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Legal Disclaimers

• The comments and statements are the presenter’s and not 
necessarily Intel’s

• Intel technologies’ features and benefits depend on system 
configuration and may require enabled hardware, software or 
service activation.  Learn more at intel.com, or from the OEM or 
retailer.

• No computer system can be absolutely secure.
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Application gains ability to defend its 
own secrets
– Smallest attack surface (app + processor)
– Malware that subverts OS/VMM, BIOS, 

Drivers  etc. cannot steal app secrets

Familiar development/debug
– Single application environment
– Build on existing ecosystem expertise

Familiar deployment model
– Platform integration not a bottleneck to 

deployment of trusted apps

Proxy Proxy Proxy

Hardware

VMM (Hypervisor)

OS

App App App

Scalable security within mainstream environment

Attack surface todayAttack surface with Enclaves
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Reduced attack surface with SGX
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EnclaveEnclave

What is an Enclave?

Enclave:  trusted execution environment embedded in a process

App Code

App Data

OS
Enclave 

Code

Enclave 
Data

• Own code and data

User Process

• Provides Confidentiality

• Provides integrity

• Controlled entry points

• Full access to app memory

• Supporting multiple threads

Enclave
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SECS



SGX2: Enclave Dynamic Memory Management 

(EDMM)
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In SGX1, an enclave’s set of committed pages is fixed at load time
 All memory that enclave might ever use must be added before initialization

EDMM instructions allow run-time changes to enclave memory while maintaining the SE 

security properties
 Reduces enclave build time and enables new usages

 Build a minimal enclave with minimal memory

 Expand to meet platform requirements

Enclave Dynamic Memory Management (EDMM) Motivation
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Enclave Setup (SGX1) Enclave Setup (Enclave Malloc)
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Example Software Usages

Heap and thread-pool management

On-demand stack growth

Dynamic module/library loading

Concurrency management in applications such as garbage collectors

Write-protection of EPC pages after initial relocation

On-demand creation of code pages (JIT, encrypted code modules)
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Application Memory Management with EDMM

Memory management operations:

 Page allocation and deallocation

 Thread (TCS) creation/destruction 

 Page permissions modification

Cooperative process between the OS and the enclave memory manager

 OS performs memory management on enclave’s behalf

 Enclave confirms request before changes take effect

Enclave memory manager hides complexity from application code
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Security Considerations

SGX guarantees the integrity of enclave code and data pages

Integrity of static enclave memory is provided by measurement

Dynamic memory management requires a new approach
 OS must be involved in page-table management, TLB flushes, …

 OS cannot be trusted not to violate SE security guarantees

 Example: OS converts a read-only page to a read/write page

Solution: Enclaves oversee every dynamic memory management 

transaction
 Enclave requests OS to perform memory management operation

 OS performs operation

 Enclave accepts the result, testing for unexpected behavior
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Software Flows
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OS

Heap Extension in Non-Enclave Applications 

Many software applications rely on 

a memory management library, 

such as the C runtime, to manage 

the application’s heap

 Applications request memory through the 

memory manager’s API
 Example: malloc
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OS

Heap Extension in Non-Enclave Applications

Memory management libraries 

utilize operating system facilities to 

obtain committed memory to back 

the application heap

 Memory manager maintains a set of free 

pages that is used to fulfill heap allocation 

requests

 When the manager exhausts its supply of 

free pages, it requests additional memory 

through the OS API
 Example: sbrk

 May be committed lazily or on demand
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malloc

Enclave

OS

Heap Extension in Enclave Applications

Enclaves contain their own  

memory management library for 

managing the heap in enclave 

applications

 As before, applications request memory 

through the memory manager’s API

 Enclave memory manager API will likely 

be similar to existing memory 

management libraries
 Example: malloc
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Enclave

OS

Heap Extension in Enclave Applications

Enclave memory manager utilizes 

enclave-specific OS APIs to obtain 

committed EPC memory to back 

the application heap

 As before, memory manager maintains a 

set of free pages that is used to fulfill heap 

allocation requests

 When the manager exhausts its supply of 

free pages, it requests additional memory 

through the OS API
 May be committed lazily or on demand

 OS implementation uses SGX2 instruction 

EAUG to add EPC pages to the enclave
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Enclave

OS

Heap Extension in Enclave Applications

Before accessing newly committed 

pages, the enclave memory 

manager must accept the EPC 

allocation performed by the OS

 Call to EACCEPT instruction

17

Enclave 

Memory 

Managemen

t Library

Application

malloc

Hardware

memory 

commit 

request

EAUG

HW adds 

page to 

enclave

additional 

memory

EACCEPT

pointer to 

allocated 

memory



Instruction Set Architecture
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Data Structures

EPCM
 Per-page meta-data information introduced in SGX1

 Structure extended to support PENDING, MODIFIED, and Permission Restriction states
 May not be set simultaneously

SECINFO
 64B data structure introduced in SGX1

 Structure extended to support and PENDING, MODIFIED, and Permission Restriction (PR) bits
 Bit 3: PENDING

 Bit 4: MODIFIED

 Bit 5: PR

PAGE_TYPE
 Per-EPC page type information introduced in SGX1

 Datatype extended to include a new value for deallocated pages (PT_TRIM)
 PT_TRIM encoding  = 4
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Page Type: PT_TRIM

Trimmed pages
 Trimmed state indicate that a page is in the process of being deallocated

 Trimmed  pages are not accessible to software

Trimming
 System Manager executes EMODT which sets type to PT_TRIM and set 

modified state

 Enclave Manager executes EACCEPT which clears modified bit

 System Manager executes EREMOVE which marks the page invalid.
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MISC Area Review

• MISC Area part of SSA Frame

• MISC Area fields supported by CPU are 

enumerated by CPUID.SE_LEAF.0.EBX

• Enclave writer opt-in to use of supported MISC 

Area fields using new dedicated MISCSELECT 

field in SECS

• Similarly to opting-in for use of XSAVE features

• Frame size calculation includes new MISC area

• Effective value of MISCSELECT becomes 

attestable property of enclave

• It stirred into enclave keys

• It becomes part of enclave REPORT

RSRV Exitinfo

URBP

URSP

RBX

RAX

GSBASE

FSBASE

New Field 3

New Field 2

New Field 1

SSA 

Base

XSAV

E

Area

MISC 

Base

GPR 

Base

MISC 

Area

GPR 

Area

SECS.MISCSELECT

0 0 0 0 0 0 0 0 0 1 1



SGX2 Information and Error Codes
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MISC Components Offset (Bytes) Size (bytes) Description

EXINFO base(GPRSGX)-16 16 if CPUID.(EAX=12H, ECX=0):EBX[0] = 1, exception information on #GP or

#PF that occurred inside an enclave can be written to the EXINFO structure

if specified by SECS.MISCSELECT[0] = 1.

Future Extension Below EXINFO TBD Reserved. (Zero size if CPUID.(EAX=12H, ECX =0:EBX[31:1] 

= 0)

PFINFO Field

Name Offset Size

MADDR 0 8

ERRCD 8 4

RESERVED 12 4

PFINFO.ERRCD Field

Bit Layout

31 16 15 14               6 5 4 3 2 1 0

Zero SGX Zero PK I/D RSVD 1* WR P

SGX2 MISC Field

ERRCD Field



ENCLS leafs

ENCLS[EAUG]
 Allocates and zeroes a PT_REG page with read/write permissions

 Put page in Pending stage to prevent application access to page

 Requires call to EACCEPT to make page available to enclave

ENCLS[EMODT]
 Changes page type from PT_REG to PT_TCS or PT_TRIM

 Puts page into Modified state to prevent access to the page

 Requires call to EACCEPT to make page available to enclave

ENCLS[EMODPR]
 Restricts the access rights of the page

 Puts page into Permission Restricted State

 Page remains accessible inside enclave

 Requires call to EACCEPT to guarantee the change across all processors
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ENCLU Leafs

ENCLU[EACCEPT]
 Checks that page performed correctly (allocation, deallocation, permissions change, etc.)

 Verifies that all TLB mappings to target page have been flushed 

 Uses the epoch-tracking mechanism introduced by SGX1

 Clears PENDING, MODIFIED, or Permission Restricted states

ENCLU[EACCEPTCOPY]
 Copies contents of an enclave page into a page allocated by EAUG.

 Uses SECINFO field inside enclave to specify the destination type and permissions

 Clears PENDING State

ENCLU[EMODPE]
 Extends the EPCM permissions associated with a regular page

 Page remains accessible to enclave with original permissions

 TLB shoot-down not necessary to gain access to extended permissions

 Requires call to OS to extend the page-table permissions
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SDK Support
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A Little Background on the SGX Run-Time System

Kernel Module (SGX Driver)
 Manages EPC Physical Memory

 Enclave Loading

 Memory Allocation/Deallocation

 Page Swapping / Page Faults

Untrusted Run-Time System (uRTS)
 Loading and Unloading of Enclaves

 Sends IOCTLs to SGX Driver 

 Call Management: Handle all calls to/from the enclave

 ECall : Call from Application to the Enclave

 OCall : Call from Enclave to the Application

 Exception Handling: Call back into the enclave

Trusted Run-Time System (tRTS)
 Enclave Loading: Complete the trusted enclave load

 Call Management: Configure ECalls/OCalls 

 Exception Handling : Enclave generated exceptions
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Putting SGX2 Instructions to Use

Adapt to varying workloads with Dynamic EPC Allocation:
 Basic Method: OCall Based

 More Efficient Method: Page Fault Based
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OCall Based EPC Allocation

Begin with pre-defined regions in enclave 

memory.
1. tRTS makes OCall to uRTS with base/size of 

requested range

2. uRTS sends IOCTL to SGX Driver with base/size

3. SGX Driver uses ENCLS[EAUG] to commit 

requested pages

4. IOCTL returns to uRTS

5. OCall returns to tRTS

6. tRTS uses ENCLU[EACCEPT] to accept newly 

added EPC pages
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Application
Enclave

OS Kernel

OS #PF Handler

tRTS

SGX Driver

Committed

Being Requested

Uncommitted

Page Fault Based EPC Allocation

Begin with pre-defined regions in memory 

which the tRTS and SGX Driver know 

about.
1. tRTS invokes ENCLU[EACCEPT] where a new 

page is requested

2. Page Fault (#PF) results

3. OS #PF handler invokes SGX Driver to handle 

the exception

4. Driver issues ENCLS[EAUG] on requested 

pages

5. ENCLU[EACCEPT] is retried and succeeds
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Trusted Run-Time System issues ENCLU[EACCEPT] to initiate EPC page allocation.

①

②

③

④

⑤
uRTS



Look in The Paper* for Details on … 

A new construct (i.e. Dynamic Region) to improve performance of 
#PF based EPC allocation

#PF based EPC allocation in action
 Dynamic Heap Expansion
 Dynamic Stack Expansion
 Dynamic Thread Context Creation

Future considerations
 Dynamic Code Loading
 Page Attribute Modifications
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*Intel® Software Guard Extensions (Intel® SGX) Software Support for Dynamic Memory Allocation inside an Enclave



Backup
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