
Intel® Software Guard Extensions (Intel® SGX)
Architecture for Oversubscription of Secure Memory

in a Virtualized Environment
Somnath Chakrabarti, Rebekah Leslie-Hurd, Mona Vij, Frank McKeen,

Carlos Rozas, Dror Caspi, llya Alexandrovich, Ittai Anati
Intel Corporation

{somnath.chakrabarti, rebekah.leslie-hurd, mona.vij, frank.mckeen, carlos.v.rozas, dror.caspi,
ilya.alexandrovich, ittai.anati}@intel.com

ABSTRACT
As workloads and data move to the cloud, it is essential that
software writers are able to protect their applications from
untrusted hardware, systems software, and co-tenants. Intel®
Software Guard Extensions (SGX) enables a new mode of
execution that is protected from attacks in such an
environment with strong confidentiality, integrity, and
replay protection guarantees. Though SGX supports
memory oversubscription via paging, virtualizing the
protected memory presents a significant challenge to Virtual
Machine Monitor (VMM) writers and comes with a high
performance overhead. This paper introduces SGX
Oversubscription Extensions that add additional instructions
and virtualization support to the SGX architecture so that
cloud service providers can oversubscribe secure memory in
a less complex and more performant manner.
Keywords
SGX; Software Guard Extensions; Virtualization; Memory
Management; Oversubscription

1 INTRODUCTION
Computing is evolving into a virtualized resource that Cloud
Service Providers (CSPs) supply on-demand to a broad
spectrum of users from corporate customers to application
providers. The variety of workloads requires dynamic
allocation of compute resources to maximize performance.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org.		
	
HASP '17, June 25, 2017, Toronto, ON, Canada
© 2017 Copyright is held by the owner/author(s).
Publication rights licensed to ACM.
ACM 978-1-4503-5266-6/17/06...$15.00
http://dx.doi.org/10.1145/3092627.3092634

Memory is a key element of the resource management

strategy because the memory requirements of cloud
application can vary dramatically over time. Many cloud
workloads contain personal or confidential data that must not
be exposed. CSPs must provide confidentiality and
integrity, especially in an environment shared between
multiple unknown users, so that their customers can rest
assured that their data is protected from both accidental and
malicious disclosure or tampering. In today’s environment,
privileged software provided and maintained by the CSP is
central to protect customer workloads and data. Bugs in the
CSP software could result in the compromise of a customer’s
data, and establishing the correctness of such large and
complicated software codebases is extremely difficult. Intel®
Software Guard Extensions (SGX) was developed to meet
the confidentiality and integrity needs of applications even
when the software environment may not be bug-free.
SGX provides the hardware support needed to defeat
privileged software attacks and assures separation between
critical data and untrusted application code without
sacrificing the platform manageability features expected by
CSPs such as memory oversubscription. A virtual machine
monitor (VMM) may virtualize the memory of SGX
programs using the standard ballooning [6] or paging [9]
techniques; however, performing SGX paging in a VMM
requires expensive VM exits and emulation of guest
behavior. In addition, the VMM must keep extensive
metadata to manage the SGX memory correctly, which
wastes space and complicates the VMM algorithms.

To address the difficulties in virtualizing SGX memory
using the existing paging instructions, Intel® developed the
SGX Oversubscription Extensions to SGX described in this
paper. The new instructions and virtualization support
enable CSPs to support SGX in the cloud in a simpler and
more performant manner without compromising the security
guarantees or functionality of legacy SGX. The remainder
of this paper is devoted to the description of these extensions
and their usage, with a review of the relevant background
knowledge in Section 2. Section 3 provides background on
oversubscription techniques and details of the
oversubscription extensions. Section 4 provides a reference
software flow using the new extensions. Section 5 reviews

related work with Section 6 providing concluding remarks.
2 SGX MEMORY MANAGEMENT
SGX provides an execution environment called an enclave
where code and data are protected from privileged and
unprivileged code. Enclave code and data are stored in a
protected area of memory called the Enclave Page Cache
(EPC), as are security-critical control structures introduced
by SGX. SGX provides the building blocks for system
software to manage EPC memory, including instructions for
oversubscribing the EPC, dynamically allocating EPC
pages, and changing the permissions or type associated with
an EPC page. In this section, the structure of enclave
memory and the hardware instructions for enclave memory
management are reviewed. For a detailed overview see [8].
2.1 Enclave Layout
Unlike regular memory, enclave memory has a structure that
connects each page of the enclave to the enclave control
structure for the enclave to which that page belongs. This
connection is recorded by the CPU in a protected per-page
data structure called the Enclave Page Cache Map (EPCM).
The enclave control structure, the Secure Enclave Control
Structure (SECS), resides in a separate page of EPC memory
and stores configuration information such as the linear
address range associated with the enclave. Each enclave
page is linked to its SECS parent via an identifier stored in
the EPCM, as illustrated in Figure 1.

Figure 1: Unlike traditional applications, enclave memory
layout is not flat. VMMs must understand the layout of each
enclave to effectively support paging-based oversubscription.

The tree-like structure of enclave memory introduces
constraints for enclave paging in that all of the child pages
associated with an enclave must be removed before their
SECS parent can be paged out of the enclave. Without
special support, the VMM must keep track of the type of
each enclave page as well as the location of its parent.

In addition to the SECS identifier, each enclave page has
metadata associated with it that further constrains the ways
in which the page may be used. This metadata is also stored
in the EPCM, which contains the following fields:
• VALID: Indicates whether a page is in use.
• RWX: Permissions associated with page.
• PAGETYPE: Indicator of the kind of EPC page, for

example PT_REG or PT_SECS.
• BLOCKED, PENDING, MODIFIED, PR: Status flags

that indicate there is an update to the page in-progress.
VMM must maintain the EPCM state of a page across paging
so as to be transparent to the guest. In some cases the EPCM
state may lead the VMM to make different memory
management choices. For the full definition of the EPCM

and SGX details, see the SDM Chapter 38 [4] and previous
SGX papers [7,8].

2.2 Enclave Memory Paging
SGX provides instructions for enclave memory paging
including EWB, which securely evicts an EPC page to
regular memory and ELDB/ELDU, which load a previously
evicted page back into the EPC. Enclave pages evicted from
the EPC to main memory have the same integrity,
confidentiality and replay protection as when the contents
resided within the EPC. To achieve this protection, the
paging instructions enforce the following rules:
1. An enclave page can be evicted only after all cached

address translations to that page have been evicted from
all logical processors.

2. The contents of the evicted enclave page must be
encrypted before being written out to main memory.

3. When an evicted enclave page is reloaded into EPC it
must have identical page type, permissions, virtual
address, content, and be associated to the same enclave
as at the time of eviction.

4. Only the last evicted version of an enclave page can be
allowed to be reloaded.
To prepare the enclave page for eviction, system

software marks the page to be evicted as BLOCKED using
the EBLOCK instruction. Once an EPC page has been
marked as BLOCKED, the processor prevents any new
Translation Lookaside Buffer (TLB) entries that map that
EPC page from being created. However, TLB entries that
reference this page may exist in one or more logical
processors. These TLB entries must be removed before the
page can be removed from the EPC. The ETRACK
instruction configures microarchitectural trackers that detect
when all cached references to a blocked page have been
flushed. Hardware uses these trackers to determine when it
is safe to evict an enclave page. To avoid races on the per-
enclave trackers and simplify the architecture, ETRACK
may not be called concurrently on the same enclave. To
summarize, the software flow for evicting enclave memory
in an OS or VMM is as follows:
1. Identify the target page to be evicted using usual

algorithms (aging, etc.)
2. Unmap the page from the application space.
3. Execute EBLOCK on the target page.
4. Execute ETRACK on the SECS page to which the target

page belongs.
5. Flush the TLB mappings to the target page, for example,

by sending IPIs to the threads running in the enclave to
which the page belongs. Threads may resume
immediately after the mappings have been flushed.

6. Execute EWB on the target page.
To load an evicted page back into the enclave, software

uses the ELDU or ELDB instruction. These instructions
both load an encrypted page from main memory into the
EPC, after first checking the integrity of the contents. The
only difference is whether the page is loaded in the blocked
state (ELDB) or not (ELDU). Typically software uses

ELDU, but ELDB is useful if the guest OS has blocked the
page prior to the VMM evicting it. Both instructions require
the address of the SECS parent with which the newly loaded
page should be associated.

2.3 Challenges in Virtualizing SGX Paging
The enclave paging flow described in the previous section
presents multiple challenges for a VMM:

• The VMM must know the location of the SECS parent
of any page that it would like to evict and must
remember this location while the page is written out.

• The VMM and guest may execute ETRACK
concurrently on the same enclave, causing an
unexpected error in the guest.

• A guest VM might evict or remove SECS pages without
the VMM’s knowledge, preventing the VMM from
loading evicted pages associated with that parent.

The only strategy available to the VMM in legacy SGX for
handling these challenges is to emulate paging and enclave
configuration instructions for the guest and to track the
enclave memory layout of the guest.

Our evaluation of the VMM software flows required to
support SGX paging and oversubscription found that the
performance and complexity overheads were significant.
Table 1 shows the performance overheads for the enclave
paging and enclave build flows. The numbers are captured
on Intel® Xeon E3-1280 v5 based server using KVM as the
VMM on Ubuntu 14.04 host. The guest OS is Ubuntu 14.04
tested with enclaves upto 4MB in size.

Table 1: Overhead of exit roundtrip and emulation during
paging and during enclave build/teardown.

As shown in the table, the cost of exiting on guest
instructions and emulating them in the VMM significantly
increases the cost of paging and doubles the cost of enclave
build. (Note that the cycle numbers shown are based on a
prototype and may vary between various machine
configurations.) The next section describes SGX
Oversubscription processor extensions that enable VMM
oversubscription in a simpler and more performant manner.
3 SGX OVERSUBSCRIPTION SUPPORT
The SGX Oversubscription Extensions is an architecture
extension designed to address the challenges in virtualizing
EPC paging discussed in the previous section.

3.1 Background
Oversubscription is a term used to describe the VMM
practice of assigning more resources to virtual machines
(VMs) than is actually available on the physical platform.

VMs typically do not use all the resources all the time, so
oversubscription enables cloud service providers to increase
the density of VMs per platform. Resource oversubscription
can be done for CPU, memory, and I/O resources. For
example, the VMM can assign more virtual CPUs (VCPU)
to a VM than physical cores available, scheduling the
VCPUs on actual CPUs as governed by the scheduler policy.
The remainder of this section explores the practice of
memory oversubscription and the various ways a VMM
might allocate memory to a VM.
3.1.1 Static Partitioning
One approach to memory allocation is for the VMM to
statically partition the available memory amongst the guest
VMs, as shown in Figure 2(a). In this scheme, the memory
available to a VM does not change over its lifetime. The
advantage of static partitioning is its simplicity and the fact
that guest applications observe deterministic performance
because the VM is always in possession of the expected
amount of memory. The disadvantage is that static
partitioning can lead to memory waste when a VM is not
making use of its full allotment.

(a) (b)
Figure 2: SGX memory partitioning options. VMM may
configure memory (a) statically for each VM or (b) dynamically
based on each VM’s run-time needs.
3.1.2 Dynamic Partitioning Using Ballooning
To address the resource utilization issues with static
partitioning, some VMMs allocate memory dynamically,
growing the size of a VM’s memory footprint on demand.
The memory layout arising from this technique, which is
known as ballooning, is illustrated in Figure 2(b). Dynamic
partitioning using ballooning requires guest co-operation,
which is not always feasible. Each VM informs the VMM
when it needs more memory or when it wants to release free
memory. Based on this protocol, the hypervisor can
maintain a free pool of memory that it uses to satisfy
dynamic memory allocation requests. Since this model
requires guest awareness and cooperation with the VMM, it
is best-suited for enterprise datacenter environments where
both the VM and VMM are trusted. In public cloud
environment, this model is not suitable because cloud
service providers do not trust the guest VMs and often do not
even allow direct VM-to-VMM communication.
3.1.3 Dynamic Partitioning Using Paging
In scenarios where guest cooperation with memory
management is not feasible, but VMM writers would still
like to take advantage of dynamic memory partitioning.
paging-based oversubscription can be done by the VMM.
Paging-based oversubscription presents the guest with

virtual memory that may or may not be fully resident at any
given time. The VMM manages the resident memory based
on the memory usage of the VM and the load of the system.
A variety of heuristics are employed to determine which
memory to page out to disk, such as identifying the least
recently used page by scanning the guest’s memory and the
associated accessed and dirty flags. Though paging-based
oversubscription does not require guest modifications, it
does expose non-deterministic timing behavior to the guests
and might not be suitable for certain real-time applications.
In the context of SGX, extra work must be done by the VMM
to page out EPC memory in a way that is functionally
transparent to the guest.

3.2 Overview
The SGX Oversubscription Extensions architecture
addresses the challenges that VMM writers encounter when
deploying dynamic partitioning of EPC memory by
introducing new paging support for VMMs. The
architecture provides three key components to address the
requirements presented in the previous section:
1. Ability to determine guest EPC layout, including the

location of each page’s SECS, without tracking guest
allocation instructions (Section 3.4).

2. Ability to prevent, detect and recover from conflicts that
occur when the VMM and guest are paging the same
enclave in a way that is transparent to the guest VM
(Section 3.5).

3. Ability to prevent a guest OS from incorrectly paging
out an SECS page that has no children due to VMM
paging activities (Section 3.6).

With this support, a VMM and its guests can simultaneously
perform SGX paging without requiring the VMM to perform
emulation of guest paging instructions. If used correctly, a
guest VM will not observe functional differences in machine
behavior when an underlying VMM is paging its EPC
memory. Timing differences may occur, but are beyond the
scope of this paper.
3.3 SGX Instruction Format
The SGX Oversubscription Extensions include instruction
support for VMM EPC paging. Legacy SGX provides two
instructions: ENCLU (for user-mode actions) and ENCLS
(for supervisor-mode actions). To perform a particular
action, software invokes the appropriate instruction with a
leaf function parameter that tells the hardware which SGX
action to perform. The formal name for an SGX action is
instruction[leaf_function_name], though we often refer to
SGX actions by their leaf function name alone. For example,
Section 2.1 referred to the EBLOCK instruction, which
would formally be referred to as ENCLS[EBLOCK].

SGX Oversubscription Extensions adds an additional
instruction, ENCLV, as well as new leaf functions. Table 2
summarizes these new leaf functions.

Table 2: SGX Oversubscription instructions and purpose.

ENCLV is a special instruction that can only be executed
when VMX operation is enabled, that is, between the
execution of the instructions VMXON and VMXOFF.
ENCLV may be executed by the VMM (root mode) or a
guest (non-root mode). We introduce this instruction
because some of the oversubscription features do not make
sense in an OS bare metal context. Though we don’t
envision a typical guest needing to execute ENCLV
instruction leaf functions, there are VMM designs where a
guest VM performs privileged actions on behalf of the
VMM.

The VMM enables non-root execution of ENCLV leaf
functions by setting the “ENABLE_ENCLV” execution
control in the Virtual Machine Control Structure (VMCS) on
a per-guest basis. An execution control is per-guest
configuration setting. If this control is disabled, guests will
receive an invalid opcode exception when attempting to
execute an ENCLV instruction leaf. In some situations, such
as nested virtualization the VMM may enable ENCLV but
also configure ENCLV exiting so that the VMM can emulate
ENCLV leaf functions on behalf of the guest.

Table 3 shows the hardware behavior of ENCLV in
different modes and the corresponding use-cases:
Table 3: Behavior of ENCLV in different processor modes

3.4 Determining Guest Enclave Layout
In order to correctly page out guest EPC memory, a VMM
must know the EPCM status of the page and where the parent
SECS structure resides for that page. SGX Oversubscription
Extensions enables a VMM to determine the parent SECS
location without scanning the guest’s memory or exiting on
enclave configuration instructions. SGX Oversubscription
extends SGX hardware to track the physical address of each
enclave page’s SECS and introduces a new leaf function that
allows system software to extract metadata information
regarding an EPC page. This section discusses these aspects
of the oversubscription.

3.4.1 SECS Location Tracking
When the VMM is performing paging operations of guest
enclave pages, it must be able to locate the parent SECS of
an enclave page so that it can be loaded back into the enclave
later. However, the VMM does not know when guests create,
evict, or load an SECS page. One way to keep track of guest
enclave layout is to simply trap all SGX ring-0 instructions
and emulate those instructions on guest’s behalf. In this case
the VMM also needs to maintain a dynamic table that maps
all the SECS addresses and their enclave’s hardware-
assigned identifier. When loading an EPC page, the VMM
performs a lookup into the table to find the corresponding
SECS location. This mechanism is extremely expensive in
terms of execution time and VMM memory consumption,
and adds significant overhead in the guest paging and
enclave creation flows. Figure 3 shows an example enclave
layout inside the guests and the corresponding VMM
mapping of those enclaves.

Figure 3: Example layout of a running system. Without
additional support, the VMM must track the enclave structure
present in the guest.
To reduce the overheads associated with SECS location
tracking, SGX Oversubscription introduces a 64-bit field in
the SECS called ENCLAVECONTEXT that VMMs may
use to simplify the process of locating the SECS page
associated with an EPC page. This field is initialized by the
hardware during instructions that create SECS pages and
may be accessed by the VMM later using
ENCLS[ERDINFO] (see next section), avoiding the need for
the VMM to maintain a mapping table. The hardware uses
the physical address produced by page table translation. This
corresponds to a guest-physical address when executed in
non-root mode and a host-physical address when executed
within the VMM. In some scenarios, such as when a VMM
is executing the EPC allocation on behalf of a guest, the
address produced by paging will not be the correct address
for locating the page again later. In which case, the VMM
may overwrite the default value using a new leaf function
called ENCLV[ESETCONTEXT].

For nested virtualization cases, the lowest level VMM
can hide SGX Oversubscription instructions from higher
level guest VMMs. In that case the lower level VMM can
inject a general protection fault into higher level VMMs if

they incorrectly attempt to execute these instructions.
However, if VMMs wish to expose SGX Oversubscription
instructions to higher level VMMs, then the lowest level
VMM may need to use ENCLV[ESETCONTEXT] to
properly manage the ENCLAVECONTEXT field of SECS
during paging operations. To determine the correct location
context value to use, the lowest level VMM may need to
execute enclave context related instructions on the nested
VMM’s behalf.
3.4.2 Reading EPC Metadata
ENCLS[ERDINFO] is a new supervisor instruction that
provides software with access to the metadata associated
with each valid EPC page. This avoids the need to track page
properties such as the type and corresponding SECS page in
the VMM. The information is returned via a new RDINFO
data structure, shown in Table 4.

The STATUS field of the structure describes the status
of the page. The FLAGS field contains the page’s access
permissions; the page type; and the BLOCKED, PENDING,
and MODIFIED and PR status of the page. If the page is an
enclave child page or an SECS page, then ERDINFO also
returns the value of ENCLAVECONTEXT from the
corresponding SECS page.

For other page types, the ENCLAVECONTEXT field is
considered reserved. For invalid or non-EPC pages, the
instruction returns an information code to indicate why
ERDINFO did not succeed. ERDINFO returns an error code
when other instructions that modify the EPCM are executed
simultaneously.

Table 4: Information returned by ERDINFO

3.5 Handling Conflicts
When both guest and VMM are paging enclave memory
simultaneously, conflicts may arise between instructions
accessing a shared resource. For example, ETRACK
modifies a micro-architectural tracking structure in the
SECS of a target enclave. Concurrent calls to ETRACK on
the same enclave may cause a synchronization error in the
guest or in the VMM. In legacy SGX this failure results in a
general protection fault, which is difficult to handle in a
VMM. The fault is particularly problematic when observed
by the guest, because it may allow the guest to detect that it
is being virtualized and may even result in a fatal error if the

guest is not prepared to handle the fault.
Section 3.5.1 describes new variants of the paging

instructions ETRACKC and ELDB/U that return
recoverable error codes when a synchronization error occurs.
The capability to hide these errors from the guest is
described in Section 3.5.2.
3.5.1 Preventing Unnecessary Paging Conflicts
To help the VMM manage conflicts with the guest, we
introduce variants of the ETRACK and ELDB/ELDU
instructions with better support for concurrency. These
instructions produce error codes instead of exceptions when
synchronization conflicts occur. This allows the VMM to
catch and recover from races with the guest. When the
VMM encounters an error code, it may retry the instruction
or abort the operation to work on a different page. When the
VMM encounters an error code, it may retry the instruction
or abort the operation to work on a different page.

3.5.2 Recovering from Paging Conflicts
In legacy SGX, the VMM must execute all potentially
conflicting instructions on the guest’s behalf to avoid
synchronization errors. Ideally, the VMM would allow the
guest to execute SGX instructions, but be able to detect and
recover from any conflicts transparently to the guest. To
support this desired behavior, SGX Oversubscription
introduces a new VM exit reason, called an SGX conflict
exit, which transfers execution control of the machine to the
VMM whenever the guest encounters a synchronization
error that might have been caused by VMM activity.

Table 5: VM Exit Qualification

The SGX conflict VM exit provides the VMM with
additional information that describes the nature of the
conflict in the exit qualification field, as shown in Table 5.
The new instruction leaf functions ETRACKC and ELDC
may cause an SGX conflict exit, as well as the legacy leaf
functions EADD, ECREATE, ELDB/ELDU, EPA,
EREMOVE, ETRACK, and EWB. The VMM configures
whether SGX conflict exits should occur on a per-guest basis
by setting a control bit in the corresponding VMCS.

When the VMM receives an SGX conflict exit, it uses
its own internal data structures to determine whether the
fault could have been caused by the VMM, for example, if
the VMM is currently paging the same enclave. The VMM
will take different courses of action depending on whether
or not the VMM may have caused the conflict.

If the fault may have been caused by the VMM, then the
VMM has two possible options: (a) allow the guest to retry
the conflicting instruction or (b) synchronize with the

conflicting VMM thread and execute the guest instruction in
the VMM. Approach (a) is usually safe because
synchronization failures are transient and unlikely to occur
again; however, in degenerate cases allowing the guest to
retry could lead to a failure of the guest to make progress.
The VMM may choose to employ heuristics, retrying the
instruction some number of times and then falling back to a
executing the problematic instruction within the VMM.

If the fault was not caused by the VMM, then the failure
should be reported to the guest. The VMM resumes guest
execution at the next instruction, injecting the appropriate
error code by updating the guest’s register values.
3.6 Preventing Guest Interference
For the most part, a VMM prevents interference from a guest
by unmapping pages that it is operating on from the extended
page table (EPT) entries of the guest. This prevents the guest
from, for example, executing an instruction on the same page
that the VMM is working on. In other cases, the VMM can
detect and recover from interference using the error code
information returned by a failing instruction. However, the
area that still needs to be addressed is preventing the guest
VM from paging out an SECS of an enclave that the VMM
is operating on. If this isn’t prevented, the VMM will not be
able to bring back pages for that enclave that are currently
paged out. The unmapping approach does not work because
the SECS page must be present to execute enclave programs.

An important feature of the EPC page de-allocation
instructions, EREMOVE and EWB, is that they do not allow
software to remove or evict an SECS page when child pages
associated with that SECS are resident in the EPC. This
ensures that every enclave child page always points to a valid
enclave parent. Each SECS page contains a “child count”
that tracks the number of resident EPC pages associated with
this enclave and is checked during EREMOVE and EWB.
When a VMM writes out a guest’s child page to disk, the
child count associated with that SECS might go to zero,
allowing the guest VM to EREMOVE or EWB an SECS
page without informing the VMM. If the guest touches one
of the evicted pages, the VMM has no way to reload the page
back into the enclave and resume the guest because it can’t
associate the page with its SECS. The remainder of this
section describes how SGX Oversubscription Extensions
avoids this scenario by introducing a virtual child count.

SGX Oversubscription introduces an additional SECS
field to store the virtual child count, a count of pages that the
guest believes to be resident but have actually been evicted
by the VMM. The VMM explicitly manages this counter
during paging operations, calling the new leaf function
ENCLV[EINCVIRTCHILD] to increment the virtual child
count during the eviction flow and
ENCLV[EDECVIRTCHILD] to decrement the count during
the load flow. This field is initialized to zero by hardware
during the creation of the SECS (ECREATE) and preserved
when the SECS itself is paged out.

Whenever the virtual child count is non-zero, the guest
VM is blocked from evicting the SECS page, just as if it had
resident children present in the EPC. The guest VM isn’t

expected to attempt such an eviction, after all, the guest
thinks the virtual children are resident, but if the guest does
attempt an EREMOVE or a EWB on the page, it will receive
an SGX_CHILD_PRESENT error code, as if a physical
child was there.

SGX Oversubscription introduces a new execution
control that the VMM uses to enable or disable virtual child
count checking on a per-guest basis. Typically, VMMs that
perform oversubscription would enable virtual child count
tracking on all guests. VMMs that make use of a privileged
guest to perform paging and EPC page removal on behalf of
other guests would disable this tracking for that VM. In
VMX root or bare metal mode, the virtual child count is
ignored, ensuring the VMM or OS can always manage EPC
memory as it sees fit. Note that executing ERDINFO on an
SECS page returns status bits indicating whether physical
and virtual children are present. This helps the VMM to
quickly determine the state of the enclave at any point in time
as described in Table 6.

Table 6: Behavior of ERDINFO instruction under different
processor configurations.

4 EXAMPLE SOFTWARE FLOWS
There are various ways a VMM can implement EPC
oversubscription using the new SGX extensions. However,
at a high level, a VMM will typically implement a basic flow
as discussed in the following sections.	

4.1 Paging out EPC pages by the VMM
When the VMM wishes to evict memory pages from the
EPC, it executes the following steps:
1. Start the aging cycle to find victim pages using EPT A/D

bit to track recently used pages
2. Mark victim page(s) not present in EPT
3. Flush TLBs of threads running in the guest to remove

stale translations. VMMs typically track which
hardware threads are assigned to which VMs. So VMM
needs to send TLB flush IPI only to those threads that
belong to that specific VM.

4. For every aged page in the guest EPC address space, call
ENCLS[ERDINFO] to determine the page’s type and
SECS location. Then take the following actions:

a. Evict enclave child pages, saving the location
of each page’s parent for later use and
incrementing the virtual child count with
EINCVIRTCHILD. Use normal SGX paging
flow (EBLOCK, ETRACK, EWB) on the
victim page.

b. Evict SECS pages if their child count is zero.
ERDINFO gives the VMM information about the EPC

memory without the VMM maintaining this information
itself. By using ETRACKC, the VMM avoids causing faults
in guest. EINCVIRTCHILD blocks the guest from evicting
an in-use SECS.

4.2 Loading enclave pages back into EPC
Typically, an EPT violation due to a guest EPC access to a
non-present page triggers the VMM to reload the page. At
that point, the VMM executes the following steps:
1. Identify the SECS page in VMM data structures for the

page being restored
2. Create VMM mappings to target page and SECS page
3. Execute ELDC on page. ELDC helps VMM avoid

causing faults in guest.
4. For every regular page successfully loaded, execute

EDECVIRTCHILD to allow guest to be able to evict
SECS

5. If loading SECS, execute ESETCONTEXT to restore
context. This ensures that VMM can track this SECS

6. Add EPT mapping for page
7. During an EPT violation caused due to guest access to

non-present page, as an optimization, VMMs may
choose to load more contiguous pages instead of just
one. The probability of the guest accessing next set of
contiguous pages is typically high, hence this strategy
may reduce number of EPT violations and improve
guest performance. 	

5 RELATED WORK
Secure Encrypted Virtualization (SEV) [5] is an extension of
AMD-V™ architecture that supports running multiple
encrypted VMs under the control of the hypervisor. SEV is
focused on VM isolation, rather than application protection
like SGX, and does not provide generic oversubscription
support for VMMs.

VMware® and Hyper-V both support memory
oversubscription [1] for regular memory but use slightly
different techniques. VMware® uses both ballooning and
paging for overcommitting memory as opposed to Hyper-V
which gives finer control over per-VM memory assignment.

VMware® ESX server supports memory
oversubscription [2] as an important feature of the
hypervisor and claims that this is an important feature even
with continuing fall of memory cost. Memory
oversubscription is important for disaster recovery, high
availability and distributed power management to ensure
good performance.
6 CONCLUSIONS
SGX Oversubscription Extensions address the difficulties of
virtualizing SGX memory using the existing paging
instructions. In particular, it allows VMMs to avoid the
performance overhead and complexity of tracking,
virtualizing and maintaining the parent-child relationship
between an SECS and the pages belonging to that enclave.
The extensions include new instructions and extensions for
programmatically discovering the parent-child relationship
(ERDINFO), virtualizing the parent-child relationship
(EINCVIRTCHILD, EDECVIRTCHILD, and

ESETCONTEXT), and handling conflicts due to concurrent
operations (ETRACKC).

Using these instructions, VMMs can both significantly
reduce the overhead and complexity of oversubscribing the
EPC. Thus, enabling EPC oversubscription without guest
co-operation.
7 ACKNOWLEDGEMENTS
The authors of this paper wish to acknowledge the
contributions of many hardware and software architects and
designers who have worked in developing this innovative
technology.
8 REFERENCES
[1] A. Abernathy, “Hyper-V Dynamic Memory vs. VMware
Memory Overcommitment - Another Reason to Use
Microsoft for VDI,” http://blog.unidesk.com/hyper-v-
dynamic-memory-vs-vmware-memory-overcommittment-
vdi. [Accessed 7 April 2017]
[2] I. Banerjee, F. Guo, R. Venkatasubramanian, “Memory
Overcommitment in ESX Server” VMware® Technical
Journal, Summer 2013.
[3] M. Hoekstra, R. Lal, P. Pappachan, C. Rozas, V. Phegade
and J. Del Cuvillo, "Using Innovative Instructions to Create
Trustworthy Software Solutions," in HASP, Israel, 2013.
[4] Intel® Corp., "Intel® 64 and IA-32 Architectures
Software Developer’s Manual," March 2017.
https://software.intel.com/sites/default/files/managed/39/c5/
325462-sdm-vol-1-2abcd-3abcd.pdf. [Accessed 10 May
2017].
[5] David Kaplan, Jeremy Powell, Tom Woller, “AMD
Memory Encryption,” http://amd-dev.wpengine.netdna-
cdn.com/wordpress/media/2013/12/AMD_Memory_Encry
ption_Whitepaper_v7-Public.pdf. [Accessed 7 April 2017]
[6] Dan Magenheimer, “Memory Overcommit... without the
commitment,” in Xen Summit, 2008.
https://oss.oracle.com/projects/tmem/dist/documentation/pa
pers/overcommit.pdf. [Accessed 7 April 2017]
[7] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S.
Johnson, R. Leslie-Hurd and C. Rozas, "SGX Instructions to
Support Dynamic Memory Allocation Inside an Enclave," in
HASP, South Korea, 2016.
[8] F. McKeen, I. Alexandrovich, A. Berenzon, C. Rozas,
H. Shafi, V. Shanbhogue and U. Savagaoankar, "Innovative

Instructions and Software Model for Isolated Execution," in
HASP, Israel, 2013.
[9] W.Zhao and Z. Wang, “Dynamic Memory Balancing for
Virtual Machines,” in Virtual Execution Environments,
2009.
9 Disclaimer
No license (express or implied, by estoppel or otherwise) to
any intellectual property rights is granted by this document.
Intel® disclaims all express and implied warranties,
including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-
infringement, as well as any warranty arising from course of
performance, course of dealing, or usage in trade.

This document contains information on products,
services and/or processes in development. All information
provided here is subject to change without notice. Contact
your Intel® representative to obtain the latest forecast,
schedule, specifications and roadmaps. Intel technologies’
features and benefits depend on system configuration and
may require enabled hardware, software or service
activation. Learn more at intel.com, or from the OEM or
retailer.
 No computer system can be absolutely secure.
 The products and services described may contain
defects or errors known as errata which may cause
deviations from published specifications. Current
characterized errata are available on request. Intel®
technologies features and benefits depend on system
configuration and may require enabled hardware, software
or service activation. Learn more at Intel.com, or from the
OEM or retailer. Copies of documents which have an order
number and are referenced in this document may be obtained
by calling 1-800-548-4725 or by visiting
www.intel.com/design/literature.htm

Intel®, the Intel® logo, Xeon, and Xeon Phi are
trademarks of Intel Corporation in the U.S. and/or other
countries.

© 2017 Intel Corporation

