intel

Intel® 64 and IA-32 Architectures
Software Developer's Manual

Volume 2D:
Instruction Set Reference, W-Z

NOTE: The Intef® 64 and IA-32 Architectures Software Developer's Manual consists of ten volumes:
Basic Architecture, Order Number 253665; Instruction Set Reference, A-L, Order Number 253666;
Instruction Set Reference, M-U, Order Number 253667; Instruction Set Reference, V, Order Number
326018; Instruction Set Reference, W-Z, Order Number 334569; System Programming Guide, Part 1,
Order Number 253668; System Programming Guide, Part 2, Order Number 253669; System
Programming Guide, Part 3, Order Number 326019; System Programming Guide, Part 4, Order Number
332831; Model-Specific Registers, Order Number 335592. Refer to all ten volumes when evaluating
your design needs.

Order Number: 334569-080US
June 2023

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.
No product or component can be absolutely secure.
Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability,
fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of
dealing, or usage in trade.

Code names are used by Intel to identify products, technologies, or services that are in development and not publicly
available. These are not “commercial” nhames and not intended to function as trademarks.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document, with
the sole exception that a) you may publish an unmodified copy and b) code included in this document is licensed subject to
the Zero-Clause BSD open source license (0BSD), https://opensource.org/licenses/0OBSD. You may create software
implementations based on this document and in compliance with the foregoing that are intended to execute on the Intel
product(s) referenced in this document. No rights are granted to create modifications or derivatives of this document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other
names and brands may be claimed as the property of others.

https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD

CHAPTER 6
INSTRUCTION SET REFERENCE, W-Z

6.1 INSTRUCTIONS (W-2)

Chapter 6 continues an alphabetical discussion of Intel® 64 and IA-32 instructions (W-Z). See also: Chapter 3,
“Instruction Set Reference, A-L,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A; Chapter 4, “Instruction Set Reference, M-U,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2B; and Chapter 5, “Instruction Set Reference, V,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2D.

Vol.2D 6-1

INSTRUCTION SET REFERENCE, W-Z

WAIT/FWAIT—Wait

Opcode Instruction Op/ |64-Bit Compat/ |Description
En |Mode Leg Mode
9B WAIT Z0 |Valid Valid Check pending unmasked floating-point
exceptions.
9B FWAIT Z0 |Valid Valid Check pending unmasked floating-point
exceptions.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
Z0 N/A N/A N/A N/A
Description

Causes the processor to check for and handle pending, unmasked, floating-point exceptions before proceeding.
(FWAIT is an alternate mnemonic for WAIT.)

This instruction is useful for synchronizing exceptions in critical sections of code. Coding a WAIT instruction after a
floating-point instruction ensures that any unmasked floating-point exceptions the instruction may raise are

handled before the processor can modify the instruction’s results. See the section titled “Floating-Point Exception
Synchronization” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for
more information on using the WAIT/FWAIT instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CheckForPendingUnmaskedFloatingPointExceptions;

FPU Flags Affected

The CO, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions
None.

Protected Mode Exceptions

#NM If CRO.MP[bit 1] = 1 and CRO.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.

6-2 Vol. 2D

WAIT/FWAIT—Wait

INSTRUCTION SET REFERENCE, W-Z

WBINVD—Write Back and Invalidate Cache

Opcode Instruction Op/ |64-Bit Compat/ |Description
En |Mode Leg Mode
OF 09 WBINVD Z0 |Valid Valid Write back and flush Internal caches; initiate
writing-back and flushing of external caches.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
Z0 N/A N/A N/A N/A
Description

Writes back all modified cache lines in the processor’s internal cache to main memory and invalidates (flushes) the
internal caches. The instruction then issues a special-function bus cycle that directs external caches to also write
back modified data and another bus cycle to indicate that the external caches should be invalidated.

After executing this instruction, the processor does not wait for the external caches to complete their write-back
and flushing operations before proceeding with instruction execution. It is the responsibility of hardware to respond
to the cache write-back and flush signals. The amount of time or cycles for WBINVD to complete will vary due to
size and other factors of different cache hierarchies. As a consequence, the use of the WBINVD instruction can have
an impact on logical processor interrupt/event response time. Additional information of WBINVD behavior in a
cache hierarchy with hierarchical sharing topology can be found in Chapter 2 of the Intel® 64 and IA-32 Architec-
tures Software Developer’'s Manual, Volume 3A.

The WBINVD instruction is a privileged instruction. When the processor is running in protected mode, the CPL of a
program or procedure must be 0 to execute this instruction. This instruction is also a serializing instruction (see
“Serializing Instructions” in Chapter 9 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A).

In situations where cache coherency with main memory is not a concern, software can use the INVD instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The WBINVD instruction is implementation dependent, and its function may be implemented differently on future
Intel 64 and IA-32 processors. The instruction is not supported on IA-32 processors earlier than the Intel486
processor.

Operation

WriteBack(InternalCaches);
Flush(InternalCaches);
SignalWriteBack(ExternalCaches);
SignalFlush(ExternalCaches);
Continue; (* Continue execution *)

Intel C/C++ Compiler Intrinsic Equivalent
WBINVD void _wbinvd(void);

Flags Affected
None.

WBINVD—Write Back and Invalidate Cache Vol.2D 6-3

INSTRUCTION SET REFERENCE, W-Z

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) WBINVD cannot be executed at the virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

6-4 Vol.2D WBINVD—Write Back and Invalidate Cache

WBNOINVD—Write Back and Do Not Invalidate Cache

INSTRUCTION SET REFERENCE, W-Z

Opcode / Op/ |64/32 bit |CPUID Description
Instruction En |Mode Feature
Support | Flag
F3 OF 09 20 |VIV WBNOINVD | Write back and do not flush internal caches;
WBNOINVD initiate writing-back without flushing of external
caches.
Instruction Operand Encoding
Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
Z0 N/A N/A N/A N/A N/A

Description

The WBNOINVD instruction writes back all modified cache lines in the processor’s internal cache to main memory
but does not invalidate (flush) the internal caches.

After executing this instruction, the processor does not wait for the external caches to complete their write-back
operation before proceeding with instruction execution. It is the responsibility of hardware to respond to the cache
write-back signal. The amount of time or cycles for WBNOINVD to complete will vary due to size and other factors
of different cache hierarchies. As a consequence, the use of the WBNOINVD instruction can have an impact on
logical processor interrupt/event response time.

The WBNOINVD instruction is a privileged instruction. When the processor is running in protected mode, the CPL of
a program or procedure must be 0 to execute this instruction. This instruction is also a serializing instruction (see
“Serializing Instructions” in Chapter 9 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

WriteBack(InternalCaches);
Continue; (* Continue execution *)

Intel C/C++ Compiler Intrinsic Equivalent
WBNOINVD void _wbnoinvd(void);

Flags Affected
None.

Protected Mode Exceptions
#GP(0)
#UD

If the current privilege level is not 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) WBNOINVD cannot be executed at the virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

WBNOINVD—Write Back and Do Not Invalidate Cache Vol.2D 6-5

INSTRUCTION SET REFERENCE, W-Z

64-Bit Mode Exceptions
Same exceptions as in protected mode.

6-6 Vol.2D WBNOINVD—Write Back and Do Not Invalidate Cache

INSTRUCTION SET REFERENCE, W-Z

WRFSBASE/WRGSBASE—Write FS/GS Segment Base

Opcode/ Op/ |64/32- |CPUID Fea- | Description
Instruction En bit ture Flag
Mode
F3 OF AE /2 M Vil FSGSBASE | Load the FS base address with the 32-bit value in the
WRFSBASE r32 source register.
F3 REX.W OF AE /2 M VI FSGSBASE | Load the FS base address with the 64-bit value in the
WRFSBASE r64 source register.
F3 OF AE /3 M v/ FSGSBASE | Load the GS base address with the 32-bit value in the
WRGSBASE r32 source register.
F3 REX.W OF AE /3 M \ FSGSBASE | Load the GS base address with the 64-bit value in the
WRGSBASE r64 source register.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
M ModRM:r/m (r) N/A N/A N/A
Description

Loads the FS or GS segment base address with the general-purpose register indicated by the modR/M:r/m field.

The source operand may be either a 32-bit or a 64-bit general-purpose register. The REX.W prefix indicates the
operand size is 64 bits. If no REX.W prefix is used, the operand size is 32 bits; the upper 32 bits of the source
register are ignored and upper 32 bits of the base address (for FS or GS) are cleared.

This instruction is supported only in 64-bit mode.

Operation
FS/GS segment base address := SRC;

Flags Affected
None.

C/C++ Compiler Intrinsic Equivalent

WRFSBASE void _writefsbase_u32(unsigned int);

WRFSBASE _writefsbase_u64(unsigned __int64);
WRGSBASE void _writegsbase_u32(unsigned int);
WRGSBASE _writegsbase_u64(unsigned __int64);

Protected Mode Exceptions
#UD The WRFSBASE and WRGSBASE instructions are not recognized in protected mode.

Real-Address Mode Exceptions
#UD The WRFSBASE and WRGSBASE instructions are not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The WRFSBASE and WRGSBASE instructions are not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The WRFSBASE and WRGSBASE instructions are not recognized in compatibility mode.

WRFSBASE/WRGSBASE—Write FS/GS Segment Base Vol.2D 6-7

INSTRUCTION SET REFERENCE, W-Z

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.
If CR4.FSGSBASE[bit 16] = 0.
If CPUID.07H.0OH:EBX.FSGSBASE[bit 0] = 0
#GP(0) If the source register contains a non-canonical address.

6-8 Vol. 2D WRFSBASE/WRGSBASE—Write FS/GS Segment Base

INSTRUCTION SET REFERENCE, W-Z

WRMSR—Write to Model Specific Register

Opcode Instruction Op/ |64-Bit Compat/ |Description
En |Mode Leg Mode
OF 30 WRMSR Z0 |Valid Valid Write the value in EDX:EAX to MSR specified
by ECX.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
Z0 N/A N/A N/A N/A
Description

Writes the contents of registers EDX:EAX into the 64-bit model specific register (MSR) specified in the ECX register.
(On processors that support the Intel 64 architecture, the high-order 32 bits of RCX are ignored.) The contents of
the EDX register are copied to high-order 32 bits of the selected MSR and the contents of the EAX register are
copied to low-order 32 bits of the MSR. (On processors that support the Intel 64 architecture, the high-order 32
bits of each of RAX and RDX are ignored.) Undefined or reserved bits in an MSR should be set to values previously
read.

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a general protection
exception #GP(0) is generated. Specifying a reserved or unimplemented MSR address in ECX will also cause a
general protection exception. The processor will also generate a general protection exception if software attempts
to write to bits in a reserved MSR.

When the WRMSR instruction is used to write to an MTRR, the TLBs are invalidated. This includes global entries
(see “Translation Lookaside Buffers (TLBs)” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A).

MSRs control functions for testability, execution tracing, performance-monitoring and machine check errors.

Chapter 2, “Model-Specific Registers (MSRs),” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 4, lists all MSRs that can be written with this instruction and their addresses. Note that each
processor family has its own set of MSRs.

The WRMSR instruction is a serializing instruction (see “Serializing Instructions” in Chapter 9 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A). Note that WRMSR to the IA32_TSC_DEADLINE MSR
(MSR index 6EOH) and the X2APIC MSRs (MSR indices 802H to 83FH) are not serializing.

The CPUID instruction should be used to determine whether MSRs are supported (CPUID.01H:EDX[5] =1) before
using this instruction.

IA-32 Architecture Compatibility

The MSRs and the ability to read them with the WRMSR instruction were introduced into the IA-32 architecture with
the Pentium processor. Execution of this instruction by an IA-32 processor earlier than the Pentium processor
results in an invalid opcode exception #UD.

Operation
MSR[ECX] := EDX:EAX;

Flags Affected
None.

WRMSR—Write to Model Specific Register Vol.2D 6-9

INSTRUCTION SET REFERENCE, W-Z

Protected Mode Exceptions

#GP(0)

#UD

If the current privilege level is not 0.
If the value in ECX specifies a reserved or unimplemented MSR address.
If the value in EDX:EAX sets bits that are reserved in the MSR specified by ECX.

If the source register contains a non-canonical address and ECX specifies one of the following
MSRs: IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE, IA32_KERNEL_GS_BASE, IA32_L-
STAR, IA32_SYSENTER_EIP, IA32_SYSENTER_ESP.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP

#UD

If the value in ECX specifies a reserved or unimplemented MSR address.
If the value in EDX:EAX sets bits that are reserved in the MSR specified by ECX.

If the source register contains a non-canonical address and ECX specifies one of the following
MSRs: IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE, IA32_KERNEL_GS_BASE, IA32_L-
STAR, IA32_SYSENTER_EIP, IA32_SYSENTER_ESP.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)

The WRMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

6-10 Vol.2D

WRMSR—Write to Model Specific Register

WRPKRU—Write Data to User Page Key Register

INSTRUCTION SET REFERENCE, W-Z

Opcode/ Op/ |64/32bit |CPUID Description
Instruction €n Mode Feature
Support | Flag
NP OF 01 EF 20 |VIV OSPKE Writes EAX into PKRU.
WRPKRU
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
Z0 N/A N/A N/A N/A
Description

Writes the value of EAX into PKRU. ECX and EDX must be 0 when WRPKRU is executed; otherwise, a general-

protection exception (#GP) occurs.

WRPKRU can be executed only if CR4.PKE = 1; otherwise, an invalid-opcode exception (#UD) occurs. Software can
discover the value of CR4.PKE by examining CPUID.(EAX=07H,ECX=0H):ECX.OSPKE [bit 4].

On processors that support the Intel 64 Architecture, the high-order 32-bits of RCX, RDX, and RAX are ignored.

WRPKRU will never execute speculatively. Memory accesses affected by PKRU register will not execute (even
speculatively) until all prior executions of WRPKRU have completed execution and updated the PKRU register.

Operation

IF (ECX =0 AND EDX = Q)
THEN PKRU := EAX;
ELSE #GP(0);

Fl;

Flags Affected
None.

C/C++ Compiler Intrinsic Equivalent
WRPKRU void _wrpkru(uint32_t);

Protected Mode Exceptions

#GP(0) If ECX # 0.
If EDX # 0.
#UD If the LOCK prefix is used.

If CR4.PKE = 0.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

WRPKRU—Write Data to User Page Key Register

Vol.2D 6-11

INSTRUCTION SET REFERENCE, W-Z

64-Bit Mode Exceptions
Same exceptions as in protected mode.

6-12 Vol. 2D WRPKRU—Write Data to User Page Key Register

WRSSD/WRSSQ—Write to Shadow Stack

INSTRUCTION SET REFERENCE, W-Z

WRSSD m32, r32

Opcode/ Op/ |64/32 bit |CPUID Description
Instruction En Mode Feature Flag
Support
OF 38 F6 !(11):rrr:bbb MR |V/V CET_SS Write 4 bytes to shadow stack.

WRSSQ m64, r64

REX.W OF 38 F6 I(11):rrr:bbb MR

V/N.E. CET_SS

Write 8 bytes to shadow stack.

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

MR

ModRM:r/m (w)

ModRM:reg (r)

N/A

N/A

Description

Writes bytes in register source to the shadow stack.

Operation
IFCPL=3

IF (CR4.CET & 1A32_U_CET.SH_STK_EN) =0

THEN #UD; FI;

IF (IA32_U_CET.WR_SHSTK_EN) =0

THEN #UD; FI;
ELSE

IF (CR4.CET & IA32_S_CET.SH_STK_EN) =0

THEN #UD; FI;
IF (IA32_S_CET.WR_S
THEN #UD; FI;
Fl;

DEST_LA = Linear_Address(mem operand)

IF (operand size is 64 bit)
THEN

(* Destination no

IF DEST_LA[2:0]

HSTK_EN) = 0

t 8B aligned *)

THEN GP(0); FI;
Shadow_stack_store 8 bytes of SRC to DEST_LA;

ELSE
(* Destination no
IF DEST_LA[1:0]

t 4B aligned *)

THEN GP(0); FI;
Shadow_stack_store 4 bytes of SRC[31:0] to DEST_LA;

Fl;

Flags Affected
None.

C/C++ Compiler Intrinsic Equivalent

WRSSD void _wrssd(__int32, void *);
WRSSQ void _wrssq(__int64, void *);

WRSSD/WRSSQ—Write to Shadow Stack

Vol.2D 6-13

INSTRUCTION SET REFERENCE, W-Z

Protected Mode Exceptions

#UD

#GP(0)

#SS(0)
#PF(fault-code)

If the LOCK prefix is used.

If CR4.CET = 0.

If CPL = 3 and IA32_U_CET.SH_STK_EN = 0.

If CPL < 3 and IA32_S_CET.SH_STK_EN = 0.

If CPL = 3 and IA32_U_CET.WR_SHSTK_EN = 0.

If CPL < 3 and IA32_S_CET.WR_SHSTK_EN = 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If destination is located in a non-writeable segment.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

If linear address of destination is not 4 byte aligned.
If a memory operand effective address is outside the SS segment limit.

If a page fault occurs if destination is not a user shadow stack when CPL3 and not a supervisor
shadow stack when CPL < 3.

Other terminal and non-terminal faults.

Real-Address Mode Exceptions

#UD

The WRSS instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD

The WRSS instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD

#PF(fault-code)

If the LOCK prefix is used.

If CR4.CET = 0.

If CPL = 3 and IA32_U_CET.SH_STK_EN = 0.

If CPL < 3 and IA32_S_CET.SH_STK_EN = 0.

If CPL = 3 and IA32_U_CET.WR_SHSTK_EN = 0.
If CPL < 3 and IA32_S_CET.WR_SHSTK_EN = 0.

If a page fault occurs if destination is not a user shadow stack when CPL3 and not a supervisor
shadow stack when CPL < 3.

Other terminal and non-terminal faults.

64-Bit Mode Exceptions

#UD

#GP(0)

#PF(fault-code)

6-14 Vol.2D

If the LOCK prefix is used.

If CR4.CET = 0.

If CPL = 3 and IA32_U_CET.SH_STK_EN = 0.

If CPL < 3 and IA32_S_CET.SH_STK_EN = 0.

If CPL = 3 and IA32_U_CET.WR_SHSTK_EN = 0.

If CPL < 3 and IA32_S_CET.WR_SHSTK_EN = 0.

If a memory address is in a non-canonical form.

If linear address of destination is not 4 byte aligned.

If a page fault occurs if destination is not a user shadow stack when CPL3 and not a supervisor
shadow stack when CPL < 3.

Other terminal and non-terminal faults.

WRSSD/WRSSQ—Write to Shadow Stack

WRUSSD/WRUSSQ—Write to User Shadow Stack

INSTRUCTION SET REFERENCE, W-Z

WRUSSD m32, r32

Opcode/ Op/ |64/32 bit |CPUID Description
Instruction En |Mode Feature Flag
Support
66 OF 38 F5 I(11):rrr:bbb MR |V/V CET_SS Write 4 bytes to shadow stack.

WRUSSQ mb64, r64

66 REX.W OF 38 F5 |(11):rrr:bbb MR | V/NE. CET_SS Write 8 bytes to shadow stack.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
MR ModRM:r/m (w) ModRM:reg (r) N/A N/A
Description

Writes bytes in register source to a user shadow stack page. The WRUSS instruction can be executed only if CPL =
0, however the processor treats its shadow-stack accesses as user accesses.

Operation

IFCR4.CET=0
THEN #UD; FI;
IFCPL>O0
THEN #GP(O); FI;
DEST_LA = Linear_Address(mem operand)
IF (operand size is 64 bit)
THEN
(* Destination not 8B aligned *)
IF DEST_LA[2:0]
THEN GP(0); FI;
Shadow_stack_store 8 bytes of SRC to DEST_LA as user-mode access;
ELSE
(* Destination not 4B aligned *)
IF DEST_LA[1:0]
THEN GP(0); FI;

Shadow_stack_store 4 bytes of SRC[31:0] to DEST_LA as user-mode access;

Fl;

Flags Affected
None.

C/C++ Compiler Intrinsic Equivalent

WRUSSD void _wrussd(__int32, void *);
WRUSSQ void _wrussq(__int64, void *);

WRUSSD/WRUSSQ—Write to User Shadow Stack

Vol.2D 6-15

INSTRUCTION SET REFERENCE, W-Z

Protected Mode Exceptions

#UD If the LOCK prefix is used.
If CR4.CET = 0.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If destination is located in a non-writeable segment.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

If linear address of destination is not 4 byte aligned.

If CPL is not 0.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If destination is not a user shadow stack.

Other terminal and non-terminal faults.

Real-Address Mode Exceptions
#UD The WRUSS instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The WRUSS instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD If the LOCK prefix is used.
If CR4.CET = 0.
#GP(0) If a memory address is in a non-canonical form.

If linear address of destination is not 4 byte aligned.

If CPL is not 0.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If destination is not a user shadow stack.

Other terminal and non-terminal faults.

64-Bit Mode Exceptions

#UD If the LOCK prefix is used.
If CR4.CET = 0.
#GP(0) If a memory address is in a non-canonical form.

If linear address of destination is not 4 byte aligned.
If CPL is not 0.

#PF(fault-code) If destination is not a user shadow stack.
Other terminal and non-terminal faults.

6-16 Vol. 2D WRUSSD/WRUSSQ—Write to User Shadow Stack

INSTRUCTION SET REFERENCE, W-Z

XABORT—Transactional Abort

Opcode/Instruction Op/ |64/32bit |CPUID Description
En Mode Feature
Support | Flag
C6F8ib A VIV RTM Causes an RTM abort if in RTM execution.
XABORT imm8

Instruction Operand Encoding

Op/En Operand 1 Operand2 Operand3 Operand4
A imm8 N/A N/A N/A
Description

XABORT forces an RTM abort. Following an RTM abort, the logical processor resumes execution at the fallback
address computed through the outermost XBEGIN instruction. The EAX register is updated to reflect an XABORT
instruction caused the abort, and the imm8 argument will be provided in bits 31:24 of EAX.

Operation

XABORT
IFRTM_ACTIVE=0
THEN
Treat as NOP;
ELSE
GOTO RTM_ABORT_PROCESSING;
FI;

(* For any RTM abort condition encountered during RTM execution *)
RTM_ABORT_PROCESSING:
Restore architectural register state;
Discard memory updates performed in transaction;
Update EAX with status and XABORT argument;
RTM_NEST_COUNT:= 0;
RTM_ACTIVE:=0;
SUSLDTRK_ACTIVE := 0;
IF 64-bit Mode
THEN
RIP:= fallbackRIP;
ELSE
EIP := fallbackEelP;
FI;
END

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent
XABORT void _xabort(unsigned int);

SIMD Floating-Point Exceptions
None.

XABORT—Transactional Abort Vol.2D 6-17

INSTRUCTION SET REFERENCE, W-Z

Other Exceptions
#UD CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11] = 0.
If LOCK prefix is used.

6-18 Vol. 2D XABORT—Transactional Abort

INSTRUCTION SET REFERENCE, W-Z

XACQUIRE/XRELEASE—Hardware Lock Elision Prefix Hints

Opcode/Instruction 64/32bit | CPUID Description

Mode Feature

Support Flag
F2 VIV HLET A hint used with an “XACQUIRE-enabled” instruction to start lock
XACQUIRE elision on the instruction memory operand address.
F3 VIV HLE A hint used with an “XRELEASE-enabled” instruction to end lock
XRELEASE elision on the instruction memory operand address.
NOTES:

1. Software is not required to check the HLE feature flag to use XACQUIRE or XRELEASE, as they are treated as reqular prefix if HLE
feature flag reports 0.

Description

The XACQUIRE prefix is a hint to start lock elision on the memory address specified by the instruction and the
XRELEASE prefix is a hint to end lock elision on the memory address specified by the instruction.

The XACQUIRE prefix hint can only be used with the following instructions (these instructions are also referred to

as XACQUIRE-enabled when used with the XACQUIRE prefix):

® Instructions with an explicit LOCK prefix (FOH) prepended to forms of the instruction where the destination
operand is a memory operand: ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCHGS8B, DEC, INC, NEG, NOT,
OR, SBB, SUB, XOR, XADD, and XCHG.

® The XCHG instruction either with or without the presence of the LOCK prefix.
The XRELEASE prefix hint can only be used with the following instructions (also referred to as XRELEASE-enabled
when used with the XRELEASE prefix):

® Instructions with an explicit LOCK prefix (FOH) prepended to forms of the instruction where the destination
operand is a memory operand: ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCHGS8B, DEC, INC, NEG, NOT,
OR, SBB, SUB, XOR, XADD, and XCHG.

® The XCHG instruction either with or without the presence of the LOCK prefix.

® The “*MOV mem, reg” (Opcode 88H/89H) and "MOV mem, imm” (Opcode C6H/C7H) instructions. In these
cases, the XRELEASE is recognized without the presence of the LOCK prefix.

The lock variables must satisfy the guidelines described in Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, Section 16.3.3, for elision to be successful, otherwise an HLE abort may be signaled.

If an encoded byte sequence that meets XACQUIRE/XRELEASE requirements includes both prefixes, then the HLE
semantic is determined by the prefix byte that is placed closest to the instruction opcode. For example, an F3F2C6
will not be treated as a XRELEASE-enabled instruction since the F2H (XACQUIRE) is closest to the instruction
opcode C6. Similarly, an F2F3F0 prefixed instruction will be treated as a XRELEASE-enabled instruction since F3H
(XRELEASE) is closest to the instruction opcode.

XACQUIRE/XRELEASE—Hardware Lock Elision Prefix Hints Vol.2D 6-19

INSTRUCTION SET REFERENCE, W-Z

Intel 64 and IA-32 Compatibility
The effect of the XACQUIRE/XRELEASE prefix hint is the same in nhon-64-bit modes and in 64-bit mode.

For instructions that do not support the XACQUIRE hint, the presence of the F2H prefix behaves the same way as
prior hardware, according to

® REPNE/REPNZ semantics for string instructions,

® Serve as SIMD prefix for legacy SIMD instructions operating on XMM register
®* Cause #UD if prepending the VEX prefix.

® Undefined for non-string instructions or other situations.

For instructions that do not support the XRELEASE hint, the presence of the F3H prefix behaves the same way as in
prior hardware, according to

® REP/REPE/REPZ semantics for string instructions,

® Serve as SIMD prefix for legacy SIMD instructions operating on XMM register
® Cause #UD if prepending the VEX prefix.

®* Undefined for non-string instructions or other situations.

Operation

XACQUIRE
IF XACQUIRE-enabled instruction
THEN
IF (HLE_NEST_COUNT < MAX_HLE_NEST_COUNT) THEN
HLE_NEST_COUNT++
IF (HLE_NEST_COUNT = 1) THEN
HLE_ACTIVE =1
IF 64-bit mode
THEN
restartRIP := instruction pointer of the XACQUIRE-enabled instruction
ELSE
restart€lP := instruction pointer of the XACQUIRE-enabled instruction
Fl;
Enter HLE Execution (* record register state, start tracking memory state *)
Fl; (* HLE_NEST_COUNT = 1%)
IF ElisionBufferAvailable
THEN
Allocate elision buffer
Record address and data for forwarding and commit checking
Perform elision
ELSE
Perform lock acquire operation transactionally but without elision
Fl;
ELSE (* HLE_NEST_COUNT = MAX_HLE_NEST_COUNT*)
GOTO HLE_ABORT_PROCESSING
Fl;
ELSE
Treat instruction as non-XACQUIRE F2H prefixed legacy instruction
Fl;

6-20 Vol. 2D XACQUIRE/XRELEASE—Hardware Lock Elision Prefix Hints

XRELEASE
IF XRELEASE-enabled instruction
THEN
IF (HLE_NEST_COUNT > 0)
THEN
HLE_NEST_COUNT--
IF lock address matches in elision buffer THEN
IF lock satisfies address and value requirements THEN
Deallocate elision buffer
ELSE
GOTO HLE_ABORT_PROCESSING
Fl;
Fl;
IF (HLE_NEST_COUNT = 0)
THEN
IF NoAllocatedElisionBuffer
THEN
Try to commit transactional execution
IF fail to commit transactional execution
THEN
GOTO HLE_ABORT_PROCESSING;
ELSE (* commit success *)
HLE_ACTIVE:=0
Fl;
ELSE
GOTO HLE_ABORT_PROCESSING
Fl;
Fl;
FI; (* HLE_NEST_COUNT >0 *)
ELSE
Treat instruction as non-XRELEASE F3H prefixed legacy instruction
Fl;

(* For any HLE abort condition encountered during HLE execution *)
HLE_ABORT_PROCESSING:
HLE_ACTIVE:=0
HLE_NEST_COUNT :=0
Restore architectural register state
Discard memory updates performed in transaction
Free any allocated lock elision buffers
IF 64-bit mode
THEN
RIP := restartRIP
ELSE
EIP := restart€EIP
Fl;
Execute and retire instruction at RIP (or EIP) and ignore any HLE hint
END

XACQUIRE/XRELEASE—Hardware Lock Elision Prefix Hints

INSTRUCTION SET REFERENCE, W-Z

Vol.2D 6-21

INSTRUCTION SET REFERENCE, W-Z

SIMD Floating-Point Exceptions
None.

Other Exceptions
#GP(0) If the use of prefix causes instruction length to exceed 15 bytes.

6-22 Vol.2D XACQUIRE/XRELEASE—Hardware Lock Elision Prefix Hints

XADD—Exchange and Add

INSTRUCTION SET REFERENCE, W-Z

Opcode Instruction Op/ |64-Bit Compat/ |Description

En |Mode Leg Mode
OFCO/r XADD r/m8, r8 MR | Valid Valid Exchange r8 and r/m8; load sum into r/m8.
REX + OF CO /r XADD r/m8*, r8* MR | Valid N.E. Exchange r8 and r/m8; load sum into r/m8.
OFC1/r XADD r/m16, 116 MR | Valid Valid Exchange r16 and r/m16; load sum into r/m16.
OFC1/r XADD r/m32,r32 MR | Valid Valid Exchange r32 and r/m32; load sum into r/m32.
REXW +OF C1 /r XADD r/m64, r64 MR | Valid N.E. Exchange r64 and r/m64; load sum into r/m64.
NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
MR ModRM:r/m (r, w) ModRM:reg (r, w) N/A N/A
Description

Exchanges the first operand (destination operand) with the second operand (source operand), then loads the sum
of the two values into the destination operand. The destination operand can be a register or a memory location; the
source operand is a register.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See
the summary chart at the beginning of this section for encoding data and limits.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

IA-32 Architecture Compatibility

IA-32 processors earlier than the Intel486 processor do not recognize this instruction. If this instruction is used,
you should provide an equivalent code sequence that runs on earlier processors.

Operation

TEMP := SRC + DEST;
SRC := DEST;
DEST := TEMP;

Flags Affected

The CF, PF, AF, SF, ZF, and OF flags are set according to the result of the addition, which is stored in the destination
operand.

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory operand.

XADD—Exchange and Add Vol.2D 6-23

INSTRUCTION SET REFERENCE, W-Z

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory operand.

6-24 Vol. 2D XADD—Exchange and Add

XBEGIN—Transactional Begin

INSTRUCTION SET REFERENCE, W-Z

Opcode/Instruction Op/ |64/32bit |CPUID Description
En Mode Feature
Support | Flag

C7 F8 A VIV RTM Specifies the start of an RTM region. Provides a 16-bit relative offset
XBECGIN rel16 to compute the address of the fallback instruction address at which

execution resumes following an RTM abort.
C7 F8 A VIV RTM Specifies the start of an RTM region. Provides a 32-bit relative offset
XBEGIN rel32 to compute the address of the fallback instruction address at which

execution resumes following an RTM abort.

Instruction Operand Encoding
Op/En Operand 1 Operand2 Operand3 Operand4
A Offset N/A N/A N/A

Description

The XBEGIN instruction specifies the start of an RTM code region. If the logical processor was not already in trans-
actional execution, then the XBEGIN instruction causes the logical processor to transition into transactional execu-
tion. The XBEGIN instruction that transitions the logical processor into transactional execution is referred to as the
outermost XBEGIN instruction. The instruction also specifies a relative offset to compute the address of the fallback
code path following a transactional abort. (Use of the 16-bit operand size does not cause this address to be trun-

cated to 16 bits, unlike a near jump to a relative offset.)

On an RTM abort, the logical processor discards all architectural register and memory updates performed during
the RTM execution and restores architectural state to that corresponding to the outermost XBEGIN instruction. The
fallback address following an abort is computed from the outermost XBEGIN instruction.

Execution of XBEGIN while in a suspend read address tracking region causes a transactional abort.

Operation
XBEGIN

IF RTM_NEST_COUNT < MAX_RTM_NEST_COUNT AND SUSLDTRK_ACTIVE =0

THEN
RTM_NEST_COUNT++
IF RTM_NEST_COUNT =1 THEN
IF 64-bit Mode
THEN
IF OperandSize = 16

THEN fallbackRIP := RIP + SignExtend64(rel16);
ELSE fallbackRIP := RIP + SignExtend64(rel32);

Fl;
IF fallbackRIP is not canonical
THEN #GP(0);
Fl;
ELSE

IF OperandSize = 16
THEN fallback€IP := EIP + SignExtend32(rel16);
ELSE fallbackEIP := EIP + rel32;

Fl;

IF fallback€EIP outside code segment limit
THEN #GP(0);

Fl;

Fl;

XBEGIN—Transactional Begin

Vol.2D 6-25

INSTRUCTION SET REFERENCE, W-Z

RTM_ACTIVE = 1
Enter RTM Execution (* record register state, start tracking memory state*)
Fl; (* RTM_NEST_COUNT =1 %)
ELSE (* RTM_NEST_COUNT = MAX_RTM_NEST_COUNT OR SUSLDTRK_ACTIVE =1 *)
GOTO RTM_ABORT_PROCESSING
Fl;

(* For any RTM abort condition encountered during RTM execution *)
RTM_ABORT_PROCESSING:
Restore architectural register state
Discard memory updates performed in transaction
Update EAX with status
RTM_NEST_COUNT =0
RTM_ACTIVE:=0
SUSLDTRK_ACTIVE =0
IF 64-bit mode
THEN
RIP := fallbackRIP
ELSE
EIP := fallbackEIP
FI;
END

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent
XBEGIN unsigned int _xbegin(void);

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#UD CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11]=0.
If LOCK prefix is used.
#GP(0) If the fallback address is outside the CS segment.

Real-Address Mode Exceptions

#GP(0) If the fallback address is outside the address space 0000H and FFFFH.

#UD CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11]=0.
If LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If the fallback address is outside the address space 0000H and FFFFH.

#UD CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11]=0.
If LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

6-26 Vol.2D

XBEGIN—Transactional Begin

INSTRUCTION SET REFERENCE, W-Z

64-bit Mode Exceptions

#UD CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11] = 0.
If LOCK prefix is used.
#GP(0) If the fallback address is non-canonical.

XBEGIN—Transactional Begin Vol.2D 6-27

INSTRUCTION SET REFERENCE, W-Z

XCHG—Exchange Register/Memory With Register

Opcode Instruction Op/ | 64-Bit Compat/ |Description
En |Mode Leg Mode

90+rw XCHG AX, r16 0 Valid Valid Exchange r16 with AX.

90+rw XCHG r16, AX 0 Valid Valid Exchange AX with r16.

90+rd XCHG EAX, r32 0 Valid Valid Exchange r32 with EAX.

REX.W + 90+rd XCHG RAX, r64 0 Valid N.E. Exchange r64 with RAX.

90+rd XCHG r32, EAX 0 Valid Valid Exchange EAX with r32.

REX.W + 90+rd XCHG r64, RAX 0 Valid N.E. Exchange RAX with r64.

86 /r XCHG r/m8, r8 MR | Valid Valid Exchange r8 (byte register) with byte from
r/m8.

REX +86 /r XCHG r/m8*, r8* MR | Valid N.E. Exchange r8 (byte register) with byte from
r/m8.

86 /r XCHG r8, r/m8 RM | Valid Valid Exchange byte from r/m8 with r8 (byte
register).

REX+86/r XCHG r8*, r/m8* RM | Valid N.E. Exchange byte from r/m8 with r8 (byte
register).

87 Ir XCHGr/m16,r16 MR |Valid Valid Exchange r16 with word from r/m16.

871r XCHGr16,r/m16 RM | Valid Valid Exchange word from r/m16 with r16.

87 Ir XCHG r/m32,r32 MR |Valid Valid Exchange r32 with doubleword from r/m32.

REXW + 87 /r XCHG r/m64, ré4 MR | Valid N.E. Exchange r64 with quadword from r/m64.

87 Ir XCHG r32, r/m32 RM | Valid Valid Exchange doubleword from r/m32 with r32.

REXW +87 /r XCHG r64, r/m64 RM | Valid N.E. Exchange quadword from r/m64 with r64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
0 AX/EAX/RAX (r, w) opcode + rd (r, w) N/A N/A
0 opcode + rd (r, w) AX/EAX/RAX (r, w) N/A N/A
MR ModRM:r/m (r, w) ModRM:reg (r) N/A N/A
RM ModRM:reg (w) ModRM:r/m (r) N/A N/A
Description

Exchanges the contents of the destination (first) and source (second) operands. The operands can be two general-
purpose registers or a register and a memory location. If a memory operand is referenced, the processor’s locking
protocol is automatically implemented for the duration of the exchange operation, regardless of the presence or
absence of the LOCK prefix or of the value of the IOPL. (See the LOCK prefix description in this chapter for more
information on the locking protocol.)

This instruction is useful for implementing semaphores or similar data structures for process synchronization. (See
“Bus Locking” in Chapter 9 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for
more information on bus locking.)

The XCHG instruction can also be used instead of the BSWAP instruction for 16-bit operands.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See
the summary chart at the beginning of this section for encoding data and limits.

6-28 Vol. 2D XCHG—Exchange Register/Memory With Register

INSTRUCTION SET REFERENCE, W-Z

NOTE

XCHG (E)AX, (E)AX (encoded instruction byte is 90H) is an alias for NOP regardless of data size
prefixes, including REX.W.

Operation

TEMP := DEST,
DEST := SRC;
SRC:= TEMP;

Flags Affected
None.

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

#UD

If either operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

If a memory operand effective address is outside the SS segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions

#GP
#SS
#UD

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS segment limit.
If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is made.

If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0)
#GP(0)
#PF(fault-code)
#AC(0)

#UD

If a memory address referencing the SS segment is in a non-canonical form.
If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

If the LOCK prefix is used but the destination is not a memory operand.

XCHG—Exchange Register/Memory With Register Vol.2D 6-29

INSTRUCTION SET REFERENCE, W-Z

XEND—Transactional End

Opcode/Instruction Op/ |64/32bit |CPUID Description
En Mode Feature
Support | Flag
NP OF 01 D5 A VIV RTM Specifies the end of an RTM code region.
XEND
Instruction Operand Encoding
Op/En Operand 1 Operand2 Operand3 Operand4
A N/A N/A N/A N/A
Description

The instruction marks the end of an RTM code region. If this corresponds to the outermost scope (that is, including
this XEND instruction, the number of XBEGIN instructions is the same as number of XEND instructions), the logical
processor will attempt to commit the logical processor state atomically. If the commit fails, the logical processor will
rollback all architectural register and memory updates performed during the RTM execution. The logical processor
will resume execution at the fallback address computed from the outermost XBEGIN instruction. The EAX register

is updated to reflect RTM abort information.

Execution of XEND outside a transactional region causes a general-protection exception (#GP). Execution of XEND
while in a suspend read address tracking region causes a transactional abort.

Operation

XEND
IF (RTM_ACTIVE = 0)
SIGNAL #GP

ELSE

THEN

IF SUSLDTRK_ACTIVE =1
THEN GOTO RTM_ABORT_PROCESSING;

FI;

RTM_NEST_COUNT--

IF (RTM_NEST_COUNT = 0) THEN
Try to commit transaction
IF fail to commit transactional execution

THEN

GOTO RTM_ABORT_PROCESSING;
ELSE (* commit success *)

RTM_ACTIVE:=0

Fl;
FI;
Fl;

(* For any RTM abort condition encountered during RTM execution *)
RTM_ABORT_PROCESSING:

Restore architectural register state

Discard memory updates performed in transaction

Update EAX with

status

RTM_NEST_COUNT :=0

RTM_ACTIVE:=0

SUSLDTRK_ACTIVE:=0

IF 64-bit Mode
THEN

6-30 Vol.2D

XEND—Transactional End

INSTRUCTION SET REFERENCE, W-Z

RIP ;= fallbackRIP
ELSE
EIP ;= fallback€eIP
Fl;
END

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent
XEND void _xend(void);

SIMD Floating-Point Exceptions
None.

Other Exceptions

#UD CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11] = 0.
If LOCK prefix is used.
#GP(0) If RTM_ACTIVE = 0.

XEND—Transactional End Vol.2D 6-31

INSTRUCTION SET REFERENCE, W-Z

XGETBV—Get Value of Extended Control Register

Opcode Instruction Op/ |64-Bit Compat/ |Description
En |Mode Leg Mode
NP OF 01 DO XGETBV Z0 |Valid Valid Reads an XCR specified by ECX into EDX:EAX.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
Z0 N/A N/A N/A N/A
Description

Reads the contents of the extended control register (XCR) specified in the ECX register into registers EDX:EAX. (On
processors that support the Intel 64 architecture, the high-order 32 bits of RCX are ignored.) The EDX register is
loaded with the high-order 32 bits of the XCR and the EAX register is loaded with the low-order 32 bits. (On proces-
sors that support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are cleared.) If fewer
than 64 bits are implemented in the XCR being read, the values returned to EDX:EAX in unimplemented bit loca-
tions are undefined.

XCRO is supported on any processor that supports the XGETBV instruction. If
CPUID.(EAX=0DH,ECX=1):EAX.XG1[bit 2] = 1, executing XGETBV with ECX = 1 returns in EDX:EAX the logical-
AND of XCRO and the current value of the XINUSE state-component bitmap. This allows software to discover the
state of the init optimization used by XSAVEOPT and XSAVES. See Chapter 13, “"Managing State Using the XSAVE
Feature Set,” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

Use of any other value for ECX results in a general-protection (#GP) exception.

Operation
EDX:EAX := XCR[ECX];

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent
XGETBV unsigned __int64 _xgetbv(unsigned int);

Protected Mode Exceptions

#GP(0) If an invalid XCR is specified in ECX (includes ECX = 1 if
CPUID.(EAX=0DH,ECX=1):EAX.XG1[bit 2] = 0).
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.0SXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0) If an invalid XCR is specified in ECX (includes ECX = 1 if
CPUID.(EAX=0DH,ECX=1):EAX.XG1[bit 2] = 0).
#UD If CPUID.O1H:ECX.XSAVE[bit 26] = 0.

If CR4.0SXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

6-32 Vol. 2D XGETBV—Get Value of Extended Control Register

INSTRUCTION SET REFERENCE, W-Z

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

XGETBV—Get Value of Extended Control Register Vol.2D 6-33

INSTRUCTION SET REFERENCE, W-Z

XLAT/XLATB—Table Look-up Translation

Opcode Instruction Op/ |64-Bit Compat/ |Description
En |Mode Leg Mode
D7 XLAT m8 Z0 |Valid Valid Set AL to memory byte DS:[(E)BX + unsigned
AL].
D7 XLATB Z0 |Valid Valid Set AL to memory byte DS:[(E)BX + unsigned
ALl
REX.W + D7 XLATB Z0 | Valid N.E. Set AL to memory byte [RBX + unsigned AL].

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
Z0 N/A N/A N/A N/A
Description

Locates a byte entry in a table in memory, using the contents of the AL register as a table index, then copies the
contents of the table entry back into the AL register. The index in the AL register is treated as an unsigned integer.
The XLAT and XLATB instructions get the base address of the table in memory from either the DS:EBX or the DS:BX
registers (depending on the address-size attribute of the instruction, 32 or 16, respectively). (The DS segment may
be overridden with a segment override prefix.)

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operand” form and the “no-
operand” form. The explicit-operand form (specified with the XLAT mnemonic) allows the base address of the table
to be specified explicitly with a symbol. This explicit-operands form is provided to allow documentation; however,
note that the documentation provided by this form can be misleading. That is, the symbol does not have to specify
the correct base address. The base address is always specified by the DS:(E)BX registers, which must be loaded
correctly before the XLAT instruction is executed.

The no-operands form (XLATB) provides a “short form” of the XLAT instructions. Here also the processor assumes
that the DS:(E)BX registers contain the base address of the table.

In 64-bit mode, operation is similar to that in legacy or compatibility mode. AL is used to specify the table index
(the operand size is fixed at 8 bits). RBX, however, is used to specify the table’s base address. See the summary
chart at the beginning of this section for encoding data and limits.

Operation

IF AddressSize = 16
THEN
AL := (DS:BX + ZeroExtend(AL));
ELSE IF (AddressSize = 32)
AL := (DS:EBX + ZeroExtend(AL)); FI;
ELSE (AddressSize = 64)
AL := (RBX + ZeroExtend(AL));
Fl;

Flags Affected
None.

6-34 Vol. 2D XLAT/XLATB—Table Look-up Translation

INSTRUCTION SET REFERENCE, W-Z

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#UD If the LOCK prefix is used.

XLAT/XLATB—Table Look-up Translation Vol.2D 6-35

INSTRUCTION SET REFERENCE, W-Z

XOR—Logical Exclusive OR

Opcode Instruction Op/ |64-Bit Compat/ |Description
En |Mode Leg Mode
34 ib XOR AL, imm8 I Valid Valid AL XOR imm8.
35iw XOR AX, imm16 I Valid Valid AX XOR imm16.
35id XOR EAX, imm32 | Valid Valid EAX XOR imm32.
REX.W + 35 id XOR RAX, imm32 I Valid N.E. RAX XOR imm32 (sign-extended).
80/6ib XOR r/m8, imm8 Ml | Valid Valid r/m8 XOR imm8.
REX+80/6ib XOR r/m8*, imm8 Ml | Valid N.E. r/m8 XOR imm8.
81/6iw XOR r/m16, imm16 Ml | Valid Valid r/m16 XOR imm16.
81/6id XOR r/m32, imm32 Ml | Valid Valid r/m32 XOR imm32.
REX.W +81 /6id XOR r/m64, imm32 Ml | Valid N.E. r/m64 XOR imm32 (sign-extended).
83/6ib XOR r/m16, imm8 Ml |Valid Valid r/m16 XOR imm8 (sign-extended).
83/6ib XOR r/m32, imm8 Ml |Valid Valid r/m32 XOR imm8 (sign-extended).
REXW +83/6ib XOR r/m64, imm8 Ml |Valid N.E. r/m64 XOR imm8 (sign-extended).
30/r XOR r/m8, r8 MR | Valid Valid r/m8 XOR r8.
REX +30/r XOR r/m8*, r8* MR | Valid N.E. r/m8 XOR r8.
31/r XOR r/m16,r16 MR | Valid Valid r/m16 XOR r16.
31/r XORr/m32,r32 MR | Valid Valid r/m32 XOR r32.
REXW + 31 /r XOR r/m64, r64 MR | Valid N.E. r/m64 XOR r64.
32/r XOR r8, r/m8 RM | Valid Valid r8 XOR r/m8.
REX+32/r XOR r8*, r/m8* RM | Valid N.E. r8 XOR r/m8.
33/r XORr16,r/m16 RM | Valid Valid r16 XOR r/m16.
33/r XOR 32, r/m32 RM | Valid Valid r32 XOR r/m32.
REXW + 33 /r XOR r64, r/m64 RM | Valid N.E. r64 XOR r/m64.
NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
[AL/AX/EAX/RAX imm8/16/32 N/A N/A
MI ModRM:r/m (r, w) imm8/16/32 N/A N/A
MR ModRM:r/m (r, w) ModRM:reg (r) N/A N/A
RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
Description

Performs a bitwise exclusive OR (XOR) operation on the destination (first) and source (second) operands and
stores the result in the destination operand location. The source operand can be an immediate, a register, or a
memory location; the destination operand can be a register or a memory location. (However, two memory oper-
ands cannot be used in one instruction.) Each bit of the result is 1 if the corresponding bits of the operands are
different; each bit is 0 if the corresponding bits are the same.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

6-36 Vol.2D XOR—Logical Exclusive OR

INSTRUCTION SET REFERENCE, W-Z

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). Using a
REX prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation
DEST := DEST XOR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The state of the AF flag is
undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory operand.

XOR—Logical Exclusive OR Vol.2D 6-37

INSTRUCTION SET REFERENCE, W-Z

XORPD—Bitwise Logical XOR of Packed Double Precision Floating-Point Values

Opcode/ Op/ |64/32bit |CPUID Description
Instruction En Mode Feature Flag
Support
66 OF 57/r A VIV SSE2 Return the bitwise logical XOR of packed double precision
XORPD xmm1, xmm2/m128 floating-point values in xmm1 and xmmZ2/mem.
VEX.128.66.0F.WIG 57 /r B VIV AVX Return the bitwise logical XOR of packed double precision
VXORPD xmm1,xmm2, xmm3/m128 floating-point values in xmm2 and xmm3/mem.
VEX.256.66.0F.WIG 57 /r B VIV AVX Return the bitwise logical XOR of packed double precision
VXORPD ymm1, ymmZ2, ymm3/m256 floating-point values in ymmZ2 and ymm3/mem.
EVEX.128.66.0F.W1 57 /r C VIV AVX512VL |Return the bitwise logical XOR of packed double precision
VXORPD xmm1 {k1}z}, xmm2, AVX512DQ | floating-point values in xmm2 and xmm3/m128/m64bcst
xmm3/m128/m64bcst subject to writemask k1.
EVEX.256.66.0F.W1 57 /r C VIV AVX512VL | Return the bitwise logical XOR of packed double precision
VXORPD ymm1 {k1}z}, ymm2, AVX512DQ | floating-point values in ymm2 and ymm3/m256/m64bcst
ymm3/m256/m64bcst subject to writemask k1.
EVEX.512.66.0F.W1 57 /r C VIV AVX512DQ |Return the bitwise logical XOR of packed double precision
VXORPD zmm1 {k1}z}, zmmz, floating-point values in zmm2 and zmm3/m512/m64bcst
zmm3/m512/m64bcst subject to writemask k1.
Instruction Operand Encoding
Op/€En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (1) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
Description

Performs a bitwise logical XOR of the two, four or eight packed double precision floating-point values from the first
source operand and the second source operand, and stores the result in the destination operand.

EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand can be a ZMM
register or a vector memory location. The destination operand is a ZMM register conditionally updated with write-
mask k1.

VEX.256 and EVEX.256 encoded versions: The first source operand is a YMM register. The second source operand
is a YMM register or a 256-bit memory location. The destination operand is a YMM register (conditionally updated
with writemask k1 in case of EVEX). The upper bits (MAXVL-1:256) of the corresponding ZMM register destination
are zeroed.

VEX.128 and EVEX.128 encoded versions: The first source operand is an XMM register. The second source operand
is an XMM register or 128-bit memory location. The destination operand is an XMM register (conditionally updated
with writemask k1 in case of EVEX). The upper bits (MAXVL-1:128) of the corresponding ZMM register destination
are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding
register destination are unmodified.

6-38 Vol. 2D XORPD—Bitwise Logical XOR of Packed Double Precision Floating-Point Values

Operation

VXORPD (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FORj:=0 TOKL-1
i=j*64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN DESTI[i+63:i] := SRC1[i+63:i] BITWISE XOR SRC2[63:0];
ELSE DEST[i+63:i] := SRC1[i+63:i] BITWISE XOR SRCZ[i+63:i];
Fl;
ELSE
IF *merging-masking* ; merging-masking
THEN *DESTI[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:]=0
Fl
Fl;
ENDFOR
DEST[MAXVL-1:VL]:=0

VXORPD (VEX.256 Encoded Version)

DEST[63:0] := SRC1[63:0] BITWISE XOR SRC2[63:0]
DEST[127:64] := SRC1[127:64] BITWISE XOR SRC2[127:64]
DEST[191:128] := SRC1[191:128] BITWISE XOR SRC2[191:128]
DEST[255:192] := SRC1[255:192] BITWISE XOR SRC2[255:192]
DEST[MAXVL-1:256]:= 0

VXORPD (VEX.128 Encoded Version)

DEST[63:0] := SRC1[63:0] BITWISE XOR SRC2[63:0]
DEST[127:64] := SRC1[127:64] BITWISE XOR SRC2[127:64]
DEST[MAXVL-1:128]:=0

XORPD (128-bit Legacy SSE Version)

DEST[63:0] := DEST[63:0] BITWISE XOR SRC[63:0]
DEST[127:64] := DEST[127:64] BITWISE XOR SRC[127:64]
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VXORPD _m512d _mm512_xor_pd (__m512d a, __m512d b);
VXORPD _m512d _mm512_mask_xor_pd (__m512d a, __mmask8 m,
VXORPD _m512d _mm512_maskz_xor_pd (__mmask8 m, __m512d a);
VXORPD _m256d _mm256_xor_pd (__m256d a, __m256d b);
VXORPD _m256d _mm256_mask_xor_pd (__m256d a, __mmask8 m,
VXORPD _m256d _mm256_maskz_xor_pd (__mmask8 m, __m256d a);
XORPD _m128d _mm_xor_pd (__m128d a, __m128d b);
VXORPD _m128d _mm_mask_xor_pd (__m128d a, __mmask8 m,
VXORPD _m128d _mm_maskz_xor_pd (__mmask8 m, __m128d a);

m512d b);

m256d b);

m128d b);

SIMD Floating-Point Exceptions
None.

XORPD—Bitwise Logical XOR of Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, W-Z

Vol.2D 6-39

INSTRUCTION SET REFERENCE, W-Z

Other Exceptions
Non-EVEX-encoded instructions, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-49, “Type E4 Class Exception Conditions.”

6-40 Vol. 2D XORPD—Bitwise Logical XOR of Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, W-Z

XORPS—Bitwise Logical XOR of Packed Single Precision Floating-Point Values

Opcode/ Op/ |64/32bit |CPUID Description
Instruction En Mode Feature Flag
Support
NP OF 57 /It A VIV SSE Return the bitwise logical XOR of packed single-
XORPS xmm1, xmm2/m128 precision floating-point values in xmm1 and
xmm2/mem.
VEX.128.0F.WIG 57 /r B VIV AVX Return the bitwise logical XOR of packed single-
VXORPS xmm1,xmmZ2, xmm3/m128 precision floating-point values in xmm2 and
xmm3/mem.
VEX.256.0F.WIG 57 /r B VIV AVX Return the bitwise logical XOR of packed single-
VXORPS ymm1, ymm2, ymm3/m256 precision floating-point values in ymm2 and
ymm3/mem.
EVEX.128.0F.WO0 57 /r C VIV AVX512VL | Return the bitwise logical XOR of packed single-
VXORPS xmm1 {k1¥z}, xmm2, AVX512DQ | precision floating-point values in xmm2 and
xmm3/m128/m32bcst xmm3/m128/m32bcst subject to writemask k1.
EVEX.256.0F.W0 57 /r C VIV AVX512VL | Return the bitwise logical XOR of packed single-
VXORPS ymm1 {k1¥z}, ymm2, AVX512DQ | precision floating-point values in ymm2 and
ymm3/m256/m32bcst ymm3/m256/m32bcst subject to writemask k1.
EVEX.512.0FW0 57 /r C VIV AVX512DQ |Return the bitwise logical XOR of packed single-
VXORPS zmm1 {k1}{z}, zmm2, precision floating-point values in zmmZ2 and
zmm3/m512/m32bcst zmm3/m512/m32bcst subject to writemask k1.
Instruction Operand Encoding
Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
B N/A ModRM:reg (w) VEX.vvwv (1) ModRM:r/m (r) N/A
C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
Description

Performs a bitwise logical XOR of the four, eight or sixteen packed single-precision floating-point values from the
first source operand and the second source operand, and stores the result in the destination operand

EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand can be a ZMM
register or a vector memory location. The destination operand is a ZMM register conditionally updated with write-
mask k1.

VEX.256 and EVEX.256 encoded versions: The first source operand is a YMM register. The second source operand
is @ YMM register or a 256-bit memory location. The destination operand is a YMM register (conditionally updated
with writemask k1 in case of EVEX). The upper bits (MAXVL-1:256) of the corresponding ZMM register destination
are zeroed.

VEX.128 and EVEX.128 encoded versions: The first source operand is an XMM register. The second source operand
is an XMM register or 128-bit memory location. The destination operand is an XMM register (conditionally updated
with writemask k1 in case of EVEX). The upper bits (MAXVL-1:128) of the corresponding ZMM register destination
are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding
register destination are unmodified.

XORPS—Bitwise Logical XOR of Packed Single Precision Floating-Point Values Vol.2D 6-41

INSTRUCTION SET REFERENCE, W-Z

Operation

VXORPS (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FORj:=0 TOKL-1
i=j*32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b == 1) AND (SRC2 *is memory*)

THEN DESTI[i+31:i] := SRC1[i+31:i] BITWISE XOR SRC2[31:0];
ELSE DEST[i+31:i] := SRC1[i+31:i] BITWISE XOR SRC2[i+31:i];

Fl;
ELSE
IF *merging-masking*
THEN *DESTIi+31:i] remains unchanged*
ELSE *zeroing-masking*
DEST[i+31:i]=0
Fl
Fl;
ENDFOR
DEST[MAXVL-1:VL]:= 0

VXORPS (VEX.256 Encoded Version)

DEST[31:0] := SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32] := SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64] := SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96] := SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[159:128] := SRC1[159:128] BITWISE XOR SRC2[159:128]
DEST[191:160] := SRC1[191:160] BITWISE XOR SRC2[191:160]
DEST[223:192] := SRC1[223:192] BITWISE XOR SRC2[223:192]

DEST[255:224] := SRC1[255:224] BITWISE XOR SRC2[255:224].

DEST[MAXVL-1:256] := 0

VXORPS (VEX.128 Encoded Version)

DEST[31:0] := SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32] := SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64] := SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96] := SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[MAXVL-1:128]:=0

XORPS (128-bit Legacy SSE Version)

DEST[31:0] := SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32] := SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64] := SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96] := SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[MAXVL-1:128] (Unmodified)

6-42 Vol.2D

; merging-masking

; zeroing-masking

XORPS—Bitwise Logical XOR of Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, W-Z

Intel C/C++ Compiler Intrinsic Equivalent

VXORPS _m512 _mm512_xor_ps (__m512a,__m512b);

VXORPS _m512 _mm512_mask_xor_ps (__m512 3, __mmask16 m, __m512 b);
VXORPS _m512 _mm512_maskz_xor_ps (__mmask16 m, __m512 a);

VXORPS __m256 _mm256_xor_ps (__m256 a, __m256 b);

VXORPS _m256 _mm256_mask_xor_ps (__m256 a, __mmask8 m, __m256 b);
VXORPS _m256 _mm256_maskz_xor_ps (__mmask8 m, __m256 a);

XORPS _m128 _mm_xor_ps (__m128a,_m128 b);

VXORPS _m128 _mm_mask_xor_ps (_m128 3, __mmask8 m, __m128b);
VXORPS _m128 _mm_maskz_xor_ps (__mmask8 m, __m128 a);

SIMD Floating-Point Exceptions
None.

Other Exceptions

Non-EVEX-encoded instructions, see Table 2-21, “Type 4 Class Exception Conditions.”

EVEX-encoded instructions, see Table 2-49, “"Type E4 Class Exception Conditions.”

XORPS—Bitwise Logical XOR of Packed Single Precision Floating-Point Values

Vol.2D 6-43

INSTRUCTION SET REFERENCE, W-Z

XRESLDTRK—Resume Tracking Load Addresses

Opcode/ Op/ 64/32 bit | CPUID Feature Description
Instruction En Mode Flag
Support
F2 OF 01 €9 20 VIV TSXLDTRK Specifies the end of an Intel TSX suspend read
XRESLDTRK address tracking region.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
20 N/A N/A N/A N/A N/A
Description

The instruction marks the end of an Intel TSX (RTM) suspend load address tracking region. If the instruction is used
inside a suspend load address tracking region it will end the suspend region and all following load addresses will be
added to the transaction read set. If this instruction is used inside an active transaction but not in a suspend region
it will cause transaction abort.

If the instruction is used outside of a transactional region it behaves like a NOP.

Chapter 16, “Programming with Intel® Transactional Synchronization Extensions,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1 provides additional information on Intel® TSX Suspend Load
Address Tracking.

Operation

XRESLDTRK
IFRTM_ACTIVE = 1:
IF SUSLDTRK_ACTIVE = 1:
SUSLDTRK_ACTIVE:=0
ELSE:
RTM_ABORT
ELSE:
NOP

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent
XRESLDTRK void _xresldtrk(void);

SIMD Floating-Point Exceptions
None.

Other Exceptions
#UD If CPUID.(EAX=7, ECX=0):EDX.TSXLDTRK[bit 16] = 0.
If the LOCK prefix is used.

6-44 Vol. 2D XRESLDTRK—Resume Tracking Load Addresses

INSTRUCTION SET REFERENCE, W-Z

XRSTOR—Restore Processor Extended States

Opcode / Op/ |64/32 bit |CPUID Description
Instruction En Mode Feature

Support | Flag
NP OF AE /5 M VIV XSAVE Restore state components specified by EDX:EAX from
XRSTOR mem mem.
NP REX.W + OF AE /5 M V/IN.E. XSAVE Restore state components specified by EDX:EAX from
XRSTOR64 mem mem.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
M ModRM:r/m (r) N/A N/A N/A
Description

Performs a full or partial restore of processor state components from the XSAVE area located at the memory
address specified by the source operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask.
The specific state components restored correspond to the bits set in the requested-feature bitmap (RFBM), which
is the logical-AND of EDX:EAX and XCRO.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1. Like FXRSTOR and FXSAVE, the memory format used for x87 state depends
on a REX.W prefix; see Section 13.5.1, "x87 State” of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1.

Section 13.8, “Operation of XRSTOR,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
1 provides a detailed description of the operation of the XRSTOR instruction. The following items provide a high-
level outline:

®* Execution of XRSTOR may take one of two forms: standard and compacted. Bit 63 of the XCOMP_BYV field in the
XSAVE header determines which form is used: value 0 specifies the standard form, while value 1 specifies the
compacted form.

* If RFBM[/] = 0, XRSTOR does not update state component /.1

* IfRFBM[/] = 1 and bit /i is clear in the XSTATE_BYV field in the XSAVE header, XRSTOR initializes state
component /.

* IfRFBM[/] = 1 and XSTATE_BV[/] = 1, XRSTOR loads state component j from the XSAVE area.

®* The standard form of XRSTOR treats MXCSR (which is part of state component 1 — SSE) differently from the
XMM registers. If either form attempts to load MXCSR with an illegal value, a general-protection exception
(#GP) occurs.

® XRSTOR loads the internal value XRSTOR_INFO, which may be used to optimize a subsequent execution of
XSAVEOPT or XSAVES.

* Immediately following an execution of XRSTOR, the processor tracks as in-use (not in initial configuration) any
state component i/ for which RFBM[/] = 1 and XSTATE_BV[/] = 1; it tracks as modified any state component
i for which RFBM[/] = 0.

Use of a source operand not aligned to 64-byte boundary (for 64-bit and 32-bit modes) results in a general-protec-
tion (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

See Section 13.6, “Processor Tracking of XSAVE-Managed State,” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1 for discussion of the bitmaps XINUSE and XMODIFIED and of the quantity
XRSTOR_INFO.

1. There is an exception if RFBM[1] = 0 and RFBM[2] = 1. In this case, the standard form of XRSTOR will load MXCSR from memory,
even though MXCSR is part of state component 1 — SSE. The compacted form of XRSTOR does not make this exception.

XRSTOR—Restore Processor Extended States Vol.2D 6-45

INSTRUCTION SET REFERENCE, W-Z

Operation

RFBM := XCRO AND EDX:EAX; /* bitwise logical AND */
COMPMASK := XCOMP_BV field from XSAVE header;
RSTORMASK := XSTATE_BV field from XSAVE header;

IF COMPMASK[63] =0
THEN
/* Standard form of XRSTOR */
TO_BE_RESTORED := RFBM AND RSTORMASK;
TO_BE_INITIALIZED := RFBM AND NOT RSTORMASK;

IF TO_BE_RESTORED[O] = 1
THEN
XINUSE[O] = 1;
load x87 state from legacy region of XSAVE areg;
ELSIF TO_BE_INITIALIZED[O] = 1
THEN
XINUSE[O] := O;
initialize x87 state;
Fl;

IFRFBM[1]=1 ORRFBM[2] = 1
THEN load MXCSR from legacy region of XSAVE areg;
Fl;

IF TO_BE_RESTORED[1] =1
THEN
XINUSE[1]:=1;
load XMM registers from legacy region of XSAVE area; // this step does not load MXCSR
ELSIF TO_BE_INITIALIZED[1] = 1
THEN
XINUSE[1]:=0;
set all XMM registers to 0; // this step does not initialize MXCSR
Fl;

FORi:=2T0O62
IF TO_BE_RESTOREDJi] = 1
THEN
XINUSE[i] = 1;
load XSAVE state component i at offset n from base of XSAVE area;
// n enumerated by CPUID(EAX=0DH,ECX=i).EBX)
ELSIF TO_BE_INITIALIZED[i] = 1
THEN
XINUSE[i] := 0;
initialize XSAVE state component i;
Fl;
ENDFOR;

ELSE
/* Compacted form of XRSTOR */
IF CPUID.(EAX=0DH,ECX=1).EAX.XSAVEC[bit 11=0
THEN /* compacted form not supported */
#GP(0);
Fl;

6-46 Vol. 2D XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, W-Z

FORMAT = COMPMASK AND 7FFFFFFF_FFFFFFFFH;
RESTORE_FEATURES = FORMAT AND RFBM;

TO_BE_RESTORED := RESTORE_FEATURES AND RSTORMASK;
FORCE_INIT := RFBM AND NOT FORMAT;

TO_BE_INITIALIZED = (RFBM AND NOT RSTORMASK) OR FORCE_INIT;

IF TO_BE_RESTORED[O] = 1
THEN
XINUSE[O] := 1;
load x87 state from legacy region of XSAVE areg;
ELSIF TO_BE_INITIALIZED[O] = 1
THEN
XINUSE[O] := O;
initialize x87 state;
Fl;

IF TO_BE_RESTORED[1] =1
THEN
XINUSE[1]:=1;
load SSE state from legacy region of XSAVE area; // this step loads the XMM registers and MXCSR
ELSIF TO_BE_INITIALIZED[1] = 1

THEN
set all XMM registers to 0;
XINUSE[1]:=0;
MXCSR := 1F80H;
Fl;
NEXT_FEATURE_OFFSET = 576; // Legacy area and XSAVE header consume 576 bytes
FORi:=2TO62
IF FORMATI[i] =1
THEN
IF TO_BE_RESTORED[i]1 =1
THEN
XINUSE[i]:=1;
load XSAVE state component i at offset NEXT_FEATURE_OFFSET from base of XSAVE area;
Fl;
NEXT_FEATURE_OFFSET = NEXT_FEATURE_OFFSET + n (n enumerated by CPUID(EAX=0DH,ECX=i).EAX);
Fl;
IF TO_BE_INITIALIZED[i] = 1
THEN
XINUSE[i] := 0;
initialize XSAVE state component i;
Fl;
ENDFOR;

Fl;
XMODIFIED := NOT RFBM;

IF in VMX non-root operation
THEN VMXNR := 1;
ELSE VMXNR := 0;
Fl;
LAXA := linear address of XSAVE aregq;

XRSTOR—Restore Processor Extended States

Vol.2D 6-47

INSTRUCTION SET REFERENCE, W-Z

XRSTOR_INFO := (CPLVMXNR,LAXA,COMPMASK);

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XRSTOR void _xrstor(void *, unsigned __int64);
XRSTOR void _xrstor64(void *, unsigned __int64);

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

#AC

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If bit 63 of the XCOMP_BYV field of the XSAVE header is 1 and
CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.

If the standard form is executed and a bit in XCRO is 0 and the corresponding bit in the
XSTATE_BYV field of the XSAVE header is 1.

If the standard form is executed and bytes 23:8 of the XSAVE header are not all zero.

If the compacted form is executed and a bit in XCRO is 0 and the corresponding bit in the
XCOMP_BYV field of the XSAVE header is 1.

If the compacted form is executed and a bit in the XCOMP_BYV field in the XSAVE header is 0
and the corresponding bit in the XSTATE_BYV field is 1.

If the compacted form is executed and bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

If a memory operand effective address is outside the SS segment limit.

If a page fault occurs.

If CRO.TS[bit 3] = 1.

If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.0SXSAVE[bit 18] = 0.

If the LOCK prefix is used.

If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

Real-Address Mode Exceptions

#GP

6-48 Vol.2D

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If any part of the operand lies outside the effective address space from 0 to FFFFH.

If bit 63 of the XCOMP_BYV field of the XSAVE header is 1 and
CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.

If the standard form is executed and a bit in XCRO is 0 and the corresponding bit in the
XSTATE_BYV field of the XSAVE header is 1.

If the standard form is executed and bytes 23:8 of the XSAVE header are not all zero.

If the compacted form is executed and a bit in XCRO is 0 and the corresponding bit in the
XCOMP_BYV field of the XSAVE header is 1.

XRSTOR—Restore Processor Extended States

#NM
#UD

INSTRUCTION SET REFERENCE, W-Z

If the compacted form is executed and a bit in the XCOMP_BYV field in the XSAVE header is 0
and the corresponding bit in the XSTATE_BV field is 1.

If the compacted form is executed and bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

If CRO.TS[bit 3] = 1.

If CPUID.0O1H:ECX.XSAVE[bit 26] = 0.

If CR4.0SXSAVE[bit 18] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

#AC

If a memory address is in a non-canonical form.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If bit 63 of the XCOMP_BYV field of the XSAVE header is 1 and
CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.

If the standard form is executed and a bit in XCRO is 0 and the corresponding bit in the
XSTATE_BYV field of the XSAVE header is 1.

If the standard form is executed and bytes 23:8 of the XSAVE header are not all zero.

If the compacted form is executed and a bit in XCRO is 0 and the corresponding bit in the
XCOMP_BYV field of the XSAVE header is 1.

If the compacted form is executed and a bit in the XCOMP_BYV field in the XSAVE header is 0
and the corresponding bit in the XSTATE_BYV field is 1.

If the compacted form is executed and bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

If a memory address referencing the SS segment is in a non-canonical form.

If a page fault occurs.

If CRO.TS[bit 3] = 1.

If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.0SXSAVE[bit 18] = 0.

If the LOCK prefix is used.

If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

XRSTOR—Restore Processor Extended States Vol.2D 6-49

INSTRUCTION SET REFERENCE, W-Z

XRSTORS—Restore Processor Extended States Supervisor

Opcode / Op/ |64/32 bit | CPUID Description
Instruction En |Mode Feature

Support | Flag
NP OF C7 /3 M VIV XSS Restore state components specified by EDX:EAX from
XRSTORS mem mem.
NP REX.W + OF C7 /3 M V/IN.E. XSS Restore state components specified by EDX:EAX from
XRSTORS64 mem mem.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
M ModRM:r/m (r) N/A N/A N/A
Description

Performs a full or partial restore of processor state components from the XSAVE area located at the memory
address specified by the source operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The
specific state components restored correspond to the bits set in the requested-feature bitmap (RFBM), which is the
logical-AND of EDX:EAX and the logical-OR of XCRO with the IA32_XSS MSR. XRSTORS may be executed only if
CPL = 0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1. Like FXRSTOR and FXSAVE, the memory format used for x87 state depends
on a REX.W prefix; see Section 13.5.1, “x87 State” of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1.

Section 13.12, “Operation of XRSTORS,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1 provides a detailed description of the operation of the XRSTOR instruction. The following items provide a
high-level outline:

® Execution of XRSTORS is similar to that of the compacted form of XRSTOR; XRSTORS cannot restore from an
XSAVE area in which the extended region is in the standard format (see Section 13.4.3, “"Extended Region of an
XSAVE Area” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).

®* XRSTORS differs from XRSTOR in that it can restore state components corresponding to bits set in the
IA32_XSS MSR.

* If RFBM[/] = 0, XRSTORS does not update state component i.

®* IfRFBMJ[/] = 1 and bit i is clear in the XSTATE_BYV field in the XSAVE header, XRSTORS initializes state
component /.

* If RFBM[/] = 1 and XSTATE_BV[i] = 1, XRSTORS loads state component j from the XSAVE area.
* If XRSTORS attempts to load MXCSR with an illegal value, a general-protection exception (#GP) occurs.

® XRSTORS loads the internal value XRSTOR_INFO, which may be used to optimize a subsequent execution of
XSAVEOPT or XSAVES.

®* Immediately following an execution of XRSTORS, the processor tracks as in-use (not in initial configuration)
any state component i for which RFBM[/] = 1 and XSTATE_BV[/] = 1; it tracks as modified any state component
i for which RFBM[/] = 0.

Use of a source operand not aligned to 64-byte boundary (for 64-bit and 32-bit modes) results in a general-protec-
tion (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

See Section 13.6, “Processor Tracking of XSAVE-Managed State,” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1 for discussion of the bitmaps XINUSE and XMODIFIED and of the quantity
XRSTOR_INFO.

6-50 Vol.2D XRSTORS—Restore Processor Extended States Supervisor

INSTRUCTION SET REFERENCE, W-Z

Operation

RFBM := (XCRO OR 1A32_XSS) AND EDX:EAX; /* bitwise logical OR and AND */
COMPMASK := XCOMP_BYV field from XSAVE header;
RSTORMASK := XSTATE_BV field from XSAVE header;

FORMAT = COMPMASK AND 7FFFFFFF_FFFFFFFFH;
RESTORE_FEATURES = FORMAT AND RFBM;

TO_BE_RESTORED := RESTORE_FEATURES AND RSTORMASK;
FORCE_INIT := RFBM AND NOT FORMAT;

TO_BE_INITIALIZED = (RFBM AND NOT RSTORMASK) OR FORCE_INIT;

IF TO_BE_RESTORED[O] = 1
THEN
XINUSE[O] := 1;
load x87 state from legacy region of XSAVE areg;
ELSIF TO_BE_INITIALIZED[O] = 1
THEN
XINUSE[O] := O;
initialize x87 state;
Fl;

IF TO_BE_RESTORED[1] = 1
THEN
XINUSE[1]:=1;
load SSE state from legacy region of XSAVE areg; // this step loads the XMM registers and MXCSR
ELSIF TO_BE_INITIALIZED[1] =1
THEN
set all XMM registers to O;
XINUSE[1]:=0;
MXCSR := 1F80H;
Fl;

NEXT_FEATURE_OFFSET = 576; /1 Legacy area and XSAVE header consume 576 bytes
FORi:=2T0O62
IF FORMATI[i] = 1
THEN
IF TO_BE_RESTOREDJi] = 1
THEN
XINUSE[i] = 1;
load XSAVE state component i at offset NEXT_FEATURE_OFFSET from base of XSAVE area;
Fl;

NEXT_FEATURE_OFFSET = NEXT_FEATURE_OFFSET + n (n enumerated by CPUID(EAX=0DH,ECX=i).EAX);

FI;
IF TO_BE_INITIALIZEDI[i] = 1
THEN
XINUSE[i] := 0;
initialize XSAVE state component i;
Fl;
ENDFOR;

XMODIFIED := NOT RFBM;

IF in VMX non-root operation
THEN VMXNR = 1;

XRSTORS—Restore Processor Extended States Supervisor

Vol.2D 6-51

INSTRUCTION SET REFERENCE, W-Z

ELSE VMXNR := 0;
Fl;

LAXA := linear address of XSAVE areg;
XRSTOR_INFO := {CPL,VMXNR,LAXA,COMPMASK);

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XRSTORS void _xrstors(void *, unsigned __int64);
XRSTORS64 void _xrstors64(void * , unsigned __int64);

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

If CPL > 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If bit 63 of the XCOMP_BYV field of the XSAVE header is 0.

If a bit in XCRO|IA32_XSS is 0 and the corresponding bit in the XCOMP_BV field of the XSAVE
header is 1.

If a bit in the XCOMP_BYV field in the XSAVE header is 0 and the corresponding bit in the
XSTATE_BYV field is 1.

If bytes 63:16 of the XSAVE header are not all zero.

If attempting to write any reserved bits of the MXCSR register with 1.

If a memory operand effective address is outside the SS segment limit.

If a page fault occurs.

If CRO.TS[bit 3] = 1.

If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.
If CR4.0SXSAVE[bit 18] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP

#NM
#UD

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If any part of the operand lies outside the effective address space from 0 to FFFFH.
If bit 63 of the XCOMP_BY field of the XSAVE header is 0.

If a bit in XCRO|IA32_XSS is 0 and the corresponding bit in the XCOMP_BYV field of the XSAVE
header is 1.

If a bit in the XCOMP_BYV field in the XSAVE header is 0 and the corresponding bit in the
XSTATE_BV field is 1.

If bytes 63:16 of the XSAVE header are not all zero.

If attempting to write any reserved bits of the MXCSR register with 1.

If CRO.TS[bit 3] = 1.

If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.
If CR4.0SXSAVE[bit 18] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

6-52 Vol.2D

XRSTORS—Restore Processor Extended States Supervisor

INSTRUCTION SET REFERENCE, W-Z

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If CPL > O.
If a memory address is in a non-canonical form.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If bit 63 of the XCOMP_BY field of the XSAVE header is 0.

If a bit in XCRO|IA32_XSS is 0 and the corresponding bit in the XCOMP_BYV field of the XSAVE
header is 1.

If a bit in the XCOMP_BYV field in the XSAVE header is 0 and the corresponding bit in the
XSTATE_BV field is 1.

If bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#SS(0) If a memory address referencing the SS segment is in a hon-canonical form.
#PF(fault-code) If a page fault occurs.

#NM If CRO.TS[bit 3] = 1.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.0SXSAVE[bit 18] = 0.
If the LOCK prefix is used.

XRSTORS—Restore Processor Extended States Supervisor Vol.2D 6-53

INSTRUCTION SET REFERENCE, W-Z

XSAVE—Save Processor Extended States

Opcode / Op/ |64/32bit |CPUID Description
Instruction En Mode Feature

Support | Flag
NP OF AE /4 M VIV XSAVE Save state components specified by EDX:EAX to mem.
XSAVE mem
NP REX.W + OF AE /4 M V/N.E. XSAVE Save state components specified by EDX:EAX to mem.
XSAVEG4 mem

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
M ModRM:r/m (r, w) N/A N/A N/A
Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address

specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The

specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), which is the
logical-AND of EDX:EAX and XCRO.

The format of the XSAVE area is detailed in Section 13.4, "XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1. Like FXRSTOR and FXSAVE, the memory format used for x87 state depends
on a REX.W prefix; see Section 13.5.1, “x87 State” of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1.

Section 13.7, “Operation of XSAVE,"” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1
provides a detailed description of the operation of the XSAVE instruction. The following items provide a high-level
outline:

* XSAVE saves state component i if and only if RFBM[i] = 1.1

® XSAVE does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy
Region of an XSAVE Area” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).

® XSAVE reads the XSTATE_BYV field of the XSAVE header (see Section 13.4.2, "XSAVE Header” of Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1) and writes a modified value back to memory as
follows. If RFBM[/] = 1, XSAVE writes XSTATE_BV[/] with the value of XINUSE[/]. (XINUSE is a bitmap by which
the processor tracks the status of various state components. See Section 13.6, “Processor Tracking of XSAVE-
Managed State” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.) If RFBM[/] = 0,
XSAVE writes XSTATE_BV[/] with the value that it read from memory (it does not modify the bit). XSAVE does
not write to any part of the XSAVE header other than the XSTATE_BYV field.

® XSAVE always uses the standard format of the extended region of the XSAVE area (see Section 13.4.3,
“Extended Region of an XSAVE Area” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) results in a
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

1. An exception is made for MXCSR and MXCSR_MASK, which belong to state component 1T — SSE. XSAVE saves these values to mem-
ory if either RFBM[1] or RFBM[2] is 1.

6-54 Vol. 2D XSAVE—Save Processor Extended States

INSTRUCTION SET REFERENCE, W-Z

Operation

RFBM := XCRO AND EDX:EAX; /* bitwise logical AND */
OLD_BV := XSTATE_BV field from XSAVE header;

IF RFBM[0] = 1
THEN store x87 state into legacy region of XSAVE area;
Fl;

IFRFBM[1] =1
THEN store XMM registers into legacy region of XSAVE area; // this step does not save MXCSR or MXCSR_MASK
Fl;

IFRFBM[1]1=1 ORRFBM[2] = 1
THEN store MXCSR and MXCSR_MASK into legacy region of XSAVE areg;
Fl;

FORi:=2T062
IF RFBM[i] = 1
THEN save XSAVE state component i at offset n from base of XSAVE area (n enumerated by CPUID(EAX=0DH,ECX=i).EBX);
Fl;
ENDFOR;

XSTATE_BV field in XSAVE header := (OLD_BV AND NOT RFBM) OR (XINUSE AND RFBM);

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVE void _xsave(void *, unsigned __int64);
XSAVE void _xsave64(void *, unsigned __int64);

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#NM If CRO.TS[bit 3] = 1.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.0SXSAVE[bit 18] = 0.
If the LOCK prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

XSAVE—Save Processor Extended States Vol.2D 6-55

INSTRUCTION SET REFERENCE, W-Z

Real-Address Mode Exceptions

#GP

#NM
#UD

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If any part of the operand lies outside the effective address space from 0 to FFFFH.
If CRO.TS[bit 3] = 1.

If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.0SXSAVE[bit 18] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0)
#SS(0)
#PF(fault-code)

#NM
#UD

#AC

6-56 Vol.2D

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If a memory address referencing the SS segment is in a non-canonical form.

If a page fault occurs.

If CRO.TS[bit 3] = 1.

If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.0SXSAVE[bit 18] = 0.

If the LOCK prefix is used.

If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

XSAVE—Save Processor Extended States

INSTRUCTION SET REFERENCE, W-Z

XSAVEC—Save Processor Extended States With Compaction

Opcode / Op/ |64/32 bit |CPUID Description
Instruction En Mode Feature

Support | Flag
NP OF C7 /4 M VIV XSAVEC | Save state components specified by EDX:EAX to mem with
XSAVEC mem compaction.
NP REXW + OF C7 /4 M V/N.E. XSAVEC | Save state components specified by EDX:EAX to mem with
XSAVEC64 mem compaction.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
M ModRM:r/m (w) N/A N/A N/A
Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address

specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The

specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), which is the
logical-AND of EDX:EAX and XCRO.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1. Like FXRSTOR and FXSAVE, the memory format used for x87 state depends
on a REX.W prefix; see Section 13.5.1, "x87 State” of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1.

Section 13.10, “Operation of XSAVEC,"” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
1 provides a detailed description of the operation of the XSAVEC instruction. The following items provide a high-
level outline:

®* Execution of XSAVEC is similar to that of XSAVE. XSAVEC differs from XSAVE in that it uses compaction and that
it may use the init optimization.

* XSAVEC saves state component i if and only if RFBM[i] = 1 and XINUSE[/] = 1.1 (XINUSE is a bitmap by which
the processor tracks the status of various state components. See Section 13.6, “Processor Tracking of XSAVE-
Managed State” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.)

® XSAVEC does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy
Region of an XSAVE Area” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).

* XSAVEC writes the logical AND of RFBM and XINUSE to the XSTATE_BYV field of the XSAVE header.23 (See
Section 13.4.2, “XSAVE Header” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.)
XSAVEC sets bit 63 of the XCOMP_BYV field and sets bits 62:0 of that field to RFBM[62:0]. XSAVEC does not
write to any parts of the XSAVE header other than the XSTATE_BV and XCOMP_BYV fields.

® XSAVEC always uses the compacted format of the extended region of the XSAVE area (see Section 13.4.3,
“Extended Region of an XSAVE Area” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) results in a
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

1. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be O even if MXCSR does not
have its initial value of 1F80H. In this case, XSAVEC saves SSE state as long as RFBM[1] = 1.

2. Unlike XSAVE and XSAVEOPT, XSAVEC clears bits in the XSTATE_BV field that correspond to bits that are clear in RFBM.

3. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be O even if MXCSR does not
have its initial value of 1FBO0H. In this case, XSAVEC sets XSTATE_BV[1] to 1 as long as RFBM[1] = 1.

XSAVEC—Save Processor Extended States With Compaction Vol.2D 6-57

INSTRUCTION SET REFERENCE, W-Z

Operation

RFBM := XCRO AND EDX:EAX; /* bitwise logical AND */
TO_BE_SAVED := RFBM AND XINUSE; /* bitwise logical AND */
If MXCSR # 1F80H AND RFBM[1]

TO_BE_SAVED[1]=1;
Fl;

IF TO_BE_SAVED[O] = 1
THEN store x87 state into legacy region of XSAVE area;
Fl;

IF TO_BE_SAVED[1]=1
THEN store SSE state into legacy region of XSAVE areg; // this step saves the XMM registers, MXCSR, and MXCSR_MASK
Fl;

NEXT_FEATURE_OFFSET = 576; /1 Legacy area and XSAVE header consume 576 bytes
FORi:=2T062
IF RFBM[i] = 1
THEN
IF TO_BE_SAVEDi]
THEN save XSAVE state component i at offset NEXT_FEATURE_OFFSET from base of XSAVE area;
Fl;
NEXT_FEATURE_OFFSET = NEXT_FEATURE_OFFSET + n (n enumerated by CPUID(EAX=0DH,ECX=i).EAX);
Fl;
ENDFOR;

XSTATE_BV field in XSAVE header := TO_BE_SAVED;
XCOMP_BV field in XSAVE header := RFBM OR 80000000_00000000H;

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVEC void _xsavec(void *, unsigned __int64);
XSAVEC64 void _xsavec64(void *, unsigned __int64);

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#NM If CRO.TS[bit 3] = 1.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.

If CR4.0SXSAVE[bit 18] = 0.
If the LOCK prefix is used.

6-58 Vol. 2D XSAVEC—Save Processor Extended States With Compaction

#AC

INSTRUCTION SET REFERENCE, W-Z

If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

Real-Address Mode Exceptions

#GP

#NM
#UD

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.

If CRO.TS[bit 3] = 1.

If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.
If CR4.0SXSAVE[bit 18] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

#AC

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If a memory address referencing the SS segment is in a non-canonical form.

If a page fault occurs.

If CRO.TS[bit 3] = 1.

If CPUID.O1H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.
If CR4.0SXSAVE[bit 18] = 0.

If the LOCK prefix is used.

If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

XSAVEC—Save Processor Extended States With Compaction Vol.2D 6-59

INSTRUCTION SET REFERENCE, W-Z

XSAVEOPT—Save Processor Extended States Optimized

Opcode/ Op/ |64/32 bit |CPUID Description
Instruction En |Mode Feature

Support | Flag
NP OF AE /6 M VIV XSAVEOPT | Save state components specified by EDX:EAX
XSAVEOPT mem to mem, optimizing if possible.
NP REX.W + OF AE /6 M VIV XSAVEOPT | Save state components specified by EDX:EAX
XSAVEOPT64 mem to mem, optimizing if possible.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
M ModRM:r/m (r, w) N/A N/A N/A
Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address

specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The

specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), which is the
logical-AND of EDX:EAX and XCRO.

The format of the XSAVE area is detailed in Section 13.4, "XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1. Like FXRSTOR and FXSAVE, the memory format used for x87 state depends
on a REX.W prefix; see Section 13.5.1, “x87 State” of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1.

Section 13.9, "Operation of XSAVEOPT,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
1 provides a detailed description of the operation of the XSAVEOPT instruction. The following items provide a high-
level outline:

® Execution of XSAVEOPT is similar to that of XSAVE. XSAVEOPT differs from XSAVE in that it may use the init and
modified optimizations. The performance of XSAVEOPT will be equal to or better than that of XSAVE.

* XSAVEOPT saves state component j only if RFBM[i] = 1 and XINUSE[/] = 1.1 (XINUSE is a bitmap by which the
processor tracks the status of various state components. See Section 13.6, “Processor Tracking of XSAVE-
Managed State,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.) Even if both
bits are 1, XSAVEOPT may optimize and not save state componentj if (1) state component i has not been
modified since the last execution of XRSTOR or XRSTORS; and (2) this execution of XSAVES corresponds to
that last execution of XRSTOR or XRSTORS as determined by the internal value XRSTOR_INFO (see the
Operation section below).

® XSAVEOPT does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy
Region of an XSAVE Area” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).

* XSAVEOPT reads the XSTATE_BV field of the XSAVE header (see Section 13.4.2, “"XSAVE Header,” of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1) and writes a modified value back to
memory as follows. If RFBM[/] = 1, XSAVEOPT writes XSTATE_BV[/] with the value of XINUSE[/]. If RFBM[/] =
0, XSAVEOPT writes XSTATE_BV[/] with the value that it read from memory (it does not modify the bit).
XSAVEOPT does not write to any part of the XSAVE header other than the XSTATE_BYV field.

® XSAVEOPT always uses the standard format of the extended region of the XSAVE area (see Section 13.4.3,
“Extended Region of an XSAVE Area” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) will result in a
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

1. There is an exception made for MXCSR and MXCSR_MASK, which belong to state component 1 — SSE. XSAVEOPT always saves
these to memory if RFBM[1] = 1 or RFBM[2] = 1, regardless of the value of XINUSE.

6-60 Vol. 2D XSAVEOPT—Save Processor Extended States Optimized

INSTRUCTION SET REFERENCE, W-Z

See Section 13.6, “Processor Tracking of XSAVE-Managed State,” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1 for discussion of the bitmap XMODIFIED and of the quantity XRSTOR_INFO.

Operation

RFBM := XCRO AND EDX:EAX; /* bitwise logical AND */
OLD_BV := XSTATE_BV field from XSAVE header;
TO_BE_SAVED := RFBM AND XINUSE;

IF in VMX non-root operation
THEN VMXNR := 1;
ELSE VMXNR :=0;

Fl;

LAXA := linear address of XSAVE areg;

IF XRSTOR_INFO = {CPL,VMXNR,LAXA,00000000_00000000H)
THEN TO_BE_SAVED := TO_BE_SAVED AND XMODIFIED;

Fl;

IF TO_BE_SAVED[0] = 1
THEN store x87 state into legacy region of XSAVE area;
Fl;

IF TO_BE_SAVED[1]
THEN store XMM registers into legacy region of XSAVE area; // this step does not save MXCSR or MXCSR_MASK
Fl;

IFRFBM[1]=1 or RFBM[2] = 1
THEN store MXCSR and MXCSR_MASK into legacy region of XSAVE areg;
Fl;

FORi:=2T062
IF TO_BE_SAVED[i] =1
THEN save XSAVE state component i at offset n from base of XSAVE area (n enumerated by CPUID(EAX=0DH,ECX=i):EBX);
Fl;
ENDFOR;

XSTATE_BV field in XSAVE header := (OLD_BV AND NOT RFBM) OR (XINUSE AND RFBM);

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVEOPT void _xsaveopt(void *, unsigned __int64);
XSAVEOPT void _xsaveopt64(void * , unsigned __int64);

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#NM If CRO.TS[bit 3] = 1.

XSAVEOPT—Save Processor Extended States Optimized Vol.2D 6-61

INSTRUCTION SET REFERENCE, W-Z

#UD

#AC

If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEOPT[bit 0] =
0

If CR4.0SXSAVE[bit 18] = 0.
If the LOCK prefix is used.

If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

Real-Address Mode Exceptions

#GP

#NM
#UD

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If any part of the operand lies outside the effective address space from 0 to FFFFH.
If CRO.TS[bit 3] = 1.

If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEOPT[bit 0] =
0.

If CR4.0SXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#55(0)
#GP(0)

#PF(fault-code)
#NM
#UD

#AC

6-62 Vol.2D

If a memory address referencing the SS segment is in a non-canonical form.

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If a page fault occurs.

If CRO.TS[bit 3] = 1.

If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEOPT[bit 0] =
0.

If CR4.0SXSAVE[bit 18] = 0.

If the LOCK prefix is used.

If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

XSAVEOPT—Save Processor Extended States Optimized

INSTRUCTION SET REFERENCE, W-Z

XSAVES—Save Processor Extended States Supervisor

Opcode / Op/ |64/32 bit |CPUID Description
Instruction En |Mode Feature

Support | Flag
NP OF C7 /5 M VIV XSS Save state components specified by EDX:EAX to
XSAVES mem mem with compaction, optimizing if possible.
NP REXW + OF C7 /5 M V/IN.E. XSS Save state components specified by EDX:EAX to
XSAVES64 mem mem with compaction, optimizing if possible.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
M ModRM:r/m (w) N/A N/A N/A
Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address
specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The
specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), the logical-
AND of EDX:EAX and the logical-OR of XCRO with the IA32_XSS MSR. XSAVES may be executed only if CPL = 0.

The format of the XSAVE area is detailed in Section 13.4, "XSAVE Area,” of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1. Like FXRSTOR and FXSAVE, the memory format used for x87 state
depends on a REX.W prefix; see Section 13.5.1, “x87 State,” of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1.

Section 13.11, “"Operation of XSAVES," of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1 provides a detailed description of the operation of the XSAVES instruction. The following items provide a
high-level outline:

® Execution of XSAVES is similar to that of XSAVEC. XSAVES differs from XSAVEC in that it can save state
components corresponding to bits set in the IA32_XSS MSR and that it may use the modified optimization.

* XSAVES saves state component i only if RFBM[i] = 1 and XINUSE[/] = 1.1 (XINUSE is a bitmap by which the
processor tracks the status of various state components. See Section 13.6, “"Processor Tracking of XSAVE-
Managed State,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.) Even if
both bits are 1, XSAVES may optimize and not save state component j if (1) state component j has not been
modified since the last execution of XRSTOR or XRSTORS; and (2) this execution of XSAVES correspond to that
last execution of XRSTOR or XRSTORS as determined by XRSTOR_INFO (see the Operation section below).

® XSAVES does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy
Region of an XSAVE Area,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).

* XSAVES writes the logical AND of RFBM and XINUSE to the XSTATE_BV field of the XSAVE header.? (See Section
13.4.2, “XSAVE Header,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.)
XSAVES sets bit 63 of the XCOMP_BYV field and sets bits 62:0 of that field to RFBM[62:0]. XSAVES does not
write to any parts of the XSAVE header other than the XSTATE_BV and XCOMP_BYV fields.

® XSAVES always uses the compacted format of the extended region of the XSAVE area (see Section 13.4.3,
“Extended Region of an XSAVE Area,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) results in a
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

1. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be O even if MXCSR does not
have its initial value of TF80H. In this case, the init optimization does not apply and XSAVEC will save SSE state as long as RFBM[1] =
1 and the modified optimization is not being applied.

2. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be O even if MXCSR does not
have its initial value of 1FBO0H. In this case, XSAVES sets XSTATE_BV[1] to 1 as long as RFBM[1] = 1.

XSAVES—Save Processor Extended States Supervisor Vol.2D 6-63

INSTRUCTION SET REFERENCE, W-Z

See Section 13.6, “Processor Tracking of XSAVE-Managed State,” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1 for discussion of the bitmap XMODIFIED and of the quantity XRSTOR_INFO.

Operation

RFBM := (XCRO OR IA32_XSS) AND EDX:EAX; /* bitwise logical OR and AND */
IF in VMX non-root operation
THEN VMXNR := 1;
ELSE VMXNR := 0;
Fl;
LAXA := linear address of XSAVE areg;
COMPMASK := RFBM OR 80000000_00000000H;
TO_BE_SAVED := RFBM AND XINUSE;
IF XRSTOR_INFO = {CPL,VMXNR,LAXA,COMPMASK)
THEN TO_BE_SAVED := TO_BE_SAVED AND XMODIFIED;
Fl;
IF MXCSR # 1F80H AND RFBM[1]
THEN TO_BE_SAVED[1]=1;
Fl;

IF TO_BE_SAVED[O] = 1
THEN store x87 state into legacy region of XSAVE area;
FI;

IF TO_BE_SAVED[1]=1
THEN store SSE state into legacy region of XSAVE areg; // this step saves the XMM registers, MXCSR, and MXCSR_MASK
Fl;

NEXT_FEATURE_OFFSET = 576; /1 Legacy area and XSAVE header consume 576 bytes
FORi:=2T062
IF RFBM[i] = 1
THEN
IF TO_BE_SAVEDi]
THEN
save XSAVE state component i at offset NEXT_FEATURE_OFFSET from base of XSAVE areg;
IFi=8 // state component 8 is for PT state
THEN IA32_RTIT_CTL.Trace€n[bit 0] := O;
Fl;
Fl;
NEXT_FEATURE_OFFSET = NEXT_FEATURE_OFFSET + n (n enumerated by CPUID(EAX=0DH,ECX=i).EAX);
Fl;
ENDFOR;

NEW_HEADER := RFBM AND XINUSE;
IF MXCSR # 1F80H AND RFBM[1]
THEN NEW_HEADER[1] = 1;
Fl;
XSTATE_BV field in XSAVE header := NEW_HEADER;
XCOMP_BYV field in XSAVE header := COMPMASK;

Flags Affected
None.

6-64 Vol. 2D XSAVES—Save Processor Extended States Supervisor

INSTRUCTION SET REFERENCE, W-Z

Intel C/C++ Compiler Intrinsic Equivalent

XSAVES void _xsaves(void *, unsigned __int64);
XSAVES64 void _xsaves64(void *, unsigned __int64);

Protected Mode Exceptions

#GP(0) If CPL > 0.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#NM If CRO.TS[bit 3] = 1.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.0SXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.
If CR4.0SXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If CPL > O.
If the memory address is in a non-canonical form.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a hon-canonical form.
#PF(fault-code) If a page fault occurs.

#NM If CRO.TS[bit 3] = 1.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.0SXSAVE[bit 18] = 0.
If the LOCK prefix is used.

XSAVES—Save Processor Extended States Supervisor Vol.2D 6-65

INSTRUCTION SET REFERENCE, W-Z

XSETBV—Set Extended Control Register

Opcode Instruction Op/ |64-Bit Compat/ |Description
En |Mode Leg Mode
NP OF 01 D1 XSETBV Z0 |Valid Valid Write the value in EDX:EAX to the XCR
specified by ECX.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
Z0 N/A N/A N/A N/A
Description

Writes the contents of registers EDX:EAX into the 64-bit extended control register (XCR) specified in the ECX
register. (On processors that support the Intel 64 architecture, the high-order 32 bits of RCX are ignored.) The
contents of the EDX register are copied to high-order 32 bits of the selected XCR and the contents of the EAX
register are copied to low-order 32 bits of the XCR. (On processors that support the Intel 64 architecture, the high-
order 32 bits of each of RAX and RDX are ignored.) Undefined or reserved bits in an XCR should be set to values
previously read.

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a general protection
exception #GP(0) is generated. Specifying a reserved or unimplemented XCR in ECX will also cause a general
protection exception. The processor will also generate a general protection exception if software attempts to write
to reserved bits in an XCR.

Currently, only XCRO is supported. Thus, all other values of ECX are reserved and will cause a #GP(0). Note that
bit 0 of XCRO (corresponding to x87 state) must be set to 1; the instruction will cause a #GP(0) if an attempt is
made to clear this bit. In addition, the instruction causes a #GP(0) if an attempt is made to set XCRO[2] (AVX state)
while clearing XCRO[1] (SSE state); it is necessary to set both bits to use AVX instructions; Section 13.3, “Enabling
the XSAVE Feature Set and XSAVE-Enabled Features,” of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1.

Operation
XCR[ECX] := EDX:EAX;

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent
XSETBV void _xsetbv(unsigned int, unsigned __int64);

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
If an invalid XCR is specified in ECX.
If the value in EDX:EAX sets bits that are reserved in the XCR specified by ECX.
If an attempt is made to clear bit 0 of XCRO.
If an attempt is made to set XCRO[2:1] to 10b.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.
If CR4.0SXSAVE[bit 18] = 0.
If the LOCK prefix is used.

6-66 Vol.2D XSETBV—Set Extended Control Register

INSTRUCTION SET REFERENCE, W-Z

Real-Address Mode Exceptions
#GP If an invalid XCR is specified in ECX.
If the value in EDX:EAX sets bits that are reserved in the XCR specified by ECX.
If an attempt is made to clear bit 0 of XCRO.
If an attempt is made to set XCRO[2:1] to 10b.
#UD If CPUID.0O1H:ECX.XSAVE[bit 26] = 0.
If CR4.0SXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The XSETBV instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

XSETBV—Set Extended Control Register Vol.2D 6-67

INSTRUCTION SET REFERENCE, W-Z

XSUSLDTRK—Suspend Tracking Load Addresses

Opcode/ Op/ 64/32 bit | CPUID Feature Description
Instruction En Mode Flag
Support
F2 OF 01 €8 20 VIV TSXLDTRK Specifies the start of an Intel TSX suspend read
XSUSLDTRK address tracking region.
Instruction Operand Encoding
Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
20 N/A N/A N/A N/A N/A
Description

The instruction marks the start of an Intel TSX (RTM) suspend load address tracking region. If the instruction is
used inside a transactional region, subsequent loads are not added to the read set of the transaction. If the instruc-
tion is used inside a suspend load address tracking region it will cause transaction abort.

If the instruction is used outside of a transactional region it behaves like a NOP.

Chapter 16, “Programming with Intel® Transactional Synchronization Extensions,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1 provides additional information on Intel® TSX Suspend Load
Address Tracking.

Operation
XSUSLDTRK

IF RTM_ACTIVE = 1:

IF SUSLDTRK_ACTIVE = 0:
SUSLDTRK_ACTIVE := 1

ELSE:

RTM_ABORT

ELSE:
NOP

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent

XSUSLDTRK void _xsusldtrk(void);

SIMD Floating-Point Exceptions

None.

Other Exceptions

#UD

6-68 Vol.2D

If CPUID.(EAX=7, ECX=0):EDX.TSXLDTRK[bit 16] = 0.
If the LOCK prefix is used.

XSUSLDTRK—Suspend Tracking Load Addresses

XTEST—Test if in Transactional Execution

INSTRUCTION SET REFERENCE, W-Z

Opcode/Instruction Op/ |64/32bit |CPUID Description
En Mode Feature

Support | Flag
NP OF 01 D6 20 |VIV HLE or Test if executing in a transactional region.
XTEST RTM

Instruction Operand Encoding
Op/En Operand 1 Operand2 Operand3 Operand4
Z0 N/A N/A N/A N/A

Description

The XTEST instruction queries the transactional execution status. If the instruction executes inside a transaction-
ally executing RTM region or a transactionally executing HLE region, then the ZF flag is cleared, else it is set.

Operation
XTEST

IF (RTM_ACTIVE = 1 OR HLE_ACTIVE = 1)

THEN
ZF:=0
ELSE
ZF =1
Fl;

Flags Affected

The ZF flag is cleared if the instruction is executed transactionally; otherwise it is set to 1. The CF, OF, SF, PF, and

AF, flags are cleared.

Intel C/C++ Compiler Intrinsic Equivalent

XTEST int _xtest(void);

SIMD Floating-Point Exceptions

None.

Other Exceptions

#UD CPUID.(EAX=7, ECX=0):EBX.HLE[bit 4] = 0 and CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11] =

0.

If LOCK prefix is used.

XTEST—Test if in Transactional Execution

Vol.2D 6-69

INSTRUCTION SET REFERENCE, W-Z

6-70 Vol.2D XTEST—Test if in Transactional Execution

CHAPTER 7
SAFER MODE EXTENSIONS REFERENCE

7.1 OVERVIEW

This chapter describes the Safer Mode Extensions (SMX) for the Intel 64 and IA-32 architectures. Safer Mode
Extensions (SMX) provide a programming interface for system software to establish a measured environment
within the platform to support trust decisions by end users. The measured environment includes:

* Measured launch of a system executive, referred to as a Measured Launched Environment (MLE)!. The system
executive may be based on a Virtual Machine Monitor (VMM), a measured VMM is referred to as MVMMZ,

® Mechanisms to ensure the above measurement is protected and stored in a secure location in the platform.
® Protection mechanisms that allow the VMM to control attempts to modify the VMM.

The measurement and protection mechanisms used by a measured environment are supported by the capabilities
of an Intel® Trusted Execution Technology (Intel® TXT) platform:

® The SMX are the processor’s programming interface in an Intel TXT platform.
®* The chipset in an Intel TXT platform provides enforcement of the protection mechanisms.

® Trusted Platform Module (TPM) 1.2 in the platform provides platform configuration registers (PCRs) to store
software measurement values.

7.2 SMX FUNCTIONALITY

SMX functionality is provided in an Intel 64 processor through the GETSEC instruction via leaf functions. The
GETSEC instruction supports multiple leaf functions. Leaf functions are selected by the value in EAX at the time
GETSEC is executed. Each GETSEC leaf function is documented separately in the reference pages with a unique
mnemonic (even though these mnemonics share the same opcode, OF 37).

7.2.1 Detecting and Enabling SMX

Software can detect support for SMX operation using the CPUID instruction. If software executes CPUID with 1 in
EAX, a value of 1 in bit 6 of ECX indicates support for SMX operation (GETSEC is available), see CPUID instruction
for the layout of feature flags of reported by CPUID.01H:ECX.

System software enables SMX operation by setting CR4.SMXE[Bit 14] = 1 before attempting to execute GETSEC.
Otherwise, execution of GETSEC results in the processor signaling an invalid opcode exception (#UD).

If the CPUID SMX feature flag is clear (CPUID.01H.ECX[Bit 6] = 0), attempting to set CR4.SMXE[Bit 14] results in
a general protection exception.

The IA32_FEATURE_CONTROL MSR (at address 03AH) provides feature control bits that configure operation of
VMX and SMX. These bits are documented in Table 7-1.

1. See the Intel® Trusted Execution Technology Measured Launched Environment Programming Guide.

2. An MVMM is sometimes referred to as a measured launched environment (MLE). See the Intel® Trusted Execution Technology Mea-
sured Launched Environment Programming Guide.

Vol.2D 7-1

SAFER MODE EXTENSIONS REFERENCE

Table 7-1. Layout of IA32_FEATURE_CONTROL

Bit Position Description

0 Lock bit (O = unlocked, 1 = locked). When set to 1’ further writes to this MSR are blocked.

1 Enable VMX in SMX operation.

2 Enable VMX outside SMX operation.

7:3 Reserved

14.:8 SENTER Local Function Enables: When set, each bit in the field represents an enable control for a corresponding
SENTER function.

15 SENTER Global Enable: Must be set to ‘1’ to enable operation of GETSEC[SENTER].

16 Reserved

17 SGX Launch Control Enable: Must be set to ‘1" to enable runtime re-configuration of SGX Launch Control via the
IA32_SGXLEPUBKEYHASHN MSR.

18 SGX Global Enable: Must be set to ‘1" to enable Intel SGX leaf functions.

19 Reserved

20 LMCE On: When set, system software can program the MSRs associated with LMCE to configure delivery of some
machine check exceptions to a single logical processor.

63:21 Reserved

Bit 0 is a lock bit. If the lock bit is clear, an attempt to execute VMXON will cause a general-protection exception.
Attempting to execute GETSEC[SENTER] when the lock bit is clear will also cause a general-protection
exception. If the lock bit is set, WRMSR to the IA32_FEATURE_CONTROL MSR will cause a general-protection
exception. Once the lock bit is set, the MSR cannot be modified until a power-on reset. System BIOS can use
this bit to provide a setup option for BIOS to disable support for VMX, SMX or both VMX and SMX.

Bit 1 enables VMX in SMX operation (between executing the SENTER and SEXIT leaves of GETSEC). If this bit is
clear, an attempt to execute VMXON in SMX will cause a general-protection exception if executed in SMX
operation. Attempts to set this bit on logical processors that do not support both VMX operation (Chapter 7,
“Safer Mode Extensions Reference”) and SMX operation cause general-protection exceptions.

Bit 2 enables VMX outside SMX operation. If this bit is clear, an attempt to execute VMXON will cause a general-
protection exception if executed outside SMX operation. Attempts to set this bit on logical processors that do
not support VMX operation cause general-protection exceptions.

Bits 8 through 14 specify enabled functionality of the SENTER leaf function. Each bit in the field represents an
enable control for a corresponding SENTER function. Only enabled SENTER leaf functionality can be used when
executing SENTER.

Bits 15 specify global enable of all SENTER functionalities.

7.2.2 SMX Instruction Summary

System software must first query for available GETSEC leaf functions by executing GETSEC[CAPABILITIES]. The
CAPABILITIES leaf function returns a bit map of available GETSEC leaves. An attempt to execute an unsupported
leaf index results in an undefined opcode (#UD) exception.

7-2

Vol.2D

SAFER MODE EXTENSIONS REFERENCE

7.2.2.1 GETSEC[CAPABILITIES]

The SMX functionality provides an architectural interface for newer processor generations to extend SMX capabili-
ties. Specifically, the GETSEC instruction provides a capability leaf function for system software to discover the
available GETSEC leaf functions that are supported in a processor. Table 7-2 lists the currently available GETSEC

leaf functions.

Table 7-2. GETSEC Leaf Functions

Index (EAX) Leaf function Description
0 CAPABILITIES Returns the available leaf functions of the GETSEC instruction.
1 Undefined Reserved
2 ENTERACCS Enter
3 EXITAC Exit
4 SENTER Launch an MLE.
5 SEXIT Exit the MLE.
6 PARAMETERS Return SMX related parameter information.
7 SMCTRL SMX mode control.
8 WAKEUP Wake up sleeping processors in safer mode.
9-(4G-1) Undefined Reserved
7.2.2.2 GETSEC[ENTERACCS]

The GETSEC[ENTERACCS] leaf enables authenticated code execution mode. The ENTERACCS leaf function
performs an authenticated code module load using the chipset public key as the signature verification. ENTERACCS
requires the existence of an Intel® Trusted Execution Technology capable chipset since it unlocks the chipset
private configuration register space after successful authentication of the loaded module. The physical base
address and size of the authenticated code module are specified as input register values in EBX and ECX, respec-
tively.

While in the authenticated code execution mode, certain processor state properties change. For this reason, the

time in which the processor operates in authenticated code execution mode should be limited to minimize impact
on external system events.

Upon entry into , the previous paging context is disabled (since the authenticated code module image is specified
with physical addresses and can no longer rely upon external memory-based page-table structures).

Prior to executing the GETSEC[ENTERACCS] leaf, system software must ensure the logical processor issuing
GETSEC[ENTERACCS] is the boot-strap processor (BSP), as indicated by IA32_APIC_BASE.BSP = 1. System soft-
ware must ensure other logical processors are in a suitable idle state and not marked as BSP.

The GETSEC[ENTERACCS] leaf may be used by different agents to load different authenticated code modules to
perform functions related to different aspects of a measured environment, for example system software and
Intel® TXT enabled BIOS may use more than one authenticated code modules.

7.2.2.3 GETSEC[EXITAC]

GETSEC[EXITAC] takes the processor out of . When this instruction leaf is executed, the contents of the authenti-
cated code execution area are scrubbed and control is transferred to the non-authenticated context defined by a
near pointer passed with the GETSEC[EXITAC] instruction.

The authenticated code execution area is no longer accessible after completion of GETSEC[EXITAC]. RBX (or EBX)
holds the address of the near absolute indirect target to be taken.

Vol.2D 7-3

SAFER MODE EXTENSIONS REFERENCE

7.2.2.4 GETSEC[SENTER]

The GETSEC[SENTER] leaf function is used by the initiating logical processor (ILP) to launch an MLE.
GETSEC[SENTER] can be considered a superset of the ENTERACCS leaf, because it enters as part of the measured
environment launch.

Measured environment startup consists of the following steps:

® the ILP rendezvous the responding logical processors (RLPs) in the platform into a controlled state (At the
completion of this handshake, all the RLPs except for the ILP initiating the measured environment launch are
placed in a newly defined SENTER sleep state).

®* Load and authenticate the authenticated code module required by the measured environment, and enter
authenticated code execution mode.

* Verify and lock certain system configuration parameters.
® Measure the dynamic root of trust and store into the PCRs in TPM.
®* Transfer control to the MLE with interrupts disabled.

Prior to executing the GETSEC[SENTER] leaf, system software must ensure the platform’s TPM is ready for access
and the ILP is the boot-strap processor (BSP), as indicated by IA32_APIC_BASE.BSP. System software must ensure
other logical processors (RLPs) are in a suitable idle state and not marked as BSP.

System software launching a measurement environment is responsible for providing a proper authenticate code
module address when executing GETSEC[SENTER]. The AC module responsible for the launch of a measured envi-
ronment and loaded by GETSEC[SENTER] is referred to as SINIT. See Inte/l® Trusted Execution Technology
Measured Launched Environment Programming Guide for additional information on system software requirements
prior to executing GETSEC[SENTER].

7.2.2.5 GETSEC[SEXIT]

System software exits the measured environment by executing the instruction GETSEC[SEXIT] on the ILP. This
instruction rendezvous the responding logical processors in the platform for exiting from the measured environ-
ment. External events (if left masked) are unmasked and Intel® TXT-capable chipset’s private configuration space
is re-locked.

7.2.2.6 GETSEC[PARAMETERS]

The GETSEC[PARAMETERS] leaf function is used to report attributes, options, and limitations of SMX operation.
Software uses this leaf to identify operating limits or additional options.

The information reported by GETSEC[PARAMETERS] may require executing the leaf multiple times using EBX as an
index. If the GETSEC[PARAMETERS] instruction leaf or if a specific parameter field is not available, then SMX oper-
ation should be interpreted to use the default limits of respective GETSEC leaves or parameter fields defined in the
GETSEC[PARAMETERS] leaf.

7.2.2.7 GETSEC[SMCTRL]

The GETSEC[SMCTRL] leaf function is used for providing additional control over specific conditions associated with
the SMX architecture. An input register is supported for selecting the control operation to be performed. See the
specific leaf description for details on the type of control provided.

7.2.2.8 GETSEC[WAKEUP]

Responding logical processors (RLPs) are placed in the SENTER sleep state after the initiating logical processor
executes GETSEC[SENTER]. The ILP can wake up RLPs to join the measured environment by using
GETSEC[WAKEUP]. When the RLPs in SENTER sleep state wake up, these logical processors begin execution at the
entry point defined in a data structure held in system memory (pointed to by an chipset register LT.MLE.JOIN) in
TXT configuration space.

7-4 Vol.2D

SAFER MODE EXTENSIONS REFERENCE

7.2.3 Measured Environment and SMX

This section gives a simplified view of a representative life cycle of a measured environment that is launched by a
system executive using SMX leaf functions. The Intel® Trusted Execution Technology Measured Launched Environ-
ment Programming Guide provides more detailed examples of using SMX and chipset resources (including chipset
registers, Trusted Platform Module) to launch an MVMM.

The life cycle starts with the system executive (an OS, an OS loader, and so forth) loading the MLE and SINIT AC
module into available system memory. The system executive must validate and prepare the platform for the
measured launch. When the platform is properly configured, the system executive executes GETSEC[SENTER] on
the initiating logical processor (ILP) to rendezvous the responding logical processors into an SENTER sleep state,
the ILP then enters into using the SINIT AC module. In a multi-threaded or multi-processing environment, the
system executive must ensure that other logical processors are already in an idle loop, or asleep (such as after
executing HLT) before executing GETSEC[SENTER].

After the GETSEC[SENTER] rendezvous handshake is performed between all logical processors in the platform, the
ILP loads the chipset authenticated code module (SINIT) and performs an authentication check. If the check
passes, the processor hashes the SINIT AC module and stores the result into TPM PCR 17. It then switches execu-
tion context to the SINIT AC module. The SINIT AC module will perform a humber of platform operations,
including: verifying the system configuration, protecting the system memory used by the MLE from I/O devices
capable of DMA, producing a hash of the MLE, storing the hash value in TPM PCR 18, and various other operations.
When SINIT completes execution, it executes the GETSEC[EXITAC] instruction and transfers control the MLE at the
designated entry point.

Upon receiving control from the SINIT AC module, the MLE must establish its protection and isolation controls
before enabling DMA and interrupts and transferring control to other software modules. It must also wake up the
RLPs from their SENTER sleep state using the GETSEC[WAKEUP] instruction and bring them into its protection and
isolation environment.

While executing in a measured environment, the MVMM can access the Trusted Platform Module (TPM) in locality 2.
The MVMM has complete access to all TPM commands and may use the TPM to report current measurement values
or use the measurement values to protect information such that only when the platform configuration registers
(PCRs) contain the same value is the information released from the TPM. This protection mechanism is known as
sealing.

A measured environment shutdown is ultimately completed by executing GETSEC[SEXIT]. Prior to this step system
software is responsible for scrubbing sensitive information left in the processor caches, system memory.

7.3 GETSEC LEAF FUNCTIONS

This section provides detailed descriptions of each leaf function of the GETSEC instruction. GETSEC is available only
if CPUID.01H:ECX[Bit 6] = 1. This indicates the availability of SMX and the GETSEC instruction. Before GETSEC can
be executed, SMX must be enabled by setting CR4.SMXE[Bit 14] = 1.

A GETSEC leaf can only be used if it is shown to be available as reported by the GETSEC[CAPABILITIES] function.
Attempts to access a GETSEC leaf index not supported by the processor, or if CR4.SMXE is 0, results in the signaling
of an undefined opcode exception.

All GETSEC leaf functions are available in protected mode, including the compatibility sub-mode of IA-32e mode
and the 64-bit sub-mode of IA-32e mode. Unless otherwise noted, the behavior of all GETSEC functions and inter-
actions related to the measured environment are independent of IA-32e mode. This also applies to the interpreta-
tion of register widths! passed as input parameters to GETSEC functions and to register results returned as output
parameters.

1. This chapter uses the 64-bit notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because processors that support SMX also
support Intel 64 Architecture. The MVMM can be launched in IA-32e mode or outside IA-32e mode. The 64-bit notation of processor
registers also refer to its 32-bit forms if SMX is used in 32-bit environment. In some places, notation such as EAX is used to refer
specifically to lower 32 bits of the indicated register.

Vol.2D 7-5

SAFER MODE EXTENSIONS REFERENCE

The GETSEC functions ENTERACCS, SENTER, SEXIT, and WAKEUP require a Intel® TXT capable-chipset to be
present in the platform. The GETSEC[CAPABILITIES] returned bit vector in position 0 indicates an Intel® TXT-
capable chipset has been sampled present! by the processor.

The processor's operating mode also affects the execution of the following GETSEC leaf functions: SMCTRL, ENTER-
ACCS, EXITAC, SENTER, SEXIT, and WAKEUP. These functions are only allowed in protected mode at CPL = 0. They
are not allowed while in SMM in order to prevent potential intra-mode conflicts. Further execution qualifications
exist to prevent potential architectural conflicts (for example: nesting of the measured environment or authenti-
cated code execution mode). See the definitions of the GETSEC leaf functions for specific requirements.

For the purpose of performance monitor counting, the execution of GETSEC functions is counted as a single instruc-
tion with respect to retired instructions. The response by a responding logical processor (RLP) to messages associ-
ated with GETSEC[SENTER] or GTSEC[SEXIT] is transparent to the retired instruction count on the ILP.

1. Sampled present means that the processor sent a message to the chipset and the chipset responded that it (a) knows about the
message and (b) is capable of executing SENTER. This means that the chipset CAN support Intel® TXT, and is configured and WILLING
to support it.

7-6 Vol.2D

SAFER MODE EXTENSIONS REFERENCE

GETSEC[CAPABILITIES]—Report the SMX Capabilities

Opcode Instruction Description

NP OF 37 GETSEC[CAPABILITIES] | Report the SMX capabilities.

(EAX =0) The capabilities index is input in EBX with the result returned in EAX.
Description

The GETSEC[CAPABILITIES] function returns a bit vector of supported GETSEC leaf functions. The CAPABILITIES
leaf of GETSEC is selected with EAX set to 0 at entry. EBX is used as the selector for returning the bit vector field in
EAX. GETSEC[CAPABILITIES] may be executed at all privilege levels, but the CR4.SMXE bit must be set or an unde-
fined opcode exception (#UD) is returned.

With EBX = 0 upon execution of GETSEC[CAPABILITIES], EAX returns the a bit vector representing status on the
presence of a Intel® TXT-capable chipset and the first 30 available GETSEC leaf functions. The format of the
returned bit vector is provided in Table 7-3.

If bit 0 is set to 1, then an Intel® TXT-capable chipset has been sampled present by the processor. If bits in the range
of 1-30 are set, then the corresponding GETSEC leaf function is available. If the bit value at a given bit index is 0,
then the GETSEC leaf function corresponding to that index is unsupported and attempted execution results in a
#UD.

Bit 31 of EAX indicates if further leaf indexes are supported. If the Extended Leafs bit 31 is set, then additional leaf
functions are accessed by repeating GETSEC[CAPABILITIES] with EBX incremented by one. When the most signifi-
cant bit of EAX is not set, then additional GETSEC leaf functions are not supported; indexing EBX to a higher value
results in EAX returning zero.

Table 7-3. GETSEC Capability Result Encoding (EBX = 0)

Field Bit position Description

Chipset Present 0 Intel® TXT-capable chipset is present.
Undefined 1 Reserved

ENTERACCS 2 GETSEC[ENTERACCS] is available.
EXITAC 3 GETSEC[EXITAC] is available.
SENTER 4 GETSEC[SENTER] is available.

SEXIT 5 GETSEC[SEXIT] is available.
PARAMETERS 6 GETSEC[PARAMETERS] is available.
SMCTRL 7 GETSEC[SMCTRL] is available.
WAKEUP 8 GETSEC[WAKEUP] is available.
Undefined 309 Reserved

Extended Leafs 31 Reserved for extended information reporting of GETSEC capabilities.

GETSEC[CAPABILITIES]—Report the SMX Capabilities Vol.2D 7-7

SAFER MODE EXTENSIONS REFERENCE

Operation

IF (CR4.SMXE=0)
THEN #UD;
ELSIF (in VMX non-root operation)

THEN VM Exit (reason="GETSEC instruction”);

IF (EBX=0) THEN
BitVector := 0;
IF (TXT chipset present)
BitVector[Chipset present] := 1;
IF (ENTERACCS Available)
THEN BitVector[ENTERACCS] := 1;
IF (EXITAC Available)
THEN BitVector[EXITAC] := 1;
IF (SENTER Available)
THEN BitVector[SENTER] := 1;
IF (SEXIT Available)
THEN BitVector[SEXIT]:= 1;
IF (PARAMETERS Available)

THEN BitVector[PARAMETERS] = 1;

IF (SMCTRL Available)
THEN BitVector[SMCTRL] := 1;
IF (WAKEUP Available)
THEN BitVector[WAKEUP] := 1;
EAX ;= BitVector;
ELSE
EAX:=0;
END;;

Flags Affected
None.

Use of Prefixes

LOCK Causes #UD.

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Operand size Causes #UD.

NP 66/F2/F3 prefixes are not allowed.

Segment overrides Ignored.

Address size Ignored.

REX Ignored.

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

Compatibility Mode Exceptions
#UD If CR4.SMXE = 0.

7-8 Vol.2D

GETSEC[CAPABILITIES]—Report the SMX Capabilities

SAFER MODE EXTENSIONS REFERENCE

64-Bit Mode Exceptions
#UD If CR4.SMXE = 0.

VM-exit Condition
Reason (GETSEC) If in VMX non-root operation.

GETSEC[CAPABILITIES]—Report the SMX Capabilities Vol.2D 7-9

SAFER MODE EXTENSIONS REFERENCE

GETSEC[ENTERACCS]—Execute Authenticated Chipset Code

Opcode Instruction Description

NP OF 37 GETSEC[ENTERACCS] | Enter authenticated code execution mode.

(EAX =2) EBX holds the authenticated code module physical base address. ECX holds the authenticated
code module size (bytes).

Description

The GETSEC[ENTERACCS] function loads, authenticates, and executes an authenticated code module using an
Intel® TXT platform chipset's public key. The ENTERACCS leaf of GETSEC is selected with EAX set to 2 at entry.

There are certain restrictions enforced by the processor for the execution of the GETSEC[ENTERACCS] instruction:

®* Execution is not allowed unless the processor is in protected mode or IA-32e mode with CPL = 0 and
EFLAGS.VM = 0.

® Processor cache must be available and not disabled, that is, CR0.CD and CR0O.NW bits must be 0.

® For processor packages containing more than one logical processor, CR0.CD is checked to ensure consistency
between enabled logical processors.

®* For enforcing consistency of operation with numeric exception reporting using Interrupt 16, CRO.NE must be
set.

®* An Intel TXT-capable chipset must be present as communicated to the processor by sampling of the power-on
configuration capability field after reset.

® The processor can not already be in authenticated code execution mode as launched by a previous
GETSEC[ENTERACCS] or GETSEC[SENTER] instruction without a subsequent exiting using GETSEC[EXITAC]).

* To avoid potential operability conflicts between modes, the processor is not allowed to execute this instruction
if it currently is in SMM or VMX operation.

®* To ensure consistent handling of SIPI messages, the processor executing the GETSEC[ENTERACCS] instruction
must also be designated the BSP (boot-strap processor) as defined by IA32_APIC_BASE.BSP (Bit 8).

Failure to conform to the above conditions results in the processor signaling a general protection exception.
Prior to execution of the ENTERACCS leaf, other logical processors, i.e., RLPs, in the platform must be:

* Idle in a wait-for-SIPI state (as initiated by an INIT assertion or through reset for non-BSP designated
processors), or

®* Inthe SENTER sleep state as initiated by a GETSEC[SENTER] from the initiating logical processor (ILP).

If other logical processor(s) in the same package are not idle in one of these states, execution of ENTERACCS
signals a general protection exception. The same requirement and action applies if the other logical processor(s) of
the same package do not have CR0.CD = 0.

A successful execution of ENTERACCS results in the ILP entering an authenticated code execution mode. Prior to
reaching this point, the processor performs several checks. These include:

® Establish and check the location and size of the specified authenticated code module to be executed by the
processor.

® Inhibit the ILP's response to the external events: INIT, A20M, NMI, and SMI.
®* Broadcast a message to enable protection of memory and I/O from other processor agents.
®* Load the designated code module into an authenticated code execution area.

® Isolate the contents of the authenticated code execution area from further state modification by external
agents.

®* Authenticate the authenticated code module.

* Initialize the initiating logical processor state based on information contained in the authenticated code module
header.

® Unlock the Intel® TXT-capable chipset private configuration space and TPM locality 3 space.

7-10 Vol. 2D GETSEC[ENTERACCS]—Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

® Begin execution in the authenticated code module at the defined entry point.

The GETSEC[ENTERACCS] function requires two additional input parameters in the general purpose registers EBX
and ECX. EBX holds the authenticated code (AC) module physical base address (the AC module must reside below
4 GBytes in physical address space) and ECX holds the AC module size (in bytes). The physical base address and
size are used to retrieve the code module from system memory and load it into the internal authenticated code
execution area. The base physical address is checked to verify it is on a modulo-4096 byte boundary. The size is
verified to be a multiple of 64, that it does not exceed the internal authenticated code execution area capacity (as
reported by GETSEC[CAPABILITIES]), and that the top address of the AC module does not exceed 32 bits. An error
condition results in an abort of the authenticated code execution launch and the signaling of a general protection
exception.

As an integrity check for proper processor hardware operation, execution of GETSEC[ENTERACCS] will also check
the contents of all the machine check status registers (as reported by the MSRs IA32_MCi_STATUS) for any valid
uncorrectable error condition. In addition, the global machine check status register IA32_MCG_STATUS MCIP bit
must be cleared and the IERR processor package pin (or its equivalent) must not be asserted, indicating that no
machine check exception processing is currently in progress. These checks are performed prior to initiating the
load of the authenticated code module. Any outstanding valid uncorrectable machine check error condition present
in these status registers at this point will result in the processor signaling a general protection violation.

The ILP masks the response to the assertion of the external signals INIT#, A20M, NMI#, and SMI#. This masking
remains active until optionally unmasked by GETSEC[EXITAC] (this defined unmasking behavior assumes
GETSEC[ENTERACCS] was not executed by a prior GETSEC[SENTER]). The purpose of this masking control is to
prevent exposure to existing external event handlers that may not be under the control of the authenticated code
module.

The ILP sets an internal flag to indicate it has entered authenticated code execution mode. The state of the A20M
pin is likewise masked and forced internally to a de-asserted state so that any external assertion is not recognized
during authenticated code execution mode.

To prevent other (logical) processors from interfering with the ILP operating in authenticated code execution mode,
memory (excluding implicit write-back transactions) access and I/0 originating from other processor agents are
blocked. This protection starts when the ILP enters into authenticated code execution mode. Only memory and I/O
transactions initiated from the ILP are allowed to proceed. Exiting authenticated code execution mode is done by
executing GETSEC[EXITAC]. The protection of memory and I/O activities remains in effect until the ILP executes
GETSEC[EXITAC].

Prior to launching the authenticated execution module using GETSEC[ENTERACCS] or GETSEC[SENTER], the
processor’'s MTRRs (Memory Type Range Registers) must first be initialized to map out the authenticated RAM
addresses as WB (writeback). Failure to do so may affect the ability for the processor to maintain isolation of the
loaded authenticated code module. If the processor detected this requirement is not met, it will signal an Intel®
TXT reset condition with an error code during the loading of the authenticated code module.

While physical addresses within the load module must be mapped as WB, the memory type for locations outside of
the module boundaries must be mapped to one of the supported memory types as returned by GETSEC[PARAME-
TERS] (or UC as default).

To conform to the minimum granularity of MTRR MSRs for specifying the memory type, authenticated code RAM
(ACRAM) is allocated to the processor in 4096 byte granular blocks. If an AC module size as specified in ECX is not
a multiple of 4096 then the processor will allocate up to the next 4096 byte boundary for mapping as ACRAM with
indeterminate data. This pad area will not be visible to the authenticated code module as external memory nor can
it depend on the value of the data used to fill the pad area.

At the successful completion of GETSEC[ENTERACCS], the architectural state of the processor is partially initialized
from contents held in the header of the authenticated code module. The processor GDTR, CS, and DS selectors are
initialized from fields within the authenticated code module. Since the authenticated code module must be relocat-
able, all address references must be relative to the authenticated code module base address in EBX. The processor
GDTR base value is initialized to the AC module header field GDTBasePtr + module base address held in EBX and
the GDTR limit is set to the value in the GDTLimit field. The CS selector is initialized to the AC module header
SegSel field, while the DS selector is initialized to CS + 8. The segment descriptor fields are implicitly initialized to
BASE=0, LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write access for DS, and execute/read access for CS. The
processor begins the authenticated code module execution with the EIP set to the AC module header EntryPoint
field + module base address (EBX). The AC module based fields used for initializing the processor state are checked
for consistency and any failure results in a shutdown condition.

GETSEC[ENTERACCS]—Execute Authenticated Chipset Code Vol.2D 7-11

SAFER MODE EXTENSIONS REFERENCE

A summary of the register state initialization after successful completion of GETSEC[ENTERACCS] is given for the
processor in Table 7-4. The paging is disabled upon entry into authenticated code execution mode. The authenti-
cated code module is loaded and initially executed using physical addresses. It is up to the system software after
execution of GETSEC[ENTERACCS] to establish a new (or restore its previous) paging environment with an appro-
priate mapping to meet new protection requirements. EBP is initialized to the authenticated code module base
physical address for initial execution in the authenticated environment. As a result, the authenticated code can
reference EBP for relative address based references, given that the authenticated code module must be position

independent.

Table 7-4. Register State Initialization After GETSEC[ENTERACCS]

Register State

Initialization Status

Comment

CRO PG«0, AM«0, WP<«0: Others unchanged Paging, Alignment Check, Write-protection are
disabled.
CR4 MCE«0, CET«-0, PCIDE«0: Others unchanged Machine Check Exceptions, Control-flow
Enforcement Technology, and Process-context
Identifiers disabled.
EFLAGS 00000002H
IA32_EFER OH IA-32e mode disabled.
EIP ACbase + EntryPoint AC.base is in EBX as input to GETSEC[ENTERACCS].
[EIRIBX Pre-ENTERACCS state: Next [E|R]IP prior to Carry forward 64-bit processor state across
GETSEC[ENTERACCS] GETSEC[ENTERACCS].
ECX Pre-ENTERACCS state; [31:16]=GDTR.limit; Carry forward processor state across
[15:0]=CS.sel GETSEC[ENTERACCS].
[EIRIDX Pre-ENTERACCS state: Carry forward 64-bit processor state across
GDTR base GETSEC[ENTERACCS].
EBP ACbase
cS Sel=[SegSel], base=0, limit=FFFFFh, G=1, D=1,
AR=9BH
DS Sel=[SegSel] +8, base=0, limit=FFFFFh, G=1, D=1,
AR=93H
GDTR Base= ACbase (EBX) + [GDTBasePtr],
Limit=[GDTLimit]
DR7 00000400H
IA32_DEBUGCTL OH

IA32_MISC_ENABLE

See Table 7-5 for example.

The number of initialized fields may change due to
processor implementation.

Performance
counters and
counter control
registers

OH

The segmentation related processor state that has not been initialized by GETSEC[ENTERACCS] requires appro-
priate initialization before use. Since a nhew GDT context has been established, the previous state of the segment
selector values held in ES, SS, FS, GS, TR, and LDTR might not be valid.

7-12 Vol. 2D

GETSEC[ENTERACCS]—Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

The MSR IA32_EFER is also unconditionally cleared as part of the processor state initialized by ENTERACCS. Since
paging is disabled upon entering authenticated code execution mode, a new paging environment will have to be
reestablished in order to establish IA-32e mode while operating in authenticated code execution mode.

Debug exception and trap related signaling is also disabled as part of GETSEC[ENTERACCS]. This is achieved by
resetting DR7, TF in EFLAGs, and the MSR IA32_DEBUGCTL. These debug functions are free to be re-enabled once
supporting exception handler(s), descriptor tables, and debug registers have been properly initialized following
entry into authenticated code execution mode. Also, any pending single-step trap condition will have been cleared
upon entry into this mode.

Performance related counters and counter control registers are cleared as part of execution of ENTERACCS. This
implies any active performance counters at any time of ENTERACCS execution will be disabled. To reactive the
processor performance counters, this state must be re-initialized and re-enabled.

The IA32_MISC_ENABLE MSR is initialized upon entry into authenticated execution mode. Certain bits of this MSR
are preserved because preserving these bits may be important to maintain previously established platform settings
(See the footnote for Table 7-5.). The remaining bits are cleared for the purpose of establishing a more consistent
environment for the execution of authenticated code modules. One of the impacts of initializing this MSR is any
previous condition established by the MONITOR instruction will be cleared.

To support the possible return to the processor architectural state prior to execution of GETSEC[ENTERACCS],
certain critical processor state is captured and stored in the general- purpose registers at instruction completion.
[E|R]IBX holds effective address ([E|R]IP) of the instruction that would execute next after GETSEC[ENTERACCS],
ECX[15:0] holds the CS selector value, ECX[31:16] holds the GDTR limit field, and [E|R]DX holds the GDTR base
field. The subsequent authenticated code can preserve the contents of these registers so that this state can be
manually restored if needed, prior to exiting authenticated code execution mode with GETSEC[EXITAC]. For the
processor state after exiting authenticated code execution mode, see the description of GETSEC[SEXIT].

Table 7-5. IA32_MISC_ENABLE MSR Initialization! by ENTERACCS and SENTER

Field Bit position Description
Fast strings enable 0 Clear to O.
FOPCODE compatibility mode 2 Clear to O.
enable
Thermal monitor enable 3 Set to 1 if other thermal monitor capability is not enabled.?
Split-lock disable 4 Clear to 0.
Bus lock on cache line splits 8 Clear to O.
disable
Hardware prefetch disable 9 Clear to O.
GV1/2 legacy enable 15 Clear to O.
MONITOR/MWAIT s/m enable 18 Clear to O.
Adjacent sector prefetch disable | 19 Clear to O.
NOTES:

1. The number of IA32_MISC_ENABLE fields that are initialized may vary due to processor implementations.

2. ENTERACCS (and SENTER) initialize the state of processor thermal throttling such that at least a minimum level is enabled. If thermal
throttling is already enabled when executing one of these GETSEC leaves, then no change in the thermal throttling control settings
will occur. If thermal throttling is disabled, then it will be enabled via setting of the thermal throttle control bit 3 as a result of execut-
ing these GETSEC leaves.

The IDTR will also require reloading with a new IDT context after entering authenticated code execution mode,
before any exceptions or the external interrupts INTR and NMI can be handled. Since external interrupts are re-
enabled at the completion of authenticated code execution mode (as terminated with EXITAC), it is recommended

GETSEC[ENTERACCS]—Execute Authenticated Chipset Code Vol.2D 7-13

SAFER MODE EXTENSIONS REFERENCE

that a new IDT context be established before this point. Until such a new IDT context is established, the
programmer must take care in not executing an INT n instruction or any other operation that would result in an
exception or trap signaling.

Prior to completion of the GETSEC[ENTERACCS] instruction and after successful authentication of the AC module,

the private configuration space of the Intel TXT chipset is unlocked. The authenticated code module alone can gain
access to this normally restricted chipset state for the purpose of securing the platform.

Once the authenticated code module is launched at the completion of GETSEC[ENTERACCS], it is free to enable
interrupts by setting EFLAGS.IF and enable NMI by execution of IRET. This presumes that it has re-established
interrupt handling support through initialization of the IDT, GDT, and corresponding interrupt handling code.

Operation in a Uni-Processor Platform

(* The state of the internal flag ACMODEFLAG persists across instruction boundary *)
IF (CR4.SMXE=0)
THEN #UD;
ELSIF (in VMX non-root operation)
THEN VM Exit (reason="GETSEC instruction”);
ELSIF (GETSEC leaf unsupported)
THEN #UD;
ELSIF ((in VMX operation) or
(CRO.PE=0) or (CRO.CD=1) or (CRO.NW=1) or (CRO.NE=0) or
CPL>0) or (EFLAGS.VM=1) or
IA32_APIC_BASE.BSP=0) or
TXT chipset not present) or
ACMODEFLAG=1) or (IN_SMM=1))
THEN #GP(0);
IF (GETSEC[PARAMETERS].Parameter_Type = 5, MCA_Handling (bit 6) = 0)
FOR | = 0 to IA32_MCG_CAP.COUNT-1 DO
IF (IA32_MC[I]_STATUS = uncorrectable error)
THEN #GP(0);

—_— o~ o~ —~

0D;
Fl;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)
THEN #GP(0);
ACBASE := EBX;
ACSIZE := ECX;
IF (((ACBASE MOD 4096) # 0) or ((ACSIZE MOD 64) # 0) or (ACSIZE < minimum module size) OR (ACSIZE > authenticated RAM
capacity)) or ((ACBASE+ACSIZE) > (2732 -1)))
THEN #GP(0);
IF (secondary thread(s) CRO.CD = 1) or ((secondary thread(s) NOT(wait-for-SIPl)) and
(secondary thread(s) not in SENTER sleep state)
THEN #GP(0);
Mask SM|, INIT, A20M, and NMI external pin events;
IA32_MISC_ENABLE := (IA32_MISC_ENABLE & MASK_CONST*)
(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)
A20M:=0;
IA32_DEBUGCTL := 0;
Invalidate processor TLB(s);
Drain Outgoing Transactions;
ACMODEFLAG = 1;
SignalTXTMessage(ProcessorHold);
Load the internal ACRAM based on the AC module size;
(* Ensure that all ACRAM loads hit Write Back memory space *)
IF (ACRAM memory type # WB)

7-14 Vol. 2D GETSEC[ENTERACCS]—Execute Authenticated Chipset Code

THEN TXT-SHUTDOWN(#BadACMMType);
IF (AC module header version isnot supported) OR (ACRAM[ModuleType] # 2)
THEN TXT-SHUTDOWN(#UnsupportedACM);
(* Authenticate the AC Module and shutdown with an error if it fails *)
KEY := GETKEY(ACRAM, ACBASE);
KEYHASH := HASH(KEY);
CSKEYHASH := READ(TXT.PUBLICKEY);
IF (KEYHASH # CSKEYHASH)
THEN TXT-SHUTDOWN(#AuthenticateFail);
SIGNATURE := DECRYPT(ACRAM, ACBASE, KEY);
(* The value of SIGNATURE_LEN_CONST is implementation-specific*)
FOR 1=0 to SIGNATURE_LEN_CONST - 1 DO
ACRAM[SCRATCH.I] := SIGNATURE([I];
COMPUTEDSIGNATURE := HASH(ACRAM, ACBASE, ACSIZE);
FOR 1=0 to SIGNATURE_LEN_CONST - 1 DO
ACRAM[SCRATCH.SIGNATURE_LEN_CONST+I] := COMPUTEDSIGNATURETI];
IF (SIGNATURE # COMPUTEDSIGNATURE)
THEN TXT-SHUTDOWN(#AuthenticateFail);
ACMCONTROL := ACRAM[CodeControl];

SAFER MODE EXTENSIONS REFERENCE

IF (RCMCONTROL.O = 0) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))

THEN TXT-SHUTDOWN(#UnexpectedHITM);
IF (ACMCONTROL reserved bits are set)
THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((RCRAM[GDTBasePtr] < (ACRAM[HeaderlLen] * 4 + Scratch_size)) OR
((ACRAM[CGDTBasePtr] + ACRAM[GDTLImit]) >= ACSIZE))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF (RCMCONTROL.O = 1) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))

THEN ACEntryPoint ;= ACBASE+ACRAM[ErrorEntryPoint];
ELSE
ACEntryPoint ;= ACBASE+ACRAM[ENntryPoint];

IF ((RCEntryPoint >= ACSIZE) OR (ACEntryPoint < (ACRAM[HeaderlLen] * 4 + Scratch_size)))THEN TXT-SHUTDOWN(#BadACMFormat);

IF (ACRAM[GDTLimit] & FFFFOO00N)
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((RCRAM[SegSel] > (ACRAM[GDTLimit] - 15)) OR (ACRAM[SegSel] < 8))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((RCRAM[SegSel].TI=1) OR (ACRAM[SegSel].RPL=0))
THEN TXT-SHUTDOWN(#BadACMFormat);

CRO.[PG.AM.WP] := O;

CR4.MCE :=0;

EFLAGS := 00000002h;

IA32_EFER := Oh;

[EIR]BX := [E[R]IP of the instruction after GETSEC[ENTERACCS];

ECX := Pre-GETSEC[ENTERACCS] GDT.limit:CS.sel;

[EIRIDX := Pre-GETSEC[ENTERACCS] GDT.base;

EBP := ACBASE;

GDTR.BASE := ACBASE+ACRAM[GDTBasePtr];

GDTR.UMIT := ACRAM[GDTLimit];

CS.SEL := ACRAM[SegSel];

CS.BASE = 0;

CS.LIMIT := FFFFFh;

CS.G:=1;

GSD:=1;

CS.AR := 9Bh;

DS.SEL := ACRAM[SegSel]+8;

GETSEC[ENTERACCS]—Execute Authenticated Chipset Code

Vol.2D 7-15

SAFER MODE EXTENSIONS REFERENCE

DS.BASE := 0;

DS.LIMIT := FFFFFh;
DS.G:=1;

DSD:=1;

DS.AR := 93h;

DR7 := 00000400h;
IA32_DEBUGCTL := 0;
SignalTXTMsg(OpenPrivate);
SignalTXTMsg(OpenLocality3);
EIP := ACEntryPoint;

END;

Flags Affected
All flags are cleared.

Use of Prefixes

LOCK Causes #UD.

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Operand size Causes #UD.

NP 66/F2/F3 prefixes are not allowed.

Segment overrides Ignored.

Address size Ignored.

REX Ignored.

Protected Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) If CRO.CD = 1 or CRO.NW = 1 or CRO.NE = 0 or CRO.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If a Intel® TXT-capable chipset is not present.
If in VMX root operation.

If the initiating processor is not designated as the bootstrap processor via the MSR bit
IA32_APIC_BASE.BSP.

If the processor is already in authenticated code execution mode.

If the processor is in SMM.

If a valid uncorrectable machine check error is logged in IA32_MC[I]_STATUS.

If the authenticated code base is not on a 4096 byte boundary.

If the authenticated code size > processor internal authenticated code area capacity.
If the authenticated code size is not modulo 64.

If other enabled logical processor(s) of the same package CR0.CD = 1.

If other enabled logical processor(s) of the same package are not in the wait-for-SIPI or
SENTER sleep state.

Real-Address Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[ENTERACCS] is not recognized in real-address mode.

7-16 Vol. 2D GETSEC[ENTERACCS]—Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

Virtual-8086 Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[ENTERACCS] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.
#GP If AC code module does not reside in physical address below 2732 -1.

64-Bit Mode Exceptions
All protected mode exceptions apply.
#GP If AC code module does not reside in physical address below 2732 -1.

VM-exit Condition
Reason (GETSEC) If in VMX non-root operation.

GETSEC[ENTERACCS]—Execute Authenticated Chipset Code Vol.2D 7-17

SAFER MODE EXTENSIONS REFERENCE

GETSEC[EXITAC]—EXxit Authenticated Code Execution Mode

Opcode Instruction Description

NP OF 37 GETSECEXITAC] Exit authenticated code execution mode.

(EAX=3) RBX holds the Near Absolute Indirect jump target and EDX hold the exit parameter flags.
Description

The GETSEC[EXITAC] leaf function exits the ILP out of authenticated code execution mode established by
GETSEC[ENTERACCS] or GETSEC[SENTER]. The EXITAC leaf of GETSEC is selected with EAX set to 3 at entry. EBX
(or RBX, if in 64-bit mode) holds the near jump target offset for where the processor execution resumes upon
exiting authenticated code execution mode. EDX contains additional parameter control information. Currently only
an input value of 0 in EDX is supported. All other EDX settings are considered reserved and result in a general
protection violation.

GETSEC[EXITAC] can only be executed if the processor is in protected mode with CPL = 0 and EFLAGS.VM = 0. The
processor must also be in authenticated code execution mode. To avoid potential operability conflicts between
modes, the processor is not allowed to execute this instruction if it is in SMM or in VMX operation. A violation of
these conditions results in a general protection violation.

Upon completion of the GETSEC[EXITAC] operation, the processor unmasks responses to external event signals
INIT#, NMI#, and SMI#. This unmasking is performed conditionally, based on whether the authenticated code
execution mode was entered via execution of GETSEC[SENTER] or GETSEC[ENTERACCS]. If the processor is in
authenticated code execution mode due to the execution of GETSEC[SENTER], then these external event signals
will remain masked. In this case, A20M is kept disabled in the measured environment until the measured environ-
ment executes GETSEC[SEXIT]. INIT# is unconditionally unmasked by EXITAC. Note that any events that are
pending, but have been blocked while in authenticated code execution mode, will be recognized at the completion
of the GETSEC[EXITAC] instruction if the pin event is unmasked.

The intent of providing the ability to optionally leave the pin events SMI#, and NMI# masked is to support the
completion of a measured environment bring-up that makes use of VMX. In this envisioned security usage
scenario, these events will remain masked until an appropriate virtual machine has been established in order to
field servicing of these events in a safer manner. Details on when and how events are masked and unmasked in
VMX operation are described in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C. It
should be cautioned that if no VMX environment is to be activated following GETSEC[EXITAC], that these events
will remain masked until the measured environment is exited with GETSEC[SEXIT]. If this is not desired then the
GETSEC function SMCTRL(0) can be used for unmasking SMI# in this context. NMI# can be correspondingly
unmasked by execution of IRET.

A successful exit of the authenticated code execution mode requires the ILP to perform additional steps as outlined
below:

* Invalidate the contents of the internal authenticated code execution area.
®* Invalidate processor TLBs.

® Clear the internal processor AC Mode indicator flag.

® Re-lock the TPM locality 3 space.

* Unlock the Intel® TXT-capable chipset memory and I/O protections to allow memory and 1I/0 activity by other
processor agents.

® Perform a near absolute indirect jump to the designated instruction location.

The content of the authenticated code execution area is invalidated by hardware in order to protect it from further
use or visibility. This internal processor storage area can no longer be used or relied upon after GETSEC[EXITAC].

Data structures need to be re-established outside of the authenticated code execution area if they are to be refer-
enced after EXITAC. Since addressed memory content formerly mapped to the authenticated code execution area
may no longer be coherent with external system memory after EXITAC, processor TLBs in support of linear to phys-
ical address translation are also invalidated.

7-18 Vol. 2D GETSEC[EXITAC]—Exit Authenticated Code Execution Mode

SAFER MODE EXTENSIONS REFERENCE

Upon completion of GETSEC[EXITAC] a near absolute indirect transfer is performed with EIP loaded with the
contents of EBX (based on the current operating mode size). In 64-bit mode, all 64 bits of RBX are loaded into RIP
if REX.W precedes GETSEC[EXITAC]. Otherwise RBX is treated as 32 bits even while in 64-bit mode. Conventional
CS limit checking is performed as part of this control transfer. Any exception conditions generated as part of this
control transfer will be directed to the existing IDT; thus it is recommended that an IDTR should also be established
prior to execution of the EXITAC function if there is a need for fault handling. In addition, any segmentation related
(and paging) data structures to be used after EXITAC should be re-established or validated by the authenticated
code prior to EXITAC.

In addition, any segmentation related (and paging) data structures to be used after EXITAC need to be re-estab-
lished and mapped outside of the authenticated RAM designated area by the authenticated code prior to EXITAC.
Any data structure held within the authenticated RAM allocated area will no longer be accessible after completion
by EXITAC.

Operation

(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)
IF (CR4.SMXE=0)
THEN #UD;

ELSIF (in VMX non-root operation)

THEN VM Exit (reason="GETSEC instruction”);

ELSIF (GETSEC leaf unsupported)

THEN #UD;

ELSIF ((in VMX operation) or ((in 64-bit mode) and (RBX is non-canonical))
(CRO.PE=0) or (CPL>0) or (EFLAGS.VM=1) or
(ACMODEFLAG=0) or (IN_SMM=1)) or (EDX # 0))
THEN #GP(0);

IF (OperandSize = 32)

THEN temp€ElP := EBX;

ELSIF (OperandSize = 64)
THEN tempéElP := RBX;

ELSE
tempEIP := EBX AND 0000FFFFH;

IF (tempEIP > code segment limit)

THEN #GP(0);

Invalidate ACRAM contents;

Invalidate processor TLB(s);

Drain outgoing messages;

SignalTXTMsg(Closelocality3);

SignalTXTMsg(LockSMRAM);

SignalTXTMsg(ProcessorRelease);

Unmask INIT;

IF (SENTERFLAG=0)

THEN Unmask SMI, INIT, NMI, and A20M pin event;

ELSEIF (IA32_SMM_MONITOR_CTL[O] = 0)

THEN Unmask SMI pin event;

ACMODEFLAG := 0;

IF IA32_EFERLMA ==
THEN CR3 := R8;

EIP := temp€EIP;

END;

Flags Affected

None.

GETSEC[EXITAC]—Exit Authenticated Code Execution Mode Vol.2D 7-19

SAFER MODE EXTENSIONS REFERENCE

Use of Prefixes

LOCK Causes #UD.

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Operand size Causes #UD.

NP 66/F2/F3 prefixes are not allowed.

Segment overrides Ignored.

Address size Ignored.

REX.W Sets 64-bit mode Operand size attribute.

Protected Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[EXITAC] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) If CRO.PE = 0 or CPL>0 or EFLAGS.VM =1.

If in VMX root operation.

If the processor is not currently in authenticated code execution mode.
If the processor is in SMM.

If any reserved bit position is set in the EDX parameter register.

Real-Address Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[EXITAC] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[EXITAC] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[EXITAC] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[EXITAC] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.
#GP(0) If the target address in RBX is not in a canonical form.

VM-Exit Condition
Reason (GETSEC) If in VMX non-root operation.

7-20 Vol. 2D GETSEC[EXITAC]—Exit Authenticated Code Execution Mode

SAFER MODE EXTENSIONS REFERENCE

GETSEC[SENTER]—Enter a Measured Environment

Opcode Instruction Description
NP OF 37 GETSEC[SENTER] Launch a measured environment.
(EAX=4) EBX holds the SINIT authenticated code module physical base address.

ECX holds the SINIT authenticated code module size (bytes).
EDX controls the level of functionality supported by the measured environment launch.

Description

The GETSEC[SENTER] instruction initiates the launch of a measured environment and places the initiating logical
processor (ILP) into the authenticated code execution mode. The SENTER leaf of GETSEC is selected with EAX set
to 4 at execution. The physical base address of the AC module to be loaded and authenticated is specified in EBX.
The size of the module in bytes is specified in ECX. EDX controls the level of functionality supported by the
measured environment launch. To enable the full functionality of the protected environment launch, EDX must be
initialized to zero.

The authenticated code base address and size parameters (in bytes) are passed to the GETSEC[SENTER] instruc-
tion using EBX and ECX respectively. The ILP evaluates the contents of these registers according to the rules for the
AC module address in GETSEC[ENTERACCS]. AC module execution follows the same rules, as set by
GETSEC[ENTERACCS].

The launching software must ensure that the TPM.ACCESS_0.activelLocality bit is clear before executing the
GETSEC[SENTER] instruction.

There are restrictions enforced by the processor for execution of the GETSEC[SENTER] instruction:

® Execution is not allowed unless the processor is in protected mode or IA-32e mode with CPL = 0 and
EFLAGS.VM = 0.

® Processor cache must be available and not disabled using the CR0.CD and NW bits.

®* For enforcing consistency of operation with numeric exception reporting using Interrupt 16, CRO.NE must be
set.

® An Intel TXT-capable chipset must be present as communicated to the processor by sampling of the power-on
configuration capability field after reset.

®* The processor can not be in authenticated code execution mode or already in a measured environment (as
launched by a previous GETSEC[ENTERACCS] or GETSEC[SENTER] instruction).

®* To avoid potential operability conflicts between modes, the processor is not allowed to execute this instruction
if it currently is in SMM or VMX operation.

®* To ensure consistent handling of SIPI messages, the processor executing the GETSEC[SENTER] instruction
must also be designated the BSP (boot-strap processor) as defined by IA32_APIC_BASE.BSP (Bit 8).

®* EDX must be initialized to a setting supportable by the processor. Unless enumeration by the GETSEC[PARAM-
ETERS] leaf reports otherwise, only a value of zero is supported.

Failure to abide by the above conditions results in the processor signaling a general protection violation.

This instruction leaf starts the launch of a measured environment by initiating a rendezvous sequence for all logical
processors in the platform. The rendezvous sequence involves the initiating logical processor sending a message
(by executing GETSEC[SENTER]) and other responding logical processors (RLPs) acknowledging the message,
thus synchronizing the RLP(s) with the ILP.

In response to a message signaling the completion of rendezvous, RLPs clear the bootstrap processor indicator flag
(IA32_APIC_BASE.BSP) and enter an SENTER sleep state. In this sleep state, RLPs enter an idle processor condi-
tion while waiting to be activated after a measured environment has been established by the system executive.
RLPs in the SENTER sleep state can only be activated by the GETSEC leaf function WAKEUP in a measured environ-
ment.

GETSEC[SENTER]—Enter a Measured Environment Vol.2D 7-21

SAFER MODE EXTENSIONS REFERENCE

A successful launch of the measured environment results in the initiating logical processor entering the authenti-
cated code execution mode. Prior to reaching this point, the ILP performs the following steps internally:

® Inhibit processor response to the external events: INIT, A20M, NMI, and SMI.

® Establish and check the location and size of the authenticated code module to be executed by the ILP.

* Check for the existence of an Intel® TXT-capable chipset.

* Verify the current power management configuration is acceptable.

®* Broadcast a message to enable protection of memory and I/O from activities from other processor agents.
®* Load the designated AC module into authenticated code execution area.

® Isolate the content of authenticated code execution area from further state modification by external agents.
® Authenticate the AC module.

®* Updated the Trusted Platform Module (TPM) with the authenticated code module's hash.

* Initialize processor state based on the authenticated code module header information.

* Unlock the Intel® TXT-capable chipset private configuration register space and TPM locality 3 space.

® Begin execution in the authenticated code module at the defined entry point.

As an integrity check for proper processor hardware operation, execution of GETSEC[SENTER] will also check the
contents of all the machine check status registers (as reported by the MSRs IA32_MCi_STATUS) for any valid
uncorrectable error condition. In addition, the global machine check status register IA32_MCG_STATUS MCIP bit
must be cleared and the IERR processor package pin (or its equivalent) must be not asserted, indicating that no
machine check exception processing is currently in-progress. These checks are performed twice: once by the ILP
prior to the broadcast of the rendezvous message to RLPs, and later in response to RLPs acknowledging the rendez-
vous message. Any outstanding valid uncorrectable machine check error condition present in the machine check
status registers at the first check point will result in the ILP signaling a general protection violation. If an
outstanding valid uncorrectable machine check error condition is present at the second check point, then this will
result in the corresponding logical processor signaling the more severe TXT-shutdown condition with an error code
of 12.

Before loading and authentication of the target code module is performed, the processor also checks that the
current voltage and bus ratio encodings correspond to known good values supportable by the processor. The MSR
IA32_PERF_STATUS values are compared against either the processor supported maximum operating target
setting, system reset setting, or the thermal monitor operating target. If the current settings do not meet any of
these criteria then the SENTER function will attempt to change the voltage and bus ratio select controls in a
processor-specific manner. This adjustment may be to the thermal monitor, minimum (if different), or maximum
operating target depending on the processor.

This implies that some thermal operating target parameters configured by BIOS may be overridden by SENTER.
The measured environment software may need to take responsibility for restoring such settings that are deemed
to be safe, but not necessarily recognized by SENTER. If an adjustment is not possible when an out of range setting
is discovered, then the processor will abort the measured launch. This may be the case for chipset controlled
settings of these values or if the controllability is not enabled on the processor. In this case it is the responsibility of
the external software to program the chipset voltage ID and/or bus ratio select settings to known good values
recognized by the processor, prior to executing SENTER.

NOTE

For a mobile processor, an adjustment can be made according to the thermal monitor operating
target. For a quad-core processor the SENTER adjustment mechanism may result in a more conser-
vative but non-uniform voltage setting, depending on the pre-SENTER settings per core.

The ILP and RLPs mask the response to the assertion of the external signals INIT#, A20M, NMI#, and SMI#. The
purpose of this masking control is to prevent exposure to existing external event handlers until a protected handler
has been put in place to directly handle these events. Masked external pin events may be unmasked conditionally
or unconditionally via the GETSEC[EXITAC], GETSEC[SEXIT], GETSEC[SMCTRL] or for specific VMX related opera-
tions such as a VM entry or the VMXOFF instruction (see respective GETSEC leaves and Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more details). The state of the A20M pin is masked and
forced internally to a de-asserted state so that external assertion is not recognized. A20M masking as set by

7-22 \Vol. 2D GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE

GETSEC[SENTER] is undone only after taking down the measured environment with the GETSEC[SEXIT] instruc-
tion or processor reset. INTR is masked by simply clearing the EFLAGS.IF bit. It is the responsibility of system soft-
ware to control the processor response to INTR through appropriate management of EFLAGS.

To prevent other (logical) processors from interfering with the ILP operating in authenticated code execution mode,
memory (excluding implicit write-back transactions) and I/O activities originating from other processor agents are
blocked. This protection starts when the ILP enters into authenticated code execution mode. Only memory and I/O
transactions initiated from the ILP are allowed to proceed. Exiting authenticated code execution mode is done by

executing GETSEC[EXITAC]. The protection of memory and I/0 activities remains in effect until the ILP executes

GETSEC[EXITAC].

Once the authenticated code module has been loaded into the authenticated code execution area, it is protected
against further modification from external bus snoops. There is also a requirement that the memory type for the
authenticated code module address range be WB (via initialization of the MTRRs prior to execution of this instruc-
tion). If this condition is not satisfied, it is a violation of security and the processor will force a TXT system reset
(after writing an error code to the chipset LT.ERRORCODE register). This action is referred to as a Intel® TXT reset
condition. It is performed when it is considered unreliable to signal an error through the conventional exception
reporting mechanism.

To conform to the minimum granularity of MTRR MSRs for specifying the memory type, authenticated code RAM
(ACRAM) is allocated to the processor in 4096 byte granular blocks. If an AC module size as specified in ECX is not
a multiple of 4096 then the processor will allocate up to the next 4096 byte boundary for mapping as ACRAM with
indeterminate data. This pad area will not be visible to the authenticated code module as external memory nor can
it depend on the value of the data used to fill the pad area.

Once successful authentication has been completed by the ILP, the computed hash is stored in a trusted storage
facility in the platform. The following trusted storage facility are supported:

® If the platform register FTM_INTERFACE_ID.[bits 3:0] = 0, the computed hash is stored to the platform’s TPM
at PCR17 after this register is implicitly reset. PCR17 is a dedicated register for holding the computed hash of
the authenticated code module loaded and subsequently executed by the GETSEC[SENTER]. As part of this
process, the dynamic PCRs 18-22 are reset so they can be utilized by subsequently software for registration of
code and data modules.

® If the platform register FTM_INTERFACE_ID.[bits 3:0] = 1, the computed hash is stored in a firmware trusted
module (FTM) using a modified protocol similar to the protocol used to write to TPM’s PCR17.

After successful execution of SENTER, either PCR17 (if FTM is not enabled) or the FTM (if enabled) contains the
measurement of AC code and the SENTER launching parameters.

After authentication is completed successfully, the private configuration space of the Intel® TXT-capable chipset is
unlocked so that the authenticated code module and measured environment software can gain access to this
normally restricted chipset state. The Intel® TXT-capable chipset private configuration space can be locked later
by software writing to the chipset LT.CMD.CLOSE-PRIVATE register or unconditionally using the GETSEC[SEXIT]
instruction.

The SENTER leaf function also initializes some processor architecture state for the ILP from contents held in the
header of the authenticated code module. Since the authenticated code module is relocatable, all address refer-
ences are relative to the base address passed in via EBX. The ILP GDTR base value is initialized to EBX +
[GDTBasePtr] and GDTR limit set to [GDTLimit]. The CS selector is initialized to the value held in the AC module
header field SegSel, while the DS, SS, and ES selectors are initialized to CS+8. The segment descriptor fields are
initialized implicitly with BASE=0, LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write/accessed for DS, SS, and ES,
while execute/read/accessed for CS. Execution in the authenticated code module for the ILP begins with the EIP set
to EBX + [EntryPoint]. AC module defined fields used for initializing processor state are consistency checked with
a failure resulting in an TXT-shutdown condition.

Table 7-6 provides a summary of processor state initialization for the ILP and RLP(s) after successful completion of
GETSEC[SENTER]. For both ILP and RLP(s), paging is disabled upon entry to the measured environment. Itis up to
the ILP to establish a trusted paging environment, with appropriate mappings, to meet protection requirements
established during the launch of the measured environment. RLP state initialization is not completed until a subse-
quent wake-up has been signaled by execution of the GETSEC[WAKEUP] function by the ILP.

GETSEC[SENTER]—Enter a Measured Environment Vol.2D 7-23

SAFER MODE EXTENSIONS REFERENCE

Table 7-6. Register State Initialization After GETSEC[SENTER] and GETSEC[WAKEUP]

Register State ILP after GETSEC[SENTER] RLP after GETSEC[WAKEUP]

CRO PG«0, AM«0, WP<«0; Others unchanged PG«0, CD«-0, NW«—0, AM«0, WP<«0; PE<—1, NE«1

CR4 00004000H 00004000H

EFLAGS 00000002H 00000002H

IA32_EFER OH 0

EIP [EntryPoint from MLE header1] [LT.MLEJOIN +12]

EBX Unchanged [SINIT.BASE] Unchanged

EDX SENTER control flags Unchanged

EBP SINIT.BASE Unchanged

CS Sel=[SINIT SegSel], base=0, limit=FFFFFh, G=1, Sel = [LT.MLEJOIN + 8], base = 0, limit = FFFFFH, G =
D=1, AR=9BH 1,D=1,AR=9BH

DS, €S, SS Sel=[SINIT SegSel] +8, base=0, limit=FFFFFh, G=1, | Sel = [LT.MLEJOIN + 8] +8, base = 0, limit = FFFFFH,
D=1, AR=93H G=1,D=1,AR=93H

GDTR Base= SINIT.base (EBX) + [SINIT.GDTBasePtr], Base = [LT.MLEJOIN + 4], Limit = [LT.MLE.JOIN]
Limit=[SINIT.GDTLimit]

DR7 00000400H 00000400H

IA32_DEBUGCTL OH OH

Performance OH OH

counters and counter

control registers

IA32_MISC_ENABLE See Table 7-5 See Table 7-5

IA32_SMM_MONITOR | Bit 2<-0 Bit 2<-0

_CTL

NOTES:

1. See the Intel® Trusted Execution Technology Measured Launched Environment Programming Guide for MLE header format.

Segmentation related processor state that has not been initialized by GETSEC[SENTER] requires appropriate
initialization before use. Since a new GDT context has been established, the previous state of the segment selector
values held in FS, GS, TR, and LDTR may no longer be valid. The IDTR will also require reloading with a new IDT
context after launching the measured environment before exceptions or the external interrupts INTR and NMI can
be handled. In the meantime, the programmer must take care in not executing an INT n instruction or any other
condition that would result in an exception or trap signaling.

Debug exception and trap related signaling is also disabled as part of execution of GETSEC[SENTER]. This is
achieved by clearing DR7, TF in EFLAGs, and the MSR IA32_DEBUGCTL as defined in Table 7-6. These can be re-
enabled once supporting exception handler(s), descriptor tables, and debug registers have been properly re-initial-
ized following SENTER. Also, any pending single-step trap condition will be cleared at the completion of SENTER for
both the ILP and RLP(s).

Performance related counters and counter control registers are cleared as part of execution of SENTER on both the
ILP and RLP. This implies any active performance counters at the time of SENTER execution will be disabled. To
reactive the processor performance counters, this state must be re-initialized and re-enabled.

Since MCE along with all other state bits (with the exception of SMXE) are cleared in CR4 upon execution of SENTER
processing, any enabled machine check error condition that occurs will result in the processor performing the TXT-
shutdown action. This also applies to an RLP while in the SENTER sleep state. For each logical processor CR4.MCE

7-24 \Vol. 2D GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE

must be reestablished with a valid machine check exception handler to otherwise avoid an TXT-shutdown under
such conditions.

The MSR IA32_EFER is also unconditionally cleared as part of the processor state initialized by SENTER for both the
ILP and RLP. Since paging is disabled upon entering authenticated code execution mode, a new paging environ-
ment will have to be re-established if it is desired to enable IA-32e mode while operating in authenticated code
execution mode.

The miscellaneous feature control MSR, IA32_MISC_ENABLE, is initialized as part of the measured environment
launch. Certain bits of this MSR are preserved because preserving these bits may be important to maintain previ-
ously established platform settings. See the footnote for Table 7-5 The remaining bits are cleared for the purpose
of establishing a more consistent environment for the execution of authenticated code modules. Among the impact
of initializing this MSR, any previous condition established by the MONITOR instruction will be cleared.

Effect of MSR IA32_FEATURE_CONTROL MSR

Bits 15:8 of the IA32_FEATURE_CONTROL MSR affect the execution of GETSEC[SENTER]. These bits consist of two
fields:

® Bit 15: a global enable control for execution of SENTER.

®* Bits 14:8: a parameter control field providing the ability to qualify SENTER execution based on the level of
functionality specified with corresponding EDX parameter bits 6:0.

The layout of these fields in the IA32_FEATURE_CONTROL MSR is shown in Table 7-1.

Prior to the execution of GETSEC[SENTER], the lock bit of IA32_FEATURE_CONTROL MSR must be bit set to affirm
the settings to be used. Once the lock bit is set, only a power-up reset condition will clear this MSR. The IA32_FEA-
TURE_CONTROL MSR must be configured in accordance to the intended usage at platform initialization. Note that
this MSR is only available on SMX or VMX enabled processors. Otherwise, IA32_FEATURE_CONTROL is treated as

reserved.

The Intel® Trusted Execution Technology Measured Launched Environment Programming Guide provides addi-
tional details and requirements for programming measured environment software to launch in an Intel TXT plat-
form.

Operation in a Uni-Processor Platform
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)

GETSEC[SENTER] (ILP Only):
IF (CR4.SMXE=0)
THEN #UD;
ELSE IF (in VMX non-root operation)
THEN VM Exit (reason="GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)
THEN #UD;
ELSE IF ((in VMX root operation) or
(CRO.PE=0) or (CRO.CD=1) or (CRO.NW=1) or (CRO.NE=0) or
(CPL>0) or (EFLAGS.VM=1) or
(IA32_APIC_BASE.BSP=0) or (TXT chipset not present) or
(SENTERFLAG=1) or (ACMODEFLAG=1) or (IN_SMM=1) or
(TPM interface is not present) or
(EDX # (SENTER_EDX_support_mask & EDX)) or
(IA32_FEATURE_CONTROL[0]=0) or (IA32_FEATURE_CONTROL[15]=0) or
((IA32_FEATURE_CONTROL[14:8] & EDX[6:0]) # EDX[6:0]))
THEN #GP(0);
IF (GETSEC[PARAMETERS].Parameter_Type = 5, MCA_Handling (bit 6) = 0)
FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO
IF IA32_MC[I]_STATUS = uncorrectable error
THEN #GP(0);
Fl;
oD;

GETSEC[SENTER]—Enter a Measured Environment Vol.2D 7-25

SAFER MODE EXTENSIONS REFERENCE

Fl;

IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)
THEN #GP(0);

ACBASE := EBX;

ACSIZE := ECX;

IF (((ACBASE MOD 4096) # 0) or ((ACSIZE MOD 64) # 0) or (ACSIZE < minimum
module size) or (ACSIZE > AC RAM capacity) or ((ACBASE+ACSIZE) > (2732 -1)))

THEN #GP(0);

Mask SM|, INIT, A20M, and NMI external pin events;

SignalTXTMsg(SENTER);

DO

WHILE (no SignalSENTER message);

TXT_SENTER__MSG_EVENT (ILP & RLP):
Mask and clear SignalSENTER event;
Unmask SignalSEXIT event;
IF (in VMX operation)
THEN TXT-SHUTDOWN(#lllegalEvent);
FOR 1 =0 to IA32_MCG_CAP.COUNT-1 DO
IF IA32_MC[I]_STATUS = uncorrectable error
THEN TXT-SHUTDOWN(#UnrecovMCError);
Fl;
0D;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)
THEN TXT-SHUTDOWN(#UnrecovMCError);
IF (Voltage or bus ratio status are NOT at a known good state)
THEN IF (Voltage select and bus ratio are internally adjustable)
THEN
Make product-specific adjustment on operating parameters;
ELSE
TXT-SHUTDOWN(#lllegalVIDBRatio);
Fl;

IA32_MISC_ENABLE := (IA32_MISC_ENABLE & MASK_CONST*)
(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)
A20M:=0;

IA32_DEBUGCTL := 0;

Invalidate processor TLB(s);

Drain outgoing transactions;

Clear performance monitor counters and control;

SENTERFLAG = 1;

SignalTXTMsg(SENTERACk);

IF (logical processor is not ILP)

THEN GOTO RLP_SENTER_ROUTINE;

(* ILP waits for all logical processors to ACK *)

DO
DONE := TXT.READ(LT.STS);

WHILE (not DONE);

SignalTXTMsg(SENTERContinue);

SignalTXTMsg(ProcessorHold);

FOR I=ACBASE to ACBASE+ACSIZE-1 DO
ACRAM[I-ACBASE].ADDR := |;
ACRAM[I-ACBASE].DATA := LOAD(l);

0D;

7-26 Vol. 2D GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE

IF (ACRAM memory type # WB)
THEN TXT-SHUTDOWN(#BadACMMType);

IF (AC module header version is not supported) OR (ACRAM[ModuleType] # 2)
THEN TXT-SHUTDOWN(#UnsupportedACM);

KEY := GETKEY(ACRAM, ACBASE);

KEYHASH := HASH(KEY);

CSKEYHASH := LT.READ(LT.PUBLICKEY);

IF (KEYHASH # CSKEYHASH)
THEN TXT-SHUTDOWN(#AuthenticateFail);

SIGNATURE := DECRYPT(ACRAM, ACBASE, KEY);

(* The value of SIGNATURE_LEN_CONST is implementation-specific*)

FOR 1=0 to SIGNATURE_LEN_CONST - 1 DO
ACRAM[SCRATCH.I] := SIGNATURE(I];

COMPUTEDSIGNATURE := HASH(ACRAM, ACBASE, ACSIZE);

FOR 1=0 to SIGNATURE_LEN_CONST - 1 DO
ACRAM[SCRATCH.SIGNATURE_LEN_CONST+I] := COMPUTEDSIGNATURE(I];

IF (SIGNATURE # COMPUTEDSIGNATURE)
THEN TXT-SHUTDOWN(#AuthenticateFail);

ACMCONTROL := ACRAM[CodeControl];

IF (RCMCONTROL.O = 0) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))
THEN TXT-SHUTDOWN(#UnexpectedHITM);

IF (ACMCONTROL reserved bits are set)
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((RCRAM[GDTBasePtr] < (ACRAM[HeaderlLen] * 4 + Scratch_size)) OR
((ACRAM[GDTBasePtr] + ACRAM[GDTLImit]) >= ACSIZE))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF (RCMCONTROL.O = 1) and (ACMCONTROL.1 = 1) and (snoop hit to modified
line detected on ACRAM load))
THEN ACEntryPoint ;= ACBASE+ACRAM[ErrorEntryPoint];

ELSE
ACEntryPoint ;= ACBASE+ACRAM[ENntryPoint];

IF ((ARCEntryPoint >= ACSIZE) or (ACEntryPoint < (ACRAM[HeaderlLen] * 4 + Scratch_size)))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACRAM[SegSel] > (ACRAM[GDTLimit] - 15)) or (ACRAM[SegSel] < 8))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACRAM[SegSel].TI=1) or (ACRAM[SegSel].RPL+0))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF (FTM_INTERFACE_ID.[3:0] = 1) (* Alternate FTM Interface has been enabled *)
THEN (* TPM_LOC_CTRL_4 is located at 0FED44008H, TMP_DATA_BUFFER_4 is located at 0FED44080H *)
WRITE(TPM_LOC_CTRL_4) := OTH; (* Modified HASH.START protocol *)
(* Write to firmware storage *)
WRITE(TPM_DATA_BUFFER_4) := SIGNATURE_LEN_CONST + 4;
FOR I1=0 to SIGNATURE_LEN_CONST - 1 DO
WRITE(TPM_DATA_BUFFER_4 + 2 + 1) := ACRAM[SCRATCH.I];
WRITE(TPM_DATA_BUFFER_4 + 2 + SIGNATURE_LEN_CONST) := EDX;
WRITE(FTM.LOC_CTRL) := 06H; (* Modified protocol combining HASH.DATA and HASH.END *)
ELSE IF (FTM_INTERFACE_ID.[3:0] = 0) (* Use standard TPM Interface *)
ACRAM[SCRATCH.SIGNATURE_LEN_CONST] := EDX;
WRITE(TPM.HASH.START) := O;
FOR I=0 to SIGNATURE_LEN_CONST + 3 DO
WRITE(TPM.HASH.DATA) := ACRAM[SCRATCH.I];
WRITE(TPM.HASH.END) := O;
Fl;

GETSEC[SENTER]—Enter a Measured Environment Vol.2D 7-27

SAFER MODE EXTENSIONS REFERENCE

ACMODEFLAG = 1;
CRO.[PG.AM.WP] := C;

CR4 := 00004000h;

EFLAGS := 00000002h;
IA32_EFER :=0;

EBP := ACBASE;

GDTR.BASE := ACBASE+ACRAM[GDTBasePtr];
GDTR.LIMIT := ACRAM[GDTLimit];
CS.SEL := ACRAM[SegSel];
CS.BASE = 0;

CS.LUIMIT := FFFFFh;

GSG:=1;

SDh:=1;

CS.AR := 9Bh;

DS.SEL := ACRAM[SegSel]+8;
DS.BASE := 0;

DS.LIMIT := FFFFFh;

DS.G:=1;

DSD:=1;

DS.AR :=93h;

SS:=DS;

€S :=DS;

DR7 := 00000400h;
IA32_DEBUGCTL := 0;
SignalTXTMsg(UnlockSMRAM);
SignalTXTMsg(OpenPrivate);
SignalTXTMsg(OpenLocality3);
EIP := ACEntryPoaint;

END;

RLP_SENTER_ROUTINE: (RLP Only)

Mask SM|, INIT, A20M, and NMI external pin events
Unmask SignalWAKEUP event;

Wait for SignalSENTERContinue message;
IA32_APIC_BASE.BSP := 0;

GOTO SENTER sleep state;

END;

Flags Affected

All flags are cleared.

Use of Prefixes

LOCK Causes #UD.

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Operand size Causes #UD.

NP 66/F2/F3 prefixes are not allowed.

Segment overrides Ignored.

Address size Ignored.

REX Ignored.

7-28 Vol. 2D GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE

Protected Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[SENTER] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) If CRO.CD = 1 or CRO.NW = 1 or CRO.NE = 0 or CRO.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If in VMX root operation.

If the initiating processor is not designated as the bootstrap processor via the MSR bit
IA32_APIC_BASE.BSP.

If an Intel® TXT-capable chipset is not present.
If an Intel® TXT-capable chipset interface to TPM is not detected as present.

If a protected partition is already active or the processor is already in authenticated code
mode.

If the processor is in SMM.
If a valid uncorrectable machine check error is logged in IA32_MC[I]_STATUS.
If the authenticated code base is not on a 4096 byte boundary.

If the authenticated code size > processor's authenticated code execution area storage
capacity.
If the authenticated code size is not modulo 64.

Real-Address Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[SENTER] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[SENTER] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[SENTER] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[SENTER] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.
#GP If AC code module does not reside in physical address below 2732 -1.

64-Bit Mode Exceptions
All protected mode exceptions apply.
#GP If AC code module does not reside in physical address below 2732 -1.

VM-Exit Condition
Reason (GETSEC) If in VMX non-root operation.

GETSEC[SENTER]—Enter a Measured Environment Vol.2D 7-29

SAFER MODE EXTENSIONS REFERENCE

GETSEC[SEXIT]—EXit Measured Environment

Opcode Instruction Description

NP OF 37 GETSEC[SEXIT] Exit measured environment.
(EAX=5)

Description

The GETSEC[SEXIT] instruction initiates an exit of a measured environment established by GETSEC[SENTER]. The
SEXIT leaf of GETSEC is selected with EAX set to 5 at execution. This instruction leaf sends a message to all logical
processors in the platform to signal the measured environment exit.

There are restrictions enforced by the processor for the execution of the GETSEC[SEXIT] instruction:

® Execution is not allowed unless the processor is in protected mode (CRO.PE = 1) with CPL = 0 and EFLAGS.VM
=0.

® The processor must be in a measured environment as launched by a previous GETSEC[SENTER] instruction,
but not still in authenticated code execution mode.

®* To avoid potential interoperability conflicts between modes, the processor is not allowed to execute this
instruction if it currently is in SMM or in VMX operation.

®* To ensure consistent handling of SIPI messages, the processor executing the GETSEC[SEXIT] instruction must
also be designated the BSP (bootstrap processor) as defined by the register bit IA32_APIC_BASE.BSP (bit 8).

Failure to abide by the above conditions results in the processor signaling a general protection violation.

This instruction initiates a sequence to rendezvous the RLPs with the ILP. It then clears the internal processor flag
indicating the processor is operating in a measured environment.

In response to a message signaling the completion of rendezvous, all RLPs restart execution with the instruction
that was to be executed at the time GETSEC[SEXIT] was recognized. This applies to all processor conditions, with
the following exceptions:

® If an RLP executed HLT and was in this halt state at the time of the message initiated by GETSEC[SEXIT], then
execution resumes in the halt state.

* Ifan RLP was executing MWAIT, then a message initiated by GETSEC[SEXIT] causes an exit of the MWAIT state,
falling through to the next instruction.

* If an RLP was executing an intermediate iteration of a string instruction, then the processor resumes execution
of the string instruction at the point which the message initiated by GETSEC[SEXIT] was recognized.

®* Ifan RLPis still in the SENTER sleep state (never awakened with GETSEC[WAKEUP]), it will be sent to the wait-
for-SIPI state after first clearing the bootstrap processor indicator flag (IA32_APIC_BASE.BSP) and any
pending SIPI state. In this case, such RLPs are initialized to an architectural state consistent with having taken
a soft reset using the INIT# pin.

Prior to completion of the GETSEC[SEXIT] operation, both the ILP and any active RLPs unmask the response of the
external event signals INIT#, A20M, NMI#, and SMI#. This unmasking is performed unconditionally to recognize
pin events which are masked after a GETSEC[SENTER]. The state of A20M is unmasked, as the A20M pin is not
recognized while the measured environment is active.

On a successful exit of the measured environment, the ILP re-locks the Intel® TXT-capable chipset private config-
uration space. GETSEC[SEXIT] does not affect the content of any PCR.

At completion of GETSEC[SEXIT] by the ILP, execution proceeds to the next instruction. Since EFLAGS and the
debug register state are not modified by this instruction, a pending trap condition is free to be signaled if previously
enabled.

7-30 Vol. 2D GETSEC[SEXIT]—EXxit Measured Environment

SAFER MODE EXTENSIONS REFERENCE

Operation in a Uni-Processor Platform
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)

GETSEC[SEXIT] (ILP Only):
IF (CR4.SMXE=0)
THEN #UD;
ELSE IF (in VMX non-root operation)
THEN VM Exit (reason="GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)
THEN #UD;
ELSE IF ((in VMX root operation) or
(CRO.PE=0) or (CPL>0) or (EFLAGS.VM=1) or
(IA32_APIC_BASE.BSP=0) or
(TXT chipset not present) or
(SENTERFLAG=0) or (ACMODEFLAG=1) or (IN_SMM=1))
THEN #GP(0);
Signal TXTMsg(SEXIT);
DO
WHILE (no SignalSEXIT message);

TXT_SEXIT_MSG_EVENT (ILP & RLP):
Mask and clear SignalSEXIT event;
Clear MONITOR FSM;
Unmask SignalSENTER event;
IF (in VMX operation)
THEN TXT-SHUTDOWN(#lllegalEvent);
Signal TXTMsg(SEXITACk);
IF (logical processor is not ILP)
THEN GOTO RLP_SEXIT_ROUTINE;
(* ILP waits for all logical processors to ACK *)
DO
DONE := READ(LT.STS);
WHILE (NOT DONE);
Signal TXTMsg(SEXITContinue);
SignalTXTMsg(ClosePrivate);
SENTERFLAG := 0;
Unmask SMI, INIT, A20M, and NMI external pin events;
END;

RLP_SEXIT_ROUTINE (RLPs Only):
Wait for SignalSEXITContinue message;
Unmask SMI, INIT, A20M, and NMI external pin events;
IF (prior execution state = HLT)
THEN reenter HLT state;
IF (prior execution state = SENTER sleep)
THEN
IA32_APIC_BASE.BSP := 0;
Clear pending SIPI state;
Call INIT_PROCESSOR_STATE;
Unmask SIPI event;
GOTO WAIT-FOR-SIPI;
Fl;
END;

GETSEC[SEXIT]—Exit Measured Environment Vol.2D 7-31

SAFER MODE EXTENSIONS REFERENCE

Flags Affected
ILP: None.
RLPs: All flags are modified for an RLP. returning to wait-for-SIPI state, none otherwise.

Use of Prefixes

LOCK Causes #UD.

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Operand size Causes #UD.

NP 66/F2/F3 prefixes are not allowed.

Segment overrides Ignored.

Address size Ignored.

REX Ignored.

Protected Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[SEXIT] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) If CRO.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If in VMX root operation.
If the initiating processor is not designated via the MSR bit IA32_APIC_BASE.BSP.
If an Intel® TXT-capable chipset is not present.

If a protected partition is not already active or the processor is already in authenticated code
mode.

If the processor is in SMM.

Real-Address Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[SEXIT] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[SEXIT] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[SEXIT] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[SEXIT] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.

VM-Exit Condition
Reason (GETSEC) If in VMX non-root operation.

7-32 Vol.2D GETSEC[SEXIT]—EXxit Measured Environment

GETSEC[PARAMETERS]—Report the SMX Parameters

SAFER MODE EXTENSIONS REFERENCE

Opcode Instruction Description

NP OF 37 GETSEC[PARAMETERS] |Report the SMX parameters.

(EAX=6) The parameters index is input in EBX with the result returned in EAX, EBX, and ECX.
Description

The GETSEC[PARAMETERS] instruction returns specific parameter information for SMX features supported by the
processor. Parameter information is returned in EAX, EBX, and ECX, with the input parameter selected using EBX.

Software retrieves parameter information by searching with an input index for EBX starting at 0, and then reading
the returned results in EAX, EBX, and ECX. EAX[4:0] is designated to return a parameter type field indicating if a
parameter is available and what type it is. If EAX[4:0] is returned with 0, this designates a null parameter and indi-

cates no more parameters are available.

Table 7-7 defines the parameter types supported in current and future implementations.

Table 7-7. SMX Reporting Parameters Format

Parameter
Type EAX[4:0] | Parameter Description EAX[31:5] EBX[31:0] ECX[31:0]
0 NULL Reserved (O returned) Reserved (unmodified) Reserved (unmodified)
1 Supported AC module Reserved (0 returned) Version comparison mask | Version numbers
versions supported
2 Max size of authenticated | Multiply by 32 for size in Reserved (unmodified) Reserved (unmodified)
code execution area bytes
3 External memory types Memory type bit mask Reserved (unmodified) Reserved (unmodified)
supported during AC mode
4 Selective SENTER EAX[14:8] correspond to Reserved (unmodified) Reserved (unmodified)
functionality control available SENTER function
disable controls
5 TXT extensions support TXT Feature Extensions Reserved Reserved
Flags (see Table)
6-31 Undefined Reserved (unmodified) Reserved (unmodified) Reserved (unmodified)

GETSEC[PARAMETERS]—Report the SMX Parameters

Vol.2D 7-33

SAFER MODE EXTENSIONS REFERENCE

Table 7-8. TXT Feature Extensions Flags

Bit Definition Description
5 Processor based S-CRTM Returns 1 if this processor implements a processor-rooted S-CRTM capability and O
support if not (S-CRTM is rooted in BIOS).

This flag cannot be used to infer whether the chipset supports TXT or whether the
processor support SMX.

6 Machine Check Handling Returns 1 if it machine check status registers can be preserved through ENTERACCS
and SENTER. If this bit is 1, the caller of ENTERACCS and SENTER is not required to
clear machine check error status bits before invoking these GETSEC leaves.

If this bit returns 0O, the caller of ENTERACCS and SENTER must clear all machine
check error status bits before invoking these GETSEC leaves.

31.7 Reserved Reserved for future use. Will return 0.

Supported AC module versions (as defined by the AC module HeaderVersion field) can be determined for a partic-
ular SMX capable processor by the type 1 parameter. Using EBX to index through the available parameters reported
by GETSEC[PARAMETERS] for each unique parameter set returned for type 1, software can determine the complete
list of AC module version(s) supported.

For each parameter set, EBX returns the comparison mask and ECX returns the available HeaderVersion field
values supported, after AND'ing the target HeaderVersion with the comparison mask. Software can then determine
if a particular AC module version is supported by following the pseudo-code search routine given below:

parameter_search_index= 0

do{
EBX= parameter_search_index++
EAX=6
GETSEC
if (EAX[4:01=1){
if ((version_query & EBX) = ECX) {
version_is_supported= 1
break
}
}

} while (EAX[4:0] # 0)

If only AC modules with a HeaderVersion of 0 are supported by the processor, then only one parameter set of type
1 will be returned, as follows: EAX = 00000001H,

EBX = FFFFFFFFH and ECX = 00000000H.

The maximum capacity for an authenticated code execution area supported by the processor is reported with the
parameter type of 2. The maximum supported size in bytes is determined by multiplying the returned size in
EAX[31:5] by 32. Thus, for a maximum supported authenticated RAM size of 32KBytes, EAX returns with
00008002H.

Supportable memory types for memory mapped outside of the authenticated code execution area are reported
with the parameter type of 3. While is active, as initiated by the GETSEC functions SENTER and ENTERACCS and
terminated by EXITAC, there are restrictions on what memory types are allowed for the rest of system memory. It
is the responsibility of the system software to initialize the memory type range register (MTRR) MSRs and/or the
page attribute table (PAT) to only map memory types consistent with the reporting of this parameter. The reporting
of supportable memory types of external memory is indicated using a bit map returned in EAX[31:8]. These bit
positions correspond to the memory type encodings defined for the MTRR MSR and PAT programming. See

Table 7-9.

7-34 Vol. 2D GETSEC[PARAMETERS]—Report the SMX Parameters

SAFER MODE EXTENSIONS REFERENCE

The parameter type of 4 is used for enumerating the availability of selective GETSEC[SENTER] function disable
controls. If a 1 is reported in bits 14:8 of the returned parameter EAX, then this indicates a disable control capa-
bility exists with SENTER for a particular function. The enumerated field in bits 14:8 corresponds to use of the EDX
input parameter bits 6:0 for SENTER. If an enumerated field bit is set to 1, then the corresponding EDX input
parameter bit of EDX may be set to 1 to disable that designated function. If the enumerated field bit is 0 or this
parameter is not reported, then no disable capability exists with the corresponding EDX input parameter for
SENTER, and EDX bit(s) must be cleared to 0 to enable execution of SENTER. If no selective disable capability for
SENTER exists as enumerated, then the corresponding bits in the IA32_FEATURE_CONTROL MSR bits 14:8 must
also be programmed to 1 if the SENTER global enable bit 15 of the MSR is set. This is required to enable future
extensibility of SENTER selective disable capability with respect to potentially separate software initialization of the
MSR.

Table 7-9. External Memory Types Using Parameter 3

EAX Bit Position Parameter Description
8 Uncacheable (UC)

9 Write Combining (WC)
11:10 Reserved

12 Write-through (WT)

13 Write-protected (WP)
14 Write-back (WB)

31:15 Reserved

If the GETSEC[PARAMETERS] leaf or specific parameter is not present for a given SMX capable processor, then
default parameter values should be assumed. These are defined in Table 7-10.

Table 7-10. Default Parameter Values

Parameter Type EAX[4:0] Default Setting Parameter Description
1 0.0 only Supported AC module versions.
2 32 KBytes Authenticated code execution area size.
3 UC only External memory types supported during AC execution mode.
4 None Available SENTER selective disable controls.
Operation

(* example of a processor supporting only a 0.0 HeaderVersion, 32K ACRAM size, memory types UC and WC *)
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason="GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;

(* example of a processor supporting a 0.0 HeaderVersion *)
IF (EBX=0) THEN

EAX := 00000001h;

EBX := FFFFFFFFh;

GETSEC[PARAMETERS]—Report the SMX Parameters Vol.2D 7-35

SAFER MODE EXTENSIONS REFERENCE

ECX := 00000000h;

ELSE IF (EBX=1)
(* example of a processor supporting a 32K ACRAM size *)
THEN EAX := 00008002h;

ESE IF (EBX= 2)
(* example of a processor supporting external memory types of UC and WC *)
THEN EAX ;= 00000303h;

ESE IF (EBX= other value(s) less than unsupported index value)
(* EAX value varies. Consult Table 7-7 and Table *)

ELSE (* unsupported index*)
EAX := 00000000Kh;

END;

Flags Affected

None.

Use of Prefixes

LOCK Causes #UD.

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Operand size Causes #UD.

NP 66/F2/F3 prefixes are not allowed.

Segment overrides Ignored.

Address size Ignored.

REX Ignored.

Protected Mode Exceptions
#UD If CR4.SMXE = 0.
If GETSEC[PARAMETERS] is not reported as supported by GETSEC[CAPABILITIES].

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.
If GETSEC[PARAMETERS] is not reported as supported by GETSEC[CAPABILITIES].

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.
If GETSEC[PARAMETERS] is not reported as supported by GETSEC[CAPABILITIES].

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.

VM-Exit Condition
Reason (GETSEC) If in VMX non-root operation.

7-36 Vol.2D GETSEC[PARAMETERS]—Report the SMX Parameters

SAFER MODE EXTENSIONS REFERENCE

GETSEC[SMCTRL]—SMX Mode Control

Opcode Instruction Description
NP OF 37 (EAX =7) | GETSEC[SMCTRL] Perform specified SMX mode control as selected with the input EBX.
Description

The GETSEC[SMCTRL] instruction is available for performing certain SMX specific mode control operations. The
operation to be performed is selected through the input register EBX. Currently only an input value in EBX of O is
supported. All other EBX settings will result in the signaling of a general protection violation.

If EBX is set to 0, then the SMCTRL leaf is used to re-enable SMI events. SMI is masked by the ILP executing the
GETSEC[SENTER] instruction (SMI is also masked in the responding logical processors in response to SENTER
rendezvous messages.). The determination of when this instruction is allowed and the events that are unmasked
is dependent on the processor context (See Table 7-11). For brevity, the usage of SMCTRL where EBX=0 will be
referred to as GETSEC[SMCTRL(0)].

As part of support for launching a measured environment, the SMI, NMI, and INIT events are masked after
GETSEC[SENTER], and remain masked after exiting authenticated execution mode. Unmasking these events
should be accompanied by securely enabling these event handlers. These security concerns can be addressed in
VMX operation by a MVMM.

The VM monitor can choose two approaches:

®* Inadual monitor approach, the executive software will set up an SMM monitor in parallel to the executive VMM
(i.e., the MVMM), see Chapter 32, “System Management Mode,” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C. The SMM monitor is dedicated to handling SMI events without compromising
the security of the MVMM. This usage model of handling SMI while a measured environment is active does not
require the use of GETSEC[SMCTRL(0)] as event re-enabling after the VMX environment launch is handled
implicitly and through separate VMX based controls.

® If a dedicated SMM monitor will not be established and SMIs are to be handled within the measured
environment, then GETSEC[SMCTRL(0)] can be used by the executive software to re-enable SMI that has been
masked as a result of SENTER.

Table 7-11 defines the processor context in which GETSEC[SMCTRL(0)] can be used and which events will be
unmasked. Note that the events that are unmasked are dependent upon the currently operating processor context.

Table 7-11. Supported Actions for GETSEC[SMCTRL(0)]

ILP Mode of Operation SMCTRL execution action
In VMX non-root operation VM exit

SENTERFLAG =0 #GP(0), illegal context

In authenticated code execution mode #GP(0), illegal context

(ACMODEFLAG = 1)

SENTERFLAG = 1, not in VMX operation, not in Unmask SMI
SMM

SENTERFLAG = 1, in VMX root operation, not in Unmask SMI if SMM monitor is not configured, otherwise #GP(0)
SMM

SENTERFLAG = 1, In VMX root operation, in SMM #GP(0), illegal context

GETSEC[SMCTRL]—SMX Mode Control Vol.2D 7-37

SAFER MODE EXTENSIONS REFERENCE

Operation

(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)
IF (CR4.SMXE=0)
THEN #UD;
ELSE IF (in VMX non-root operation)
THEN VM Exit (reason="GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)
THEN #UD;
ELSE IF ((CRO.PE=0) or (CPL>0) OR (EFLAGS.VM=1))
THEN #GP(0);
ELSE IF((EBX=0) and (SENTERFLAG=1) and (ACMODEFLAG=0) and (IN_SMM=0) and
(((in VMX root operation) and (SMM monitor not configured)) or (not in VMX operation)))
THEN unmask SMI;
ELSE
#GP(0);
END

Flags Affected
None.

Use of Prefixes

LOCK Causes #UD.

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Operand size Causes #UD.

NP 66/F2/F3 prefixes are not allowed.

Segment overrides Ignored.

Address size Ignored.

REX Ignored.

Protected Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[SMCTRL] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) If CRO.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If in VMX root operation.

If a protected partition is not already active or the processor is currently in authenticated code
mode.

If the processor is in SMM.
If the SMM monitor is not configured.

Real-Address Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[SMCTRL] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[SMCTRL] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[SMCTRL] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[SMCTRL] is not recognized in virtual-8086 mode.

7-38 Vol.2D GETSEC[SMCTRL]—SMX Mode Control

SAFER MODE EXTENSIONS REFERENCE
Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.

VM-exit Condition
Reason (GETSEC) If in VMX non-root operation.

GETSEC[SMCTRL]—SMX Mode Control Vol.2D 7-39

SAFER MODE EXTENSIONS REFERENCE

GETSEC[WAKEUP]—Wake Up Sleeping Processors in Measured Environment

Opcode Instruction Description

NP OF 37 GETSEC[WAKEUP] | Wake up the responding logical processors from the SENTER sleep state.
(EAX=8)

Description

The GETSEC[WAKEUP] leaf function broadcasts a wake-up message to all logical processors currently in the
SENTER sleep state. This GETSEC leaf must be executed only by the ILP, in order to wake-up the RLPs. Responding
logical processors (RLPs) enter the SENTER sleep state after completion of the SENTER rendezvous sequence.

The GETSEC[WAKEUP] instruction may only be executed:

®* In a measured environment as initiated by execution of GETSEC[SENTER].

® OQutside of authenticated code execution mode.

®* Execution is not allowed unless the processor is in protected mode with CPL = 0 and EFLAGS.VM = 0.

® In addition, the logical processor must be designated as the boot-strap processor as configured by setting
IA32_APIC_BASE.BSP = 1.

If these conditions are not met, attempts to execute GETSEC[WAKEUP] result in a general protection violation.

An RLP exits the SENTER sleep state and start execution in response to a WAKEUP signal initiated by ILP’s execution
of GETSEC[WAKEUP]. The RLP retrieves a pointer to a data structure that contains information to enable execution
from a defined entry point. This data structure is located using a physical address held in the Intel® TXT-capable
chipset configuration register LT.MLE.JOIN. The register is publicly writable in the chipset by all processors and is
not restricted by the Intel® TXT-capable chipset configuration register lock status. The format of this data structure
is defined in Table 7-12.

Table 7-12. RLP MVMM JOIN Data Structure

Offset Field

0 GDT limit

4 GDT base pointer

8 Segment selector initializer
12 ElP

The MLE JOIN data structure contains the information necessary to initialize RLP processor state and permit the
processor to join the measured environment. The GDTR, LIP, and CS, DS, SS, and ES selector values are initialized
using this data structure. The CS selector index is derived directly from the segment selector initializer field; DS,
SS, and ES selectors are initialized to CS+8. The segment descriptor fields are initialized implicitly with BASE = 0,
LIMIT = FFFFFH, G=1,D=1,P =1, S = 1, read/write/access for DS, SS, and ES; and execute/read/access for
CS. It is the responsibility of external software to establish a GDT pointed to by the MLE JOIN data structure that
contains descriptor entries consistent with the implicit settings initialized by the processor (see Table 7-6). Certain
states from the content of Table 7-12 are checked for consistency by the processor prior to execution. A failure of
any consistency check results in the RLP aborting entry into the protected environment and signaling an Intel® TXT
shutdown condition. The specific checks performed are documented later in this section. After successful comple-
tion of processor consistency checks and subsequent initialization, RLP execution in the measured environment
begins from the entry point at offset 12 (as indicated in Table 7-12).

7-40 Vol. 2D GETSEC[WAKEUP]—Wake Up Sleeping Processors in Measured Environment

SAFER MODE EXTENSIONS REFERENCE

Operation

(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)
IF (CR4.SMXE=0)
THEN #UD;
ELSE IF (in VMX non-root operation)
THEN VM Exit (reason="GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)
THEN #UD;
ELSE IF ((CRO.PE=0) or (CPL>0) or (EFLAGS.VM=1) or (SENTERFLAG=0) or (ACMODEFLAG=1) or (IN_SMM=0) or (in VMX operation) or
(IA32_APIC_BASE.BSP=0) or (TXT chipset not present))
THEN #GP(0);
ELSE
SignalTXTMsg(WAKEUP);
END;

RLP_SIPI_WAKEUP_FROM_SENTER_ROUTINE: (RLP Only)
WHILE (no SignalWAKEUP event);
IF (IA32_SMM_MONITOR_CTL[O] # ILP.JA32_SMM_MONITOR_CTL[OQ])
THEN TXT-SHUTDOWN(#lllegalEvent)
IF (IA32_SMM_MONITOR_CTL[O] = 0)
THEN Unmask SMI pin event;
ELSE
Mask SMI pin event;
Mask A20M, and NMI external pin events (unmask INIT);
Mask SignalWAKEUP event;
Invalidate processor TLB(s);
Drain outgoing transactions;
TempGDTRLIMIT := LOAD(LT.MLE.JOIN);
TempGDTRBASE := LOAD(LT.MLE.JOIN+4);
TempSegSel := LOAD(LT.MLE.JOIN+8);
TempéEIP := LOAD(LT.MLE.JOIN+12);
IF (TempGDTLimit & FFFFO000h)
THEN TXT-SHUTDOWN(#BadJOINFormat);
IF ((TempSegSel > TempGDTRLUIMIT-15) or (TempSegSel < 8))
THEN TXT-SHUTDOWN(#BadJOINFormat);
IF ((TempSegSel.TI=1) or (TempSegSel.RPL+0))
THEN TXT-SHUTDOWN(#BadJOINFormat);
CRO.[PG,CD.NW,AM,WP] := O;
CRO.[NE,PE] = 1;
CR4 := 00004000kh;
EFLAGS := 00000002h;
IA32_EFER = 0;
GDTR.BASE := TempGDTRBASE;
GDTR.LIMIT := TempGDTRLIMIT;
CS.SEL := TempSegSel;
CS.BASE :=0;
CS.LIMIT := FFFFFh;
CSG:=1;
CSD:=1;
CS.AR := 9Bh;
DS.SEL := TempSegSel+8;
DS.BASE = 0;
DS.UMIT := FFFFFh;
DS.G:=1;

GETSEC[WAKEUP]—Wake Up Sleeping Processors in Measured Environment Vol.2D 7-41

SAFER MODE EXTENSIONS REFERENCE

DSD:=1;

DS.AR :=93h;
SS:=DS;

€S :=DS;

DR7 := 00000400k
IA32_DEBUGCTL := 0;
EIP := TempEIP;

END;

Flags Affected

None.

Use of Prefixes
LOCK

REP*

Operand size

NP

Segment overrides
Address size

REX

Causes #UD.

Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Causes #UD.

66/F2/F3 prefixes are not allowed.

Ignored.

Ignored.

Ignored.

Protected Mode Exceptions

#UD

#GP(0)

#UD

#GP(0)

If CR4.SMXE = 0.

If GETSEC[WAKEUP] is not reported as supported by GETSEC[CAPABILITIES].
If CRO.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If in VMX operation.

If a protected partition is not already active or the processor is currently in authenticated code
mode.

If the processor is in SMM.

If CR4.SMXE = 0.

If GETSEC[WAKEUP] is not reported as supported by GETSEC[CAPABILITIES].
GETSEC[WAKEUP] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD

#GP(0)

If CR4.SMXE = 0.
If GETSEC[WAKEUP] is not reported as supported by GETSEC[CAPABILITIES].
GETSEC[WAKEUP] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.

VM-exit Condition
Reason (GETSEC)

7-42 \Vol.2D

If in VMX non-root operation.

GETSEC[WAKEUP]—Wake Up Sleeping Processors in Measured Environment

CHAPTER 8
INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™

PROCESSORS

This chapter describes the instruction set that is unique to Intel® Xeon Phi™ Processors based on the Knights
Landing and Knights Mill microarchitectures. The set is not supported in any other Intel processors. Included are
Intel® AVX-512 instructions. For additional instructions supported on these processors, see Chapter 3, “Instruction

Set Reference, A-L”; Chapter 4, “Instruction Set Reference, M-U"; Chapter 5, “Instruction Set Reference, V”; and
Chapter 6, “Instruction Set Reference, W-Z.”

Vol.2D 8-1

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

PREFETCHWT1—Prefetch Vector Data Into Caches With Intent to Write and T1 Hint

Opcode/ Op/ | 64/32 bit | CPUID Feature | Description
Instruction En | Mode Flag
Support
OF Q0D /2 M VIV PREFETCHWT1 | Move data from m8 closer to the processor using T1 hint
PREFETCHWT1 m8 with intent to write.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
M ModRM:r/m (r) N/A N/A N/A
Description

Fetches the line of data from memory that contains the byte specified with the source operand to a location in the
cache hierarchy specified by an intent to write hint (so that data is brought into ‘Exclusive’ state via a request for
ownership) and a locality hint:

¢ T1 (temporal data with respect to first level cache)—prefetch data into the second level cache.

The source operand is a byte memory location. (The locality hints are encoded into the machine level instruction
using bits 3 through 5 of the ModR/M byte. Use of any ModR/M value other than the specified ones will lead to
unpredictable behavior.)

If the line selected is already present in the cache hierarchy at a level closer to the processor, no data movement
occurs. Prefetches from uncacheable or WC memory are ignored.

The PREFETCHWT1 instruction is merely a hint and does not affect program behavior. If executed, this instruction
moves data closer to the processor in anticipation of future use.

The implementation of prefetch locality hints is implementation-dependent, and can be overloaded or ignored by a
processor implementation. The amount of data prefetched is also processor implementation-dependent. It will,
however, be a minimum of 32 bytes. Additional details of the implementation-dependent locality hints are
described in Section 9.5, "Memory Optimization Using Prefetch” of the Intel® 64 and IA-32 Architectures Optimi-
zation Reference Manual.

It should be noted that processors are free to speculatively fetch and cache data from system memory regions that
are assigned a memory-type that permits speculative reads (that is, the WB, WC, and WT memory types). A
PREFETCHWT1 instruction is considered a hint to this speculative behavior. Because this speculative fetching can
occur at any time and is not tied to instruction execution, a PREFETCHWT1 instruction is not ordered with respect
to the fence instructions (MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHWT1 instruc-
tion is also unordered with respect to CLFLUSH and CLFLUSHOPT instructions, other PREFETCHWT1 instructions, or
any other general instruction. It is ordered with respect to serializing instructions such as CPUID, WRMSR, OUT, and
MOV CR.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘'mem’ into the cache level specified by ‘Level’; a request
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a
hint for the processor and may be skipped depending on implementation.

Prefetch (m8, Level = 1, EXCLUSIVE=1);

Flags Affected
All flags are affected.

C/C++ Compiler Intrinsic Equivalent
void _mm_prefetch(char const *, int hint= _MM_HINT_ET1);

8-2 Vol.2D PREFETCHWT1—Prefetch Vector Data Into Caches With Intent to Write and T1 Hint

Protected Mode Exceptions

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

#UD If the LOCK prefix is used.

64-Bit Mode Exceptions

#UD If the LOCK prefix is used.

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

PREFETCHWT1—Prefetch Vector Data Into Caches With Intent to Write and T1 Hint Vol.2D 8-3

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

V4FMADDPS/V4FNMADDPS—Packed Single Precision Floating-Point Fused Multiply-Add
(4-Iterations)

Opcode/ Op/ | 64/32 CPUID Feature Description
Instruction En bitMode | Flag
Support
EVEX.512.F2.0F38.WO0 SA /r A VIV AVX512_4FMAPS | Multiply packed single-precision floating-point
VAFMADDPS zmm1{k1}z}, zmm2+3, values from source register block indicated by
m128 zmmZ2 by values from m128 and accumulate the
resultin zmm1.
EVEX.512.F2.0F38.W0 AA /It A VIV AVX512_4FMAPS | Multiply and negate packed single-precision
V4FNMADDPS zmm1{k1¥z}, floating-point values from source register block
zmmZ2+3,m128 indicated by zmm2 by values from m128 and
accumulate the result in zmm1.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A Tuple1_4X ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A
Description

This instruction computes 4 sequential packed fused single-precision floating-point multiply-add instructions with a
sequentially selected memory operand in each of the four steps.

In the above box, the notation of “"+3” is used to denote that the instruction accesses 4 source registers based on
that operand; sources are consecutive, start in a multiple of 4 boundary, and contain the encoded register operand.

This instruction supports memory fault suppression. The entire memory operand is loaded if any of the 16 lowest
significant mask bits is set to 1 or if a "no masking” encoding is used.

The tuple type Tuplel_4X implies that four 32-bit elements (16 bytes) are referenced by the memory operation
portion of this instruction.

Rounding is performed at every FMA (fused multiply and add) boundary. Exceptions are also taken sequentially.
Pre- and post-computational exceptions of the first FMA take priority over the pre- and post-computational excep-
tions of the second FMA, etc.

8-4 Vol.2D V4FMADDPS/V4FNMADDPS—Packed Single Precision Floating-Point Fused Multiply-Add (4-Iterations)

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Operation

src_reg_id is the 5 bit index of the vector register specified in the instruction as the src1 register.

define NFMA_PS(kI, vI, dest, k1, msrc, regs_loaded, src_base, posneqg):
tmpdest := dest

// req[] is an array representing the SIMD register file.
FOR j:= 0 to regs_loaded-1:

FORi:=0tokl-1:
IF k1[i] or *no writemask*:
IF posneg = 0:

tmpdest.single[i] := RoundFPControl_MXCSR(tmpdest.single[i] - reg[src_base + j].single[i] * msrc.single[j])

ELSE:

tmpdest.single[i] := RoundFPControl_MXCSR(tmpdest.single[i] + reg[src_base + j].single[i] * msrc.single[j])

ELSE IF *zeroing™:
tmpdest.single[i] := 0
dest := tmpdst
dest[MAX_VL-T1:VL]:=0

V4FMADDPS and V4FNMADDPS dest{k1}, src1, msrc (AVX512)
KL, VL=(16,512)

regs_loaded .= 4

src_base := src_reg_id & ~3 // for src1 operand

posneg := 0 if negative form, 1 otherwise

NFMA_PS(kI, vl, dest, k1, msrc, regs_loaded, src_base, posneg)

Intel C/C++ Compiler Intrinsic Equivalent

V4FMADDPS __m512 _mm512_4fmadd_ps(_m512, __m512x4, __m128*);

V4FMADDPS __m512 _mm512_mask_4fmadd_ps(__m512, __mmask16, __m512x4, __m128 *);
V4FMADDPS __m512 _mm512_maskz_4fmadd_ps(__mmask16, __m512, __ m512x4, __m128*);
V4FNMADDPS __m512 _mm512_4fnmadd_ps(__m512, __m512x4, __m128 *);

V4FNMADDPS __m512 _mm512_mask_4fnmadd_ps(__m512, __mmask16, __m512x4, __m128 *);
V4FNMADDPS __m512 _mm512_maskz_4fnmadd_ps(__mmask16, __m512, __m512x4, __ m128*);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Type E2; additionally:

#UD If the EVEX broadcast bit is set to 1.
#UD If the MODRM.mod = 0b11.

V4FMADDPS/V4FNMADDPS—Packed Single Precision Floating-Point Fused Multiply-Add (4-Iterations)

Vol.2D 8-5

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

V4FMADDSS/V4FNMADDSS—Scalar Single Precision Floating-Point Fused Multiply-Add
(4-Iterations)

Opcode/ Op/ | 64/32 CPUID Feature Description
Instruction En bitMode | Flag
Support
EVEX.LLIG.F2.0F38.W0 9B /r A VIV AVX512_4FMAPS | Multiply scalar single-precision floating-point
V4FMADDSS xmm1{k1¥z], values from source register block indicated by
xmmZ2+3, m128 xmm2 by values from m128 and accumulate the
result in xmm1.
EVEX.LLIG.F2.0F38.WO0 AB /r A VIV AVX512_4FMAPS | Multiply and negate scalar single-precision
V4FNMADDSS xmm1{k1}z}, floating-point values from source register block
xmmZ2+3, m128 indicated by xmm2 by values from m128 and
accumulate the result in xmm1.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A Tuple1_4X ModRM:reg (r, w) EVEX.vvwv (r) ModRM:r/m (r) N/A
Description

This instruction computes 4 sequential scalar fused single-precision floating-point multiply-add instructions with a
sequentially selected memory operand in each of the four steps.

In the above box, the notation of "+3” is used to denote that the instruction accesses 4 source registers based that
operand; sources are consecutive, start in a multiple of 4 boundary, and contain the encoded register operand.

This instruction supports memory fault suppression. The entire memory operand is loaded if the least significant
mask bit is set to 1 or if a "*no masking” encoding is used.

The tuple type Tuplel_4X implies that four 32-bit elements (16 bytes) are referenced by the memory operation
portion of this instruction.

Rounding is performed at every FMA boundary. Exceptions are also taken sequentially. Pre- and post-computa-
tional exceptions of the first FMA take priority over the pre- and post-computational exceptions of the second FMA,
etc.

Operation
src_reg_id is the 5 bit index of the vector register specified in the instruction as the src1 register.

define NFMA_SS(vl, dest, k1, msrc, regs_loaded, src_base, posneg):
tmpdest ;= dest
// req[] is an array representing the SIMD register file.
IF k1[0] or *no writemask*:
FOR j:= 0 toregs_loaded - 1:
IF posneg = O:
tmpdest.single[0] := RoundFPControl_MXCSR(tmpdest.single[0] - reg[src_base + j].single[0] * msrc.single[j])
ELSE:
tmpdest.single[0] := RoundFPControl_MXCSR(tmpdest.single[0] + reg[src_base + j].single[0] * msrc.single[j])
ELSE IF *zeroing*:
tmpdest.single[0]:= 0
dest := tmpdst
dest[MAX_VL-1:VL]:=0

8-6 Vol.2D V4FMADDSS/V4FNMADDSS—Scalar Single Precision Floating-Point Fused Multiply-Add (4-Iterations)

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

V4FMADDSS and V4FNMADDSS dest{k1}, src1, msrc (AVX512)
VL=128

regs_loaded .= 4

src_base := src_reg_id & ~3 // for src1 operand

posneg := 0 if negative form, 1 otherwise

NFMA_SS(vl, dest, k1, msrc, regs_loaded, src_base, posneg)

Intel C/C++ Compiler Intrinsic Equivalent

V4FMADDSS __m128 _mm_4fmadd_ss(__m128, __m128x4,__m128%),

V4FMADDSS __m128 _mm_mask_4fmadd_ss(__m128, __mmask8, __m128x4, __ m128 *);
V4FMADDSS __m128 _mm_maskz_4fmadd_ss(__mmask8, __m128,__m128x4,__m128 %)
V4FNMADDSS __m128 _mm_4fnmadd_ss(__m128, __m128x4, __ m128*);

V4FNMADDSS __m128 _mm_mask_4fnmadd_ss(__m128, __mmask8, __ m128x4, __ m128 *);
V4FNMADDSS __m128 _mm_maskz_4fnmadd_ss(__mmask8, __ m128,__m128x4, __ m128 *);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Type E2; additionally:

#UD If the EVEX broadcast bit is set to 1.
#UD If the MODRM.mod = Ob11.

V4FMADDSS/V4FNMADDSS—Scalar Single Precision Floating-Point Fused Multiply-Add (4-Iterations)

Vol.2D 8-7

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

VEXP2PD—Approximation to the Exponential 2" x of Packed Double Precision Floating-Point
Values With Less Than 27-23 Relative Error

Opcode/ Op/ | 64/32 CPUID Description
Instruction En bit Mode | Feature
Support | Flag
EVEX.512.66.0F38W1C8/r | A VIV AVX512ER | Computes approximations to the exponential 2”x (with less
VEXP2PD zmm1 {k1}z}, than 27-23 of maximum relative error) of the packed double
zmm2/m512/m64bcst {sae} precision floating-point values from zmm2/m512/m64bcst and
stores the floating-point result in zmm1with writemask k1.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A Full ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
Description

Computes the approximate base-2 exponential evaluation of the double precision floating-point values in the
source operand (the second operand) and stores the results to the destination operand (the first operand) using
the writemask k1. The approximate base-2 exponential is evaluated with less than 2~-23 of relative error.

Denormal input values are treated as zeros and do not signal #DE, irrespective of MXCSR.DAZ. Denormal results
are flushed to zeros and do not signal #UE, irrespective of MXCSR.FTZ.

The source operand is a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 64-bit
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.

EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

A numerically exact implementation of VEXP2xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp?2.

Operation

VEXP2PD
(KL, VL) =(8,512)
FORj:=0 TOKL-1
i=j*64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DESTI[i+63:i] := EXP2_23_DP(SRC[63:0])
ELSE DESTI[i+63:i] := EXP2_23_DP(SRC[i+63:i])

Fl;
ELSE
IF *merging-masking* , merging-masking
THEN *DESTIi+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i]:=0
Fl;
FI;
ENDFOR;

8-8 Vol.2D VEXP2PD—Approximation to the Exponential 2" x of Packed Double Precision Floating-Point Values With Less Than 27-23 Relative

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Table 8-1. Special Values Behavior

Source Input Result Comments

NaN QNaN(src) If (SRC = SNaN) then #l
+0 +0

+/-0 1.0f Exact result

-0 +0.0f

Integral value N 2™ (N) Exact result

Intel C/C++ Compiler Intrinsic Equivalent

VEXP2PD __m512d _mm512_exp2a23_round_pd (__m512d g, int sae);
VEXP2PD __m512d _mm512_mask_exp2a23_round_pd (__m512d a, __mmask8 m, __m512d b, int sae);
VEXP2PD __m512d _mm512_maskz_exp2a23_round_pd (_mmask8 m, __m512d b, int sae);

SIMD Floating-Point Exceptions
Invalid (if SNaN input), Overflow.

Other Exceptions
See Table 2-46, “Type E2 Class Exception Conditions.”

VEXP2PD—Approximation to the Exponential 2" x of Packed Double Precision Floating-Point Values With Less Than 27-23 Relative

Vol.2D 8-9

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

VEXP2PS—Approximation to the Exponential 2" x of Packed Single Precision Floating-Point
Values With Less Than 27-23 Relative Error

Opcode/ Op/ | 64/32 CPUID Description
Instruction En bit Mode | Feature
Support | Flag
EVEX.512.66.0F38W0C8/r | A VIV AVX512ER | Computes approximations to the exponential 2”x (with less
VEXP2PS zmm1 {k1Xz], than 27-23 of maximum relative error) of the packed single-
zmm2/m512/m32bcst {sae} precision floating-point values from zmm2/m512/m32bcst and
stores the floating-point result in zmm1with writemask k1.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A Full ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
Description

Computes the approximate base-2 exponential evaluation of the single-precision floating-point values in the source
operand (the second operand) and store the results in the destination operand (the first operand) using the write-
mask k1. The approximate base-2 exponential is evaluated with less than 2/-23 of relative error.

Denormal input values are treated as zeros and do not signal #DE, irrespective of MXCSR.DAZ. Denormal results
are flushed to zeros and do not signal #UE, irrespective of MXCSR.FTZ.

The source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.

EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

A numerically exact implementation of VEXP2xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp?2.

Operation

VEXP2PS
(KL, VL) =(16,512)
FORj:=0 TOKL-1
i=j*32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DESTIi+31:i] := EXP2_23_SP(SRC[31:0])
ELSE DESTI[i+31:i] := EXP2_23_SP(SRC[i+31:i])

Fl;
ELSE
IF *merging-masking* , merging-masking
THEN *DESTIi+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i]:=0
Fl;
FI;
ENDFOR;

8-10 Vol. 2D VEXP2PS—Approximation to the Exponential 2" x of Packed Single Precision Floating-Point Values With Less Than 27-23 Relative Er-

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Table 8-2. Special Values Behavior

Source Input Result Comments

NaN QNaN(src) If (SRC = SNaN) then #l
+0 +0

+/-0 1.0f Exact result

-0 +0.0f

Integral value N 2™ (N) Exact result

Intel C/C++ Compiler Intrinsic Equivalent

VEXP2PS __m512 _mm512_exp2a23_round_ps (__m512 g, int sae);
VEXP2PS __m512 _mm512_mask_exp2a23_round_ps (__m512 a, __mmask16 m, __m512 b, int sae);
VEXP2PS __m512 _mm512_maskz_exp2a23_round_ps (__mmask16 m, __m512 b, int sae);

SIMD Floating-Point Exceptions
Invalid (if SNaN input), Overflow.

Other Exceptions
See Table 2-46, “Type E2 Class Exception Conditions.”

VEXP2PS—Approximation to the Exponential 2" x of Packed Single Precision Floating-Point Values With Less Than 2°-23 Relative Er- Vol.2D 8-11

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

VGATHERPFODPS/VGATHERPFOQPS/VGATHERPFODPD/VGATHERPFOQPD—Sparse Prefetch
Packed SP/DP Data Values With Signed Dword, Signed Qword Indices Using TO Hint

Opcode/ Op/ | 64/32 CPUID Description
Instruction En bit Mode | Feature
Support | Flag
EVEX.512.66.0F38.W0 C6 /1 /vsib A VIV AVX512PF | Using signed dword indices, prefetch sparse byte
VGATHERPFODPS vm32z {k1} memory locations containing single-precision data
using opmask k1 and TO hint.
EVEX.512.66.0F38.W0 C7 /1 /vsib A VIV AVX512PF | Using signed qword indices, prefetch sparse byte
VGATHERPFOQPS vm64z {k1} memory locations containing single-precision data
using opmask k1 and TO hint.
EVEX.512.66.0F38.W1 C6 /1 /vsib A VIV AVX512PF | Using signed dword indices, prefetch sparse byte
VGATHERPFODPD vm32y {k1} memory locations containing double precision data
using opmask k1 and TO hint.
EVEX.512.66.0F38.W1 C7 /1 /vsib A VIV AVX512PF | Using signed qword indices, prefetch sparse byte
VGATHERPFOQPD vm64z {k1} memory locations containing double precision data
using opmask k1 and TO hint.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple Scalar BaseReg (R): VSIB:base, N/A N/A N/A
VectorReg(R): VSIB:index

Description

The instruction conditionally prefetches up to sixteen 32-bit or eight 64-bit integer byte data elements. The
elements are specified via the VSIB (i.e., the index register is an zmm, holding packed indices). Elements will only
be prefetched if their corresponding mask bit is one.

Lines prefetched are loaded into to a location in the cache hierarchy specified by a locality hint (T0):
e TO (temporal data)—prefetch data into the first level cache.

[PS data] For dword indices, the instruction will prefetch sixteen memory locations. For qword indices, the instruc-
tion will prefetch eight values.

[PD data] For dword and qword indices, the instruction will prefetch eight memory locations.
Note that:

(1) The prefetches may happen in any order (or not at all). The instruction is a hint.

(2) The mask is left unchanged.

(3) Not valid with 16-bit effective addresses. Will deliver a #UD fault.

(4) No FP nor memory faults may be produced by this instruction.

(5) Prefetches do not handle cache line splits

(6) A #UD is signaled if the memory operand is encoded without the SIB byte.

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist.

VINDEX stands for the memory operand vector of indices (a vector register).

SCALE stands for the memory operand scalar (1, 2, 4 or 8).

DISP is the optional 1, 2 or 4 byte displacement.

PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘'mem’ into the cache level specified by ‘Level’; a request
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a
hint for the processor and may be skipped depending on implementation.

8-12 Vol.2D VGATHERPFODPS/VGATHERPFOQPS/VGATHERPFODPD/VGATHERPFOQPD—Sparse Prefetch Packed SP/DP Data Values With Signed

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

VGATHERPFODPS (EVEX Encoded Version)
(KL, VL) =(16,512)
FORj:=0TOKL-1
i=j*32
IF k1[I
Prefetch([BASE_ADDR + SignExtend(VINDEX[i+31:i]) * SCALE + DISP], Level=0, RFO = 0)
Fl;
ENDFOR

VGATHERPFODPD (EVEX Encoded Version)
(KL, VL) = (8,512)
FORj:=0TOKL-1
i=j*64
k:=j*32
IF k1[I
Prefetch([BASE_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP], Level=0, RFO = Q)
Fl;
ENDFOR

VGATHERPFOQPS (EVEX Encoded Version)
(KL, VL) = (8, 256)
FORj:=0TOKL-1
i=j*64
IF k1[I
Prefetch([BASE_ADDR + SignExtend(VINDEX[i+63:i]) * SCALE + DISP], Level=0, RFO = 0)
Fl;
ENDFOR

VGATHERPFOQPD (EVEX Encoded Version)
(KL, VL) =(8,512)
FORj:=0TOKL-1
i=j*64
k:=j*64
IF k1[I
Prefetch([BASE_ADDR + SignExtend(VINDEX[k+63:k]) * SCALE + DISP], Level=0, RFO = Q)
Fl;
ENDFOR

Intel C/C++ Compiler Intrinsic Equivalent

VGATHERPFODPD void _mm512_mask_prefetch_i32gather_pd(__m256i vdx, __mmask8 m, void * base, int scale, int hint);
VGATHERPFODPS void _mm512_mask_prefetch_i32gather_ps(__m512i vdx, __mmask16 m, void * base, int scale, int hint);
VGATHERPFOQPD void _mm512_mask_prefetch_i64gather_pd(__m512i vdx, __mmask8 m, void * base, int scale, int hint);
VGATHERPFOQPS void _mm512_mask_prefetch_i64gather_ps(__m512i vdx, __mmask8 m, void * base, int scale, int hint);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-62, “Type E12NP Class Exception Conditions.”

VGATHERPFODPS/VGATHERPFOQPS/VGATHERPFODPD/VGATHERPFOQPD—Sparse Prefetch Packed SP/DP Data Values With Signed Vol.2D 8-13

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

VGATHERPF1DPS/VGATHERPF1QPS/VGATHERPF1DPD/VGATHERPF1QPD—Sparse Prefetch
Packed SP/DP Data Values With Signed Dword, Signed Qword Indices Using T1 Hint

Opcode/ Op/ | 64/32 CPUID Description
Instruction €n bit Mode | Feature
Support | Flag

EVEX.512.66.0F38.W0 C6 /2 /vsib A VIV AVX512PF Using signed dword indices, prefetch sparse byte

VGATHERPF1DPS vm32z {k1} memory locations containing single-precision data using
opmask k1 and T1 hint.

EVEX.512.66.0F38.W0 C7 /2 /vsib A VIV AVX512PF Using signed qword indices, prefetch sparse byte

VGATHERPF1QPS vm64z {k1} memory locations containing single-precision data using
opmask k1 and T1 hint.

EVEX.512.66.0F38.W1 C6 /2 /vsib A VIV AVX512PF Using signed dword indices, prefetch sparse byte

VGATHERPF1DPD vm32y {k1} memory locations containing double precision data using
opmask k1 and T1 hint.

EVEX.512.66.0F38.W1 C7 /2 /vsib A VIV AVX512PF Using signed qword indices, prefetch sparse byte

VGATHERPF1QPD vm64z {k1} memory locations containing double precision data using
opmask k1 and T1 hint.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuplel Scalar BaseReg (R): VSIB:base, N/A N/A N/A
VectorReg(R): VSIB:index

Description

The instruction conditionally prefetches up to sixteen 32-bit or eight 64-bit integer byte data elements. The
elements are specified via the VSIB (i.e., the index register is an zmm, holding packed indices). Elements will only
be prefetched if their corresponding mask bit is one.

Lines prefetched are loaded into to a location in the cache hierarchy specified by a locality hint (T1):
e T1 (temporal data)—prefetch data into the second level cache.

[PS data] For dword indices, the instruction will prefetch sixteen memory locations. For qword indices, the instruc-
tion will prefetch eight values.

[PD data] For dword and qword indices, the instruction will prefetch eight memory locations.
Note that:

(1) The prefetches may happen in any order (or not at all). The instruction is a hint.

(2) The mask is left unchanged.

(3) Not valid with 16-bit effective addresses. Will deliver a #UD fault.

(4) No FP nor memory faults may be produced by this instruction.

(5) Prefetches do not handle cache line splits

(6) A #UD is signaled if the memory operand is encoded without the SIB byte.

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist.

VINDEX stands for the memory operand vector of indices (a vector register).

SCALE stands for the memory operand scalar (1, 2, 4 or 8).

DISP is the optional 1, 2 or 4 byte displacement.

PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘'mem’ into the cache level specified by ‘Level’; a request
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a
hint for the processor and may be skipped depending on implementation.

8-14 Vol.2D VGATHERPF1DPS/VGATHERPF1QPS/VGATHERPF1DPD/VGATHERPF1QPD—Sparse Prefetch Packed SP/DP Data Values With Signed

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

VGATHERPF1DPS (EVEX Encoded Version)
(KL, VL) =(16,512)
FORj:=0TOKL-1
i=j*32
IF k1[I
Prefetch([BASE_ADDR + SignExtend(VINDEX[i+31:i]) * SCALE + DISP], Level=1, RFO = 0)
Fl;
ENDFOR

VGATHERPF1DPD (EVEX Encoded Version)
(KL, VL) = (8,512)
FORj:=0TOKL-1
i=j*64
k:=j*32
IF k1[I
Prefetch([BASE_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP], Level=1, RFO = Q)
Fl;
ENDFOR

VGATHERPF1QPS (EVEX Encoded Version)
(KL, VL) = (8, 256)
FORj:=0TOKL-1
i=j*64
IF k1[I
Prefetch([BASE_ADDR + SignExtend(VINDEX[i+63:i]) * SCALE + DISP], Level=1, RFO = 0)
Fl;
ENDFOR

VGATHERPF1QPD (EVEX Encoded Version)
(KL, VL) =(8,512)
FORj:=0TOKL-1
i=j*64
k:=j*64
IF k1[I
Prefetch([BASE_ADDR + SignExtend(VINDEX[k+63:k]) * SCALE + DISP], Level=1, RFO = Q)
Fl;
ENDFOR

Intel C/C++ Compiler Intrinsic Equivalent

VGATHERPF1DPD void _mm512_mask_prefetch_i32gather_pd(__m256i vdx, __mmask8 m, void * base, int scale, int hint);
VGATHERPF1DPS void _mm512_mask_prefetch_i32gather_ps(__m512i vdx, __mmask16 m, void * base, int scale, int hint);
VGATHERPF1QPD void _mm512_mask_prefetch_i64gather_pd(__m512i vdx, __mmask8 m, void * base, int scale, int hint);
VGATHERPF1QPS void _mm512_mask_prefetch_i64gather_ps(__m512i vdx, __mmask8 m, void * base, int scale, int hint);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-62, “Type E12NP Class Exception Conditions.”

VGATHERPF1DPS/VGATHERPF1QPS/VGATHERPF1DPD/VGATHERPF1QPD—Sparse Prefetch Packed SP/DP Data Values With Signed Vol.2D 8-15

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

VP4DPWSSDS—Dot Product of Signed Words With Dword Accumulation and Saturation
(4-Iterations)

Opcode/ Op/ | 64/32 CPUID Feature Description
Instruction En bitMode | Flag
Support
EVEX.512.F2.0F38.W0 53 /r A VIV AVX512_4VNNIW | Multiply signed words from source register block
VP4DPWSSDS zmm1{k1}z}, indicated by zmm2 by signed words from m128
zmmZ2+3, 128 and accumulate the resulting dword results with
signed saturation in zmm1.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A Tuple1_4X ModRM:reg (r, w) EVEX.vvvv (1) ModRM:r/m (r) N/A
Description

This instruction computes 4 sequential register source-block dot-products of two signed word operands with
doubleword accumulation and signed saturation. The memory operand is sequentially selected in each of the four
steps.

In the above box, the notation of “+3” is used to denote that the instruction accesses 4 source registers based on
that operand; sources are consecutive, start in a multiple of 4 boundary, and contain the encoded register operand.

This instruction supports memory fault suppression. The entire memory operand is loaded if any bit of the lowest
16-bits of the mask is set to 1 or if a “*no masking” encoding is used.

The tuple type Tuplel_4X implies that four 32-bit elements (16 bytes) are referenced by the memory operation
portion of this instruction.

Operation
src_reg_id is the 5 bit index of the vector register specified in the instruction as the src1 register.

VP4DPWSSDS dest, src1, src2
(KLVL) =(16,512)
N:=4

ORIGDEST := DEST
src_base := src_reg_id & ~ (N-1) // for src1 operand

FORi:= 0 toKL-1:
IF k1[i] or *no writemask*:
FORm:=0toN-1:
t:= SRC2.dword[m]
pldword := reg[src_base+m].word[2*i] * t.word[0]
p2dword := reg[src_base+m].word[2*i+1] * tword[1]
DEST.dword[i] := SIGNED_DWORD_SATURATE(DEST.dword[i] + p1dword + p2dword)
ELSE IF *zeroing™:
DEST.dword[i]:=0
ELSE
DEST.dword[i] := ORIGDEST.dword([i]
DEST[MAX_VL-1:VL] =0

8-16 Vol.2D VP4DPWSSDS—Dot Product of Signed Words With Dword Accumulation and Saturation (4-Iterations)

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Intel C/C++ Compiler Intrinsic Equivalent

VVP4DPWSSDS __m512i _mm512_4dpwssds_epi32(_m512i,__m512ix4, __m128i *);
VP4DPWSSDS __m512i _mm512_mask_4dpwssds_epi32(__m512i, __mmask16, __m512ix4, __m128i *);
VP4DPWSSDS __m512i _mm512_maskz_4dpwssds_epi32(_mmask16, __m512i, __m512ix4, __m128i *);

SIMD Floating-Point Exceptions
None.

Other Exceptions

See Type E4; additionally:

#UD If the EVEX broadcast bit is set to 1.
#UD If the MODRM.mod = Ob11.

VP4DPWSSDS—Dot Product of Signed Words With Dword Accumulation and Saturation (4-Iterations) Vol.2D 8-17

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

VP4DPWSSD—Dot Product of Signed Words With Dword Accumulation (4-Iterations)

Opcode/ Op/ | 64/32 CPUID Feature Description
Instruction En bitMode | Flag

Support
EVEX.512.F2.0F38.W0 52 /r A VIV AVX512_4VNNIW | Multiply signed words from source register block
VP4DPWSSD zmm1{k1¥z},zmm2+3, indicated by zmm?2 by signed words from m128
m128 and accumulate resulting signed dwords in zmm1.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A Tuple1_4X ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A
Description

This instruction computes 4 sequential register source-block dot-products of two signed word operands with
doubleword accumulation; see Figure 8-1 below. The memory operand is sequentially selected in each of the four

steps.

In the above box, the notation of “"+3" is used to denote that the instruction accesses 4 source registers based on
that operand; sources are consecutive, start in a multiple of 4 boundary, and contain the encoded register operand.
This instruction supports memory fault suppression. The entire memory operand is loaded if any bit of the lowest
16-bits of the mask is set to 1 or if a “*no masking” encoding is used.

The tuple type Tuplel_4X implies that four 32-bit elements (16 bytes) are referenced by the memory operation
portion of this instruction.

16b 16b 16b 16b

a3 a2 al a0

b1 b0 b1 b0
32b 32b

® ® @
cl c0
cl=cl+a2*b0+a3*bl c0=c0+a0*b0+al*bl

32b 32b

Figure 8-1. Register Source-Block Dot Product of Two Signed Word Operands With Doubleword Accumulation’

NOTES:
1. For illustration purposes, one source-block dot product instance is shown out of the four.

8-18 Vol.2D VVP4DPWSSD—Dot Product of Signed Words With Dword Accumulation (4-lterations)

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Operation
src_reg_id is the 5 bit index of the vector register specified in the instruction as the src1 register.

VVP4DPWSSD dest, srct, src2
(KLVL) =(16,512)
N:=4

ORIGDEST := DEST
src_base := src_reg_id & ~ (N-1) // for src1 operand

FORi:=0toKL-1:
IF k1[i] or *no writemask*:
FORm:=0toN-1:
t:= SRC2.dword[m]
pldword := reg[src_base+m].word[2*i] * t.word[0]
p2dword := reg[src_base+m].word[2*i+1] * t.word[1]
DEST.dword][i] ;= DEST.dword][i] + p1dword + p2dword
ELSE IF *zeroing™:
DEST.dword[i] := 0
ELSE
DEST.dword[i] := ORIGDEST.dword][i]
DEST[MAX_VL-1:VL]:=0

Intel C/C++ Compiler Intrinsic Equivalent

VP4DPWSSD __m512i _mm512_4dpwssd_epi32(_m512i,
VP4DPWSSD __m512i _mm512_mask_4dpwssd_epi32(__m512i,
VP4DPWSSD __m512i _mm512_maskz_4dpwssd_epi32(__mmask16,

m512ix4, __m128i*);
mmask16, __m512ix4, __m128i *);
m512i, __m512ix4, __m128i *);

SIMD Floating-Point Exceptions
None.

Other Exceptions

See Type E4; additionally:

#UD If the EVEX broadcast bit is set to 1.
#UD If the MODRM.mod = 0b11.

VP4DPWSSD—Dot Product of Signed Words With Dword Accumulation (4-Iterations)

Vol.2D 8-19

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

VRCP28PD—Approximation to the Reciprocal of Packed Double Precision Floating-Point Values
With Less Than 27-28 Relative Error

Opcode/ Op/ | 64/32 CPUID Description
Instruction €n bit Mode | Feature
Support | Flag
EVEX.512.66.0F38W1CA/r | A VIV AVX512€ER | Computes the approximate reciprocals (< 27-28 relative error)
VRCP28PD zmm1 {k1¥z}, of the packed double precision floating-point values in
zmm2/m512/m64bcst {sae} zmm2/m512/m64bcst and stores the results in zmm1. Under
writemask.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
Description

Computes the reciprocal approximation of the float64 values in the source operand (the second operand) and store
the results to the destination operand (the first operand). The approximate reciprocal is evaluated with less than
27 -28 of maximum relative error.

Denormal input values are treated as zeros and do not signal #DE, irrespective of MXCSR.DAZ. Denormal results
are flushed to zeros and do not signal #UE, irrespective of MXCSR.FTZ.

If any source element is NaN, the quietized NaN source value is returned for that element. If any source element is
+o, £0.0 is returned for that element. Also, if any source element is £0.0, £ is returned for that element.

The source operand is a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 64-bit
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.

EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

A numerically exact implementation of VRCP28xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcpi14-vrsqrti4-vrcp28-vrsqrt28-vexp2.

Operation

VRCP28PD (EVEX Encoded Versions)
(KL, VL) =(8,512)

FORj:=0 TO KL-1
i=j*64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DESTI[i+63:i] := RCP_28_DP(1.0/SRC[63:0]);
ELSE DESTI[i+63:i] := RCP_28_DP(1.0/SRC[i+63:i]);

Fl;
ELSE
IF *merging-masking* ; merging-masking
THEN *DESTI[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i]:=0
Fl;
Fl;
ENDFOR;

8-20 Vol. 2D VRCP28PD—Approximation to the Reciprocal of Packed Double Precision Floating-Point Values With Less Than 27-28 Relative Error

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Table 8-3. VRCP28PD Special Cases

Input Value Result Value Comments

NAN QNAN(input) If (SRC = SNaN) then #l

0< X< 21022 INF Positive input denormal or zero; #Z
-21022¢x<-0 -INF Negative input denormal or zero; #Z

X > 21022 +0.0f

X < -21022 -0.0f

X=+o +0.0f

X=-0 -0.0f

X=2T 2" Exact result (unless input/output is a denormal)
X=-2T 2" Exact result (unless input/output is a denormal)

Intel C/C++ Compiler Intrinsic Equivalent

VRCP28PD __m512d _mm512_rcp28_round_pd (_m512d a, int sae);
VRCP28PD __m512d _mm512_mask_rcp28_round_pd(__m512d a, __mmask8 m, __m512d b, int sae);
VRCP28PD __m512d _mm512_maskz_rcp28_round_pd(_mmask8 m, __m512d b, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero.

Other Exceptions

See Table 2-46, "Type E2 Class Exception Conditions.”

VRCP28PD—Approximation to the Reciprocal of Packed Double Precision Floating-Point Values With Less Than 27-28 Relative Error

Vol.2D 8-21

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

VRCP28SD—Approximation to the Reciprocal of Scalar Double Precision Floating-Point Value
With Less Than 27-28 Relative Error

Opcode/ Op/ | 64/32 CPUID Description
Instruction €n bit Mode | Feature
Support | Flag
EVEX.LLIG.66.0F38.W1 CB/r A VIV AVX512€ER | Computes the approximate reciprocal (< 27-28 relative
VRCP28SD xmm1 {k1}z}, xmmz2, error) of the scalar double precision floating-point value in
xmm3/m64 {sae} xmm3/m64 and stores the results in xmm1. Under
writemask. Also, upper double precision floating-point
value (bits[127:64]) from xmmZ is copied to
xmm1[127:64].

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
Description

Computes the reciprocal approximation of the low float64 value in the second source operand (the third operand)
and store the result to the destination operand (the first operand). The approximate reciprocal is evaluated with
less than 27-28 of maximum relative error. The result is written into the low float64 element of the destination
operand according to the writemask k1. Bits 127:64 of the destination is copied from the corresponding bits of the
first source operand (the second operand).

A denormal input value is treated as zero and does not signal #DE, irrespective of MXCSR.DAZ. A denormal result
is flushed to zero and does not signal #UE, irrespective of MXCSR.FTZ.

If any source element is NaN, the quietized NaN source value is returned for that element. If any source element is
+o, £0.0 is returned for that element. Also, if any source element is £0.0, £ is returned for that element.

The first source operand is an XMM register. The second source operand is an XMM register or a 64-bit memory
location. The destination operand is a XMM register, conditionally updated using writemask k1.

A numerically exact implementation of VRCP28xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrti4-vrcp28-vrsqrt28-vexp?2.

Operation
VRCP28SD ((EVEX Encoded Versions)

IF k1[0] OR *no writemask* THEN
DEST[63: 0] := RCP_28_DP(1.0/SRC2[63: 0]);

ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63: 0] remains unchanged*
ELSE ; zeroing-masking
DEST[63:0]:=0
Fl;
Fl;
ENDFOR;

DEST[127:64] := SRC1[127: 64]
DEST[MAXVL-1:128]:= 0

8-22 Vol.2D VRCP28SD—Approximation to the Reciprocal of Scalar Double Precision Floating-Point Value With Less Than 2”-28 Relative Error

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Table 8-4. VRCP28SD Special Cases

Input Value Result Value Comments

NAN QNAN(input) If (SRC = SNaN) then #l

0< X< 21022 INF Positive input denormal or zero; #Z

21022 ¢ %<0 -INF Negative input denormal or zero; #Z

X > 21022 +0.0f

X < -21022 -0.0f

X=+o +0.0f

X=-0 -0.0f

X=2T 2" Exact result (unless input/output is a denormal)
X=-2T 2" Exact result (unless input/output is a denormal)

Intel C/C++ Compiler Intrinsic Equivalent
VRCP28SD __m128d _mm_rcp28_round_sd (_m128d a, __m128d b, int sae);

VRCP28SD __m128d _mm_mask_rcp28_round_sd(__m128ds,
VRCP28SD __m128d _mm_maskz_rcp28_round_sd(__mmask8 m,

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero.

Other Exceptions

mmask8 m, __m128da, __ m128db, int sae);
m128d a, __m128d b, int sae);

See Table 2-47, “Type E3 Class Exception Conditions.”

VRCP28SD—Approximation to the Reciprocal of Scalar Double Precision Floating-Point Value With Less Than 27-28 Relative Error

Vol.2D 8-23

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

VRCP28PS—Approximation to the Reciprocal of Packed Single Precision Floating-Point Values
With Less Than 27-28 Relative Error

Opcode/ Op/ | 64/32 CPUID Description
Instruction En bit Mode | Feature
Support | Flag
EVEX.512.66.0F38.W0 CA /r A VIV AVX512€ER | Computes the approximate reciprocals (< 27-28 relative
VRCP28PS zmm1 {k1}z}, error) of the packed single-precision floating-point values in
zmm2/m512/m32bcst {sae} zmm2/m512/m32bcst and stores the results in zmm1. Under
writemask.

Instruction Operand Encoding

Op/En | Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
Description

Computes the reciprocal approximation of the float32 values in the source operand (the second operand) and store
the results to the destination operand (the first operand) using the writemask k1. The approximate reciprocal is
evaluated with less than 27-28 of maximum relative error prior to final rounding. The final results are rounded to
< 2”7-23 relative error before written to the destination.

Denormal input values are treated as zeros and do not signal #DE, irrespective of MXCSR.DAZ. Denormal results
are flushed to zeros and do not signal #UE, irrespective of MXCSR.FTZ.

If any source element is NaN, the quietized NaN source value is returned for that element. If any source element is
+mo, £0.0 is returned for that element. Also, if any source element is £0.0, o is returned for that element.

The source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.

EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

A numerically exact implementation of VRCP28xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrti4-vrcp28-vrsqrt28-vexp?2.

Operation

VRCP28PS (EVEX Encoded Versions)
(KL, VL) =(16,512)

FORj:=0 TOKL-1
i=j*32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DESTI[i+31:i] := RCP_28_SP(1.0/SRC[31:0]);
ELSE DESTI[i+31:i] := RCP_28_SP(1.0/SRC[i+31:i]);

Fl;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:]:=0
Fl;
FI;
ENDFOR;

8-24 Vol. 2D VRCP28PS—Approximation to the Reciprocal of Packed Single Precision Floating-Point Values With Less Than 27-28 Relative Error

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Table 8-5. VRCP28PS Special Cases

Input Value Result Value Comments

NAN QNAN(input) If (SRC = SNaN) then #l

0<X <2126 INF Positive input denormal or zero; #Z

216 ¢x<-0 -INF Negative input denormal or zero; #Z

X > 2126 +0.0f

X < -21%6 -0.0f

X=+o +0.0f

X=-0 -0.0f

X=2T 2" Exact result (unless input/output is a denormal)
X=-2T 2" Exact result (unless input/output is a denormal)

Intel C/C++ Compiler Intrinsic Equivalent

VRCP28PS _mm512_rcp28_round_ps (__m512 3, int sae);

VRCP28PS __m512 _mm512_mask_rcp28_round_ps(__m512 s, __mmask16 m, __m512 a, int sae);
VRCP28PS __m512 _mm512_maskz_rcp28_round_ps(_mmask16 m, __m512 g, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero.

Other Exceptions

See Table 2-46, "Type E2 Class Exception Conditions.”

VRCP28PS—Approximation to the Reciprocal of Packed Single Precision Floating-Point Values With Less Than 27-28 Relative Error

Vol.2D 8-25

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

VRCP28SS—Approximation to the Reciprocal of Scalar Single Precision Floating-Point Value
With Less Than 27-28 Relative Error

Opcode/ Op/ | 64/32 CPUID Description
Instruction €n bit Mode | Feature
Support | Flag
EVEX.LLIG.66.0F38.W0 CB /r A VIV AVX512€ER | Computes the approximate reciprocal (< 2”-28 relative
VRCP28SS xmm1 {k1Xz]}, error) of the scalar single-precision floating-point value in
xmm2, xmm3/m32 {sae} xmm3/m32 and stores the results in xmm1. Under
writemask. Also, upper 3 single-precision floating-point
values (bits[127:32]) from xmmZ is copied to
xmm1[127:32].

Instruction Operand Encoding

Op/En | Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
Description

Computes the reciprocal approximation of the low float32 value in the second source operand (the third operand)
and store the result to the destination operand (the first operand). The approximate reciprocal is evaluated with
less than 27-28 of maximum relative error prior to final rounding. The final result is rounded to < 2”-23 relative
error before written into the low float32 element of the destination according to writemask k1. Bits 127:32 of the
destination is copied from the corresponding bits of the first source operand (the second operand).

A denormal input value is treated as zero and does not signal #DE, irrespective of MXCSR.DAZ. A denormal result
is flushed to zero and does not signal #UE, irrespective of MXCSR.FTZ.

If any source element is NaN, the quietized NaN source value is returned for that element. If any source element is
+o, £0.0 is returned for that element. Also, if any source element is £0.0, £ is returned for that element.

The first source operand is an XMM register. The second source operand is an XMM register or a 32-bit memory
location. The destination operand is a XMM register, conditionally updated using writemask k1.

A numerically exact implementation of VRCP28xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrti4-vrcp28-vrsqrt28-vexp?2.

Operation
VRCP28SS ((EVEX Encoded Versions)

IF k1[0] OR *no writemask* THEN
DEST[31: 0] := RCP_28_SP(1.0/SRC2[31: O]);

ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31: 0] remains unchanged*
ELSE ; zeroing-masking
DEST[31:0]:=0
Fl;
Fl;
ENDFOR;

DEST[127:32]:= SRC1[127: 32]
DEST[MAXVL-1:128]:=0

8-26 Vol. 2D VRCP28SS—Approximation to the Reciprocal of Scalar Single Precision Floating-Point Value With Less Than 2”-28 Relative Error

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Table 8-6. VRCP28SS Special Cases

Input Value Result Value Comments

NAN QNAN(input) If (SRC = SNaN) then #l

0<X <2126 INF Positive input denormal or zero; #Z

2126 ¢x<-0 -INF Negative input denormal or zero; #Z

X > 2126 +0.0f

X < -21%6 -0.0f

X=+o +0.0f

X=-0 -0.0f

X=2T 2" Exact result (unless input/output is a denormal)
X=-2T 2" Exact result (unless input/output is a denormal)

Intel C/C++ Compiler Intrinsic Equivalent

VRCP28SS __m128 _mm_rcp28_round_ss (__m128a, __m128 Db, int sae);
VRCP28SS __m128 _mm_mask_rcp28_round_ss(__m128s,__mmask8 m,__m128a,__m128b, int sae);
VRCP28SS __m128 _mm_maskz_rcp28_round_ss(_mmask8 m, __m1284a,__m128b, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero.

Other Exceptions

See Table 2-47, “Type E3 Class Exception Conditions.”

VRCP28SS—Approximation to the Reciprocal of Scalar Single Precision Floating-Point Value With Less Than 2”-28 Relative Error Vol.2D 8-27

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

VRSQRT28PD—Approximation to the Reciprocal Square Root of Packed Double Precision
Floating-Point Values With Less Than 27-28 Relative Error

Opcode/ Op/ | 64/32 CPUID Description
Instruction €n bit Mode | Feature
Support | Flag
EVEX.512.66.0F38W1CC/r | A VIV AVX512€ER | Computes approximations to the Reciprocal square root (<2”-
VRSQRTZ28PD zmm1 {k1¥z}, 28 relative error) of the packed double precision floating-point
zmm2/m512/m64bcst {sae} values from zmm2/m512/m64bcst and stores result in
zmm1with writemask k1.

Instruction Operand Encoding

Op/€En | Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
Description

Computes the reciprocal square root of the float64 values in the source operand (the second operand) and store
the results to the destination operand (the first operand). The approximate reciprocal is evaluated with less than
27 -28 of maximum relative error.

If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero)
source numbers, as well as -o, return the canonical NaN and set the Invalid Flag (#1I).

A value of -0 must return -@ and set the DivByZero flags (#Z). Negative numbers should return NaN and set the
Invalid flag (#I). Note however that the instruction flush input denormals to zero of the same sign, so negative
denormals return -o and set the DivByZero flag.

The source operand is a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 64-bit
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.

EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

A numerically exact implementation of VRSQRT28xx can be found at https://software.intel.com/en-us/arti-
cles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrti4-vrcp28-vrsqrt28-vexp?2.

Operation

VRSQRT28PD (EVEX Encoded Versions)
(KL, VL) =(8,512)
FORj:=0 TOKL-1
i=j*64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DESTI[i+63:i] := (1.0/ SQRT(SRC[63:0]));
ELSE DEST[i+63:i] := (1.0/ SQRT(SRC[i+63:i]));

Fl;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:]:=0
Fl;
Fl;
ENDFOR;

8-28 Vol. 2D VRSQRT28PD—Approximation to the Reciprocal Square Root of Packed Double Precision Floating-Point Values With Less Than 27-28

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Table 8-7. VRSQRT28PD Special Cases

Input Value Result Value Comments

NAN QNAN(input) If (SRC = SNaN) then #l
X = 2—2n 2n

X<0 QNaN_Indefinite Including -INF

X = -0 or negative denormal -INF #Z

X = +0 or positive denormal +INF #2

X = +INF +0

Intel C/C++ Compiler Intrinsic Equivalent

VRSQRTZ28PD __m512d _mm512_rsqrt28_round_pd(__m512d 3, int sae);
VRSQRTZ28PD _m512d _mm512_mask_rsqrt28_round_pd(__m512ds, __mmask8 m,__m512d g, int sae);
VRSQRTZ28PD _m512d _mm512_maskz_rsqrt28_round_pd(__mmask8 m,__m512d g, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero.

Other Exceptions

See Table 2-46, "Type E2 Class Exception Conditions.”

VRSQRT28PD—Approximation to the Reciprocal Square Root of Packed Double Precision Floating-Point Values With Less Than 27-28 Vol.2D 8-29

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

VRSQRT28SD—Approximation to the Reciprocal Square Root of Scalar Double Precision
Floating-Point Value With Less Than 27-28 Relative Error

Opcode/ Op/ | 64/32 CPUID Description
Instruction En bit Mode | Feature
Support | Flag
EVEX.LLIG.66.0F38.W1 CD /r A VIV AVX512€ER | Computes approximate reciprocal square root (<27-28
VRSQRT28SD xmm1 {k1¥z}, relative error) of the scalar double precision floating-point
xmm2, xmm3/m64 {sae} value from xmm3/m64 and stores result in xmm1with
writemask k1. Also, upper double precision floating-point
value (bits[127:64]) from xmmZ is copied to
xmm1[127:64].

Instruction Operand Encoding

Op/€n | Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
Description

Computes the reciprocal square root of the low float64 value in the second source operand (the third operand) and
store the result to the destination operand (the first operand). The approximate reciprocal square root is evaluated
with less than 27-28 of maximum relative error. The result is written into the low float64 element of xmm1
according to the writemask k1. Bits 127:64 of the destination is copied from the corresponding bits of the first source operand (the
second operand).

If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero)
source numbers, as well as -0, return the canonical NaN and set the Invalid Flag (#I).

A value of -0 must return -@ and set the DivByZero flags (#Z). Negative numbers should return NaN and set the
Invalid flag (#1I). Note however that the instruction flush input denormals to zero of the same sign, so negative
denormals return -» and set the DivByZero flag.

The first source operand is an XMM register. The second source operand is an XMM register or a 64-bit memory
location. The destination operand is a XMM register.

A numerically exact implementation of VRSQRT28xx can be found at https://software.intel.com/en-us/arti-
cles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp?2.

Operation

VRSQRT28SD (EVEX Encoded Versions)
IF k1[0] OR *no writemask* THEN
DEST[63: 0] := (1.0/ SQRT(SRC[63: O1));

ELSE
IF *merging-masking* , merging-masking
THEN *DEST[63: 0] remains unchanged*
ELSE ; zeroing-masking
DEST[63:0]:=0
Fl;
FI;
ENDFOR;

DEST[127:64] := SRC1[127: 64]
DEST[MAXVL-1:128]:= 0

8-30 Vol.2D VRSQRT28SD—Approximation to the Reciprocal Square Root of Scalar Double Precision Floating-Point Value With Less Than 27-28

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Table 8-8. VRSQRT28SD Special Cases

Input Value Result Value Comments

NAN QNAN(input) If (SRC = SNaN) then #I
X = 2—2n 2n

X<0 QNaN_Indefinite Including -INF

X = -0 or negative denormal -INF #Z

X = +0 or positive denormal +INF #Z

X = +INF +0

Intel C/C++ Compiler Intrinsic Equivalent

VRSQRT28SD _m128d _mm_rsqrt28_round_sd(__m128d a, __m128d b, int rounding);
VRSQRTZ28SD __m128d _mm_mask_rsqrt28_round_sd(__m128ds, __mmask8 m,__m128d a, __m128d b, int rounding);
VRSQRTZ28SD _m128d _mm_maskz_rsqrt28_round_sd(_mmask8 m,__m128d a, __m128d b, int rounding);

SIMD Floating-Point Exceptions
Invalid (if SNaN input), Divide-by-zero.

Other Exceptions

See Table 2-47, "Type E3 Class Exception Conditions.”

VRSQRT28SD—Approximation to the Reciprocal Square Root of Scalar Double Precision Floating-Point Value With Less Than 27-28

Vol.2D 8-31

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

VRSQRT28PS—Approximation to the Reciprocal Square Root of Packed Single Precision
Floating-Point Values With Less Than 27-28 Relative Error

Opcode/ Op/ | 64/32 CPUID Description
Instruction En bit Mode | Feature
Support | Flag
EVEX.512.66.0F38.WO0 CC /r A VIV AVX512€ER | Computes approximations to the Reciprocal square root
VRSQRT28PS zmm1 {k1¥z}, (<27-28 relative error) of the packed single-precision
zmm2/m512/m32bcst {sae} floating-point values from zmm2/m512/m32bcst and stores
result in zmm1with writemask k1.

Instruction Operand Encoding

Op/En | Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A
Description

Computes the reciprocal square root of the float32 values in the source operand (the second operand) and store
the results to the destination operand (the first operand). The approximate reciprocal is evaluated with less than
27-28 of maximum relative error prior to final rounding. The final results is rounded to < 2/-23 relative error
before written to the destination.

If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero)
source numbers, as well as -o, return the canonical NaN and set the Invalid Flag (#I).

A value of -0 must return -@ and set the DivByZero flags (#Z). Negative numbers should return NaN and set the
Invalid flag (#I). Note however that the instruction flush input denormals to zero of the same sign, so negative
denormals return -o and set the DivByZero flag.

The source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.

EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

A numerically exact implementation of VRSQRT28xx can be found at https://software.intel.com/en-us/arti-
cles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp?2.

Operation

VRSQRT28PS (EVEX Encoded Versions)
(KL, VL) =(16,512)
FORj:=0 TOKL-1
i=j*32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DESTIi+31:i] := (1.0/ SQRT(SRC[31:01));
ELSE DESTI[i+31:i]:= (1.0/ SQRT(SRC[i+31:i]));

Fl;
ELSE
IF *merging-masking* , merging-masking
THEN *DESTIi+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i]:=0
Fl;
FI;
ENDFOR;

8-32 Vol. 2D VRSQRT28PS—Approximation to the Reciprocal Square Root of Packed Single Precision Floating-Point Values With Less Than 27-28

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Table 8-9. VRSQRT28PS Special Cases

Input Value Result Value Comments

NAN QNAN(input) If (SRC = SNaN) then #l
X = 2—2n 2"

X<0 QNaN_Indefinite Including -INF

X = -0 or negative denormal -INF #Z

X = +0 or positive denormal +INF #Z

X = +INF +0

Intel C/C++ Compiler Intrinsic Equivalent
VRSQRTZ28PS _m512 _mm512_rsqrt28_round_ps(__m512 3, int sae);

VRSQRTZ28PS __m512 _mm512_mask_rsqrt28_round_ps(__m512s, __mmask16 m,__m512 a, int sae);

VRSQRTZ28PS __m512 _mm512_maskz_rsqrt28_round_ps(__mmask16 m,__m512 3, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero.

Other Exceptions

See Table 2-46, "Type E2 Class Exception Conditions.”

VRSQRT28PS—Approximation to the Reciprocal Square Root of Packed Single Precision Floating-Point Values With Less Than 27-28

Vol.2D 8-33

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

VRSQRT28SS—Approximation to the Reciprocal Square Root of Scalar Single Precision Floating-
Point Value With Less Than 27-28 Relative Error

Opcode/ Op/ | 64/32 CPUID Description
Instruction En bit Mode | Feature
Support | Flag
EVEX.LLIG.66.0F38.WO CD /r A VIV AVX512€ER | Computes approximate reciprocal square root (<2”-28
VRSQRT28SS xmm1 {k1¥z}, relative error) of the scalar single-precision floating-point
xmm2, xmm3/m32 {sae} value from xmm3/m32 and stores result in xmm1with
writemask k1. Also, upper 3 single-precision floating-point
value (bits[127:32]) from xmm?Z is copied to
xmm1[127:32].

Instruction Operand Encoding

Op/En | Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
Description

Computes the reciprocal square root of the low float32 value in the second source operand (the third operand) and
store the result to the destination operand (the first operand). The approximate reciprocal square root is evaluated
with less than 22-28 of maximum relative error prior to final rounding. The final result is rounded to < 2/-23 rela-
tive error before written to the low float32 element of the destination according to the writemask k1. Bits 127:32 of
the destination is copied from the corresponding bits of the first source operand (the second operand).

If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero)
source numbers, as well as -0, return the canonical NaN and set the Invalid Flag (#I).

A value of -0 must return -@ and set the DivByZero flags (#Z). Negative numbers should return NaN and set the
Invalid flag (#1I). Note however that the instruction flush input denormals to zero of the same sign, so negative
denormals return -» and set the DivByZero flag.

The first source operand is an XMM register. The second source operand is an XMM register or a 32-bit memory
location. The destination operand is a XMM register.

A numerically exact implementation of VRSQRT28xx can be found at https://software.intel.com/en-us/arti-
cles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp?2.

Operation
VRSQRT28SS (EVEX Encoded Versions)

IF k1[0] OR *no writemask* THEN
DEST[31: 0]:= (1.0/ SQRT(SRC[31: O1));

ELSE
IF *merging-masking* , merging-masking
THEN *DEST[31: 0] remains unchanged*
ELSE ; zeroing-masking
DEST[31:0]:=0
Fl;
FI;
ENDFOR;

DEST[127:32] := SRC1[127: 32]
DEST[MAXVL-1:128]:= 0

8-34 Vol. 2D VRSQRT28SS—Approximation to the Reciprocal Square Root of Scalar Single Precision Floating-Point Value With Less Than 2"-28 Rel-

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Table 8-10. VRSQRT28SS Special Cases

Input Value Result Value Comments

NAN QNAN(input) If (SRC = SNaN) then #l
X = 2—2n 2n

X<0 QNaN_Indefinite Including -INF

X = -0 or negative denormal -INF #Z

X = +0 or positive denormal +INF #Z

X = +INF +0

Intel C/C++ Compiler Intrinsic Equivalent

VRSQRTZ28SS __m128 _mm_rsqrt28_round_ss(__m1283a, __m128 b, int rounding);
VRSQRT28SS _m128 _mm_mask_rsqrt28_round_ss(__m128s, __mmask8 m,__m128 a,__m128 b, int rounding);
VRSQRTZ28SS __m128 _mm_maskz_rsqrt28_round_ss(__mmask8 m,__m128 a,__m128 b, int rounding);

SIMD Floating-Point Exceptions
Invalid (if SNaN input), Divide-by-zero.

Other Exceptions

See Table 2-47, “"Type E3 Class Exception Conditions.”

VRSQRT28SS—Approximation to the Reciprocal Square Root of Scalar Single Precision Floating-Point Value With Less Than 2"-28 Rel-

Vol.2D 8-35

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

VSCATTERPFODPS/VSCATTERPFOQPS/VSCATTERPFODPD/VSCATTERPFOQPD—Sparse Prefetch
Packed SP/DP Data Values with Signed Dword, Signed Qword Indices Using TO Hint With Intent
to Write

Opcode/ Op/ | 64/32 CPUID Description
Instruction En bit Mode | Feature
Support | Flag
EVEX.512.66.0F38.W0 C6 /5 /vsib A VIV AVX512PF | Using signed dword indices, prefetch sparse byte
VSCATTERPFODPS vm32z {k1} memory locations containing single-precision data using
writemask k1 and TO hint with intent to write.
EVEX.512.66.0F38.W0 C7 /5 /vsib A VIV AVX512PF | Using signed qword indices, prefetch sparse byte
VSCATTERPFOQPS vm64z {k1} memory locations containing single-precision data using
writemask k1 and TO hint with intent to write.
EVEX.512.66.0F38.W1 C6 /5 /vsib A VIV AVX512PF | Using signed dword indices, prefetch sparse byte
VSCATTERPFODPD vm32y {k1} memory locations containing double precision data
using writemask k1 and TO hint with intent to write.
EVEX.512.66.0F38.W1 C7 /5 /vsib A VIV AVX512PF | Using signed qword indices, prefetch sparse byte
VSCATTERPFOQPD vm64z {k1} memory locations containing double precision data
using writemask k1 and TO hint with intent to write.

Instruction Operand Encoding

Op/€En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar BaseReg (R): VSIB:base, N/A N/A N/A
VectorReg(R): VSIB:index

Description

The instruction conditionally prefetches up to sixteen 32-bit or eight 64-bit integer byte data elements. The
elements are specified via the VSIB (i.e., the index register is an zmm, holding packed indices). Elements will only
be prefetched if their corresponding mask bit is one.

cache lines will be brought into exclusive state (RFO) specified by a locality hint (T0):
¢ TO (temporal data)—prefetch data into the first level cache.

[PS data] For dword indices, the instruction will prefetch sixteen memory locations. For qword indices, the instruc-
tion will prefetch eight values.

[PD data] For dword and qword indices, the instruction will prefetch eight memory locations.
Note that:

(1) The prefetches may happen in any order (or not at all). The instruction is a hint.

(2) The mask is left unchanged.

(3) Not valid with 16-bit effective addresses. Will deliver a #UD fault.

(4) No FP nor memory faults may be produced by this instruction.

(5) Prefetches do not handle cache line splits

(6) A #UD is signaled if the memory operand is encoded without the SIB byte.

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist.

VINDEX stands for the memory operand vector of indices (a vector register).

SCALE stands for the memory operand scalar (1, 2, 4 or 8).

DISP is the optional 1, 2 or 4 byte displacement.

PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a
hint for the processor and may be skipped depending on implementation.

8-36 Vol.2D VSCATTERPFODPS/VSCATTERPFOQPS/VSCATTERPFODPD/VSCATTERPFOQPD—Sparse Prefetch Packed SP/DP Data Values with

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

VSCATTERPFODPS (EVEX Encoded Version)
(KL, VL) =(16,512)
FORj:=0TOKL-1
i=j*32
IF k1[I
Prefetch([BASE_ADDR + SignExtend(VINDEX[i+31:i]) * SCALE + DISP], Level=0, RFO = 1)
Fl;
ENDFOR

VSCATTERPFODPD (EVEX Encoded Version)
(KL, VL) = (8,512)
FORj:=0TOKL-1
i=j*64
k:=j*32
IF k1[I
Prefetch([BASE_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP], Level=0, RFO = 1)
Fl;
ENDFOR

VSCATTERPFOQPS (EVEX Encoded Version)
(KL, VL) = (8, 256)
FORj:=0TOKL-1
i=j*64
IF k1[I
Prefetch([BASE_ADDR + SignExtend(VINDEX[i+63:i]) * SCALE + DISP], Level=0, RFO = 1)
Fl;
ENDFOR

VSCATTERPFOQPD (EVEX Encoded Version)
(KL, VL) =(8,512)
FORj:=0TOKL-1
i=j*64
k:=j*64
IF k1[I
Prefetch([BASE_ADDR + SignExtend(VINDEX[k+63:k]) * SCALE + DISP], Level=0, RFO = 1)
Fl;
ENDFOR

Intel C/C++ Compiler Intrinsic Equivalent

VSCATTERPFODPD void _mm512_prefetch_i32scatter_pd(void *base, __mZ256i vdx, int scale, int hint);

VSCATTERPFODPD void _mm512_mask_prefetch_i32scatter_pd(void *base, __mmask8 m, __m256i vdx, int scale, int hint);

VSCATTERPFODPS void _mm512_prefetch_i32scatter_ps(void *base, __m512i vdx, int scale, int hint);

VSCATTERPFODPS void _mm512_mask_prefetch_i32scatter_ps(void *base, __mmask16 m, __m512i vdx, int scale, int hint);
VSCATTERPFOQPD void _mm512_prefetch_i64scatter_pd(void * base, __m512i vdx, int scale, int hint);

VSCATTERPFOQPD void _mm512_mask_prefetch_i64scatter_pd(void * base, __mmask8 m, __m512i vdx, int scale, int hint);
VSCATTERPFOQPS void _mm512_prefetch_i64scatter_ps(void * base, __m512i vdx, int scale, int hint);

VSCATTERPFOQPS void _mm512_mask_prefetch_i64scatter_ps(void * base, __mmask8 m, __m512i vdx, int scale, int hint);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-62, “Type E12NP Class Exception Conditions.”

VSCATTERPFODPS/VSCATTERPFOQPS/VSCATTERPFODPD/VSCATTERPFOQPD—Sparse Prefetch Packed SP/DP Data Values with Vol. 2D

8-37

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

VSCATTERPF1DPS/VSCATTERPF1QPS/VSCATTERPF1DPD/VSCATTERPF1QPD—Sparse Prefetch
Packed SP/DP Data Values With Signed Dword, Signed Qword Indices Using T1 Hint With Intent
to Write

Opcode/ Op/ | 64/32 CPUID Description
Instruction En bit Mode | Feature
Support | Flag
EVEX.512.66.0F38.W0 C6 /6 /vsib A VIV AVX512PF | Using signed dword indices, prefetch sparse byte memory
VSCATTERPF1DPS vm32z {k1} locations containing single-precision data using writemask
k1 and T1 hint with intent to write.
EVEX.512.66.0F38.W0 C7 /6 /vsib A VIV AVX512PF | Using signed qword indices, prefetch sparse byte memory
VSCATTERPF1QPS vm64z {k1} locations containing single-precision data using writemask
k1 and T1 hint with intent to write.
EVEX.512.66.0F38.W1 C6 /6 /vsib A VIV AVX512PF | Using signed dword indices, prefetch sparse byte memory
VSCATTERPF1DPD vm32y {k1} locations containing double precision data using
writemask k1 and T1 hint with intent to write.
EVEX.512.66.0F38.W1 C7 /6 /vsib A VIV AVX512PF | Using signed qword indices, prefetch sparse byte memory
VSCATTERPF1QPD vm64z {k1} locations containing double precision data using
writemask k1 and T1 hint with intent to write.

Instruction Operand Encoding

Op/€En | Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar BaseReg (R): VSIB:base, N/A N/A N/A
VectorReg(R): VSIB:index

Description

The instruction conditionally prefetches up to sixteen 32-bit or eight 64-bit integer byte data elements. The
elements are specified via the VSIB (i.e., the index register is an zmm, holding packed indices). Elements will only
be prefetched if their corresponding mask bit is one.

cache lines will be brought into exclusive state (RFO) specified by a locality hint (T1):
¢ T1 (temporal data)—prefetch data into the second level cache.

[PS data] For dword indices, the instruction will prefetch sixteen memory locations. For qword indices, the instruc-
tion will prefetch eight values.

[PD data] For dword and qword indices, the instruction will prefetch eight memory locations.
Note that:

(1) The prefetches may happen in any order (or not at all). The instruction is a hint.

(2) The mask is left unchanged.

(3) Not valid with 16-bit effective addresses. Will deliver a #UD fault.

(4) No FP nor memory faults may be produced by this instruction.

(5) Prefetches do not handle cache line splits

(6) A #UD is signaled if the memory operand is encoded without the SIB byte.

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist.

VINDEX stands for the memory operand vector of indices (a vector register).

SCALE stands for the memory operand scalar (1, 2, 4 or 8).

DISP is the optional 1, 2 or 4 byte displacement.

PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a
hint for the processor and may be skipped depending on implementation.

8-38 Vol.2D VSCATTERPF1DPS/VSCATTERPF1QPS/VSCATTERPF1DPD/VSCATTERPF1QPD—Sparse Prefetch Packed SP/DP Data Values With

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

VSCATTERPF1DPS (EVEX Encoded Version)
(KL, VL) =(16,512)
FORj:=0TOKL-1
i=j*32
IF k1[I
Prefetch([BASE_ADDR + SignExtend(VINDEX[i+31:i]) * SCALE + DISP], Level=1,RFO = 1)
Fl;
ENDFOR

VSCATTERPF1DPD (EVEX Encoded Version)
(KL, VL) = (8,512)
FORj:=0TOKL-1
i=j*64
k:=j*32
IF k1[I
Prefetch([BASE_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP], Level=1,RFO = 1)
Fl;
ENDFOR

VSCATTERPF1QPS (EVEX Encoded Version)
(KL, VL) = (8,512)
FORj:=0TOKL-1
i=j*64
IF k1[I
Prefetch([BASE_ADDR + SignExtend(VINDEX[i+63:i]) * SCALE + DISP], Level=1,RFO = 1)
Fl;
ENDFOR

VSCATTERPF1QPD (EVEX Encoded Version)
(KL, VL) =(8,512)
FORj:=0TOKL-1
i=j*64
k:=j*64
IF k1[I
Prefetch([BASE_ADDR + SignExtend(VINDEX[k+63:k]) * SCALE + DISP], Level=1,RFO = 1)
Fl;
ENDFOR

Intel C/C++ Compiler Intrinsic Equivalent

VSCATTERPF1DPD void _mm512_prefetch_i32scatter_pd(void *base, __mZ256i vdx, int scale, int hint);

VSCATTERPF1DPD void _mm512_mask_prefetch_i32scatter_pd(void *base, __mmask8 m, __m256i vdx, int scale, int hint);
VSCATTERPF1DPS void _mm512_prefetch_i32scatter_ps(void *base, __m512i vdx, int scale, int hint);

VSCATTERPF1DPS void _mm512_mask_prefetch_i32scatter_ps(void *base, __mmask16 m, __m512i vdx, int scale, int hint);
VSCATTERPF1QPD void _mm512_prefetch_i64scatter_pd(void * base, __m512i vdx, int scale, int hint);

VSCATTERPF1QPD void _mm512_mask_prefetch_i64scatter_pd(void * base, __mmask8 m, __m512i vdx, int scale, int hint);
VSCATTERPF1QPS void _mm512_prefetch_ib64scatter_ps(void *base, __m512i vdx, int scale, int hint);

VSCATTERPF1QPS void _mm512_mask_prefetch_i64scatter_ps(void *base, __mmask8 m, __m512i vdx, int scale, int hint);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Table 2-62, “Type E12NP Class Exception Conditions.”

VSCATTERPF1DPS/VSCATTERPF1QPS/VSCATTERPF1DPD/VSCATTERPF1QPD—Sparse Prefetch Packed SP/DP Data Values With Vol. 2D

8-39

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

8-40 Vol.2D VSCATTERPF1DPS/VSCATTERPF1QPS/VSCATTERPF1DPD/VSCATTERPF1QPD—Sparse Prefetch Packed SP/DP Data Values With

APPENDIX A
OPCODE MAP

Use the opcode tables in this chapter to interpret IA-32 and Intel 64 architecture object code. Instructions are
divided into encoding groups:

®* 1-byte, 2-byte and 3-byte opcode encodings are used to encode integer, system, MMX technology,
SSE/SSE2/SSE3/SSSE3/SSE4, and VMX instructions. Maps for these instructions are given in Table A-2
through Table A-6.

® Escape opcodes (in the format: ESC character, opcode, ModR/M byte) are used for floating-point instructions.
The maps for these instructions are provided in Table A-7 through Table A-22.

NOTE

All blanks in opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or blank opcodes.

A.1 USING OPCODE TABLES

Tables in this appendix list opcodes of instructions (including required instruction prefixes, opcode extensions in
associated ModR/M byte). Blank cells in the tables indicate opcodes that are reserved or undefined. Cells marked
“Reserved-NOP” are also reserved but may behave as NOP on certain processors. Software should not use opcodes
corresponding blank cells or cells marked “Reserved-NOP” nor depend on the current behavior of those opcodes.

The opcode map tables are organized by hex values of the upper and lower 4 bits of an opcode byte. For 1-byte
encodings (Table A-2), use the four high-order bits of an opcode to index a row of the opcode table; use the four
low-order bits to index a column of the table. For 2-byte opcodes beginning with OFH (Table A-3), skip any instruc-
tion prefixes, the OFH byte (OFH may be preceded by 66H, F2H, or F3H) and use the upper and lower 4-bit values
of the next opcode byte to index table rows and columns. Similarly, for 3-byte opcodes beginning with OF38H or
OF3AH (Table A-4), skip any instruction prefixes, 0F38H or OF3AH and use the upper and lower 4-bit values of the
third opcode byte to index table rows and columns. See Section A.2.4, “Opcode Look-up Examples for One, Two,
and Three-Byte Opcodes.”

When a ModR/M byte provides opcode extensions, this information qualifies opcode execution. For information on
how an opcode extension in the ModR/M byte modifies the opcode map in Table A-2 and Table A-3, see Section A.4.

The escape (ESC) opcode tables for floating-point instructions identify the eight high order bits of opcodes at the
top of each page. See Section A.5. If the accompanying ModR/M byte is in the range of 00H-BFH, bits 3-5 (the top
row of the third table on each page) along with the reg bits of ModR/M determine the opcode. ModR/M bytes
outside the range of 00H-BFH are mapped by the bottom two tables on each page of the section.

A.2 KEY TO ABBREVIATIONS

Operands are identified by a two-character code of the form Zz. The first character, an uppercase letter, specifies
the addressing method; the second character, a lowercase letter, specifies the type of operand.

A.2.1 Codes for Addressing Method

The following abbreviations are used to document addressing methods:

A Direct address: the instruction has no ModR/M byte; the address of the operand is encoded in the instruc-
tion. No base register, index register, or scaling factor can be applied (for example, far JMP (EA)).

B The VEX.vvvy field of the VEX prefix selects a general purpose register.

Vol.2D A-1

OPCODE MAP

A.2.2

The reg field of the ModR/M byte selects a control register (for example, MOV (0F20, 0F22)).

The reg field of the ModR/M byte selects a debug register (for example,
MOV (0F21,0F23)).

A ModR/M byte follows the opcode and specifies the operand. The operand is either a general-purpose
register or a memory address. If it is a memory address, the address is computed from a segment register
and any of the following values: a base register, an index register, a scaling factor, a displacement.

EFLAGS/RFLAGS Register.
The reg field of the ModR/M byte selects a general register (for example, AX (000)).

The VEX.vvvy field of the VEX prefix selects a 128-bit XMM register or a 256-bit YMM register, determined
by operand type. For legacy SSE encodings this operand does not exist, changing the instruction to
destructive form.

Immediate data: the operand value is encoded in subsequent bytes of the instruction.

The instruction contains a relative offset to be added to the instruction pointer register (for example, JMP
(OE9), LOOP).

The upper 4 bits of the 8-bit immediate selects a 128-bit XMM register or a 256-bit YMM register, deter-
mined by operand type. (the MSB is ignored in 32-bit mode)

The ModR/M byte may refer only to memory (for example, BOUND, LES, LDS, LSS, LFS, LGS,
CMPXCHGSB).

The R/M field of the ModR/M byte selects a packed-quadword, MMX technology register.

The instruction has no ModR/M byte. The offset of the operand is coded as a word or double word
(depending on address size attribute) in the instruction. No base register, index register, or scaling factor
can be applied (for example, MOV (A0-A3)).

The reg field of the ModR/M byte selects a packed quadword MMX technology register.

A ModR/M byte follows the opcode and specifies the operand. The operand is either an MMX technology
register or a memory address. If it is a memory address, the address is computed from a segment register
and any of the following values: a base register, an index register, a scaling factor, and a displacement.

The R/M field of the ModR/M byte may refer only to a general register (for example, MOV (0F20-0F23)).
The reg field of the ModR/M byte selects a segment register (for example, MOV (8C,8E)).

The R/M field of the ModR/M byte selects a 128-bit XMM register or a 256-bit YMM register, determined by
operand type.

The reg field of the ModR/M byte selects a 128-bit XMM register or a 256-bit YMM register, determined by
operand type.

A ModR/M byte follows the opcode and specifies the operand. The operand is either a 128-bit XMM register,
a 256-bit YMM register (determined by operand type), or a memory address. If it is a memory address, the
address is computed from a segment register and any of the following values: a base register, an index
register, a scaling factor, and a displacement.

Memory addressed by the DS:rSI register pair (for example, MOVS, CMPS, OUTS, or LODS).
Memory addressed by the ES:rDI register pair (for example, MOVS, CMPS, INS, STOS, or SCAS).

Codes for Operand Type

The following abbreviations are used to document operand types:

a

Two one-word operands in memory or two double-word operands in memory, depending on operand-size
attribute (used only by the BOUND instruction).

Byte, regardless of operand-size attribute.
Byte or word, depending on operand-size attribute.

Doubleword, regardless of operand-size attribute.

A-2 Vol.2D

OPCODE MAP

dq Double-quadword, regardless of operand-size attribute.

p 32-bit, 48-bit, or 80-bit pointer, depending on operand-size attribute.
pd 128-bit or 256-bit packed double precision floating-point data.

pi Quadword MMX technology register (for example: mmO).

ps 128-bit or 256-bit packed single-precision floating-point data.

q Quadword, regardless of operand-size attribute.

aq Quad-Quadword (256-bits), regardless of operand-size attribute.

s 6-byte or 10-byte pseudo-descriptor.

sd Scalar element of a 128-bit double precision floating data.
ss Scalar element of a 128-bit single-precision floating data.
Si Doubleword integer register (for example: eax).

Word, doubleword or quadword (in 64-bit mode), depending on operand-size attribute.
Word, regardless of operand-size attribute.

v
w

X dq or qq based on the operand-size attribute.

y Doubleword or quadword (in 64-bit mode), depending on operand-size attribute.
z

Word for 16-bit operand-size or doubleword for 32 or 64-bit operand-size.

A.23 Register Codes

When an opcode requires a specific register as an operand, the register is identified by name (for example, AX, CL,
or ESI). The name indicates whether the register is 64, 32, 16, or 8 bits wide.

A register identifier of the form eXX or rXX is used when register width depends on the operand-size attribute. eXX
is used when 16 or 32-bit sizes are possible; rXX is used when 16, 32, or 64-bit sizes are possible. For example:
eAX indicates that the AX register is used when the operand-size attribute is 16 and the EAX register is used when
the operand-size attribute is 32. rAX can indicate AX, EAX or RAX.

When the REX.B bit is used to modify the register specified in the reg field of the opcode, this fact is indicated by
adding “/x” to the register name to indicate the additional possibility. For example, rCX/r9 is used to indicate that
the register could either be rCX or r9. Note that the size of r9 in this case is determined by the operand size attri-
bute (just as for rCX).

A24 Opcode Look-up Examples for One, Two, and Three-Byte Opcodes

This section provides examples that demonstrate how opcode maps are used.

A.2.4.1 One-Byte Opcode Instructions

The opcode map for 1-byte opcodes is shown in Table A-2. The opcode map for 1-byte opcodes is arranged by row
(the least-significant 4 bits of the hexadecimal value) and column (the most-significant 4 bits of the hexadecimal
value). Each entry in the table lists one of the following types of opcodes:

* Instruction mnemonics and operand types using the notations listed in Section A.2
® Opcodes used as an instruction prefix

For each entry in the opcode map that corresponds to an instruction, the rules for interpreting the byte following
the primary opcode fall into one of the following cases:

* A ModR/M byte is required and is interpreted according to the abbreviations listed in Section A.1 and Chapter
2, “Instruction Format,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.
Operand types are listed according to notations listed in Section A.2.

Vol.2D A-3

OPCODE MAP

®* A ModR/M byte is required and includes an opcode extension in the reg field in the ModR/M byte. Use Table A-6
when interpreting the ModR/M byte.

®* Use of the ModR/M byte is reserved or undefined. This applies to entries that represent an instruction prefix or
entries for instructions without operands that use ModR/M (for example: 60H, PUSHA; 06H, PUSH ES).

Example A-1. Look-up Example for 1-Byte Opcodes
Opcode 030500000000H for an ADD instruction is interpreted using the 1-byte opcode map (Table A-2) as follows:

®* The first digit (0) of the opcode indicates the table row and the second digit (3) indicates the table column. This
locates an opcode for ADD with two operands.

®* The first operand (type Gv) indicates a general register that is a word or doubleword depending on the operand-
size attribute. The second operand (type Ev) indicates a ModR/M byte follows that specifies whether the
operand is a word or doubleword general-purpose register or a memory address.

®* The ModR/M byte for this instruction is 05H, indicating that a 32-bit displacement follows (00000000H). The
reg/opcode portion of the ModR/M byte (bits 3-5) is 000, indicating the EAX register.

The instruction for this opcode is ADD EAX, mem_op, and the offset of mem_op is 00000000H.

Some 1- and 2-byte opcodes point to group numbers (shaded entries in the opcode map table). Group numbers
indicate that the instruction uses the reg/opcode bits in the ModR/M byte as an opcode extension (refer to Section
A.4).

A2.4.2 Two-Byte Opcode Instructions

The two-byte opcode map shown in Table A-3 includes primary opcodes that are either two bytes or three bytes in
length. Primary opcodes that are 2 bytes in length begin with an escape opcode OFH. The upper and lower four bits
of the second opcode byte are used to index a particular row and column in Table A-3.

Two-byte opcodes that are 3 bytes in length begin with a mandatory prefix (66H, F2H, or F3H) and the escape
opcode (OFH). The upper and lower four bits of the third byte are used to index a particular row and column in Table
A-3 (except when the second opcode byte is the 3-byte escape opcodes 38H or 3AH; in this situation refer to
Section A.2.4.3).

For each entry in the opcode map, the rules for interpreting the byte following the primary opcode fall into one of
the following cases:

®* A ModR/M byte is required and is interpreted according to the abbreviations listed in Section A.1 and Chapter
2, “Instruction Format,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A. The
operand types are listed according to notations listed in Section A.2.

®* A ModR/M byte is required and includes an opcode extension in the reg field in the ModR/M byte. Use Table A-6
when interpreting the ModR/M byte.

® Use of the ModR/M byte is reserved or undefined. This applies to entries that represent an instruction without
operands that are encoded using ModR/M (for example: OF77H, EMMS).

Example A-2. Look-up Example for 2-Byte Opcodes
Look-up opcode OFA4050000000003H for a SHLD instruction using Table A-3.

® The opcode is located in row A, column 4. The location indicates a SHLD instruction with operands Ev, Gv, and
Ib. Interpret the operands as follows:

— Ev: The ModR/M byte follows the opcode to specify a word or doubleword operand.
— Gv: The reg field of the ModR/M byte selects a general-purpose register.
— Ib: Immediate data is encoded in the subsequent byte of the instruction.

®* The third byte is the ModR/M byte (05H). The mod and opcode/reg fields of ModR/M indicate that a 32-bit
displacement is used to locate the first operand in memory and eAX as the second operand.

® The next part of the opcode is the 32-bit displacement for the destination memory operand (00000000H). The
last byte stores immediate byte that provides the count of the shift (03H).

A-4 Vol.2D

OPCODE MAP

® By this breakdown, it has been shown that this opcode represents the instruction: SHLD DS:00000000H, EAX,
3.

A.243 Three-Byte Opcode Instructions

The three-byte opcode maps shown in Table A-4 and Table A-5 includes primary opcodes that are either 3 or 4
bytes in length. Primary opcodes that are 3 bytes in length begin with two escape bytes OF38H or OF3A. The upper
and lower four bits of the third opcode byte are used to index a particular row and column in Table A-4 or Table A-5.

Three-byte opcodes that are 4 bytes in length begin with a mandatory prefix (66H, F2H, or F3H) and two escape
bytes (0F38H or OF3AH). The upper and lower four bits of the fourth byte are used to index a particular row and
column in Table A-4 or Table A-5.

For each entry in the opcode map, the rules for interpreting the byte following the primary opcode fall into the
following case:

®* A ModR/M byte is required and is interpreted according to the abbreviations listed in A.1 and Chapter 2,
“Instruction Format,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A. The
operand types are listed according to notations listed in Section A.2.

Example A-3. Look-up Example for 3-Byte Opcodes
Look-up opcode 660F3A0FC108H for a PALIGNR instruction using Table A-5.

® 66H is a prefix and OF3AH indicate to use Table A-5. The opcode is located in row 0, column F indicating a
PALIGNR instruction with operands Vdq, Wdgq, and Ib. Interpret the operands as follows:

— Vdq: The reg field of the ModR/M byte selects a 128-bit XMM register.
— Wdq: The R/M field of the ModR/M byte selects either a 128-bit XMM register or memory location.
— Ib: Immediate data is encoded in the subsequent byte of the instruction.

®* The next byte is the ModR/M byte (C1H). The reg field indicates that the first operand is XMMO0. The mod shows
that the R/M field specifies a register and the R/M indicates that the second operand is XMM1.
® The last byte is the immediate byte (08H).

®* By this breakdown, it has been shown that this opcode represents the instruction: PALIGNR XMMO0O, XMM1, 8.

A.2.4.4 VEX Prefix Instructions

Instructions that include a VEX prefix are organized relative to the 2-byte and 3-byte opcode maps, based on the
VEX.mmmmm field encoding of implied OF, OF38H, OF3AH, respectively. Each entry in the opcode map of a VEX-
encoded instruction is based on the value of the opcode byte, similar to non-VEX-encoded instructions.

A VEX prefix includes several bit fields that encode implied 66H, F2H, F3H prefix functionality (VEX.pp) and
operand size/opcode information (VEX.L). See chapter 4 for details.

Opcode tables A2-A6 include both instructions with a VEX prefix and instructions without a VEX prefix. Many entries
are only made once, but represent both the VEX and non-VEX forms of the instruction. If the VEX prefix is present
all the operands are valid and the mnemonic is usually prefixed with a “v”. If the VEX prefix is not present the
VEX.vvvv operand is not available and the prefix “v” is dropped from the mnemonic.

A few instructions exist only in VEX form and these are marked with a superscript “v”.

Operand size of VEX prefix instructions can be determined by the operand type code. 128-bit vectors are indicated
by 'dq', 256-bit vectors are indicated by 'qq', and instructions with operands supporting either 128 or 256-bit,
determined by VEX.L, are indicated by 'x'. For example, the entry "VMOVUPD Vx,Wx" indicates both VEX.L=0 and
VEX.L=1 are supported.

Vol.2D A-5

OPCODE MAP

A.2.5 Superscripts Utilized in Opcode Tables

Table A-1 contains notes on particular encodings. These notes are indicated in the following opcode maps by super-
scripts. Gray cells indicate instruction groupings.

Table A-1. Superscripts Utilized in Opcode Tables

Superscript Meaning of Symbol

Symbol

1A Bits 5, 4, and 3 of ModR/M byte used as an opcode extension (refer to Section A.4, “Opcode Extensions For One-Byte
And Two-byte Opcodes”).

1B Use the OFOB opcode (UD?2 instruction), the OFBSH opcode (UD1 instruction), or the OFFFH opcode (UDO instruction)
when deliberately trying to generate an invalid opcode exception (#UD).

1C Some instructions use the same two-byte opcode. If the instruction has variations, or the opcode represents
different instructions, the ModR/M byte will be used to differentiate the instruction. For the value of the ModR/M
byte needed to decode the instruction, see Table A-6.

i64 The instruction is invalid or not encodable in 64-bit mode. 40 through 4F (single-byte INC and DEC) are REX prefix
combinations when in 64-bit mode (use FE/FF Grp 4 and 5 for INC and DEC).

064 Instruction is only available when in 64-bit mode.

de4 When in 64-bit mode, instruction defaults to 64-bit operand size and cannot encode 32-bit operand size.

64 The operand size is forced to a 64-bit operand size when in 64-bit mode (prefixes that change operand size are
ignored for this instruction in 64-bit mode).

v VEX form only exists. There is no legacy SSE form of the instruction. For Integer GPR instructions it means VEX
prefix required.

v1 VEX128 & SSE forms only exist (no VEX256), when can't be inferred from the data size.

A.3 ONE, TWO, AND THREE-BYTE OPCODE MAPS

See Table A-2 through Table A-5 below. The tables are multiple page presentations. Rows and columns with
sequential relationships are placed on facing pages to make look-up tasks easier. Note that table footnotes are not
presented on each page. Table footnotes for each table are presented on the last page of the table.

A-6 Vol.2D

Table A-2. One-byte Opcode Map: (0OH — F7H) *

OPCODE MAP

0 | 1 | 2 | 3 | 4 | 5 6 7
ADD PUSH POP
Esi64 Esi64
Eb, Gb ‘ Ev, Gv ‘ Gb, Eb ‘ Gv, Ev ‘ AL, Ib ‘ rAX, Iz
ADC PUSH POP
Ssi64 Ssi64
Eb, Gb | Ev, Gv | Gb, Eb | Gv, Ev | AL, Ib | rAX, Iz
AND SEG=ES DAAi64
Eb, Gb | Ev, Gv | Gb, Eb | Gv, Ev | AL, Ib | rAX, Iz (Prefix)
XOR SEG=SS AAAB4
Eb, Gb | Ev, Gv | Gb, Eb | Gv, Ev | AL, Ib | rAX, Iz (Prefix)
INC'84 general register / REX°%* Prefixes
eAX eCX eDX eBX eSP eBP eSl eDI
REX REX.B REX.X REX.XB REX.R REX.RB REX.RX REX.RXB
PUSHY64 general register
rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSl/ir14 rDI/r15
PUSHA4/ POPAi%%/ BOUND®* ARPL®4 SEG=FS SEG=GS Operand Address
PUSHAD/64 POPADI64 Gv, Ma Ew, Gw (Prefix) (Prefix) Size Size
MOVSXD64 (Prefix) (Prefix)
Gy, Ev
Jec4, b - Short-displacement jump on condition
o NO B/NAE/C NB/AE/NC ZIE NZ/NE BE/NA NBE/A
Immediate Grp 1A TEST XCHG
Eb, Ib Ev, Iz Eb, Ib'%4 Ev, Ib Eb, Gb Ev, Gv Eb, Gb Ev, Gv
NOP XCHG word, double-word or quad-word register with rAX
PAUSE(F3) rCX/r9 rDX/r10 BX/r11 rSP/r12 BP/r13 rSl/r14 DI/r15
XCHG r8, rAX
MOV MOVS/B MOVS/W/D/Q CMPS/B CMPS/W/D
AL, Ob | rAX, Ov | Ob, AL | Ov, rAX Yb, Xb Yv Xv Xb, Yb Xv. Y
MOV immediate byte into byte register
AL/R8B, Ib | CL/R9B, Ib DL/R10B, Ib BL/R11B, Ib AH/R12B, Ib CH/R13B, Ib DH/R14B, Ib BH/R15B, Ib
Shift Grp 214 near RET4 near RET4 LES®* LDs®4 Grp 11"A - MOV
lw Gz, Mp Gz, Mp
Eb, Ib ‘ Ev, Ib VEx+2byte VEx+byte Eb, Ib Ev, Iz
Shift Grp 214 AAMiE4 AAD®4 XLAT/
Eb, 1 Ev, 1 Eb, CL Ev, CL b b XLATB
LOOPNEZ‘:/ LOOPEffZi/ LOOPf4 Jrexz4/ IN ouT
LOOPNZ LoopPz Jo Jo AL, Ib eAX, Ib Ib, AL Ib, eAX
Jb Jb
LOCK INT1 REPNE REP/REPE HLT cMC Unary Grp 3'A
(Prefix) XACQUIRE XRELEASE Eb =
(Prefix) (Prefix)

Vol.2D A-7

OPCODE MAP

Table A-2. One-byte Opcode Map: (08H — FFH) *

8 | 9 | A | B | c | D E F
0 OR PUSH 2-byte
Eb, Gb Ev, G Gb, Eb Gy, E AL, Ib rAX, | cst escape
J | v, GV ‘ J ‘ v, BV ‘ ’ ‘ 12 (Table A-3)
1 SBB PUSH POP
Dsi64 DSi64
Eb, Gb | Ev, Gv | Gb, Eb | Gv, Ev | AL, Ib | rAX, Iz
2 suB SEG=CS DAS®4
Eb, Gb | Ev, Gv | Gb, Eb | Gy, Ev | AL, Ib | rAX, Iz (Prefix)
3 CMP SEG=DS AAS®4
Ene | Ewev | epbE | evev | AL, Ib | mxz (Prefix)
4 DEC'®4 general register / REX°%* Prefixes
eAX eCX eDX eBX eSP eBP eS| eDI
REX.W REX.WB REX.WX REX.WXB REX.WR REX.WRB REX.WRX REX.WRXB
5 POP9Y4 into general register
rAX/r8 rCX/r9 rDX/r10 BX/r11 rSP/r12 rBP/r13 rSl/ir14 rDI/r15
6 PUSHY64 IMUL PUSHI64 IMUL INS/ INS/ ouTS/ ouTS/
Iz Gv, Ev, Iz Ib Gv, Ev, Ib INSB INSW/ OUTSB ouTSW/
Yb, DX INSD DX, Xb OUTSD
Yz, DX DX, Xz
7 Jec™®4, Jb- Short displacement jump on condition
s NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G
8 MOV MOV LEA MOV Grp 1A™A popdt4
Eb, Gb Ev, Gv Gb, Eb Gv, Ev Bv, Sw Gv. M Sw, Ew Y
9 CBW/ CcwD/ far CALL®4 FWAIT/ PUSHF/D/Q 964/ | POPF/D/Q 964/ SAHF LAHF
CWDE/ cDQ/ Ap WAIT Fv Fv
CDQE cQo
A TEST STOS/B STOS/W/D/IQ LODS/B LODS/W/D/Q SCAS/B SCAS/W/D/Q
Yb, AL Yv, rAX AL, Xb rAX, Xv AL, Yb rAX, Yv
AL, Ib rAX, Iz
B MOV immediate word or double into word, double, or quad register
rAX/r8, v rCX/r9, lv rDX/r10, Iv BX/r11, Iv rSP/r12, Iv BP/r13, Iv rSl/r14, lv DI/r15, Iv
[ENTER LEAVE?64 far RET far RET INT3 INT INTO4 IRET/D/Q
Iw, Ib Iw Ib
D ESC (Escape to coprocessor instruction set)
E near CALL64 JMP IN ouT
Jz nearf®4 fari®4 shortf®4 AL, DX eAX, DX DX, AL DX, eAX
Jz Ap Jb
F cLC sTC cLI STI CLD STD INC/DEC INC/DEC
Grp 41A Grp 51A
NOTES:

*

A-8 Vol.2D

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

OPCODE MAP

Table A-3. Two-byte Opcode Map: 00H — 77H (First Byte is OFH) *
pfx 0 1 2 3 4 5 6 7
Grp 6'A Grp 77A LAR LSL SYSCALLC%4 CLTS SYSRET?%4
Gy, Ew Gy, Ew
vmovups vmovups vmovlps vmovlps vunpckips vunpckhps vmovhp'sV1 vmovhp'sV1
Vps, Wps Wps, Vps Vq, Hq, Mq Maq, Vq Vx, Hx, Wx Vx, Hx, Wx Vdq, Hq, Mq Mg, Vq
vmovhlps vmovlhps
Va, Ha, Ug Vdq, Ha, Ug
66 vmovupd vmovupd vmovlpd vmovlpd vunpcklpd vunpckhpd vmovhpd"1 vmovhpd"1
Vpd, Wpd Wpd,Vpd Vq, Hq, Mq Mg, Vq Vx,Hx,Wx Vx,Hx,Wx Vdq, Hq, Mq Mg, Vq
F3 vmovss vmovss vmovsldup vmovshdup
Vx, Hx, Wss Wss, Hx, Vss Vx, Wx Vx, Wx
F2 vmovsd vmovsd vmovddup
Vx, Hx, Wsd Wsd, Hx, Vsd Vx, Wx
MOV MOV MOV MOV
Rd, Cd Rd, Dd Cd, Rd Dd, Rd
WRMSR RDTSC RDMSR RDPMC SYSENTER SYSEXIT GETSEC
CMOVce, (Gv, Ev) - Conditional Move
(0] NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE
vmovmskps vsqrtps vrsqrtps vrcepps vandps vandnps vorps vXorps
Gy, Ups Vps, Wps Vps, Wps Vps, Wps Vps, Hps, Wps Vps, Hps, Wps Vps, Hps, Wps Vps, Hps, Wps
66 vmovmskpd vsqrtpd vandpd vandnpd vorpd vxorpd
Gy,Upd Vpd, Wpd Vpd, Hpd, Wpd Vpd, Hpd, Wpd Vpd, Hpd, Wpd Vpd, Hpd, Wpd
F3 vsqrtss vrsqrtss vrepss
Vss, Hss, Wss Vss, Hss, Wss Vss, Hss, Wss
vsqrtsd
F2 Vsd, Hsd, Wsd
punpcklbw punpcklwd punpckldg packsswb pcmpgtb pcmpgtw pcmpgtd packuswb
Pq, Qd Pq, Qd Pq, Qd Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq
66 vpunpcklbw vpunpcklwd vpunpckldg vpacksswb vpcmpgtb vpempgtw vpcmpgtd vpackuswb
Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx
F3
pshufw (Grp 1214 (Grp 13™4) (Grp 14A) pcmpegb pcmpeqw pcmpeqd emms
Pq, Qq, Ib Pqg, Qq Pq, Qq Pqg, Qq vzeroupper"
vzeroall”
66 vpshufd vpcmpegb vpcmpeqw vpcmpeqd
Vx, Wx, Ib Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx
vpshufhw
F3 Vi, W, Ib
vpshuflw
F2 Vx, W, Ib

Vol.2D A-9

OPCODE MAP

Table A-3. Two-byte Opcode Map: 08H — 7FH (First Byte is OFH) *

pfx 8 9 A B C D E F
INVD WBINVD 2-byte megal prefetchw(/1)
0 Opcodes Ev
uD2'®
Prefetch11A“ Reserved-NOP bndldx bndstx Reserved-NOP NOP /0 Ev
66 (Grp 16™) bndmov bndmov
1 F3 bndcl bndmk
bndcu bndcn
F2
vmovaps vmovaps cvipi2ps vmovntps cvttps2pi cvtps2pi vucomiss vcomiss
Vps, Wps Wps, Vps Vps, Qpi Mps, Vps Ppi, Wps Ppi, Wps Vss, Wss Vss, Wss
66 vmovapd vmovapd cvtpi2pd vmovntpd cvttpd2pi cvtpd2pi vucomisd vcomisd
5 Vpd, Wpd Wpd,Vpd Vpd, Qpi Mpd, Vpd Ppi, Wpd Qpi, Wpd Vsd, Wsd Vsd, Wsd
F3 vevtsi2ss vevttss2si vevtss2si
Vss, Hss, Ey Gy, Wss Gy, Wss
F2 vevtsi2sd vevttsd2si vevtsd2si
Vsd, Hsd, Ey Gy, Wsd Gy, Wsd
3-byte escape 3-byte escape
3 (Table A-4) (Table A-5)
CMOVcc(Gy, Ev) - Conditional Move
4 S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G
vaddps vmulps vevtps2pd vevtdg2ps vsubps vminps vdivps vmaxps
Vps, Hps, Wps Vps, Hps, Wps Vpd, Wps Vps, Wdq Vps, Hps, Wps Vps, Hps, Wps Vps, Hps, Wps Vps, Hps, Wps
66 vaddpd vmulpd vevtpd2ps vevips2dq vsubpd vminpd vdivpd vmaxpd
5 Vpd, Hpd, Wpd Vpd, Hpd, Wpd Vps, Wpd Vdq, Wps Vpd, Hpd, Wpd Vpd, Hpd, Wpd Vpd, Hpd, Wpd Vpd, Hpd, Wpd
F3 vaddss vmulss vevtss2sd vevttps2dq vsubss vminss vdivss vmaxss
Vss, Hss, Wss Vss, Hss, Wss Vsd, Hx, Wss Vdq, Wps Vss, Hss, Wss Vss, Hss, Wss Vss, Hss, Wss Vss, Hss, Wss
F2 vaddsd vmulsd vevtsd2ss vsubsd vminsd vdivsd vmaxsd
Vsd, Hsd, Wsd Vsd, Hsd, Wsd Vss, Hx, Wsd Vsd, Hsd, Wsd Vsd, Hsd, Wsd Vsd, Hsd, Wsd Vsd, Hsd, Wsd
punpckhbw punpckhwd punpckhdq packssdw movd/q movq
Pq, Qd Pq, Qd Pq, Qd Pq, Qd Pd, Ey Pq, Qq
6 66 vpunpckhbw vpunpckhwd vpunpckhdq vpackssdw vpunpcklgdq vpunpckhqdq vmovd/q vmovdga
Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vy, Ey Vx, Wx
vmovdqu
F3 Vx, Wx
VMREAD VMWRITE movd/q movq
Ey, Gy Gy, Ey Ey, Pd Qq, Pq
66 vhaddpd vhsubpd vmovd/q vmovdga
Vpd, Hpd, Wpd Vpd, Hpd, Wpd Ey, Vy Wx,Vx
7 F3 vmovq vmovdqu
Vg, Wq Wx,Vx
vhaddps vhsubps
F2 Vps, Hps, Wps Vps, Hps, Wps

A-10 Vol.2D

Table A-3. Two-byte Opcode Map: 80H — F7H (First Byte is OFH) *

OPCODE MAP

pfx 0 | 1 | 2 | 3 | 4 | 5 | 6 7
Jecf4 Jz - Long-displacement jump on condition
(¢] NO B/CNAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE
SETcc, Eb - Byte Set on condition
(0] NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE
PUSHd64 POPI0A CPUID BT SHLD SHLD
FS FS Ev, Gv Ev, Gy, Ib Ev, Gy, CL
CMPXCHG LSS BTR LFS LGS MOVZX
Eb, Gb Ev, Gv Gv. Mp Ev, Gv Gv. Mp Gv. Mp Gv, Eb Gv, Ew
XADD XADD vempps movnti pinsrw pextrw vshufps Grp 9'A
Eb, Gb Ev, Gv Vps,Hps,Wps,Ib My, Gy Pq,Ry/Mw,lb Gd, Nq, Ib Vps,Hps,Wps,lb
66 vemppd vpinsrw vpextrw vshufpd
Vpd,Hpd,Wpd,Ib Vdq,Hdq,Ry/Mw,Ib Gd, Udq, Ib Vpd,Hpd,Wpd,Ib
vempss
F3 Vss,Hss,Wss,Ib
F2 vempsd
Vsd,Hsd,Wsd,lb
psriw psrid psriq paddq pmullw pmovmskb
Pq, Qq Pq, Qq Pg, Qq Pq, Qq Pq, Qq Gd, Nq
66 vaddsubpd vpsriw vpsrid vpsriq vpaddq vpmullw vmovq vpmovmskb
Vpd, Hpd, Wpd Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Wq, Vq Gd, Ux
movg2dq
F3 Vdag, Nq
F2 vaddsubps movdqg2q
Vps, Hps, Wps Pg, Uq
pavgb psraw psrad pavgw pmulhuw pmulhw movntq
Pg, Qq Pa, Qq Pg, Qq Pa, Qq Pa, Qq Pg, Qq Ma, Pq
66 vpavgb vpsraw vpsrad vpavgw vpmulhuw vpmulhw vevttpd2dq vmovntdq
Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Wpd Mx, Vx
vevtdg2pd
F3 Vx, Wpd
vevtpd2dq
F2 Vx, Wpd
psliw pslid pslig pmuludq pmaddwd psadbw maskmovq
Pq, Qq Pg, Qq Pa, Qq Pa, Qq Pg, Qq Pa, Qq Pa, Ng
66 vpsliw vpslid vpsllq vpmuludq vpmaddwd vpsadbw vmaskmovdqu
Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vdq, Udq
viddqu
F2 Vx, Mx

Vol.2D A-11

OPCODE MAP

Table A-3. Two-byte Opcode Map: 88H — FFH (First Byte is OFH) *

pix 8 | 9 | A B | c | D | E | F
s Jec™4 Jz - Long-displacement jump on condition
s | NS | PIPE | NP/PO | LINGE | NL/GE | LEING | NLE/G
SETcc, Eb - Byte Set on condition
9 S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G
A PUSHI6? popdc4 RSM BTS SHRD SHRD (Grp 15'4)1¢ IMUL
GS GS Ev, Gv Ev, Gy, Ib Ev, Gy, CL Gy, Ev
JMPE Grp 10™A Grp 817 BTC BSF BSR MOVSX
(reserved for Invalid Opcode1B Ev, Ib Ev, Gv Gy, Ev Gy, Ev Gv. Eb Gv. E
B emulator on IPF) v, v, EW
F3 POPCNT TZCNT LZCNT
Gy, Ev Gy, Ev Gy, Ev
BSWAP
RAX/EAX/ RCX/ECX/ RDX/EDX/ RBX/EBX/ RSP/ESP/ RBP/EBP/ RSI/ESI/ RDI/EDI/
R8/R8D R9/R9D R10/R10D R11/R11D R12/R12D R13/R13D R14/R14D R15/R15D
C
psubusb psubusw pminub pand paddusb paddusw pmaxub pandn
Pa, Qq Pa, Qq Pg, Qq Pa, Qq Pa, Qq Pg, Qq Pg, Qq Pg, Qq
66 vpsubusb vpsubusw vpminub vpand vpaddusb vpaddusw vpmaxub vpandn
b Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx
F3
F2
psubsb psubsw pminsw por paddsb paddsw pmaxsw pxor
Pa, Qq Pa, Qq Pg, Qq Pa, Qq Pa, Qq Pg, Qq Pg, Qq Pg, Qq
66 vpsubsb vpsubsw vpminsw vpor vpaddsb vpaddsw vpmaxsw vpxor
£ Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx
F3
F2
psubb psubw psubd psubq paddb paddw paddd
Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq upo
F 66 vpsubb vpsubw vpsubd vpsubq vpaddb vpaddw vpaddd
Vx, Hx, Wx Vx, Hx, Wx VX, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx VX, Hx, Wx VX, Hx, Wx
F2
NOTES:

*

A-12 Vol.2D

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-4. Three-byte Opcode Map: 00H — F7H (First Two Bytes are OF 38H) *

OPCODE MAP

pfx 0 1 2 3 4 5 6 7
pshufb phaddw phaddd phaddsw pmaddubsw phsubw phsubd phsubsw
Pa, Qq Pa, Qq Pa, Qq Pa, Qq Pa, Qq Pa, Qq Pa, Qq Pa, Qq
0
66 vpshufb vphaddw vphaddd vphaddsw vpmaddubsw vphsubw vphsubd vphsubsw
Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx
pblendvb vevtph2ps” blendvps blendvpd vpermps" vptest
Vdq, Wdq Vx, Wx, Ib Vdq, Wdq Vdq, Wdq Vqq, Hqq, Wqq Vx, Wx
1 66
2 66 vpmovsxbw vpmovsxbd vpmovsxbq vpmovsxwd VPMOVSXW(vpmovsxdq
Vx, Ux/Mq Vx, Ux/Md Vx, Ux/Mw Vx, Ux/Mq Vx, Ux/Md Vx, Ux/Mq
3 66 vpmovzxbw vpmovzxbd vpmovzxbq vpmovzxwd VPMOVZXwWQ vpmovzxdq vpermd” vpecmpgtq
Vx, Ux/Mq Vx, Ux/Md Vx, Ux/Mw Vx, Ux/Mq Vx, Ux/Md Vx, Ux/Mq Vqq, Hqqg, Wqq Vx, Hx, Wx
4 66 vpmulld vphminposuw vpsrivd/q¥ vpsravd” vpslivd/q”
Vx, Hx, Wx Vdq, Wdq Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx
5
6
7
INVEPT INVVPID INVPCID
8 66 Gy, Mdq Gy, Mdq Gy, Mdq
9 66 vgatherdd/q" vgatherqd/q" vgatherdps/d¥ vgatherqps/d¥ vfmaddsub132ps/d¥ | vfmsubadd132ps/d’
Vx,Hx,Wx Vx,Hx,Wx Vx,Hx,Wx Vx,Hx,Wx Vx,Hx,Wx Vx,Hx,Wx
A 66 vfmaddsub213ps/d¥ | vfmsubadd213ps/d¥
Vx,Hx,Wx Vx,Hx,Wx
B 66 vfmaddsub231ps/d¥ | vfmsubadd231ps/d¥
Vx,Hx,Wx Vx,Hx,Wx
C
D
E
MOVBE MOVBE ANDNY BZHIY BEXTRY
Gy, My My, Gy Gy, By, Ey Gy, Ey, By Gy, Ey, By
66 MOVBE MOVBE ADCX SHLXY
Gw, Mw Mw, Gw Gy, By Gy, Ey, By
1A PEXTY ADOX SARXY
LR A Gy, By, Ey Gy, By Gy, Ey, By
F2 CRC32 CRC32 PDEPY MULXY SHRXY
Gd, Eb Gd, Ey Gy, By, Ey By,Gy,rDX,Ey Gy, Ey, By
66 & CRC32 CRC32
F2 Gd, Eb Gd, Ew

Vol.2D A-13

OPCODE MAP

Table A-4. Three-byte Opcode Map: 08H — FFH (First Two Bytes are OF 38H) *

pfx 8 9 A B C D E F
psignb psignw psignd pmulhrsw
Pg, Qg Pg, Qq Pg, Qq Pa, Qq
0 vpsignb vpsignw vpsignd vpmulhrsw vpermilps” vpermilpd” vtestps’ vtestpd”
66 Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx,Hx,Wx Vx,Hx,Wx Vx, Wx Vx, Wx
1 pabsb pabsw pabsd
Pq, Qq Pa, Qq Pa, Qq
66 vbroadcastss’ |vbroadcastsd” Vqq, \vbroadcastf128" Vqq, vpabsb vpabsw vpabsd
Vx, Wd Wq Mdq Vx, Wx Vx, Wx Vx, Wx
2 66 vpmuldq vpcmpeqq vmovntdga vpackusdw vmaskmovps" vmaskmovpd¥ vmaskmovps" vmaskmovpd”
Vx, Hx, Wx Vx, Hx, Wx Vx, Mx Vx, Hx, Wx Vx,Hx,Mx Vx,Hx,Mx Mx,Hx,Vx Mx,Hx,Vx
3 66 vpminsb vpminsd vpminuw vpminud vpmaxsb vpmaxsd vpmaxuw vpmaxud
Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx VX, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx
4
5 66 vpbroadcastd” vpbroadcastq" vbroadcasti128¥
Vx, Wx Vx, Wx Vqg, Mdq
6
7 66 vpbroadcastb¥ vpbroadcastw"
Vx, Wx Vx, Wx
vpmaskmovd/q" vpmaskmovd/q¥
8 66 Vx,Hx,Mx Mx,Vx,Hx
9 66 vfmadd132ps/d¥ vfmadd132ss/d’ vfmsub132ps/d¥ vfmsub132ss/d" vfnmadd132ps/d¥ vfnmadd132ss/d” vfnmsub132ps/d¥ vinmsub132ss/d"
Vx, Hx, Wx Vx, Hx, Wx VX, Hx, Wx VX, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx VX, Hx, Wx
A 66 vfmadd213ps/d¥ vfmadd213ss/d’ vfmsub213ps/d¥ vfmsub213ss/d" vfnmadd213ps/d¥ vfnmadd213ss/d¥ vfnmsub213ps/d¥ vfnmsub213ss/d"
Vx, Hx, Wx Vx, Hx, Wx VX, Hx, Wx VX, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx VX, Hx, Wx
B 66 vfmadd231ps/d¥ vfmadd231ss/d’ vfmsub231ps/d¥ vfmsub231ss/d" vfnmadd231ps/d¥ vfnmadd231ss/d¥ vfnmsub231ps/d¥ vfnmsub231ss/d"
VX, Hx, Wx VX, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx VX, Hx, Wx Vx, Hx, Wx VX, Hx, Wx
shalnexte shaimsg1 shaimsg2 sha256rnds2 sha256msg1 sha256msg2
c Vdq,Wdq Vdq,Wdq Vdq,Wdq Vdq,Wdq Vdq,Wdq Vdq,Wdq
66
D 66 VAESIMC VAESENC VAESENCLAST VAESDEC VAESDECLAST
Vdq, Wdq Vdq,Hdq,Wdq Vdg,Hdq,Wdq Vdqg,Hdq,Wdg Vdqg,Hdq,Wdq
E
66
F F3
F2
66 & F2
NOTES:

*

A-14 Vol.2D

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-5. Three-byte Opcode Map: 00H — F7H (First two bytes are OF 3AH) *

OPCODE MAP

pfx 0 1 2 3 4 5 6 7
vpermq” vpermpd” vpblendd¥ vpermilps¥ vpermilpd” vperm2f128¥
Vqq, Wqq, Ib Vqq, Wqq, Ib Vx,Hx,Wx,lb Vx, Wx, Ib Vx, Wx, Ib Vqq,Hqq,Waqgq,Ib
0 66
1 66 vpextrb vpextrw vpextrd/q vextractps
Rd/Mb, Vdq, Ib Rd/Mw, Vdq, Ib Ey, Vdq, Ib Ed, Vdq, Ib
2 66 vpinsrb vinsertps vpinsrd/q
Vdq,Hdq,Ry/Mb, Ib |Vdq,Hdq,Udg/Md,Ib| Vdq,Hdqg,Ey,lb
3
4 66 vdpps vdppd vmpsadbw vpcimulgdq vperm2i128Y
Vx,Hx,Wx,Ib Vdq,Hdq,Wdgq,lb Vx,Hx,Wx,Ib Vdq,Hdq,Wdgq,Ib Vqq,Hqq,Wqgq,Ib
5
6 66 vpcmpestrm vpcmpestri vpcmpistrm vpcmpistri
Vdq, Wdq, Ib Vdq, Wdq, Ib Vdq, Wdq, Ib Vdq, Wdq, Ib
7
8
9
A
B
C
D
E
F RORXY
P2l opepw

Vol.2D A-15

OPCODE MAP

Table A-5. Three-byte Opcode Map: 08H — FFH (First Two Bytes are OF 3AH) *

pfx 3 9 A B C D E F
palignr
0 Pq, Qq, Ib
66 vroundps vroundpd vroundss vroundsd vblendps vblendpd vpblendw vpalignr
Vx,Wx,|b Vx,Wx,Ib Vss,Wss,Ib Vsd,Wsd,Ib Vx,Hx,Wx,lb Vx,Hx,Wx, b Vx,Hx,Wx,lb Vx,Hx,Wx, b
vinsertf128¥ vextractf128¥ vevtps2phY
1 | 66 | Vaq,Hqq,Wqq,lb Wdg,Vqa,Ib Wx, Vx, Ib
2
3 | 66 vinserti128¥ vextracti128¥
Vqq,Hqq,Wqgq,Ib Wdq,Vqq,Ib
4 | 66 vblendvps” vblendvpd¥ vpblendvbY
Vx,Hx,Wx,Lx Vx,Hx,Wx,Lx Vx,Hx,Wx,Lx
5
6
7
8
9
A
B
c shalrnds4
Vdq,Wdg,lb
o [o
E
F
NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A-16 Vol.2D

OPCODE MAP

A.4 OPCODE EXTENSIONS FOR ONE-BYTE AND TWO-BYTE OPCODES

Some 1-byte and 2-byte opcodes use bits 3-5 of the ModR/M byte (the nnn field in Figure A-1) as an extension of
the opcode.

mod | nnn ‘ R/M

Figure A-1. ModR/M Byte nnn Field (Bits 5, 4, and 3)

Opcodes that have opcode extensions are indicated in Table A-6 and organized by group number. Group numbers
(from 1 to 16, second column) provide a table entry point. The encoding for the r/m field for each instruction can
be established using the third column of the table.

A4.1 Opcode Look-up Examples Using Opcode Extensions

An Example is provided below.

Example A-4. Interpreting an ADD Instruction
An ADD instruction with a 1-byte opcode of 80H is a Group 1 instruction:
®* Table A-6 indicates that the opcode extension field encoded in the ModR/M byte for this instruction is 000B.

®* The r/m field can be encoded to access a register (11B) or a memory address using a specified addressing
mode (for example: mem = 00B, 01B, 10B).

Example A-5. Looking Up OFO1C3H

Look up opcode OF01C3 for a VMRESUME instruction by using Table A-2, Table A-3, and Table A-6:
®* OF indicates that this instruction is in the 2-byte opcode map.

® 01 (row 0, column 1 in Table A-3) reveals that this opcode is in Group 7 of Table A-6.

®* (C3isthe ModR/M byte. The first two bits of C3 are 11B. This tells us to look at the second of the Group 7 rows
in Table A-6.

® The Op/Reg bits [5,4,3] are 000B. This tells us to look in the 000 column for Group 7.
®* Finally, the R/M bits [2,1,0] are 011B. This identifies the opcode as the VMRESUME instruction.

A.4.2 Opcode Extension Tables
See Table A-6 below.

Vol.2D A-17

OPCODE MAP

Table A-6. Opcode Extensions for One- and Two-byte Opcodes by Group Number *

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)

Opcode Group | Mod 7,6 | pfx 000 001 010 011 100 101 110 111
80-83 1 mem, 11B ADD OR ADC SBB AND SuB XOR CMP
8F 1A mem, 11B POP
C0,C1 reg, imm mem, 11B ROL ROR RCL RCR SHL/SAL SHR SAR
DO, D1 reg, 1 2
D2, D3 reg, CL
F6. F7 3 mem, 11B TEST NOT NEG MUL IMUL DIV IDIV
! Ib/1z AL/rAX AL/rAX AL/rAX AL/rAX
mem, 11B INC DEC
FE 4 Eb Eb
FF g mem, 11B INC DEC near CALL4 far CALL near JMP4 | far JMP PUSHd64
Ev Ev Ev Ep Ev Mp Ev
OF 00 6 mem, 11B SLDT STR LLDT LTR VERR VERW
Rv/Mw Rv/Mw Ew Ew Ew Ew
mem SGDT SIDT LGDT LIDT SMSW LMSW INVLPG
Ms Ms Ms Ms Mw/Rv Ew Mb
1B VMCALL (001)| MONITOR [XGETBV (000), SWAPGS
VMLAUNCH (000) XSETBV (001) °64(000)
OF 01 7 (010) MWAIT (001) |\)\ RDTSCP (001)
VMRESUME | CLAC (010) (100)
(011) VMXOFF| STAC (011) | xeND (101)
(100) ENCLS (111) | XTEST (110)
ENCLU(111)
OF BA 8 mem, 11B BT BTS BTR BTC
CMPXCH8B Mq VMPTRLD VMPTRST
CMPXCHG16B Mq Mq
Mdq
mem 66 VMCLEAR
Mgq
OF C7 9 F3 VMXON
Mgq
RDRAND RDSEED
Rv Rv
11B
F3 RDPID
Rd/q
mem uD1
OF B9 10
11B
mem MOV
c6 1B Eb, Ib XABORT (000) I
1
o7 mem MOV
1B Bv. Iz XBEGIN (000) Jz
mem
psriw psraw psliw
OF 71 12 "B Ng, Ib Ng, Ib Ng, Ib
66 vpsriw vpsraw vpsliw
Hx,Ux,Ib Hx,Ux,Ib Hx,Ux,Ib
mem
psrid psrad pslid
OF 72 13 . Ng, Ib Ng, Ib Ng, Ib
66 vpsrid vpsrad vpslid
Hx,Ux,lb Hx,Ux,Ib Hx,Ux,Ib
mem
psrig pslig
OF 73 14 . Ng, Ib Ng, Ib
66 vpsrigq vpsridg vpsllq vpslidq
Hx,Ux,Ib Hx,Ux,Ib Hx,Ux,Ib Hx,Ux,Ib

A-18 Vol.2D

Table A-6. Opcode Extensions for One- and Two-byte Opcodes by Group Number * (Contd.)

OPCODE MAP

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)
Opcode Group | Mod7,6 | pfx 000 001 010 011 100 101 110 111

mem fxsave fxrstor ldmxcsr stmxcsr XSAVE XRSTOR | XSAVEOPT clflush

OF AE 15 Ifence mfence sfence

F3 RDFSBASE | RDGSBASE | WRFSBASE | WRGSBASE
11B Ry Ry Ry Ry
prefetch prefetch prefetch prefetch Reserved NOP

mem NTA TO T1 T2

OF 18 16
1B Reserved NOP
mem BLSRY BLSMSKY BLSIY

VEX.OF38 F3 17 1B By, Ey By, Ey By, Ey
NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Vol.2D A-19

OPCODE MAP

A.5 ESCAPE OPCODE INSTRUCTIONS

Opcode maps for coprocessor escape instruction opcodes (x87 floating-point instruction opcodes) are in Table A-7
through Table A-22. These maps are grouped by the first byte of the opcode, from D8-DF. Each of these opcodes
has a ModR/M byte. If the ModR/M byte is within the range of 00H-BFH, bits 3-5 of the ModR/M byte are used as
an opcode extension, similar to the technique used for 1-and 2-byte opcodes (see A.4). If the ModR/M byte is
outside the range of 00H through BFH, the entire ModR/M byte is used as an opcode extension.

A.5.1 Opcode Look-up Examples for Escape Instruction Opcodes

Examples are provided below.

Example A-6. Opcode with ModR/M Byte in the O0OH through BFH Range
DD0504000000H can be interpreted as follows:

®* The instruction encoded with this opcode can be located in Section . Since the ModR/M byte (05H) is within the
00H through BFH range, bits 3 through 5 (000) of this byte indicate the opcode for an FLD double-real
instruction (see Table A-9).

® The double-real value to be loaded is at 00000004H (the 32-bit displacement that follows and belongs to this
opcode).

Example A-7. Opcode with ModR/M Byte outside the 00H through BFH Range
D8C1H can be interpreted as follows:

®* This example illustrates an opcode with a ModR/M byte outside the range of 00H through BFH. The instruction
can be located in Section A.4.

* In Table A-8, the ModR/M byte C1H indicates row C, column 1 (the FADD instruction using ST(0), ST(1) as
operands).

A.5.2 Escape Opcode Instruction Tables

Tables are listed below.

A.5.2.1 Escape Opcodes with D8 as First Byte

Table A-7 and A-8 contain maps for the escape instruction opcodes that begin with D8H. Table A-7 shows the map if the ModR/M
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-7. D8 Opcode Map When ModR/M Byte is Within OOH to BFH *

nnn Field of ModR/M Byte (refer to Figure A.4)

000B 001B 010B 011B 100B 101B 110B 111B
FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR
single-real single-real single-real single-real single-real single-real single-real single-real
NOTES:

*

A-20 Vol.2D

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

OPCODE MAP

Table A-8 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the ModR/M byte selects the
table row and the second digit selects the column.

Table A-8. D8 Opcode Map When ModR/M Byte is Outside O0OH to BFH *

0 | 1 | 2 \ 3 \ 4 \ 5 \ 6 \ 7

c FADD

sT(0)ST0) | STO).ST() | sT0)ST@) | ST(0)ST3) | STO).STW) | ST(0)STEB) | STO)STE) | ST(O)ST(D)
D FCOM

sT0)ST0) | STO).ST() | sT0).T@) | sT0).8T3) | sT0).sT@) | ST(0)ST(E) | STO)STE) | ST(0)ST(D)
E FSUB

sT(0)ST(0) | STO).ST() | sT0)ST@) | ST(0).ST3) | STO).STW) | ST(0)STE) | ST(O)STE6) | ST(O)ST(D)
F FDIV

sT0)sT0) | sto).s1(1) | st0).512 | sT0).s13) | sT0)sT@4) | sT0).8T65) | sT0)sT6) | ST(0).ST(D)

8 | 9 | A \ B \ C \ D \ E \ F

c FMUL

sT(0)ST(0) | STO)ST() | sT0)ST@) | ST0).ST3) | STO).STW) | ST(0)STE) | ST(O)STE6) | ST(O)ST(D)
D FCOMP

sT0)ST(0) | STO).ST() | sT0).T@) | sT0).8T3) | sT0)ST@) | ST(0)ST(EB) | STO)STE) | ST(0)ST(D)
E FSUBR

sT(0)ST(0) | STO)ST() | sT0)ST@) | ST0).STE) | STO).STW) | ST(0)ST(B) | ST(O)STE) | ST(O)ST(D)
F FDIVR

sT0)sT0) | st).s1(1) | st0).512 | sT0).s13) | sT0)sT@4) | sT0).8T65) | st0)sT6) | ST(O).ST(D)

NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A5.2.2 Escape Opcodes with D9 as First Byte

Table A-9 and A-10 contain maps for escape instruction opcodes that begin with D9H. Table A-9 shows the map if the ModR/M
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-9. D9 Opcode Map When ModR/M Byte is Within OOH to BFH *

nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B
FLD FST FSTP FLDENV FLDCW FSTENV FSTCW
single-real single-real single-real 14/28 bytes 2 bytes 14/28 bytes 2 bytes
NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Vol.2D A-21

OPCODE MAP

Table A-10 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the ModR/M byte selects the
table row and the second digit selects the column.

Table A-10. D9 Opcode Map When ModR/M Byte is Outside O0H to BFH *
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
C FLD

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FNOP

E FCHS FABS FTST FXAM
F F2XM1 FYL2X FPTAN FPATAN FXTRACT FPREM1 FDECSTP FINCSTP
8 | 9 | A | B | C | D | E | F

c FXCH

ST(0),ST(0) | ST(0)ST(1) | ST(0).ST(2) | ST(0)ST@3) | ST(0),ST@4) | ST(0)ST(5) | ST(0),ST() | ST(0)ST(7)
D
E FLD1 FLDL2T FLDL2E FLDPI FLDLG2 FLDLN2 FLDZ
F FPREM FYL2XP1 FSQRT FSINCOS FRNDINT FSCALE FSIN FCOS
NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A5.23 Escape Opcodes with DA as First Byte

Table A-11 and A-12 contain maps for escape instruction opcodes that begin with DAH. Table A-11 shows the map if the ModR/M
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-11. DA Opcode Map When ModR/M Byte is Within O0OH to BFH *

nnn Field of ModR/M Byte
000B 001B 010B 011B 100B 101B 110B 111B
FIADD FIMUL FICOM FICOMP FISUB FISUBR FIDIV FIDIVR
dword-integer dword-integer dword-integer dword-integer dword-integer dword-integer dword-integer dword-integer
NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A-22 Vol.2D

OPCODE MAP

Table A-12 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the ModR/M byte selects
the table row and the second digit selects the column.

Table A-12. DA Opcode Map When ModR/M Byte is Outside O0OH to BFH *

0 \ 1 \ 2 \ 3 \ 4 | 5 \ 6 \ 7
c FCMOVB
ST(0).ST(0) | ST(0)ST() | ST(0)ST(2) | ST(0)ST@3) | ST(0)ST@) | ST(O)ST() | ST)STE) | STO)ST(?)
D FCMOVBE
ST(0),ST(0) | ST(0)ST(1) | ST(O).ST2) | ST(0)ST(3) | ST(O)ST@) | ST(O),ST(E) | STO)STE) | ST(0),ST()
E
F
8 \ 9 \ A \ B \ C | D \ E \ F
c FCMOVE
ST(0).ST(0) | ST(0)ST() | ST(0)ST(2) | ST(0)ST(3) | ST(0)ST@) | ST(O)ST() | ST)STE) | STO)ST()
D FCMOVU
ST(0),ST(0) | ST(0)ST(1) | ST(0).ST2) | ST(0)ST(3) | ST(O)ST@) | ST(O),ST() | STO)STE) | ST(0),ST()
E FUCOMPP
F
NOTES:

*

A5.2.4

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Escape Opcodes with DB as First Byte

Table A-13 and A-14 contain maps for escape instruction opcodes that begin with DBH. Table A-13 shows the map if the ModR/M
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-13. DB Opcode Map When ModR/M Byte is Within 00H to BFH *

nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B
FILD FISTTP FIST FISTP FLD FSTP
dword-integer dword-integer dword-integer dword-integer extended-real extended-real
NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Vol.2D A-23

OPCODE MAP

Table A-14 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the ModR/M byte selects the
table row and the second digit selects the column.

Table A-14. DB Opcode Map When ModR/M Byte is Outside OOH to BFH *

| 1 \ 2 | 3 | 4 \ 5 6 7
c FCMOVNB
ST(0).ST(0) | ST(0)ST(1) | ST(0)ST(2) | ST(0).ST() | ST(0)STW) | STO)STE) | STO).STE) | STO)ST()
D FCMOVNBE
ST(0),ST(0) | ST(0)ST(1) | ST(0).STR) | ST(0)ST@) | ST(0).STM) | ST(O)STBG) | ST(O).STE6) | ST(0).ST(7)
E FCLEX FINIT
F FCOMI
ST(0)ST(0) | sT(0)ST(1) | STO).STE) | ST(0)STE) | ST(O).ST®) | ST(0)ST(5) | ST(O).STEE) | ST(O).ST()
| 9 \ A | B | c D E F
C FCMOVNE
ST(0).ST(0) | ST(0)ST(1) | ST(0)ST(2) | ST(0).ST() | ST(0)STW) | STO)STE) | STO).STE) | STO)ST()
D FCMOVNU
ST(0).ST(0) | ST(0)ST(1) | ST(0)ST(2) | ST(0).ST() | ST(0)STW) | STO)STE) | STO).STE) | STO)ST()
E FUCOMI
ST(0),ST(0) | ST(0)ST(1) | ST(0),ST) | ST(0)STE) | ST(O).STM) | ST(O)STBG) | ST(0).STE6) | ST(0).ST(7)
F
NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A5.25 Escape Opcodes with DC as First Byte

Table A-15 and A-16 contain maps for escape instruction opcodes that begin with DCH. Table A-15 shows the map if the ModR/M
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-15. DC Opcode Map When ModR/M Byte is Within O0OH to BFH *

nnn Field of ModR/M Byte (refer to Figure A-1)

000B 001B 010B 011B 100B 101B 110B 111B
FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR
double-real double-real double-real double-real double-real double-real double-real double-real
NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A-24 Vol.2D

OPCODE MAP

Table A-16 shows the map if the ModR/M byte is outside the range of 00H-BFH. In this case the first digit of the ModR/M byte
selects the table row and the second digit selects the column.

Table A-16. DC Opcode Map When ModR/M Byte is Outside OOH to BFH *

\ 1 \ 2 \ 3 \ 4 \ 5 | 6 7
c FADD
ST(0)ST(0) | ST()ST(O) | ST@.STO) | ST@3).ST(O) | STM).ST(O) | ST(5)ST(O) | STE)STO) | ST().ST(O)
D
| | | | | |
E FSUBR
ST(0)ST(0) | ST()ST(O) | ST@).STO) | ST@3).ST(O) | STM).ST(O) | ST(5)STO) | STE)STO) | ST().ST(O)
F FDIVR
ST(0)ST(0) | sT(1)sT(0) | ST@).8T(0) | STE)STO) | STWM).ST(O) | ST(BE)ST(O) | STB).STIO) | ST(7)ST(0)
\ 9 \ A \ B \ C \ D | E F
c FMUL
ST(0)ST(0) | ST()ST(0) | ST@)sST(O) | STA)STO) | STW)STO) | ST()ST(O) | STE).STIO) | ST(7).ST(O)
D
| | | | | |
E FSUB
ST(0)ST(0) | ST(1)ST(0) | ST@)sST(O) | STA)STO) | STW)STO) | ST()ST(O) | STE).ST(O) | ST(7).ST(O)
F FDIV
ST(0)ST(0) | sT().ST(O) | ST@),ST(0) | STE3)STO) | STA).ST(O) | ST()STO) | STE).ST(O) | ST(7),ST(0)
NOTES:

*

A.5.2.6

Escape Opcodes with DD as First Byte

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-17 and A-18 contain maps for escape instruction opcodes that begin with DDH. Table A-17 shows the map if the ModR/M

byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-17. DD Opcode Map When ModR/M Byte is Within OOH to BFH *

nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B
FLD FISTTP FST FSTP FRSTOR FSAVE FSTSW
double-real integer64 double-real double-real 98/108bytes 98/108bytes 2 bytes
NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Vol.2D A-25

OPCODE MAP

Table A-18 shows the map if the ModR/M byte is outside the range of 00H-BFH. The first digit of the ModR/M byte selects the table
row and the second digit selects the column.

Table A-18. DD Opcode Map When ModR/M Byte is Outside OOH to BFH *

0 \ 1 \ 2 \ 3 \ 4 \ 5 | 6 7
C FFREE
st) | sty | st | st® | stw | s1e) | ST ST(7)
D FST
st) | sty | st | st® | stw | ste) | s1e) | sT()
E FUCOM
ST(0),ST(0) | ST(1)ST(0) | ST(2).8T(0) | ST(3)STO) | ST@)ST(EO) | ST(5).8T(O) | STE)STO) | ST(),ST(O)
=
8 \ 9 \ A \ B \ c \ D | E \ F
C
| | | | | | |
D FSTP
st) | sty | st | st® | stw | ste) | s1e) | sT()
E FUCOMP
ST(0) ST(1) ST() ST(3) ST(4) ST(5) ST(6) ST(7)
=
NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A5.2.7 Escape Opcodes with DE as First Byte

Table A-19 and A-20 contain opcode maps for escape instruction opcodes that begin with DEH. Table A-19 shows the opcode map
if the ModR/M byte is in the range of 00H-BFH. In this case, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruc-
tion.

Table A-19. DE Opcode Map When ModR/M Byte is Within OOH to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B
FIADD FIMUL FICOM FICOMP FISUB FISUBR FIDIV FIDIVR
word-integer word-integer word-integer word-integer word-integer word-integer word-integer word-integer
NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A-26 Vol.2D

OPCODE MAP

Table A-20 shows the opcode map if the ModR/M byte is outside the range of 00H-BFH. The first digit of the ModR/M byte selects
the table row and the second digit selects the column.

Table A-20. DE Opcode Map When ModR/M Byte is Outside O0OH to BFH *

0 \ 1 | 2 | 3 \ 4 \ 5 \ 6 7
C FADDP
ST(0)ST(0) | ST(1)ST(O) | ST@.ST() | STE).ST(O) | STM)STO) | STE).STO) | STE).STO) | ST(7)ST(O)
D
E | | | FSULRP | |
ST(0)ST(0) | ST(1)ST(O) | ST@.ST(O) | STE).ST(O) | STM)STO) | STE).STO) | STE).STO) | ST(7)ST(O)
F FDIVRP
sT(0)8T(0) | sT(1)sT0) | ST2.8T(0) | STE)ST(O) | STM)ST(O) | STG)ST(O) | ST(6)ST(O) | ST(V)ST(O)
8 \ 9 | A | B \ c \ D \ E F
C FMULP
ST(0),ST(0) | ST(1).ST(0) | ST(2).8T(O) | ST(3).8T(O) | ST@).STO) | ST(5)STO) | STE).STO) | ST(T)STO)
D FCOMPP
E FSUBP
ST(0)ST(0) | ST(1)ST(O) | ST@.ST() | STE).ST(O) | STM)STO) | STE).STO) | STE).STO) | ST(M)ST(O)
F FDIVP
sT(0)8T(0) | sT(1)sT(0) | sT2).5T(0). | ST@)ST(O) | STW)ST(O) | ST(B).ST(O) | ST(6)ST(O) | ST(V)ST(O)
NOTES:

*

A.5.2.8

Escape Opcodes with DF As First Byte

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-21 and A-22 contain the opcode maps for escape instruction opcodes that begin with DFH. Table A-21 shows the opcode
map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-21. DF Opcode Map When ModR/M Byte is Within O0H to BFH *

nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B
FILD FISTTP FIST FISTP FBLD FILD FBSTP FISTP
word-integer word-integer word-integer word-integer packed-BCD qword-integer packed-BCD gword-integer
NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Vol.2D A-27

OPCODE MAP

Table A-22 shows the opcode map if the ModR/M byte is outside the range of 00H-BFH. The first digit of the ModR/M byte selects
the table row and the second digit selects the column.

Table A-22. DF Opcode Map When ModR/M Byte is Outside O0OH to BFH *

0 \ 1 | 2 \ 3 \ 4 \ 5 \ 6 | 7
c
| | | | | | |
D
E FSTSW
AX
F FCOMIP
ST(0)ST(0) | ST(0)ST(1) | sT()ST@) | ST(0).5T(3) | ST(O).STM™) | ST(0)ST(5) | sST(O).STE) | ST(0)ST(7)
8 \ 9 | A \ B \ c \ D \ E | F
c
| | | | | | |
D
| | | | | | |
E FUCOMIP
ST(0),ST(0) | ST(0),ST(1) | ST(O)ST(2) | ST(O)ST@) | ST(O)ST@) | ST(O)STG) | ST().STE) | ST(0),ST(7)
F
NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A-28 Vol.2D

OPCODE MAP

Vol.2D A-29

OPCODE MAP

A-30 Vol.2D

APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS

This appendix provides machine instruction formats and encodings of IA-32 instructions. The first section describes
the IA-32 architecture’s machine instruction format. The remaining sections show the formats and encoding of
general-purpose, MMX, P6 family, SSE/SSE2/SSE3, x87 FPU instructions, and VMX instructions. Those instruction
formats also apply to Intel 64 architecture. Instruction formats used in 64-bit mode are provided as supersets of
the above.

B.1 MACHINE INSTRUCTION FORMAT

All Intel Architecture instructions are encoded using subsets of the general machine instruction format shown in
Figure B-1. Each instruction consists of:

® anopcode

® aregister and/or address mode specifier consisting of the ModR/M byte and sometimes the scale-index-base
(SIB) byte (if required)

®* adisplacement and an immediate data field (if required)

76543210 76543210 76543210
Legacy Prefixes | REX Prefixes |TTTTTTTT ‘TTTTTTTT ‘TTTTTTTT ’7

Grp 1, Grp 2, (optional)
Grp 3,Grp 4 1, 2, or 3 Byte Opcodes (T = Opcode

76 53 20 76 53 20
‘Mod Reg* R/M |Scale Index Base | d32|16|8|None d32|16| 8| None

ModR/M Byte SIB Byte Address Displacement Immediate Data
~ (4, 2,1 Bytes or None) (4,2,1 Bytes or None)

Register and/or Address NOTE:
Mode Specifier .
* The Reg Field may be used as an

opcode extension field (TTT) and as a
way to encode diagnostic registers
(eee).

Figure B-1. General Machine Instruction Format

The following sections discuss this format.

B.1.1 Legacy Prefixes

The legacy prefixes noted in Figure B-1 include 66H, 67H, F2H, and F3H. They are optional, except when F2H, F3H,
and 66H are used in instruction extensions. Legacy prefixes must be placed before REX prefixes.

Refer to Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A, for more information on legacy prefixes.

Vol.2D B-1

INSTRUCTION FORMATS AND ENCODINGS

B.1.2 REX Prefixes

REX prefixes are a set of 16 opcodes that span one row of the opcode map and occupy entries 40H to 4FH. These
opcodes represent valid instructions (INC or DEC) in IA-32 operating modes and in compatibility mode. In 64-bit
mode, the same opcodes represent the instruction prefix REX and are not treated as individual instructions.

Refer to Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A, for more information on REX prefixes.

B.1.3 Opcode Fields

The primary opcode for an instruction is encoded in one to three bytes of the instruction. Within the primary
opcode, smaller encoding fields may be defined. These fields vary according to the class of operation being
performed.

Almost all instructions that refer to a register and/or memory operand have a register and/or address mode byte
following the opcode. This byte, the ModR/M byte, consists of the mod field (2 bits), the reg field (3 bits; this field
is sometimes an opcode extension), and the R/M field (3 bits). Certain encodings of the ModR/M byte indicate that
a second address mode byte, the SIB byte, must be used.

If the addressing mode specifies a displacement, the displacement value is placed immediately following the
ModR/M byte or SIB byte. Possible sizes are 8, 16, or 32 bits. If the instruction specifies an immediate value, the
immediate value follows any displacement bytes. The immediate, if specified, is always the last field of the instruc-
tion.

Refer to Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A, for more information on opcodes.

B.1.4 Special Fields

Table B-1 lists bit fields that appear in certain instructions, sometimes within the opcode bytes. All of these fields
(except the d bit) occur in the general-purpose instruction formats in Table B-13.

Table B-1. Special Fields Within Instruction Encodings

Field Name Description Nurg?tir of

reg General-register specifier (see Table B-4 or B-5). 3

w Specifies if data is byte or full-sized, where full-sized is 16 or 32 bits (see Table B-6). 1

S Specifies sign extension of an immediate field (see Table B-7). 1
sreg2 Segment register specifier for CS, SS, DS, ES (see Table B-8). 2
sreg3 Segment register specifier for CS, SS, DS, €S, FS, GS (see Table B-8). 3
eee Specifies a special-purpose (control or debug) register (see Table B-9). 3
tttn For conditional instructions, specifies a condition asserted or negated (see Table B-12). 4

d Specifies direction of data operation (see Table B-11). 1

B-2 Vol.2D

INSTRUCTION FORMATS AND ENCODINGS

B.1.4.1 Reg Field (reg) for Non-64-Bit Modes

The reg field in the ModR/M byte specifies a general-purpose register operand. The group of registers specified is
modified by the presence and state of the w bit in an encoding (refer to Section B.1.4.3). Table B-2 shows the
encoding of the reg field when the w bit is not present in an encoding; Table B-3 shows the encoding of the reg field
when the w bit is present.

Table B-2. Encoding of reg Field When w Field is Not Present in Instruction

reg Field Regis'_cer Selected dl_.uring Regisfcer Selected dl_.lring

16-Bit Data Operations 32-Bit Data Operations
000 AX EAX
001 CX ECX
010 DX EDX
011 BX EBX
100 SP €SP
101 BP EBP
110 SI €Sl
111 DI €Dl

Table B-3. Encoding of reg Field When w Field is Present in Instruction

Register Specified by reg Field Register Specified by reg Field
During 16-Bit Data Operations During 32-Bit Data Operations
Function of w Field Function of w Field
reg Whenw=0 Whenw=1 reg Whenw =0 Whenw=1
000 AL AX 000 AL EAX
001 CL CX 001 CL ECX
010 DL DX 010 DL EDX
011 BL BX 011 BL EBX
100 AH SP 100 AH ESP
101 CH BP 101 CH EBP
110 DH S| 110 DH Esl
111 BH DI 111 BH EDI

Vol.2D B-3

INSTRUCTION FORMATS AND ENCODINGS

B.1.4.2 Reg Field (reg) for 64-Bit Mode

Just like in non-64-bit modes, the reg field in the ModR/M byte specifies a general-purpose register operand. The
group of registers specified is modified by the presence of and state of the w bit in an encoding (refer to Section
B.1.4.3). Table B-4 shows the encoding of the reg field when the w bit is not present in an encoding; Table B-5
shows the encoding of the reg field when the w bit is present.

Table B-4. Encoding of reg Field When w Field is Not Present in Instruction

reg Field Registcer Selected dl_.uring Regisfcer Selected dl_.lring Registcer Selected dl_.lring
16-Bit Data Operations 32-Bit Data Operations 64-Bit Data Operations
000 AX EAX RAX
001 CX ECX RCX
010 DX EDX RDX
011 BX EBX RBX
100 SP EsSP RSP
101 BP EBP RBP
110 SI €Sl RSI
111 DI €Dl RDI

Table B-5. Encoding of reg Field When w Field is Present in Instruction

Register Specified by reg Field Register Specified by reg Field
During 16-Bit Data Operations During 32-Bit Data Operations
Function of w Field Function of w Field
red Whenw =0 Whenw=1 red Whenw=0 Whenw=1
000 AL AX 000 AL EAX
001 CL (4 001 CL ECX
010 DL DX 010 DL EDX
011 BL BX 011 BL EBX
100 AH1 SP 100 AH* EsSP
101 CcH! BP 101 CH* EBP
110 DH1 SI 110 DH* ESl
111 BH! DI 111 BH* enl
NOTES:

1. AH, CH, DH, BH can not be encoded when REX prefix is used. Such an expression defaults to the low byte.

B.1.4.3 Encoding of Operand Size (w) Bit

The current operand-size attribute determines whether the processor is performing 16-bit, 32-bit or 64-bit opera-
tions. Within the constraints of the current operand-size attribute, the operand-size bit (w) can be used to indicate
operations on 8-bit operands or the full operand size specified with the operand-size attribute. Table B-6 shows the
encoding of the w bit depending on the current operand-size attribute.

Table B-6. Encoding of Operand Size (w) Bit

w Bit Operand Size When Operand Size When
Operand-Size Attribute is 16 Bits Operand-Size Attribute is 32 Bits
0 8 Bits 8 Bits
16 Bits 32 Bits

B-4 Vol.2D

B.1.4.4 Sign-Extend (s) Bit

INSTRUCTION FORMATS AND ENCODINGS

The sign-extend (s) bit occurs in instructions with immediate data fields that are being extended from 8 bits to 16

or 32 bits. See Table B-7.

Table B-7. Encoding of Sign-Extend (s) Bit

Effect on 8-Bit
Immediate Data

Effect on 16- or 32-Bit
Immediate Data

0 None

Sign-extend to fill 16-bit or 32-bit destination

None

None

B.1.4.5 Segment Register (sreg) Field

When an instruction operates on a segment register, the reg field in the ModR/M byte is called the sreg field and is
used to specify the segment register. Table B-8 shows the encoding of the sreg field. This field is sometimes a 2-bit
field (sreg2) and other times a 3-bit field (sreg3).

Table B-8. Encoding of the Segment Register (sreg) Field

2-Bit sreg? Field Segment Register Selected 3-Bit sreg3 Field Segment Register Selected
00 €S 000 ES
01 cS 001 cS
10 SS 010 SS
11 DS 011 DS
100 FS
101 GS
110 Reserved!
111 Reserved
NOTES:

1. Do not use reserved encodings.

B.1.4.6 Special-Purpose Register (eee) Field

When control or debug registers are referenced in an instruction they are encoded in the eee field, located in bits 5
though 3 of the ModR/M byte (an alternate encoding of the sreg field). See Table B-9.

Table B-9. Encoding of Special-Purpose Register (eee) Field

eee Control Register Debug Register
000 CRO DRO

001 Reserved! DR1

010 CR2 DR2

011 CR3 DR3

100 CR4 Reserved
101 Reserved Reserved
110 Reserved DR6

111 Reserved DR7

NOTES:
1. Do not use reserved encodings.

Vol.2D B-5

INSTRUCTION FORMATS AND ENCODINGS

B.1.4.7 Condition Test (tttn) Field

For conditional instructions (such as conditional jumps and set on condition), the condition test field (tttn) is
encoded for the condition being tested. The ttt part of the field gives the condition to test and the n part indicates
whether to use the condition (n = 0) or its negation (n = 1).

® For 1-byte primary opcodes, the tttn field is located in bits 3, 2, 1, and 0 of the opcode byte.
®* For 2-byte primary opcodes, the tttn field is located in bits 3, 2, 1, and 0 of the second opcode byte.
Table B-10 shows the encoding of the tttn field.

Table B-10. Encoding of Conditional Test (tttn) Field

tttn Mnemonic Condition
0000 0 Overflow

0001 NO No overflow

0010 B, NAE Below, Not above or equal

0011 NB, AE Not below, Above or equal

0100 € Z Equal, Zero

0101 NE, NZ Not equal, Not zero

0110 BE, NA Below or equal, Not above

0111 NBE, A Not below or equal, Above

1000 S Sign

1001 NS Not sign

1010 P, PE Parity, Parity Even

1011 NP, PO Not parity, Parity Odd

1100 L, NGE Less than, Not greater than or equal to
1101 NL, GE Not less than, Greater than or equal to
1110 LE, NG Less than or equal to, Not greater than
1111 NLE, G Not less than or equal to, Greater than

B.1.4.8 Direction (d) Bit

In many two-operand instructions, a direction bit (d) indicates which operand is considered the source and which
is the destination. See Table B-11.

®* When used for integer instructions, the d bit is located at bit 1 of a 1-byte primary opcode. Note that this bit
does not appear as the symbol “d” in Table B-13; the actual encoding of the bit as 1 or 0 is given.

®* When used for floating-point instructions (in Table B-16), the d bit is shown as bit 2 of the first byte of the
primary opcode.

Table B-11. Encoding of Operation Direction (d) Bit

Source Destination

reg Field ModR/M or SIB Byte
ModR/M or SIB Byte reg Field

B.1.5 Other Notes

Table B-12 contains notes on particular encodings. These notes are indicated in the tables shown in the following
sections by superscripts.

B-6 Vol.2D

INSTRUCTION FORMATS AND ENCODINGS

Table B-12. Notes on Instruction Encoding
Symbol Note

A value of 11B in bits 7 and 6 of the ModR/M byte is reserved.
B A value of 01B (or 10B) in bits 7 and 6 of the ModR/M byte is reserved.

B.2 GENERAL-PURPOSE INSTRUCTION FORMATS AND ENCODINGS FOR NON-
64-BIT MODES

Table B-13 shows machine instruction formats and encodings for general purpose instructions in non-64-bit
modes.

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes

Instruction and Format Encoding
AAA - ASCII Adjust after Addition 00110111
AAD - ASCII Adjust AX before Division 1101 0101 :0000 1010
AAM - ASCII Adjust AX after Multiply 1101 0100:0000 1010
AAS - ASCII Adjust AL after Subtraction 0011 1111
ADC - ADD with Carry
register1 to register2 0001 000w : 11 reg1 reg2
register? to register1 0001 001w : 11 reg1 reg2
memory to register 00017 001w : mod reg r/m
register to memory 0001 000w : mod reg r/m
immediate to register 1000 00sw : 11 010 reg : immediate data
immediate to AL, AX, or EAX 0001 010w : immediate data
immediate to memory 1000 00sw : mod 010 r/m : immediate data
ADD - Add
register1 to register2 0000 000w : 11 reg1 reg2
register2 to register1 0000 001w : 11 reg1 reg2
memory to register 0000 001w : mod reg r/m
register to memory 0000 000w : mod reg r/m
immediate to register 1000 00sw : 11 000 reqg : immediate data
immediate to AL, AX, or EAX 0000 010w : immediate data
immediate to memory 1000 00sw : mod 000 r/m : immediate data
AND - Logical AND
register1 to register2 00710 000w : 11 reg1 reg2
register? to register1 00710 001w: 11 regl reg2
memory to register 0010 001w : mod reg r/m
register to memory 00170 000w : mod reg r/m
immediate to register 1000 00sw : 11 100 reg : immediate data
immediate to AL, AX, or EAX 0010 010w : immediate data
immediate to memory 1000 00sw : mod 100 r/m : immediate data

Vol.2D B-7

INSTRUCTION FORMATS AND ENCODINGS

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format

Encoding

ARPL - Adjust RPL Field of Selector

from register 01100011:11 regl reg2
from memory 01100011 : mod reg r/m
BOUND - Check Array Against Bounds 0110 0010 : mod? reg r/m
BSF - Bit Scan Forward
register1, register2 0000 1111:10111100:11 regl reg2
memory, register 0000 1111:1011 1100 : mod reg r/m
BSR - Bit Scan Reverse
register1, register2 0000 1111:10111101:11 regl reg2
memory, register 0000 1111:1011 1101 : mod reg r/m
BSWAP - Byte Swap 0000 1111:1100 1 reg
BT - Bit Test
register, immediate 00001111:10111010:11 100 reg: imm8 data
memory, immediate 0000 1111:10111010: mod 100 r/m ; imm8 data
register1, register2 0000 1111:10100011: 11 reg2 regl
memory, reg 00001111:10100011 : mod reg r/m
BTC - Bit Test and Complement
register, immediate 0000 1111:10111010:11 111 reg: imm8 data
memory, immediate 0000 1111:10111010:mod 111 r/m : imm8 data
register1, register2 0000 1T111:10111011:11 reg2 regl
memory, reg 0000 1111:1011 1011 : mod reg r/m
BTR - Bit Test and Reset
register, immediate 0000 1111:10111010:11 110 reg: imm8 data
memory, immediate 0000 1111:10111010:mod 110 r/m : imm8 data
register1, register2 0000 1111:10110011:11 reg2 reg1
memory, reg 0000 1111:1011 0011 : mod reg r/m
BTS - Bit Test and Set
register, immediate 00001111:10111010:11 101 reg: imm8 data
memory, immediate 0000 1111:10111010:mod 101 r/m ; imm8 data
register1, register2 0000 1T111:10101011:11 reg2 regl
memory, reg 00001111:10101011 : mod reg r/m
CALL - Call Procedure (in same segment)
direct 1110 1000 : full displacement
register indirect 1111 1111:11010reg
memory indirect 11111111 :mod 010 r/m
CALL - Call Procedure (in other segment)
direct 1001 1010 : unsigned full offset, selector
indirect 11111111 :mod 011 r/m

B-8 Vol.2D

INSTRUCTION FORMATS AND ENCODINGS

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

CBW - Convert Byte to Word 1001 1000

CDQ - Convert Doubleword to Qword 1001 1001

CLC - Clear Carry Flag 1111 1000

CLD - Clear Direction Flag 11111100

CU - Clear Interrupt Flag 11111010

CLTS - Clear Task-Switched Flag in CRO 0000 1111:00000110

CMC - Complement Carry Flag 1111 0101

CMP - Compare Two Operands

register1 with register2 0011 100w : 11 regl reg2

register2 with register1 0011 101w : 11 reg1 reg2

memory with register 0011 100w : mod reg r/m

register with memory 00117 101w : mod reg r/m

immediate with register 1000 00sw: 11 111 reg: immediate data

immediate with AL, AX, or EAX

0011 110w :

immediate data

immediate with memory 1000 00sw : mod 111 r/m : immediate data
CMPS/CMPSB/CMPSW/CMPSD - Compare String Operands 1010 011w
CMPXCHG - Compare and Exchange

register1, register2 0000 1111:1011 000w : 11 reg2 regl

memory, register 0000 1111:1011 000w : mod reg r/m
CPUID - CPU Identification 0000 1111:10100010
CWD - Convert Word to Doubleword 1001 1001
CWDE - Convert Word to Doubleword 1001 1000
DAA - Decimal Adjust AL after Addition 00100111
DAS - Decimal Adjust AL after Subtraction 00101111
DEC - Decrement by 1

register 1111 1117w : 11 001 reg

register (alternate encoding) 0100 1 reg

memory 1111 111w :mod 001 r/m
DIV - Unsigned Divide

AL, AX, or EAX by register 1111011w:11110reg

AL, AX, or EAX by memory 1111 011w :mod 110 r/m
HLT - Halt 11110100
IDIV - Signed Divide

AL, AX, or EAX by register 1111701Tw: 11111 reg

AL, AX, or EAX by memory 1111 01Tw:mod 111 r/m

Vol.2D B-9

INSTRUCTION FORMATS AND ENCODINGS

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format

Encoding

IMUL - Signed Multiply

AL, AX, or EAX with register

1111011w: 111017 reg

AL, AX, or EAX with memory

1111 011w :mod 101 reg

register1 with register2

0000 1111:10101111:11 :reg1 reg2

register with memory

0000 1111:10101111 : mod reg r/m

register1 with immediate to register2

0110 10s1:11 reg1 reg? : immediate data

memory with immediate to register

0110 10s1 : mod reg r/m : immediate data

IN - Input From Port

fixed port

1110 010w : port number

variable port

1110 110w

INC - Increment by 1

reg 1111 1117w: 11 000 reg
reg (alternate encoding) 0100 0reg
memory 1111 111w : mod 000 r/m
INS - Input from DX Port 0110 110w
INT n - Interrupt Type n 1100 1101 : type
INT - Single-Step Interrupt 3 1100 1100
INTO - Interrupt 4 on Overflow 11001110

INVD - Invalidate Cache

00001111 :0000 1000

INVLPG - Invalidate TLB Entry

0000 1111:0000 0001 :mod 111 r/m

INVPCID - Invalidate Process-Context Identifier

011700110:0000 1111:0011 1000:1000 0010: mod reg r/m

IRET/IRETD - Interrupt Return

11001111

Jec - Jump if Condition is Met

8-bit displacement

0111 tttn: 8-bit displacement

full displacement

0000 1111 :1000 tttn : full displacement

JCXZ/JECXZ - Jump on CX/ECX Zero
Address-size prefix differentiates JCXZ

and JECXZ

11100011 : 8-bit displacement

JMP - Unconditional Jump (to same segment)

short

11101011 : 8-bit displacement

direct

1110 1001 ; full displacement

register indirect

1111 1111:11 100 reg

memory indirect

11111111 : mod 100 r/m

JMP - Unconditional Jump (to other segment)

direct intersegment

1110 1010 : unsigned full offset, selector

indirect intersegment

11111111 :mod 101 r/m

LAHF - Load Flags into AHRegister

1001 1111

B-10 Vol.2D

INSTRUCTION FORMATS AND ENCODINGS

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format

Encoding

LAR - Load Access Rights Byte

from register 0000 1111:00000010: 11 reg1 reg2
from memory 0000 1111:0000 0010 : mod reg r/m
LDS - Load Pointer to DS 1100 0101 : mod™B reg r/m
LEA - Load Effective Address 1000 1101 : mod? reg r/m
LEAVE - High Level Procedure Exit 1100 1001
LES - Load Pointer to ES 1100 0100 : mod™B reg r/m
LFS - Load Pointer to FS 0000 1111:1011 0100 : mod” reg r/m
LGDT - Load Global Descriptor Table Register 0000 1111 : 0000 0001 : mod” 010 r/m
LGS - Load Pointer to GS 0000 1111:1011 0107 : mod? reg r/m
LIDT - Load Interrupt Descriptor Table Register 0000 1111 : 0000 0001 : mod® 011 r/m
LLDT - Load Local Descriptor Table Register
LDTR from register 0000 1111:00000000:11010reg
LDTR from memory 0000 1111 :00000000:mod 010 r/m
LMSW - Load Machine Status Word
from register 0000 1111:00000001:11110reg
from memory 0000 1111:00000001:mod 110 r/m
LOCK - Assert LOCK# Signal Prefix 1111 0000
LODS/LODSB/LODSW/LODSD - Load String Operand 1010 110w
LOOP - Loop Count 11100010 : 8-bit displacement
LOOPZ/LOOPE - Loop Count while Zero/Equal 1110 0001 : 8-bit displacement
LOOPNZ/LOOPNE - Loop Count while not Zero/Equal 1110 0000 : 8-bit displacement
LSL - Load Segment Limit
from register 0000 1111:00000011:11 reg1 reg2
from memory 0000 1111:00000011:modregr/m
LSS - Load Pointer to SS 0000 1111:1011 0010 : mod” reg r/m
LTR - Load Task Register
from register 0000 1111:00000000:11011reg
from memory 0000 1111 :00000000:mod 011 r/m
MOV - Move Data
register1 to register2 1000 100w : 11 reg1 reg2
register? to register1 1000 101w : 11 reg1 reg2
memory to reg 1000 107w : mod reg r/m
reg to memory 1000 100w : mod reg r/m
immediate to register 1100011w: 11 000 reg : immediate data
immediate to register (alternate encoding) 1011 w reg : immediate data
immediate to memory 1100 011w : mod 000 r/m : immediate data
memory to AL, AX, or EAX 1010 000w : full displacement

Vol.2D B-11

INSTRUCTION FORMATS AND ENCODINGS

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format

Encoding

AL, AX, or EAX to memory

1010 001w :

full displacement

MOV - Move to/from Control Registers

CRO from register 0000 1111:00100010:-- 000 reg
CR2 from register 00001111:00100010:--010reg
CR3 from register 0000 1111:00100010:--011 reg
CR4 from register 0000 1111:00100010:-- 100 reg
register from CRO-CR4 00001111:00100000:-- eeereg
MOV - Move to/from Debug Registers
DRO-DR3 from register 0000 1111:00100011 : -- eeereg
DR4-DR5 from register 0000 1111:00100011:--eeereg
DR6-DR7 from register 0000 1111:00100011 : -- eee reg
register from DR6-DR7 0000 1111:00100001 : -- eee reg
register from DR4-DR5 0000 1111:0010 0001 : -- eeereg
register from DRO-DR3 0000 1111:00100001 : -- eee reg
MOV - Move to/from Segment Registers
register to segment register 1000 1110:11 sreg3reg
register to SS 1000 1110:11 sreg3 reg
memory to segment reg 1000 1110 : mod sreg3 r/m
memory to SS 1000 1110: mod sreg3 r/m
segment register to register 1000 1100: 11 sreg3 reg
segment register to memory 1000 1100 : mod sreg3 r/m
MOVBE - Move data after swapping bytes
memory to register 0000 1111:0011 1000:1111 0000 : mod reg r/m
register to memory 0000 1111:0011 1000:1111 0001 : mod reg r/m
MOVS/MOVSB/MOVSW/MOVSD - Move Data from String to 1010 010w
String
MOVSX - Move with Sign-Extend
memory to reg 00001111:1011 111w : mod reg r/m
MOVZX - Move with Zero-Extend
register2 to register1 0000 1T111:1011 011w : 11 regl reg2
memory to register 0000 1111:1011 011w : mod reg r/m
MUL - Unsigned Multiply
AL, AX, or EAX with register 1111 01Tw: 11100 reg
AL, AX, or EAX with memory 1111 011w :mod 100 r/m
NEG - Two's Complement Negation
register 1111 01Tw: 11011 reg
memory 1111 011w :mod 011 r/m
NOP - No Operation 1001 0000

B-12 Vol.2D

INSTRUCTION FORMATS AND ENCODINGS

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format

Encoding

NOP - Multi-byte No Operation’

register

000011110001 1111:11 000 reg

memory

0000 1111 0001 1111 : mod 000 r/m

NOT - One’s Complement Negation

register

1111011w:11010reg

memory

1111 011w :mod 010 r/m

OR - Logical Inclusive OR

register1 to register2

0000 100w : 11 reg1 reg2

register2 to register1

0000 101w : 11 reg1 reg2

memory to register

0000 101w : mod reg r/m

register to memory

0000 100w : mod reg r/m

immediate to register

1000 00sw : 11 001 reg : immediate data

immediate to AL, AX, or EAX

0000 110w : immediate data

immediate to memory

1000 00sw : mod 001 r/m : immediate data

OUT - Output to Port

fixed port 1110 011w : port number
variable port 1110 111w
OUTS - Output to DX Port 0110 111w

POP - Pop a Word from the Stack

register

1000 1111:11 000 reg

register (alternate encoding)

0101 1reg

memory

1000 1111 : mod 000 r/m

POP - Pop a Segment Register from the Stack (Note: CS cannot be sreg? in this usage.)

segment register DS, €S

000 sreg2 111

segment register SS

000 sreg2 111

segment register FS, GS

0000 1111:10 sreg3 001

POPA/POPAD - Pop All General Registers

01100001

POPF/POPFD - Pop Stack into FLAGS or EFLAGS Register

1001 1101

PUSH - Push Operand onto the Stack

register

1111 1111:11110reg

register (alternate encoding)

0101 Oreg

memory

11111111 :mod 110 r/m

immediate

0110 10s0 : immediate data

PUSH - Push Segment Register onto the Stack

segment register CS,DS,ES,SS

000 sreg2 110

segment register FS,GS

0000 1111:10 sreg3 000

PUSHA/PUSHAD - Push All General Registers

0110 0000

Vol.2D B-13

INSTRUCTION FORMATS AND ENCODINGS

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

PUSHF/PUSHFD - Push Flags Register onto the Stack 1001 1100
RCL - Rotate thru Carry Left

register by 1 1101 000w : 11 010reg

memory by 1 1101 000w : mod 010 r/m

register by CL 1101 00Tw:11010reg

memory by CL 1101 00Tw:mod 010 r/m

register by immediate count 1100 000w : 11 010 reg:imm8 data

memory by immediate count 1100 000w : mod 010 r/m : imm8 data

RCR - Rotate thru Carry Right

register by 1 1101 000w: 11011 reg
memory by 1 1101 000w :mod 011 r/m
register by CL 1101 00Tw: 11011 reg
memory by CL 1101 001w :mod 011 r/m
register by immediate count 1100 000w : 11011 reg:imm8 data
memory by immediate count 1100 000w : mod 011 r/m : imm8 data
RDMSR - Read from Model-Specific Register 00001111:00110010
RDPMC - Read Performance Monitoring Counters 0000 1111:0011 0011
RDTSC - Read Time-Stamp Counter 0000 1111:0011 0001
RDTSCP - Read Time-Stamp Counter and Processor ID 0000 1111:00000001:1111 1001
REP INS - Input String 11110011:0110 110w
REP LODS - Load String 1111 0011:1010 110w
REP MOVS - Move String 11110011:1010 010w
REP OUTS - Output String 11110011:0110 111w
REP STOS - Store String 1111 0011:1010 101w
REPE CMPS - Compare String 1111 0011:1010011w
REPE SCAS - Scan String 11110011:1010 111w
REPNE CMPS - Compare String 1111 0010:1010011w
REPNE SCAS - Scan String 11110010:1010 111w
RET - Return from Procedure (to same segment)
no argument 11000011
adding immediate to SP 1100 0010 : 16-bit displacement
RET - Return from Procedure (to other segment)
intersegment 1100 1011
adding immediate to SP 1100 1010 16-bit displacement

B-14 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
ROL - Rotate Left
register by 1 1101 000w : 11 000 reg
memory by 1 1101 000w : mod 000 r/m
register by CL 11071 00Tw: 11 000 reg
memory by CL 1101 00Tw : mod 000 r/m
register by immediate count 1100 000w : 11 000 reg : imm8 data

memory by immediate count

1100 000w :

mod 000 r/m : imm8 data

ROR - Rotate Right

register by 1 1101 000w : 11 001 reg

memory by 1 1101 000w : mod 001 r/m

register by CL 1101 00Tw: 11001 reg

memory by CL 1101 00Tw : mod 001 r/m

register by immediate count 1100 000w : 11 001 reg : imm8 data

memory by immediate count 1100 000w : mod 001 r/m ; imm8 data
RSM - Resume from System Management Mode 0000 1111:10101010
SAHF - Store AH into Flags 1001 1110

SAL - Shift Arithmetic Left

same instruction as SHL

SAR - Shift Arithmetic Right

register by 1 11071 000w: 11111 reg

memory by 1 1101 000w :mod 111 r/m

register by CL 1101 00Tw: 11111 reg

memory by CL 1101 001w :mod 111 r/m

register by immediate count 1100 000w : 11 111 reg:imm8 data

memory by immediate count

1100 000w :

mod 111 r/m :imm8 data

SBB - Integer Subtraction with Borrow

register1 to register2

0001 100w :

11 regl reg2

register? to register1 0001 101w: 11 reg1 reg2

memory to register 0001 101w : mod reg r/m

register to memory 0001 100w : mod reg r/m

immediate to register 1000 00sw: 11 011 reg : immediate data

immediate to AL, AX, or EAX

0001 110w :

immediate data

immediate to memory 1000 00sw : mod 011 r/m : immediate data
SCAS/SCASB/SCASW/SCASD - Scan String 1010 111w
SETcc - Byte Set on Condition

register 0000 1111:1001 tttn: 11 000 reg

memory 0000 1111:1001 tttn: mod 000 r/m
SGDT - Store Global Descriptor Table Register 0000 1111 : 0000 0001 : mod? 000 r/m

Vol.2D B-15

INSTRUCTION FORMATS AND ENCODINGS

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format

Encoding

SHL - Shift Left

register by 1

1101 000w : 11 100reg

memory by 1

1107 000w : mod 100 r/m

register by CL

1101 001w: 11 100reg

memory by CL

1101 001w : mod 100 r/m

register by immediate count

1100 000w

:11 100 req : imm8 data

memory by immediate count

1100 000w

:mod 100 r/m : imm8 data

SHLD - Double Precision Shift Left

register by immediate count 0000 1111:10100100: 11 reg2 reg1 : imm8
memory by immediate count 00001111:10100100: mod reg r/m : imm8
register by CL 0000 1111:10100101: 11 reg2 regl
memory by CL 0000 1111:10100101 : mod reg r/m

SHR - Shift Right
register by 1 1101 000w : 11 101 reg
memory by 1 1101 000w : mod 101 r/m
register by CL 1101 001w: 11101 reg
memory by CL 1101 00Tw :mod 101 r/m
register by immediate count 1100 000w : 11 101 reg: imm8 data
memory by immediate count 1100 000w : mod 101 r/m : imm8 data

SHRD - Double Precision Shift Right
register by immediate count 0000 1111:10101100: 11 reg2 regl : imm8
memory by immediate count 00001111:10101100: mod reg r/m : imm8

register by CL

0000 1111:101011017:11 reg2 reg1

memory by CL

0000 1111:10101101 : mod reg r/m

SIDT - Store Interrupt Descriptor Table Register

0000 1111 :0000 0001 : mod” 001 r/m

SLDT - Store Local Descriptor Table Register

to register 0000 1111:00000000:11 000 reg
to memory 00001111 :0000 0000 : mod 000 r/m
SMSW - Store Machine Status Word
to register 0000 1111:00000001:11100reg
to memory 00001111 :0000 0001 :mod 100 r/m
STC - Set Carry Flag 11111001
STD - Set Direction Flag 1111 1101
STI - Set Interrupt Flag 11111011
STOS/STOSB/STOSW/STOSD - Store String Data 1010 101w

STR - Store Task Register

to register

00001111 :0000 0000: 11 001 reg

to memory

0000 1111 :0000 0000 : mod 001 r/m

B-16 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format

Encoding

SUB - Integer Subtraction

register1 to register2

0010 100w : 11 reg1 reg2

register2 to register1

0010 101w: 11 regl reg2

memory to register

0010 101w : mod reg r/m

register to memory

0010 100w : mod reg r/m

immediate to register

1000 00sw : 11 101 reg : immediate data

immediate to AL, AX, or EAX

0010 110w : immediate data

immediate to memory

1000 00sw : mod 101 r/m : immediate data

TEST - Logical Compare

register1 and register2

1000 010w : 11 regl reg2

memory and register

1000 010w : mod reg r/m

immediate and register

1111 0117w : 11 000 reg : immediate data

immediate and AL, AX, or EAX

1070 100w : immediate data

immediate and memory

1111 011w : mod 000 r/m : immediate data

UDO - Undefined instruction

0000 1111:1111 1111

UD1 - Undefined instruction

0000 1111:0000 1011

UDZ2 - Undefined instruction

0000 FFFF: 0000 1011

VERR - Verify a Segment for Reading

register 0000 1111:00000000:11 100 reg

memory 0000 1111 :0000 0000 :mod 100 r/m
VERW - Verify a Segment for Writing

register 0000 1111:00000000: 11101 reg

memory 0000 1111 :00000000:mod 101 r/m
WAIT - Wait 1001 1011

WBINVD - Writeback and Invalidate Data Cache

0000 1111 :0000 1001

WRMSR - Write to Model-Specific Register

0000 1111:0011 0000

XADD - Exchange and Add

register1, register2

0000 1111:1100000w: 11 reg2 reg1l

memory, reg

0000 1111:1100 000w : mod reg r/m

XCHG - Exchange Register/Memory with Register

register1 with register2

1000 011w : 11 regl reg2

AX or EAX with reg 1001 Oreg
memory with reg 1000 011w : mod reg r/m
XLAT/XLATB - Table Look-up Translation 11010111

XOR - Logical Exclusive OR

register1 to register2

0011 000w : 11 reg1 reg2

register2 to register1

0011 001w : 11 reg1 reg2

memory to register

0011 001w : mod reg r/m

Vol.2D B-17

INSTRUCTION FORMATS AND ENCODINGS

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
register to memory 0011 000w : mod reg r/m
immediate to register 1000 00sw: 11 110 reg: immediate data
immediate to AL, AX, or EAX 0011 010w : immediate data
immediate to memory 1000 00sw : mod 110 r/m ; immediate data
Prefix Bytes
address size 01100111
LOCK 1111 0000
operand size 01100110
CS segment override 00101110
DS segment override 00111110
€S segment override 00100110
FS segment override 01100100
GS segment override 01100101
SS segment override 00110110
NOTES:

1. The multi-byte NOP instruction does not alter the content of the register and will not issue a memory operation.

B.2.1 General Purpose Instruction Formats and Encodings for 64-Bit Mode

Table B-15 shows machine instruction formats and encodings for general purpose instructions in 64-bit mode.
Table B-14. Special Symbols

Symbol Application
S If the value of REX.W. is 1, it overrides the presence of 66H.
w The value of bit W. in REX is has no effect.

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode

Instruction and Format Encoding

ADC - ADD with Carry
register1 to register2 0100 OROB: 0001 000w : 11 reg1 reg2
qwordregister1 to qwordregister2 0700 1R0OB: 0001 0001 : 11 qwordreg1 qwordreg2
register2 to register1 0100 OROB: 0001 001w : 11 reg1 reg2
gwordregister1 to qwordregister2 0100 1TR0OB: 0001 0011 : 11 qwordreg1 gwordreg?2
memory to register 0700 ORXB: 0001 001w : mod reg r/m
memory to qwordregister 0100 1RXB: 0001 0011 : mod qwordreg r/m
register to memory 0100 ORXB: 0001 000w : mod reg r/m
qwordregister to memory 0700 1RXB: 0001 0001 : mod qwordreg r/m
immediate to register 0100 000B: 1000 00sw: 11 010 reg: immediate
immediate to qwordregister 0100 100B: 1000 0001 :11 010 gqwordreg : imm32
immediate to qwordregister 0100 TROB: 1000 0011:11 010 qwordreg : imm8

B-18 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format

Encoding

immediate to AL, AX, or EAX

0001 0710w : immediate data

immediate to RAX

0100 1000:0000 0101 :imm32

immediate to memory

0100 00XB : 1000 00sw : mod 010 r/m : immediate

immediate32 to memory64

0100 10XB: 1000 0001 : mod 010 r/m : imm32

immediate8 to memory64

0100 10XB: 1000 0031 :mod 010 r/m : imm8

ADD - Add

register1 to register2

0100 OROB: 0000 000w : 11 reg1 reg2

qwordregister1 to qwordregister2

0100 TROB 0000 0000 : 11 qwordreg1 qwordreg2

register2 to register1

0100 OROB: 0000 001w : 11 reg1 reg2

qwordregister1 to qwordregister2

0100 1ROB 0000 0010: 11 qwordreg1 qwordreg?2

memory to register

0100 ORXB: 0000 001w : mod reg r/m

memory64 to qwordregister

0100 TRXB: 0000 0000 : mod qwordreg r/m

register to memory

0100 ORXB : 0000 000w : mod reg r/m

qwordregister to memory64

0100 TRXB: 00000011 : mod qwordreg r/m

immediate to register

0100 0000B : 1000 00sw : 11 000 reg : immediate data

immediate32 to qwordregister

0100 100B: 10000001 :11 010 qwordreg : imm

immediate to AL, AX, or EAX

0000 010w : immediate8

immediate to RAX

0100 1000:0000 0101 :imm32

immediate to memory

0100 00XB : 1000 00sw : mod 000 r/m : immediate

immediate32 to memory64

0100 10XB: 1000 0001 : mod 010 r/m: imm32

immediate8 to memory64

0100 10XB: 10000011 :mod 010 r/m: imm8

AND - Logical AND

register1 to register2

0100 OROB 0010 000w : 11 reg1 reg2

qwordregister1 to qwordregister2

0100 TROB 00100001 : 11 qwordreg1 qwordreg2

register2 to register1

0100 OROB 0010 001w : 11 reg1 reg2

register1 to register2

0100 TROB 00100011 : 11 qwordreg1 qwordreg2

memory to register

0100 ORXB 0010 001w : mod reg r/m

memory64 to qwordregister

0100 1RXB: 00100011 : mod qwordreg r/m

register to memory

0100 ORXB: 0010 000w : mod reg r/m

qwordregister to memory64

0100 TRXB: 00100001 : mod qwordreg r/m

immediate to register

0100 000B: 1000 00sw: 11 100 reg : immediate

immediate32 to qwordregister

0100 100B 1000 0001 : 11 100 qwordreg : imm32

immediate to AL, AX, or EAX

0010 010w : immediate

immediate32 to RAX

0100 1000 0010 1001 :imm32

immediate to memory

0100 00XB: 1000 00sw : mod 100 r/m : immediate

immediate32 to memory64

0100 10XB: 1000 0001 : mod 100 r/m : immediate32

immediate8 to memory64

0100 10XB: 10000011 : mod 100 r/m : imm8

BSF - Bit Scan Forward

Vol.2D B-19

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding

register1, register2 0100 0OROBO00O0O 1111:10111100: 11 reg1 reg2

gwordregister1, qwordregister2 07100 TROB0OOOO 1111:10111100: 11 qwordreg1
qwordreg2

memory, register 0700 ORXB 0000 1111:1011 1100: mod reg r/m

memory64, qwordregister 0700 TRXB0O0O0OO 1111:1011 1100 : mod qwordreg r/m

BSR - Bit Scan Reverse

register1, register2 0100 OROBOOOO 1T111:10111101:11 regl reg2

gwordregister1, qwordregister2 07100 TROB0OOOO 1T111:1011 1101 :11 qwordreg1
qwordreg2

memory, register 0700 ORXB 0000 1111:1011 1101 : mod reg r/m

memory64, qwordregister 0100 TRXB0O0O0O0O 1111:1011 1101 : mod qwordreg r/m

BSWAP - Byte Swap

00001111:1100 1 reg

BSWAP - Byte Swap

0100 100B 0000 1111

1100 1 qwordreg

BT - Bit Test

register, immediate

0100 000B 0000 1111

10111010

: 11 100 reg: imm8

qwordregister, immediate8

0100 100B1111:1011

1010: 11 100 qwordreg: imm8 data

memory, immediate 0100 00XB0O0O0O0O 1111:10111010: mod 100 r/m : imm8
memory64, immediate8 07100 10XB 0000 1111:1011 1010: mod 100 r/m : imm8 data
register1, register2 0700 OROBOOOO 1111:10100011: 11 reg2 reg1
gwordregister1, qwordregister2 0100 TROB0O0O0OO 1111:10100011 : 11 qwordreg2
qwordreg1

memory, reg 0700 ORXB 0000 1111:1010 0011 : mod reg r/m
memory, qwordreg 0700 TRXB 0000 1111:1010 0011 : mod qwordreg r/m

BTC - Bit Test and Complement
register, immediate 0700 000B0000 1111:10111010:11 111 reg: imm8
gwordregister, immediate8 0100 100B0000 1111:10111010:11 111 gwordreg: imm8
memory, immediate 0100 00XB0O0O0O0O 1111:10111010:mod 111 r/m:imm8
memory64, immediate8 0700 10XB0O0OOO 1111:10111010: mod 111 r/m:imm8
register1, register2 0700 OROBOOOO 1111:10111011:11 reg2 reg1
qwordregister1, qwordregister2 0100 TROB0O000 1111:1011 1011 :11 qwordreg?2

qwordreg1

memory, register 0700 ORXB 0000 1111:1011 1011 : mod reg r/m
memory, qwordreg 0100 TRXB0O0O0OO 1111:1011 1011 : mod qwordreg r/m

BTR - Bit Test and Reset
register, immediate 0700 000B0O000 1111:10111010:11 110 reg: imm8
qwordregister, immediate8 0100 100B 0000 1111:10111010:11 110 qwordreg: imm8
memory, immediate 0700 00XB 0000 1111:10111010: mod 110 r/m: imm8
memory64, immediate8 0700 10XB0O0OOO 1111:10111010: mod 110 r/m: imm8
register1, register2 0100 0OROBO00O0O 1111:10110011:11 reg2 regl

B-20 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format

Encoding

qwordregister1, qwordregister2

0100 TROB0000 1111:10110011:11 qwordreg2
qwordreg1

memory, register

0100 ORXB0000 1111:1011 0011 : mod reg r/m

memory64, qwordreg

07100 TRXB 0000 1111:1011 0011 : mod qwordreg r/m

BTS - Bit Test and Set

register, immediate

0100 000B0000 1111:10111010:11 101 reg: imm8

qwordregister, immediate8

07100 100B0000 1111:1011 1010:11 101 qwordreg: imm8

memory, immediate

0100 00XB 0000 1111:1011 1010:mod 101 r/m: imm8

memory64, immediate8

0100 10XB0O0O0O0O 1111:1011 1010: mod 101 r/m : imm8

register1, register2

0100 OROB 0000 1111:10101011:11 reg2 reg1

qwordregister1, qwordregister2

0100 TROB0000 1111:1010 1011 : 11 qwordreg2
qwordreg1

memory, register

0100 ORXB0000 1111:1010 1011 : mod reg r/m

memory64, qwordreg

0100 1RXB 0000 1111:1010 1011 : mod qwordreg r/m

CALL - Call Procedure (in same segment)

direct

1110 1000 : displacement32

register indirect

0100 WRO0O" 1111 1111:11010reg

memory indirect

0100 WOXB¥ 1111 1111 :mod 010 r/m

CALL - Call Procedure (in other segment)

indirect 11111111 :mod 011 r/m
indirect 0100 10XB 010010001111 1111 :mod 011 r/m
CBW - Convert Byte to Word 1001 1000
CDQ - Convert Doubleword to Qword+ 1001 1001
CDQE - RAX, Sign-Extend of EAX 0100 1000 1001 1001
CLC - Clear Carry Flag 1111 1000
CLD - Clear Direction Flag 11111100
CU - Clear Interrupt Flag 11111010
CLTS - Clear Task-Switched Flag in CRO 0000 1111:00000110
CMC - Complement Carry Flag 11110101

CMP - Compare Two Operands

register1 with register2

0100 OROB 0011 100w : 11 reg1 reg2

qwordregister1 with qwordregister2

0100 1TROB 0011 1001 : 11 qwordreg1 qwordreg2

register2 with register1

0100 OROB 0011 101w : 11 reg1 reg2

qwordregister2 with qwordregister1

0100 TROB 0011 101w : 11 qwordreg1 qwordreg2

memory with register

0100 ORXB 0011 100w : mod reg r/m

memory64 with qwordregister

0100 TRXB 0011 1001 : mod qwordreg r/m

register with memory

0100 ORXB0OO11 101w : mod reg r/m

qwordregister with memory64

0100 1RXB 0011 101w1 : mod qwordreg r/m

immediate with register

0100 000B 1000 00sw: 11 111 reg:imm

Vol.2D B-21

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format

Encoding

immediate32 with qwordregister

0100 100B 1000 0001 :11 111 qwordreg : imm64

immediate with AL, AX, or EAX

0011 110w : imm

immediate32 with RAX

0100 1000 0011 1101 :imm32

immediate with memory

0100 00XB 1000 00sw :mod 111 r/m:imm

immediate32 with memory64

0100 TRXB 1000 0001 : mod 111 r/m : imm64

immediate8 with memory64

0100 TRXB10000011:mod 111 r/m:imm8

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ - Compare String Operand

S

compare string operands [X at DS:(E)SI with Y at ES:(E)DI]

1010 011w

qword at address RSI with qword at address RDI

0100 100010100111

CMPXCHG - Compare and Exchange

register1, register2

0000 1111:1011 000w : 11 reg2reg1l

byteregister1, byteregister2

0700 000B 0000 1111:10110000: 11 bytereg? reg1

qwordregister1, qwordregister2

0100 100B 0000 1111:1011 0001 : 11 qwordreg2 regl

memory, register

0000 1111:1011 000w : mod reg r/m

memory8, byteregister

0700 00XB 0000 1111:1011 0000 : mod bytereg r/m

memory64, qwordregister

0100 10XB 0000 1111:1011 0001 : mod qwordreg r/m

CPUID - CPU Identification

00001111:10100010

CQO - Sign-Extend RAX

0100 1000 1001 1001

CWD - Convert Word to Doubleword

1001 1001

CWDE - Convert Word to Doubleword

1001 1000

DEC - Decrement by 1

register

0100 000B 1111 111w :11 001 reg

gwordregister

0100 100B 1111 1111:11 001 qwordreg

memory

010000XB 1111 111w : mod 001 r/m

memory64

0100 10XB 1111 1111 : mod 001 r/m

DIV - Unsigned Divide

AL, AX, or EAX by register

07100000B1111011w:11110reg

Divide RDX:RAX by qwordregister

0100100B11110111:11 110 gwordreg

AL, AX, or EAX by memory

0100 00XB 1111 011w :mod 110 r/m

Divide RDX:RAX by memory64

0100 10XB 11110111 :mod 110 r/m

ENTER - Make Stack Frame for High Level Procedure

1100 1000 : 16-bit displacement : 8-bit level (L)

HLT - Halt

11110100

IDIV - Signed Divide

AL, AX, or EAX by register

0100000B1111 011w :11 111 reg

RDX:RAX by qwordregister 0100 100B11110111:11 111 qwordreg
AL, AX, or EAX by memory 0700 00XB111101TTw:mod 111 r/m
RDX:RAX by memory64 010010XB11110111:mod 111 r/m

IMUL - Signed Multiply

B-22 Vol.2D

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format

Encoding

AL, AX, or EAX with register

0100 000B1111 011w :11 101 reg

RDX:RAX := RAX with qwordregister

0100 100B11110111:11 101 qwordreg

AL, AX, or EAX with memory

0100 00XB 1111 011w :mod 101 r/m

RDX:RAX := RAX with memory64

0100 10XB 1111 0111 :mod 101 r/m

register1 with register2

0000 1111:101011117:11:regl reg2

qwordregister1 := qwordregister1 with qwordregister2

0100 TROB0OOOO 1111:10101111:11 : qwordreg1
qwordreg?2

register with memory

0100 ORXB 0000 1111:1010 1111 : mod reg r/m

qwordregister := qwordregister with memory64

0100 TRXB0000 1111:1010 1111 : mod qwordreg r/m

register1 with immediate to register2

0100 OROB 0110 10s1:11 reg1 reg2 :imm

qwordregister1 ;= qwordregister2 with sign-extended
immediate8

0100 TROBO110 1011 : 11 qwordreg1 qwordreg? : imm8

qwordregister1 := qwordregister2 with immediate32

0700 TROB 0110 1001 : 11 qwordreg1 qwordreg?2 : imm32

memory with immediate to register

0100 ORXB 0110 10s1 : mod reg r/m ; imm

qwordregister := memory64 with sign-extended immediate8

0100 TRXB0O110 1011 : mod qwordreg r/m : imm8

qwordregister := memory64 with immediate32

0100 TRXB0110 1001 : mod qwordreg r/m : imm32

IN - Input From Port

fixed port

1110 010w : port number

variable port

1110 110w

INC - Increment by 1

reg 0100000B 1111 111w: 11 000 reg
qwordreg 0100 100B 1111 1111 :11 000 qwordreg
memory 0100 00XB 1111 111w : mod 000 r/m
memory64 0100 1T0XB 11111111 : mod 000 r/m

INS - Input from DX Port 0110 110w

INT n - Interrupt Type n 1100 1101 : type

INT - Single-Step Interrupt 3 11001100

INTO - Interrupt 4 on Overflow 11001110

INVD - Invalidate Cache

00001111 :0000 1000

INVLPG - Invalidate TLB Entry

0000 1111:0000 0001 :mod 111 r/m

INVPCID - Invalidate Process-Context Identifier

01100110:0000 1111:0011 1000:1000 0010: mod reg r/m

IRETO - Interrupt Return

11001111

Jcc - Jump if Condition is Met

8-bit displacement

0111 tttn: 8-bit displacement

displacements (excluding 16-bit relative offsets)

0000 1111 : 1000 tttn: displacement32

JCXZ/JECXZ - Jump on CX/ECX Zero

Address-size prefix differentiates JCXZ and JECXZ

‘ 11100011 : 8-bit displacement

JMP - Unconditional Jump (to same segment)

short

‘ 1110 1011 ; 8-bit displacement

Vol.2D B-23

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format

Encoding

direct

1110 1001 : displacement32

register indirect

0700 WOOB":11111111:11 100 reg

memory indirect

0100 WOXB¥:1111 1111 :mod 100 r/m

JMP - Unconditional Jump (to other segment)

indirect intersegment

010000XB: 11111111 :mod 101 r/m

64-bit indirect intersegment

010010XB:1111 1111 :mod 101 r/m

LAR - Load Access Rights Byte

from register

0100 OROB:00001111:0000 0010: 11 reg1 reg2

from dwordregister to qwordregister, masked by 00FxFFOOH

0100 WROB: 0000 1111:00000010: 11 qwordreg1
dwordreg2

from memory

07100 ORXB:0000 1111 :0000 0010 : mod reg r/m

from memory32 to qwordregister, masked by 00FxFFOOH

0100 WRXB 0000 1111 : 0000 0010 : mod r/m

LEA - Load Effective Address

in wordregister/dwordregister

0100 ORXB: 1000 1101 : mod” reg r/m

in qwordregister

0100 1RXB: 1000 1101 : mod? qwordreg r/m

LEAVE - High Level Procedure Exit

1100 1001

LFS - Load Pointer to FS

FS:r16/r32 with far pointer from memory

0100 ORXB:0000 1111:1011 0100 : mod” reg r/m

FS:r64 with far pointer from memory

0100 1RXB: 0000 1111:1011 0100 : mod” qwordreg r/m

LGDT - Load Global Descriptor Table Register

0100 10XB: 0000 1111 :0000 0001 : mod” 010 r/m

LGS - Load Pointer to GS

GS:r16/r32 with far pointer from memory

0100 ORXB: 0000 1111:1011 0101 : mod? reg r/m

GS:r64 with far pointer from memory

0100 TRXB: 0000 1111:1011 0101 : mod” qwordreg r/m

LIDT - Load Interrupt Descriptor Table Register

0100 10XB: 0000 1111 :0000 0001 : mod” 011 r/m

LLDT - Load Local Descriptor Table Register

LDTR from register

0100 000B:00001111:00000000:11010reg

LDTR from memory

0100 00XB:0000 1111 :0000 0000 : mod 010 r/m

LMSW - Load Machine Status Word

from register

0100 000B:00001111:00000001:11110reg

from memory

0100 00XB :0000 1111 :0000 0001 :mod 110 r/m

LOCK - Assert LOCK# Signal Prefix

1111 0000

LODS/LODSB/LODSW/LODSD/LODSAQ - Load String Operand

at DS:(E)SI to AL/EAX/EAX

1010 110w

at (R)SI to RAX

0100 1000 1010 1101

LOOP - Loop Count

if count # 0, 8-bit displacement

11100010

if count # 0, RIP + 8-bit displacement sign-extended to 64-bits

0100 100011100010

LOOPE - Loop Count while Zero/Equal

B-24 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format

Encoding

if count # 0 & ZF =1, 8-bit displacement

1110 0001

if count # 0 & ZF = 1, RIP + 8-bit displacement sign-extended to

64-bits

0100 1000 1110 0001

LOOPNE/LOOPNZ - Loop Count while not Zero/Equal

if count # 0 & ZF = 0, 8-bit displacement

1110 0000

if count # 0 & ZF = 0, RIP + 8-bit displacement sign-extended to

64-bits

0100 1000 1110 0000

LSL - Load Segment Limit

from register

0000 1111:00000011:11reg1 reg2

from qwordregister

0700 TRO0O 0000 1111 :00000011:11 qwordreg1 reg2

from memory16

0000 1111:00000011 :mod reg r/m

from memory64

0100 TRXB 0000 1111 :0000 0011 : mod qwordreg r/m

LSS - Load Pointer to SS

SS:r16/r32 with far pointer from memory

0100 ORXB:0000 1111:1011 0010 : mod® reg r/m

SS:r64 with far pointer from memory

0100 TWXB: 0000 1111:1011 0010 : mod® qwordreg r/m

LTR - Load Task Register

from register

0100 OR00: 00001111 :00000000:11 011 reg

from memory

0100 00XB:0000 1111 :00000000:mod 011 r/m

MOV - Move Data

register1 to register2

0100 OROB: 1000 100w : 11 reg1 reg2

qwordregister1 to qwordregister2

0100 TROB 1000 1001 : 11 qwordeg1 qwordreg2

register? to register1

0100 OROB: 1000 101w: 11 reg1 reg2

qwordregister2 to qwordregister1

0100 1ROB 1000 1011 : 11 qwordreg1 qwordreg?2

memory to reg

0100 ORXB: 1000 101w : mod reg r/m

memory64 to qwordregister

0100 1RXB 1000 1011 : mod qwordreg r/m

reg to memory

0100 ORXB: 1000 100w : mod reg r/m

qwordregister to memory64

0100 TRXB 1000 1001 : mod qwordreg r/m

immediate to register

0100000B:1100011w: 11 000 reg:imm

immediate32 to qwordregister (zero extend)

0100 100B11000111:11 000 qwordreg :imm32

immediate to register (alternate encoding)

0100000B: 1011 wreg:imm

immediate64 to qwordregister (alternate encoding)

07100 100B 1011 1000 reg : imm64

immediate to memory

0100 00XB:11000117w :mod 000 r/m:imm

immediate32 to memory64 (zero extend)

0100 10XB 11000111 : mod 000 r/m :imm32

memory to AL, AX, or EAX

0100 0000: 1010 000w : displacement

memory64 to RAX 0100 1000 1010 0001 : displacement64
AL, AX, or EAX to memory 0100 0000: 1010 001w : displacement
RAX to memory64 0700 1000 1010 0011 : displacement64

MOV - Move to/from Control Registers

CRO-CR4 from register

0700 OROB: 0000 1111:00100010: 11 eee reg (eee = CR#)

Vol.2D B-25

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding
CRx from qwordregister 0700 TROB: 0000 1111:00100010: 11 eee qwordreg (Reee
= CR#)
register from CRO-CR4 0700 OROB: 0000 1111:0010 0000: 11 eee reg (eee = CR#)
qwordregister from CRx 0700 TROB0O0O0O0 1111:00100000: 11 eee qwordreg
(Reee = CR#)
MOV - Move to/from Debug Registers
DRO-DR7 from register 0000 1111:00100011:11 eee reg (eee = DR#)
DRO-DR7 from quadregister 0700 100B0000 1111:00100011: 11 eee reg (eee = DR#)
register from DRO-DR7 0000 1111:00100001 : 11 eee reg (eee = DR#)
quadregister from DRO-DR7 0100 100B 0000 1111:0010 0001 : 11 eee quadreg (eee =
DR#)
MOV - Move to/from Segment Registers
register to segment register 0100 WOOB":10001110: 11 sreg reg
register to SS 0100000B:10001110: 11 sregreg
memory to segment register 0100 00XB: 1000 1110 : mod sreg r/m
memory64 to segment register (lower 16 bits) 0100 10XB 1000 1110 : mod sreg r/m
memory to SS 0100 00XB: 1000 1110: mod sreg r/m
segment register to register 0700 000B: 1000 1100: 11 sregreg
segment register to qwordregister (zero extended) 0100 100B 1000 1100: 11 sreg qwordreg
segment register to memory 0100 00XB: 1000 1100 : mod sreg r/m
segment register to memory64 (zero extended) 0700 10XB 1000 1100 : mod sreg3 r/m
MOVBE - Move data after swapping bytes
memory to register 0700 ORXB:00001111:0011 1000:1111 0000 : mod reg r/m
memory64 to qwordregister 0700 1RXB:00001111:0011 1000:1111 0000 : mod reg r/m
register to memory 0100 ORXB:00001111:0011 1000:1111 0001 : mod reg r/m
gwordregister to memory64 0700 TRXB:00001111:0011 1000:1111 0001 : mod reg r/m
MOVS/MOVSB/MOVSW/MOVSD/M0OVSQ - Move Data from String to String
Move data from string to string 1010 010w
Move data from string to string (qword) 0100 1000 1010 0101
MOVSX/MOVSXD - Move with Sign-Extend
register2 to register1 0100 OROB: 0000 1111:1011 111w : 11 reg1 reg2
byteregister2 to qwordregister1 (sign-extend) 07100 TROB0OO0OO 1111:10111110: 11 quadreg1 bytereg2
wordregister2 to qwordregister1 0700 TROBOOOO 1111 : 10117 1111 : 11 quadreg1 wordreg?2
dwordregister2 to qwordregister1 0100 TROB 01100011 :11 quadreg1 dwordreg2
memory to register 0100 ORXB:0000 1111:1011 111w :mod reg r/m
memory8 to qwordregister (sign-extend) 0700 TRXB0O0OOO 1111:1011 1110: mod qwordreg r/m
memory16 to qwordregister 0100 1RXB 0000 1111:1011 1111 : mod qwordreg r/m
memory32 to qwordregister 0100 TRXB0O110 0011 : mod qwordreg r/m

MOVZX - Move with Zero-Extend

B-26 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format

Encoding

register2 to register1

0100 0ROB:00001111:1011 011w: 11 regl reg2

dwordregister2 to qwordregister1

0100 TROB0O000 1111:10110111: 11 qwordreg1
dwordreg2

memory to register

07100 ORXB:0000 1111:1011 011w : mod reg r/m

memory32 to qwordregister

0100 TRXB0000 1111:1011 0111 : mod qwordreg r/m

MUL - Unsigned Multiply

AL, AX, or EAX with register

0700000B: 1111 011w : 11100 reg

RAX with qwordregister (to RDX:RAX)

0100 100B 1111 0111:11 100 qwordreg

AL, AX, or EAX with memory

0100 00XB 1111 011w :mod 100 r/m

RAX with memory64 (to RDX:RAX)

0100 10XB 1111 0111 :mod 100 r/m

NEG - Two's Complement Negation

register 0100000B:1111011w: 11011 reg
qwordregister 0100 100B11110111:11 011 qwordreg
memory 0100 00XB:1111 011w :mod 011 r/m
memory64 0100 1T0XB 11110111 :mod 011 r/m

NOP - No Operation

1001 0000

NOT - One’s Complement Negation

register 0100000B:1111011w:11010reg
qwordregister 0100000B11110111:11 010 qwordreg
memory 0100 00XB:1111 011w :mod 010 r/m
memory64 0100 TRXB 11110111 :mod 010 r/m

OR - Logical Inclusive OR

register1 to register2

0000 100w : 11 reg1 reg2

byteregister1 to byteregister2

0100 OROB 0000 1000: 11 bytereg1 bytereg?

qwordregister1 to qwordregister2

0100 TROB 0000 1001 : 11 qwordreg1 qwordreg2

register2 to register1

0000 101w : 11 reg1 reg2

byteregister2 to byteregister1

0100 OROB 0000 1010: 11 bytereg1 bytereg?

qwordregister2 to qwordregister1

0100 OROB 0000 1011 : 11 qwordreg1 qwordreg2

memory to register

0000 101w : mod reg r/m

memory8 to byteregister

0100 ORXB 0000 1010 : mod bytereg r/m

memory8 to qwordregister

0100 ORXB 0000 1011 : mod qwordreg r/m

register to memory

0000 100w : mod reg r/m

byteregister to memory8

0100 ORXB 0000 1000 : mod bytereg r/m

qwordregister to memory64

0100 TRXB 0000 1001 : mod qwordreg r/m

immediate to register

1000 00sw : 11 001 reg: imm

immediate8 to byteregister

0100 000B 1000 0000: 11 001 bytereg : imm8

immediate32 to qwordregister

0100 000B 1000 0001 : 11 001 gwordreg : imm32

immediate8 to qwordregister

0100 000B 1000 0011:11 001 gwordreg : imm8

immediate to AL, AX, or EAX

0000 110w ; imm

Vol.2D B-27

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format

Encoding

immediate64 to RAX

0100 1000 0000 1101 : imm64

immediate to memory

1000 00sw : mod 001 r/m : imm

immediate8 to memory8

0100 00XB 1000 0000 : mod 001 r/m : imm8

immediate32 to memory64

0100 00XB 1000 0001 : mod 001 r/m : imm32

immediate8 to memory64

0100 00XB 1000 0011 : mod 001 r/m : imm8

OUT - Output to Port

fixed port

1110 011w : port number

variable port

1110 111w

OUTS - Output to DX Port

output to DX Port

0110 111w

POP - Pop a Value from the Stack

wordregister

0101 0101:0100000B:10001111:11000reg16

qwordregister

0100 WOOB®: 1000 1111 : 11 000 reg64

wordregister (alternate encoding)

0101 0101:0100 000B:0101 1 reg16

qwordregister (alternate encoding)

0100 WO0B: 0101 1 regb4

memory64

0100 WOXBS : 1000 1111 : mod 000 r/m

memory16

0101 0101:0100 00XB 1000 1111 : mod 000 r/m

POP - Pop a Segment Register from the Stack
(Note: CS cannot be sreg?2 in this usage.)

segment register FS, GS

0000 1111:10 sreg3 001

POPF/POPFQ - Pop Stack into FLAGS/RFLAGS Register

pop stack to FLAGS register

0101 0101:1001 1101

pop Stack to RFLAGS register

0100 1000 1001 1101

PUSH - Push Operand onto the Stack

wordregister

0101 0101:0100000B:11111111:11110reg16

gwordregister

0100 WOOB®: 1111 1111:11 110 reg64

wordregister (alternate encoding)

0101 0101:0100000B:0101 0 reg16

qwordregister (alternate encoding)

0100 WOOB®: 0101 0 reg64

memory16 0101 0101:0100000B: 11111111 :mod 110 r/m
memory64 0100 WOOBS:1111 1111 :mod 110 r/m
immediate8 0110 1010:imm8

immediate16 0101 0101:01101000:imm16

immediate64 01101000 : imm64

PUSH - Push Segment Register onto the Stack

segment register FS,GS

0000 1111:10 sreg3 000

PUSHF/PUSHFD - Push Flags Register onto the Stack

1001 1100

RCL - Rotate thru Carry Left

register by 1

0100 000B: 1101 000w :11 010 reg

qwordregister by 1

0700 100B 1101 0001 :11 010 qwordreg

B-28 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format

Encoding

memory by 1

0100 00XB:1101 000w : mod 010 r/m

memory64 by 1

0100 10XB 1101 0001 : mod 010 r/m

register by CL 0100000B: 1101 00Tw:11010reg
qwordregister by CL 0100 100B 1101 0011:11 010 qwordreg
memory by CL 0100 00XB: 1101 001w : mod 010 r/m
memory64 by CL 0100 10XB 1101 0011 :mod 010 r/m

register by immediate count

0100 000B:1100000w: 11 010reg:imm

qwordregister by immediate count

0100 100B 1100 0001 : 11 010 qwordreg : imm8

memory by immediate count

0100 00XB: 1100 000w :mod 010 r/m:imm

memory64 by immediate count

0100 10XB 1100 0001 : mod 010 r/m : imm8

RCR - Rotate thru Carry Right

register by 1

0100000B: 1101 000w: 11011 reg

qwordregister by 1

0100 100B 1101 0001 :11 011 gwordreg

memory by 1

0100 00XB: 1101 000w : mod 011 r/m

memory64 by 1

0100 10XB 1101 0007 : mod 011 r/m

register by CL 0100 000B:1101001w: 11011 reg
qwordregister by CL 0100000B 1101 0010:11 011 qwordreg
memory by CL 0100 00XB: 1101 001w : mod 011 r/m
memory64 by CL 0100 10XB 1101 0011 :mod 011 r/m

register by immediate count

0100 000B: 1100 000w: 11011 reg:imm8

qwordregister by immediate count

0100 100B 1100 0001 :11 011 qwordreg : imm8

memory by immediate count

0100 00XB: 1100 000w :mod 011 r/m:imm8

memory64 by immediate count

0100 10XB 11000001 :mod 011 r/m :imm8

RDMSR - Read from Model-Specific Register

load ECX-specified register into EDX:EAX

‘00001111:00110010

RDPMC - Read Performance Monitoring Counters

load ECX-specified performance counter into EDX:EAX

\00001111:00110011

RDTSC - Read Time-Stamp Counter

read time-stamp counter into EDX:EAX

0000 1111:0011 0001

RDTSCP - Read Time-Stamp Counter and Processor ID

0000 1111:00000001:1111 1001

REP INS - Input String

REP LODS - Load String

REP MOVS - Move String

REP OUTS - Output String

REP STOS - Store String

REPE CMPS - Compare String

REPE SCAS - Scan String

REPNE CMPS - Compare String

Vol.2D B-29

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding

REPNE SCAS - Scan String

RET - Return from Procedure (to same segment)

no argument 11000011

adding immediate to SP 1100 0010: 16-bit displacement

RET - Return from Procedure (to other segment)

intersegment 11001011

adding immediate to SP 1100 1010: 16-bit displacement

ROL - Rotate Left

register by 1

0100 000B 1101 000w :

11 000 reg

byteregister by 1

0100 000B 1101 0000 :

11 000 bytereg

qwordregister by 1

0100 100B 1101 0001 :

11 000 qwordreg

memory by 1 0700 00XB 1101 000w : mod 000 r/m
memory8 by 1 0100 00XB 1101 0000 : mod 000 r/m
memory64 by 1 0700 10XB 1101 0001 : mod 000 r/m
register by CL 0700 000B 1101 001w : 11 000 reg
byteregister by CL 0100 000B 1101 0010: 11 000 bytereg
gwordregister by CL 07100 100B 1101 0011 :11 000 qwordreg
memory by CL 0700 00XB 1101 00Tw : mod 000 r/m
memory8 by CL 0100 00XB 1101 0010 : mod 000 r/m
memory64 by CL 07100 10XB 1101 0011 : mod 000 r/m

register by immediate count

1100 000w : 11 000 reg

1 imm8

byteregister by immediate count

0100 000B 1100 0000 :

11 000 bytereg: imm8

gwordregister by immediate count

0100 100B 1100 0001 :

11 000 bytereg : imm8

memory by immediate count

1100 000w : mod 000 r/m : imm8

memory8 by immediate count

0100 00XB 1100 0000 :

mod 000 r/m : imm8

memory64 by immediate count

0100 10XB 1100 0001 :

mod 000 r/m : imm8

ROR - Rotate Right

register by 1

0100 000B 1101 000w :

11001 reg

byteregister by 1

0100 000B 1101 0000

11 001 bytereg

qwordregister by 1

0100 100B 1101 0001 :

11 001 qwordreg

memory by 1 0100 00XB 1101 000w : mod 001 r/m
memory8 by 1 0700 00XB 1101 0000 : mod 001 r/m
memory64 by 1 0700 10XB 1101 0001 : mod 001 r/m
register by CL 0100000B 1101 001w : 11 001 reg
byteregister by CL 0700 000B 1101 0010:11 001 bytereg
qwordregister by CL 0700 100B 1101 0011:11 001 qwordreg
memory by CL 0100 00XB 1101 001w : mod 001 r/m
memory8 by CL 07100 00XB 1101 0010 : mod 001 r/m

B-30 Vol.2D

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format

Encoding

memory64 by CL

0100 10XB 1101 0011 : mod 001 r/m

register by immediate count

0100 000B 1100 000w : 11 001 reg:imm8

byteregister by immediate count

0100 000B 1100 0000: 11 001 reg: imm8

qwordregister by immediate count

0100 100B 1100 0001:11 001 gwordreg : imm8

memory by immediate count

0100 00XB 1100 000w : mod 001 r/m : imm8

memory8 by immediate count

0100 00XB 1100 0000 : mod 001 r/m :imm8

memory64 by immediate count

0100 10XB 1100 0001 : mod 001 r/m :imm8

RSM - Resume from System Management Mode

00001111:1010 1010

SAL - Shift Arithmetic Left

same instruction as SHL

SAR - Shift Arithmetic Right

register by 1

0100 000B 1101 000w :

11111 reg

byteregister by 1

0100 000B 1101 0000 :

11 111 bytereg

qwordregister by 1

0100 100B 1101 0001

:11 111 qwordreg

memory by 1 0100 00XB 1101 000w :mod 111 r/m
memory8 by 1 0100 00XB 1101 0000:mod 111 r/m
memory64 by 1 0100 10XB 1101 0001 :mod 111 r/m

register by CL 0100 000B 1101 001w :11 111 reg
byteregister by CL 0100000B 1101 0010:11 111 bytereg
qwordregister by CL 0100 100B 1101 0011:11 111 qwordreg
memory by CL 0100 00XB 1101 001w :mod 111 r/m
memory8 by CL 0100 00XB 1101 0010:mod 111 r/m
memory64 by CL 0100 10XB 11010011 :mod 111 r/m

register by immediate count

0100 000B 1100 000w

11111 reg:imm8

byteregister by immediate count

0100 000B 1100 0000 :

11 111 bytereg : imm8

qwordregister by immediate count

0100 100B 1100 0001

:11 111 qwordreg : imm8

memory by immediate count

0100 00XB 1100 000w :

mod 111 r/m:imm8

memory8 by immediate count

0100 00XB 1100 0000 :

mod 111 r/m:imm8

memory64 by immediate count

0100 10XB 1100 0001

:mod 111 r/m:imm8

SBB - Integer Subtraction with Borrow

register1 to register2

0100 OROB 0001 100w :

11 reg1 reg2

byteregister1 to byteregister2

0100 OROB 0001 1000:

11 bytereg1 bytereg2

quadregister1 to quadregister2

0100 1ROB 0001 1001

: 11 quadreg1 quadreg?2

register? to register1

0100 OROB 0001 101w :

11 reg1 reg2

byteregister?2 to byteregister1

0100 OROB 0001 1010:

11 reg1 bytereg?2

byteregister2 to byteregister1

0100 1ROB 0001 1011 :

11 reg1 bytereg2

memory to register

0100 ORXB 0001 101w :

mod reg r/m

memory8 to byteregister

0100 ORXB 0001 1010

mod bytereg r/m

memory64 to byteregister

0100 1RXB 0001 1011

mod quadreg r/m

Vol.2D B-31

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding
register to memory 0100 ORXB 0001 100w : mod reg r/m
byteregister to memory8 0100 ORXB 0001 1000 : mod reg r/m
quadregister to memory64 0700 1RXB 0001 1001 : mod reg r/m

immediate to register

0100 000B 1000 00sw :

11011 reg:imm

immediate8 to byteregister

0100 000B 1000 0000 :

11011 bytereg : imm8

immediate32 to qwordregister

0100 100B 1000 0001

:11 011 qwordreg : imm32

immediate8 to qwordregister

0100 100B 1000 0011

:11 011 qwordreg : imm8

immediate to AL, AX, or EAX

0100 000B 0001 110w :

imm

immediate32 to RAL

0100 1000 0001 1101

;imm32

immediate to memory

0100 00XB 1000 O0sw :

mod 011 r/m:imm

immediate8 to memory8

0100 00XB 1000 0000 :

mod 011 r/m : imm8

immediate32 to memory64

0100 10XB 1000 0001

:mod 011 r/m:imm32

immediate8 to memory64

0100 10XB 1000 0011

:mod 011 r/m :imm8

SCAS/SCASB/SCASW/SCASD - Scan String

scan string

1010 111w

scan string (compare AL with byte at RDI)

010010001010 1110

scan string (compare RAX with qword at RDI)

0100 100010101111

SETcc - Byte Set on Condition

register 0100 000B 0000 1111:1001 tttn: 11 000 reg
register 0100 00000000 1111:1001 tttn: 11 000 reg
memory 0700 00XB 0000 1111:1001 tttn: mod 000 r/m
memory 0100 00000000 1111 :1001 tttn: mod 000 r/m
SGDT - Store Global Descriptor Table Register 0000 1111 : 0000 0001 : mod” 000 r/m
SHL - Shift Left
register by 1 0100000B 1101 000w : 11 100 reg

byteregister by 1

0100 000B 1101 0000 :

11 100 bytereg

qwordregister by 1

0100 100B 1101 0001

: 11 100 qwordreg

memory by 1 0100 00XB 1101 000w : mod 100 r/m
memory8 by 1 0700 00XB 1101 0000 : mod 100 r/m
memory64 by 1 0700 10XB 1101 0001 : mod 100 r/m

register by CL 0100000B 1101 001w :11 100 reg
byteregister by CL 0700 000B 1101 0010: 11 100 bytereg
qwordregister by CL 0700 100B 1101 0011:11 100 qwordreg
memory by CL 0100 00XB 1101 001w : mod 100 r/m
memory8 by CL 07100 00XB 1101 0010: mod 100 r/m
memory64 by CL 0700 10XB 1101 0011 :mod 100 r/m

register by immediate count

0100 000B 1100 000w

: 11100 reg:imm8

byteregister by immediate count

0100 000B 1100 0000 :

11 100 bytereg : imm8

B-32 Vol.2D

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format

Encoding

quadregister by immediate count

0100 100B 1100 0001 :11 100 quadreg : imm8

memory by immediate count

0100 00XB 1100 000w : mod 100 r/m : imm8

memory8 by immediate count

0100 00XB 1100 0000 : mod 100 r/m : imm8

memory64 by immediate count

0100 10XB 1100 0001 : mod 100 r/m : imm8

SHLD - Double Precision Shift Left

register by immediate count

0700 OROB 0000 1111:10100100: 11 reg2 reg1 : imm8

qwordregister by immediate8

0100 1ROB 0000 1111:10100100: 11 qworddreg2

gqwordreg1 : imm8

memory by immediate count

0100 ORXB 0000 1111:10100100: mod reg r/m : imm8

memory64 by immediate8

07100 TRXB 0000 1111:1010 0100 : mod qwordreg r/m :

imm8
register by CL 0100 OROBOOO0O 1111:10100101:11 reg2 reg1
quadregister by CL 0100 TROBOOOO 1111:10100101: 11 quadreg? quadreg1
memory by CL 0100 00XB0O0O0O0O 1111:10100101 : mod reg r/m
memory64 by CL 0100 TRXB0000 1111:1010 0101 : mod quadreg r/m

SHR - Shift Right

register by 1

0100 000B 1101 000w : 11 101 reg

byteregister by 1

0100 000B 1101 0000: 11 101 bytereg

qwordregister by 1

0100 100B 1101 0001 :11 101 qwordreg

memory by 1

0100 00XB 1101 000w : mod 101 r/m

memory8 by 1

0100 00XB 1101 0000 : mod 101 r/m

memory64 by 1

0100 10XB 1101 00017 : mod 101 r/m

register by CL 0100 000B 1101 00Tw:11 101 reg
byteregister by CL 0100 000B 1101 0010: 11 101 bytereg
qwordregister by CL 0100 100B 1101 0011:11 101 qwordreg
memory by CL 0100 00XB 1101 001w : mod 101 r/m

memory8 by CL

0100 00XB 1101 0010:mod 101 r/m

memory64 by CL

0100 10XB 1101 0011 :mod 101 r/m

register by immediate count

0100 000B 1100 000w : 11 101 reg : imm8

byteregister by immediate count

0100 000B 1100 0000:11 101 reg: imm8

qwordregister by immediate count

0100 100B 1100 0001 :11 101 reg: imm8

memory by immediate count

0100 00XB 1100 000w : mod 101 r/m : imm8

memory8 by immediate count

0100 00XB 1100 0000 : mod 101 r/m :imm8

memory64 by immediate count

0100 10XB 1100 0001 : mod 101 r/m : imm8

SHRD - Double Precision Shift Right

register by immediate count

0100 OROB 0000 1111:10101100: 11 reg2 regl :imm8

qwordregister by immediate8

0100 TROBOOOO 1111:10101100: 11 qwordreg?2

gwordreg1 : imm8

memory by immediate count

0100 00XB0O0O0OO 1111:1010 1100: mod reg r/m : imm8

Vol.2D B-33

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format

Encoding

memory64 by immediate8

0100 TRXB 0000 1111 :
imm8

1010 1100 : mod qwordreg r/m :

register by CL 0700 000B0000 1111:10101101:11 reg2reg1l

qwordregister by CL 0700 TROB0OO0OO 1111:10101101: 11 qwordreg2
qwordreg1

memory by CL 0000 1111:1010 1101 : mod reg r/m

memory64 by CL 0100 TRXB 0000 1111:1010 1101 : mod qwordreg r/m

SIDT - Store Interrupt Descriptor Table Register

00001111 :0000 0001

:mod? 001 r/m

SLDT - Store Local Descriptor Table Register

to register 0100 000B 0000 1111 : 0000 0000: 11 000 reg

to memory 0100 00XB 0000 1111 : 0000 0000 : mod 000 r/m
SMSW - Store Machine Status Word

to register 0700 000B 0000 1111:00000001:11 100 reg

to memory 0100 00XB 0000 1111 :0000 0001 : mod 100 r/m

STC - Set Carry Flag

1111 1001

STD - Set Direction Flag

11111101

STI - Set Interrupt Flag

11111011

STOS/STOSB/STOSW/STOSD/STOSQ - Store String Data

store string data

1010 101w

store string data (RAX at address RDI)

0100 10001010 1011

STR - Store Task Register

to register

0100 000B 0000 1111

0000 0000: 11001 reg

to memory

0100 00XB 0000 1111 :

0000 0000 : mod 001 r/m

SUB - Integer Subtraction

register1 from register2

0100 OROB 0010 100w :

11 regl reg2

byteregister1 from byteregister2

0100 OROB 0010 1000:

11 bytereg1 bytereg2

gwordregister1 from qwordregister2

0100 1ROB 0010 1000:

11 qwordreg1 qwordreg?2

register2 from register1

0100 OROB0OOT0 101w :

11 regl reg2

byteregister2 from byteregister1

0100 OROB 0010 1010

11 bytereg1 bytereg?2

gqwordregister2 from qwordregister1

0100 TROB 0010 1011

: 11 qwordreg1 qwordreg2

memory from register

0100 00XB 0010 10Tw :

mod reg r/m

memory8 from byteregister

0100 ORXB 00101010

mod bytereg r/m

memory64 from qwordregister

0100 1RXB 00101011

: mod qwordreg r/m

register from memory

0100 ORXB 0010 100w :

mod reg r/m

byteregister from memory8

0100 ORXB 0010 1000 :

mod bytereg r/m

qwordregister from memory8

0100 1RXB 0010 1000 :

mod qwordreg r/m

immediate from register

0100 000B 1000 00sw :

11101 reg:imm

immediate8 from byteregister

0100 000B 1000 0000 :

11 101 bytereg: imm8

immediate32 from qwordregister

0100 100B 1000 0001 :

11 101 qwordreg : imm32

B-34 Vol.2D

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format

Encoding

immediate8 from qwordregister

0100 100B 1000 0011 :

11 101 qwordreg : imm8

immediate from AL, AX, or EAX

0100 000B 0010 110w :

imm

immediate32 from RAX

0100 100000101101 :

imm32

immediate from memory

0100 00XB 1000 00sw :

mod 101 r/m:imm

immediate8 from memory8 0100 00XB 1000 0000 : mod 101 r/m : imm8
immediate32 from memory64 0100 10XB 1000 0001 : mod 101 r/m :imm32
immediate8 from memory64 0100 10XB 10000011 : mod 101 r/m : imm8

SWAPGS - Swap GS Base Register

Exchanges the current GS base register value for value in MSR
C0000102H

0000 1111 0000 0001

11111000

SYSCALL - Fast System Call

fast call to privilege level O system procedures

\ 0000 1111 0000 0101

SYSRET - Return From Fast System Call

return from fast system call

‘ 00001111 00000111

TEST - Logical Compare

register1 and register2

0100 OROB 1000 010w :

11 regl reg?

byteregister1 and byteregister2

0100 OROB 1000 0100::

11 bytereg1 bytereg2

qwordregister1 and qwordregister2

0100 TROB 1000 0101 :

11 qwordreg1 qwordreg2

memory and register

0100 OROB 1000 010w :

mod reg r/m

memory8 and byteregister

0100 ORXB 1000 0100

mod bytereg r/m

memory64 and qwordregister

0100 TRXB 1000 0101 :

mod qwordreg r/m

immediate and register

0100000B 1111 011w

11 000 reg : imm

immediate8 and byteregister

0100000B11110110:

11 000 bytereg: imm8

immediate32 and qwordregister

0100 100B 11110111

11 000 bytereg : imm8

immediate and AL, AX, or EAX

0100 000B 1010 100w :

imm

immediate32 and RAX

01001000 1010 1001 :

imm32

immediate and memory

010000XB 1111 011Tw:

mod 000 r/m ; imm

immediate8 and memory8

010010001111 0110:

mod 000 r/m : imm8

immediate32 and memory64

010010001111 0111

mod 000 r/m : imm32

UD2 - Undefined instruction

0000 FFFF: 0000 1011

VERR - Verify a Segment for Reading

register

0100 000B 0000 1111 :

0000 0000:11 100 reg

memory

0100 00XB 0000 1111:

0000 0000 : mod 100 r/m

VERW - Verify a Segment for Writing

register 0100 000B 0000 1111:00000000:11 101 reg
memory 0100 00XB 0000 1111 : 0000 0000: mod 101 r/m
WAIT - Wait 1001 1011

WBINVD - Writeback and Invalidate Data Cache

0000 1111:0000 1001

Vol.2D B-35

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format

Encoding

WRMSR - Write to Model-Specific Register

write EDX:EAX to ECX specified MSR

0000 1111:0011 0000

write RDX[31:0]:RAX[31:0] to RCX specified MSR

0100 10000000 1111:0011 0000

XADD - Exchange and Add

register1, register2

0100 OROB 0000 1111 :

1100 000w : 11 reg2 reg1

byteregister1, byteregister2

0100 OROB 0000 1111

1100 0000 : 11 byterege bytereg1

qwordregister1, qwordregister2

0100 OROB 0000 1111 :
qwordreg1

1100 0001 : 11 qwordreg2

memory, register

0100 ORXB 0000 1111 :

1100 000w : mod reg r/m

memory8, bytereg

0100 1RXB 0000 1111:

1100 0000 : mod bytereg r/m

memory64, qwordreg

0100 1RXB 0000 1111

1100 0001 : mod qwordreg r/m

XCHG - Exchange Register/Memory with Register

register1 with register2

1000011Tw: 11 regl reg

2

AX or EAX with register

1001 O reg

memory with register

1000 011w : mod reg r/m

XLAT/XLATB - Table Look-up Translation

AL to byte DS:[(E)BX + unsigned AL]

1101 0111

AL to byte DS:[RBX + unsigned AL]

0100 10001101 0111

XOR - Logical Exclusive OR

register1 to register2

0100 ORXB 0011 000w :

11 reg1 reg2

byteregister1 to byteregister2

0100 OROB 0011 0000 :

11 bytereg1 bytereg2

qwordregister1 to qwordregister2

0100 1ROB 0011 0001 :

11 qwordreg1 qwordreg2

register2 to register1

0100 OROB 0011 001w :

11 reg1 reg2

byteregister2 to byteregister1

0100 OROB 0011 0010:

11 bytereg1 bytereg2

qwordregister2 to qwordregister1

0100 1ROB 0011 0011 :

11 qwordreg1 qwordreg2

memory to register

0100 ORXB 0011 001w :

mod reg r/m

memory8 to byteregister

0100 ORXB 0011 0010

mod bytereg r/m

memory64 to qwordregister

0100 TRXB 00110011 :

mod qwordreg r/m

register to memory

0100 ORXB 0011 000w :

mod reg r/m

byteregister to memory8

0100 ORXB 0011 0000 :

mod bytereg r/m

qwordregister to memory8

0100 1RXB 0011 0001 :

mod qwordreg r/m

immediate to register

0100 000B 1000 00sw :

11110 reg:imm

immediate8 to byteregister

0100 000B 1000 0000 :

11 110 bytereg : imm8

immediate32 to qwordregister

0100 100B 1000 0001 :

11 110 qwordreg : imm32

immediate8 to qwordregister

0100 100B 1000 0011 :

11 110 qwordreg : imm8

immediate to AL, AX, or EAX

0100000B 0011 010w :

imm

immediate to RAX

0100 10000011 0101 :

immediate data

immediate to memory

0100 00XB 1000 OO0sw :

mod 110 r/m:imm

immediate8 to memory8

0100 00XB 1000 0000 :

mod 110 r/m : imm8

B-36 Vol.2D

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding
immediate32 to memory64 0100 10XB 1000 0001 : mod 110 r/m :imm32
immediate8 to memory64 0100 10XB 10000011 : mod 110 r/m ; imm8

Prefix Bytes
address size 01100111
LOCK 1111 0000
operand size 01100110
CS segment override 00101110
DS segment override 00111110
€S segment override 00100110
FS segment override 01100100
GS segment override 01100101
SS segment override 00110110

B.3 PENTIUM® PROCESSOR FAMILY INSTRUCTION FORMATS AND ENCODINGS

The following table shows formats and encodings introduced by the Pentium processor family.

Table B-16. Pentium® Processor Family Instruction Formats and Encodings, Non-64-Bit Modes

Instruction and Format | Encoding
CMPXCHGS8B - Compare and Exchange 8 Bytes
EDX:EAX with memory64 ‘ 0000 1111:11000111 :mod 001 r/m

Table B-17. Pentium® Processor Family Instruction Formats and Encodings, 64-Bit Mode

Instruction and Format ’ Encoding
CMPXCHG8B/CMPXCHG16B - Compare and Exchange Bytes
EDX:EAX with memory64 0000 1111:11000111:mod 001 r/m
RDX:RAX with memory128 0100 10XB 0000 1111:11000111 : mod 001 r/m

B.4 64-BIT MODE INSTRUCTION ENCODINGS FOR SIMD INSTRUCTION
EXTENSIONS

Non-64-bit mode instruction encodings for MMX Technology, SSE, SSE2, and SSE3 are covered by applying these

rules to Table B-19 through Table B-31. Table B-34 lists special encodings (instructions that do not follow the rules
below).

1. The REX instruction has no effect:
* Onimmediates.
¢ If both operands are MMX registers.
* On MMX registers and XMM registers.
* If an MMX register is encoded in the reg field of the ModR/M byte.

Vol.2D B-37

INSTRUCTION FORMATS AND ENCODINGS

2. If a memory operand is encoded in the r/m field of the ModR/M byte, REX.X and REX.B may be used for
encoding the memory operand.

3. If a general-purpose register is encoded in the r/m field of the ModR/M byte, REX.B may be used for register
encoding and REX.W may be used to encode the 64-bit operand size.

4. If an XMM register operand is encoded in the reg field of the ModR/M byte, REX.R may be used for register
encoding. If an XMM register operand is encoded in the r/m field of the ModR/M byte, REX.B may be used for
register encoding.

B.5 MMX INSTRUCTION FORMATS AND ENCODINGS

MMX instructions, except the EMMS instruction, use a format similar to the 2-byte Intel Architecture integer format.
Details of subfield encodings within these formats are presented below.

B.5.1 Granularity Field (gg)

The granularity field (gg) indicates the size of the packed operands that the instruction is operating on. When this
field is used, it is located in bits 1 and 0 of the second opcode byte. Table B-18 shows the encoding of the gg field.

Table B-18. Encoding of Granularity of Data Field (gg)

ag Granularity of Data
00 Packed Bytes

01 Packed Words

10 Packed Doublewords

11 Quadword

B.5.2 MMX Technology and General-Purpose Register Fields (mmxreg and reqg)

When MMX technology registers (mmxreg) are used as operands, they are encoded in the ModR/M byte in the reg
field (bits 5, 4, and 3) and/or the R/M field (bits 2, 1, and 0).

If an MMX instruction operates on a general-purpose register (reg), the register is encoded in the R/M field of the
ModR/M byte.

B.5.3 MMX Instruction Formats and Encodings Table

Table B-19 shows the formats and encodings of the integer instructions.

Table B-19. MMX Instruction Formats and Encodings

Instruction and Format Encoding

EMMS - Empty MMX technology state 0000 1111:01110111
MOVD - Move doubleword

reg to mmxreg 0000 1111:0110 1110: 11 mmxreg reg

reg from mmxreg 0000 1111:0111 1110: 11 mmxreg reg

mem to mmxreg 0000 1111:0110 1110: mod mmxreg r/m

mem from mmxreg 0000 1111:0111 1110: mod mmxreg r/m
MOVQ - Move quadword

mmxreg2 to mmxreg]1 0000 1111:0110 1111: 11 mmxreg1 mmxreg2

mmxreg2 from mmxreg1 0000 1111:0111 1111: 11 mmxreg1 mmxreg2

B-38 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

Table B-19. MMX Instruction Formats and Encodings (Contd.)

Instruction and Format

Encoding

mem to mmxreg

0000 1111:0110 1111: mod mmxreg r/m

mem from mmxreg

0000 1111:0111 1111: mod mmxreg r/m

PACKSSDW? - Pack dword to word data (signed with saturation)

mmxreg2 to mmxreg1

0000 1111:01101011: 11 mmxreg1 mmxreg2

memory to mmxreg

0000 1111:0110 1011: mod mmxreg r/m

PACKSSWB? - Pack word to byte data (signed with saturation)

mmxreg2 to mmxreg1

00001111:01100011: 11 mmxreg1 mmxreg2

memory to mmxreg

0000 1111:01100011: mod mmxreg r/m

PACKUSWB? - Pack word to byte data (unsigned with saturation)

mmxreg2 to mmxreg1

0000 1111:01100111: 11 mmxreg1 mmxreg2

memory to mmxreg

0000 1111:01100111: mod mmxreg r/m

PADD - Add with wrap-around

mmxreg2 to mmxreg1

0000 1111:1111 11gg: 11 mmxreg1 mmxreg2

memory to mmxreg

0000 1111: 1111 11gg: mod mmxreg r/m

PADDS - Add signed with saturation

mmxreg2 to mmxreg1

0000 1111:1110 11gg: 11 mmxreg1 mmxreg2

memory to mmxreg

0000 1111: 1110 11gg: mod mmxreg r/m

PADDUS - Add unsigned with saturation

mmxreg2 to mmxreg1

0000 1111:1101 11gg: 11 mmxreg1 mmxreg2

memory to mmxreg

0000 1111: 1101 11gg: mod mmxreg r/m

PAND - Bitwise And

mmxreg2 to mmxreg1

0000 1111:1101 1011: 11 mmxreg1 mmxreg2

memory to mmxreg

0000 1111:1101 1011: mod mmxreg r/m

PANDN - Bitwise AndNot

mmxreg2 to mmxreg1

0000 1111:1101 1111: 11 mmxreg1 mmxreg2

memory to mmxreg

0000 1111:1101 1111: mod mmxreg r/m

PCMPEQ - Packed compare for equality

mmxreg1 with mmxreg2

0000 1111:0111 01gg: 11 mmxreg1 mmxreg2

mmxreg with memory

0000 1111:0111 01gg: mod mmxreg r/m

PCMPGT - Packed compare greater (signed)

mmxreg1 with mmxreg2

00001111:011001gg: 11 mmxreg1 mmxreg2

mmxreg with memory

0000 1111:0110 01gg: mod mmxreg r/m

PMADDWD - Packed multiply add

mmxreg2 to mmxreg1

0000 1111:1111 0101: 11 mmxreg1 mmxreg2

memory to mmxreg

0000 1111:1111 0101: mod mmxreg r/m

PMULHUW - Packed multiplication, store high word (unsigned)

mmxreg2 to mmxreg1

0000 1111:11100100: 11 mmxreg1 mmxreg2

memory to mmxreg

0000 1111: 1110 0100: mod mmxreg r/m

Vol.2D B-39

INSTRUCTION FORMATS AND ENCODINGS

Table B-19. MMX Instruction Formats and Encodings (Contd.)

Instruction and Format

Encoding

PMULHW - Packed multiplication, store high word

mmxreg2 to mmxreg1

0000 1111:11100101:

11 mmxreg1 mmxreg2

memory to mmxreg

00001111:11100101:

mod mmxreg r/m

PMULLW - Packed multiplication, store low word

mmxreg2 to mmxreg1

0000 1111:1101 0101:

11 mmxreg1 mmxreg2

memory to mmxreg

00001111:1101 0101:

mod mmxreg r/m

POR - Bitwise Or

mmxreg2 to mmxreg1

0000 1111:11101011:

11 mmxreg1 mmxreg2

memory to mmxreg

00001111:11101011:

mod mmxreg r/m

PSLLZ - Packed shift left logical

mmxreg1 by mmxreg2

0000 1111:1111 00gg:

11 mmxreg1 mmxreg2

mmxreg by memory

0000 1111:1111 00gg:

mod mmxreg r/m

mmxreg by immediate

0000 1111:0111 00gg:

11 110 mmxreg: imm8 data

PSRAZ - Packed shift right arithmetic

mmxreg1 by mmxreg2

0000 1111:1110 00gg:

11 mmxreg1 mmxreg2

mmxreg by memory

0000 1111:1110 00gg:

mod mmxreg r/m

mmxreg by immediate

0000 1111:0111 00gg:

11 100 mmxreg: imm8 data

PSRL? - Packed shift right logical

mmxreg1 by mmxreg2

0000 1111:1101 00gg:

11 mmxreg1 mmxreg2

mmxreg by memory

0000 1111:1101 00gg:

mod mmxreg r/m

mmxreg by immediate

0000 1111:0111 00gg:

11 010 mmxreg: imm8 data

PSUB - Subtract with wrap-around

mmxreg2 from mmxreg1

0000 1111:1111 10gg:

11 mmxreg1 mmxreg2

memory from mmxreg

0000 1111:1111 10gg:

mod mmxreg r/m

PSUBS - Subtract signed with saturation

mmxreg2 from mmxreg1

0000 1111:1110 10gg:

11 mmxreg1 mmxreg2

memory from mmxreg

0000 1111:1110 10gg:

mod mmxreg r/m

PSUBUS - Subtract unsigned with saturation

mmxreg2 from mmxreg1

0000 1111:1101 10gg:

11 mmxreg1 mmxreg2

memory from mmxreg

0000 1111:1101 10gg:

mod mmxreg r/m

PUNPCKH - Unpack high data to next larger type

mmxreg2 to mmxreg1

0000 1111:0110 10gg:

11 mmxreg1 mmxreg2

memory to mmxreg

0000 1111:0110 10gg:

mod mmxreg r/m

PUNPCKL - Unpack low data to next larger type

mmxreg2 to mmxreg1

0000 1111:0110 00gg:

11 mmxreg1 mmxreg2

memory to mmxreg

0000 1111:0110 00gg:

mod mmxreg r/m

B-40 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

Table B-19. MMX Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding
PXOR - Bitwise Xor
mmxregZ to mmxreg1 0000 1111:11101111: 11 mmxreg1 mmxreg2
memory to mmxreg 0000 1111:1110 1111: mod mmxreg r/m

NOTES:
1. The pack instructions perform saturation from signed packed data of one type to signed or unsigned data of the next smaller type.

2. The format of the shift instructions has one additional format to support shifting by immediate shift-counts. The shift operations
are not supported equally for all data types.

B.6 PROCESSOR EXTENDED STATE INSTRUCTION FORMATS AND ENCODINGS

Table B-20 shows the formats and encodings for several instructions that relate to processor extended state
management.

Table B-20. Formats and Encodings of XSAVE/XRSTOR/XGETBV/XSETBV Instructions

Instruction and Format Encoding
XGETBV - Get Value of Extended Control Register 0000 1111:0000 0001: 1101 0000
XRSTOR - Restore Processor Extended States! 0000 1111:1010 1110: mod? 101 r/m
XSAVE - Save Processor Extended States?! 0000 1111:1010 1110: mod? 100 r/m
XSETBV - Set Extended Control Register 0000 1111:0000 0001: 1101 0001

NOTES:
1. For XSAVE and XRSTOR, “mod = 11" is reserved.

B.7 P6 FAMILY INSTRUCTION FORMATS AND ENCODINGS

Table B-20 shows the formats and encodings for several instructions that were introduced into the IA-32 architec-
ture in the P6 family processors.

Table B-21. Formats and Encodings of P6 Family Instructions

Instruction and Format Encoding

CMOVcc - Conditional Move

register2 to register1 0000 1111:0100 tttn: 11 regl reg2

memory to register 0000 1111:0100 tttn: mod reg r/m
FCMOVcc - Conditional Move on EFLAG Register Condition Codes

move if below (B) 11011 010:11 000 ST(i)

move if equal (E) 11011 010:11 001 ST(i)

move if below or equal (BE) 11011 010: 11010 ST(i)

move if unordered (U) 11011 010:11 011 ST(j)

move if not below (NB) 11011 011:11 000 ST(i)

move if not equal (NE) 11011 011:110071 ST(i)

move if not below or equal (NBE) 11011 011:11 010 ST(j)

Vol.2D B-41

INSTRUCTION FORMATS AND ENCODINGS

Table B-21. Formats and Encodings of P6 Family Instructions (Contd.)

Instruction and Format Encoding
move if not unordered (NU) 11011 011:11 011 ST(j)
FCOMI - Compare Real and Set EFLAGS 11011 0717:11 110 ST(i)
FXRSTOR - Restore x87 FPU, MMX, SSE, and SSE2 State! 0000 1111:1010 1110: mod?® 001 r/m
FXSAVE - Save x87 FPU, MMX, SSE, and SSE2 State! 0000 1111:1010 1110: mod? 000 r/m
SYSENTER - Fast System Call 0000 1111:0011 0100
SYSEXIT - Fast Return from Fast System Call 0000 1111:0011 0101

NOTES:
1. For FXSAVE and FXRSTOR, “mod = 11" is reserved.

B.8 SSE INSTRUCTION FORMATS AND ENCODINGS

The SSE instructions use the ModR/M format and are preceded by the OFH prefix byte. In general, operations are
not duplicated to provide two directions (that is, separate load and store variants).

The following three tables (Tables B-22, B-23, and B-24) show the formats and encodings for the SSE SIMD
floating-point, SIMD integer, and cacheability and memory ordering instructions, respectively. Some SSE instruc-
tions require a mandatory prefix (66H, F2H, F3H) as part of the two-byte opcode. Mandatory prefixes are included
in the tables.

Table B-22. Formats and Encodings of SSE Floating-Point Instructions

Instruction and Format Encoding

ADDPS—Add Packed Single Precision Floating-Point Values

xmmreg2 to xmmreg1 0000 1111:0101 1000:11 xmmreg1 xmmreg2

mem to xmmreg 0000 1111:0101 1000: mod xmmreg r/m
ADDSS—Add Scalar Single Precision Floating-Point Values

xmmreg2 to xmmreg1 1111 0011:0000 1111:01011000:11 xmmreg1 xmmreg2

mem to xmmreg 1111 0011:0000 1111:01011000: mod xmmreg r/m
ANDNPS—Bitwise Logical AND NOT of Packed Single Precision Floating-Point Values

xmmregZ2 to xmmreg1 0000 1111:0101 0101:11 xmmreg1 xmmreg2

mem to xmmreg 0000 1111:0101 0101: mod xmmreg r/m
ANDPS—Bitwise Logical AND of Packed Single Precision Floating-Point Values

xmmregZ2 to xmmreg1 0000 1111:0101 0100:11 xmmreg1 xmmreg2

mem to xmmreg 0000 1111:0101 0100: mod xmmreg r/m
CMPPS—Compare Packed Single Precision Floating-Point Values

xmmregZ2 to xmmreg1, imm8 0000 1111:1100 0010:11 xmmreg1 xmmreg2: imm8

mem to xmmreg, imm8 0000 1111:1100 0010: mod xmmreg r/m; imm8
CMPSS—Compare Scalar Single Precision Floating-Point Values

xmmreg2 to xmmreg1, imm8 1111 0011:00001111:1100 0010:11 xmmreg1 xmmreg2: imm8

mem to xmmreg, imm8 1111 0011:0000 1111:1100 0010: mod xmmreg r/m: imm8
COMISS—Compare Scalar Ordered Single Precision Floating-Point Values and Set EFLAGS

xmmregZ2 to xmmreg1 0000 1111:0010 1111:11 xmmreg1 xmmreg2

mem to xmmreg 0000 1111:0010 1111: mod xmmreg r/m

B-42 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

Table B-22. Formats and Encodings of SSE Floating-Point Instructions (Contd.)

Instruction and Format Encoding

CVTPI2PS—Convert Packed Doubleword Integers to Packed Single Precision Floating-Point Values

mmreg to xmmreg 0000 1111:0010 1010:11 xmmreg1 mmreg1

mem to xmmreg 0000 1111:0010 1010: mod xmmreg r/m
CVTPS2PI—Convert Packed Single Precision Floating-Point Values to Packed Doubleword Integers

Xmmreg to mmreg 0000 1111:0010 1101:11 mmreg1 xmmreg1

mem to mmreg 0000 1111:0010 1101: mod mmreg r/m
CVTSI2SS—Convert Doubleword Integer to Scalar Single Precision Floating-Point Value

r32 to xmmreg1 1111 0011:0000 1111:00101010:11 xmmreg1 r32

mem to xmmreg 1111 0011:0000 1111:00101010: mod xmmreg r/m
CVTSS2SI—Convert Scalar Single Precision Floating-Point Value to Doubleword Integer

xmmreg to r32 1111 0011:00001111:0010 1101:11 r32 xmmreg

mem to r32 1111 0011:0000 1111:0010 1101: mod r32 r/m
CVTTPS2PI—Convert with Truncation Packed Single Precision Floating-Point Values to Packed Doubleword Integers

Xmmreg to mmreg 0000 1111:0010 1100:11 mmreg1 xmmreg1

mem to mmreg 0000 1111:0010 1100: mod mmreg r/m
CVTTSS2SI—Convert with Truncation Scalar Single Precision Floating-Point Value to Doubleword Integer

xmmreg to r32 1111 0011:0000 1111:0010 1100:11 r32 xmmreg1

mem to r32 1111 0011:0000 1111:0010 1100: mod r32 r/m
DIVPS—Divide Packed Single Precision Floating-Point Values

xmmregZ2 to xmmreg1 0000 1111:0101 1110:11 xmmreg1 xmmreg2

mem to xmmreg 0000 1111:0101 1110: mod xmmreg r/m
DIVSS—Divide Scalar Single Precision Floating-Point Values

xmmregZ2 to xmmreg1 1111 0011:00001111:0101 1110:11 xmmreg1 xmmreg2

mem to xmmreg 1111 0011:0000 1111:0101 1110: mod xmmreg r/m
LDMXCSR—Load MXCSR Register State

m32 to MXCSR 0000 1111:1010 1110:mod” 010 mem
MAXPS—Return Maximum Packed Single Precision Floating-Point Values

xmmregZ2 to xmmreg1 0000 1111:0101 1111:11 xmmreg1 xmmreg2

mem to xmmreg 0000 1111:0101 1111: mod xmmreg r/m
MAXSS—Return Maximum Scalar Double Precision Floating-Point Value

xmmregZ2 to xmmreg1 1111 0011:00001111:0101 1111:11 xmmreg1 xmmreg2

mem to xmmreg 1111 0011:0000 1111:0101 1111: mod xmmreg r/m
MINPS—Return Minimum Packed Double Precision Floating-Point Values

xmmregZ2 to xmmreg1 0000 1111:0101 1101:11 xmmreg1 xmmreg2

mem to xmmreg 0000 1111:0101 1101: mod xmmreg r/m
MINSS—Return Minimum Scalar Double Precision Floating-Point Value

xmmregZ2 to xmmreg1 1111 0011:00001111:0101 1101:11 xmmreg1 xmmreg2

mem to xmmreg 1111 0011:0000 1111:0101 1101: mod xmmreg r/m

Vol.2D B-43

INSTRUCTION FORMATS AND ENCODINGS

Table B-22. Formats and Encodings of SSE Floating-Point Instructions (Contd.)

Instruction and Format Encoding

MOVAPS—Move Aligned Packed Single Precision Floating-Point Values

xmmregZ2 to xmmreg1 0000 1111:0010 1000:11 xmmreg2 xmmreg1

mem to xmmreg]1 0000 1111:0010 1000: mod xmmreg r/m

xmmreg1 to xmmreg2 0000 1111:0010 1001:11 xmmreg1 xmmreg2

xmmreg1 to mem 0000 1111:0010 1001: mod xmmreg r/m
MOVHLPS—Move Packed Single Precision Floating-Point Values High to Low

xmmreg2 to xmmreg]1 0000 1111:0001 0010:11 xmmreg1 xmmreg2
MOVHPS—Move High Packed Single Precision Floating-Point Values

mem to xmmreg 0000 1111:0001 0110: mod xmmreg r/m

xmmreg to mem 0000 1111:0001 0111: mod xmmreg r/m
MOVLHPS—Move Packed Single Precision Floating-Point Values Low to High

xmmregZ2 to xmmreg1 0000 1111:00010110:11 xmmreg1 xmmreg2
MOVLPS—Move Low Packed Single Precision Floating-Point Values

mem to xmmreg 0000 1111:0001 0010: mod xmmreg r/m

Xmmreg to mem 0000 1111:0001 0011: mod xmmreg r/m
MOVMSKPS—Extract Packed Single Precision Floating-Point Sign Mask

xmmreg to r32 0000 1111:0101 0000:11 r32 xmmreg
MOVSS—Move Scalar Single Precision Floating-Point Values

xmmreg2 to xmmreg1 1111 0011:0000 1111:0001 0000:11 xmmreg2 xmmreg]1

mem to xmmreg1 1111 0011:0000 1111:0001 0000: mod xmmreg r/m

xmmreg1 to xmmreg2 1111 0011:0000 1111:0001 0001:11 xmmreg1 xmmreg2

xmmreg1 to mem 1111 0011:0000 1111:0001 0001: mod xmmreg r/m
MOVUPS—Move Unaligned Packed Single Precision Floating-Point Values

xmmregZ2 to xmmreg1 0000 1111:0001 0000:11 xmmreg2 xmmreg1

mem to xmmreg1 0000 1111:0001 0000: mod xmmreg r/m

xmmreg1 to xmmreg2 0000 1111:0001 0001:11 xmmreg1 xmmreg2

xmmreg1 to mem 0000 1111:0001 0001: mod xmmreg r/m
MULPS—Multiply Packed Single Precision Floating-Point Values

xmmreg2 to xmmreg1 0000 1111:0101 1001:11 xmmreg1 xmmreg2

mem to xmmreg 0000 1111:0101 1001: mod xmmreg r/m

MULSS—Multiply Scalar Single Precision Floating-Point Values

xmmregZ2 to xmmreg1 1111 0011:00001111:0101 1001:11 xmmreg1 xmmreg2

mem to xmmreg 1111 0011:0000 1111:0101 1001: mod xmmreg r/m
ORPS—Bitwise Logical OR of Single Precision Floating-Point Values

xmmregZ2 to xmmreg1 0000 1111:0101 0110:11 xmmreg1 xmmreg2

mem to xmmreg 0000 1111:0101 0110: mod xmmreg r/m

RCPPS—Compute Reciprocals of Packed Single Precision Floating-Point Values

xmmregZ2 to xmmreg1 0000 1111:0101 0011:11 xmmreg1 xmmreg2

B-44 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

Table B-22. Formats and Encodings of SSE Floating-Point Instructions (Contd.)

Instruction and Format

Encoding

mem to xmmreg

0000 1111:0101 0011: mod xmmreg r/m

RCPSS—Compute Reciprocals of Scalar Single Precision

Floating-Point Value

xmmreg2 to xmmreg1

1111 0011:0000 1111:01010011:11 xmmreg1 xmmreg2

mem to xmmreg

1111 0011:0000 1111:01010011: mod xmmreg r/m

RSQRTPS—Compute Reciprocals of Square Roots of Packed Single Precision Floating-Point Values

xmmreg2 to xmmreg1

0000 1111:0101 0010:11 xmmreg1 xmmreg2

mem to xmmreg

0000 1111:0101 0010: mode xmmreg r/m

RSQRTSS—Compute Reciprocals of Square Roots of Sca

lar Single Precision Floating-Point Value

xmmreg2 to xmmreg]1

1111 0011:0000 1111:0101 0010:11 xmmreg1 xmmreg2

mem to xmmreg

1111 0011:00001111:0101 0010: mod xmmreg r/m

SHUFPS—Shuffle Packed Single Precision Floating-Point Values

xmmreg2 to xmmreg1, imm8

0000 1111:11000110:11 xmmreg1 xmmreg2: imm8

mem to xmmreg, imm8

0000 1111:1100 0110: mod xmmreg r/m; imm8

SQRTPS—Compute Square Roots of Packed Single Precision Floating-Point Values

xmmreg2 to xmmreg1

0000 1111:0101 0001:11 xmmreg1 xmmreg2

mem to xmmreg

0000 1111:0101 0001: mod xmmreg r/m

SQRTSS—Compute Square Root of Scalar Single Precision Floating-Point Value

xmmreg2 to xmmreg1

1111 0011:0000 1111:0101 0001:11 xmmreg1 xmmreg2

mem to xmmreg

1111 0011:0000 1111:0101 0001:mod xmmreg r/m

STMXCSR—Store MXCSR Register State

MXCSR to mem

0000 1111:1010 1110:mod” 011 mem

SUBPS—Subtract Packed Single Precision Floating-Point Values

xmmreg2 to xmmreg1

0000 1111:0101 1100:11 xmmreg1 xmmreg2

mem to xmmreg

0000 1111:0101 1100:mod xmmreg r/m

SUBSS—Subtract Scalar Single Precision Floating-Point

Values

xmmreg2 to xmmreg1

1111 0011:00001111:0101 1100:11 xmmreg1 xmmreg2

mem to xmmreg

1111 0011:0000 1111:0101 1100:mod xmmreg r/m

UCOMISS—Unordered Compare Scalar Ordered Single Precision Floating-Point Values and Set EFLAGS

xmmreg2 to xmmreg1

0000 1111:0010 1110:11 xmmreg1 xmmreg2

mem to xmmreg

0000 1111:0010 1110: mod xmmreg r/m

UNPCKHPS—Unpack and Interleave High Packed Single

Precision Floating-Point Values

xmmreg2 to xmmreg1

0000 1111:0001 0101:11 xmmreg1 xmmreg2

mem to xmmreg

0000 1111:0001 0101: mod xmmreg r/m

UNPCKLPS—Unpack and Interleave Low Packed Single Precision Floating-Point Values

xmmreg2 to xmmreg1

0000 1111:0001 0100:11 xmmreg1 xmmreg2

mem to xmmreg

0000 1111:0001 0100: mod xmmreg r/m

XORPS—Bitwise Logical XOR of Single Precision Floatin

g-Point Values

xmmreg2 to xmmreg1

0000 1111:0101 0111:11 xmmreg1 xmmreg2

Vol.2D B-45

INSTRUCTION FORMATS AND ENCODINGS

Table B-22. Formats and Encodings of SSE Floating-Point Instructions (Contd.)

Instruction and Format

Encoding

mem to xmmreg

0000 1111:0101 0111: mod xmmreg r/m

Table B-23. Formats and Encodings of SSE Integer Instructions

Instruction and Format

Encoding

PAVGB/PAVGW—Average Packed Integers

mmreg2 to mmreg1

0000 1111:11100000:11 mmreg1 mmreg2

0000 1111:11100011:11 mmreg1 mmreg2

mem to mmreg

0000 1111:1110 0000: mod mmreg r/m

0000 1111:11100011: mod mmreg r/m

PEXTRW—Extract Word

mmreg to reg32, imm8

0000 1111:1100 0101:11 r32 mmreg: imm8

PINSRW—Insert Word

reg32 to mmreg, imm8

0000 1111:11000100:11 mmreg r32: imm8

m16 to mmreg, imm8

0000 1111:1100 0100: mod mmreg r/m: imm8

PMAXSW—Maximum of Packed Signed Word Integers

mmreg2 to mmreg]

0000 1T111:11101110:11 mmreg1 mmreg2

mem to mmreg

0000 1111:1110 1110: mod mmreg r/m

PMAXUB—Maximum of Packed Unsigned Byte Integers

mmreg2 to mmreg]1

0000 1T111:1101 1110:11 mmreg1 mmreg2

mem to mmreg

0000 1111:1101 1110: mod mmreg r/m

PMINSW—Minimum of Packed Signed Word Integers

mmreg?2 to mmreg1

0000 1111:11101010:11 mmreg1 mmreg2

mem to mmreg

0000 1111:1110 1010: mod mmreg r/m

PMINUB—Minimum of Packed Unsigned Byte Integers

mmreg?2 to mmreg1

0000 1T111:1101 1010:11 mmreg1 mmreg2

mem to mmreg

0000 1111:1101 1010: mod mmreg r/m

PMOVMSKB—Move Byte Mask To Integer

mmreg to reg32

0000 1T111:11010111:11 r32 mmreg

PMULHUW—Multiply Packed Unsigned Integers and Store High Result

mmregZ2 to mmreg1

0000 1111:11100100:11 mmreg1 mmreg2

mem to mmreg

0000 1111:1110 0100: mod mmreg r/m

PSADBW—Compute Sum of Absolute Differences

mmregZ2 to mmreg1

0000 1111:1111 0110:11 mmreg1 mmreg2

mem to mmreg

0000 1T111:1111 0110: mod mmreg r/m

PSHUFW—Shuffle Packed Words

mmregZ2 to mmreg1, imm8

mem to mmreg, imm8

0000 1111:0111 0000: mod mmreg r/m; imm8

B-46 Vol. 2D

0000 1111:0111 0000:11 mmreg1 mmregZ2: imm8

INSTRUCTION FORMATS AND ENCODINGS

Table B-24. Format and Encoding of SSE Cacheability & Memory Ordering Instructions

Instruction and Format ‘ Encoding

MASKMOVQ—Store Selected Bytes of Quadword

mmreg2 to mmreg1 ‘ 0000 1111:11110111:11 mmreg1 mmreg2
MOVNTPS—Store Packed Single Precision Floating-Point Values Using Non-Temporal Hint

Xmmreg to mem | 0000 1111:0010 1011: mod xmmreg r/m
MOVNTQ—Store Quadword Using Non-Temporal Hint

mmreg to mem 0000 1111:11100111: mod mmreg r/m
PREFETCHTO—Prefetch Temporal to All Cache Levels 0000 1111:0001 1000:mod” 001 mem
PREFETCHT1—Prefetch Temporal to First Level Cache 0000 1111:0001 1000:mod” 010 mem
PREFETCHT2—Prefetch Temporal to Second Level Cache 0000 1111:0001 1000:mod” 011 mem
PREFETCHNTA—Prefetch Non-Temporal to All Cache Levels 0000 1111:0001 1000:mod” 000 mem
SFENCE—Store Fence 0000 1111:1010 1110:11 111 000

B.9 SSEZ2 INSTRUCTION FORMATS AND ENCODINGS

The SSE2 instructions use the ModR/M format and are preceded by the OFH prefix byte. In general, operations are
not duplicated to provide two directions (that is, separate load and store variants).

The following three tables show the formats and encodings for the SSE2 SIMD floating-point, SIMD integer, and
cacheability instructions, respectively. Some SSE2 instructions require a mandatory prefix (66H, F2H, F3H) as part
of the two-byte opcode. These prefixes are included in the tables.

B.9.1 Granularity Field (gg)

The granularity field (gg) indicates the size of the packed operands that the instruction is operating on. When this
field is used, it is located in bits 1 and 0 of the second opcode byte. Table B-25 shows the encoding of this gg field.

Table B-25. Encoding of Granularity of Data Field (gg)

ag Granularity of Data
00 Packed Bytes

01 Packed Words

10 Packed Doublewords

11 Quadword

Vol.2D B-47

INSTRUCTION FORMATS AND ENCODINGS

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions

Instruction and Format

Encoding

ADDPD—Add Packed Double Precision Floating-Point Values

xmmregZ2 to xmmreg1

01100110:0000 1111:0101 1000:11 xmmreg1 xmmreg2

mem to xmmreg

01100110:0000 1111:0101 1000: mod xmmreg r/m

ADDSD—Add Scalar Double Precision Floating-Point Values

xmmregZ2 to xmmreg1

1111 0010:00001111:0101 1000:11 xmmreg1 xmmreg2

mem to xmmreg

1111 0010:0000 1111:0101 1000: mod xmmreg r/m

ANDNPD-—Bitwise Logical AND NOT of Packed Double Precision Floating-Point Values

xmmregZ2 to xmmreg1

01100110:0000 1111:0101 0101:11 xmmreg1 xmmreg2

mem to xmmreg

01100110:0000 1111:0101 0101: mod xmmreg r/m

ANDPD—Bitwise Logical AND of Packed Double Precision Floating-Point Values

xmmregZ2 to xmmreg1

01100110:0000 1111:0101 0100:11 xmmreg1 xmmreg2

mem to xmmreg

01100110:0000 1111:0101 0100: mod xmmreg r/m

CMPPD—Compare Packed Double Precision Floating-Point Values

xmmreg2 to xmmreg1, imm8

01100110:0000 1111:1100 0010:11 xmmreg1 xmmreg2: imm8

mem to xmmreg, imm8

01100110:0000 1111:1100 0010: mod xmmreg r/m; imm8

CMPSD—Compare Scalar Double Precision Floating-Point Values

xmmreg2 to xmmreg1, imm8

1111 0010:0000 1111:1100 0010:11 xmmreg1 xmmreg2: imm8

mem to xmmreg, imm8

11110010:0000 1111:1100 0010: mod xmmreg r/m; imm8

COMISD—Compare Scalar Ordered Double Precision Floating-Point Values and Set EFLAGS

xmmregZ2 to xmmreg1

01100110:0000 1111:0010 1111:11 xmmreg1 xmmreg2

mem to xmmreg

01100110:0000 1111:0010 1111: mod xmmreg r/m

CVTPI2PD—Convert Packed Doubleword Integers to Packed Double Precision Floating-Point Values

mmreg to xmmreg

01100110:00001111:0010 1010:11 xmmreg1 mmreg1

mem to xmmreg

01100110:0000 1111:0010 1010: mod xmmreg r/m

CVTPD2PI—Convert Packed Double Precision Floating-Point Values to Packed Doubleword Integers

xmmreg to mmreg

01100110:0000 1111:0010 1101:11 mmreg1 xmmreg1

mem to mmreg

01100110:0000 1111:0010 1101: mod mmreg r/m

CVTSI2SD—Convert Doubleword Integer to Scalar Double Precision Floating-Point Value

r32 to xmmreg1

1111 0010:0000 1111:0010 1010:11 xmmreg r32

mem to xmmreg

1111 0010:0000 1111:0010 1010: mod xmmreg r/m

CVTSD2SI—Convert Scalar Double Precision Floating-Point Value to Doubleword Integer

xmmreg to r32

1111 0010:0000 1111:0010 1101:11 r32 xmmreg

mem to r32

1111 0010:00001111:0010 1101: mod r32 r/m

CVTTPD2PI—Convert with Truncation Packed Double

Precision Floating-Point Values to Packed Doubleword Integers

xmmreg to mmreg

01100110:0000 1111:0010 1100:11 mmreg xmmreg

mem to mmreg

01100110:0000 1111:0010 1100: mod mmreg r/m

CVTTSD2SI—Convert with Truncation Scalar Double Precision Floating-Point Value to Doubleword Integer

xmmreg to r32

1111 0010:0000 1111:0010 1100:11 r32 xmmreg

B-48 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format

Encoding

mem to r32

1111 0010:0000 1111:0010 1100: mod r32 r/m

CVTPD2PS—Covert Packed Double Precision Floating-Point Values to Packed Single Precision Floating-Point Values

xmmreg2 to xmmreg]1

01100110:0000 1111:0101 1010:11 xmmreg1 xmmreg2

mem to xmmreg

01100110:0000 1111:0101 1010: mod xmmreg r/m

CVTPS2PD—Covert Packed Single Precision Floating-Point Values to Packed Double Precision Floating-Point Values

xmmregZ2 to xmmreg1

0000 1111:0101 1010:11 xmmreg1 xmmreg2

mem to xmmreg

0000 1111:0101 1010: mod xmmreg r/m

CVTSD2SS—Covert Scalar Double Precision Floating-

Point Value to Scalar Single Precision Floating-Point Value

xmmreg2 to xmmreg1

1111 0010:0000 1111:0101 1010:11 xmmreg1 xmmreg2

mem to xmmreg

1111 0010:0000 1111:0101 1010: mod xmmreg r/m

CVTSS2SD—Covert Scalar Single Precision Floating-Point Value to Scalar Double Precision Floating-Point Value

xmmreg2 to xmmreg1

1111 0011:00001111:0101 1010:11 xmmreg1 xmmreg2

mem to xmmreg

1111 0011:00001 111:0101 1010: mod xmmreg r/m

CVTPD2DQ—Convert Packed Double Precision Floating-Point Values to Packed Doubleword Integers

xmmreg2 to xmmreg1

1111 0010:0000 1111:1110 0110:11 xmmreg1 xmmreg2

mem to xmmreg

1111 0010:00001111:1110 0110: mod xmmreg r/m

CVTTPD2DQ—Convert With Truncation Packed Doub

le Precision Floating-Point Values to Packed Doubleword Integers

xmmreg2 to xmmreg1

0711700110:0000 1111:11100110:11 xmmreg1 xmmreg2

mem to xmmreg

01100110:0000 1111:11100110: mod xmmreg r/m

CVTDQ2PD—Convert Packed Doubleword Integers to

Packed Single Precision Floating-Point Values

xmmreg2 to xmmreg1

1111 0011:00001111:1110 0110:11 xmmreg1 xmmreg2

mem to xmmreg

1111 0011:00001111:1110 0110: mod xmmreg r/m

CVTPS2DQ—Convert Packed Single Precision Floatin

g-Point Values to Packed Doubleword Integers

xmmreg2 to xmmreg1

01100110:0000 1111:0101 1011:11 xmmreg1 xmmreg2

mem to xmmreg

01100110:0000 1111:0101 1011: mod xmmreg r/m

CVTTPS2DQ—Convert With Truncation Packed Single Precision Floating-Point Values to Packed Doubleword Integers

xmmreg2 to xmmreg1

1111 0011:00001111:0101 1011:11 xmmreg1 xmmreg2

mem to xmmreg

1111 0011:00001111:0101 1011: mod xmmreg r/m

CVTDQ2PS—Convert Packed Doubleword Integers to Packed Double Precision Floating-Point Values

xmmreg2 to xmmreg1

0000 1111:0101 1011:11 xmmreg1 xmmreg2

mem to xmmreg

0000 1111:0101 1011: mod xmmreg r/m

DIVPD—Divide Packed Double Precision Floating-Point Values

xmmreg2 to xmmreg1

01100110:0000 1111:0101 1110:11 xmmreg1 xmmreg2

mem to xmmreg

01100110:0000 1111:0101 1110: mod xmmreg r/m

DIVSD—Divide Scalar Double Precision Floating-Point Values

xmmreg2 to xmmreg1

1111 0010:0000 1111:0101 1110:11 xmmreg1 xmmreg2

Vol.2D B-49

INSTRUCTION FORMATS AND ENCODINGS

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format

Encoding

mem to xmmreg

1111 0010:0000 1111:0101

1110: mod xmmreg r/m

MAXPD—Return Maximum Packed Double Precision Floating-Point Values

xmmreg2 to xmmreg]1

01100110:0000 1111:0101

1111:11 xmmreg1 xmmreg2

mem to xmmreg

01100110:0000 1111:0101

1111: mod xmmreg r/m

MAXSD—Return Maximum Scalar Double Precision Fl

oating-Point Value

xmmreg2 to xmmreg]1

1111 0010:0000 1111:0101

1111:11 xmmreg1 xmmreg2

mem to xmmreg

1111 0010:0000 1111:0101

1111: mod xmmreg r/m

MINPD—Return Minimum Packed Double Precision Fl

oating-Point Values

xmmreg2 to xmmreg]1

01100110:0000 1111:0101

1101:11 xmmreg1 xmmreg2

mem to xmmreg

01100110:0000 1111:0101

1101: mod xmmreg r/m

MINSD—Return Minimum Scalar Double Precision Flo

ating-Point Value

xmmreg2 to xmmreg1

1111 0010:0000 1111:0101

1101:11 xmmreg1 xmmreg2

mem to xmmreg

1111 0010:0000 1111:0101

1101: mod xmmreg r/m

MOVAPD—Move Aligned Packed Do