
1 
 

Intel® Software Guard Extensions (Intel® SGX) Support for 
Dynamic Memory Management Inside an Enclave  

 
 

Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon Johnson, Rebekah Leslie-Hurd, 
Carlos Rozas 

  
Intel Corporation 

  
{frank.mckeen, ilya.alexandrovich, ittai.anati, dror.caspi, simon.p.johnson, rebekah.leslie-hurd, 

carlos.v.rozas}@intel.com 
  

ABSTRACT 
We introduce Intel® Software Guard Extensions (Intel® SGX) 
SGX2 which extends the SGX instruction set to include dynamic 
memory management support for enclaves. Intel® SGX is a subset 
of the Intel Architecture Instruction Set [1]. SGX1 allows an 
application developer to build a trusted environment and execute 
inside that space. However SGX1 imposes limitations regarding 
memory commitment and reuse of enclave memory. The software 
developer is required to allocate all memory at enclave instantiation. 
This paper describes new instructions and programming models to 
extend support for dynamic memory management inside an enclave. 
 

1 INTRODUCTION 
Software Guard Extensions (SGX) [1] [2] [3] [4] provides the 
capability to protect specified areas of an application from outside 
access. The area is called an enclave and hardware provides 
confidentiality and integrity for the specified area. SGX allows 
software developers to build trusted modules inside an application to 
protect secrets. A software developer specifies the contents of an 
enclave and a relying party can confirm that the area is instantiated 
correctly on a remote machine. To enforce isolation, hardware 
performs extra memory checks such that only enclave code can 
access enclave data. When the external software attempts to access 
the enclave, hardware will abort the accesses. In this manner SGX 
provides a trusted place to stand for application developers. The first 
release of the SGX architecture is referred to as SGX1. 

While working with software developers, three shortcomings 
with the SGX1 were identified. First all enclave memory must be 
committed at enclave build time. This increases the build time. 
Committing memory places pressure on the enclave page cache 
(EPC), which is where enclave pages reside in memory and which is 
a limited resource. Lastly, the enclave cannot be easily adapted to a 
particular workload or environment. For example, an enclave 
developer must allocate memory for worst-case memory 
consumption of any workload. Otherwise, the enclave developer will 
need to release enclaves designed for different size workloads, each 

with a unique measurement. Likewise, the enclave developer must 
allocate memory for the maximum number of threads that the 
application may use for workload and platform combinations.  

The second shortcoming is related to the management of 
access permissions associated with an enclave page. SGX extends 
the access permission model by associating an additional set of 
access permissions with enclave page that are stored in a SGX 
structure called the Enclave Page Cache Map (EPCM). The SGX 
enclave page permissions in EPCM are consulted after the page 
table’s permissions checks have been applied. In SGX1, the 
permissions are associated when a page is added to an enclave and 
cannot be changed afterwards. This means that permissions need to 
be set to allow all possible usages of the page. For example, in order 
to relocate code inside an enclave, the access type must be left as 
Read, Write, Execute (RWX). The inability to modulate page 
permissions can constrain or limit certain capabilities inside an 
enclave such as garbage collectors, which require the enclave 
memory manager to periodically restrict write access to the page. 

The last shortcoming is related to library OS support where 
secure exceptional handling and lazy loading code inside an enclave 
are important features. SGX1 has support for exception handling 
inside the enclave but deficiencies were identified of information 
recorded when a general protection fault or page fault occurs inside 
an enclave. Lazy loading of code is important to library OS usage as 
the entire application and Library OS runs inside the enclave which 
can be large. Deferring the loading of code presents unique security 
and functional requirements as compared to deferred commitment of 
heap and stack. 

To address these problems six new instructions and new 
exception behavior were added to the SGX architecture known as 
SGX2.  These instructions provide software with more capability to 
manage memory and page protections from inside an enclave. The 
new exception behavior provides page management capability. This 
paper describes theses instructions and explains how to use them. 

This paper is divided into several sections. In Section 2, we 
provide an overview of the SGX security requirements and dynamic 
memory management requirements. Section 3 describes software 
flows to make use of the SGX2 instructions.  Section 4 describes the 
SGX2 instruction set and software model. Section 5 describes some 
of the implementation and validation issues and concerns. It also 
describes how we addressed the concerns when implementing these 
instructions. Finally in section 6 we draw conclusions. 
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2 SGX2 Considerations & Requirements 
An explicit goal of SGX2 was to address the shortcomings of SGX1 
while maintaining the security properties of the SGX architecture and 
system software. To provide dynamic memory management several 
conditions need to be satisfied. 
• Manipulating memory and permissions of an enclave must be 

done with the knowledge and consent of the enclave. This 
enables the enclave to manage its own security 

• If enclave code is changed incorrectly or without knowledge of 
the enclave, execution should be suspended until the condition 
is resolved.  

• The system resource manager (OS or VMM) must be able to 
manage and allocate the resources as requested using standard 
techniques and priorities. 

• Manipulation of memory permissions involves both the system 
permissions and the EPCM permissions. EPCM permissions 
allow the enclave developer to specify the restrictions and 
access control for the enclave. 
To achieve these requirements, the memory management 

function must be split between a system memory resource manager 
(system manager) which manages the system resources and an 
internal enclave resource manager (internal manager) which 
manages the enclave memory from inside the enclave. A protocol 
which consists of communication between the system manager and 
an internal manager is needed. This is shown in Figure 2-1. 

The system memory manager is responsible for allocating 
memory, paging memory, changing permissions, and changing page 
types. This includes managing the page table entry permissions and 
initiating EPCM permissions of the enclaves. Changes to the EPCM 
permissions and page types are done using the instructions described 
in section 3. The system manager is also responsible for managing 
the TLBs of each thread. 

The internal manager is responsible for starting memory 
change requests and verifying that the system manager has processed 
the requests correctly. In addition the internal manager can make 
some changes in EPCM permissions of an enclave page. The internal 
manager does not have direct access to the page tables and must 
request the system manager to make changes in page table entry 
(PTE) permissions. New instructions provide the internal manager 
the capability to check and commit the results of the requested 
operation. 
 
 

 
Figure 2-1 System and Internal Memory Managers 

This division of work is shown in Figure 2-1. Step 1: the internal 
manager sends a request to the system manager. The system manager 
performs the requested operation(s). It then returns to the internal 
memory manager with a response indicating success or failure as 
shown in step 2. The internal memory manager then checks the result 
to ensure the request was fulfilled correctly. If the operation was 
performed correctly the results are committed. If there is an issue 
with the request, an exception or failure is generated. Details of the 
protocol and software usage are discussed in section 3. 
 

 Security Considerations 
The software inside an enclave must be able to ensure that changes 
in permission do not affect the security of the enclave in a negative 
way. The hardware must protect enclave software from attacks as 
described in [5] and [6]. With dynamic memory management some 
new constraints and requirements are introduced.  

Enclave software may change the permissions of a page to 
reduce the access capabilities or increase the access capabilities. For 
example software may make the page read only from read, write, 
executable. In this case the permissions are reduced. An example of 
increasing permissions would be setting a page from read to read, 
write, execute. When enclave software wishes to increase access 
permissions to a page it is acceptable for processors to switch to the 
more lenient permission lazily. The system manager can update the 
page tables and EPCM entries. If the translation lookaside buffer 
(TLB) contains the older, more restrictive permissions for an enclave 
page, a page fault occurs on the access. The act of exiting the enclave 
clears the TLB of the previously cached and the more restrictive 
address translations and permissions in the TLB. The system 
manager checks that the page is mapped correctly. It will return to 
the program and resume execution. The enclave resumes execution 
and subsequent access will load the TLB with the new and more 
lenient permissions. The enclave security is not compromised if the 
page is accessed with the older permissions. 

When enclave software wishes to restrict page permissions, 
there must be a point where the enclave can be assured the permission 
restrictions are complete and the previous cached address 
translations or cached permissions are removed. SGX2 extends the 
SGX1 TLB checking mechanism used for enclave paging to 
guarantee to the enclave that the old permissions are removed from 
the TLBs. The details are discussed in section 3.3 

Software applications which handle their own memory paging 
and exceptions need secure reporting of these exceptions. SGX2 
extends SGX1’s MISC field of the State Save Area (SSA) with the 
EXINFO field that holds information about memory paging faults 
and general protection faults 

SGX1 allows the system memory manager to remove pages 
from an enclave using the EREMOVE leaf function. However, since 
the enclave doesn’t participate in this process it doesn’t know if the 
page has actually been removed. If an enclave wants to return pages 
to the system manager but be able to reuse the same addresses later, 
it needs to be told explicitly when the pages have been removed from 
the enclave. A 2-step protocol will be used to perform the operations. 
This protocol allows the enclave to know that the pages are removed. 
It can then reassign them as needed. Without the protocol an attacker 
could randomly substitute pages without the enclave’s knowledge 
and permission. See section 3.2 for more information. 

 Software Considerations 
The internal memory manager has certain functions it must perform 
to reallocate the memory resources. For example, when an 
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application needs to add a thread, pages must be allocated as Thread 
Control Structure (TCS), State Save Area (SSA) pages, and thread 
local variables. If the internal memory manager is allocating from a 
general pool of PT_REG pages, it must request the OS to change the 
page type to PT_TCS for TCS pages. In addition, it may want to 
remove execute capability from SSA pages. In order to change the 
page type the enclave memory manager requests that the system 
manager change the page type using one of the SGX2 instructions. If 
the enclave memory manager needs more recourses from the system 
manager it should call the system manager to allocate resources to 
the enclave using one of the SGX2 instructions  
 

Exception Reporting Inside an Enclave 
Usages, such as a library OS, receive exceptions inside an enclave. 
This allows the enclave software to inspect exceptions being reported 
to make sure the external software is providing the correct 
information. In this case the exception condition should be reported 
inside the enclave. The enclave can then look at the information as 
needed. SGX2 adds several exception conditions to the SSA frame 
when exiting an enclave. They include page faults (#PF) and general 
protection violations (#GP). Enclave developers can opt-in to 
receiving this additional information to allow the internal manager to 
approve the requests.  
 

Demand Loading of Library Pages 
Library pages are loaded on demand when the program touches the 
page. When page fault occurs software would like to load the page 
into the location of the fault. The internal manager must have a 
mechanism to load the page without allowing access until the copy 
is complete. SGX2 adds a leaf function to perform the copy securely. 
See section 3.5 for detailed steps. 
 

3 SGX2 Overview and Usage 
SGX1 enclave memory managers can support dynamic allocation of 
memory using malloc and free. However, they require enclave 
memory (heap) to be committed by the operating system at enclave 
build time. Furthermore, enclave memory managers have limited or 
no support for page permission modification, dynamic thread 
creation, and lazy loading of code. In addition, new software models 
related to library OSes require improved exception reporting. 
 
Table 3-1 SGX2 Instruction Leafs 

To improve the enclave memory management and library OS 
support, the SGX2 extension adds three enclave ENCLU leaf 
functions and three privileged ENCLS leaf functions. Table 3-1 
provides a short description of the new leaf functions. The details of 
the new SGX2 leaf functions are discussed in section 4. 

 In addition to the new leaf functions, a new SGX page type, 
PT_TRIM, is defined to allow an enclave to remove a page from the 
enclave and reclaim the linear address for future use. Lastly, 
information about enclave generated General Protection Faults 
(#GP) and Page Faults (#PF) are store in the enclave’s State Save 
Area (SSA).  

A high level conceptual software protocol for using the new 
SGX2 leaf functions is illustrated in Figure 3-1 In the protocol, the 
enclave’s internal memory manager starts by making a system call to 
the system manager requesting some operation (e.g. permission 
modification using EMODPR). The system manager will perform 
the operation and return back to the internal manager which then 
verifies and/or completes the operation (e.g. invokes EACCEPT). It 
is also possible to initiate the protocol using faults generated by the 
enclave. For example, enclave memory commitment can be driven 
by an enclave accessing an allocated but not yet committed memory. 

 Enclave Malloc  
To implement dynamic memory allocation and commitment, the 
enclave runtime system and the operating system have to agree on a 
protocol that coordinates the operating system usage of EAUG and 
the enclave runtime system usage of EACCEPT. 
 
The following is an example protocol: 
1. Internal manager requests memory which results in the enclave 

runtime system to allocate memory from its internal pool of 
memory. When the memory pool runs low the internal manager 
requests the system manager to allocate more memory from the 
virtual address space. 

2. The system manager allocates virtual address space but does not 
commit memory and returns a reference to the virtual address 
space to the internal manager 

3. The enclave internal manager returns a reference to the enclave. 
When the enclave accesses the newly allocated memory, a page 
fault is generated as memory has not been committed. 

4. The OS page fault handler detects that the virtual address has 
been allocated but memory has not been committed. The OS 
commits memory by using EAUG and maps the committed but 
pending page into the enclave address space. The OS then sends 
a signal to the enclave internal manager. 

5. The internal manager receives the signal from the OS that 
memory has been committed for a particular address. The 
internal manager checks that the virtual address has been 
allocated but not yet committed. If those checks pass, the 
internal manager executes EACCEPT which allows the enclave 
to access the pending page. The signal handler returns back to 
the application which eventually results in the enclave 
execution resuming. 

 

Leaf function Description 
ENCLS[EAUG] Add a regular read/write accessible 

page of zeros to an already 
initialized enclave 

ENCLS[EMODT] Modify the type of an existing EPC 
page 

ENCLS[EMODPR] Restricts access permissions of an 
existing EPC page 

ENCLU[EACCEPT] Accepts page type modifications to 
the running enclave 

ENCLU 
[EACCEPTCOPY] 

Copies existing EPC page content 
into EAUGed page and accepts the 
page into the running enclave 

ENCLU[EMODPE] Extends access permissions of an 
existing EPC page 
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Figure 3-1 SGX2 Software Flow 

 

 
 

 Enclave Free  
SGX1 allows for the virtual address space to be released and 
committed memory to be reclaimed with certain limitations. SGX2 
provides a more robust reclamation of committed memory. EMODT 
is used to modify the EPCM of the page to prepare it for removal. As 
mappings to the page may be cached in a TLB, SGX2 extends 
ETRACK to track the flushing of TLBs when restrict accessing 
pages with EMODT and EMODPR. EACCEPT will verify that TLB 
mappings have been removed. Once again the OS and enclave 
runtime system need to coordinate the execution of EMODT, 
ETRACK, and EREMOVE by the OS and execution of EACCEPT 
by the enclave runtime. 
The following is an example protocol: 
1. The enclave releases allocated memory and the internal 

manager decides to release address space back to the OS. 
2. The system manager executes EMODT on all pages being freed 

to change the page type to PT_TRIM and to clear the EPCM 
access permission bits. This begins the process of decommitting 
memory. The system manager then executes ETRACK on the 
SECS of the calling enclave and then sends IPIs to logical 
processors which may contain TLB mappings to the pages that 
had been trimmed.  

3. Once all logical processors responded to the IPI, control is 
returned to the internal manager. 

4. The internal manager verifies that committed memory has been 
decommitted by executing EACCEPT to verify that the pages 
have been trimmed using EMODT and all stale TLB mappings 
have been flushed. The internal manager needs to update its 
tracking information that the virtual address has no committed 
memory. 

5. The system manager can later reclaim the committed memory 

by executing EREMOVE on the trimmed pages.  

 Changing Page Permissions 
Enclave runtimes have varying reasons to change access permissions 
to a page. For example, an enclave loader may need to perform 
address relocations to pages which at runtime should not be writable. 
Thus before allowing execution the enclave loader needs to update 
the contents of the pages and then remove write permissions to the 
pages. The enclave runtime may have garbage collector which needs 
to periodically mark pages as read-only and then restore write 
permissions to the pages. 

SGX2 has two separate flows for changing EPC page 
permissions. If the change is entirely permissive then the following 
protocol can be used: 
1. The internal manager executes EMODPE to extend the page 

permissions in the EPCM.  
2. The internal manager requests the system manager to extend 

page permissions in the page tables.  
The order of operations can also be reversed if desired. 

If the change in permission is purely restrictive, a more 
complex protocol is required as EMODPR will modify EPCM 
permissions to be more restrictive but TLB mappings with more 
permissive accesses may exist in some processors. The following is 
an example protocol: 
1. The internal manager requests that the system manager to 

restrict permissions on a page. 
2. The system manager executes EMODPR and updates page table 

permissions. After permissions have been updated, the system 
manager executes ETRACK on the SECS of the calling enclave 
and sends IPIs to all processors that may be executing inside the 
enclave to flush TLB mappings.  

3. After all IPIs have been acknowledged, control is returned to 
the internal manager. The internal manager verifies that page 
permissions have been restricted and TLB mappings flushed by 
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executing EACCEPT. 
If a permission change is both restrictive and permissive, for 

example, a change from read-write to read-execute, the internal 
manager should request the permission restriction first and then 
permission extension to avoid undesirable intermediate states. 

 Thread Control Structure Allocation 
SGX2 supports the allocation of Thread Control Structures (TCS) at 
runtime. The software protocol is very similar to page restriction 
except that instead of executing EMODPR the OS executes EMODT. 

The internal manager starts by picking a 4K page in the 
enclave’s linear address space as described in 3.1 and initializes the 
page with appropriate TCS values. The TCS configuration values 
include the size and location of the State Save Area, the enclave entry 
point for the TCS, and the FS/GS base values. 

Once the internal manager has determined an acceptable 
address, the following protocol can be used: 
1. Internal manager initializes the contents of a regular EPC page 

with appropriate TCS values. If the enclave memory has not 
been committed then internal manager will need to perform a 
request to allocate memory as described in section 3.1. After the 
contents of the page have been initialized, the internal manager 
requests that the system manager convert the page to a TCS. 

2. The system manager executes EMODT to set the page type to 
PT_TCS and to clear the EPCM access permission bits. The 
page is also marked modified which prevents the page from 
being used as a TCS until the enclave accepts the TCS via 
EACCEPT. The system manager then executes ETRACK. The 
system manager sends IPIs to flush all old mappings to the page 
and returns control to the internal manager. 

3. The internal manager executes EACCEPT on the modified TCS 
page. EACCEPT will verify that TLB mappings have been 
flushed and perform consistency checks on the TCS page before 
clearing the modified bit and making the page available to 
EENTER. 

 Dynamic Loading of Modules 
To support dynamic loading of modules, SGX2 provides 
EACCEPTCOPY which allows the internal manager to atomically 
initialize the contents and permission of a page. Here is an example 
protocol for allowing the dynamic loading of a module a page at a 
time: 
1. First, the internal manager indicates to the system manager that 

a virtual address space has been allocated but not committed 
(same as in 3.1).  

2. When an enclave attempts to access a page in this virtual 
address, a page fault is generated and the system manager 
commits memory by executing EAUG and signals the internal 
manager.  

3. The internal manager identifies the virtual address as belonging 
to a module page to be loaded. The system manager may load 
the contents of the page into regular memory or the enclave 
runtime system may need to request the content be loaded into 
regular memory.  

4. The internal manager then copies the contents of the module 
into private enclave memory. The internal manager should 
verify the integrity of the contents and apply any required 
relocations. Finally, the internal manager copies the contents 
and initializes permissions using EACCEPTCOPY. 

The use of EACCEPTCOPY for dynamic loading is required because 
of potential races with other threads in the enclave. For example, if 
the internal memory manager attempted first EACCEPT and then 

initialize the contents and permissions, a second thread in the enclave 
could read the contents of the page before the page has been 
completely initialized or could modify the contents of the page 
before permission restrictions have occurred. 

 Library OS Support 
Library OSes provide a new type of container where an application 
is bundled with an OS runtime that executes in user level (ring 3) [7] 
A critical requirement for SGX enabled library OSes is to provide 
secure exception handling. In particular, the library OS exception 
handler must be able to securely determine that an exception was 
generated by an enclave, the type of exception (e.g. page fault), and 
information about the faulting condition.  

SGX2’s enhanced enclave exception handling provides the 
enclave runtime information about exceptions occurring inside the 
enclave. This secure reporting of exceptions allows enclave runtime 
systems to invoke application exception handlers without relying on 
the external exception handling system.  

 
Figure 3-2 SGX enabled LibOS exception handling 

Figure 3-2 illustrates the usage of enhanced exception handling 
in a SGX enabled LibOS.  
1. The process begins with an exception generated inside an 

enclave. The processor records exception information in the 
Save State Area and delivers the exception to the OS exception 
handler.  

2. If the OS cannot handle the exception, the OS signals the LibOS 
PAL (Platform Adaptation Layer) exception handler. 

3. The LibOS PAL executes EENTER to invoke the LibOS 
exception handler inside the enclave.  

4. The LibOS exception handler reads the exception information, 
generates an OS specific exception context, and invokes the 
application exception handler inside the SGX enabled LibOS. 

4 SGX2 ISA 
The SGX2 extension adds new SGX leaf functions and capabilities 
including three ENCLS leaf functions (EAUG, EMODT, and 
EMODPR) described in 4.1 and three ENCLU leaf functions 
(EACCEPT, EACCEPTCOPY, and EMODPR) described in 4.2. In 
addition to the new leaf functions, a new SGX page type, PT_TRIM, 
is used in conjunction with the new leaf functions. In addition to the 
new leafs, SGX1 leaf functions and structures have been enhanced 
to support SGX2 functionality. The ENCLS[ETRACK] leaf 
functionality has been enhanced to support tracking enclave page 
translations for SGX2 related activities and is described in 4.3. The 
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Security Information’s (SECINFO) FLAGS field has been enhanced 
to include the new flag bits “Pending”, “Modified”, and “Permission 
Restriction”. This information is saved by ENCLS[EWB] and 
restored by ENCLS[ELDU/ELDB]. 

Separate from the new leaf function, SGX2 allows recording 
information concerning General Protection Faults (#GP) and Page 
Faults (#PF) exceptions from within the enclave which is described 
in 4.4. 

To help system memory managers to determine whether a page 
fault was generated by violation of access permissions of page tables 
versus violation of access permissions of the EPCM, a new Page 
Fault Error Code bit called PFEC.SGX was added and is described 
in 4.5.  

 ENCLS leaf functions 
EAUG 
This leaf function augments the enclave with a page of zeros by 
zeroing a page of EPC memory, associating that page with an SECS 
page, and updating the linear address and security attributes in the 
page’s EPCM entry. A successful execution of the function puts the 
page in “Pending” state. The operation receives two input 
parameters, a pointer to the destination page in EPC, and a pointer to 
the enclave’s SECS page. While in “Pending” state, the page cannot 
be accessed by anyone, including the enclave. Only after the enclave 
approves the page by using the ENCLU[EACCEPT] leaf function, 
will the page be accessible to the enclave. 

EMODT 
This leaf function modifies the type of an EPC page and puts the page 
in “Modified” state. Allowed page types are PT_TCS and PT_TRIM. 
The operation receives two input parameters, a pointer to the target 
page in EPC, and a pointer to the page’s new security attributes. 
While in “Modified” state, the page cannot be accessed by anyone, 
including the enclave. Only after the enclave approves the page by 
using the ENCLU[EACCEPT] leaf function, will the page be 
accessible to the enclave.  

EMODPR 
This leaf function restricts the access rights associated with an EPC 
page of an initialized enclave and puts the page in “Permission 
Restriction” state. The operation receives two input parameters, a 
pointer to the target page in EPC, and a pointer to the page’s new 
security attributes. The operation will fail if it attempts to extend the 
permissions of the page. While in “Permission Restriction” state, the 
page cannot be accessed by anyone, including the enclave. Only after 
the enclave approves the page by using the ENCLU[EACCEPT] leaf 
function, will the page be accessible to the enclave. 
 

 ENCLU leaf functions 
EACCEPT 
This leaf function must be executed from within an enclave. It 
accepts changes to a page in the running enclave by verifying that 
the security attributes specified in SECINFO match the page’s 
security attributes in EPCM. The operation receives two input 
parameters, a pointer to the target page in EPC, and a pointer to the 
page’s approved new security attributes. After a successful execution 
of EACCEPT the page’s “Pending”, “Modified”, or “Permission 
Restriction” state is cleared and the page becomes accessible to the 
enclave. 

EACCEPTCOPY 
This leaf function must be executed from within an enclave. It copies 
the contents of an existing EPC page into an uninitialized EPC page 
that was created by EAUG. The operation receives three input 
parameters, a pointer to the target page in EPC, a pointer to the page’s 
new security attributes, and a pointer to the page’s new content. After 
a successful execution of EACCEPTCOPY the page’s “Pending” 
state is cleared and the page becomes accessible for the enclave 

EMODPE 
This leaf function must be executed from within an enclave. It 
extends the access rights associated with an existing EPC page in the 
running enclave. The operation receives two input parameters, a 
pointer to the target page in EPC, and a pointer to the page’s new 
security attributes. The operation will fail if it attempts to restrict 
permissions of the page. Since the execution happens from within the 
enclave, it’s trusted and takes effect immediately. 

 Managing Page Table Translations 
SGX2 extensions modify the access rights of pages of an initialized 
enclave. As such, any stale page table translation must not 
compromise the security objective of SGX. The ENCLS[ETRACK] 
leaf function used in SGX1 in the paging process is extended for 
SGX2 to ensure that stale page table mappings are removed from 
TLBs prior to committing the page’s new attributes. Table 4-1 
describes the TLB synchronization requirements for the SGX2 leaf 
functions. 

EMODPE is a special case that doesn’t require TLB 
synchronization for security, but software could use the 
synchronization mechanism to guarantee that all threads will observe 
the new permissions. 
 
Table 4-1 Page Table Tracking 

Leaf function TLB synchronization 
EAUG Not required 
EMODT Required. Enforced by EACCEPT 
EMODPE Optional. 
EMODPR Required. Enforced by EACCEPT 
EACCEPTCOPY Not required 

 

 Enclave Exception Handling 
Enhancements 

In the SGX architecture, whenever an exception or interrupt occurs 
while executing inside an enclave, the processor performs an 
asynchronous enclave exit (AEX) which securely saves the state of 
the processor inside the enclave’s SSA, replaces it with synthetic 
values, and exits the enclave. In addition to saving the state of the 
processor, the cause of the AEX is stored in the EXITINFO field in 
the SSA. This allows an enclave exception handler to determine the 
cause of the exception and attempt to resolve the cause of the 
exception.  SGX2 extends this mechanism and provides enclave 
writers an opt-in to save information about page fault and general 
protection fault exceptions inside the MISC field of the SSA by 
setting the EXINFO bit (bit 0) in the SECS.MISCSELECT field 
during enclave creation. If SECS.MISCSELECT.EXINFO bit is set, 
the processor saves #PF and #GP information into the EXINFO 
structure as shown in Table 4-2: 
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Table 4-2 EXINFO Field 

Field Offset 
(bytes) 

Size 
(bytes) 

Description 

MADDR 0 8 If #PF: contains the page 
fault linear address that 
caused a page fault. 
If #GP: the field is cleared 

ERRCD 8 4 Exception error code for 
either #GP or #PF 

 

 EPCM-induced Memory Fault Reporting 
When a memory reference is unable to complete due to settings in 
the EPCM which prevent the access, a #PF exception is generated. A 
bit in the Page Fault Error Code (PFEC) indicates that the page fault 
was due to EPCM access checks. This bit is located at bit position 15 
and called “SGX”. 

The SGX bit is set only if there is a valid translation for the 
linear address and its cumulative Paging/EPT access rights permit 
the access. The processor always provides SGX bit in the page fault 
error code pushed onto the stack of the exception handler. This bit is 
also provided inside the enclave in EXINFO if the MISCSELECT 
field has enabled it.  

Processors that support SGX2 also support the SGX page fault 
error code without any explicit opt-in by system software. This bit is 
provided inside the enclave in EXINFO if the MISCSELECT field 
has enabled it.  

5 SGX2 Validation  
SGX maintains a large amount of global security sensitive data for 
its operation. This includes per-page metadata stored in the EPCM, 
per-enclave and per-thread control structures (SECS, TCS) and page 
versions (VA). Accesses to this data, which is shared across all 
logical processors, must be appropriately synchronized to maintain 
security, while still maximizing parallelism for performance.  These 
sometimes contradicting requirements along with the need to be 
compatible with both system software and application operation, 
necessitated the usage of complex synchronization mechanisms in 
SGX. 

Concurrency-related complexity in SGX2 is greatly increased 
over SGX1.  Some previous restrictions on the software concurrent 
operation have been lifted. Page Table translation tracking now 
serves multiple, potentially concurrent, processes. In addition to 
paging, it is now used for freeing pages, adding new enclave threads 
and changing page permissions.   

 Formal Modeling and Verification 
Applying formal verification techniques very early in the design 
process allowed us to find pernicious concurrency bugs and to 
increase our confidence that critical errors in the design were not 
being overlooked. 

A formal model of SGX was created; its main goal was to 
detect bugs related to multi-threaded operation of SGX, which would 
impact its security properties.  The model concentrated on the 
complex aspects of the architecture, where non-trivial 
synchronization mechanisms are used, especially around enclave 
page management and Page Table translations tracking. 

Formal verification is commonly used at Intel for arithmetic 
and protocol validation. SGX instruction flows resemble concurrent 
software algorithms, where multiple threads access shared data 
structures.  Linearizability for these type of algorithms is extremely 

helpful for validation.  In a linearizable system, one cannot observe 
the difference between a sequentialized trace where each instruction 
executes atomically at its linearization point and a real trace that 
arises in the concurrently executing system. SGX is linearizable if 
each instruction appears to take effect atomically at some moment in 
time between its invocation and termination, called its linearization 
point [8] 

An SGX-based system is complex to model as a whole.  
Several optimization techniques were applied in order to model SGX 
within reasonable run times: 
• Management of an enclave page is (almost) independent of 

other pages.  Thus, a single concise page is modeled. 
• An enclave is independent of other enclaves.  Thus, a single 

concise enclave is modeled. 
• SGX control fields that have small or no relevance to security 

(as impacted by concurrent operation) are selectively ignored. 
• The model uses a “worst case” approach, e.g., it assumes a 

Logical Processor creates a translation to an EPC page as soon 
as it enters enclave mode, while in reality this would only 
happen when the processor actually accessed the page. 

• The initial state space is pre-calculated, saving the large number 
of modeling steps it would require to achieve all possible states. 

Using formal verification, we have detected several concurrency-
related bugs during SGX architecture development. 
 

 Implementation-Level Validation 
For the same reasons mentioned above, much of the implementation-
level validation effort was dedicated to multi-threaded validation.   

Concurrency issues may be difficult to detect by examining the 
architectural state of the processor.  Therefore, white-box checking 
was used, monitoring the micro-architectural state during SGX 
instruction execution.  A generic data race detector [9] was applied, 
in addition to multiple dedicated checkers, many of which were 
derived from the formal model’s assertions and verified similar 
linearizability criteria. 

Many concurrency issues express themselves only under 
certain inter-thread timing conditions.  To increase the chance of 
recreating such timing during validation, pseudo-random time delay 
“bubbles” were inserted in selected places in the SGX flows (e.g., 
near inter-thread synchronization points such as lock acquisition and 
release). 

Several coverage criteria were applied.  One criterion is 
synchronization coverage [10].  Other include a table of cross-
instruction interaction and multi-instruction sequences. 

6 Summary and related work 
We have shown that adding new instructions to the current SGX1 
programming model can provide better software development 
environment while maintaining the security properties of the enclave. 
The SGX2 instructions enable better protection of proprietary code 
which can be loaded and then protected using the EPCM. These 
instructions also allow for dynamic memory and threading support 
which is common among programming models. In addition features 
were added to support dynamic allocation of library pages in the 
library OS environment. 

Using these instructions, developers can produce enclaves 
which can more robustly respond to individual system configurations 
and requirements. 
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