
1

Intel® Software Guard Extensions (Intel® SGX) Support for
Dynamic Memory Management Inside an Enclave

Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon Johnson, Rebekah Leslie-Hurd,
Carlos Rozas

Intel Corporation

{frank.mckeen, ilya.alexandrovich, ittai.anati, dror.caspi, simon.p.johnson, rebekah.leslie-hurd,

carlos.v.rozas}@intel.com

ABSTRACT
We introduce Intel® Software Guard Extensions (Intel® SGX)
SGX2 which extends the SGX instruction set to include dynamic
memory management support for enclaves. Intel® SGX is a subset
of the Intel Architecture Instruction Set [1]. SGX1 allows an
application developer to build a trusted environment and execute
inside that space. However SGX1 imposes limitations regarding
memory commitment and reuse of enclave memory. The software
developer is required to allocate all memory at enclave instantiation.
This paper describes new instructions and programming models to
extend support for dynamic memory management inside an enclave.

1 INTRODUCTION
Software Guard Extensions (SGX) [1] [2] [3] [4] provides the
capability to protect specified areas of an application from outside
access. The area is called an enclave and hardware provides
confidentiality and integrity for the specified area. SGX allows
software developers to build trusted modules inside an application to
protect secrets. A software developer specifies the contents of an
enclave and a relying party can confirm that the area is instantiated
correctly on a remote machine. To enforce isolation, hardware
performs extra memory checks such that only enclave code can
access enclave data. When the external software attempts to access
the enclave, hardware will abort the accesses. In this manner SGX
provides a trusted place to stand for application developers. The first
release of the SGX architecture is referred to as SGX1.

While working with software developers, three shortcomings
with the SGX1 were identified. First all enclave memory must be
committed at enclave build time. This increases the build time.
Committing memory places pressure on the enclave page cache
(EPC), which is where enclave pages reside in memory and which is
a limited resource. Lastly, the enclave cannot be easily adapted to a
particular workload or environment. For example, an enclave
developer must allocate memory for worst-case memory
consumption of any workload. Otherwise, the enclave developer will
need to release enclaves designed for different size workloads, each

with a unique measurement. Likewise, the enclave developer must
allocate memory for the maximum number of threads that the
application may use for workload and platform combinations.

The second shortcoming is related to the management of
access permissions associated with an enclave page. SGX extends
the access permission model by associating an additional set of
access permissions with enclave page that are stored in a SGX
structure called the Enclave Page Cache Map (EPCM). The SGX
enclave page permissions in EPCM are consulted after the page
table’s permissions checks have been applied. In SGX1, the
permissions are associated when a page is added to an enclave and
cannot be changed afterwards. This means that permissions need to
be set to allow all possible usages of the page. For example, in order
to relocate code inside an enclave, the access type must be left as
Read, Write, Execute (RWX). The inability to modulate page
permissions can constrain or limit certain capabilities inside an
enclave such as garbage collectors, which require the enclave
memory manager to periodically restrict write access to the page.

The last shortcoming is related to library OS support where
secure exceptional handling and lazy loading code inside an enclave
are important features. SGX1 has support for exception handling
inside the enclave but deficiencies were identified of information
recorded when a general protection fault or page fault occurs inside
an enclave. Lazy loading of code is important to library OS usage as
the entire application and Library OS runs inside the enclave which
can be large. Deferring the loading of code presents unique security
and functional requirements as compared to deferred commitment of
heap and stack.

To address these problems six new instructions and new
exception behavior were added to the SGX architecture known as
SGX2. These instructions provide software with more capability to
manage memory and page protections from inside an enclave. The
new exception behavior provides page management capability. This
paper describes theses instructions and explains how to use them.

This paper is divided into several sections. In Section 2, we
provide an overview of the SGX security requirements and dynamic
memory management requirements. Section 3 describes software
flows to make use of the SGX2 instructions. Section 4 describes the
SGX2 instruction set and software model. Section 5 describes some
of the implementation and validation issues and concerns. It also
describes how we addressed the concerns when implementing these
instructions. Finally in section 6 we draw conclusions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org.
HASP '16, June 18 2016, ,
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-4769-3/16/06…$15.00
DOI: http://dx.doi.org/10.1145/2948618.2954331

2

2 SGX2 Considerations & Requirements
An explicit goal of SGX2 was to address the shortcomings of SGX1
while maintaining the security properties of the SGX architecture and
system software. To provide dynamic memory management several
conditions need to be satisfied.
• Manipulating memory and permissions of an enclave must be

done with the knowledge and consent of the enclave. This
enables the enclave to manage its own security

• If enclave code is changed incorrectly or without knowledge of
the enclave, execution should be suspended until the condition
is resolved.

• The system resource manager (OS or VMM) must be able to
manage and allocate the resources as requested using standard
techniques and priorities.

• Manipulation of memory permissions involves both the system
permissions and the EPCM permissions. EPCM permissions
allow the enclave developer to specify the restrictions and
access control for the enclave.
To achieve these requirements, the memory management

function must be split between a system memory resource manager
(system manager) which manages the system resources and an
internal enclave resource manager (internal manager) which
manages the enclave memory from inside the enclave. A protocol
which consists of communication between the system manager and
an internal manager is needed. This is shown in Figure 2-1.

The system memory manager is responsible for allocating
memory, paging memory, changing permissions, and changing page
types. This includes managing the page table entry permissions and
initiating EPCM permissions of the enclaves. Changes to the EPCM
permissions and page types are done using the instructions described
in section 3. The system manager is also responsible for managing
the TLBs of each thread.

The internal manager is responsible for starting memory
change requests and verifying that the system manager has processed
the requests correctly. In addition the internal manager can make
some changes in EPCM permissions of an enclave page. The internal
manager does not have direct access to the page tables and must
request the system manager to make changes in page table entry
(PTE) permissions. New instructions provide the internal manager
the capability to check and commit the results of the requested
operation.

Figure 2-1 System and Internal Memory Managers

This division of work is shown in Figure 2-1. Step 1: the internal
manager sends a request to the system manager. The system manager
performs the requested operation(s). It then returns to the internal
memory manager with a response indicating success or failure as
shown in step 2. The internal memory manager then checks the result
to ensure the request was fulfilled correctly. If the operation was
performed correctly the results are committed. If there is an issue
with the request, an exception or failure is generated. Details of the
protocol and software usage are discussed in section 3.

 Security Considerations
The software inside an enclave must be able to ensure that changes
in permission do not affect the security of the enclave in a negative
way. The hardware must protect enclave software from attacks as
described in [5] and [6]. With dynamic memory management some
new constraints and requirements are introduced.

Enclave software may change the permissions of a page to
reduce the access capabilities or increase the access capabilities. For
example software may make the page read only from read, write,
executable. In this case the permissions are reduced. An example of
increasing permissions would be setting a page from read to read,
write, execute. When enclave software wishes to increase access
permissions to a page it is acceptable for processors to switch to the
more lenient permission lazily. The system manager can update the
page tables and EPCM entries. If the translation lookaside buffer
(TLB) contains the older, more restrictive permissions for an enclave
page, a page fault occurs on the access. The act of exiting the enclave
clears the TLB of the previously cached and the more restrictive
address translations and permissions in the TLB. The system
manager checks that the page is mapped correctly. It will return to
the program and resume execution. The enclave resumes execution
and subsequent access will load the TLB with the new and more
lenient permissions. The enclave security is not compromised if the
page is accessed with the older permissions.

When enclave software wishes to restrict page permissions,
there must be a point where the enclave can be assured the permission
restrictions are complete and the previous cached address
translations or cached permissions are removed. SGX2 extends the
SGX1 TLB checking mechanism used for enclave paging to
guarantee to the enclave that the old permissions are removed from
the TLBs. The details are discussed in section 3.3

Software applications which handle their own memory paging
and exceptions need secure reporting of these exceptions. SGX2
extends SGX1’s MISC field of the State Save Area (SSA) with the
EXINFO field that holds information about memory paging faults
and general protection faults

SGX1 allows the system memory manager to remove pages
from an enclave using the EREMOVE leaf function. However, since
the enclave doesn’t participate in this process it doesn’t know if the
page has actually been removed. If an enclave wants to return pages
to the system manager but be able to reuse the same addresses later,
it needs to be told explicitly when the pages have been removed from
the enclave. A 2-step protocol will be used to perform the operations.
This protocol allows the enclave to know that the pages are removed.
It can then reassign them as needed. Without the protocol an attacker
could randomly substitute pages without the enclave’s knowledge
and permission. See section 3.2 for more information.

 Software Considerations
The internal memory manager has certain functions it must perform
to reallocate the memory resources. For example, when an

3

application needs to add a thread, pages must be allocated as Thread
Control Structure (TCS), State Save Area (SSA) pages, and thread
local variables. If the internal memory manager is allocating from a
general pool of PT_REG pages, it must request the OS to change the
page type to PT_TCS for TCS pages. In addition, it may want to
remove execute capability from SSA pages. In order to change the
page type the enclave memory manager requests that the system
manager change the page type using one of the SGX2 instructions. If
the enclave memory manager needs more recourses from the system
manager it should call the system manager to allocate resources to
the enclave using one of the SGX2 instructions

Exception Reporting Inside an Enclave
Usages, such as a library OS, receive exceptions inside an enclave.
This allows the enclave software to inspect exceptions being reported
to make sure the external software is providing the correct
information. In this case the exception condition should be reported
inside the enclave. The enclave can then look at the information as
needed. SGX2 adds several exception conditions to the SSA frame
when exiting an enclave. They include page faults (#PF) and general
protection violations (#GP). Enclave developers can opt-in to
receiving this additional information to allow the internal manager to
approve the requests.

Demand Loading of Library Pages
Library pages are loaded on demand when the program touches the
page. When page fault occurs software would like to load the page
into the location of the fault. The internal manager must have a
mechanism to load the page without allowing access until the copy
is complete. SGX2 adds a leaf function to perform the copy securely.
See section 3.5 for detailed steps.

3 SGX2 Overview and Usage
SGX1 enclave memory managers can support dynamic allocation of
memory using malloc and free. However, they require enclave
memory (heap) to be committed by the operating system at enclave
build time. Furthermore, enclave memory managers have limited or
no support for page permission modification, dynamic thread
creation, and lazy loading of code. In addition, new software models
related to library OSes require improved exception reporting.

Table 3-1 SGX2 Instruction Leafs

To improve the enclave memory management and library OS
support, the SGX2 extension adds three enclave ENCLU leaf
functions and three privileged ENCLS leaf functions. Table 3-1
provides a short description of the new leaf functions. The details of
the new SGX2 leaf functions are discussed in section 4.

 In addition to the new leaf functions, a new SGX page type,
PT_TRIM, is defined to allow an enclave to remove a page from the
enclave and reclaim the linear address for future use. Lastly,
information about enclave generated General Protection Faults
(#GP) and Page Faults (#PF) are store in the enclave’s State Save
Area (SSA).

A high level conceptual software protocol for using the new
SGX2 leaf functions is illustrated in Figure 3-1 In the protocol, the
enclave’s internal memory manager starts by making a system call to
the system manager requesting some operation (e.g. permission
modification using EMODPR). The system manager will perform
the operation and return back to the internal manager which then
verifies and/or completes the operation (e.g. invokes EACCEPT). It
is also possible to initiate the protocol using faults generated by the
enclave. For example, enclave memory commitment can be driven
by an enclave accessing an allocated but not yet committed memory.

 Enclave Malloc
To implement dynamic memory allocation and commitment, the
enclave runtime system and the operating system have to agree on a
protocol that coordinates the operating system usage of EAUG and
the enclave runtime system usage of EACCEPT.

The following is an example protocol:
1. Internal manager requests memory which results in the enclave

runtime system to allocate memory from its internal pool of
memory. When the memory pool runs low the internal manager
requests the system manager to allocate more memory from the
virtual address space.

2. The system manager allocates virtual address space but does not
commit memory and returns a reference to the virtual address
space to the internal manager

3. The enclave internal manager returns a reference to the enclave.
When the enclave accesses the newly allocated memory, a page
fault is generated as memory has not been committed.

4. The OS page fault handler detects that the virtual address has
been allocated but memory has not been committed. The OS
commits memory by using EAUG and maps the committed but
pending page into the enclave address space. The OS then sends
a signal to the enclave internal manager.

5. The internal manager receives the signal from the OS that
memory has been committed for a particular address. The
internal manager checks that the virtual address has been
allocated but not yet committed. If those checks pass, the
internal manager executes EACCEPT which allows the enclave
to access the pending page. The signal handler returns back to
the application which eventually results in the enclave
execution resuming.

Leaf function Description
ENCLS[EAUG] Add a regular read/write accessible

page of zeros to an already
initialized enclave

ENCLS[EMODT] Modify the type of an existing EPC
page

ENCLS[EMODPR] Restricts access permissions of an
existing EPC page

ENCLU[EACCEPT] Accepts page type modifications to
the running enclave

ENCLU
[EACCEPTCOPY]

Copies existing EPC page content
into EAUGed page and accepts the
page into the running enclave

ENCLU[EMODPE] Extends access permissions of an
existing EPC page

4

Internal Memory Manager
EACCEPT
EACCEPTCOPY
EMODPE

External Memory Manager
EAUG
EMODT
EMODPR
ETRACK

Application

OS

1
2

3

4Enclave

Systemcall / Fault

Return from Systemcall /
Signal

Figure 3-1 SGX2 Software Flow

 Enclave Free
SGX1 allows for the virtual address space to be released and
committed memory to be reclaimed with certain limitations. SGX2
provides a more robust reclamation of committed memory. EMODT
is used to modify the EPCM of the page to prepare it for removal. As
mappings to the page may be cached in a TLB, SGX2 extends
ETRACK to track the flushing of TLBs when restrict accessing
pages with EMODT and EMODPR. EACCEPT will verify that TLB
mappings have been removed. Once again the OS and enclave
runtime system need to coordinate the execution of EMODT,
ETRACK, and EREMOVE by the OS and execution of EACCEPT
by the enclave runtime.
The following is an example protocol:
1. The enclave releases allocated memory and the internal

manager decides to release address space back to the OS.
2. The system manager executes EMODT on all pages being freed

to change the page type to PT_TRIM and to clear the EPCM
access permission bits. This begins the process of decommitting
memory. The system manager then executes ETRACK on the
SECS of the calling enclave and then sends IPIs to logical
processors which may contain TLB mappings to the pages that
had been trimmed.

3. Once all logical processors responded to the IPI, control is
returned to the internal manager.

4. The internal manager verifies that committed memory has been
decommitted by executing EACCEPT to verify that the pages
have been trimmed using EMODT and all stale TLB mappings
have been flushed. The internal manager needs to update its
tracking information that the virtual address has no committed
memory.

5. The system manager can later reclaim the committed memory

by executing EREMOVE on the trimmed pages.

 Changing Page Permissions
Enclave runtimes have varying reasons to change access permissions
to a page. For example, an enclave loader may need to perform
address relocations to pages which at runtime should not be writable.
Thus before allowing execution the enclave loader needs to update
the contents of the pages and then remove write permissions to the
pages. The enclave runtime may have garbage collector which needs
to periodically mark pages as read-only and then restore write
permissions to the pages.

SGX2 has two separate flows for changing EPC page
permissions. If the change is entirely permissive then the following
protocol can be used:
1. The internal manager executes EMODPE to extend the page

permissions in the EPCM.
2. The internal manager requests the system manager to extend

page permissions in the page tables.
The order of operations can also be reversed if desired.

If the change in permission is purely restrictive, a more
complex protocol is required as EMODPR will modify EPCM
permissions to be more restrictive but TLB mappings with more
permissive accesses may exist in some processors. The following is
an example protocol:
1. The internal manager requests that the system manager to

restrict permissions on a page.
2. The system manager executes EMODPR and updates page table

permissions. After permissions have been updated, the system
manager executes ETRACK on the SECS of the calling enclave
and sends IPIs to all processors that may be executing inside the
enclave to flush TLB mappings.

3. After all IPIs have been acknowledged, control is returned to
the internal manager. The internal manager verifies that page
permissions have been restricted and TLB mappings flushed by

5

executing EACCEPT.
If a permission change is both restrictive and permissive, for

example, a change from read-write to read-execute, the internal
manager should request the permission restriction first and then
permission extension to avoid undesirable intermediate states.

 Thread Control Structure Allocation
SGX2 supports the allocation of Thread Control Structures (TCS) at
runtime. The software protocol is very similar to page restriction
except that instead of executing EMODPR the OS executes EMODT.

The internal manager starts by picking a 4K page in the
enclave’s linear address space as described in 3.1 and initializes the
page with appropriate TCS values. The TCS configuration values
include the size and location of the State Save Area, the enclave entry
point for the TCS, and the FS/GS base values.

Once the internal manager has determined an acceptable
address, the following protocol can be used:
1. Internal manager initializes the contents of a regular EPC page

with appropriate TCS values. If the enclave memory has not
been committed then internal manager will need to perform a
request to allocate memory as described in section 3.1. After the
contents of the page have been initialized, the internal manager
requests that the system manager convert the page to a TCS.

2. The system manager executes EMODT to set the page type to
PT_TCS and to clear the EPCM access permission bits. The
page is also marked modified which prevents the page from
being used as a TCS until the enclave accepts the TCS via
EACCEPT. The system manager then executes ETRACK. The
system manager sends IPIs to flush all old mappings to the page
and returns control to the internal manager.

3. The internal manager executes EACCEPT on the modified TCS
page. EACCEPT will verify that TLB mappings have been
flushed and perform consistency checks on the TCS page before
clearing the modified bit and making the page available to
EENTER.

 Dynamic Loading of Modules
To support dynamic loading of modules, SGX2 provides
EACCEPTCOPY which allows the internal manager to atomically
initialize the contents and permission of a page. Here is an example
protocol for allowing the dynamic loading of a module a page at a
time:
1. First, the internal manager indicates to the system manager that

a virtual address space has been allocated but not committed
(same as in 3.1).

2. When an enclave attempts to access a page in this virtual
address, a page fault is generated and the system manager
commits memory by executing EAUG and signals the internal
manager.

3. The internal manager identifies the virtual address as belonging
to a module page to be loaded. The system manager may load
the contents of the page into regular memory or the enclave
runtime system may need to request the content be loaded into
regular memory.

4. The internal manager then copies the contents of the module
into private enclave memory. The internal manager should
verify the integrity of the contents and apply any required
relocations. Finally, the internal manager copies the contents
and initializes permissions using EACCEPTCOPY.

The use of EACCEPTCOPY for dynamic loading is required because
of potential races with other threads in the enclave. For example, if
the internal memory manager attempted first EACCEPT and then

initialize the contents and permissions, a second thread in the enclave
could read the contents of the page before the page has been
completely initialized or could modify the contents of the page
before permission restrictions have occurred.

 Library OS Support
Library OSes provide a new type of container where an application
is bundled with an OS runtime that executes in user level (ring 3) [7]
A critical requirement for SGX enabled library OSes is to provide
secure exception handling. In particular, the library OS exception
handler must be able to securely determine that an exception was
generated by an enclave, the type of exception (e.g. page fault), and
information about the faulting condition.

SGX2’s enhanced enclave exception handling provides the
enclave runtime information about exceptions occurring inside the
enclave. This secure reporting of exceptions allows enclave runtime
systems to invoke application exception handlers without relying on
the external exception handling system.

Figure 3-2 SGX enabled LibOS exception handling

Figure 3-2 illustrates the usage of enhanced exception handling
in a SGX enabled LibOS.
1. The process begins with an exception generated inside an

enclave. The processor records exception information in the
Save State Area and delivers the exception to the OS exception
handler.

2. If the OS cannot handle the exception, the OS signals the LibOS
PAL (Platform Adaptation Layer) exception handler.

3. The LibOS PAL executes EENTER to invoke the LibOS
exception handler inside the enclave.

4. The LibOS exception handler reads the exception information,
generates an OS specific exception context, and invokes the
application exception handler inside the SGX enabled LibOS.

4 SGX2 ISA
The SGX2 extension adds new SGX leaf functions and capabilities
including three ENCLS leaf functions (EAUG, EMODT, and
EMODPR) described in 4.1 and three ENCLU leaf functions
(EACCEPT, EACCEPTCOPY, and EMODPR) described in 4.2. In
addition to the new leaf functions, a new SGX page type, PT_TRIM,
is used in conjunction with the new leaf functions. In addition to the
new leafs, SGX1 leaf functions and structures have been enhanced
to support SGX2 functionality. The ENCLS[ETRACK] leaf
functionality has been enhanced to support tracking enclave page
translations for SGX2 related activities and is described in 4.3. The

6

Security Information’s (SECINFO) FLAGS field has been enhanced
to include the new flag bits “Pending”, “Modified”, and “Permission
Restriction”. This information is saved by ENCLS[EWB] and
restored by ENCLS[ELDU/ELDB].

Separate from the new leaf function, SGX2 allows recording
information concerning General Protection Faults (#GP) and Page
Faults (#PF) exceptions from within the enclave which is described
in 4.4.

To help system memory managers to determine whether a page
fault was generated by violation of access permissions of page tables
versus violation of access permissions of the EPCM, a new Page
Fault Error Code bit called PFEC.SGX was added and is described
in 4.5.

 ENCLS leaf functions
EAUG
This leaf function augments the enclave with a page of zeros by
zeroing a page of EPC memory, associating that page with an SECS
page, and updating the linear address and security attributes in the
page’s EPCM entry. A successful execution of the function puts the
page in “Pending” state. The operation receives two input
parameters, a pointer to the destination page in EPC, and a pointer to
the enclave’s SECS page. While in “Pending” state, the page cannot
be accessed by anyone, including the enclave. Only after the enclave
approves the page by using the ENCLU[EACCEPT] leaf function,
will the page be accessible to the enclave.

EMODT
This leaf function modifies the type of an EPC page and puts the page
in “Modified” state. Allowed page types are PT_TCS and PT_TRIM.
The operation receives two input parameters, a pointer to the target
page in EPC, and a pointer to the page’s new security attributes.
While in “Modified” state, the page cannot be accessed by anyone,
including the enclave. Only after the enclave approves the page by
using the ENCLU[EACCEPT] leaf function, will the page be
accessible to the enclave.

EMODPR
This leaf function restricts the access rights associated with an EPC
page of an initialized enclave and puts the page in “Permission
Restriction” state. The operation receives two input parameters, a
pointer to the target page in EPC, and a pointer to the page’s new
security attributes. The operation will fail if it attempts to extend the
permissions of the page. While in “Permission Restriction” state, the
page cannot be accessed by anyone, including the enclave. Only after
the enclave approves the page by using the ENCLU[EACCEPT] leaf
function, will the page be accessible to the enclave.

 ENCLU leaf functions
EACCEPT
This leaf function must be executed from within an enclave. It
accepts changes to a page in the running enclave by verifying that
the security attributes specified in SECINFO match the page’s
security attributes in EPCM. The operation receives two input
parameters, a pointer to the target page in EPC, and a pointer to the
page’s approved new security attributes. After a successful execution
of EACCEPT the page’s “Pending”, “Modified”, or “Permission
Restriction” state is cleared and the page becomes accessible to the
enclave.

EACCEPTCOPY
This leaf function must be executed from within an enclave. It copies
the contents of an existing EPC page into an uninitialized EPC page
that was created by EAUG. The operation receives three input
parameters, a pointer to the target page in EPC, a pointer to the page’s
new security attributes, and a pointer to the page’s new content. After
a successful execution of EACCEPTCOPY the page’s “Pending”
state is cleared and the page becomes accessible for the enclave

EMODPE
This leaf function must be executed from within an enclave. It
extends the access rights associated with an existing EPC page in the
running enclave. The operation receives two input parameters, a
pointer to the target page in EPC, and a pointer to the page’s new
security attributes. The operation will fail if it attempts to restrict
permissions of the page. Since the execution happens from within the
enclave, it’s trusted and takes effect immediately.

 Managing Page Table Translations
SGX2 extensions modify the access rights of pages of an initialized
enclave. As such, any stale page table translation must not
compromise the security objective of SGX. The ENCLS[ETRACK]
leaf function used in SGX1 in the paging process is extended for
SGX2 to ensure that stale page table mappings are removed from
TLBs prior to committing the page’s new attributes. Table 4-1
describes the TLB synchronization requirements for the SGX2 leaf
functions.

EMODPE is a special case that doesn’t require TLB
synchronization for security, but software could use the
synchronization mechanism to guarantee that all threads will observe
the new permissions.

Table 4-1 Page Table Tracking

Leaf function TLB synchronization
EAUG Not required
EMODT Required. Enforced by EACCEPT
EMODPE Optional.
EMODPR Required. Enforced by EACCEPT
EACCEPTCOPY Not required

 Enclave Exception Handling
Enhancements

In the SGX architecture, whenever an exception or interrupt occurs
while executing inside an enclave, the processor performs an
asynchronous enclave exit (AEX) which securely saves the state of
the processor inside the enclave’s SSA, replaces it with synthetic
values, and exits the enclave. In addition to saving the state of the
processor, the cause of the AEX is stored in the EXITINFO field in
the SSA. This allows an enclave exception handler to determine the
cause of the exception and attempt to resolve the cause of the
exception. SGX2 extends this mechanism and provides enclave
writers an opt-in to save information about page fault and general
protection fault exceptions inside the MISC field of the SSA by
setting the EXINFO bit (bit 0) in the SECS.MISCSELECT field
during enclave creation. If SECS.MISCSELECT.EXINFO bit is set,
the processor saves #PF and #GP information into the EXINFO
structure as shown in Table 4-2:

7

Table 4-2 EXINFO Field

Field Offset
(bytes)

Size
(bytes)

Description

MADDR 0 8 If #PF: contains the page
fault linear address that
caused a page fault.
If #GP: the field is cleared

ERRCD 8 4 Exception error code for
either #GP or #PF

 EPCM-induced Memory Fault Reporting
When a memory reference is unable to complete due to settings in
the EPCM which prevent the access, a #PF exception is generated. A
bit in the Page Fault Error Code (PFEC) indicates that the page fault
was due to EPCM access checks. This bit is located at bit position 15
and called “SGX”.

The SGX bit is set only if there is a valid translation for the
linear address and its cumulative Paging/EPT access rights permit
the access. The processor always provides SGX bit in the page fault
error code pushed onto the stack of the exception handler. This bit is
also provided inside the enclave in EXINFO if the MISCSELECT
field has enabled it.

Processors that support SGX2 also support the SGX page fault
error code without any explicit opt-in by system software. This bit is
provided inside the enclave in EXINFO if the MISCSELECT field
has enabled it.

5 SGX2 Validation
SGX maintains a large amount of global security sensitive data for
its operation. This includes per-page metadata stored in the EPCM,
per-enclave and per-thread control structures (SECS, TCS) and page
versions (VA). Accesses to this data, which is shared across all
logical processors, must be appropriately synchronized to maintain
security, while still maximizing parallelism for performance. These
sometimes contradicting requirements along with the need to be
compatible with both system software and application operation,
necessitated the usage of complex synchronization mechanisms in
SGX.

Concurrency-related complexity in SGX2 is greatly increased
over SGX1. Some previous restrictions on the software concurrent
operation have been lifted. Page Table translation tracking now
serves multiple, potentially concurrent, processes. In addition to
paging, it is now used for freeing pages, adding new enclave threads
and changing page permissions.

 Formal Modeling and Verification
Applying formal verification techniques very early in the design
process allowed us to find pernicious concurrency bugs and to
increase our confidence that critical errors in the design were not
being overlooked.

A formal model of SGX was created; its main goal was to
detect bugs related to multi-threaded operation of SGX, which would
impact its security properties. The model concentrated on the
complex aspects of the architecture, where non-trivial
synchronization mechanisms are used, especially around enclave
page management and Page Table translations tracking.

Formal verification is commonly used at Intel for arithmetic
and protocol validation. SGX instruction flows resemble concurrent
software algorithms, where multiple threads access shared data
structures. Linearizability for these type of algorithms is extremely

helpful for validation. In a linearizable system, one cannot observe
the difference between a sequentialized trace where each instruction
executes atomically at its linearization point and a real trace that
arises in the concurrently executing system. SGX is linearizable if
each instruction appears to take effect atomically at some moment in
time between its invocation and termination, called its linearization
point [8]

An SGX-based system is complex to model as a whole.
Several optimization techniques were applied in order to model SGX
within reasonable run times:
• Management of an enclave page is (almost) independent of

other pages. Thus, a single concise page is modeled.
• An enclave is independent of other enclaves. Thus, a single

concise enclave is modeled.
• SGX control fields that have small or no relevance to security

(as impacted by concurrent operation) are selectively ignored.
• The model uses a “worst case” approach, e.g., it assumes a

Logical Processor creates a translation to an EPC page as soon
as it enters enclave mode, while in reality this would only
happen when the processor actually accessed the page.

• The initial state space is pre-calculated, saving the large number
of modeling steps it would require to achieve all possible states.

Using formal verification, we have detected several concurrency-
related bugs during SGX architecture development.

 Implementation-Level Validation
For the same reasons mentioned above, much of the implementation-
level validation effort was dedicated to multi-threaded validation.

Concurrency issues may be difficult to detect by examining the
architectural state of the processor. Therefore, white-box checking
was used, monitoring the micro-architectural state during SGX
instruction execution. A generic data race detector [9] was applied,
in addition to multiple dedicated checkers, many of which were
derived from the formal model’s assertions and verified similar
linearizability criteria.

Many concurrency issues express themselves only under
certain inter-thread timing conditions. To increase the chance of
recreating such timing during validation, pseudo-random time delay
“bubbles” were inserted in selected places in the SGX flows (e.g.,
near inter-thread synchronization points such as lock acquisition and
release).

Several coverage criteria were applied. One criterion is
synchronization coverage [10]. Other include a table of cross-
instruction interaction and multi-instruction sequences.

6 Summary and related work
We have shown that adding new instructions to the current SGX1
programming model can provide better software development
environment while maintaining the security properties of the enclave.
The SGX2 instructions enable better protection of proprietary code
which can be loaded and then protected using the EPCM. These
instructions also allow for dynamic memory and threading support
which is common among programming models. In addition features
were added to support dynamic allocation of library pages in the
library OS environment.

Using these instructions, developers can produce enclaves
which can more robustly respond to individual system configurations
and requirements.

7 ACKNOWLEDGEMENTS
The authors would like to thank the Microsoft Haven development

8

team, Andrew Baumann, Marcus Peinado, and Galen Hunt, They
provided great feedback and insight as the instruction set was
developed. [7] Their feedback and guidance provided valuable
insight into the issues faced by advanced applications and library
OS’. This groundbreaking work of porting a library OS into an
enclave provided the impetus to provide secure page faulting inside
an enclave as well as several other changes in the instruction set.
The authors of this paper wish to acknowledge the contributions of
many hardware and software architects, designers, and validators
who have worked in developing this technology.
Finally the authors would like to thank Krystof Zmudzinski and
Meltem Ozsoy for their help in reviewing and critiquing this paper.

Intel is a trademark of Intel Corporation in the U.S. and/or
other countries.

8 References

[1] Intel Corp,

"http://www.intel.com/content/www/us/en/processors/archit
ectures-software-developer-manuals.html," Intel, April 2016.
[Online]. Available:
http://download.intel.com/products/processor/manual/32546
2.pdf.

[2] F. McKeen, I. Alexandrovich, A. Berenzon, C. Rozas and H.
Shafi, "Innovative Instructions and Software Model for
Isolated Execution," in HASP 2013, Tel Aviv, Israel, 2013.

[3] I. Anati, S. Gueron, S. Johnson and V. Scarlata, "Innovative
Technology for CPU Based Attestation and Sealing," in
HASP 2013, Tel Aviv, Israel, 2013.

[4] M. Hoekstra, R. Lal, P. Pappachan, C. Rozas and V. Phegade,
"Using Innovative Instructions to Create Trustworthy
Solutions," in HASP 2013, Tel Aviv Israel, 2013.

[5] K. Brannock, P. Dewan, F. McKeen and U. Savagaonkar,
"Providing a Safe Execution Environment," Intel Technology
Journal, vol. 13, no. 2, 2009.

[6] V. Costan and S. Devadas, "Intel SGX Explained,"
https://eprint.iacr.org/2016/086.pdf, 2016.

[7] A. Baumann, M. Peinado and G. Hunt, "Shielding
Applications from an Untrusted Cloud with Haven," in 11th
USENIX Symposium on Operating Systems Design and
Implementation, Broomfield CO, 2014.

[8] R. Leslie-Hurd, D. Caspi and M. Fernandez, "Verifying
Linearizability of Intel Software Guard Extensions," in Proc.
Of the 27th International Conference on Computer Aided
Verification (CAV), 2015.

[9] X. T. W. T. Markus Metzger, "User-Guided Dynamic Data
Race Detection," International Journal of Parallel
Programming, vol. 43, no. 2, pp. 159-179, 2015.

[10] A. Bron, E. Farchi, Y. Magid, Y. Nir and S. Ur, "Applications
of synchronization coverage," in 10th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPoPP‘05), USA, pp. 206-212, 2005.

[11] D. Lie, M. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J.
Mitchell and M. Horowitz, "Architectural Support for Copy
and Tamper Resistant Software," in Proc. of the 9th
International Conference on Architectural Support for
Programming Languages and Operating Systems, 2000.

[12] G. Suh, D. Clarke, B. Gassend, M. van Dijk and S. Devadas,
"AEGIS: Architecture for Tamper-Evident and Tamper-

Resistant Processing," in Proc. of the 17th International
Conference on Supercomputing, 2003.

[13] R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin and Z.
Wang, "Architecture for Protecting Critical Secrets in
Microporcessors," in Proc. of the 32nd annual International
Symposium on Computer Architecture, 2005.

[14] D. Champagne and R. Lee, "Scalable architectural support
for trusted software," in 16th International Symposium on
High Performance Computer Architecture (HPCA), 2010.

[15] J. Szefer and R. Lee, "Architectural Support for Hypervisor-
Scure Virtualization," in Proc. of the International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2012.

[16] Rick Boivie, IBM Corp, "Secure Blue++: CPU Support for
Secure Execution," IBM Watson Research Center, Yorktown
Heights NY, 2012.

[17] F. McKeen, U. Savagaonkar, C. Rozas, G. Michael, H.
Herbert, A. Altmann, G. Graunke, D. Durham, S. Johnson,
M. Kounavis, V. Scarlata, J. Cihula, S. Jeyasingh, B. Lint, G.
Neiger, D. Rodgers, E. Brickell and J. LI, "METHOD AND
APPARATUS TO PROVIDE SECURE APPLICATION
EXECUTION". WPO Patent WIPO Patent Application
WO/2010/057065, 14 November 2009.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN
CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure
of the Intel Product could result, directly or indirectly, in personal
injury or death. SHOULD YOU PURCHASE OR USE INTEL'S
PRODUCTS FOR ANY SUCH MISSION CRITICAL
APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL
AND ITS SUBSIDIARIES, SUBCONTRACTORS AND
AFFILIATES, AND THE DIRECTORS, OFFICERS, AND
EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS
COSTS, DAMAGES, AND EXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR
INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,
PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT
OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR
NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN
THE DESIGN, MANUFACTURE, OR WARNING OF THE
INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at
any time, without notice. Designers must not rely on the absence or
characteristics of any features or instructions marked "reserved" or

9

"undefined". Intel reserves these for future definition and shall have
no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them. The information here is subject to
change without notice. Do not finalize a design with this information.

No computer system can provide absolute security under all
conditions. Built-in security features available on select Intel®
processors may require additional software, hardware, services
and/or an Internet connection. Results may vary depending upon
configuration. Consult your system manufacturer for more details.

Intel®, the Intel® Logo, Intel® Inside, Intel® Core™, Intel®
Atom™, and Intel® Xeon® are trademarks of Intel Corporation in
the U.S. and/or other countries. Other names and brands may be
claimed as the property of others.

Copyright © 2016 Intel® Corporation
__

