
Intel® Software Guard Extensions (Intel® SGX) SGX2

Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon Johnson, Rebekah Leslie-

Hurd, Carlos Rozas, Mark Shanahan, Bin (Cedric) Xing

June 18, 2016

Copyright © Intel Corporation 2016

Legal Disclaimers

• The comments and statements are the presenter’s and not
necessarily Intel’s

• Intel technologies’ features and benefits depend on system
configuration and may require enabled hardware, software or
service activation. Learn more at intel.com, or from the OEM or
retailer.

• No computer system can be absolutely secure.

Agenda

Agenda:

• SGX Review

• SGX2 Motivation and Usage

• Software Flows

• Instruction Set and Architectural Features

• SDK Support

SGX Review

4

Application gains ability to defend its
own secrets
– Smallest attack surface (app + processor)
– Malware that subverts OS/VMM, BIOS,

Drivers etc. cannot steal app secrets

Familiar development/debug
– Single application environment
– Build on existing ecosystem expertise

Familiar deployment model
– Platform integration not a bottleneck to

deployment of trusted apps

Proxy Proxy Proxy

Hardware

VMM (Hypervisor)

OS

App App App

Scalable security within mainstream environment

Attack surface todayAttack surface with Enclaves

XX

Reduced attack surface with SGX

Attack Surface

EnclaveEnclave

What is an Enclave?

Enclave: trusted execution environment embedded in a process

App Code

App Data

OS
Enclave

Code

Enclave
Data

• Own code and data

User Process

• Provides Confidentiality

• Provides integrity

• Controlled entry points

• Full access to app memory

• Supporting multiple threads

Enclave

TCS (*n)TCS (*n)TCS (*n)

SECS

SGX2: Enclave Dynamic Memory Management

(EDMM)

7

In SGX1, an enclave’s set of committed pages is fixed at load time
 All memory that enclave might ever use must be added before initialization

EDMM instructions allow run-time changes to enclave memory while maintaining the SE

security properties
 Reduces enclave build time and enables new usages

 Build a minimal enclave with minimal memory

 Expand to meet platform requirements

Enclave Dynamic Memory Management (EDMM) Motivation

8

Enclave Setup (SGX1) Enclave Setup (Enclave Malloc)

Statically

Allocated

Memory

Dynamically

Allocated

Memory

OS must allocate

all enclave memory

prior to enclave

initialization

Memory may be

allocated,

modified, and

deallocated at run-

time

Statically

Allocated

Memory

Example Software Usages

Heap and thread-pool management

On-demand stack growth

Dynamic module/library loading

Concurrency management in applications such as garbage collectors

Write-protection of EPC pages after initial relocation

On-demand creation of code pages (JIT, encrypted code modules)

9

Application Memory Management with EDMM

Memory management operations:

 Page allocation and deallocation

 Thread (TCS) creation/destruction

 Page permissions modification

Cooperative process between the OS and the enclave memory manager

 OS performs memory management on enclave’s behalf

 Enclave confirms request before changes take effect

Enclave memory manager hides complexity from application code

10

Security Considerations

SGX guarantees the integrity of enclave code and data pages

Integrity of static enclave memory is provided by measurement

Dynamic memory management requires a new approach
 OS must be involved in page-table management, TLB flushes, …

 OS cannot be trusted not to violate SE security guarantees

 Example: OS converts a read-only page to a read/write page

Solution: Enclaves oversee every dynamic memory management

transaction
 Enclave requests OS to perform memory management operation

 OS performs operation

 Enclave accepts the result, testing for unexpected behavior

11

Software Flows

12

OS

Heap Extension in Non-Enclave Applications

Many software applications rely on

a memory management library,

such as the C runtime, to manage

the application’s heap

 Applications request memory through the

memory manager’s API
 Example: malloc

13

Memory

Managemen

t Library

Application
malloc

Hardware

OS

Heap Extension in Non-Enclave Applications

Memory management libraries

utilize operating system facilities to

obtain committed memory to back

the application heap

 Memory manager maintains a set of free

pages that is used to fulfill heap allocation

requests

 When the manager exhausts its supply of

free pages, it requests additional memory

through the OS API
 Example: sbrk

 May be committed lazily or on demand

14

Memory

Managemen

t Library

Application
malloc

memory

commit

request

Hardware

additional

heap

memory

pointer to

allocated

memory

malloc

Enclave

OS

Heap Extension in Enclave Applications

Enclaves contain their own

memory management library for

managing the heap in enclave

applications

 As before, applications request memory

through the memory manager’s API

 Enclave memory manager API will likely

be similar to existing memory

management libraries
 Example: malloc

15

Enclave

Memory

Managemen

t Library

Application

Hardware

Enclave

OS

Heap Extension in Enclave Applications

Enclave memory manager utilizes

enclave-specific OS APIs to obtain

committed EPC memory to back

the application heap

 As before, memory manager maintains a

set of free pages that is used to fulfill heap

allocation requests

 When the manager exhausts its supply of

free pages, it requests additional memory

through the OS API
 May be committed lazily or on demand

 OS implementation uses SGX2 instruction

EAUG to add EPC pages to the enclave

16

Enclave

Memory

Managemen

t Library

Application

malloc

Hardware

memory

commit

request

EAUG

HW adds

page to

enclave

additional

memory

Enclave

OS

Heap Extension in Enclave Applications

Before accessing newly committed

pages, the enclave memory

manager must accept the EPC

allocation performed by the OS

 Call to EACCEPT instruction

17

Enclave

Memory

Managemen

t Library

Application

malloc

Hardware

memory

commit

request

EAUG

HW adds

page to

enclave

additional

memory

EACCEPT

pointer to

allocated

memory

Instruction Set Architecture

18

Data Structures

EPCM
 Per-page meta-data information introduced in SGX1

 Structure extended to support PENDING, MODIFIED, and Permission Restriction states
 May not be set simultaneously

SECINFO
 64B data structure introduced in SGX1

 Structure extended to support and PENDING, MODIFIED, and Permission Restriction (PR) bits
 Bit 3: PENDING

 Bit 4: MODIFIED

 Bit 5: PR

PAGE_TYPE
 Per-EPC page type information introduced in SGX1

 Datatype extended to include a new value for deallocated pages (PT_TRIM)
 PT_TRIM encoding = 4

19

Page Type: PT_TRIM

Trimmed pages
 Trimmed state indicate that a page is in the process of being deallocated

 Trimmed pages are not accessible to software

Trimming
 System Manager executes EMODT which sets type to PT_TRIM and set

modified state

 Enclave Manager executes EACCEPT which clears modified bit

 System Manager executes EREMOVE which marks the page invalid.

20

MISC Area Review

• MISC Area part of SSA Frame

• MISC Area fields supported by CPU are

enumerated by CPUID.SE_LEAF.0.EBX

• Enclave writer opt-in to use of supported MISC

Area fields using new dedicated MISCSELECT

field in SECS

• Similarly to opting-in for use of XSAVE features

• Frame size calculation includes new MISC area

• Effective value of MISCSELECT becomes

attestable property of enclave

• It stirred into enclave keys

• It becomes part of enclave REPORT

RSRV Exitinfo

URBP

URSP

RBX

RAX

GSBASE

FSBASE

New Field 3

New Field 2

New Field 1

SSA

Base

XSAV

E

Area

MISC

Base

GPR

Base

MISC

Area

GPR

Area

SECS.MISCSELECT

0 0 0 0 0 0 0 0 0 1 1

SGX2 Information and Error Codes

22

MISC Components Offset (Bytes) Size (bytes) Description

EXINFO base(GPRSGX)-16 16 if CPUID.(EAX=12H, ECX=0):EBX[0] = 1, exception information on #GP or

#PF that occurred inside an enclave can be written to the EXINFO structure

if specified by SECS.MISCSELECT[0] = 1.

Future Extension Below EXINFO TBD Reserved. (Zero size if CPUID.(EAX=12H, ECX =0:EBX[31:1]

= 0)

PFINFO Field

Name Offset Size

MADDR 0 8

ERRCD 8 4

RESERVED 12 4

PFINFO.ERRCD Field

Bit Layout

31 16 15 14 6 5 4 3 2 1 0

Zero SGX Zero PK I/D RSVD 1* WR P

SGX2 MISC Field

ERRCD Field

ENCLS leafs

ENCLS[EAUG]
 Allocates and zeroes a PT_REG page with read/write permissions

 Put page in Pending stage to prevent application access to page

 Requires call to EACCEPT to make page available to enclave

ENCLS[EMODT]
 Changes page type from PT_REG to PT_TCS or PT_TRIM

 Puts page into Modified state to prevent access to the page

 Requires call to EACCEPT to make page available to enclave

ENCLS[EMODPR]
 Restricts the access rights of the page

 Puts page into Permission Restricted State

 Page remains accessible inside enclave

 Requires call to EACCEPT to guarantee the change across all processors

23

ENCLU Leafs

ENCLU[EACCEPT]
 Checks that page performed correctly (allocation, deallocation, permissions change, etc.)

 Verifies that all TLB mappings to target page have been flushed

 Uses the epoch-tracking mechanism introduced by SGX1

 Clears PENDING, MODIFIED, or Permission Restricted states

ENCLU[EACCEPTCOPY]
 Copies contents of an enclave page into a page allocated by EAUG.

 Uses SECINFO field inside enclave to specify the destination type and permissions

 Clears PENDING State

ENCLU[EMODPE]
 Extends the EPCM permissions associated with a regular page

 Page remains accessible to enclave with original permissions

 TLB shoot-down not necessary to gain access to extended permissions

 Requires call to OS to extend the page-table permissions

24

SDK Support

25

A Little Background on the SGX Run-Time System

Kernel Module (SGX Driver)
 Manages EPC Physical Memory

 Enclave Loading

 Memory Allocation/Deallocation

 Page Swapping / Page Faults

Untrusted Run-Time System (uRTS)
 Loading and Unloading of Enclaves

 Sends IOCTLs to SGX Driver

 Call Management: Handle all calls to/from the enclave

 ECall : Call from Application to the Enclave

 OCall : Call from Enclave to the Application

 Exception Handling: Call back into the enclave

Trusted Run-Time System (tRTS)
 Enclave Loading: Complete the trusted enclave load

 Call Management: Configure ECalls/OCalls

 Exception Handling : Enclave generated exceptions

26

Ring 0

Ring 3

Kernel Module

(SGX Driver)

SGX

EENTER,

ERESUME

A
p
p
lic

a
ti
o
n

En
cl

av
e Trusted

Run-Time

System (tRTS) EEXIT

Untrusted Run-Time System

(uRTS)

Ring 0

Instructions

IOCTLs

Putting SGX2 Instructions to Use

Adapt to varying workloads with Dynamic EPC Allocation:
 Basic Method: OCall Based

 More Efficient Method: Page Fault Based

27

OS

Enclave

App Stack

App Code

Thread Context

…

Enclave Heap

Thread Stack

Enclave Code

ThreadControl Structure

Thread Local Storage

……
Thread Context

…

Enclave Heap

Thread Stack

Enclave Code

ThreadControl Structure

Thread Local Storage

Thread Context

Thread Context
Add Threads

SGX1 Enclave

Expand Heap

Expand Stack

SGX2 Enclave

Application

OCall Based EPC Allocation

Begin with pre-defined regions in enclave

memory.
1. tRTS makes OCall to uRTS with base/size of

requested range

2. uRTS sends IOCTL to SGX Driver with base/size

3. SGX Driver uses ENCLS[EAUG] to commit

requested pages

4. IOCTL returns to uRTS

5. OCall returns to tRTS

6. tRTS uses ENCLU[EACCEPT] to accept newly

added EPC pages

28

Application

uRTS

Enclave

tRTS

OS Kernel

SGX Driver

Committed

Being Requested

Uncommitted

❻

❶

❷

❸

❹

❺

Trusted Run Time System (tRTS) makes a call out of the Enclave to the

Untrusted Run-Time System (uRTS) in the Application to request a range of EPC

pages:

Application
Enclave

OS Kernel

OS #PF Handler

tRTS

SGX Driver

Committed

Being Requested

Uncommitted

Page Fault Based EPC Allocation

Begin with pre-defined regions in memory

which the tRTS and SGX Driver know

about.
1. tRTS invokes ENCLU[EACCEPT] where a new

page is requested

2. Page Fault (#PF) results

3. OS #PF handler invokes SGX Driver to handle

the exception

4. Driver issues ENCLS[EAUG] on requested

pages

5. ENCLU[EACCEPT] is retried and succeeds

29

Trusted Run-Time System issues ENCLU[EACCEPT] to initiate EPC page allocation.

①

②

③

④

⑤
uRTS

Look in The Paper* for Details on …

A new construct (i.e. Dynamic Region) to improve performance of
#PF based EPC allocation

#PF based EPC allocation in action
 Dynamic Heap Expansion
 Dynamic Stack Expansion
 Dynamic Thread Context Creation

Future considerations
 Dynamic Code Loading
 Page Attribute Modifications

30

*Intel® Software Guard Extensions (Intel® SGX) Software Support for Dynamic Memory Allocation inside an Enclave

Backup

31

