
Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Volume 3D:
System Programming Guide, Part 4

NOTE: The Intel® 64 and IA-32 Architectures Software Developer's Manual consists of ten volumes:
Basic Architecture, Order Number 253665; Instruction Set Reference, A-L, Order Number 253666;
Instruction Set Reference, M-U, Order Number 253667; Instruction Set Reference, V, Order Number
326018; Instruction Set Reference, W-Z, Order Number 334569; System Programming Guide, Part 1,
Order Number 253668; System Programming Guide, Part 2, Order Number 253669; System
Programming Guide, Part 3, Order Number 326019; System Programming Guide, Part 4, Order Number
332831; Model-Specific Registers, Order Number 335592. Refer to all ten volumes when evaluating
your design needs.

Order Number: 332831-089US
October 2025

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability,
fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of
dealing, or usage in trade.

Code names are used by Intel to identify products, technologies, or services that are in development and not publicly
available. These are not “commercial” names and not intended to function as trademarks.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document, with
the sole exception that a) you may publish an unmodified copy and b) code included in this document is licensed subject to
the Zero-Clause BSD open source license (0BSD), https://opensource.org/licenses/0BSD. You may create software
implementations based on this document and in compliance with the foregoing that are intended to execute on the Intel
product(s) referenced in this document. No rights are granted to create modifications or derivatives of this document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other
names and brands may be claimed as the property of others.

https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS
CHAPTER 36
INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS

36.1 OVERVIEW
Intel® Software Guard Extensions (Intel® SGX) is a set of instructions and mechanisms for memory accesses
added to Intel® Architecture processors. Intel SGX can encompass two collections of instruction extensions,
referred to as SGX1 and SGX2, see Table 36-1 and Table 36-2. The SGX1 extensions allow an application to instan-
tiate a protected container, referred to as an enclave. The enclave is a trusted area of memory, where critical
aspects of the application functionality have hardware-enhanced confidentiality and integrity protections. New
access controls to restrict access to software not resident in the enclave are also introduced. The SGX2 extensions
allow additional flexibility in runtime management of enclave resources and thread execution within an enclave.
Chapter 37 covers main concepts, objects and data structure formats that interact within the Intel SGX architec-
ture. Chapter 38 covers operational aspects ranging from preparing an enclave, transferring control to enclave
code, and programming considerations for the enclave code and system software providing support for enclave
execution. Chapter 39 describes the behavior of Asynchronous Enclave Exit (AEX) caused by events while
executing enclave code. Chapter 40 covers the syntax and operational details of the instruction and associated leaf
functions available in Intel SGX. Chapter 41 describes interaction of various aspects of IA32 and Intel® 64 archi-
tectures with Intel SGX. Chapter 42 covers Intel SGX support for application debug, profiling, and performance
monitoring.

36.2 ENCLAVE INTERACTION AND PROTECTION
Intel SGX allows the protected portion of an application to be distributed in the clear. Before the enclave is built, the
enclave code and data are free for inspection and analysis. The protected portion is loaded into an enclave where
its code and data is measured. Once the application’s protected portion of the code and data are loaded into an
enclave, memory access controls are in place to restrict access by external software. An enclave can prove its iden-
tity to a remote party and provide the necessary building-blocks for secure provisioning of keys and credentials.
The application can also request an enclave-specific and platform-specific key that it can use to protect keys and
data that it wishes to store outside the enclave.1

Figure 36-1. An Enclave Within the Application’s Virtual Address Space

1. For additional information, see white papers on Intel SGX at https://www.intel.com/content/www/us/en/developer/tools/isa-exten-
sions/overview.html.

OS

App Code

App Code

Entry TableEnclave
Enclave Heap

Enclave Stack

Enclave Code
Vol. 3D 36-1

https://www.intel.com/content/www/us/en/developer/tools/isa-extensions/overview.html

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS
Intel SGX introduces two significant capabilities to the Intel Architecture. First is the change in enclave memory
access semantics. The second is protection of the address mappings of the application.

36.3 ENCLAVE LIFE CYCLE
Enclave memory management is divided into two parts: address space allocation and memory commitment.
Address space allocation is the specification of the range of linear addresses that the enclave may use. This range
is called the ELRANGE. No actual resources are committed to this region. Memory commitment is the assignment
of actual memory resources (as pages) within the allocated address space. This two-phase technique allows flexi-
bility for enclaves to control their memory usage and to adjust dynamically without overusing memory resources
when enclave needs are low. Commitment adds physical pages to the enclave. An operating system may support
separate allocate and commit operations.
During enclave creation, code and data for an enclave are loaded from a clear-text source, i.e., from non-enclave
memory.
Untrusted application code starts using an initialized enclave typically by using the EENTER leaf function provided
by Intel SGX to transfer control to the enclave code residing in the protected Enclave Page Cache (EPC). The
enclave code returns to the caller via the EEXIT leaf function. Upon enclave entry, control is transferred by hard-
ware to software inside the enclave. The software inside the enclave switches the stack pointer to one inside the
enclave. When returning back from the enclave, the software swaps back the stack pointer then executes the
EEXIT leaf function.
On processors that support the SGX2 extensions, an enclave writer may add memory to an enclave using the SGX2
instruction set, after the enclave is built and running. These instructions allow adding additional memory resources
to the enclave for use in such areas as the heap. In addition, SGX2 instructions allow the enclave to add new
threads to the enclave. The SGX2 features provide additional capabilities to the software model without changing
the security properties of the Intel SGX architecture.
Calling an external procedure from an enclave could be done using the EEXIT leaf function. Software would use
EEXIT and a software convention between the trusted section and the untrusted section.
An active enclave consumes resources from the Enclave Page Cache (EPC, see Section 36.5). Intel SGX provides
the EREMOVE instruction that an EPC manager can use to reclaim EPC pages committed to an enclave. The EPC
manager uses EREMOVE on every enclave page when the enclave is torn down. After successful execution of
EREMOVE the EPC page is available for allocation to another enclave.

36.4 DATA STRUCTURES AND ENCLAVE OPERATION
There are 2 main data structures associated with operating an enclave, the SGX Enclave Control Structure (SECS,
see Section 37.7) and the Thread Control Structure (TCS, see Section 37.8).
There is one SECS for each enclave. The SECS contains meta-data about the enclave which is used by the hardware
and cannot be directly accessed by software. Included in the SECS is a field that stores the enclave build measure-
ment value. This field, MRENCLAVE, is initialized by the ECREATE instruction and updated by every EADD and
EEXTEND. It is locked by EINIT.
Every enclave contains one or more TCS structures. The TCS contains meta-data used by the hardware to save and
restore thread specific information when entering/exiting the enclave. There is one field, FLAGS, that may be
accessed by software. This field can only be accessed by debug enclaves. The flag bit, DBGOPTIN, allows to single
step into the thread associated with the TCS. (see Section 37.8.1)
The SECS is created when ECREATE (see Table 36-1) is executed. The TCS can be created using the EADD instruc-
tion or the SGX2 instructions (see Table 36-2).

36.5 ENCLAVE PAGE CACHE
The Enclave Page Cache (EPC) is the secure storage used to store enclave pages when they are a part of an
executing enclave. For an EPC page, hardware performs additional access control checks to restrict access to the
page. After the current page access checks and translations are performed, the hardware checks that the EPC page
36-2 Vol. 3D

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS
is accessible to the program currently executing. Generally an EPC page is only accessed by the owner of the
executing enclave or an instruction which is setting up an EPC page
The EPC is divided into EPC pages. An EPC page is 4KB in size and always aligned on a 4KB boundary.
Pages in the EPC can either be valid or invalid. Every valid page in the EPC belongs to one enclave instance. Each
enclave instance has an EPC page that holds its SECS. The security metadata for each EPC page is held in an
internal micro-architectural structure called Enclave Page Cache Map (EPCM, see Section 36.5.1).
The EPC is managed by privileged software. Intel SGX provides a set of instructions for adding and removing
content to and from the EPC. The EPC may be configured by BIOS at boot time. On implementations in which EPC
memory is part of system DRAM, the contents of the EPC are protected by an encryption engine.

36.5.1 Enclave Page Cache Map (EPCM)
The EPCM is a secure structure used by the processor to track the contents of the EPC. The EPCM holds one entry
for each page in the EPC. The format of the EPCM is micro-architectural, and consequently is implementation
dependent. However, the EPCM contains the following architectural information:
• The status of EPC page with respect to validity and accessibility.
• An SECS identifier (see Section 37.20) of the enclave to which the page belongs.
• The type of page: regular, SECS, TCS or VA.
• The linear address through which the enclave is allowed to access the page.
• The specified read/write/execute permissions on that page.
The EPCM structure is used by the CPU in the address-translation flow to enforce access-control on the EPC pages.
The EPCM structure is described in Table 37-28, and the conceptual access-control flow is described in Section
37.5.
The EPCM entries are managed by the processor as part of various instruction flows.

36.6 ENCLAVE INSTRUCTIONS AND INTEL® SGX
The enclave instructions available with Intel SGX are organized as leaf functions under three instruction
mnemonics: ENCLS (ring 0) and ENCLU (ring 3). Each leaf function uses EAX to specify the leaf function index, and
may require additional implicit input registers as parameters. The use of EAX is implied implicitly by the ENCLS and
ENCLU instructions; ModR/M byte encoding is not used with ENCLS and ENCLU. The use of additional registers does
not use ModR/M encoding and is implied implicitly by the respective leaf function index.
Each leaf function index is also associated with a unique, leaf-specific mnemonic. A long-form expression of Intel
SGX instruction takes the form of ENCLx[LEAF_MNEMONIC], where ‘x’ is either ‘S’, ‘U’, or ‘V’. The long-form
expression provides clear association of the privilege-level requirement of a given “leaf mnemonic”. For simplicity,
the unique “Leaf_Mnemonic” name is used (omitting the ENCLx for convenience) throughout in this document.
Details of individual SGX leaf functions are described in Chapter 40. Table 36-1 provides a summary of the instruc-
tion leaves that are available in the initial implementation of Intel SGX, which is introduced in the 6th generation
Intel Core processors. Table 36-2 summarizes enhancement of Intel SGX for future Intel processors.

Table 36-1. Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX1
Supervisor Instruction Description User Instruction Description

ENCLS[EADD] Add an EPC page to an enclave. ENCLU[EENTER] Enter an enclave.

ENCLS[EBLOCK] Block an EPC page. ENCLU[EEXIT] Exit an enclave.

ENCLS[ECREATE] Create an enclave. ENCLU[EGETKEY] Create a cryptographic key.

ENCLS[EDBGRD] Read data from a debug enclave by debug-
ger.

ENCLU[EREPORT] Create a cryptographic report.

ENCLS[EDBGWR] Write data into a debug enclave by debug-
ger.

ENCLU[ERESUME] Re-enter an enclave.
Vol. 3D 36-3

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS
36.7 DISCOVERING SUPPORT FOR INTEL® SGX AND ENABLING ENCLAVE
INSTRUCTIONS

Detection of support of Intel SGX and enumeration of available and enabled Intel SGX resources are queried using
the CPUID instruction. The enumeration interface comprises the following:
• Processor support of Intel SGX is enumerated by a feature flag in CPUID.07H: CPUID.07H.00H:EBX.SGX[2]. If

CPUID.07H.00H:EBX.SGX = 1, the processor has support for Intel SGX, and requires opt-in enabling by BIOS
via IA32_FEATURE_CONTROL MSR.

If CPUID.07H.00H:EBX.SGX = 1, CPUID will report via the available sub-leaves of CPUID.12H on available
and/or configured Intel SGX resources.

• The available and configured Intel SGX resources enumerated by the sub-leaves of CPUID.12H depend on the
state of BIOS configuration.

36.7.1 Intel® SGX Opt-In Configuration
On processors that support Intel SGX, IA32_FEATURE_CONTROL provides the SGX_ENABLE field (bit 18). Before
system software can configure and enable Intel SGX resources, BIOS is required to set IA32_FEATURE_CON-
TROL.SGX_ENABLE = 1 to opt-in the use of Intel SGX by system software.
The semantics of setting SGX_ENABLE follows the rules of IA32_FEATURE_CONTROL.LOCK (bit 0). Software is
considered to have opted into Intel SGX if and only if IA32_FEATURE_CONTROL.SGX_ENABLE and IA32_FEA-
TURE_CONTROL.LOCK are set to 1. The setting of IA32_FEATURE_CONTROL.SGX_ENABLE (bit 18) is not reflected
by CPUID.

ENCLS[EEXTEND] Extend EPC page measurement.

ENCLS[EINIT] Initialize an enclave.

ENCLS[ELDB] Load an EPC page in blocked state.

ENCLS[ELDU] Load an EPC page in unblocked state.

ENCLS[EPA] Add an EPC page to create a version array.

ENCLS[EREMOVE] Remove an EPC page from an enclave.

ENCLS[ETRACK] Activate EBLOCK checks.

ENCLS[EWB] Write back/invalidate an EPC page.

Table 36-2. Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX2
Supervisor Instruction Description User Instruction Description

ENCLS[EAUG] Allocate EPC page to an existing enclave. ENCLU[EACCEPT] Accept EPC page into the enclave.

ENCLS[EMODPR] Restrict page permissions. ENCLU[EMODPE] Enhance page permissions.

ENCLS[EMODT] Modify EPC page type. ENCLU[EACCEPTCOPY] Copy contents to an augmented EPC
page and accept the EPC page into
the enclave.

Table 36-3. Intel® SGX Opt-in and Enabling Behavior
CPUID.07H.00H:EBX.

SGX
CPUID.12H

FEATURE_CONTROL.
LOCK

FEATURE_CONTROL.
SGX_ENABLE

Enclave Instruction

0 Invalid X X #UD

1 Valid* X X #UD**

Table 36-1. Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX1
Supervisor Instruction Description User Instruction Description
36-4 Vol. 3D

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS
36.7.2 Intel® SGX Resource Enumeration Leaves
If CPUID.07H.00H:EBX.SGX = 1, the processor also supports querying CPUID.12H on Intel SGX resource capability
and configuration. The number of available sub-leaves in leaf 12H depends on the Opt-in and system software
configuration. Information returned by CPUID.12H is thread specific; software should not assume that if Intel SGX
instructions are supported on one hardware thread, they are also supported elsewhere.
A properly configured processor exposes Intel SGX functionality with CPUID.12H reporting valid information (non-
zero content) in three or more sub-leaves, see Table 36-4.
• CPUID.12H.00H enumerates Intel SGX capability, including enclave instruction opcode support.
• CPUID.12H.01H enumerates Intel SGX capability of processor state configuration and enclave configuration in

the SECS structure (see Table 37-3).
• CPUID.(12H, ECX >1) enumerates available EPC resources.

1 Valid* 0 X #GP

1 Valid* 1 0 #GP

1 Valid* 1 1 Available (see Table 36-4 for details
of SGX1 and SGX2).

* Leaf 12H enumeration results are dependent on enablement.

** See list of conditions in the #UD section of the reference pages of ENCLS and ENCLU

Table 36-4. CPUID.12H.00H Enumeration of Intel® SGX Capabilities

CPUID.12H.00H Description Behavior

Register Bits

EAX 0 SGX1: If 1, indicates leaf functions of SGX1 instruction listed in Table 36-1 are supported.

1 SGX2: If 1, indicates leaf functions of SGX2 instruction listed in Table 36-2 are supported.

6:2 Reserved (0)

7 If 1, indicates Intel SGX supports ENCLU instruction leaf EVERIFYREPORT2.

9:8 Reserved (0)

10 If 1, indicates Intel SGX supports ENCLS instruction leaf EUPDATESVN.

11 If 1, indicates Intel SGX supports ENCLU instruction leaf EDECCSSA.

31:12 Reserved (0)

EBX
31:0 MISCSELECT: Reports the bit vector of supported extended features that can be written to the MISC

region of the SSA.

ECX 31:0 Reserved (0).

EDX

7:0 MaxEnclaveSize_Not64: the maximum supported enclave size is 2^(EDX[7:0]) bytes when not in 64-bit
mode.

15:8 MaxEnclaveSize_64: the maximum supported enclave size is 2^(EDX[15:8]) bytes when operating in 64-
bit mode.

31:16 Reserved (0).

Table 36-3. Intel® SGX Opt-in and Enabling Behavior
CPUID.07H.00H:EBX.

SGX CPUID.12H
FEATURE_CONTROL.

LOCK
FEATURE_CONTROL.

SGX_ENABLE Enclave Instruction
Vol. 3D 36-5

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS
On processors that support Intel SGX1 and SGX2, CPUID.12H sub-leaf 2 report physical memory resources avail-
able for use with Intel SGX. These physical memory sections are typically allocated by BIOS as Processor
Reserved Memory, and available to the OS to manage as EPC.
To enumerate how many EPC sections are available to the EPC manager, software can enumerate CPUID.12H with
sub-leaf index starting from 2, and decode the sub-leaf-type encoding (returned in EAX[3:0]) until the sub-leaf
type is invalid. All invalid sub-leaves of CPUID.12H return EAX/EBX/ECX/EDX with 0.

36.8 INTEL® SGX INTERACTIONS WITH CONTROL-FLOW ENFORCEMENT
TECHNOLOGY

This section discusses extensions to the Intel SGX architecture to support CET.

Table 36-5. CPUID.12H.01H Enumeration of Intel® SGX Capabilities

CPUID.12H.01H Description Behavior

Register Bits

EAX 31:0 Report the valid bits of SECS.ATTRIBUTES[31:0] that software can set with ECREATE.
SECS.ATTRIBUTES[n] can be set to 1 using ECREATE only if EAX[n] is 1, where n < 32.

EBX 31:0 Report the valid bits of SECS.ATTRIBUTES[63:32] that software can set with ECREATE.
SECS.ATTRIBUTES[n+32] can be set to 1 using ECREATE only if EBX[n] is 1, where n < 32.

ECX 31:0 Report the valid bits of SECS.ATTRIBUTES[95:64] that software can set with ECREATE.
SECS.ATTRIBUTES[n+64] can be set to 1 using ECREATE only if ECX[n] is 1, where n < 32.

EDX 31:0 Report the valid bits of SECS.ATTRIBUTES[127:96] that software can set with ECREATE.
SECS.ATTRIBUTES[n+96] can be set to 1 using ECREATE only if EDX[n] is 1, where n < 32.

Table 36-6. CPUID.12H.(ECX >= 2) Enumeration of Intel® SGX Resources

CPUID.(12H, ECX > 1) Description Behavior

Register Bits

EAX 3:0 0000b: This sub-leaf is invalid; EDX:ECX:EBX:EAX return 0.

0001b: This sub-leaf enumerates an EPC section. EBX:EAX and EDX:ECX provide information on the
Enclave Page Cache (EPC) section.

All other encodings are reserved.

11:4 Reserved (enumerate 0).

31:12 If EAX[3:0] = 0001b, these are bits 31:12 of the physical address of the base of the EPC section.

EBX
19:0 If EAX[3:0] = 0001b, these are bits 51:32 of the physical address of the base of the EPC section.

31:20 Reserved.

ECX

3: 0 If ECX[3:0] = 0000b, then all bits of the EDX:ECX pair are enumerated as 0.

If ECX[3:0] = 0001b, then this section has confidentiality and integrity protection.

If ECX[3:0] = 0010b, then this section has confidentiality protection only.

All other encodings are reserved.

11:4 Reserved (enumerate 0).

31:12 If EAX[3:0] = 0001b, these are bits 31:12 of the size of the corresponding EPC section within the
Processor Reserved Memory.

EDX 19: 0 If EAX[3:0] = 0001b, these are bits 51:32 of the size of the corresponding EPC section within the
Processor Reserved Memory.

31:20 Reserved.
36-6 Vol. 3D

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS
36.8.1 CET in Enclaves Model
Each enclave has its private configuration for CET that is not shared with the CET configurations of the enclosing
application. On entry into the enclave, the CET state of the enclosing application is saved into scratchpad registers
inside the processor and the CET state of the enclave is established. On an asynchronous exit, the enclave CET
state is saved into the enclave state save area frame. On exit from the enclave, the CET state of the enclosing
application is re-established from the scratchpad registers.
A new page type, PT_SS_FIRST, is used to denote pages in an enclave that can be used as a first page of a shadow
stack.
A new page type, PT_SS_REST, is used to denote pages in an enclave that can be used as a non-first page of a
shadow stack.
A page denoted as PT_SS_FIRST and PT_SS_REST will be a legal target for shadow_stack_load, shadow_stack_-
store, and regular load operations. Regular stores will be disallowed to such pages. A PT_SS_FIRST/PT_SS_REST
page must be writeable in the IA page tables and in EPT.
When in enclave mode, shadow_stack_load and shadow_stack_store operations must be to addresses in the
enclave ELRANGE.
The EAUG instruction is extended to allocate pages of type PT_SS_FIRST/PT_SS_REST; this page type requires
specifying a SECINFO structure with page parameters. Shadow page permission must be R/W. Regular R/W pages
may continue to be allocated by providing a SECINFO pointer value of 0. Regular R/W pages may also be allocated
by providing a SECINFO structure that specifies the page parameters. The EAUG instruction creates a shadow-
stack-restore token at offset 0xFF8 on a PT_SS_FIRST page. This allows a dynamically created shadow stack to be
restored using the RSTORSSP instruction. The EADD and EAUG instructions disallow creation of a PT_SS_FIRST or
PT_SS_REST page as the first or last page in ELRANGE.
The EADD instruction requires that the PT_SS_REST page be all zeroes. The EADD instruction requires that a
PT_SS_FIRST page be all zeroes except the 8 bytes at offset 0xFF8 on that page that must have a shadow-stack-
restore token. This shadow-stack-restore token must have a linear address which is the linear address of the
PT_SS_FIRST page + 4096. As an enclave could be loaded at varying linear addresses, the enclave builder should
not extend the measurement of the PT_SS_FIRST pages into the measurement registers. On first entry on to the
enclave using a TCS, the enclave software can use the RSTORSSP instruction to restore its SSP. Subsequent to
performing a RSTORSSP, the enclave software can use the INCSSP instruction to pop the previous-ssp token that
is created by the RSTORSSP instruction at the top of the restored shadow stack.
On an enclave entry, the SSP will be initialized to the value in a new TCS field called PREVSSP. The PREVSSP field is
written with the value of SSP on enclave exit and is loaded into SSP at enclave entry. When a TCS page is added
using EADD or accepted using EACCEPT, the processor requires the PREVSSP field to be initialized to 0.

36.8.2 Operations Not Supported on Shadow Stack Pages
The following operations are not allowed on pages of type PT_SS_FIRST and PT_SS_REST:

• EACCEPTCOPY

• EMODPR

• EMODPE

36.8.3 Indirect Branch Tracking – Legacy Compatibility Treatment
The legacy code page bitmap is tested using the page offset within the ELRANGE instead of the absolute linear
address of the address where ENDBRANCH was missed; see the detailed algorithm in Section 18.3.6, “Legacy
Compatibility Treatment,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for
additional details.
Vol. 3D 36-7

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS
36-8 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
CHAPTER 37
ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

37.1 OVERVIEW OF ENCLAVE EXECUTION ENVIRONMENT
When an enclave is created, it has a range of linear addresses to which the processor applies enhanced access
control. This range is called the ELRANGE (see Section 36.3). When an enclave generates a memory access, the
existing IA32 segmentation and paging architecture are applied. Additionally, linear addresses inside the ELRANGE
must map to an EPC page otherwise when an enclave attempts to access that linear address a fault is generated.
The EPC pages need not be physically contiguous. System software allocates EPC pages to various enclaves.
Enclaves must abide by OS/VMM imposed segmentation and paging policies. OS/VMM-managed page tables and
extended page tables provide address translation for the enclave pages. Hardware requires that these pages are
properly mapped to EPC (any failure generates an exception).
Enclave entry must happen through specific enclave instructions:
• ENCLU[EENTER], ENCLU[ERESUME].
Enclave exit must happen through specific enclave instructions or events:
• ENCLU[EEXIT], Asynchronous Enclave Exit (AEX).
Attempts to execute, read, or write to linear addresses mapped to EPC pages when not inside an enclave will result
in the processor altering the access to preserve the confidentiality and integrity of the enclave. The exact behavior
may be different between implementations. As an example a read of an enclave page may result in the return of all
one's or return of cyphertext of the cache line. Writing to an enclave page may result in a dropped write or a
machine check at a later time. The processor will provide the protections as described in Section 37.4 and Section
37.5 on such accesses.

37.2 TERMINOLOGY
A memory access to the ELRANGE and initiated by an instruction executed by an enclave is called a Direct Enclave
Access (Direct EA).
Memory accesses initiated by certain Intel® SGX instruction leaf functions such as ECREATE, EADD, EDBGRD,
EDBGWR, ELDU/ELDB, EWB, EREMOVE, EENTER, and ERESUME to EPC pages are called Indirect Enclave Accesses
(Indirect EA). Table 37-1 lists additional details of the indirect EA of SGX1 and SGX2 extensions.
Direct EAs and Indirect EAs together are called Enclave Accesses (EAs).
Any memory access that is not an Enclave Access is called a non-enclave access.

37.3 ACCESS-CONTROL REQUIREMENTS
Enclave accesses have the following access-control attributes:
• All memory accesses must conform to segmentation and paging protection mechanisms.
• Code fetches from inside an enclave to a linear address outside that enclave result in a #GP(0) exception.
• Shadow-stack-load or shadow-stack-store from inside an enclave to a linear address outside that enclave

results in a #GP(0) exception.
• Non-enclave accesses to EPC memory result in undefined behavior. EPC memory is protected as described in

Section 37.4 and Section 37.5 on such accesses.
• EPC pages of page types PT_REG, PT_TCS, and PT_TRIM must be mapped to ELRANGE at the linear address

specified when the EPC page was allocated to the enclave using ENCLS[EADD] or ENCLS[EAUG] leaf functions.
Enclave accesses through other linear address result in a #PF with the PFEC.SGX bit set.
Vol. 3D 37-1

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
• Direct EAs to any EPC pages must conform to the currently defined security attributes for that EPC page in the
EPCM. These attributes may be defined at enclave creation time (EADD) or when the enclave sets them using
SGX2 instructions. The failure of these checks results in a #PF with the PFEC.SGX bit set.

— Target page must belong to the currently executing enclave.

— Data may be written to an EPC page if the EPCM allow write access.

— Data may be read from an EPC page if the EPCM allow read access.

— Instruction fetches from an EPC page are allowed if the EPCM allows execute access.

— Shadow-stack-load from an EPC page and shadow-stack-store to an EPC page are allowed only if the page
type is PT_SS_FIRST or PT_SS_REST.

— Data writes that are not shadow-stack-store are not allowed if the EPCM page type is PT_SS_FIRST or
PT_SS_REST.

— Target page must not have a restricted page type1 (PT_SECS, PT_TCS, PT_VA, or PT_TRIM).

— The EPC page must not be BLOCKED.

— The EPC page must not be PENDING.

— The EPC page must not be MODIFIED.

37.4 SEGMENT-BASED ACCESS CONTROL
Intel SGX architecture does not modify the segment checks performed by a logical processor. All memory accesses
arising from a logical processor in protected mode (including enclave access) are subject to segmentation checks
with the applicable segment register.
To ensure that outside entities do not modify the enclave's logical-to-linear address translation in an unexpected
fashion, ENCLU[EENTER] and ENCLU[ERESUME] check that CS, DS, ES, and SS, if usable (i.e., not null), have
segment base value of zero. A non-zero segment base value for these registers results in a #GP(0).
On enclave entry either via EENTER or ERESUME, the processor saves the contents of the external FS and GS regis-
ters, and loads these registers with values stored in the TCS at build time to enable the enclave’s use of these regis-
ters for accessing the thread-local storage inside the enclave. On EEXIT and AEX, the contents at time of entry are
restored. On AEX, the values of FS and GS are saved in the SSA frame. On ERESUME, FS and GS are restored from
the SSA frame. The details of these operations can be found in the descriptions of EENTER, ERESUME, EEXIT, and
AEX flows.

37.5 PAGE-BASED ACCESS CONTROL

37.5.1 Access-control for Accesses that Originate from Non-SGX Instructions
Intel SGX builds on the processor's paging mechanism to provide page-granular access-control for enclave pages.
Enclave pages are designed to be accessible only from inside the currently executing enclave if they belong to that
enclave. In addition, enclave accesses must conform to the access control requirements described in Section 37.3.
or through certain Intel SGX instructions. Attempts to execute, read, or write to linear addresses mapped to EPC
pages when not inside an enclave will result in the processor altering the access to preserve the confidentiality and
integrity of the enclave. The exact behavior may be different between implementations.

37.5.2 Memory Accesses that Split Across ELRANGE
Memory data accesses are allowed to split across ELRANGE (i.e., a part of the access is inside ELRANGE and a part
of the access is outside ELRANGE) while the processor is inside an enclave. If an access splits across ELRANGE, the

1. EPCM may allow write, read or execute access only for pages with page type PT_REG.
37-2 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
processor splits the access into two sub-accesses (one inside ELRANGE and the other outside ELRANGE), and each
access is evaluated. A code-fetch access that splits across ELRANGE results in a #GP due to the portion that lies
outside of the ELRANGE.

37.5.3 Implicit vs. Explicit Accesses
Memory accesses originating from Intel SGX instruction leaf functions are categorized as either explicit accesses or
implicit accesses. Table 37-1 lists the implicit and explicit memory accesses made by Intel SGX leaf functions.

37.5.3.1 Explicit Accesses
Accesses to memory locations provided as explicit operands to Intel SGX instruction leaf functions, or their linked
data structures are called explicit accesses.
Explicit accesses are always made using logical addresses. These accesses are subject to segmentation, paging,
extended paging, and APIC-virtualization checks, and trigger any faults/exit associated with these checks when the
access is made.
The interaction of explicit memory accesses with data breakpoints is leaf-function-specific, and is documented in
Section 42.3.4.

37.5.3.2 Implicit Accesses
Accesses to data structures whose physical addresses are cached by the processor are called implicit accesses.
These addresses are not passed as operands of the instruction but are implied by use of the instruction.
These accesses do not trigger any access-control faults/exits or data breakpoints. Table 37-1 lists memory objects
that Intel SGX instruction leaf functions access either by explicit access or implicit access. The addresses of explicit
access objects are passed via register operands with the second through fourth column of Table 37-1 matching
implicitly encoded registers RBX, RCX, RDX.
Physical addresses used in different implicit accesses are cached via different instructions and for different dura-
tions. The physical address of SECS associated with each EPC page is cached at the time the page is added to the
enclave via ENCLS[EADD] or ENCLS[EAUG], or when the page is loaded to EPC via ENCLS[ELDB] or ENCLS[ELDU].
This binding is severed when the corresponding page is removed from the EPC via ENCLS[EREMOVE] or
ENCLS[EWB]. Physical addresses of TCS and SSA pages are cached at the time of most-recent enclave entry. Exit
from an enclave (ENCLU[EEXIT] or AEX) flushes this caching. Details of Asynchronous Enclave Exit is described in
Chapter 39.
The physical addresses that are cached for use by implicit accesses are derived from logical (or linear) addresses
after checks such as segmentation, paging, EPT, and APIC virtualization checks. These checks may trigger excep-
tions or VM exits. Note, however, that such exception or VM exits may not occur after a physical address is cached
and used for an implicit access.

Table 37-1. List of Implicit and Explicit Memory Access by Intel® SGX Enclave Instructions
Instr. Leaf Enum. Explicit 1 Explicit 2 Explicit 3 Implicit

EACCEPT SGX2 SECINFO EPCPAGE SECS

EACCEPTCOPY SGX2 SECINFO EPCPAGE (Src) EPCPAGE (Dst)

EADD SGX1 PAGEINFO and linked structures EPCPAGE

EAUG SGX2 PAGEINFO and linked structures EPCPAGE SECS

EBLOCK SGX1 EPCPAGE SECS

ECREATE SGX1 PAGEINFO and linked structures EPCPAGE

EDBGRD SGX1 EPCADDR Destination SECS

EDBGWR SGX1 EPCADDR Source SECS

EENTER SGX1 TCS and linked SSA SECS

EEXIT SGX1 SECS, TCS
Vol. 3D 37-3

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
37.6 INTEL® SGX DATA STRUCTURES OVERVIEW
Enclave operation is managed via a collection of data structures. Many of the top-level data structures contain sub-
structures. The top-level data structures relate to parameters that may be used in enclave setup/maintenance, by
Intel SGX instructions, or AEX event. The top-level data structures are:
• SGX Enclave Control Structure (SECS)
• Thread Control Structure (TCS)
• State Save Area (SSA)
• Page Information (PAGEINFO)
• Security Information (SECINFO)
• Paging Crypto MetaData (PCMD)
• Enclave Signature Structure (SIGSTRUCT)
• EINIT Token Structure (EINITTOKEN)
• Report Structure (REPORT)
• Report Target Info (TARGETINFO)
• Key Request (KEYREQUEST)
• Version Array (VA)
• Enclave Page Cache Map (EPCM)
Details of the top-level data structures and associated sub-structures are listed in Section 37.7 through Section
37.20.

37.7 SGX ENCLAVE CONTROL STRUCTURE (SECS)
The SECS data structure requires 4K-Bytes alignment.

EEXTEND SGX1 SECS EPCPAGE

EGETKEY SGX1 KEYREQUEST KEY SECS

EINIT SGX1 SIGSTRUCT SECS EINITTOKEN

ELDB/ELDU SGX1 PAGEINFO and linked structures, PCMD EPCPAGE VAPAGE

EMODPE SGX2 SECINFO EPCPAGE

EMODPR SGX2 SECINFO EPCPAGE SECS

EMODT SGX2 SECINFO EPCPAGE SECS

EPA SGX1 EPCADDR

EREMOVE SGX1 EPCPAGE SECS

EREPORT SGX1 TARGETINFO REPORTDATA OUTPUTDATA SECS

ERESUME SGX1 TCS and linked SSA SECS

ETRACK SGX1 EPCPAGE

EWB SGX1 PAGEINFO and linked structures, PCMD EPCPAGE VAPAGE SECS

Asynchronous Enclave Exit* SECS, TCS,
SSA

*Details of Asynchronous Enclave Exit (AEX) is described in Section 39.4

Table 37-1. List of Implicit and Explicit Memory Access by Intel® SGX Enclave Instructions (Contd.)
Instr. Leaf Enum. Explicit 1 Explicit 2 Explicit 3 Implicit
37-4 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
37.7.1 ATTRIBUTES
The ATTRIBUTES data structure is comprised of bit-granular fields that are used in the SECS, the REPORT and the
KEYREQUEST structures. CPUID.12H.01H enumerates a bitmap of permitted 1-setting of bits in ATTRIBUTES.

Table 37-2. Layout of SGX Enclave Control Structure (SECS)
Field OFFSET (Bytes) Size (Bytes) Description

SIZE 0 8 Size of enclave in bytes; must be power of 2.

BASEADDR 8 8 Enclave Base Linear Address must be naturally aligned to size.

SSAFRAMESIZE 16 4 Size of one SSA frame in pages, including XSAVE, pad, GPR, and MISC (if
CPUID.12H.00H:EBX != 0).

MISCSELECT 20 4 Bit vector specifying which extended features are saved to the MISC region
(see Section 37.7.2) of the SSA frame when an AEX occurs.

CET_LEG_BITMAP
_OFFSET

24 8 Page aligned offset of legacy code page bitmap from enclave base. Soft-
ware is expected to program this offset such that the entire bitmap re-
sides in the ELRANGE when legacy compatibility mode for indirect branch
tracking is enabled. However this is not enforced by the hardware.
This field exists when CPUID.07H.00H:EDX.CET_IBT[20] is enumerated as
1, else it is reserved.

CET_ATTRIBUTES 32 1 CET feature attributes of the enclave; see Table 37-5. This field exists
when CPUID.12H.01H:EAX[6] is enumerated as 1, else it is reserved.

RESERVED 33 15

ATTRIBUTES 48 16 Attributes of the Enclave, see Table 37-3.

MRENCLAVE 64 32 Measurement Register of enclave build process. See SIGSTRUCT for format.

RESERVED 96 32

MRSIGNER 128 32 Measurement Register extended with the public key that verified the
enclave. See SIGSTRUCT for format.

RESERVED 160 32

CONFIGID 192 64 Post EINIT configuration identity.

ISVPRODID 256 2 Product ID of enclave.

ISVSVN 258 2 Security version number (SVN) of the enclave.

CONFIGSVN 260 2 Post EINIT configuration security version number (SVN).

RESERVED 262 3834 The RESERVED field consists of the following:
• EID: An 8 byte Enclave Identifier. Its location is implementation specific.
• PAD: A 352 bytes padding pattern from the Signature (used for key

derivation strings). It’s location is implementation specific.
• ISVFAMILYID: A 16 byte value assigned to identify the family of products

the enclave belongs to.
• ISVEXTPRODID: A 16 byte value assigned to identify the product

identity of the enclave.
• The remaining 3226 bytes are reserved area.
The entire 3834 byte field must be cleared prior to executing ECREATE.

Table 37-3. Layout of ATTRIBUTES Structure
Field Bit Position Description

INIT 0 This bit indicates if the enclave has been initialized by EINIT. It must be cleared when loaded as
part of ECREATE. For EREPORT instruction, TARGET_INFO.ATTRIBUTES[ENIT] must always be 1 to
match the state after EINIT has initialized the enclave.

DEBUG 1 If 1, the enclave permit debugger to read and write enclave data using EDBGRD and EDBGWR.
Vol. 3D 37-5

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
37.7.2 SECS.MISCSELECT Field
CPUID.12H.00H:EBX[31:0] enumerates which extended information that the processor can save into the MISC
region of SSA when an AEX occurs. An enclave writer can specify via SIGSTRUCT how to set the SECS.MISCSELECT
field. The bit vector of MISCSELECT selects which extended information is to be saved in the MISC region of the SSA
frame when an AEX is generated. The bit vector definition of extended information is listed in Table 37-4.
If CPUID.12H.00H:EBX[31:0] = 0, SECS.MISCSELECT field must be all zeros.
The SECS.MISCSELECT field determines the size of MISC region of the SSA frame, see Section 37.9.2.

37.7.3 SECS.CET_ATTRIBUTES Field
The SECS.CET_ATTRIBUTES field can be used by the enclave writer to enable various CET attributes in an enclave.
This field exists when CPUID.12H.01H:EAX[6] is enumerated as 1. Bits 1:0 are defined when
CPUID.07H.00H:ECX.CET_SS is 1, and bits 5:2 are defined when CPUID.07H.00H:EDX.CET_IBT is 1.

MODE64BIT 2 Enclave runs in 64-bit mode.

RESERVED 3 Must be Zero.

PROVISIONKEY 4 Provisioning Key is available from EGETKEY.

EINITTOKEN_KEY 5 EINIT token key is available from EGETKEY.

CET 6 Enable CET attributes. When CPUID.12H.01H:EAX[6] is 0 this bit is reserved and must be 0.

KSS 7 Key Separation and Sharing Enabled.

RESERVED 9:8 Must be zero.

AEXNOTIFY 10 The bit indicates that threads within the enclave may receive AEX notifications.

RESERVED 63:11 Must be zero.

XFRM 127:64 XSAVE Feature Request Mask. See Section 41.7.

Table 37-4. Bit Vector Layout of MISCSELECT Field of Extended Information
Field Bit Position Description

EXINFO 0 Report information about page fault and general protection exception that occurred inside an
enclave.

CPINFO 1 Report information about control protection exception that occurred inside an enclave. When
CPUID.12H.00H:EBX[1] is 0, this bit is reserved.

Reserved 31:2 Reserved (0).

Table 37-5. Bit Vector Layout of CET_ATTRIBUTES Field of Extended Information
Field Bit Position Description

SH_STK_EN 0 When set to 1, enable shadow stacks.

WR_SHSTK_EN 1 When set to 1, enables the WRSS{D,Q}W instructions.

ENDBR_EN 2 When set to 1, enables indirect branch tracking.

LEG_IW_EN 3 Enable legacy compatibility treatment for indirect branch tracking.

NO_TRACK_EN 4 When set to 1, enables use of no-track prefix for indirect branch tracking.

SUPPRESS_DIS 5 When set to 1, disables suppression of CET indirect branch tracking on legacy compatibility.

Reserved 7:6 Reserved (0).

Table 37-3. Layout of ATTRIBUTES Structure
Field Bit Position Description
37-6 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
37.8 THREAD CONTROL STRUCTURE (TCS)
Each executing thread in the enclave is associated with a Thread Control Structure. It requires 4K-Bytes alignment.

37.8.1 TCS.FLAGS

37.8.2 State Save Area Offset (OSSA)
The OSSA points to a stack of State Save Area (SSA) frames (see Section 37.9) used to save the processor state
when an interrupt or exception occurs while executing in the enclave.

Table 37-6. Layout of Thread Control Structure (TCS)
Field OFFSET (Bytes) Size (Bytes) Description

STAGE 0 8 Enclave execution state of the thread controlled by this TCS. A value of 0 indi-
cates that this TCS is available for enclave entry. A value of 1 indicates that a
logical processor is currently executing an enclave in the context of this TCS.

FLAGS 8 8 The thread’s execution flags (see Section 37.8.1).

OSSA 16 8 Offset of the base of the State Save Area stack, relative to the enclave base.
Must be page aligned.

CSSA 24 4 Current slot index of an SSA frame, cleared by EADD and EACCEPT.

NSSA 28 4 Number of available slots for SSA frames.

OENTRY 32 8 Offset in enclave to which control is transferred on EENTER relative to the
base of the enclave.

AEP 40 8 The value of the Asynchronous Exit Pointer that was saved at EENTER time.

OFSBASE 48 8 Offset to add to the base address of the enclave for producing the base
address of FS segment inside the enclave. Must be page aligned.

OGSBASE 56 8 Offset to add to the base address of the enclave for producing the base
address of GS segment inside the enclave. Must be page aligned.

FSLIMIT 64 4 Size to become the new FS limit in 32-bit mode.

GSLIMIT 68 4 Size to become the new GS limit in 32-bit mode.

OCETSSA 72 8 When CPUID.12H.01H:EAX[6] is 1, this field provides the offset of the CET
state save area from enclave base. When CPUID.12H.01H:EAX[6] is 0, this field
is reserved and must be 0.

PREVSSP 80 8 When CPUID.07H.00H:ECX.CET_SS is 1, this field records the SSP at the time
of AEX or EEXIT; used to setup SSP on entry. When
CPUID.07H.00H:ECX.CET_SS is 0, this field is reserved and must be 0.

RESERVED 88 4008 Must be zero.

Table 37-7. Layout of TCS.FLAGS Field
Field Bit Position Description

DBGOPTIN 0 If set, allows debugging features (single-stepping, breakpoints, etc.) to be enabled and active while
executing in the enclave on this TCS. Hardware clears this bit on EADD. A debugger may later mod-
ify it if the enclave’s ATTRIBUTES.DEBUG is set.

AEXNOTIFY 1 A thread that enters the enclave cannot receive AEX notifications unless this flag is set to 1.

RESERVED 63:2 Must be zero.
Vol. 3D 37-7

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
37.8.3 Current State Save Area Frame (CSSA)
CSSA is the index of the current SSA frame that will be used by the processor to determine where to save the
processor state on an interrupt or exception that occurs while executing in the enclave. It is an index into the array
of frames addressed by OSSA. CSSA is incremented on an AEX and decremented on an ERESUME.

37.8.4 Number of State Save Area Frames (NSSA)
NSSA specifies the number of SSA frames available for this TCS. There must be at least one available SSA frame
when EENTER-ing the enclave or the EENTER will fail.

37.9 STATE SAVE AREA (SSA) FRAME
When an AEX occurs while running in an enclave, the architectural state is saved in the thread’s current SSA frame,
which is pointed to by TCS.CSSA. An SSA frame must be page aligned, and contains the following regions:
• The XSAVE region starts at the base of the SSA frame, this region contains extended feature register state in

an XSAVE/FXSAVE-compatible non-compacted format.
• A Pad region: software may choose to maintain a pad region separating the XSAVE region and the MISC region.

Software choose the size of the pad region according to the sizes of the MISC and GPRSGX regions.
• The GPRSGX region. The GPRSGX region is the last region of an SSA frame (see Table 37-8). This is used to hold

the processor general purpose registers (RAX … R15), the RIP, the outside RSP and RBP, RFLAGS, and the AEX
information.

• The MISC region (If CPUID.12H.00H:EBX[31:0] != 0). The MISC region is adjacent to the GRPSGX region, and
may contain zero or more components of extended information that would be saved when an AEX occurs. If the
MISC region is absent, the region between the GPRSGX and XSAVE regions is the pad region that software can
use. If the MISC region is present, the region between the MISC and XSAVE regions is the pad region that
software can use. See additional details in Section 37.9.2.

37.9.1 GPRSGX Region
The layout of the GPRSGX region is shown in Table 37-9.

Table 37-8. Top-to-Bottom Layout of an SSA Frame
Region Offset (Byte) Size (Bytes) Description

XSAVE 0 Calculate using CPUID
leaf 0DH information

The size of XSAVE region in SSA is derived from the enclave’s support of the col-
lection of processor extended states that would be managed by XSAVE. The
enablement of those processor extended state components in conjunction with
CPUID.0DH information determines the XSAVE region size in SSA.

Pad End of XSAVE
region

Chosen by enclave
writer

Ensure the end of GPRSGX region is aligned to the end of a 4KB page.

MISC base of GPRSGX
– sizeof(MISC)

Calculate from high-
est set bit of
SECS.MISCSELECT

See Section 37.9.2.

GPRSGX SSAFRAMESIZE
– 184

184 See Table 37-9 for layout of the GPRSGX region.

Table 37-9. Layout of GPRSGX Portion of the State Save Area
Field OFFSET (Bytes) Size (Bytes) Description

RAX 0 8

RCX 8 8
37-8 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
37.9.1.1 EXITINFO
EXITINFO contains the information used to report exit reasons to software inside the enclave. It is a 4 byte field laid
out as in Table 37-10. The VALID bit is set only for the exceptions conditions which are reported inside an enclave.
See Table 37-11 for which exceptions are reported inside the enclave. If the exception condition is not one reported
inside the enclave then VECTOR and EXIT_TYPE are cleared.
When a higher priority event, such as SMI, and a pending debug exception occur at the same time when executing
inside an enclave, the higher priority event has precedence. As an example for an SMI, the SSA exit info is zero.
The debug exception will be delivered upon return from the SMI. In such cases, the EXITINFO field will not contain
the information of a debug exception.

RDX 16 8

RBX 24 8

RSP 32 8

RBP 40 8

RSI 48 8

RDI 56 8

R8 64 8

R9 72 8

R10 80 8

R11 88 8

R12 96 8

R13 104 8

R14 112 8

R15 120 8

RFLAGS 128 8 Flag register.

RIP 136 8 Instruction pointer.

URSP 144 8 Non-Enclave (outside) stack pointer. Saved by EENTER, restored on AEX.

URBP 152 8 Non-Enclave (outside) RBP pointer. Saved by EENTER, restored on AEX.

EXITINFO 160 4 Contains information about exceptions that cause AEXs, which might be
needed by enclave software (see Section 37.9.1.1).

RESERVED 164 3

AEXNOTIFY 167 1 Bit 0: This bit allows enclave software to dynamically enable/disable AEX noti-
fications. An enclave thread cannot receive AEX notifications unless this bit is
set to 1 in the thread's current SSA frame.
All other bits are reserved.

FSBASE 168 8 FS BASE.

GSBASE 176 8 GS BASE.

Table 37-10. Layout of EXITINFO Field
Field Bit Position Description

VECTOR 7:0 Exception number of exceptions reported inside enclave.

EXIT_TYPE 10:8 011b: Hardware exceptions.
110b: Software exceptions.
Other values: Reserved.

Table 37-9. Layout of GPRSGX Portion of the State Save Area (Contd.)
Field OFFSET (Bytes) Size (Bytes) Description
Vol. 3D 37-9

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
37.9.1.2 VECTOR Field Definition
Table 37-11 contains the VECTOR field. This field contains information about some exceptions which occur inside
the enclave. These vector values are the same as the values that would be used when vectoring into regular excep-
tion handlers. All values not shown are not reported inside an enclave.

37.9.2 MISC Region
The layout of the MISC region is shown in Table 37-12. The number of components that the processor supports in
the MISC region corresponds to the bits of CPUID.12H.00H:EBX[31:0] set to 1. Each set bit in
CPUID.12H.00H:EBX[31:0] has a defined size for the corresponding component, as shown in Table 37-12. Enclave
writers needs to do the following:
• Decide which MISC region components will be supported for the enclave.
• Allocate an SSA frame large enough to hold the components chosen above.
• Instruct each enclave builder software to set the appropriate bits in SECS.MISCSELECT.
The first component, EXINFO, starts next to the GPRSGX region. Additional components in the MISC region grow in
ascending order within the MISC region towards the XSAVE region.
The size of the MISC region is calculated as follows:
• If CPUID.12H.00H:EBX[31:0] = 0, MISC region is not supported.
• If CPUID.12H.00H:EBX[31:0] != 0, the size of MISC region is derived from sum of the highest bit set in

SECS.MISCSELECT and the size of the MISC component corresponding to that bit. Offset and size information
of currently defined MISC components are listed in Table 37-12. For example, if the highest bit set in
SECS.MISCSELECT is bit 0, the MISC region offset is OFFSET(GPRSGX)-16 and size is 16 bytes.

RESERVED 30:11 Reserved as zero.

VALID 31 0: unsupported exceptions.
1: Supported exceptions. Includes two categories:

• Unconditionally supported exceptions: #DE, #DB, #BP, #BR, #UD, #MF, #AC, #XM.

• Conditionally supported exception:

— #PF, #GP if SECS.MISCSELECT.EXINFO = 1.

— #CP if SECS.MISCSELECT.CPINFO =1.

Table 37-11. Exception Vectors
Name Vector # Description

#DE 0 Divider exception.

#DB 1 Debug exception.

#BP 3 Breakpoint exception.

#BR 5 Bound range exceeded exception.

#UD 6 Invalid opcode exception.

#GP 13 General protection exception. Only reported if SECS.MISCSELECT.EXINFO = 1.

#PF 14 Page fault exception. Only reported if SECS.MISCSELECT.EXINFO = 1.

#MF 16 x87 FPU floating-point error.

#AC 17 Alignment check exceptions.

#XM 19 SIMD floating-point exceptions.

#CP 21 Control protection exception. Only reported if SECS.MISCSELECT.CPINFO =1.

Table 37-10. Layout of EXITINFO Field
Field Bit Position Description
37-10 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
• The processor saves a MISC component i in the MISC region if and only if SECS.MISCSELECT[i] is 1.

37.9.2.1 EXINFO Structure
Table 37-13 contains the layout of the EXINFO structure that provides additional information.

37.9.2.2 Page Fault Error Code
A page-fault error code may be reported in EXINFO.ERRCD. The format of the error code is given in Figure 5-12,
“Page-Fault Error Code.”
Page faults that would report an error code clearing the U/S bit (indicating a supervisor-mode access) are not
reported in EXINFO.

37.10 CET STATE SAVE AREA FRAME
The CET state save area consists of an array of CET state save frames. The number of CET state save frames is
equal to the TCS.NSSA. The current CET SSA frame is indicated by TCS.CSSA. The offset of the CET state save area
is specified by TCS.OCETSSA.

Table 37-12. Layout of MISC region of the State Save Area
MISC Components OFFSET (Bytes) Size (Bytes) Description

EXINFO Offset(GPRSGX) –16 16 If CPUID.12H.00H:EBX[0] = 1, exception information on #GP or #PF that
occurred inside an enclave can be written to the EXINFO structure if speci-
fied by SECS.MISCSELECT[0] = 1.
If CPUID.12H.00H:EBX[1] = 1, exception information on #CP that occurred
inside an enclave can be written to the EXINFO structure if specified by
SECS.MISCSELECT[1] = 1.

Future Extension Below EXINFO TBD Reserved. (Zero size if CPUID.12H.00H:EBX[31:1] = 0).

Table 37-13. Layout of EXINFO Structure
Field OFFSET (Bytes) Size (Bytes) Description

MADDR 0 8 If #PF: contains the page fault linear address that caused a page fault.
If #GP: the field is cleared.
If #CP: the field is cleared.

ERRCD 8 4 Exception error code for either #GP or #PF.

RESERVED 12 4

Table 37-14. Layout of CET State Save Area Frame

Field
Offset
(Bytes) Size (Bytes) Description

SSP 0 8 Shadow Stack Pointer.
This field is reserved when CPUID.07H.00H:ECX.CET_SS is 0.

IB_TRACK_STATE 8 8 Indirect branch tracker state:
Bit 0: SUPPRESS – suppressed(1), tracking(0)
Bit 1: TRACKER - IDLE (0), WAIT_FOR_ENDBRANCH (1)
Bits 63:2 – Reserved
This field is reserved when CPUID.07H.00H:EDX.CET_IBT is 0.
Vol. 3D 37-11

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
37.11 PAGE INFORMATION (PAGEINFO)
PAGEINFO is an architectural data structure that is used as a parameter to the EPC-management instructions. It
requires 32-Byte alignment.

37.12 SECURITY INFORMATION (SECINFO)
The SECINFO data structure holds meta-data about an enclave page.

37.12.1 SECINFO.FLAGS
The SECINFO.FLAGS are a set of fields describing the properties of an enclave page.

37.12.2 PAGE_TYPE Field Definition
The SECINFO flags and EPC flags contain bits indicating the type of page.

Table 37-15. Layout of PAGEINFO Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

LINADDR 0 8 Enclave linear address.

SRCPGE 8 8 Effective address of the page where contents are located.

SECINFO/PCMD 16 8 Effective address of the SECINFO or PCMD (for ELDU, ELDB, EWB) structure for
the page.

SECS 24 8 Effective address of EPC slot that currently contains the SECS.

Table 37-16. Layout of SECINFO Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

FLAGS 0 8 Flags describing the state of the enclave page.

RESERVED 8 56 Must be zero.

Table 37-17. Layout of SECINFO.FLAGS Field
Field Bit Position Description

R 0 If 1 indicates that the page can be read from inside the enclave; otherwise the page cannot be read
from inside the enclave.

W 1 If 1 indicates that the page can be written from inside the enclave; otherwise the page cannot be writ-
ten from inside the enclave.

X 2 If 1 indicates that the page can be executed from inside the enclave; otherwise the page cannot be
executed from inside the enclave.

PENDING 3 If 1 indicates that the page is in the PENDING state; otherwise the page is not in the PENDING state.

MODIFIED 4 If 1 indicates that the page is in the MODIFIED state; otherwise the page is not in the MODIFIED state.

PR 5 If 1 indicates that a permission restriction operation on the page is in progress, otherwise a permission
restriction operation is not in progress.

RESERVED 7:6 Must be zero.

PAGE_TYPE 15:8 The type of page that the SECINFO is associated with.

RESERVED 63:16 Must be zero.
37-12 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
37.13 PAGING CRYPTO METADATA (PCMD)
The PCMD structure is used to keep track of crypto meta-data associated with a paged-out page. Combined with
PAGEINFO, it provides enough information for the processor to verify, decrypt, and reload a paged-out EPC page.
The size of the PCMD structure (128 bytes) is architectural.
EWB calculates the Message Authentication Code (MAC) value and writes out the PCMD. ELDB/U reads the fields
and checks the MAC.
The format of PCMD is as follows:

37.14 ENCLAVE SIGNATURE STRUCTURE (SIGSTRUCT)
SIGSTRUCT is a structure created and signed by the enclave developer that contains information about the
enclave. SIGSTRUCT is processed by the EINIT leaf function to verify that the enclave was properly built.
SIGSTRUCT includes ENCLAVEHASH as SHA256 digest, as defined in FIPS PUB 180-4. The digests are byte strings
of length 32. Each of the 8 HASH dwords is stored in little-endian order.
SIGSTRUCT includes four 3072-bit integers (MODULUS, SIGNATURE, Q1, Q2). Each such integer is represented as
a byte strings of length 384, with the most significant byte at the position “offset + 383”, and the least significant
byte at position “offset”.
The (3072-bit integer) SIGNATURE should be an RSA signature, where: a) the RSA modulus (MODULUS) is a 3072-
bit integer; b) the public exponent is set to 3; c) the signing procedure uses the EMSA-PKCS1-v1.5 format with DER
encoding of the “DigestInfo” value as specified in of PKCS#1 v2.1/RFC 3447.
The 3072-bit integers Q1 and Q2 are defined by:
q1 = floor(Signature^2 / Modulus);
q2 = floor((Signature^3 - q1 * Signature * Modulus) / Modulus);

Table 37-18. Supported PAGE_TYPE
TYPE Value Description

PT_SECS 0 Page is an SECS.

PT_TCS 1 Page is a TCS.

PT_REG 2 Page is a regular page.

PT_VA 3 Page is a Version Array.

PT_TRIM 4 Page is in trimmed state.

PT_SS_FIRST 5 When CPUID.12H.01H:EAX[6] is 1, Page is first page of a shadow stack. When
CPUID.12H.01H:EAX[6] is 0, this value is reserved.

PT_SS_REST 6 When CPUID.12H.01H:EAX[6] is 1, Page is not first page of a shadow stack. When
CPUID.12H.01H:EAX[6] is 0, this value is reserved.

All others Reserved.

Table 37-19. Layout of PCMD Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

SECINFO 0 64 Flags describing the state of the enclave page; R/W by software.

ENCLAVEID 64 8 Enclave Identifier used to establish a cryptographic binding between paged-out
page and the enclave.

RESERVED 72 40 Must be zero.

MAC 112 16 Message Authentication Code for the page, page meta-data and reserved
field.
Vol. 3D 37-13

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
SIGSTRUCT must be page aligned
In column 5 of Table 37-20, ‘Y’ indicates that this field should be included in the signature generated by the devel-
oper.

Table 37-20. Layout of Enclave Signature Structure (SIGSTRUCT)
Field OFFSET (Bytes) Size (Bytes) Description Signed

HEADER 0 16 Must be byte stream
06000000E10000000000010000000000H

Y

VENDOR 16 4 Intel Enclave: 00008086H
Non-Intel Enclave: 00000000H

Y

DATE 20 4 Build date is yyyymmdd in hex:
yyyy=4 digit year, mm=1-12, dd=1-31

Y

HEADER2 24 16 Must be byte stream
01010000600000006000000001000000H

Y

SWDEFINED 40 4 Available for software use. Y

RESERVED 44 84 Must be zero. Y

MODULUS 128 384 Module Public Key (keylength = 3072 bits). N

EXPONENT 512 4 RSA Exponent = 3. N

SIGNATURE 516 384 Signature over Header and Body. N

MISCSELECT1

NOTES:

1. If CPUID.12H.00H:EBX[31:0] = 0, MISCSELECT must be 0.

900 4 Bit vector specifying Extended SSA frame feature set to be
used.

Y

MISCMASK 904 4 Bit vector mask of MISCSELECT to enforce. Y

CET_ATTRIBUTES 908 1 When CPUID.12H.01H:EAX[6] is 1, this field provides the
Enclave CET attributes that must be set. When
CPUID.12H.01H:EAX[6] is 0, this field is reserved and must
be 0.

Y

CET_ATTRIBUTES
_MASK

909 1 When CPUID.12H.01H:EAX[6] is 1, this field provides the
Mask of CET attributes to enforce. When
CPUID.12H.01H:EAX[6] is 0, this field is reserved and must
be 0.

Y

RESERVED 910 2 Must be zero. Y

ISVFAMILYID 912 16 ISV assigned Product Family ID. Y

ATTRIBUTES 928 16 Enclave Attributes that must be set. Y

ATTRIBUTEMASK 944 16 Mask of Attributes to enforce. Y

ENCLAVEHASH 960 32 MRENCLAVE of enclave this structure applies to. Y

RESERVED 992 16 Must be zero. Y

ISVEXTPRODID 1008 16 ISV assigned extended Product ID. Y

ISVPRODID 1024 2 ISV assigned Product ID. Y

ISVSVN 1026 2 ISV assigned SVN (security version number). Y

RESERVED 1028 12 Must be zero. N

Q1 1040 384 Q1 value for RSA Signature Verification. N

Q2 1424 384 Q2 value for RSA Signature Verification. N
37-14 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
37.15 EINIT TOKEN STRUCTURE (EINITTOKEN)
The EINIT token is used by EINIT to verify that the enclave is permitted to launch. EINIT token is generated by an
enclave in possession of the EINITTOKEN key (the Launch Enclave).
EINIT token must be 512-Byte aligned.
Vol. 3D 37-15

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
37.16 REPORT (REPORT)
The REPORT structure is the output of the EREPORT instruction, and must be 512-Byte aligned.

Table 37-21. Layout of EINIT Token (EINITTOKEN)
Field OFFSET (Bytes) Size (Bytes) MACed Description

Valid 0 4 Y Bit 0: 1: Valid; 0: Invalid.
All other bits reserved.

RESERVED 4 44 Y Must be zero.

ATTRIBUTES 48 16 Y ATTRIBUTES of the Enclave.

MRENCLAVE 64 32 Y MRENCLAVE of the Enclave.

RESERVED 96 32 Y Reserved.

MRSIGNER 128 32 Y MRSIGNER of the Enclave.

RESERVED 160 32 Y Reserved.

CPUSVNLE 192 16 N Launch Enclave’s CPUSVN.

ISVPRODIDLE 208 02 N Launch Enclave’s ISVPRODID.

ISVSVNLE 210 02 N Launch Enclave’s ISVSVN.

CET_MASKED_AT
TRIBUTES_LE

212 1 N When CPUID.12H.01H:EAX[6] is 1, this field provides the Launch
enclaves masked CET attributes. This should be set to LE’s CET_AT-
TRIBUTES masked with CET_ATTTRIBUTES_MASK of the LE’s KEYRE-
QUEST. When CPUID.12H.01H:EAX[6] is 0, this field is reserved.

RESERVED 213 23 N Reserved.

MASKEDMISCSEL
ECTLE

236 4 Launch Enclave’s MASKEDMISCSELECT: set by the LE to the resolved
MISCSELECT value, used by EGETKEY (after applying KEYREQUEST’s
masking).

MASKEDATTRIBU
TESLE

240 16 N Launch Enclave’s MASKEDATTRIBUTES: This should be set to the LE’s
ATTRIBUTES masked with ATTRIBUTEMASK of the LE’s KEYREQUEST.

KEYID 256 32 N Value for key wear-out protection.

MAC 288 16 N Message Authentication Code on EINITTOKEN using EINITTOKEN_KEY.

Table 37-22. Layout of REPORT
Field OFFSET (Bytes) Size (Bytes) Description

CPUSVN 0 16 The security version number of the processor.

MISCSELECT 16 4 Bit vector specifying which extended features are saved to the MISC region of
the SSA frame when an AEX occurs.

CET_ATTRIBUTES 20 1 When CPUID.12H.01H:EAX[6] is 1, this field reports the CET_ATTRIB-UTES of
the Enclave. When CPUID.12H.01H:EAX[6] is 0, this field is re-served and must
be 0.

RESERVED 21 11 Zero.

ISVEXTNPRODID 32 16 The value of SECS.ISVEXTPRODID.

ATTRIBUTES 48 16 ATTRIBUTES of the Enclave. See Section 37.7.1.

MRENCLAVE 64 32 The value of SECS.MRENCLAVE.

RESERVED 96 32 Zero.

MRSIGNER 128 32 The value of SECS.MRSIGNER.

RESERVED 160 32 Zero.

CONFIGID 192 64 Value provided by SW to identify enclave's post EINIT configuration.
37-16 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
37.16.1 REPORTDATA
REPORTDATA is a 64-Byte data structure that is provided by the enclave and included in the REPORT. It can be used
to securely pass information from the enclave to the target enclave.

37.17 REPORT TARGET INFO (TARGETINFO)
This structure is an input parameter to the EREPORT leaf function. The address of TARGETINFO is specified as an
effective address in RBX. It is used to identify the target enclave which will be able to cryptographically verify the
REPORT structure returned by EREPORT. TARGETINFO must be 512-Byte aligned.

37.18 KEY REQUEST (KEYREQUEST)
This structure is an input parameter to the EGETKEY leaf function. It is passed in as an effective address in RBX and
must be 512-Byte aligned. It is used for selecting the appropriate key and any additional parameters required in
the derivation of that key.

ISVPRODID 256 2 Product ID of enclave.

ISVSVN 258 2 Security version number (SVN) of the enclave.

CONFIGSVN 260 2 Value provided by SW to indicate expected SVN of enclave's post EINIT configu-
ration.

RESERVED 262 42 Zero.

ISVFAMILYID 304 16 The value of SECS.ISVFAMILYID.

REPORTDATA 320 64 Data provided by the user and protected by the REPORT's MAC, see Section
37.16.1.

KEYID 384 32 Value for key wear-out protection.

MAC 416 16 Message Authentication Code on the report using report key.

Table 37-23. Layout of TARGETINFO Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

MEASUREMENT 0 32 The MRENCLAVE of the target enclave.

ATTRIBUTES 32 16 The ATTRIBUTES field of the target enclave.

CET_ATTRIBUTES 48 1 When CPUID.12H.01H:EAX[6] is 1, this field provides the CET_ATTRIBUTES
field of the target enclave. When CPUID.12H.01H:EAX[6] is 0, this field is
reserved.

RESERVED 49 1 Must be zero.

CONFIGSVN 50 2 CONFIGSVN of the target enclave.

MISCSELECT 52 4 The MISCSELECT of the target enclave.

RESERVED 56 8 Must be zero.

CONFIGID 64 64 CONFIGID of target enclave.

RESERVED 128 384 Must be zero.

Table 37-22. Layout of REPORT (Contd.)
Field OFFSET (Bytes) Size (Bytes) Description
Vol. 3D 37-17

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
37.18.1 KEY REQUEST KeyNames

37.18.2 Key Request Policy Structure

Table 37-24. Layout of KEYREQUEST Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

KEYNAME 0 2 Identifies the Key Required.

KEYPOLICY 2 2 Identifies which inputs are required to be used in the key derivation.

ISVSVN 4 2 The ISV security version number that will be used in the key derivation.

CET_ATTRIBUTES
_MASK

6 1 When CPUID.12H.01H:EAX[6] is 1, this field provides a mask that defines
which CET_ATTRIBUTES bits will be included in key derivation. When
CPUID.12H.01H:EAX[6] is 0, then this field is reserved and must be 0.

RESERVED 7 1 Must be zero.

CPUSVN 8 16 The security version number of the processor used in the key derivation.

ATTRIBUTEMASK 24 16 A mask defining which ATTRIBUTES bits will be included in key derivation.

KEYID 40 32 Value for key wear-out protection.

MISCMASK 72 4 A mask defining which MISCSELECT bits will be included in key derivation.

CONFIGSVN 76 2 Identifies which enclave Configuration's Security Version should be used in key
derivation.

RESERVED 78 434

Table 37-25. Supported KEYName Values
Key Name Value Description

EINITTOKEN_KEY 0 EINIT_TOKEN key

PROVISION_KEY 1 Provisioning Key

PROVISION_SEAL_KEY 2 Provisioning Seal Key

REPORT_KEY 3 Report Key

SEAL_KEY 4 Seal Key

All others Reserved

Table 37-26. Layout of KEYPOLICY Field
Field Bit Position Description

MRENCLAVE 0 If 1, derive key using the enclave's MRENCLAVE measurement register.

MRSIGNER 1 If 1, derive key using the enclave's MRSIGNER measurement register.

NOISVPRODID 2 If 1, derive key WITHOUT using the enclave' ISVPRODID value.

CONFIGID 3 If 1, derive key using the enclave's CONFIGID value.

ISVFAMILYID 4 If 1, derive key using the enclave ISVFAMILYID value.

ISVEXTPRODID 5 If 1, derive key using enclave's ISVEXTPRODID value.

RESERVED 15:6 Must be zero.
37-18 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
37.19 VERSION ARRAY (VA)
In order to securely store the versions of evicted EPC pages, Intel SGX defines a special EPC page type called a
Version Array (VA). Each VA page contains 512 slots, each of which can contain an 8-byte version number for a
page evicted from the EPC. When an EPC page is evicted, software chooses an empty slot in a VA page; this slot
receives the unique version number of the page being evicted. When the EPC page is reloaded, there must be a VA
slot that must hold the version of the page. If the page is successfully reloaded, the version in the VA slot is
cleared.
VA pages can be evicted, just like any other EPC page. When evicting a VA page, a version slot in some other VA
page must be used to hold the version for the VA being evicted. A Version Array Page must be 4K-Bytes aligned.

37.20 ENCLAVE PAGE CACHE MAP (EPCM)
EPCM is a secure structure used by the processor to track the contents of the EPC. The EPCM holds exactly one
entry for each page that is currently loaded into the EPC. EPCM is not accessible by software, and the layout of
EPCM fields is implementation specific.

Table 37-27. Layout of Version Array Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

Slot 0 0 8 Version Slot 0

Slot 1 8 8 Version Slot 1

...

Slot 511 4088 8 Version Slot 511

Table 37-28. Content of an Enclave Page Cache Map Entry
Field Description

VALID Indicates whether the EPCM entry is valid.

R Read access; indicates whether enclave accesses for reads are allowed from the EPC page referenced by this
entry.

W Write access; indicates whether enclave accesses for writes are allowed to the EPC page referenced by this
entry.

X Execute access; indicates whether enclave accesses for instruction fetches are allowed from the EPC page
referenced by this entry.

PT EPCM page type (PT_SECS, PT_TCS, PT_REG, PT_VA, PT_TRIM, PT_SS_FIRST, PT_SS_REST).

ENCLAVESECS SECS identifier of the enclave to which the EPC page belongs.

ENCLAVEADDRESS Linear enclave address of the EPC page.

BLOCKED Indicates whether the EPC page is in the blocked state.

PENDING Indicates whether the EPC page is in the pending state.

MODIFIED Indicates whether the EPC page is in the modified state.

PR Indicates whether the EPC page is in a permission restriction state.
Vol. 3D 37-19

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
37-20 Vol. 3D

ENCLAVE OPERATION
CHAPTER 38
ENCLAVE OPERATION

The following aspects of enclave operation are described in this chapter:
• Enclave creation: Includes loading code and data from outside of enclave into the EPC and establishing the

enclave entity.
• Adding pages and measuring the enclave.
• Initialization of an enclave: Finalizes the cryptographic log and establishes the enclave identity and sealing

identity.
• Enclave entry and exiting including:

— Controlled entry and exit.

— Asynchronous Enclave Exit (AEX) and resuming execution after an AEX.

38.1 CONSTRUCTING AN ENCLAVE
Figure 38-1 illustrates a typical Enclave memory layout.

The enclave creation, commitment of memory resources, and finalizing the enclave’s identity with measurement
comprises multiple phases. This process can be illustrated by the following exemplary steps:

1. The application hands over the enclave content along with additional information required by the enclave
creation API to the enclave creation service running at privilege level 0.

2. The enclave creation service running at privilege level 0 uses the ECREATE leaf function to set up the initial
environment, specifying base address and size of the enclave. This address range, the ELRANGE, is part of the
application's address space. This reserves the memory range. The enclave will now reside in this address

Figure 38-1. Enclave Memory Layout

Thread Data

Global Data

Code

Enclave Memory

SECS

TCS

Base + Size

Base

Replicated once
per thread

Enclave {Base, Size}

Application Context

OS Context
Vol. 3D 38-1

ENCLAVE OPERATION
region. ECREATE also allocates an Enclave Page Cache (EPC) page for the SGX Enclave Control Structure
(SECS). Note that this page is not required to be a part of the enclave linear address space and is not required
to be mapped into the process.

3. The enclave creation service uses the EADD leaf function to commit EPC pages to the enclave, and use
EEXTEND to measure the committed memory content of the enclave. For each page to be added to the enclave:

— Use EADD to add the new page to the enclave.

— If the enclave developer requires measurement of the page as a proof for the content, use EEXTEND to add
a measurement for 256 bytes of the page. Repeat this operation until the entire page is measured.

4. The enclave creation service uses the EINIT leaf function to complete the enclave creation process and finalize
the enclave measurement to establish the enclave identity. Until an EINIT is executed, the enclave is not
permitted to execute any enclave code (i.e., entering the enclave by executing EENTER would result in a fault).

38.1.1 ECREATE
The ECREATE leaf function sets up the initial environment for the enclave by reading an SGX Enclave Control Struc-
ture (SECS) that contains the enclave's address range (ELRANGE) as defined by BASEADDR and SIZE, the ATTRI-
BUTES and MISCSELECT bitmaps, and the SSAFRAMESIZE. It then securely stores this information in an Enclave
Page Cache (EPC) page. ELRANGE is part of the application's address space. ECREATE also initializes a cryp-
tographic log of the enclave's build process.

38.1.2 EADD and EEXTEND Interaction
Once the SECS has been created, enclave pages can be added to the enclave via EADD. This involves converting a
free EPC page into either a PT_REG or a PT_TCS page.
When EADD is invoked, the processor will update the EPCM entry with the type of page (PT_REG or PT_TCS), the
linear address used by the enclave to access the page, and the enclave access permissions for the page. It associ-
ates the page to the SECS provided as input. The EPCM entry information is used by hardware to manage access
control to the page. EADD records EPCM information in the cryptographic log stored in the SECS and copies 4
KBytes of data from unprotected memory outside the EPC to the allocated EPC page.
System software is responsible for selecting a free EPC page. System software is also responsible for providing the
type of page to be added, the attributes of the page, the contents of the page, and the SECS (enclave) to which the
page is to be added as requested by the application. Incorrect data would lead to a failure of EADD or to an incor-
rect cryptographic log and a failure at EINIT time.
After a page has been added to an enclave, software can measure a 256 byte region as determined by the devel-
oper by invoking EEXTEND. Thus to measure an entire 4KB page, system software must execute EEXTEND 16
times. Each invocation of EEXTEND adds to the cryptographic log information about which region is being measured
and the measurement of the section.
Entries in the cryptographic log define the measurement of the enclave and are critical in gaining assurance that
the enclave was correctly constructed by the untrusted system software.

38.1.3 EINIT Interaction
Once system software has completed the process of adding and measuring pages, the enclave needs to be initial-
ized by the EINIT leaf function. After an enclave is initialized, EADD and EEXTEND are disabled for that enclave (An
attempt to execute EADD/EEXTEND to enclave after enclave initialization will result in a fault). The initialization
process finalizes the cryptographic log and establishes the enclave identity and sealing identity used by
EGETKEY and EREPORT.
A cryptographic hash of the log is stored as the enclave identity. Correct construction of the enclave results in the
cryptographic hash matching the one built by the enclave owner and included as the ENCLAVEHASH field of
SIGSTRUCT. The enclave identity provided by the EREPORT leaf function can be verified by a remote party.
38-2 Vol. 3D

ENCLAVE OPERATION
The EINIT leaf function checks the EINIT token to validate that the enclave has been enabled on this platform. If
the enclave is not correctly constructed, or the EINIT token is not valid for the platform, or SIGSTRUCT isn't prop-
erly signed, then EINIT will fail. See the EINIT leaf function for details on the error reporting.
The enclave identity is a cryptographic hash that reflects the enclave attributes and MISCSELECT value, content
of the enclave, the order in which it was built, the addresses it occupies in memory, the security attributes, and
access right permissions of each page. The enclave identity is established by the EINIT leaf function.
The sealing identity is managed by a sealing authority represented by the hash of the public key used to sign the
SIGSTRUCT structure processed by EINIT. The sealing authority assigns a product ID (ISVPRODID) and security
version number (ISVSVN) to a particular enclave identity.
EINIT establishes the sealing identity using the following steps:
1. Verifies that SIGSTRUCT is properly signed using the public key enclosed in the SIGSTRUCT.
2. Checks that the measurement of the enclave matches the measurement of the enclave specified in SIGSTRUCT.
3. Checks that the enclave’s attributes and MISCSELECT values are compatible with those specified in SIGSTRUCT.
4. Finalizes the measurement of the enclave and records the sealing identity (the sealing authority, product id
and security version number) and enclave identity in the SECS.
5. Sets the ATTRIBUTES.INIT bit for the enclave.

38.1.4 Intel® SGX Launch Control Configuration
Intel® SGX Launch Control is a set of controls that govern the creation of enclaves. Before the EINIT leaf function
will successfully initialize an enclave, a designated Launch Enclave must create an EINITTOKEN for that enclave.
Launch Enclaves have SECS.ATTRIBUTES.EINITTOKEN_KEY = 1, granting them access to the EINITTOKEN_KEY
from the EGETKEY leaf function. EINITTOKEN_KEY must be used by the Launch Enclave when computing EINIT-
TOKEN.MAC, the Message Authentication Code of the EINITTOKEN.
The hash of the public key used to sign the SIGSTRUCT of the Launch Enclave must equal the value in the IA32_S-
GXLEPUBKEYHASH MSRs. Only Launch Enclaves are allowed to launch without a valid token.
The IA32_SGXLEPUBKEYHASH MSRs are provided to designate the platform’s Launch Enclave. IA32_SGXLEPUB-
KEYHASH defaults to digest of Intel’s launch enclave signing key after reset.
IA32_FEATURE_CONTROL bit 17 controls the permissions on the IA32_SGXLEPUBKEYHASH MSRs when
CPUID.12H.00H:EAX[0] = 1. If IA32_FEATURE_CONTROL is locked with bit 17 set, IA32_SGXLEPUBKEYHASH
MSRs are reconfigurable (writeable). If either IA32_FEATURE_CONTROL is not locked or bit 17 is clear, the MSRs
are read only. By leaving these MSRs writable, system SW or a VMM can support a plurality of Launch Enclaves for
hosting multiple execution environments. See Table 42.2.2 for more details.

38.2 ENCLAVE ENTRY AND EXITING

38.2.1 Controlled Entry and Exit
The EENTER leaf function is the method to enter the enclave under program control. To execute EENTER, software
must supply an address of a TCS that is part of the enclave to be entered. The TCS holds the location inside the
enclave to transfer control to and a pointer to the SSA frame inside the enclave that an AEX should store the
register state to.
When a logical processor enters an enclave, the TCS is considered busy until the logical processors exits the
enclave. An attempt to enter an enclave through a busy TCS results in a fault. Intel® SGX allows an enclave builder
to define multiple TCSs, thereby providing support for multithreaded enclaves.
Software must also supply to EENTER the Asynchronous Exit Pointer (AEP) parameter. AEP is an address external
to the enclave which an exception handler will return to using IRET. Typically the location would contain the
ERESUME instruction. ERESUME transfers control back to the enclave, to the address retrieved from the enclave
thread’s saved state.
EENTER performs the following operations:
Vol. 3D 38-3

ENCLAVE OPERATION
1. Check that TCS is not busy and flush all cached linear-to-physical mappings.

2. Change the mode of operation to be in enclave mode.

3. Save the old RSP, RBP for later restore on AEX (Software is responsible for setting up the new RSP, RBP to be
used inside enclave).

4. Save XCR0 and replace it with the XFRM value for the enclave.

5. Check if software wishes to debug (applicable to a debuggable enclave):

— If not debugging, then configure hardware so the enclave appears as a single instruction.

— If debugging, then configure hardware to allow traps, breakpoints, and single steps inside the enclave.

6. Set the TCS as busy.

7. Transfer control from outside enclave to predetermined location inside the enclave specified by the TCS.
The EEXIT leaf function is the method of leaving the enclave under program control. EEXIT receives the target
address outside of the enclave that the enclave wishes to transfer control to. It is the responsibility of enclave soft-
ware to erase any secret from the registers prior to invoking EEXIT. To allow enclave software to easily perform an
external function call and re-enter the enclave (using EEXIT and EENTER leaf functions), EEXIT returns the value of
the AEP that was used when the enclave was entered.
EEXIT performs the following operations:

1. Clear enclave mode and flush all cached linear-to-physical mappings.

2. Mark TCS as not busy.

3. Transfer control from inside the enclave to a location on the outside specified as parameter to the EEXIT leaf
function.

38.2.2 Asynchronous Enclave Exit (AEX)
Asynchronous and synchronous events, such as exceptions, interrupts, traps, SMIs, and VM exits may occur while
executing inside an enclave. These events are referred to as Enclave Exiting Events (EEE). Upon an EEE, the
processor state is securely saved inside the enclave (in the thread’s current SSA frame) and then replaced by a
synthetic state to prevent leakage of secrets. The process of securely saving state and establishing the synthetic
state is called an Asynchronous Enclave Exit (AEX). Details of AEX is described in Chapter 39, “Enclave Exiting
Events.”
As part of most EEEs, the AEP is pushed onto the stack as the location of the eventing address. This is the location
where control will return to after executing the IRET. The ERESUME leaf function can be executed from that point
to reenter the enclave and resume execution from the interrupted point.
After AEX has completed, the logical processor is no longer in enclave mode and the exiting event is processed
normally. Any new events that occur after the AEX has completed are treated as having occurred outside the
enclave (e.g., a #PF in dispatching to an interrupt handler).

38.2.3 Resuming Execution After AEX
After system software has serviced the event that caused the logical processor to exit an enclave, the logical
processor can continue enclave execution using ERESUME. ERESUME restores processor state and returns control
to where execution was interrupted.
If the cause of the exit was an exception or a fault and was not resolved, the event will be triggered again if the
enclave is re-entered using ERESUME. For example, if an enclave performs a divide by 0 operation, executing
ERESUME will cause the enclave to attempt to re-execute the faulting instruction and result in another divide by 0
exception. Intel® SGX provides the means for an enclave developer to handle enclave exceptions from within the
enclave. Software can enter the enclave at a different location and invoke the exception handler within the enclave
by executing the EENTER leaf function. The exception handler within the enclave can read the fault information
from the SSA frame and attempt to resolve the faulting condition or simply return and indicate to software that the
enclave should be terminated (e.g., using EEXIT).
38-4 Vol. 3D

ENCLAVE OPERATION
38.2.3.1 ERESUME Interaction
ERESUME restores registers depending on the mode of the enclave (32 or 64 bit).
• In 32-bit mode (IA32_EFER.LMA = 0 || CS.L = 0), the low 32-bits of the legacy registers (EAX, EBX, ECX, EDX,

ESP, EBP, ESI, EDI, EIP, and EFLAGS) are restored from the thread’s GPR area of the current SSA frame. Neither
the upper 32 bits of the legacy registers nor the 64-bit registers (R8 … R15) are loaded.

• In 64-bit mode (IA32_EFER.LMA = 1 && CS.L = 1), all 64 bits of the general processor registers (RAX, RBX,
RCX, RDX, RSP, RBP, RSI, RDI, R8 … R15, RIP, and RFLAGS) are loaded.

Extended features specified by SECS.ATTRIBUTES.XFRM are restored from the XSAVE area of the current SSA
frame. The layout of the x87 area depends on the current values of IA32_EFER.LMA and CS.L:
• IA32_EFER.LMA = 0 || CS.L = 0

— 32-bit load in the same format that XSAVE/FXSAVE uses with these values.
• IA32_EFER.LMA = 1 && CS.L = 1

— 64-bit load in the same format that XSAVE/FXSAVE uses with these values as if REX.W = 1.

38.2.3.2 Asynchronous Enclave Exit Notify and EDECCSSA
Asynchronous Enclave Exit Notify (AEX-Notify) is an extension to Intel SGX that allows Intel SGX enclaves to be
notified after an asynchronous enclave exit (AEX) has occurred. EDECCSSA is a new Intel SGX user leaf function
(ENCLU[EDECCSSA]) that can facilitate AEX notification handling, as well as software exception handling. This
section provides information about changes to the Intel SGX architecture that support AEX-Notify and
ENCLU[EDECCSSA].

NOTE
On some platforms, AEX-Notify and the EDECCSSA user leaf function may be enumerated by
CPUID following a microcode update.

The following list summarizes the additions to existing Intel SGX data structures to support AEX-Notify:
• SECS.ATTRIBUTES.AEXNOTIFY: This enclave supports AEX-Notify.
• TCS.FLAGS.AEXNOTIFY: This enclave thread may receive AEX notifications.
• SSA.GPRSGX.AEXNOTIFY: Enclave-writable byte that allows enclave software to dynamically enable/disable

AEX notifications.
An AEX notification is delivered by ENCLU[ERESUME] when the following conditions are met:

1. TCS.FLAGS.AEXNOTIFY is set.

2. TCS.CSSA (the current slot index of an SSA frame) is greater than zero.

3. TCS.SSA[TCS.CSSA-1].GPRSGX.AEXNOTIFY[0] is set.
Note that AEX increments TCS.CSSA, and ENCLU[ERESUME] decrements TCS.CSSA, except when an AEX notifica-
tion is delivered. Instead of decrementing TCS.CSSA and restoring state from the SSA, ENCLU[ERESUME] delivers
an AEX notification by behaving as ENCLU[EENTER]. Implications of this behavior include:
• The enclave thread is resumed at EnclaveBase + TCS.OENTRY.
• EAX contains the (non-decremented) value of TCS.CSSA.
• RCX contains the address of the IP following ENCLU[ERESUME].
• The architectural state saved by the most recent AEX is preserved in TCS.SSA[TCS.CSSA-1].
The enclave thread can return to the previous SSA context by invoking ENCLU[EDECCSSA], which decrements
TCS.CSSA.
Vol. 3D 38-5

ENCLAVE OPERATION
38.3 CALLING ENCLAVE PROCEDURES

38.3.1 Calling Convention
In standard call conventions subroutine parameters are generally pushed onto the stack. The called routine, being
aware of its own stack layout, knows how to find parameters based on compile-time-computable offsets from the
SP or BP register (depending on runtime conventions used by the compiler).
Because of the stack switch when calling an enclave, stack-located parameters cannot be found in this manner.
Entering the enclave requires a modified parameter passing convention.
For example, the caller might push parameters onto the untrusted stack and then pass a pointer to those parame-
ters in RAX to the enclave software. The exact choice of calling conventions is up to the writer of the edge routines;
be those routines hand-coded or compiler generated.

38.3.2 Register Preservation
As with most systems, it is the responsibility of the callee to preserve all registers except that used for returning a
value. This is consistent with conventional usage and tends to optimize the number of register save/restore opera-
tions that need be performed. It has the additional security result that it ensures that data is scrubbed from any
registers that were used by enclave to temporarily contain secrets.

38.3.3 Returning to Caller
No registers are modified during EEXIT. It is the responsibility of software to remove secrets in registers before
executing EEXIT.

38.4 INTEL® SGX KEY AND ATTESTATION

38.4.1 Enclave Measurement and Identification
During the enclave build process, two “measurements” are taken of each enclave and are stored in two 256-bit
Measurement Registers (MR): MRENCLAVE and MRSIGNER. MRENCLAVE represents the enclave's contents and
build process. MRSIGNER represents the entity that signed the enclave's SIGSTRUCT.
The values of the Measurement Registers are included in attestations to identify the enclave to remote parties. The
MRs are also included in most keys, binding keys to enclaves with specific MRs.

38.4.1.1 MRENCLAVE
MRENCLAVE is a unique 256 bit value that identifies the code and data that was loaded into the enclave during the
initial launch. It is computed as a SHA256 hash that is initialized by the ECREATE leaf function. EADD and EEXTEND
leaf functions record information about each page and the content of those pages. The EINIT leaf function finalizes
the hash, which is stored in SECS.MRENCLAVE. Any tampering with the build process, contents of a page, page
permissions, etc will result in a different MRENCLAVE value.
Figure 38-2 illustrates a simplified flow of changes to the MRENCLAVE register when building an enclave:
• Enclave creation with ECREATE.
• Copying a non-enclave source page into the EPC of an un-initialized enclave with EADD.
• Updating twice of the MRENCLAVE after modifying the enclave’s page content, i.e., EEXTEND twice.
• Finalizing the enclave build with EINIT.
Details on specific values inserted in the hash are available in the individual instruction definitions.
38-6 Vol. 3D

ENCLAVE OPERATION
38.4.1.2 MRSIGNER
Each enclave is signed using a 3072 bit RSA key. The signature is stored in the SIGSTRUCT. In the SIGSTRUCT, the
enclave's signer also assigns a product ID (ISVPRODID) and a security version (ISVSVN) to the enclave.
MRSIGNER is the SHA-256 hash of the signer's public key. For platforms that support Key Separation and Sharing
(CPUID.12H.01H:EAX.KSS[7]) the SIGSTRUCT can additionally specify an 16 byte extended product ID (ISVEXT-
PRODID), and a 16 byte family ID (ISVFAMILYID).
In attestation, MRSIGNER can be used to allow software to approve of an enclave based on the author rather than
maintaining a list of MRENCLAVEs. It is used in key derivation to allow software to create a lineage of an applica-
tion. By signing multiple enclaves with the same key, the enclaves will share the same keys and data. Combined
with security version numbering, the author can release multiple versions of an application which can access keys
for previous versions, but not future versions of that application.

38.4.1.3 CONFIGID
For platforms that support enhancements for key separation and sharing (CPUID.12H.01H:EAX.KSS[7]) when the
enclave is created the platform can additionally provide 32-byte configuration identifier (CONFIGID). How this
value is used is dependent on the enclave but it is intended to allow enclave creators to indicate what additional
content may be accepted by the enclave post-initialization.

38.4.2 Security Version Numbers (SVN)
Intel® SGX supports a versioning system that allows the signer to identify different versions of the same software
released by an author. The security version is independent of the functional version an author uses and is intended
to specify security equivalence. Multiple releases with functional enhancements may all share the same SVN if they
all have the same security properties or posture. Each enclave has an SVN and the underlying hardware has an
SVN.
The SVNs are attested to in EREPORT and are included in the derivation of most keys, thus providing separation
between data for older/newer versions.

Figure 38-2. Measurement Flow of Enclave Build Process

SHA_INIT

MRENCLAVE

SHA_UPDATE

MRENCLAVE

SHA_UPDATE

MRENCLAVE

SHA_UPDATE

MRENCLAVE

SHA_FINAL

MRENCLAVE

Page
Metadata

Data
Chunk 1

Data
Chunk 2

Chunk 1
Metadata

Chunk 2
Metadata

ECREATE EADD EEXTEND EEXTEND EINIT
Vol. 3D 38-7

ENCLAVE OPERATION
38.4.2.1 Enclave Security Version
In the SIGSTRUCT, the MRSIGNER is associated with a 16-bit Product ID (ISVPRODID) and a 16 bit integer SVN
(ISVSVN). Together they define a specific group of versions of a specific product. Most keys, including the Seal Key,
can be bound to this pair.
To support upgrading from one release to another, EGETKEY will return keys corresponding to any value less than
or equal to the software's ISVSVN.

38.4.2.2 Hardware Security Version
CPUSVN is a 128 bit value that reflects the microcode update version and authenticated code modules supported
by the processor. Unlike ISVSVN, CPUSVN is not an integer and cannot be compared mathematically. Not all values
are valid CPUSVNs.
Software must ensure that the CPUSVN provided to EGETKEY is valid. EREPORT will return the CPUSVN of the
current environment. Software can execute EREPORT with TARGETINFO set to zeros to retrieve a CPUSVN from
REPORTDATA. Software can access keys for a CPUSVN recorded previously, provided that each of the elements
reflected in CPUSVN are the same or have been upgraded.

38.4.2.3 CONFIGID Security Version
The CONFIGID field can be used to contain the hash of a signing key for verifying the additional content. In this
case, similar to the relationship between MRSIGNER and ISVSVN, CONFIGID needs a CONFIGID Security Version
Number. CONFIGIDSVN can be specified at the same time as CONFIGID.

38.4.3 Keys
Intel® SGX provides software with access to keys unique to each processor and rooted in HW keys inserted into the
processor during manufacturing.
Each enclave requests keys using the EGETKEY leaf function. The key is based on enclave parameters such as
measurement, the enclave signing key, security attributes of the enclave, and the Hardware Security version of the
processor itself. A full list of parameter options is specified in the KEYREQUEST structure, see details in Section
37.18.
By deriving keys using enclave properties, SGX guarantees that if two enclaves call EGETKEY, they will receive a
unique key only accessible by the respective enclave. It also guarantees that the enclave will receive the same key
on every future execution of EGETKEY. Some parameters are optional or configurable by software. For example, a
Seal key can be based on the signer of the enclave, resulting in a key available to multiple enclaves signed by the
same party.
The EGETKEY leaf function provides several key types. Each key is specific to the processor, CPUSVN, and the
enclave that executed EGETKEY. The EGETKEY instruction definition details how each of these keys is derived, see
Table 40-62. Additionally,
• SEAL Key: The Seal key is a general purpose key for the enclave to use to protect secrets. Typical uses of the

Seal key are encrypting and calculating MAC of secrets on disk. There are 2 types of Seal Key described in
Section 38.4.3.1.

• REPORT Key: This key is used to compute the MAC on the REPORT structure. The EREPORT leaf function is used
to compute this MAC, and destination enclave uses the Report key to verify the MAC. The software usage flow
is detailed in Section 38.4.3.2.

• EINITTOKEN_KEY: This key is used by Launch Enclaves to compute the MAC on EINITTOKENs. These tokens are
then verified in the EINIT leaf function. The key is only available to enclaves with ATTRIBUTE.EINITTOKEN_KEY set
to 1.

• PROVISIONING Key and PROVISIONING SEAL Key: These keys are used by attestation key provisioning
software to prove to remote parties that the processor is genuine and identify the currently executing TCB.
These keys are only available to enclaves with ATTRIBUTE.PROVISIONKEY set to 1.
38-8 Vol. 3D

ENCLAVE OPERATION
38.4.3.1 Sealing Enclave Data
Enclaves can protect persistent data using Seal keys to provide encryption and/or integrity protection. EGETKEY
provides two types of Seal keys specified in KEYREQUEST.KEYPOLICY field: MRENCLAVE-based key and
MRSIGNER-based key.
The MRENCLAVE-based keys are available only to enclave instances sharing the same MRENCLAVE. If a new
version of the enclave is released, the Seal keys will be different. Retrieving previous data requires additional soft-
ware support.
The MRSIGNER-based keys are bound to the 3 tuple (MRSIGNER, ISVPRODID, ISVSVN). These keys are available
to any enclave with the same MRSIGNER and ISVPRODID and an ISVSVN equal to or greater than the key in ques-
tions. This is valuable for allowing new versions of the same software to retrieve keys created before an upgrade.
For platforms that support enhancements for key separation and sharing (CPUID.12H.01H:EAX.KSS[7]) four addi-
tional key policies for seal key derivation are provided. These add the ISVEXTPRODID, ISVFAMILYID, and
CONFIGID/CONFIGSVN to the key derivation. Additionally, there is a policy to remove ISVPRODID from a key deri-
vation to create a shared between different products that share the same MRSIGNER.

38.4.3.2 Using REPORTs for Local Attestation
Intel SGX provides a means for enclaves to securely identify one another, this is referred to as “Local Attestation”.
SGX provides a hardware assertion, REPORT that contains calling enclaves Attributes, Measurements and User
supplied data (described in detail in Section 37.16). Figure 38-3 shows the basic flow of information.

1. The source enclave determines the identity of the target enclave to populate TARGETINFO.

2. The source enclave calls EREPORT instruction to generate a REPORT structure. The EREPORT instruction
conducts the following:

— Populates the REPORT with identify information about the calling enclave.

— Derives the Report Key that is returned when the target enclave executes the EGETKEY. TARGETINFO
provides information about the target.

— Computes a MAC over the REPORT using derived target enclave Report Key.

3. Non-enclave software copies the REPORT from source to destination.

4. The target enclave executes the EGETKEY instruction to request its REPORT key, which is the same key used by
EREPORT at the source.

5. The target enclave verifies the MAC and can then inspect the REPORT to identify the source.

Figure 38-3. SGX Local Attestation

EREPORT

REPORT

Software

Verify REPORT

(Symmetric Key)

Source Enclave

Destination Enclave

EGETKEY
REPORT KEY

(Symmetric Key)
Hardware

Legend:

TARGETINFO
Vol. 3D 38-9

ENCLAVE OPERATION
38.5 EPC AND MANAGEMENT OF EPC PAGES
EPC layout is implementation specific, and is enumerated through CPUID (see Table 36-6 for EPC layout). EPC is
typically configured by BIOS at system boot time.

38.5.1 EPC Implementation
EPC must be properly protected against attacks. One example of EPC implementation could use a Memory Encryp-
tion Engine (MEE). An MEE provides a cost-effective mechanism of creating cryptographically protected volatile
storage using platform DRAM. These units provide integrity, replay, and confidentiality protection. Details are
implementation specific.

38.5.2 OS Management of EPC Pages
The EPC is a finite resource. SGX1 (i.e., CPUID.12H.00H:EAX.SGX1 = 1 but CPUID.12H.00H:EAX.SGX2 = 0)
provides the EPC manager with leaf functions to manage this resource and properly swap pages out of and into the
EPC. For that, the EPC manager would need to keep track of all EPC entries, type and state, context affiliation, and
SECS affiliation.
Enclave pages that are candidates for eviction should be moved to BLOCKED state using EBLOCK instruction that
ensures no new cached virtual to physical address mappings can be created by attempts to reference a BLOCKED
page.
Before evicting blocked pages, EPC manager should execute ETRACK leaf function on that enclave and ensure that
there are no stale cached virtual to physical address mappings for the blocked pages remain on any thread on the
platform.
After removing all stale translations from blocked pages, system software should use the EWB leaf function for
securely evicting pages out of the EPC. EWB encrypts a page in the EPC, writes it to unprotected memory, and
invalidates the copy in EPC. In addition, EWB also creates a cryptographic MAC (PCMD.MAC) of the page and stores
it in unprotected memory. A page can be reloaded back to the processor only if the data and MAC match. To ensure
that only the latest version of the evicted page can be loaded back, the version of the evicted page is stored
securely in a Version Array (VA) in EPC.
SGX1 includes two instructions for reloading pages that have been evicted by system software: ELDU and ELDB.
The difference between the two instructions is the value of the paging state at the end of the instruction. ELDU
results in a page being reloaded and set to an UNBLOCKED state, while ELDB results in a page loaded to a BLOCKED
state.
ELDB is intended for use by a Virtual Machine Monitor (VMM). When a VMM reloads an evicted page, it needs to
restore it to the correct state of the page (BLOCKED vs. UNBLOCKED) as it existed at the time the page was
evicted. Based on the state of the page at eviction, the VMM chooses either ELDB or ELDU.

38.5.2.1 Enhancement to Managing EPC Pages
On processors supporting SGX2 (i.e., CPUID.12H.00H:EAX.SGX2 = 1), the EPC manager can manage EPC
resources (while enclave is running) with more flexibility provided by the SGX2 leaf functions. The additional flexi-
bility is described in Section 38.5.7 through Section 38.5.11.

38.5.3 Eviction of Enclave Pages
Intel SGX paging is optimized to allow the Operating System (OS) to evict multiple pages out of the EPC under a
single synchronization.
The suggested flow for evicting a list of pages from the EPC is:

1. For each page to be evicted from the EPC:

a. Select an empty slot in a Version Array (VA) page.

• If no empty VA page slots exist, create a new VA page using the EPA leaf function.
38-10 Vol. 3D

ENCLAVE OPERATION
b. Remove linear-address to physical-address mapping from the enclave context’s mapping tables (page table
and EPT tables).

c. Execute the EBLOCK leaf function for the target page. This sets the target page state to BLOCKED. At this
point no new mappings of the page will be created. So any access which does not have the mapping cached
in the TLB will generate a #PF.

2. For each enclave containing pages selected in step 1:

— Execute an ETRACK leaf function pointing to that enclave’s SECS. This initiates the tracking process that
ensures that all caching of linear-address to physical-address translations for the blocked pages is cleared.

3. For all logical processors executing in processes (OS) or guests (VMM) that contain the enclaves selected in
step 1:

— Issue an IPI (inter-processor interrupt) to those threads. This causes those logical processors to asynchro-
nously exit any enclaves they might be in, and as a result flush cached linear-address to physical-address
translations that might hold stale translations to blocked pages. There is no need for additional measures
such as performing a “TLB shootdown”.

4. After enclaves exit, allow logical processors to resume normal operation, including enclave re-entry as the
tracking logic keeps track of the activity.

5. For each page to be evicted:

— Evict the page using the EWB leaf function with parameters include the effective-address pointer to the EPC
page, the VA slot, a 4K byte buffer to hold the encrypted page contents, and a 128 byte buffer to hold page
metadata. The last three elements are tied together cryptographically and must be used to later reload the
page.

At this point, system software has the only copy of each page data encrypted with its page metadata in main
memory.

38.5.4 Loading an Enclave Page
To reload a previously evicted page, system software needs four elements: the VA slot used when the page was
evicted, a buffer containing the encrypted page contents, a buffer containing the page metadata, and the parent
SECS to associate this page with. If the VA page or the parent SECS are not already in the EPC, they must be
reloaded first.

1. Execute ELDB/ELDU (depending on the desired BLOCKED state for the page), passing as parameters: the EPC
page linear address, the VA slot, the encrypted page, and the page metadata.

2. Create a mapping in the enclave context’s mapping tables (page tables and EPT tables) to allow the application
to access that page (OS: system page table; VMM: EPT).

The ELDB/ELDU instruction marks the VA slot empty so that the page cannot be replayed at a later date.

38.5.5 Eviction of an SECS Page
The eviction of an SECS page is similar to the eviction of an enclave page. The only difference is that an SECS page
cannot be evicted until all other pages belonging to the enclave have been evicted. Since all other pages have been
evicted, there will be no threads executing inside the enclave and tracking with ETRACK isn’t necessary. When
reloading an enclave, the SECS page must be reloaded before all other constituent pages.

1. Ensure all pages are evicted from enclave.

2. Select an empty slot in a Version Array page.

— If no VA page exists with an empty slot, create a new one using the EPA function leaf.

3. Evict the page using the EWB leaf function with parameters include the effective-address pointer to the EPC
page, the VA slot, a 4K byte buffer to hold the encrypted page contents and a 128 byte buffer to hold page
metadata. The last three elements are tied together cryptographically and must be used to later reload the
page.
Vol. 3D 38-11

ENCLAVE OPERATION
38.5.6 Eviction of a Version Array Page
VA pages do not belong to any enclave and tracking with ETRACK isn’t necessary. When evicting the VA page, a slot
in a different VA page must be specified in order to provide versioning of the evicted VA page.

1. Select a slot in a Version Array page other than the page being evicted.

— If no VA page exists with an empty slot, create a new one using the EPA leaf function.

2. Evict the page using the EWB leaf function with parameters include the effective-address pointer to the EPC
page, the VA slot, a 4K byte buffer to hold the encrypted page contents, and a 128 byte buffer to hold page
metadata. The last three elements are tied together cryptographically and must be used to later reload the
page.

38.5.7 Allocating a Regular Page
On processors that support SGX2, allocating a new page to an already initialized enclave is accomplished by
invoking the EAUG leaf function. Typically, the enclave requests that the OS allocates a new page at a particular
location within the enclave’s address space. Once allocated, the page remains in a pending state until the enclave
executes the corresponding EACCEPT leaf function to accept the new page into the enclave. Page allocation opera-
tions may be batched to improve efficiency.
The typical process for allocating a regular page is as follows:

1. Enclave requests additional memory from OS when the current allocation becomes insufficient.

2. The OS invokes the EAUG leaf function to add a new memory page to the enclave.

a. EAUG may only be called on a free EPC page.

b. Successful completion of the EAUG instruction places the target page in the VALID and PENDING state.

c. All dynamically created pages have the type PT_REG and content of all zeros.

3. The OS maps the page in the enclave context's mapping tables.

4. The enclave issues an EACCEPT instruction, which verifies the page’s attributes and clears the PENDING state.
At that point the page becomes accessible for normal enclave use.

38.5.8 Allocating a TCS Page
On processors that support SGX2, allocating a new TCS page to an already initialized enclave is a two-step process.
First the OS allocates a regular page with a call to EAUG. This page must then be accepted and initialized by the
enclave to which it belongs. Once the page has been initialized with appropriate values for a TCS page, the enclave
requests the OS to change the page’s type to PT_TCS. This change must also be accepted. As with allocating a
regular page, TCS allocation operations may be batched.
A typical process for allocating a TCS page is as follows:

1. Enclave requests an additional page from the OS.

2. The OS invokes EAUG to add a new regular memory page to the enclave.

a. EAUG may only be called on a free EPC page.

b. Successful completion of the EAUG instruction places the target page in the VALID and PENDING state.

3. The OS maps the page in the enclave context's mapping tables.

4. The enclave issues an EACCEPT instruction, at which point the page becomes accessible for normal enclave use.

5. The enclave initializes the contents of the new page.

6. The enclave requests that the OS convert the page from type PT_REG to PT_TCS.

7. OS issues an EMODT instruction on the page.

a. The parameters to EMODT indicate that the regular page should be converted into a TCS.
38-12 Vol. 3D

ENCLAVE OPERATION
b. EMODT forces all access rights to a page to be removed because TCS pages may not be accessed by
enclave code.

8. The enclave issues an EACCEPT instruction to confirm the requested modification.

38.5.9 Trimming a Page
On processors that support SGX2, Intel SGX supports the trimming of an enclave page as a special case of EMODT.
Trimming allows an enclave to actively participate in the process of removing a page from the enclave (dealloca-
tion) by splitting the process into first removing it from the enclave's access and then removing it from the EPC
using the EREMOVE leaf function. The page type PT_TRIM indicates that a page has been trimmed from the
enclave’s address space and that the page is no longer accessible to enclave software. Modifications to a page in
the PT_TRIM state are not permitted; the page must be removed and then reallocated by the OS before the enclave
may use the page again. Page deallocation operations may be batched to improve efficiency.
The typical process for trimming a page from an enclave is as follows:

1. Enclave signals OS that a particular page is no longer in use.

2. OS invokes the EMODT leaf function on the page, requesting that the page’s type be changed to PT_TRIM.

a. SECS and VA pages cannot be trimmed in this way, so the initial type of the page must be PT_REG or
PT_TCS.

b. EMODT may only be called on valid enclave pages.

3. OS invokes the ETRACK leaf function on the enclave containing the page to track removal the TLB addresses
from all the processors.

4. Issue an IPI (inter-processor interrupt) to flush the stale linear-address to physical-address translations for all
logical processors executing in processes that contain the enclave.

5. Enclave issues an EACCEPT leaf function.

6. The OS may now permanently remove the page from the EPC (by issuing EREMOVE).

38.5.10 Restricting the EPCM Permissions of a Page
On processors that support SGX2, restricting the EPCM permissions associated with an enclave page is accom-
plished using the EMODPR leaf function. This operation requires the cooperation of the OS to flush stale entries to
the page and to update the page-table permissions of the page to match. Permissions restriction operations may
be batched.
The typical process for restricting the permissions of an enclave page is as follows:

1. Enclave requests that the OS to restrict the permissions of an EPC page.

2. OS performs permission restriction, flushing cached linear-address to physical-address translations, and page-
table modifications.

a. Invokes the EMODPR leaf function to restrict permissions (EMODPR may only be called on VALID pages).

b. Invokes the ETRACK leaf function on the enclave containing the page to track removal of the TLB addresses
from all the processor.

c. Issue an IPI (inter-processor interrupt) to flush the stale linear-address to physical-address translations for
all logical processors executing in processes that contain the enclave.

d. Sends IPIs to trigger enclave thread exit and TLB shootdown.

e. OS informs the Enclave that all logical processors should now see the new restricted permissions.

3. Enclave invokes the EACCEPT leaf function.

a. Enclave may access the page throughout the entire process.

b. Successful call to EACCEPT guarantees that no stale cached linear-address to physical-address translations
are present.
Vol. 3D 38-13

ENCLAVE OPERATION
38.5.11 Extending the EPCM Permissions of a Page
On processors that support SGX2, extending the EPCM permissions associated with an enclave page is accom-
plished directly by the enclave using the EMODPE leaf function. After performing the EPCM permission extension,
the enclave requests the OS to update the page table permissions to match the extended permission. Security
wise, permission extension does not require enclave threads to leave the enclave as TLBs with stale references to
the more restrictive permissions will be flushed on demand, but to allow forward progress, an OS needs to be
aware that an application might signal a page fault.
The typical process for extending the permissions of an enclave page is as follows:

1. Enclave invokes EMODPE to extend the EPCM permissions associated with an EPC page (EMODPE may only be
called on VALID pages).

2. Enclave requests that OS update the page tables to match the new EPCM permissions.

3. Enclave code resumes.

a. If cached linear-address to physical-address translations are present to the more restrictive permissions,
the enclave thread will page fault. The SGX2-aware OS will see that the page tables permit the access and
resume the thread, which can now successfully access the page because exiting cleared the TLB.

b. If cached linear-address to physical-address translations are not present, access to the page with the new
permissions will succeed without an enclave exit.

38.6 CHANGES TO INSTRUCTION BEHAVIOR INSIDE AN ENCLAVE
This section covers instructions whose behavior changes when executed in enclave mode.

38.6.1 Illegal Instructions
The instructions listed in Table 38-1 are ring 3 instructions which become illegal when executed inside an enclave.
Executing these instructions inside an enclave will generate an exception.
The first row of Table 38-1 enumerates instructions that may cause a VM exit for VMM emulation. Since a VMM
cannot emulate enclave execution, execution of any of these instructions inside an enclave results in an invalid-
opcode exception (#UD) and no VM exit.
The second row of Table 38-1 enumerates I/O instructions that may cause a fault or a VM exit for emulation. Again,
enclave execution cannot be emulated, so execution of any of these instructions inside an enclave results in #UD.
The third row of Table 38-1 enumerates instructions that load descriptors from the GDT or the LDT or that change
privilege level. The former class is disallowed because enclave software should not depend on the contents of the
descriptor tables and the latter because enclave execution must be entirely with CPL = 3. Again, execution of any
of these instructions inside an enclave results in #UD.
The fourth row of Table 38-1 enumerates instructions that provide access to kernel information from user mode and
can be used to aid kernel exploits from within enclave. Execution of any of these instructions inside an enclave
results in #UD.

Table 38-1. Illegal Instructions Inside an Enclave
 Instructions Result Comment

CPUID, GETSEC, RDPMC, SGDT, SIDT, SLDT, STR, VMCALL, VMFUNC #UD Might cause VM exit.

IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD #UD I/O fault may not safely recover. May require emulation.

Far call, Far jump, Far Ret, INT n/INTO, IRET, LDS/LES/LFS/LGS/LSS,
MOV to DS/ES/SS/FS/GS, POP DS/ES/SS/FS/GS, SYSCALL,
SYSENTER

#UD Access segment register could change privilege level.

SMSW #UD Might provide access to kernel information.

ENCLU[EENTER], ENCLU[ERESUME] #GP Cannot enter an enclave from within an enclave.
38-14 Vol. 3D

ENCLAVE OPERATION
RDTSC and RDTSCP are legal inside an enclave for processors that support SGX2 (subject to the value of
CR4.TSD). For processors which support SGX1 but not SGX2, RDTSC and RDTSCP will cause #UD.
RDTSC and RDTSCP instructions may cause a VM exit when inside an enclave.
Software developers must take into account that the RDTSC/RDTSCP results are not immune to influences by other
software, e.g., the TSC can be manipulated by software outside the enclave.

38.6.2 RDRAND and RDSEED Instructions
These instructions may cause a VM exit if the “RDRAND exiting” VM-execution control is 1. Unlike other instructions
that can cause VM exits, these instructions are legal inside an enclave. As noted in Section 29.1 of the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3C, any VM exit originating on an instruction
boundary inside an enclave sets bit 27 of the exit-reason field of the VMCS. If a VMM receives a VM exit due to an
attempt to execute either of these instructions determines (by that bit) that the execution was inside an enclave,
it can do either of two things. It can clear the “RDRAND exiting” VM-execution control and execute VMRESUME; this
will result in the enclave executing RDRAND or RDSEED again, and this time a VM exit will not occur. Alternatively,
the VMM might choose to discontinue execution of this virtual machine.

NOTE
It is expected that VMMs that virtualize Intel SGX will not set “RDRAND exiting” to 1.

38.6.3 PAUSE Instruction
The PAUSE instruction may cause a VM exit from an enclave if the “PAUSE exiting” VM-execution control is 1. Unlike
other instructions that can cause VM exits, the PAUSE instruction is legal inside an enclave. If a VMM receives a VM
exit due to the 1-setting of “PAUSE exiting”, it can do either of two things. It can clear the “PAUSE exiting” VM-
execution control and execute VMRESUME; this will result in the enclave executing PAUSE again, but this time a VM
exit will not occur. Alternatively, the VMM might choose to discontinue execution of this virtual machine.
The PAUSE instruction may also cause a VM exit outside of an enclave if the “PAUSE-loop exiting” VM-execution
control is 1, but as the “PAUSE-loop exiting” control is ignored at CPL > 0 (see Section 27.1.3), VM exit from an
enclave due to the 1-setting of “PAUSE-LOOP exiting” will never occur.

NOTE
It is expected that VMMs that virtualize Intel SGX will not set “PAUSE exiting” to 1.

38.6.4 Executions of INT1 and INT3 Inside an Enclave
The INT1 and INT3 instructions are legal inside an enclave, however, their behavior inside an enclave differs from
that outside an enclave. See Section 42.4.1 for details.

38.6.5 INVD Handling when Enclaves Are Enabled
Once processor reserved memory protections are activated (see Section 38.5), any execution of INVD will result in
a #GP(0).
Vol. 3D 38-15

ENCLAVE OPERATION
38-16 Vol. 3D

ENCLAVE EXITING EVENTS
CHAPTER 39
ENCLAVE EXITING EVENTS

Certain events, such as exceptions and interrupts, incident to (but asynchronous with) enclave execution may
cause control to transition outside of enclave mode. (Most of these also cause a change of privilege level.) To
protect the integrity and security of the enclave, the processor will exit the enclave (and enclave mode) before
invoking the handler for such an event. For that reason, such events are called enclave-exiting events (EEE);
EEEs include external interrupts, non-maskable interrupts, system-management interrupts, exceptions, and VM
exits.
The process of leaving an enclave in response to an EEE is called an asynchronous enclave exit (AEX). To
protect the secrecy of the enclave, an AEX saves the state of certain registers within enclave memory and then
loads those registers with fixed values called synthetic state.

39.1 COMPATIBLE SWITCH TO THE EXITING STACK OF AEX
AEXs load registers with a pre-determined synthetic state. These registers may be later pushed onto the appro-
priate stack in a form as defined by the enclave-exiting event. To allow enclave execution to resume after the
invoking handler has processed the enclave exiting event, the asynchronous enclave exit loads the address of
trampoline code outside of the enclave into RIP. This trampoline code eventually returns to the enclave by means
of an ENCLU(ERESUME) leaf function. Prior to exiting the enclave the RSP and RBP registers are restored to their
values prior to enclave entry.
The stack to be used is chosen using the same rules as for non-SGX mode:
• If there is a privilege level change, the stack will be the one associated with the new ring.
• If there is no privilege level change, the current application stack is used.
• If the IA-32e IST mechanism is used, the exit stack is chosen using that method.

Figure 39-1. Exit Stack Just After Interrupt with Stack Switch

ENCLU[ERESUME]

RAX

Current SSA Frame
Per-Thread
Trampoline in uRTS

RSP after pushes

CSSA

AEP

TCS

Exit Stack

SS

RSP

RFLAGS

CS

RIP
Error Code (optional)

uRSP

AEP

RSP

TCS LA
ENCLU[ERESUME]

RCX
RBX

Next SSA Frame

uRSP
Vol. 3D 39-1

ENCLAVE EXITING EVENTS
In all cases, the choice of exit stack and the information pushed onto it is consistent with non-SGX operation.
Figure 39-1 shows the Application and Exiting Stacks after an exit with a stack switch. An exit without a stack
switch uses the Application Stack. The ERESUME leaf index value is placed into RAX, the TCS pointer is placed in
RBX and the AEP (see below) is placed into RCX to facilitate resuming the enclave after the exit.
Upon an AEX, the AEP (Asynchronous Exit Pointer) is loaded into the RIP. The AEP points to a trampoline code
sequence which includes the ERESUME instruction that is later used to reenter the enclave.
The following bits of RFLAGS are cleared before RFLAGS is pushed onto the exit stack: CF, PF, AF, ZF, SF, OF, RF. The
remaining bits are left unchanged.

39.2 STATE SAVING BY AEX
The State Save Area holds the processor state at the time of an AEX. To allow handling events within the enclave
and re-entering it after an AEX, the SSA can be a stack of multiple SSA frames as illustrated in Figure 39-2.

The location of the SSA frames to be used is controlled by the following variables in the TCS and the SECS:
• Size of a frame in the State Save Area (SECS.SSAFRAMESIZE): This defines the number of 4-KByte pages in a

single frame in the State Save Area. The SSA frame size must be large enough to hold the GPR state, the XSAVE
state, and the MISC state.

• Base address of the enclave (SECS.BASEADDR): This defines the enclave's base linear address from which the
offset to the base of the SSA stack is calculated.

• Number of State Save Area Slots (TCS.NSSA): This defines the total number of slots (frames) in the State Save
Area stack.

• Current State Save Area Slot (TCS.CSSA): This defines the slot to use on the next exit.
• State Save Area Offset (TCS.OSSA): This defines the offset of the base address of a set of State Save Area slots

from the enclave’s base address.
When an AEX occurs, hardware selects the SSA frame to use by examining TCS.CSSA. Processor state is saved into
the SSA frame (see Section 39.4) and loaded with a synthetic state (as described in Section 39.3.1) to avoid
leaking secrets, RSP and RBP are restored to their values prior to enclave entry, and TCS.CSSA is incremented. As
will be described later, if an exception takes the last slot, it will not be possible to reenter the enclave to handle the

Figure 39-2. The SSA Stack

Current

SECS.SSAFRAMESIZE

TCS

NSSA

CSSA

OSSA

(in pages)

MISC_N-1
GRP_N-1

GPR_1

XSAVE_N-1

XSAVE_1

MISC_1

XAVE_0

MISC_0

GRP_0

SSA Stack

SSA Fram
39-2 Vol. 3D

ENCLAVE EXITING EVENTS
exception from within the enclave. A subsequent ERESUME restores the processor state from the current SSA
frame and frees the SSA frame.
The format of the XSAVE section of SSA is identical to the format used by the XSAVE/XRSTOR instructions. On
EENTER, CSSA must be less than NSSA, ensuring that there is at least one State Save Area slot available for exits.
If there is no free SSA frame when executing EENTER, the entry will fail.

39.3 SYNTHETIC STATE ON ASYNCHRONOUS ENCLAVE EXIT

39.3.1 Processor Synthetic State on Asynchronous Enclave Exit
Table 39-1 shows the synthetic state loaded on AEX. The values shown are the lower 32 bits when the processor is
in 32 bit mode and 64 bits when the processor is in 64 bit mode.

39.3.2 Synthetic State for Extended Features
When CR4.OSXSAVE = 1, extended features (those controlled by XCR0[63:2]) are set to their respective INIT
states when this corresponding bit of SECS.XFRM is set. The INIT state is the state that would be loaded by the
XRSTOR instruction had the instruction mask and the XSTATE_BV field of the XSAVE header each contained the
value XFRM. (When the AEX occurs in 32-bit mode, those features that do not exist in 32-bit mode are unchanged.)

Table 39-1. GPR, x87 Synthetic States on Asynchronous Enclave Exit
Register Value

RAX 3 (ENCLU[3] is ERESUME).

RBX Pointer to TCS of interrupted enclave thread.

RCX AEP of interrupted enclave thread.

RDX, RSI, RDI 0.

RSP Restored from SSA.uRSP.

RBP Restored from SSA.uRBP.

R8-R15 0 in 64-bit mode; unchanged in 32-bit mode.

RIP AEP of interrupted enclave thread.

RFLAGS CF, PF, AF, ZF, SF, OF, RF bits are cleared. All other bits are left unchanged.

x87/SSE State Unless otherwise listed here, all x87 and SSE state are set to the INIT state. The INIT state is the state
that would be loaded by the XRSTOR instruction with bits 1:0 both set in the requested feature bitmask
(RFBM), and both clear in XSTATE_BV the XSAVE header.

FCW On #MF exception: set to 037EH. On all other exits: set to 037FH.

FSW On #MF exception: set to 8081H. On all other exits: set to 0H.

MXCSR On #XM exception: set to 1F01H. On all other exits: set to 1FB0H.

CR2 If the event that caused the AEX is a #PF, and the #PF does not directly cause a VM exit, then the low
12 bits are cleared.
If the #PF leads directly to a VM exit, CR2 is not updated (usual IA behavior).
Note: The low 12 bits are not cleared if a #PF is encountered during the delivery of the EEE that caused
the AEX. This is because the #PF was not the EEE.

FS, GS Restored to values as of most recent EENTER/ERESUME.
Vol. 3D 39-3

ENCLAVE EXITING EVENTS
39.3.3 Synthetic State for MISC Features
State represented by SECS.MISCSELECT might also be overridden by synthetic state after it has been saved into
the SSA. State represented by MISCSELECT[0] is not overridden but if the exiting event is a page fault then lower
12 bits of CR2 are cleared.

39.4 AEX FLOW
On Enclave Exiting Events (interrupts, exceptions, VM exits or SMIs), the processor state is securely saved inside
the enclave, a synthetic state is loaded and the enclave is exited. The EEE then proceeds in the usual exit-defined
fashion. The following sections describes the details of an AEX:

1. The exact processor state saved into the current SSA frame depends on whether the enclave is a 32-bit or a 64-
bit enclave. In 32-bit mode (IA32_EFER.LMA = 0 || CS.L = 0), the low 32 bits of the legacy registers (EAX, EBX,
ECX, EDX, ESP, EBP, ESI, EDI, EIP, and EFLAGS) are stored. The upper 32 bits of the legacy registers and the
64-bit registers (R8 … R15) are not stored.

In 64-bit mode (IA32_EFER.LMA = 1 && CS.L = 1), all 64 bits of the general processor registers (RAX, RBX,
RCX, RDX, RSP, RBP, RSI, RDI, R8 … R15, RIP, and RFLAGS) are stored.
The state of those extended features specified by SECS.ATTRIBUTES.XFRM are stored into the XSAVE area of
the current SSA frame. The layout of the x87 and XMM portions (the 1st 512 bytes) depends on the current
values of IA32_EFER.LMA and CS.L:
If IA32_EFER.LMA = 0 || CS.L = 0, the same format (32-bit) that XSAVE/FXSAVE uses with these values.
If IA32_EFER.LMA = 1 && CS.L = 1, the same format (64-bit) that XSAVE/FXSAVE uses with these values
when REX.W = 1.
The cause of the AEX is saved in the EXITINFO field. See Table 37-10 for details and values of the various
fields.
The state of those miscellaneous features (see Section 37.7.2) specified by SECS.MISCSELECT are stored into
the MISC area of the current SSA frame.

If CET was enabled in the enclave, then the CET state of the enclave is saved in the CET state save area. If
shadow stacks were enabled in the enclave, then the SSP is also saved into the TCS.PREVSSP field.

2. Synthetic state is created for a number of processor registers to present an opaque view of the enclave state.
Table 39-1 shows the values for GPRs, x87, SSE, FS, GS, Debug, and performance monitoring on AEX. The
synthetic state for other extended features (those controlled by XCR0[62:2]) is set to their respective INIT
states when their corresponding bit of SECS.ATTRIBUTES.XFRM is set. The INIT state is that state as defined by
the behavior of the XRSTOR instruction when HEADER.XSTATE_BV[n] is 0. Synthetic state of those miscella-
neous features specified by SECS.MISCSELECT depends on the miscellaneous feature. There is no synthetic
state required for the miscellaneous state controlled by SECS.MISCSELECT[0].

3. Any code and data breakpoints that were suppressed at the time of enclave entry are unsuppressed when
exiting the enclave.

4. RFLAGS.TF is set to the value that it had at the time of the most recent enclave entry (except for the situation
that the entry was opt-in for debug; see Section 42.2). In the SSA, RFLAGS.TF is set to 0.

5. RFLAGS.RF is set to 0 in the synthetic state. In the SSA, the value saved is the same as what would have been
saved on stack in the non-SGX case (architectural value of RF). Thus, AEXs due to interrupts, traps, and code
breakpoints save RF unmodified into SSA, while AEXs due to other faults save RF as 1 in the SSA.

If the event causing AEX happened on intermediate iteration of a REP-prefixed instruction, then RF=1 is
saved on SSA, irrespective of its priority.

6. Any performance monitoring activity (including PEBS) or profiling activity (LBR, Tracing using Intel PT) on the
exiting thread that was suppressed due to the enclave entry on that thread is unsuppressed. Any counting that
had been demoted from AnyThread counting to MyThread counting (on one logical processor) is promoted back
to AnyThread counting.

7. The CET state of the enclosing application is restored to the state at the time of the most recent enclave entry,
and if CET indirect branch tracking was enabled then the indirect branch tracker is unsuppressed and moved to
the WAIT_FOR_ENDBRANCH state.
39-4 Vol. 3D

ENCLAVE EXITING EVENTS
39.4.1 AEX Operational Detail

Temp Variables in AEX Operational Flow

The pseudo code in this section describes the internal operations that are executed when an AEX occurs in enclave
mode. These operations occur just before the normal interrupt or exception processing occurs.

(* Save RIP for later use *)
TMP_RIP = Linear Address of Resume RIP
(* Is the processor in 64-bit mode? *)
TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Save all registers, When saving EFLAGS, the TF bit is set to 0 and
the RF bit is set to what would have been saved on stack in the non-SGX case *)

 IF (TMP_MODE64 = 0)
THEN

Save EAX, EBX, ECX, EDX, ESP, EBP, ESI, EDI, EFLAGS, EIP into the current SSA frame using
CR_GPR_PA; (* see Table 40-4 for list of CREGs used to describe internal operation within Intel SGX *)

SSA.RFLAGS.TF := 0;
ELSE (* TMP_MODE64 = 1 *)
 Save RAX, RBX, RCX, RDX, RSP, RBP, RSI, RDI, R8-R15, RFLAGS, RIP into the current SSA frame using

CR_GPR_PA;
SSA.RFLAGS.TF := 0;

FI;
Save FS and GS BASE into SSA using CR_GPR_PA;

(* store XSAVE state into the current SSA frame's XSAVE area using the physical addresses
that were determined and cached at enclave entry time with CR_XSAVE_PAGE_i. *)

For each XSAVE state i defined by (SECS.ATTRIBUTES.XFRM[i] = 1, destination address cached in
CR_XSAVE_PAGE_i)
 SSA.XSAVE.i := XSAVE_STATE_i;

(* Clear bytes 8 to 23 of XSAVE_HEADER, i.e., the next 16 bytes after XHEADER_BV *)

CR_XSAVE_PAGE_0.XHEADER_BV[191:64] := 0;

(* Clear bits in XHEADER_BV[63:0] that are not enabled in ATTRIBUTES.XFRM *)

CR_XSAVE_PAGE_0.XHEADER_BV[63:0] :=
CR_XSAVE_PAGE_0.XHEADER_BV[63:0] & SECS(CR_ACTIVE_SECS).ATTRIBUTES.XFRM;
Apply synthetic state to GPRs, RFLAGS, extended features, etc.

(* Restore the RSP and RBP from the current SSA frame's GPR area using the physical address
that was determined and cached at enclave entry time with CR_GPR_PA. *)

RSP := CR_GPR_PA.URSP;
RBP := CR_GPR_PA.URBP;

Name Type Size (bits) Description

TMP_RIP Effective Address 32/64 Address of instruction at which to resume execution on ERESUME.

TMP_MODE64 binary 1 ((IA32_EFER.LMA = 1) && (CS.L = 1)).

TMP_BRANCH_RECORD LBR Record 2x64 From/To address to be pushed onto LBR stack.
AEX Operational Detail 39-5 Vol. 3D

ENCLAVE EXITING EVENTS
(* Restore the FS and GS *)
FS.selector := CR_SAVE_FS.selector;
FS.base := CR_SAVE_FS.base;
FS.limit := CR_SAVE_FS.limit;
FS.access_rights := CR_SAVE_FS.access_rights;
GS.selector := CR_SAVE_GS.selector;
GS.base := CR_SAVE_GS.base;
GS.limit := CR_SAVE_GS.limit;
GS.access_rights := CR_SAVE_GS.access_rights;

(* Examine exception code and update enclave internal states*)
exception_code := Exception or interrupt vector;

(* Indicate the exit reason in SSA *)
IF (exception_code = (#DE OR #DB OR #BP OR #BR OR #UD OR #MF OR #AC OR #XM))

THEN
CR_GPR_PA.EXITINFO.VECTOR := exception_code;
IF (exception_code = #BP)

THEN CR_GPR_PA.EXITINFO.EXIT_TYPE := 6;
ELSE CR_GPR_PA.EXITINFO.EXIT_TYPE := 3;

FI;
CR_GPR_PA.EXITINFO.VALID := 1;

ELSE IF (SECS.MISCSELECT[0] is set (* Check SECS.MISCSELECT using CR_ACTIVE_SECS *)
 AND (exception_code is #GP OR (exception_code is #PF AND PFEC.U/S = 1)))

THEN
CR_GPR_PA.EXITINFO.VECTOR := exception_code;
CR_GPR_PA.EXITINFO.EXIT_TYPE := 3;
IF (exception_code is #PF)

THEN
SSA.MISC.EXINFO. MADDR := CR2;
SSA.MISC.EXINFO.ERRCD := PFEC; (* Page-Fault Exception Error Code *)
SSA.MISC.EXINFO.RESERVED := 0;

ELSE
SSA.MISC.EXINFO. MADDR := 0;
SSA.MISC.EXINFO.ERRCD := GPEC; (* General Protection Exception Error Code *)
SSA.MISC.EXINFO.RESERVED := 0;

FI;
CR_GPR_PA.EXITINFO.VALID := 1;

ELSE IF (SECS.MISCSELECT[1] is set AND exception_code is #CP) (* Check SECS.MISCSELECT using
 CR_ACTIVE_SECS *)

THEN
CR_GPR_PA.EXITINFO.VECTOR := exception_code;
CR_GPR_PA.EXITINFO.EXIT_TYPE := 3;
CR_GPR_PA.EXITINFO.VALID := 1;
SSA.MISC.EXINFO. MADDR := 0;
SSA.MISC.EXINFO.ERRCD := CPEC; (* Control Protection Exception Error Code *)
SSA.MISC.EXINFO.RESERVED := 0;

ELSE
SSA.MISC.EXINFO.MADDR := 0;
SSA.MISC.EXINFO.ERRCD := 0;
SSA.MISC.EXINFO.RESERVED := 0;
CR_GPR_PA.EXITINFO.VECTOR := 0;
CR_GPR_PA.EXITINFO.EXIT_TYPE := 0;
AEX Operational Detail39-6 Vol. 3D

ENCLAVE EXITING EVENTS
CR_GPR_PA.EXITINFO.VALID := 0;
FI;

(* Execution will resume at the AEP *)
RIP := CR_TCS_PA.AEP;

(* Set EAX to the ERESUME leaf index *)
EAX := 3;

(* Put the TCS LA into RBX for later use by ERESUME *)
RBX := CR_TCS_LA;

(* Put the AEP into RCX for later use by ERESUME *)
RCX := CR_TCS_PA.AEP;

(* Increment the SSA frame # *)
CR_TCS_PA.CSSA := CR_TCS_PA.CSSA + 1;

(* Restore XCR0 if needed *)
IF (CR4.OSXSAVE = 1)

THEN XCR0 := CR_SAVE_XCR0; FI;

Un-suppress all code breakpoints that are outside ELRANGE

IF (CPUID.12H.01H:EAX[6]= 1)
THEN

IF (CR4.CET == 1 AND IA32_U_CET.SH_STK_EN == 1)
THEN

CR_CET_SAVE_AREA_PA.SSP := SSP;
CR_TCS_PA.PREVSSP := SSP;

FI;
IF (CR4.CET == 1 AND IA32_U_CET.ENDBR_EN == 1)

THEN
CR_CET_SAVE_AREA_PA.TRACKER := IA32_U_CET.TRACKER;
CR_CET_SAVE_AREA_PA.SUPPRESS := IA32_U_CET.SUPPRESS;

FI;
FI;
IF ((CPUID.07H.00H:EDX.CET_IBT = 1) OR (CPUID.07H.00H:ECX.CET_SS = 1)

THEN
(* restore enclosing applications CET state *)
IA32_U_CET := CR_SAVE_IA32_U_CET;

IF (CPUID.07H.00H:ECX.CET_SS)
SSP := CR_SAVE_SSP; FI;

(* If indirect branch tracking enabled for enclosing application *)
(* then move the tracker to wait_for_endbranch *)
IF (CR4.CET == 1 AND IA32_U_CET.ENDBR_EN == 1)

THEN
IA32_U_CET.TRACKER := WAIT_FOR_ENDBRANCH;
IA32_U_CET.SUPPRESS := 0;

FI;
FI;
AEX Operational Detail 39-7 Vol. 3D

ENCLAVE EXITING EVENTS
(* Update the thread context to show not in enclave mode *)
CR_ENCLAVE_MODE := 0;

(* Assure consistent translations. *)
Flush linear context including TLBs and paging-structure caches

IF (CR_DBGOPTIN = 0)
THEN

Un-suppress all breakpoints that overlap ELRANGE
(* Clear suppressed breakpoint matches *)
Restore suppressed breakpoint matches
(* Restore TF *)
RFLAGS.TF := CR_SAVE_TF;
Un-suppress monitor trap flag;
Un-suppress branch recording facilities;
Un-suppress all suppressed performance monitoring activity;
Promote any sibling-thread counters that were demoted from AnyThread to MyThread during enclave

entry back to AnyThread;
FI;

IF the “monitor trap flag” VM-execution control is 1
THEN Pend MTF VM Exit at the end of exit; FI;

(* Clear low 12 bits of CR2 on #PF *)
IF (Exception code is #PF)

THEN CR2 := CR2 & ~0xFFF; FI;

(* end_of_flow *)
(* Execution continues with normal event processing. *)
AEX Operational Detail39-8 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
CHAPTER 40
INTEL® SGX INSTRUCTION REFERENCES

This chapter describes the supervisor and user level instructions provided by Intel® Software Guard Extensions
(Intel® SGX). In general, various functionality is encoded as leaf functions within the ENCLS (supervisor) and
ENCLU (user) instruction mnemonics. Different leaf functions are encoded by specifying an input value in the EAX
register of the respective instruction mnemonic.

40.1 INTEL® SGX INSTRUCTION SYNTAX AND OPERATION
ENCLS and ENCLU instruction mnemonics for all leaf functions are covered in this section.
For all instructions, the value of CS.D is ignored; addresses and operands are 64 bits in 64-bit mode and are other-
wise 32 bits. Aside from EAX specifying the leaf number as input, each instruction leaf may require all or some
subset of the RBX/RCX/RDX as input parameters. Some leaf functions may return data or status information in one
or more of the general purpose registers.

40.1.1 ENCLS Register Usage Summary
Table 40-1 summarizes the implicit register usage of supervisor mode enclave instructions.

40.1.2 ENCLU Register Usage Summary
Table 40-2 summarizes the implicit register usage of user mode enclave instructions.

Table 40-1. Register Usage of Privileged Enclave Instruction Leaf Functions
Instr. Leaf EAX RBX RCX RDX

ECREATE 00H (In) PAGEINFO (In, EA) EPCPAGE (In, EA)

EADD 01H (In) PAGEINFO (In, EA) EPCPAGE (In, EA)

EINIT 02H (In) SIGSTRUCT (In, EA) SECS (In, EA) EINITTOKEN (In, EA)

EREMOVE 03H (In) EPCPAGE (In, EA)

EDBGRD 04H (In) Result Data (Out) EPCPAGE (In, EA)

EDBGWR 05H (In) Source Data (In) EPCPAGE (In, EA)

EEXTEND 06H (In) SECS (In, EA) EPCPAGE (In, EA)

ELDB 07H (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)

ELDU 08H (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)

EBLOCK 09H (In) EPCPAGE (In, EA)

EPA 0AH (In) PT_VA (In) EPCPAGE (In, EA)

EWB 0BH (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)

ETRACK 0CH (In) EPCPAGE (In, EA)

EAUG 0DH (In) PAGEINFO (In, EA) EPCPAGE (In, EA)

EMODPR 0EH (In) SECINFO (In, EA) EPCPAGE (In, EA)

EMODT 0FH (In) SECINFO (In, EA) EPCPAGE (In, EA)

EUPDATESVN 018H

EA: Effective Address
Vol. 3D 40-1

INTEL® SGX INSTRUCTION REFERENCES
40.1.3 Information and Error Codes
Information and error codes are reported by various instruction leaf functions to show an abnormal termination of
the instruction or provide information which may be useful to the developer. Table 40-3 shows the various codes
and the instruction which generated the code. Details of the meaning of the code is provided in the individual
instruction.

Table 40-2. Register Usage of Unprivileged Enclave Instruction Leaf Functions
Instr. Leaf EAX RBX RCX RDX

EREPORT 00H (In) TARGETINFO (In, EA) REPORTDATA (In, EA) OUTPUTDATA (In, EA)

EGETKEY 01H (In) KEYREQUEST (In, EA) KEY (In, EA)

EENTER 02H (In) TCS (In, EA) AEP (In, EA)

RBX.CSSA (Out) Return (Out, EA)

ERESUME 03H (In) TCS (In, EA) AEP (In, EA)

EEXIT 04H (In) Target (In, EA) Current AEP (Out)

EACCEPT 05H (In) SECINFO (In, EA) EPCPAGE (In, EA)

EMODPE 06H (In) SECINFO (In, EA) EPCPAGE (In, EA)

EACCEPTCOPY 07H (In) SECINFO (In, EA) EPCPAGE (In, EA) EPCPAGE (In, EA)

EDECCSSA 09H (In)

EA: Effective Address

Table 40-3. Error or Information Codes for Intel® SGX Instructions
Name Value Returned By

No Error 0

SGX_INVALID_SIG_STRUCT 1 EINIT

SGX_INVALID_ATTRIBUTE 2 EINIT, EGETKEY

SGX_BLKSTATE 3 EBLOCK

SGX_INVALID_MEASUREMENT 4 EINIT

SGX_NOTBLOCKABLE 5 EBLOCK

SGX_PG_INVLD 6 EBLOCK

SGX_EPC_PAGE_CONFLICT 7 EBLOCK, EMODPR, EMODT, EUPDATESVN

SGX_INVALID_SIGNATURE 8 EINIT

SGX_MAC_COMPARE_FAIL 9 ELDB, ELDU

SGX_PAGE_NOT_BLOCKED 10 EWB

SGX_NOT_TRACKED 11 EWB, EACCEPT

SGX_VA_SLOT_OCCUPIED 12 EWB

SGX_CHILD_PRESENT 13 EWB, EREMOVE

SGX_ENCLAVE_ACT 14 EREMOVE

SGX_ENTRYEPOCH_LOCKED 15 EBLOCK

SGX_INVALID_EINITTOKEN 16 EINIT

SGX_PREV_TRK_INCMPL 17 ETRACK

SGX_PG_IS_SECS 18 EBLOCK

SGX_PAGE_ATTRIBUTES_MISMATCH 19 EACCEPT, EACCEPTCOPY

SGX_PAGE_NOT_MODIFIABLE 20 EMODPR, EMODT
40-2 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
40.1.4 Internal CREGs
The CREGs as shown in Table 5-4 are hardware specific registers used in this document to indicate values kept by
the processor. These values are used while executing in enclave mode or while executing an Intel SGX instruction.
These registers are not software visible and are implementation specific. The values in Table 40-4 appear at various
places in the pseudo-code of this document. They are used to enhance understanding of the operations.

SGX_PAGE_NOT_DEBUGGABLE 21 EDBGRD, EDBGWR

SGX_INSUFFICIENT_ENTROPY 29 EUPDATESVN

SGX_EPC_NOT_READY 30 EUPDATESVN

SGX_NO_UPDATE 31 EUPDATESVN

SGX_INVALID_CPUSVN 32 EINIT, EGETKEY

SGX_INVALID_ISVSVN 64 EGETKEY

SGX_UNMASKED_EVENT 128 EINIT

SGX_INVALID_KEYNAME 256 EGETKEY

Table 40-4. List of Internal CREG
Name Size (Bits) Scope

CR_ENCLAVE_MODE 1 LP

CR_DBGOPTIN 1 LP

CR_TCS_LA 64 LP

CR_TCS_PA 64 LP

CR_ACTIVE_SECS 64 LP

CR_ELRANGE 128 LP

CR_SAVE_TF 1 LP

CR_SAVE_FS 64 LP

CR_GPR_PA 64 LP

CR_XSAVE_PAGE_n 64 LP

CR_SAVE_DR7 64 LP

CR_SAVE_PERF_GLOBAL_CTRL 64 LP

CR_SAVE_DEBUGCTL 64 LP

CR_SAVE_PEBS_ENABLE 64 LP

CR_CPUSVN 128 PACKAGE

CR_SGXOWNEREPOCH 128 PACKAGE

CR_SAVE_XCR0 64 LP

CR_SGX_ATTRIBUTES_MASK 128 LP

CR_PAGING_VERSION 64 PACKAGE

CR_VERSION_THRESHOLD 64 PACKAGE

CR_NEXT_EID 64 PACKAGE

CR_BASE_PK 128 PACKAGE

CR_SEAL_FUSES 128 PACKAGE

CR_CET_SAVE_AREA_PA 64 LP

CR_ENCLAVE_SS_TOKEN_PA 64 LP

Table 40-3. Error or Information Codes for Intel® SGX Instructions
Name Value Returned By
Vol. 3D 40-3

INTEL® SGX INSTRUCTION REFERENCES
40.1.5 Concurrent Operation Restrictions
Under certain conditions, Intel SGX disallows certain leaf functions from operating concurrently. Listed below are
some examples of concurrency that are not allowed.
• For example, Intel SGX disallows the following leafs to concurrently operate on the same EPC page.

— ECREATE, EADD, and EREMOVE are not allowed to operate on the same EPC page concurrently with
themselves.

— EADD, EEXTEND, and EINIT leaves are not allowed to operate on the same SECS concurrently.
• Intel SGX disallows the EREMOVE leaf from removing pages from an enclave that is in use.
• Intel SGX disallows entry (EENTER and ERESUME) to an enclave while a page from that enclave is being

removed.
When disallowed operation is detected, a leaf function may do one of the following:
• Return an SGX_EPC_PAGE_CONFLICT error code in RAX.
• Cause a #GP(0) exception.
To prevent such exceptions, software must serialize leaf functions or prevent these leaf functions from accessing
the same EPC page.

40.1.5.1 Concurrency Tables of Intel® SGX Instructions
The tables below detail the concurrent operation restrictions of all SGX leaf functions. For each leaf function, the
table has a separate line for each of the EPC pages the leaf function accesses.
For each such EPC page, the base concurrency requirements are detailed as follows:
• Exclusive Access means that no other leaf function that requires either shared or exclusive access to the

same EPC page may be executed concurrently. For example, EADD requires an exclusive access to the target
page it accesses.

• Shared Access means that no other leaf function that requires an exclusive access to the same EPC page may
be executed concurrently. Other leaf functions that require shared access may run concurrently. For example,
EADD requires a shared access to the SECS page it accesses.

• Concurrent Access means that any other leaf function that requires any access to the same EPC page may be
executed concurrently. For example, EGETKEY has no concurrency requirements for the KEYREQUEST page.

In addition to the base concurrency requirements, additional concurrency requirements are listed, which apply only
to specific sets of leaf functions. For example, there are additional requirements that apply for EADD, EXTEND, and
EINIT. EADD and EEXTEND can't execute concurrently on the same SECS page.
The tables also detail the leaf function's behavior when a conflict happens, i.e., a concurrency requirement is not
met. In this case, the leaf function may return an SGX_EPC_PAGE_CONFLICT error code in RAX, or it may cause an
exception.

CR_SAVE_IA32_U_CET 64 LP

CR_SAVE_SSP 64 LP

Table 40-5. Base Concurrency Restrictions

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict

EACCEPT Target [DS:RCX] Shared #GP

SECINFO [DS:RBX] Concurrent

Table 40-4. List of Internal CREG
Name Size (Bits) Scope
40-4 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
EACCEPTCOPY Target [DS:RCX] Concurrent

Source [DS:RDX] Concurrent

SECINFO [DS:RBX] Concurrent

EADD Target [DS:RCX] Exclusive #GP

SECS [DS:RBX]PAGEINFO.
SECS

Shared #GP

EAUG Target [DS:RCX] Exclusive #GP

SECS [DS:RBX]PAGEINFO.
SECS

Shared #GP

EBLOCK Target [DS:RCX] Shared SGX_EPC_PAGE_CONFLICT

ECREATE SECS [DS:RCX] Exclusive #GP

EDBGRD Target [DS:RCX] Shared #GP

EDBGWR Target [DS:RCX] Shared #GP

EENTER TCS [DS:RBX] Shared #GP

EEXIT Concurrent

EEXTEND Target [DS:RCX] Shared #GP

SECS [DS:RBX] Concurrent

EGETKEY KEYREQUEST [DS:RBX] Concurrent

OUTPUTDATA [DS:RCX] Concurrent

EINIT SECS [DS:RCX] Shared #GP

ELDB/ELDU Target [DS:RCX] Exclusive #GP

VA [DS:RDX] Shared #GP

SECS [DS:RBX]PAGEINFO.
SECS

Shared #GP

EMODPE Target [DS:RCX] Concurrent

SECINFO [DS:RBX] Concurrent

EMODPR Target [DS:RCX] Shared #GP

EMODT Target [DS:RCX] Exclusive SGX_EPC_PAGE_CONFLICT

EPA VA [DS:RCX] Exclusive #GP

EREMOVE Target [DS:RCX] Exclusive #GP

EREPORT TARGETINFO [DS:RBX] Concurrent

REPORTDATA [DS:RCX] Concurrent

OUTPUTDATA [DS:RDX] Concurrent

ERESUME TCS [DS:RBX] Shared #GP

ETRACK SECS [DS:RCX] Shared #GP

EWB Source [DS:RCX] Exclusive #GP

VA [DS:RDX] Shared #GP

Table 40-5. Base Concurrency Restrictions

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict
Vol. 3D 40-5

INTEL® SGX INSTRUCTION REFERENCES
Table 40-6. Additional Concurrency Restrictions

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,
EACCEPTCOPY,

EMODPE, EMODPR,
EMODT

vs. EADD, EEXTEND,
EINIT

vs. ETRACK

Access
On

Conflict
Access

On
Conflict

Access
On

Conflict

EACCEPT Target [DS:RCX] Exclusive #GP Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

EACCEPTCOPY Target [DS:RCX] Exclusive #GP Concurrent Concurrent

Source [DS:RDX] Concurrent Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

EADD Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.
SECS

Concurrent Exclusive #GP Concurrent

EAUG Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.
SECS

Concurrent Concurrent Concurrent

EBLOCK Target [DS:RCX] Concurrent Concurrent Concurrent

ECREATE SECS [DS:RCX] Concurrent Concurrent Concurrent

EDBGRD Target [DS:RCX] Concurrent Concurrent Concurrent

EDBGWR Target [DS:RCX] Concurrent Concurrent Concurrent

EENTER TCS [DS:RBX] Concurrent Concurrent Concurrent

EEXIT Concurrent Concurrent Concurrent

EEXTEND Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX] Concurrent Exclusive #GP Concurrent

EGETKEY KEYREQUEST [DS:RBX] Concurrent Concurrent Concurrent

OUTPUTDATA [DS:RCX] Concurrent Concurrent Concurrent

EINIT SECS [DS:RCX] Concurrent Exclusive #GP Concurrent

ELDB/ELDU Target [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.
SECS

Concurrent Concurrent Concurrent

EMODPE Target [DS:RCX] Exclusive #GP Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

EMODPR Target [DS:RCX] Exclusive SGX_EPC_
PAGE_CON
FLICT

Concurrent Concurrent

EMODT Target [DS:RCX] Exclusive SGX_EPC_
PAGE_CON
FLICT

Concurrent Concurrent

EPA VA [DS:RCX] Concurrent Concurrent Concurrent

EREMOVE Target [DS:RCX] Concurrent Concurrent Concurrent
40-6 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
40.2 INTEL® SGX INSTRUCTION REFERENCE

EREPORT TARGETINFO [DS:RBX] Concurrent Concurrent Concurrent

REPORTDATA [DS:RCX] Concurrent Concurrent Concurrent

OUTPUTDATA [DS:RDX] Concurrent Concurrent Concurrent

ERESUME TCS [DS:RBX] Concurrent Concurrent Concurrent

ETRACK SECS [DS:RCX] Concurrent Concurrent Exclusive SGX_EPC_
PAGE_CO
NFLICT

EUPDATESVN EPCM Exclusive SGX_EPC_
PAGE_CON
FLICT

Exclusive SGX_EPC
_PAGE_C
ONFLICT

Exclusive SGX_EPC_
PAGE_CO
NFLICT

EWB Source [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

Table 40-6. Additional Concurrency Restrictions

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,
EACCEPTCOPY,

EMODPE, EMODPR,
EMODT

vs. EADD, EEXTEND,
EINIT

vs. ETRACK

Access
On

Conflict
Access

On
Conflict

Access
On

Conflict
Vol. 3D 40-7

INTEL® SGX INSTRUCTION REFERENCES
ENCLS—Execute an Enclave System Function of Specified Leaf Number

Instruction Operand Encoding

Description

The ENCLS instruction invokes the specified privileged Intel SGX leaf function for managing and debugging
enclaves. Software specifies the leaf function by setting the appropriate value in the register EAX as input. The
registers RBX, RCX, and RDX have leaf-specific purpose, and may act as input, as output, or may be unused. In 64-
bit mode, the instruction ignores upper 32 bits of the RAX register.
The ENCLS instruction produces an invalid-opcode exception (#UD) if CR0.PE = 0 or RFLAGS.VM = 1, or if it is
executed in system-management mode (SMM). Additionally, any attempt to execute the instruction when CPL > 0
results in #UD. The instruction produces a general-protection exception (#GP) if CR0.PG = 0 or if an attempt is
made to invoke an undefined leaf function.
In VMX non-root operation, execution of ENCLS may cause a VM exit if the “enable ENCLS exiting” VM-execution
control is 1. In this case, execution of individual leaf functions of ENCLS is governed by the ENCLS-exiting bitmap
field in the VMCS. Each bit in that field corresponds to the index of an ENCLS leaf function (as provided in EAX).
Software in VMX root operation can thus intercept the invocation of various ENCLS leaf functions in VMX non-root
operation by setting the “enable ENCLS exiting” VM-execution control and setting the corresponding bits in the
ENCLS-exiting bitmap.
Addresses and operands are 32 bits outside 64-bit mode (IA32_EFER.LMA = 0 || CS.L = 0) and are 64 bits in 64-
bit mode (IA32_EFER.LMA = 1 || CS.L = 1). CS.D value has no impact on address calculation. The DS segment is
used to create linear addresses.
Segment override prefixes and address-size override prefixes are ignored, and is the REX prefix in 64-bit mode.

Operation

IF TSX_ACTIVE
THEN GOTO TSX_ABORT_PROCESSING; FI;

IF CR0.PE = 0 or RFLAGS.VM = 1 or in SMM or CPUID.12H.00H:EAX.SGX1 = 0
THEN #UD; FI;

IF (CPL > 0)
THEN #UD; FI;

IF in VMX non-root operation and the “enable ENCLS exiting“ VM-execution control is 1
THEN

IF EAX < 63 and ENCLS_exiting_bitmap[EAX] = 1 or EAX> 62 and ENCLS_exiting_bitmap[63] = 1
THEN VM exit;

FI;
FI;
IF IA32_FEATURE_CONTROL.LOCK = 0 or IA32_FEATURE_CONTROL.SGX_ENABLE = 0

THEN #GP(0); FI;

IF (EAX is an invalid leaf number)
THEN #GP(0); FI;

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

NP 0F 01 CF
ENCLS

ZO V/V NA This instruction is used to execute privileged Intel SGX leaf func-
tions that are used for managing and debugging the enclaves.

Op/En Operand 1 Operand 2 Operand 3 Implicit Register Operands

ZO NA NA NA See Section 40.3
ENCLS—Execute an Enclave System Function of Specified Leaf Number40-8 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
IF CR0.PG = 0
THEN #GP(0); FI;

(* DS must not be an expanded down segment *)
IF not in 64-bit mode and DS.Type is expand-down data

THEN #GP(0); FI;

Jump to leaf specific flow

Flags Affected

See individual leaf functions

Protected Mode Exceptions

#UD If any of the LOCK/66H/REP/VEX prefixes are used.
If current privilege level is not 0.

If CPUID.12H.00H:EAX.SGX1[0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If data segment expand down.
If CR0.PG=0.

Real-Address Mode Exceptions

#UD ENCLS is not recognized in real mode.

Virtual-8086 Mode Exceptions

#UD ENCLS is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If any of the LOCK/66H/REP/VEX prefixes are used.
If current privilege level is not 0.

If CPUID.12H.00H:EAX.SGX1[0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
ENCLS—Execute an Enclave System Function of Specified Leaf Number Vol. 3D 40-9

INTEL® SGX INSTRUCTION REFERENCES
ENCLU—Execute an Enclave User Function of Specified Leaf Number

Instruction Operand Encoding

Description

The ENCLU instruction invokes the specified non-privileged Intel SGX leaf functions. Software specifies the leaf
function by setting the appropriate value in the register EAX as input. The registers RBX, RCX, and RDX have leaf-
specific purpose, and may act as input, as output, or may be unused. In 64-bit mode, the instruction ignores upper
32 bits of the RAX register.
The ENCLU instruction produces an invalid-opcode exception (#UD) if CR0.PE = 0 or RFLAGS.VM = 1, or if it is
executed in system-management mode (SMM). Additionally, any attempt to execute this instruction when CPL < 3
results in #UD. The instruction produces a general-protection exception (#GP) if either CR0.PG or CR0.NE is 0, or
if an attempt is made to invoke an undefined leaf function. The ENCLU instruction produces a device not available
exception (#NM) if CR0.TS = 1.
Addresses and operands are 32 bits outside 64-bit mode (IA32_EFER.LMA = 0 or CS.L = 0) and are 64 bits in 64-
bit mode (IA32_EFER.LMA = 1 and CS.L = 1). CS.D value has no impact on address calculation. The DS segment
is used to create linear addresses.
Segment override prefixes and address-size override prefixes are ignored, as is the REX prefix in 64-bit mode.

Operation

IN_64BIT_MODE := 0;
IF TSX_ACTIVE

THEN GOTO TSX_ABORT_PROCESSING; FI;

(* If enclosing app has CET indirect branch tracking enabled then if it is not ERESUME leaf cause a #CP fault *)
(* If the ERESUME is not successful it will leave tracker in WAIT_FOR_ENDBRANCH *)
TRACKER = (CPL == 3) ? IA32_U_CET.TRACKER : IA32_S_CET.TRACKER
IF EndbranchEnabledAndNotSuppressed(CPL) and TRACKER = WAIT_FOR_ENDBRANCH and
 (EAX != ERESUME or CR0.TS or (in SMM) or (CPUID.12H.00H:EAX.SGX1 = 0) or (CPL < 3))

THEN
Handle CET State machine violation (* see Section 18.3.6, “Legacy Compatibility Treatment,” in the

 Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1. *)
FI;

IF CR0.PE= 0 or RFLAGS.VM = 1 or in SMM or CPUID.12H.00H:EAX.SGX1 = 0
THEN #UD; FI;

IF CR0.TS = 1
THEN #NM; FI;

IF CPL < 3
THEN #UD; FI;

IF IA32_FEATURE_CONTROL.LOCK = 0 or IA32_FEATURE_CONTROL.SGX_ENABLE = 0
THEN #GP(0); FI;

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

NP 0F 01 D7
ENCLU

ZO V/V NA This instruction is used to execute non-privileged Intel SGX leaf
functions.

Op/En Operand 1 Operand 2 Operand 3 Implicit Register Operands

ZO NA NA NA See Section 40.4
ENCLU—Execute an Enclave User Function of Specified Leaf Number40-10 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
IF EAX is invalid leaf number
THEN #GP(0); FI;

IF CR0.PG = 0 or CR0.NE = 0
THEN #GP(0); FI;

IN_64BIT_MODE := IA32_EFER.LMA AND CS.L ? 1 : 0;
(* Check not in 16-bit mode and DS is not a 16-bit segment *)
IF not in 64-bit mode and CS.D = 0

THEN #GP(0); FI;

IF CR_ENCLAVE_MODE = 1 and (EAX = 2 or EAX = 3) (* EENTER or ERESUME *)
THEN #GP(0); FI;

IF CR_ENCLAVE_MODE = 0 and (EAX = 0 or EAX = 1 or EAX = 4 or EAX = 5 or EAX = 6 or EAX = 7 or EAX = 9)
(* EREPORT, EGETKEY, EEXIT, EACCEPT, EMODPE, EACCEPTCOPY, or EDECCSSA *)

THEN #GP(0); FI;

Jump to leaf specific flow

Flags Affected

See individual leaf functions

Protected Mode Exceptions

#UD If any of the LOCK/66H/REP/VEX prefixes are used.
If current privilege level is not 3.

If CPUID.12H.00H:EAX.SGX1[0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If input value in EAX encodes EENTER/ERESUME and ENCLAVE_MODE = 1.
If input value in EAX encodes EGETKEY/EREPORT/EEXIT/EACCEPT/EACCEPTCOPY/EMODPE
and ENCLAVE_MODE = 0.
If operating in 16-bit mode.
If data segment is in 16-bit mode.
If CR0.PG = 0 or CR0.NE= 0.

#NM If CR0.TS = 1.

Real-Address Mode Exceptions

#UD ENCLS is not recognized in real mode.

Virtual-8086 Mode Exceptions

#UD ENCLS is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.
ENCLU—Execute an Enclave User Function of Specified Leaf Number Vol. 3D 40-11

INTEL® SGX INSTRUCTION REFERENCES
64-Bit Mode Exceptions

#UD If any of the LOCK/66H/REP/VEX prefixes are used.
If current privilege level is not 3.

If CPUID.12H.00H:EAX.SGX1[0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If input value in EAX encodes EENTER/ERESUME and ENCLAVE_MODE = 1.
If input value in EAX encodes EGETKEY/EREPORT/EEXIT/EACCEPT/EACCEPTCOPY/EMODPE
and ENCLAVE_MODE = 0.
If CR0.NE= 0.

#NM If CR0.TS = 1.

40.3 INTEL® SGX SYSTEM LEAF FUNCTION REFERENCE
Leaf functions available with the ENCLS instruction mnemonic are covered in this section. In general, each instruc-
tion leaf requires EAX to specify the leaf function index and/or additional implicit registers specifying leaf-specific
input parameters. An instruction operand encoding table provides details of each implicit register usage and asso-
ciated input/output semantics.
In many cases, an input parameter specifies an effective address associated with a memory object inside or outside
the EPC, the memory addressing semantics of these memory objects are also summarized in a separate table.
ENCLU—Execute an Enclave User Function of Specified Leaf Number40-12 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
EADD—Add a Page to an Uninitialized Enclave

Instruction Operand Encoding

Description

This leaf function copies a source page from non-enclave memory into the EPC, associates the EPC page with an
SECS page residing in the EPC, and stores the linear address and security attributes in EPCM. As part of the asso-
ciation, the enclave offset and the security attributes are measured and extended into the SECS.MRENCLAVE. This
instruction can only be executed when current privilege level is 0.
RBX contains the effective address of a PAGEINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of EADD leaf function.

EADD Memory Parameter Semantics

The instruction faults if any of the following:

EADD Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 01H
ENCLS[EADD]

IR V/V SGX1 This leaf function adds a page to an uninitialized enclave.

Op/En EAX RBX RCX

IR EADD (In) Address of a PAGEINFO (In) Address of the destination EPC page (In)

PAGEINFO PAGEINFO.SECS PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permitted
by Non Enclave

Read/Write access permit-
ted by Enclave

Read access permitted
by Non Enclave

Read access permitted
by Non Enclave

Write access permitted
by Enclave

The operands are not properly aligned. Unsupported security attributes are set.

Refers to an invalid SECS. Reference is made to an SECS that is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page.

The EPC page is already valid. If security attributes specifies a TCS and the source page specifies unsupported
TCS values or fields.

The SECS has been initialized. The specified enclave offset is outside of the enclave address space.

Table 40-7. Base Concurrency Restrictions of EADD

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict

EADD Target [DS:RCX] Exclusive #GP

SECS [DS:RBX]PAGEINFO.SECS Shared #GP
EADD—Add a Page to an Uninitialized Enclave Vol. 3D 40-13

INTEL® SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EADD Operational Flow

IF (DS:RBX is not 32Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

TMP_SRCPGE := DS:RBX.SRCPGE;
TMP_SECS := DS:RBX.SECS;
TMP_SECINFO := DS:RBX.SECINFO;
TMP_LINADDR := DS:RBX.LINADDR;

IF (DS:TMP_SRCPGE is not 4KByte aligned or DS:TMP_SECS is not 4KByte aligned or
DS:TMP_SECINFO is not 64Byte aligned or TMP_LINADDR is not 4KByte aligned)
THEN #GP(0); FI;

IF (DS:TMP_SECS does not resolve within an EPC)
THEN #PF(DS:TMP_SECS); FI;

SCRATCH_SECINFO := DS:TMP_SECINFO;

(* Check for misconfigured SECINFO flags*)
IF (SCRATCH_SECINFO reserved fields are not zero or

Table 40-8. Additional Concurrency Restrictions of EADD

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK

Access On Conflict Access On Conflict Access On Conflict

EADD Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGE-
INFO.SECS

Concurrent Exclusive #GP Concurrent

Name Type Size (bits) Description

TMP_SRCPGE Effective Address 32/64 Effective address of the source page.

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security
attributes of the page to be added.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:TMP_SECINFO.

TMP_LINADDR Unsigned Integer 64 Holds the linear address to be stored in the EPCM and used to
calculate TMP_ENCLAVEOFFSET.

TMP_ENCLAVEOFFSET Enclave Offset 64 The page displacement from the enclave base address.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.
EADD—Add a Page to an Uninitialized Enclave40-14 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
! (SCRATCH_SECINFO.FLAGS.PT is PT_REG or SCRATCH_SECINFO.FLAGS.PT is PT_TCS or
(SCRATCH_SECINFO.FLAGS.PT is PT_SS_FIRST and CPUID.12H.01H:EAX[6] = 1) or
(SCRATCH_SECINFO.FLAGS.PT is PT_SS_REST and CPUID.12H.01H:EAX[6] = 1)))

THEN #GP(0); FI;

(* If PT_SS_FIRST/PT_SS_REST page types are requested then CR4.CET must be 1 *)
IF ((SCRATCH_SECINFO.FLAGS.PT is PT_SS_FIRST OR

SCRATCH_SECINFO.FLAGS.PT is PT_SS_REST) AND CR4.CET == 0)
THEN #GP(0); FI;

(* Check the EPC page for concurrency *)
IF (EPC page is not available for EADD)

THEN
#GP(0); FI;

IF (EPCM(DS:RCX).VALID ≠ 0)
THEN #PF(DS:RCX); FI;

(* Check the SECS for concurrency *)
IF (SECS is not available for EADD)

THEN #GP(0); FI;

IF (EPCM(DS:TMP_SECS).VALID = 0 or EPCM(DS:TMP_SECS).PT ≠ PT_SECS)
THEN #PF(DS:TMP_SECS); FI;

(* Copy 4KBytes from source page to EPC page*)
DS:RCX[32767:0] := DS:TMP_SRCPGE[32767:0];

CASE (SCRATCH_SECINFO.FLAGS.PT)

PT_TCS:
IF (DS:RCX.RESERVED ≠ 0) #GP(0); FI;
IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0) and

((DS:TCS.FSLIMIT & 0FFFH ≠ 0FFFH) or (DS:TCS.GSLIMIT & 0FFFH ≠ 0FFFH))) #GP(0); FI;
(* Ensure TCS.PREVSSP is zero *)

IF (CPUID.07H.00H:ECX.CET_SS = 1) and (DS:RCX.PREVSSP != 0) #GP(0); FI;
BREAK;

PT_REG:
IF (SCRATCH_SECINFO.FLAGS.W = 1 and SCRATCH_SECINFO.FLAGS.R = 0) #GP(0); FI;
BREAK;

PT_SS_FIRST:
PT_SS_REST:
(* SS pages cannot be created on first or last page of ELRANGE *)
IF (TMP_LINADDR = DS:TMP_SECS.BASEADDR or TMP_LINADDR = (DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE - 0x1000))

THEN #GP(0); FI;
IF (DS:RCX[4087:0] != 0) #GP(0); FI;
IF (SCRATCH_SECINFO.FLAGS.PT == PT_SS_FIRST)

THEN
(* Check that valid RSTORSSP token exists *)
IF (DS:RCX[4095:4088] != ((TMP_LINADDR + 0x1000) | DS:TMP_SECS.ATTRIBUTES.MODE64BIT)) #GP(0); FI;

ELSE
(* Check the 8 bytes are zero *)
IF (DS:RCX[4095:4088] != 0) #GP(0); FI;

FI;
EADD—Add a Page to an Uninitialized Enclave Vol. 3D 40-15

INTEL® SGX INSTRUCTION REFERENCES
IF (SCRATCH_SECINFO.FLAGS.W = 0 OR SCRATCH_SECINFO.FLAGS.R = 0 OR
 SCRATCH_SECINFO.FLAGS.X = 1) #GP(0); FI;

BREAK;
ESAC;

(* Check the enclave offset is within the enclave linear address space *)
IF (TMP_LINADDR < DS:TMP_SECS.BASEADDR or TMP_LINADDR ≥ DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE)

THEN #GP(0); FI;

(* Check concurrency of measurement resource*)
IF (Measurement being updated)

THEN #GP(0); FI;

(* Check if the enclave to which the page will be added is already in Initialized state *)
IF (DS:TMP_SECS already initialized)

THEN #GP(0); FI;

(* For TCS pages, force EPCM.rwx bits to 0 and no debug access *)
IF (SCRATCH_SECINFO.FLAGS.PT = PT_TCS)

THEN
SCRATCH_SECINFO.FLAGS.R := 0;
SCRATCH_SECINFO.FLAGS.W := 0;
SCRATCH_SECINFO.FLAGS.X := 0;
(DS:RCX).FLAGS.DBGOPTIN := 0; // force TCS.FLAGS.DBGOPTIN off
DS:RCX.CSSA := 0;
DS:RCX.AEP := 0;
DS:RCX.STATE := 0;

FI;

(* Add enclave offset and security attributes to MRENCLAVE *)
TMP_ENCLAVEOFFSET := TMP_LINADDR - DS:TMP_SECS.BASEADDR;
TMPUPDATEFIELD[63:0] := 0000000044444145H; // “EADD”
TMPUPDATEFIELD[127:64] := TMP_ENCLAVEOFFSET;
TMPUPDATEFIELD[511:128] := SCRATCH_SECINFO[375:0]; // 48 bytes
DS:TMP_SECS.MRENCLAVE := SHA256UPDATE(DS:TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’s MRENCLAVE update counter;

(* Add enclave offset and security attributes to MRENCLAVE *)
EPCM(DS:RCX).R := SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W := SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X := SCRATCH_SECINFO.FLAGS.X;
EPCM(DS:RCX).PT := SCRATCH_SECINFO.FLAGS.PT;
EPCM(DS:RCX).ENCLAVEADDRESS := TMP_LINADDR;

(* associate the EPCPAGE with the SECS by storing the SECS identifier of DS:TMP_SECS *)
Update EPCM(DS:RCX) SECS identifier to reference DS:TMP_SECS identifier;

(* Set EPCM entry fields *)
EPCM(DS:RCX).BLOCKED := 0;
EPCM(DS:RCX).PENDING := 0;
EPCM(DS:RCX).MODIFIED := 0;
EPCM(DS:RCX).VALID := 1;
EADD—Add a Page to an Uninitialized Enclave40-16 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If an enclave memory operand is outside of the EPC.
If an enclave memory operand is the wrong type.
If a memory operand is locked.
If the enclave is initialized.
If the enclave's MRENCLAVE is locked.
If the TCS page reserved bits are set.
If the TCS page PREVSSP field is not zero.
If the PT_SS_REST or PT_SS_REST page is the first or last page in the enclave.
If the PT_SS_FIRST or PT_SS_REST page is not initialized correctly.

#PF(error code) If a page fault occurs in accessing memory operands.
If the EPC page is valid.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If an enclave memory operand is outside of the EPC.
If an enclave memory operand is the wrong type.
If a memory operand is locked.
If the enclave is initialized.
If the enclave's MRENCLAVE is locked.
If the TCS page reserved bits are set.
If the TCS page PREVSSP field is not zero.
If the PT_SS_REST or PT_SS_REST page is the first or last page in the enclave.
If the PT_SS_FIRST or PT_SS_REST page is not initialized correctly.

#PF(error code) If a page fault occurs in accessing memory operands.
If the EPC page is valid.
EADD—Add a Page to an Uninitialized Enclave Vol. 3D 40-17

INTEL® SGX INSTRUCTION REFERENCES
EAUG—Add a Page to an Initialized Enclave

Instruction Operand Encoding

Description

This leaf function zeroes a page of EPC memory, associates the EPC page with an SECS page residing in the EPC,
and stores the linear address and security attributes in the EPCM. As part of the association, the security attributes
are configured to prevent access to the EPC page until a corresponding invocation of the EACCEPT leaf or EACCEPT-
COPY leaf confirms the addition of the new page into the enclave. This instruction can only be executed when
current privilege level is 0.
RBX contains the effective address of a PAGEINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of the EAUG leaf function.

EAUG Memory Parameter Semantics

The instruction faults if any of the following:

EAUG Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 0DH
ENCLS[EAUG]

IR V/V SGX2 This leaf function adds a page to an initialized enclave.

Op/En EAX RBX RCX

IR EAUG (In) Address of a PAGEINFO (In) Address of the destination EPC page (In)

PAGEINFO PAGEINFO.SECS PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permit-
ted by Non Enclave

Read/Write access permit-
ted by Enclave

Must be zero
Read access permitted by

Non Enclave
Write access permitted by

Enclave

The operands are not properly aligned. Unsupported security attributes are set.

Refers to an invalid SECS. Reference is made to an SECS that is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page.

The EPC page is already valid. The specified enclave offset is outside of the enclave address space.

The SECS has been initialized.

Table 40-9. Base Concurrency Restrictions of EAUG

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict

EAUG Target [DS:RCX] Exclusive #GP

SECS [DS:RBX]PAGEINFO.SECS Shared #GP
EAUG—Add a Page to an Initialized Enclave40-18 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EAUG Operational Flow

IF (DS:RBX is not 32Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

TMP_SECS := DS:RBX.SECS;
TMP_SECINFO := DS:RBX.SECINFO;
IF (DS:RBX.SECINFO is not 0)

THEN
IF (DS:TMP_SECINFO is not 64B aligned)

THEN #GP(0); FI;
FI;

TMP_LINADDR := DS:RBX.LINADDR;

IF (DS:TMP_SECS is not 4KByte aligned or TMP_LINADDR is not 4KByte aligned)
THEN #GP(0); FI;

IF DS:RBX.SRCPAGE is not 0
THEN #GP(0); FI;

IF (DS:TMP_SECS does not resolve within an EPC)
THEN #PF(DS:TMP_SECS); FI;

(* Check the EPC page for concurrency *)

Table 40-10. Additional Concurrency Restrictions of EAUG

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK

Access On Conflict Access On Conflict Access On Conflict

EAUG Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGE-
INFO.SECS

Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security
attributes of the page to be added.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:TMP_SECINFO.

TMP_LINADDR Unsigned Integer 64 Holds the linear address to be stored in the EPCM and used to
calculate TMP_ENCLAVEOFFSET.
EAUG—Add a Page to an Initialized Enclave Vol. 3D 40-19

INTEL® SGX INSTRUCTION REFERENCES
IF (EPC page is not available for EAUG)
THEN

#GP(0); FI;

IF (EPCM(DS:RCX).VALID ≠ 0)
THEN #PF(DS:RCX); FI;

(* copy SECINFO contents into a scratch SECINFO *)
IF (DS:RBX.SECINFO is 0)

THEN
(* allocate and initialize a new scratch SECINFO structure *)
SCRATCH_SECINFO.PT := PT_REG;
SCRATCH_SECINFO.R := 1;
SCRATCH_SECINFO.W := 1;
SCRATCH_SECINFO.X := 0;
<< zero out remaining fields of SCRATCH_SECINFO >>

ELSE
(* copy SECINFO contents into scratch SECINFO *)
SCRATCH_SECINFO := DS:TMP_SECINFO;
(* check SECINFO flags for misconfiguration *)
(* reserved flags must be zero *)
(* SECINFO.FLAGS.PT must either be PT_SS_FIRST, or PT_SS_REST *)
IF ((SCRATCH_SECINFO reserved fields are not 0) or

CPUID.12H.01H:EAX[6] is 0) OR
 (SCRATCH_SECINFO.PT is not PT_SS_FIRST, or PT_SS_REST) OR
 ((SCRATCH_SECINFO.FLAGS.R is 0) OR (SCRATCH_SECINFO.FLAGS.W is 0) OR (SCRATCH_SECINFO.FLAGS.X is 1)))

THEN #GP(0); FI;
FI;
(* Check if PT_SS_FIRST/PT_SS_REST page types are requested then CR4.CET must be 1 *)
IF ((SCRATCH_SECINFO.PT is PT_SS_FIRST OR SCRATCH_SECINFO.PT is PT_SS_REST) AND CR4.CET == 0)

THEN #GP(0); FI;

(* Check the SECS for concurrency *)
IF (SECS is not available for EAUG)

THEN #GP(0); FI;

IF (EPCM(DS:TMP_SECS).VALID = 0 or EPCM(DS:TMP_SECS).PT ≠ PT_SECS)
THEN #PF(DS:TMP_SECS); FI;

(* Check if the enclave to which the page will be added is in the Initialized state *)
IF (DS:TMP_SECS is not initialized)

THEN #GP(0); FI;

(* Check the enclave offset is within the enclave linear address space *)
IF ((TMP_LINADDR < DS:TMP_SECS.BASEADDR) or (TMP_LINADDR ≥ DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE))

THEN #GP(0); FI;

IF ((SCRATCH_SECINFO.PT is PT_SS_FIRST OR SCRATCH_SECINFO.PT is PT_SS_REST))
THEN

(* SS pages cannot created on first or last page of ELRANGE *)
IF (TMP_LINADDR == DS:TMP_SECS.BASEADDR OR
 TMP_LINADDR == (DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE - 0x1000))

THEN
#GP(0); FI;
EAUG—Add a Page to an Initialized Enclave40-20 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
FI;

(* Clear the content of EPC page*)
DS:RCX[32767:0] := 0;

IF (CPUID.07H.00H:ECX.CET_SS = 1)
THEN

(* set up shadow stack RSTORSSP token *)
IF (SCRATCH_SECINFO.PT is PT_SS_FIRST)
THEN

DS:RCX[0xFF8] := (TMP_LINADDR + 0x1000) | TMP_SECS.ATTRIBUTES.MODE64BIT; FI;
FI;

(* Set EPCM security attributes *)
EPCM(DS:RCX).R := SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W := SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X := SCRATCH_SECINFO.FLAGS.X;
EPCM(DS:RCX).PT := SCRATCH_SECINFO.FLAGS.PT;
EPCM(DS:RCX).ENCLAVEADDRESS := TMP_LINADDR;
EPCM(DS:RCX).BLOCKED := 0;
EPCM(DS:RCX).PENDING := 1;
EPCM(DS:RCX).MODIFIED := 0;
EPCM(DS:RCX).PR := 0;

(* associate the EPCPAGE with the SECS by storing the SECS identifier of DS:TMP_SECS *)
Update EPCM(DS:RCX) SECS identifier to reference DS:TMP_SECS identifier;

(* Set EPCM valid fields *)
EPCM(DS:RCX).VALID := 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.
If the enclave is not initialized.

#PF(error code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.
If the enclave is not initialized.

#PF(error code) If a page fault occurs in accessing memory operands.
EAUG—Add a Page to an Initialized Enclave Vol. 3D 40-21

INTEL® SGX INSTRUCTION REFERENCES
EBLOCK—Mark a page in EPC as Blocked

Instruction Operand Encoding

Description

This leaf function causes an EPC page to be marked as BLOCKED. This instruction can only be executed when
current privilege level is 0.
The content of RCX is an effective address of an EPC page. The DS segment is used to create linear address.
Segment override is not supported.
An error code is returned in RAX.
The table below provides additional information on the memory parameter of EBLOCK leaf function.

EBLOCK Memory Parameter Semantics

The error codes are:

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 09H
ENCLS[EBLOCK]

IR V/V SGX1 This leaf function marks a page in the EPC as blocked.

Op/En EAX RCX

IR EBLOCK (In) Return error code (Out) Effective address of the EPC page (In)

EPCPAGE

Read/Write access permitted by Enclave

Table 40-11. EBLOCK Return Value in RAX
 Error Code (see Table 40-3) Description

No Error EBLOCK successful.

SGX_BLKSTATE Page already blocked. This value is used to indicate to a VMM that the page was already in
BLOCKED state as a result of EBLOCK and thus will need to be restored to this state when it is
eventually reloaded (using ELDB).

SGX_ENTRYEPOCH_LOCKED SECS locked for Entry Epoch update. This value indicates that an ETRACK is currently
executing on the SECS. The EBLOCK should be reattempted.

SGX_NOTBLOCKABLE Page type is not one which can be blocked.

SGX_PG_INVLD Page is not valid and cannot be blocked.

SGX_EPC_PAGE_CONFLICT Page is being written by EADD, EAUG, ECREATE, ELDU/B, EMODT, or EWB.

Table 40-12. Base Concurrency Restrictions of EBLOCK

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict

EBLOCK Target [DS:RCX] Shared SGX_EPC_PAGE_CONFLICT
EBLOCK—Mark a page in EPC as Blocked40-22 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EBLOCK Operational Flow

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

RFLAGS.ZF,CF,PF,AF,OF,SF := 0;
RAX := 0;

(* Check the EPC page for concurrency*)
IF (EPC page in use)

THEN
RFLAGS.ZF := 1;
RAX := SGX_EPC_PAGE_CONFLICT;
GOTO DONE;

FI;

IF (EPCM(DS:RCX). VALID = 0)
THEN

RFLAGS.ZF := 1;
RAX := SGX_PG_INVLD;
GOTO DONE;

FI;

IF ((EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS) and (EPCM(DS:RCX).PT ≠ PT_TRIM)
and EPCM(DS:RCX).PT ≠ PT_SS_FIRST) and (EPCM(DS:RCX).PT ≠ PT_SS_REST))

THEN
RFLAGS.CF := 1;
IF (EPCM(DS:RCX).PT = PT_SECS)

THEN RAX := SGX_PG_IS_SECS;
ELSE RAX := SGX_NOTBLOCKABLE;

FI;
GOTO DONE;

FI;

(* Check if the page is already blocked and report blocked state *)
TMP_BLKSTATE := EPCM(DS:RCX).BLOCKED;

Table 40-13. Additional Concurrency Restrictions of EBLOCK

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK

Access On Conflict Access On Conflict Access On Conflict

EBLOCK Target [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_BLKSTATE Integer 64 Page is already blocked.
EBLOCK—Mark a page in EPC as Blocked Vol. 3D 40-23

INTEL® SGX INSTRUCTION REFERENCES
(* at this point, the page must be valid and PT_TCS or PT_REG or PT_TRIM*)
IF (TMP_BLKSTATE = 1)

THEN
RFLAGS.CF := 1;
RAX := SGX_BLKSTATE;

ELSE
EPCM(DS:RCX).BLOCKED := 1

FI;
DONE:

Flags Affected

Sets ZF if SECS is in use or invalid, otherwise cleared. Sets CF if page is BLOCKED or not blockable, otherwise
cleared. Clears PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
EBLOCK—Mark a page in EPC as Blocked40-24 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
ECREATE—Create an SECS page in the Enclave Page Cache

Instruction Operand Encoding

Description

ENCLS[ECREATE] is the first instruction executed in the enclave build process. ECREATE copies an SECS structure
outside the EPC into an SECS page inside the EPC. The internal structure of SECS is not accessible to software.
ECREATE will set up fields in the protected SECS and mark the page as valid inside the EPC. ECREATE initializes or
checks unused fields.
Software sets the following fields in the source structure: SECS:BASEADDR, SECS:SIZE in bytes, ATTRIBUTES,
CONFIGID, and CONFIGSVN. SECS:BASEADDR must be naturally aligned on an SECS.SIZE boundary. SECS.SIZE
must be at least 2 pages (8192).
The source operand RBX contains an effective address of a PAGEINFO structure. PAGEINFO contains an effective
address of a source SECS and an effective address of an SECINFO. The SECS field in PAGEINFO is not used.
The RCX register is the effective address of the destination SECS. It is an address of an empty slot in the EPC. The
SECS structure must be page aligned. SECINFO flags must specify the page as an SECS page.

ECREATE Memory Parameter Semantics

ECREATE will fault if the SECS target page is in use; already valid; outside the EPC. It will also fault if addresses are
not aligned; unused PAGEINFO fields are not zero.
If the amount of space needed to store the SSA frame is greater than the amount specified in SECS.SSAFRAME-
SIZE, a #GP(0) results. The amount of space needed for an SSA frame is computed based on DS:TMP_-
SECS.ATTRIBUTES.XFRM size. Details of computing the size can be found Section 41.7.

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 00H
ENCLS[ECREATE]

IR V/V SGX1 This leaf function begins an enclave build by creating an SECS
page in EPC.

Op/En EAX RBX RCX

IR ECREATE (In) Address of a PAGEINFO (In) Address of the destination SECS page (In)

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permitted by
Non Enclave

Read access permitted by
Non Enclave

Read access permitted by Non
Enclave

Write access permitted by
Enclave

Table 40-14. Base Concurrency Restrictions of ECREATE

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict

ECREATE SECS [DS:RCX] Exclusive #GP
ECREATE—Create an SECS page in the Enclave Page Cache Vol. 3D 40-25

INTEL® SGX INSTRUCTION REFERENCES
Operation

Temp Variables in ECREATE Operational Flow

IF (DS:RBX is not 32Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

TMP_SRCPGE := DS:RBX.SRCPGE;
TMP_SECINFO := DS:RBX.SECINFO;

IF (DS:TMP_SRCPGE is not 4KByte aligned or DS:TMP_SECINFO is not 64Byte aligned)
THEN #GP(0); FI;

IF (DS:RBX.LINADDR ! = 0 or DS:RBX.SECS ≠ 0)
THEN #GP(0); FI;

(* Check for misconfigured SECINFO flags*)
IF (DS:TMP_SECINFO reserved fields are not zero or DS:TMP_SECINFO.FLAGS.PT ≠ PT_SECS)

THEN #GP(0); FI;

TMP_SECS := RCX;

IF (EPC entry in use)
THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID = 1)
THEN #PF(DS:RCX); FI;

Table 40-15. Additional Concurrency Restrictions of ECREATE

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK

Access On Conflict Access On Conflict Access On Conflict

ECREATE SECS [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_SRCPGE Effective Address 32/64 Effective address of the SECS source page.

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security
attributes of the SECS page to be added.

TMP_XSIZE SSA Size 64 The size calculation of SSA frame.

TMP_MISC_SIZE MISC Field Size 64 Size of the selected MISC field components.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.
ECREATE—Create an SECS page in the Enclave Page Cache40-26 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
(* Copy 4KBytes from source page to EPC page*)
DS:RCX[32767:0] := DS:TMP_SRCPGE[32767:0];

(* Check lower 2 bits of XFRM are set *)
IF ((DS:TMP_SECS.ATTRIBUTES.XFRM BitwiseAND 03H) ≠ 03H)

THEN #GP(0); FI;

IF (XFRM is illegal)
THEN #GP(0); FI;

(* Check legality of CET_ATTRIBUTES *)
IF ((DS:TMP_SECS.ATTRIBUTES.CET = 0 and DS:TMP_SECS.CET_ATTRIBUTES ≠ 0) ||

(DS:TMP_SECS.ATTRIBUTES.CET = 0 and DS:TMP_SECS.CET_LEG_BITMAP_OFFSET ≠ 0) ||
(CPUID.07H.00H:EDX.CET_IBT = 0 and DS:TMP_SECS.CET_LEG_BITMAP_OFFSET ≠ 0) ||
(CPUID.07H.00H:EDX.CET_IBT = 0 and DS:TMP_SECS.CET_ATTRIBUTES[5:2] ≠ 0) ||
(CPUID.07H.00H:ECX.CET_SS = 0 and DS:TMP_SECS.CET_ATTRIBUTES[1:0] ≠ 0) ||

(DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 1 and
 (DS:TMP_SECS.BASEADDR + DS:TMP_SECS.CET_LEG_BITMAP_OFFSET) not canonical) ||
(DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0 and
 (DS:TMP_SECS.BASEADDR + DS:TMP_SECS.CET_LEG_BITMAP_OFFSET) & 0xFFFFFFFF00000000) ||
(DS:TMP_SECS.CET_ATTRIBUTES.reserved fields not 0) or
 (DS:TMP_SECS.CET_LEG_BITMAP_OFFSET) is not page aligned))
THEN

#GP(0);
FI;

(* Make sure that the SECS does not have any unsupported MISCSELECT options*)
IF (!(CPUID.12H.00H:EBX[31:0] & DS:TMP_SECS.MISCSELECT[31:0]))

THEN
EPCM(DS:TMP_SECS).EntryLock.Release();
#GP(0);

FI;

(* Compute size of MISC area *)
TMP_MISC_SIZE := compute_misc_region_size();

(* Compute the size required to save state of the enclave on async exit, see Section 41.7.2.2*)
TMP_XSIZE := compute_xsave_size(DS:TMP_SECS.ATTRIBUTES.XFRM) + GPR_SIZE + TMP_MISC_SIZE;

(* Ensure that the declared area is large enough to hold XSAVE and GPR stat *)
IF (DS:TMP_SECS.SSAFRAMESIZE*4096 < TMP_XSIZE)

THEN #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 1) and (DS:TMP_SECS.BASEADDR is not canonical))
THEN #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0) and (DS:TMP_SECS.BASEADDR and 0FFFFFFFF00000000H))
THEN #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0) and (DS:TMP_SECS.SIZE ≥ 2 ^ (CPUID.12H.00H:EDX[7:0])))
THEN #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 1) and (DS:TMP_SECS.SIZE ≥ 2 ^ (CPUID.12H.00H:EDX[15:8])))
ECREATE—Create an SECS page in the Enclave Page Cache Vol. 3D 40-27

INTEL® SGX INSTRUCTION REFERENCES
THEN #GP(0); FI;

(* Enclave size must be at least 8192 bytes and must be power of 2 in bytes*)
IF (DS:TMP_SECS.SIZE < 8192 or popcnt(DS:TMP_SECS.SIZE) > 1)

THEN #GP(0); FI;

(* Ensure base address of an enclave is aligned on size*)
IF ((DS:TMP_SECS.BASEADDR and (DS:TMP_SECS.SIZE-1)))

THEN #GP(0); FI;

(* Ensure the SECS does not have any unsupported attributes*)
IF (DS:TMP_SECS.ATTRIBUTES and (~CR_SGX_ATTRIBUTES_MASK))

THEN #GP(0); FI;

IF (DS:TMP_SECS reserved fields are not zero)
THEN #GP(0); FI;

(* Verify that CONFIGID/CONFIGSVN are not set with attribute *)
IF (((DS:TMP_SECS.CONFIGID ≠ 0) or (DS:TMP_SECS.CONFIGSVN ≠0)) AND (DS:TMP_SECS.ATTRIBUTES.KSS == 0))

THEN #GP(0); FI;

Clear DS:TMP_SECS to Uninitialized;
DS:TMP_SECS.MRENCLAVE := SHA256INITIALIZE(DS:TMP_SECS.MRENCLAVE);
DS:TMP_SECS.ISVSVN := 0;
DS:TMP_SECS.ISVPRODID := 0;

(* Initialize hash updates etc*)
Initialize enclave’s MRENCLAVE update counter;

(* Add “ECREATE” string and SECS fields to MRENCLAVE *)
TMPUPDATEFIELD[63:0] := 0045544145524345H; // “ECREATE”
TMPUPDATEFIELD[95:64] := DS:TMP_SECS.SSAFRAMESIZE;
TMPUPDATEFIELD[159:96] := DS:TMP_SECS.SIZE;
IF (CPUID.07H.00H:EDX.CET_IBT = 1)

THEN
TMPUPDATEFIELD[223:160] := DS:TMP_SECS.CET_LEG_BITMAP_OFFSET;

ELSE
TMPUPDATEFIELD[223:160] := 0;

FI;
TMPUPDATEFIELD[511:160] := 0;
DS:TMP_SECS.MRENCLAVE := SHA256UPDATE(DS:TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’s MRENCLAVE update counter;

(* Set EID *)
DS:TMP_SECS.EID := LockedXAdd(CR_NEXT_EID, 1);

(* Set the EPCM entry, first create SECS identifier and store the identifier in EPCM *)
EPCM(DS:TMP_SECS).PT := PT_SECS;
EPCM(DS:TMP_SECS).ENCLAVEADDRESS := 0;
EPCM(DS:TMP_SECS).R := 0;
EPCM(DS:TMP_SECS).W := 0;
EPCM(DS:TMP_SECS).X := 0;

(* Set EPCM entry fields *)
ECREATE—Create an SECS page in the Enclave Page Cache40-28 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
EPCM(DS:RCX).BLOCKED := 0;
EPCM(DS:RCX).PENDING := 0;
EPCM(DS:RCX).MODIFIED := 0;
EPCM(DS:RCX).PR := 0;
EPCM(DS:RCX).VALID := 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the reserved fields are not zero.
If PAGEINFO.SECS is not zero.
If PAGEINFO.LINADDR is not zero.
If the SECS destination is locked.
If SECS.SSAFRAMESIZE is insufficient.

#PF(error code) If a page fault occurs in accessing memory operands.
If the SECS destination is outside the EPC.

64-Bit Mode Exceptions

#GP(0) If a memory address is non-canonical form.
If a memory operand is not properly aligned.
If the reserved fields are not zero.
If PAGEINFO.SECS is not zero.
If PAGEINFO.LINADDR is not zero.
If the SECS destination is locked.
If SECS.SSAFRAMESIZE is insufficient.

#PF(error code) If a page fault occurs in accessing memory operands.
If the SECS destination is outside the EPC.
ECREATE—Create an SECS page in the Enclave Page Cache Vol. 3D 40-29

INTEL® SGX INSTRUCTION REFERENCES
EDBGRD—Read From a Debug Enclave

Instruction Operand Encoding

Description

This leaf function copies a quadword/doubleword from an EPC page belonging to a debug enclave into the RBX
register. Eight bytes are read in 64-bit mode, four bytes are read in non-64-bit modes. The size of data read cannot
be overridden.
The effective address of the source location inside the EPC is provided in the register RCX.

EDBGRD Memory Parameter Semantics

The error codes are:

The instruction faults if any of the following:

EDBGRD Faulting Conditions

This instruction ignores the EPCM RWX attributes on the enclave page. Consequently, violation of EPCM RWX attri-
butes via EDBGRD does not result in a #GP.

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 04H
ENCLS[EDBGRD]

IR V/V SGX1 This leaf function reads a dword/quadword from a debug enclave.

Op/En EAX RBX RCX

IR EDBGRD (In)
Return error
code (Out)

Data read from a debug enclave (Out) Address of source memory in the EPC (In)

EPCQW

Read access permitted by Enclave

Table 40-16. EDBGRD Return Value in RAX
 Error Code (see Table 40-3) Description

No Error EDBGRD successful.

SGX_PAGE_NOT_DEBUGGABLE The EPC page cannot be accessed because it is in the PENDING or MODIFIED state.

RCX points into a page that is an SECS. RCX does not resolve to a naturally aligned linear address.

RCX points to a page that does not belong to an
enclave that is in debug mode.

RCX points to a location inside a TCS that is beyond the architectural size of the
TCS (SGX_TCS_LIMIT).

An operand causing any segment violation. May page fault.

CPL > 0.
EDBGRD—Read From a Debug Enclave40-30 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
Concurrency Restrictions

Operation

Temp Variables in EDBGRD Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF ((TMP_MODE64 = 1) and (DS:RCX is not 8Byte Aligned))
THEN #GP(0); FI;

IF ((TMP_MODE64 = 0) and (DS:RCX is not 4Byte Aligned))
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing the same EPCM entry *)
IF (Another instruction modifying the same EPCM entry is executing)

THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID = 0)
THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX (SOURCE) is pointing to a PT_REG or PT_TCS or PT_VA or PT_SS_FIRST or PT_SS_REST *)
IF ((EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS) and (EPCM(DS:RCX).PT ≠ PT_VA)
and (EPCM(DS:RCX).PT ≠ PT_SS_FIRST) and (EPCM(DS:RCX).PT ≠ PT_SS_REST))

THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX points to an accessible EPC page *)
IF (EPCM(DS:RCX).PENDING is not 0 or (EPCM(DS:RCX).MODIFIED is not 0))

THEN
RFLAGS.ZF := 1;

Table 40-17. Base Concurrency Restrictions of EDBGRD

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict

EDBGRD Target [DS:RCX] Shared #GP

Table 40-18. Additional Concurrency Restrictions of EDBGRD

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK

Access On Conflict Access On Conflict Access On Conflict

EDBGRD Target [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_MODE64 Binary 1 ((IA32_EFER.LMA = 1) && (CS.L = 1))

TMP_SECS 64 Physical address of SECS of the enclave to which source operand belongs.
EDBGRD—Read From a Debug Enclave Vol. 3D 40-31

INTEL® SGX INSTRUCTION REFERENCES
RAX := SGX_PAGE_NOT_DEBUGGABLE;
GOTO DONE;

FI;

(* If source is a TCS, then make sure that the offset into the page is not beyond the TCS size*)
IF ((EPCM(DS:RCX). PT = PT_TCS) and ((DS:RCX) & FFFH ≥ SGX_TCS_LIMIT))

THEN #GP(0); FI;

(* make sure the enclave owning the PT_REG or PT_TCS page allow debug *)
IF ((EPCM(DS:RCX).PT = PT_REG) or (EPCM(DS:RCX).PT = PT_TCS))

THEN
TMP_SECS := GET_SECS_ADDRESS;
IF (TMP_SECS.ATTRIBUTES.DEBUG = 0)

THEN #GP(0); FI;
IF ((TMP_MODE64 = 1))

THEN RBX[63:0] := (DS:RCX)[63:0];
ELSE EBX[31:0] := (DS:RCX)[31:0];

FI;
ELSE

TMP_64BIT_VAL[63:0] := (DS:RCX)[63:0] & (~07H); // Read contents from VA slot
IF (TMP_MODE64 = 1)

THEN
IF (TMP_64BIT_VAL ≠ 0H)

THEN RBX[63:0] := 0FFFFFFFFFFFFFFFFH;
ELSE RBX[63:0] := 0H;

FI;
ELSE

IF (TMP_64BIT_VAL ≠ 0H)
THEN EBX[31:0] := 0FFFFFFFFH;
ELSE EBX[31:0] := 0H;

FI;
FI;

(* clear EAX and ZF to indicate successful completion *)
RAX := 0;
RFLAGS.ZF := 0;

DONE:
(* clear flags *)
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

ZF is set if the page is MODIFIED or PENDING; RAX contains the error code. Otherwise ZF is cleared and RAX is set
to 0. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If the address in RCS violates DS limit or access rights.
If DS segment is unusable.
If RCX points to a memory location not 4Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS, PT_REG or PT_VA.
If the address in RCX points to a location inside TCS that is beyond SGX_TCS_LIMIT.
EDBGRD—Read From a Debug Enclave40-32 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

64-Bit Mode Exceptions

#GP(0) If RCX is non-canonical form.
If RCX points to a memory location not 8Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS, PT_REG or PT_VA.
If the address in RCX points to a location inside TCS that is beyond SGX_TCS_LIMIT.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.
EDBGRD—Read From a Debug Enclave Vol. 3D 40-33

INTEL® SGX INSTRUCTION REFERENCES
EDBGWR—Write to a Debug Enclave

Instruction Operand Encoding

Description

This leaf function copies the content in EBX/RBX to an EPC page belonging to a debug enclave. Eight bytes are
written in 64-bit mode, four bytes are written in non-64-bit modes. The size of data cannot be overridden.
The effective address of the target location inside the EPC is provided in the register RCX.

EDBGWR Memory Parameter Semantics

The instruction faults if any of the following:

EDBGWR Faulting Conditions

The error codes are:

This instruction ignores the EPCM RWX attributes on the enclave page. Consequently, violation of EPCM RWX attri-
butes via EDBGRD does not result in a #GP.

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 05H
ENCLS[EDBGWR]

IR V/V SGX1 This leaf function writes a dword/quadword to a debug enclave.

Op/En EAX RBX RCX

IR EDBGWR (In)
Return error
code (Out)

Data to be written to a debug enclave (In) Address of Target memory in the EPC (In)

EPCQW

Write access permitted by Enclave

RCX points into a page that is an SECS. RCX does not resolve to a naturally aligned linear address.

RCX points to a page that does not belong to an
enclave that is in debug mode.

RCX points to a location inside a TCS that is not the FLAGS word.

An operand causing any segment violation. May page fault.

CPL > 0.

Table 40-19. EDBGWR Return Value in RAX
 Error Code (see Table 40-3) Description

No Error EDBGWR successful.

SGX_PAGE_NOT_DEBUGGABLE The EPC page cannot be accessed because it is in the PENDING or MODIFIED state.
EDBGWR—Write to a Debug Enclave40-34 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
Concurrency Restrictions

Operation

Temp Variables in EDBGWR Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF ((TMP_MODE64 = 1) and (DS:RCX is not 8Byte Aligned))
THEN #GP(0); FI;

IF ((TMP_MODE64 = 0) and (DS:RCX is not 4Byte Aligned))
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing the same EPCM entry *)
IF (Another instruction modifying the same EPCM entry is executing)

THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID = 0)
THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX (DST) is pointing to a PT_REG or PT_TCS or PT_SS_FIRST or PT_SS_REST *)
IF ((EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS)

and (EPCM(DS:RCX).PT ≠ PT_SS_FIRST) and (EPCM(DS:RCX).PT ≠ PT_SS_REST))
THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX points to an accessible EPC page *)
IF ((EPCM(DS:RCX).PENDING is not 0) or (EPCM(DS:RCS).MODIFIED is not 0))

THEN
RFLAGS.ZF := 1;

Table 40-20. Base Concurrency Restrictions of EDBGWR

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict

EDBGWR Target [DS:RCX] Shared #GP

Table 40-21. Additional Concurrency Restrictions of EDBGWR

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK

Access On Conflict Access On Conflict Access On Conflict

EDBGWR Target [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_MODE64 Binary 1 ((IA32_EFER.LMA = 1) && (CS.L = 1)).

TMP_SECS 64 Physical address of SECS of the enclave to which source operand belongs.
EDBGWR—Write to a Debug Enclave Vol. 3D 40-35

INTEL® SGX INSTRUCTION REFERENCES
RAX := SGX_PAGE_NOT_DEBUGGABLE;
GOTO DONE;

FI;

(* If destination is a TCS, then make sure that the offset into the page can only point to the FLAGS field*)
IF ((EPCM(DS:RCX). PT = PT_TCS) and ((DS:RCX) & FF8H ≠ offset_of_FLAGS & 0FF8H))

THEN #GP(0); FI;

(* Locate the SECS for the enclave to which the DS:RCX page belongs *)
TMP_SECS := GET_SECS_PHYS_ADDRESS(EPCM(DS:RCX).ENCLAVESECS);

(* make sure the enclave owning the PT_REG or PT_TCS page allow debug *)
IF (TMP_SECS.ATTRIBUTES.DEBUG = 0)

THEN #GP(0); FI;

IF ((TMP_MODE64 = 1))
THEN (DS:RCX)[63:0] := RBX[63:0];
ELSE (DS:RCX)[31:0] := EBX[31:0];

FI;

(* clear EAX and ZF to indicate successful completion *)
RAX := 0;
RFLAGS.ZF := 0;

DONE:
(* clear flags *)
RFLAGS.CF,PF,AF,OF,SF := 0

Flags Affected

ZF is set if the page is MODIFIED or PENDING; RAX contains the error code. Otherwise ZF is cleared and RAX is set
to 0. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If the address in RCS violates DS limit or access rights.
If DS segment is unusable.
If RCX points to a memory location not 4Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a location inside TCS that is not the FLAGS word.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

64-Bit Mode Exceptions

#GP(0) If RCX is non-canonical form.
If RCX points to a memory location not 8Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a location inside TCS that is not the FLAGS word.
EDBGWR—Write to a Debug Enclave40-36 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.
EDBGWR—Write to a Debug Enclave Vol. 3D 40-37

INTEL® SGX INSTRUCTION REFERENCES
EEXTEND—Extend Uninitialized Enclave Measurement by 256 Bytes

Instruction Operand Encoding

Description

This leaf function updates the MRENCLAVE measurement register of an SECS with the measurement of an EXTEND
string compromising of “EEXTEND” || ENCLAVEOFFSET || PADDING || 256 bytes of the enclave page. This instruc-
tion can only be executed when current privilege level is 0 and the enclave is uninitialized.
RBX contains the effective address of the SECS of the region to be measured. The address must be the same as the
one used to add the page into the enclave.
RCX contains the effective address of the 256 byte region of an EPC page to be measured. The DS segment is used
to create linear addresses. Segment override is not supported.

EEXTEND Memory Parameter Semantics

The instruction faults if any of the following:

EEXTEND Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 06H
ENCLS[EEXTEND]

IR V/V SGX1 This leaf function measures 256 bytes of an uninitialized enclave
page.

Op/En EAX EBX RCX

IR EEXTEND (In)
Effective address of the SECS of the

data chunk (In)
Effective address of a 256-byte chunk in the EPC (In)

EPC[RCX]

Read access by Enclave

RBX points to an address not 4KBytes aligned. RBX does not resolve to an SECS.

RBX does not point to an SECS page. RBX does not point to the SECS page of the data chunk.

RCX points to an address not 256B aligned. RCX points to an unused page or a SECS.

RCX does not resolve in an EPC page. If SECS is locked.

If the SECS is already initialized. May page fault.

CPL > 0.

Table 40-22. Base Concurrency Restrictions of EEXTEND

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict

EEXTEND Target [DS:RCX] Shared #GP

SECS [DS:RBX] Concurrent
EEXTEND—Extend Uninitialized Enclave Measurement by 256 Bytes40-38 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EEXTEND Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF (DS:RBX is not 4096 Byte Aligned)
THEN #GP(0); FI;

IF (DS:RBX does not resolve to an EPC page)
THEN #PF(DS:RBX); FI;

IF (DS:RCX is not 256Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing EPCM *)
IF (Other instructions accessing EPCM)

THEN #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)
THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX (DST) is pointing to a PT_REG or PT_TCS or PT_SS_FIRST or PT_SS_REST *)
IF ((EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS)
and (EPCM(DS:RCX).PT ≠ PT_SS_FIRST) and (EPCM(DS:RCX).PT ≠ PT_SS_REST))

THEN #PF(DS:RCX); FI;

TMP_SECS := Get_SECS_ADDRESS();

IF (DS:RBX does not resolve to TMP_SECS)
THEN #GP(0); FI;

(* make sure no other instruction is accessing MRENCLAVE or ATTRIBUTES.INIT *)
IF ((Other instruction accessing MRENCLAVE) or (Other instructions checking or updating the initialized state of the SECS))

Table 40-23. Additional Concurrency Restrictions of EEXTEND

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK

Access On Conflict Access On Conflict Access On Conflict

EEXTEND Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX] Concurrent Exclusive #GP Concurrent

Name Type Size (Bits) Description

TMP_SECS 64 Physical address of SECS of the enclave to which source operand belongs.

TMP_ENCLAVEOFFS
ET

Enclave Offset 64 The page displacement from the enclave base address.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.
EEXTEND—Extend Uninitialized Enclave Measurement by 256 Bytes Vol. 3D 40-39

INTEL® SGX INSTRUCTION REFERENCES
THEN #GP(0); FI;

(* Calculate enclave offset *)
TMP_ENCLAVEOFFSET := EPCM(DS:RCX).ENCLAVEADDRESS - TMP_SECS.BASEADDR;
TMP_ENCLAVEOFFSET := TMP_ENCLAVEOFFSET + (DS:RCX & 0FFFH)

(* Add EEXTEND message and offset to MRENCLAVE *)
TMPUPDATEFIELD[63:0] := 00444E4554584545H; // “EEXTEND”
TMPUPDATEFIELD[127:64] := TMP_ENCLAVEOFFSET;
TMPUPDATEFIELD[511:128] := 0; // 48 bytes
TMP_SECS.MRENCLAVE := SHA256UPDATE(TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’s MRENCLAVE update counter;

(*Add 256 bytes to MRENCLAVE, 64 byte at a time *)
TMP_SECS.MRENCLAVE := SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[511:0]);
TMP_SECS.MRENCLAVE := SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[1023: 512]);
TMP_SECS.MRENCLAVE := SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[1535: 1024]);
TMP_SECS.MRENCLAVE := SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[2047: 1536]);
INC enclave’s MRENCLAVE update counter by 4;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If the address in RBX is outside the DS segment limit.
If RBX points to an SECS page which is not the SECS of the data chunk.
If the address in RCX is outside the DS segment limit.
If RCX points to a memory location not 256Byte-aligned.
If another instruction is accessing MRENCLAVE.
If another instruction is checking or updating the SECS.
If the enclave is already initialized.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RBX points to a non-EPC page.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

64-Bit Mode Exceptions

#GP(0) If RBX is non-canonical form.
If RBX points to an SECS page which is not the SECS of the data chunk.
If RCX is non-canonical form.
If RCX points to a memory location not 256 Byte-aligned.
If another instruction is accessing MRENCLAVE.
If another instruction is checking or updating the SECS.
If the enclave is already initialized.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RBX points to a non-EPC page.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.
EEXTEND—Extend Uninitialized Enclave Measurement by 256 Bytes40-40 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
EINIT—Initialize an Enclave for Execution

Instruction Operand Encoding

Description

This leaf function is the final instruction executed in the enclave build process. After EINIT, the MRENCLAVE
measurement is complete, and the enclave is ready to start user code execution using the EENTER instruction.
EINIT takes the effective address of a SIGSTRUCT and EINITTOKEN. The SIGSTRUCT describes the enclave
including MRENCLAVE, ATTRIBUTES, ISVSVN, a 3072 bit RSA key, and a signature using the included key.
SIGSTRUCT must be populated with two values, q1 and q2. These are calculated using the formulas shown below:
q1 = floor(Signature2 / Modulus);
q2 = floor((Signature3 - q1 * Signature * Modulus) / Modulus);
The EINITTOKEN contains the MRENCLAVE, MRSIGNER, and ATTRIBUTES. These values must match the corre-
sponding values in the SECS. If the EINITTOKEN was created with a debug launch key, the enclave must be in
debug mode as well.

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 02H
ENCLS[EINIT]

IR V/V SGX1 This leaf function initializes the enclave and makes it ready to
execute enclave code.

Op/En EAX RBX RCX RDX

IR EINIT (In) Error code (Out) Address of SIGSTRUCT (In) Address of SECS (In) Address of EINITTOKEN (In)

Figure 40-1. Relationships Between SECS, SIGSTRUCT, and EINITTOKEN

MRSIGNER

ATTRIBUTES
MRENCLAVE

Hashed

Check

If VALID=1, Check

Signature

ATTRIBUTES

PubKey

ATTRIBUTEMASK
MRENCLAVE

SIGSTRUCT

Verify

DS:RBX

EINIT

SECS

ENCLAVE

EPC

ATTRIBUTES
MRENCLAVE

MRSIGNER

If VALID=1,
Check

Copy

DS:RCX
Check

DS:RDX
EINITTOKEN
EINIT—Initialize an Enclave for Execution Vol. 3D 40-41

INTEL® SGX INSTRUCTION REFERENCES
EINIT Memory Parameter Semantics

EINIT performs the following steps, which can be seen in Figure 40-1:

1. Validates that SIGSTRUCT is signed using the enclosed public key.

2. Checks that the completed computation of SECS.MRENCLAVE equals SIGSTRUCT.HASHENCLAVE.

3. Checks that no controlled ATTRIBUTES bits are set in SIGSTRUCT.ATTRIBUTES unless the SHA256 digest of
SIGSTRUCT.MODULUS equals IA32_SGX_LEPUBKEYHASH.

4. Checks that the result of bitwise and-ing SIGSTRUCT.ATTRIBUTEMASK with SIGSTRUCT.ATTRIBUTES equals
the result of bitwise and-ing SIGSTRUCT.ATTRIBUTEMASK with SECS.ATTRIBUTES.

5. If EINITTOKEN.VALID is 0, checks that the SHA256 digest of SIGSTRUCT.MODULUS equals IA32_SGX_LEPUB-
KEYHASH.

6. If EINITTOKEN.VALID is 1, checks the validity of EINITTOKEN.

7. If EINITTOKEN.VALID is 1, checks that EINITTOKEN.MRENCLAVE equals SECS.MRENCLAVE.

8. If EINITTOKEN.VALID is 1 and EINITTOKEN.ATTRIBUTES.DEBUG is 1, SECS.ATTRIBUTES.DEBUG must be 1.

9. Commits SECS.MRENCLAVE, and sets SECS.MRSIGNER, SECS.ISVSVN, and SECS.ISVPRODID based on
SIGSTRUCT.

10. Update the SECS as Initialized.
Periodically, EINIT polls for certain asynchronous events. If such an event is detected, it completes with failure code
(ZF=1 and RAX = SGX_UNMASKED_EVENT), and RIP is incremented to point to the next instruction. These events
includes external interrupts, non-maskable interrupts, system-management interrupts, machine checks, INIT
signals, and the VMX-preemption timer. EINIT does not fail if the pending event is inhibited (e.g., external inter-
rupts could be inhibited due to blocking by MOV SS blocking or by STI).
The following bits in RFLAGS are cleared: CF, PF, AF, OF, and SF. When the instruction completes with an error,
RFLAGS.ZF is set to 1, and the corresponding error bit is set in RAX. If no error occurs, RFLAGS.ZF is cleared and
RAX is set to 0.
The error codes are:

SIGSTRUCT SECS EINITTOKEN

 Access by non-Enclave Read/Write access by Enclave Access by non-Enclave

Table 40-24. EINIT Return Value in RAX
 Error Code (see Table 40-3) Description

No Error EINIT successful.

SGX_INVALID_SIG_STRUCT If SIGSTRUCT contained an invalid value.

SGX_INVALID_ATTRIBUTE If SIGSTRUCT contains an unauthorized attributes mask.

SGX_INVALID_MEASUREMENT If SIGSTRUCT contains an incorrect measurement.
If EINITTOKEN contains an incorrect measurement.

SGX_INVALID_SIGNATURE If signature does not validate with enclosed public key.

SGX_INVALID_LICENSE If license is invalid.

SGX_INVALID_CPUSVN If license SVN is unsupported.

SGX_UNMASKED_EVENT If an unmasked event is received before the instruction completes its operation.
EINIT—Initialize an Enclave for Execution40-42 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
Concurrency Restrictions

Operation

Temp Variables in EINIT Operational Flow

(* make sure SIGSTRUCT and SECS are aligned *)
IF ((DS:RBX is not 4KByte Aligned) or (DS:RCX is not 4KByte Aligned))

THEN #GP(0); FI;

(* make sure the EINITTOKEN is aligned *)
IF (DS:RDX is not 512Byte Aligned)

THEN #GP(0); FI;

(* make sure the SECS is inside the EPC *)
IF (DS:RCX does not resolve within an EPC)

THEN #PF(DS:RCX); FI;

TMP_SIG[14463:0] := DS:RBX[14463:0]; // 1808 bytes
TMP_TOKEN[2423:0] := DS:RDX[2423:0]; // 304 bytes

Table 40-25. Base Concurrency Restrictions of EINIT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict

EINIT SECS [DS:RCX] Shared #GP

Table 40-26. Additional Concurrency Restrictions of ENIT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK

Access On Conflict Access On Conflict Access On Conflict

EINIT SECS [DS:RCX] Concurrent Exclusive #GP Concurrent

Name Type Size Description

TMP_SIG SIGSTRUCT 1808Bytes Temp space for SIGSTRUCT.

TMP_TOKEN EINITTOKEN 304Bytes Temp space for EINITTOKEN.

TMP_MRENCLAVE 32Bytes Temp space for calculating MRENCLAVE.

TMP_MRSIGNER 32Bytes Temp space for calculating MRSIGNER.

CONTROLLED_ATTRIBU
TES

ATTRIBUTES 16Bytes Constant mask of all ATTRIBUTE bits that can only be set for authorized
enclaves.

TMP_KEYDEPENDENCIE
S

Buffer 224Bytes Temp space for key derivation.

TMP_EINITTOKENKEY 16Bytes Temp space for the derived EINITTOKEN Key.

TMP_SIG_PADDING PKCS Padding
Buffer

352Bytes The value of the top 352 bytes from the computation of Signature3
modulo MRSIGNER.
EINIT—Initialize an Enclave for Execution Vol. 3D 40-43

INTEL® SGX INSTRUCTION REFERENCES
(* Verify SIGSTRUCT Header. *)
IF ((TMP_SIG.HEADER ≠ 06000000E10000000000010000000000h) or

((TMP_SIG.VENDOR ≠ 0) and (TMP_SIG.VENDOR ≠ 00008086h)) or
(TMP_SIG HEADER2 ≠ 01010000600000006000000001000000h) or
(TMP_SIG.EXPONENT ≠ 00000003h) or (Reserved space is not 0’s))
THEN

RFLAGS.ZF := 1;
RAX := SGX_INVALID_SIG_STRUCT;
GOTO EXIT;

FI;

(* Open “Event Window” Check for Interrupts. Verify signature using embedded public key, q1, and q2. Save upper 352 bytes of the
PKCS1.5 encoded message into the TMP_SIG_PADDING*)
IF (interrupt was pending) THEN

RFLAGS.ZF := 1;
RAX := SGX_UNMASKED_EVENT;
GOTO EXIT;

FI
IF (signature failed to verify) THEN

RFLAGS.ZF := 1;
RAX := SGX_INVALID_SIGNATURE;
GOTO EXIT;

FI;
(*Close “Event Window” *)

(* make sure no other Intel SGX instruction is modifying SECS*)
IF (Other instructions modifying SECS)

THEN #GP(0); FI;

IF ((EPCM(DS:RCX). VALID = 0) or (EPCM(DS:RCX).PT ≠ PT_SECS))
THEN #PF(DS:RCX); FI;

(* Verify ISVFAMILYID is not used on an enclave with KSS disabled *)
IF ((TMP_SIG.ISVFAMILYID != 0) AND (DS:RCX.ATTRIBUTES.KSS == 0))

THEN
 RFLAGS.ZF := 1;
 RAX := SGX_INVALID_SIG_STRUCT;
 GOTO EXIT;
FI;

(* make sure no other instruction is accessing MRENCLAVE or ATTRIBUTES.INIT *)
IF ((Other instruction modifying MRENCLAVE) or (Other instructions modifying the SECS’s Initialized state))

THEN #GP(0); FI;

(* Calculate finalized version of MRENCLAVE *)
(* SHA256 algorithm requires one last update that compresses the length of the hashed message into the output SHA256 digest *)
TMP_ENCLAVE := SHA256FINAL((DS:RCX).MRENCLAVE, enclave’s MRENCLAVE update count *512);

(* Verify MRENCLAVE from SIGSTRUCT *)
IF (TMP_SIG.ENCLAVEHASH ≠ TMP_MRENCLAVE)

RFLAGS.ZF := 1;
RAX := SGX_INVALID_MEASUREMENT;
GOTO EXIT;

FI;
EINIT—Initialize an Enclave for Execution40-44 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
TMP_MRSIGNER := SHA256(TMP_SIG.MODULUS)

(* if controlled ATTRIBUTES are set, SIGSTRUCT must be signed using an authorized key *)
CONTROLLED_ATTRIBUTES := 0000000000000020H;
IF (((DS:RCX.ATTRIBUTES & CONTROLLED_ATTRIBUTES) ≠ 0) and (TMP_MRSIGNER ≠ IA32_SGXLEPUBKEYHASH))

RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;

(* Verify SIGSTRUCT.ATTRIBUTE requirements are met *)
IF ((DS:RCX.ATTRIBUTES & TMP_SIG.ATTRIBUTEMASK) ≠ (TMP_SIG.ATTRIBUTE & TMP_SIG.ATTRIBUTEMASK))

RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;

(*Verify SIGSTRUCT.MISCSELECT requirements are met *)
IF ((DS:RCX.MISCSELECT & TMP_SIG.MISCMASK) ≠ (TMP_SIG.MISCSELECT & TMP_SIG.MISCMASK))

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;

GOTO EXIT
FI;

IF (CPUID.12H.01H:EAX[6] = 1)
IF (DS:RCX.CET_ATTRIBUTES & TMP_SIG.CET_ATTRIBUTES_MASK ≠ TMP_SIG.CET_ATTRIBUTES &
 TMP_SIG.CET_ATTRIB-UTES_MASK)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;
GOTO EXIT

FI;
FI;

(* If EINITTOKEN.VALID[0] is 0, verify the enclave is signed by an authorized key *)
IF (TMP_TOKEN.VALID[0] = 0)

IF (TMP_MRSIGNER ≠ IA32_SGXLEPUBKEYHASH)
RFLAGS.ZF := 1;
RAX := SGX_INVALID_EINITTOKEN;
GOTO EXIT;

FI;
GOTO COMMIT;

FI;

(* Debug Launch Enclave cannot launch Production Enclaves *)
IF ((DS:RDX.MASKEDATTRIBUTESLE.DEBUG = 1) and (DS:RCX.ATTRIBUTES.DEBUG = 0))

RFLAGS.ZF := 1;
RAX := SGX_INVALID_EINITTOKEN;
GOTO EXIT;

FI;
EINIT—Initialize an Enclave for Execution Vol. 3D 40-45

INTEL® SGX INSTRUCTION REFERENCES
(* Check reserve space in EINIT token includes reserved regions and upper bits in valid field *)
IF (TMP_TOKEN reserved space is not clear)

RFLAGS.ZF := 1;
RAX := SGX_INVALID_EINITTOKEN;
GOTO EXIT;

FI;

(* EINIT token must not have been created by a configuration beyond the current CPU configuration *)
IF (TMP_TOKEN.CPUSVN must not be a configuration beyond CR_CPUSVN)

RFLAGS.ZF := 1;
RAX := SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;

(* Derive Launch key used to calculate EINITTOKEN.MAC *)
HARDCODED_PKCS1_5_PADDING[15:0] := 0100H;
HARDCODED_PKCS1_5_PADDING[2655:16] := SignExtend330Byte(-1); // 330 bytes of 0FFH
HARDCODED_PKCS1_5_PADDING[2815:2656] := 2004000501020403650148866009060D30313000H;

TMP_KEYDEPENDENCIES.KEYNAME := EINITTOKEN_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := 0;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := 0;
TMP_KEYDEPENDENCIES.ISVPRODID := TMP_TOKEN.ISVPRODIDLE;
TMP_KEYDEPENDENCIES.ISVSVN := TMP_TOKEN.ISVSVNLE;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := CR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES := TMP_TOKEN.MASKEDATTRIBUTESLE;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := 0;
TMP_KEYDEPENDENCIES.MRENCLAVE := 0;
TMP_KEYDEPENDENCIES.MRSIGNER := IA32_SGXLEPUBKEYHASH;
TMP_KEYDEPENDENCIES.KEYID := TMP_TOKEN.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN := TMP_TOKEN.CPUSVNLE;
TMP_KEYDEPENDENCIES.MISCSELECT := TMP_TOKEN.MASKEDMISCSELECTLE;
TMP_KEYDEPENDENCIES.MISCMASK := 0;
TMP_KEYDEPENDENCIES.PADDING := HARDCODED_PKCS1_5_PADDING;
TMP_KEYDEPENDENCIES.KEYPOLICY := 0;
TMP_KEYDEPENDENCIES.CONFIGID := 0;
TMP_KEYDEPENDENCIES.CONFIGSVN := 0;
IF (CPUID.12H.01H:EAX[6] = 1))

TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := TMP_TOKEN.CET_MASKED_ATTRIBUTES_ LE;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES_MASK := 0;

FI;

(* Calculate the derived key*)
TMP_EINITTOKENKEY := derivekey(TMP_KEYDEPENDENCIES);

(* Verify EINITTOKEN was generated using this CPU's Launch key and that it has not been modified since issuing by the Launch
Enclave. Only 192 bytes of EINITTOKEN are CMACed *)
IF (TMP_TOKEN.MAC ≠ CMAC(TMP_EINITTOKENKEY, TMP_TOKEN[1535:0]))

RFLAGS.ZF := 1;
RAX := SGX_INVALID_EINITTOKEN;
GOTO EXIT;

FI;
EINIT—Initialize an Enclave for Execution40-46 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
(* Verify EINITTOKEN (RDX) is for this enclave *)
IF ((TMP_TOKEN.MRENCLAVE ≠ TMP_MRENCLAVE) or (TMP_TOKEN.MRSIGNER ≠ TMP_MRSIGNER))

RFLAGS.ZF := 1;
RAX := SGX_INVALID_MEASUREMENT;
GOTO EXIT;

FI;

(* Verify ATTRIBUTES in EINITTOKEN are the same as the enclave’s *)
IF (TMP_TOKEN.ATTRIBUTES ≠ DS:RCX.ATTRIBUTES)

RFLAGS.ZF := 1;
RAX := SGX_INVALID_EINIT_ATTRIBUTE;
GOTO EXIT;

FI;

COMMIT:
(* Commit changes to the SECS; Set ISVPRODID, ISVSVN, MRSIGNER, INIT ATTRIBUTE fields in SECS (RCX) *)
DS:RCX.MRENCLAVE := TMP_MRENCLAVE;
(* MRSIGNER stores a SHA256 in little endian implemented natively on x86 *)
DS:RCX.MRSIGNER := TMP_MRSIGNER;
DS:RCX.ISVEXTPRODID := TMP_SIG.ISVEXTPRODID;
DS:RCX.ISVPRODID := TMP_SIG.ISVPRODID;
DS:RCX.ISVSVN := TMP_SIG.ISVSVN;
DS:RCX.ISVFAMILYID := TMP_SIG.ISVFAMILYID;
DS:RCX.PADDING := TMP_SIG_PADDING;

(* Mark the SECS as initialized *)
Update DS:RCX to initialized;

(* Set RAX and ZF for success*)
RFLAGS.ZF := 0;
RAX := 0;

EXIT:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

ZF is cleared if successful, otherwise ZF is set and RAX contains the error code. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If a memory operand is not properly aligned.
If another instruction is modifying the SECS.
If the enclave is already initialized.
If the SECS.MRENCLAVE is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If RCX does not resolve in an EPC page.
If the memory address is not a valid, uninitialized SECS.

64-Bit Mode Exceptions

#GP(0) If a memory operand is not properly aligned.
If another instruction is modifying the SECS.
If the enclave is already initialized.
If the SECS.MRENCLAVE is in use.
EINIT—Initialize an Enclave for Execution Vol. 3D 40-47

INTEL® SGX INSTRUCTION REFERENCES
#PF(error code) If a page fault occurs in accessing memory operands.
If RCX does not resolve in an EPC page.
If the memory address is not a valid, uninitialized SECS.
EINIT—Initialize an Enclave for Execution40-48 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
ELDB/ELDU—Load an EPC Page and Mark its State

Instruction Operand Encoding

Description

This leaf function copies a page from regular main memory to the EPC. As part of the copying process, the page is
cryptographically authenticated and decrypted. This instruction can only be executed when current privilege level
is 0.
The ELDB leaf function sets the BLOCK bit in the EPCM entry for the destination page in the EPC after copying. The
ELDU leaf function clears the BLOCK bit in the EPCM entry for the destination page in the EPC after copying.
RBX contains the effective address of a PAGEINFO structure; RCX contains the effective address of the destination
EPC page; RDX holds the effective address of the version array slot that holds the version of the page.
The table below provides additional information on the memory parameter of ELDB/ELDU leaf functions.

ELDB/ELDU Memory Parameter Semantics

The error codes are:

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 07H
ENCLS[ELDB]

IR V/V SGX1 This leaf function loads, verifies an EPC page and marks the page
as blocked.

EAX = 08H
ENCLS[ELDU]

IR V/V SGX1 This leaf function loads, verifies an EPC page and marks the page
as unblocked.

Op/En EAX RBX RCX RDX

IR
ELDB/ELDU

(In)
Return error
code (Out)

Address of the PAGEINFO
(In)

Address of the EPC page
(In)

Address of the version-
array slot (In)

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.PCMD PAGEINFO.SECS EPCPAGE Version-Array Slot

Non-enclave
read access

Non-enclave read
access

Non-enclave read
access

Enclave read/write
access

Read/Write access
permitted by Enclave

Read/Write access per-
mitted by Enclave

Table 40-27. ELDB/ELDU Return Value in RAX
 Error Code (see Table 40-3) Description

No Error ELDB/ELDU successful.

SGX_MAC_COMPARE_FAIL If the MAC check fails.

Table 40-28. Base Concurrency Restrictions of ELDB/ELDU

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict

ELDB/ELDU Target [DS:RCX] Exclusive #GP

VA [DS:RDX] Shared #GP

SECS [DS:RBX]PAGEINFO.SECS Shared #GP
ELDB/ELDU—Load an EPC Page and Mark its State Vol. 3D 40-49

INTEL® SGX INSTRUCTION REFERENCES
Operation

Temp Variables in ELDB/ELDU Operational Flow

(* Check PAGEINFO and EPCPAGE alignment *)
IF ((DS:RBX is not 32Byte Aligned) or (DS:RCX is not 4KByte Aligned))

THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* Check VASLOT alignment *)
IF (DS:RDX is not 8Byte aligned)

THEN #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)
THEN #PF(DS:RDX); FI;

TMP_SRCPGE := DS:RBX.SRCPGE;
TMP_SECS := DS:RBX.SECS;
TMP_PCMD := DS:RBX.PCMD;

(* Check alignment of PAGEINFO (RBX) linked parameters. Note: PCMD pointer is overlaid on top of PAGEINFO.SECINFO field *)
IF ((DS:TMP_PCMD is not 128Byte aligned) or (DS:TMP_SRCPGE is not 4KByte aligned))

THEN #GP(0); FI;

(* Check concurrency of EPC by other Intel SGX instructions *)
IF (other instructions accessing EPC)

Table 40-29. Additional Concurrency Restrictions of ELDB/ELDU

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,
EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND,
EINIT vs. ETRACK

Access On Conflict Access On Conflict Access On Conflict

ELDB/ELDU Target [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.SECS Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_SRCPGE Memory page 4KBytes

TMP_SECS Memory page 4KBytes

TMP_PCMD PCMD 128 Bytes

TMP_HEADER MACHEADER 128 Bytes

TMP_VER UINT64 64

TMP_MAC UINT128 128

TMP_PK UINT128 128 Page encryption/MAC key.

SCRATCH_PCMD PCMD 128 Bytes
ELDB/ELDU—Load an EPC Page and Mark its State40-50 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
THEN
#GP(0); FI;

(* Check concurrency of EPC and VASLOT by other Intel SGX instructions *)
IF (Other instructions modifying VA slot)

THEN
#GP(0); FI;

(* Verify EPCM attributes of EPC page, VA, and SECS *)
IF (EPCM(DS:RCX).VALID = 1)

THEN #PF(DS:RCX); FI;

IF ((EPCM(DS:RDX & ~0FFFH).VALID = 0) or (EPCM(DS:RDX & ~0FFFH).PT ≠ PT_VA))
THEN #PF(DS:RDX); FI;

(* Copy PCMD into scratch buffer *)
SCRATCH_PCMD[1023: 0] := DS:TMP_PCMD[1023:0];

(* Zero out TMP_HEADER*)
TMP_HEADER[sizeof(TMP_HEADER)-1: 0] := 0;

TMP_HEADER.SECINFO := SCRATCH_PCMD.SECINFO;
TMP_HEADER.RSVD := SCRATCH_PCMD.RSVD;
TMP_HEADER.LINADDR := DS:RBX.LINADDR;

(* Verify various attributes of SECS parameter *)
IF ((TMP_HEADER.SECINFO.FLAGS.PT = PT_REG) or (TMP_HEADER.SECINFO.FLAGS.PT = PT_TCS) or

 (TMP_HEADER.SECINFO.FLAGS.PT = PT_TRIM) or
 (TMP_HEADER.SECINFO.FLAGS.PT = PT_SS_FIRST and CPUID.12H.01H:EAX[6] = 1) or
 (TMP_HEADER.SECINFO.FLAGS.PT = PT_SS_REST and CPUID.12H.01H:EAX[6] = 1))

THEN
IF (DS:TMP_SECS is not 4KByte aligned)

THEN #GP(0) FI;
IF (DS:TMP_SECS does not resolve within an EPC)

THEN #PF(DS:TMP_SECS) FI;
IF (Another instruction is currently modifying the SECS)

THEN
#GP(0); Fl;

TMP_HEADER.EID := DS:TMP_SECS.EID;
ELSE

(* TMP_HEADER.SECINFO.FLAGS.PT is PT_SECS or PT_VA which do not have a parent SECS, and hence no EID binding *)
TMP_HEADER.EID := 0;
IF (DS:TMP_SECS ≠ 0)

THEN #GP(0) FI;
FI;

(* Copy 4KBytes SRCPGE to secure location *)
DS:RCX[32767: 0] := DS:TMP_SRCPGE[32767: 0];
TMP_VER := DS:RDX[63:0];

(* Decrypt and MAC page. AES_GCM_DEC has 2 outputs, {plain text, MAC} *)
(* Parameters for AES_GCM_DEC {Key, Counter, ..} *)
{DS:RCX, TMP_MAC} := AES_GCM_DEC(CR_BASE_PK, TMP_VER << 32, TMP_HEADER, 128, DS:RCX, 4096);
ELDB/ELDU—Load an EPC Page and Mark its State Vol. 3D 40-51

INTEL® SGX INSTRUCTION REFERENCES
IF ((TMP_MAC ≠ DS:TMP_PCMD.MAC))
THEN

RFLAGS.ZF := 1;
RAX := SGX_MAC_COMPARE_FAIL;
GOTO ERROR_EXIT;

FI;

(* Clear VA Slot *)
DS:RDX := 0

(* Commit EPCM changes *)
EPCM(DS:RCX).PT := TMP_HEADER.SECINFO.FLAGS.PT;
EPCM(DS:RCX).RWX := TMP_HEADER.SECINFO.FLAGS.RWX;
EPCM(DS:RCX).PENDING := TMP_HEADER.SECINFO.FLAGS.PENDING;
EPCM(DS:RCX).MODIFIED := TMP_HEADER.SECINFO.FLAGS.MODIFIED;
EPCM(DS:RCX).PR := TMP_HEADER.SECINFO.FLAGS.PR;
EPCM(DS:RCX).ENCLAVEADDRESS := TMP_HEADER.LINADDR;

IF ((EAX = 07H) and (TMP_HEADER.SECINFO.FLAGS.PT is NOT PT_SECS or PT_VA))
THEN

EPCM(DS:RCX).BLOCKED := 1;
ELSE

EPCM(DS:RCX).BLOCKED := 0;
FI;

EPCM(DS:RCX). VALID := 1;

RAX := 0;
RFLAGS.ZF := 0;

ERROR_EXIT:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

Sets ZF if unsuccessful, otherwise cleared and RAX returns error code. Clears CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the instruction’s EPC resource is in use by others.
If the instruction fails to verify MAC.
If the version-array slot is in use.
If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand expected to be in EPC does not resolve to an EPC page.
If one of the EPC memory operands has incorrect page type.
If the destination EPC page is already valid.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the instruction’s EPC resource is in use by others.
ELDB/ELDU—Load an EPC Page and Mark its State40-52 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
If the instruction fails to verify MAC.
If the version-array slot is in use.
If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand expected to be in EPC does not resolve to an EPC page.
If one of the EPC memory operands has incorrect page type.
If the destination EPC page is already valid.
ELDB/ELDU—Load an EPC Page and Mark its State Vol. 3D 40-53

INTEL® SGX INSTRUCTION REFERENCES
EMODPR—Restrict the Permissions of an EPC Page

Instruction Operand Encoding

Description

This leaf function restricts the access rights associated with an EPC page in an initialized enclave. THE RWX bits of
the SECINFO parameter are treated as a permissions mask; supplying a value that does not restrict the page
permissions will have no effect. This instruction can only be executed when current privilege level is 0.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC page.
The table below provides additional information on the memory parameter of the EMODPR leaf function.

EMODPR Memory Parameter Semantics

The instruction faults if any of the following:

EMODPR Faulting Conditions

The error codes are:

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 0EH
ENCLS[EMODPR]

IR V/V SGX2 This leaf function restricts the access rights associated with a
EPC page in an initialized enclave.

Op/En EAX RBX RCX

IR EMODPR (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE

Read access permitted by Non Enclave Read/Write access permitted by Enclave

The operands are not properly aligned. If unsupported security attributes are set.

The Enclave is not initialized. SECS is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page in the running enclave.

The EPC page is not valid.

Table 40-30. EMODPR Return Value in RAX
 Error Code (see Table 40-3) Description

No Error EMODPR successful.

SGX_PAGE_NOT_MODIFIABLE The EPC page cannot be modified because it is in the PENDING or MODIFIED state.

SGX_EPC_PAGE_CONFLICT Page is being written by EADD, EAUG, ECREATE, ELDU/B, EMODT, or EWB.

Table 40-31. Base Concurrency Restrictions of EMODPR

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict

EMODPR Target [DS:RCX] Shared #GP
EMODPR—Restrict the Permissions of an EPC Page40-54 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EMODPR Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

SCRATCH_SECINFO := DS:RBX;

(* Check for misconfigured SECINFO flags*)
IF ((SCRATCH_SECINFO reserved fields are not zero) or

(SCRATCH_SECINFO.FLAGS.R is 0 and SCRATCH_SECINFO.FLAGS.W is not 0))
THEN #GP(0); FI;

(* Check concurrency with SGX1 or SGX2 instructions on the EPC page *)
IF (SGX1 or other SGX2 instructions accessing EPC page)

THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID is 0)
THEN #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX2 instruction)

THEN
RFLAGS.ZF := 1;
RAX := SGX_EPC_PAGE_CONFLICT;
GOTO DONE;

FI;

IF (EPCM(DS:RCX).PENDING is not 0 or (EPCM(DS:RCX).MODIFIED is not 0))
THEN

RFLAGS.ZF := 1;

Table 40-32. Additional Concurrency Restrictions of EMODPR

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK

Access On Conflict Access On Conflict Access On Conflict

EMODPR Target [DS:RCX] Exclusive SGX_EP-
C_PAGE_CON-
FLICT

Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operand belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.
EMODPR—Restrict the Permissions of an EPC Page Vol. 3D 40-55

INTEL® SGX INSTRUCTION REFERENCES
RAX := SGX_PAGE_NOT_MODIFIABLE;
GOTO DONE;

FI;

IF (EPCM(DS:RCX).PT is not PT_REG)
THEN #PF(DS:RCX); FI;

TMP_SECS := GET_SECS_ADDRESS

IF (TMP_SECS.ATTRIBUTES.INIT = 0)
 THEN #GP(0); FI;

(* Set the PR bit to indicate that permission restriction is in progress *)
EPCM(DS:RCX).PR := 1;

(* Update EPCM permissions *)
EPCM(DS:RCX).R := EPCM(DS:RCX).R & SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W := EPCM(DS:RCX).W & SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X := EPCM(DS:RCX).X & SCRATCH_SECINFO.FLAGS.X;

RFLAGS.ZF := 0;
RAX := 0;

DONE:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

Sets ZF if page is not modifiable or if other SGX2 instructions are executing concurrently, otherwise cleared. Clears
CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
EMODPR—Restrict the Permissions of an EPC Page40-56 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
EMODT—Change the Type of an EPC Page

Instruction Operand Encoding

Description

This leaf function modifies the type of an EPC page. The security attributes are configured to prevent access to the
EPC page at its new type until a corresponding invocation of the EACCEPT leaf confirms the modification. This
instruction can only be executed when current privilege level is 0.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of the EMODT leaf function.

EMODT Memory Parameter Semantics

The instruction faults if any of the following:

EMODT Faulting Conditions

The error codes are:

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 0FH
ENCLS[EMODT]

IR V/V SGX2 This leaf function changes the type of an existing EPC page.

Op/En EAX RBX RCX

IR EMODT (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE

Read access permitted by Non Enclave Read/Write access permitted by Enclave

The operands are not properly aligned. If unsupported security attributes are set.

The Enclave is not initialized. SECS is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page in the running enclave.

The EPC page is not valid.

Table 40-33. EMODT Return Value in RAX
 Error Code (see Table 40-3) Description

No Error EMODT successful.

SGX_PAGE_NOT_MODIFIABLE The EPC page cannot be modified because it is in the PENDING or MODIFIED state.

SGX_EPC_PAGE_CONFLICT Page is being written by EADD, EAUG, ECREATE, ELDU/B, EMODPR, or EWB.

Table 40-34. Base Concurrency Restrictions of EMODT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict

EMODT Target [DS:RCX] Exclusive SGX_EPC_PAGE_CONFLICT
EMODT—Change the Type of an EPC Page Vol. 3D 40-57

INTEL® SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EMODT Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

SCRATCH_SECINFO := DS:RBX;

(* Check for misconfigured SECINFO flags*)
IF ((SCRATCH_SECINFO reserved fields are not zero) or

!(SCRATCH_SECINFO.FLAGS.PT is PT_TCS or SCRATCH_SECINFO.FLAGS.PT is PT_TRIM))
THEN #GP(0); FI;

(* Check concurrency with SGX1 instructions on the EPC page *)
IF (other SGX1 instructions accessing EPC page)

THEN
RFLAGS.ZF := 1;
RAX := SGX_EPC_PAGE_CONFLICT;
GOTO DONE;

FI;

IF (EPCM(DS:RCX).VALID is 0)
THEN #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX2 instruction)

THEN
RFLAGS.ZF := 1;
RAX := SGX_EPC_PAGE_CONFLICT;
GOTO DONE;

FI;

Table 40-35. Additional Concurrency Restrictions of EMODT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK

Access On Conflict Access On Conflict Access On Conflict

EMODT Target [DS:RCX] Exclusive SGX_EP-
C_PAGE_CON-
FLICT

Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operand belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.
EMODT—Change the Type of an EPC Page40-58 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
IF (!(EPCM(DS:RCX).PT is PT_REG or
((EPCM(DS:RCX).PT is PT_TCS or PT_SS_FIRST or PT_SS_REST) and SCRATCH_SECINFO.FLAGS.PT is PT_TRIM)))

THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).PENDING is not 0 or (EPCM(DS:RCX).MODIFIED is not 0))
THEN

RFLAGS.ZF := 1;
RAX := SGX_PAGE_NOT_MODIFIABLE;
GOTO DONE;

FI;

TMP_SECS := GET_SECS_ADDRESS

IF (TMP_SECS.ATTRIBUTES.INIT = 0)
THEN #GP(0); FI;

(* Update EPCM fields *)
EPCM(DS:RCX).PR := 0;
EPCM(DS:RCX).MODIFIED := 1;
EPCM(DS:RCX).R := 0;
EPCM(DS:RCX).W := 0;
EPCM(DS:RCX).X := 0;
EPCM(DS:RCX).PT := SCRATCH_SECINFO.FLAGS.PT;

RFLAGS.ZF := 0;
RAX := 0;

DONE:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

Sets ZF if page is not modifiable or if other SGX2 instructions are executing concurrently, otherwise cleared. Clears
CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
EMODT—Change the Type of an EPC Page Vol. 3D 40-59

INTEL® SGX INSTRUCTION REFERENCES
EPA—Add Version Array

Instruction Operand Encoding

Description

This leaf function creates an empty version array in the EPC page whose logical address is given by DS:RCX, and
sets up EPCM attributes for that page. At the time of execution of this instruction, the register RBX must be set to
PT_VA.
The table below provides additional information on the memory parameter of EPA leaf function.

EPA Memory Parameter Semantics

Concurrency Restrictions

Operation

IF (RBX ≠ PT_VA or DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* Check concurrency with other Intel SGX instructions *)
IF (Other Intel SGX instructions accessing the page)

THEN
#GP(0); FI;

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 0AH
ENCLS[EPA]

IR V/V SGX1 This leaf function adds a Version Array to the EPC.

Op/En EAX RBX RCX

IR EPA (In) PT_VA (In, Constant) Effective address of the EPC page (In)

EPCPAGE

Write access permitted by Enclave

Table 40-36. Base Concurrency Restrictions of EPA

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict

EPA VA [DS:RCX] Exclusive #GP

Table 40-37. Additional Concurrency Restrictions of EPA

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK

Access On Conflict Access On Conflict Access On Conflict

EPA VA [DS:RCX] Concurrent L Concurrent Concurrent
EPA—Add Version Array40-60 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
(* Check EPC page must be empty *)
IF (EPCM(DS:RCX). VALID ≠ 0)

THEN #PF(DS:RCX); FI;

(* Clears EPC page *)
DS:RCX[32767:0] := 0;

EPCM(DS:RCX).PT := PT_VA;
EPCM(DS:RCX).ENCLAVEADDRESS := 0;
EPCM(DS:RCX).BLOCKED := 0;
EPCM(DS:RCX).PENDING := 0;
EPCM(DS:RCX).MODIFIED := 0;
EPCM(DS:RCX).PR := 0;
EPCM(DS:RCX).RWX := 0;
EPCM(DS:RCX).VALID := 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the EPC page.
If RBX is not set to PT_VA.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If the EPC page is valid.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the EPC page.
If RBX is not set to PT_VA.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If the EPC page is valid.
EPA—Add Version Array Vol. 3D 40-61

INTEL® SGX INSTRUCTION REFERENCES
EREMOVE—Remove a page from the EPC

Instruction Operand Encoding

Description

This leaf function causes an EPC page to be un-associated with its SECS and be marked as unused. This instruction
leaf can only be executed when the current privilege level is 0.
The content of RCX is an effective address of an EPC page. The DS segment is used to create linear address.
Segment override is not supported.
The instruction fails if the operand is not properly aligned or does not refer to an EPC page or the page is in use by
another thread, or other threads are running in the enclave to which the page belongs. In addition the instruction
fails if the operand refers to an SECS with associations.

EREMOVE Memory Parameter Semantics

The instruction faults if any of the following:

EREMOVE Faulting Conditions

The error codes are:

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 03H
ENCLS[EREMOVE]

IR V/V SGX1 This leaf function removes a page from the EPC.

Op/En EAX RCX

IR EREMOVE (In) Return error code (Out) Effective address of the EPC page (In)

EPCPAGE

Write access permitted by Enclave

The memory operand is not properly aligned. The memory operand does not resolve in an EPC page.

Refers to an invalid SECS. Refers to an EPC page that is locked by another thread.

Another Intel SGX instruction is accessing the EPC page. RCX does not contain an effective address of an EPC page.

the EPC page refers to an SECS with associations.

Table 40-38. EREMOVE Return Value in RAX
 Error Code (see Table 40-3) Description

No Error EREMOVE successful.

SGX_CHILD_PRESENT If the SECS still have enclave pages loaded into EPC.

SGX_ENCLAVE_ACT If there are still logical processors executing inside the enclave.
EREMOVE—Remove a page from the EPC40-62 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
Concurrency Restrictions

Operation

Temp Variables in EREMOVE Operational Flow

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve to an EPC page)
THEN #PF(DS:RCX); FI;

TMP_SECS := Get_SECS_ADDRESS();

(* Check the EPC page for concurrency *)
IF (EPC page being referenced by another Intel SGX instruction)

THEN
#GP(0); FI;

(* if DS:RCX is already unused, nothing to do*)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PT = PT_TRIM AND EPCM(DS:RCX).MODIFIED = 0))

THEN GOTO DONE;
FI;

IF ((EPCM(DS:RCX).PT = PT_VA) OR
((EPCM(DS:RCX).PT = PT_TRIM) AND (EPCM(DS:RCX).MODIFIED = 0)))
THEN

EPCM(DS:RCX).VALID := 0;
GOTO DONE;

FI;

IF (EPCM(DS:RCX).PT = PT_SECS)
THEN

IF (DS:RCX has an EPC page associated with it)
THEN

Table 40-39. Base Concurrency Restrictions of EREMOVE

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict

EREMOVE Target [DS:RCX] Exclusive #GP

Table 40-40. Additional Concurrency Restrictions of EREMOVE

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK

Access On Conflict Access On Conflict Access On Conflict

EREMOVE Target [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.
EREMOVE—Remove a page from the EPC Vol. 3D 40-63

INTEL® SGX INSTRUCTION REFERENCES
RFLAGS.ZF := 1;
RAX := SGX_CHILD_PRESENT;
GOTO ERROR_EXIT;

FI;
EPCM(DS:RCX).VALID := 0;
GOTO DONE;

FI;

IF (Other threads active using SECS)
THEN

RFLAGS.ZF := 1;
RAX := SGX_ENCLAVE_ACT;
GOTO ERROR_EXIT;

FI;

IF ((EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM) or
(EPCM(DS:RCX).PT is PT_SS_FIRST) or (EPCM(DS:RCX).PT is PT_SS_REST))

THEN
EPCM(DS:RCX).VALID := 0;
GOTO DONE;

FI;

DONE:
RAX := 0;
RFLAGS.ZF := 0;

ERROR_EXIT:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

Sets ZF if unsuccessful, otherwise cleared and RAX returns error code. Clears CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the page.

#PF(error code) If a page fault occurs in accessing memory operands.
If the memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If the memory operand is non-canonical form.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the page.

#PF(error code) If a page fault occurs in accessing memory operands.
If the memory operand is not an EPC page.
EREMOVE—Remove a page from the EPC40-64 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
ETRACK—Activates EBLOCK Checks

Instruction Operand Encoding

Description

This leaf function provides the mechanism for hardware to track that software has completed the required TLB
address clears successfully. The instruction can only be executed when the current privilege level is 0.
The content of RCX is an effective address of an EPC page.
The table below provides additional information on the memory parameter of ETRACK leaf function.

ETRACK Memory Parameter Semantics

The error codes are:

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 0CH
ENCLS[ETRACK]

IR V/V SGX1 This leaf function activates EBLOCK checks.

Op/En EAX RCX

IR ETRACK (In) Return error code (Out) Pointer to the SECS of the EPC page (In)

EPCPAGE

Read/Write access permitted by Enclave

Table 40-41. ETRACK Return Value in RAX
 Error Code (see Table 40-3) Description

No Error ETRACK successful.

SGX_PREV_TRK_INCMPL All processors did not complete the previous shoot-down sequence.

Table 40-42. Base Concurrency Restrictions of ETRACK

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict

ETRACK SECS [DS:RCX] Shared #GP

Table 40-43. Additional Concurrency Restrictions of ETRACK

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT vs. EADD, EEXTEND, EINIT vs. ETRACK

Access On Conflict Access On Conflict Access On Conflict

ETRACK SECS [DS:RCX] Concurrent Concurrent Exclusive SGX_EP-
C_PAGE_CON-
FLICT
ETRACK—Activates EBLOCK Checks Vol. 3D 40-65

INTEL® SGX INSTRUCTION REFERENCES
Operation

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* Check concurrency with other Intel SGX instructions *)
IF (Other Intel SGX instructions using tracking facility on this SECS)

THEN
#GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)
THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).PT ≠ PT_SECS)
THEN #PF(DS:RCX); FI;

(* All processors must have completed the previous tracking cycle*)
IF ((DS:RCX).TRACKING ≠ 0))

THEN
RFLAGS.ZF := 1;
RAX := SGX_PREV_TRK_INCMPL;
GOTO DONE;

ELSE
RAX := 0;
RFLAGS.ZF := 0;

FI;

DONE:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

Sets ZF if SECS is in use or invalid, otherwise cleared. Clears CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If another thread is concurrently using the tracking facility on this SECS.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
ETRACK—Activates EBLOCK Checks40-66 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
EUPDATESVN—Update CR_CPUSVN

Description

If EPC is ready for SVN update, this leaf function updates CR_CPUSVN to the currently loaded microcode update
SVN and generates new cryptographic assets. The EPC is ready when no page in the EPC is valid. EREMOVE should
be used to mark all pages as unused.
It is the responsibility of system software to ensure that no other thread is executing or attempts to execute any
ENCLS leaf while executing EUPDATESVN. Concurrency violations between EUPDATESVN and some ENCLS leaves
may cause the ENCLS leaf to generate #GP(0) in ways unexpected to legacy software. System software should also
prevent unnecessary software from having access to EUPDATESVN. For example, enable ENCLS exiting should be
used to prevent VMs that are not part of the management system software from using EUPDATESVN.
The EUPDATESVN leaf function fails if an ENCLS instruction is in progress on any thread, the EPC is not ready for
an update, or there is insufficient entropy in the random number generator. The ZF flag will be set to indicate an
error and a code returned in RAX. If EUPDATESVN was successful but CR_CPUSVN was already up to date, the CF
flag will be set and RAX will indicate that no update occurred.
If insufficient entropy causes a failure, software should repeat the instruction.

The error codes are:

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 18H
ENCLS[EUPDATESVN]

None V/V Bit 10 This leaf function updates the CR_CPUSVN if microcode has been
updated and EPC is ready.

Table 40-44. EUPDATESVN Return Value in RAX
 Error Code (see Table 40-3) Value Description

No Error 0 EUPDATESVN successful.

SGX_EPC_PAGE_CONFLICT 7 An instruction concurrency rule was violated.

SGX_INSUFFICIENT_ENTROPY 29 RNG contains insufficient entropy.

SGX_EPC_NOT_READY 30 EPC is not ready for SVN update.

SGX_NO_UPDATE 31 EUPDATESVN was successful, but CR_CPUSVN was not updated because
the current SVN is older than CR_CPUSVN.

Table 40-45. Base Concurrency Restrictions of EUPDATESVN

Leaf
Base Concurrency Restrictions

Access On Conflict

EUPDATESVN Exclusive SGX_EPC_PAGE_CONFLICT

Table 40-46. Additional Concurrency Restrictions of EUPDATESVN

Leaf

Additional Concurrency Restrictions

vs. EADD, EAUG, ECREATE, ELDB, EPA, EREMOVE, EWB

Access On Conflict

EUPDATESVN Exclusive SGX_EPC_PAGE_CONFLICT
EUPDATESVN—Update CR_CPUSVN Vol. 3D 40-67

INTEL® SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EUPDATESVN Operational Flow

IF (Other instruction is accessing EPC) THEN
RFLAGS.ZF := 1
RAX := SGX_EPC_PAGE_CONFLICT;
GOTO ERROR_EXIT;

FI

(* Verify EPC is ready *)
IF (the EPC contains any valid pages) THEN

RFLAGS.ZF := 1;
RAX := SGX_EPC_NOT_READY;
GOTO ERROR_EXIT;

FI

(* Refresh paging key *)
TMP_KEY = (* Generate a 512-bit cryptographically random number *)
IF (insufficient entropy available) THEN

RFLAGS.ZF := 1;
RAX := SGX_INSUFFICIENT_ENTROPY;
GOTO ERROR_EXIT;

FI

(* Commit *)
TMP_CPUSVN := CR_CPUSVN;

(* Update CR_CPUSVN to reflect current microcode update SVN *)

(* Determine if info status is needed *)
IF (TMP_CPUSVN = CR_CPUSVN) THEN

RFLAGS.CF := 1;
RAX := SGX_NO_UPDATE;

ELSE
THEN

CR_BASE_KEY := TMP_KEY[255:0];
CR_REPORT_MAC_KEY := TMP_KEY[512:256];

FI
ERROR_EXIT:

Flags Affected

ZF is set if an error occurs; otherwise, cleared.
CF is set when the instruction is completed successfully and no SVN update was needed.
PF, AF, OF, and SF are cleared.

Name Type Size (Bytes) Description

TMP_CPUSVN CR_CPUSVN 16 Temporary copy of CR_CPUSVN prior to update.

TMP_KEY Key 64 Temporary copy of new paging key.
EUPDATESVN—Update CR_CPUSVN40-68 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
EWB—Invalidate an EPC Page and Write out to Main Memory

Instruction Operand Encoding

Description

This leaf function copies a page from the EPC to regular main memory. As part of the copying process, the page is
cryptographically protected. This instruction can only be executed when current privilege level is 0.
The table below provides additional information on the memory parameter of EPA leaf function.

EWB Memory Parameter Semantics

The error codes are:

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 0BH
ENCLS[EWB]

IR V/V SGX1 This leaf function invalidates an EPC page and writes it out to
main memory.

Op/En EAX RBX RCX RDX

IR EWB (In) Error code (Out) Address of an PAGEINFO (In) Address of the EPC page (In) Address of a VA slot (In)

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.PCMD EPCPAGE VASLOT

Non-EPC R/W access Non-EPC R/W access Non-EPC R/W access EPC R/W access EPC R/W access

Table 40-47. EWB Return Value in RAX
 Error Code (see Table 40-3) Description

No Error EWB successful.

SGX_PAGE_NOT_BLOCKED If page is not marked as blocked.

SGX_NOT_TRACKED If EWB is racing with ETRACK instruction.

SGX_VA_SLOT_OCCUPIED Version array slot contained valid entry.

SGX_CHILD_PRESENT Child page present while attempting to page out enclave.

Table 40-48. Base Concurrency Restrictions of EWB

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict

EWB Source [DS:RCX] Exclusive #GP

VA [DS:RDX] Shared #GP

Table 40-49. Additional Concurrency Restrictions of EWB

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK

Access On Conflict Access On Conflict Access On Conflict

EWB Source [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Exclusive
EWB—Invalidate an EPC Page and Write out to Main Memory Vol. 3D 40-69

INTEL® SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EWB Operational Flow

IF ((DS:RBX is not 32Byte Aligned) or (DS:RCX is not 4KByte Aligned))
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

IF (DS:RDX is not 8Byte Aligned)
THEN #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)
THEN #PF(DS:RDX); FI;

(* EPCPAGE and VASLOT should not resolve to the same EPC page*)
IF (DS:RCX and DS:RDX resolve to the same EPC page)

THEN #GP(0); FI;

TMP_SRCPGE := DS:RBX.SRCPGE;
(* Note PAGEINFO.PCMD is overlaid on top of PAGEINFO.SECINFO *)
TMP_PCMD := DS:RBX.PCMD;

If (DS:RBX.LINADDR ≠ 0) OR (DS:RBX.SECS ≠ 0)
THEN #GP(0); FI;

IF ((DS:TMP_PCMD is not 128Byte Aligned) or (DS:TMP_SRCPGE is not 4KByte Aligned))
THEN #GP(0); FI;

(* Check for concurrent Intel SGX instruction access to the page *)
IF (Other Intel SGX instruction is accessing page)

THEN
#GP(0); FI;

(*Check if the VA Page is being removed or changed*)
IF (VA Page is being modified)

THEN #GP(0); FI;

Name Type Size (Bytes) Description

TMP_SRCPGE Memory page 4096

TMP_PCMD PCMD 128

TMP_SECS SECS 4096

TMP_BPEPOCH UINT64 8

TMP_BPREFCOUNT UINT64 8

TMP_HEADER MAC Header 128

TMP_PCMD_ENCLAVEID UINT64 8

TMP_VER UINT64 8

TMP_PK UINT128 16
EWB—Invalidate an EPC Page and Write out to Main Memory40-70 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
(* Verify that EPCPAGE and VASLOT page are valid EPC pages and DS:RDX is VA *)
IF (EPCM(DS:RCX).VALID = 0)

THEN #PF(DS:RCX); FI;

IF ((EPCM(DS:RDX & ~0FFFH).VALID = 0) or (EPCM(DS:RDX & ~FFFH).PT is not PT_VA))
THEN #PF(DS:RDX); FI;

(* Perform page-type-specific exception checks *)
IF ((EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM) or
(EPCM(DS:RCX).PT is PT_SS_FIRST) or (EPCM(DS:RCX).PT is PT_SS_REST))

THEN
TMP_SECS = Obtain SECS through EPCM(DS:RCX)

(* Check that EBLOCK has occurred correctly *)
IF (EBLOCK is not correct)

THEN #GP(0); FI;
FI;

RFLAGS.ZF,CF,PF,AF,OF,SF := 0;
RAX := 0;

(* Zero out TMP_HEADER*)
TMP_HEADER[sizeof(TMP_HEADER) - 1 : 0] := 0;

(* Perform page-type-specific checks *)
IF ((EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM)or
(EPCM(DS:RCX).PT is PT_SS_FIRST) or (EPCM(DS:RCX).PT is PT_SS_REST))

THEN
(* check to see if the page is evictable *)
IF (EPCM(DS:RCX).BLOCKED = 0)

THEN
RAX := SGX_PAGE NOT_BLOCKED;
RFLAGS.ZF := 1;
GOTO ERROR_EXIT;

FI;
(* Check if tracking done correctly *)
IF (Tracking not correct)

THEN
RAX := SGX_NOT_TRACKED;
RFLAGS.ZF := 1;
GOTO ERROR_EXIT;

FI;

(* Obtain EID to establish cryptographic binding between the paged-out page and the enclave *)
TMP_HEADER.EID := TMP_SECS.EID;

(* Obtain EID as an enclave handle for software *)
TMP_PCMD_ENCLAVEID := TMP_SECS.EID;

ELSE IF (EPCM(DS:RCX).PT is PT_SECS)
(*check that there are no child pages inside the enclave *)
IF (DS:RCX has an EPC page associated with it)

THEN
RAX := SGX_CHILD_PRESENT;
RFLAGS.ZF := 1;
GOTO ERROR_EXIT;
EWB—Invalidate an EPC Page and Write out to Main Memory Vol. 3D 40-71

INTEL® SGX INSTRUCTION REFERENCES
FI:
TMP_HEADER.EID := 0;
(* Obtain EID as an enclave handle for software *)
TMP_PCMD_ENCLAVEID := (DS:RCX).EID;

ELSE IF (EPCM(DS:RCX).PT is PT_VA)
TMP_HEADER.EID := 0; // Zero is not a special value
(* No enclave handle for VA pages*)
TMP_PCMD_ENCLAVEID := 0;

FI;

TMP_HEADER.LINADDR := EPCM(DS:RCX).ENCLAVEADDRESS;
TMP_HEADER.SECINFO.FLAGS.PT := EPCM(DS:RCX).PT;
TMP_HEADER.SECINFO.FLAGS.RWX := EPCM(DS:RCX).RWX;
TMP_HEADER.SECINFO.FLAGS.PENDING := EPCM(DS:RCX).PENDING;
TMP_HEADER.SECINFO.FLAGS.MODIFIED := EPCM(DS:RCX).MODIFIED;
TMP_HEADER.SECINFO.FLAGS.PR := EPCM(DS:RCX).PR;

(* Encrypt the page, DS:RCX could be encrypted in place. AES-GCM produces 2 values, {ciphertext, MAC}. *)
(* AES-GCM input parameters: key, GCM Counter, MAC_HDR, MAC_HDR_SIZE, SRC, SRC_SIZE)*)
{DS:TMP_SRCPGE, DS:TMP_PCMD.MAC} := AES_GCM_ENC(CR_BASE_PK), (TMP_VER << 32),

TMP_HEADER, 128, DS:RCX, 4096);

(* Write the output *)
Zero out DS:TMP_PCMD.SECINFO
DS:TMP_PCMD.SECINFO.FLAGS.PT := EPCM(DS:RCX).PT;
DS:TMP_PCMD.SECINFO.FLAGS.RWX := EPCM(DS:RCX).RWX;
DS:TMP_PCMD.SECINFO.FLAGS.PENDING := EPCM(DS:RCX).PENDING;
DS:TMP_PCMD.SECINFO.FLAGS.MODIFIED := EPCM(DS:RCX).MODIFIED;
DS:TMP_PCMD.SECINFO.FLAGS.PR := EPCM(DS:RCX).PR;
DS:TMP_PCMD.RESERVED := 0;
DS:TMP_PCMD.ENCLAVEID := TMP_PCMD_ENCLAVEID;
DS:RBX.LINADDR := EPCM(DS:RCX).ENCLAVEADDRESS;

(*Check if version array slot was empty *)
IF ([DS.RDX])

THEN
RAX := SGX_VA_SLOT_OCCUPIED
RFLAGS.CF := 1;

FI;

(* Write version to Version Array slot *)
[DS.RDX] := TMP_VER;

(* Free up EPCM Entry *)
EPCM.(DS:RCX).VALID := 0;
ERROR_EXIT:

Flags Affected

ZF is set if page is not blocked, not tracked, or a child is present. Otherwise cleared.
CF is set if VA slot is previously occupied, Otherwise cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
EWB—Invalidate an EPC Page and Write out to Main Memory40-72 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
If a memory operand is not properly aligned.
If the EPC page and VASLOT resolve to the same EPC page.
If another Intel SGX instruction is concurrently accessing either the target EPC, VA, or SECS
pages.
If the tracking resource is in use.
If the EPC page or the version array page is invalid.
If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If one of the EPC memory operands has incorrect page type.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the EPC page and VASLOT resolve to the same EPC page.
If another Intel SGX instruction is concurrently accessing either the target EPC, VA, or SECS
pages.
If the tracking resource is in use.
If the EPC page or the version array page in invalid.
If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If one of the EPC memory operands has incorrect page type.

40.4 INTEL® SGX USER LEAF FUNCTION REFERENCE
Leaf functions available with the ENCLU instruction mnemonic are covered in this section. In general, each instruc-
tion leaf requires EAX to specify the leaf function index and/or additional registers specifying leaf-specific input
parameters. An instruction operand encoding table provides details of the implicitly-encoded register usage and
associated input/output semantics.
In many cases, an input parameter specifies an effective address associated with a memory object inside or
outside the EPC, the memory addressing semantics of these memory objects are also summarized in a separate
table.
EWB—Invalidate an EPC Page and Write out to Main Memory Vol. 3D 40-73

INTEL® SGX INSTRUCTION REFERENCES
EACCEPT—Accept Changes to an EPC Page

Instruction Operand Encoding

Description

This leaf function accepts changes to a page in the running enclave by verifying that the security attributes speci-
fied in the SECINFO match the security attributes of the page in the EPCM. This instruction leaf can only be
executed when inside the enclave.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC page.
The table below provides additional information on the memory parameter of the EACCEPT leaf function.

EACCEPT Memory Parameter Semantics

The instruction faults if any of the following:

EACCEPT Faulting Conditions

The error codes are:

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 05H
ENCLU[EACCEPT]

IR V/V SGX2 This leaf function accepts changes made by system software to
an EPC page in the running enclave.

Op/En EAX RBX RCX

IR EACCEPT (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE (Destination)

Read access permitted by Non Enclave Read access permitted by Enclave

The operands are not properly aligned. RBX does not contain an effective address in an EPC page in the running enclave.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page in the running enclave.

The EPC page is not valid. Page type is PT_REG and MODIFIED bit is 0.

SECINFO contains an invalid request. Page type is PT_TCS or PT_TRIM and PENDING bit is 0 and MODIFIED bit is 1.

If security attributes of the SECINFO page make
the page inaccessible.

Table 40-50. EACCEPT Return Value in RAX
 Error Code (see Table 40-3) Description

No Error EACCEPT successful.

SGX_PAGE_ATTRIBUTES_MISMATCH The attributes of the target EPC page do not match the expected values.

SGX_NOT_TRACKED The OS did not complete an ETRACK on the target page.
EACCEPT—Accept Changes to an EPC Page40-74 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
Concurrency Restrictions

Operation

Temp Variables in EACCEPT Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF (DS:RBX is not within CR_ELRANGE)
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX &~FFFH).VALID = 0) or (EPCM(DS:RBX &~FFFH).R = 0) or (EPCM(DS:RBX &~FFFH).PENDING ≠ 0) or
(EPCM(DS:RBX &~FFFH).MODIFIED ≠ 0) or (EPCM(DS:RBX &~FFFH).BLOCKED ≠ 0) or
(EPCM(DS:RBX &~FFFH).PT ≠ PT_REG) or (EPCM(DS:RBX &~FFFH).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RBX &~FFFH).ENCLAVEADDRESS ≠ (DS:RBX & FFFH)))
THEN #PF(DS:RBX); FI;

(* Copy 64 bytes of contents *)
SCRATCH_SECINFO := DS:RBX;

(* Check for misconfigured SECINFO flags*)
IF (SCRATCH_SECINFO reserved fields are not zero)

THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

Table 40-51. Base Concurrency Restrictions of EACCEPT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict

EACCEPT Target [DS:RCX] Shared #GP

SECINFO [DS:RBX] Concurrent

Table 40-52. Additional Concurrency Restrictions of EACCEPT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK

Access On Conflict Access On Conflict Access On Conflict

EACCEPT Target [DS:RCX] Exclusive #GP Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operands belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.
EACCEPT—Accept Changes to an EPC Page Vol. 3D 40-75

INTEL® SGX INSTRUCTION REFERENCES
IF (DS:RCX is not within CR_ELRANGE)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* Check that the combination of requested PT, PENDING, and MODIFIED is legal *)
IF (CPUID.12H.01H:EAX[6] = 0)

THEN
IF (NOT (((SCRATCH_SECINFO.FLAGS.PT is PT_REG) and
 ((SCRATCH_SECINFO.FLAGS.PR is 1) or
 (SCRATCH_SECINFO.FLAGS.PENDING is 1)) and
 (SCRATCH_SECINFO.FLAGS.MODIFIED is 0)) or
 ((SCRATCH_SECINFO.FLAGS.PT is PT_TCS or PT_TRIM) and
 (SCRATCH_SECINFO.FLAGS.PR is 0) and
 (SCRATCH_SECINFO.FLAGS.PENDING is 0) and
 (SCRATCH_SECINFO.FLAGS.MODIFIED is 1))))

THEN #GP(0); FI
ELSE

IF (NOT (((SCRATCH_SECINFO.FLAGS.PT is PT_REG) AND
 ((SCRATCH_SECINFO.FLAGS.PR is 1) OR
 (SCRATCH_SECINFO.FLAGS.PENDING is 1)) AND
 (SCRATCH_SECINFO.FLAGS.MODIFIED is 0)) OR
 ((SCRATCH_SECINFO.FLAGS.PT is PT_TCS OR PT_TRIM) AND
 (SCRATCH_SECINFO.FLAGS.PENDING is 0) AND
 (SCRATCH_SECINFO.FLAGS.MODIFIED is 1) AND
 (SCRATCH_SECINFO.FLAGS.PR is 0)) OR
 ((SCRATCH_SECINFO.FLAGS.PT is PT_SS_FIRST or PT_SS_REST) AND
 (SCRATCH_SECINFO.FLAGS.PENDING is 1) AND
 (SCRATCH_SECINFO.FLAGS.MODIFIED is 0) AND
 (SCRATCH_SECINFO.FLAGS.PR is 0))))

THEN #GP(0); FI;
FI;

(* Check security attributes of the destination EPC page *)
IF ((EPCM(DS:RCX).VALID is 0) or (EPCM(DS:RCX).BLOCKED is not 0) or
 ((EPCM(DS:RCX).PT is not PT_REG) and (EPCM(DS:RCX).PT is not PT_TCS) and (EPCM(DS:RCX).PT is not PT_TRIM)
 and (EPCM(DS:RCX).PT is not PT_SS_FIRST) and (EPCM(DS:RCX).PT is not PT_SS_REST)) or
 (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS))

THEN #PF((DS:RCX); FI;

(* Check the destination EPC page for concurrency *)
IF (EPC page in use)

THEN #GP(0); FI;

(* Re-Check security attributes of the destination EPC page *)
IF ((EPCM(DS:RCX).VALID is 0) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS))

THEN #PF(DS:RCX); FI;

(* Verify that accept request matches current EPC page settings *)
IF ((EPCM(DS:RCX).ENCLAVEADDRESS ≠ DS:RCX) or (EPCM(DS:RCX).PENDING ≠ SCRATCH_SECINFO.FLAGS.PENDING) or

(EPCM(DS:RCX).MODIFIED ≠ SCRATCH_SECINFO.FLAGS.MODIFIED) or (EPCM(DS:RCX).R ≠ SCRATCH_SECINFO.FLAGS.R) or
(EPCM(DS:RCX).W ≠ SCRATCH_SECINFO.FLAGS.W) or (EPCM(DS:RCX).X ≠ SCRATCH_SECINFO.FLAGS.X) or
(EPCM(DS:RCX).PT ≠ SCRATCH_SECINFO.FLAGS.PT))
EACCEPT—Accept Changes to an EPC Page40-76 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
THEN
RFLAGS.ZF := 1;
RAX := SGX_PAGE_ATTRIBUTES_MISMATCH;
GOTO DONE;

FI;
(* Check that all required threads have left enclave *)
IF (Tracking not correct)

THEN
RFLAGS.ZF := 1;
RAX := SGX_NOT_TRACKED;
GOTO DONE;

FI;

(* Get pointer to the SECS to which the EPC page belongs *)
TMP_SECS = << Obtain physical address of SECS through EPCM(DS:RCX)>>
(* For TCS pages, perform additional checks *)
IF (SCRATCH_SECINFO.FLAGS.PT = PT_TCS)

THEN
IF (DS:RCX.RESERVED ≠ 0) #GP(0); FI;

(* Check that TCS.FLAGS.DBGOPTIN, TCS stack, and TCS status are correctly initialized *)
(* check that TCS.PREVSSP is 0 *)

IF (((DS:RCX).FLAGS.DBGOPTIN is not 0) or ((DS:RCX).CSSA ≥ (DS:RCX).NSSA) or ((DS:RCX).AEP is not 0) or ((DS:RCX).STATE is not 0) or
((CPUID.07H.00H:ECX.CET_SS = 1) AND ((DS:RCX).PREVSSP != 0)))

THEN #GP(0); FI;

(* Check consistency of FS & GS Limit *)
IF ((TMP_SECS.ATTRIBUTES.MODE64BIT is 0) and ((DS:RCX.FSLIMIT & FFFH ≠ FFFH) or (DS:RCX.GSLIMIT & FFFH ≠ FFFH)))

THEN #GP(0); FI;
FI;

(* Clear PENDING/MODIFIED flags to mark accept operation complete *)
EPCM(DS:RCX).PENDING := 0;
EPCM(DS:RCX).MODIFIED := 0;
EPCM(DS:RCX).PR := 0;

(* Clear EAX and ZF to indicate successful completion *)
RFLAGS.ZF := 0;
RAX := 0;

DONE:
RFLAGS.CF,PF,AF,OF,SF := 0;

Flags Affected

Sets ZF if page cannot be accepted, otherwise cleared. Clears CF, PF, AF, OF, SF
EACCEPT—Accept Changes to an EPC Page Vol. 3D 40-77

INTEL® SGX INSTRUCTION REFERENCES
Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.
EACCEPT—Accept Changes to an EPC Page40-78 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
EACCEPTCOPY—Initialize a Pending Page

Instruction Operand Encoding

Description

This leaf function copies the contents of an existing EPC page into an uninitialized EPC page (created by EAUG).
After initialization, the instruction may also modify the access rights associated with the destination EPC page. This
instruction leaf can only be executed when inside the enclave.
RBX contains the effective address of a SECINFO structure while RCX and RDX each contain the effective address
of an EPC page. The table below provides additional information on the memory parameter of the EACCEPTCOPY
leaf function.

EACCEPTCOPY Memory Parameter Semantics

The instruction faults if any of the following:

EACCEPTCOPY Faulting Conditions

The error codes are:

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 07H
ENCLU[EACCEPTCOPY]

IR V/V SGX2 This leaf function initializes a dynamically allocated EPC page
from another page in the EPC.

Op/En EAX RBX RCX RDX

IR EACCEPTCOPY (In)
Return Error Code

(Out)
Address of a SECINFO (In)

Address of the destina-
tion EPC page (In)

Address of the
source EPC page (In)

SECINFO EPCPAGE (Destination) EPCPAGE (Source)

Read access permitted by Non Enclave Read/Write access permitted by Enclave Read access permitted by Enclave

The operands are not properly aligned. If security attributes of the SECINFO page make the page inaccessible.

The EPC page is locked by another thread. If security attributes of the source EPC page make the page inaccessible.

The EPC page is not valid. RBX does not contain an effective address in an EPC page in the running enclave.

SECINFO contains an invalid request. RCX/RDX does not contain an effective address of an EPC page in the running
enclave.

Table 40-53. EACCEPTCOPY Return Value in RAX
 Error Code (see Table 40-3) Description

No Error EACCEPTCOPY successful.

SGX_PAGE_ATTRIBUTES_MISMATCH The attributes of the target EPC page do not match the expected values.
EACCEPTCOPY—Initialize a Pending Page Vol. 3D 40-79

INTEL® SGX INSTRUCTION REFERENCES
Concurrency Restrictions

Operation

Temp Variables in EACCEPTCOPY Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF ((DS:RCX is not 4KByte Aligned) or (DS:RDX is not 4KByte Aligned))
THEN #GP(0); FI;

IF ((DS:RBX is not within CR_ELRANGE) or (DS:RCX is not within CR_ELRANGE) or (DS:RDX is not within CR_ELRANGE))
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

IF (DS:RDX does not resolve within an EPC)
THEN #PF(DS:RDX); FI;

IF ((EPCM(DS:RBX &~FFFH).VALID = 0) or (EPCM(DS:RBX &~FFFH).R = 0) or (EPCM(DS:RBX &~FFFH).PENDING ≠ 0) or
(EPCM(DS:RBX &~FFFH).MODIFIED ≠ 0) or (EPCM(DS:RBX &~FFFH).BLOCKED ≠ 0) or (EPCM(DS:RBX &~FFFH).PT ≠ PT_REG) or
(EPCM(DS:RBX &~FFFH).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RBX &~FFFH).ENCLAVEADDRESS ≠ DS:RBX))
THEN #PF(DS:RBX); FI;

Table 40-54. Base Concurrency Restrictions of EACCEPTCOPY

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict

EACCEPTCOPY Target [DS:RCX] Concurrent

Source [DS:RDX] Concurrent

SECINFO [DS:RBX] Concurrent

Table 40-55. Additional Concurrency Restrictions of EACCEPTCOPY

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK

Access On Conflict Access On Conflict Access On Conflict

EACCEPTCOPY Target [DS:RCX] Exclusive #GP Concurrent Concurrent

Source [DS:RDX] Concurrent Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

Name Type Size (bits) Description

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.
EACCEPTCOPY—Initialize a Pending Page40-80 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
(* Copy 64 bytes of contents *)
SCRATCH_SECINFO := DS:RBX;

(* Check for misconfigured SECINFO flags*)
IF ((SCRATCH_SECINFO reserved fields are not zero) or (SCRATCH_SECINFO.FLAGS.R=0) AND(SCRATCH_SECINFO.FLAGS.W≠0) or

(SCRATCH_SECINFO.FLAGS.PT is not PT_REG))
THEN #GP(0); FI;

(* Check security attributes of the source EPC page *)
IF ((EPCM(DS:RDX).VALID = 0) or (EPCM(DS:RCX).R = 0) or (EPCM(DS:RDX).PENDING ≠ 0) or (EPCM(DS:RDX).MODIFIED ≠ 0) or

(EPCM(DS:RDX).BLOCKED ≠ 0) or (EPCM(DS:RDX).PT ≠ PT_REG) or (EPCM(DS:RDX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RDX).ENCLAVEADDRESS ≠ DS:RDX))
THEN #PF(DS:RDX); FI;

(* Check security attributes of the destination EPC page *)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 1) or (EPCM(DS:RCX).MODIFIED ≠ 0) or

(EPCM(DS:RDX).BLOCKED ≠ 0) or (EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS))
THEN

RFLAGS.ZF := 1;
RAX := SGX_PAGE_ATTRIBUTES_MISMATCH;
GOTO DONE;

FI;

(* Check the destination EPC page for concurrency *)
IF (destination EPC page in use)

THEN #GP(0); FI;

(* Re-Check security attributes of the destination EPC page *)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 1) or (EPCM(DS:RCX).MODIFIED ≠ 0) or

(EPCM(DS:RCX).R ≠ 1) or (EPCM(DS:RCX).W ≠ 1) or (EPCM(DS:RCX).X ≠ 0) or
(EPCM(DS:RCX).PT ≠ SCRATCH_SECINFO.FLAGS.PT) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RCX).ENCLAVEADDRESS ≠ DS:RCX))
THEN

RFLAGS.ZF := 1;
RAX := SGX_PAGE_ATTRIBUTES_MISMATCH;
GOTO DONE;

FI;

(* Copy 4KBbytes form the source to destination EPC page*)
DS:RCX[32767:0] := DS:RDX[32767:0];

(* Update EPCM permissions *)
EPCM(DS:RCX).R := SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W := SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X := SCRATCH_SECINFO.FLAGS.X;
EPCM(DS:RCX).PENDING := 0;

RFLAGS.ZF := 0;
RAX := 0;

DONE:
RFLAGS.CF,PF,AF,OF,SF := 0;
EACCEPTCOPY—Initialize a Pending Page Vol. 3D 40-81

INTEL® SGX INSTRUCTION REFERENCES
Flags Affected

Sets ZF if page is not modifiable, otherwise cleared. Clears CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.
EACCEPTCOPY—Initialize a Pending Page40-82 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
EDECCSSA—Decrements TCS.CSSA

Instruction Operand Encoding

Description

This leaf function changes the current SSA frame by decrementing TCS.CSSA for the current enclave thread. If the
enclave has enabled CET shadow stacks or indirect branch tracking, then EDECCSSA also changes the current CET
state save frame. This instruction leaf can only be executed inside an enclave.

EDECCSSA Memory Parameter Semantics

The instruction faults if any of the following:

EDECCSSA Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 09H
ENCLU[EDECCSSA]

IR V/V EDECCSSA This leaf function decrements TCS.CSSA.

Op/En EAX

IR EDECCSSA (In)

TCS

Read/Write access by Enclave

TCS.CSSA is 0. TCS is not valid or available or locked.

The SSA frame is not valid or in use.

Table 40-56. Base Concurrency Restrictions of EDECCSSA

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict

EDECCSSA TCS [CR_TCS_PA] Shared #GP

Table 40-57. Additional Concurrency Restrictions of EDECCSSA

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK

Access On Conflict Access On Conflict Access On Conflict

EDECCSSA TCS [CR_TCS_PA] Concurrent Concurrent Concurrent
EDECCSSA—Decrements TCS.CSSA Vol. 3D 40-83

INTEL® SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EDECCSSA Operational Flow

(* Check concurrency of TCS operation *)
IF (Other Intel SGX instructions are operating on TCS)

THEN #GP(0); FI;

IF (CR_TCS_PA.CSSA = 0)
THEN #GP(0); FI;

(* Compute linear address of SSA frame *)
TMP_SSA := CR_TCS_PA.OSSA + CR_ACTIVE_SECS.BASEADDR + 4096 * CR_ACTIVE_SECS.SSAFRAMESIZE * (CR_TCS_PA.CSSA - 1);
TMP_XSIZE := compute_XSAVE_frame_size(CR_ACTIVE_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE
(* Check page is read/write accessible *)
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;
IF (DS:TMP_SSA_PAGE does not resolve to EPC page)

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0)

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1)

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or (EPCM(DS:TMP_SSA_PAGE_.MODIFIED = 1))

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS ≠ DS:TMPSSA_PAGE) or
(EPCM(DS:TMP_SSA_PAGE).PT ≠ PT_REG) or
(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS ≠ EPCM(CR_TCS_PA).ENCLAVESECS) or
(EPCM(DS:TMP_SSA_PAGE).R = 0) or (EPCM(DS:TMP_SSA_PAGE).W = 0))

THEN #PF(DS:TMP_SSA_PAGE); FI;
TMP_XSAVE_PAGE_PA_n := Physical_Address(DS:TMP_SSA_PAGE);

ENDFOR

(* Compute address of GPR area*)
TMP_GPR := TMP_SSA + 4096 * CR_ACTIVE_SECS.SSAFRAMESIZE - sizeof(GPRSGX_AREA);

Name Type Size (bits) Description

TMP_SSA Effective
Address

32/64 Address of current SSA frame.

TMP_XSIZE Integer 64 Size of XSAVE area based on SECS.ATTRIBUTES.XFRM.

TMP_SSA_PAGE Effective
Address

32/64 Pointer used to iterate over the SSA pages in the target frame.

TMP_GPR Effective
Address

32/64 Address of the GPR area within the target SSA frame.

TMP_XSAVE_PAGE_PA_n Physical
Address

32/64 Physical address of the nth page within the target SSA frame.

TMP_CET_SAVE_AREA Effective
Address

32/64 Address of the current CET save area.

TMP_CET_SAVE_PAGE Effective
Address

32/64 Address of the current CET save area page.
EDECCSSA—Decrements TCS.CSSA40-84 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;
IF (DS:TMP_GPR does not resolve to EPC page)

THEN #PF(DS:TMP_GPR); FI;
IF (EPCM(DS:TMP_GPR).VALID = 0)

THEN #PF(DS:TMP_GPR); FI;
IF (EPCM(DS:TMP_GPR).BLOCKED = 1)

THEN #PF(DS:TMP_GPR); FI;
IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))

THEN #PF(DS:TMP_GPR); FI;
IF ((EPCM(DS:TMP_GPR).ENCLAVEADDRESS ≠ DS:TMP_GPR) or

(EPCM(DS:TMP_GPR).PT ≠ PT_REG) or
(EPCM(DS:TMP_GPR).ENCLAVESECS ≠ EPCM(CR_TCS_PA).ENCLAVESECS) or
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0))

THEN #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)
THEN

IF (TMP_GPR + (sizeof(GPRSGX_AREA) -1) is not in DS segment)
THEN #GP(0); FI;

FI;

IF (CPUID.12H.01H:EAX[6] = 1)
THEN

IF ((CR_ACTIVE_SECS.CET_ATTRIBUTES.SH_STK_EN == 1) OR (CR_ACTIVE_SECS.CET_ATTRIBUTES.ENDBR_EN == 1))
THEN

(* Compute linear address of what will become new CET state save area and cache its PA *)
TMP_CET_SAVE_AREA := CR_TCS_PA.OCETSSA + CR_ACTIVE_SECS.BASEADDR + (CR_TCS_PA.CSSA - 1) * 16;
TMP_CET_SAVE_PAGE := TMP_CET_SAVE_AREA & ~0xFFF;
Check the TMP_CET_SAVE_PAGE page is read/write accessible
If fault occurs release locks, abort and deliver fault

(* read the EPCM VALID, PENDING, MODIFIED, BLOCKED and PT fields atomically *)
IF ((DS:TMP_CET_SAVE_PAGE Does NOT RESOLVE TO EPC PAGE) OR
(EPCM(DS:TMP_CET_SAVE_PAGE).VALID = 0) OR
(EPCM(DS:TMP_CET_SAVE_PAGE).PENDING = 1) OR
(EPCM(DS:TMP_CET_SAVE_PAGE).MODIFIED = 1) OR
(EPCM(DS:TMP_CET_SAVE_PAGE).BLOCKED = 1) OR
(EPCM(DS:TMP_CET_SAVE_PAGE).R = 0) OR
(EPCM(DS:TMP_CET_SAVE_PAGE).W = 0) OR
(EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVEADDRESS ≠ DS:TMP_CET_SAVE_PAGE) OR
(EPCM(DS:TMP_CET_SAVE_PAGE).PT ≠ PT_SS_REST) OR
(EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVESECS ≠ EPCM(CR_TCS_PA).ENCLAVESECS))

THEN #PF(DS:TMP_CET_SAVE_PAGE); FI;
FI;

FI;

(* At this point, the instruction is guaranteed to complete *)
CR_TCS_PA.CSSA := CR_TCS_PA.CSSA - 1;

CR_GPR_PA := Physical_Address(DS:TMP_GPR);

FOR EACH TMP_XSAVE_PAGE_n
CR_XSAVE_PAGE_n := TMP_XSAVE_PAGE_PA_n;
EDECCSSA—Decrements TCS.CSSA Vol. 3D 40-85

INTEL® SGX INSTRUCTION REFERENCES
ENDFOR

IF (CPUID.12H.01H:EAX[6] = 1)
THEN

IF ((TMP_SECS.CET_ATTRIBUTES.SH_STK_EN == 1) OR
(TMP_SECS.CET_ATTRIBUTES.ENDBR_EN == 1))

THEN
CR_CET_SAVE_AREA_PA := Physical_Address(DS:TMP_CET_SAVE_AREA);

FI;
FI;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If CR_TCS_PA.CSSA = 0.

#PF(error code) If a page fault occurs in accessing memory.
If one or more pages of the target SSA frame are not readable/writable, or do not resolve to a
valid PT_REG EPC page.
If CET is enabled for the enclave and the target CET SSA frame is not readable/writable, or
does not resolve to a valid PT_REG EPC page.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If CR_TCS_PA.CSSA = 0.

#PF(error code) If a page fault occurs in accessing memory.
If one or more pages of the target SSA frame are not readable/writable, or do not resolve to a
valid PT_REG EPC page.
If CET is enabled for the enclave and the target CET SSA frame is not readable/writable, or
does not resolve to a valid PT_REG EPC page.
EDECCSSA—Decrements TCS.CSSA40-86 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
EENTER—Enters an Enclave

Instruction Operand Encoding

Description

The ENCLU[EENTER] instruction transfers execution to an enclave. At the end of the instruction, the logical
processor is executing in enclave mode at the RIP computed as EnclaveBase + TCS.OENTRY. If the target address
is not within the CS segment (32-bit) or is not canonical (64-bit), a #GP(0) results.

EENTER Memory Parameter Semantics

EENTER is a serializing instruction. The instruction faults if any of the following occurs:

The following operations are performed by EENTER:
• RSP and RBP are saved in the current SSA frame on EENTER and are automatically restored on EEXIT or

interrupt.
• The AEP contained in RCX is stored into the TCS for use by AEXs.FS and GS (including hidden portions) are

saved and new values are constructed using TCS.OFSBASE/GSBASE (32 and 64-bit mode) and
TCS.OFSLIMIT/GSLIMIT (32-bit mode only). The resulting segments must be a subset of the DS segment.

• If CR4.OSXSAVE == 1, XCR0 is saved and replaced by SECS.ATTRIBUTES.XFRM. The effect of RFLAGS.TF
depends on whether the enclave entry is opt-in or opt-out (see Section 42.1.2):

— On opt-out entry, TF is saved and cleared (it is restored on EEXIT or AEX). Any attempt to set TF via a POPF
instruction while inside the enclave clears TF (see Section 42.2.5).

— On opt-in entry, a single-step debug exception is pended on the instruction boundary immediately after
EENTER (see Section 42.2.2).

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 02H
ENCLU[EENTER]

IR V/V SGX1 This leaf function is used to enter an enclave.

Op/En EAX RBX RCX

IR EENTER (In)
Content of RBX.CSSA

(Out)
Address of a TCS (In) Address of AEP (In)

Address of IP following
EENTER (Out)

TCS

 Enclave access

Address in RBX is not properly aligned. Any TCS.FLAGS’s must-be-zero bit is not zero.

TCS pointed to by RBX is not valid or available or locked. Current 32/64 mode does not match the enclave mode in
SECS.ATTRIBUTES.MODE64.

The SECS is in use. Either of TCS-specified FS and GS segment is not a subsets of the
current DS segment.

Any one of DS, ES, CS, SS is not zero. If XSAVE available, CR4.OSXSAVE = 0, but
SECS.ATTRIBUTES.XFRM ≠ 3.

CR4.OSFXSR ≠ 1. If CR4.OSXSAVE = 1, SECS.ATTRIBUTES.XFRM is not a subset of
XCR0.

If SECS.ATTRIBUTES.AEXNOTIFY ≠ TCS.FLAGS.AEXNOTIFY and
TCS.FLAGS.DBGOPTIN = 0.
EENTER—Enters an Enclave Vol. 3D 40-87

INTEL® SGX INSTRUCTION REFERENCES
• All code breakpoints that do not overlap with ELRANGE are also suppressed. If the entry is an opt-out entry, all
code and data breakpoints that overlap with the ELRANGE are suppressed.

• On opt-out entry, a number of performance monitoring counters and behaviors are modified or suppressed (see
Section 42.2.3):

— All performance monitoring activity on the current thread is suppressed except for incrementing and firing
of FIXED_CTR1 and FIXED_CTR2.

— PEBS is suppressed.

— AnyThread counting on other threads is demoted to MyThread mode and IA32_PERF_GLOBAL_STATUS[60]
on that thread is set

— If the opt-out entry on a hardware thread results in suppression of any performance monitoring, then the
processor sets IA32_PERF_GLOBAL_STATUS[60] and IA32_PERF_GLOBAL_STATUS[63].

Concurrency Restrictions

Operation

Temp Variables in EENTER Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Make sure DS is usable, expand up *)
IF (TMP_MODE64 = 0 and (DS not usable or DS[bits 11:9] != 001B))

THEN #GP(0); FI;

(* Check that CS, SS, DS, ES.base is 0 *)
IF (TMP_MODE64 = 0)

THEN

Table 40-58. Base Concurrency Restrictions of EENTER

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict

EENTER TCS [DS:RBX] Shared #GP

Table 40-59. Additional Concurrency Restrictions of EENTER

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK

Access On Conflict Access On Conflict Access On Conflict

EENTER TCS [DS:RBX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_FSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_GSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_FSLIMIT Effective Address 32/64 Highest legal address in proposed FS segment.

TMP_GSLIMIT Effective Address 32/64 Highest legal address in proposed GS segment.

TMP_XSIZE integer 64 Size of XSAVE area based on SECS.ATTRIBUTES.XFRM.

TMP_SSA_PAGE Effective Address 32/64 Pointer used to iterate over the SSA pages in the current frame.

TMP_GPR Effective Address 32/64 Address of the GPR area within the current SSA frame.
EENTER—Enters an Enclave40-88 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
IF(CS.base ≠ 0 or DS.base ≠ 0) #GP(0); FI;
IF(ES usable and ES.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.B = 0) #GP(0); FI;

FI;

IF (DS:RBX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

(* Check AEP is canonical*)
IF (TMP_MODE64 = 1 and (CS:RCX is not canonical))

THEN #GP(0); FI;

(* Check concurrency of TCS operation*)
IF (Other Intel SGX instructions are operating on TCS)

THEN #GP(0); FI;

(* TCS verification *)
IF (EPCM(DS:RBX).VALID = 0)

THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1)
THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).ENCLAVEADDRESS ≠ DS:RBX) or (EPCM(DS:RBX).PT ≠ PT_TCS))
THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).PENDING = 1) or (EPCM(DS:RBX).MODIFIED = 1))
THEN #PF(DS:RBX); FI;

IF ((DS:RBX).OSSA is not 4KByte Aligned)
THEN #GP(0); FI;

(* Check proposed FS and GS *)
IF (((DS:RBX).OFSBASE is not 4KByte Aligned) or ((DS:RBX).OGSBASE is not 4KByte Aligned))

THEN #GP(0); FI;

(* Get the SECS for the enclave in which the TCS resides *)
TMP_SECS := Address of SECS for TCS;

(* Ensure that the FLAGS field in the TCS does not have any reserved bits set *)
IF (((DS:RBX).FLAGS & FFFFFFFFFFFFFFFCH) ≠ 0)

THEN #GP(0); FI;

(* SECS must exist and enclave must have previously been EINITted *)
IF (the enclave is not already initialized)

THEN #GP(0); FI;

(* make sure the logical processor’s operating mode matches the enclave *)
IF ((TMP_MODE64 ≠ TMP_SECS.ATTRIBUTES.MODE64BIT))

THEN #GP(0); FI;
EENTER—Enters an Enclave Vol. 3D 40-89

INTEL® SGX INSTRUCTION REFERENCES
IF (CR4.OSFXSR = 0)
THEN #GP(0); FI;

(* Check for legal values of SECS.ATTRIBUTES.XFRM *)
IF (CR4.OSXSAVE = 0)

THEN
IF (TMP_SECS.ATTRIBUTES.XFRM ≠ 03H) THEN #GP(0); FI;

ELSE
IF ((TMP_SECS.ATTRIBUTES.XFRM & XCR0) ≠ TMP_SECS.ATTRIBUES.XFRM) THEN #GP(0); FI;

FI;

IF ((DS:RBX).CSSA.FLAGS.DBGOPTIN = 0) and (DS:RBX).CSSA.FLAGS.AEXNOTIFY ≠ TMP_SECS.ATTRIBUTES.AEXNOTIFY))
THEN #GP(0); FI;

(* Make sure the SSA contains at least one more frame *)
IF ((DS:RBX).CSSA ≥ (DS:RBX).NSSA)

THEN #GP(0); FI;

(* Compute linear address of SSA frame *)
TMP_SSA := (DS:RBX).OSSA + TMP_SECS.BASEADDR + 4096 * TMP_SECS.SSAFRAMESIZE * (DS:RBX).CSSA;
TMP_XSIZE := compute_XSAVE_frame_size(TMP_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE
(* Check page is read/write accessible *)
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort, and deliver that fault;

IF (DS:TMP_SSA_PAGE does not resolve to EPC page)
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0)
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1)
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or (EPCM(DS:TMP_SSA_PAGE).MODIFIED = 1))
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF ((EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS ≠ DS:TMP_SSA_PAGE) or (EPCM(DS:TMP_SSA_PAGE).PT ≠ PT_REG) or
(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_SSA_PAGE).R = 0) or (EPCM(DS:TMP_SSA_PAGE).W = 0))
THEN #PF(DS:TMP_SSA_PAGE); FI;

CR_XSAVE_PAGE_n := Physical_Address(DS:TMP_SSA_PAGE);
ENDFOR

(* Compute address of GPR area*)
TMP_GPR := TMP_SSA + 4096 * DS:TMP_SECS.SSAFRAMESIZE - sizeof(GPRSGX_AREA);
If a fault occurs; release locks, abort, and deliver that fault;

IF (DS:TMP_GPR does not resolve to EPC page)
THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).VALID = 0)
THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).BLOCKED = 1)
THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))
THEN #PF(DS:TMP_GPR); FI;
EENTER—Enters an Enclave40-90 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
IF ((EPCM(DS:TMP_GPR).ENCLAVEADDRESS ≠ DS:TMP_GPR) or (EPCM(DS:TMP_GPR).PT ≠ PT_REG) or
(EPCM(DS:TMP_GPR).ENCLAVESECS EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0))
THEN #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)
THEN

IF (TMP_GPR + (GPR_SIZE -1) is not in DS segment) THEN #GP(0); FI;
FI;

CR_GPR_PA := Physical_Address (DS: TMP_GPR);

(* Validate TCS.OENTRY *)
TMP_TARGET := (DS:RBX).OENTRY + TMP_SECS.BASEADDR;
IF (TMP_MODE64 = 1)

THEN
IF (TMP_TARGET is not canonical) THEN #GP(0); FI;

ELSE
IF (TMP_TARGET > CS limit) THEN #GP(0); FI;

FI;

(* Check proposed FS/GS segments fall within DS *)
IF (TMP_MODE64 = 0)

THEN
TMP_FSBASE := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_FSLIMIT := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR + (DS:RBX).FSLIMIT;
TMP_GSBASE := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
TMP_GSLIMIT := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR + (DS:RBX).GSLIMIT;
(* if FS wrap-around, make sure DS has no holes*)
IF (TMP_FSLIMIT < TMP_FSBASE)

THEN
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_FSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
(* if GS wrap-around, make sure DS has no holes*)
IF (TMP_GSLIMIT < TMP_GSBASE)

THEN
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_GSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
ELSE

TMP_FSBASE := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_GSBASE := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
IF ((TMP_FSBASE is not canonical) or (TMP_GSBASE is not canonical))

THEN #GP(0); FI;
FI;

(* Ensure the enclave is not already active and this thread is the only one using the TCS*)
IF (DS:RBX.STATE = ACTIVE)

THEN #GP(0); FI;

TMP_IA32_U_CET := 0
EENTER—Enters an Enclave Vol. 3D 40-91

INTEL® SGX INSTRUCTION REFERENCES
TMP_SSP : = 0

IF CPUID.12H.01H:EAX[6] = 1
THEN

IF (CR4.CET = 0)
THEN

(* If part does not support CET or CET has not been enabled and enclave requires CET then fail *)
IF (TMP_SECS.CET_ATTRIBUTES ≠ 0 OR TMP_SECS.CET_LEG_BITMAP_OFFSET ≠ 0) #GP(0); FI;

FI;
(* If indirect branch tracking or shadow stacks enabled but CET state save area is not 16B aligned then fail EENTER *)
IF (TMP_SECS.CET_ATTRIBUTES.SH_STK_EN = 1 OR TMP_SECS.CET_ATTRIBUTES.ENDBR_EN = 1)

THEN
IF (DS:RBX.OCETSSA is not 16B aligned) #GP(0); FI;

FI;

IF (TMP_SECS.CET_ATTRIBUTES.SH_STK_EN OR TMP_SECS.CET_ATTRIBUTES.ENDBR_EN)
THEN

(* Setup CET state from SECS, note tracker goes to IDLE *)
TMP_IA32_U_CET = TMP_SECS.CET_ATTRIBUTES;
IF (TMP_IA32_U_CET.LEG_IW_EN = 1 AND TMP_IA32_U_CET.ENDBR_EN = 1)

THEN
TMP_IA32_U_CET := TMP_IA32_U_CET + TMP_SECS.BASEADDR;
TMP_IA32_U_CET := TMP_IA32_U_CET + TMP_SECS.CET_LEG_BITMAP_BASE;

FI;

(* Compute linear address of what will become new CET state save area and cache its PA *)
TMP_CET_SAVE_AREA = DS:RBX.OCETSSA + TMP_SECS.BASEADDR + (DS:RBX.CSSA) * 16
TMP_CET_SAVE_PAGE = TMP_CET_SAVE_AREA & ~0xFFF;

Check the TMP_CET_SAVE_PAGE page is read/write accessible
If fault occurs release locks, abort, and deliver fault

(* Read the EPCM VALID, PENDING, MODIFIED, BLOCKED, and PT fields atomically *)
IF ((DS:TMP_CET_SAVE_PAGE Does NOT RESOLVE TO EPC PAGE) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).VALID = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).PENDING = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).MODIFIED = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).BLOCKED = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).R = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).W = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVEADDRESS ≠ DS:TMP_CET_SAVE_PAGE) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).PT ≠ PT_SS_REST) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS))

THEN
#PF(DS:TMP_CET_SAVE_PAGE);

FI;

CR_CET_SAVE_AREA_PA := Physical address(DS:TMP_CET_SAVE_AREA)

IF TMP_IA32_U_CET.SH_STK_EN = 1
THEN

TMP_SSP = TCS.PREVSSP;
FI;

FI;
EENTER—Enters an Enclave40-92 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
FI;

CR_ENCLAVE_MODE := 1;
CR_ACTIVE_SECS := TMP_SECS;
CR_ELRANGE := (TMPSECS.BASEADDR, TMP_SECS.SIZE);

(* Save state for possible AEXs *)
CR_TCS_PA := Physical_Address (DS:RBX);
CR_TCS_LA := RBX;
CR_TCS_LA.AEP := RCX;

(* Save the hidden portions of FS and GS *)
CR_SAVE_FS_selector := FS.selector;
CR_SAVE_FS_base := FS.base;
CR_SAVE_FS_limit := FS.limit;
CR_SAVE_FS_access_rights := FS.access_rights;
CR_SAVE_GS_selector := GS.selector;
CR_SAVE_GS_base := GS.base;
CR_SAVE_GS_limit := GS.limit;
CR_SAVE_GS_access_rights := GS.access_rights;

(* If XSAVE is enabled, save XCR0 and replace it with SECS.ATTRIBUTES.XFRM*)
IF (CR4.OSXSAVE = 1)

CR_SAVE_XCR0 := XCR0;
XCR0 := TMP_SECS.ATTRIBUTES.XFRM;

FI;

RCX := RIP;
RIP := TMP_TARGET;
RAX := (DS:RBX).CSSA;
(* Save the outside RSP and RBP so they can be restored on interrupt or EEXIT *)
DS:TMP_SSA.U_RSP := RSP;
DS:TMP_SSA.U_RBP := RBP;

(* Do the FS/GS swap *)
FS.base := TMP_FSBASE;
FS.limit := DS:RBX.FSLIMIT;
FS.type := 0001b;
FS.W := DS[bit 9];
FS.S := 1;
FS.DPL := DS.DPL;
FS.G := 1;
FS.B := 1;
FS.P := 1;
FS.AVL := DS.AVL;
FS.L := DS[bit 21];
FS.unusable := 0;
FS.selector := 0BH;

GS.base := TMP_GSBASE;
GS.limit := DS:RBX.GSLIMIT;
GS.type := 0001b;
GS.W := DS[bit 9];
GS.S := 1;
EENTER—Enters an Enclave Vol. 3D 40-93

INTEL® SGX INSTRUCTION REFERENCES
GS.DPL := DS.DPL;
GS.G := 1;
GS.B := 1;
GS.P := 1;
GS.AVL := DS.AVL;
GS.L := DS[bit 21];
GS.unusable := 0;
GS.selector := 0BH;

CR_DBGOPTIN := TCS.FLAGS.DBGOPTIN;
Suppress_all_code_breakpoints_that_are_outside_ELRANGE;

IF (CR_DBGOPTIN = 0)
THEN

Suppress_all_code_breakpoints_that_overlap_with_ELRANGE;
CR_SAVE_TF := RFLAGS.TF;
RFLAGS.TF := 0;
Suppress_monitor_trap_flag for the source of the execution of the enclave;
Suppress any pending debug exceptions;
Suppress any pending MTF VM exit;

ELSE
IF RFLAGS.TF = 1

THEN pend a single-step #DB at the end of EENTER; FI;
IF the “monitor trap flag” VM-execution control is set

THEN pend an MTF VM exit at the end of EENTER; FI;
FI;

IF ((CPUID.07H.00H:EDX.CET_IBT = 1) OR (CPUID.07H.00H:ECX.CET_SS = 1)
THEN

(* Save enclosing application CET state into save registers *)
CR_SAVE_IA32_U_CET := IA32_U_CET
(* Setup enclave CET state *)

IF CPUID.07H.00H:ECX.CET_SS = 1
THEN

CR_SAVE_SSP := SSP
SSP := TMP_SSP

FI;

IA32_U_CET := TMP_IA32_U_CET;

FI;

Flush_linear_context;
Allow_front_end_to_begin_fetch_at_new_RIP;

Flags Affected

RFLAGS.TF is cleared on opt-out entry.
EENTER—Enters an Enclave40-94 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
Protected Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If part or all of the FS or GS segment specified by TCS is outside the DS segment or not prop-
erly aligned.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If any reserved field in the TCS FLAG is set.
If the target address is not within the CS segment.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.
If SECS.ATTRIBUTES.AEXNOTIFY ≠ TCS.FLAGS.AEXNOTIFY and TCS.FLAGS.DBGOPTIN = 0.

#PF(error code) If a page fault occurs in accessing memory.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.

64-Bit Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment or not prop-
erly aligned.
If the target address is not canonical.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.
If SECS.ATTRIBUTES.AEXNOTIFY ≠ TCS.FLAGS.AEXNOTIFY and TCS.FLAGS.DBGOPTIN = 0.

#PF(error code) If a page fault occurs in accessing memory operands.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.
EENTER—Enters an Enclave Vol. 3D 40-95

INTEL® SGX INSTRUCTION REFERENCES
EEXIT—Exits an Enclave

Instruction Operand Encoding

Description

The ENCLU[EEXIT] instruction exits the currently executing enclave and branches to the location specified in RBX.
RCX receives the current AEP. If RBX is not within the CS (32-bit mode) or is not canonical (64-bit mode) a #GP(0)
results.

EEXIT Memory Parameter Semantics

If RBX specifies an address that is inside the enclave, the instruction will complete normally. The fetch of the next
instruction will occur in non-enclave mode, but will attempt to fetch from inside the enclave. This fetch returns a
fixed data pattern.
If secrets are contained in any registers, it is responsibility of enclave software to clear those registers.
If XCR0 was modified on enclave entry, it is restored to the value it had at the time of the most recent EENTER or
ERESUME.
If the enclave is opt-out, RFLAGS.TF is loaded from the value previously saved on EENTER.
Code and data breakpoints are unsuppressed.
Performance monitoring counters are unsuppressed.

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 04H
ENCLU[EEXIT]

IR V/V SGX1 This leaf function is used to exit an enclave.

Op/En EAX RBX RCX

IR EEXIT (In) Target address outside the enclave (In) Address of the current AEP (Out)

Target Address

 Non-Enclave read and execute access

Table 40-60. Base Concurrency Restrictions of EEXIT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict

EEXIT Concurrent

Table 40-61. Additional Concurrency Restrictions of EEXIT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK

Access On Conflict Access On Conflict Access On Conflict

EEXIT Concurrent Concurrent Concurrent
EEXIT—Exits an Enclave40-96 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EEXIT Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF (TMP_MODE64 = 1)
THEN

IF (RBX is not canonical) THEN #GP(0); FI;
ELSE

IF (RBX > CS limit) THEN #GP(0); FI;
FI;

TMP_RIP := CRIP;
RIP := RBX;

(* Return current AEP in RCX *)
RCX := CR_TCS_PA.AEP;

(* Do the FS/GS swap *)
FS.selector := CR_SAVE_FS.selector;
FS.base := CR_SAVE_FS.base;
FS.limit := CR_SAVE_FS.limit;
FS.access_rights := CR_SAVE_FS.access_rights;
GS.selector := CR_SAVE_GS.selector;
GS.base := CR_SAVE_GS.base;
GS.limit := CR_SAVE_GS.limit;
GS.access_rights := CR_SAVE_GS.access_rights;

(* Restore XCR0 if needed *)
IF (CR4.OSXSAVE = 1)

XCR0 := CR_SAVE__XCR0;
FI;

Unsuppress_all_code_breakpoints_that_are_outside_ELRANGE;

IF (CR_DBGOPTIN = 0)
THEN

UnSuppress_all_code_breakpoints_that_overlap_with_ELRANGE;
Restore suppressed breakpoint matches;
RFLAGS.TF := CR_SAVE_TF;
UnSuppress_montior_trap_flag;
UnSuppress_LBR_Generation;
UnSuppress_performance monitoring_activity;
Restore performance monitoring counter AnyThread demotion to MyThread in enclave back to AnyThread

FI;

IF RFLAGS.TF = 1
THEN Pend Single-Step #DB at the end of EEXIT;

FI;

Name Type Size (Bits) Description

TMP_RIP Effective Address 32/64 Saved copy of CRIP for use when creating LBR.
EEXIT—Exits an Enclave Vol. 3D 40-97

INTEL® SGX INSTRUCTION REFERENCES
IF the “monitor trap flag” VM-execution control is set
THEN pend a MTF VM exit at the end of EEXIT;

FI;

IF (CPUID.12H.01H:EAX[6] = 1)
THEN

(* Record PREVSSP *)
IF (IA32_U_CET.SH_STK_EN == 1)

THEN CR_TCS_PA.PREVSSP = SSP; FI;
FI;

IF ((CPUID.07H.00H:EDX.CET_IBT = 1) OR (CPUID.07H.00H:ECX.CET_SS = 1)
THEN

(* Restore enclosing app’s CET state from the save registers *)
IA32_U_CET := CR_SAVE_IA32_U_CET;

IF CPUID.07H.00H:ECX.CET_SS = 1
THEN SSP := CR_SAVE_SSP; FI;

(* Update enclosing app’s TRACKER if enclosing app has indirect branch tracking enabled *)
IF (CR4.CET = 1 AND IA32_U_CET.ENDBR_EN = 1)

THEN
IA32_U_CET.TRACKER := WAIT_FOR_ENDBRANCH;
IA32_U_CET.SUPPRESS := 0

FI;
FI;

CR_ENCLAVE_MODE := 0;
CR_TCS_PA.STATE := INACTIVE;

(* Assure consistent translations *)
Flush_linear_context;

Flags Affected

RFLAGS.TF is restored from the value previously saved in EENTER or ERESUME.

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If RBX is outside the CS segment.

#PF(error code) If a page fault occurs in accessing memory.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If RBX is not canonical.

#PF(error code) If a page fault occurs in accessing memory operands.
EEXIT—Exits an Enclave40-98 Vol. 3D

INTEL® SGX INSTRUCTION REFERENCES
EGETKEY—Retrieves a Cryptographic Key

Instruction Operand Encoding

Description

The ENCLU[EGETKEY] instruction returns a 128-bit secret key from the processor specific key hierarchy. The
register RBX contains the effective address of a KEYREQUEST structure, which the instruction interprets to deter-
mine the key being requested. The Requesting Keys section below provides a description of the keys that can be
requested. The RCX register contains the effective address where the key will be returned. Both the addresses in
RBX & RCX should be locations inside the enclave.
EGETKEY derives keys using a processor unique value to create a specific key based on a number of possible
inputs. This instruction leaf can only be executed inside an enclave.

EEGETKEY Memory Parameter Semantics

After validating the operands, the instruction determines which key is to be produced and performs the following
actions:
• The instruction assembles the derivation data for the key based on the Table 40-62.
• Computes derived key using the derivation data and package specific value.
• Outputs the calculated key to the address in RCX.
The instruction fails with #GP(0) if the operands are not properly aligned. Successful completion of the instruction
will clear RFLAGS.{ZF, CF, AF, OF, SF, PF}. The instruction returns an error code if the user tries to request a key
based on an invalid CR_CPUSVN or ISVSVN (when the user request is accepted, see the table below), requests a
key for which it has not been granted the attribute to request, or requests a key that is not supported by the hard-
ware. These checks may be performed in any order. Thus, an indication by error number of one cause (for example,
invalid attribute) does not imply that there are not also other errors. Different processors may thus give different
error numbers for the same Enclave. The correctness of software should not rely on the order resulting from the
checks documented in this section. In such cases the ZF flag is set and the corresponding error bit (SGX_IN-
VALID_SVN, SGX_INVALID_ATTRIBUTE, SGX_INVALID_KEYNAME) is set in RAX and the data at the address spec-
ified by RCX is unmodified.
Requesting Keys
The KEYREQUEST structure (see Section 37.18.1) identifies the key to be provided. The Keyrequest.KeyName field
identifies which type of key is requested.
Deriving Keys
Key derivation is based on a combination of the enclave specific values (see Table 40-62) and a processor key.
Depending on the key being requested a field may either be included by definition or the value may be included
from the KeyRequest. A “yes” in Table 40-62 indicates the value for the field is included from its default location,
identified in the source row, and a “request” indicates the values for the field is included from its corresponding
KeyRequest field.

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 01H
ENCLU[EGETKEY]

IR V/V SGX1 This leaf function retrieves a cryptographic key.

Op/En EAX RBX RCX

IR EGETKEY (In) Return error code (Out) Address to a KEYREQUEST (In) Address of the OUTPUTDATA (In)

KEYREQUEST OUTPUTDATA

 Enclave read access Enclave write access
EGETKEY—Retrieves a Cryptographic Key Vol. 3D 40-99

INTEL® SGX INSTRUCTION REFERENCES
Keys that permit the specification of a CPU or ISV's code's, or enclave configuration's SVNs have additional require-
ments. The caller may not request a key for an SVN beyond the current CPU, ISV or enclave configuration's SVN,
respectively.
Several keys are access controlled. Access to the Provisioning Key and Provisioning Seal key requires the enclave's
ATTRIBUTES.PROVISIONKEY be set. The EINITTOKEN Key requires ATTRIBUTES.EINITTOKEN_KEY be set and
SECS.MRSIGNER equal IA32_SGXLEPUBKEYHASH.
Some keys are derived based on a hardcode PKCS padding constant (352 byte string):
HARDCODED_PKCS1_5_PADDING[15:0] := 0100H;
HARDCODED_PKCS1_5_PADDING[2655:16] := SignExtend330Byte(-1); // 330 bytes of 0FFH
HARDCODED_PKCS1_5_PADDING[2815:2656] := 2004000501020403650148866009060D30313000H;

The error codes are:

Concurrency Restrictions

Table 40-62. Key Derivation

Key Name Attributes
Owner
Epoch

CPU
SVN ISV SVN

ISV
PRODID

ISVEXT
PRODID

ISVFAM
ILYID MRENCLAVE MRSIGNER

CONFIG
ID

CONFIGS
VN RAND

Source

Key
Dependent
Constant

Y :=
SECS.ATTRIBUTES
and
SECS.MISCSELECT
and
SECS.CET_ATTRIB
UTES;

CR_SGX
OWNER
EPOCH

Y :=
CPUSVN
Register;

R :=
Req.ISV
SVN;

SECS.
ISVID

SECS.IS
VEXTPR
ODID

SECS.IS
VFAMIL
YID

SECS.
MRENCLAVE

SECS.
MRSIGNER

SECS.CO
NFIGID

SECS.CO
NFIGSVN

Req.
KEYID

R := AttribMask &
SECS.ATTRIBUTES
and
SECS.MISCSELECT
and
SECS.CET_ATTRIB
UTES;

R :=
Req.CPU
SVN;

EINITTOKEN Yes Request Yes Request Request Yes No No No Yes No No Request

Report Yes Yes Yes Yes No No No No Yes No Yes Yes Request

Seal Yes Request Yes Request Request Request Request Request Request Request Request Request Request

Provisioning Yes Request No Request Request Yes No No No Yes No No Yes

Provisioning
Seal

Yes Request No Request Request Request Request Request No Yes Request Request Yes

Table 40-63. EGETKEY Return Value in RAX
 Error Code (see Table 40-3) Value Description

No Error 0 EGETKEY successful.

SGX_INVALID_ATTRIBUTE The KEYREQUEST contains a KEYNAME for which the enclave is not authorized.

SGX_INVALID_CPUSVN If KEYREQUEST.CPUSVN is an unsupported platforms CPUSVN value.

SGX_INVALID_ISVSVN If KEYREQUEST software SVN (ISVSVN or CONFIGSVN) is greater than the
enclave's corresponding SVN.

SGX_INVALID_KEYNAME If KEYREQUEST.KEYNAME is an unsupported value.

Table 40-64. Base Concurrency Restrictions of EGETKEY

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict

EGETKEY KEYREQUEST [DS:RBX] Concurrent

OUTPUTDATA [DS:RCX] Concurrent
EGETKEY—Retrieves a Cryptographic Key40-100 Vol.

INTEL® SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EGETKEY Operational Flow

(* Make sure KEYREQUEST is properly aligned and inside the current enclave *)
IF ((DS:RBX is not 512Byte aligned) or (DS:RBX is not within CR_ELRANGE))

THEN #GP(0); FI;

(* Make sure DS:RBX is an EPC address and the EPC page is valid *)
IF ((DS:RBX does not resolve to an EPC address) or (EPCM(DS:RBX).VALID = 0))

THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1)
THEN #PF(DS:RBX); FI;

(* Check page parameters for correctness *)
IF ((EPCM(DS:RBX).PT ≠ PT_REG) or (EPCM(DS:RBX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RBX).PENDING = 1) or

(EPCM(DS:RBX).MODIFIED = 1) or (EPCM(DS:RBX).ENCLAVEADDRESS ≠ (DS:RBX & ~0FFFH)) or (EPCM(DS:RBX).R = 0))
THEN #PF(DS:RBX);

FI;

(* Make sure OUTPUTDATA is properly aligned and inside the current enclave *)
IF ((DS:RCX is not 16Byte aligned) or (DS:RCX is not within CR_ELRANGE))

THEN #GP(0); FI;

(* Make sure DS:RCX is an EPC address and the EPC page is valid *)
IF ((DS:RCX does not resolve to an EPC address) or (EPCM(DS:RCX).VALID = 0))

Table 40-65. Additional Concurrency Restrictions of EGETKEY

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK

Access On Conflict Access On Conflict Access On Conflict

EGETKEY KEYREQUEST
[DS:RBX]

Concurrent Concurrent Concurrent

OUTPUTDATA
[DS:RCX]

Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_CURRENTSECS Address of the SECS for the currently executing enclave.

TMP_KEYDEPENDENCIES Temp space for key derivation.

TMP_ATTRIBUTES 128 Temp Space for the calculation of the sealable Attributes.

TMP_ISVEXTPRODID 16 bytes Temp Space for ISVEXTPRODID.

TMP_ISVPRODID 2 bytes Temp Space for ISVPRODID.

TMP_ISVFAMILYID 16 bytes Temp Space for ISVFAMILYID.

TMP_CONFIGID 64 bytes Temp Space for CONFIGID.

TMP_CONFIGSVN 2 bytes Temp Space for CONFIGSVN.

TMP_OUTPUTKEY 128 Temp Space for the calculation of the key.
EGETKEY—Retrieves a Cryptographic Key Vol. 3D 40-101

INTEL® SGX INSTRUCTION REFERENCES
THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).BLOCKED = 1)
THEN #PF(DS:RCX); FI;

(* Check page parameters for correctness *)
IF ((EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or

(EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RCX).ENCLAVEADDRESS ≠ (DS:RCX & ~0FFFH)) or (EPCM(DS:RCX).W = 0))
THEN #PF(DS:RCX);

FI;

(* Verify RESERVED spaces in KEYREQUEST are valid *)
IF ((DS:RBX).RESERVED ≠ 0) or (DS:RBX.KEYPOLICY.RESERVED ≠ 0))

THEN #GP(0); FI;

TMP_CURRENTSECS := CR_ACTIVE_SECS;

(* Verify that CONFIGSVN & New Policy bits are not used if KSS is not enabled *)
IF ((TMP_CURRENTSECS.ATTRIBUTES.KSS == 0) AND ((DS:RBX.KEYPOLICY & 0x003C ≠ 0) OR (DS:RBX.CONFIGSVN > 0)))

THEN #GP(0); FI;
(* Determine which enclave attributes that must be included in the key. Attributes that must always be include INIT & DEBUG *)
REQUIRED_SEALING_MASK[127:0] := 00000000 00000000 00000000 00000003H;
TMP_ATTRIBUTES := (DS:RBX.ATTRIBUTEMASK | REQUIRED_SEALING_MASK) & TMP_CURRENTSECS.ATTRIBUTES;

(* Compute MISCSELECT fields to be included *)
TMP_MISCSELECT := DS:RBX.MISCMASK & TMP_CURRENTSECS.MISCSELECT

(* Compute CET_ATTRIBUTES fields to be included *)
IF (CPUID.12H.01H:EAX[6] = 1)

THEN TMP_CET_ATTRIBUTES := DS:RBX.CET_ATTRIBUTES_ MASK & TMP_CURRENTSECS.CET_ATTRIBUTES; FI;
TMP_KEYDEPENDENCIES := 0;

CASE (DS:RBX.KEYNAME)
SEAL_KEY:

IF (DS:RBX.CPUSVN is beyond current CPU configuration)
THEN

RFLAGS.ZF := 1;
RAX := SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;
IF (DS:RBX.CONFIGSVN > TMP_CURRENTSECS.CONFIGSVN)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;

(*Include enclave identity?*)
EGETKEY—Retrieves a Cryptographic Key40-102 Vol.

INTEL® SGX INSTRUCTION REFERENCES
TMP_MRENCLAVE := 0;
IF (DS:RBX.KEYPOLICY.MRENCLAVE = 1)

THEN TMP_MRENCLAVE := TMP_CURRENTSECS.MRENCLAVE;
FI;
(*Include enclave author?*)
TMP_MRSIGNER := 0;
IF (DS:RBX.KEYPOLICY.MRSIGNER = 1)

THEN TMP_MRSIGNER := TMP_CURRENTSECS.MRSIGNER;
FI;

(* Include enclave product family ID? *)
 TMP_ISVFAMILYID := 0;
 IF (DS:RBX.KEYPOLICY.ISVFAMILYID = 1)
 THEN TMP_ISVFAMILYID := TMP_CURRENTSECS.ISVFAMILYID;

FI;

 (* Include enclave product ID? *)
 TMP_ISVPRODID := 0;
 IF (DS:RBX.KEYPOLICY.NOISVPRODID = 0)
 TMP_ISVPRODID := TMP_CURRENTSECS.ISVPRODID;

FI;

 (* Include enclave Config ID? *)
 TMP_CONFIGID := 0;
 TMP_CONFIGSVN := 0;
 IF (DS:RBX.KEYPOLICY.CONFIGID = 1)
 TMP_CONFIGID := TMP_CURRENTSECS.CONFIGID;
 TMP_CONFIGSVN := DS:RBX.CONFIGSVN;

FI;

 (* Include enclave extended product ID? *)
 TMP_ISVEXTPRODID := 0;
 IF (DS:RBX.KEYPOLICY.ISVEXTPRODID = 1)
 TMP_ISVEXTPRODID := TMP_CURRENTSECS.ISVEXTPRODID;
 FI;

//Determine values key is based on
TMP_KEYDEPENDENCIES.KEYNAME := SEAL_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := TMP_ISVFAMILYID;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := TMP_ISVEXTPRODID;
TMP_KEYDEPENDENCIES.ISVPRODID := TMP_ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN := DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := CR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES := TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE := TMP_MRENCLAVE;
TMP_KEYDEPENDENCIES.MRSIGNER := TMP_MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID := DS:RBX.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN := DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING := TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT := TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK := ~DS:RBX.MISCMASK;
TMP_KEYDEPENDENCIES.KEYPOLICY := DS:RBX.KEYPOLICY;
TMP_KEYDEPENDENCIES.CONFIGID := TMP_CONFIGID;
EGETKEY—Retrieves a Cryptographic Key Vol. 3D 40-103

INTEL® SGX INSTRUCTION REFERENCES
TMP_KEYDEPENDENCIES.CONFIGSVN := TMP_CONFIGSVN;
IF CPUID.12H.01H:EAX[6] = 1

THEN
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := TMP_CET_ATTRIBUTES;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES _MASK := DS:RBX.CET_ATTRIBUTES _MASK;

FI;
BREAK;

REPORT_KEY:
//Determine values key is based on
TMP_KEYDEPENDENCIES.KEYNAME := REPORT_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := 0;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := 0;
TMP_KEYDEPENDENCIES.ISVPRODID := 0;
TMP_KEYDEPENDENCIES.ISVSVN := 0;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := CR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES := TMP_CURRENTSECS.ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := 0;
TMP_KEYDEPENDENCIES.MRENCLAVE := TMP_CURRENTSECS.MRENCLAVE;
TMP_KEYDEPENDENCIES.MRSIGNER := 0;
TMP_KEYDEPENDENCIES.KEYID := DS:RBX.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN := CR_CPUSVN;
TMP_KEYDEPENDENCIES.PADDING := HARDCODED_PKCS1_5_PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT := TMP_CURRENTSECS.MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK := 0;
TMP_KEYDEPENDENCIES.KEYPOLICY := 0;
TMP_KEYDEPENDENCIES.CONFIGID := TMP_CURRENTSECS.CONFIGID;
TMP_KEYDEPENDENCIES.CONFIGSVN := TMP_CURRENTSECS.CONFIGSVN;

IF (CPUID.12H.01H:EAX[6] = 1)
THEN

TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := TMP_CURRENTSECS.CET_ATTRIBUTES;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES_MASK := 0;

FI;
BREAK;

EINITTOKEN_KEY:
(* Check ENCLAVE has EINITTOKEN Key capability *)
IF (TMP_CURRENTSECS.ATTRIBUTES.EINITTOKEN_KEY = 0)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;
EGETKEY—Retrieves a Cryptographic Key40-104 Vol.

INTEL® SGX INSTRUCTION REFERENCES
(* Determine values key is based on *)
TMP_KEYDEPENDENCIES.KEYNAME := EINITTOKEN_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := 0;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := 0;
TMP_KEYDEPENDENCIES.ISVPRODID := TMP_CURRENTSECS.ISVPRODID
TMP_KEYDEPENDENCIES.ISVSVN := DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := CR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES := TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := 0;
TMP_KEYDEPENDENCIES.MRENCLAVE := 0;
TMP_KEYDEPENDENCIES.MRSIGNER := TMP_CURRENTSECS.MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID := DS:RBX.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN := DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING := TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT := TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK := 0;
TMP_KEYDEPENDENCIES.KEYPOLICY := 0;
TMP_KEYDEPENDENCIES.CONFIGID := 0;
TMP_KEYDEPENDENCIES.CONFIGSVN := 0;

IF (CPUID.12H.01H:EAX[6] = 1)
THEN

TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := TMP_CET_ATTRIBUTES;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES _MASK := 0;

FI;
BREAK;

PROVISION_KEY:
(* Check ENCLAVE has PROVISIONING capability *)

IF (TMP_CURRENTSECS.ATTRIBUTES.PROVISIONKEY = 0)
THEN

RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;
(* Determine values key is based on *)
TMP_KEYDEPENDENCIES.KEYNAME := PROVISION_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := 0;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := 0;
TMP_KEYDEPENDENCIES.ISVPRODID := TMP_CURRENTSECS.ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN := DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := 0;
TMP_KEYDEPENDENCIES.ATTRIBUTES := TMP_ATTRIBUTES;
EGETKEY—Retrieves a Cryptographic Key Vol. 3D 40-105

INTEL® SGX INSTRUCTION REFERENCES
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE := 0;
TMP_KEYDEPENDENCIES.MRSIGNER := TMP_CURRENTSECS.MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID := 0;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := 0;
TMP_KEYDEPENDENCIES.CPUSVN := DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING := TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT := TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK := ~DS:RBX.MISCMASK;
TMP_KEYDEPENDENCIES.KEYPOLICY := 0;
TMP_KEYDEPENDENCIES.CONFIGID := 0;

IF (CPUID.12H.01H:EAX[6] = 1)
THEN

TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := TMP_CET_ATTRIBUTES;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES _MASK := 0;

FI;
BREAK;

PROVISION_SEAL_KEY:
(* Check ENCLAVE has PROVISIONING capability *)
IF (TMP_CURRENTSECS.ATTRIBUTES.PROVISIONKEY = 0)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF := 1;
RAX := SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;
(* Include enclave product family ID? *)
 TMP_ISVFAMILYID := 0;
 IF (DS:RBX.KEYPOLICY.ISVFAMILYID = 1)
 THEN TMP_ISVFAMILYID := TMP_CURRENTSECS.ISVFAMILYID;

FI;

 (* Include enclave product ID? *)
 TMP_ISVPRODID := 0;
 IF (DS:RBX.KEYPOLICY.NOISVPRODID = 0)
 TMP_ISVPRODID := TMP_CURRENTSECS.ISVPRODID;

FI;

 (* Include enclave Config ID? *)
 TMP_CONFIGID := 0;
 TMP_CONFIGSVN := 0;
 IF (DS:RBX.KEYPOLICY.CONFIGID = 1)
 TMP_CONFIGID := TMP_CURRENTSECS.CONFIGID;
EGETKEY—Retrieves a Cryptographic Key40-106 Vol.

INTEL® SGX INSTRUCTION REFERENCES
 TMP_CONFIGSVN := DS:RBX.CONFIGSVN;
FI;

 (* Include enclave extended product ID? *)
 TMP_ISVEXTPRODID := 0;
 IF (DS:RBX.KEYPOLICY.ISVEXTPRODID = 1)
 TMP_ISVEXTPRODID := TMP_CURRENTSECS.ISVEXTPRODID;
 FI;

(* Determine values key is based on *)
TMP_KEYDEPENDENCIES.KEYNAME := PROVISION_SEAL_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := TMP_ISVFAMILYID;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := TMP_ISVEXTPRODID;
TMP_KEYDEPENDENCIES.ISVPRODID := TMP_ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN := DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := 0;
TMP_KEYDEPENDENCIES.ATTRIBUTES := TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE := 0;
TMP_KEYDEPENDENCIES.MRSIGNER := TMP_CURRENTSECS.MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID := 0;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN := DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING := TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT := TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK := ~DS:RBX.MISCMASK;
TMP_KEYDEPENDENCIES.KEYPOLICY := DS:RBX.KEYPOLICY;
TMP_KEYDEPENDENCIES.CONFIGID := TMP_CONFIGID;
TMP_KEYDEPENDENCIES.CONFIGSVN := TMP_CONFIGSVN;

IF (CPUID.12H.01H:EAX[6] = 1)
THEN

TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := TMP_CET_ATTRIBUTES;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES _MASK := 0;

FI;
BREAK;

DEFAULT:
(* The value of KEYNAME is invalid *)
RFLAGS.ZF := 1;
RAX := SGX_INVALID_KEYNAME;
GOTO EXIT:

ESAC;

(* Calculate the final derived key and output to the address in RCX *)
TMP_OUTPUTKEY := derivekey(TMP_KEYDEPENDENCIES);
DS:RCX[15:0] := TMP_OUTPUTKEY;
RAX := 0;
RFLAGS.ZF := 0;

EXIT:
RFLAGS.CF := 0;
RFLAGS.PF := 0;
RFLAGS.AF := 0;
RFLAGS.OF := 0;
RFLAGS.SF := 0;
EGETKEY—Retrieves a Cryptographic Key Vol. 3D 40-107

INTEL® SGX INSTRUCTION REFERENCES
Flags Affected

ZF is cleared if successful, otherwise ZF is set. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand effective address is outside the current enclave.
If an effective address is not properly aligned.
If an effective address is outside the DS segment limit.
If KEYREQUEST format is invalid.

#PF(error code) If a page fault occurs in accessing memory.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand effective address is outside the current enclave.
If an effective address is not properly aligned.
If an effective address is not canonical.
If KEYREQUEST format is invalid.

#PF(error code) If a page fault occurs in accessing memory operands.
EGETKEY—Retrieves a Cryptographic Key40-108 Vol.

INTEL® SGX INSTRUCTION REFERENCES
EMODPE—Extend an EPC Page Permissions

Instruction Operand Encoding

Description

This leaf function extends the access rights associated with an existing EPC page in the running enclave. THE RWX
bits of the SECINFO parameter are treated as a permissions mask; supplying a value that does not extend the page
permissions will have no effect. This instruction leaf can only be executed when inside the enclave.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of the EMODPE leaf function.

EMODPE Memory Parameter Semantics

The instruction faults if any of the following:

EMODPE Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 06H
ENCLU[EMODPE]

IR V/V SGX2 This leaf function extends the access rights of an existing EPC
page.

Op/En EAX RBX RCX

IR EMODPE (In) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE

Read access permitted by Non Enclave Read access permitted by Enclave

The operands are not properly aligned. If security attributes of the SECINFO page make the page inaccessible.

The EPC page is locked by another thread. RBX does not contain an effective address in an EPC page in the running enclave.

The EPC page is not valid. RCX does not contain an effective address of an EPC page in the running enclave.

SECINFO contains an invalid request.

Table 40-66. Base Concurrency Restrictions of EMODPE

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict

EMODPE Target [DS:RCX] Concurrent

SECINFO [DS:RBX] Concurrent

Table 40-67. Additional Concurrency Restrictions of EMODPE

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT vs. EADD, EEXTEND, EINIT vs. ETRACK

Access On Conflict Access On Conflict Access On Conflict

EMODPE Target [DS:RCX] Exclusive #GP Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent
EMODPE—Extend an EPC Page Permissions Vol. 3D 40-109

INTEL® SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EMODPE Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF ((DS:RBX is not within CR_ELRANGE) or (DS:RCX is not within CR_ELRANGE))
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

IF ((EPCM(DS:RBX).VALID = 0) or (EPCM(DS:RBX).R = 0) or (EPCM(DS:RBX).PENDING ≠ 0) or (EPCM(DS:RBX).MODIFIED ≠ 0) or
(EPCM(DS:RBX).BLOCKED ≠ 0) or (EPCM(DS:RBX).PT ≠ PT_REG) or (EPCM(DS:RBX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RBX).ENCLAVEADDRESS ≠ (DS:RBX & ~0xFFF)))
THEN #PF(DS:RBX); FI;

SCRATCH_SECINFO := DS:RBX;

(* Check for misconfigured SECINFO flags*)
IF (SCRATCH_SECINFO reserved fields are not zero)

THEN #GP(0); FI;

(* Check security attributes of the EPC page *)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 0) or (EPCM(DS:RCX).MODIFIED ≠ 0) or

(EPCM(DS:RCX).BLOCKED ≠ 0) or (EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS))
THEN #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX2 instruction)

THEN #GP(0); FI;

(* Re-Check security attributes of the EPC page *)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 0) or (EPCM(DS:RCX).MODIFIED ≠ 0) or

(EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RCX).ENCLAVEADDRESS ≠ DS:RCX))
THEN #PF(DS:RCX); FI;

(* Check for misconfigured SECINFO flags*)
IF ((EPCM(DS:RCX).R = 0) and (SCRATCH_SECINFO.FLAGS.R = 0) and (SCRATCH_SECINFO.FLAGS.W ≠ 0))

THEN #GP(0); FI;

Name Type Size (bits) Description

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.
EMODPE—Extend an EPC Page Permissions40-110 Vol.

INTEL® SGX INSTRUCTION REFERENCES
(* Update EPCM permissions *)
EPCM(DS:RCX).R := EPCM(DS:RCX).R | SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W := EPCM(DS:RCX).W | SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X := EPCM(DS:RCX).X | SCRATCH_SECINFO.FLAGS.X;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
EMODPE—Extend an EPC Page Permissions Vol. 3D 40-111

INTEL® SGX INSTRUCTION REFERENCES
EREPORT—Create a Cryptographic Report of the Enclave

Instruction Operand Encoding

Description

This leaf function creates a cryptographic REPORT that describes the contents of the enclave. This instruction leaf
can only be executed when inside the enclave. The cryptographic report can be used by other enclaves to deter-
mine that the enclave is running on the same platform.
RBX contains the effective address of the MRENCLAVE value of the enclave that will authenticate the REPORT
output, using the REPORT key delivered by EGETKEY command for that enclave. RCX contains the effective address
of a 64-byte REPORTDATA structure, which allows the caller of the instruction to associate data with the enclave
from which the instruction is called. RDX contains the address where the REPORT will be output by the instruction.

EREPORT Memory Parameter Semantics

This instruction leaf perform the following:

1. Validate the 3 operands (RBX, RCX, RDX) are inside the enclave.

2. Compute a report key for the target enclave, as indicated by the value located in RBX(TARGETINFO).

3. Assemble the enclave SECS data to complete the REPORT structure (including the data provided using the RCX
(REPORTDATA) operand).

4. Computes a cryptographic hash over REPORT structure.

5. Add the computed hash to the REPORT structure.

6. Output the completed REPORT structure to the address in RDX (OUTPUTDATA).
The instruction fails if the operands are not properly aligned.
CR_REPORT_KEYID, used to provide key wearout protection, is populated with a statistically unique value on boot
of the platform by a trusted entity within the SGX TCB.

The instruction faults if any of the following:

EREPORT Faulting Conditions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 00H
ENCLU[EREPORT]

IR V/V SGX1 This leaf function creates a cryptographic report of the enclave.

Op/En EAX RBX RCX RDX

IR EREPORT (In)
Address of TARGETINFO

(In)
Address of REPORTDATA

(In)
Address where the REPORT is

written to in an OUTPUTDATA (In)

TARGETINFO REPORTDATA OUTPUTDATA

Read access by Enclave Read access by Enclave Read/Write access by Enclave

An effective address not properly aligned. An memory address does not resolve in an EPC page.

If accessing an invalid EPC page. If the EPC page is blocked.

May page fault.
EREPORT—Create a Cryptographic Report of the Enclave40-112 Vol.

INTEL® SGX INSTRUCTION REFERENCES
Concurrency Restrictions

Operation

Temp Variables in EREPORT Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Address verification for TARGETINFO (RBX) *)
IF ((DS:RBX is not 512Byte Aligned) or (DS:RBX is not within CR_ELRANGE))

THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).VALID = 0)
THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1)
THEN #PF(DS:RBX); FI;

(* Check page parameters for correctness *)
IF ((EPCM(DS:RBX).PT ≠ PT_REG) or (EPCM(DS:RBX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RBX).PENDING = 1) or

(EPCM(DS:RBX).MODIFIED = 1) or (EPCM(DS:RBX).ENCLAVEADDRESS ≠ (DS:RBX & ~0FFFH)) or (EPCM(DS:RBX).R = 0))

Table 40-68. Base Concurrency Restrictions of EREPORT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict

EREPORT TARGETINFO [DS:RBX] Concurrent

REPORTDATA [DS:RCX] Concurrent

OUTPUTDATA [DS:RDX] Concurrent

Table 40-69. Additional Concurrency Restrictions of EREPORT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK

Access On Conflict Access On Conflict Access On Conflict

EREPORT TARGETINFO [DS:RBX] Concurrent Concurrent Concurrent

REPORTDATA
[DS:RCX]

Concurrent Concurrent Concurrent

OUTPUTDATA
[DS:RDX]

Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_ATTRIBUTES 32 Physical address of SECS of the enclave to which source operand belongs.

TMP_CURRENTSECS Address of the SECS for the currently executing enclave.

TMP_KEYDEPENDENCIES Temp space for key derivation.

TMP_REPORTKEY 128 REPORTKEY generated by the instruction.

TMP_REPORT 3712
EREPORT—Create a Cryptographic Report of the Enclave Vol. 3D 40-113

INTEL® SGX INSTRUCTION REFERENCES
THEN #PF(DS:RBX);
FI;

(* Verify RESERVED spaces in TARGETINFO are valid *)
IF (DS:RBX.RESERVED != 0)

THEN #GP(0); FI;

(* Address verification for REPORTDATA (RCX) *)
IF ((DS:RCX is not 128Byte Aligned) or (DS:RCX is not within CR_ELRANGE))

THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).VALID = 0)
THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).BLOCKED = 1)
THEN #PF(DS:RCX); FI;

(* Check page parameters for correctness *)
IF ((EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or

(EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RCX).ENCLAVEADDRESS ≠ (DS:RCX & ~0FFFH)) or (EPCM(DS:RCX).R = 0))
THEN #PF(DS:RCX);

FI;

(* Address verification for OUTPUTDATA (RDX) *)
IF ((DS:RDX is not 512Byte Aligned) or (DS:RDX is not within CR_ELRANGE))

THEN #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)
THEN #PF(DS:RDX); FI;

IF (EPCM(DS:RDX).VALID = 0)
THEN #PF(DS:RDX); FI;

IF (EPCM(DS:RDX).BLOCKED = 1)
THEN #PF(DS:RDX); FI;

(* Check page parameters for correctness *)
IF ((EPCM(DS:RDX).PT ≠ PT_REG) or (EPCM(DS:RDX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or

(EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RDX).ENCLAVEADDRESS ≠ (DS:RDX & ~0FFFH)) or (EPCM(DS:RDX).W = 0))
THEN #PF(DS:RDX);

FI;

(* REPORT MAC needs to be computed over data which cannot be modified *)
TMP_REPORT.CPUSVN := CR_CPUSVN;
TMP_REPORT.ISVFAMILYID := TMP_CURRENTSECS.ISVFAMILYID;
TMP_REPORT.ISVEXTPRODID := TMP_CURRENTSECS.ISVEXTPRODID;
TMP_REPORT.ISVPRODID := TMP_CURRENTSECS.ISVPRODID;
TMP_REPORT.ISVSVN := TMP_CURRENTSECS.ISVSVN;
TMP_REPORT.ATTRIBUTES := TMP_CURRENTSECS.ATTRIBUTES;
TMP_REPORT.REPORTDATA := DS:RCX[511:0];
TMP_REPORT.MRENCLAVE := TMP_CURRENTSECS.MRENCLAVE;
EREPORT—Create a Cryptographic Report of the Enclave40-114 Vol.

INTEL® SGX INSTRUCTION REFERENCES
TMP_REPORT.MRSIGNER := TMP_CURRENTSECS.MRSIGNER;
TMP_REPORT.MRRESERVED := 0;
TMP_REPORT.KEYID[255:0] := CR_REPORT_KEYID;
TMP_REPORT.MISCSELECT := TMP_CURRENTSECS.MISCSELECT;
TMP_REPORT.CONFIGID := TMP_CURRENTSECS.CONFIGID;
TMP_REPORT.CONFIGSVN := TMP_CURRENTSECS.CONFIGSVN;
IF (CPUID.12H.01H:EAX[6] = 1)

THEN TMP_REPORT.CET_ATTRIBUTES := TMP_CURRENTSECS.CET_ATTRIBUTES; FI;

(* Derive the report key *)
TMP_KEYDEPENDENCIES.KEYNAME := REPORT_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID := 0;
TMP_KEYDEPENDENCIES.ISVEXTPRODID := 0;
TMP_KEYDEPENDENCIES.ISVPRODID := 0;
TMP_KEYDEPENDENCIES.ISVSVN := 0;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH := CR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES := DS:RBX.ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK := 0;
TMP_KEYDEPENDENCIES.MRENCLAVE := DS:RBX.MEASUREMENT;
TMP_KEYDEPENDENCIES.MRSIGNER := 0;
TMP_KEYDEPENDENCIES.KEYID := TMP_REPORT.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES := CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN := CR_CPUSVN;
TMP_KEYDEPENDENCIES.PADDING := TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT := DS:RBX.MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK := 0;
TMP_KEYDEPENDENCIES.KEYPOLICY := 0;
TMP_KEYDEPENDENCIES.CONFIGID := DS:RBX.CONFIGID;
TMP_KEYDEPENDENCIES.CONFIGSVN := DS:RBX.CONFIGSVN;
IF (CPUID.12H.01H:EAX[6] = 1)

THEN
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES := DS:RBX.CET_ATTRIBUTES;
TMP_KEYDEPENDENCIES.CET_ATTRIBUTES _MASK := 0;

FI;

(* Calculate the derived key*)
TMP_REPORTKEY := derivekey(TMP_KEYDEPENDENCIES);

(* call cryptographic CMAC function, CMAC data are not including MAC&KEYID *)
TMP_REPORT.MAC := cmac(TMP_REPORTKEY, TMP_REPORT[3071:0]);
DS:RDX[3455: 0] := TMP_REPORT;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If the address in RCS is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is not in the current enclave.

#PF(error code) If a page fault occurs in accessing memory operands.
EREPORT—Create a Cryptographic Report of the Enclave Vol. 3D 40-115

INTEL® SGX INSTRUCTION REFERENCES
64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If RCX is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is not in the current enclave.

#PF(error code) If a page fault occurs in accessing memory operands.
EREPORT—Create a Cryptographic Report of the Enclave40-116 Vol.

INTEL® SGX INSTRUCTION REFERENCES
ERESUME—Re-Enters an Enclave

Instruction Operand Encoding

Description

The ENCLU[ERESUME] instruction resumes execution of an enclave that was interrupted due to an exception or
interrupt, using the machine state previously stored in the SSA.

ERESUME Memory Parameter Semantics

The instruction faults if any of the following occurs:

The following operations are performed by ERESUME:
• RSP and RBP are saved in the current SSA frame on EENTER and are automatically restored on EEXIT or an

asynchronous exit due to any Interrupt event.
• The AEP contained in RCX is stored into the TCS for use by AEXs.FS and GS (including hidden portions) are

saved and new values are constructed using TCS.OFSBASE/GSBASE (32 and 64-bit mode) and
TCS.OFSLIMIT/GSLIMIT (32-bit mode only). The resulting segments must be a subset of the DS segment.

• If CR4.OSXSAVE == 1, XCR0 is saved and replaced by SECS.ATTRIBUTES.XFRM. The effect of RFLAGS.TF
depends on whether the enclave entry is opt-in or opt-out (see Section 42.1.2):

— On opt-out entry, TF is saved and cleared (it is restored on EEXIT or AEX). Any attempt to set TF via a POPF
instruction while inside the enclave clears TF (see Section 42.2.5).

— On opt-in entry, a single-step debug exception is pended on the instruction boundary immediately after
EENTER (see Section 42.2.3).

• All code breakpoints that do not overlap with ELRANGE are also suppressed. If the entry is an opt-out entry, all
code and data breakpoints that overlap with the ELRANGE are suppressed.

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 03H
ENCLU[ERESUME]

IR V/V SGX1 This leaf function is used to re-enter an enclave after an inter-
rupt.

Op/En RAX RBX RCX

IR ERESUME (In) Address of a TCS (In) Address of AEP (In)

TCS

 Enclave read/write access

Address in RBX is not properly aligned. Any TCS.FLAGS’s must-be-zero bit is not zero.

TCS pointed to by RBX is not valid or available or
locked.

Current 32/64 mode does not match the enclave mode in
SECS.ATTRIBUTES.MODE64.

The SECS is in use by another enclave. Either of TCS-specified FS and GS segment is not a subset of the current DS
segment.

Any one of DS, ES, CS, SS is not zero. If XSAVE available, CR4.OSXSAVE = 0, but SECS.ATTRIBUTES.XFRM ≠ 3.

CR4.OSFXSR ≠ 1. If CR4.OSXSAVE = 1, SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

Offsets 520-535 of the XSAVE area not 0. The bit vector stored at offset 512 of the XSAVE area must be a subset of
SECS.ATTRIBUTES.XFRM.

The SSA frame is not valid or in use. If SECS.ATTRIBUTES.AEXNOTIFY ≠ TCS.FLAGS.AEXNOTIFY and
TCS.FLAGS.DBGOPTIN = 0.
ERESUME—Re-Enters an Enclave Vol. 3D 40-117

INTEL® SGX INSTRUCTION REFERENCES
• On opt-out entry, a number of performance monitoring counters and behaviors are modified or suppressed (see
Section 42.2.3):

— All performance monitoring activity on the current thread is suppressed except for incrementing and firing
of FIXED_CTR1 and FIXED_CTR2.

— PEBS is suppressed.

— AnyThread counting on other threads is demoted to MyThread mode and IA32_PERF_GLOBAL_STATUS[60]
on that thread is set.

— If the opt-out entry on a hardware thread results in suppression of any performance monitoring, then the
processor sets IA32_PERF_GLOBAL_STATUS[60] and IA32_PERF_GLOBAL_STATUS[63].

Concurrency Restrictions

Operation

Temp Variables in ERESUME Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Make sure DS is usable, expand up *)
IF (TMP_MODE64 = 0 and (DS not usable or DS[bits 11:9] != 001B))

Table 40-70. Base Concurrency Restrictions of ERESUME

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict

ERESUME TCS [DS:RBX] Shared #GP

Table 40-71. Additional Concurrency Restrictions of ERESUME

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT vs. EADD, EEXTEND, EINIT vs. ETRACK

Access On Conflict Access On Conflict Access On Conflict

ERESUME TCS [DS:RBX] Concurrent Concurrent Concurrent

Name Type Size Description

TMP_FSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_GSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_FSLIMIT Effective Address 32/64 Highest legal address in proposed FS segment.

TMP_GSLIMIT Effective Address 32/64 Highest legal address in proposed GS segment.

TMP_TARGET Effective Address 32/64 Address of first instruction inside enclave at which execution is to resume.

TMP_SECS Effective Address 32/64 Physical address of SECS for this enclave.

TMP_SSA Effective Address 32/64 Address of current SSA frame.

TMP_XSIZE integer 64 Size of XSAVE area based on SECS.ATTRIBUTES.XFRM.

TMP_SSA_PAGE Effective Address 32/64 Pointer used to iterate over the SSA pages in the current frame.

TMP_GPR Effective Address 32/64 Address of the GPR area within the current SSA frame.

TMP_BRANCH_RECORD LBR Record From/to addresses to be pushed onto the LBR stack.

TMP_NOTIFY Boolean 1 When set to 1, deliver an AEX notification.
ERESUME—Re-Enters an Enclave40-118 Vol.

INTEL® SGX INSTRUCTION REFERENCES
THEN #GP(0); FI;

(* Check that CS, SS, DS, ES.base is 0 *)
IF (TMP_MODE64 = 0)

THEN
IF(CS.base ≠ 0 or DS.base ≠ 0) #GP(0); FI;
IF(ES usable and ES.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.B = 0) #GP(0); FI;

FI;

IF (DS:RBX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

(* Check AEP is canonical*)
IF (TMP_MODE64 = 1 and (CS:RCX is not canonical))

THEN #GP(0); FI;

(* Check concurrency of TCS operation*)
IF (Other Intel SGX instructions are operating on TCS)

THEN #GP(0); FI;

(* TCS verification *)
IF (EPCM(DS:RBX).VALID = 0)

THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1)
THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).PENDING = 1) or (EPCM(DS:RBX).MODIFIED = 1))
THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).ENCLAVEADDRESS ≠ DS:RBX) or (EPCM(DS:RBX).PT ≠ PT_TCS))
THEN #PF(DS:RBX); FI;

IF ((DS:RBX).OSSA is not 4KByte Aligned)
THEN #GP(0); FI;

(* Check proposed FS and GS *)
IF (((DS:RBX).OFSBASE is not 4KByte Aligned) or ((DS:RBX).OGSBASE is not 4KByte Aligned))

THEN #GP(0); FI;

(* Get the SECS for the enclave in which the TCS resides *)
TMP_SECS := Address of SECS for TCS;

(* Make sure that the FLAGS field in the TCS does not have any reserved bits set *)
IF (((DS:RBX).FLAGS & FFFFFFFFFFFFFFFCH) ≠ 0)

THEN #GP(0); FI;

(* SECS must exist and enclave must have previously been EINITted *)
IF (the enclave is not already initialized)
ERESUME—Re-Enters an Enclave Vol. 3D 40-119

INTEL® SGX INSTRUCTION REFERENCES
THEN #GP(0); FI;

(* make sure the logical processor's operating mode matches the enclave *)
IF ((TMP_MODE64 ≠ TMP_SECS.ATTRIBUTES.MODE64BIT))

THEN #GP(0); FI;

IF (CR4.OSFXSR = 0)
THEN #GP(0); FI;

(* Check for legal values of SECS.ATTRIBUTES.XFRM *)
IF (CR4.OSXSAVE = 0)

THEN
IF (TMP_SECS.ATTRIBUTES.XFRM ≠ 03H) THEN #GP(0); FI;

ELSE
IF ((TMP_SECS.ATTRIBUTES.XFRM & XCR0) ≠ TMP_SECS.ATTRIBUTES.XFRM) THEN #GP(0); FI;

FI;

IF ((DS:RBX).CSSA.FLAGS.DBGOPTIN = 0) and (DS:RBX).CSSA.FLAGS.AEXNOTIFY ≠ TMP_SECS.ATTRIBUTES.AEXNOTIFY))
THEN #GP(0); FI;

(* Make sure the SSA contains at least one active frame *)
IF ((DS:RBX).CSSA = 0)

THEN #GP(0); FI;

(* Compute linear address of SSA frame *)
TMP_SSA := (DS:RBX).OSSA + TMP_SECS.BASEADDR + 4096 * TMP_SECS.SSAFRAMESIZE * ((DS:RBX).CSSA - 1);
TMP_XSIZE := compute_XSAVE_frame_size(TMP_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE
(* Check page is read/write accessible *)
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;
IF (DS:TMP_SSA_PAGE does not resolve to EPC page)

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0)

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1)

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or (EPCM(DS:TMP_SSA_PAGE_.MODIFIED = 1))

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS ≠ DS:TMPSSA_PAGE) or (EPCM(DS:TMP_SSA_PAGE).PT ≠ PT_REG) or

(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_SSA_PAGE).R = 0) or (EPCM(DS:TMP_SSA_PAGE).W = 0))
THEN #PF(DS:TMP_SSA_PAGE); FI;

CR_XSAVE_PAGE_n := Physical_Address(DS:TMP_SSA_PAGE);
ENDFOR

(* Compute address of GPR area*)
TMP_GPR := TMP_SSA + 4096 * DS:TMP_SECS.SSAFRAMESIZE - sizeof(GPRSGX_AREA);
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;
IF (DS:TMP_GPR does not resolve to EPC page)

THEN #PF(DS:TMP_GPR); FI;
IF (EPCM(DS:TMP_GPR).VALID = 0)
ERESUME—Re-Enters an Enclave40-120 Vol.

INTEL® SGX INSTRUCTION REFERENCES
THEN #PF(DS:TMP_GPR); FI;
IF (EPCM(DS:TMP_GPR).BLOCKED = 1)

THEN #PF(DS:TMP_GPR); FI;
IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))

THEN #PF(DS:TMP_GPR); FI;
IF ((EPCM(DS:TMP_GPR).ENCLAVEADDRESS ≠ DS:TMP_GPR) or (EPCM(DS:TMP_GPR).PT ≠ PT_REG) or

(EPCM(DS:TMP_GPR).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0))
THEN #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)
THEN

IF (TMP_GPR + (GPR_SIZE -1) is not in DS segment) THEN #GP(0); FI;
FI;

CR_GPR_PA := Physical_Address (DS: TMP_GPR);

IF ((DS:RBX).FLAGS.AEXNOTIFY = 1) and (DS:TMP_GPR.AEXNOTIFY[0] = 1))
THEN

TMP_NOTIFY := 1;
ELSE

TMP_NOTIFY := 0;
FI;

IF (TMP_NOTIFY = 1)
THEN

(* Make sure the SSA contains at least one more frame *)
IF ((DS:RBX).CSSA ≥ (DS:RBX).NSSA)

THEN #GP(0); FI;

TMP_SSA := TMP_SSA + 4096 * TMP_SECS.SSAFRAMESIZE;
TMP_XSIZE := compute_XSAVE_frame_size(TMP_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE
(* Check page is read/write accessible *)
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;

IF (DS:TMP_SSA_PAGE does not resolve to EPC page)
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0)
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1)
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or
(EPCM(DS:TMP_SSA_PAGE).MODIFIED = 1))

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS ≠ DS:TMP_SSA_PAGE) or
(EPCM(DS:TMP_SSA_PAGE).PT ≠ PT_REG) or
(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_SSA_PAGE).R = 0) or (EPCM(DS:TMP_SSA_PAGE).W = 0))

THEN #PF(DS:TMP_SSA_PAGE); FI;
CR_XSAVE_PAGE_n := Physical_Address(DS:TMP_SSA_PAGE);

ENDFOR
ERESUME—Re-Enters an Enclave Vol. 3D 40-121

INTEL® SGX INSTRUCTION REFERENCES
(* Compute address of GPR area*)
TMP_GPR := TMP_SSA + 4096 * DS:TMP_SECS.SSAFRAMESIZE - sizeof(GPRSGX_AREA);
If a fault occurs; release locks, abort and deliver that fault;

IF (DS:TMP_GPR does not resolve to EPC page)
THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).VALID = 0)
THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).BLOCKED = 1)
THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))
THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).ENCLAVEADDRESS ≠ DS:TMP_GPR) or
(EPCM(DS:TMP_GPR).PT ≠ PT_REG) or
(EPCM(DS:TMP_GPR).ENCLAVESECS EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0))

THEN #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)
THEN

IF (TMP_GPR + (GPR_SIZE -1) is not in DS segment) THEN #GP(0); FI;
FI;

CR_GPR_PA := Physical_Address (DS: TMP_GPR);

TMP_TARGET := (DS:RBX).OENTRY + TMP_SECS.BASEADDR;
ELSE

TMP_TARGET := (DS:TMP_GPR).RIP;
FI;

IF (TMP_MODE64 = 1)
THEN

IF (TMP_TARGET is not canonical) THEN #GP(0); FI;
ELSE

IF (TMP_TARGET > CS limit) THEN #GP(0); FI;
FI;

(* Check proposed FS/GS segments fall within DS *)
IF (TMP_MODE64 = 0)

THEN
TMP_FSBASE := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_FSLIMIT := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR + (DS:RBX).FSLIMIT;
TMP_GSBASE := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
TMP_GSLIMIT := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR + (DS:RBX).GSLIMIT;
(* if FS wrap-around, make sure DS has no holes*)
IF (TMP_FSLIMIT < TMP_FSBASE)

THEN
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_FSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
(* if GS wrap-around, make sure DS has no holes*)
IF (TMP_GSLIMIT < TMP_GSBASE)

THEN
ERESUME—Re-Enters an Enclave40-122 Vol.

INTEL® SGX INSTRUCTION REFERENCES
IF (DS.limit < 4GB) THEN #GP(0); FI;
ELSE

IF (TMP_GSLIMIT > DS.limit) THEN #GP(0); FI;
FI;

ELSE
IF (TMP_NOTIFY = 1)

THEN
TMP_FSBASE := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_GSBASE := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;

ELSE
 TMP_FSBASE := DS:TMP_GPR.FSBASE;
 TMP_GSBASE := DS:TMP_GPR.GSBASE;

FI;
IF ((TMP_FSBASE is not canonical) or (TMP_GSBASE is not canonical))

THEN #GP(0); FI;
FI;

(* Ensure the enclave is not already active and this thread is the only one using the TCS*)
IF (DS:RBX.STATE = ACTIVE))

THEN #GP(0); FI;

TMP_IA32_U_CET := 0
TMP_SSP := 0

IF (CPUID.12H.01H:EAX[6] = 1)
THEN

IF (CR4.CET = 0)
THEN

(* If part does not support CET or CET has not been enabled and enclave requires CET then fail *)
IF (TMP_SECS.CET_ATTRIBUTES ≠ 0 OR TMP_SECS.CET_LEG_BITMAP_OFFSET ≠ 0) #GP(0); FI;

FI;
(* If indirect branch tracking or shadow stacks enabled but CET state save area is not 16B aligned then fail ERESUME *)
IF (TMP_SECS.CET_ATTRIBUTES.SH_STK_EN = 1 OR TMP_SECS.CET_ATTRIBUTES.ENDBR_EN = 1)

THEN
IF (DS:RBX.OCETSSA is not 16B aligned) #GP(0); FI;

FI;

IF (TMP_SECS.CET_ATTRIBUTES.SH_STK_EN OR TMP_SECS.CET_ATTRIBUTES.ENDBR_EN)
THEN

(* Setup CET state from SECS, note tracker goes to IDLE *)
TMP_IA32_U_CET = TMP_SECS.CET_ATTRIBUTES;
IF (TMP_IA32_U_CET.LEG_IW_EN = 1 AND TMP_IA32_U_CET.ENDBR_EN = 1)

THEN
TMP_IA32_U_CET := TMP_IA32_U_CET + TMP_SECS.BASEADDR;
TMP_IA32_U_CET := TMP_IA32_U_CET + TMP_SECS.CET_LEG_BITMAP_BASE;

FI;

(* Compute linear address of what will become new CET state save area and cache its PA *)
IF (TMP_NOTIFY = 1)

THEN
TMP_CET_SAVE_AREA = DS:RBX.OCETSSA + TMP_SECS.BASEADDR + (DS:RBX.CSSA) * 16;

ELSE
TMP_CET_SAVE_AREA = DS:RBX.OCETSSA + TMP_SECS.BASEADDR + (DS:RBX.CSSA - 1) * 16;

FI;
ERESUME—Re-Enters an Enclave Vol. 3D 40-123

INTEL® SGX INSTRUCTION REFERENCES
TMP_CET_SAVE_PAGE = TMP_CET_SAVE_AREA & ~0xFFF;

Check the TMP_CET_SAVE_PAGE page is read/write accessible
If fault occurs release locks, abort and deliver fault

(* read the EPCM VALID, PENDING, MODIFIED, BLOCKED and PT fields atomically *)
IF ((DS:TMP_CET_SAVE_PAGE Does NOT RESOLVE TO EPC PAGE) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).VALID = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).PENDING = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).MODIFIED = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).BLOCKED = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).R = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).W = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVEADDRESS ≠ DS:TMP_CET_SAVE_PAGE) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).PT ≠ PT_SS_REST) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS))

THEN
#PF(DS:TMP_CET_SAVE_PAGE);

FI;

CR_CET_SAVE_AREA_PA := Physical address(DS:TMP_CET_SAVE_AREA)
IF (TMP_NOTIFY = 1)

THEN
IF TMP_IA32_U_CET.SH_STK_EN = 1

THEN TMP_SSP = TCS.PREVSSP; FI;
ELSE

TMP_SSP = CR_CET_SAVE_AREA_PA.SSP
TMP_IA32_U_CET.TRACKER = CR_CET_SAVE_AREA_PA.TRACKER;
TMP_IA32_U_CET.SUPPRESS = CR_CET_SAVE_AREA_PA.SUPPRESS;
IF ((TMP_MODE64 = 1 AND TMP_SSP is not canonical) OR

 (TMP_MODE64 = 0 AND (TMP_SSP & 0xFFFFFFFF00000000) ≠ 0) OR
(TMP_SSP is not 4 byte aligned) OR
(TMP_IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH AND TMP_IA32_U_CET.SUPPRESS = 1) OR
(CR_CET_SAVE_AREA_PA.Reserved ≠ 0)) #GP(0); FI;

FI;
FI;

FI;

IF (TMP_NOTIFY = 0)
THEN

(* SECS.ATTRIBUTES.XFRM selects the features to be saved. *)
(* CR_XSAVE_PAGE_n: A list of 1 or more physical address of pages that contain the XSAVE area. *)
XRSTOR(TMP_MODE64, SECS.ATTRIBUTES.XFRM, CR_XSAVE_PAGE_n);

IF (XRSTOR failed with #GP)
THEN

DS:RBX.STATE := INACTIVE;
#GP(0);

FI;
FI;

CR_ENCLAVE_MODE := 1;
CR_ACTIVE_SECS := TMP_SECS;
CR_ELRANGE := (TMP_SECS.BASEADDR, TMP_SECS.SIZE);
ERESUME—Re-Enters an Enclave40-124 Vol.

INTEL® SGX INSTRUCTION REFERENCES
(* Save sate for possible AEXs *)
CR_TCS_PA := Physical_Address (DS:RBX);
CR_TCS_LA := RBX;
CR_TCS_LA.AEP := RCX;

(* Save the hidden portions of FS and GS *)
CR_SAVE_FS_selector := FS.selector;
CR_SAVE_FS_base := FS.base;
CR_SAVE_FS_limit := FS.limit;
CR_SAVE_FS_access_rights := FS.access_rights;
CR_SAVE_GS_selector := GS.selector;
CR_SAVE_GS_base := GS.base;
CR_SAVE_GS_limit := GS.limit;
CR_SAVE_GS_access_rights := GS.access_rights;

IF (TMP_NOTIFY = 1)
THEN

(* If XSAVE is enabled, save XCR0 and replace it with SECS.ATTRIBUTES.XFRM*)
IF (CR4.OSXSAVE = 1)

THEN
CR_SAVE_XCR0 := XCR0;
XCR0 := TMP_SECS.ATTRIBUTES.XFRM;

FI;
FI;

RIP := TMP_TARGET;

IF (TMP_NOTIFY = 1)
THEN

RCX := RIP;
RAX := (DS:RBX).CSSA;
(* Save the outside RSP and RBP so they can be restored on interrupt or EEXIT *)
DS:TMP_SSA.U_RSP := RSP;
DS:TMP_SSA.U_RBP := RBP;

ELSE
Restore_GPRs from DS:TMP_GPR;

(*Restore the RFLAGS values from SSA*)
RFLAGS.CF := DS:TMP_GPR.RFLAGS.CF;
RFLAGS.PF := DS:TMP_GPR.RFLAGS.PF;
RFLAGS.AF := DS:TMP_GPR.RFLAGS.AF;
RFLAGS.ZF := DS:TMP_GPR.RFLAGS.ZF;
RFLAGS.SF := DS:TMP_GPR.RFLAGS.SF;
RFLAGS.DF := DS:TMP_GPR.RFLAGS.DF;
RFLAGS.OF := DS:TMP_GPR.RFLAGS.OF;
RFLAGS.NT := DS:TMP_GPR.RFLAGS.NT;
RFLAGS.AC := DS:TMP_GPR.RFLAGS.AC;
RFLAGS.ID := DS:TMP_GPR.RFLAGS.ID;
RFLAGS.RF := DS:TMP_GPR.RFLAGS.RF;
RFLAGS.VM := 0;
IF (RFLAGS.IOPL = 3)

THEN RFLAGS.IF := DS:TMP_GPR.RFLAGS.IF; FI;

IF (TCS.FLAGS.OPTIN = 0)
ERESUME—Re-Enters an Enclave Vol. 3D 40-125

INTEL® SGX INSTRUCTION REFERENCES
THEN RFLAGS.TF := 0; FI;

(* If XSAVE is enabled, save XCR0 and replace it with SECS.ATTRIBUTES.XFRM*)
IF (CR4.OSXSAVE = 1)

THEN
CR_SAVE_XCR0 := XCR0;
XCR0 := TMP_SECS.ATTRIBUTES.XFRM;

FI;

(* Pop the SSA stack*)
(DS:RBX).CSSA := (DS:RBX).CSSA -1;

FI;

(* Do the FS/GS swap *)
FS.base := TMP_FSBASE;
FS.limit := DS:RBX.FSLIMIT;
FS.type := 0001b;
FS.W := DS[bit 9];
FS.S := 1;
FS.DPL := DS.DPL;
FS.G := 1;
FS.B := 1;
FS.P := 1;
FS.AVL := DS.AVL;
FS.L := DS[bit 21];
FS.unusable := 0;
FS.selector := 0BH;

GS.base := TMP_GSBASE;
GS.limit := DS:RBX.GSLIMIT;
GS.type := 0001b;
GS.W := DS[bit 9];
GS.S := 1;
GS.DPL := DS.DPL;
GS.G := 1;
GS.B := 1;
GS.P := 1;
GS.AVL := DS.AVL;
GS.L := DS[bit 21];
GS.unusable := 0;
GS.selector := 0BH;

CR_DBGOPTIN := TCS.FLAGS.DBGOPTIN;
Suppress all code breakpoints that are outside ELRANGE;

IF (CR_DBGOPTIN = 0)
THEN

Suppress all code breakpoints that overlap with ELRANGE;
CR_SAVE_TF := RFLAGS.TF;
RFLAGS.TF := 0;
Suppress any MTF VM exits during execution of the enclave;
Clear all pending debug exceptions;
Clear any pending MTF VM exit;

ELSE
ERESUME—Re-Enters an Enclave40-126 Vol.

INTEL® SGX INSTRUCTION REFERENCES
IF (TMP_NOTIFY = 1)
THEN

IF RFLAGS.TF = 1
THEN pend a single-step #DB at the end of ERESUME; FI;

IF the “monitor trap flag” VM-execution control is set
THEN pend an MTF VM exit at the end of ERESUME; FI;

ELSE
Clear all pending debug exceptions;
Clear pending MTF VM exits;

FI;
FI;

IF ((CPUID.07H.00H:EDX.CET_IBT = 1) OR (CPUID.07H.00H:ECX.CET_SS = 1)
THEN

(* Save enclosing application CET state into save registers *)
CR_SAVE_IA32_U_CET := IA32_U_CET
(* Setup enclave CET state *)

IF CPUID.07H.00H:ECX.CET_SS = 1
THEN

CR_SAVE_SSP := SSP
SSP := TMP_SSP;

FI;
IA32_U_CET := TMP_IA32_U_CET;

FI;

(* Assure consistent translations *)
Flush_linear_context;
Clear_Monitor_FSM;
Allow_front_end_to_begin_fetch_at_new_RIP;

Flags Affected

RFLAGS.TF is cleared on opt-out entry

Protected Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment.
If any reserved field in the TCS FLAG is set.
If the target address is not within the CS segment.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.
If SECS.ATTRIBUTES.AEXNOTIFY ≠ TCS.FLAGS.AEXNOTIFY and TCS.FLAGS.DBGOPTIN = 0.

#PF(error code) If a page fault occurs in accessing memory.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.
ERESUME—Re-Enters an Enclave Vol. 3D 40-127

INTEL® SGX INSTRUCTION REFERENCES
64-Bit Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment.
If any reserved field in the TCS FLAG is set.
If the target address is not canonical.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.
If SECS.ATTRIBUTES.AEXNOTIFY ≠ TCS.FLAGS.AEXNOTIFY and TCS.FLAGS.DBGOPTIN = 0.

#PF(error code) If a page fault occurs in accessing memory operands.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.
ERESUME—Re-Enters an Enclave40-128 Vol.

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
CHAPTER 41
INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

Intel® SGX provides Intel® Architecture with a collection of enclave instructions for creating protected execution
environments on processors supporting IA32 and Intel® 64 architectures. These Intel SGX instructions are
designed to work with legacy software and the various IA32 and Intel 64 modes of operation.

41.1 INTEL® SGX AVAILABILITY IN VARIOUS PROCESSOR MODES
The Intel SGX extensions (see Table 36-1) are available only when the processor is executing in protected mode of
operation. Additionally, the extensions are not available in System Management Mode (SMM) of operation or in
Virtual 8086 (VM86) mode of operation. Finally, all leaf functions of ENCLU and ENCLS require CR0.PG enabled.
The exact details of exceptions resulting from illegal modes and their priority are listed in the reference pages of
ENCLS and ENCLU.

41.2 IA32_FEATURE_CONTROL
IA32_FEATURE_CONTROL MSR provides two new bits related to two aspects of Intel SGX: using the instruction
extensions and launch control configuration.

41.2.1 Availability of Intel SGX
IA32_FEATURE_CONTROL[bit 18] allows BIOS to control the availability of Intel SGX extensions. For Intel SGX
extensions to be available on a logical processor, bit 18 in the IA32_FEATURE_CONTROL MSR on that logical
processor must be set, and IA32_FEATURE_CONTROL MSR on that logical processor must be locked (bit 0 must be
set). See Section 36.7.1 for additional details. OS is expected to examine the value of bit 18 prior to enabling Intel
SGX on the thread, as the settings of bit 18 is not reflected by CPUID.

41.2.2 Intel SGX Launch Control Configuration
The IA32_SGXLEPUBKEYHASHn MSRs used to configure authorized launch enclaves' MRSIGNER digest value. They
are present on logical processors that support the collection of SGX1 leaf functions (i.e., CPUID.12H.00H:EAX[0] =
1) and that CPUID.07H.00H:ECX[30] = 1. IA32_FEATURE_CONTROL[bit 17] allows to BIOS to enable write access
to these MSRs. If IA32_FEATURE_CONTROL.LE_WR (bit 17) is set to 1 and IA32_FEATURE_CONTROL is locked on
that logical processor, IA32_SGXLEPUBKEYHASH MSRs on that logical processor are writeable. If this bit 17 is not
set or IA32_FEATURE_CONTROL is not locked, IA32_SGXLEPUBKEYHASH MSRs are read only. See Section 38.1.4
for additional details.

41.3 INTERACTIONS WITH SEGMENTATION

41.3.1 Scope of Interaction
Intel SGX extensions are available only when the processor is executing in a protected mode operation (see Section
41.1 for Intel SGX availability in various processor modes). Enclaves abide by all the segmentation policies set up
by the OS, but they can be more restrictive than the OS.
Intel SGX interacts with segmentation at two levels:
• The Intel SGX instruction (see the enclave instruction in Table 36-1).
Vol. 3D 41-1

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
• While executing inside an enclave (legacy instructions and enclave instructions permitted inside an enclave).

41.3.2 Interactions of Intel® SGX Instructions with Segment, Operand, and Addressing
Prefixes

All the memory operands used by the Intel SGX instructions are interpreted as offsets within the data segment
(DS). The segment-override prefix on Intel SGX instructions is ignored.
Operand size is fixed for each enclave instruction. The operand-size prefix is reserved, and results in a #UD excep-
tion if used.
All address sizes are determined by the operating mode of the processor. The address-size prefix is ignored. This
implies that while operating in 64-bit mode of operation, the address size is always 64 bits, and while operating in
32-bit mode of operation, the address size is always 32 bits. Additionally, when operating in 16-bit addressing,
memory operands used by enclave instructions use 32 bit addressing; the value of CS.D is ignored.

41.3.3 Interaction of Intel® SGX Instructions with Segmentation
All leaf functions of ENCLU and ENCLS instructions require that the DS segment be usable, and be an expand-up
segment. Failing this check results in generation of a #GP(0) exception.
The Intel SGX leaf functions used for entering the enclave (ENCLU[EENTER] and ENCLU[ERESUME]) operate as
follows:
• All usable segment registers except for FS and GS have a zero base.
• The contents of the FS/GS segment registers (including the hidden portion) is saved in the processor.
• New FS and GS values compatible with enclave security are loaded from the TCS
• The linear ranges and access rights available under the newly-loaded FS and GS must abide to OS policies by

ensuring they are subsets of the linear-address range and access rights available for the DS segment.
• The CS segment mode (64-bit, compatible, or 32 bit modes) must be consistent with the segment mode for

which the enclave was created, as indicated by the SECS.ATTRIBUTES.MODE64 bit, and that the CPL of the
logical processor is 3

An exit from the enclave either via ENCLU[EEXIT] or via an AEX restores the saved values of FS/GS segment regis-
ters.

41.3.4 Interactions of Enclave Execution with Segmentation
During the course of execution, enclave code abides by all segmentation policies as dictated by IA32 and Intel 64
Architectures, and generates appropriate exceptions on violations.
Additionally, any attempt by software executing inside an enclave to modify the processor's segmentation state
(e.g., via MOV seg register, POP seg register, LDS, far jump, etc; excluding WRFSBASE/WRGSBASE) results in the
generation of a #UD. See Section 38.6.1 for more information.
Upon enclave entry via the EENTER leaf function, FS is loaded from the (TCS.OFSBASE + SECS.BASEADDR) and
TCS.FSLIMIT fields and GS is loaded from the (TCS.OGSBASE + SECS.BASEADDR) and TCS.GSLIMIT fields.
Execution of WRFSBASE and WRGSBASE from inside a 64-bit enclave is allowed. The processor will save the new
values into the current SSA frame on an asynchronous exit (AEX) and restore them back on enclave entry via
ENCLU[ERESUME] instruction.

41.4 INTERACTIONS WITH PAGING
Intel SGX instructions are available only when the processor is executing in a protected mode of operation. Addi-
tionally, all Intel SGX leaf functions except for EDBGRD and EDBGWR are available only if paging is enabled. Any
attempt to execute these leaf functions with paging disabled results in an invalid-opcode exception (#UD). As with
41-2 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
segmentation, enclaves abide by all the paging policies set up by the OS, but they can be more restrictive than the
OS.
All the memory operands passed into Intel SGX instructions are interpreted as offsets within the DS segment, and
the linear addresses generated by combining these offsets with DS segment register are subject to paging-based
access control if paging is enabled at the time of the execution of the leaf function.
Since the ENCLU[EENTER] and ENCLU[ERESUME] can only be executed when paging is enabled, and since paging
cannot be disabled by software running inside an enclave (recall that enclaves always run with CPL = 3), enclave
execution is always subject to paging-based access control. The Intel SGX access control itself is implemented as
an extension to the existing paging modes. See Section 37.5 for details.
Execution of Intel SGX instructions may set accessed and dirty flags on accesses to EPC pages that do not fault
even if the instruction later causes a fault for some other reason.

41.5 INTERACTIONS WITH VMX
Intel SGX functionality (including SGX1 and SGX2) can be made available to software running in either VMX root
operation or VMX non-root operation, as long as the processor is using a legal mode of operation (see Section
41.1).
A VMM has the flexibility to configure a VMCS to permit a guest to use any subset of the ENCLS leaf functions. Avail-
ability of the ENCLU leaf functions in VMX non-root operation has the same requirement as ENCLU leaf functions
outside of a virtualized environment.
Details of the VMCS control to allow VMM to configure support of Intel SGX in VMX non-root operation is described
in Section 41.5.1

41.5.1 VMM Controls to Configure Guest Support of Intel® SGX
Intel SGX capabilities are primarily exposed to the software via the CPUID instruction. VMMs can virtualize CPUID
instruction to expose/hide this capability to/from guests.
Some of Intel SGX resources are exposed/controlled via model-specific registers (see Section 36.7). VMMs can
virtualize these MSRs for the guests using the MSR bitmaps referenced by pointers in the VMCS.
The VMM can partition the Enclave Page Cache, and assign various partitions to (a subset of) its guests via the
usual memory-virtualization techniques such as paging or the extended page table mechanism (EPT).
The VMM can set the “enable ENCLS exiting” VM-execution controls to cause a VM exit when the ENCLS instruction
is executed in VMX non-root operation. If the “enable ENCLS exiting” control is 0, all of the ENCLS leaf functions are
permitted in VMX non-root operation. If the “enable ENCLS exiting” control is 1, execution of ENCLS leaf functions
in VMX non-root operation is governed by consulting the bits in a new 64-bit VM-execution control field called the
ENCLS-exiting bitmap (Each bit in the bitmap corresponds to an ENCLS leaf function with an EAX value that is iden-
tical to the bit’s position). When bits in the “ENCLS-exiting bitmap” are set, attempts to execute the corresponding
ENCLS leaf functions in VMX non-root operation causes VM exits. The checking for these VM exits occurs immedi-
ately after checking that CPL = 0.

41.5.2 Interactions with the Extended Page Table Mechanism (EPT)
Intel SGX instructions are fully compatible with the extended page-table mechanism (EPT; see Section 30.3).
All the memory operands passed into Intel SGX instructions are interpreted as offsets within the DS segment, and
the linear addresses generated by combining these offsets with DS segment register are subject to paging and EPT.
As with paging, enclaves abide by all the policies set up by the VMM.
The Intel SGX access control itself is implemented as an extension to paging and EPT, and may be more restrictive.
See Section 41.4 for details of this extension.
An execution of an Intel SGX instruction may set accessed and dirty flags for EPT (when enabled; see Section
30.3.5) on accesses to EPC pages that do not fault or cause VM exits even if the instruction later causes a fault or
VM exit for some other reason.
Vol. 3D 41-3

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
41.5.3 Interactions with APIC Virtualization
This section applies to Intel SGX in VMX non-root operation when the “virtualize APIC accesses” VM-execution
control is 1.
A memory access by an enclave instruction that implicitly uses a cached physical address is never checked for
overlap with the APIC-access page. Such accesses never cause APIC-access VM exits and are never redirected to
the virtual-APIC page. Implicit memory accesses can only be made to the SECS, the TCS, or the SSA of an enclave
(see Section 37.5.3.2).
An explicit Enclave Access (a linear memory access which is either from within an enclave into its ELRANGE, or an
access by an Intel SGX instruction that is expected to be in the EPC) that overlaps with the APIC-access page
causes a #PF exception (APIC page is expected to be outside of EPC).
Non-Enclave accesses made either by an Intel SGX instruction or by a logical processor inside an enclave to an
address that without SGX would have caused redirection to the virtual-APIC page instead cause an APIC-access
VM exit.
Other than implicit accesses made by Intel SGX instructions, guest-physical and physical accesses are not consid-
ered “enclave accesses”; consequently, such accesses result in undefined behavior if these accesses eventually
reach EPC. This applies to any non-enclave physical accesses.
While a logical processor is executing inside an enclave, an attempt to execute an instruction outside of ELRANGE
results in a #GP(0), even if the linear address would translate to a physical address that overlaps the APIC-access
page.

41.6 INTEL® SGX INTERACTIONS WITH ARCHITECTURALLY-VISIBLE EVENTS
All architecturally visible events (exceptions, interrupts, SMI, NMI, INIT, VM exit) can be detected while inside an
enclave and will cause an asynchronous enclave exit if they are not blocked. Additionally, INT3, and the SignalTX-
TMsg[SENTER] (i.e., GETSEC[SENTER]’s rendezvous event message) events also cause asynchronous enclave
exits. Note that SignalTXTMsg[SEXIT] (i.e., GETSEC[SEXIT]’s teardown message) does not cause an AEX.
On an AEX, information about the event causing the AEX is stored in the SSA (see Section 39.4 for details of AEX).
The information stored in the SSA only describes the first event that triggered the AEX. If parsing/delivery of the
first event results in detection of further events (e.g., VM exit, double fault, etc.), then the event information in the
SSA is not updated to reflect these subsequently detected events.

41.7 INTERACTIONS WITH THE PROCESSOR EXTENDED STATE AND
MISCELLANEOUS STATE

41.7.1 Requirements and Architecture Overview
Processor extended states are the ISA features that are enabled by the settings of CR4.OSXSAVE and the XCR0
register. Processor extended states are normally saved/restored by software via XSAVE/XRSTOR instructions.
Details of discovery of processor extended states and management of these states are described in Chapter 13 of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.
Additionally, the following requirements apply to Intel SGX:
• On an AEX, the Intel SGX architecture must protect the processor extended state and miscellaneous state by

saving them in the enclave’s state-save area (SSA), and clear the secrets from the processor extended state
that is used by an enclave.

• Intel SGX architecture must verify that the SSA frame size is large enough to contain all the processor extended
states and miscellaneous state used by the enclave.

• Intel SGX architecture must ensure that enclaves can only use processor extended state that is enabled by
system software in XCR0.
41-4 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
• Enclave software should be able to discover only those processor extended state and miscellaneous state for
which such protection is enabled.

• The processor extended states that are enabled inside the enclave must be approved by the enclave developer:

— Certain processor extended state (e.g., Memory Protection Extensions, see Appendix E, “Intel® Memory
Protection Extensions,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1)
modify the behavior of the legacy ISA software. If such features are enabled for enclaves that do not
understand those features, then such a configuration could lead to a compromise of the enclave's security.

• The processor extended states that are enabled inside the enclave must form an integral part of the enclave's
identity. This requirement has two implications:

— Service providers may decide to assign different trust level to the same enclave depending on the ISA
features the enclave is using.

To meet these requirements, the Intel SGX architecture defines a sub-field called X-Feature Request Mask (XFRM)
in the ATTRIBUTES field of the SECS. On enclave creation (ENCLS[ECREATE] leaf function), the required SSA frame
size is calculated by the processor from the list of enabled extended and miscellaneous states and verified against
the actual SSA frame size defined by SECS.SSAFRAMESIZE.
On enclave entry, after verifying that XFRM is only enabling features that are already enabled in XCR0, the value in
the XCR0 is saved internally by the processor, and is replaced by the XFRM. On enclave exit, the original value of
XCR0 is restored. Consequently, while inside the enclave, the processor extended states enabled in XFRM are in
enabled state, and those that are disabled in XFRM are in disabled state.
The entire ATTRIBUTES field, including the XFRM subfield is integral part of enclave's identity (i.e., its value is
included in reports generated by ENCLU[EREPORT], and select bits from this field can be included in key-derivation
for keys obtained via the ENCLU[EGETKEY] leaf function).
Enclave developers can create their enclave to work with certain features and fallback to another code path in case
those features aren't available (e.g., optimize for AVX and fallback to SSE). For this purpose Intel SGX provides the
following fields in SIGSTRUCT: ATTRIBUTES, ATTRIBUTESMASK, MISCSELECT, and MISCMASK. EINIT ensures that
the final SECS.ATTRIBUTES and SECS.MISCSELECT comply with the enclave developer's requirements as follows:
SIGSTRUCT.ATTRIBUTES & SIGSTRUCT.ATTRIBUTEMASK = SECS.ATTRIBUTES & SIGSTRUCT.ATTRIBUTEMASK
SIGSTRUCT.MISCSELECT & SIGSTRUCT.MISCMASK = SECS.MISCSELECT & SIGSTRUCT.MISCMASK.
On an asynchronous enclave exit, the processor extended states enabled by XFRM are saved in the current SSA
frame, and overwritten by synthetic state (see Section 39.3 for the definition of the synthetic state). When the
interrupted enclave is resumed via the ENCLU[ERESUME] leaf function, the saved state for processor extended
states enabled by XFRM is restored.

41.7.2 Relevant Fields in Various Data Structures

41.7.2.1 SECS.ATTRIBUTES.XFRM
The ATTRIBUTES field of the SECS data structure (see Section 37.7) contains a sub-field called XSAVE-Feature
Request Mask (XFRM). Software populates this field at the time of enclave creation according to the features that
are enabled by the operating system and approved by the enclave developer.
Intel SGX architecture guarantees that during enclave execution, the processor extended state configuration of the
processor is identical to what is required by the XFRM sub-field. All the processor extended states enabled in XFRM
are saved on AEX from the enclave and restored on ERESUME.
The XFRM sub-field has the same layout as XCR0, and has consistency requirements that are similar to those for
XCR0. Specifically, the consistency requirements on XFRM values depend on the processor implementation and the
set of features enabled in CR4.
Legal values for SECS.ATTRIBUTES.XFRM conform to these requirements:
• XFRM[1:0] must be set to 0x3.
• If the processor does not support XSAVE, or if the system software has not enabled XSAVE, then XFRM[63:2]

must be zero.
• If the processor does support XSAVE, XFRM must contain a value that would be legal if loaded into XCR0.
Vol. 3D 41-5

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
The various consistency requirements are enforced at different times in the enclave's life cycle, and the exact
enforcement mechanisms are elaborated in Section 41.7.3 through Section 41.7.6.
On processors not supporting XSAVE, software should initialize XFRM to 0x3. On processors supporting XSAVE,
software should initialize XFRM to be a subset of XCR0 that would be present at the time of enclave execution.
Because bits 0 and 1 of XFRM must always be set, the use of Intel SGX requires that SSE be enabled (CR4.OSFXSR
= 1).

41.7.2.2 SECS.SSAFRAMESIZE
The SSAFRAMESIZE field in the SECS data structure specifies the number of pages which software allocated1 for
each SSA frame, including both the GPRSGX area, MISC area, the XSAVE area (x87 and XMM states are stored in
the latter area), and optionally padding between the MISC and XSAVE area. The GPRSGX area must hold all the
general-purpose registers and additional Intel SGX specific information. The MISC area must hold the Miscella-
neous state as specified by SECS.MISCSELECT, the XSAVE area holds the set of processor extended states specified
by SECS.ATTRIBUTES.XFRM (see Section 37.9 for the layout of SSA and Section 41.7.3 for ECREATE's consistency
checks). The SSA is always in non-compacted format.
If the processor does not support XSAVE, the XSAVE area will always be 576 bytes; a copy of XFRM (which will be
set to 0x3) is saved at offset 512 on an AEX.
If the processor does support XSAVE, the length of the XSAVE area depends on SECS.ATTRIBUTES.XFRM. The
length would be equal to what CPUID.0DH.00H:EBX would return if XCR0 were set to XFRM. The following pseudo
code illustrates how software can calculate this length using XFRM as the input parameter without modifying XCR0:

offset = 576;
size_last_x = 0;
For x=2 to 63
IF (XFRM[x] != 0) Then
tmp_offset = CPUID.0DH.x:EBX[31:0];

IF (tmp_offset >= offset + size_last_x) Then
offset = tmp_offset;

size_last_x = CPUID.0DH.x:EAX[31:0];
FI;

FI;
EndFor
return (offset + size_last_x); (* compute_xsave_size(XFRM), see “ECREATE—Create an SECS page in the Enclave
Page Cache”*)

Where the non-zero bits in XFRM are a subset of non-zero bit fields in XCR0.
The size of the MISC region depends on the setting of SECS.MISCSELECT and can be calculated using the layout
information described in Section 37.9.2

41.7.2.3 XSAVE Area in SSA
The XSAVE area of an SSA frame begins at offset 0 of the frame.

41.7.2.4 MISC Area in SSA
The MISC area of an SSA frame is positioned immediately before the GPRSGX region.

41.7.2.5 SIGSTRUCT Fields
Intel SGX provides the flexibility for an enclave developer to choose the enclave's code path according to the
features that are enabled on the platform (e.g., optimize for AVX and fallback to SSE). See Section 41.7.1 for
details.

1. It is the responsibility of the enclave to actually allocate this memory.
41-6 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
SIGSTRUCT includes the following fields:
SIGSTRUCT.ATTRIBUTES, SIGSTRUCT.ATTRIBUTEMASK, SIGSTRUCT.MISCSELECT, SIGSTRUCT.MISCMASK.

41.7.2.6 REPORT.ATTRIBUTES.XFRM and REPORT.MISCSELECT
The processor extended states and miscellaneous states that are enabled inside the enclave form an integral part
of the enclave's identity and are therefore included in the enclave's report, as provided by the ENCLU[EREPORT]
leaf function. The REPORT structure includes the enclave's XFRM and MISCSELECT configurations.

41.7.2.7 KEYREQUEST
An enclave developer can specify which bits out of XFRM and MISCSELECT ENCLU[EGETKEY] should include in the
derivation of the sealing key by specifying ATTRIBUTESMASK and MISCMASK in the KEYREQUEST structure.

41.7.3 Processor Extended States and ENCLS[ECREATE]
The ECREATE leaf function of the ENCLS instruction enforces a number of consistency checks described earlier. The
execution of ENCLS[ECREATE] leaf function results in a #GP(0) in any of the following cases:
• SECS.ATTRIBUTES.XFRM[1:0] is not 3.
• The processor does not support XSAVE and any of the following is true:

— SECS.ATTRIBUTES.XFRM[63:2] is not 0.

— SECS.SSAFRAMESIZE is 0.
• The processor supports XSAVE and any of the following is true:

— XSETBV would fault on an attempt to load XFRM into XCR0.

— XFRM[63]=1.

— The SSAFRAME is too small to hold required, enabled states (see Section 41.7.2.2).

41.7.4 Processor Extended States and ENCLU[EENTER]

41.7.4.1 Fault Checking
The EENTER leaf function of the ENCLU instruction enforces a number of consistency requirements described
earlier. The execution of the ENCLU[EENTER] leaf function results in a #GP(0) in any of the following cases:
• If CR4.OSFXSR=0.
• If The processor supports XSAVE and either of the following is true:

— CR4.OSXSAVE=0 and SECS.ATTRIBUTES.XFRM is not 3.

— (SECS.ATTRIBUTES.XFRM & XCR0) != SECS.ATTRIBUTES.XFRM

41.7.4.2 State Loading
If ENCLU[EENTER] is successful, the current value of XCR0 is saved internally by the processor and replaced by
SECS.ATTRIBUTES.XFRM.
Vol. 3D 41-7

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
41.7.5 Processor Extended States and AEX

41.7.5.1 State Saving
On an AEX, processor extended states are saved into the XSAVE area of the SSA frame in a compatible format with
XSAVE that was executed with EDX:EAX = SECS.ATTRIBUTES.XFRM, with the memory operand being the XSAVE
area, and (for 64-bit enclaves) as if REX.W=1. The XSTATE_BV part of the XSAVE header is saved with 0 for every
bit that is 0 in XFRM. Other bits may be saved as 0 if the state saved is initialized.
Note that enclave entry ensures that if CR4.OSXSAVE is set to 0, then SECS.ATTRIBUTES.XFRM is set to 3. It
should also be noted that it is not possible to enter an enclave with FXSAVE disabled.

41.7.5.2 State Synthesis
After saving the extended state, the processor restores XCR0 to the value it held at the time of the most recent
enclave entry.
The state of features corresponding to bits set in XFRM is synthesized. In general, these states are initialized.
Details of state synthesis on AEX are documented in Section 39.3.1.

41.7.6 Processor Extended States and ENCLU[ERESUME]

41.7.6.1 Fault Checking
The ERESUME leaf function of the ENCLU instruction enforces a number of consistency requirements described
earlier. Specifically, the ENCLU[ERESUME] leaf function results in a #GP(0) in any of the following cases:
• CR4.OSFXSR=0.
• The processor supports XSAVE and either of the following is true:

— CR4.OSXSAVE=0 and SECS.ATTRIBUTES.XFRM is not 3.

— (SECS.ATTRIBUTES.XFRM & XCR0) != SECS.ATTRIBUTES.XFRM.
A successful execution of ENCLU[ERESUME] loads state from the XSAVE area of the SSA frame in a fashion similar
to that used by the XRSTOR instruction. Data in the XSAVE area that would cause the XRSTOR instruction to fault
will cause the ENCLU[ERESUME] leaf function to fault. Examples include, but are not restricted to the following:
• A bit is set in the XSTATE_BV field and clear in XFRM.
• The required bytes in the header are not clear.
• Loading data would set a reserved bit in MXCSR.
Any of these conditions will cause ERESUME to fault, even if CR4.OSXSAVE=0.

41.7.6.2 State Loading
If ENCLU[ERESUME] is successful, the current value of XCR0 is saved internally by the processor and replaced by
SECS.ATTRIBUTES.XFRM.
State is loaded from the XSAVE area of the SSA frame as if the XRSTOR instruction were executed with
XCR0=XFRM, EDX:EAX = XFRM, with the memory operand being the XSAVE area, and (for 64-bit enclaves) as if
REX.W=1.
ENCLU[ERESUME] ensures that a subsequent execution of XSAVEOPT inside the enclave will operate properly (e.g.,
by marking all state as modified).

41.7.7 Processor Extended States and ENCLU[EEXIT]
The ENCLU[EEXIT] leaf function does not perform any X-feature specific consistency checks, nor performs any
state synthesis. It is the responsibility of enclave software to clear any sensitive data from the registers before
41-8 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
executing EEXIT. However, successful execution of the ENCLU[EEXIT] leaf function restores XCR0 to the value it
held at the time of the most recent enclave entry.

41.7.8 Processor Extended States and ENCLU[EREPORT]

The ENCLU[EREPORT] leaf function creates the MAC-protected REPORT structure that reports on the enclave’s
identity. ENCLU[EREPORT] includes in the report the values of SECS.ATTRIBUTES.XFRM and SECS.MISCSELECT.

41.7.9 Processor Extended States and ENCLU[EGETKEY]
The ENCLU[EGETKEY] leaf function returns a cryptographic key based on the information provided by the KEYRE-
QUEST structure. Intel SGX provides the means for isolation between different operating conditions by allowing an
enclave developer to select which bits out of XFRM and MISCSELECT need to be included in the derivation of the
keys.

41.8 INTERACTIONS WITH SMM

41.8.1 Availability of Intel® SGX instructions in SMM
Enclave instructions are not available in SMM, and any attempt to execute ENCLS or ENCLU instructions inside SMM
results in an invalid-opcode exception (#UD).

41.8.2 SMI while Inside an Enclave
If the logical processor executing inside an enclave receives an SMI, the logical processor exits the enclave asyn-
chronously. The response to an SMI received while executing inside an enclave depends on whether the dual-
monitor treatment is enabled. For detailed discussion of transfer to SMM, see Chapter 33, “System Management
Mode‚” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.
If the logical processor executing inside an enclave receives an SMI when dual-monitor treatment is not enabled,
the logical processor exits the enclave asynchronously, and transfers the control to the SMM handler. In addition to
saving the synthetic architectural state to the SMRAM State Save Map (SSM), the logical processor also sets the
“incident to enclave mode” bit in the SMRAM SSM (bit position 1 in SMRAM field at offset 7EE0H). RSM reads this
bit to ensure proper treatment of any VM exit due to an event pending following RSM (see Section 29.2.1 for
details).
If the logical processor executing inside an enclave receives an SMI when dual-monitor treatment is enabled, the
logical processor exits the enclave asynchronously, and transfers the control to the SMM monitor via SMM VM exit.
The SMM VM exit sets the “Enclave Interruption” bit in the Exit Reason (see Table 41-1) and in the Guest Interrupt-
ibility State field (see Table 41-2) of the SMM VMCS.

41.8.3 SMRAM Synthetic State of AEX Triggered by SMI
All processor registers saved in the SMRAM have the same synthetic values listed in Section 39.3. Additional
SMRAM fields that are treated specially on SMI are:

Table 41-1. SMRAM Synthetic States on Asynchronous Enclave Exit
Position Field Value Writable

SMRAM Offset 07EE0H.Bit 1 ENCLAVE_INTERRUPTION Set to 1 if exit occurred in enclave mode No
Vol. 3D 41-9

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
41.9 INTERACTIONS OF INIT, SIPI, AND WAIT-FOR-SIPI WITH INTEL® SGX
INIT received inside an enclave, while the logical processor is not in VMX operation, causes the logical processor to
exit the enclave asynchronously. After the AEX, the processor's architectural state is initialized to “Power-on” state
(Table 9.1 in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). If the logical processor
is BSP, then it proceeds to execute the BIOS initialization code. If the logical processor is an AP, it enters wait-for-
SIPI state.
INIT received inside an enclave, while the logical processor (LP) is in VMX root operation, follows regular Intel
Architecture behavior and is blocked.
INIT received inside an enclave, while the logical processor is in VMX non-root operation, causes an AEX. Subse-
quent to the AEX, the INIT causes a VM exit with the Enclave Interruption bit in the exit-reason field in the VMCS.
A processor cannot be inside an enclave in the wait-for-SIPI state. Consequently, a SIPI received while inside an
enclave is lost.
Intel SGX does not change the behavior of the processor in the wait-for-SIPI state.
The SGX-related processor states after INIT-SIPI-SIPI is as follows:
• EPC Settings: Unchanged
• EPCM: Unchanged
• CPUID.12H.*: Unchanged
• ENCLAVE_MODE: 0 (LP exits enclave asynchronously)
• MEE state: Unchanged
Software should be aware that following INIT-SIPI-SIPI, the EPC might contain valid pages and should take appro-
priate measures such as initialize the EPC with the EREMOVE leaf function.

41.10 INTERACTIONS WITH DMA
DMA is not allowed to access any Processor Reserved Memory.

41.11 INTERACTIONS WITH TXT

41.11.1 Enclaves Created Prior to Execution of GETSEC
Enclaves which have been created before the GETSEC[SENTER] leaf function are available for execution after the
successful completion of GETSEC[SENTER] and the corresponding SINIT ACM. Actions that a TXT Launched Envi-
ronment performs in preparation to execute code in the Launched Environment, also applies to enclave code that
would run after GETSEC[SENTER].

41.11.2 Interaction of GETSEC with Intel® SGX
All leaf functions of the GETSEC instruction are illegal inside an enclave, and results in an invalid-opcode exception
(#UD).
Responding Logical Processors (RLP) which are executing inside an enclave at the time a GETSEC[SENTER] event
occurs perform an AEX from the enclave and then enter the Wait-for-SIPI state.
RLP executing inside an enclave at the time of GETSEC[SEXIT], behave as defined for GETSEC[SEXIT]-that is, the
RLPs pause during execution of SEXIT and resume after the completion of SEXIT.
The execution of a TXT launch does not affect Intel SGX configuration or security parameters.
41-10 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
41.11.3 Interactions with Authenticated Code Modules (ACMs)
Intel SGX only allows launching ACMs with an Intel SGX SVN that is at the same level or higher than the expected
Intel SGX SVN. The expected Intel SGX SVN is specified by BIOS and locked down by the processor on the first
successful execution of an Intel SGX instruction that doesn’t return an error code. Intel SGX provides interfaces for
system software to discover whether a non faulting Intel SGX instruction has been executed, and evaluate the suit-
ability of the Intel SGX SVN value of any ACM that is expected to be launched by the OS or the VMM.
These interfaces are provided through a read-only MSR called the IA32_SGX_SVN_STATUS MSR (MSR address
500h). The IA32_SGX_SVN_STATUS MSR has the format shown in Table 41-2.

OS/VMM that wishes to launch an architectural ACM such as SINIT is expected to read the IA32_SGX_SVN_STATUS
MSR to determine whether the ACM can be launched or a new ACM is needed:
• If either the Intel SGX SVN of the ACM is greater than the value reported by IA32_SGX_SVN_STATUS, or the

lock bit in the IA32_SGX_SVN_STATUS is not set, then the OS/VMM can safely launch the ACM.
• If the Intel SGX SVN value reported in the corresponding component of the IA32_SGX_SVN_STATUS is greater

than the Intel SGX SVN value in the ACM's header, and if bit 0 of IA32_SGX_SVN_STATUS is 1, then the
OS/VMM should not launch that version of the ACM. It should obtain an updated version of the ACM either from
the BIOS or from an external resource.

However, OSVs/VMMs are strongly advised to update their version of the ACM any time they detect that the Intel
SGX SVN of the ACM carried by the OS/VMM is lower than that reported by IA32_SGX_SVN_STATUS MSR, irre-
spective of the setting of the lock bit.

41.12 INTERACTIONS WITH CACHING OF LINEAR-ADDRESS TRANSLATIONS
Entering and exiting an enclave causes the logical processor to flush all the global linear-address context as well as
the linear-address context associated with the current VPID and PCID. The MONITOR FSM is also cleared.

41.13 INTERACTIONS WITH INTEL® TRANSACTIONAL SYNCHRONIZATION
EXTENSIONS (INTEL® TSX)

1. ENCLU or ENCLS instructions inside an HLE region will cause the flow to be aborted and restarted non-specula-
tively. ENCLU or ENCLS instructions inside an RTM region will cause the flow to be aborted and transfer control to
the fallback handler.
2. If XBEGIN is executed inside an enclave, the processor does NOT check whether the address of the fallback
handler is within the enclave.
3. If an RTM transaction is executing inside an enclave and there is an attempt to fetch an instruction outside the
enclave, the transaction is aborted and control is transferred to the fallback handler. No #GP is delivered.

Table 41-2. Layout of the IA32_SGX_SVN_STATUS MSR
Bit Position Name ACM Module ID Value

0 Lock N.A. • If 1, indicates that a non-faulting Intel SGX instruction has been
executed, consequently, launching a properly signed ACM but with Intel
SGX SVN value less than the BIOS specified Intel SGX SVN threshold
would lead to an TXT shutdown.

• If 0, indicates that the processor will allow a properly signed ACM to
launch irrespective of the Intel SGX SVN value of the ACM.

15:1 RSVD N.A. 0

23:16 SGX_SVN_SINIT SINIT ACM • If CPUID.01H:ECX.SMX =1, this field reflects the expected threshold of
Intel SGX SVN for the SINIT ACM.

• If CPUID.01H:ECX.SMX =0, this field is reserved (0).

63:24 RSVD N.A. 0
Vol. 3D 41-11

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
4. If an RTM transaction is executing inside an enclave and there is a data access to an address within the enclave
that denied due to EPCM content (e.g., to a page belonging to a different enclave), the transaction is aborted and
control is transferred to the fallback handler. No #GP is delivered.
5. If an RTM transaction executing inside an enclave aborts and the address of the fallback handler is outside the
enclave, a #GP is delivered after the abort (EIP reported is that of the fallback handler).

41.13.1 HLE and RTM Debug
RTM debug will be suppressed on opt-out enclave entry. After opt-out entry, the logical processor will behave as if
IA32_DEBUG_CTL[15]=0. Any #DB detected inside an RTM transaction region will just cause an abort with no
exception delivered.
After opt-in entry, if either DR7[11] = 0 OR IA32_DEBUGCTL[15] = 0, any #DB or #BP detected inside an RTM
transaction region will just cause an abort with no exception delivered.
After opt-in entry, if DR7[11] = 1 AND IA32_DEBUGCTL[15] = 1, any #DB or #BP detected inside an RTM transla-
tion will
• terminate speculative execution,
• set RIP to the address of the XBEGIN instruction, and
• be delivered as #DB (implying an Intel SGX AEX; any #BP is converted to #DB).
• DR6[16] will be cleared, indicating RTM debug (if the #DB causes a VM exit, DR6 is not modified but bit 16 of

the pending debug exceptions field in the VMCS will be set).

41.14 INTEL® SGX INTERACTIONS WITH S STATES
Whenever an Intel SGX enabled processor enters S3-S5 state, enclaves are destroyed. This is due to the EPC being
destroyed when power down occurs. It is the application runtime’s responsibility to re-instantiate an enclave after
a power transition for which the enclaves were destroyed.

41.15 INTEL® SGX INTERACTIONS WITH MACHINE CHECK ARCHITECTURE (MCA)

41.15.1 Interactions with MCA Events
All architecturally visible machine check events (#MC and CMCI) that are detected while inside an enclave cause an
asynchronous enclave exit.
Any machine check exception (#MC) that occurs after Intel SGX is first enables causes Intel SGX to be disabled,
(CPUID.12H.00H:EAX.SGX1 == 0). It cannot be enabled until after the next reset.

41.15.2 Machine Check Enables (IA32_MCi_CTL)
All supported IA32_MCi_CTL bits for all the machine check banks must be set for Intel SGX to be available
(CPUID.12H.00H:EAX.SGX1 == 1). Any act of clearing bits from '1 to '0 in any of the IA32_MCi_CTL register may
disable Intel SGX (set CPUID.12H.00H:EAX.SGX1 to 0) until the next reset.

41.15.3 CR4.MCE
CR4.MCE can be set or cleared with no interactions with Intel SGX.
41-12 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
41.16 INTEL® SGX INTERACTIONS WITH PROTECTED MODE VIRTUAL
INTERRUPTS

ENCLS[EENTER] modifies neither EFLAGS.VIP nor EFLAGS.VIF.
ENCLS[ERESUME] loads EFLAGS in a manner similar to that of an execution of IRET with CPL = 3. This means that
ERESUME modifies neither EFLAGS.VIP nor EFLAGS.VIF regardless of the value of the EFLAGS image in the SSA
frame.
AEX saves EFLAGS.VIP and EFLAGS.VIF unmodified into the EFLAGS image in the SSA frame. AEX modifies neither
EFLAGS.VIP nor EFLAGS.VIF after saving EFLAGS.
If CR4.PVI = 1, CPL = 3, EFLAGS.VM = 0, IOPL < 3, EFLAGS.VIP = 1, and EFLAGS.VIF = 0, execution of STI causes
a #GP fault. In this case, STI modifies neither EFLAGS.IF nor EFLAGS.VIF. This behavior applies without change
within an enclave (where CPL is always 3). Note that, if IOPL = 3, STI always sets EFLAGS.IF without fault;
CR4.PVI, EFLAGS.VIP, and EFLAGS.VIF are neither consulted nor modified in this case.

41.17 INTEL SGX INTERACTION WITH PROTECTION KEYS
SGX interactions with PKRU are as follows:
• CPUID.12H.01H:ECX.PKRU indicates whether SECS.ATTRIBUTES.XFRM.PKRU can be set. If SECS.ATTRI-

BUTES.XFRM.PKRU is set, then PKRU is saved and cleared as part of AEX and is restored as part of ERESUME.
If CR4.PKE is set, an enclave can execute RDPKRU and WRKRU independent of whether SECS.ATTRI-
BUTES.XFRM.PKRU is set.

SGX interactions with domain permission checks are as follows:

1) If CR4.PKE is not set, then legacy and SGX permission checks are not effected.

2) If CR4.PKE is set, then domain permission checks are applied to all non-enclave access and
enclave accesses to user pages in addition to legacy and SGX permission checks at a higher
priority than SGX permission checks.

3) Implicit accesses aren't subject to domain permission checks.
Vol. 3D 41-13

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
41-14 Vol. 3D

ENCLAVE CODE DEBUG AND PROFILING
CHAPTER 42
ENCLAVE CODE DEBUG AND PROFILING

Intel® SGX is architected to provide protection for production enclaves and permit enclave code developers to use
an SGX-aware debugger to effectively debug a non-production enclave (debug enclave). Intel SGX also allows a
non-SGX-aware debugger to debug non-enclave portions of the application without getting confused by enclave
instructions.

42.1 CONFIGURATION AND CONTROLS

42.1.1 Debug Enclave vs. Production Enclave
The SECS of each enclave provides a bit, SECS.ATTRIBUTES.DEBUG, indicating whether the enclave is a debug
enclave (if set) or a production enclave (if 0). If this bit is set, software outside the enclave can use
EDBGRD/EDBGWR to access the EPC memory of the enclave. The value of DEBUG is not included in the measure-
ment of the enclave and therefore doesn't require an alternate SIGSTRUCT to be generated to debug the enclave.
The ATTRIBUTES field in the SECS is reported in the enclave's attestation, and is included in the key derivation.
Enclave secrets that were protected by the enclave using Intel SGX keys when it ran as a production enclave will
not be accessible by the debug enclave. A debugger needs to be aware that special debug content might be
required for a debug enclave to run in a meaningful way.
EPC memory belonging to a debug enclave can be accessed via the EDBGRD/EDBGWR leaf functions (see Section
40.4), while that belonging to a non-debug enclave cannot be accessed by these leaf functions.

42.1.2 Tool-Chain Opt-in
The TCS.FLAGS.DBGOPTIN bit controls interactions of certain debug and profiling features with enclaves, including
code/data breakpoints, TF, RF, monitor trap flag, BTF, LBRs, BTM, BTS, Intel Processor Trace, and performance
monitoring. This bit is forced to zero when EPC pages are added via EADD. A debugger can set this bit via EDBGWR
to the TCS of a debug enclave.
An enclave entry through a TCS with the TCS.FLAGS.DBGOPTIN set to 0 is called an opt-out entry. Conversely, an
enclave entry through a TCS with TCS.FLAGS.DBGOPTIN set to 1 is called an opt-in entry.

42.1.3 Debugging an Enclave That Uses Asynchronous Enclave Exit Notify
Whenever an opt-in enclave entry is used to perform enclave code debugging or profiling, the debugger or profiling
tool may clear TCS.FLAGS.AEXNOTIFY to prevent AEX notifications from being delivered at each interrupt, break-
point, trap, or other exception.

42.2 SINGLE STEP DEBUG

42.2.1 Single Stepping ENCLS Instruction Leafs
If the RFLAGS.TF bit is set at the beginning of ENCLS, then a single-step debug exception is pending as a trap-class
exception on the instruction boundary immediately after the ENCLS instruction. Additionally, if the instruction is
executed in VMX non-root operation and the “monitor trap flag” VM-execution control is 1, an MTF VM exit is
pending on the instruction boundary immediately after the instruction if the instruction does not fault.
Vol. 3D 42-1

ENCLAVE CODE DEBUG AND PROFILING
42.2.2 Single Stepping ENCLU Instruction Leafs
The interactions of the unprivileged Intel SGX instruction ENCLU are leaf dependent.
An enclave entry via EENTER/ERESUME leaf functions of the ENCLU, in certain cases, may mask the RFLAGS.TF bit,
and mask the setting of the “monitor trap flag” VM-execution control. In such situations, an exit from the enclave,
either via the EEXIT leaf function or via an AEX unmasks the RFLAGS.TF bit and the “monitor trap flag” VM-execu-
tion control. The details of this masking/unmasking and the pending of single stepping events across
EENTER/ERESUME/EEXIT/AEX are covered in detail in Section 42.2.3.
If the EFLAGS.TF bit is set at the beginning of EREPORT or EGETKEY leafs, and if the EFLAGS.TF is not masked by
the preceding enclave entry, then a single-step debug exception is pending on the instruction boundary immedi-
ately after the ENCLU instruction. Additionally, if the instruction is executed in VMX non-root operation and the
“monitor trap flag” VM-execution control is 1, and if the monitor trap flag is not masked by the preceding enclave
entry, then an MTF VM exit is pending on the instruction boundary immediately after the instruction.
If the instruction under consideration results in a fault, then the control flow goes to the fault handler, and no
single-step debug exception is asserted. In such a situation, if the instruction is executed in VMX non-root opera-
tion and the “monitor trap flag” VM-execution control is 1, an MTF VM exit is pending after the delivery of the fault
(or any nested exception). No MTF VM exit occurs if another VM exit occurs before reaching that boundary on which
an MTF VM exit would be pending.

42.2.3 Single-Stepping Enclave Entry with Opt-out Entry

42.2.3.1 Single Stepping without AEX
Figure 42-1 shows the most common case for single-stepping after an opt-out entry.

In this scenario, if the RFLAGS.TF bit is set at the time of the enclave entry, then a single step debug exception is
pending on the instruction boundary after EEXIT. Additionally, if the enclave is executing in VMX non-root operation
and the “monitor trap flag” VM-execution control is 1, an MTF VM exit is pending on the instruction boundary after
EEXIT.
The value of the RFLAGS.TF bit at the end of EEXIT is the same as the value of RFLAGS.TF at the time of the enclave
entry.

42.2.3.2 Single Step Preempted by AEX Due to Non-SMI Event
Figure 42-2 shows the interaction of single stepping with AEX due to a non-SMI event after an opt-out entry.

Figure 42-1. Single Stepping with Opt-out Entry - No AEX

SMI

EENTER

Inst1

RFLAGS.TF

VMCS.MTF

ERESUME
Inst2 Inst3 EEXIT Inst4

TF/MTF
Handler

Higher Priority
Handler

INIT
#MCSingle-Step #DB Pending

MTF VM Exit Pending
42-2 Vol. 3D

ENCLAVE CODE DEBUG AND PROFILING
In this scenario, if the enclave is executing in VMX non-root operation and the “monitor trap flag” VM-execution
control is 1, an MTF VM exit is pending on the instruction boundary after the AEX. No MTF VM exit occurs if another
VM exit happens before reaching that instruction boundary.
The value of the RFLAGS.TF bit at the end of AEX is the same as the value of RFLAGS.TF at the time of the enclave
entry.

42.2.4 RFLAGS.TF Treatment on AEX
The value of EFLAGS.TF at the end of AEX from an opt-out enclave is same as the value of EFLAGS.TF at the time
of the enclave entry. The value of EFLAGS.TF at the end of AEX from an opt-in enclave is unmodified. The
EFLAGS.TF saved in GPR portion of the SSA on an AEX is 0. For more detail see EENTER and ERESUME in Chapter 5.

42.2.5 Restriction on Setting of TF after an Opt-Out Entry
Enclave entered through an opt-out entry is not allowed to set EFLAGS.TF. The POPF instruction forces RFLAGS.TF
to 0 if the enclave was entered through opt-out entry.

42.2.6 Trampoline Code Considerations
Any AEX from the enclave which results in the RFLAGS.TF =1 on the reporting stack will result in a single-step #DB
after the first instruction of the trampoline code if the trampoline is entered using the IRET instruction.

42.3 CODE AND DATA BREAKPOINTS

42.3.1 Breakpoint Suppression
Following an opt-out entry:
• Instruction breakpoints are suppressed during execution in an enclave.
• Data breakpoints are not triggered on accesses to the address range defined by ELRANGE.
• Data breakpoints are triggered on accesses to addresses outside the ELRANGE

Figure 42-2. Single Stepping with Opt-out Entry -AEX Due to Non-SMI Event Before Single-Step Boundary

Event Inside Enclave

EENTER

Inst1

RFLAGS.TF

VMCS.MTF

ERESUME
Inst2 Inst3 EEXIT Inst4

TF/MTF
Handler

AEX
Handler

Single-Step #DB Pending

MTF VM Exit Pending

AEX

Higher Priority
Handler
Vol. 3D 42-3

ENCLAVE CODE DEBUG AND PROFILING
Following an opt-in entry instruction and data breakpoints are not suppressed.
The processor does not report any matches on debug breakpoints that are suppressed on enclave entry. However,
the processor does not clear any bits in DR6 that were already set at the time of the enclave entry.

42.3.2 Reporting of Instruction Breakpoint on Next Instruction on a Debug Trap
A debug exception caused by the single-step execution mode or when a data breakpoint condition was met causes
the processor to perform an AEX. Following such an AEX, the processor reports in the debug status register (DR6)
matches of the new instruction pointer (the AEP address) in a breakpoint address register setup to detect instruc-
tion execution.

42.3.3 RF Treatment on AEX
RF flag value saved in SSA is the same as what would have been pushed on stack if the exception or event causing
the AEX occurred when executing outside an enclave (see Section 19.3.1.1). Following an AEX, the RF flag is 0 in
the synthetic state.

42.3.4 Breakpoint Matching in Intel® SGX Instruction Flows
Implicit accesses made by Intel SGX instructions to EPC regions do not trigger data breakpoints. Explicit accesses
made by ENCLS[ECREATE], ENCLS[EADD], ENCLS[EEXTEND], ENCLS[EINIT], ENCLS[EREMOVE],
ENCLS[ETRACK], ENCLS[EBLOCK], ENCLS[EPA], ENCLS[EWB], ENCLS[ELD], ENCLS[EDBGRD], ENCLS[EDBGWR],
ENCLU[EENTER], and ENCLU[ERESUME] to the EPC operands do not trigger data breakpoints.
Explicit accesses made by the Intel SGX instructions (ENCLU[EGETKEY] and ENCLU[EREPORT]) executed by an
enclave following an opt-in entry, trigger data breakpoints on accesses to their EPC operands. All Intel SGX instruc-
tions trigger data breakpoints on accesses to their non-EPC operands.

42.4 CONSIDERATION OF THE INT1 AND INT3 INSTRUCTIONS
This section considers the operation of the INT1 and INT3 instructions when executed inside an enclave. These are
the instructions with opcodes F1 and CC, respectively, and not INT n (with opcode CD) with value 1 or 3 for n.

42.4.1 Behavior of INT1 and INT3 Inside an Enclave
An execution of either INT1 or INT3 inside an enclave results in a fault-class exception. Following an opt-out entry,
execution of either instruction results in an invalid-opcode exception (#UD). Following opt-in entry, INT1 results in
a debug exception (#DB) and INT3 delivers a breakpoint exception (#BP). The normal requirement for INT3 (that
the CPL not be greater than the DPL of descriptor 3 in the IDT) is not enforced.
Because execution of INT1 or INT3 inside an enclave results in a fault, the RIP saved in the SSA on AEX references
the INT1 or INT3 instruction (and not the following instruction). The RIP value saved on the stack (or in the TSS or
VMCS) is that of the AEP.
If execution of INT1 or INT3 inside an enclave causes a VM exit, the event type in the VM-exit interruption informa-
tion field indicates a hardware exception (type 3),1 and the VM-exit instruction length field is saved as zero.

42.4.2 Debugger Considerations
A debugger using INT3 inside an enclave should account for the modified behavior described in Section 42.4.1.
Because INT3 is fault-like inside an enclave, the RIP saved in the SSA on AEX is that of the INT3 instruction. Conse-

1. INT1 would normally indicate a privileged software exception (type 5), and INT3 would normally indicate a software exception (type
6).
42-4 Vol. 3D

ENCLAVE CODE DEBUG AND PROFILING
quently, the debugger must not decrement SSA.RIP for #BP coming from an enclave to re-execute the instruction
at the RIP of the INT3 instruction on a subsequent enclave entry.

42.4.3 VMM Considerations
As described in Section 42.4.1, execution of INT3 inside an enclave delivers #BP with “interruption type” of 3. A
VMM that re-injects #BP into the guest should establish the VM-entry interruption information field using data
saved into the appropriate VMCS fields by the VM exit incident to the #BP (as recommended in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3C).
VMMs that create the VM-entry interruption information based solely on the exception vector should take care to
use event type 3 (instead of 6) when they detect a VM exit incident to enclave mode that is due to an exception
with vector 3.

42.5 BRANCH TRACING

42.5.1 BTF Treatment
When software enables single-stepping on branches then:
• Following an opt-in entry using EENTER the processor generates a single step debug exception.
• Following an EEXIT the processor generates a single-step debug exception
Enclave entry using ERESUME (opt-in or opt-out) and an AEX from the enclave do not cause generation of the
single-step debug exception.

42.5.2 LBR Treatment

42.5.2.1 LBR Stack on Opt-in Entry
Following an opt-in entry into an enclave, last branch recording facilities if enabled continued to store branch
records in the LBR stack MSRs as follows:
• On enclave entry using EENTER/ERESUME, the processor push the address of EENTER/ERESUME instruction

into MSR_LASTBRANCH_n_FROM_IP, and the destination address of the EENTER/ERESUME into MSR_LAST-
BRANCH_n_TO_IP.

• On EEXIT, the processor pushes the address of EEXIT instruction into MSR_LASTBRANCH_n_FROM_IP, and the
address of EEXIT destination into MSR_LASTBRANCH_n_TO_IP.

• On AEX, the processor pushes RIP saved in the SSA into MSR_LASTBRANCH_n_FROM_IP, and the address of
AEP into MSR_LASTBRANCH_n_TO_IP.

• For every branch inside the enclave, a branch record is pushed on the LBR stack.

Figure 42-3 shows an example of LBR stack manipulation after an opt-in entry. Every arrow in this picture indicates
a branch record pushed on the LBR stack. The “From IP” of the branch record contains the linear address of the
instruction located at the start of the arrow, while the “To IP” of the branch record contains the linear address of
the instruction at the end of the arrow.
Vol. 3D 42-5

ENCLAVE CODE DEBUG AND PROFILING
42.5.2.2 LBR Stack on Opt-out Entry
An opt-out entry into an enclave suppresses last branch recording facilities, and enclave exit after an opt-out entry
un-suppresses last branch recording facilities.
Opt-out entry into an enclave does not push any record on LBR stack.
If last branch recording facilities were enabled at the time of enclave entry, then EEXIT following such an enclave
entry pushes one record on LBR stack. The MSR_LASTBRANCH_n_FROM_IP of such record holds the linear address
of the instruction (EENTER or ERESUME) that was used to enter the enclave, while the MSR_LAST-
BRANCH_n_TO_IP of such record holds linear address of the destination of EEXIT.
Additionally, if last branch recording facilities were enabled at the time of enclave entry, then an AEX after such an
entry pushes one record on LBR stack, before pushing record for the event causing the AEX if the event pushes a
record on LBR stack. The MSR_LASTBRANCH_n_FROM_IP of the new record holds linear address of the instruction
(EENTER or ERESUME) that was used to enter the enclave, while MSR_LASTBRANCH_n_TO_IP of the new record
holds linear address of the AEP. If the event causing AEX pushes a record on LBR stack, then the MSR_LAST-
BRANCH_n_FROM_IP for that record holds linear address of the AEP.
Figure 42-4 shows an example of LBR stack manipulation after an opt-out entry. Every arrow in this picture indi-
cates a branch record pushed on the LBR stack. The “From IP” of the branch record contains the linear address of
the instruction located at the start of the arrow, while the “To IP” of the branch record contains the linear address
of the instruction at the end of the arrow.

Figure 42-3. LBR Stack Interaction with Opt-in Entry

Inst1

BR2 Inst3

EEXIT

Inst4

AEP

EENTER

Inst4

IRET

OS

Inst4

AEP

AEP

ERESUME

BR5 Inst6

Inst7

Fault
42-6 Vol. 3D

ENCLAVE CODE DEBUG AND PROFILING
42.5.2.3 Mispredict Bit, Record Type, and Filtering
All branch records resulting from Intel SGX instructions/AEXs are reported as predicted branches, and conse-
quently, bit 63 of MSR_LASTBRANCH_n_FROM_IP for such records is set. Branch records due to these Intel SGX
operations are always non-HLE/non-RTM records.
EENTER, ERESUME, EEXIT, and AEX are considered to be far branches. Consequently, bit 8 in MSR_LBR_SELECT
controls filtering of the new records introduced by Intel SGX.

42.6 INTERACTION WITH PERFORMANCE MONITORING

42.6.1 IA32_PERF_GLOBAL_STATUS Enhancement
On processors supporting Intel SGX, the IA32_PERF_GLOBAL_STATUS MSR provides a bit indicator, known as “Anti
Side-channel Interference” (ASCI) at bit position 60. If this bit is 0, the performance monitoring data in various
performance monitoring counters are accumulated normally as defined by relevant architectural/microarchitec-
tural conditions. If the ASCI bit is set, the contents in various performance monitoring counters can be affected by
the direct or indirect consequence of Intel SGX protection of enclave code executing in the processor.

42.6.2 Performance Monitoring with Opt-in Entry
An opt-in enclave entry allow performance monitoring logic to observe the contribution of enclave code executing
in the processor. Thus the contents of performance monitoring counters does not distinguish between contribution
originating from enclave code or otherwise. All counters, events, precise events, etc. continue to work as defined
in the IA32/Intel 64 Software Developer Manual. Consequently, bit 60 of IA32_PERF_GLOBAL_STATUS MSR is not
set.

Figure 42-4. LBR Stack Interaction with Opt-out Entry

Inst1

BR2 Inst3

EEXIT

Inst4

AEP

EENTER

IRET

OS

Inst4

AEP

AEP

ERESUME

BR5 Inst6

Inst7

Fault
Vol. 3D 42-7

ENCLAVE CODE DEBUG AND PROFILING
42.6.3 Performance Monitoring with Opt-out Entry
In general, performance monitoring activities are suppressed when entering an opt-out enclave. This applies to all
thread-specific, configured performance monitoring, except for the cycle-counting fixed counter, IA32_-
FIXED_CTR1 and IA32_FIXED_CTR2. Upon entering an opt-out enclave, IA32_FIXED_CTR0, IA32_PMCx will stop
accumulating counts. Additionally, if PEBS is configured to capture PEBS record for this thread, PEBS record gener-
ation will also be suppressed. Consequently, bit 60 of IA32_PERF_GLOBAL_STATUS MSR is set.
Performance monitoring on the sibling thread may also be affected. Any one of IA32_FIXED_CTRx or IA32_PMCx
on the sibling thread configured to monitor thread-specific eventing logic with AnyThread =1 is demoted to count
only MyThread while an opt-out enclave is executing on the other thread.

42.6.4 Enclave Exit and Performance Monitoring
When a logical processor exits an enclave, either via ENCLU[EEXIT] or via AEX, all performance monitoring activity
(including PEBS) on that logical processor that was suppressed is unsuppressed.
Any counters that were demoted from AnyThread to MyThread on the sibling thread are promoted back to
AnyThread.

42.6.5 PEBS Record Generation on Intel® SGX Instructions
All leaf functions of the ENCLS instruction report “Eventing RIP” of the ENCLS instruction if a PEBS record is gener-
ated at the end of the instruction execution. Additionally, the EGETKEY and EREPORT leaf functions of the ENCLU
instruction report “Eventing RIP” of the ENCLU instruction if a PEBS record is generated at the end of the instruction
execution.
If the EENTER and ERESUME leaf functions are performing an opt-in entry report “Eventing RIP” of the ENCLU
instruction if a PEBS record is generated at the end of the instruction execution. On the other hand, if these leaf
functions are performing an opt-out entry, then these leaf functions result in PEBS being suppressed, and no PEBS
record is generated at the end of these instructions.
A PEBS record is generated if there is a PEBS event pending at the end of EEXIT (due to a counter overflowing
during enclave execution or during EEXIT execution). This PEBS record contains the architectural state of the
logical processor at the end of EEXIT. If the enclave was entered via an opt-in entry, then this record reports the
“Eventing RIP” as the linear address of the ENCLU[EEXIT] instruction. If the enclave was entered via an opt-out
entry, then the record reports the “Eventing RIP” as the linear address of the ENCLU[EENTER/ERESUME] instruc-
tion that performed the last enclave entry.
A PEBS record is generated after the AEX if there is a PEBS event pending at the end of AEX (due to a counter over-
flowing during enclave execution or during AEX execution). This PEBS record contains the synthetic state of the
logical processor that is established at the end of AEX. For opt-in entry, this record has the EVENTING_RIP set to
the RIP saved in the SSA. For opt-out entry, the record has the EVENTING_RIP set to the linear address of
EENTER/ERESUME used for the last enclave entry.
If the enclave was entered via an opt-in entry, then this record reports the “Eventing RIP” as the linear address in
the SSA of the enclave (a.k.a., the “Eventing LIP” inside the enclave). If the enclave was entered via an opt-out
entry, then the record reports the “Eventing RIP” as the linear address of the ENCLU[EENTER/ERESUME] instruc-
tion that performed the last enclave entry.
A second PEBS event may be pended during the Enclave Exiting Event (EEE). If the PEBS event is taken at the end
of delivery of the EEE then the “Eventing RIP” in this second PEBS record is the linear address of the AEP.

42.6.6 Exception-Handling on PEBS/BTS Loads/Stores after AEX
As noted in Section 19.4.9.2, recording in the BTS buffer or in the PEBS buffer may not operate properly if accesses
to any of the DS save area sections cause page faults or VM exits. Such page faults or VM exits, if they occur, are
delivered immediately to the OS or VMM, and generation of a BTS or PEBS record is skipped and may leave the
buffers in a state where they have a partial BTS or PEBS records.
However, any events that are detected during PEBS/BTS record generation at the end of AEX and before delivering
the Enclave Exiting Event (EEE) cannot be reported immediately to the OS/VMM, as an event window is not open at
42-8 Vol. 3D

ENCLAVE CODE DEBUG AND PROFILING
the end of AEX. Consequently, fault-like events such as page faults, EPT faults, EPT mis-configuration, and
accesses to APIC-access page detected on stores to the PEBS/BTS buffer are not reported, and generation of the
PEBS and/or BTS record at the end of AEX is aborted (this may leave the buffers in a state where they have partial
PEBS or BTS records). Trap-like events detected on stores to the PEBS/BTS buffer (such as debug traps) are
pended until the next instruction boundary, where they are handled according to the architecturally defined
priority. The processor continues the handling of the Enclave Exiting Event (SMI, NMI, interrupt, exception delivery,
VM exit, etc.) after aborting the PEBS/BTS record generation.

42.6.6.1 Other Interactions with Performance Monitoring
For opt-in entry, EENTER, ERESUME, EEXIT, and AEX are all treated as predicted far branches, and any counters
that are counting such branches are incremented by 1 as a part of retirement of these instructions. Retirement of
these instructions is also counted in any counters configured to count instructions retired.
For opt-out entry, execution inside an enclave is treated as a single predicted branch, and all branch-counting
performance monitoring counters are incremented accordingly. Additionally, such execution is also counted as a
single instruction, and all performance monitoring counters counting instructions are incremented accordingly.
Enclave entry does not affect any performance monitoring counters shared between cores.
Vol. 3D 42-9

ENCLAVE CODE DEBUG AND PROFILING
42-10 Vol. 3D

APPENDIX A
VMX CAPABILITY REPORTING FACILITY

The ability of a processor to support VMX operation and related instructions is indicated by
CPUID.01H:ECX.VMX[5] = 1. A value 1 in this bit indicates support for VMX features.

Support for specific features detailed in Chapter 28 and other VMX chapters is determined by reading values from
a set of capability MSRs. These MSRs are indexed starting at MSR address 480H. VMX capability MSRs are read-
only; an attempt to write them (with WRMSR) produces a general-protection exception (#GP(0)). They do not exist
on processors that do not support VMX operation; an attempt to read them (with RDMSR) on such processors
produces a general-protection exception (#GP(0)).

A.1 BASIC VMX INFORMATION
The IA32_VMX_BASIC MSR (index 480H) consists of the following fields:
• Bits 30:0 contain the 31-bit VMCS revision identifier used by the processor. Processors that use the same VMCS

revision identifier use the same size for VMCS regions (see subsequent item on bits 44:32).1

• Bit 31 is always 0.
• Bits 44:32 report the number of bytes that software should allocate for the VMXON region and any VMCS

region. It is a value greater than 0 and at most 4096 (bit 44 is set if and only if bits 43:32 are clear).
• Bit 48 indicates the width of the physical addresses that may be used for the VMXON region, each VMCS, and

data structures referenced by pointers in a VMCS (I/O bitmaps, virtual-APIC page, MSR areas for VMX transi-
tions). If the bit is 0, these addresses are limited to the processor’s physical-address width.2 If the bit is 1,
these addresses are limited to 32 bits. This bit is always 0 for processors that support Intel 64 architecture.

• If bit 49 is read as 1, the logical processor supports the dual-monitor treatment of system-management
interrupts and system-management mode. See Section 33.15 for details of this treatment.

• Bits 53:50 report the memory type that should be used for the VMCS, for data structures referenced by
pointers in the VMCS (I/O bitmaps, virtual-APIC page, MSR areas for VMX transitions), and for the MSEG
header. If software needs to access these data structures (e.g., to modify the contents of the MSR bitmaps), it
can configure the paging structures to map them into the linear-address space. If it does so, it should establish
mappings that use the memory type reported bits 53:50 in this MSR.3

As of this writing, all processors that support VMX operation indicate the write-back type. The values used are
given in Table A-1.

1. Earlier versions of this manual specified that the VMCS revision identifier was a 32-bit field in bits 31:0 of this MSR. For all proces-
sors produced prior to this change, bit 31 of this MSR was read as 0.

2. On processors that support Intel 64 architecture, the pointer must not set bits beyond the processor's physical address width. This
width is denoted MAXPHYADDRDR and is derived from the value enumerated in CPUID.80000008H:EAX[7:0]. If
IA32_TME_ACTIVATE[0] = 1 (indicating that TME has been configured), MAXPHYADDRDR is reduced by the value of IA32_TME_AC-
TIVATE[39:36] when a logical processor is outside secure arbitration mode (SEAM; see Chapter 34); the value is not reduced in
SEAM.

3. Alternatively, software may map any of these regions or structures with the UC memory type. (This may be necessary for the MSEG
header.) Doing so is discouraged unless necessary as it will cause the performance of software accesses to those structures to suf-
fer.

Table A-1. Memory Types Recommended for VMCS and Related Data Structures
Value(s) Field

0 Uncacheable (UC)

1–5 Not used

6 Write Back (WB)
Vol. 3D A-1

VMX CAPABILITY REPORTING FACILITY
• If bit 54 is read as 1, the processor reports information in the VM-exit instruction-information field on VM exits
due to execution of the INS and OUTS instructions (see Section 29.2.5). This reporting is done only if this bit is
read as 1.

• Bit 55 is read as 1 if any VMX controls that default to 1 may be cleared to 0. See Appendix A.2 for details. It also
reports support for the VMX capability MSRs IA32_VMX_TRUE_PINBASED_CTLS, IA32_VMX_TRUE_PROC-
BASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and IA32_VMX_TRUE_ENTRY_CTLS. See Appendix A.3.1,
Appendix A.3.2, Appendix A.4, and Appendix A.5 for details.

• If bit 56 is read as 1, software can use VM entry to deliver a hardware exception with or without an error code,
regardless of vector (see Section 28.2.1.3).

• The values of bits 47:45 and bits 63:57 are reserved and are read as 0.

A.2 RESERVED CONTROLS AND DEFAULT SETTINGS
As noted in Chapter 28, “VM Entries‚” certain VMX controls are reserved and must be set to a specific value (0 or 1)
determined by the processor. The specific value to which a reserved control must be set is its default setting.
Software can discover the default setting of a reserved control by consulting the appropriate VMX capability MSR
(see Appendix A.3 through Appendix A.5).

Future processors may define new functionality for one or more reserved controls. Such processors would allow
each newly defined control to be set either to 0 or to 1. Software that does not desire a control’s new functionality
should set the control to its default setting. For that reason, it is useful for software to know the default settings of
the reserved controls.

Default settings partition the various controls into the following classes:
• Always-flexible. These have never been reserved.
• Default0. These are (or have been) reserved with a default setting of 0.
• Default1. They are (or have been) reserved with a default setting of 1.

As noted in Appendix A.1, a logical processor uses bit 55 of the IA32_VMX_BASIC MSR to indicate whether any of
the default1 controls may be 0:
• If bit 55 of the IA32_VMX_BASIC MSR is read as 0, all the default1 controls are reserved and must be 1.

VM entry will fail if any of these controls are 0 (see Section 28.2.1).
• If bit 55 of the IA32_VMX_BASIC MSR is read as 1, not all the default1 controls are reserved, and some (but

not necessarily all) may be 0. The CPU supports four (4) new VMX capability MSRs: IA32_VMX_TRUE_PIN-
BASED_CTLS, IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and IA32_VMX_TRUE_EN-
TRY_CTLS. See Appendix A.3 through Appendix A.5 for details. (These MSRs are not supported if bit 55 of the
IA32_VMX_BASIC MSR is read as 0.)

A.3 VM-EXECUTION CONTROLS
There are separate capability MSRs for the pin-based VM-execution controls, the primary processor-based VM-
execution controls, the secondary processor-based VM-execution controls, and the tertiary processor-based VM-
execution controls. These are described in Appendix A.3.1, Appendix A.3.2, Appendix A.3.3, and Appendix A.3.4,
respectively.

A.3.1 Pin-Based VM-Execution Controls
The IA32_VMX_PINBASED_CTLS MSR (index 481H) reports on the allowed settings of most of the pin-based
VM-execution controls (see Section 26.6.1):

7–15 Not used

Table A-1. Memory Types Recommended for VMCS and Related Data Structures (Contd.)
Value(s) Field
A-2 Vol. 3D

VMX CAPABILITY REPORTING FACILITY
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X (bit X of the pin-based
VM-execution controls) to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if
control X is 0.
Exceptions are made for the pin-based VM-execution controls in the default1 class (see Appendix A.2). These
are bits 1, 2, and 4; the corresponding bits of the IA32_VMX_PINBASED_CTLS MSR are always read as 1. The
treatment of these controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any pin-based VM-execution control in
the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_PINBASED_CTLS MSR (see
below) reports which of the pin-based VM-execution controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control X to be 1 if bit 32+X in
the MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_PINBASED_CTLS MSR (index 48DH)
reports on the allowed settings of all of the pin-based VM-execution controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X to be 0 if bit X in the MSR

is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0. There are no exceptions.
• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control X to be 1 if bit 32+X in the

MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine the allowed settings of the pin-
based VM-execution controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the allowed settings of the pin-based

VM-execution controls is contained in the IA32_VMX_PINBASED_CTLS MSR. (The IA32_VMX_TRUE_PIN-
BASED_CTLS MSR is not supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the allowed settings of the pin-based
VM-execution controls is contained in the IA32_VMX_TRUE_PINBASED_CTLS MSR. Assuming that software
knows that the default1 class of pin-based VM-execution controls contains bits 1, 2, and 4, there is no need for
software to consult the IA32_VMX_PINBASED_CTLS MSR.

A.3.2 Primary Processor-Based VM-Execution Controls
The IA32_VMX_PROCBASED_CTLS MSR (index 482H) reports on the allowed settings of most of the primary
processor-based VM-execution controls (see Section 26.6.2):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X (bit X of the primary

processor-based VM-execution controls) to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to
1, VM entry fails if control X is 0.
Exceptions are made for the primary processor-based VM-execution controls in the default1 class (see
Appendix A.2). These are bits 1, 4–6, 8, 13–16, and 26; the corresponding bits of the IA32_VMX_PROC-
BASED_CTLS MSR are always read as 1. The treatment of these controls by VM entry is determined by bit 55
in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any of the primary processor-based VM-
execution controls in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_PROCBASED_CTLS MSR (see
below) reports which of the primary processor-based VM-execution controls in the default1 class can be 0
on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control X to be 1 if bit 32+X in the
MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_PROCBASED_CTLS MSR (index 48EH)
reports on the allowed settings of all of the primary processor-based VM-execution controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X to be 0 if bit X in the MSR

is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0. There are no exceptions.
Vol. 3D A-3

VMX CAPABILITY REPORTING FACILITY
• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control X to be 1 if bit 32+X in the
MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine the allowed settings of the
primary processor-based VM-execution controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the allowed settings of the primary

processor-based VM-execution controls is contained in the IA32_VMX_PROCBASED_CTLS MSR. (The
IA32_VMX_TRUE_PROCBASED_CTLS MSR is not supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the allowed settings of the primary
processor-based VM-execution controls is contained in the IA32_VMX_TRUE_PROCBASED_CTLS MSR.
Assuming that software knows that the default1 class of primary processor-based VM-execution controls
contains bits 1, 4–6, 8, 13–16, and 26, there is no need for software to consult the IA32_VMX_PROC-
BASED_CTLS MSR.

A.3.3 Secondary Processor-Based VM-Execution Controls
The IA32_VMX_PROCBASED_CTLS2 MSR (index 48BH) reports on the allowed settings of the secondary processor-
based VM-execution controls (see Section 26.6.2). The following items provide details, including enforcement by
VM entry:
• Bits 31:0 indicate the allowed 0-settings of these controls. These bits are always 0. This fact indicates that

VM entry allows each bit of the secondary processor-based VM-execution controls to be 0 (reserved bits must
be 0)

• Bits 63:32 indicate the allowed 1-settings of these controls; the 1-setting is not allowed for any reserved bit.
VM entry allows control X (bit X of the secondary processor-based VM-execution controls) to be 1 if bit 32+X in
the MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X and the “activate secondary
controls” primary processor-based VM-execution control are both 1.

The IA32_VMX_PROCBASED_CTLS2 MSR exists only on processors that support the 1-setting of the “activate
secondary controls” VM-execution control (only if bit 63 of the IA32_VMX_PROCBASED_CTLS MSR is 1).

A.3.4 Tertiary Processor-Based VM-Execution Controls
The IA32_VMX_PROCBASED_CTLS3 MSR (index 492H) reports on the allowed 1-settings of the tertiary processor-
based VM-execution controls (see Section 26.6.2); the 1-setting is not allowed for any reserved bit.

VM entry allows control X (bit X of the tertiary processor-based VM-execution controls) to be 1 if bit X in the MSR
is set to 1; if bit X in the MSR is cleared to 0, VM entry fails if control X and the “activate tertiary controls” primary
processor-based VM-execution control are both 1.

The IA32_VMX_PROCBASED_CTLS3 MSR exists only on processors that support the 1-setting of the “activate
tertiary controls” VM-execution control (only if bit 49 of the IA32_VMX_PROCBASED_CTLS MSR is 1).

Notice that the organization of this MSR differs from that of IA32_VMX_PROCBASED_CTLS2 (Appendix A.3.3). This
is because there are 64 tertiary processor-based VM-execution controls, while there were only 32 secondary
processor-based VM-execution controls.

A.4 VM-EXIT CONTROLS
There are separate capability MSRs for the primary VM-exit controls and the secondary VM-exit controls. These are
described in Appendix A.4.1 and Appendix A.4.2, respectively.

A.4.1 Primary VM-Exit Controls
The IA32_VMX_EXIT_CTLS MSR (index 483H) reports on the allowed settings of most of the primary VM-exit
controls (see Section 26.7.1):
A-4 Vol. 3D

VMX CAPABILITY REPORTING FACILITY
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X (bit X of the primary
VM-exit controls) to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control
X is 0.
Exceptions are made for the primary VM-exit controls in the default1 class (see Appendix A.2). These are
bits 0–8, 10, 11, 13, 14, 16, and 17; the corresponding bits of the IA32_VMX_EXIT_CTLS MSR are always read
as 1. The treatment of these controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any primary VM-exit control in the
default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_EXIT_CTLS MSR (see below)
reports which of the primary VM-exit controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control 32+X to be 1 if bit X in the
MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_EXIT_CTLS MSR (index 48FH) reports on
the allowed settings of all of the primary VM-exit controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X to be 0 if bit X in the MSR

is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0. There are no exceptions.
• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control X to be 1 if bit 32+X in the

MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine the allowed settings of the
primary VM-exit controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the allowed settings of the primary

VM-exit controls is contained in the IA32_VMX_EXIT_CTLS MSR. (The IA32_VMX_TRUE_EXIT_CTLS MSR is not
supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the allowed settings of the primary
VM-exit controls is contained in the IA32_VMX_TRUE_EXIT_CTLS MSR. Assuming that software knows that the
default1 class of primary VM-exit controls contains bits 0–8, 10, 11, 13, 14, 16, and 17, there is no need for
software to consult the IA32_VMX_EXIT_CTLS MSR.

A.4.2 Secondary VM-Exit Controls
The IA32_VMX_EXIT_CTLS2 MSR (index 493H) reports on the allowed 1-settings of the secondary VM-exit controls
(see Section 26.7.1); the 1-setting is not allowed for any reserved bit.

VM entry allows control X (bit X of the secondary VM-exit controls) to be 1 if bit X in the MSR is set to 1; if bit X in
the MSR is cleared to 0, VM entry fails if control X and the “activate secondary controls” primary VM-exit control are
both 1.

The IA32_VMX_EXIT_CTLS2 MSR exists only on processors that support the 1-setting of the “activate secondary
controls” VM-exit control (only if bit 63 of the IA32_VMX_EXIT_CTLS MSR is 1).

Notice that the organization of this MSR differs from that of IA32_VMX_EXIT_CTLS (Appendix A.4.1). This is
because there are 64 secondary VM-exit controls, while there were only 32 primary VM-exit controls.

A.5 VM-ENTRY CONTROLS
The IA32_VMX_ENTRY_CTLS MSR (index 484H) reports on the allowed settings of most of the VM-entry controls
(see Section 26.8.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X (bit X of the VM-entry

controls) to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0.
Exceptions are made for the VM-entry controls in the default1 class (see Appendix A.2). These are bits 0–8 and
12; the corresponding bits of the IA32_VMX_ENTRY_CTLS MSR are always read as 1. The treatment of these
controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:
Vol. 3D A-5

VMX CAPABILITY REPORTING FACILITY
— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any VM-entry control in the default1
class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_ENTRY_CTLS MSR (see below)
reports which of the VM-entry controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry fails if bit X is 1 in the VM-entry controls
and bit 32+X is 0 in this MSR.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_ENTRY_CTLS MSR (index 490H) reports
on the allowed settings of all of the VM-entry controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X to be 0 if bit X in the MSR

is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0. There are no exceptions.
• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control 32+X to be 1 if bit X in the

MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine the allowed settings of the
VM-entry controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the allowed settings of the VM-entry

controls is contained in the IA32_VMX_ENTRY_CTLS MSR. (The IA32_VMX_TRUE_ENTRY_CTLS MSR is not
supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the allowed settings of the VM-entry
controls is contained in the IA32_VMX_TRUE_ENTRY_CTLS MSR. Assuming that software knows that the
default1 class of VM-entry controls contains bits 0–8 and 12, there is no need for software to consult the
IA32_VMX_ENTRY_CTLS MSR.

A.6 MISCELLANEOUS DATA
The IA32_VMX_MISC MSR (index 485H) consists of the following fields:
• Bits 4:0 report a value X that specifies the relationship between the rate of the VMX-preemption timer and that

of the timestamp counter (TSC). Specifically, the VMX-preemption timer (if it is active) counts down by 1 every
time bit X in the TSC changes due to a TSC increment.

• If bit 5 is read as 1, VM exits store the value of IA32_EFER.LMA into the “IA-32e mode guest” VM-entry control;
see Section 29.2 for more details. This bit is read as 1 on any logical processor that supports the 1-setting of
the “unrestricted guest” VM-execution control.

• Bits 8:6 report, as a bitmap, the activity states supported by the implementation:

— Bit 6 reports (if set) the support for activity state 1 (HLT).

— Bit 7 reports (if set) the support for activity state 2 (shutdown).

— Bit 8 reports (if set) the support for activity state 3 (wait-for-SIPI).
If an activity state is not supported, the implementation causes a VM entry to fail if it attempts to establish that
activity state. All implementations support VM entry to activity state 0 (active).

• If bit 14 is read as 1, Intel® Processor Trace (Intel PT) can be used in VMX operation. If the processor supports
Intel PT but does not allow it to be used in VMX operation, execution of VMXON clears IA32_RTIT_CTL.TraceEn
(see “VMXON—Enter VMX Operation” in Chapter 32); any attempt to write IA32_RTIT_CTL while in VMX
operation (including VMX root operation) causes a general-protection exception.

• If bit 15 is read as 1, the RDMSR instruction can be used in system-management mode (SMM) to read the
IA32_SMBASE MSR (MSR address 9EH). See Section 33.15.6.3.

• Bits 24:16 indicate the number of CR3-target values supported by the processor. This number is a value
between 0 and 256, inclusive (bit 24 is set if and only if bits 23:16 are clear).

• Bits 27:25 is used to compute the recommended maximum number of MSRs that should appear in the VM-exit
MSR-store list, the VM-exit MSR-load list, or the VM-entry MSR-load list. Specifically, if the value bits 27:25 of
IA32_VMX_MISC is N, then 512 * (N + 1) is the recommended maximum number of MSRs to be included in
each list. If the limit is exceeded, undefined processor behavior may result (including a machine check during
the VMX transition).
A-6 Vol. 3D

VMX CAPABILITY REPORTING FACILITY
• If bit 28 is read as 1, bit 2 of the IA32_SMM_MONITOR_CTL can be set to 1. VMXOFF unblocks SMIs unless
IA32_SMM_MONITOR_CTL[bit 2] is 1 (see Section 33.14.4).

• If bit 29 is read as 1, software can use VMWRITE to write to any supported field in the VMCS; otherwise,
VMWRITE cannot be used to modify VM-exit information fields.

• If bit 30 is read as 1, VM entry allows injection of a software interrupt, software exception, or privileged
software exception with an instruction length of 0.

• Bits 63:32 report the 32-bit MSEG revision identifier used by the processor.
• Bits 13:9 and bit 31 are reserved and are read as 0.

A.7 VMX-FIXED BITS IN CR0
The IA32_VMX_CR0_FIXED0 MSR (index 486H) and IA32_VMX_CR0_FIXED1 MSR (index 487H) indicate how bits
in CR0 may be set in VMX operation. They report on bits in CR0 that are allowed to be 0 and to be 1, respectively,
in VMX operation. If bit X is 1 in IA32_VMX_CR0_FIXED0, then that bit of CR0 is fixed to 1 in VMX operation. Simi-
larly, if bit X is 0 in IA32_VMX_CR0_FIXED1, then that bit of CR0 is fixed to 0 in VMX operation. It is always the case
that, if bit X is 1 in IA32_VMX_CR0_FIXED0, then that bit is also 1 in IA32_VMX_CR0_FIXED1; if bit X is 0 in
IA32_VMX_CR0_FIXED1, then that bit is also 0 in IA32_VMX_CR0_FIXED0. Thus, each bit in CR0 is either fixed to
0 (with value 0 in both MSRs), fixed to 1 (1 in both MSRs), or flexible (0 in IA32_VMX_CR0_FIXED0 and 1 in
IA32_VMX_CR0_FIXED1).

A.8 VMX-FIXED BITS IN CR4
The IA32_VMX_CR4_FIXED0 MSR (index 488H) and IA32_VMX_CR4_FIXED1 MSR (index 489H) indicate how bits
in CR4 may be set in VMX operation. They report on bits in CR4 that are allowed to be 0 and 1, respectively, in VMX
operation. If bit X is 1 in IA32_VMX_CR4_FIXED0, then that bit of CR4 is fixed to 1 in VMX operation. Similarly, if
bit X is 0 in IA32_VMX_CR4_FIXED1, then that bit of CR4 is fixed to 0 in VMX operation. It is always the case that,
if bit X is 1 in IA32_VMX_CR4_FIXED0, then that bit is also 1 in IA32_VMX_CR4_FIXED1; if bit X is 0 in IA32_VMX-
_CR4_FIXED1, then that bit is also 0 in IA32_VMX_CR4_FIXED0. Thus, each bit in CR4 is either fixed to 0 (with
value 0 in both MSRs), fixed to 1 (1 in both MSRs), or flexible (0 in IA32_VMX_CR4_FIXED0 and 1 in IA32_VMX-
_CR4_FIXED1).

A.9 VMCS ENUMERATION
The IA32_VMX_VMCS_ENUM MSR (index 48AH) provides information to assist software in enumerating fields in
the VMCS.

As noted in Section 26.11.2, each field in the VMCS is associated with a 32-bit encoding which is structured as
follows:
• Bits 31:15 are reserved (must be 0).
• Bits 14:13 indicate the field’s width.
• Bit 12 is reserved (must be 0).
• Bits 11:10 indicate the field’s type.
• Bits 9:1 is an index field that distinguishes different fields with the same width and type.
• Bit 0 indicates access type.

IA32_VMX_VMCS_ENUM indicates to software the highest index value used in the encoding of any field supported
by the processor:
• Bits 9:1 contain the highest index value used for any VMCS encoding.
• Bit 0 and bits 63:10 are reserved and are read as 0.
Vol. 3D A-7

VMX CAPABILITY REPORTING FACILITY
A.10 VPID AND EPT CAPABILITIES
The IA32_VMX_EPT_VPID_CAP MSR (index 48CH) reports information about the capabilities of the logical
processor with regard to virtual-processor identifiers (VPIDs, Section 30.1) and extended page tables (EPT, Section
30.3):
• If bit 0 is read as 1, the processor supports execute-only translations by EPT. This support allows software to

configure EPT paging-structure entries in which bits 1:0 are clear (indicating that data accesses are not
allowed) and bit 2 is set (indicating that instruction fetches are allowed).1

• Bit 6 indicates support for a page-walk length of 4.
• Bit 7 indicates support for a page-walk length of 5.
• If bit 8 is read as 1, the logical processor allows software to configure the EPT paging-structure memory type

to be uncacheable (UC); see Section 26.6.11.
• If bit 14 is read as 1, the logical processor allows software to configure the EPT paging-structure memory type

to be write-back (WB).
• If bit 16 is read as 1, the logical processor allows software to configure a EPT PDE to map a 2-Mbyte page (by

setting bit 7 in the EPT PDE).
• If bit 17 is read as 1, the logical processor allows software to configure a EPT PDPTE to map a 1-Gbyte page (by

setting bit 7 in the EPT PDPTE).
• Support for the INVEPT instruction (see Chapter 32 and Section 30.4.3.1):

— If bit 20 is read as 1, the INVEPT instruction is supported.

— If bit 25 is read as 1, the single-context INVEPT type is supported.

— If bit 26 is read as 1, the all-context INVEPT type is supported.
• If bit 21 is read as 1, accessed and dirty flags for EPT are supported (see Section 30.3.5).
• If bit 22 is read as 1, the processor reports advanced VM-exit information for EPT violations (see Section

29.2.1). This reporting is done only if this bit is read as 1.
• If bit 23 is read as 1, supervisor shadow-stack control is supported (see Section 30.3.3.2).
• Support for the INVVPID instruction (see Chapter 32 and Section 30.4.3.1):

— If bit 32 is read as 1, the INVVPID instruction is supported.

— If bit 40 is read as 1, the individual-address INVVPID type is supported.

— If bit 41 is read as 1, the single-context INVVPID type is supported.

— If bit 42 is read as 1, the all-context INVVPID type is supported.

— If bit 43 is read as 1, the single-context-retaining-globals INVVPID type is supported.
• Bits 53:48 enumerate the maximum HLAT prefix size. It is expected that any processor that supports the 1-

setting of the “enable HLAT” VM-execution control will enumerate this value as 1. See Section 5.5.1.
• Bits 5:1, bits 13:9, bit 15, bits 19:18, bit 24, bits 31:27, bits 39:33, bits 47:44, and bits 63:54 are reserved

and are read as 0.

The IA32_VMX_EPT_VPID_CAP MSR exists only on processors that support the 1-setting of the “activate secondary
controls” VM-execution control (only if bit 63 of the IA32_VMX_PROCBASED_CTLS MSR is 1) and that support
either the 1-setting of the “enable EPT” VM-execution control (only if bit 33 of the IA32_VMX_PROCBASED_CTLS2
MSR is 1) or the 1-setting of the “enable VPID” VM-execution control (only if bit 37 of the IA32_VMX_PROC-
BASED_CTLS2 MSR is 1).

1. If the “mode-based execute control for EPT” VM-execution control is 1, setting bit 0 indicates also that software may also configure
EPT paging-structure entries in which bits 1:0 are both clear and in which bit 10 is set (indicating a translation that can be used to
fetch instructions from a supervisor-mode linear address or a user-mode linear address).
A-8 Vol. 3D

VMX CAPABILITY REPORTING FACILITY
A.11 VM FUNCTIONS
The IA32_VMX_VMFUNC MSR (index 491H) reports on the allowed settings of the VM-function controls (see
Section 26.6.14). VM entry allows bit X of the VM-function controls to be 1 if bit X in the MSR is set to 1; if bit X in
the MSR is cleared to 0, VM entry fails if bit X of the VM-function controls, the “activate secondary controls” primary
processor-based VM-execution control, and the “enable VM functions” secondary processor-based VM-execution
control are all 1.

The IA32_VMX_VMFUNC MSR exists only on processors that support the 1-setting of the “activate secondary
controls” VM-execution control (only if bit 63 of the IA32_VMX_PROCBASED_CTLS MSR is 1) and the 1-setting of
the “enable VM functions” secondary processor-based VM-execution control (only if bit 45 of the IA32_VMX_PROC-
BASED_CTLS2 MSR is 1).
Vol. 3D A-9

VMX CAPABILITY REPORTING FACILITY
A-10 Vol. 3D

APPENDIX B
FIELD ENCODING IN VMCS

Every component of the VMCS is encoded by a 32-bit field that can be used by VMREAD and VMWRITE. Section
26.11.2 describes the structure of the encoding space (the meanings of the bits in each 32-bit encoding).

This appendix enumerates all fields in the VMCS and their encodings. Fields are grouped by width (16-bit, 32-bit,
etc.) and type (guest-state, host-state, etc.).

B.1 16-BIT FIELDS
A value of 0 in bits 14:13 of an encoding indicates a 16-bit field. Only guest-state areas and the host-state area
contain 16-bit fields. As noted in Section 26.11.2, each 16-bit field allows only full access, meaning that bit 0 of its
encoding is 0. Each such encoding is thus an even number.

B.1.1 16-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished by their index value
in bits 9:1. Table B-1 enumerates the 16-bit control fields.

B.1.2 16-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. These fields are distinguished by
their index value in bits 9:1. Table B-2 enumerates 16-bit guest-state fields.

Table B-1. Encoding for 16-Bit Control Fields (0000_00xx_xxxx_xxx0B)
Field Name Index Encoding

Virtual-processor identifier (VPID)1

NOTES:
1. This field exists only on processors that support the 1-setting of the “enable VPID” VM-execution control.

000000000B 00000000H

Posted-interrupt notification vector2

2. This field exists only on processors that support the 1-setting of the “process posted interrupts” VM-execution control.

000000001B 00000002H

EPTP index3

3. This field exists only on processors that support the 1-setting of the “EPT-violation #VE” VM-execution control.

000000010B 00000004H

HLAT prefix size4

4. This field exists only on processors that support the 1-setting of the “enable HLAT” VM-execution control.

000000011B 00000006H

Last PID-pointer index5

5. This field exists only on processors that support the 1-setting of the “IPI virtualization” VM-execution control.

000000100B 00000008H

Table B-2. Encodings for 16-Bit Guest-State Fields (0000_10xx_xxxx_xxx0B)
Field Name Index Encoding

Guest ES selector 000000000B 00000800H

Guest CS selector 000000001B 00000802H

Guest SS selector 000000010B 00000804H

Guest DS selector 000000011B 00000806H

Guest FS selector 000000100B 00000808H
Vol. 3D B-1

FIELD ENCODING IN VMCS
B.1.3 16-Bit Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. These fields are distinguished by
their index value in bits 9:1. Table B-3 enumerates the 16-bit host-state fields.

B.2 64-BIT FIELDS
A value of 1 in bits 14:13 of an encoding indicates a 64-bit field. There are 64-bit fields only for controls and for
guest state. As noted in Section 26.11.2, every 64-bit field has two encodings, which differ on bit 0, the access
type. Thus, each such field has an even encoding for full access and an odd encoding for high access.

B.2.1 64-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished by their index value
in bits 9:1. Table B-4 enumerates the 64-bit control fields.

Guest GS selector 000000101B 0000080AH

Guest LDTR selector 000000110B 0000080CH

Guest TR selector 000000111B 0000080EH

Guest interrupt status1 000001000B 00000810H

PML index2 000001001B 00000812H

Guest UINV3 000001010B 00000814H

NOTES:
1. This field exists only on processors that support the 1-setting of the “virtual-interrupt delivery” VM-execution control.
2. This field exists only on processors that support the 1-setting of the “enable PML” VM-execution control.
3. This field exists only on processors that support the 1-setting of either the “clear UINV” VM-exit control or the “load UINV” VM-entry

control.

Table B-3. Encodings for 16-Bit Host-State Fields (0000_11xx_xxxx_xxx0B)
Field Name Index Encoding

Host ES selector 000000000B 00000C00H

Host CS selector 000000001B 00000C02H

Host SS selector 000000010B 00000C04H

Host DS selector 000000011B 00000C06H

Host FS selector 000000100B 00000C08H

Host GS selector 000000101B 00000C0AH

Host TR selector 000000110B 00000C0CH

Table B-4. Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb)
Field Name Index Encoding

Address of I/O bitmap A (full)
000000000B

00002000H

Address of I/O bitmap A (high) 00002001H

Address of I/O bitmap B (full)
000000001B

00002002H

Address of I/O bitmap B (high) 00002003H

Table B-2. Encodings for 16-Bit Guest-State Fields (0000_10xx_xxxx_xxx0B) (Contd.)
Field Name Index Encoding
B-2 Vol. 3D

FIELD ENCODING IN VMCS
Address of MSR bitmaps (full)1
000000010B

00002004H

Address of MSR bitmaps (high)1 00002005H

VM-exit MSR-store address (full)
000000011B

00002006H

VM-exit MSR-store address (high) 00002007H

VM-exit MSR-load address (full)
000000100B

00002008H

VM-exit MSR-load address (high) 00002009H

VM-entry MSR-load address (full)
000000101B

0000200AH

VM-entry MSR-load address (high) 0000200BH

Executive-VMCS pointer (full)
000000110B

0000200CH

Executive-VMCS pointer (high) 0000200DH

PML address (full)2
000000111B

0000200EH

PML address (high)2 0000200FH

TSC offset (full)
000001000B

00002010H

TSC offset (high) 00002011H

Virtual-APIC address (full)3
000001001B

00002012H

Virtual-APIC address (high)3 00002013H

APIC-access address (full)4
000001010B

00002014H

APIC-access address (high)4 00002015H

Posted-interrupt descriptor address (full)5
000001011B

00002016H

Posted-interrupt descriptor address (high)5 00002017H

VM-function controls (full)6
000001100B

00002018H

VM-function controls (high)6 00002019H

EPT pointer (EPTP; full)7
000001101B

0000201AH

EPT pointer (EPTP; high)7 0000201BH

EOI-exit bitmap 0 (EOI_EXIT0; full)8
000001110B

0000201CH

EOI-exit bitmap 0 (EOI_EXIT0; high)8 0000201DH

EOI-exit bitmap 1 (EOI_EXIT1; full)8
000001111B

0000201EH

EOI-exit bitmap 1 (EOI_EXIT1; high)8 0000201FH

EOI-exit bitmap 2 (EOI_EXIT2; full)8
000010000B

00002020H

EOI-exit bitmap 2 (EOI_EXIT2; high)8 00002021H

EOI-exit bitmap 3 (EOI_EXIT3; full)8
000010001B

00002022H

EOI-exit bitmap 3 (EOI_EXIT3; high)8 00002023H

EPTP-list address (full)9
000010010B

00002024H

EPTP-list address (high)9 00002025H

VMREAD-bitmap address (full)10

000010011B
00002026H

VMREAD-bitmap address (high)10 00002027H

VMWRITE-bitmap address (full)10

000010100B
00002028H

VMWRITE-bitmap address (high)10 00002029H

Table B-4. Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb) (Contd.)
Field Name Index Encoding
Vol. 3D B-3

FIELD ENCODING IN VMCS
Virtualization-exception information address (full)11

000010101B
0000202AH

Virtualization-exception information address (high)11 0000202BH

XSS-exiting bitmap (full)12

000010110B
0000202CH

XSS-exiting bitmap (high)12 0000202DH

ENCLS-exiting bitmap (full)13

000010111B
0000202EH

ENCLS-exiting bitmap (high)13 0000202FH

Sub-page-permission-table pointer (full)14

000011000B
00002030H

Sub-page-permission-table pointer (high)14 00002031H

TSC multiplier (full)15

000011001B
00002032H

TSC multiplier (high)15 00002033H

Tertiary processor-based VM-execution controls (full)16

000011010B
00002034H

Tertiary processor-based VM-execution controls (high)16 00002035H

Low PASID directory address (full)17

000011100B
00002038H

Low PASID directory address (high)17 00002039H

High PASID directory address (full)17

000011101B
0000203AH

High PASID directory address (high)17 0000203BH

SEAM shared EPT pointer (full)18

000011110B
0000203CH

SEAM shared EPT pointer (high)18 0000203DH

PCONFIG-exiting bitmap (full)19

000011111B
0000203EH

PCONFIG-exiting bitmap (high)19 0000203FH

Hypervisor-managed linear-address translation pointer (HLATP; full)20

000100000B
00002040H

HLATP (high)20 00002041H

PID-pointer table address (full)21

000100001B
00002042H

PID-pointer table address (high)21 00002043H

Secondary VM-exit controls (full)22

000100010B
00002044H

Secondary VM-exit controls (high)22 00002045H

IA32_SPEC_CTRL mask (full)23

000100101B
0000204AH

IA32_SPEC_CTRL mask (high)23 0000204BH

IA32_SPEC_CTRL shadow (full)23

000100110B
0000204CH

IA32_SPEC_CTRL shadow (high)23 0000204DH

NOTES:
1. This field exists only on processors that support the 1-setting of the “use MSR bitmaps” VM-execution control.
2. This field exists only on processors that support the 1-setting of the “enable PML” VM-execution control.
3. This field exists only on processors that support the 1-setting of the “use TPR shadow” VM-execution control.
4. This field exists only on processors that support the 1-setting of the “virtualize APIC accesses” VM-execution control.
5. This field exists only on processors that support the 1-setting of the “process posted interrupts” VM-execution control.
6. This field exists only on processors that support the 1-setting of the “enable VM functions” VM-execution control.
7. This field exists only on processors that support the 1-setting of the “enable EPT” VM-execution control.
8. This field exists only on processors that support the 1-setting of the “virtual-interrupt delivery” VM-execution control.
9. This field exists only on processors that support the 1-setting of the “EPTP switching” VM-function control.

Table B-4. Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb) (Contd.)
Field Name Index Encoding
B-4 Vol. 3D

FIELD ENCODING IN VMCS
B.2.2 64-Bit Read-Only Data Fields
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields are distinguished by their
index value in bits 9:1. Table B-5 enumerates the 64-bit read-only data fields.

B.2.3 64-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. These fields are distinguished by
their index value in bits 9:1. Table B-6 enumerates the 64-bit guest-state fields.

10. This field exists only on processors that support the 1-setting of the “VMCS shadowing” VM-execution control.
11. This field exists only on processors that support the 1-setting of the “EPT-violation #VE” VM-execution control.
12. This field exists only on processors that support the 1-setting of the “enable XSAVES/XRSTORS” VM-execution control.
13. This field exists only on processors that support the 1-setting of the “enable ENCLS exiting” VM-execution control.
14. This field exists only on processors that support the 1-setting of the “sub-page write permissions for EPT” VM-execution control.
15. This field exists only on processors that support the 1-setting of the “use TSC scaling” VM-execution control.
16. This field exists only on processors that support the 1-setting of the “activate tertiary controls” VM-execution control.
17. This field exists only on processors that support the 1-setting of the “PASID translation” VM-execution control.
18. This field exists only on processors that support the 1-setting of the “SEAM guest-physical address width” VM-execution control.
19. This field exists only on processors that support the 1-setting of the “enable PCONFIG” VM-execution control.
20. This field exists only on processors that support the 1-setting of the “enable HLAT” VM-execution control.
21. This field exists only on processors that support the 1-setting of the “IPI virtualization” VM-execution control.
22. This field exists only on processors that support the 1-setting of the “activate secondary controls” VM-exit control.
23. This field exists only on processors that support the 1-setting of the “virtualize IA32_SPEC_CTRL” VM-execution control.

Table B-5. Encodings for 64-Bit Read-Only Data Fields (0010_01xx_xxxx_xxxAb)
Field Name Index Encoding

Guest-physical address (full)1

NOTES:
1. This field exists only on processors that support the 1-setting of the “enable EPT” VM-execution control.

000000000B
00002400H

Guest-physical address (high)1 00002401H

MSR data (full)2

2. This field exists only on processors that support the 1-setting of the “enable MSR-list instructions” VM-execution control.

000000001B
00002402H

MSR data (high)2 00002403H

Table B-6. Encodings for 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb)
Field Name Index Encoding

VMCS link pointer (full)
000000000B

00002800H

VMCS link pointer (high) 00002801H

Guest IA32_DEBUGCTL (full)
000000001B

00002802H

Guest IA32_DEBUGCTL (high) 00002803H

Guest IA32_PAT (full)1
000000010B

00002804H

Guest IA32_PAT (high)1 00002805H

Guest IA32_EFER (full)2
000000011B

00002806H

Guest IA32_EFER (high)2 00002807H
Vol. 3D B-5

FIELD ENCODING IN VMCS
B.2.4 64-Bit Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. These fields are distinguished by
their index value in bits 9:1. Table B-7 enumerates the 64-bit control fields.

Guest IA32_PERF_GLOBAL_CTRL (full)3
000000100B

00002808H

Guest IA32_PERF_GLOBAL_CTRL (high)3 00002809H

Guest PDPTE0 (full)4
000000101B

0000280AH

Guest PDPTE0 (high)4 0000280BH

Guest PDPTE1 (full)4
000000110B

0000280CH

Guest PDPTE1 (high)4 0000280DH

Guest PDPTE2 (full)4
000000111B

0000280EH

Guest PDPTE2 (high)4 0000280FH

Guest PDPTE3 (full)4
000001000B

00002810H

Guest PDPTE3 (high)4 00002811H

Guest IA32_BNDCFGS (full)5
000001001B

00002812H

Guest IA32_BNDCFGS (high)5 00002813H

Guest IA32_RTIT_CTL (full)6
000001010B

00002814H

Guest IA32_RTIT_CTL (high)6 00002815H

Guest IA32_LBR_CTL (full)7
000001011B

00002816H

Guest IA32_LBR_CTL (high)7 00002817H

Guest IA32_PKRS (full)8
000001100B

00002818H

Guest IA32_PKRS (high)8 00002819H

NOTES:
1. This field exists only on processors that support either the 1-setting of the “load IA32_PAT” VM-entry control or that of the “save

IA32_PAT” VM-exit control.
2. This field exists only on processors that support either the 1-setting of the “load IA32_EFER” VM-entry control or that of the “save

IA32_EFER” VM-exit control.
3. This field exists only on processors that support the 1-setting of the “load IA32_PERF_GLOBAL_CTRL” VM-entry control.
4. This field exists only on processors that support the 1-setting of the “enable EPT” VM-execution control.
5. This field exists only on processors that support either the 1-setting of the “load IA32_BNDCFGS” VM-entry control or that of the

“clear IA32_BNDCFGS” VM-exit control.
6. This field exists only on processors that support either the 1-setting of the “load IA32_RTIT_CTL” VM-entry control or that of the

“clear IA32_RTIT_CTL” VM-exit control.
7. This field exists only on processors that support either the 1-setting of the “load IA32_LBR_CTL” VM-entry control or that of the

“clear IA32_LBR_CTL” VM-exit control.
8. This field exists only on processors that support the 1-setting of the “load PKRS” VM-entry control.

Table B-7. Encodings for 64-Bit Host-State Fields (0010_11xx_xxxx_xxxAb)
Field Name Index Encoding

Host IA32_PAT (full)1
000000000B

00002C00H

Host IA32_PAT (high)1 00002C01H

Table B-6. Encodings for 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb) (Contd.)
Field Name Index Encoding
B-6 Vol. 3D

FIELD ENCODING IN VMCS
B.3 32-BIT FIELDS
A value of 2 in bits 14:13 of an encoding indicates a 32-bit field. As noted in Section 26.11.2, each 32-bit field
allows only full access, meaning that bit 0 of its encoding is 0. Each such encoding is thus an even number.

B.3.1 32-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished by their index value
in bits 9:1. Table B-8 enumerates the 32-bit control fields.

Host IA32_EFER (full)2
000000001B

00002C02H

Host IA32_EFER (high)2 00002C03H

Host IA32_PERF_GLOBAL_CTRL (full)3
000000010B

00002C04H

Host IA32_PERF_GLOBAL_CTRL (high)3 00002C05H

Host IA32_PKRS (full)4
000000011B

00002C06H

Host IA32_PKRS (high)4 00002C07H

NOTES:
1. This field exists only on processors that support the 1-setting of the “load IA32_PAT” VM-exit control.
2. This field exists only on processors that support the 1-setting of the “load IA32_EFER” VM-exit control.
3. This field exists only on processors that support the 1-setting of the “load IA32_PERF_GLOBAL_CTRL” VM-exit control.
4. This field exists only on processors that support the 1-setting of the “load PKRS” VM-exit control.

Table B-8. Encodings for 32-Bit Control Fields (0100_00xx_xxxx_xxx0B)
Field Name Index Encoding

Pin-based VM-execution controls 000000000B 00004000H

Primary processor-based VM-execution controls 000000001B 00004002H

Exception bitmap 000000010B 00004004H

Page-fault error-code mask 000000011B 00004006H

Page-fault error-code match 000000100B 00004008H

CR3-target count 000000101B 0000400AH

Primary VM-exit controls 000000110B 0000400CH

VM-exit MSR-store count 000000111B 0000400EH

VM-exit MSR-load count 000001000B 00004010H

VM-entry controls 000001001B 00004012H

VM-entry MSR-load count 000001010B 00004014H

VM-entry interruption-information field 000001011B 00004016H

VM-entry exception error code 000001100B 00004018H

VM-entry instruction length 000001101B 0000401AH

TPR threshold1 000001110B 0000401CH

Secondary processor-based VM-execution controls2 000001111B 0000401EH

PLE_Gap3 000010000B 00004020H

Table B-7. Encodings for 64-Bit Host-State Fields (0010_11xx_xxxx_xxxAb) (Contd.)
Field Name Index Encoding
Vol. 3D B-7

FIELD ENCODING IN VMCS
B.3.2 32-Bit Read-Only Data Fields
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields are distinguished by their
index value in bits 9:1. Table B-9 enumerates the 32-bit read-only data fields.

B.3.3 32-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. These fields are distinguished by
their index value in bits 9:1. Table B-10 enumerates the 32-bit guest-state fields.

PLE_Window3 000010001B 00004022H

Instruction-timeout control4 000010010B 00004024H

SEAM-guest KeyID5 000010011B 00004026H

NOTES:
1. This field exists only on processors that support the 1-setting of the “use TPR shadow” VM-execution control.
2. This field exists only on processors that support the 1-setting of the “activate secondary controls” VM-execution control.
3. This field exists only on processors that support the 1-setting of the “PAUSE-loop exiting” VM-execution control.
4. This field exists only on processors that support the 1-setting of the “instruction timeout” VM-execution control.
5. This field exists only on processors that support the 1-setting of the “SEAM guest-physical address width” VM-execution control.

Table B-9. Encodings for 32-Bit Read-Only Data Fields (0100_01xx_xxxx_xxx0B)
Field Name Index Encoding

VM-instruction error 000000000B 00004400H

Exit reason 000000001B 00004402H

VM-exit interruption information 000000010B 00004404H

VM-exit interruption error code 000000011B 00004406H

IDT-vectoring information field 000000100B 00004408H

IDT-vectoring error code 000000101B 0000440AH

VM-exit instruction length 000000110B 0000440CH

VM-exit instruction information 000000111B 0000440EH

Table B-10. Encodings for 32-Bit Guest-State Fields (0100_10xx_xxxx_xxx0B)
Field Name Index Encoding

Guest ES limit 000000000B 00004800H

Guest CS limit 000000001B 00004802H

Guest SS limit 000000010B 00004804H

Guest DS limit 000000011B 00004806H

Guest FS limit 000000100B 00004808H

Guest GS limit 000000101B 0000480AH

Guest LDTR limit 000000110B 0000480CH

Guest TR limit 000000111B 0000480EH

Guest GDTR limit 000001000B 00004810H

Table B-8. Encodings for 32-Bit Control Fields (0100_00xx_xxxx_xxx0B) (Contd.)
Field Name Index Encoding
B-8 Vol. 3D

FIELD ENCODING IN VMCS
The limit fields for GDTR and IDTR are defined to be 32 bits in width even though these fields are only 16-bits wide
in the Intel 64 and IA-32 architectures. VM entry ensures that the high 16 bits of both these fields are cleared to 0.

B.3.4 32-Bit Host-State Field
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. There is only one such 32-bit field
as given in Table B-11.

B.4 NATURAL-WIDTH FIELDS
A value of 3 in bits 14:13 of an encoding indicates a natural-width field. As noted in Section 26.11.2, each of these
fields allows only full access, meaning that bit 0 of its encoding is 0. Each such encoding is thus an even number.

B.4.1 Natural-Width Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished by their index value
in bits 9:1. Table B-12 enumerates the natural-width control fields.

Guest IDTR limit 000001001B 00004812H

Guest ES access rights 000001010B 00004814H

Guest CS access rights 000001011B 00004816H

Guest SS access rights 000001100B 00004818H

Guest DS access rights 000001101B 0000481AH

Guest FS access rights 000001110B 0000481CH

Guest GS access rights 000001111B 0000481EH

Guest LDTR access rights 000010000B 00004820H

Guest TR access rights 000010001B 00004822H

Guest interruptibility state 000010010B 00004824H

Guest activity state 000010011B 00004826H

Guest SMBASE 000010100B 00004828H

Guest IA32_SYSENTER_CS 000010101B 0000482AH

VMX-preemption timer value1 000010111B 0000482EH

NOTES:
1. This field exists only on processors that support the 1-setting of the “activate VMX-preemption timer” VM-execution control.

Table B-11. Encoding for 32-Bit Host-State Field (0100_11xx_xxxx_xxx0B)
Field Name Index Encoding

Host IA32_SYSENTER_CS 000000000B 00004C00H

Table B-12. Encodings for Natural-Width Control Fields (0110_00xx_xxxx_xxx0B)
Field Name Index Encoding

CR0 guest/host mask 000000000B 00006000H

CR4 guest/host mask 000000001B 00006002H

Table B-10. Encodings for 32-Bit Guest-State Fields (0100_10xx_xxxx_xxx0B) (Contd.)
Field Name Index Encoding
Vol. 3D B-9

FIELD ENCODING IN VMCS
B.4.2 Natural-Width Read-Only Data Fields
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields are distinguished by their
index value in bits 9:1. Table B-13 enumerates the natural-width read-only data fields.

B.4.3 Natural-Width Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. These fields are distinguished by
their index value in bits 9:1. Table B-14 enumerates the natural-width guest-state fields.

CR0 read shadow 000000010B 00006004H

CR4 read shadow 000000011B 00006006H

CR3-target value 0 000000100B 00006008H

CR3-target value 1 000000101B 0000600AH

CR3-target value 2 000000110B 0000600CH

CR3-target value 31 000000111B 0000600EH

NOTES:
1. If a future implementation supports more than 4 CR3-target values, they will be encoded consecutively following the 4 encodings

given here.

Table B-13. Encodings for Natural-Width Read-Only Data Fields (0110_01xx_xxxx_xxx0B)
Field Name Index Encoding

Exit qualification 000000000B 00006400H

I/O RCX 000000001B 00006402H

I/O RSI 000000010B 00006404H

I/O RDI 000000011B 00006406H

I/O RIP 000000100B 00006408H

Guest-linear address 000000101B 0000640AH

Table B-14. Encodings for Natural-Width Guest-State Fields (0110_10xx_xxxx_xxx0B)
Field Name Index Encoding

Guest CR0 000000000B 00006800H

Guest CR3 000000001B 00006802H

Guest CR4 000000010B 00006804H

Guest ES base 000000011B 00006806H

Guest CS base 000000100B 00006808H

Guest SS base 000000101B 0000680AH

Guest DS base 000000110B 0000680CH

Guest FS base 000000111B 0000680EH

Guest GS base 000001000B 00006810H

Guest LDTR base 000001001B 00006812H

Table B-12. Encodings for Natural-Width Control Fields (0110_00xx_xxxx_xxx0B) (Contd.)
Field Name Index Encoding
B-10 Vol. 3D

FIELD ENCODING IN VMCS
The base-address fields for ES, CS, SS, and DS in the guest-state area are defined to be natural-width (with 64 bits
on processors supporting Intel 64 architecture) even though these fields are only 32-bits wide in the Intel 64 archi-
tecture. VM entry ensures that the high 32 bits of these fields are cleared to 0.

B.4.4 Natural-Width Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. These fields are distinguished by
their index value in bits 9:1. Table B-15 enumerates the natural-width host-state fields.

Guest TR base 000001010B 00006814H

Guest GDTR base 000001011B 00006816H

Guest IDTR base 000001100B 00006818H

Guest DR7 000001101B 0000681AH

Guest RSP 000001110B 0000681CH

Guest RIP 000001111B 0000681EH

Guest RFLAGS 000010000B 00006820H

Guest pending debug exceptions 000010001B 00006822H

Guest IA32_SYSENTER_ESP 000010010B 00006824H

Guest IA32_SYSENTER_EIP 000010011B 00006826H

Guest IA32_S_CET1 000010100B 00006828H

Guest SSP1 000010101B 0000682AH

Guest IA32_INTERRUPT_SSP_TABLE_ADDR1 000010110B 0000682CH

NOTES:
1. This field is supported only on processors that support the 1-setting of the “load CET state” VM-entry control.

Table B-15. Encodings for Natural-Width Host-State Fields (0110_11xx_xxxx_xxx0B)
Field Name Index Encoding

Host CR0 000000000B 00006C00H

Host CR3 000000001B 00006C02H

Host CR4 000000010B 00006C04H

Host FS base 000000011B 00006C06H

Host GS base 000000100B 00006C08H

Host TR base 000000101B 00006C0AH

Host GDTR base 000000110B 00006C0CH

Host IDTR base 000000111B 00006C0EH

Host IA32_SYSENTER_ESP 000001000B 00006C10H

Host IA32_SYSENTER_EIP 000001001B 00006C12H

Host RSP 000001010B 00006C14H

Host RIP 000001011B 00006C16H

Host IA32_S_CET1 000001100B 00006C18H

Host SSP1 000001101B 00006C1AH

Table B-14. Encodings for Natural-Width Guest-State Fields (0110_10xx_xxxx_xxx0B) (Contd.)
Field Name Index Encoding
Vol. 3D B-11

FIELD ENCODING IN VMCS
Host IA32_INTERRUPT_SSP_TABLE_ADDR1 000001110B 00006C1CH

NOTES:
1. This field is supported only on processors that support the 1-setting of the “load CET state” VM-exit control.

Table B-15. Encodings for Natural-Width Host-State Fields (0110_11xx_xxxx_xxx0B) (Contd.)
Field Name Index Encoding
B-12 Vol. 3D

APPENDIX C
VMX BASIC EXIT REASONS

Every VM exit writes a 32-bit exit reason to the VMCS (see Section 26.9.1). Certain VM-entry failures also do this
(see Section 28.8). The low 16 bits of the exit-reason field form the basic exit reason which provides basic informa-
tion about the cause of the VM exit or VM-entry failure.

Table C-1 lists values for basic exit reasons and explains their meaning. Entries apply to VM exits, unless otherwise
noted.

Table C-1. Basic Exit Reasons
Basic Exit
Reason Description

0 Exception or non-maskable interrupt (NMI). Either:

1: Guest software caused an exception and the bit in the exception bitmap associated with exception’s vector was
1. This case includes executions of BOUND that cause #BR, executions of INT1 (they cause #DB), executions of
INT3 (they cause #BP), executions of INTO that cause #OF, and executions of UD0, UD1, UD2, and UDB (they
cause #UD).

2: An NMI was delivered to the logical processor and the “NMI exiting” VM-execution control was 1.

1 External interrupt. An external interrupt arrived and the “external-interrupt exiting” VM-execution control was 1.

2 Triple fault. The logical processor encountered an exception while attempting to call the double-fault handler and
that exception did not itself cause a VM exit due to the exception bitmap.

3 INIT signal. An INIT signal arrived

4 Start-up IPI (SIPI). A SIPI arrived while the logical processor was in the “wait-for-SIPI” state.

5 I/O system-management interrupt (SMI). An SMI arrived immediately after retirement of an I/O instruction and
caused an SMM VM exit (see Section 33.15.2).

6 Other SMI. An SMI arrived and caused an SMM VM exit (see Section 33.15.2) but not immediately after retirement of
an I/O instruction.

7 Interrupt window. At the beginning of an instruction, RFLAGS.IF was 1; events were not blocked by STI or by MOV
SS; and the “interrupt-window exiting” VM-execution control was 1.

8 NMI window. At the beginning of an instruction, there was no virtual-NMI blocking; events were not blocked by MOV
SS; and the “NMI-window exiting” VM-execution control was 1.

9 Task switch. Guest software attempted a task switch.

10 CPUID. Guest software attempted to execute CPUID.

11 GETSEC. Guest software attempted to execute GETSEC.

12 HLT. Guest software attempted to execute HLT and the “HLT exiting” VM-execution control was 1.

13 INVD. Guest software attempted to execute INVD.

14 INVLPG. Guest software attempted to execute INVLPG and the “INVLPG exiting” VM-execution control was 1.

15 RDPMC. Guest software attempted to execute RDPMC and the “RDPMC exiting” VM-execution control was 1.

16 RDTSC. Guest software attempted to execute RDTSC and the “RDTSC exiting” VM-execution control was 1.

17 RSM. Guest software attempted to execute RSM in SMM.

18 VMCALL. VMCALL was executed either by guest software (causing an ordinary VM exit) or by the executive monitor
(causing an SMM VM exit; see Section 33.15.2).

19 VMCLEAR. Guest software attempted to execute VMCLEAR.

20 VMLAUNCH. Guest software attempted to execute VMLAUNCH.

21 VMPTRLD. Guest software attempted to execute VMPTRLD.

22 VMPTRST. Guest software attempted to execute VMPTRST.
Vol. 3D C-1

VMX BASIC EXIT REASONS
23 VMREAD. Guest software attempted to execute VMREAD.

24 VMRESUME. Guest software attempted to execute VMRESUME.

25 VMWRITE. Guest software attempted to execute VMWRITE.

26 VMXOFF. Guest software attempted to execute VMXOFF.

27 VMXON. Guest software attempted to execute VMXON.

28 Control-register accesses. Guest software attempted to access CR0, CR3, CR4, or CR8 using CLTS, LMSW, or
MOV CR and the VM-execution control fields indicate that a VM exit should occur (see Section 27.1 for details). This
basic exit reason is not used for trap-like VM exits following executions of the MOV to CR8 instruction when the “use
TPR shadow” VM-execution control is 1. Such VM exits instead use basic exit reason 43.

29 MOV DR. Guest software attempted a MOV to or from a debug register and the “MOV-DR exiting” VM-execution
control was 1.

30 I/O instruction. Guest software attempted to execute an I/O instruction and either:

1: The “use I/O bitmaps” VM-execution control was 0 and the “unconditional I/O exiting” VM-execution control was 1.
2: The “use I/O bitmaps” VM-execution control was 1 and a bit in the I/O bitmap associated with one of the ports

accessed by the I/O instruction was 1.

31 RDMSR. Guest software attempted to execute RDMSR and one of the following holds:

• The “use MSR bitmaps” VM-execution control was 0.
• The value of RCX is neither in the range 00000000H – 00001FFFH nor in the range C0000000H – C0001FFFH.
• The value of RCX is in the range 00000000H – 00001FFFH and the nth bit in read bitmap for low MSRs is 1,

where n is the value of RCX.
• The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in read bitmap for high MSRs is 1,

where n is the value of RCX & 00001FFFH.

32 WRMSR or WRMSRNS. Guest software attempted to execute either WRMSR or WRMSRNS and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the range C0000000H – C0001FFFH.
3: The value of RCX is in the range 00000000H – 00001FFFH and the nth bit in write bitmap for low MSRs is 1,

where n is the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in write bitmap for high MSRs is 1,

where n is the value of RCX & 00001FFFH.

33 VM-entry failure due to invalid guest state. A VM entry failed one of the checks identified in Section 28.3.1.

34 VM-entry failure due to MSR loading. A VM entry failed in an attempt to load MSRs. See Section 28.4.

36 MWAIT. Guest software attempted to execute MWAIT and the “MWAIT exiting” VM-execution control was 1.

37 Monitor trap flag. A VM exit occurred due to the 1-setting of the “monitor trap flag” VM-execution control (see
Section 27.5.2) or VM entry injected a pending MTF VM exit as part of VM entry (see Section 28.6.2).

39 MONITOR. Guest software attempted to execute MONITOR and the “MONITOR exiting” VM-execution control was 1.

40 PAUSE. Either guest software attempted to execute PAUSE and the “PAUSE exiting” VM-execution control was 1 or
the “PAUSE-loop exiting” VM-execution control was 1 and guest software executed a PAUSE loop with execution
time exceeding PLE_Window (see Section 27.1.3).

41 VM-entry failure due to machine-check event. A machine-check event occurred during VM entry (see Section
28.9).

43 TPR below threshold. The logical processor determined that the value of bits 7:4 of the byte at offset 080H on the
virtual-APIC page was below that of the TPR threshold VM-execution control field while the “use TPR shadow” VM-
execution control was 1 either as part of TPR virtualization (Section 31.1.2) or VM entry (Section 28.7.7).

44 APIC access. Guest software attempted to access memory at a physical address on the APIC-access page and the
“virtualize APIC accesses” VM-execution control was 1 (see Section 31.4).

45 Virtualized EOI. EOI virtualization was performed for a virtual interrupt whose vector indexed a bit set in the EOI-
exit bitmap.

Table C-1. Basic Exit Reasons (Contd.)
Basic Exit
Reason Description
C-2 Vol. 3D

VMX BASIC EXIT REASONS
46 Access to GDTR or IDTR. Guest software attempted to execute LGDT, LIDT, SGDT, or SIDT and the “descriptor-table
exiting” VM-execution control was 1.

47 Access to LDTR or TR. Guest software attempted to execute LLDT, LTR, SLDT, or STR and the “descriptor-table
exiting” VM-execution control was 1.

48 EPT violation. An attempt to access memory with a guest-physical address was disallowed by the configuration of
the EPT paging structures.

49 EPT misconfiguration. An attempt to access memory with a guest-physical address encountered a misconfigured
EPT paging-structure entry.

50 INVEPT. Guest software attempted to execute INVEPT.

51 RDTSCP. Guest software attempted to execute RDTSCP and the “enable RDTSCP” and “RDTSC exiting” VM-execution
controls were both 1.

52 VMX-preemption timer expired. The preemption timer counted down to zero.

53 INVVPID. Guest software attempted to execute INVVPID.

54 WBINVD or WBNOINVD. Guest software attempted to execute WBINVD or WBNOINVD and the “WBINVD exiting”
VM-execution control was 1.

55 XSETBV. Guest software attempted to execute XSETBV.

56 APIC write. Guest software completed a write to the virtual-APIC page that must be virtualized by VMM software
(see Section 31.4.3.3).

57 RDRAND. Guest software attempted to execute RDRAND and the “RDRAND exiting” VM-execution control was 1.

58 INVPCID. Guest software attempted to execute INVPCID and the “enable INVPCID” and “INVLPG exiting”
VM-execution controls were both 1.

59 VMFUNC. Guest software invoked a VM function with the VMFUNC instruction and the VM function either was not
enabled or generated a function-specific condition causing a VM exit.

60 ENCLS. Guest software attempted to execute ENCLS, “enable ENCLS exiting” VM-execution control was 1, and either
(1) EAX < 63 and the corresponding bit in the ENCLS-exiting bitmap is 1; or (2) EAX ? 63 and bit 63 in the ENCLS-
exiting bitmap is 1.

61 RDSEED. Guest software attempted to execute RDSEED and the “RDSEED exiting” VM-execution control was 1.

62 Page-modification log full. The processor attempted to create a page-modification log entry and the value of the
PML index was not in the range 0–511.

63 XSAVES. Guest software attempted to execute XSAVES, the “enable XSAVES/XRSTORS” was 1, and a bit was set in
the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the XSS-exiting bitmap.

64 XRSTORS. Guest software attempted to execute XRSTORS, the “enable XSAVES/XRSTORS” was 1, and a bit was set
in the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the XSS-exiting bitmap.

65 PCONFIG. Guest software attempted to execute PCONFIG, “enable PCONFIG” VM-execution control was 1, and either
(1) EAX < 63 and the corresponding bit in the PCONFIG-exiting bitmap is 1; or (2) EAX ? 63 and bit 63 in the
PCONFIG-exiting bitmap is 1.

66 SPP-related event. The processor attempted to determine an access’s sub-page write permission and encountered
an SPP miss or an SPP misconfiguration. See Section 30.3.4.2.

67 UMWAIT. Guest software attempted to execute UMWAIT and the “enable user wait and pause” and “RDTSC exiting”
VM-execution controls were both 1.

68 TPAUSE. Guest software attempted to execute TPAUSE and the “enable user wait and pause” and “RDTSC exiting”
VM-execution controls were both 1.

69 LOADIWKEY. Guest software attempted to execute LOADIWKEY and the “LOADIWKEY exiting” VM-execution control
was 1.

72 ENQCMD PASID translation failure. A VM exit occurred during PASID translation because the present bit was clear
in a PASID-directory entry, the valid bit was clear in a PASID-table entry, or one of the entries set a reserved bit.

Table C-1. Basic Exit Reasons (Contd.)
Basic Exit
Reason Description
Vol. 3D C-3

VMX BASIC EXIT REASONS
73 ENQCMDS PASID translation failure. A VM exit occurred during PASID translation because the present bit was clear
in a PASID-directory entry, the valid bit was clear in a PASID-table entry, or one of the entries set a reserved bit.

74 Bus lock. The processor asserted a bus lock while the “bus-lock detection” VM-execution control was 1. (Such
VM exits will also set bit 26 of the exit-reason field.)

75 Instruction timeout. The “instruction timeout” VM-execution control was 1 and certain operations prevented the
processor from reaching an instruction boundary within the amount of time specified by the instruction-timeout
control.

76 SEAMCALL. Guest software attempted to execute SEAMCALL.

77 TDCALL. Guest software attempted to execute TDCALL.

78 RDMSRLIST. Guest software attempted to execute RDMSRLIST and either the “use MSR bitmaps” VM-execution
control was 0 or any of the following holds for the index an MSR being accessed:

• The index is neither in the range 00000000H – 00001FFFH nor in the range C0000000H – C0001FFFH.
• The index is in the range 00000000H – 00001FFFH and the nth bit in read bitmap for low MSRs is 1, where n is

the index.
• The index is in the range C0000000H – C0001FFFH and the nth bit in read bitmap for high MSRs is 1, where n is

the logical AND of the index and the value 00001FFFH.

79 WRMSRLIST. Guest software attempted to execute WRMSRLIST and either the “use MSR bitmaps” VM-execution
control was 0 or any of the following holds for the index an MSR being accessed:

• The index is neither in the range 00000000H – 00001FFFH nor in the range C0000000H – C0001FFFH.
• The index is in the range 00000000H – 00001FFFH and the nth bit in write bitmap for low MSRs is 1, where n is

the index.
• The index is in the range C0000000H – C0001FFFH and the nth bit in write bitmap for high MSRs is 1, where n is

the logical AND of the index and the value 00001FFFH.

Table C-1. Basic Exit Reasons (Contd.)
Basic Exit
Reason Description
C-4 Vol. 3D

INDEX
Numerics
16-bit code, mixing with 32-bit code, 23-1
32-bit code, mixing with 16-bit code, 23-1
32-bit physical addressing

overview, 3-6
36-bit physical addressing

overview, 3-6
64-bit mode

call gates, 6-14
code segment descriptors, 6-3, 11-12
control registers, 2-13
CR8 register, 2-13
D flag, 6-4
debug registers, 2-7
descriptors, 6-3, 6-5
DPL field, 6-4
exception handling, 7-19
external interrupts, 12-32
fast system calls, 6-22
GDTR register, 2-12, 2-13
GP faults, causes of, 7-42
IDTR register, 2-12
initialization process, 2-8, 11-11
interrupt and trap gates, 7-19
interrupt controller, 12-32
interrupt descriptors, 2-5
interrupt handling, 7-19
interrupt stack table, 7-22
IRET instruction, 7-21
L flag, 3-12, 6-4
logical address translation, 3-7
MOV CRn, 2-13, 12-32
null segment checking, 6-6
paging, 2-6
reading counters, 2-27
reading & writing MSRs, 2-28
registers and mode changes, 11-12
RFLAGS register, 2-11
segment descriptor tables, 3-16, 6-3
segment loading instructions, 3-9
segments, 3-5
stack switching, 6-19, 7-21
SYSCALL and SYSRET, 2-7, 6-22
SYSENTER and SYSEXIT, 6-21
system registers, 2-7
task gate, 9-19
task priority, 12-32
task register, 2-13
TSS

stack pointers, 9-19
See also: IA-32e mode, compatibility mode

8086
emulation, support for, 22-1
processor, exceptions and interrupts, 22-6

8086/8088 processor, 24-7
8087 math coprocessor, 24-7
82489DX, 24-27, 24-28

Local APIC and I/O APICs, 12-4

A
A20M# signal, 22-2, 24-34, 25-4
AAA instruction, 34-7, 34-9
Aborts

description of, 7-5
restarting a program or task after, 7-5

AC (alignment check) flag, EFLAGS register, 2-11, 7-50, 24-6
Access rights

checking, 2-25
checking caller privileges, 6-26
description of, 6-24
invalid values, 24-19

ADC instruction, 10-4
ADD instruction, 10-4
Address

size prefix, 23-1
space, of task, 9-16

Address translation
in real-address mode, 22-2
logical to linear, 3-7
overview, 3-6

Advanced power management
C-state and Sub C-state, 16-35
MWAIT extensions, 16-35
See also: thermal monitoring

Advanced programmable interrupt controller (see I/O APIC or Local
APIC)

Alignment
check exception, 2-11, 7-50, 24-11, 24-21
checking, 6-27

AM (alignment mask) flag
CR0 control register, 2-16, 24-18

AND instruction, 10-4
APIC, 12-41, 12-42
APIC bus

arbitration mechanism and protocol, 12-27, 12-34
bus message format, 12-35, 12-48
diagram of, 12-2, 12-3
EOI message format, 12-15, 12-48
nonfocused lowest priority message, 12-50
short message format, 12-49
SMI message, 33-2
status cycles, 12-51
structure of, 12-3
See also

local APIC
APIC flag, CPUID instruction, 12-7
APIC ID, 12-41, 12-45, 12-47
APIC (see I/O APIC or Local APIC)
ARPL instruction, 2-25, 6-27

not supported in 64-bit mode, 2-25
Atomic operations

automatic bus locking, 10-3
effects of a locked operation on internal processor caches, 10-6
guaranteed, description of, 10-2
overview of, 10-1, 10-3
software-controlled bus locking, 10-4

At-retirement
counting, 21-109, 21-125
events, 21-109, 21-115, 21-116, 21-125, 21-129

Auto HALT restart
Vol. 3D INDEX-1

INDEX
field, SMM, 33-14
SMM, 33-14

Automatic bus locking, 10-3
Automatic thermal monitoring mechanism, 16-36

B
B (busy) flag

TSS descriptor, 9-5, 9-11, 9-16
B (default stack size) flag

segment descriptor, 23-1, 24-33
B0-B3 (BP condition detected) flags

DR6 register, 19-4
Backlink (see Previous task link)
Base address fields, segment descriptor, 3-10
BD (debug register access detected) flag, DR6 register, 19-11
BINIT# signal, 2-26
BIOS role in microcode updates, 11-38
BOUND instruction, 2-5, 7-4, 7-30
BOUND range exceeded exception (#BR), 7-30
BP0#, BP1#, BP2#, and BP3# pins, 19-39, 19-41
Branch record

branch trace message, 19-15
IA-32e mode, 19-23
saving, 19-17, 19-27, 19-28, 19-36
saving as a branch trace message, 19-15
structure, 19-37
structure of in BTS buffer, 19-21

Branch trace message (see BTM)
Branch trace store (see BTS)
Breakpoint exception (#BP), 7-4, 7-28, 19-11
Breakpoints

data breakpoint, 19-6
data breakpoint exception conditions, 19-10
description of, 19-1
DR0-DR3 debug registers, 19-4
example, 19-6
exception, 7-28
field recognition, 19-6, 19-7
general-detect exception condition, 19-10
instruction breakpoint, 19-6
instruction breakpoint exception condition, 19-9
I/O breakpoint exception conditions, 19-10
LEN0 - LEN3 (Length) fields

DR7 register, 19-6
R/W0-R/W3 (read/write) fields

DR7 register, 19-5
single-step exception condition, 19-11
task-switch exception condition, 19-11

BS (single step) flag, DR6 register, 19-4
BSP flag, IA32_APIC_BASE MSR, 12-8
BSWAP instruction, 24-4
BT (task switch) flag, DR6 register, 19-4, 19-11
BTC instruction, 10-4
BTF (single-step on branches) flag

DEBUGCTLMSR MSR, 19-41
BTMs (branch trace messages)

description of, 19-15
enabling, 19-13, 19-25, 19-26, 19-36, 19-38, 19-39
TR (trace message enable) flag

MSR_DEBUGCTLA MSR, 19-36
MSR_DEBUGCTLB MSR, 19-13, 19-38, 19-39

BTR instruction, 10-4
BTS buffer

description of, 19-20

introduction to, 19-12, 19-15
records in, 19-21
setting up, 19-25
structure of, 19-21, 19-23, 21-27

BTS instruction, 10-4
BTS (branch trace store) facilities

availability of, 19-35
BTS_UNAVAILABLE flag,

IA32_MISC_ENABLE MSR, 19-20
introduction to, 19-12
setting up BTS buffer, 19-25
writing an interrupt service routine for, 19-26

BTS_UNAVAILABLE, 19-20
Built-in self-test (BIST)

description of, 11-1
performing, 11-5

Bus
errors detected with MCA, 17-28
hold, 24-35
locking, 10-3, 24-35

C
C (conforming) flag, segment descriptor, 6-11
C1 flag, x87 FPU status word, 24-8, 24-14
C2 flag, x87 FPU status word, 24-8
Cache control, 13-20

adaptive mode, L1 Data Cache, 13-18
cache management instructions, 13-17, 13-18
cache mechanisms in IA-32 processors, 24-30
caching terminology, 13-5
CD flag, CR0 control register, 13-10, 24-19
choosing a memory type, 13-8
CPUID feature flag, 13-18
flags and fields, 13-10
flushing TLBs, 13-19
G (global) flag

page-directory entries, 13-13
page-table entries, 13-13

internal caches, 13-1
MemTypeGet() function, 13-29
MemTypeSet() function, 13-31
MESI protocol, 13-5, 13-9
methods of caching available, 13-6
MTRR initialization, 13-29
MTRR precedences, 13-28
MTRRs, description of, 13-20
multiple-processor considerations, 13-32
NW flag, CR0 control register, 13-13, 24-19
operating modes, 13-12
overview of, 13-1
page attribute table (PAT), 13-33
PCD flag

CR3 control register, 13-13
page-directory entries, 13-13, 13-33
page-table entries, 13-13, 13-33

PGE (page global enable) flag, CR4 control register, 13-13
precedence of controls, 13-13
preventing caching, 13-16
protocol, 13-9
PWT flag

CR3 control register, 13-13
page-directory entries, 13-33
page-table entries, 13-33

remapping memory types, 13-29
setting up memory ranges with MTRRs, 13-22
INDEX-2 Vol. 3D

INDEX
shared mode, L1 Data Cache, 13-18
variable-range MTRRs, 13-23, 13-25

Caches, 2-7
cache hit, 13-5
cache line, 13-5
cache line fill, 13-5
cache write hit, 13-5
description of, 13-1
effects of a locked operation on internal processor caches, 10-6
enabling, 11-7
management, instructions, 2-26, 13-17

Caching
cache control protocol, 13-9
cache line, 13-5
cache management instructions, 13-17
cache mechanisms in IA-32 processors, 24-30
caching terminology, 13-5
choosing a memory type, 13-8
flushing TLBs, 13-19
implicit caching, 13-19
internal caches, 13-1
L1 (level 1) cache, 13-4
L2 (level 2) cache, 13-4
L3 (level 3) cache, 13-4
methods of caching available, 13-6
MTRRs, description of, 13-20
operating modes, 13-12
overview of, 13-1
self-modifying code, effect on, 13-18, 24-30
snooping, 13-6
store buffer, 13-20
TLBs, 13-5
UC (strong uncacheable) memory type, 13-6
UC- (uncacheable) memory type, 13-6
WB (write back) memory type, 13-7
WC (write combining) memory type, 13-7
WP (write protected) memory type, 13-7
write-back caching, 13-6
WT (write through) memory type, 13-7

Call gates
16-bit, interlevel return from, 24-33
accessing a code segment through, 6-15
description of, 6-13
for 16-bit and 32-bit code modules, 23-1
IA-32e mode, 6-14
introduction to, 2-4
mechanism, 6-15
privilege level checking rules, 6-16

CALL instruction, 2-5, 3-8, 6-10, 6-15, 6-20, 9-2, 9-9, 9-11, 23-5
Caller access privileges, checking, 6-26
Calls

16 and 32-bit code segments, 23-3
controlling operand-size attribute, 23-5
returning from, 6-20

Catastrophic shutdown detector
Thermal monitoring

catastrophic shutdown detector, 16-37
catastrophic shutdown detector, 16-36
CC0 and CC1 (counter control) fields, CESR MSR (Pentium

processor), 21-146
CD (cache disable) flag, CR0 control register, 2-16, 11-7, 13-10,

13-12, 13-13, 13-16, 13-32, 24-18, 24-19, 24-30
CESR (control and event select) MSR (Pentium processor), 21-145,

21-146
CLFLSH feature flag, CPUID instruction, 11-8

CLFLUSH instruction, 2-16, 11-8, 13-17
CLI instruction, 7-7
Clocks

counting processor clocks, 21-147
Hyper-Threading Technology, 21-147
nominal CPI, 21-147
non-halted clockticks, 21-147
non-halted CPI, 21-147
non-sleep Clockticks, 21-147
time stamp counter, 21-147

CLTS instruction, 2-24, 6-24, 27-2, 27-7
Cluster model, local APIC, 12-25
CMOVcc instructions, 24-4
CMPXCHG instruction, 10-4, 24-4
CMPXCHG8B instruction, 10-4, 24-5
Code modules

16 bit vs. 32 bit, 23-1
mixing 16-bit and 32-bit code, 23-1
sharing data, mixed-size code segs, 23-3
transferring control, mixed-size code segs, 23-3

Code segments
accessing data in, 6-9
accessing through a call gate, 6-15
description of, 3-12
descriptor format, 6-2
descriptor layout, 6-2
direct calls or jumps to, 6-10
paging of, 2-6
pointer size, 23-4
privilege level checks

transferring control between code segs, 6-10
Compatibility

IA-32 architecture, 24-1
Compatibility mode

code segment descriptor, 6-3
code segment descriptors, 11-12
control registers, 2-13
CS.L and CS.D, 11-12
debug registers, 2-25
EFLAGS register, 2-11
exception handling, 2-5
gates, 2-4
GDTR register, 2-12, 2-13
global and local descriptor tables, 2-4
IDTR register, 2-12
interrupt handling, 2-5
L flag, 3-12, 6-4
memory management, 2-6
operation, 11-12
segment loading instructions, 3-9
segments, 3-5
switching to, 11-12
SYSCALL and SYSRET, 6-22
SYSENTER and SYSEXIT, 6-21
system flags, 2-11
system registers, 2-7
task register, 2-13
See also: 64-bit mode, IA-32e mode

Condition code flags, x87 FPU status word
compatibility information, 24-8

Conforming code segments
accessing, 6-12
C (conforming) flag, 6-11
description of, 3-13

Context, task (see Task state)
Vol. 3D INDEX-3

INDEX
Control registers
64-bit mode, 2-13
CR0, 2-13
CR1 (reserved), 2-13
CR2, 2-13
CR3 (PDBR), 2-6, 2-13
CR4, 2-13
description of, 2-13
introduction to, 2-6

Coprocessor segment
overrun exception, 7-35, 24-12

Counter mask field
PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family processors),

21-5, 21-144
CPL

description of, 6-7
field, CS segment selector, 6-2

CPUID instruction
availability, 24-5
control register flags, 2-21
detecting features, 24-2
serializing instructions, 10-19

CR0 control register, 24-8
description of, 2-13
introduction to, 2-6
state following processor reset, 11-2

CR1 control register (reserved), 2-13
CR2 control register

description of, 2-13
introduction to, 2-6

CR3 control register (PDBR)
associated with a task, 9-1, 9-3
description of, 2-13
in TSS, 9-4, 9-17
introduction to, 2-6
loading during initialization, 11-10
memory management, 2-6
page directory base address, 2-6
page table base address, 2-5

CR4 control register
description of, 2-13
enabling control functions, 24-2
inclusion in IA-32 architecture, 24-18
introduction to, 2-6
VMX usage of, 25-3

CR8 register, 2-7
64-bit mode, 2-13
compatibility mode, 2-13
description of, 2-13
when available, 2-13

CS register, 24-11
state following initialization, 11-5

C-state, 16-35
CTR0 and CTR1 (performance counters) MSRs (Pentium processor)

, 21-145, 21-147
Current privilege level (see CPL)

D
D (default operation size) flag

segment descriptor, 23-1, 24-33
Data breakpoint exception conditions, 19-10
Data segments

description of, 3-12
descriptor layout, 6-2

expand-down type, 3-11
paging of, 2-6
privilege level checking when accessing, 6-8

DE (debugging extensions) flag, CR4 control register, 2-21, 24-18,
24-20

Debug exception (#DB), 7-7, 7-25, 9-5, 19-7, 19-14, 19-42
Debug store (see DS)
DEBUGCTLMSR MSR, 19-40, 19-42
Debugging facilities

breakpoint exception (#BP), 19-1
debug exception (#DB), 19-1
DR6 debug status register, 19-1
DR7 debug control register, 19-1
exceptions, 19-7
INT3 instruction, 19-2
last branch, interrupt, and exception recording, 19-2, 19-12
masking debug exceptions, 7-7
overview of, 19-1
performance-monitoring counters, 21-1
registers

description of, 19-2
introduction to, 2-6
loading, 2-25

RF (resume) flag, EFLAGS, 19-1
see DS (debug store) mechanism
T (debug trap) flag, TSS, 19-1
TF (trap) flag, EFLAGS, 19-1

DEC instruction, 10-4
Denormal operand exception (#D), 24-10
Denormalized operand, 24-12
Device-not-available exception (#NM), 2-16, 2-25, 7-32, 11-7,

24-11, 24-12
DFR

Destination Format Register, 12-39, 12-42, 12-47
Digital readout bits, 16-43, 16-46
DIV instruction, 7-24
Divide configuration register, local APIC, 12-17
Divide-error exception (#DE), 7-24, 24-21
Double-fault exception (#DF), 7-33, 24-27
DPL (descriptor privilege level) field, segment descriptor, 3-11, 6-2,

6-4, 6-7
DR0-DR3 breakpoint-address registers, 19-1, 19-4, 19-39, 19-41,

19-42
DR4-DR5 debug registers, 19-4, 24-20
DR6 debug status register, 19-4

B0-B3 (BP detected) flags, 19-4
BD (debug register access detected) flag, 19-4
BS (single step) flag, 19-4
BT (task switch) flag, 19-4
debug exception (#DB), 7-25
reserved bits, 24-20

DR7 debug control register, 19-4
G0-G3 (global breakpoint enable) flags, 19-5
GD (general detect enable) flag, 19-5
GE (global exact breakpoint enable) flag, 19-5
L0-L3 (local breakpoint enable) flags, 19-5
LE local exact breakpoint enable) flag, 19-5
LEN0-LEN3 (Length) fields, 19-5
R/W0-R/W3 (read/write) fields, 19-5, 24-20

DS feature flag, CPUID instruction, 19-19, 19-35, 19-38, 19-40
DS save area, 19-21, 19-22, 19-23
DS (debug store) mechanism

availability of, 21-119
description of, 21-119
DS feature flag, CPUID instruction, 21-119
INDEX-4 Vol. 3D

INDEX
DS save area, 19-19, 19-22
IA-32e mode, 19-22
interrupt service routine (DS ISR), 19-26
setting up, 19-24

Dual-core technology
architecture, 10-33
logical processors supported, 10-26
MTRR memory map, 10-34
multi-threading feature flag, 10-26
performance monitoring, 21-133
specific features, 24-4

Dual-monitor treatment, 33-19
D/B (default operation size/default stack pointer size and/or upper

bound) flag, segment descriptor, 3-11, 6-4

E
E (edge detect) flag

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family), 21-4
E (edge detect) flag, PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family

processors), 21-143
E (expansion direction) flag

segment descriptor, 6-2, 6-4
E (MTRRs enabled) flag

IA32_MTRR_DEF_TYPE MSR, 13-23
EFLAGS register

identifying 32-bit processors, 24-6
introduction to, 2-6
new flags, 24-6
saved in TSS, 9-4
system flags, 2-9

EIP register, 24-11
saved in TSS, 9-5
state following initialization, 11-5

EM (emulation) flag
CR0 control register, 2-16, 2-17, 7-32, 11-6, 11-7, 14-1, 15-3

EMMS instruction, 14-3
Enhanced Intel SpeedStep Technology

ACPI 3.0 specification, 16-1
IA32_APERF MSR, 16-2
IA32_MPERF MSR, 16-2
IA32_PERF_CTL MSR, 16-1
IA32_PERF_STATUS MSR, 16-1
introduction, 16-1
multiple processor cores, 16-1
performance transitions, 16-1
P-state coordination, 16-1
See also: thermal monitoring

EOI
End Of Interrupt register, 12-39

Error code, 18-3, 18-7, 18-9, 18-12, 18-15
architectural MCA, 18-1, 18-3, 18-7, 18-9, 18-12, 18-15
decoding IA32_MCi_STATUS, 18-1, 18-3, 18-7, 18-9, 18-12,

18-15
exception, description of, 7-17
external bus, 18-1, 18-3, 18-7, 18-9, 18-12, 18-15
memory hierarchy, 18-3, 18-7, 18-9, 18-12, 18-15
pushing on stack, 24-32
watchdog timer, 18-1, 18-3, 18-7, 18-9, 18-12, 18-15

Error numbers
VM-instruction error field, 32-30

Error signals, 24-11
Error-reporting bank registers, 17-2
ERROR#

input, 24-16

output, 24-16
ES0 and ES1 (event select) fields, CESR MSR (Pentium processor),

21-146
ESR

Error Status Register, 12-40
ET (extension type) flag, CR0 control register, 2-16, 24-8
EUPDATESVN, 40-67
Event select field, PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family

processors), 21-4, 21-107, 21-143
Events

at-retirement, 21-125
at-retirement (Pentium 4 processor), 21-115
non-retirement (Pentium 4 processor), 21-115

Exception handler
calling, 7-11
defined, 7-1
flag usage by handler procedure, 7-17
machine-check exception handler, 17-28
machine-check exceptions (#MC), 17-28
machine-error logging utility, 17-28
procedures, 7-11
protection of handler procedures, 7-16
task, 7-17, 9-2

Exceptions
alignment check, 24-11
classifications, 7-5
compound error codes, 17-21
conditions checked during a task switch, 9-13
coprocessor segment overrun, 24-12
description of, 2-5, 7-1
device not available, 24-12
double fault, 7-33
error code, 7-17
execute-disable bit, 6-33
floating-point error, 24-12
general protection, 24-12
handler mechanism, 7-11
handler procedures, 7-11
handling, 7-11
handling in real-address mode, 22-4
handling in SMM, 33-11
handling in virtual-8086 mode, 22-11
handling through a task gate in virtual-8086 mode, 22-14
handling through a trap or interrupt gate in virtual-8086 mode

, 22-12
IA-32e mode, 2-5
IDT, 7-9
initializing for protected-mode operation, 11-10
invalid-opcode, 24-5
masking debug exceptions, 7-7
masking when switching stack segments, 7-8
MCA error codes, 17-21
MMX instructions, 14-1
overview of, 7-1
priority of, 24-22
priority of, x87 FPU exceptions, 24-10
reference information on all exceptions, 7-23
reference information, 64-bit mode, 7-19
restarting a task or program, 7-5
segment not present, 24-12
simple error codes, 17-21
sources of, 7-4
summary of, 7-2
vectors, 7-1

Executable, 3-11
Vol. 3D INDEX-5

INDEX
Execute-disable bit capability
conditions for, 6-30
CPUID flag, 6-30
detecting and enabling, 6-30
exception handling, 6-33
page-fault exceptions, 7-44
protection matrix for IA-32e mode, 6-31
protection matrix for legacy modes, 6-31
reserved bit checking, 6-31

Exit-reason numbers
VM entries & exits, C-1

Expand-down data segment type, 3-11
Extended signature table, 11-31
extended signature table, 11-31
External bus errors, detected with machine-check architecture,

17-28

F
F2XM1 instruction, 24-13
Family 06H, 18-1
Family 0FH, 18-1

microcode update facilities, 11-28
Faults

description of, 7-5
restarting a program or task after, 7-5

FCMOVcc instructions, 24-4
FCOMI instruction, 24-4
FCOMIP instruction, 24-4
FCOS instruction, 24-13
FDIV instruction, 24-11, 24-12
FE (fixed MTRRs enabled) flag, IA32_MTRR_DEF_TYPE MSR, 13-23
Feature

determination, of processor, 24-2
information, processor, 24-2

FINIT/FNINIT instructions, 24-8, 24-16
FIX (fixed range registers supported) flag, IA32_MTRRCAPMSR,

13-22
Fixed-range MTRRs

description of, 13-23
Flat segmentation model, 3-3
FLD instruction, 24-14
FLDENV instruction, 24-12
FLDL2E instruction, 24-14
FLDL2T instruction, 24-14
FLDLG2 instruction, 24-14
FLDLN2 instruction, 24-14
FLDPI instruction, 24-14
Floating-point error exception (#MF), 24-12
Floating-point exceptions

denormal operand exception (#D), 24-10
invalid operation (#I), 24-14
numeric overflow (#O), 24-10
numeric underflow (#U), 24-10
saved CS and EIP values, 24-11

FLUSH# pin, 7-3
FNSAVE instruction, 14-4
Focus processor, local APIC, 12-26
FORCEPR# log, 16-43, 16-46
FORCPR# interrupt enable bit, 16-44
FPATAN instruction, 24-13
FPREM instruction, 24-8, 24-11, 24-12, 24-13
FPREM1 instruction, 24-8, 24-13
FPTAN instruction, 24-8, 24-13
FRSTOR instruction, 14-4, 24-11, 24-12

FSAVE instruction, 14-3, 14-4
FSAVE/FNSAVE instructions, 24-11, 24-14
FSCALE instruction, 24-12
FSIN instruction, 24-13
FSINCOS instruction, 24-13
FSQRT instruction, 24-11, 24-12
FSTENV instruction, 14-3
FSTENV/FNSTENV instructions, 24-14
FTAN instruction, 24-8
FUCOM instruction, 24-13
FUCOMI instruction, 24-4
FUCOMIP instruction, 24-4
FUCOMP instruction, 24-13
FUCOMPP instruction, 24-13
FWAIT instruction, 7-32
FXAM instruction, 24-14
FXRSTOR instruction, 2-19, 2-20, 11-8, 14-3, 14-4, 15-2, 15-6
FXSAVE instruction, 2-19, 2-20, 11-8, 14-3, 14-4, 15-2, 15-6
FXSR feature flag, CPUID instruction, 11-8
FXTRACT instruction, 24-10, 24-14

G
G (global) flag

page-directory entries, 13-13
page-table entries, 13-13

G (granularity) flag
segment descriptor, 3-10, 3-11, 6-2, 6-4

G0-G3 (global breakpoint enable) flags
DR7 register, 19-5

Gate descriptors
call gates, 6-13
description of, 6-13
IA-32e mode, 6-14

Gates, 2-4
IA-32e mode, 2-4

GD (general detect enable) flag
DR7 register, 19-5, 19-10

GDT
description of, 2-3, 3-15
IA-32e mode, 2-4
index field of segment selector, 3-7
initializing, 11-10
paging of, 2-6
pointers to exception/interrupt handlers, 7-11
segment descriptors in, 3-9
selecting with TI flag of segment selector, 3-7
task switching, 9-9
task-gate descriptor, 9-8
TSS descriptors, 9-5
use in address translation, 3-6

GDTR register
description of, 2-3, 2-6, 2-12, 3-15
IA-32e mode, 2-4, 2-12
limit, 6-5
loading during initialization, 11-10
storing, 3-15

GE (global exact breakpoint enable) flag
DR7 register, 19-5, 19-10

General-detect exception condition, 19-10
General-protection exception (#GP), 3-12, 6-6, 6-7, 6-11, 6-12, 7-9,

7-16, 7-41, 9-5, 19-3, 24-12, 24-21, 24-34, 24-35
General-purpose registers, saved in TSS, 9-4
Global control MSRs, 17-2
Global descriptor table register (see GDTR)
INDEX-6 Vol. 3D

INDEX
Global descriptor table (see GDT)

H
HALT state

relationship to SMI interrupt, 33-4, 33-14
Hardware reset

description of, 11-1
processor state after reset, 11-2
state of MTRRs following, 13-20
value of SMBASE following, 33-4

high-temperature interrupt enable bit, 16-44, 16-47
HITM# line, 13-6
HLT instruction, 2-26, 6-24, 7-34, 27-2, 33-14, 33-15
Hyper-Threading Technology

architectural state of a logical processor, 10-34
architecture description, 10-28
caches, 10-32
debug registers, 10-31
description of, 10-26, 24-3, 24-4
detecting, 10-37, 10-38, 10-43, 10-44
executing multiple threads, 10-28
execution-based timing loops, 10-55
external signal compatibility, 10-33
halting logical processors, 10-54
handling interrupts, 10-28
HLT instruction, 10-49
IA32_MISC_ENABLE MSR, 10-31, 10-34
initializing IA-32 processors with, 10-27
introduction of into the IA-32 architecture, 24-3, 24-4
local a, 10-29
local APIC

functionality in logical processor, 10-30
logical processors, identifying, 10-40
machine check architecture, 10-30
managing idle and blocked conditions, 10-49
mapping resources, 10-35
memory ordering, 10-31
microcode update resources, 10-31, 10-34, 11-35
MP systems, 10-28
MTRRs, 10-30, 10-34
multi-threading feature flag, 10-26
multi-threading support, 10-26
PAT, 10-30
PAUSE instruction, 10-49, 10-50
performance monitoring, 21-129, 21-133
performance monitoring counters, 10-31, 10-34
placement of locks and semaphores, 10-55
required operating system support, 10-52
scheduling multiple threads, 10-55
self modifying code, 10-32
serializing instructions, 10-31
spin-wait loops

PAUSE instructions in, 10-52, 10-54
thermal monitor, 10-33
TLBs, 10-32

I
IA-32 Intel architecture

compatibility, 24-1
processors, 24-1

IA32e mode
registers and mode changes, 11-12

IA-32e mode

call gates, 6-14
code segment descriptor, 6-3
D flag, 6-4
data structures and initialization, 11-11
debug registers, 2-7
debug store area
descriptors, 2-4
DPL field, 6-4
exceptions during initialization, 11-12
feature-enable register, 2-7
gates, 2-4
global and local descriptor tables, 2-4
IA32_EFER MSR, 2-7, 6-30
initialization process, 11-11
interrupt stack table, 7-22
interrupts and exceptions, 2-5
IRET instruction, 7-21
L flag, 3-12, 6-4
logical address, 3-7
MOV CRn, 11-11
MTRR calculations, 13-27
NXE bit, 6-30
page level protection, 6-30
paging, 2-6
PDE tables, 6-31
PDP tables, 6-31
PML4 tables, 6-31
PTE tables, 6-31
registers and data structures, 2-1
segment descriptor tables, 3-16, 6-3
segment descriptors, 3-9
segment loading instructions, 3-9
segmentation, 3-5
stack switching, 6-19, 7-21
SYSCALL and SYSRET, 6-22
SYSENTER and SYSEXIT, 6-21
system descriptors, 3-14
system registers, 2-7
task switching, 9-19
task-state segments, 2-5
terminating mode operation, 11-12
See also: 64-bit mode, compatibility mode

IA32_APERF MSR, 16-2
IA32_APIC_BASE MSR, 10-20, 10-21, 12-5, 12-7, 12-8
IA32_CLOCK_MODULATION MSR, 10-33, 16-7, 16-14, 16-15, 16-16,

16-17, 16-18, 16-21, 16-22, 16-23, 16-24, 16-40, 16-41,
16-43, 16-51, 16-52, 16-53, 16-54, 16-55

IA32_DEBUGCTL MSR, 29-29
IA32_DS_AREA MSR, 19-19, 19-20, 19-24, 21-112, 21-128
IA32_EFER MSR, 2-7, 2-8, 6-30, 29-30
IA32_FEATURE_CONTROL MSR, 25-3
IA32_KernelGSbase MSR, 2-7
IA32_LSTAR MSR, 2-7, 6-22
IA32_MCG_CAP MSR, 17-2, 17-29
IA32_MCG_CTL MSR, 17-2, 17-4
IA32_MCG_EAX MSR, 17-12
IA32_MCG_EBP MSR, 17-12
IA32_MCG_EBX MSR, 17-12
IA32_MCG_ECX MSR, 17-12
IA32_MCG_EDI MSR, 17-12
IA32_MCG_EDX MSR, 17-12
IA32_MCG_EFLAGS MSR, 17-12
IA32_MCG_EIP MSR, 17-12
IA32_MCG_ESI MSR, 17-12
IA32_MCG_ESP MSR, 17-12
Vol. 3D INDEX-7

INDEX
IA32_MCG_MISC MSR, 17-12, 17-13
IA32_MCG_R10 MSR, 17-13
IA32_MCG_R11 MSR, 17-13
IA32_MCG_R12 MSR, 17-13
IA32_MCG_R13 MSR, 17-13
IA32_MCG_R14 MSR, 17-13
IA32_MCG_R15 MSR, 17-13
IA32_MCG_R8 MSR, 17-13
IA32_MCG_R9 MSR, 17-13
IA32_MCG_RAX MSR, 17-12
IA32_MCG_RBP MSR, 17-12
IA32_MCG_RBX MSR, 17-12
IA32_MCG_RCX MSR, 17-12
IA32_MCG_RDI MSR, 17-12
IA32_MCG_RDX MSR, 17-12
IA32_MCG_RESERVEDn MSR, 17-12
IA32_MCG_RFLAGS MSR, 17-12
IA32_MCG_RIP MSR, 17-12
IA32_MCG_RSI MSR, 17-12
IA32_MCG_RSP MSR, 17-12
IA32_MCG_STATUS MSR, 17-2, 17-4, 17-29, 17-31, 29-3
IA32_MCi_ADDR MSR, 17-9, 17-31
IA32_MCi_CTL, 17-6
IA32_MCi_CTL MSR, 17-6
IA32_MCi_MISC MSR, 17-9, 17-11, 17-12, 17-31
IA32_MCi_STATUS MSR, 17-6, 17-29, 17-31

decoding for Family 06H, 18-1
decoding for Family 0FH, 18-1, 18-3, 18-7, 18-9, 18-12, 18-15

IA32_MISC_ENABLE MSR, 16-1, 16-37, 19-20, 19-35, 21-112
IA32_MPERF MSR, 16-1, 16-2
IA32_MTRRCAP MSR, 13-21, 13-22
IA32_MTRR_DEF_TYPE MSR, 13-22
IA32_MTRR_FIXn, fixed ranger MTRRs, 13-23
IA32_PAT_CR MSR, 13-34
IA32_PEBS_ENABLE MSR, 21-110, 21-112, 21-127
IA32_PERF_CTL MSR, 16-1
IA32_PERF_STATUS MSR, 16-1
IA32_STAR MSR, 6-22
IA32_STAR_CS MSR, 2-7
IA32_SYSCALL_FLAG_MASK MSR, 2-7
IA32_SYSENTER_CS MSR, 6-21, 6-22, 29-23
IA32_SYSENTER_EIP MSR, 6-21
IA32_SYSENTER_ESP MSR, 6-21, 29-29, 29-30
IA32_THERM_INTERRUPT MSR, 16-39, 16-41, 16-42, 16-44

FORCPR# interrupt enable bit, 16-44
high-temperature interrupt enable bit, 16-44, 16-47
low-temperature interrupt enable bit, 16-44, 16-47
overheat interrupt enable bit, 16-44, 16-47
THERMTRIP# interrupt enable bit, 16-44, 16-47
threshold #1 interrupt enable bit, 16-44, 16-47
threshold #1 value, 16-44, 16-47
threshold #2 interrupt enable, 16-44, 16-47
threshold #2 value, 16-44, 16-47

IA32_THERM_STATUS MSR, 16-41, 16-42
digital readout bits, 16-43, 16-46
out-of-spec status bit, 16-43, 16-46
out-of-spec status log, 16-43, 16-46
PROCHOT# or FORCEPR# event bit, 16-42, 16-46
PROCHOT# or FORCEPR# log, 16-43, 16-46
resolution in degrees, 16-43
thermal status bit, 16-42, 16-45
thermal status log, 16-42, 16-45
thermal threshold #1 log, 16-43, 16-46
thermal threshold #1 status, 16-43, 16-46
thermal threshold #2 log, 16-43, 16-46

thermal threshold #2 status, 16-43, 16-46
validation bit, 16-43

IA32_VMX_BASIC MSR, 26-4, A-1, A-2
IA32_VMX_CR0_FIXED0 MSR, A-7
IA32_VMX_CR0_FIXED1 MSR, A-7
IA32_VMX_CR4_FIXED0 MSR, A-7
IA32_VMX_CR4_FIXED1 MSR, A-7
IA32_VMX_ENTRY_CTLS MSR, A-2, A-5, A-6
IA32_VMX_EXIT_CTLS MSR, A-2, A-4, A-5
IA32_VMX_MISC MSR, 26-7, 28-3, 28-13, 33-26, A-6
IA32_VMX_PINBASED_CTLS MSR, A-2, A-3
IA32_VMX_PROCBASED_CTLS MSR, 26-11, A-2, A-3, A-4, A-5, A-8,

A-9
IA32_VMX_VMCS_ENUM MSR, A-7
ICR

Interrupt Command Register, 12-39, 12-42, 12-48
ID (identification) flag

EFLAGS register, 2-11, 24-6, 24-7
IDIV instruction, 7-24, 24-21
IDT

64-bit mode, 7-19
call interrupt & exception-handlers from, 7-11
change base & limit in real-address mode, 22-5
description of, 7-9
handling NMIs during initialization, 11-9
initializing protected-mode operation, 11-10
initializing real-address mode operation, 11-8
introduction to, 2-5
limit, 24-27
paging of, 2-6
structure in real-address mode, 22-5
task switching, 9-10
task-gate descriptor, 9-8
types of descriptors allowed, 7-10
use in real-address mode, 22-4

IDTR register
description of, 2-12, 7-9
IA-32e mode, 2-12
introduction to, 2-5
limit, 6-5
loading in real-address mode, 22-5
storing, 3-16

IE (invalid operation exception) flag
x87 FPU status word, 24-8

IEEE Standard 754 for Binary Floating-Point Arithmetic, 24-9,
24-10, 24-12, 24-13, 24-14

IF (interrupt enable) flag
EFLAGS register, 2-10, 2-11, 7-7, 7-10, 7-17, 22-4, 22-19, 33-11

IN instruction, 10-17, 24-35, 27-2
INC instruction, 10-4
Index field, segment selector, 3-7
INIT interrupt, 12-3
Initial-count register, local APIC, 12-16
Initialization

built-in self-test (BIST), 11-1, 11-5
CS register state following, 11-5
EIP register state following, 11-5
example, 11-14
first instruction executed, 11-5
hardware reset, 11-1
IA-32e mode, 11-11
IDT, protected mode, 11-10
IDT, real-address mode, 11-8
Intel486 SX processor and Intel 487 SX math coprocessor,

24-16
INDEX-8 Vol. 3D

INDEX
location of software-initialization code, 11-5
machine-check initialization, 17-19
model and stepping information, 11-5
multitasking environment, 11-10, 11-11
overview, 11-1
paging, 11-10
processor state after reset, 11-2
protected mode, 11-9
real-address mode, 11-8
RESET# pin, 11-1
setting up exception- and interrupt-handling facilities, 11-10
x87 FPU, 11-5

INIT# pin, 7-3, 11-1
INIT# signal, 2-26, 25-4
INS instruction, 19-10
Instruction-breakpoint exception condition, 19-9
Instructions

new instructions, 24-4
obsolete instructions, 24-5
privileged, 6-23
serializing, 10-18, 10-31, 24-16
supported in real-address mode, 22-3
system, 2-7, 2-23

INS/INSB/INSW/INSD instruction, 27-2
INT 3 instruction, 2-5, 7-28, 19-7
INT instruction, 2-5, 6-10
INT n instruction, 3-8, 7-1, 7-4, 19-11
INT (APIC interrupt enable) flag, PerfEvtSel0 and PerfEvtSel1

MSRs (P6 family processors), 21-5, 21-144
INT15 and microcode updates, 11-42
INT3 instruction, 3-8, 7-4
Intel 287 math coprocessor, 24-7
Intel 387 math coprocessor system, 24-7
Intel 487 SX math coprocessor, 24-7, 24-16
Intel 8086 processor, 24-7
Intel Core Solo and Intel Core Duo processors

event mask (Umask), 21-104, 21-106
last branch, interrupt, exception recording, 19-38
notes on P-state transitions, 16-1
performance monitoring, 21-104, 21-106
sub-fields layouts, 21-104, 21-106
time stamp counters, 19-42

Intel SpeedStep Technology
See: Enhanced Intel SpeedStep Technology

Intel Xeon processor
last branch, interrupt, and exception recording, 19-35
time-stamp counter, 19-42

Intel Xeon processor MP
with 8MB L3 cache, 21-133, 21-136

Intel286 processor, 24-7
Intel386 DX processor, 24-7
Intel386 SL processor, 2-7
Intel486 DX processor, 24-7
Intel486 SX processor, 24-7, 24-16
Interprivilege level calls

call mechanism, 6-15
stack switching, 6-17

Interprocessor interrupt (IPIs), 12-1
Interprocessor interrupt (IPI)

in MP systems, 12-1
interrupt, 7-13
Interrupt Command Register, 12-39
Interrupt command register (ICR), local APIC, 12-19
Interrupt gates

16-bit, interlevel return from, 24-33

clearing IF flag, 7-7, 7-17
difference between interrupt and trap gates, 7-17
for 16-bit and 32-bit code modules, 23-1
handling a virtual-8086 mode interrupt or exception through,

22-12
in IDT, 7-10
introduction to, 2-4, 2-5
layout of, 7-10

Interrupt handler
calling, 7-11
defined, 7-1
flag usage by handler procedure, 7-17
procedures, 7-11
protection of handler procedures, 7-16
task, 7-17, 9-2

Interrupts
automatic bus locking, 24-35
control transfers between 16- and 32-bit code modules, 23-6
description of, 2-5, 7-1
destination, 12-27
distribution mechanism, local APIC, 12-26
enabling and disabling, 7-6
handling, 7-11
handling in real-address mode, 22-4
handling in SMM, 33-11
handling in virtual-8086 mode, 22-11
handling multiple NMIs, 7-6
handling through a task gate in virtual-8086 mode, 22-14
handling through a trap or interrupt gate in virtual-8086 mode

, 22-12
IA-32e mode, 2-5, 2-12
IDT, 7-9
IDTR, 2-12
initializing for protected-mode operation, 11-10
interrupt descriptor table register (see IDTR)
interrupt descriptor table (see IDT)
list of, 7-2, 22-6
local APIC, 12-1
maskable hardware interrupts, 2-10
masking maskable hardware interrupts, 7-7
masking when switching stack segments, 7-8
message signalled interrupts, 12-35
on-die sensors for, 16-36
overview of, 7-1
priority, 12-29
propagation delay, 24-27
real-address mode, 22-6
restarting a task or program, 7-5
software, 7-58
sources of, 12-1
summary of, 7-2
thermal monitoring, 16-36
user defined, 7-1, 7-58
valid APIC interrupts, 12-15
vectors, 7-1
virtual-8086 mode, 22-6

INTO instruction, 2-5, 3-8, 7-4, 7-29, 19-11
INTR# pin, 7-2, 7-7
Invalid opcode exception (#UD), 2-17, 7-31, 7-53, 14-1, 19-4, 24-5,

24-11, 24-20, 24-21, 33-3
Invalid TSS exception (#TS), 7-36, 9-6
Invalid-operation exception, x87 FPU, 24-11, 24-14
INVD instruction, 2-26, 6-24, 13-17, 24-4
INVLPG instruction, 2-26, 6-24, 24-4, 27-3
IOPL (I/O privilege level) field, EFLAGS register
Vol. 3D INDEX-9

INDEX
description of, 2-10
on return from exception, interrupt handler, 7-13
sensitive instructions in virtual-8086 mode, 22-10
virtual interrupt, 2-11

IPI (see interprocessor interrupt)
IRET instruction, 3-8, 7-7, 7-13, 7-17, 7-21, 9-10, 9-11, 10-19, 22-5,

22-19, 27-8
IRETD instruction, 2-10, 10-19
IRR

Interrupt Request Register, 12-40, 12-42, 12-48
IRR (interrupt request register), local APIC, 12-31
ISR

In Service Register, 12-39, 12-42, 12-48
I/O

breakpoint exception conditions, 19-10
in virtual-8086 mode, 22-10
instruction restart flag

SMM revision identifier field, 33-15
instruction restart flag, SMM revision identifier field, 33-15
IO_SMI bit, 33-12
I/O permission bit map, TSS, 9-5
map base address field, TSS, 9-5
restarting following SMI interrupt, 33-15
saving I/O state, 33-12
SMM state save map, 33-12

I/O APIC, 12-27
bus arbitration, 12-27
description of, 12-1
external interrupts, 7-3
information about, 12-1
interrupt sources, 12-2
local APIC and I/O APIC, 12-2, 12-3
overview of, 12-1
valid interrupts, 12-15
See also: local APIC

J
JMP instruction, 2-5, 3-8, 6-10, 6-15, 9-2, 9-9, 9-11

K
KEN# pin, 13-13, 24-36

L
L0-L3 (local breakpoint enable) flags

DR7 register, 19-5
L1 (level 1) cache

caching methods, 13-6
CPUID feature flag, 13-18
description of, 13-4
effect of using write-through memory, 13-9
introduction of, 24-30
invalidating and flushing, 13-17
MESI cache protocol, 13-9
shared and adaptive mode, 13-18

L2 (level 2) cache
caching methods, 13-6
description of, 13-4
disabling, 13-17
effect of using write-through memory, 13-9
introduction of, 24-30
invalidating and flushing, 13-17
MESI cache protocol, 13-9

L3 (level 3) cache

caching methods, 13-6
description of, 13-4
disabling and enabling, 13-13, 13-17
effect of using write-through memory, 13-9
introduction of, 24-31
invalidating and flushing, 13-17
MESI cache protocol, 13-9

LAM, 4-3
LAR instruction, 2-25, 6-24
Larger page sizes

introduction of, 24-31
support for, 24-19

LASS, 4-2
Last branch

interrupt & exception recording
description of, 19-12, 19-27, 19-29, 19-31, 19-32, 19-33, 19-36,

19-38, 19-39, 19-40
record stack, 19-18, 19-19, 19-27, 19-28, 19-35, 19-36, 19-38,

19-40
record top-of-stack pointer, 19-18, 19-28, 19-35, 19-39, 19-40

LastBranchFromIP MSR, 19-41, 19-42
LastBranchToIP MSR, 19-41, 19-42
LastExceptionFromIP MSR, 19-37, 19-39, 19-41, 19-42
LastExceptionToIP MSR, 19-37, 19-39, 19-41, 19-42
LBR (last branch/interrupt/exception) flag, DEBUGCTLMSR MSR,

19-14, 19-35, 19-41, 19-42
LDR

Logical Destination Register, 12-42, 12-46, 12-47
LDS instruction, 3-8, 6-8
LDT

associated with a task, 9-3
description of, 2-3, 2-5, 3-15
index into with index field of segment selector, 3-7
pointer to in TSS, 9-5
pointers to exception and interrupt handlers, 7-11
segment descriptors in, 3-9
segment selector field, TSS, 9-16
selecting with TI (table indicator) flag of segment selector, 3-7
setting up during initialization, 11-10
task switching, 9-9
task-gate descriptor, 9-8
use in address translation, 3-6

LDTR register
description of, 2-3, 2-5, 2-6, 2-12, 3-15
IA-32e mode, 2-12
limit, 6-5
storing, 3-16

LE (local exact breakpoint enable) flag, DR7 register, 19-5, 19-10
LEN0-LEN3 (Length) fields, DR7 register, 19-5, 19-6
LES instruction, 3-8, 6-8, 7-31
LFENCE instruction, 2-16, 10-7, 10-17, 10-18, 10-19
LFS instruction, 3-8, 6-8
LGDT instruction, 2-24, 6-23, 10-19, 11-10, 24-20
LGS instruction, 3-8, 6-8
LIDT instruction, 2-24, 6-24, 7-9, 10-19, 11-9, 22-5, 24-27
Limit checking

description of, 6-4
pointer offsets are within limits, 6-25

Limit field, segment descriptor, 6-2, 6-4
Linear, 4-2
Linear address

description of, 3-6
IA-32e mode, 3-7
introduction to, 2-6

Linear address space, 3-6
INDEX-10 Vol. 3D

INDEX
defined, 3-1
of task, 9-17

Link (to previous task) field, TSS, 7-17
Linking tasks

mechanism, 9-15
modifying task linkages, 9-16

LINT pins
function of, 7-2

LLDT instruction, 2-24, 6-23, 10-19
LMSW instruction, 2-24, 6-24, 27-3, 27-8
Local APIC, 12-39

64-bit mode, 12-33
APIC_ID value, 10-35
arbitration over the APIC bus, 12-27
arbitration over the system bus, 12-27
block diagram, 12-4
cluster model, 12-25
CR8 usage, 12-33
current-count register, 12-16
description of, 12-1
detecting with CPUID, 12-7
DFR (destination format register), 12-24
divide configuration register, 12-17
enabling and disabling, 12-7
external interrupts, 7-2
features

Pentium 4 and Intel Xeon, 24-28
Pentium and P6, 24-28

focus processor, 12-26
global enable flag, 12-8
IA32_APIC_BASE MSR, 12-8
initial-count register, 12-16
internal error interrupts, 12-1
interrupt command register (ICR), 12-19
interrupt destination, 12-27
interrupt distribution mechanism, 12-26
interrupt sources, 12-2
IRR (interrupt request register), 12-31
I/O APIC, 12-1
local APIC and 82489DX, 24-28
local APIC and I/O APIC, 12-2, 12-3
local vector table (LVT), 12-12
logical destination mode, 12-24
LVT (local-APIC version register), 12-11
mapping of resources, 10-35
MDA (message destination address), 12-24
overview of, 12-1
performance-monitoring counter, 21-145
physical destination mode, 12-24
receiving external interrupts, 7-2
register address map, 12-6, 12-39
shared resources, 10-35
SMI interrupt, 33-2
spurious interrupt, 12-33
spurious-interrupt vector register, 12-8
state after a software (INIT) reset, 12-10
state after INIT-deassert message, 12-11
state after power-up reset, 12-10
state of, 12-34
SVR (spurious-interrupt vector register), 12-8
timer, 12-16
timer generated interrupts, 12-1
TMR (trigger mode register), 12-31
valid interrupts, 12-15
version register, 12-11

Local descriptor table register (see LDTR)
Local descriptor table (see LDT)
Local vector table (LVT)

description of, 12-12
thermal entry, 16-39

Local x2APIC, 12-32, 12-42, 12-47
Local xAPIC ID, 12-42
LOCK prefix, 2-26, 7-31, 10-1, 10-3, 10-4, 10-17, 24-35
Locked (atomic) operations

automatic bus locking, 10-3
bus locking, 10-3
effects on caches, 10-6
loading a segment descriptor, 24-20
on IA-32 processors, 24-35
overview of, 10-1
software-controlled bus locking, 10-4

LOCK# signal, 2-26, 10-1, 10-3, 10-4, 10-6
Logical address

description of, 3-6
IA-32e mode, 3-7

Logical address space, of task, 9-17
Logical destination mode, local APIC, 12-24
Logical processors

per physical package, 10-26
Logical x2APIC ID, 12-47
low-temperature interrupt enable bit, 16-44, 16-47
LSL instruction, 2-25, 6-25
LSS instruction, 3-8, 6-8
LTR instruction, 2-24, 6-24, 9-7, 10-19, 11-11
LVT (see Local vector table)

M
Machine-check architecture

availability of MCA and exception, 17-19
compatibility with Pentium processor, 17-1
compound error codes, 17-21
CPUID flags, 17-19
error codes, 17-21
error-reporting bank registers, 17-2
error-reporting MSRs, 17-5
extended machine check state MSRs, 17-12
external bus errors, 17-28
first introduced, 24-22
global MSRs, 17-2
initialization of, 17-19
introduction of in IA-32 processors, 24-36
logging correctable errors, 17-30, 17-31, 17-36
machine-check exception handler, 17-28
machine-check exception (#MC), 17-1
MSRs, 17-2
overview of MCA, 17-1
Pentium processor exception handling, 17-30
Pentium processor style error reporting, 17-13
simple error codes, 17-21
writing machine-check software, 17-28

Machine-check exception (#MC), 7-52, 17-1, 17-19, 17-28, 24-21,
24-36

Mapping of shared resources, 10-35
Maskable hardware interrupts

description of, 7-3
handling with virtual interrupt mechanism, 22-15
masking, 2-10, 7-7

MCA flag, CPUID instruction, 17-19
MCE flag, CPUID instruction, 17-19
Vol. 3D INDEX-11

INDEX
MCE (machine-check enable) flag
CR4 control register, 2-20, 24-18

MDA (message destination address)
local APIC, 12-24

Memory, 13-1
Memory management

introduction to, 2-6
overview, 3-1
paging, 3-1, 3-2
registers, 2-11
segments, 3-1, 3-2, 3-7

Memory ordering
in IA-32 processors, 24-34
overview, 10-6
processor ordering, 10-6
strengthening or weakening, 10-17
write ordering, 10-6

Memory type range registers (see MTRRs)
Memory types

caching methods, defined, 13-6
choosing, 13-8
MTRR types, 13-21
selecting for Pentium III and Pentium 4 processors, 13-15
selecting for Pentium Pro and Pentium II processors, 13-14
UC (strong uncacheable), 13-6
UC- (uncacheable), 13-6
WB (write back), 13-7
WC (write combining), 13-7
WP (write protected), 13-7
writing values across pages with different memory types,

13-16
WT (write through), 13-7

MemTypeGet() function, 13-29
MemTypeSet() function, 13-31
MESI cache protocol, 13-5, 13-9
Message address register, 12-35
Message data register format, 12-36
Message signalled interrupts

message address register, 12-35
message data register format, 12-35

MFENCE instruction, 2-16, 10-7, 10-17, 10-18, 10-19
Microcode update facilities

authenticating an update, 11-37
BIOS responsibilities, 11-38
calling program responsibilities, 11-39
checksum, 11-33
extended signature table, 11-31
family 0FH processors, 11-28
field definitions, 11-28
format of update, 11-28
function 00H presence test, 11-42
function 01H write microcode update data, 11-43
function 02H microcode update control, 11-46
function 03H read microcode update data, 11-47
general description, 11-28
HT Technology, 11-35
INT 15H-based interface, 11-42
overview, 11-27
process description, 11-28
processor identification, 11-32
processor signature, 11-32
return codes, 11-48
update loader, 11-34
update signature and verification, 11-36
update specifications, 11-37

VMX non-root operation, 27-13
Mixing 16-bit and 32-bit code

in IA-32 processors, 24-33
overview, 23-1

MMX technology
debugging MMX code, 14-5
effect of MMX instructions on pending x87 floating-point

exceptions, 14-5
emulation of the MMX instruction set, 14-1
exceptions that can occur when executing MMX instructions,

14-1
introduction of into the IA-32 architecture, 24-2
register aliasing, 14-1
state, 14-1
state, saving and restoring, 14-3
system programming, 14-1
task or context switches, 14-4
using TS flag to control saving of MMX state, 15-7

Mode switching
example, 11-14
real-address and protected mode, 11-13
to SMM, 33-2

Model and stepping information, following processor initialization
or reset, 11-5

Model-specific registers (see MSRs)
Modes of operation (see Operating modes)
MONITOR instruction, 27-3
MOV instruction, 3-8, 6-8
MOV (control registers) instructions, 2-24, 2-25, 6-24, 10-19, 11-13
MOV (debug registers) instructions, 2-25, 6-24, 10-19, 19-11
MOVNTDQ instruction, 10-7, 13-17
MOVNTI instruction, 2-16, 10-7, 13-17
MOVNTPD instruction, 10-7, 13-17
MOVNTPS instruction, 10-7, 13-17
MOVNTQ instruction, 10-7, 13-17
MP (monitor coprocessor) flag

CR0 control register, 2-16, 2-17, 7-32, 11-6, 11-7, 14-1, 24-8
MSR

Model Specific Register, 12-38, 12-39
MSRs

description of, 11-7
introduction of in IA-32 processors, 24-36
introduction to, 2-6
machine-check architecture, 17-2
reading and writing, 2-21, 2-22, 2-27, 2-28
reading & writing in 64-bit mode, 2-28

MSR_DEBUBCTLB MSR, 19-13, 19-30, 19-38, 19-40
MSR_DEBUGCTLA MSR, 19-13, 19-19, 19-25, 19-26, 19-35, 21-7,

21-18, 21-43, 21-55, 21-84, 21-89, 21-95, 21-109, 21-110
MSR_DEBUGCTLB MSR, 19-13, 19-38, 19-39
MSR_IFSB_CNTR7 MSR, 21-135
MSR_IFSB_CTRL6 MSR, 21-135
MSR_IFSB_DRDY0 MSR, 21-135
MSR_IFSB_DRDY1 MSR, 21-135
MSR_IFSB_IBUSQ0 MSR, 21-134
MSR_IFSB_IBUSQ1 MSR, 21-134
MSR_IFSB_ISNPQ0 MSR, 21-134
MSR_IFSB_ISNPQ1 MSR, 21-134
MSR_LASTBRANCH_n MSR, 19-19, 19-36, 19-37
MSR_LASTBRANCH_n_FROM_IP MSR, 19-18, 19-19, 19-36, 19-37
MSR_LASTBRANCH_n_TO_IP MSR, 19-18, 19-19, 19-36, 19-37
MSR_LASTBRANCH_TOS MSR, 19-36, 19-37
MSR_LER_FROM_LIP MSR, 19-37, 19-39
MSR_LER_TO_LIP MSR, 19-37, 19-39
MTRR feature flag, CPUID instruction, 13-21
INDEX-12 Vol. 3D

INDEX
MTRRcap MSR, 13-21
MTRRfix MSR, 13-23
MTRRs, 10-17

base & mask calculations, 13-26, 13-27
cache control, 13-13
description of, 11-8, 13-20
dual-core processors, 10-34
enabling caching, 11-7
feature identification, 13-21
fixed-range registers, 13-23
IA32_MTRRCAP MSR, 13-21
IA32_MTRR_DEF_TYPE MSR, 13-22
initialization of, 13-29
introduction of in IA-32 processors, 24-36
introduction to, 2-6
large page size considerations, 13-33
logical processors, 10-34
mapping physical memory with, 13-21
memory types and their properties, 13-21
MemTypeGet() function, 13-29
MemTypeSet() function, 13-31
multiple-processor considerations, 13-32
precedence of cache controls, 13-13
precedences, 13-28
programming interface, 13-29
remapping memory types, 13-29
state of following a hardware reset, 13-20
variable-range registers, 13-23, 13-25

Multi-core technology
See multi-threading support

Multiple-processor management
bus locking, 10-3
guaranteed atomic operations, 10-2
initialization

MP protocol, 10-20
procedure, 10-56

local APIC, 12-1
memory ordering, 10-6
MP protocol, 10-20
overview of, 10-1
SMM considerations, 33-16

Multiple-processor system
local APIC and I/O APICs, Pentium 4, 12-3
local APIC and I/O APIC, P6 family, 12-3

Multisegment model, 3-4
Multitasking

initialization for, 11-10, 11-11
initializing IA-32e mode, 11-11
linking tasks, 9-15
mechanism, description of, 9-2
overview, 9-1
setting up TSS, 11-10
setting up TSS descriptor, 11-10

Multi-threading support
executing multiple threads, 10-28
handling interrupts, 10-28
logical processors per package, 10-26
mapping resources, 10-35
microcode updates, 10-34
performance monitoring counters, 10-34
programming considerations, 10-35
See also: Hyper-Threading Technology and dual-core

technology
MWAIT instruction, 27-3

power management extensions, 16-35

MXCSR register, 7-53, 11-8, 15-6

N
NaN, compatibility, IA-32 processors, 24-9
NE (numeric error) flag

CR0 control register, 2-16, 7-48, 11-6, 11-7, 24-8, 24-18
NEG instruction, 10-4
NetBurst microarchitecture (see Intel NetBurst microarchitecture)
NMI interrupt, 2-26, 12-3

description of, 7-2
handling during initialization, 11-9
handling in SMM, 33-11
handling multiple NMIs, 7-6
masking, 24-27
receiving when processor is shutdown, 7-34
reference information, 7-27
vector, 7-2

NMI# pin, 7-2, 7-27
Nominal CPI method, 21-148
Nonconforming code segments

accessing, 6-11
C (conforming) flag, 6-11
description of, 3-13

Non-halted clockticks, 21-148
setting up counters, 21-148

Non-Halted CPI method, 21-148
Nonmaskable interrupt (see NMI)
Non-precise event-based sampling

defined, 21-115
used for at-retirement counting, 21-126
writing an interrupt service routine for, 19-26

Non-retirement events, 21-115
Non-sleep clockticks, 21-148
NOT instruction, 10-4
NT (nested task) flag

EFLAGS register, 2-10, 9-10, 9-11, 9-15
Null segment selector, checking for, 6-6
Numeric overflow exception (#O), 24-10
Numeric underflow exception (#U), 24-10
NV (invert) flag, PerfEvtSel0 MSR

(P6 family processors), 21-5, 21-144
NW (not write-through) flag

CR0 control register, 2-16, 11-7, 13-12, 13-13, 13-16, 13-32,
24-18, 24-19, 24-30

NXE bit, 6-30

O
Obsolete instructions, 24-5, 24-15
OF flag, EFLAGS register, 7-29
On die digital thermal sensor, 16-42

relevant MSRs, 16-42
sensor enumeration, 16-42

On-Demand
clock modulation enable bits, 16-40

On-demand
clock modulation duty cycle bits, 16-40

On-die sensors, 16-36
Opcodes

undefined, 24-5
Operands

operand-size prefix, 23-1
Operating modes

64-bit mode, 2-7
Vol. 3D INDEX-13

INDEX
compatibility mode, 2-7
IA-32e mode, 2-7, 2-8
introduction to, 2-7
protected mode, 2-7
SMM (system management mode), 2-7
transitions between, 2-8
virtual-8086 mode, 2-8
VMX operation

enabling and entering, 25-3
OR instruction, 10-4
OS (operating system mode) flag

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 only), 21-4, 21-143
OSFXSR (FXSAVE/FXRSTOR support) flag

CR4 control register, 2-20, 11-8, 15-2
OSXMMEXCPT (SIMD floating-point exception support) flag, CR4

control register, 2-20, 7-53, 11-8, 15-3
OUT instruction, 10-17, 27-2
Out-of-spec status bit, 16-43, 16-46
Out-of-spec status log, 16-43, 16-46
OUTS/OUTSB/OUTSW/OUTSD instruction, 19-10, 27-2
Overflow exception (#OF), 7-29
Overheat interrupt enable bit, 16-44, 16-47

P
P (present) flag

page-directory entry, 7-44
page-table entry, 7-44
segment descriptor, 3-11

P5_MC_ADDR MSR, 17-13, 17-30
P5_MC_TYPE MSR, 17-13, 17-30
P6 family processors

compatibility with FP software, 24-7
last branch, interrupt, and exception recording, 19-40

PAE paging
feature flag, CR4 register, 2-19, 2-20
flag, CR4 control register, 3-6, 24-18, 24-19

Page attribute table (PAT)
compatibility with earlier IA-32 processors, 13-36
detecting support for, 13-34
IA32_PAT MSR, 13-34
introduction to, 13-33
memory types that can be encoded with, 13-34
MSR, 13-13
precedence of cache controls, 13-14
programming, 13-35
selecting a memory type with, 13-35

Page directories, 2-6
Page directory

base address (PDBR), 9-5
introduction to, 2-6
overview, 3-2
setting up during initialization, 11-10

Page directory pointers, 2-6
Page frame (see Page)
Page tables, 2-6

introduction to, 2-6
overview, 3-2
setting up during initialization, 11-10

Page-directory entries, 13-5
Page-fault exception (#PF), 5-54, 7-44, 24-21
Pages

disabling protection of, 6-1
enabling protection of, 6-1
introduction to, 2-6

overview, 3-2
PG flag, CR0 control register, 6-1
split, 24-15

Page-table entries, 13-5, 13-19
Paging

combining segment and page-level protection, 6-29
combining with segmentation, 3-5
defined, 3-1
IA-32e mode, 2-6
initializing, 11-10
introduction to, 2-6
large page size MTRR considerations, 13-33
mapping segments to pages, 5-54
page-fault exception, 7-44, 7-55, 7-56
page-level protection, 6-2, 6-3, 6-27
page-level protection flags, 6-28
virtual-8086 tasks, 22-7

Parameter
passing, between 16- and 32-bit call gates, 23-6
translation, between 16- and 32-bit code segments, 23-6

PAUSE instruction, 2-16, 27-3
PBi (performance monitoring/breakpoint pins) flags,

DEBUGCTLMSR MSR, 19-39, 19-41
PC (pin control) flag, PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family

processors), 21-4, 21-144
PC0 and PC1 (pin control) fields, CESR MSR (Pentium processor),

21-146
PCD pin (Pentium processor), 13-13
PCD (page-level cache disable) flag

CR3 control register, 2-18, 13-13, 24-18, 24-30
page-directory entries, 11-7, 13-13, 13-33
page-table entries, 11-7, 13-13, 13-33, 24-31

PCE (performance monitoring counter enable) flag, CR4 control
register, 2-20, 6-24, 21-117, 21-144

PCE (performance-monitoring counter enable) flag, CR4 control
register, 24-18

PDBR (see CR3 control register)
PE (protection enable) flag, CR0 control register, 2-18, 6-1, 11-10,

11-13, 33-10
PEBS records, 19-23
PEBS (precise event-based sampling) facilities

availability of, 21-127
description of, 21-115, 21-127
DS save area, 19-19
IA-32e mode, 19-23
PEBS buffer, 19-20, 21-128
PEBS records, 19-19, 19-22
writing a PEBS interrupt service routine, 21-128
writing interrupt service routine, 19-26

PEBS_UNAVAILABLE flag
IA32_MISC_ENABLE MSR, 19-20

Pentium 4 processor
compatibility with FP software, 24-7
last branch, interrupt, and exception recording, 19-35
time-stamp counter, 19-42

Pentium M processor
last branch, interrupt, and exception recording, 19-39
time-stamp counter, 19-42

Pentium processor, 24-7
compatibility with MCA, 17-1
performance-monitoring counters, 21-145

PerfCtr0 and PerfCtr1 MSRs
(P6 family processors), 21-143, 21-144

PerfEvtSel0 and PerfEvtSel1 MSRs
(P6 family processors), 21-143
INDEX-14 Vol. 3D

INDEX
PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family processors), 21-143
Performance events

architectural, 21-1
Intel Core Solo and Intel Core Duo processors, 21-1
non-architectural, 21-1
Pentium 4 and Intel Xeon processors, 19-35
Pentium M processors, 19-39

Performance state, 16-1
Performance-monitoring counters

counted events (Pentium processors), 21-147
description of, 21-1, 21-2
interrupt, 12-1
introduction of in IA-32 processors, 24-37
monitoring counter overflow (P6 family processors), 21-145
overflow, monitoring (P6 family processors), 21-145
overview of, 2-7
P6 family processors, 21-142
Pentium II processor, 21-142
Pentium Pro processor, 21-142
Pentium processor, 21-145
reading, 2-27, 21-144
setting up (P6 family processors), 21-143
software drivers for, 21-144
starting and stopping, 21-144

PG (paging) flag
CR0 control register, 2-15, 6-1

PG (paging) flag, CR0 control register, 11-10, 11-13, 24-32, 33-10
PGE (page global enable) flag, CR4 control register, 2-20, 13-13,

24-18, 24-19
PhysBase field, IA32_MTRR_PHYSBASEn MTRR, 13-24, 13-26
Physical address extension

introduction to, 3-6
Physical address space

4 GBytes, 3-6
64 GBytes, 3-6
addressing, 2-6
defined, 3-1
description of, 3-6
IA-32e mode, 3-6
mapped to a task, 9-17
mapping with variable-range MTRRs, 13-23, 13-25

Physical destination mode, local APIC, 12-24
PhysMask

IA32_MTRR_PHYSMASKn MTRR, 13-24, 13-26
PM0/BP0 and PM1/BP1 (performance-monitor) pins (Pentium

processor), 21-145, 21-146, 21-147
PML4 tables, 2-6
Pointers

code-segment pointer size, 23-4
limit checking, 6-25
validation, 6-24

POP instruction, 3-8
POPF instruction, 7-7, 19-11
Power consumption

software controlled clock, 16-36, 16-40
Precise event-based sampling (see PEBS)
PREFETCHh instruction, 2-16, 13-17
Previous task link field, TSS, 9-5, 9-15, 9-16
Privilege levels

checking when accessing data segments, 6-8
checking, for call gates, 6-15
checking, when transferring program control between code

segments, 6-10
description of, 6-6
protection rings, 6-8

Privileged instructions, 6-23
Processor families

06H, 18-1
0FH, 18-1

Processor management
initialization, 11-1
local APIC, 12-1
microcode update facilities, 11-27
overview of, 10-1
See also: multiple-processor management

Processor ordering, description of, 10-6
PROCHOT# log, 16-43, 16-46
PROCHOT# or FORCEPR# event bit, 16-42, 16-46
Protected mode

IDT initialization, 11-10
initialization for, 11-9
mixing 16-bit and 32-bit code modules, 23-1
mode switching, 11-13
PE flag, CR0 register, 6-1
switching to, 6-1, 11-13
system data structures required during initialization, 11-9

Protection
combining segment & page-level, 6-29
disabling, 6-1
enabling, 6-1
flags used for page-level protection, 6-2, 6-3
flags used for segment-level protection, 6-2
IA-32e mode, 6-3
of exception, interrupt-handler procedures, 7-16
overview of, 6-1
page level, 6-1, 6-27, 6-28, 6-30
page level, overriding, 6-29
page-level protection flags, 6-28
read/write, page level, 6-28
segment level, 6-1
user/supervisor type, 6-28

Protection rings, 6-8
PSE (page size extension) flag

CR4 control register, 2-20, 13-20, 24-18, 24-19
PSE-36 page size extension, 3-6
Pseudo-functions

VMfail, 32-2
VMfailInvalid, 32-2
VMfailValid, 32-2
VMsucceed, 32-2

Pseudo-infinity, 24-9
Pseudo-NaN, 24-9
Pseudo-zero, 24-9
P-state, 16-1
PUSH instruction, 24-7
PUSHF instruction, 7-7, 24-7
PVI (protected-mode virtual interrupts) flag

CR4 control register, 2-11, 2-21, 24-18
PWT pin (Pentium processor), 13-13
PWT (page-level write-through) flag

CR3 control register, 2-18, 13-13, 24-18, 24-30
page-directory entries, 11-7, 13-13, 13-33
page-table entries, 11-7, 13-33, 24-31

Q
QNaN, compatibility, IA-32 processors, 24-9
Vol. 3D INDEX-15

INDEX
R
RDMSR instruction, 2-21, 2-22, 2-27, 2-28, 6-24, 19-37, 19-41,

19-43, 21-117, 21-143, 21-144, 21-145, 24-5, 24-36, 27-4,
27-10

RDPMC instruction, 2-27, 6-24, 21-117, 21-143, 21-144, 24-4, 24-18,
24-37, 27-4, 27-5, 27-10, 27-13

in 64-bit mode, 2-27
RDTSC instruction, 2-27, 6-24, 19-43, 24-5, 27-4, 27-11

in 64-bit mode, 2-27
reading sensors, 16-42
Read/write

protection, page level, 6-28
rights, checking, 6-25

Real-address mode
8086 emulation, 22-1
address translation in, 22-2
description of, 22-1
exceptions and interrupts, 22-6
IDT initialization, 11-8
IDT, changing base and limit of, 22-5
IDT, structure of, 22-5
IDT, use of, 22-4
initialization, 11-8
instructions supported, 22-3
interrupt and exception handling, 22-4
interrupts, 22-6
introduction to, 2-7
mode switching, 11-13
native 16-bit mode, 23-1
overview of, 22-1
registers supported, 22-3
switching to, 11-14

Recursive task switching, 9-16
Requested privilege level (see RPL)
Reserved bits, 24-2
RESET# pin, 7-3, 24-16
RESET# signal, 2-26
Resolution in degrees, 16-43
Restarting program or task, following an exception or interrupt,

7-5
Restricting addressable domain, 6-28
RET instruction, 6-10, 6-20, 23-6
Returning

from a called procedure, 6-20
from an interrupt or exception handler, 7-13

RF (resume) flag
EFLAGS register, 2-10, 7-7

RPL
description of, 3-8, 6-8
field, segment selector, 6-2

RSM instruction, 2-26, 10-19, 24-5, 27-4, 33-1, 33-2, 33-3, 33-13,
33-16, 33-19

RsvdZ, 12-41
R/S# pin, 7-3
R/W (read/write) flag

page-directory entry, 6-1, 6-2, 6-28
page-table entry, 6-1, 6-2, 6-28

R/W0-R/W3 (read/write) fields
DR7 register, 19-5, 24-20

S
S (descriptor type) flag

segment descriptor, 3-11, 3-12, 6-2, 6-5
SBB instruction, 10-4

Segment descriptors
access rights, 6-24
access rights, invalid values, 24-19
base address fields, 3-10
code type, 6-2
data type, 6-2
description of, 2-4, 3-9
DPL (descriptor privilege level) field, 3-11, 6-2
D/B (default operation size/default stack pointer size and/or

upper bound) flag, 3-11, 6-4
E (expansion direction) flag, 6-2, 6-4
G (granularity) flag, 3-11, 6-2, 6-4
limit field, 6-2, 6-4
loading, 24-20
P (segment-present) flag, 3-11
S (descriptor type) flag, 3-11, 3-12, 6-2, 6-5
segment limit field, 3-10
system type, 6-2
tables, 3-14
TSS descriptor, 9-5, 9-6
type field, 3-10, 3-12, 6-2, 6-5
type field, encoding, 3-14
when P (segment-present) flag is clear, 3-11

Segment limit
checking, 2-25
field, segment descriptor, 3-10

Segment not present exception (#NP), 3-11
Segment registers

description of, 3-8
IA-32e mode, 3-9
saved in TSS, 9-4

Segment selectors
description of, 3-7
index field, 3-7
null, 6-6
null in 64-bit mode, 6-6
RPL field, 3-8, 6-2
TI (table indicator) flag, 3-7

Segment-not-present exception (#NP), 7-38
Segments

64-bit mode, 3-5
basic flat model, 3-3
code type, 3-12
combining segment, page-level protection, 6-29
combining with paging, 3-5
compatibility mode, 3-5
data type, 3-12
defined, 3-1
disabling protection of, 6-1
enabling protection of, 6-1
mapping to pages, 5-54
multisegment usage model, 3-4
protected flat model, 3-3
segment-level protection, 6-2, 6-3
segment-not-present exception, 7-38
system, 2-4
types, checking access rights, 6-24
typing, 6-5
using, 3-2
wraparound, 24-34

SELF IPI register, 12-39
Self-modifying code, effect on caches, 13-18
Serializing, 10-18
Serializing instructions

CPUID, 10-18
INDEX-16 Vol. 3D

INDEX
HT technology, 10-31
non-privileged, 10-18
privileged, 10-18

SF (stack fault) flag, x87 FPU status word, 24-8
SFENCE instruction, 2-16, 10-7, 10-17, 10-18, 10-19
SGDT instruction, 2-24, 3-15
Shared resources

mapping of, 10-35
Shutdown

resulting from double fault, 7-34
resulting from out of IDT limit condition, 7-34

SIDT instruction, 2-24, 3-16, 7-9
SIMD floating-point exception (#XM), 2-19, 7-53, 11-8
SIMD floating-point exceptions

description of, 7-53, 15-5
handler, 15-3
support for, 2-20

Single-stepping
breakpoint exception condition, 19-11
on branches, 19-14
on exceptions, 19-14
on interrupts, 19-14
TF (trap) flag, EFLAGS register, 19-11

SLDT instruction, 2-24
SLTR instruction, 3-16
SMBASE

default value, 33-4
relocation of, 33-15

SMI handler
description of, 33-1
execution environment for, 33-9
exiting from, 33-3
VMX treatment of, 33-17

SMI interrupt, 2-26, 12-3
description of, 33-1, 33-2
IO_SMI bit, 33-12
priority, 33-3
switching to SMM, 33-2
synchronous and asynchronous, 33-12
VMX treatment of, 33-17

SMI# pin, 7-3, 33-2, 33-15
SMM

asynchronous SMI, 33-12
auto halt restart, 33-14
executing the HLT instruction in, 33-15
exiting from, 33-3
handling exceptions and interrupts, 33-11
introduction to, 2-7
I/O instruction restart, 33-15
I/O state implementation, 33-12
native 16-bit mode, 23-1
overview of, 33-1
revision identifier, 33-13
revision identifier field, 33-13
switching to, 33-2
switching to from other operating modes, 33-2
synchronous SMI, 33-12
VMX operation

default RSM treatment, 33-18
default SMI delivery, 33-17
dual-monitor treatment, 33-19
overview, 33-2
protecting CR4.VMXE, 33-19
RSM instruction, 33-19
SMM monitor, 33-2

SMM VM exits, 29-1, 33-19
SMM-transfer VMCS, 33-20
SMM-transfer VMCS pointer, 33-20
VMCS pointer preservation, 33-17
VMX-critical state, 33-17

SMRAM
caching, 33-8
state save map, 33-4
structure of, 33-4

SMSW instruction, 2-24, 27-11
SNaN, compatibility, IA-32 processors, 24-9, 24-14
Snooping mechanism, 13-6
Software controlled clock

modulation control bits, 16-40
power consumption, 16-36, 16-40

Software interrupts, 7-4
Software-controlled bus locking, 10-4
Split pages, 24-15
Spurious interrupt, local APIC, 12-33
SSE extensions

checking for with CPUID, 15-2
checking support for FXSAVE/FXRSTOR, 15-2
CPUID feature flag, 11-8
EM flag, 2-17
emulation of, 15-6
facilities for automatic saving of state, 15-6, 15-7
initialization, 11-8
introduction of into the IA-32 architecture, 24-3
providing exception handlers for, 15-4, 15-5
providing operating system support for, 15-1
saving and restoring state, 15-6
saving state on task, context switches, 15-6
SIMD Floating-point exception (#XM), 7-53
using TS flag to control saving of state, 15-7

SSE feature flag
CPUID instruction, 15-2

SSE2 extensions
checking for with CPUID, 15-2
checking support for FXSAVE/FXRSTOR, 15-2
CPUID feature flag, 11-8
EM flag, 2-17
emulation of, 15-6
facilities for automatic saving of state, 15-6, 15-7
initialization, 11-8
introduction of into the IA-32 architecture, 24-3
providing exception handlers for, 15-4, 15-5
providing operating system support for, 15-1
saving and restoring state, 15-6
saving state on task, context switches, 15-6
SIMD Floating-point exception (#XM), 7-53
using TS flag to control saving state, 15-7

SSE2 feature flag
CPUID instruction, 15-2

SSE3 extensions
checking for with CPUID, 15-2
CPUID feature flag, 11-8
EM flag, 2-17
emulation of, 15-6
example verifying SS3 support, 10-47, 10-50, 16-2
facilities for automatic saving of state, 15-6, 15-7
initialization, 11-8
introduction of into the IA-32 architecture, 24-3
providing exception handlers for, 15-4, 15-5
providing operating system support for, 15-1
saving and restoring state, 15-6
Vol. 3D INDEX-17

INDEX
saving state on task, context switches, 15-6
using TS flag to control saving of state, 15-7

SSE3 feature flag
CPUID instruction, 15-2

Stack fault exception (#SS), 7-40
Stack fault, x87 FPU, 24-8, 24-13
Stack pointers

privilege level 0, 1, and 2 stacks, 9-5
size of, 3-11

Stack segments
paging of, 2-6
privilege level check when loading SS register, 6-10
size of stack pointer, 3-11

Stack switching
exceptions/interrupts when switching stacks, 7-8
IA-32e mode, 7-21
inter-privilege level calls, 6-17

Stack-fault exception (#SS), 24-34
Stacks

error code pushes, 24-32
faults, 7-40
for privilege levels 0, 1, and 2, 6-17
interlevel RET/IRET

from a 16-bit interrupt or call gate, 24-33
interrupt stack table, 64-bit mode, 7-22
management of control transfers for

16- and 32-bit procedure calls, 23-4
operation on pushes and pops, 24-32
pointers to in TSS, 9-5
stack switching, 6-17, 7-21
usage on call to exception

or interrupt handler, 24-33
Stepping information, following processor initialization or reset,

11-5
STI instruction, 7-7
Store buffer

caching terminology, 13-5
characteristics of, 13-4
description of, 13-5, 13-20
in IA-32 processors, 24-34
location of, 13-1
operation of, 13-20

STPCLK# pin, 7-3
STR instruction, 2-24, 3-16, 9-7
Strong uncached (UC) memory type

description of, 13-6
effect on memory ordering, 10-18
use of, 11-8, 13-8

Sub C-state, 16-35
SUB instruction, 10-4
Supervisor mode

description of, 6-28
U/S (user/supervisor) flag, 6-28

SVR (spurious-interrupt vector register), local APIC, 12-8, 24-28
SWAPGS instruction, 2-7
SYSCALL instruction, 2-7, 6-22
SYSENTER instruction, 3-8, 6-10, 6-20, 6-21
SYSENTER_CS_MSR, 6-21
SYSENTER_EIP_MSR, 6-21
SYSENTER_ESP_MSR, 6-21
SYSEXIT instruction, 3-8, 6-10, 6-20, 6-21
SYSRET instruction, 2-7, 6-22
System

architecture, 2-1, 2-2
data structures, 2-2

instructions, 2-7, 2-23
registers in IA-32e mode, 2-7
registers, introduction to, 2-6
segment descriptor, layout of, 6-2
segments, paging of, 2-6

System programming
MMX technology, 14-1

System-management mode (see SMM)

T
T (debug trap) flag, TSS, 9-5
Task gates

descriptor, 9-8
executing a task, 9-2
handling a virtual-8086 mode interrupt or exception through,

22-14
IA-32e mode, 2-5
in IDT, 7-10
introduction for IA-32e, 2-4
introduction to, 2-4, 2-5
layout of, 7-10
referencing of TSS descriptor, 7-17

Task management, 9-1
data structures, 9-3
mechanism, description of, 9-2

Task register, 3-16
description of, 2-13, 9-1, 9-7
IA-32e mode, 2-13
initializing, 11-11
introduction to, 2-6

Task switching
description of, 9-3
exception condition, 19-11
operation, 9-10
preventing recursive task switching, 9-16
saving MMX state on, 14-4
saving SSE/SSE2/SSE3 state

on task or context switches, 15-6
T (debug trap) flag, 9-5

Tasks
address space, 9-16
description of, 9-1
exception-handler task, 7-11
executing, 9-2
Intel 286 processor tasks, 24-37
interrupt-handler task, 7-11
interrupts and exceptions, 7-17
linking, 9-15
logical address space, 9-17
management, 9-1
mapping linear and physical address space, 9-17
restart following an exception or interrupt, 7-5
state (context), 9-2, 9-3
structure, 9-1
switching, 9-3
task management data structures, 9-3

TF (trap) flag, EFLAGS register, 2-9, 7-17, 19-11, 19-13, 19-36,
19-38, 19-39, 19-41, 22-4, 22-19, 33-11

Thermal monitoring
advanced power management, 16-35
automatic, 16-37
automatic thermal monitoring, 16-36
catastrophic shutdown detector, 16-36, 16-37
clock-modulation bits, 16-40
INDEX-18 Vol. 3D

INDEX
C-state, 16-35
detection of facilities, 16-41
Enhanced Intel SpeedStep Technology, 16-1
IA32_APERF MSR, 16-2
IA32_MPERF MSR, 16-1
IA32_THERM_INTERRUPT MSR, 16-42
IA32_THERM_STATUS MSR, 16-42
interrupt enable/disable flags, 16-39
interrupt mechanisms, 16-36
MWAIT extensions for, 16-35
on die sensors, 16-36, 16-42
overview of, 16-1, 16-36
performance state transitions, 16-38
sensor interrupt, 12-1
setting thermal thresholds, 16-42
software controlled clock modulation, 16-36, 16-40
status flags, 16-38
status information, 16-38, 16-39
stop clock mechanism, 16-36
thermal monitor 1 (TM1), 16-37
thermal monitor 2 (TM2), 16-37
TM flag, CPUID instruction, 16-41

Thermal status bit, 16-42, 16-45
Thermal status log bit, 16-42, 16-45
Thermal threshold #1 log, 16-43, 16-46
Thermal threshold #1 status, 16-43, 16-46
Thermal threshold #2 log, 16-43, 16-46
Thermal threshold #2 status, 16-43, 16-46
THERMTRIP# interrupt enable bit, 16-44, 16-47
thread timeout indicator, 18-3, 18-7, 18-9, 18-12, 18-15
Threshold #1 interrupt enable bit, 16-44, 16-47
Threshold #1 value, 16-44, 16-47
Threshold #2 interrupt enable, 16-44, 16-47
Threshold #2 value, 16-44, 16-47
TI (table indicator) flag, segment selector, 3-7
Timer, local APIC, 12-16
Time-stamp counter

counting clockticks, 21-148
description of, 19-42
IA32_TIME_STAMP_COUNTER MSR, 19-42
RDTSC instruction, 19-42
reading, 2-27
software drivers for, 21-144
TSC flag, 19-42
TSD flag, 19-42

TLBs
description of, 13-1, 13-5
flushing, 13-19
invalidating (flushing), 2-26
relationship to PGE flag, 24-19
relationship to PSE flag, 13-20

TM1 and TM2
See: thermal monitoring, 16-37

TMR
Trigger Mode Register, 12-32, 12-40, 12-42, 12-48

TMR (Trigger Mode Register), local APIC, 12-31
TPR

Task Priority Register, 12-39, 12-42
TR (trace message enable) flag

DEBUGCTLMSR MSR, 19-13, 19-36, 19-38, 19-39, 19-41
Trace cache, 13-4, 13-5
Transcendental instruction accuracy, 24-8, 24-14
Translation lookaside buffer (see TLB)
Trap gates

difference between interrupt and trap gates, 7-17

for 16-bit and 32-bit code modules, 23-1
handling a virtual-8086 mode interrupt or exception through,

22-12
in IDT, 7-10
introduction for IA-32e, 2-4
introduction to, 2-4, 2-5
layout of, 7-10

Traps
description of, 7-5
restarting a program or task after, 7-5

TS (task switched) flag
CR0 control register, 2-16, 2-25, 7-32, 14-1, 15-3, 15-7

TSD (time-stamp counter disable) flag
CR4 control register, 2-21, 6-24, 19-43, 24-18

TSS
16-bit TSS, structure of, 9-18
32-bit TSS, structure of, 9-3
64-bit mode, 9-19
CR3 control register (PDBR), 9-4, 9-17
description of, 2-4, 2-5, 9-1, 9-3
EFLAGS register, 9-4
EFLAGS.NT, 9-15
EIP, 9-5
executing a task, 9-2
floating-point save area, 24-12
format in 64-bit mode, 9-19
general-purpose registers, 9-4
IA-32e mode, 2-5
initialization for multitasking, 11-10
interrupt stack table, 9-19
invalid TSS exception, 7-36
IRET instruction, 9-15
I/O map base address field, 9-5, 24-29
I/O permission bit map, 9-5, 9-19
LDT segment selector field, 9-5, 9-16
link field, 7-17
order of reads/writes to, 24-29
pointed to by task-gate descriptor, 9-8
previous task link field, 9-5, 9-15, 9-16
privilege-level 0, 1, and 2 stacks, 6-17
referenced by task gate, 7-17
segment registers, 9-4
T (debug trap) flag, 9-5
task register, 9-7
using 16-bit TSSs in a 32-bit environment, 24-29
virtual-mode extensions, 24-29

TSS descriptor
B (busy) flag, 9-5
busy flag, 9-16
initialization for multitasking, 11-10
structure of, 9-5, 9-6

TSS segment selector
field, task-gate descriptor, 9-8
writes, 24-29

Type
checking, 6-5
field, IA32_MTRR_DEF_TYPE MSR, 13-22
field, IA32_MTRR_PHYSBASEn MTRR, 13-24, 13-26
field, segment descriptor, 3-10, 3-12, 3-14, 6-2, 6-5
of segment, 6-5

U
UC- (uncacheable) memory type, 13-6
UD2 instruction, 24-4
Vol. 3D INDEX-19

INDEX
Uncached (UC-) memory type, 13-8
Uncached (UC) memory type (see Strong uncached (UC) memory

type)
Undefined opcodes, 24-5
Unit mask field, PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family

processors), 21-4, 21-6, 21-7, 21-8, 21-9, 21-10, 21-11,
21-13, 21-30, 21-32, 21-39, 21-40, 21-41, 21-59, 21-61,
21-107, 21-108, 21-109, 21-143, 21-152, 21-153, 21-154,
21-155, 21-159, 21-160

Un-normal number, 24-9
User mode

description of, 6-28
U/S (user/supervisor) flag, 6-28

User-defined interrupts, 7-1, 7-58
USR (user mode) flag, PerfEvtSel0 and PerfEvtSel1 MSRs (P6

family processors), 21-4, 21-6, 21-7, 21-8, 21-9, 21-10,
21-11, 21-30, 21-32, 21-39, 21-40, 21-41, 21-59, 21-61,
21-107, 21-108, 21-109, 21-143, 21-152, 21-153, 21-154,
21-155, 21-159, 21-160

U/S (user/supervisor) flag
page-directory entry, 6-1, 6-2, 6-28
page-table entries, 22-8
page-table entry, 6-1, 6-2, 6-28

V
V (valid) flag

IA32_MTRR_PHYSMASKn MTRR, 13-24, 13-26
Variable-range MTRRs, description of, 13-23, 13-25
VCNT (variable range registers count) field, IA32_MTRRCAP MSR,

13-22
Vectors

exceptions, 7-1
interrupts, 7-1

VERR instruction, 2-25, 6-25
VERW instruction, 2-25, 6-25
VIF (virtual interrupt) flag

EFLAGS register, 2-11, 24-6, 24-7
VIP (virtual interrupt pending) flag

EFLAGS register, 2-11, 24-6, 24-7
Virtual memory, 2-6, 3-1, 3-2
Virtual-8086 mode

8086 emulation, 22-1
description of, 22-5
emulating 8086 operating system calls, 22-18
enabling, 22-6
entering, 22-8
exception and interrupt handling overview, 22-11
exceptions and interrupts, handling through a task gate, 22-14
exceptions and interrupts, handling through a trap or interrupt

gate, 22-12
handling exceptions and interrupts through a task gate, 22-14
interrupts, 22-6
introduction to, 2-8
IOPL sensitive instructions, 22-10
I/O-port-mapped I/O, 22-11
leaving, 22-9
memory mapped I/O, 22-11
native 16-bit mode, 23-1
overview of, 22-1
paging of virtual-8086 tasks, 22-7
protection within a virtual-8086 task, 22-8
special I/O buffers, 22-11
structure of a virtual-8086 task, 22-7
virtual I/O, 22-10

VM flag, EFLAGS register, 2-10
Virtual-8086 tasks

paging of, 22-7
protection within, 22-8
structure of, 22-7

VM entries
basic VM-entry checks, 28-2
checking guest state

control registers, 28-8
debug registers, 28-8
descriptor-table registers, 28-12
MSRs, 28-8
non-register state, 28-13
RIP and RFLAGS, 28-12
segment registers, 28-10

checks on controls, host-state area, 28-2
registers and MSRs, 28-6
segment and descriptor-table registers, 28-7
VMX control checks, 28-2

exit-reason numbers, C-1
loading guest state, 28-15

control and debug registers, MSRs, 28-15
RIP, RSP, RFLAGS, 28-17
segment & descriptor-table registers, 28-17

loading MSRs, 28-18
failure cases, 28-18
VM-entry MSR-load area, 28-18

overview of failure conditions, 28-1
overview of steps, 28-1
VMLAUNCH and VMRESUME, 28-1
See also: VMCS, VMM, VM exits

VM exits
architectural state

existing before exit, 29-1
updating state before exit, 29-1

basic VM-exit information fields, 29-4
basic exit reasons, 29-4
exit qualification, 29-4

exception bitmap, 29-1
exceptions (faults, traps, and aborts), 27-6
exit-reason numbers, C-1
external interrupts, 27-6
IA-32 faults and VM exits, 27-1
INITs, 27-6
instructions that cause:

conditional exits, 27-2
unconditional exits, 27-2

interrupt-window exiting, 27-7
non-maskable interrupts (NMIs), 27-6
page faults, 27-6
start-up IPIs (SIPIs), 27-6
task switches, 27-7
See also: VMCS, VMM, VM entries

VM (virtual-8086 mode) flag
EFLAGS register, 2-8, 2-10

VMCALL instruction, 32-1
VMCLEAR instruction, 32-1
VMCS

error numbers, 32-30
field encodings, 1-3, B-1

16-bit guest-state fields, B-1
16-bit host-state fields, B-2
32-bit control fields, B-1, B-7
32-bit guest-state fields, B-8
32-bit read-only data fields, B-8
64-bit control fields, B-2
64-bit guest-state fields, B-5, B-6
natural-width control fields, B-9
INDEX-20 Vol. 3D

INDEX
natural-width guest-state fields, B-10
natural-width host-state fields, B-11
natural-width read-only data fields, B-10

format of VMCS region, 26-2
guest-state area, 26-4

guest non-register state, 26-7
guest register state, 26-5

host-state area, 26-4, 26-9
introduction, 26-1
migrating between processors, 26-31
software access to, 26-31
VMCS data, 26-2, 27-21
VMCS pointer, 26-1
VMCS region, 26-1
VMCS revision identifier, 26-2, 27-21
VM-entry control fields, 26-4, 26-25

entry controls, 26-25
entry controls for event injection, 26-26
entry controls for MSRs, 26-26

VM-execution control fields, 26-4, 26-10
controls for CR8 accesses, 26-16
CR3-target controls, 26-15
exception bitmap, 26-15
I/O bitmaps, 26-15
masks & read shadows CR0 & CR4, 26-15
pin-based controls, 26-10
processor-based controls, 26-11, 26-22
time-stamp counter offset, 26-15

VM-exit control fields, 26-4, 26-22
exit controls for MSRs, 26-24

VM-exit information fields, 26-4, 26-27
basic exit information, 26-27, C-1
basic VM-exit information, 26-27
exits due to instruction execution, 26-30
exits due to vectored events, 26-28
exits occurring during event delivery, 26-29
VM-instruction error field, 26-30

VM-instruction error field, 28-1, 32-30
VMREAD instruction

field encodings, 1-3, B-1
VMWRITE instruction

field encodings, 1-3, B-1
VMX-abort indicator, 26-2, 27-21
See also: VM entries, VM exits, VMM, VMX

VME (virtual-8086 mode extensions) flag, CR4 control register,
2-11, 2-18, 24-18

VMLAUNCH instruction, 32-1
VMM

VM exits, 29-1
See also: VMCS, VM entries, VM exits, VMX

VMPTRLD instruction, 32-1
VMPTRST instruction, 32-1
VMREAD instruction, 32-1

field encodings, B-1
VMRESUME instruction, 32-1
VMWRITE instruction, 32-1

field encodings, B-1
VMX

A20M# signal, 25-4
capability MSRs

overview, 25-2, A-1
IA32_VMX_BASIC MSR, 26-4, A-1, A-2
IA32_VMX_CR0_FIXED0 MSR, A-7
IA32_VMX_CR0_FIXED1 MSR, A-7
IA32_VMX_ENTRY_CTLS MSR, A-2, A-5, A-6
IA32_VMX_EXIT_CTLS MSR, A-2, A-4, A-5
IA32_VMX_MISC MSR, 26-7, 28-3, 28-13, 33-26, A-6
IA32_VMX_PINBASED_CTLS MSR, A-2, A-3

IA32_VMX_PROCBASED_CTLS MSR, 26-11, A-2, A-3, A-4, A-5,
A-8, A-9

CPUID instruction, 25-2, A-1
CR4 control register, 25-3
CR4 fixed bits, A-7
entering operation, 25-3
guest software, 25-1
IA32_FEATURE_CONTROL MSR, 25-3
INIT# signal, 25-4
instruction set, 25-2, 34-2
introduction, 25-1
microcode update facilities, 27-13
non-root operation, 25-1

event blocking, 27-14
instruction changes, 27-7
overview, 27-1
task switches not allowed, 27-14
see VM exits

operation restrictions, 25-3
root operation, 25-1
SMM

CR4.VMXE reserved, 33-19
overview, 33-2
RSM instruction, 33-19
VMCS pointer, 33-17
VMX-critical state, 33-17

testing for support, 25-2
virtual-machine control structure (VMCS), 25-2
virtual-machine monitor (VMM), 25-1
VM entries and exits, 25-1
VM exits, 29-1
VMCS pointer, 25-2
VMM life cycle, 25-2
VMXOFF instruction, 25-3
VMXON instruction, 25-3
VMXON pointer, 25-3
VMXON region, 25-3
See also:VMM, VMCS, VM entries, VM exits

VMXOFF instruction, 25-3, 32-1
VMXON instruction, 25-3, 32-1

W
WAIT/FWAIT instructions, 7-32, 24-8, 24-15, 24-16
WB (write back) memory type, 10-18, 13-7, 13-8
WB (write-back) pin (Pentium processor), 13-13
WBINVD instruction, 2-26, 6-24, 13-16, 13-17, 24-4
WB/WT# pins, 13-13
WC buffer (see Write combining (WC) buffer)
WC (write combining)

flag, IA32_MTRRCAP MSR, 13-22
memory type, 13-7, 13-8

WP (write protected) memory type, 13-7
WP (write protect) flag

CR0 control register, 2-16, 6-28, 24-18
Write

hit, 13-5
Write combining (WC) buffer, 13-4, 13-8
Write-back caching, 13-6
WRMSR instruction, 2-21, 2-22, 2-27, 2-28, 6-24, 10-19, 19-35,

19-40, 19-43, 21-117, 21-143, 21-144, 21-145, 24-5, 24-36
WT (write through) memory type, 13-7, 13-8
WT# (write-through) pin (Pentium processor), 13-13
Vol. 3D INDEX-21

INDEX
X
x2APIC ID, 12-41, 12-42, 12-45, 12-47
x2APIC Mode, 12-32, 12-38, 12-39, 12-41, 12-42, 12-45, 12-46, 12-47
x87 FPU

compatibility with IA-32 x87 FPUs and math coprocessors, 24-7
configuring the x87 FPU environment, 11-6
device-not-available exception, 7-32
effect of MMX instructions on pending x87 floating-point

exceptions, 14-5
effects of MMX instructions on x87 FPU state, 14-3
effects of MMX, x87 FPU, FXSAVE, and FXRSTOR instructions

on x87 FPU tag word, 14-3
error signals, 24-11
initialization, 11-5
instruction synchronization, 24-15
register stack, aliasing with MMX registers, 14-2
setting up for software emulation of x87 FPU functions, 11-6
using TS flag to control saving of x87 FPU state, 15-7
x87 floating-point error exception (#MF), 7-48

x87 FPU control word
compatibility, IA-32 processors, 24-9

x87 FPU floating-point error exception (#MF), 7-48
x87 FPU status word

condition code flags, 24-8
x87 FPU tag word, 24-9
XADD instruction, 10-4, 24-4
xAPIC, 12-39, 12-41

determining lowest priority processor, 12-26
interrupt control register, 12-22
introduction to, 12-4
message passing protocol on system bus, 12-34
new features, 24-28
spurious vector, 12-33
using system bus, 12-4

xAPIC Mode, 12-32, 12-38, 12-42, 12-45, 12-47
XCHG instruction, 10-3, 10-4, 10-17
XCR0, 2-19
XGETBV, 2-19, 2-24
XMM registers, saving, 15-6
XOR instruction, 10-4
XSAVE, 2-19, 15-7, 15-8, 15-9, 15-10
XSETBV, 2-19, 2-22, 2-24, 2-28

Z
ZF flag, EFLAGS register, 6-25
INDEX-22 Vol. 3D

	Volume 3D: System Programming Guide, Part 4
	Chapter 36 Introduction to Intel® Software Guard Extensions
	36.1 Overview
	36.2 Enclave Interaction and Protection
	36.3 Enclave Life Cycle
	36.4 Data Structures and Enclave Operation
	36.5 Enclave Page Cache
	36.5.1 Enclave Page Cache Map (EPCM)

	36.6 Enclave Instructions and Intel® SGX
	36.7 Discovering Support for Intel® SGX and enabling Enclave Instructions
	36.7.1 Intel® SGX Opt-In Configuration
	36.7.2 Intel® SGX Resource Enumeration Leaves

	36.8 Intel® SGX Interactions with Control-flow Enforcement Technology
	36.8.1 CET in Enclaves Model
	36.8.2 Operations Not Supported on Shadow Stack Pages
	36.8.3 Indirect Branch Tracking – Legacy Compatibility Treatment

	Chapter 37 Enclave Access Control and Data Structures
	37.1 Overview of Enclave Execution Environment
	37.2 Terminology
	37.3 Access-control Requirements
	37.4 Segment-based Access Control
	37.5 Page-based Access Control
	37.5.1 Access-control for Accesses that Originate from Non-SGX Instructions
	37.5.2 Memory Accesses that Split Across ELRANGE
	37.5.3 Implicit vs. Explicit Accesses
	37.5.3.1 Explicit Accesses
	37.5.3.2 Implicit Accesses

	37.6 Intel® SGX Data Structures Overview
	37.7 SGX Enclave Control Structure (SECS)
	37.7.1 ATTRIBUTES
	37.7.2 SECS.MISCSELECT Field
	37.7.3 SECS.CET_ATTRIBUTES Field

	37.8 Thread Control Structure (TCS)
	37.8.1 TCS.FLAGS
	37.8.2 State Save Area Offset (OSSA)
	37.8.3 Current State Save Area Frame (CSSA)
	37.8.4 Number of State Save Area Frames (NSSA)

	37.9 State Save Area (SSA) Frame
	37.9.1 GPRSGX Region
	37.9.1.1 EXITINFO
	37.9.1.2 VECTOR Field Definition

	37.9.2 MISC Region
	37.9.2.1 EXINFO Structure
	37.9.2.2 Page Fault Error Code

	37.10 CET State Save Area Frame
	37.11 Page Information (PAGEINFO)
	37.12 Security Information (SECINFO)
	37.12.1 SECINFO.FLAGS
	37.12.2 PAGE_TYPE Field Definition

	37.13 Paging Crypto MetaData (PCMD)
	37.14 Enclave Signature Structure (SIGSTRUCT)
	37.15 EINIT Token Structure (EINITTOKEN)
	37.16 Report (REPORT)
	37.16.1 REPORTDATA

	37.17 Report Target Info (TARGETINFO)
	37.18 Key Request (KEYREQUEST)
	37.18.1 KEY REQUEST KeyNames
	37.18.2 Key Request Policy Structure

	37.19 Version Array (VA)
	37.20 Enclave Page Cache Map (EPCM)

	Chapter 38 Enclave Operation
	38.1 Constructing an Enclave
	38.1.1 ECREATE
	38.1.2 EADD and EEXTEND Interaction
	38.1.3 EINIT Interaction
	38.1.4 Intel® SGX Launch Control Configuration

	38.2 Enclave Entry and Exiting
	38.2.1 Controlled Entry and Exit
	38.2.2 Asynchronous Enclave Exit (AEX)
	38.2.3 Resuming Execution After AEX
	38.2.3.1 ERESUME Interaction
	38.2.3.2 Asynchronous Enclave Exit Notify and EDECCSSA

	38.3 Calling Enclave Procedures
	38.3.1 Calling Convention
	38.3.2 Register Preservation
	38.3.3 Returning to Caller

	38.4 Intel® SGX Key and Attestation
	38.4.1 Enclave Measurement and Identification
	38.4.1.1 MRENCLAVE
	38.4.1.2 MRSIGNER
	38.4.1.3 CONFIGID

	38.4.2 Security Version Numbers (SVN)
	38.4.2.1 Enclave Security Version
	38.4.2.2 Hardware Security Version
	38.4.2.3 CONFIGID Security Version

	38.4.3 Keys
	38.4.3.1 Sealing Enclave Data
	38.4.3.2 Using REPORTs for Local Attestation

	38.5 EPC and Management of EPC Pages
	38.5.1 EPC Implementation
	38.5.2 OS Management of EPC Pages
	38.5.2.1 Enhancement to Managing EPC Pages

	38.5.3 Eviction of Enclave Pages
	38.5.4 Loading an Enclave Page
	38.5.5 Eviction of an SECS Page
	38.5.6 Eviction of a Version Array Page
	38.5.7 Allocating a Regular Page
	38.5.8 Allocating a TCS Page
	38.5.9 Trimming a Page
	38.5.10 Restricting the EPCM Permissions of a Page
	38.5.11 Extending the EPCM Permissions of a Page

	38.6 Changes to Instruction Behavior Inside an Enclave
	38.6.1 Illegal Instructions
	38.6.2 RDRAND and RDSEED Instructions
	38.6.3 PAUSE Instruction
	38.6.4 Executions of INT1 and INT3 Inside an Enclave
	38.6.5 INVD Handling when Enclaves Are Enabled

	Chapter 39 Enclave Exiting Events
	39.1 Compatible Switch to the Exiting Stack of AEX
	39.2 State Saving by AEX
	39.3 Synthetic State on Asynchronous Enclave Exit
	39.3.1 Processor Synthetic State on Asynchronous Enclave Exit
	39.3.2 Synthetic State for Extended Features
	39.3.3 Synthetic State for MISC Features

	39.4 AEX Flow
	39.4.1 AEX Operational Detail

	Chapter 40 Intel® SGX Instruction References
	40.1 Intel® SGX Instruction Syntax and Operation
	40.1.1 ENCLS Register Usage Summary
	40.1.2 ENCLU Register Usage Summary
	40.1.3 Information and Error Codes
	40.1.4 Internal CREGs
	40.1.5 Concurrent Operation Restrictions
	40.1.5.1 Concurrency Tables of Intel® SGX Instructions

	40.2 Intel® SGX Instruction Reference
	ENCLS—Execute an Enclave System Function of Specified Leaf Number
	ENCLU—Execute an Enclave User Function of Specified Leaf Number

	40.3 Intel® SGX System Leaf Function Reference
	EADD—Add a Page to an Uninitialized Enclave
	EAUG—Add a Page to an Initialized Enclave
	EBLOCK—Mark a page in EPC as Blocked
	ECREATE—Create an SECS page in the Enclave Page Cache
	EDBGRD—Read From a Debug Enclave
	EDBGWR—Write to a Debug Enclave
	EEXTEND—Extend Uninitialized Enclave Measurement by 256 Bytes
	EINIT—Initialize an Enclave for Execution
	ELDB/ELDU—Load an EPC Page and Mark its State
	EMODPR—Restrict the Permissions of an EPC Page
	EMODT—Change the Type of an EPC Page
	EPA—Add Version Array
	EREMOVE—Remove a page from the EPC
	ETRACK—Activates EBLOCK Checks
	EUPDATESVN—Update CR_CPUSVN
	EWB—Invalidate an EPC Page and Write out to Main Memory

	40.4 Intel® SGX User Leaf Function Reference
	EACCEPT—Accept Changes to an EPC Page
	EACCEPTCOPY—Initialize a Pending Page
	EDECCSSA—Decrements TCS.CSSA
	EENTER—Enters an Enclave
	EEXIT—Exits an Enclave
	EGETKEY—Retrieves a Cryptographic Key
	EMODPE—Extend an EPC Page Permissions
	EREPORT—Create a Cryptographic Report of the Enclave
	ERESUME—Re-Enters an Enclave

	Chapter 41 Intel® SGX Interactions with IA32 and Intel® 64 Architecture
	41.1 Intel® SGX Availability in Various Processor Modes
	41.2 IA32_FEATURE_CONTROL
	41.2.1 Availability of Intel SGX
	41.2.2 Intel SGX Launch Control Configuration

	41.3 Interactions with Segmentation
	41.3.1 Scope of Interaction
	41.3.2 Interactions of Intel® SGX Instructions with Segment, Operand, and Addressing Prefixes
	41.3.3 Interaction of Intel® SGX Instructions with Segmentation
	41.3.4 Interactions of Enclave Execution with Segmentation

	41.4 Interactions with Paging
	41.5 Interactions with VMX
	41.5.1 VMM Controls to Configure Guest Support of Intel® SGX
	41.5.2 Interactions with the Extended Page Table Mechanism (EPT)
	41.5.3 Interactions with APIC Virtualization

	41.6 Intel® SGX Interactions with Architecturally-visible Events
	41.7 Interactions with the Processor Extended State and Miscellaneous State
	41.7.1 Requirements and Architecture Overview
	41.7.2 Relevant Fields in Various Data Structures
	41.7.2.1 SECS.ATTRIBUTES.XFRM
	41.7.2.2 SECS.SSAFRAMESIZE
	41.7.2.3 XSAVE Area in SSA
	41.7.2.4 MISC Area in SSA
	41.7.2.5 SIGSTRUCT Fields
	41.7.2.6 REPORT.ATTRIBUTES.XFRM and REPORT.MISCSELECT
	41.7.2.7 KEYREQUEST

	41.7.3 Processor Extended States and ENCLS[ECREATE]
	41.7.4 Processor Extended States and ENCLU[EENTER]
	41.7.4.1 Fault Checking
	41.7.4.2 State Loading

	41.7.5 Processor Extended States and AEX
	41.7.5.1 State Saving
	41.7.5.2 State Synthesis

	41.7.6 Processor Extended States and ENCLU[ERESUME]
	41.7.6.1 Fault Checking
	41.7.6.2 State Loading

	41.7.7 Processor Extended States and ENCLU[EEXIT]
	41.7.8 Processor Extended States and ENCLU[EREPORT]
	41.7.9 Processor Extended States and ENCLU[EGETKEY]

	41.8 Interactions with SMM
	41.8.1 Availability of Intel® SGX instructions in SMM
	41.8.2 SMI while Inside an Enclave
	41.8.3 SMRAM Synthetic State of AEX Triggered by SMI

	41.9 Interactions of INIT, SIPI, and Wait-for-SIPI with Intel® SGX
	41.10 Interactions with DMA
	41.11 Interactions with TXT
	41.11.1 Enclaves Created Prior to Execution of GETSEC
	41.11.2 Interaction of GETSEC with Intel® SGX
	41.11.3 Interactions with Authenticated Code Modules (ACMs)

	41.12 Interactions with Caching of Linear-address Translations
	41.13 Interactions with Intel® Transactional Synchronization Extensions (Intel® TSX)
	41.13.1 HLE and RTM Debug

	41.14 Intel® SGX Interactions with S states
	41.15 Intel® SGX Interactions with Machine Check Architecture (MCA)
	41.15.1 Interactions with MCA Events
	41.15.2 Machine Check Enables (IA32_MCi_CTL)
	41.15.3 CR4.MCE

	41.16 Intel® SGX INTERACTIONS WITH PROTECTED MODE VIRTUAL INTERRUPTS
	41.17 Intel SGX Interaction with Protection Keys

	Chapter 42 Enclave Code Debug and Profiling
	42.1 Configuration and Controls
	42.1.1 Debug Enclave vs. Production Enclave
	42.1.2 Tool-Chain Opt-in
	42.1.3 Debugging an Enclave That Uses Asynchronous Enclave Exit Notify

	42.2 Single Step Debug
	42.2.1 Single Stepping ENCLS Instruction Leafs
	42.2.2 Single Stepping ENCLU Instruction Leafs
	42.2.3 Single-Stepping Enclave Entry with Opt-out Entry
	42.2.3.1 Single Stepping without AEX
	42.2.3.2 Single Step Preempted by AEX Due to Non-SMI Event

	42.2.4 RFLAGS.TF Treatment on AEX
	42.2.5 Restriction on Setting of TF after an Opt-Out Entry
	42.2.6 Trampoline Code Considerations

	42.3 Code and Data Breakpoints
	42.3.1 Breakpoint Suppression
	42.3.2 Reporting of Instruction Breakpoint on Next Instruction on a Debug Trap
	42.3.3 RF Treatment on AEX
	42.3.4 Breakpoint Matching in Intel® SGX Instruction Flows

	42.4 Consideration of the INT1 and INT3 Instructions
	42.4.1 Behavior of INT1 and INT3 Inside an Enclave
	42.4.2 Debugger Considerations
	42.4.3 VMM Considerations

	42.5 Branch Tracing
	42.5.1 BTF Treatment
	42.5.2 LBR Treatment
	42.5.2.1 LBR Stack on Opt-in Entry
	42.5.2.2 LBR Stack on Opt-out Entry
	42.5.2.3 Mispredict Bit, Record Type, and Filtering

	42.6 Interaction with Performance Monitoring
	42.6.1 IA32_PERF_GLOBAL_STATUS Enhancement
	42.6.2 Performance Monitoring with Opt-in Entry
	42.6.3 Performance Monitoring with Opt-out Entry
	42.6.4 Enclave Exit and Performance Monitoring
	42.6.5 PEBS Record Generation on Intel® SGX Instructions
	42.6.6 Exception-Handling on PEBS/BTS Loads/Stores after AEX
	42.6.6.1 Other Interactions with Performance Monitoring

	Appendix A VMX Capability Reporting Facility
	A.1 Basic VMX Information
	A.2 Reserved Controls and Default Settings
	A.3 VM-Execution Controls
	A.3.1 Pin-Based VM-Execution Controls
	A.3.2 Primary Processor-Based VM-Execution Controls
	A.3.3 Secondary Processor-Based VM-Execution Controls
	A.3.4 Tertiary Processor-Based VM-Execution Controls

	A.4 VM-Exit Controls
	A.4.1 Primary VM-Exit Controls
	A.4.2 Secondary VM-Exit Controls

	A.5 VM-Entry Controls
	A.6 Miscellaneous Data
	A.7 VMX-Fixed Bits in CR0
	A.8 VMX-Fixed Bits in CR4
	A.9 VMCS Enumeration
	A.10 VPID and EPT Capabilities
	A.11 VM Functions

	Appendix B Field Encoding in VMCS
	B.1 16-Bit Fields
	B.1.1 16-Bit Control Fields
	B.1.2 16-Bit Guest-State Fields
	B.1.3 16-Bit Host-State Fields

	B.2 64-Bit Fields
	B.2.1 64-Bit Control Fields
	B.2.2 64-Bit Read-Only Data Fields
	B.2.3 64-Bit Guest-State Fields
	B.2.4 64-Bit Host-State Fields

	B.3 32-Bit Fields
	B.3.1 32-Bit Control Fields
	B.3.2 32-Bit Read-Only Data Fields
	B.3.3 32-Bit Guest-State Fields
	B.3.4 32-Bit Host-State Field

	B.4 Natural-Width Fields
	B.4.1 Natural-Width Control Fields
	B.4.2 Natural-Width Read-Only Data Fields
	B.4.3 Natural-Width Guest-State Fields
	B.4.4 Natural-Width Host-State Fields

	Appendix C VMX Basic Exit Reasons

	Index

