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ABSTRACT 
As workloads and data move to the cloud, it is essential that 
software writers are able to protect their applications from 
untrusted hardware, systems software, and co-tenants.  Intel® 
Software Guard Extensions (SGX) enables a new mode of 
execution that is protected from attacks in such an 
environment with strong confidentiality, integrity, and 
replay protection guarantees.  Though SGX supports 
memory oversubscription via paging, virtualizing the 
protected memory presents a significant challenge to Virtual 
Machine Monitor (VMM) writers and comes with a high 
performance overhead.  This paper introduces SGX 
Oversubscription Extensions that add additional instructions 
and virtualization support to the SGX architecture so that 
cloud service providers can oversubscribe secure memory in 
a less complex and more performant manner. 
Keywords 
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1 INTRODUCTION 
Computing is evolving into a virtualized resource that Cloud 
Service Providers (CSPs) supply on-demand to a broad 
spectrum of users from corporate customers to application 
providers. The variety of workloads requires dynamic 
allocation of compute resources to maximize performance.  
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Memory is a key element of the resource management 

strategy because the memory requirements of cloud 
application can vary dramatically over time. Many cloud 
workloads contain personal or confidential data that must not 
be exposed.  CSPs must provide confidentiality and 
integrity, especially in an environment shared between 
multiple unknown users, so that their customers can rest 
assured that their data is protected from both accidental and 
malicious disclosure or tampering. In today’s environment, 
privileged software provided and maintained by the CSP is 
central to protect customer workloads and data. Bugs in the 
CSP software could result in the compromise of a customer’s 
data, and establishing the correctness of such large and 
complicated software codebases is extremely difficult. Intel® 
Software Guard Extensions (SGX) was developed to meet 
the confidentiality and integrity needs of applications even 
when the software environment may not be bug-free.  
SGX provides the hardware support needed to defeat 
privileged software attacks and assures separation between 
critical data and untrusted application code without 
sacrificing the platform manageability features expected by 
CSPs such as memory oversubscription.  A virtual machine 
monitor (VMM) may virtualize the memory of SGX 
programs using the standard ballooning [6] or paging [9] 
techniques; however, performing SGX paging in a VMM 
requires expensive VM exits and emulation of guest 
behavior. In addition, the VMM must keep extensive 
metadata to manage the SGX memory correctly, which 
wastes space and complicates the VMM algorithms.  

To address the difficulties in virtualizing SGX memory 
using the existing paging instructions, Intel® developed the 
SGX Oversubscription Extensions to SGX described in this 
paper.  The new instructions and virtualization support 
enable CSPs to support SGX in the cloud in a simpler and 
more performant manner without compromising the security 
guarantees or functionality of legacy SGX.   The remainder 
of this paper is devoted to the description of these extensions 
and their usage, with a review of the relevant background 
knowledge in Section 2.  Section 3 provides background on 
oversubscription techniques and details of the 
oversubscription extensions. Section 4 provides a reference 
software flow using the new extensions. Section 5 reviews 



related work with Section 6 providing concluding remarks.  
2 SGX MEMORY MANAGEMENT  
SGX provides an execution environment called an enclave 
where code and data are protected from privileged and 
unprivileged code. Enclave code and data are stored in a 
protected area of memory called the Enclave Page Cache 
(EPC), as are security-critical control structures introduced 
by SGX.  SGX provides the building blocks for system 
software to manage EPC memory, including instructions for 
oversubscribing the EPC, dynamically allocating EPC 
pages, and changing the permissions or type associated with 
an EPC page.  In this section, the structure of enclave 
memory and the hardware instructions for enclave memory 
management are reviewed.  For a detailed overview see [8]. 
2.1 Enclave Layout 
Unlike regular memory, enclave memory has a structure that 
connects each page of the enclave to the enclave control 
structure for the enclave to which that page belongs.  This 
connection is recorded by the CPU in a protected per-page 
data structure called the Enclave Page Cache Map (EPCM). 
The enclave control structure, the Secure Enclave Control 
Structure (SECS), resides in a separate page of EPC memory 
and stores configuration information such as the linear 
address range associated with the enclave.  Each enclave 
page is linked to its SECS parent via an identifier stored in 
the EPCM, as illustrated in Figure 1. 

 
Figure 1: Unlike traditional applications, enclave memory 
layout is not flat.  VMMs must understand the layout of each 
enclave to effectively support paging-based oversubscription.  

The tree-like structure of enclave memory introduces 
constraints for enclave paging in that all of the child pages 
associated with an enclave must be removed before their 
SECS parent can be paged out of the enclave.  Without 
special support, the VMM must keep track of the type of 
each enclave page as well as the location of its parent. 

In addition to the SECS identifier, each enclave page has 
metadata associated with it that further constrains the ways 
in which the page may be used.  This metadata is also stored 
in the EPCM, which contains the following fields: 
• VALID: Indicates whether a page is in use. 
• RWX: Permissions associated with page. 
• PAGETYPE: Indicator of the kind of EPC page, for 

example PT_REG or PT_SECS. 
• BLOCKED, PENDING, MODIFIED, PR: Status flags 

that indicate there is an update to the page in-progress. 
VMM must maintain the EPCM state of a page across paging 
so as to be transparent to the guest.  In some cases the EPCM 
state may lead the VMM to make different memory 
management choices.  For the full definition of the EPCM 

and SGX details, see the SDM Chapter 38 [4] and previous 
SGX papers [7,8]. 

2.2 Enclave Memory Paging 
SGX provides instructions for enclave memory paging 
including EWB, which securely evicts an EPC page to 
regular memory and ELDB/ELDU, which load a previously 
evicted page back into the EPC. Enclave pages evicted from 
the EPC to main memory have the same integrity, 
confidentiality and replay protection as when the contents 
resided within the EPC. To achieve this protection, the 
paging instructions enforce the following rules: 
1. An enclave page can be evicted only after all cached 

address translations to that page have been evicted from 
all logical processors. 

2. The contents of the evicted enclave page must be 
encrypted before being written out to main memory. 

3. When an evicted enclave page is reloaded into EPC it 
must have identical page type, permissions, virtual 
address, content, and be associated to the same enclave 
as at the time of eviction. 

4. Only the last evicted version of an enclave page can be 
allowed to be reloaded. 
To prepare the enclave page for eviction, system 

software marks the page to be evicted as BLOCKED using 
the EBLOCK instruction. Once an EPC page has been 
marked as BLOCKED, the processor prevents any new 
Translation Lookaside Buffer (TLB) entries that map that 
EPC page from being created. However, TLB entries that 
reference this page may exist in one or more logical 
processors. These TLB entries must be removed before the 
page can be removed from the EPC. The ETRACK 
instruction configures microarchitectural trackers that detect 
when all cached references to a blocked page have been 
flushed.  Hardware uses these trackers to determine when it 
is safe to evict an enclave page.  To avoid races on the per-
enclave trackers and simplify the architecture, ETRACK 
may not be called concurrently on the same enclave.  To 
summarize, the software flow for evicting enclave memory 
in an OS or VMM is as follows: 
1. Identify the target page to be evicted using usual 

algorithms (aging, etc.) 
2. Unmap the page from the application space. 
3. Execute EBLOCK on the target page. 
4. Execute ETRACK on the SECS page to which the target 

page belongs. 
5. Flush the TLB mappings to the target page, for example, 

by sending IPIs to the threads running in the enclave to 
which the page belongs. Threads may resume 
immediately after the mappings have been flushed. 

6. Execute EWB on the target page. 
To load an evicted page back into the enclave, software 

uses the ELDU or ELDB instruction.  These instructions 
both load an encrypted page from main memory into the 
EPC, after first checking the integrity of the contents. The 
only difference is whether the page is loaded in the blocked 
state (ELDB) or not (ELDU).  Typically software uses 



ELDU, but ELDB is useful if the guest OS has blocked the 
page prior to the VMM evicting it.  Both instructions require 
the address of the SECS parent with which the newly loaded 
page should be associated.  

2.3 Challenges in Virtualizing SGX Paging 
The enclave paging flow described in the previous section 
presents multiple challenges for a VMM: 

• The VMM must know the location of the SECS parent 
of any page that it would like to evict and must 
remember this location while the page is written out.  

• The VMM and guest may execute ETRACK 
concurrently on the same enclave, causing an 
unexpected error in the guest.   

• A guest VM might evict or remove SECS pages without 
the VMM’s knowledge, preventing the VMM from 
loading evicted pages associated with that parent. 

The only strategy available to the VMM in legacy SGX for 
handling these challenges is to emulate paging and enclave 
configuration instructions for the guest and to track the 
enclave memory layout of the guest.   

Our evaluation of the VMM software flows required to 
support SGX paging and oversubscription found that the 
performance and complexity overheads were significant.  
Table 1 shows the performance overheads for the enclave 
paging and enclave build flows. The numbers are captured 
on Intel® Xeon E3-1280 v5 based server using KVM as the 
VMM on Ubuntu 14.04 host. The guest OS is Ubuntu 14.04 
tested with enclaves upto 4MB in size.   

Table 1: Overhead of exit roundtrip and emulation during 
paging and during enclave build/teardown.  

 
As shown in the table, the cost of exiting on guest 
instructions and emulating them in the VMM significantly 
increases the cost of paging and doubles the cost of enclave 
build.  (Note that the cycle numbers shown are based on a 
prototype and may vary between various machine 
configurations.)  The next section describes SGX 
Oversubscription processor extensions that enable VMM 
oversubscription in a simpler and more performant manner.  
3 SGX OVERSUBSCRIPTION SUPPORT 
The SGX Oversubscription Extensions is an architecture 
extension designed to address the challenges in virtualizing 
EPC paging discussed in the previous section.   

3.1 Background 
Oversubscription is a term used to describe the VMM 
practice of assigning more resources to virtual machines 
(VMs) than is actually available on the physical platform. 

VMs typically do not use all the resources all the time, so 
oversubscription enables cloud service providers to increase 
the density of VMs per platform. Resource oversubscription 
can be done for CPU, memory, and I/O resources. For 
example, the VMM can assign more virtual CPUs (VCPU) 
to a VM than physical cores available, scheduling the 
VCPUs on actual CPUs as governed by the scheduler policy. 
The remainder of this section explores the practice of 
memory oversubscription and the various ways a VMM 
might allocate memory to a VM.  
3.1.1 Static Partitioning 
One approach to memory allocation is for the VMM to 
statically partition the available memory amongst the guest 
VMs, as shown in Figure 2(a).  In this scheme, the memory 
available to a VM does not change over its lifetime.  The 
advantage of static partitioning is its simplicity and the fact 
that guest applications observe deterministic performance 
because the VM is always in possession of the expected 
amount of memory.  The disadvantage is that static 
partitioning can lead to memory waste when a VM is not 
making use of its full allotment.  

(a)     (b)  
Figure 2: SGX memory partitioning options.  VMM may 
configure memory (a) statically for each VM or (b) dynamically 
based on each VM’s run-time needs. 
3.1.2 Dynamic Partitioning Using Ballooning 
To address the resource utilization issues with static 
partitioning, some VMMs allocate memory dynamically, 
growing the size of a VM’s memory footprint on demand.  
The memory layout arising from this technique, which is 
known as ballooning, is illustrated in Figure 2(b).  Dynamic 
partitioning using ballooning requires guest co-operation, 
which is not always feasible. Each VM informs the VMM 
when it needs more memory or when it wants to release free 
memory.  Based on this protocol, the hypervisor can 
maintain a free pool of memory that it uses to satisfy 
dynamic memory allocation requests. Since this model 
requires guest awareness and cooperation with the VMM, it 
is best-suited for enterprise datacenter environments where 
both the VM and VMM are trusted. In public cloud 
environment, this model is not suitable because cloud 
service providers do not trust the guest VMs and often do not 
even allow direct VM-to-VMM communication. 
3.1.3 Dynamic Partitioning Using Paging 
In scenarios where guest cooperation with memory 
management is not feasible, but VMM writers would still 
like to take advantage of dynamic memory partitioning.  
paging-based oversubscription can be done by the VMM. 
Paging-based oversubscription presents the guest with 



virtual memory that may or may not be fully resident at any 
given time.  The VMM manages the resident memory based 
on the memory usage of the VM and the load of the system.  
A variety of heuristics are employed to determine which 
memory to page out to disk, such as identifying the least 
recently used page by scanning the guest’s memory and the 
associated accessed and dirty flags. Though paging-based 
oversubscription does not require guest modifications, it 
does expose non-deterministic timing behavior to the guests 
and might not be suitable for certain real-time applications.  
In the context of SGX, extra work must be done by the VMM 
to page out EPC memory in a way that is functionally 
transparent to the guest. 

3.2 Overview 
The SGX Oversubscription Extensions architecture 
addresses the challenges that VMM writers encounter when 
deploying dynamic partitioning of EPC memory by 
introducing new paging support for VMMs.  The 
architecture provides three key components to address the 
requirements presented in the previous section: 
1. Ability to determine guest EPC layout, including the 

location of each page’s SECS, without tracking guest 
allocation instructions (Section 3.4). 

2. Ability to prevent, detect and recover from conflicts that 
occur when the VMM and guest are paging the same 
enclave in a way that is transparent to the guest VM 
(Section 3.5). 

3. Ability to prevent a guest OS from incorrectly paging 
out an SECS page that has no children due to VMM 
paging activities (Section 3.6). 

With this support, a VMM and its guests can simultaneously 
perform SGX paging without requiring the VMM to perform 
emulation of guest paging instructions. If used correctly, a 
guest VM will not observe functional differences in machine 
behavior when an underlying VMM is paging its EPC 
memory.  Timing differences may occur, but are beyond the 
scope of this paper. 
3.3 SGX Instruction Format 
The SGX Oversubscription Extensions include instruction 
support for VMM EPC paging.  Legacy SGX provides two 
instructions: ENCLU (for user-mode actions) and ENCLS 
(for supervisor-mode actions).  To perform a particular 
action, software invokes the appropriate instruction with a 
leaf function parameter that tells the hardware which SGX 
action to perform.  The formal name for an SGX action is 
instruction[leaf_function_name], though we often refer to 
SGX actions by their leaf function name alone.  For example, 
Section 2.1 referred to the EBLOCK instruction, which 
would formally be referred to as ENCLS[EBLOCK]. 

SGX Oversubscription Extensions adds an additional 
instruction, ENCLV, as well as new leaf functions. Table 2 
summarizes these new leaf functions. 

Table 2: SGX Oversubscription instructions and purpose. 

 
ENCLV is a special instruction that can only be executed 
when VMX operation is enabled, that is, between the 
execution of the instructions VMXON and VMXOFF. 
ENCLV may be executed by the VMM (root mode) or a 
guest (non-root mode).  We introduce this instruction 
because some of the oversubscription features do not make 
sense in an OS bare metal context.  Though we don’t 
envision a typical guest needing to execute ENCLV 
instruction leaf functions, there are VMM designs where a 
guest VM performs privileged actions on behalf of the 
VMM.  

The VMM enables non-root execution of ENCLV leaf 
functions by setting the “ENABLE_ENCLV” execution 
control in the Virtual Machine Control Structure (VMCS) on 
a per-guest basis.  An execution control is per-guest 
configuration setting.  If this control is disabled, guests will 
receive an invalid opcode exception when attempting to 
execute an ENCLV instruction leaf.  In some situations, such 
as nested virtualization the VMM may enable ENCLV but 
also configure ENCLV exiting so that the VMM can emulate 
ENCLV leaf functions on behalf of the guest. 

Table 3 shows the hardware behavior of ENCLV in 
different modes and the corresponding use-cases: 
Table 3: Behavior of ENCLV in different processor modes

 

3.4  Determining Guest Enclave Layout 
In order to correctly page out guest EPC memory, a VMM 
must know the EPCM status of the page and where the parent 
SECS structure resides for that page.  SGX Oversubscription 
Extensions enables a VMM to determine the parent SECS 
location without scanning the guest’s memory or exiting on 
enclave configuration instructions. SGX Oversubscription 
extends SGX hardware to track the physical address of each 
enclave page’s SECS and introduces a new leaf function that 
allows system software to extract metadata information 
regarding an EPC page.  This section discusses these aspects 
of the oversubscription. 



3.4.1 SECS Location Tracking 
When the VMM is performing paging operations of guest 
enclave pages, it must be able to locate the parent SECS of 
an enclave page so that it can be loaded back into the enclave 
later. However, the VMM does not know when guests create, 
evict, or load an SECS page. One way to keep track of guest 
enclave layout is to simply trap all SGX ring-0 instructions 
and emulate those instructions on guest’s behalf.  In this case 
the VMM also needs to maintain a dynamic table that maps 
all the SECS addresses and their enclave’s hardware-
assigned identifier.  When loading an EPC page, the VMM 
performs a lookup into the table to find the corresponding 
SECS location. This mechanism is extremely expensive in 
terms of execution time and VMM memory consumption, 
and adds significant overhead in the guest paging and 
enclave creation flows. Figure 3 shows an example enclave 
layout inside the guests and the corresponding VMM 
mapping of those enclaves. 

 
Figure 3: Example layout of a running system.  Without 
additional support, the VMM must track the enclave structure 
present in the guest.   
To reduce the overheads associated with SECS location 
tracking, SGX Oversubscription introduces a 64-bit field in 
the SECS called ENCLAVECONTEXT that VMMs may 
use to simplify the process of locating the SECS page 
associated with an EPC page.  This field is initialized by the 
hardware during instructions that create SECS pages and 
may be accessed by the VMM later using 
ENCLS[ERDINFO] (see next section), avoiding the need for 
the VMM to maintain a mapping table.  The hardware uses 
the physical address produced by page table translation. This  
corresponds to a guest-physical address when executed in 
non-root mode and a host-physical address when executed 
within the VMM.  In some scenarios, such as when a VMM 
is executing the EPC allocation on behalf of a guest, the 
address produced by paging will not be the correct address 
for locating the page again later. In which case, the VMM 
may overwrite the default value using a new leaf function 
called ENCLV[ESETCONTEXT].  

For nested virtualization cases, the lowest level VMM 
can hide SGX Oversubscription instructions from higher 
level guest VMMs. In that case the lower level VMM can 
inject a general protection fault into higher level VMMs if 

they incorrectly attempt to execute these instructions. 
However, if VMMs wish to expose SGX Oversubscription 
instructions to higher level VMMs, then the lowest level 
VMM may need to use ENCLV[ESETCONTEXT] to 
properly manage the ENCLAVECONTEXT field of SECS 
during paging operations. To determine the correct location 
context value to use, the lowest level VMM may need to 
execute enclave context related instructions on the nested 
VMM’s behalf. 
3.4.2 Reading EPC Metadata 
ENCLS[ERDINFO] is a new supervisor instruction that 
provides software with access to the metadata associated 
with each valid EPC page.  This avoids the need to track page 
properties such as the type and corresponding SECS page in 
the VMM.  The information is returned via a new RDINFO 
data structure, shown in Table 4. 

The STATUS field of the structure describes the status 
of the page. The FLAGS field contains the page’s access 
permissions; the page type; and the BLOCKED, PENDING, 
and MODIFIED and PR status of the page. If the page is an 
enclave child page or an SECS page, then ERDINFO also 
returns the value of ENCLAVECONTEXT from the 
corresponding SECS page. 

For other page types, the ENCLAVECONTEXT field is 
considered reserved. For invalid or non-EPC pages, the 
instruction returns an information code to indicate why 
ERDINFO did not succeed.  ERDINFO returns an error code 
when other instructions that modify the EPCM are executed 
simultaneously. 

Table 4: Information returned by ERDINFO 

 

3.5 Handling Conflicts 
When both guest and VMM are paging enclave memory 
simultaneously, conflicts may arise between instructions 
accessing a shared resource. For example, ETRACK 
modifies a micro-architectural tracking structure in the 
SECS of a target enclave.  Concurrent calls to ETRACK on 
the same enclave may cause a synchronization error in the 
guest or in the VMM. In legacy SGX this failure results in a 
general protection fault, which is difficult to handle in a 
VMM.  The fault is particularly problematic when observed 
by the guest, because it may allow the guest to detect that it 
is being virtualized and may even result in a fatal error if the 



guest is not prepared to handle the fault.   
Section 3.5.1 describes new variants of the paging 

instructions ETRACKC and ELDB/U that return 
recoverable error codes when a synchronization error occurs. 
The capability to hide these errors from the guest is 
described in Section 3.5.2.   
3.5.1 Preventing Unnecessary Paging Conflicts 
To help the VMM manage conflicts with the guest, we 
introduce variants of the ETRACK and ELDB/ELDU 
instructions with better support for concurrency.  These 
instructions produce error codes instead of exceptions when 
synchronization conflicts occur.  This allows the VMM to 
catch and recover from races with the guest.  When the 
VMM encounters an error code, it may retry the instruction 
or abort the operation to work on a different page. When the 
VMM encounters an error code, it may retry the instruction 
or abort the operation to work on a different page.  

3.5.2 Recovering from Paging Conflicts 
In legacy SGX, the VMM must execute all potentially 
conflicting instructions on the guest’s behalf to avoid 
synchronization errors.  Ideally, the VMM would allow the 
guest to execute SGX instructions, but be able to detect and 
recover from any conflicts transparently to the guest.  To 
support this desired behavior, SGX Oversubscription 
introduces a new VM exit reason, called an SGX conflict 
exit, which transfers execution control of the machine to the 
VMM whenever the guest encounters a synchronization 
error that might have been caused by VMM activity. 

Table 5: VM Exit Qualification 

The SGX conflict VM exit provides the VMM with 
additional information that describes the nature of the 
conflict in the exit qualification field, as shown in Table 5.  
The new instruction leaf functions ETRACKC and ELDC 
may cause an SGX conflict exit, as well as the legacy leaf 
functions EADD, ECREATE, ELDB/ELDU, EPA, 
EREMOVE, ETRACK, and EWB.  The VMM configures 
whether SGX conflict exits should occur on a per-guest basis 
by setting a control bit in the corresponding VMCS. 

When the VMM receives an SGX conflict exit, it uses 
its own internal data structures to determine whether the 
fault could have been caused by the VMM, for example, if 
the VMM is currently paging the same enclave.  The VMM 
will take different courses of action depending on whether 
or not the VMM may have caused the conflict.  

If the fault may have been caused by the VMM, then the 
VMM has two possible options: (a) allow the guest to retry 
the conflicting instruction or (b) synchronize with the 

conflicting VMM thread and execute the guest instruction in 
the VMM.  Approach (a) is usually safe because 
synchronization failures are transient and unlikely to occur 
again; however, in degenerate cases allowing the guest to 
retry could lead to a failure of the guest to make progress.  
The VMM may choose to employ heuristics, retrying the 
instruction some number of times and then falling back to a 
executing the problematic instruction within the VMM. 

If the fault was not caused by the VMM, then the failure 
should be reported to the guest.  The VMM resumes guest 
execution at the next instruction, injecting the appropriate 
error code by updating the guest’s register values. 
3.6 Preventing Guest Interference 
For the most part, a VMM prevents interference from a guest 
by unmapping pages that it is operating on from the extended 
page table (EPT) entries of the guest.  This prevents the guest 
from, for example, executing an instruction on the same page 
that the VMM is working on.  In other cases, the VMM can 
detect and recover from interference using the error code 
information returned by a failing instruction.  However, the 
area that still needs to be addressed is preventing the guest 
VM from paging out an SECS of an enclave that the VMM 
is operating on.  If this isn’t prevented, the VMM will not be 
able to bring back pages for that enclave that are currently 
paged out.  The unmapping approach does not work because 
the SECS page must be present to execute enclave programs.  

An important feature of the EPC page de-allocation 
instructions, EREMOVE and EWB, is that they do not allow 
software to remove or evict an SECS page when child pages 
associated with that SECS are resident in the EPC.  This 
ensures that every enclave child page always points to a valid 
enclave parent.  Each SECS page contains a “child count” 
that tracks the number of resident EPC pages associated with 
this enclave and is checked during EREMOVE and EWB.  
When a VMM writes out a guest’s child page to disk, the 
child count associated with that SECS might go to zero, 
allowing the guest VM to EREMOVE or EWB an SECS 
page without informing the VMM. If the guest touches one 
of the evicted pages, the VMM has no way to reload the page 
back into the enclave and resume the guest because it can’t 
associate the page with its SECS.  The remainder of this 
section describes how SGX Oversubscription Extensions 
avoids this scenario by introducing a virtual child count. 

SGX Oversubscription introduces an additional SECS 
field to store the virtual child count, a count of pages that the 
guest believes to be resident but have actually been evicted 
by the VMM.  The VMM explicitly manages this counter 
during paging operations, calling the new leaf function 
ENCLV[EINCVIRTCHILD] to increment the virtual child 
count during the eviction flow and 
ENCLV[EDECVIRTCHILD] to decrement the count during 
the load flow. This field is initialized to zero by hardware 
during the creation of the SECS (ECREATE) and preserved 
when the SECS itself is paged out. 

Whenever the virtual child count is non-zero, the guest 
VM is blocked from evicting the SECS page, just as if it had 
resident children present in the EPC.  The guest VM isn’t 



expected to attempt such an eviction, after all, the guest 
thinks the virtual children are resident, but if the guest does 
attempt an EREMOVE or a EWB on the page, it will receive 
an SGX_CHILD_PRESENT error code, as if a physical 
child was there.  

SGX Oversubscription introduces a new execution 
control that the VMM uses to enable or disable virtual child 
count checking on a per-guest basis. Typically, VMMs that 
perform oversubscription would enable virtual child count 
tracking on all guests. VMMs that make use of a privileged 
guest to perform paging and EPC page removal on behalf of 
other guests would disable this tracking for that VM.  In 
VMX root or bare metal mode, the virtual child count is 
ignored, ensuring the VMM or OS can always manage EPC 
memory as it sees fit.  Note that executing ERDINFO on an 
SECS page returns status bits indicating whether physical 
and virtual children are present. This helps the VMM to 
quickly determine the state of the enclave at any point in time 
as described in Table 6. 

Table 6: Behavior of ERDINFO instruction under different 
processor configurations. 

 
4 EXAMPLE SOFTWARE FLOWS 
There are various ways a VMM can implement EPC 
oversubscription using the new SGX extensions. However, 
at a high level, a VMM will typically implement a basic flow 
as discussed in the following sections.	

4.1 Paging out EPC pages by the VMM 
When the VMM wishes to evict memory pages from the 
EPC, it executes the following steps: 
1. Start the aging cycle to find victim pages using EPT A/D 

bit to track recently used pages 
2. Mark victim page(s) not present in EPT 
3. Flush TLBs of threads running in the guest to remove 

stale translations. VMMs typically track which 
hardware threads are assigned to which VMs. So VMM 
needs to send TLB flush IPI only to those threads that 
belong to that specific VM. 

4. For every aged page in the guest EPC address space, call 
ENCLS[ERDINFO] to determine the page’s type and 
SECS location.  Then take the following actions: 

a. Evict enclave child pages, saving the location 
of each page’s parent for later use and 
incrementing the virtual child count with 
EINCVIRTCHILD.  Use normal SGX paging 
flow (EBLOCK, ETRACK, EWB) on the 
victim page. 

b. Evict SECS pages if their child count is zero. 
ERDINFO gives the VMM information about the EPC 

memory without the VMM maintaining this information 
itself.  By using ETRACKC, the VMM avoids causing faults 
in guest. EINCVIRTCHILD blocks the guest from evicting 
an in-use SECS. 

4.2 Loading enclave pages back into EPC 
Typically, an EPT violation due to a guest EPC access to a 
non-present page triggers the VMM to reload the page.  At 
that point, the VMM executes the following steps: 
1. Identify the SECS page in VMM data structures for the 

page being restored 
2. Create VMM mappings to target page and SECS page 
3. Execute ELDC on page. ELDC helps VMM avoid 

causing faults in guest.  
4. For every regular page successfully loaded, execute 

EDECVIRTCHILD to allow guest to be able to evict 
SECS 

5. If loading SECS, execute ESETCONTEXT to restore 
context. This ensures that VMM can track this SECS 

6. Add EPT mapping for page 
7. During an EPT violation caused due to guest access to 

non-present page, as an optimization, VMMs may 
choose to load more contiguous pages instead of just 
one. The probability of the guest accessing next set of 
contiguous pages is typically high, hence this strategy 
may reduce number of EPT violations and improve 
guest performance.  	

5 RELATED WORK 
Secure Encrypted Virtualization (SEV) [5] is an extension of 
AMD-V™ architecture that supports running multiple 
encrypted VMs under the control of the hypervisor. SEV is 
focused on VM isolation, rather than application protection 
like SGX, and does not provide generic oversubscription 
support for VMMs.   

VMware® and Hyper-V both support memory 
oversubscription [1] for regular memory but use slightly 
different techniques. VMware® uses both ballooning and 
paging for overcommitting memory as opposed to Hyper-V 
which gives finer control over per-VM memory assignment.   

VMware® ESX server supports memory 
oversubscription [2] as an important feature of the 
hypervisor and claims that this is an important feature even 
with continuing fall of memory cost.  Memory 
oversubscription is important for disaster recovery, high 
availability and distributed power management to ensure 
good performance.  
6 CONCLUSIONS 
SGX Oversubscription Extensions address the difficulties of 
virtualizing SGX memory using the existing paging 
instructions.  In particular, it allows VMMs to avoid the 
performance overhead and complexity of tracking, 
virtualizing and maintaining the parent-child relationship 
between an SECS and the pages belonging to that enclave. 
The extensions include new instructions and extensions for 
programmatically discovering the parent-child relationship 
(ERDINFO), virtualizing the parent-child relationship 
(EINCVIRTCHILD, EDECVIRTCHILD, and 



ESETCONTEXT), and handling conflicts due to concurrent 
operations (ETRACKC).  

Using these instructions, VMMs can both significantly 
reduce the overhead and complexity of oversubscribing the 
EPC. Thus, enabling EPC oversubscription without guest 
co-operation. 
7 ACKNOWLEDGEMENTS 
The authors of this paper wish to acknowledge the 
contributions of many hardware and software architects and 
designers who have worked in developing this innovative 
technology.  
8 REFERENCES 
[1] A. Abernathy, “Hyper-V Dynamic Memory vs. VMware 
Memory Overcommitment - Another Reason to Use 
Microsoft for VDI,” http://blog.unidesk.com/hyper-v-
dynamic-memory-vs-vmware-memory-overcommittment-
vdi. [Accessed 7 April 2017] 
[2] I. Banerjee, F. Guo, R. Venkatasubramanian, “Memory 
Overcommitment in ESX Server” VMware® Technical 
Journal, Summer 2013. 
[3] M. Hoekstra, R. Lal, P. Pappachan, C. Rozas, V. Phegade 
and J. Del Cuvillo, "Using Innovative Instructions to Create 
Trustworthy Software Solutions," in HASP, Israel, 2013.  
[4] Intel® Corp., "Intel® 64 and IA-32 Architectures 
Software Developer’s Manual," March 2017. 
https://software.intel.com/sites/default/files/managed/39/c5/
325462-sdm-vol-1-2abcd-3abcd.pdf. [Accessed 10 May 
2017].  
[5] David Kaplan, Jeremy Powell, Tom Woller, “AMD 
Memory Encryption,” http://amd-dev.wpengine.netdna-
cdn.com/wordpress/media/2013/12/AMD_Memory_Encry
ption_Whitepaper_v7-Public.pdf. [Accessed 7 April 2017] 
[6] Dan Magenheimer, “Memory Overcommit... without the 
commitment,” in Xen Summit, 2008. 
https://oss.oracle.com/projects/tmem/dist/documentation/pa
pers/overcommit.pdf. [Accessed 7 April 2017] 
[7] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. 
Johnson, R. Leslie-Hurd and C. Rozas, "SGX Instructions to 
Support Dynamic Memory Allocation Inside an Enclave," in 
HASP, South Korea, 2016.  
[8]  F. McKeen, I. Alexandrovich, A. Berenzon, C. Rozas, 
H. Shafi, V. Shanbhogue and U. Savagaoankar, "Innovative 

Instructions and Software Model for Isolated Execution," in 
HASP, Israel, 2013.  
[9] W.Zhao and Z. Wang, “Dynamic Memory Balancing for 
Virtual Machines,” in Virtual Execution Environments, 
2009.  
9 Disclaimer 
No license (express or implied, by estoppel or otherwise) to 
any intellectual property rights is granted by this document. 
Intel® disclaims all express and implied warranties, 
including without limitation, the implied warranties of 
merchantability, fitness for a particular purpose, and non- 
infringement, as well as any warranty arising from course of 
performance, course of dealing, or usage in trade.  

This document contains information on products, 
services and/or processes in development. All information 
provided here is subject to change without notice. Contact 
your Intel® representative to obtain the latest forecast, 
schedule, specifications and roadmaps. Intel technologies’ 
features and benefits depend on system configuration and 
may require enabled hardware, software or service 
activation. Learn more at intel.com, or from the OEM or 
retailer. 
 No computer system can be absolutely secure. 
 The products and services described may contain 
defects or errors known as errata which may cause 
deviations from published specifications. Current 
characterized errata are available on request. Intel® 
technologies features and benefits depend on system 
configuration and may require enabled hardware, software 
or service activation. Learn more at Intel.com, or from the 
OEM or retailer. Copies of documents which have an order 
number and are referenced in this document may be obtained 
by calling 1-800-548-4725 or by visiting 
www.intel.com/design/literature.htm  

Intel®, the Intel® logo, Xeon, and Xeon Phi are 
trademarks of Intel Corporation in the U.S. and/or other 
countries.  

© 2017 Intel Corporation 

  
  

 


