZF)
Auxiliary Carry Flag (AF)
Parity Flag (PF)
Carry Flag (CF)

Indicates a Status Flag
Indicates a Control Flag
Indicates a System Flag

Reserved bit positions. DO NOT USE.
Always set to values previously read.

Figure 3-8. EFLAGS Register

As the IA-32 Architecture has evolved, flags have been added to the EFLAGS register, but the function and place-
ment of existing flags have remained the same from one family of the IA-32 processors to the next. As a result,
code that accesses or modifies these flags for one family of IA-32 processors works as expected when run on later
families of processors.

3.4.3.1 Status Flags

The status flags (bits 0, 2, 4, 6, 7, and 11) of the EFLAGS register indicate the results of arithmetic instructions,
such as the ADD, SUB, MUL, and DIV instructions. The status flag functions are:

CF (bit O) Carry flag — Set if an arithmetic operation generates a carry or a borrow out of the most-
significant bit of the result; cleared otherwise. This flag indicates an overflow condition for
unsigned-integer arithmetic. It is also used in multiple-precision arithmetic.

PF (bit 2) Parity flag — Set if the least-significant byte of the result contains an even number of 1 bits;
cleared otherwise.

AF (bit 4) Auxiliary Carry flag — Set if an arithmetic operation generates a carry or a borrow out of bit
3 of the result; cleared otherwise. This flag is used in binary-coded decimal (BCD) arithmetic.

ZF (bit 6) Zero flag — Set if the result is zero; cleared otherwise.

SF (bit 7) Sign flag — Set equal to the most-significant bit of the result, which is the sign bit of a signed
integer. (0 indicates a positive value and 1 indicates a negative value.)

OF (bit 11) Overflow flag — Set if the integer result is too large a positive number or too small a negative

number (excluding the sign-bit) to fit in the destination operand; cleared otherwise. This flag
indicates an overflow condition for signed-integer (two’s complement) arithmetic.

Of these status flags, only the CF flag can be modified directly, using the STC, CLC, and CMC instructions. Also the
bit instructions (BT, BTS, BTR, and BTC) copy a specified bit into the CF flag.

3-16 Vol. 1



BASIC EXECUTION ENVIRONMENT

The status flags allow a single arithmetic operation to produce results for three different data types: unsigned inte-
gers, signed integers, and BCD integers. If the result of an arithmetic operation is treated as an unsigned integer,
the CF flag indicates an out-of-range condition (carry or a borrow); if treated as a signed integer (two’s comple-
ment number), the OF flag indicates a carry or borrow; and if treated as a BCD digit, the AF flag indicates a carry
or borrow. The SF flag indicates the sign of a signed integer. The ZF flag indicates either a signed- or an unsigned-
integer zero.

When performing multiple-precision arithmetic on integers, the CF flag is used in conjunction with the add with
carry (ADC) and subtract with borrow (SBB) instructions to propagate a carry or borrow from one computation to
the next.

The condition instructions Jcc (jump on condition code cc), SETcc (byte set on condition code cc), LOOPcc, and
CMOVcc (conditional move) use one or more of the status flags as condition codes and test them for branch, set-
byte, or end-loop conditions.

3.43.2 DF Flag

The direction flag (DF, located in bit 10 of the EFLAGS register) controls string instructions (MOVS, CMPS, SCAS,
LODS, and STOS). Setting the DF flag causes the string instructions to auto-decrement (to process strings from
high addresses to low addresses). Clearing the DF flag causes the string instructions to auto-increment
(process strings from low addresses to high addresses).

The STD and CLD instructions set and clear the DF flag, respectively.

3433 System Flags and IOPL Field

The system flags and IOPL field in the EFLAGS register control operating-system or executive operations. They
should not be modified by application programs. The functions of the system flags are as follows:

TF (bit 8) Trap flag — Set to enable single-step mode for debugging; clear to disable single-step mode.

IF (bit 9) Interrupt enable flag — Controls the response of the processor to maskable interrupt
requests. Set to respond to maskable interrupts; cleared to inhibit maskable interrupts.

I0PL (bits 12 and 13)
1/0 privilege level field — Indicates the I/0 privilege level of the currently running program
or task. The current privilege level (CPL) of the currently running program or task must be less
than or equal to the I/0 privilege level to access the I/O address space. The POPF and IRET
instructions can modify this field only when operating at a CPL of 0.

NT (bit 14) Nested task flag — Controls the chaining of interrupted and called tasks. Set when the
current task is linked to the previously executed task; cleared when the current task is not
linked to another task.

RF (bit 16) Resume flag — Controls the processor’s response to debug exceptions.

VM (bit 17) Virtual-8086 mode flag — Set to enable virtual-8086 mode; clear to return to protected
mode without virtual-8086 mode semantics.

AC (bit 18) Alignment check (or access control) flag — If the AM bit is set in the CRO register, align-

ment checking of user-mode data accesses is enabled if and only if this flag is 1.

If the SMAP bit is set in the CR4 register, explicit supervisor-mode data accesses to user-mode
pages are allowed if and only if this bit is 1. See Section 4.6, “Access Rights,” in the Intel® 64
and 1A-32 Architectures Software Developer’'s Manual, Volume 3A.

VIF (bit 19) Virtual interrupt flag — Virtual image of the IF flag. Used in conjunction with the VIP flag.
(To use this flag and the VIP flag the virtual mode extensions are enabled by setting the VME
flag in control register CR4.)

VIP (bit 20) Virtual interrupt pending flag — Set to indicate that an interrupt is pending; clear when no
interrupt is pending. (Software sets and clears this flag; the processor only reads it.) Used in
conjunction with the VIF flag.

ID (bit 21) Identification flag — The ability of a program to set or clear this flag indicates support for
the CPUID instruction.

Vol.1 3-17



BASIC EXECUTION ENVIRONMENT

For a detailed description of these flags: see Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64
and 1A-32 Architectures Software Developer’s Manual, Volume 3A.

3.434 RFLAGS Register in 64-Bit Mode

In 64-bit mode, EFLAGS is extended to 64 bits and called RFLAGS. The upper 32 bits of RFLAGS register is
reserved. The lower 32 bits of RFLAGS is the same as EFLAGS.

3.5 INSTRUCTION POINTER

The instruction pointer (EIP) register contains the offset in the current code segment for the next instruction to be
executed. It is advanced from one instruction boundary to the next in straight-line code or it is moved ahead or
backwards by a number of instructions when executing JMP, Jcc, CALL, RET, and IRET instructions.

The EIP register cannot be accessed directly by software; it is controlled implicitly by control-transfer instructions
(such as JMP, Jcc, CALL, and RET), interrupts, and exceptions. The only way to read the EIP register is to execute a
CALL instruction and then read the value of the return instruction pointer from the procedure stack. The EIP
register can be loaded indirectly by modifying the value of a return instruction pointer on the procedure stack and
executing a return instruction (RET or IRET). See Section 6.2.4.2, “"Return Instruction Pointer.”

All IA-32 processors prefetch instructions. Because of instruction prefetching, an instruction address read from the
bus during an instruction load does not match the value in the EIP register. Even though different processor gener-
ations use different prefetching mechanisms, the function of the EIP register to direct program flow remains fully

compatible with all software written to run on IA-32 processors.

3.5.1 Instruction Pointer in 64-Bit Mode

In 64-bit mode, the RIP register becomes the instruction pointer. This register holds the 64-bit offset of the next
instruction to be executed. 64-bit mode also supports a technique called RIP-relative addressing. Using this tech-
nique, the effective address is determined by adding a displacement to the RIP of the next instruction.

3.6 OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES

When the processor is executing in protected mode, every code segment has a default operand-size attribute and
address-size attribute. These attributes are selected with the D (default size) flag in the segment descriptor for the
code segment (see Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and I1A-32 Architectures
Software Developer’s Manual, Volume 3A). When the D flag is set, the 32-bit operand-size and address-size attri-
butes are selected; when the flag is clear, the 16-bit size attributes are selected. When the processor is executing
in real-address mode, virtual-8086 mode, or SMM, the default operand-size and address-size attributes are always
16 bits.

The operand-size attribute selects the size of operands. When the 16-bit operand-size attribute is in force, oper-
ands can generally be either 8 bits or 16 bits, and when the 32-bit operand-size attribute is in force, operands can
generally be 8 bits or 32 bits.

The address-size attribute selects the sizes of addresses used to address memory: 16 bits or 32 bits. When the 16-
bit address-size attribute is in force, segment offsets and displacements are 16 bits. This restriction limits the size
of a segment to 64 KBytes. When the 32-bit address-size attribute is in force, segment offsets and displacements
are 32 bits, allowing up to 4 GBytes to be addressed.

The default operand-size attribute and/or address-size attribute can be overridden for a particular instruction by
adding an operand-size and/or address-size prefix to an instruction. See Chapter 2, “Instruction Format,” in the
Intel® 64 and 1A-32 Architectures Software Developer’'s Manual, Volume 2A. The effect of this prefix applies only
to the targeted instruction.

Table 3-4 shows effective operand size and address size (when executing in protected mode or compatibility mode)
depending on the settings of the D flag and the operand-size and address-size prefixes.

3-18 Vol. 1



BASIC EXECUTION ENVIRONMENT

Table 3-3. Effective Operand- and Address-Size Attributes

D Flag in Code Segment Descriptor 0 0 0 0 1 1 1 1

Operand-Size Prefix 66H N N Y Y N N Y Y
Address-Size Prefix 67H N Y N Y N Y N Y
Effective Operand Size 16 16 32 32 32 32 16 16
Effective Address Size 16 32 16 32 32 16 32 16
NOTES:

Y: Yes - this instruction prefix is present.
N: No - this instruction prefix is not present.

3.6.1 Operand Size and Address Size in 64-Bit Mode

In 64-bit mode, the default address size is 64 bits and the default operand size is 32 bits. Defaults can be over-
ridden using prefixes. Address-size and operand-size prefixes allow mixing of 32/64-bit data and 32/64-bit
addresses on an instruction-by-instruction basis. Table 3-4 shows valid combinations of the 66H instruction prefix
and the REX.W prefix that may be used to specify operand-size overrides in 64-bit mode. Note that 16-bit
addresses are not supported in 64-bit mode.

REX prefixes consist of 4-bit fields that form 16 different values. The W-bit field in the REX prefixes is referred to
as REX.W. If the REX.W field is properly set, the prefix specifies an operand size override to 64 bits. Note that soft-
ware can still use the operand-size 66H prefix to toggle to a 16-bit operand size. However, setting REX.W takes
precedence over the operand-size prefix (66H) when both are used.

In the case of SSE/SSE2/SSE3/SSSE3 SIMD instructions: the 66H, F2H, and F3H prefixes are mandatory for
opcode extensions. In such a case, there is no interaction between a valid REX.W prefix and a 66H opcode exten-
sion prefix.

See Chapter 2, “Instruction Format,” in the Intel® 64 and 1A-32 Architectures Software Developer’'s Manual,
Volume 2A.

Table 3-4. Effective Operand- and Address-Size Attributes in 64-Bit Mode
L Flag in Code Segment Descriptor

1 1
REX.W Prefix 0 0
Operand-Size Prefix 66H N N
Address-Size Prefix 67H N Y
Effective Operand Size 32 32
Effective Address Size 64 32 64 32 64 32 64 32

NOTES:
Y: Yes - this instruction prefix is present.
N: No - this instruction prefix is not present.

Zz|l<|o| -
<|=<|o|-

—
o))
(e)]
(@)]
»
(@)]
a
D
a
D
a

3.7 OPERAND ADDRESSING

IA-32 machine-instructions act on zero or more operands. Some operands are specified explicitly and others are
implicit. The data for a source operand can be located in:

® the instruction itself (an immediate operand)
® aregister

® a memory location

® anI/O port

Vol.1 3-19



BASIC EXECUTION ENVIRONMENT

When an instruction returns data to a destination operand, it can be returned to:
® aregister

® a memory location

® anI/O port

3.7.1 Immediate Operands

Some instructions use data encoded in the instruction itself as a source operand. These operands are called imme-
diate operands (or simply immediates). For example, the following ADD instruction adds an immediate value of 14
to the contents of the EAX register:

ADD EAX, 14

All arithmetic instructions (except the DIV and IDIV instructions) allow the source operand to be an immediate
value. The maximum value allowed for an immediate operand varies among instructions, but can never be greater
than the maximum value of an unsigned doubleword integer (232).

3.7.2 Register Operands

Source and destination operands can be any of the following registers, depending on the instruction being
executed:

® 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, or EBP)
® 16-bit general-purpose registers (AX, BX, CX, DX, SI, DI, SP, or BP)

® 8-bit general-purpose registers (AH, BH, CH, DH, AL, BL, CL, or DL)

® segment registers (CS, DS, SS, ES, FS, and GS)

® EFLAGS register

® x87 FPU registers (STO through ST7, status word, control word, tag word, data operand pointer, and instruction
pointer)

® MMX registers (MMO through MM7)

® XMM registers (XMMO through XMM7) and the MXCSR register

® control registers (CRO, CR2, CR3, and CR4) and system table pointer registers (GDTR, LDTR, IDTR, and task
register)

® debug registers (DRO, DR1, DR2, DR3, DR6, and DR7)

® MSR registers

Some instructions (such as the DIV and MUL instructions) use quadword operands contained in a pair of 32-bit
registers. Register pairs are represented with a colon separating them. For example, in the register pair EDX:EAX,
EDX contains the high order bits and EAX contains the low order bits of a quadword operand.

Several instructions (such as the PUSHFD and POPFD instructions) are provided to load and store the contents of
the EFLAGS register or to set or clear individual flags in this register. Other instructions (such as the Jcc instruc-
tions) use the state of the status flags in the EFLAGS register as condition codes for branching or other decision
making operations.

The processor contains a selection of system registers that are used to control memory management, interrupt and
exception handling, task management, processor management, and debugging activities. Some of these system
registers are accessible by an application program, the operating system, or the executive through a set of system
instructions. When accessing a system register with a system instruction, the register is generally an implied
operand of the instruction.

3-20 Vol. 1



BASIC EXECUTION ENVIRONMENT

3.7.2.1 Register Operands in 64-Bit Mode

Register operands in 64-bit mode can be any of the following:

® 64-bit general-purpose registers (RAX, RBX, RCX, RDX, RSI, RDI, RSP, RBP, or R8-R15)

® 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP, or R8D-R15D)
® 16-bit general-purpose registers (AX, BX, CX, DX, SI, DI, SP, BP, or RBW-R15W)

® 8-bit general-purpose registers: AL, BL, CL, DL, SIL, DIL, SPL, BPL, and R8L-R15L are available using REX
prefixes; AL, BL, CL, DL, AH, BH, CH, DH are available without using REX prefixes.

® Segment registers (CS, DS, SS, ES, FS, and GS)
® RFLAGS register

® x87 FPU registers (STO through ST7, status word, control word, tag word, data operand pointer, and instruction
pointer)

® MMKX registers (MMO through MM7)
® XMM registers (XMMO through XMM15) and the MXCSR register

® Control registers (CR0O, CR2, CR3, CR4, and CR8) and system table pointer registers (GDTR, LDTR, IDTR, and
task register)

® Debug registers (DRO, DR1, DR2, DR3, DR6, and DR7)
® MSR registers
® RDX:RAX register pair representing a 128-bit operand

3.7.3 Memory Operands

Source and destination operands in memory are referenced by means of a segment selector and an offset (see
Figure 3-9). Segment selectors specify the segment containing the operand. Offsets specify the linear or effective
address of the operand. Offsets can be 32 bits (represented by the notation m16:32) or 16 bits (represented by the
notation m16:16).

15 0 31 0

‘ Sse ment ‘ ‘ Offset (or Linear Address)
elector

Figure 3-9. Memory Operand Address

3.7.3.1 Memory Operands in 64-Bit Mode

In 64-bit mode, a memory operand can be referenced by a segment selector and an offset. The offset can be 16
bits, 32 bits or 64 bits (see Figure 3-10).

15 0 63 0

Segment ‘ ‘ Offset (or Linear Address)
Selector

Figure 3-10. Memory Operand Address in 64-Bit Mode

3.74 Specifying a Segment Selector

The segment selector can be specified either implicitly or explicitly. The most common method of specifying a
segment selector is to load it in a segment register and then allow the processor to select the register implicitly,
depending on the type of operation being performed. The processor automatically chooses a segment according to
the rules given in Table 3-5.

Vol.1 3-21



BASIC EXECUTION ENVIRONMENT

When storing data in memory or loading data from memory, the DS segment default can be overridden to allow
other segments to be accessed. Within an assembler, the segment override is generally handled with a colon ™:”
operator. For example, the following MOV instruction moves a value from register EAX into the segment pointed to

by the ES register. The offset into the segment is contained in the EBX register:
MOV ES:[EBX], EAX;

Table 3-5. Default Segment Selection Rules

Reference Type Register Used | Segment Used Default Selection Rule
Instructions CS Code Segment Allinstruction fetches.
Stack SS Stack Segment All stack pushes and pops.
Any memory reference which uses the ESP or EBP register as a base
register.
Local Data DS Data Segment All data references, except when relative to stack or string destination.
Destination Strings | ES Data Segment Destination of string instructions.
pointed to with the
ES register

At the machine level, a segment override is specified with a segment-override prefix, which is a byte placed at the
beginning of an instruction. The following default segment selections cannot be overridden:

® Instruction fetches must be made from the code segment.
® Destination strings in string instructions must be stored in the data segment pointed to by the ES register.
® Push and pop operations must always reference the SS segment.

Some instructions require a segment selector to be specified explicitly. In these cases, the 16-bit segment selector
can be located in a memory location or in a 16-bit register. For example, the following MOV instruction moves a
segment selector located in register BX into segment register DS:

MOV DS, BX

Segment selectors can also be specified explicitly as part of a 48-bit far pointer in memory. Here, the first double-
word in memory contains the offset and the next word contains the segment selector.

3.7.4.1 Segmentation in 64-Bit Mode

In IA-32e mode, the effects of segmentation depend on whether the processor is running in compatibility mode or
64-bit mode. In compatibility mode, segmentation functions just as it does in legacy IA-32 mode, using the 16-bit
or 32-bit protected mode semantics described above.

In 64-bit mode, segmentation is generally (but not completely) disabled, creating a flat 64-bit linear-address
space. The processor treats the segment base of CS, DS, ES, SS as zero, creating a linear address that is equal to
the effective address. The exceptions are the FS and GS segments, whose segment registers (which hold the
segment base) can be used as additional base registers in some linear address calculations.

3.7.5 Specifying an Offset

The offset part of a memory address can be specified directly as a static value (called a displacement) or through
an address computation made up of one or more of the following components:

® Displacement — An 8-, 16-, or 32-bit value.

® Base — The value in a general-purpose register.

® Index — The value in a general-purpose register.

® Scale factor — A value of 2, 4, or 8 that is multiplied by the index value.

3-22 Vol. 1



BASIC EXECUTION ENVIRONMENT

The offset which results from adding these components is called an effective address. Each of these components
can have either a positive or negative (2s complement) value, with the exception of the scaling factor. Figure 3-11
shows all the possible ways that these components can be combined to create an effective address in the selected
segment.

Base Index Scale  Displacement

EAX o

EBX [EAXS None
| EBX | [

ECX | | f \ )
[EX 1 8-bit

EDX ‘

esp |t | EDX I+
P 4 16-bit

€BP -

ESl g/ 32-bit

DI \&o ) B

Offset = Base + (Index * Scale) + Displacement

Figure 3-11. Offset (or Effective Address) Computation

The uses of general-purpose registers as base or index components are restricted in the following manner:
® The ESP register cannot be used as an index register.

® When the ESP or EBP register is used as the base, the SS segment is the default segment. In all other cases,
the DS segment is the default segment.

The base, index, and displacement components can be used in any combination, and any of these components can
be NULL. A scale factor may be used only when an index also is used. Each possible combination is useful for data
structures commonly used by programmers in high-level languages and assembly language.

The following addressing modes suggest uses for common combinations of address components.

® Displacement — A displacement alone represents a direct (uncomputed) offset to the operand. Because the
displacement is encoded in the instruction, this form of an address is sometimes called an absolute or static
address. It is commonly used to access a statically allocated scalar operand.

® Base — A base alone represents an indirect offset to the operand. Since the value in the base register can
change, it can be used for dynamic storage of variables and data structures.

® Base + Displacement — A base register and a displacement can be used together for two distinct purposes:

— As anindex into an array when the element size is not 2, 4, or 8 bytes—The displacement component
encodes the static offset to the beginning of the array. The base register holds the results of a calculation
to determine the offset to a specific element within the array.

— To access a field of a record: the base register holds the address of the beginning of the record, while the
displacement is a static offset to the field.

An important special case of this combination is access to parameters in a procedure activation record. A
procedure activation record is the stack frame created when a procedure is entered. Here, the EBP register is
the best choice for the base register, because it automatically selects the stack segment. This is a compact
encoding for this common function.

® (Index * Scale) + Displacement — This address mode offers an efficient way to index into a static array
when the element size is 2, 4, or 8 bytes. The displacement locates the beginning of the array, the index
register holds the subscript of the desired array element, and the processor automatically converts the
subscript into an index by applying the scaling factor.

® Base + Index + Displacement — Using two registers together supports either a two-dimensional array (the
displacement holds the address of the beginning of the array) or one of several instances of an array of records
(the displacement is an offset to a field within the record).

® Base + (Index * Scale) + Displacement — Using all the addressing components together allows efficient
indexing of a two-dimensional array when the elements of the array are 2, 4, or 8 bytes in size.

Vol.1 3-23



BASIC EXECUTION ENVIRONMENT

3.7.5.1 Specifying an Offset in 64-Bit Mode

The offset part of a memory address in 64-bit mode can be specified directly as a static value or through an address
computation made up of one or more of the following components:

® Displacement — An 8-bit, 16-bit, or 32-bit value.

® Base — The value in a 64-bit general-purpose register.

® Index — The value in a 64-bit general-purpose register.

® Scale factor — A value of 2, 4, or 8 that is multiplied by the index value.

The base and index value can be specified in one of sixteen available general-purpose registers in most cases. See
Chapter 2, “Instruction Format,” in the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2A.

The following unique combination of address components is also available.

® RIP + Displacement —In 64-bit mode, RIP-relative addressing uses a signed 32-bit displacement to
calculate the effective address of the next instruction by sign-extend the 32-bit value and add to the 64-bit
value in RIP.

3.7.6 Assembler and Compiler Addressing Modes

At the machine-code level, the selected combination of displacement, base register, index register, and scale factor
is encoded in an instruction. All assemblers permit a programmer to use any of the allowable combinations of these
addressing components to address operands. High-level language compilers will select an appropriate combination
of these components based on the language construct a programmer defines.

3.7.7 I/0 Port Addressing

The processor supports an I/0 address space that contains up to 65,536 8-bit I/O ports. Ports that are 16-bit and
32-bit may also be defined in the I/O address space. An I/O port can be addressed with either an immediate
operand or a value in the DX register. See Chapter 17, “Input/Output,” for more information about I/O port
addressing.

3-24 Vol. 1



CHAPTER 4
DATA TYPES

This chapter introduces data types defined for the Intel 64 and IA-32 architectures. A section at the end of this
chapter describes the real-number and floating-point concepts used in x87 FPU, SSE, SSE2, SSE3, SSSE3, SSE4
and Intel AVX extensions.

4.1 FUNDAMENTAL DATA TYPES

The fundamental data types are bytes, words, doublewords, quadwords, and double quadwords (see Figure 4-1).
A byte is eight bits, a word is 2 bytes (16 bits), a doubleword is 4 bytes (32 bits), a quadword is 8 bytes (64 bits),
and a double quadword is 16 bytes (128 bits). A subset of the IA-32 architecture instructions operates on these
fundamental data types without any additional operand typing.

7 0
I:l Byte
N
15 87 0
Word
N+1 N
31 16 15 0
| High Word| Low Word | Doubleword
N+2 N
63 32 31 0
| High Doubleword | Low Doubleword | Quadword
N+4 N

127 64 63
High Quadword | Low Quadword

N+8 N

0
Double
Quadword

Figure 4-1. Fundamental Data Types

The quadword data type was introduced into the IA-32 architecture in the Intel486 processor; the double quad-
word data type was introduced in the Pentium lIl processor with the SSE extensions.

Figure 4-2 shows the byte order of each of the fundamental data types when referenced as operands in memory.
The low byte (bits 0 through 7) of each data type occupies the lowest address in memory and that address is also
the address of the operand.

Vol. T 4-1



DATA TYPES

4EH FH A
12H EH
7AH DH A
Word at Address BH FEH CH Doubleword at Address AH
Contains FEOGH 06H BH Contains 7AFEO636H
v 36H AH
Byte at Address 9H — 1FH oH T
Contains TFH Quadword at Address 6H
ﬁ A4H 8H Contains
A 7AFE06361FA4230BH
Word at Address 6H 23H 7H
Contains 230BH OBH 6H Y
45H 5H
67H 4H
Word at Address 2H e
Contains 74CBH i 74H 3H e cuadord at Add
Double quadword at Address OH
Word at Address 1H v CBH 2H cgntaing
Contains CB31H 31H TH | 4E127AFE06361FA4230B456774CB311;
12H OH y

Figure 4-2. Bytes, Words, Doublewords, Quadwords, and Double Quadwords in Memory

4.1.1 Alignment of Words, Doublewords, Quadwords, and Double Quadwords

Words, doublewords, and quadwords do not need to be aligned in memory on natural boundaries. The natural
boundaries for words, double words, and quadwords are even-numbered addresses, addresses evenly divisible by
four, and addresses evenly divisible by eight, respectively. However, to improve the performance of programs, data
structures (especially stacks) should be aligned on natural boundaries whenever possible. The reason for this is
that the processor requires two memory accesses to make an unaligned memory access; aligned accesses require
only one memory access. A word or doubleword operand that crosses a 4-byte boundary or a quadword operand
that crosses an 8-byte boundary is considered unaligned and requires two separate memory bus cycles for access.

Some instructions that operate on double quadwords require memory operands to be aligned on a natural
boundary. These instructions generate a general-protection exception (#GP) if an unaligned operand is specified.
A natural boundary for a double quadword is any address evenly divisible by 16. Other instructions that operate on
double quadwords permit unaligned access (without generating a general-protection exception). However, addi-
tional memory bus cycles are required to access unaligned data from memory.

4.2 NUMERIC DATA TYPES

Although bytes, words, and doublewords are fundamental data types, some instructions support additional inter-
pretations of these data types to allow operations to be performed on numeric data types (signed and unsigned
integers, and floating-point humbers). Single-precision (32-bit) floating-point and double-precision (64-bit)
floating-point data types are supported across all generations of SSE extensions and Intel AVX extensions. Half-
precision (16-bit) floating-point data type is supported only with F16C extensions (VCVTPH2PS, VCVTPS2PH). See
Figure 4-3.

4-2 Vol. 1



DATA TYPES

I:l Byte Unsigned Integer
7 0
|:| Word Unsigned Integer
15 0
| Doubleword Unsigned Integer
31 0
I Quadword Unsigned Integer
63 0
Sign
D:l Byte Signed Integer
76 0
Sign
D:I Word Signed Integer
1514 0
Sign
I | | Doubleword Signed Integer
3130 0
Sign
| ‘ | Quadword Signed Integer
63 62 0
Sign
Half Precision
Floating Point
1514 9 0
Sign
| | | | Single Precision
37303353 3 Floating Point
Sign
‘ | | Double Precision
Floating Point
6362 5251 0
Sign Integer Bit o
‘ | | | Double Extended Precision
Floating Point
7978 64 63 62

Figure 4-3. Numeric Data Types

4.2.1 Integers

The Intel 64 and IA-32 architectures define two types of integers: unsigned and signed. Unsigned integers are ordi-
nary binary values ranging from 0 to the maximum positive number that can be encoded in the selected operand

size. Signed integers are two’s complement binary values that can be used to represent both positive and negative
integer values.

Some integer instructions (such as the ADD, SUB, PADDB, and PSUBB instructions) operate on either unsigned or
signed integer operands. Other integer instructions (such as IMUL, MUL, ID1V, D1V, FIADD, and FISUB) operate on
only one integer type.

The following sections describe the encodings and ranges of the two types of integers.

4.2.1.1 Unsigned Integers

Unsigned integers are unsigned binary numbers contained in a byte, word, doubleword, and quadword. Their
values range from 0 to 255 for an unsigned byte integer, from 0 to 65,535 for an unsigned word integer, from 0

Vol.1T 4-3



DATA TYPES

to 232 - 1 for an unsigned doubleword integer, and from 0 to 2% - 1 for an unsigned quadword integer. Unsigned
integers are sometimes referred to as ordinals.

42.1.2 Signed Integers

Signed integers are signed binary numbers held in a byte, word, doubleword, or quadword. All operations on signed
integers assume a two's complement representation. The sign bit is located in bit 7 in a byte integer, bit 15in a
word integer, bit 31 in a doubleword integer, and bit 63 in a quadword integer (see the signed integer encodings in
Table 4-1).

Table 4-1. Signed Integer Encodings

Class Two’s Complement Encoding
Sign
Positive Largest 0 11.11
Smallest 0 00.01
Zero 0 00.00
Negative Smallest 1 11.11
Largest 1 00..00
Integer indefinite 1 00..00
Signed Byte Integer: <— 7 bits =
Signed Word Integer: <— 15 bits —
Signed Doubleword Integer: & 31 bits =
Signed Quadword Integer: < 63 bits =

The sign bit is set for negative integers and cleared for positive integers and zero. Integer values range from -128
to +127 for a byte integer, from -32,768 to +32,767 for a word integer, from -231 to +231 - 1 for a doubleword
integer, and from -2°3 to +2%3 - 1 for a quadword integer.

When storing integer values in memory, word integers are stored in 2 consecutive bytes; doubleword integers are
stored in 4 consecutive bytes; and quadword integers are stored in 8 consecutive bytes.

The integer indefinite is a special value that is sometimes returned by the x87 FPU when operating on integer
values. For more information, see Section 8.2.1, “Indefinites.”

4.2.2 Floating-Point Data Types

The IA-32 architecture defines and operates on three floating-point data types: single-precision floating-point,
double-precision floating-point, and double-extended precision floating-point (see Figure 4-3). The data formats
for these data types correspond directly to formats specified in the IEEE Standard 754 for Binary Floating-Point
Arithmetic.

Half-precision (16-bit) floating-point data type is supported only for conversion operation with single-precision
floating data using F16C extensions (VCVTPH2PS, VCVTPS2PH).

Table 4-2 gives the length, precision, and approximate normalized range that can be represented by each of these
data types. Denormal values are also supported in each of these types.

4-4 Vol. 1



DATA TYPES

Table 4-2. Length, Precision, and Range of Floating-Point Data Types

Data Type Length Precision Approximate Normalized Range
(Bits) Binary Decimal
Half Precision 16 11 2%t 2™ 3.1x10™ t06.50 x 10%
Single Precision 32 24 27126 49 2127 1.18x 103810 3.40 x 1038
Double Precision 64 53 271022 44 21023 2.23x1073%8 10 1.79 x 10308
Double Extended 80 64 2716382 4 216383 337 x 1074932 10 1.18 x 104932
Precision

NOTE

Section 4.8, “"Real Numbers and Floating-Point Formats,” gives an overview of the IEEE Standard
754 floating-point formats and defines the terms integer bit, QNaN, SNaN, and denormal value.

Table 4-3 shows the floating-point encodings for zeros, denormalized finite numbers, normalized finite numbers,
infinites, and NaNs for each of the three floating-point data types. It also gives the format for the QNaN floating-
point indefinite value. (See Section 4.8.3.7, "QNaN Floating-Point Indefinite,” for a discussion of the use of the

QNaN floating-point indefinite value.)

For the single-precision and double-precision formats, only the fraction part of the significand is encoded. The
integer is assumed to be 1 for all numbers except 0 and denormalized finite numbers. For the double extended-
precision format, the integer is contained in bit 63, and the most-significant fraction bit is bit 62. Here, the integer
is explicitly set to 1 for normalized numbers, infinities, and NaNs, and to O for zero and denormalized numbers.

Table 4-3. Floating-Point Number and NaN Encodings

Class Sign Biased Exponent Significand
Integer’ Fraction
Positive +oo 11.11 1 00.00
+Normals 11.10 1 11.11
00..01 00..00
+Denormals 0 00.00 0 11.11
0 00..00 0 00..01
+Zero 0 00..00 0 00..00
Negative —Zero 1 00.00 0 00.00
—Denormals 1 00..00 0 00.01
1 00..00 0 11.11
—Normals 1 00.01 00..00
1 11.10 1 11.11
-o0 1 11.11 1 00..00

Vol. 1T 4-5




DATA TYPES

Table 4-3. Floating-Point Number and NaN Encodings (Contd.)

NaNs SNaN X 11.11 1 OX.XX2
QNaN X 11.11 1 TX.XX
QNaN Floating- 1 11.11 1 10..00
Point Indefinite
Half-Precision < 5Bits — < 10 Bits >
Single-Precision: < 8Bits — < 23Bits —
Double-Precision: < 1 Bits — < 52 Bits —
Double Extended-Precision: < 15Bits — < 63 Bits —

NOTES:
1. Integer bit is implied and not stored for single-precision and double-precision formats.
2. The fraction for SNaN encodings must be non-zero with the most-significant bit O.

The exponent of each floating-point data type is encoded in biased format; see Section 4.8.2.2, “"Biased Exponent.”
The biasing constant is 15 for the half-precision format, 127 for the single-precision format, 1023 for the double-
precision format, and 16,383 for the double extended-precision format.

When storing floating-point values in memory, half-precision values are stored in 2 consecutive bytes in memory;
single-precision values are stored in 4 consecutive bytes in memory; double-precision values are stored in 8
consecutive bytes; and double extended-precision values are stored in 10 consecutive bytes.

The single-precision and double-precision floating-point data types are operated on by x87 FPU, and
SSE/SSE2/SSE3/SSE4.1 and Intel AVX instructions. The double-extended-precision floating-point format is only
operated on by the x87 FPU. See Section 11.6.8, "Compatibility of SIMD and x87 FPU Floating-Point Data Types,”
for a discussion of the compatibility of single-precision and double-precision floating-point data types between the
x87 FPU and SSE/SSE2/SSE3 extensions.

4.3 POINTER DATA TYPES

Pointers are addresses of locations in memory.

In non-64-bit modes, the architecture defines two types of pointers: a near pointer and a far pointer. A near
pointer is a 32-bit (or 16-bit) offset (also called an effective address) within a segment. Near pointers are used
for all memory references in a flat memory model or for references in a segmented model where the identity of the
segment being accessed is implied.

A far pointer is a logical address, consisting of a 16-bit segment selector and a 32-bit (or 16-bit) offset. Far pointers
are used for memory references in a segmented memory model where the identity of a segment being accessed
must be specified explicitly. Near and far pointers with 32-bit offsets are shown in Figure 4-4.

Near Pointer
Offset
31 0

Far Pointer or Logical Address

| Segment Selector \ Offset
47 32 31 0

Figure 4-4. Pointer Data Types

4-6 Vol. 1



DATA TYPES

4.3.1 Pointer Data Types in 64-Bit Mode

In 64-bit mode (a sub-mode of IA-32e mode), a near pointer is 64 bits. This equates to an effective address. Far
pointers in 64-bit mode can be one of three forms:

® 16-bit segment selector, 16-bit offset if the operand size is 32 bits
® 16-bit segment selector, 32-bit offset if the operand size is 32 bits
® 16-bit segment selector, 64-bit offset if the operand size is 64 bits
See Figure 4-5.

Near Pointer

64-bit Offset
63 0
Far Pointer with 64-bit Operand Size
16-bit Segment Selector 64-bit Offset
79 64 63 0

Far Pointer with 32-bit Operand Size

16-bit Segment Selector 32-bit Offset

47 32 31 0

Far Pointer with 32-bit Operand Size

16-bit Segment Selector 16-bit Offset

31 16 15 0

Figure 4-5. Pointers in 64-Bit Mode

4.4 BIT FIELD DATA TYPE

A bit field (see Figure 4-6) is a contiguous sequence of bits. It can begin at any bit position of any byte in memory
and can contain up to 32 bits.

Bit Field
| |
| Field Length —|

Least
Significant
Bit

Figure 4-6. Bit Field Data Type

Vol.1 4-7



DATA TYPES

4.5 STRING DATA TYPES

Strings are continuous sequences of bits, bytes, words, or doublewords. A bit string can begin at any bit position
of any byte and can contain up to 232 - 1 bits. A byte string can contain bytes, words, or doublewords and can
range from zero to 232 - 1 bytes (4 GBytes).

4.6 PACKED SIMD DATA TYPES

Intel 64 and IA-32 architectures define and operate on a set of 64-bit and 128-bit packed data type for use in SIMD
operations. These data types consist of fundamental data types (packed bytes, words, doublewords, and quad-
words) and numeric interpretations of fundamental types for use in packed integer and packed floating-point oper-
ations.

4.6.1 64-Bit SIMD Packed Data Types

The 64-bit packed SIMD data types were introduced into the IA-32 architecture in the Intel MMX technology. They
are operated on in MMX registers. The fundamental 64-bit packed data types are packed bytes, packed words, and
packed doublewords (see Figure 4-7). When performing numeric SIMD operations on these data types, these data
types are interpreted as containing byte, word, or doubleword integer values.

Fundamental 64-Bit Packed SIMD Data Types

| | | | | | | | |PackedBytes
63 0

| | | | | Packed Words
63 0

| | | Packed Doublewords
63 0

64-Bit Packed Integer Data Types

| | | | | | | | | Packed Byte Integers
63 0

| | | | | Packed Word Integers
63 0

| | | Packed Doubleword Integers

63 0

Figure 4-7. 64-Bit Packed SIMD Data Types

4.6.2 128-Bit Packed SIMD Data Types

The 128-bit packed SIMD data types were introduced into the IA-32 architecture in the SSE extensions and used
with SSE2, SSE3 and SSSE3 extensions. They are operated on primarily in the 128-bit XMM registers and memory.
The fundamental 128-bit packed data types are packed bytes, packed words, packed doublewords, and packed
quadwords (see Figure 4-8). When performing SIMD operations on these fundamental data types in XMM registers,
these data types are interpreted as containing packed or scalar single-precision floating-point or double-precision
floating-point values, or as containing packed byte, word, doubleword, or quadword integer values.

4-8 Vol. 1



DATA TYPES

Fundamental 128-Bit Packed SIMD Data Types

1 I D D A Q-
127 )

| | | | | | | | | Packed Words

127 )

| | | | | Packed Doublewords
127 0

| | | Packed Quadwords
127 )

128-Bit Packed Floating-Point and Integer Data Types

| | | Packed Single Precision
Floating Point

| | | Packed Double Precision
Floating Point

| | | | | | | | | | | | | | | | |PackedByte|ntegers

| | | | | | | | | Packed Word Integers

| | | | | Packed Doubleword Integers

| | | Packed Quadword Integers

127 0
Figure 4-8. 128-Bit Packed SIMD Data Types

4.7 BCD AND PACKED BCD INTEGERS

Binary-coded decimal integers (BCD integers) are unsigned 4-bit integers with valid values ranging from 0 to 9. IA-
32 architecture defines operations on BCD integers located in one or more general-purpose registers or in one or
more x87 FPU registers (see Figure 4-9).

Vol.1T 4-9



DATA TYPES

BCD Integers

7 43 0

Packed BCD Integers

7 43 0

Sign 80-Bit Packed BCD Decimal Integers
[ x [pb17, D16 D15 D14 D13 D12, D11,D10, D9, K D8 K D7 , D6 ,D5 D4 D3 D2 6 D1, DO |
7978 7271 0
4 Bits = 1 BCD Digit

Figure 4-9. BCD Data Types

When operating on BCD integers in general-purpose registers, the BCD values can be unpacked (one BCD digit per
byte) or packed (two BCD digits per byte). The value of an unpacked BCD integer is the binary value of the low half-
byte (bits 0 through 3). The high half-byte (bits 4 through 7) can be any value during addition and subtraction, but
must be zero during multiplication and division. Packed BCD integers allow two BCD digits to be contained in one
byte. Here, the digit in the high half-byte is more significant than the digit in the low half-byte.

When operating on BCD integers in x87 FPU data registers, BCD values are packed in an 80-bit format and referred
to as decimal integers. In this format, the first 9 bytes hold 18 BCD digits, 2 digits per byte. The least-significant
digit is contained in the lower half-byte of byte 0 and the most-significant digit is contained in the upper half-byte
of byte 9. The most significant bit of byte 10 contains the sign bit (0 = positive and 1 = negative; bits 0 through 6
of byte 10 are don’t care bits). Negative decimal integers are not stored in two's complement form; they are distin-
guished from positive decimal integers only by the sign bit. The range of decimal integers that can be encoded in
this format is ~1018+ 1 to 1018 -1,

The decimal integer format exists in memory only. When a decimal integer is loaded in an x87 FPU data register, it
is automatically converted to the double-extended-precision floating-point format. All decimal integers are exactly
representable in double extended-precision format.

Table 4-4 gives the possible encodings of value in the decimal integer data type.

Table 4-4. Packed Decimal Integer Encodings

Magnitude

Class Sign digit digit digit digit digit
Positive
Largest 0 0000000 1001 1001 1001 1001 1001
Smallest 0 0000000 0000 0000 0000 0000 0001
Zero 0 0000000 0000 0000 0000 0000 0000
Negative
Zero 1 0000000 0000 0000 0000 0000 0000
Smallest 1 0000000 0000 0000 0000 0000 0001
Largest 1 0000000 1001 1001 1001 1001 1001

4-10 Vol.1



DATA TYPES

Table 4-4. Packed Decimal Integer Encodings (Contd.)

Packed BCD 1 1111111 1111 1111 1100 0000 0000
Integer
Indefinite

< 1 byte = & 9 bytes —

The packed BCD integer indefinite encoding (FFFFCO00000000000000H) is stored by the FBSTP instruction in
response to a masked floating-point invalid-operation exception. Attempting to load this value with the FBLD
instruction produces an undefined result.

4.8 REAL NUMBERS AND FLOATING-POINT FORMATS

This section describes how real numbers are represented in floating-point format in x87 FPU and
SSE/SSE2/SSE3/SSE4.1 and Intel AVX floating-point instructions. It also introduces terms such as normalized
numbers, denormalized numbers, biased exponents, signed zeros, and NaNs. Readers who are already familiar
with floating-point processing techniques and the IEEE Standard 754 for Binary Floating-Point Arithmetic may wish
to skip this section.

4.8.1 Real Number System

As shown in Figure 4-10, the real-number system comprises the continuum of real numbers from minus infinity (-
=) to plus infinity (+ ).

Because the size and number of registers that any computer can have is limited, only a subset of the real-number
continuum can be used in real-number (floating-point) calculations. As shown at the bottom of Figure 4-10, the
subset of real numbers that the IA-32 architecture supports represents an approximation of the real number
system. The range and precision of this real-number subset is determined by the IEEE Standard 754 floating-point
formats.

4.8.2 Floating-Point Format

To increase the speed and efficiency of real-number computations, computers and microprocessors typically repre-
sent real numbers in a binary floating-point format. In this format, a real number has three parts: a sign, a signif-
icand, and an exponent (see Figure 4-11).

The sign is a binary value that indicates whether the number is positive (0) or negative (1). The significand has
two parts: a 1-bit binary integer (also referred to as the J-bit) and a binary fraction. The integer-bit is often not
represented, but instead is an implied value. The exponent is a binary integer that represents the base-2 power by
which the significand is multiplied.

Table 4-5 shows how the real number 178.125 (in ordinary decimal format) is stored in IEEE Standard 754 floating-
point format. The table lists a progression of real number notations that leads to the single-precision, 32-bit
floating-point format. In this format, the significand is normalized (see Section 4.8.2.1, "Normalized Numbers”)
and the exponent is biased (see Section 4.8.2.2, “Biased Exponent”). For the single-precision floating-point
format, the biasing constant is +127.

Vol. 1 4-11



DATA TYPES

Binary Real Number System

-100 -10 -1 0 1 10 100
| | | I | |

- | | I 1 T s>

Subset of binary real numbers that can be represented with
IEEE single-precision (32-bit) floating-point format
-100 -10 -1 0 1 10 100

D S S

'_'T— 10.0000000000000000000000

A 111111 1111111111111
Precision | <«—— 24 Binary Digits ——

Numbers within this range
cannot be represented.

Figure 4-10. Binary Real Number System

Sign

H Exponent ‘ Significand ‘

=

‘ ‘ Fraction ‘

Integer or J-Bit /4

Figure 4-11. Binary Floating-Point Format

Table 4-5. Real and Floating-Point Number Notation

Notation Value
Ordinary Decimal 178.125
Scientific Decimal 1.78125€152
Scientific Binary 1.0110010001€,111
Scientific Binary 1.0110010001€,10000110
(Biased Exponent)
IEEE Single-Precision Format Sign Biased Exponent Normalized Significand
0 10000110 01100100010000000000000
1. (Implied)

4-12 Vol.1



DATA TYPES

4.8.2.1 Normalized Numbers

In most cases, floating-point numbers are encoded in normalized form. This means that except for zero, the signif-
icand is always made up of an integer of 1 and the following fraction:

1.fff...ff

For values less than 1, leading zeros are eliminated. (For each leading zero eliminated, the exponent is decre-
mented by one.)

Representing numbers in normalized form maximizes the number of significant digits that can be accommodated
in a significand of a given width. To summarize, a normalized real number consists of a normalized significand that
represents a real number between 1 and 2 and an exponent that specifies the number’s binary point.

4.8.2.2 Biased Exponent

In the IA-32 architecture, the exponents of floating-point numbers are encoded in a biased form. This means that
a constant is added to the actual exponent so that the biased exponent is always a positive number. The value of
the biasing constant depends on the number of bits available for representing exponents in the floating-point
format being used. The biasing constant is chosen so that the smallest normalized humber can be reciprocated
without overflow.

See Section 4.2.2, “Floating-Point Data Types,” for a list of the biasing constants that the IA-32 architecture uses
for the various sizes of floating-point data-types.

4.8.3 Real Number and Non-number Encodings

A variety of real numbers and special values can be encoded in the IEEE Standard 754 floating-point format. These
numbers and values are generally divided into the following classes:

® Signed zeros

® Denormalized finite numbers

® Normalized finite numbers

® Signed infinities

® NaNs

® Indefinite numbers

(The term NaN stands for "Not a Number.”)

Figure 4-12 shows how the encodings for these numbers and non-numbers fit into the real number continuum. The
encodings shown here are for the IEEE single-precision floating-point format. The term “S” indicates the sign bit,
“E” the biased exponent, and “Sig” the significand. The exponent values are given in decimal. The integer bit is
shown for the significands, even though the integer bit is implied in single-precision floating-point format.

Vol.1 4-13



DATA TYPES

NaN NaN
— Denormalized Finite + Denormalized Finite
o = Normalized Finite n 0|+ 0 Lt Normalized Finite +o°
T T

Real Number and NaN Encodings For 32-Bit Floating-Point Format

s E Sig' s E Sig'

[1] o [ o0.000.. |-o0 +0[o] o ] o.00. ]
(1] 0 [ oxxx..Z] ~Penormalized  +Denormalized (475170 XXX 7|

— Normalized +N lized

[1]1..254] 1.XXX... | “Fimite oo [0]1...254] 1.XXX... ]
[1] 255 [ 1.000... | - +o [0] 255 [ 1.000... |
[x3 255 | 1.0XX..2 | SNaN SNaN [x3 255 | 1.0XX..Z |
[x§ 255 | 1.1XX.. | QNaN QNaN [xJ 255 [ 1.1XX... |

NOTES:

1. Integer bit of fraction implied for
single-precision floating-point format.

2. Fraction must be non-zero.

3. Sign bit ignored.

Figure 4-12. Real Numbers and NaNs

An IA-32 processor can operate on and/or return any of these values, depending on the type of computation being
performed. The following sections describe these number and non-number classes.

4.8.3.1 Signed Zeros

Zero can be represented as a +0 or a -0 depending on the sign bit. Both encodings are equal in value. The sign of
a zero result depends on the operation being performed and the rounding mode being used. Signed zeros have
been provided to aid in implementing interval arithmetic. The sign of a zero may indicate the direction from which
underflow occurred, or it may indicate the sign of an «~ that has been reciprocated.

4.8.3.2 Normalized and Denormalized Finite Numbers

Non-zero, finite numbers are divided into two classes: normalized and denormalized. The normalized finite
numbers comprise all the non-zero finite values that can be encoded in a normalized real number format between
zero and «. In the single-precision floating-point format shown in Figure 4-12, this group of numbers includes all
the numbers with biased exponents ranging from 1 to 2544 (unbiased, the exponent range is from -126 to
+12710).

When floating-point numbers become very close to zero, the normalized-number format can no longer be used to
represent the numbers. This is because the range of the exponent is not large enough to compensate for shifting
the binary point to the right to eliminate leading zeros.

When the biased exponent is zero, smaller numbers can only be represented by making the integer bit (and
perhaps other leading bits) of the significand zero. The numbers in this range are called denormalized numbers.
The use of leading zeros with denormalized numbers allows smaller numbers to be represented. However, this
denormalization may cause a loss of precision (the number of significant bits is reduced by the leading zeros).

When performing normalized floating-point computations, an IA-32 processor normally operates on normalized
numbers and produces normalized numbers as results. Denormalized numbers represent an underflow condition.
The exact conditions are specified in Section 4.9.1.5, "Numeric Underflow Exception (#U).”

A denormalized number is computed through a technique called gradual underflow. Table 4-6 gives an example of
gradual underflow in the denormalization process. Here the single-precision format is being used, so the minimum
exponent (unbiased) is —-1264. The true result in this example requires an exponent of -129,¢ in order to have a

4-14 Vol.1



DATA TYPES

normalized number. Since —-129,g is beyond the allowable exponent range, the result is denormalized by inserting
leading zeros until the minimum exponent of -1264 is reached.

Table 4-6. Denormalization Process

Operation Sign Exponent* Significand

True Result 0 -129 1.01011100000..00
Denormalize 0 -128 0.10101110000...00
Denormalize 0 =127 0.01010111000..00
Denormalize 0 -126 0.00101011100..00
Denormal Result 0 -126 0.00101011100..00

* Expressed as an unbiased, decimal number.

In the extreme case, all the significant bits are shifted out to the right by leading zeros, creating a zero result.
The Intel 64 and IA-32 architectures deal with denormal values in the following ways:
® It avoids creating denormals by normalizing numbers whenever possible.

® It provides the floating-point underflow exception to permit programmers to detect cases when denormals are
created.

® It provides the floating-point denormal-operand exception to permit procedures or programs to detect when
denormals are being used as source operands for computations.

4.8.3.3 Signed Infinities

The two infinities, + « and - «, represent the maximum positive and negative real numbers, respectively, that can
be represented in the floating-point format. Infinity is always represented by a significand of 1.00...00 (the integer
bit may be implied) and the maximum biased exponent allowed in the specified format (for example, 2554 for the
single-precision format).

The signs of infinities are observed, and comparisons are possible. Infinities are always interpreted in the affine
sense; that is, —= is less than any finite number and +« is greater than any finite number. Arithmetic on infinities
is always exact. Exceptions are generated only when the use of an infinity as a source operand constitutes an
invalid operation.

Whereas denormalized numbers may represent an underflow condition, the two « humbers may represent the
result of an overflow condition. Here, the normalized result of a computation has a biased exponent greater than
the largest allowable exponent for the selected result format.

48.3.4 NaNs

Since NaNs are non-numbers, they are not part of the real number line. In Figure 4-12, the encoding space for
NaNs in the floating-point formats is shown above the ends of the real number line. This space includes any value
with the maximum allowable biased exponent and a non-zero fraction (the sign bit is ignored for NaNs).

The IA-32 architecture defines two classes of NaNs: quiet NaNs (QNaNs) and signaling NaNs (SNaNs). A QNaN is a
NaN with the most significant fraction bit set; an SNaN is a NaN with the most significant fraction bit clear. QNaNs
are allowed to propagate through most arithmetic operations without signaling an exception. SNaNs generally
signal a floating-point invalid-operation exception whenever they appear as operands in arithmetic operations.

SNaNs are typically used to trap or invoke an exception handler. They must be inserted by software; that is, the
processor never generates an SNaN as a result of a floating-point operation.

Vol.1 4-15



DATA TYPES

4.8.3.5 Operating on SNaNs and QNaNs

When a floating-point operation is performed on an SNaN and/or a QNaN, the result of the operation is either a
QNaN delivered to the destination operand or the generation of a floating-point invalid operation exception,
depending on the following rules:

® If one of the source operands is an SNaN and the floating-point invalid-operation exception is not masked (see
Section 4.9.1.1, “Invalid Operation Exception (#1)”), then a floating-point invalid-operation exception is
signaled and no result is stored in the destination operand.

® If either or both of the source operands are NaNs and floating-point invalid-operation exception is masked, the
result is as shown in Table 4-7. When an SNaN is converted to a QNaN, the conversion is handled by setting the
most-significant fraction bit of the SNaN to 1. Also, when one of the source operands is an SNaN, the floating-
point invalid-operation exception flag is set. Note that for some combinations of source operands, the result is
different for x87 FPU operations and for SSE/SSE2/SSE3/SSE4.1 operations. Intel AVX follows the same
behavior as SSE/SSE2/SSE3/SSE4.1 in this respect.

® When neither of the source operands is a NaN, but the operation generates a floating-point invalid-operation
exception (see Tables 8-10 and 11-1), the result is commonly a QNaN FP Indefinite (Section 4.8.3.7).

Any exceptions to the behavior described in Table 4-7 are described in Section 8.5.1.2, “Invalid Arithmetic Operand
Exception (#IA),” and Section 11.5.2.1, “Invalid Operation Exception (#1I).”

Table 4-7. Rules for Handling NaNs
Source Operands Result!

SNaN and QNaN x87 FPU — QNaN source operand.

SSE/SSE2/SSE3/SSE4.1/AVX — First source operand (if this operand is an
SNaN, it is converted to a QNaN)

Two SNaNs x87 FPU—SNaN source operand with the larger significand, converted into a
QNaN
SSE/SSE2/SSE3/SSE4.1/AVX — First source operand converted to a QNaN
Two QNaNs x87 FPU — QNaN source operand with the larger
significand
SSE/SSE2/SSE3/SSE4.1/AVX — First source operand
SNaN and a floating-point value SNaN source operand, converted into a QNaN
QNaN and a floating-point value QNaN source operand

SNaN (for instructions that take only one operand) | SNaN source operand, converted into a QNaN

QNaN (for instructions that take only one operand) | QNaN source operand

NOTE:

1. For SSE/SSE2/SSE3/SSE4.1 instructions, the first operand is generally a source operand that becomes the destination operand. For
AVX instructions, the first source operand is usually the 2nd operand in a non-destructive source syntax. Within the Result column,
the x87 FPU notation also applies to the FISTTP instruction in SSE3; the SSE3 notation applies to the SIMD floating-point instruc-
tions.

4.8.3.6 Using SNaNs and QNaNs in Applications

Except for the rules given at the beginning of Section 4.8.3.4, "NaNs,” for encoding SNaNs and QNaNs, software is
free to use the bits in the significand of a NaN for any purpose. Both SNaNs and QNaNs can be encoded to carry and
store data, such as diagnostic information.

By unmasking the invalid operation exception, the programmer can use signaling NaNs to trap to the exception
handler. The generality of this approach and the large number of NaN values that are available provide the sophis-
ticated programmer with a tool that can be applied to a variety of special situations.

For example, a compiler can use signaling NaNs as references to uninitialized (real) array elements. The compiler
can preinitialize each array element with a signaling NaN whose significand contains the index (relative position) of

4-16 Vol.1



DATA TYPES

the element. Then, if an application program attempts to access an element that it has not initialized, it can use the
NaN placed there by the compiler. If the invalid operation exception is unmasked, an interrupt will occur, and the

exception handler will be invoked. The exception handler can determine which element has been accessed, since

the operand address field of the exception pointer will point to the NaN, and the NaN will contain the index humber
of the array element.

Quiet NaNs are often used to speed up debugging. In its early testing phase, a program often contains multiple
errors. An exception handler can be written to save diagnostic information in memory whenever it is invoked. After
storing the diagnostic data, it can supply a quiet NaN as the result of the erroneous instruction, and that NaN can
point to its associated diagnostic area in memory. The program will then continue, creating a different NaN for each
error. When the program ends, the NaN results can be used to access the diagnostic data saved at the time the
errors occurred. Many errors can thus be diagnosed and corrected in one test run.

In embedded applications that use computed results in further computations, an undetected QNaN can invalidate
all subsequent results. Such applications should therefore periodically check for QNaNs and provide a recovery
mechanism to be used if a QNaN result is detected.

4.8.3.7 QNaN Floating-Point Indefinite

For the floating-point data type encodings (single-precision, double-precision, and double-extended-precision),
one unique encoding (a QNaN) is reserved for representing the special value QNaN floating-point indefinite. The
x87 FPU and the SSE/SSE2/SSE3/SSE4.1/AVX extensions return these indefinite values as responses to some
masked floating-point exceptions. Table 4-3 shows the encoding used for the QNaN floating-point indefinite.

4.8.3.8 Half-Precision Floating-Point Operation

Half-precision floating-point values are not used by the processor directly for arithmetic operations. Two instruc-
tions, VCVTPH2PS, VCVTPS2PH, provide conversion only between half-precision and single-precision floating-point
values.

The SIMD floating-point exception behavior of VCVTPH2PS and VCVTPS2PH are described in Section 14.4.1.

48.4 Rounding

When performing floating-point operations, the processor produces an infinitely precise floating-point result in the
destination format (single-precision, double-precision, or double extended-precision floating-point) whenever
possible. However, because only a subset of the numbers in the real number continuum can be represented in IEEE
Standard 754 floating-point formats, it is often the case that an infinitely precise result cannot be encoded exactly
in the format of the destination operand.

For example, the following value (a) has a 24-bit fraction. The least-significant bit of this fraction (the underlined
bit) cannot be encoded exactly in the single-precision format (which has only a 23-bit fraction):

(a) 1.0001 0000 1000 0011 1001 0111E, 101

To round this result (a), the processor first selects two representable fractions b and c that most closely bracket a
in value (b < a < c).

(b) 1.0001 0000 1000 0011 1001 011E, 101
(c) 1.0001 0000 1000 0011 1001 100E, 101

The processor then sets the result to b or to ¢ according to the selected rounding mode. Rounding introduces an
error in a result that is less than one unit in the last place (the least significant bit position of the floating-point
value) to which the result is rounded.

The IEEE Standard 754 defines four rounding modes (see Table 4-8): round to nearest, round up, round down, and
round toward zero. The default rounding mode (for the Intel 64 and IA-32 architectures) is round to nearest. This
mode provides the most accurate and statistically unbiased estimate of the true result and is suitable for most
applications.

Vol.1 4-17



DATA TYPES

Table 4-8. Rounding Modes and Encoding of Rounding Control (RC) Field

Rounding Mode RC Field Description
Setting
Round to 00B Rounded result is the closest to the infinitely precise result. If two values are equally close, the
nearest (even) result is the even value (that is, the one with the least-significant bit of zero). Default
Round down 01B Rounded result is closest to but no greater than the infinitely precise result.
(toward —)
Round up 10B Rounded result is closest to but no less than the infinitely precise result.
(toward +<)
Round toward 11B Rounded result is closest to but no greater in absolute value than the infinitely precise result.
zero (Truncate)

The round up and round down modes are termed directed rounding and can be used to implement interval arith-
metic. Interval arithmetic is used to determine upper and lower bounds for the true result of a multistep computa-
tion, when the intermediate results of the computation are subject to rounding.

The round toward zero mode (sometimes called the “chop” mode) is commonly used when performing integer
arithmetic with the x87 FPU.

The rounded result is called the inexact result. When the processor produces an inexact result, the floating-point
precision (inexact) flag (PE) is set (see Section 4.9.1.6, “Inexact-Result (Precision) Exception (#P)").

The rounding modes have no effect on comparison operations, operations that produce exact results, or operations
that produce NaN results.

4.8.4.1 Rounding Control (RC) Fields

In the Intel 64 and IA-32 architectures, the rounding mode is controlled by a 2-bit rounding-control (RC) field
(Table 4-8 shows the encoding of this field). The RC field is implemented in two different locations:

® x87 FPU control register (bits 10 and 11)
® The MXCSR register (bits 13 and 14)

Although these two RC fields perform the same function, they control rounding for different execution environ-
ments within the processor. The RC field in the x87 FPU control register controls rounding for computations
performed with the x87 FPU instructions; the RC field in the MXCSR register controls rounding for SIMD floating-
point computations performed with the SSE/SSE?2 instructions.

4.8.4.2 Truncation with SSE and SSE2 Conversion Instructions

The following SSE/SSE?2 instructions automatically truncate the results of conversions from floating-point values to
integers when the result it inexact: CVTTPD2DQ, CVTTPS2DQ, CVTTPD2PI, CVTTPS2PI, CVTTSD2SI, CVTTSS2SI.
Here, truncation means the round toward zero mode described in Table 4-8.

4.9 OVERVIEW OF FLOATING-POINT EXCEPTIONS

The following section provides an overview of floating-point exceptions and their handling in the IA-32 architecture.
For information specific to the x87 FPU and to the SSE/SSE2/SSE3/SSE4.1 extensions, refer to the following
sections:

® Section 8.4, “x87 FPU Floating-Point Exception Handling”
® Section 11.5, "SSE, SSE2, and SSE3 Exceptions”

When operating on floating-point operands, the IA-32 architecture recognizes and detects six classes of exception
conditions:

® Invalid operation (#I)

4-18 Vol.1



DATA TYPES

® Divide-by-zero (#2)

® Denormalized operand (#D)

® Numeric overflow (#0)

® Numeric underflow (#U)

® Inexact result (precision) (#P)

The nomenclature of *#"” symbol followed by one or two letters (for example, #P) is used in this manual to indicate
exception conditions. It is merely a short-hand form and is not related to assembler mnemonics.

NOTE

All of the exceptions listed above except the denormal-operand exception (#D) are defined in IEEE
Standard 754.

The invalid-operation, divide-by-zero and denormal-operand exceptions are pre-computation exceptions (that is,
they are detected before any arithmetic operation occurs). The numeric-underflow, numeric-overflow and preci-
sion exceptions are post-computation exceptions.

Each of the six exception classes has a corresponding flag bit (IE, ZE, OE, UE, DE, or PE) and mask bit (IM, ZM, OM,
UM, DM, or PM). When one or more floating-point exception conditions are detected, the processor sets the appro-
priate flag bits, then takes one of two possible courses of action, depending on the settings of the corresponding
mask bits:

® Mask bit set. Handles the exception automatically, producing a predefined (and often times usable) result,
while allowing program execution to continue undisturbed.

® Mask bit clear. Invokes a software exception handler to handle the exception.

The masked (default) responses to exceptions have been chosen to deliver a reasonable result for each exception
condition and are generally satisfactory for most floating-point applications. By masking or unmasking specific
floating-point exceptions, programmers can delegate responsibility for most exceptions to the processor and
reserve the most severe exception conditions for software exception handlers.

Because the exception flags are “sticky,” they provide a cumulative record of the exceptions that have occurred
since they were last cleared. A programmer can thus mask all exceptions, run a calculation, and then inspect the
exception flags to see if any exceptions were detected during the calculation.

In the IA-32 architecture, floating-point exception flag and mask bits are implemented in two different locations:

® x87 FPU status word and control word. The flag bits are located at bits 0 through 5 of the x87 FPU status word
and the mask bits are located at bits 0 through 5 of the x87 FPU control word (see Figures 8-4 and 8-6).

® MXCSR register. The flag bits are located at bits 0 through 5 of the MXCSR register and the mask bits are
located at bits 7 through 12 of the register (see Figure 10-3).

Although these two sets of flag and mask bits perform the same function, they report on and control exceptions for
different execution environments within the processor. The flag and mask bits in the x87 FPU status and control
words control exception reporting and masking for computations performed with the x87 FPU instructions; the
companion bits in the MXCSR register control exception reporting and masking for SIMD floating-point computa-
tions performed with the SSE/SSE2/SSE3 instructions.

Note that when exceptions are masked, the processor may detect multiple exceptions in a single instruction,
because it continues executing the instruction after performing its masked response. For example, the processor
can detect a denormalized operand, perform its masked response to this exception, and then detect nhumeric
underflow.

See Section 4.9.2, “Floating-Point Exception Priority,” for a description of the rules for exception precedence when
more than one floating-point exception condition is detected for an instruction.

4.9.1 Floating-Point Exception Conditions

The following sections describe the various conditions that cause a floating-point exception to be generated and the
masked response of the processor when these conditions are detected. The Intel® 64 and 1A-32 Architectures

Vol.1 4-19



DATA TYPES

Software Developer’s Manual, Volumes 3A & 3B, list the floating-point exceptions that can be signaled for each
floating-point instruction.

49.1.1 Invalid Operation Exception (#l)

The processor reports an invalid operation exception in response to one or more invalid arithmetic operands. If the
invalid operation exception is masked, the processor sets the IE flag and returns an indefinite value or a QNaN. This
value overwrites the destination register specified by the instruction. If the invalid operation exception is not
masked, the IE flag is set, a software exception handler is invoked, and the operands remain unaltered.

See Section 4.8.3.6, “Using SNaNs and QNaNs in Applications,” for information about the result returned when an
exception is caused by an SNaN.

The processor can detect a variety of invalid arithmetic operations that can be coded in a program. These opera-
tions generally indicate a programming error, such as dividing « by « . See the following sections for information
regarding the invalid-operation exception when detected while executing x87 FPU or SSE/SSE2/SSE3 instructions:

® x87 FPU; Section 8.5.1, “Invalid Operation Exception”
® SIMD floating-point exceptions; Section 11.5.2.1, “Invalid Operation Exception (#I)”

4.9.1.2 Denormal Operand Exception (#D)

The processor reports the denormal-operand exception if an arithmetic instruction attempts to operate on a
denormal operand (see Section 4.8.3.2, “"Normalized and Denormalized Finite Numbers”). When the exception is
masked, the processor sets the DE flag and proceeds with the instruction. Operating on denormal numbers will
produce results at least as good as, and often better than, what can be obtained when denormal numbers are
flushed to zero. Programmers can mask this exception so that a computation may proceed, then analyze any loss
of accuracy when the final result is delivered.

When a denormal-operand exception is not masked, the DE flag is set, a software exception handler is invoked, and
the operands remain unaltered. When denormal operands have reduced significance due to loss of low-order bits,
it may be advisable to not operate on them. Precluding denormal operands from computations can be accom-
plished by an exception handler that responds to unmasked denormal-operand exceptions.

See the following sections for information regarding the denormal-operand exception when detected while
executing x87 FPU or SSE/SSE2/SSE3 instructions:

® x87 FPU; Section 8.5.2, "Denormal Operand Exception (#D)”
® SIMD floating-point exceptions; Section 11.5.2.2, "Denormal-Operand Exception (#D)”

49.1.3 Divide-By-Zero Exception (#2)

The processor reports the floating-point divide-by-zero exception whenever an instruction attempts to divide a
finite non-zero operand by 0. The masked response for the divide-by-zero exception is to set the ZE flag and return
an infinity signed with the exclusive OR of the sign of the operands. If the divide-by-zero exception is not masked,
the ZE flag is set, a software exception handler is invoked, and the operands remain unaltered.

See the following sections for information regarding the divide-by-zero exception when detected while executing
x87 FPU or SSE/SSE?2 instructions:

® x87 FPU; Section 8.5.3, "Divide-By-Zero Exception (#Z)"
® SIMD floating-point exceptions; Section 11.5.2.3, "Divide-By-Zero Exception (#2)”

49.1.4 Numeric Overflow Exception (#0)

The processor reports a floating-point numeric overflow exception whenever the rounded result of an instruction
exceeds the largest allowable finite value that will fit into the destination operand. Table 4-9 shows the threshold
range for numeric overflow for each of the floating-point formats; overflow occurs when a rounded result falls at or
outside this threshold range.

4-20 Vol.1



Table 4-9. Numeric Overflow Thresholds

DATA TYPES

Floating-Point Format

Overflow Thresholds

Single Precision

[x|>1.0%2128

Double Precision

[x]>1.0% 21024

Double Extended Precision

|x|>1.0% 216384

When a numeric-overflow exception occurs and the exception is masked, the processor sets the OE flag and
returns one of the values shown in Table 4-10, according to the current rounding mode. See Section 4.8.4,
“Rounding.”

When numeric overflow occurs and the numeric-overflow exception is not masked, the OE flag is set, a software
exception handler is invoked, and the source and destination operands either remain unchanged or a biased result
is stored in the destination operand (depending whether the overflow exception was generated during an
SSE/SSE2/SSE3 floating-point operation or an x87 FPU operation).

Table 4-10. Masked Responses to Numeric Overflow

Rounding Mode Sign of True Result Result
To nearest + +oo
Toward -0 + Largest finite positive number
Toward +e + +oo
- Largest finite negative number
Toward zero + Largest finite positive number
- Largest finite negative number

See the following sections for information regarding the numeric overflow exception when detected while executing
x87 FPU instructions or while executing SSE/SSE2/SSE3 instructions:

® x87 FPU; Section 8.5.4, "Numeric Overflow Exception (#0)”
® SIMD floating-point exceptions; Section 11.5.2.4, "Numeric Overflow Exception (#0)”

49.1.5 Numeric Underflow Exception (#U)

The processor detects a potential floating-point numeric underflow condition whenever the result of rounding with
unbounded exponent (taking into account precision control for x87) is non-zero and tiny; that is, non-zero and less
than the smallest possible normalized, finite value that will fit into the destination operand. Table 4-11 shows the
threshold range for numeric underflow for each of the floating-point formats (assuming normalized results);
underflow occurs when a rounded result falls strictly within the threshold range. The ability to detect and handle
underflow is provide