
Willamette** Processor
Software Developer’s Guide

February, 2000

Copyright© 2000, Intel Corporation.
All Rights Reserved.

§Other product and corporate names may be trademarks of other companies and are used only for
explanation and to the owner’s benefit, without intent to infringe.

**Code Name for Future Intel IA-32 Processors

Order Number: 245355-001
World Wide Web: http://developer.intel.com/design/processor/index.htm

Prelim
inary

Information in this document is preliminary and subject to change. No license, express or implied, by estoppel or otherwise, to any
intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such
products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of
Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any
patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life
sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them.

Intel’s Intel® Architecture processors (e.g., Pentium®, Pentium® Pro, Pentium® II, Pentium® III processors) may contain design
defects or errors known as errata. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

 Intel Corporation
P.O. Box 7641
Mt. Prospect IL 60056-7641

or call 1-800-879-4683
or visit Intel’s website at http://developer.intel.com/design/processor/index.htm

TABLE OF CONTENTS
PAGE
Prelim
inary

CHAPTER 1
INTRODUCTION TO THE WILLAMETTE PROCESSOR
1.1. THE WILLAMETTE PROCESSOR ARCHITECTURE . 1-2
1.2. COMPATIBILITY WITH THE P6 FAMILY PROCESSOR ARCHITECTURE 1-3
1.3. THE WILLAMETTE PROCESSOR MICROARCHITECTURE . 1-4
1.3.1. Higher Instruction Fetch Bandwidth. 1-4
1.3.2. Increased Depth of Speculation . 1-4
1.3.3. Integer And Floating Point Execution Core . 1-5
1.3.4. Branch Prediction . 1-5

CHAPTER 2
PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2
2.1. STREAMING SIMD EXTENSIONS 2 FEATURE OVERVIEW . 2-1
2.2. NEW DATA TYPES. 2-2
2.3. STREAMING SIMD EXTENSIONS 2 REGISTERS . 2-3
2.4. STREAMING SIMD EXTENSIONS 2 INSTRUCTIONS. 2-3
2.4.1. Packed and Scalar Double-Precision Floating-Point Instructions 2-3
2.4.2. SIMD Integer Instruction Extensions . 2-11
2.4.3. Cacheability Control and Memory Ordering Instructions . 2-13
2.5. FLOATING-POINT TERMINOLOGY AND OPERATIONS . 2-15
2.5.1. Real Numbers and Floating-Point Formats. 2-16
2.5.2. Operating on NaNs . 2-21
2.5.3. Streaming SIMD Extensions 2 Data Formats . 2-22
2.5.4. MXCSR Register . 2-25
2.5.5. Rounding Control Field . 2-26
2.5.6. Flush to Zero . 2-28
2.6. WRITING PROGRAMS USING THE STREAMING SIMD EXTENSIONS 2 2-28
2.6.1. Using the CPUID Instruction to Detecting the Existence of the

Streaming SIMD Extensions 2 . 2-28
2.6.2. Updating Existing MMX Technology Routines Using 128-bit Integer

Enhancements . 2-30
2.6.3. Interaction of Streaming SIMD Extensions 2 and x87-FPU and

MMX Instructions. 2-31
2.6.4. Interaction of Packed or Scalar Floating-Point Instructions with the

x87 FPU and MMX Instructions. 2-31
2.6.5. Caller-Save Requirement for Function Calls . 2-33
2.6.6. Cacheability Hint Instructions . 2-33
2.6.7. Branching on Streaming SIMD Extensions 2 Arithmetic Operations 2-34
2.6.8. Saving the Streaming SIMD Extensions and Streaming SIMD

Extensions 2 State . 2-35
2.6.9. Initialization of Streaming SIMD Extensions and Streaming SIMD

Extensions 2 Technology . 2-35
2.6.10. Interfacing with Streaming SIMD Extensions 2 Procedures

and Functions. 2-36
2.7. HANDLING EXCEPTIONS IN STREAMING SIMD EXTENSIONS 2

OPERATIONS . 2-36
2.7.1. Non-Numeric Exceptions . 2-37
2.7.2. SIMD Floating-Point Exceptions . 2-38
2.7.3. Streaming SIMD Extensions 2 Floating-Point Exception Conditions 2-42
iii

TABLE OF CONTENTS

PAGE
Prelim
inary

2.8. SYSTEM PROGRAMMING MODEL . 2-46
2.8.1. Enabling Streaming SIMD Extensions 2 Support. 2-46
2.8.2. Device Not Available Exception. 2-47
2.8.3. Streaming SIMD Extensions 2 Emulation . 2-47
2.8.4. Numeric Error flag and IGNNE# . 2-47

CHAPTER 3
STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
3.1. NOTATION. 3-1
3.2. PACKED AND SCALAR DOUBLE-PRECISION FLOATING-POINT

INSTRUCTIONS . 3-2
ADDPD—Packed Double-Precision Floating-Point Add3-3
ADDSD—Scalar Double-Precision Floating-Point Add3-5
ANDNPD—Bitwise Logical AND NOT for Double-Precision Floating-Point3-7
ANDPD—Bitwise Logical AND for Double-Precision Floating-Point3-9
CMPPD—Packed Double-Precision Floating-Point Compare3-11
CMPSD—Scalar Double-Precision Floating-Point Compare3-15
COMISD—Scalar Ordered Double-Precision Floating-Point Compare

and Set EFLAGS . 3-19
CVTDQ2PD—Packed Doubleword Signed Integer to Packed

Double-Precision Floating-Point Conversion . 3-21
CVTPD2PI—Packed Double-Precision Floating-Point to Packed

Doubleword Integer Conversion . 3-23
CVTPD2DQ—Packed Double-Precision Floating-Point to Packed

 Doubleword Integer Conversion . 3-26
CVTPD2PS—Packed Double-Precision Floating-Point to Packed

Single-Precision Floating-Point Conversion . 3-28
CVTPI2PD—Packed Signed Doubleword Integer to Packed

Double-Precision Floating-Point Conversion . 3-30
CVTPS2PD—Packed Single-Precision to Packed Double-Precision

Floating-Point Conversion . 3-33
CVTSD2SI—Scalar Double-Precision Floating-Point to Signed Doubleword

 Integer Conversion . 3-35
CVTSD2SS—Scalar Double-Precision Floating-Point to Scalar

Single-Precision Floating-Point Conversion . 3-37
CVTSI2SD—Scalar signed INT32 to Double-Precision Floating-Point

Conversion . 3-39
CVTSS2SD—Scalar Single-Precision Floating-Point to Scalar

 Double-Precision Floating-Point Conversion . 3-41
DIVPD—Packed Double-Precision Floating-Point Divide. 3-50
DIVSD—Scalar Double-Precision Floating-Point Divide . 3-52
MAXPD—Packed Double-Precision Floating-Point Maximum. 3-54
MAXSD—Scalar Double-Precision Floating-Point Maximum . 3-56
MINPD—Packed Double-Precision Floating-Point Minimum. 3-58
MINSD—Scalar Double-Precision Floating-Point Minimum . 3-60
MOVAPD—Move Aligned Two Packed Double-Precision Floating-Point. 3-62
MOVHPD—Move High Packed Double-Precision Floating-Point 3-65
MOVLPD—Move Low Packed Double-Precision Floating-Point . 3-67
iv

TABLE OF CONTENTS

PAGE
Prelim
inary

MOVMSKPD—Move Mask To Integer . 3-69
MOVSD—Move Scalar Double-Precision Floating-Point . 3-71
MOVUPD—Move Unaligned Two Packed Double-Precision Floating-Poin. 3-73
MULPD—Packed Double-Precision Floating-Point Multiply . 3-76
MULSD—Scalar Double-Precision Floating-Point Multiply . 3-78
ORPD—Bitwise Logical OR for Double-Precision Floating-Point Data3-80
SHUFPD—Shuffle Double-Precision Floating-Point . 3-82
SQRTPD—Packed Double-Precision Floating-Point Square Root . 3-84
SQRTSD—Scalar Double-Precision Floating-Point Square Root. 3-86
SUBPD—Packed Double-Precision Floating-Point Subtrac . 3-88
SUBSD—Scalar Double-Precision Floating-Point Subtract . 3-90
UCOMISD—Unordered Scalar Double-Precision Floating-Point Compare

and Set EFLAGS. 3-92
UNPCKHPD—Unpack High Packed Double-Precision Floating-Point Data. 3-94
UNPCKLPD—Unpack Low Packed Double-Precision Floating-Point Data 3-96
XORPD—Bitwise Logical XOR for Double-Precision Floating-Point Data 3-98

3.3. SIMD INTEGER INSTRUCTIONS . 3-100
CVTDQ2PS: Packed Signed Doubleword Integer to Packed

Single-Precision Floating-Point Conversion. 3-101
CVTPS2DQ—Packed Single-Precision Floating-Point to Packed Doubleword

 Integer Conversion. 3-103
CVTTPS2DQ—Packed Single-Precision Floating-Point to Packed Signed

Doubleword Integer Conversion (Truncate) . 3-105
MOVD—Move Doubleword . 3-107
MOVDQA—Move Aligned Double Quadword . 3-109
MOVDQU—Move Unaligned Double Quadword . 3-111
MOVDQ2Q—Move Quadword. 3-113
MOVQ2DQ—Move Quadword. 3-115
MOVQ—Move Quadword. 3-117
PACKSSWB/PACKSSDW—Pack with Signed Saturation . 3-119
PACKUSWB—Pack with Unsigned Saturation . 3-121
PADDB/PADDW/PADDD—Packed Add . 3-123
PADDQ—Packed Add Quadwords . 3-126
PADDQ—Packed Add Quadword 128 Bits . 3-128
PADDSB/PADDSW—Packed Add with Saturation . 3-130
PADDUSB/PADDUSW-Packed Add Unsigned with Saturation . 3-132
PAND—Bitwise Logical AND . 3-134
PANDN—Bitwise Logical And Not . 3-136
PAVGB/PAVGW—Packed Average. 3-138
PCMPEQB/PCMPEQW/PCMPEQD—Packed Compare for Equal 3-141
PCMPGTB/PCMPGTW/PCMPGTD—Packed Compare for Greater Than 3-143
PEXTRW—Extract Word . 3-145
PINSRW—Insert Word . 3-146
PMADDWD—Packed Multiply and Add . 3-148
PMAXSW—Packed Signed Word Integer Maximum. 3-150
PMAXUB—Packed Unsigned Byte Integer Maximum . 3-152
PMINSW—Packed Signed Integer Word Minimum. 3-154
v

TABLE OF CONTENTS

PAGE
Prelim
inary

PMINUB—Packed Unsigned Byte Integer Minimum . 3-156
PMOVMSKB—Move Byte Mask To Integer . 3-158
PMULHW—Packed Multiply High . 3-160
PMULHUW—Packed Multiply High Unsigned. 3-162
PMULLW—Packed Multiply Low . 3-164
PMULUDQ—Multiply Doubleword Unsigned . 3-166
PMULUDQ—Packed Multiply Doubleword Unsigned . 3-168
POR—Bitwise Logical OR . 3-170
PSADBW—Packed Sum of Absolute Differences . 3-172
PSHUFD—Packed Shuffle Doubleword. 3-174
PSHUFHW—Packed Shuffle High Words . 3-176
PSHUFLW—Packed Shuffle Low Word . 3-178
PSLLDQ—Packed Shift Left Logical Double Quadword . 3-180
PSLLW/PSLLD/PSLLQ — Packed Shift Left Logical . 3-181
PSRAW/PSRAD—Packed Shift Right Arithmetic . 3-184
PSRLDQ—Packed Shift Right Logical Double Quadword . 3-186
PSRLW/PSRLD/PSRLQ— Packed Shift Right Logica . 3-188
PSUBB/PSUBW/PSUBD—Packed Subtract . 3-191
PSUBQ—Packed Subtract Quadword. 3-194
PSUBQ—Packed Subtract Quadword. 3-196
PSUBSB/PSUBSW—Packed Subtract with Saturation . 3-198
PSUBUSB/PSUBUSW—Packed Subtract Unsigned with Saturation 3-201
PUNPCKH—Unpack High Packed Data . 3-203
PUNPCKL—Unpack Low Packed Data . 3-206
PXOR—Bitwise Logical XOR . 3-209

3.4. CACHEABILITY CONTROL AND MEMORY ORDERING INSTRUCTIONS 3-211
CLFLUSH—Cache Line Flush . 3-212
LFENCE—Load Fence . 3-214
MASKMOVDQU—Byte Mask Write Unaligned. 3-215
MFENCE—Memory Fence. 3-217
MOVNTPD—Move Aligned Four Packed Double-Precision Floating-Point

Non-Temporal . 3-218
MOVNTDQ—Move Double Quadword Non-Temporal . 3-220
MOVNTI—Move Integer Non-Temporal . 3-222
PAUSE—REP NOP . 3-224

3.5. MODIFIED INSTRUCTIONS . 3-225
3.5.1. CPUID Instruction . 3-225
3.5.2. RDPMC Instruction . 3-228
3.5.3. Branch Hints. 3-228

CHAPTER 4
CODE OPTIMIZATION
4.1. CODE OPTIMIZATION GUIDELINES . 4-1
4.1.1. Improve Branch Predictability . 4-1
4.1.2. Scheduling . 4-2
4.1.3. Code Selection . 4-2
4.1.4. Memory . 4-3
4.1.5. General Principles for Code and Data Layout . 4-3
vi

TABLE OF CONTENTS

PAGE
Prelim
inary

4.1.6. Make Use of Prefetching. 4-4
4.1.7. New Instructions . 4-4
4.1.8. Code Size4-4
4.2. NOTABLE DIFFERENCES BETWEEN THE WILLAMETTE AND P6 FAMILY

PROCESSORS . 4-5
4.2.1. Code Selection . 4-5
4.2.2. New Instructions . 4-5

APPENDIX A
STREAMING SIMD EXTENSIONS 2 INSTRUCTION SUMMARY
vii

TABLE OF CONTENTS

PAGE
Prelim
inary
viii

TABLE OF FIGURES
PAGE
Figure 2-1. Streaming SIMD Extensions 2 Data Types . 2-2
Figure 2-2. Packed Double-Precision Floating-Point Operations . 2-4
Figure 2-3. Scalar Double-Precision Floating-Point Operations . 2-4
Figure 2-4. Shuffle Operations . 2-7
Figure 2-5. Unpack High Operation . 2-7
Figure 2-6. Unpack Low Operation. 2-8
Figure 2-7. Conversion Instructions . 2-9
Figure 2-8. Binary Real Number System. 2-16
Figure 2-9. Binary Floating-Point Format . 2-17
Figure 2-10. Real Numbers and NaNs. 2-19
Figure 2-11. Double Quadword Data Type in Memory . 2-23
Figure 2-12. MXCRS Register Format . 2-25
ix

TABLE OF FIGURES

PAGE
Prelim
inary
x

TABLE OF TABLES
PAGE
Prelim
inary

Table 2-1. Real Number Notation . 2-17
Table 2-2. Denormalization Process. 2-20
Table 2-3. Results of Operations with QNAN operands . 2-22
Table 2-5. Precision and Range of Double-Precision Floating-Point Data Type. 2-23
Table 2-4. Double-Precision Floating Point Format . 2-23
Table 2-6. Real Number and NaN Encodings . 2-24
Table 2-7. Rounding Control Field (RC) . 2-26
Table 2-8. Rounding of Positive Numbers . 2-27
Table 2-9. Rounding of Negative Numbers . 2-28
Table 2-10. Streaming SIMD Extensions State Following Reset or INIT 2-36
Table 2-11. Streaming SIMD Extensions 2 Exceptions . 2-38
Table 2-12. Invalid Arithmetic Operations and The Masked Responses to Them 2-43
Table 2-13. Masked Responses to Numeric Overflow. 2-44
Table 2-14. CPUID bits for Streaming SIMD Extensions 2 Support. 2-46
Table 2-15. CR4 bits for Streaming SIMD Extensions 2 Support . 2-47
Table 3-1. Key to Streaming SIMD Extensions 2 instructions Technology

Naming Convention . 3-2
Table 3-2. Feature Flags Returned in EDX Register . 3-226
Table 3-3. Branch Hints . 3-228
Table A-1. Packed and Scalar Double-precision Floating-point Instructions. A-1
Table A-2. SIMD Integer Instructions . A-6
Table A-3. Cacheability Control and memory Ordering Instructions. A-13
xi

TABLE OF TABLES

PAGE
Prelim
inary
xii

INTEL CORPORATION
Prelim
inary

CHAPTER 1
INTRODUCTION TO THE

WILLAMETTE PROCESSOR

Willamette is the code name for the next generation of 32 bit Intel® Architecture (IA-32) proces-
sors. It is the first member of a new family of processors that are the successors to the Intel P6
family of processors, which includes the Intel Pentium® Pro, Pentium II, and Pentium III proces-
sors.

The Willamette processor is based on a new 32-bit micro-architecture from Intel that operates
at significantly higher clock speeds and delivers performance levels that are significantly higher
than previous generations of IA-32 processors. The Willamette family processors have the
following advanced features:

• Higher bandwidth for instruction fetches than the Intel P6 family of processors

• Integer ALU clocked at twice the frequency

— Reduced latency increases the performance for certain integer operations

• Hyper Pipelined Technology

— Frequency headroom and performance scalability to continue leadership into the
future

— Deeper pipeline enables world’s highest clock rate in desktop PCs

• Streaming SIMD Extension 2

— 144 New Instructions: Cacheability, SIMD Double-Precision Floating-Point, and
SIMD 128-bit integer

— Enables maximum enjoyment of next generation broadband services such as
Interactive Digital TV

• Advance Dynamic Execution

— Deeper instruction window for out-of-order, speculative execution, improved branch
prediction from P6’s Dynamic Execution core

• Execution Trace Cache

— Trace Cache stores pre-decoded micro-ops

• Enhance Floating Point/Multimedia Engine

— 128-bit FP/Multimedia execution port

— 128-bit FP load/store port

• Support for Willamette System bus
1-1

INTRODUCTION TO THE WILLAMETTE PROCESSOR INTEL CORPORATION
Prelim
inary

— 400 MHz data bus

— 3.2 Gbytes per second throughput (3x faster than Pentium III processor)

• Advanced Transfer Cache

— On die, high bandwidth, low latency 2nd Level Cache

• Compatibility with existing IA-32 applications and operating systems

This chapter provides a high-level overview of the Willamette Processor Architecture. Subse-
quent chapters provide details of the Streaming SIMD Extension 2 instructions included in the
Willamette Processor.

1.1. THE WILLAMETTE PROCESSOR ARCHITECTURE

The Willamette processor architecture enables software developers to leverage new generation
of Intel IA-32 architecture to create rich varieties of high performance applications by intro-
ducing the following new features:

• Seventy-Six new instructions which include:

— New SIMD instructions to operate on high-dynamic-range data including double-
precision (64-bit) floating-point values, doubleword integer values, quadword (64-bit)
integer data.

— New instructions that permit application program to control caches.

• Enhancement to 68 integer SIMD instructions, which worked solely with 64-bit MMX™
registers on Pentium II and Pentium III processors, to work with 128-bit XMM registers in
the Willamette processor architecture.

The programming model for the new Willamette processor architecture is similar to but
enhanced upon the Intel MMX technology and Streaming SIMD Extensions models with more
flexibility. This new architecture allows SIMD computations to be performed on both floating-
point and integer data types in the XMM registers (also known as floating-point XMM registers
in previously published Intel Archtecture Software Developer’s Manual for Pentium III
processor), or on packed integer data types in the MMX registers.

New SIMD instructions introduced in the Willamette processor architecture include floating-
point SIMD instructions, integer SIMD instructions, and conversion of packed data between
XMM registers and MMX registers. New Floating-point SIMD instructions allow computations
to be performed on packed double-precision floating-point values (two double-precision values
per XMM register). Both the single-precision and double-precision floating-point formats and
the instructions that operate on them are 100% compatible with IEEE Standard 754 for Binary
Floating-Point Arithmetic. New integer SIMD instructions provide flexible and higher dynamic
range computational power by supporting arithmetic operations on packed doubleword and
quadword data as well as other operations on packed byte, word, doubleword, quadword and
double quadword data.

In addition to new SIMD instructions described in the previous paragraph, there are enhance-
ment to 68 integer SIMD instructions, which operated solely on 64-bit MMX registers in the
1-2

INTEL CORPORATION INTRODUCTION TO THE WILLAMETTE PROCESSOR
Prelim
inary

Pentium II and Pentium III processors, now support operation on 128-bit XMM registers in the
Willamette processor architecture. These enhanced integer SIMD instructions allow software
developers to have maximum flexibility to implement algorithms by writing SIMD code with
either XMM registers or MMX registers.

The Willamette processor architecture features enable software developers to deliver break-
through levels of performance in multimedia applications ranging from 3-D graphics, video
decoding/encoding to speech recognition. The new packed double-precision floating-point
instructions enhance performance for applications that require greater range and precision,
including scientific and engineering applications and advanced 3-D geometry techniques, such
as ray tracing.

To speed up processing and improve cache usage, the Willamette processor architecture offers
several new instructions that allow application programmers to control the cacheability of data.
These instructions provide the ability to stream data in and out of the registers without disrupting
the caches and the ability to prefetch data before it is actually used.

The new architectural features introduced with the Willamette processor architecture do not
require new operating system support. This is because the Willamette processor architecture do
not introduce new architectural states, and the FXSAVE/FXRSTOR instructions introduced
with the Streaming SIMD Extensions is sufficient for saving and restoring the state of the XMM
registers, the MMX registers, and the x87 FPU registers during a context switch. The CPUID
instruction has been enhanced to allow operating system or applications to test for the existence
of the Streaming SIMD Extensions and the Streaming SIMD Extension 2 features.

The Willamette processor architecture is accessible in all IA-32 architecture operating modes.
All existing software continues to run correctly, without modification on future IA-32 proces-
sors that incorporate the Streaming SIMD Extension 2 instructions. Also, existing software
continues to run correctly in the presence of applications that make use of the Streaming SIMD
Extension 2 instructions.

1.2. COMPATIBILITY WITH THE P6 FAMILY PROCESSOR
ARCHITECTURE

The following features were introduced into the IA-32 architecture within the P6 family of
processors and will also be supported in the Willamette processor architecture:

Features added in the Pentium II processors:

• MMX Technology instructions

• SYSENTER/SYSEXIT instructions

• Page attribute table (PAT)

• PSE mode of paging (236 linear address space)

Features added in the Pentium III processors:

• Streaming SIMD Extensions.
1-3

INTRODUCTION TO THE WILLAMETTE PROCESSOR INTEL CORPORATION
Prelim
inary

• FXSAVE/FXRESTORE instructions.

The following features will be introduced into the IA-32 architecture starting with the
Willamette processor and will be supported in all future Willamette family processors:

• Streaming SIMD Extension 2 instructions

The following features are implemented differently in the Willamette processor than in P6
family processors:

• The CPUID instruction has been enhanced to support new features and additional
processor information that are not available from the CPUID instruction in the Pentium
Pro, Pentium II and Pentium III processors.

1.3. THE WILLAMETTE PROCESSOR MICROARCHITECTURE

The Willamette processor microarchitecture builds upon the dynamic execution techniques
pioneered in the P6 family microarchitectures. The Willamette processor microarchitecture
extends the P6 family’s out-of-order execution model by providing significantly higher instruc-
tion fetch bandwidth, increased depth of speculation, and a double pumped ALU. Branch
prediction is improved by employing a trace cache to store pre-decoded micro-ops to speed up
micro-ops execution and by employing advanced branch-prediction algorithm in conjunction
with very deep levels of speculative execution.

1.3.1. Higher Instruction Fetch Bandwidth

P6 family processors are able to fetch, decode, and allocate up to three macro instructions per
processor cycle into finer-grained internal units of operation, called micro-ops. The micro-ops
can typically execute in a single clock cycle. However the 16-byte fixed length of the instruction
decode buffer, the 4-1-1 decoder template, the allocator throughput, and the variable nature of
the IA-32 instruction set conspired to reduce the decoder throughput in real-life applications.
The Willamette processor microarchitecture is designed to allow the Willamette processor’s
execution engine to operate at substantially higher clock speeds than P6 family processors.To
take advantage of the higher clock speeds provided by the Willamette processor microarchitec-
ture, the Willamette processor employs an execution trace cache as the primary cache to store
micro-ops. This allows a high-bandwidth micro-ops instruction stream to be fed into the execu-
tion engine. The use of the trace cache in the Willamette processor microarchitecture eliminates
the need for a superscalar decoder and removes the instruction decoder from the main execution
loop. It also reduces the pipeline bubbles that are caused by branch mispredictions where the
front end of the processor has to be redirected to a new decode point.

1.3.2. Increased Depth of Speculation

P6 family processors are able to speculatively execute only up to 40 µops ahead of the retirement
pointer. This limitation was imposed by the depth of the Re-Order Buffer (ROB). The
Willamette processor microarchitecture’s equivalent of the ROB is substantially deeper,
1-4

INTEL CORPORATION INTRODUCTION TO THE WILLAMETTE PROCESSOR
Prelim
inary

allowing significantly deeper speculative execution. This increased speculation depth allows
larger or more code loops to be active in the processor and more instruction execution to be
hidden behind data cache misses.

1.3.3. Integer And Floating Point Execution Core

P6 family processors are able to execute simple integer operation in a single processor cycle
with the more complex floating-point operations taking longer depending upon the operation
type. The Willamette processor microarchitecture introduces new technology to the integer
execution units that essentially allows very low latency integer operations to be completed at a
rate higher than the processor clock frequency. Floating-point operations on the Willamette
processor will still take longer to execute than integer operations (depending on the specific
floating-point operation) as they do on P6 family processors. However, the floating point perfor-
mance of the Willamette processor will achieve higher level than the floating point performance
of P6 family processors when scaled to the same frequency.

1.3.4. Branch Prediction

As with all long pipeline processors, the better the branch prediction, the better the processor’s
performance. Willamette processor microarchitecture significantly enhances the branch predic-
tion algorithms originally implemented in the P6 family microarchitecture by effectively
combining all currently available prediction schemes.
1-5

INTRODUCTION TO THE WILLAMETTE PROCESSOR INTEL CORPORATION
Prelim
inary
1-6

INTEL CORPORATION
Prelim
inary

CHAPTER 2
PROGRAMMING WITH THE

STREAMING SIMD EXTENSIONS 2

This chapter provides a general overview of the architectural features that have been added to
the IA-32 architecture with the Streaming SIMD Extensions 2.

2.1. STREAMING SIMD EXTENSIONS 2 FEATURE OVERVIEW

The Streaming SIMD Extensions 2 provide the following new features, while maintaining back-
ward compatibility with all existing IA-32 architecture processors, applications and operating
systems.

• New data types:

• 128-bit packed double-precision floating-point (two double-precision floating-
point values packed into a double quadword.

• 64-bit (quadword) integer (signed and unsigned).

• 128-bit packed byte integers (signed and unsigned).

• 128-bit packed word integers (signed and unsigned).

• 128-bit packed doubleword integers (signed and unsigned).

• 128-bit packed quadword integers (signed and unsigned).

• New instructions to support the new data types and perform other operations:

• Packed and scalar double-precision floating-point instructions.

• Enhanced SIMD integer instructions that support operations on 128-bit operands.

• Cacheability-control and miscellaneous instructions.

• Modifications to existing IA-32 instructions to support Streaming SIMD Extensions 2
features:

• Extensions and modifications to the CPUID instruction.

• Modifications to the RDPMC instruction.
2-1

PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 INTEL CORPORATION
Prelim
inary

2.2. NEW DATA TYPES

The Streaming SIMD Extensions 2 defines six new data types (see Figure 2-1).

• Packed double-precision floating-point. This 128-bit data type consists of two IEEE 64-
bit double-precision floating-point values packed into a double quadword.

• Quadword integer. This 64-bit integer can be signed or unsigned. When signed, the sign
bit is at bit 63.

• 128-bit packed integers. These packed integer data types can contain 16 byte integers, 8
word integers, 4 doubleword integers, or 2 quadword integers.

2.3. STREAMING SIMD EXTENSIONS 2 REGISTERS

No new registers are defined with the Streaming SIMD Extensions 2. Streaming SIMD Exten-
sions 2 operations are carried out in the XMM registers, the MMX registers, and/or IA-32
general-purpose registers, as follows.

• XMM registers. These eight registers are used to operate on packed or scaler double-
precision floating-point data. Scalar operations are operations performed on individual
(unpacked) double-precision floating-point values stored in the low order bits of an XMM
register. These operations are similar to the operations performed on floating-point data in
the x87 FPU registers. The XMM registers are also used to perform operations on 128-bit
packed integer data.

Figure 2-1. Streaming SIMD Extensions 2 Data Types

128-Bit Packed Signed or

128-Bit Packed Signed or

128-Bit Packed Signed or

Unsigned Byte Integers

Unsigned Word Integers

Unsigned Doubleword Integers

063

0127

0127

0127

0127

0127

128-Bit Packed Signed or
Unsigned Quadword Integers

Quadword Integer
(Signed or Unsigned)

128-Bit Packed Double-
Precision Floating-Point

Sign

64 63
2-2

INTEL CORPORATION PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2
Prelim
inary

• MMX™ registers. These eight registers are used for normal MMX technology operations
on 64-bit packed integer data and to transfer data to and from the XMM registers.

• IA-32 general-purpose registers. MMX™ and XMM registers cannot be used to address
memory; addressing is handled through the six general-purpose registers and existing IA-
32 addressing modes. The general-purpose registers are also used to hold operands for
some of the Streaming SIMD Extensions 2 operations.

The contents of MMX™ and XMM registers are cleared upon reset.

The SIMD floating-point control and status register (MXCSR) controls operations on packed
floating-point data in the XMM registers.

2.4. STREAMING SIMD EXTENSIONS 2 INSTRUCTIONS

The Streaming SIMD Extensions 2 instructions are divided into three functional groups

• Packed and scalar double-precision floating-point instructions.

• Enhanced SIMD integer instructions that operate on 128-bit operands.

• Cacheability-control and memory ordering instructions.

2.4.1. Packed and Scalar Double-Precision Floating-Point
Instructions

The packed double-precision floating-point instructions operate similarly to the packed single-
precision floating-point instructions, as shown in Figure 2-2.

The scalar double-precision floating-point instructions operate on the low (least significant)
quadwords of the two operands as shown in Figure 2-3. Here, the high quadword of the first
operand is passed through to the destination.

The address of a 128-bit packed memory operand must be aligned on a 16-byte boundary, except
in the following cases:

• The MOVUPD instruction supports unaligned accesses.

• Scalar instructions that use an 8-byte memory operand that is not subject to alignment
requirements.
2-3

PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 INTEL CORPORATION
Prelim
inary

2.4.1.1. PACKED/SCALAR ADDITION AND SUBTRACTION

The ADDPD (Add packed double-precision floating-point) and SUBPD (Subtract packed
double-precision floating-point) instructions add and subtract, respectively, two packed double-
precision floating-point operands.

The ADDSD (Add scalar double-precision floating-point) and SUBSD (Subtract scalar double-
precision floating-point) instructions add and subtract, respectively, the low quadword of two
double-precision floating-point operands; the high quadword of the source operand is passed
through to the destination operand.

Figure 2-2. Packed Double-Precision Floating-Point Operations

Figure 2-3. Scalar Double-Precision Floating-Point Operations

X1 (DP) X0 (DP)

X1 op Y1 (DP) X0 op Y0 (DP)

OPOP

Y1 (DP) Y0 (DP)

Src1/Dest

Src2

Src1/Dest

X1 (DP) X0 (DP)

 X1 X0 op Y0 (DP)

OP

Y1 (DP) Y0 (DP)

Src1/Dest

Src2

Src1/Dest
2-4

INTEL CORPORATION PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2
Prelim
inary

2.4.1.2. PACKED/SCALAR MULTIPLICATION AND DIVISION

The MULPD (Multiply packed double-precision floating-point) instruction multiplies two
packed double-precision floating-point operands.

The MULSD (Multiply scalar double-precision floating-point) instruction multiplies the low
quadwords of two packed double-precision floating-point operands; the high quadword of the
source operand is passed through to the destination operand.

The DIVPD (Divide packed double-precision floating-point) instruction divides two packed
double-precision floating-point operands.

The DIVSD (Divide scalar double-precision floating-point) instruction divides the low quad-
words of two packed double-precision floating-point operands; the high quadword of the source
operand is passed through to the destination operand.

2.4.1.3. PACKED/SCALAR SQUARE ROOT

The SQRTPD (Square root packed double-precision floating-point) instruction returns the
square roots of a double-precision floating-point operand to the destination operand.

The SQRTSD (Square root scalar double-precision floating-point) instruction returns the square
root of the low quadword of the packed double-precision floating-point source operand to the
low quadword of the destination operand; the high quadword of the source operand is passed
through to the destination operand.

2.4.1.4. PACKED MAXIMUM/MINIMUM

The MAXPD (Maximum packed double-precision floating-point) instruction compares the high
quadwords and the low quadwords of two packed double-precision floating-point operands and
returns the numerically higher value for each comparison to the destination operand.

The MAXSD (Maximum scalar double-precision floating-point) instruction compares the low
(least significant) quadwords of two packed double-precision floating-point operands and
returns the numerically higher value for the comparison to the low quadword of the destination
operand; the high quadword of the source operand is passed through to the destination operand.

The MINPD (Minimum packed double-precision floating-point) instruction compares the high
quadwords and the low quadwords of two packed double-precision floating-point operands and
returns the numerically lower value for each comparison to the destination operand.

The MINSD (Minimum scalar double-precision floating-point) instruction compares the low
(least significant) quadwords of two packed double-precision floating-point operands and
returns the numerically lower value for the comparison to the low quadword of the destination
operand; the high quadword of the source operand is passed through to the destination operand.

2.4.1.5. PACKED LOGICAL OPERATIONS

The ANDPD (Bit-wise packed logical AND for double-precision floating-point) instruction
returns a bitwise AND between the two operands.
2-5

PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 INTEL CORPORATION
Prelim
inary

The ANDNPD (Bit-wise packed logical AND NOT for double-precision floating-point) instruc-
tion returns a bitwise AND NOT between the two operands.

The ORPD (Bit-wise packed logical OR for double-precision floating-point) instruction returns
a bitwise OR between the two operands.

The XORPD (Bit-wise packed logical XOR for double-precision floating-point) instruction
returns a bitwise XOR between the two operands.

2.4.1.6. COMPARE OPERATIONS

The CMPPD (Compare packed double-precision floating-point) instruction compares the high
quadwords and the low quadwords of two packed double-precision floating-point operands
(using an immediate operand as a predicate) and returns a 64-bit mask of all 1s or all 0s as a
result for each comparison to the destination operand. The value of the immediate operand
allows the selection of any of 12 compare conditions: equal, less than, less than equal, greater
than, greater than or equal, unordered, not equal, not less than, not less than or equal, not greater
than, not greater than or equal, ordered.

The CMPSD (Compare scalar double-precision floating-point) instruction compares the low
quadwords of two packed double-precision floating-point operands (using an immediate
operand as a predicate) and returns a 64-bit mask of all 1s or all 0s as a result to the low quad-
word of the destination operand; the high quadword of the source operand is passed through to
the destination operand.

The COMISD (Compare scalar double-precision floating-point ordered and set EFLAGS)
instruction compares the low quadwords of two packed double-precision floating-point oper-
ands and sets the ZF, PF, and CF flags in the EFLAGS register to show the result. (The OF, SF
and AF bits are cleared).

The UCOMISD (Unordered compare scalar double-precision floating-point ordered and set
EFLAGS) instruction compares the low quadwords of two packed double-precision floating-
point operands and sets the ZF, PF, and CF flags in the EFLAGS register to show the result. (The
OF, SF and AF bits are cleared).

2.4.1.7. SHUFFLE OPERATIONS

The SHUFPD (Shuffle packed double-precision floating-point) instruction places either of the
two quadwords from first source operand in the low quadword of the destination operand, and
places either of the two quadwords from second source operand in the high quadword of the
destination operand, (see Figure 2-4).
2-6

INTEL CORPORATION PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2
Prelim
inary

The UNPCKHPD (Unpacked high packed double-precision floating-point) instruction performs
an interleaved unpack of the high quadwords of the packed double-precision floating-point
operands (see Figure 2-5). It ignores the low quadwords of the sources. When unpacking from
a memory operand, the full 128-bit operand is accessed from memory but only the high 64 bits
are used by the instruction.

The UNPCKLPD (Unpacked low packed double-precision floating-point) instruction performs
an interleaved unpack of the low quadwords of the packed double-precision floating-point oper-
ands (see Figure 2-6). It ignores the high quadwords of the sources. When unpacking from a
memory operand, the full 128-bit operand is accessed from memory but only the low 64 bits are
used by the instruction.

Figure 2-4. Shuffle Operations

Figure 2-5. Unpack High Operation

X2 X1

Y2 Y1

Y2 or Y1 X2 or X1

xmm1

xmm2/m128

xmm1

X1 X0

Y1 Y0

Y1 X1
2-7

PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 INTEL CORPORATION
Prelim
inary

2.4.1.8. CONVERSION INSTRUCTIONS

The Streaming SIMD Extensions 2 conversion instructions (see Figure 2-7) support packed and
scalar conversions between:

• Single and double-precision floating-point formats.

• Double-precision floating-point and 32-bit integer formats.

2.4.1.9. CONVERSION BETWEEN DOUBLE-PRECISION FLOATING-POINTS
AND 32-BIT INTEGERS

The CVTPD2PI (Convert packed double-precision floating-point to packed 32-bit integer)
instruction converts the two packed double-precision floating-point numbers in a 128-bit source
operand to two packed 32-bit signed integers, with the result stored in an MMX register. When
the conversion is inexact, the rounded value according to the rounding mode in the MXCSR
register is returned. The CVTTPD2PI (Convert with truncate packed double-precision floating-
point to packed 32-bit integer) instruction is similar to CVTPD2PI except if the conversion is
inexact, a truncated result is returned.

The CVTPI2PD (Convert packed 32-bit integer to packed double-precision floating-point)
instruction converts two 32-bit signed integers in an MMX register to two double-precision
floating-point numbers.

The CVTPD2DQ (Convert packed double-precision floating-point to packed 32-bit integer)
instruction converts the two packed double-precision floating-point numbers in a 128-bit source
operand to two packed 32-bit signed integers, with the result stored in the low quadword of an
XMM register. When the conversion is inexact, the rounded value according to the rounding
mode in the MXCSR register is returned. The CVTTPD2DQ (Convert with truncate packed
double-precision floating-point to packed 32-bit integer) instruction is similar to CVTPD2DQ
except if the conversion is inexact, a truncated result is returned.

Figure 2-6. Unpack Low Operation

X1 X0

Y1 Y0

Y1 X1
2-8

INTEL CORPORATION PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2
Prelim
inary

The CVTDQ2PD (Convert packed 32-bit integer to packed double-precision floating-point)
instruction converts two 32-bit signed integers in an XMM register to two double-precision
floating-point numbers.

The CVTSD2SI (Convert scalar double-precision floating-point to a 32-bit integer) instruction
converts the low double-precision floating-point number in a 128-bit source operand to a 32-bit
signed integer, and stores the result in a general-purpose register. When the conversion is
inexact, the rounded value according to the rounding mode in the MXCSR register is returned.
The CVTTSD2SI (Convert with truncate scalar double-precision floating-point to scalar 32-bit

Figure 2-7. Conversion Instructions

PS

DQ

PD

MM

CVT(
T)P

S2P
I

CVT(T)PS2DQ

CVTDQ
2PS

CVTPI2
PS

C
V

T
P

D
2P

S

C
V

T
P

S
2P

D

CVT(T
)P

D2D
Q

CVTDQ
2P

D

CVT(T)PD2PI

CVTPI2PD

R32

CVT(T
)S

S2P
I

CVTS
I2S

S

CVTSI2SD

CVT(T)SD2SI

PS/PD - 128-bit Single/Double

MM - 64-bit MMX Register

DQ - 128-bit Integer

R32 - 32-bit Integer

C
V

T
S

D
2S

S

C
V

T
S

S
2S

D

 Floating Point
2-9

PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 INTEL CORPORATION
Prelim
inary

integer) instruction is similar to CVTSD2SI except if the conversion is inexact, a truncated result
is returned.

The CVTSI2SD (Convert 32-bit integer to scalar double-precision floating-point) instruction
converts a 32-bit signed integer in a general-purpose register to a double-precision floating-
point number, and stores the result in an XMM register.

2.4.1.10. CONVERSION BETWEEN DOUBLE-PRECISION FLOATING-POINTS
AND SINGLE-PRECISION FLOATING-POINTS

The CVTPS2PD (Convert packed single-precision floating-point to packed double-precision
floating-point) instruction converts the lower two packed single-precision floating-point
numbers to two double-precision floating-point numbers in an XMM register.

The CVTPD2PS (Convert packed double-precision floating-point to packed single-precision
floating-point) instruction converts the two packed double-precision floating-point numbers to
two single-precision floating-point numbers in an XMM register. When the conversion is
inexact, the rounded value according to the rounding mode in the MXCSR register is returned.

The CVTSS2SD (Convert scalar single-precision floating-point to scalar double-precision
floating-point) instruction converts the lower packed single-precision floating-point number to
a double-precision floating-point number in an XMM register.

The CVTSD2SS (Convert scalar double-precision floating-point to scalar single-precision
floating-point) instruction converts the lower packed double-precision floating-point number to
a single-precision floating-point number in an XMM. When the conversion is inexact, the
rounded value according to the rounding mode in the MXCSR register is returned.

2.4.1.11. CONVERSION BETWEEN PACKED SINGLE-PRECISION FLOATING-
POINTS AND PACKED INTEGERS

These instructions convert between packed single-precision floating point and packed integer
data in XMM registers. These new instructions supplement the conversion instructions intro-
duced in Streaming SIMD Extensions (CVTPI2PS, CVTPS2PI, CVTTPS2PI, CVTSI2SS,
CVTSS2SI, CVTTSS2SI)

The CVTPS2DQ (Convert packed single-precision floating-point to packed 32-bit integer)
instruction converts four packed single-precision floating-point numbers to four packed 32-bit
signed integers, with the source and destination operands are in an XMM register. When the
conversion is inexact, the rounded value according to the rounding mode in the MXCSR register
is returned. The CVTTPS2DQ (Convert truncate packed single-precision floating-point to
packed 32-bit integer) instruction is similar to CVTPS2DQ except if the conversion is inexact,
a truncated result is returned.

The CVTDQ2PS (Convert packed 32-bit integer to packed single-precision floating-point)
instruction converts four packed 32-bit signed integers to four packed single-precision floating-
point numbers, with the source and destination operands are in an XMM register. When the
conversion is inexact, the rounded value according to the rounding mode in the MXCSR register
is returned.
2-10

INTEL CORPORATION PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2
Prelim
inary

2.4.1.12. DATA MOVEMENT INSTRUCTIONS

The data movement instructions move double-precision floating-point data between XMM
registers and between XMM registers and memory.

The MOVAPD (Move aligned packed double-precision floating-point) instruction transfers 128
bits of packed data from memory to an XMM register and vice versa, or between XMM regis-
ters. The memory address is required to be aligned to a 16-byte boundary; if not, a general
protection exception (GP#) is generated.

The MOVHPD (Move high packed double-precision floating-point) instruction transfers 64-bits
of packed data from memory to the high quadword of an XMM register and vice versa. The low
quadword of the register is left unchanged.

The MOVLPD (Move low packed double-precision floating-point) instruction transfers 64-bits
of packed data from memory to the low quadword of an XMM register and vice versa. The high
quadword of the register is left unchanged.

The MOVUPD (Move unaligned packed double-precision floating-point) instruction transfers
128 bits of packed data from memory to and XXM register and vice versa, or between XMM
registers. No assumption is made for alignment of the memory address.

The MOVMSKPD (Move mask packed double-precision floating-point) instruction transfers
the most significant bit of each of the two packed double-precision floating-point numbers to a
general-purpose register. This 2-bit value can then be used as a condition to perform branching.

The MOVSD (Move scalar double-precision floating-point) instruction transfers a double-
precision floating-point number from memory to an XMM register or vice versa, and between
registers.

2.4.2. SIMD Integer Instruction Extensions

The SIMD integer instructions introduced in the MMX technology and the Streaming SIMD
Extensions have both been add to and extended, as described in the following sections:

2.4.2.1. NEW SIMD INTEGER INSTRUCTIONS

The Streaming SIMD Extensions 2 adds several new 128-bit instructions to optimize the perfor-
mance of various applications, such as RSA authentication and RC5 encryption. Where appro-
priate, a 64-bit version of each of these new instruction is also provided. The 64 bit versions of
these new instructions operate on data in MMX registers, and the 128-bit versions of instructions
operate on data in the XMM registers. These new instructions are as follows.

The PMULUDQ (Unsigned integer doubleword multiply) instruction performs an unsigned
multiply on the low doublewords of each operand, and stores the 64-bit result in the destination
operand. Both a 64-bit and a 128-bit version of this instruction is available. The 64-bit version
operates on single doubleword integers stored in the low doubleword of each 64-bit source
operand, and the quadword result is returned to the 64-bit destination operand. The 128-bit
version performs a packed multiply of two pairs of doubleword integers. Here, the doublewords
in the packed source operands are stored in bit positions 0 through 31 and 64 through 95 of the
2-11

PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 INTEL CORPORATION
Prelim
inary

128-bit source operands, and the quadword results are stored in the low and high quadwords of
the 128-bit destination operand.

The PADDQ (Packed quadword add) instruction adds 128-bit packed quadword integer oper-
ands or 64-bit unpacked quadword integer operands, and returns the 128-bit packed quadword
or 64-bit unpacked quadword result to the destination register. This instruction can operate on
either unsigned or signed (two’s complement notation) integer operands. When an individual
result is too large to be represented in 64-bits, the lower 64-bits of the result (wrap-around) are
written to the destination operand.

The PSUBQ (Packed quadword subtract) instruction subtracts 128-bit packed quadword integer
operands or 64-bit unpacked quadword integer operands, and returns the 128-bit packed quad-
word or 64-bit unpacked quadword result to the destination register. Like the integer PADDQ
instruction, PSUBQ can operate on either unsigned or signed (two’s complement notation)
integer operands. When an individual result is too large to be represented in 64-bits, the lower
64-bits of the result (wrap-around) are written to the destination operand.

The PSHUFLW/PSHUFHW (Shuffle packed integer words in low or high 64-bits of an XMM
register) instruction performs a full shuffle of any source word element within the low or high
64-bits to any result word elements in the low or high 64-bits, using an 8-bit immediate operand
to select the shuffle order. The unshuffled words from the source operand are passed through to
the result.

The PSHUFD (Shuffle packed integer doublewords in an XMM register) instruction performs
a full shuffle of any doubleword field within the 128-bit source to any doubleword field in the
128-bit result, using an 8-bit immediate operand to select the shuffle order.

The PSLLDQ (Shift left logical with byte granularity the contents of an XMM register) instruc-
tion shifts the contents of the source operand to the left by the amount of bytes specified by the
immediate operand. The empty low-order bytes are cleared (set to zero). If the value specified
by the immediate operand is greater than 15, then the destination is set to all zeros.

The PSRLDQ (Shift right logical with byte granularity the contents of an XMM register)
instruction shifts the contents of the source operand to the right by the amount of bytes specified
by the immediate operand. The empty high-order bytes are cleared (set to zero). If the value
specified by the immediate operand is greater than 15, then the destination is set to all zeros.

The PUNPCKHQDQ (Unpack high packed data) instruction interleaves the high quadword of
the source operand and the high quadword of the destination operand and writes them to the
destination register. The low quadwords of the source operands are ignored.

The PUNPCKLQDQ (Unpack low packed data) instruction interleaves the low quadwords of
the source operand and the low quadwords of the destination operand and writes them to the
destination register. The high quadwords of the source operands are ignored.

Two additional instructions have been added to enable data movement from the MMX registers
to the XMM registers.

The MOVMM2DQ (Move integer data from MMX to XMM registers) instruction moves the
quadword integer from an MMX source register to an XMM destination register. The high 64
bits of the destination register are cleared to zero.
2-12

INTEL CORPORATION PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2
Prelim
inary

The MOVDQ2MM(Move integer data from XMM to MMX registers) instruction moves the
low quadword integer from an XMM source register to an MMX destination register.

2.4.2.2. EXTENDED SIMD INTEGER INSTRUCTIONS

All of the 64-bit SIMD integer instructions introduced with the MMX technology and the
Streaming SIMD Extensions have been extended with the Streaming SIMD Extensions 2 to
operate on 128-bit packed integer operands located in the XMM registers. The new 128-bit
versions of these instructions follow the same SIMD conventions regarding packed operands as
the original 64-bit versions. For example, where a 64-bit version of an instruction operates on 8
packed bytes, the 128-bit version operates on 16 packed bytes.

Since the new 128-bit SIMD integer instructions use the XMM registers instead of the MMX
registers, they are not affected by the execution of the x87 FPU. As such the EMMS instruction
does not need to be used to preserve MMX register state.

2.4.3. Cacheability Control and Memory Ordering Instructions

The Streaming SIMD Extensions 2 introduces several new instructions to give programs more
control over the caching of data and of the loading an storing of data. These new instructions are
described in the following sections.

2.4.3.1. CACHE FLUSH

The CLFLUSH (cache line flush) instruction writes and invalidates the cache line associated
with a specified linear address. The invalidation is for all levels of the processor’s cache hier-
archy, and it is broadcast throughout the coherency domain.

2.4.3.2. CACHING OF TEMPORAL VS. NON-TEMPORAL DATA

Data referenced by a program can be temporal (data will be used again) or non-temporal (data
will be referenced once and not reused in the immediate future). For example, program code is
generally temporal, whereas, multimedia data, such as the display list in a 3-D graphics appli-
cation, is often non-temporal. To make efficient use of the processor’s caches, it is desirable
cache temporal data and not cache non-temporal data. The cacheability control instructions
enable a program to control caching of non-temporal data to minimize pollution of cached
temporal data during non-temporal accesses.

The following four instructions provide hints to the cache hierarchy which enable programs to
access non-temporal data with a minimum of cache pollution.

The MASKMOVDQU (Unaligned non-temporal byte mask store of packed integer in an XMM
register) instruction stores data from a source XMM register to a memory location specified in
the EDI register. The most significant bit in each byte of the second source operand is used as a
mask to selectively write the data of the first register on a per-byte basis. The instruction is
implicitly weakly-ordered, with all of the characteristics of the WC memory type; successive
non-temporal stores may not write memory in program-order, do not write-allocate (i.e. the
2-13

PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 INTEL CORPORATION
Prelim
inary

processor will not fetch the corresponding cache line into the cache hierarchy, prior to
performing the store), write combine/collapse, and minimize cache pollution.

The MOVNTDQ (Non-temporal store of packed integer in an XMM register) instruction stores
data from a source XMM register to memory. The memory address must be aligned to a 16-byte
boundary; if it is not aligned, a general protection exception (GP#) will occur. The instruction is
implicitly weakly-ordered, does not write-allocate, and minimizes cache pollution.

The MOVNTPD (Non-temporal store of packed double-precision floating-point) instruction
stores data from a source XMM register to memory. The memory address must be aligned to a
16-byte boundary; if it is not aligned, a general protection exception (GP#)will occur. The
instruction is implicitly weakly-ordered, does not write-allocate and minimizes cache pollution.

The MOVNTI (Non-temporal store of integer) instruction stores data from a general-purpose
register to memory. The data size is always 32 bits, with no alignment restrictions; however
unaligned memory accesses may have a performance penalty. The instruction is implicitly
weakly-ordered, does not write-allocate, and minimizes cache pollution.

The main difference between a non-temporal store and a regular cacheable store is in the write-
allocation policy. The memory type of the region being written to can override the non-temporal
hint, leading to the following considerations:

• If a program specifies a non-temporal store to uncacheable memory, then the store behaves
like an uncacheable store; the non-temporal hint is ignored and the memory type for the
region is retained. Uncacheable as referred to here means that the region being written to
has been mapped with either a UC or WP memory type. If the memory region has been
mapped as WB, WT or WC, the non-temporal store will implement weakly-ordered (WC)
semantic behavior.

• If a program specifies a non-temporal store to cacheable memory, two situations may
result:

• The data is present in the cache hierarchy. Data is evicted from the caches and the
new non-temporal data is written to memory (with WC semantics).

• The data is not present in the cache hierarchy, and the destination region is
mapped as WB, WT or WC. The transaction will be weakly ordered, and is
subject to all WC memory semantics. The non-temporal store will not write
allocate. Different implementations may choose to collapse and combine these
stores.

• In general, WC semantics require software to ensure coherence, with respect to other
processors and other system agents (such as graphics cards). Appropriate use of synchroni-
zation and a fencing operation must be performed for producer-consumer usage models.
Fencing ensures that all system agents have global visibility of the stored data; for
instance, failure to fence may result in a written cache line staying within a processor, and
the line would not be visible to other agents. For processors that implement non-temporal
stores by updating data in-place that already resides in the cache hierarchy, the destination
region should also be mapped as WC. Otherwise if mapped as WB or WT, there is the
potential for speculative processor reads to bring the data into the caches; in this case, non-
2-14

INTEL CORPORATION PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2
Prelim
inary

temporal stores would then update in place, and data would not be flushed from the
processor by a subsequent fencing operation.

• The memory type visible on the bus in the presence of memory type aliasing is implemen-
tation specific. As one possible example, the memory type written to the bus may reflect
the memory type for the first store to this line, as seen in program order; other alternatives
are possible. This behavior should be considered reserved, and dependence on the behavior
of any particular implementation risks future incompatibility.

In addition, the processor’s execution engine needs to be provided with a continuous flow of
data so that it does not become stalled waiting for data. The Streaming SIMD Extensions 2 allow
the programmer to prefetch data long before it’s final use; the PREFETCH instruction is the
same instruction that was defined in Streaming SIMD Extensions. These instructions are not
architectural since they do not update any architectural state, and are specific to each implemen-
tation. The programmer may have to tune his application for each implementation to take advan-
tage of these instructions. These instructions merely provide a hint to the hardware, and they will
not generate exceptions or faults. Excessive use of prefetch instructions may be throttled by the
processor.

2.4.3.3. MEMORY ORDERING INSTRUCTIONS

The Streaming SIMD Extensions 2 introduce two new fence instructions (LFENCE and
MFENCE) as companions to the SFENCE instruction introduced with the Streaming SIMD
Extensions. The LFENCE instruction establishes a memory fence for loads. It guarantees
ordering between two loads and prevents speculative loads from passing the memory fence (that
is, no speculative loads are allowed until all loads specified before the memory fence have be
carried out). This instruction is a companion to the SFENCE instruction.

The MFENCE instruction establishes a memory fence for both loads and stores. It guarantees
that all loads and stores specified before the memory fence are globally observable prior to any
loads or stores being carried out after the fence. MFENCE combines the functions of the
LFENCE and SFENCE instructions.

2.4.3.4. PAUSE

The PAUSE instruction delays execution of the next instruction an implementation specified
amount of time. The delay is finite and is predefined for specific Willamette processors.

2.5. FLOATING-POINT TERMINOLOGY AND OPERATIONS

This section describes IEEE Standard 754 floating-point terminology used in describing the
double-precision floating-point data type and operations on this data type.
2-15

PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 INTEL CORPORATION
Prelim
inary

2.5.1. Real Numbers and Floating-Point Formats

This section describes how real numbers are represented in floating-point format in the
processor. It also introduces terms such as normalized numbers, denormalized numbers, biased
exponents, signed zeros, and NaNs. Readers who are already familiar with floating-point
processing techniques and IEEE Standard 754 may wish to skip this section.

2.5.1.1. REAL NUMBER SYSTEM

As shown in Figure 2-8, the real-number system comprises the continuum of real numbers from
minus infinity (−∞) to plus infinity (+∞).

Because the size and number of registers that any computer can have is limited, only a subset of
the real-number continuum can be used in real-number calculations. As shown at the bottom of
Figure 2-8, the subset of real numbers that a particular processor supports represents an approx-
imation of the real number system. The range and precision of this real-number subset is deter-
mined by the format that the processor uses to represent real numbers.

Figure 2-8. Binary Real Number System

Binary Real Number System

Subset of binary real-numbers that can be represented with
IEEE single-precision (32-bit) floating-point format

+10

10.0000000000000000000000

1.11111111111111111111111

Precision 24 Binary Digits

Numbers within this range
cannot be represented.

−∞
-100 -10 -1 0 1 10 100

-100 -10 -1 0 1 10 100
−∞

+∞

+∞
2-16

INTEL CORPORATION PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2
Prelim
inary

2.5.1.2. FLOATING-POINT FORMAT

To increase the speed and efficiency of real-number computations, computers typically repre-
sent real numbers in a binary floating-point format. In this format, a real number has three parts:
a sign, a significand, and an exponent. Figure 2-9 shows the binary floating-point format that
Streaming SIMD Extensions 2 data uses. This format conforms to IEEE Standard 754.

The sign is a binary value that indicates whether the number is positive (0) or negative (1). The
significand has two parts: a 1-bit binary integer (also referred to as the J-bit) and a binary frac-
tion. The J-bit is often not represented, but instead is an implied value. The exponent is a binary
integer that represents the base-2 power that the significand is raised to.

Table 2-1 shows how the real number 178.125 (in ordinary decimal format) is stored in the
single-precision floating-point format (similar approach for double-precision floating-point).
The table lists a progression of real number notations that leads to the format that the processor
uses. In this format, the binary real number is normalized and the exponent is biased.

2.5.1.3. NORMALIZED NUMBERS

In most cases, the processor represents real numbers in normalized form. This means that except
for zero, the significand is always made up of an integer of 1 and the following fraction:

1.fff...ff

Figure 2-9. Binary Floating-Point Format

Table 2-1. Real Number Notation

Notation Value

Ordinary Decimal 178.125

Scientific Decimal 1.78125E102

Scientific Binary 1.0110010001E2111

Scientific Binary
(Biased Exponent)

 1.0110010001E210000110

Single Format (Normalized) Sign Biased Exponent Significand

0 10000110 01100100010000000000000
 1. (Implied)

Sign

Integer or J-Bit

Exponent Significand

Fraction
2-17

PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 INTEL CORPORATION
Prelim
inary

For values less than 1, leading zeros are eliminated. (For each leading zero eliminated, the expo-
nent is decremented by one.)

Representing numbers in normalized form maximizes the number of significant digits that can
be accommodated in a significand of a given width. To summarize, a normalized real number
consists of a normalized significand that represents a real number between 1 and 2 and an expo-
nent that specifies the number’s binary point.

2.5.1.4. BIASED EXPONENT

The processor represents exponents in a biased form. This means that a constant is added to the
actual exponent so that the biased exponent is always a positive number. The value of the biasing
constant depends on the number of bits available for representing exponents in the floating-point
format being used. The biasing constant is chosen so that the smallest normalized number can
be reciprocated without overflow.

2.5.1.5. REAL NUMBER AND NON-NUMBER ENCODINGS

A variety of real numbers and special values can be encoded in the processor’s floating-point
format. These numbers and values are generally divided into the following classes:

• Signed zeros.

• Denormalized finite numbers.

• Normalized finite numbers.

• Signed infinities.

• NaNs.

• Indefinite numbers.

(The term NaN stands for “Not a Number.”)

Figure 2-10 shows how the encodings for these numbers and non-numbers fit into the real
number continuum. The encodings shown here are for the IEEE double-precision (64-bit)
format, where the term “S” indicates the sign bit, “E” the biased exponent, and “F” the fraction.
(The exponent values are given in decimal.)

The processor can operate on and/or return any of these values, depending on the type of compu-
tation being performed. The following sections describe these number and non-number classes.
2-18

INTEL CORPORATION PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2
Prelim
inary

2.5.1.6. SIGNED ZEROS

Zero can be represented as a +0 or a −0 depending on the sign bit. Both encodings are equal in
value. The sign of a zero result depends on the operation being performed and the rounding
mode being used. Signed zeros have been provided to aid in implementing interval arithmetic.
The sign of a zero may indicate the direction from which underflow occurred, or it may indicate
the sign of an ∞ that has been reciprocated.

2.5.1.7. NORMALIZED AND DENORMALIZED FINITE NUMBERS

Non-zero, finite numbers are divided into two classes: normalized and denormalized. The
normalized finite numbers comprise all the non-zero finite values that can be encoded in a
normalized real number format between zero and ∞. In the format shown in Figure 2-10., this
group of numbers includes all the numbers with biased exponents ranging from 1 to 204610

(unbiased, the exponent range is from −102210 to +102310).

When real numbers become very close to zero, the normalized-number format can no longer be
used to represent the numbers. This is because the range of the exponent is not large enough to
compensate for shifting the binary point to the right to eliminate leading zeros.

When the biased exponent is zero, smaller numbers can only be represented by making the
integer bit (and perhaps other leading bits) of the significand zero. The numbers in this range are
called denormalized (or tiny) numbers. The use of leading zeros with denormalized numbers

Figure 2-10. Real Numbers and NaNs

1 0 0
S E F

−0

1 0 −Denormalized
Finite

NaN

1 1..2046 Any Value −Normalized
Finite

1 2047 0 −∞

2047 1.0XX2 −SNaN

2047 1.1XX −QNaN

Notes
1. Sign bit ignored
2. Fractions must be non-zero

0 0 0
S E F

0 0

NaN

0 1..2046 Any Value

0 2047 0

01 2047 1.0XX2

2047 1.1XX

+0

+Denormalized
Finite

+Normalized
Finite

+∞

+SNaN

+QNaN 01

11

11

Real Number and NaN Encodings For 64-bit Floating-point Format

−Denormalized Finite

−Normalized Finite −0−∞ +∞
+Denormalized Finite

+Normalized Finite+0

0.XXX2 0.XXX2
2-19

PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 INTEL CORPORATION
Prelim
inary

allows smaller numbers to be represented. However, this denormalization causes a loss of preci-
sion (the number of significant bits in the fraction is reduced by the leading zeros).

When performing normalized floating-point computations, a processor normally operates on
normalized numbers and produces normalized numbers as results. Denormalized numbers
represent an underflow condition.

A denormalized number is computed through a technique called gradual underflow. Table 2-2
gives an example of gradual underflow in the denormalization process. Here the single-real
format (i.e., as for Streaming SIMD Extensions) is being used, so the minimum exponent (unbi-
ased) is −12610. The true result in this example requires an exponent of −12910 in order to have
a normalized number. Since −12910 is beyond the allowable exponent range, the result is denor-
malized by inserting leading zeros until the minimum exponent of −12610 is reached.

Note
* Expressed as an unbiased, decimal number.

In the extreme case, all the significant bits are shifted out to the right by leading zeros, creating
a zero result.

The processor deals with denormal values in the following ways:

• It avoids creating denormals by normalizing numbers whenever possible.

• It provides the floating-point underflow exception to permit programmers to detect cases
when denormals are created.

• It provides the floating-point denormal-operand exception to permit procedures or
programs to detect when denormals are being used as source operands for computations.

2.5.1.8. SIGNED INFINITIES

The two infinities, +∞ and −∞, represent the maximum positive and negative real numbers,
respectively, that can be represented in the floating-point format. Infinity is always represented
by a zero significand (fraction and integer bit) and the maximum biased exponent allowed in the
specified format (for example, 204710 for the double-real format).

The signs of infinities are observed, and comparisons are possible. Infinities are always inter-
preted in the affine sense; that is, –∞ is less than any finite number and +∞ is greater than any
finite number. Arithmetic on infinities is always exact. Exceptions are generated only when the
use of an infinity as a source operand constitutes an invalid operation.

Table 2-2. Denormalization Process

Operation Sign Exponent* Significand

True Result 0 −129 1.01011100000...00

Denormalize 0 −128 0.10101110000...00

Denormalize 0 −127 0.01010111000...00

Denormalize 0 −126 0.00101011100...00

Denormal Result 0 −126 0.00101011100...00
2-20

INTEL CORPORATION PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2
Prelim
inary

Whereas denormalized numbers represent an underflow condition, the two infinity numbers
represent the result of an overflow condition. Here, the normalized result of a computation has
a biased exponent greater than the largest allowable exponent for the selected result format.

2.5.1.9. NANS

Since NaNs are non-numbers, they are not part of the real number line. In Figure 2-10, the
encoding space for NaNs in the processor floating-point formats is shown above the ends of the
real number line. This space includes any value with the maximum allowable biased exponent
and a non-zero fraction. (The sign bit is ignored for NaNs.)

IEEE Standard 754 defines two classes of NaN: quiet NaNs (QNaNs) and signaling NaNs
(SNaNs). A QNaN is a NaN with the most significant fraction bit set; an SNaN is a NaN with
the most significant fraction bit clear. QNaNs are allowed to propagate through most arithmetic
operations without signaling an exception. SNaNs generally signal an invalid-operation excep-
tion whenever they appear as operands in arithmetic operations. Exceptions are discussed in
Section 2.7.

See Section 2.5.2., “Operating on NaNs” for detailed information on how the processor handles
NaNs.

2.5.1.10. INDEFINITE

In response to a masked invalid-operation floating-point exceptions, the indefinite value QNAN
is produced. The integer indefinite, which can be produced during conversion from double-
precision floating-point to 32-bit integer, is defined to be 80000000H (i.e., maximum negative
number).

2.5.2. Operating on NaNs

The Streaming SIMD Extensions 2 support the two types of NaNs described in Section 2.5.1.9.,
“NaNs”: SNaNs and QNaNs. As a general rule, when a QNaN is used in one or more arithmetic
floating-point instructions, it is allowed to propagate through a computation. An SNaN on the
other hand causes a floating-point invalid-operation exception to be signaled. SNaNs are typi-
cally used to trap or invoke an exception handler.

The invalid operation exception has a flag and a mask bit associated with it in the MXCSR
register. The mask bit determines how the SNaN value is handled. If the invalid operation mask
bit is set, the SNaN is converted to a QNaN by setting the most-significant fraction bit of the
value to 1. The result is then stored in the destination operand and the invalid operation flag is
set. If the invalid operation mask is clear, an invalid operation fault is signaled and no result is
stored in the destination operand.

When a real operation or exception delivers a QNaN result, the value of the result depends on
the source operands, as shown in Table 2-3. The exceptions to the behavior described in
Table 2-3 are the MINPD, MAXPD, MINSD and MAXSD instructions. If only one source is a
NaN for these instructions, the Src2 operand (either NaN or real value) is written to the result;
this differs from the behavior for other instructions as defined in Table 2-3, which is to always
2-21

PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 INTEL CORPORATION
Prelim
inary

write the NaN to the result, regardless of which source operand contains the NaN. This approach
for MINPD and MAXPD instructions allows NaN data to be screened out of the bounds-
checking portion of an algorithm. If instead of this behavior, it is required that the NaN source
operand be returned, the min/max functionality can be emulated using a sequence of instruc-
tions: comparison followed by AND, ANDN and OR.

Table 2-3. Results of Operations with QNAN operands

In general Src1 and Src2 relate to a Streaming SIMD Extensions 2 as follows:

ADDPD Src1, Src2/m128

Except for the rules given at the beginning of this section for encoding SNaNs and QNaNs, soft-
ware is free to use the bits in the significand of a NaN for any purpose. Both SNaNs and QNaNs
can be encoded to carry and store data, such as diagnostic information.

2.5.3. Streaming SIMD Extensions 2 Data Formats

These sections describe the data formats for the data types introduced in the Streaming SIMD
Extensions 2 and the double quadword data type introduced in the Intel Streaming SIMD Exten-
sions.

2.5.3.1. DOUBLE QUADWORD DATA FORMATS
The Intel Streaming SIMD Extensions introduced the 128-bit double quadword data type. For
this data type, the bits are numbered 0 through 127, with bit 0 is the least significant bit (LSB),
and bit 127 is the most significant bit (MSB). In memory (see Figure 2-11), the bytes of the
double quadword data type are located in consecutive memory addresses, using little endian
ordering (that is, the bytes with the lower addresses are less significant than the bytes with the
higher addresses).

Source Operands NaN Result (Invalid Operation Exception Is Masked)

An SNaN and a QNaN. Src1 NaN (converted to QNaN if Src1 is an SNaN).

Two SNaNs. Src1 NaN (converted to QNaN)

Two QNaNs. Src1 QNaN

An SNaN and a real value. The SNaN converted into a QNaN.

A QNaN and a real value. The QNaN source operand.

An SNaN/QNaN value (for instructions which
take only one operand such as RCPPS,
RCPSS, RSQRTPS, RSQRTSS)

The SNaN converted into a QNaN/the source QNaN.

Neither source operand is a NaN and a
floating-point invalid-operation exception is
signaled.

The default QNaN real indefinite.
2-22

INTEL CORPORATION PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2
Prelim
inary

2.5.3.2. PACKED DOUBLE-PRECISION FLOATING-POINT FORMAT

The packed double-precision floating-point data type consists of two double-precision floating-
point numbers packed into a double quadword, as described in Table 2-4. The individual packed
values corresponds directly to the double-precision floating-point format in IEEE Standard 754.

Table 2-5 gives the precision and range of the double-precision floating-point data type. Only
the fraction part of the significand is encoded. The integer is assumed to be 1 for all numbers
except 0 and denormalized finite numbers. The exponent of the double-precision floating-point
data type is encoded in biased format. The biasing constant is 1023.

Table 2-5. Precision and Range of Double-Precision Floating-Point Data Type

Table 2-6 shows the encodings for all the classes of real numbers (that is, zero, denormalized-
finite, normalized-finite, and ∞) and NaNs for the double-precision floating-point data-type. It
also gives the format for the real indefinite value, which is a QNaN encoding that is generated
by several Streaming SIMD Extensions 2 in response to a masked floating-point invalid-opera-
tion exception.

Figure 2-11. Double Quadword Data Type in Memory

Table 2-4. Double-Precision Floating Point Format

Value Sign Exponent Significand

Low Quadword 63 62...52 51...0

High Quadword 127 126 ... 116 115 ... 64

Data Type Length Precision
(Bits)

Approximate Normalized Range

Binary Decimal

Double
Precision 64 53 2–1022 to 21024 2.23 × 10–308 to 1.79 × 10308

02 16 34579 813 10111215 14

Byte 0

Memory Address Memory Address

Byte 15

1016H 1000H
2-23

PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 INTEL CORPORATION
Prelim
inary

Table 2-6. Real Number and NaN Encodings

When storing packed double-precision floating-point values in memory, each of the packed
values are stored in 8 consecutive bytes in memory. The 128-bit access mode is used for 128-bit
memory accesses, 128-bit transfers between XMM registers, and all logical, unpack and arith-
metic instructions.The 64-bit access mode is used for 64-bit memory access, 64-bit transfers
between XMM registers, and all arithmetic instructions.

2.5.3.3. IEEE COMPLIANCE

The double-precision floating-point data type and operations performed on this data type with
the Streaming SIMD Extensions 2 comply with IEEE Standard 754, except for the flush to zero
mode. IEEE Standard 754 compliance includes support for double-precision signed infinities,
QNaNs, SNaNs, integer indefinite, signed zeros, denormals, masked and unmasked exceptions
(assuming appropriate operating support and exception handler support for the latter). Double

Class Sign Biased Exponent Significand

Integer1 Fraction

Positive +∞ 0 11..11 1 00..00

+Normals 0
.
.
0

11..10
 .
 .

00..01

1
.
.
1

11..11
 .
 .

00..00

+Denormals 0
.
.
0

00..00
 .
 .

00..00

0
.
.
0

11.11
 .
 .

00..01

+Zero 0 00..00 0 00..00

Negative −Zero 1 00..00 0 00..00

−Denormals 1
.
.
1

00..00
 .
 .

00..00

0
.
.
0

00..01
 .
 .

11..11

−Normals 1
.
.
1

00..01
 .
 .

11..10

1
.
.
1

00..00
 .
 .

11..11

-∞ 1 11..11 1 00..00

NaNs SNaN X 11..11 1 0X..XX2

QNaN X 11..11 1 1X..XX

Real Indefinite
(QNaN)

1 11..11 1 10..00

Double-Real ← 11 Bits  → ← 52 Bits  →
2-24

INTEL CORPORATION PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2
Prelim
inary

precision floating-point values are represented identically both internally and in memory in the
format shown in Table 2-4.

This is a change from x87 FPU which internally represents all numbers in 80-bit extended
double-precision floating-point format. This change implies that x87 FPU libraries that are
rewritten to use Streaming SIMD Extensions 2 may not produce results that are identical to the
those produced by x87 FPU instructions (i.e., double rounding can occur with x87 FPU under-
flows that are followed by a store to memory).

2.5.3.4. 128-BIT PACKED INTEGER FORMAT

Integer values can be packed into a double quadword in any of four formats: 16 packed byte inte-
gers, 8 packed word integers, 4 packed doubleword integers, and 2 packed quadword integers.

The same format is used to pack integers into XMM registers as is used in memory. They have
four data access modes: 128-bit accesses, 64-bit accesses, 32-bit accesses and 16-bit accesses.

• The 128-bit access mode is used for 128-bit memory access (aligned), 128-bit transfer
to/from an XMM register (aligned and unaligned), some unpack instructions, all pack
instructions, and all logical and arithmetic instructions.

• The 64-bit access mode is used for 64-bit memory access, 64-bit transfer to/from XMM
registers, some unpack instructions, all pack instructions, and all logical and arithmetic
instructions.

• The 32-bit access mode is used for 32-bit memory access, 32-bit transfer from a general-
purpose register, and some unpack instructions.

• The 16-bit access mode is used for insertion/extraction of one 16-bit word into a 64-bit
MMX or a 128-bit XMM register.

2.5.4. MXCSR Register

The MXCSR register is used to enable masked/unmasked floating-point exception handling, to
set rounding modes, to set flush-to-zero mode, and to view status flags. The contents of this
register can be loaded with the LDMXCSR and FXRSTOR instructions and stored in memory
with the STMXCSR and FXSAVE instructions. Figure 2-12 shows the format and encoding of
the fields in the MXCSR register.

Bits 5-0 indicate whether an floating-point exception has been detected. They are “sticky” flags,
and can be cleared by using the LDMXCSR and FXRSTOR instructions to write zeroes to these

Figure 2-12. MXCRS Register Format

31 16 015 1234567891011121314

IEDEZEOEUEPEIMDMZMOMUMPMRCFZReserved Rsv
2-25

PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 INTEL CORPORATION
Prelim
inary

fields. If a LDMXCSR/FXRSTOR instruction clears a mask bit and sets the corresponding
exception flag bit, an exception will not be immediately generated. The exception will occur
only upon the next Streaming SIMD Extensions or Streaming SIMD Extensions 2 instruction to
cause this type of exception. Streaming SIMD Extensions and Streaming SIMD Extensions 2
use only one exception flag for each exception. There is no provision for individual exception
reporting within a packed data type. In situations where multiple identical exceptions occur
within the same instruction, the associated exception flag is updated and indicates that at least
one of these conditions happened. These flags are cleared upon reset.

Bits 12-7 configure floating-point exception masking; an exception type is masked if the corre-
sponding bit is set and it is unmasked if the bit is clear. These bits are set upon a processor reset,
meaning that all floating-point exceptions are masked.

Bits 14-13 encode the rounding-control, which provides for the common round-to-nearest
mode, as well as directed rounding and chop (refer to Section 2.5.5., “Rounding Control Field”).
The rounding-control is set to round to nearest upon reset.

Bit 15 (FZ) is used to turn on the flush to zero mode (refer to Section 2.5.6., “Flush to Zero”).
This bit is cleared upon reset, disabling the flush to zero mode.

The other bits of the MXCSR register (bit 6 and bits 16 through 31) are defined as reserved and
cleared; attempting to write a non-zero value to these bits, using either the FXRSTOR or
LDMXCSR instructions, will result in a general protection exception (GP#).

2.5.5. Rounding Control Field

The rounding-control (RC) field of the MXCSR register (bits 13 and 14) controls how the results
of floating-point instructions are rounded. Four rounding modes are supported: round to nearest,
round up, round down, and round toward zero (see Table 2-7). Round to nearest is the default
rounding mode and is suitable for most applications. It provides the most accurate and statisti-
cally unbiased estimate of the true result.

The round up and round down modes are termed directed rounding and can be used to imple-
ment interval arithmetic. Interval arithmetic is used to determine upper and lower bounds for the

Table 2-7. Rounding Control Field (RC)

Rounding
Mode

RC Field
Setting Description

Round to
nearest (even)

00B Rounded result is the closest to the infinitely precise result. If two values
are equally close, the result is the even value (that is, the one with the
least-significant bit of zero).

Round down
(toward −∞)

01B Rounded result is close to but no greater than the infinitely precise
result.

Round up
(toward +∞)

10B Rounded result is close to but no less than he infinitely precise result.

Round toward
zero (Truncate)

11B Rounded result is close to but no greater in absolute value than the
infinitely precise result.
2-26

INTEL CORPORATION PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2
Prelim
inary

true result of a multistep computation, when the intermediate results of the computation are
subject to rounding.

The round toward zero mode (sometimes called the “chop” mode) is commonly used when
performing integer arithmetic with the processor.

Whenever possible, the processor produces an infinitely precise result. However, it is often the
case that the infinitely precise result of an arithmetic operation cannot be encoded exactly in the
format of the destination operand. For example, the following single-precision value (a) has a
24-bit fraction (similar concept for double-precision values). The least-significant bit of this
fraction (the underlined bit) cannot be encoded exactly in the single-real format (which has only
a 23-bit fraction):

(a) 1.0001 0000 1000 0011 1001 0111E2 101

To round this result (a), the processor first selects two representable fractions b and c that most
closely bracket a in value (b < a < c).

(b) 1.0001 0000 1000 0011 1001 011E2 101

(c) 1.0001 0000 1000 0011 1001 100E2 101

The processor then sets the result to b or to c according to the rounding mode selected in the RC
field. Rounding introduces an error in a result that is less than one unit in the last place to which
the result is rounded (for round down, round up and round toward zero); for round to nearest the
error is less than or equal to 1/2 unit in the last place to which the result is rounded.

The rounded result is called the inexact result. When the processor produces an inexact result,
the floating-point precision (inexact) flag (PE) is set in the MXCSR register.

When the infinitely precise result is between the largest positive finite value allowed in a partic-
ular format and +∞, the processor rounds the result as shown in Table 2-8.

When the infinitely precise result is between the largest negative finite value allowed in a partic-
ular format and −∞, the processor rounds the result as shown in Table 2-9.

Table 2-8. Rounding of Positive Numbers

Rounding Mode Result

Rounding to nearest (even) +∞

Rounding down (toward −∞) Maximum, positive finite value

Rounding up (toward +∞) +∞

Rounding toward zero (Truncate) Maximum, positive finite value
2-27

PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 INTEL CORPORATION
Prelim
inary

The rounding modes have no effect on comparison operations, operations that produce exact
results, or operations that produce NaN results.

2.5.6. Flush to Zero

Turning on the flush-to-zero mode has the following effects during underflow situations:

• Zero results are returned with the sign of the true result.

• Precision and underflow exception flags are set.

The IEEE mandated masked response to underflow is to deliver the denormalized result (i.e.,
through the gradual underflow procedure); consequently, the flush to zero mode is not compat-
ible with IEEE Standard 754. It is provided primarily for performance reasons. At the cost of a
slight precision loss, faster execution can be achieved for applications where underflow are
common. Underflow for flush to zero is defined to occur when the exponent for a computed
result, prior to denormalization scaling, falls in the denormal range; this is regardless of whether
a loss of accuracy has occurred. Unmasking the underflow exception takes precedence over
flush-to-zero mode; this means that an exception handler will be invoked for an XMM instruc-
tion that generates an underflow condition while this exception is unmasked, regardless of
whether flush to zero is enabled.

2.6. WRITING PROGRAMS USING THE STREAMING SIMD
EXTENSIONS 2

The following sections give some guidelines for writing application programs and operating-
system code to use the new data types and instructions introduced with the Streaming SIMD
Extensions 2.

2.6.1. Using the CPUID Instruction to Detecting the Existence of
the Streaming SIMD Extensions 2

The Streaming SIMD Extensions and Streaming SIMD Extensions 2 can be divided into four
categories:

• Single and double-precision packed/scalar floating-point.

Table 2-9. Rounding of Negative Numbers

Rounding Mode Result

Rounding to nearest (even) -∞

Rounding toward zero (Truncate) Maximum, negative finite value

Rounding up (toward +∞) Maximum, negative finite value

Rounding down) (toward −∞) -∞
2-28

INTEL CORPORATION PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2
Prelim
inary

• New and enhanced SIMD integer instructions.

• State management instructions (i.e., LDMXCSR/STMXCSR).

• Cacheability control instructions, further subdivided as:

— Streaming stores for both packed floating-point (MOVNTPS and MOVNTPD) and
integer MMX (MASKMOVQ, MASKMOVDQU, MOVNTQ and MOVNTDQ) and
general purpose integer data (MOVNTI)

— CLFLUSH, PREFETCH, SFENCE, LFENCE and MFENCE that are not constrained
to work with any specific data type.

To use these features, the following conditions must exist, otherwise an invalid opcode excep-
tion (#UD) is generated.

• CR0.EM = 0 (emulation disabled)

• CR4.OSFXSR = 1 (operating system supports saving Streaming SIMD Extensions and
Streaming SIMD Extensions 2 state during context switches)

• CPUID.WNI = 1 (processor supports Streaming SIMD Extensions 2)

An application can verify that Streaming SIMD Extensions 2 are supported by performing the
following code sequence:

boolean willamette_new_instructions_work = TRUE;

try {

 IssueWillametteNewInstruction();

 // Use XORPD

except (UNWIND) {

 // if we get here, Streaming SIMD Extensions 2 doesn't work

 willamette_new_instructions_work = FALSE;

}

Similarly, an application can verify support for unmasked SIMD floating-point exceptions by
performing the following sequence:

boolean willamette_new_instruction_unmasked_works = TRUE;

try {

 IssueUnMask();

 // Unmask divide by zero and compute 1/0 using DIVPD

except (UNWIND) {

 // if we get here, unmasked exceptions don't work

 willamette_new_instruction_unmasked_works = FALSE;

}

To verify support for the new and enhanced SIMD integer instructions and the cacheability
control instructions, the application needs to perform the following code sequence:
2-29

PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 INTEL CORPORATION
Prelim
inary

boolean willamette_new_instructions_work = TRUE;

try {

 IssueWillametteNewInstruction();

 // Use PADDQ

except (UNWIND) {

 // if we get here, Streaming SIMD Extensions 2 doesn't work

 willamette_new_instructions_work = FALSE;

}

It is important that the instructions indicated be used within these try-except sequences; use of
another instruction may not correctly identify whether support for the enhancements is avail-
able.

Similar to the Streaming SIMD Extensions and Packed Double-Precision floating-point instruc-
tions, the new and enhanced SIMD integer instructions will generate an invalid opcode excep-
tion (#UD) if CR0.EM is set.

To verify support for the PREFETCH and SFENCE instructions, the application needs only to
check that either CPUID.XMM is set to 1 or CPUID.WNI is set to 1. To verify support for
CLFLUSH, LFENCE and MFENCE, the applications needs to check that CPUID.WNI is set to
1. These five instructions are not affected by CR0.EM or CR4.OSFXSR.

2.6.2. Updating Existing MMX Technology Routines Using 128-
bit Integer Enhancements

The Streaming SIMD Extensions 2 extend all of the 64-bit SIMD integer instructions introduced
with the MMX technology to operate on 128-bit SIMD integers located in the XMM registers.
The extended 128-bit SIMD integer instructions operate the same as the 64-bit SIMD integer
instructions, which simplifies porting of current MMX technology applications to wider packed
operations in the XMM registers. However, there are few additional considerations:

1. The 128-bit SIMD integer instructions operate on the XMM registers. Thus existing MMX
technology code will need to be recompiled to take advantage of the wider the 128-bit
SIMD integer instructions.

2. Computation instructions that reference memory operands that are not aligned on 16-byte
boundaries should be replaced with an unaligned 128-bit load (MOVUDQ instruction)
followed by the same computation operation that uses register instead of memory
operands. Use of 128-bit packed integer computation instructions with memory operands
that are not 16-byte aligned will result in a General Protection exception (#GP).

3. Extension of the PSHUFW instruction (shuffle word across 64-bit integer operand) across
a full 128-bit operand is emulated by a combination of the following instructions:
PSHUFHW, PSHUFLW, PSHUFD.

4. Use of the 64-bit shift by bit instructions (PSRLQ, PSLLQ) are extended to 128 bits in two
ways:
2-30

INTEL CORPORATION PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2
Prelim
inary

• Use of PSRLQ and PSLLQ, along with masking logic operations.

• Rewrite the code sequence to use the PSRLDQ and PSLLDQ instructions (shift
double quadword operand by bytes).

5. Loop counters need to be updated, since each 128-bit SIMD integer instruction operates on
twice the amount of data as the 64-bit SIMD integer counterpart.

2.6.3. Interaction of Streaming SIMD Extensions 2 and x87-FPU
and MMX Instructions

Since the 128-bit SIMD integer instructions use the XMM registers (with a few exceptions),
there are no restrictions on the simultaneous use of x87 FPU or MMX instructions. For instance,
the EMMS instruction is not necessary when integrating a floating-point Streaming SIMD
Extensions or Streaming SIMD Extensions 2 module with existing MMX technology modules
or existing x87 FPU modules. Streaming SIMD Extensions and Streaming SIMD Extensions 2
also do not affect, nor are affected by, the x87 FPU tag word, control word, or status word, or
the floating-point exception state.

The instructions CVTPS2PI, CVTTPS2PI, CVTPI2PS, CVTPD2PI, CVTTPD2PI, CVTPI2PD,
MOVDQ2Q and MOVQ2DQ use MMX registers and are subject to the same restrictions as the
current MMX technology instructions on the simultaneous use of the x87 FPU, which include:

• Transition from x87 FPU to MMX technology (TOS=0, FP valid bits set to all valid).

• Use of EMMS for transition from MMX technology code to x87 FPU code.

Note that the EMMS instruction still needs to be executed when switching from MMX tech-
nology code to x87 FPU code.

2.6.3.1. FXSAVE/FXRSTOR REPLACES USE OF FSAVE/FRSTOR

The FSAVE instruction does not save any of the new state associated with Streaming SIMD
Extensions and Streaming SIMD Extensions 2. The use of the FSAVE and FRSTOR instructions
should be replaced with the FXSAVE and FXRSTOR instructions, which save and restore the
full XMM register state along with the x87 FPU (and MMX) register state. Exception and inter-
rupt handlers which use 64-bit SIMD integer operations or x87 FPU operations are instance
where the FSAVE and FRSTOR instructions should be replaced with the FXSAVE and
FXRSTOR instructions.

2.6.3.2. INTERACTION OF PACKED OR SCALAR FLOATING-POINT
INSTRUCTIONS WITH THE X87 FPU AND MMX INSTRUCTIONS

The XMM registers are separate from the x87 FPU and MMX registers. An application can use
the packed or scalar floating-point instructions of Streaming SIMD Extensions and Streaming
SIMD Extensions 2 with either 64-bit SIMD integer instructions or x87 FPU instructions simul-
taneously, without any penalty. An application can use x87 FPU for operations that need
extended precision arithmetic, or for accessing any of the x87 FPU trigonometric instructions.
2-31

PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 INTEL CORPORATION
Prelim
inary

2.6.3.3. INTERMIXING OF PACKED AND SCALAR FLOATING-POINT
INSTRUCTIONS AND DATA

This section summarizes the various cases where instructions of one type use data of another
type (for instructions that read/write the packed/scalar XMM registers). Note that there is a
latency penalty associated with these types of data intermixing, which can lead to significant
performance degradations if this intermixing occurs within an inner code loop.

Single-precision floating-point instruction operates on double-precision floating-point or
128-bit SIMD integer data: The instruction operates on the double-precision floating-point
source data in the same format as seen in memory; (i.e., each 64-bit double-precision floating-
point or 128-bit integer source operand is viewed as two 32-bit single-precision operands).
Optimal performance for this type of data interaction will not be guaranteed for a given imple-
mentation.

Double-precision floating-point instruction operates on single-precision floating-point or
128-bit SIMD integer data: The instruction operates on the single-precision floating-point
source data in the same format as seen in memory; (i.e., two 32-bit single-precision or 128-bit
integer source operands are viewed as a single 64-bit double-precision operand). Optimal
performance for this type of data interaction will not be guaranteed for a given implementation.

128-bit SIMD integer instruction operates on single-precision floating-point data: The
instruction operates on the single-precision source data in the same format as seen in memory;
(i.e., four 32-bit single-precision floating-point source operands are viewed as a single 128-bit
integer operand. Optimal performance for this type of data interaction will not be guaranteed for
a given implementation.

128-bit SIMD integer instruction operates on double-precision floating-point data: The
instruction operates on the double-precision floating-point source data in the same format as
seen in memory; (i.e., each two 64-bit double-precision floating-point source operand is viewed
as a 128-bit SIMD integer operands). Optimal performance for this type of data interaction will
not be guaranteed for a given implementation.

While it is not usual to perform double-precision floating-point operations on single-precision
floating-point data (or vice-versa), there are some cases which might arise in common usage:

1. The XORPS, XORSS, XORPD, and XORSD instructions might be used with the same
register for both source operands, to clear the contents of the register prior to a subsequent
operation. If the initial register contents are of a different type than the XOR, a latency
penalty will be incurred.

2. Data movement instructions (including the MOVAPS, MOVUPS, MOVSS, MOVAPD,
MOVUPD, MOVSD, MOVHPS, MOVLPS, MOVHPD, MOVLPD, MOVNTPS and
MOVNTPD instructions) perform a typed store; if the register accessed contains data of a
different type than that of the instruction, a latency penalty will be incurred.

3. The MOVHPS, MOVLPS, MOVHPD and MOVLPD instructions load half of an XMM
register with data from memory and leave the other half intact. This operation performs a
merging of data in the register with data loaded from memory, each of which may be of a
different type (single- or double-precision floating-point); as a result, if the initial register
contents are of a different type than the XOR, a latency penalty will be incurred.
2-32

INTEL CORPORATION PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2
Prelim
inary

2.6.4. Caller-Save Requirement for Function Calls

The XMM registers can operate on three different data types (packed single-precision floating-
point, packed double precision floating-point, packed integer data). A caller-save convention for
function-calls is recommended. An application which first uses 128-bit packed integer opera-
tions and then calls another function must assume that all the 128-bit registers will be over-
written by either packed single-precision floating-point or packed double-precision floating-
point operations used within the called function. This situation requires the calling application
to save (i.e., push onto the stack) the contents of XMM registers that will be needed upon
returning from the function.

The use of a callee-save convention for function calls is strongly discouraged, due to a resulting
performance impact. Callee-save means the calling function can leave values in registers and
expect the values to remain intact upon returning from a function. The called function is thus
expected to save those registers it will modify and restores them prior to returning. If the called
function does not use load/store instructions of the same data type (x87 FPU, 64-bit/128-bit
packed integer, single- and double-precision floating-point) as the values in the registers, there
will be a performance impact, as indicated in Section 2.6.3.3.. Streaming SIMD Extensions 2 do
not provide any method of determining which type of data is in the register, to select the
correctly typed load/store instruction.

As a result, it is strongly recommended that programs follow a caller-save convention, whereby
any registers whose contents must survive intact across a function call are stored prior to
executing the call. Upon returning from the call, the calling program is responsible for
restoring/loading the appropriate registers.

2.6.5. Cacheability Hint Instructions

The Streaming SIMD Extensions 2 cacheability control instructions enable the programmer to
control caching and prefetching of data. When correctly used, these instructions can signifi-
cantly improve application performance.

The PREFETCH instruction (introduced in the Streaming SIMD Extensions) can minimize the
latency of data access in performance-critical sections of application code by allowing data to
be fetched in advance of actual usage.

The non-temporal store instructions (MOVNTPD, MOVNTDQ, MASKMOVDQU) minimize
cache pollution while writing data. The main difference between a non-temporal store and a
regular cacheable store is in the write-allocation policy. The memory type can override the non-
temporal hint, leading to the following scenarios:

• If a program specifies a non-temporal store to uncacheable memory, then the store behaves
like an uncacheable store; the non-temporal hint is ignored and the memory type retained.

• If a program specifies a non-temporal store to cacheable memory. Two cases may result:

• If the data is present in the cache hierarchy, cache coherency will be maintained
and the existing memory type attributes are retained.
2-33

PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 INTEL CORPORATION
Prelim
inary

• If the data is not present in the cache hierarchy, the memory type visible on the bus
will remain unchanged and the transaction will be weakly ordered. Consequently,
the program is responsible for maintaining coherency. Non-temporal stores will
not write allocate (i.e. the processor will not fetch the corresponding cache line
into the cache hierarchy, prior to performing the store). Different implementations
may choose to collapse and combine these stores.

The use of weakly-ordered memory types can be important under certain data sharing relation-
ships, such as a producer-consumer relationship. The use of weakly ordered memory can make
the assembling of data more efficient, but care must be taken to ensure that the consumer obtains
the data that the producer intended it to see. Some common usage models which may be affected
in this way by weakly-ordered stores are:

• Library functions, which use weakly ordered memory to write results.

• Compiler-generated code, which also benefit from writing weakly-ordered results.

• Hand-crafted code.

The degree to which a consumer of data knows that the data is weakly ordered can vary for these
cases. As a result, the SFENCE instruction should be used to ensure ordering between routines
that produce weakly-ordered data and routines that consume this data. The SFENCE instruction
provides a performance-efficient way to ensure ordering, by guaranteeing that every store
instruction that precedes the SFENCE instruction in program order is globally visible before any
store instruction which follows the fence.

2.6.6. Branching on Streaming SIMD Extensions 2 Arithmetic
Operations

There are no condition codes in Streaming SIMD Extensions and Streaming SIMD Extensions
2 state. A packed-data comparison instruction generates a mask which can then be transferred
to an integer register. The following code sequence is an example of how to perform a condi-
tional branch, based on the result of an Streaming SIMD Extensions 2 arithmetic operation.

cmppd XMM0, XMM1 ; generates a mask in XMM0

movmskpd EAX, XMM0 ; moves a 2 bit mask to eax

test EAX, 0,2 ; compare with desired result

jne BRANCH TARGET

The COMISD and UCOMISD instructions update the EFLAGS as the result of scalar compar-
ison. A conditional branch can then be scheduled immediately following the
COMISD/UCOMISD instruction.
2-34

INTEL CORPORATION PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2
Prelim
inary

2.6.7. Saving the Streaming SIMD Extensions and Streaming
SIMD Extensions 2 State

An application needs to identify the nature of the multitasking operating system on which it
runs. Each task retains its own state which must be saved when a task switch occurs. The
processor state (context) consists of the integer registers, x87 FPU and MMX registers, and
XMM registers. The STMXCSR and FXSAVE instructions store Streaming SIMD Extensions
and Streaming SIMD Extensions 2 state in memory for use by exception handlers and other
system and application software. The STMXCSR instruction saves the contents of the MXCSR
register. The FXSAVE instruction saves the x87 FPU state (status, control, tag, instruction
pointer, data pointer, opcode and stack registers) and Streaming SIMD Extensions and
Streaming SIMD Extensions 2 state (status/control and data registers). An application needs to
verify that the processor supports FXSAVE prior to using this instruction. For a processor that
implements FXSAVE but not Streaming SIMD Extensions 2, this can be done by checking the
CPUID.FXSR bit; for a processor that does implement Streaming SIMD Extensions 2, the
approach described in Section 2.6.1. should be used.

The operating systems can be classified into two types:

• Cooperative multitasking operating systems

• Preemptive multitasking operating systems

2.6.7.1. COOPERATIVE MULTITASKING OPERATING SYSTEM
ENVIRONMENT

A cooperative multitasking operating system does not save the x87 FPU and MMX technology
state or the Streaming SIMD Extensions and Streaming SIMD Extensions 2 state when
performing a context switch. Therefore, the application needs to save the relevant state before
relinquishing direct or indirect control to the operating system.

2.6.7.2. PREEMPTIVE MULTITASKING OPERATING SYSTEM
ENVIRONMENT

A preemptive multitasking operating system saves the x87 FPU and MMX technology state and
the Streaming SIMD Extensions and Streaming SIMD Extensions 2 state when performing a
context switch. Therefore, the application does not have to save or restore Streaming SIMD
Extensions and Streaming SIMD Extensions 2 state.

2.6.8. Initialization of Streaming SIMD Extensions and
Streaming SIMD Extensions 2 Technology

A hardware reset affects Streaming SIMD Extensions and Streaming SIMD Extensions 2
floating-point state as follows (see Table 2-10: all exceptions are masked, all exception flags are
cleared, the rounding control is set to round-nearest, and the flush-to-zero mode is disabled. If
the processor is reset by asserting the INIT# pin, the Streaming SIMD Extensions and Streaming
SIMD Extensions 2 state is not changed.
2-35

PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 INTEL CORPORATION
Prelim
inary

Table 2-10. Streaming SIMD Extensions State Following Reset or INIT

2.6.9. Interfacing with Streaming SIMD Extensions 2 Procedures
and Functions

The Streaming SIMD Extensions 2 allows direct access to all of the 128-bit XMM registers.
This means that all existing interface conventions that apply to the use of the general-purpose
registers (EAX, EBX, etc.) will also apply to Streaming SIMD Extensions 2 register usage.

2.7. HANDLING EXCEPTIONS IN STREAMING SIMD
EXTENSIONS 2 OPERATIONS

Similar to packed/scalar Streaming SIMD Extensions, Streaming SIMD Extensions 2 generate
two kinds of exceptions:

• Non-numeric exceptions

• Numeric exceptions

Streaming SIMD Extensions 2 can generate the same type of memory access exceptions as other
IA-32 Architecture instructions. Some examples are page fault, segment not present, and limit
violations. Existing exception handlers can handle these types of exceptions without any code
modification. The PREFETCH hints will not generate any kind of exception and instead the
instruction will be ignored.

The Streaming SIMD Extensions 2 generate the same six floating-point exceptions for SIMD
double-precision floating-point operations that x87 FPU instructions generate. All SIMD
floating-point exceptions are reported independently of x87 FPU floating-point exceptions.
Independent masking and unmasking of SIMD floating-point exceptions is achieved by setting
and clearing specific bits in the MXCSR register.

The application must ensure that the operating system can support unmasked SIMD floating-
point exceptions before unmasking them, as described in Section 2.6.1., “Using the CPUID
Instruction to Detecting the Existence of the Streaming SIMD Extensions 2”. If an application
unmasks exceptions using either FXRSTOR or LDMXCSR without the required operating
system support being enabled, than an invalid opcode exception (#UD), instead of a floating-
point exception, will be generated on the first faulting Streaming SIMD Extensions 2 instruc-
tion.

SIMD floating-point exceptions are precise and occur as soon as the instruction completes
execution. They will not catch pending x87 floating-point exceptions and will not cause asser-
tion of FERR# (independent of the value of CR0.NE). In addition, they ignore the assertion/de-
assertion of IGNNE#.

Streaming SIMD Extensions and
Streaming SIMD Extensions 2 Register

Power-Up or
Reset

INIT

XMM0 through XMM7 +0.0 Unchanged

MXCSR 1F80H Unchanged
2-36

INTEL CORPORATION PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2
Prelim
inary

2.7.1. Non-Numeric Exceptions

The Streaming SIMD Extensions 2 can generate the non-numeric exceptions listed below:

Memory Access Exceptions.

• Invalid Opcode exception (#UD).

• Stack exception (#SS).

• General protection exception (#GP). Executing Streaming SIMD Extensions 2 with an
unaligned 128-bit memory reference generates a general protection exception. A 128-bit
reference within the stack segment, which is not aligned to a 16-byte boundary will also
generate a general protection exception, not a stack exception (#SS). However, the
MOVUPD instruction, which performs a load or store, will not generate an exception for
data that is not aligned to a 16-byte boundary.

• Page fault exception (#PF).

• Alignment check exception (#AC). This type of alignment check is done for operands
which are less than 128-bits in size: 32-bit scalar single and 16-bit, 32-bit, and 64-bit
integer MMX technology. Two, 4, or 8 byte alignments checks are possible when the
Alignment check exception is enabled. Some exceptional cases are:

• The MOVUPS instruction, which performs a 128-bit unaligned load or store; in
this case, 2-, 4-, and 8-byte misalignments will be detected, but detection of 16-
byte misalignment is not guaranteed and may vary with implementation.

• The FXSAVE/FXRSTOR instructions.

• The following three conditions that must be true to enable generation of the
alignment check exception: CR0.AM flag is set, EFLAGS.AC flag is set, and CPL
is 3.

System Exceptions:

• Invalid Opcode exception (#UD), when executing Streaming SIMD Extensions 2 under the
following conditions (this includes both packed/scalar double-precision floating-point and
128-bit SIMD integer instructions):

• CPUID.WNI is clear

• CR0.EM is set (regardless of the value of CR0.TS.). Note that this does not
include the PREFETCH and SFENCE instructions.

• CR4.OSFXSR is clear. Note that this does not include the following instructions:
PAVGB, PAVGW, PEXTRW, PINSRW, PMAXSW, PMAXUB, PMINSW,
PMINUB, PMOVMSKB, PMULHUW, PSADBW, PSHUFW, MASKMOVQ,
MOVNTQ, PREFETCH, and SFENCE.

• Executing a Streaming SIMD Extensions instruction that causes a floating-point
exception when CR4.OSXMMEXCPT = 0

• Device not available exception (#NM). Executing Streaming SIMD Extensions 2 when
CR0.TS = 1 generates a DNA exception
2-37

PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 INTEL CORPORATION
Prelim
inary

Other exceptions can occur indirectly due to faulty execution of the above exceptions. For
example, interrupt 12 occurs due to Streaming SIMD Extensions 2, and the interrupt gate directs
the processor to invalid TSS (task state segment). Table 2-11 lists the causes for Interrupt 6 and
Interrupt 7 with Streaming SIMD Extensions 2.

Table 2-11. Streaming SIMD Extensions 2 Exceptions

2.7.2. SIMD Floating-Point Exceptions

Six classes of exception conditions can occur while executing SIMD floating-point instructions:

• Invalid operation (#I)

• Divide-by-zero (#Z)

• Denormalized operand (#D)

• Numeric overflow (#O)

• Numeric underflow (#U)

• Inexact result (Precision) (#P)

Invalid, divide-by-zero and denormal exceptions are pre-computation exceptions (i.e., they are
detected before any arithmetic operation occurs. Underflow, overflow and precision exceptions
are post-computation exceptions.

When these floating-point exceptions occur, a processor supporting Streaming SIMD Exten-
sions 2 takes one of two possible courses of action:

• The processor can handle the exception by itself, producing the most reasonable result and
allowing numeric program execution to continue undisturbed (i.e., masked exception
response).

• A software exception handler can be invoked to handle the exception (i.e., unmasked
exception response).

Each of the six exception conditions described above has corresponding flag and mask bits in
the MXCSR register. If an exception is masked (the corresponding mask bit in MXCSR = 1),
the processor takes an appropriate default action and continues with the computation. If the
exception is unmasked (mask bit = 0) and the operating system supports Streaming SIMD
Extensions 2 exceptions (i.e. CR4.OSXMMEXCEPT = 1), a software exception handler is
invoked immediately through Streaming SIMD Extensions 2 exception interrupt vector 19. If
the exception is unmasked (mask bit = 0) and the operating system does not support Streaming

CR0.EM CR0.TS CR4.OSFXSR CPUID.XMM EXCEPTION

 1 - - - #UD Interrupt 6

 0 1 1 1 #NM Interrupt 7

 - - 0 - #UD Interrupt 6

 - - - 0 #UD Interrupt 6
2-38

INTEL CORPORATION PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2
Prelim
inary

SIMD Extensions 2 exceptions (i.e. CR4.OSXMMEXCEPT = 0), an invalid opcode exception
is signaled instead of a Streaming SIMD Extensions 2 exception.

Note that because Streaming SIMD Extensions 2 exceptions are precise and occur immediately,
the situation does not arise where an x87 FPU instruction, an FWAIT instruction, or another
Streaming SIMD Extensions and Streaming SIMD Extensions 2 will catch a pending unmasked
Streaming SIMD Extensions 2 exception.

2.7.2.1. EXCEPTION PRIORITY

The processor handles exceptions according to a predetermined precedence. When a sub-
operand of a packed instruction generates two or more exception conditions, the exception
precedence sometimes results in the higher-priority exception being handled and the lower-
priority exceptions being ignored. For example, dividing an SNaN by zero could potentially
signal an invalid-arithmetic-operand exception (due to the SNaN operand) and a divide-by-zero
exception. Here, if both exceptions are masked, the processor handles the higher-priority excep-
tion only (the invalid-arithmetic-operand exception), returning the quieted version of the SNaN
to the destination. The prioritization policy also applies for unmasked exceptions; if both invalid
and divide-by-zero are unmasked for the previous example, only the invalid flag will be set.
Prioritization of exceptions is performed only on an individual sub-operand basis, and not
between suboperands; for example, an invalid exception generated by one sub-operand will not
prevent the reporting of a divide-by-zero exception generated by another sub-operand.

The precedence for Streaming SIMD Extensions and Streaming SIMD Extensions 2 floating-
point exceptions is as follows:

1. Invalid-operation exception.

2. QNaN operand. Though this is not an exception, the handling of a QNaN operand has
precedence over lower-priority exceptions. For example, a QNaN divided by zero results
in a QNaN, not a zero-divide exception.

3. Any other invalid-operation exception not mentioned above or a divide-by-zero exception.

4. Denormal-operand exception. If masked, then instruction execution continues, and a
lower-priority exception can occur as well.

5. Numeric overflow and underflow exceptions in conjunction with the inexact-result
exception.

6. Inexact-result exception.

2.7.2.2. AUTOMATIC MASKED EXCEPTION HANDLING

If the processor detects an exception condition for a masked exception (an exception with its
mask bit set), it delivers a predefined (default) response and continues executing instructions.
The masked (default) responses to exceptions have been chosen to deliver a reasonable result
for each exception condition and are generally satisfactory for most application code. By
masking or unmasking specific floating-point exceptions in the MXCSR register, programmers
2-39

PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 INTEL CORPORATION
Prelim
inary

can delegate responsibility for most exceptions to the processor and reserve the most severe
exception conditions for software exception handlers.

Because the exception flags are “sticky,” they provide a cumulative record of the exceptions that
have occurred since they were last cleared. A programmer can thus mask all exceptions, run a
calculation, and then inspect the exception flags to see if any exceptions were detected during
the calculation.

Note that when exceptions are masked, the processor may detect multiple exceptions in a single
instruction, because:

• It continues executing the instruction after performing its masked response; for example,
the processor could detect a denormalized operand, perform its masked response to this
exception, and then detect an underflow

• Some exceptions occur naturally in pairs, such as numeric underflow and inexact result
(precision)

• Packed instructions can produce independent exceptions on each pair of operands.

Updating of exception flags is generated by a logical-OR of exception conditions for all sub-
operand computations, where the OR is done independently for each type of exception; for
packed computations this means 2 or 4 sub-operands (double or single precision) and for scalar
computations this means 1 sub-operand (the lowest one).

2.7.2.3. HANDLING- UNMASKED EXCEPTIONS IN SOFTWARE

An application must ensure that the operating system supports unmasked exceptions before
unmasking any of the exceptions in the MXCSR register (refer to Section 2.6.1.).

If the processor detects a condition for an unmasked SIMD floating-point exception, a software
exception handler is invoked immediately at the end of the faulting instruction. The handler is
invoked through the SIMD floating-point exception (#XF, vector 19), regardless of the state of
the CR0.NE flag. If an exception is unmasked, but Streaming SIMD Extensions 2 unmasked
exceptions are not enabled (CR4.OSXMMEXCPT = 0), an invalid opcode exception (#UD) is
generated. However, the corresponding exception bit will still be set in the MXCSR register, as
it would be if CR4.OSXMMEXCPT =1, since the invalid opcode exception handler needs to
determine the cause of the exception.

A typical action of the exception handler is to store x87 FPU, Streaming SIMD Extensions, and
Streaming SIMD Extensions 2 state information in memory (with the FXSAVE/FXRSTOR
instructions) so that it can evaluate the exception and formulate an appropriate response. Other
typical exception handler actions can include:

• Examine the stored state information to determine the nature of the error.

• Take actions to correct the condition that caused the error.

• Clear the exception bits in the x87 FPU status word or the MXCSR register.

• Return to the interrupted program and resume normal execution.

In lieu of writing recovery procedures, the exception handler can do the following:
2-40

INTEL CORPORATION PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2
Prelim
inary

• Increment in software an exception counter for later display or printing.

• Print or display diagnostic information (such as the XMM and MXCSR register state).

• Halt further program execution.

When an unmasked exception occurs, the processor will not alter the contents of the source
register operands prior to invoking the unmasked handler. Nor will the integer EFLAGS be
modified for an unmasked exception which occurs while executing the COMISD or UCOMISD
instructions. Exception flags will be updated according to the following rules:

• Updating of exception flags is generated by a logical-OR of exception conditions for all
sub-operand computations, where the OR is done independently for each type of
exception. For packed computations this means 2 or 4 sub-operands (double or single
precision), and for scalar computations this means 1 sub-operand (the lowest one).

• In the case of only masked exception conditions, all flags will be updated,

• In the case of an unmasked pre-computation type of exception condition (i.e., denormal
input), all flags relating to all pre-computation conditions (masked or unmasked) will be
updated, and no subsequent computation is performed (i.e., no post-computation condition
can occur if there is an unmasked pre-computation condition).

• In the case of an unmasked post-computation exception condition, all flags relating to all
post-computation conditions (masked or unmasked) will be updated; all pre-computation
conditions, which must be masked-only will also be reported.

2.7.2.4. INTERACTION WITH X87 FLOATING-POINT EXCEPTIONS

The Streaming SIMD Extensions and Streaming SIMD Extensions 2 are independent of the x87
FPU; however, if x87 FPU applications use Streaming SIMD Extensions and Streaming SIMD
Extensions 2 instructions, the following implications must be considered:

• The x87 FPU rounding mode specified in the x87 FPU control word does not affect
Streaming SIMD Extensions and Streaming SIMD Extensions 2 instructions. To use the
same rounding mode, the rounding control value in the MXCSR register, must be
explicitly set to the same value in the x87 FPU control word.

• x87 FPU exception observability may not apply to Streaming SIMD Extensions and
Streaming SIMD Extensions 2 instructions.

• An application that expects to catch x87 FPU exceptions that occur during the
execution of x87 FPU instructions will not be notified if an exception occurs in a
corresponding Streaming SIMD Extensions and Streaming SIMD Extensions 2
instructions, unless the exception masks that are enabled in the x87 FPU control
word have also been enabled in the MXCSR register and the application is capable
of handling the SIMD floating-point exception (#XF).

• An application will not be able to unmask exceptions after returning from a
Streaming SIMD Extensions or Streaming SIMD Extensions 2 library call to
detect if an error occurred. A SIMD floating-point exception flag that was set
2-41

PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 INTEL CORPORATION
Prelim
inary

when the corresponding exception is unmasked will not generate a fault; only the
next occurrence of that exception will generate an unmasked fault.

• An application which checks x87 FPU status word to determine if any masked
exception flags were set during an x87 FPU library call will also need to check the
MXCSR register to detect a similar occurrence of a masked exception within a
Streaming SIMD Extensions 2 library.

2.7.3. Streaming SIMD Extensions 2 Floating-Point Exception
Conditions

The following sections describe the various conditions that cause a Streaming SIMD Extensions
2 floating-point exception to be generated and the masked response of the processor when these
conditions are detected.

2.7.3.1. INVALID OPERATION EXCEPTION(#I)

The invalid operation exception (#I) occurs in response to an invalid arithmetic operand. The
flag (IE) for the invalid operation exception is bit 0 in the MXCSR register, and the mask bit
(IM) is bit 7 of the MXCSR register.

If the invalid operation exception is masked, the processor returns the double-precision indefi-
nite value to the destination operand. This value overwrites the destination register specified by
the instruction.

If the invalid operation exception is not masked, a software exception handler is invoked (see
Section 2.7.2.3.) and the operands remain unchanged.

The processor can detect a variety of invalid arithmetic operations that can be coded in a
program. These operations generally indicate a programming error, such as dividing ∞ by ∞.
Table 2-12 lists the invalid arithmetic operations that the processor detects for Streaming SIMD
Extensions 2 instructions. This group includes the invalid operations defined in IEEE Standard
754.

The invalid operation exception is not affected by the flush to zero mode.
2-42

INTEL CORPORATION PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2
Prelim
inary

Table 2-12. Invalid Arithmetic Operations and The Masked Responses to Them

2.7.3.2. DIVISION-BY-ZERO EXCEPTION (#Z)

The processor reports a divide-by-zero exception whenever a DIVPD or DIVSD instruction
attempts to divide a finite non-zero operand by 0. The flag (ZE) for the divide-by-zero exception
is bit 2 of the MXCSR register, and the mask bit (ZM) is bit 9 of MXCSR.

The masked response for divide-by-zero exception is to set the ZE flag in the MXCSR register
and return an infinity signed with the exclusive OR of the sign of the operands. If the divide-by-
zero exception is not masked, the ZE flag is set, a software exception handler is invoked (see
Section 2.7.2.3.) and the source operands remain unchanged.

The divide by zero exception is not affected by the flush to zero mode.

2.7.3.3. DENORMAL OPERAND EXCEPTION (#D)

The processor signals the denormal-operand exception if an arithmetic instruction attempts to
operate on a denormal operand.The flag (DE) for the denormal-operand exception is bit 1 of the
MXCSR register, and the mask bit (DM) is bit 8 of MXCSR

Condition Masked Response

ADDPD/ADDSD/DIVPD/DIVSD/
MULPD/MULSD/SUBPD/SUBSD with a SNaN.

Return the signaling NaN converted to a
quiet NaN; Refer to Table 2-3 for more
details; set #I flag.

CMPPD/CMPSD with QNaN/SNaN operands Return a mask of all 0s (except for the
predicates “ne” and “unordered”, which
returns a mask of all 1s); set #I flag.

COMISD with QNaN/SNaN operand(s). Set EFLAGS values to “not comparable”;
set #I flag.

UCOMISD with QNaN operand(s). Set EFLAGS values to “not comparable”.

MAXPD/MAXSD/MINPD/MINSD with
QNaN/SNaN operand(s).

Return the src2 value; set #I flag.

SQRTPD/SQRTSD with SNaN operand(s). Return the SNaN converted to a QNaN; set
#I flag;

UCOMISD with QNaN operand(s). Set EFLAGS values to “not comparable”.

UCOMISD with SNaN operand(s). Set EFLAGS values to ”not comparable”;
set #I flag.

Addition of opposite signed infinities or
subtraction of like-signed infinities.

Return the QNaN Indefinite; set #I flag.

Multiplication of infinity by zero. Return the QNaN Indefinite; set #I flag.

Divide of (0/0) or(∞/∞) Return the QNaN Indefinite; set #IA flag.

SQRTPD of negative operands (except zero). Return the QNaN Indefinite; set #IA flag.

Conversion to integer when the source register is
a NaN, Infinity or exceeds the representable
range.

Return the Integer Indefinite; set #IA flag.
2-43

PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 INTEL CORPORATION
Prelim
inary

When a denormal-operand exception occurs and the exception is masked, the processor sets the
DE flag, then proceeds with the instruction. Operating on denormal numbers will produce
results at least as good as, and often better than, what can be obtained when denormal numbers
are flushed to zero. Programmers can mask this exception so that a computation may proceed,
then analyze any loss of accuracy when the final result is delivered.

When a denormal-operand exception occurs and the exception is not masked, the processor sets
the DE bit in the MXCSR register and a software exception handler is invoked (see Section
2.7.2.3.). The source operands remain unchanged. When denormal operands have reduced
significance due to loss of low-order bits, it may be advisable to not operate on them. Precluding
denormal operands from computations can be accomplished by an exception handler that
responds to unmasked denormal-operand exceptions.

Conversion instructions (CVTPI2PD, CVTPD2PI, CVTTPD2PI, CVTDQ2PD, CVTPD2DQ,
CVTTPD2DQ, CVTSI2SD, CVTSD2SI, CVTTSD2SI) do not signal denormal exceptions.

The denormal operand exception is not affected by the flush to zero mode.

2.7.3.4. NUMERIC OVERFLOW EXCEPTION (#O)

The processor reports a floating-point numeric overflow exception whenever the rounded result
of an arithmetic instruction exceeds the largest allowable finite value that will fit into the desti-
nation operand. This is possible with ADDPD, ADDSD, SUBPD, SUBSD, MULPD, MULSD,
DIVPD, DIVSD, CVTPD2PS, CVTSD2SS. The flag (OE) for the numeric overflow exception
is bit 3 of the MXCSR register, and the mask bit (OM) is bit 10 of MXCSR.

When a numeric overflow exception occurs and the exception is masked, the processor sets the
OE and PE flags in the MXCSR register and returns one of the values shown in Table 2-13
according to the current rounding mode being used (see Section 2.5.5.).

When a numeric overflow exception occurs and the exception is unmasked, the operands are left
unaltered and a software exception handler is invoked (see Section 2.7.2.3.). The OE flag in the
MXCSR register is set; the PE flag is only set if a loss of accuracy has occurred in addition to
the overflow.

The numeric overflow exception is not affected by the flush to zero mode.
.

Table 2-13. Masked Responses to Numeric Overflow

Rounding Mode Sign of True Result Result

To nearest + +∞

– –∞

Toward –∞ + Largest finite positive number

– –∞

Toward +∞ + +∞

– Largest finite negative number

Toward zero + Largest finite positive number

– Largest finite negative number
2-44

INTEL CORPORATION PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2
Prelim
inary

2.7.3.5. NUMERIC UNDERFLOW EXCEPTION (#U)

The processor reports a floating-point numeric underflow exception whenever the rounded
result of an arithmetic instruction is tiny; that is, less than the smallest possible normalized, finite
value that will fit into the destination operand. The Underflow exception can occur in the execu-
tion of the instructions ADDPD, ADDSD, SUBPD, SUBSD, MULPD, MULSD, DIVPD,
DIVSD, CVTPD2PS, CVTSD2SS. The flag (UE) for the numeric underflow exception is bit 4
of the MXCSR register and the mask bit (UM) is bit 11 of MXCSR.

Two related events contribute to underflow:

• Creation of a tiny result which, because it is so small, may cause some other exception
later (such as overflow upon division).

• Creation of an inexact result; i.e. the delivered result differs from what would have been
computed were both the exponent and precision unbounded.

Which of these events triggers the underflow exception depends on whether the underflow
exception is masked:

• Underflow exception masked. The underflow exception is signaled when the result is both
tiny and inexact.

• Underflow exception not masked: The underflow exception is signaled when the result is
tiny, regardless of inexactness.

The response to an underflow exception also depends on whether the exception is masked:

• Masked response. The result is normal, denormal or zero. The precision exception is also
triggered.

• Unmasked response. If the original computation generated an imprecise mantissa, the
inexact (PE) status flag will be set. In either case, the operands are left unaltered and a
software exception handler is invoked (see Section 2.7.2.3.).

If underflow is masked and flush to zero mode is enabled, an underflow condition will set the
underflow (UE) and inexact (PE) status flags and return a correctly signed zero result; this will
avoid the performance penalty associated with generating a denormalized result. If underflow is
unmasked, the flush to zero mode is ignored and an underflow condition be handled as described
above.

2.7.3.6. INEXACT-RESULT (PRECISION) EXCEPTION (#P)

The inexact-result exception (also called the precision exception) occurs if the result of an oper-
ation is not exactly representable in the destination format. For example, the fraction 1/3 cannot
be precisely represented in binary form. This exception occurs frequently and indicates that
some (normally acceptable) accuracy has been lost. The exception is supported for applications
that need to perform exact arithmetic only. Because the rounded result is generally satisfactory
for most applications, this exception is commonly masked.

The inexact-result exception flag (PE) is bit 5 of the MXCSR register, and the mask bit (PM) is
bit 12 of MXCSR.
2-45

PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 INTEL CORPORATION
Prelim
inary

If the inexact-result exception is masked when an inexact-result condition occurs and a numeric
overflow or underflow condition has not occurred, the processor sets the PE flag and stores the
rounded result in the destination operand. The current rounding mode determines the method
used to round the result (refer to Section 2.5.5.).

If the inexact-result exception is not masked when an inexact result occurs and numeric over-
flow or underflow has not occurred, the operands are left unaltered and a software exception
handler is invoked (see Section 2.7.2.3.).

If an inexact result occurs in conjunction with numeric overflow or underflow, one of the
following operations is carried out:

• If an inexact result occurs along with masked overflow or underflow, the OE or UE flag
and the PE flag are set and the result is stored as described for the overflow or underflow
exceptions (see Section 2.7.3.4.. or Section 2.7.3.5.). If the inexact result exception is
unmasked, the processor also invokes the software exception handler.

• If an inexact result occurs along with unmasked overflow or underflow and the destination
operand is a register, the OE or UE flag and the PE flag are set, the result is stored as
described for the overflow or underflow exceptions, and the software exception handler is
invoked.

In flush to zero mode, the inexact result exception is reported.

2.8. SYSTEM PROGRAMMING MODEL
The following sections describe the interface of the Streaming SIMD Extensions 2 to the op-
erating system.

2.8.1. Enabling Streaming SIMD Extensions 2 Support

Certain steps must be taken in both applications and the operating system to check if the
processor supports Streaming SIMD Extensions 2 and associated unmasked exceptions. This
section describes this process, which is conducted using the bits described in Table 2-14 and
Table 2-15.

Table 2-14. CPUID bits for Streaming SIMD Extensions 2 Support

CPUID bit (EAX = 1) Meaning

FXSR
(EDX bit24)

If set, CPU supports FXSAVE/FXRSTOR. The operating system can read
this bit to determine if it can use FXSAVE/FXRSTOR in place of
FSAVE/FRSTOR for context switches.

WNI
(EDX bit26)

If set, the Streaming SIMD Extensions 2 are supported by the processor.
2-46

INTEL CORPORATION PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2
Prelim
inary

If the operating system is going to use the FXSAVE/FXRSTOR instructions, it should first
check CPUID.FXSR to determine if the processor supports these instructions. If the processor
does support FXSAVE/FXRSTOR, then the operating system can set CR4.OSFXSR without
faulting and enable code for context switching that uses FXSAVE/FXRSTOR instead of
FSAVE/FRSTOR.

At this point, if the operating system also supports unmasked SIMD floating-point exceptions,
it should check CPUID.WNI to see if this is a Streaming SIMD Extensions 2 enabled processor.
If CPUID.WNI is set, this verifies that the operating system can set CR4.OSXMMEXCPT
without faulting. When a Streaming SIMD Extensions 2 floating-point exception occurs, the
processor will generate a Streaming SIMD floating-point exception (#XF) if CR4.OSXM-
MEXCPT=1, otherwise the processor will generate an invalid operation exception (#UD).

The process by which an application detects the existence of Streaming SIMD Extensions 2 is
described in Section 2.6.1., “Using the CPUID Instruction to Detecting the Existence of the
Streaming SIMD Extensions 2”.

2.8.2. Device Not Available Exception

Streaming SIMD Extensions 2 will cause a device not available exception (#NM) if the
processor attempts to executes Streaming SIMD Extensions 2 while CR0.TS is set. If
CPUID.WNI is clear, execution of any Streaming SIMD Extensions 2 instructions will cause an
invalid opcode exception (#UD) regardless of the state of CR0.TS.

2.8.3. Streaming SIMD Extensions 2 Emulation

The CR0.EM bit (used when emulating floating-point instructions) cannot be used in the same
way for MMX technology emulation. If Streaming SIMD Extensions 2 executes when the
CR0.EM bit is set, an invalid opcode exception (#UD) is generated instead of a device not avail-
able exception (#NM).

2.8.4. Numeric Error flag and IGNNE#

Streaming SIMD Extensions 2 ignore CR0.NE (treats it as if it were always set) and the
IGNNE# pin and always uses the SIMD floating-point exception (#XF) for error reporting.

Table 2-15. CR4 bits for Streaming SIMD Extensions 2 Support

CR4 bit Meaning

OSFXSR
(bit9)

Defaults to clear. If both the CPU and the operating system support
FXSAVE/FXRSTOR for use during context switches, then the operating
system will set this bit.

OSXMMEXCPT
(bit10)

Defaults to clear. The operating system will set this bit if it supports both
unmasked Streaming SIMD Extensions and Streaming SIMD Extensions 2
exceptions.
2-47

PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 INTEL CORPORATION
Prelim
inary
2-48

INTEL CORPORATION
Prelim
inary

CHAPTER 3
STREAMING SIMD EXTENSIONS 2

INSTRUCTION SET

The new instructions added to the IA-32 architecture with the Streaming SIMD Extensions 2 are
divided into three sections:

• Packed and scalar double-precision floating-point instructions (see Section 3.2., “Packed
and Scalar Double-Precision Floating-Point Instructions”).

• SIMD integer instructions that operate on 128-bit operands (see Section 3.3., “SIMD
Integer Instructions”).

• Cacheability control and memory ordering instructions (see Section 3.4., “Cacheability
Control and Memory Ordering Instructions”).

The Streaming SIMD Extensions 2 also modified the operation of several existing IA-32
instructions (see Section 3.5., “Modified Instructions”).

Appendix A summarizes all the Streaming SIMD Extensions 2 instructions, grouped into the
three categories describe above.

3.1. NOTATION

The following notation is used in describing the Streaming SIMD Extensions 2 assembly-code
instruction operands:

• r32: General-purpose register.

• xmm/m128: indicates an XMM register or a 128-bit memory location.

• xmm/m64: indicates an XMM register or a 64-bit memory location.

• xmm/m32: indicates an XMM register or a 32-bit memory location.

• mm/m64: indicates an MMX™ register or a 64-bit memory location.

• xmm/m128: indicates an MMX register or a 128-bit memory location.

• imm8: indicates an immediate 8-bit operand.

• ib: indicates that an immediate byte operand follows the opcode, ModR/M byte or scaled-
indexing byte.

When there is ambiguity, xmm1 indicates the first source operand and xmm2 the second source
operand.

Table 3-1 describes the naming conventions used in the Streaming SIMD Extensions 2 instruc-
tions mnemonics.
3-1

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

3.2. PACKED AND SCALAR DOUBLE-PRECISION FLOATING-
POINT INSTRUCTIONS

The following instructions were added to the IA-32 architecture to support packed and scalar
double-precision floating-point data in the XMM registers.

Table 3-1. Key to Streaming SIMD Extensions 2 instructions Technology Naming
Convention

Mnemonic Description

DQ Packed integer double quadword (for example, xmm0)

PD Packed double-precision floating-point (for example, xmm0)

SI Scalar integer (for example, EAX)

SD Scalar double-precision floating-point (for example, low 64 bits of xmm0)
3-2

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

ADDPD—Packed Double-Precision Floating-Point Add

Description

Performs a packed addition of the two packed double-precision floating-point numbers.

Operation

xmm1[63-0] = xmm1[63-0] + xmm2/m128[63-0];
xmm1[127-64] = xmm1[127-64] + xmm2/m128[127-64];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments

If memory operand is not aligned on a 16-byte boundary, regardless of
segment

#SS(0) For an illegal address in the SS segment;

#PF(fault-code) For a page fault;

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1);

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0)

If CR0.EM = 1

If CR4.OSFXSR(bit 9) = 0;

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH

#NM If TS bit in CR0 is set

Instruction Description

ADDPD xmm1, xmm2/m128 Add packed double-precision floating-point numbers from xmm2/m128
to xmm1.
3-3

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1)

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0)

If CR0.EM = 1

If CR4.OSFXSR (bit 9) = 0

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault;

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.
3-4

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

ADDSD—Scalar Double-Precision Floating-Point Add

Description

Adds the low double-precision floating-point numbers of both operands; the high quadword
element of the xmm1operand is passed through to the result.

Operation

xmm1[63-0] = xmm1[63-0] + xmm2/m64[63-0];
xmm1[127-64] = xmm1[127-64];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

Instruction Description

ADDSD xmm1, xmm2/m64 Add the low double-precision floating-point number from xmm2/mem64
to xmm1.
3-5

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault;

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.
3-6

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

ANDNPD—Bitwise Logical AND NOT for Double-Precision
Floating-Point

Description

Returns a bitwise logical AND of xmm2/mem128 and the complement of xmm1.

Operation

xmm1[127-0] = ~(xmm1[127-0]) & xmm2/m128[127-0];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

Instruction Description

ANDNPD xmm1, xmm2/m128 Inverts the 128 bits of xmm1, then performs bitwise AND of result
with the 128 bits of xmm2/mem128.
3-7

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-8

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

ANDPD—Bitwise Logical AND for Double-Precision Floating-Point

Description

Returns a bitwise logical AND between xmm1 and xmm2/mem128.

Operation

xmm1[127-0] &= xmm2/m128[127-0];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

Instruction Description

ANDPD xmm1, xmm2/m128 Bitwise logical AND of xmm2/mem128 and xmm1.
3-9

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-10

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

CMPPD—Packed Double-Precision Floating-Point Compare

Description

Compares the individual pairs of double-precision floating-point numbers in the source oper-
ands and returns an all 1s 64-bit mask or an all 0s 64-bit mask according to the comparison pred-
icate specified by imm8. Note that a subsequent computational instruction that uses this mask
as an input operand will not generate a fault, since a mask of all 0s corresponds to a floating-
point number of +0.0 and a mask of all 1s corresponds to a floating-point number of -QNaN.
The following table shows the different comparison types:

Some of the comparisons can be achieved only through software emulation. For these compar-
isons the programmer must swap the operands, copying registers when necessary to protect the
data that will now be in the destination, and then perform the compare using a different predi-
cate. The predicate to be used for these emulations is listed in under the heading “Emulation.”

Instruction Description

CMPPD xmm1, xmm2/m128, imm8 Compare packed double-precision floating-point numbers from
xmm2/mem128 with packed double-precision floating-point
numbers in xmm1, using imm8 as predicate.

Predi-
cate

Description Relation Emulation imm8
Encoding

Result if
NaN
Operand

QNaN
Operand
Signals
Invalid

eq equal xmm1 == xmm2 000B False No

lt less-than xmm1 < xmm2 001B False Yes

le less-than-or-equal xmm1 <= xmm2 010B False Yes

greater than xmm1 > xmm2 swap,
protect, lt

False Yes

greater-than-or-
equal

xmm1 >= xmm2 swap
protect, le

False Yes

unord unordered xmm1 ? xmm2 011B True No

neq not-equal !(xmm1 == xmm2) 100B True No

nlt not-less-than !(xmm1 < xmm2) 101B True Yes

nle not-less-than-or-
equal

!(xmm1 <= xmm2) 110B True Yes

not-greater-than !(xmm1 > xmm2) swap,
protect, nlt

True Yes

not-greater-than-or-
equal

!(xmm1 >= xmm2) swap,
protect, nle

True Yes

ord ordered !(xmm1 ? xmm2) 111B False No
3-11

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

Note that the greater-than, greater-than-or-equal, not-greater-than, and not-greater-than-or-
equal relations are not directly implemented in hardware.

Operation

switch (imm8) {
case eq: op = eq;
case lt: op = lt;
case le: op = le;
case unord: op = unord;
case neq: op = neq;
case nlt: op = nlt;
case nle: op = nle;
case ord: op = ord;
default: Reserved;
}

cmp0 = op(xmm1[63-0],xmm2/m128[63-0]);
cmp1 = op(xmm1[127-64],xmm2/m128[127-64]);

xmm1[63-0] = (cmp0) ? 0xffffffffffffffff : 0x0000000000000000;
xmm1[127-64] = (cmp1) ? 0xffffffffffffffff : 0x0000000000000000;

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.
3-12

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

Invalid if SNaN operand, invalid if QNaN and predicate as listed in above table, denormal.

Comments

Compilers and assemblers should implement the following two-operand pseudo-ops in addition
to the three-operand CMPPD instruction.
:

Pseudo-Op Implementation

CMPEQPD xmm1, xmm2 CMPPD xmm1,xmm2, 0

CMPLTPD xmm1, xmm2 CMPPD xmm1,xmm2, 1

CMPLEPD xmm1, xmm2 CMPPD xmm1,xmm2, 2

CMPUNORDPD xmm1, xmm2 CMPPD xmm1,xmm2, 3

CMPNEQPD xmm1, xmm2 CMPPD xmm1,xmm2, 4

CMPNLTPD xmm1, xmm2 CMPPD xmm1,xmm2, 5

CMPNLEPD xmm1, xmm2 CMPPD xmm1,xmm2, 6

CMPORDPD xmm1, xmm2 CMPPD xmm1,xmm2, 7
3-13

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

The greater-than relations not implemented in hardware require more than one instruction to
emulate in software and therefore should not be implemented as pseudo-ops. (For these, the
programmer should reverse the operands of the corresponding less than relations and use move
instructions to ensure that the mask is moved to the correct destination register and that the
source operand is left intact.)

Bits 7-4 of the immediate field are reserved. Different processors may handle them differently.
Usage of these bits risks incompatibility with future processors.
3-14

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

CMPSD—Scalar Double-Precision Floating-Point Compare

Description

Compares the low double-precision floating-point numbers in the source operands and returns
an all 1s 64-bit mask or an all 0s 64-bit mask according to the comparison predicate specified
by imm8. The values for the high double-precision floating-point numbers in the source oper-
ands are not compared. Note that a subsequent computational instruction that uses this mask as
an input operand will not generate a fault, since a mask of all 0s corresponds to a floating-point
number of +0.0 and a mask of all 1s corresponds to a floating-point number of -QNaN. The
following table shows the different comparison types:

Some of the comparisons can be achieved only through software emulation. For these compar-
isons the programmer must swap the operands, copying registers when necessary to protect the
data that will now be in the destination, and then perform the compare using a different predi-
cate. The predicate to be used for these emulations is listed in under the heading “Emulation”.

Instruction Description

CMPSD xmm1, xmm2/m64, imm8 Compare low double-precision floating-point number from
xmm2/mem64 with low double-precision floating-point number in
xmm1 register using imm8 as predicate.

Predi-
cate

Description Relation Emulation imm8
Encoding

Result if
NaN
Operand

QNaN
Operand
Signals
Invalid

eq equal xmm1 == xmm2 000B False No

lt less-than xmm1 < xmm2 001B False Yes

le less-than-or-equal xmm1 <= xmm2 010B False Yes

greater than xmm1 > xmm2 swap,
protect, lt

False Yes

greater-than-or-
equal

xmm1 >= xmm2 swap
protect, le

False Yes

unord unordered xmm1 ? xmm2 011B True No

neq not-equal !(xmm1 == xmm2) 100B True No

nlt not-less-than !(xmm1 < xmm2) 101B True Yes

nle not-less-than-or-
equal

!(xmm1 <= xmm2) 110B True Yes

not-greater-than !(xmm1 > xmm2) swap,
protect, nlt

True Yes

not-greater-than-
or-equal

!(xmm1 >= xmm2) swap,
protect, nle

True Yes

ord ordered !(xmm1 ? xmm2) 111B False No
3-15

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

Note that the greater-than, greater-than-or-equal, not-greater-than, and not-greater-than-or-
equal relations are not directly implemented in hardware.

Operation

<algorithm1>
<algorightm_next>

switch (imm8) {
case eq: op = eq;
case lt: op = lt;
case le: op = le;
case unord: op = unord;
case neq: op = neq;
case nlt: op = nlt;
case nle: op = nle;
case ord: op = ord;
default: Reserved;
}

cmp0 = op(xmm1[63-0],xmm2/m64[63-0]);

xmm1[63-0] = (cmp0) ? 0xffffffffffffffff : 0x0000000000000000;
xmm1[127-64] = xmm1[127-64];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).
3-16

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

Invalid if SNaN operand, invalid if QNaN and predicate as listed in above table, denormal.

Comments

Compilers and assemblers should implement the following two-operand pseudo-ops in addition
to the three-operand CMPSD instruction.
.

Pseudo-Op Implementation

CMPEQSD xmm1, xmm2 CMPSD xmm1,xmm2, 0

CMPLTSD xmm1, xmm2 CMPSD xmm1,xmm2, 1

CMPLESD xmm1, xmm2 CMPSD xmm1,xmm2, 2

CMPUNORDSD xmm1, xmm2 CMPSD xmm1,xmm2, 3

CMPNEQSD xmm1, xmm2 CMPSD xmm1,xmm2, 4

CMPNLTSD xmm1, xmm2 CMPSD xmm1,xmm2, 5

CMPNLESD xmm1, xmm2 CMPSD xmm1,xmm2, 6

CMPORDSD xmm1, xmm2 CMPSD xmm1,xmm2, 7
3-17

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

The greater-than relations not implemented in hardware require more than one instruction to
emulate in software and therefore should not be implemented as pseudo-ops. (For these, the
programmer should reverse the operands of the corresponding less than relations and use move
instructions to ensure that the mask is moved to the correct destination register and that the
source operand is left intact.)
3-18

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

COMISD—Scalar Ordered Double-Precision Floating-Point
Compare and Set EFLAGS

Description

Compares two double-precision floating-point numbers and sets the ZF, PF, and CF flags in the
EFLAGS register as described in “Operation.” Although the data type is packed double-preci-
sion floating-point, only the low values in each source operand are compared. In addition, the
OF, SF and AF flags in the EFLAGS register are zeroed out. The unordered predicate is returned
if either source operand is a NaN (QNaN or SNaN).

Operation

switch (xmm1[63-0] <> xmm2/m64[63-0]) {
case UNORDERED: ZF,PF,CF = 111;
case GREATER_THAN: ZF,PF,CF = 000;
case LESS_THAN: ZF,PF,CF = 001;
case EQUAL: ZF,PF,CF = 100;
OF,AF,SF = 0;
}

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Instruction Description

COMISD xmm1, xmm2/m64 Compare low double-precision floating-point number in xmm1 register
with low double-precision floating-point number in xmm2/mem64 and
set the EFLAGS flags register accordingly.
3-19

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

Invalid (if SNaN or QNaN operands), denormal. The EFLAGS register is not updated in the
presence of unmasked numeric exceptions.

Comments

The COMISD instruction differs from the UCOMISD instruction in that it signals an invalid
numeric exception when a source operand is either a QNaN or SNaN. The UCOMISD instruc-
tion signals invalid only if a source operand is an SNaN.

The use of Repeat (F2H, F3H) prefixes with COMISD is reserved. Different processor imple-
mentations may handle this prefix differently. Usage of this prefix with COMISD risks incom-
patibility with future processors.
3-20

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

CVTDQ2PD—Packed Doubleword Signed Integer to Packed
Double-Precision Floating-Point Conversion

Description

Converts two packed doubleword signed integers to two packed double-precision floating-point
numbers. When converting from a memory operand, only 64 bits are used by the instruction.

Operation

xmm1[63-0] = (double) (xmm2/m64[31-0]);
xmm1[127-64] = (double) (xmm2/m64[63-32]);

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

Instruction Description

CVTDQ2PD xmm1,
xmm2/m64

Convert two packed doubleword signed integers from xmm2/m128 to
two packed double-precision floating-point numbers.
3-21

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

None.
3-22

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

CVTPD2PI—Packed Double-Precision Floating-Point to Packed
Doubleword Integer Conversion

Description

Converts two packed double-precision floating-point numbers in xmm/m128 to two signed
packed doubleword integers in mm. When the conversion is inexact, the value returned is
rounded according to the rounding control bits in the MXCSR register.

Operation

mm[31-0] = (int) (xmm/m128[63-0]);
mm[63-32] = (int) (xmm/m128[127-64]);

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#MF If there is a pending FPU exception.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Instruction Description

CVTPD2PI mm, xmm/m128 Convert two packer double-precision floating-point numbers from
xmm/m128 to two packed doubleword signed integers in mm using
rounding specified by MXCSR.
3-23

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#MF If there is a pending FPU exception.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

Invalid, Precision.

Comments

This instruction behaves identically to original MMX instructions, in the presence of x87 FPU
instructions, including:

• Transition from x87 FPU to MMX technology operations (TOS=0, floating point valid bits
set to all valid).

• MMX technology instructions write ones (1s) to the exponent part of the corresponding
x87 FPU register.

Prioritization for fault and assist behavior for the CVTPS2PI instruction is as follows:

• Memory source

a. Invalid opcode (CR0.EM=1)

b. DNA (CR0.TS=1)

c. #MF, pending x87 FPU fault signaled

d. After returning from #MF, x87 FPU or MMX technology operation transition

e. #SS or #GP, for limit violation

f. #PF, page fault
3-24

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

g. 8) Streaming SIMD Extensions numeric fault (i.e., invalid, precision)

• Register source

a. Invalid opcode (CR0.EM=1)

b. DNA (CR0.TS=1)

c. #MF, pending x87 FPU fault signaled

d. After returning from #MF, x87 FPU or MMX technology operation transition

e. Streaming SIMD Extensions numeric fault (i.e., precision)
3-25

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

CVTPD2DQ—Packed Double-Precision Floating-Point to Packed
Doubleword Integer Conversion

Description

Converts two packed double-precision floating-point numbers in xmm/m128 to two packed
signed doubleword integers in the two low doublewords of xmm1; the high quadword of xmm1
is set to all 0s. When the conversion is inexact, the value returned is rounded according to the
rounding control bits in the MXCSR register.

Operation

xmm1[31-0] = (int) (xmm2/m128[63-0]);
xmm1[63-32] = (int) (xmm2/m128[127-64]);
xmm1[95-64] = 0x00000000;
xmm1[127-96] = 0x00000000;

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Instruction Description

CVTPD2PQ xmm1, xmm2/m128 Convert two packed double-precision floating-point numbers from
xmm2/m128 to two packed doubleword signed integers in xmm1
using rounding specified by MXCSR.
3-26

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

Invalid, Precision.
3-27

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

CVTPD2PS—Packed Double-Precision Floating-Point to Packed
Single-Precision Floating-Point Conversion

Description

Converts two double-precision floating-point numbers to two single-precision floating-point
numbers, and stores the result in the two low doublewords of xmm1. The bits in the high quad-
word of xmm1 are cleared.

Operation

xmm1[31-0] = (float) (xmm2/m128[63-0]);
xmm1[63-32] = (float) (xmm2/m128[127-64]);
xmm1[95-64] = 0x00000000;
xmm1[127-96] = 0x00000000;

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Instruction Description

CVTPD2PS xmm1, xmm2/m128 Convert two double-precision floating-point numbers to two single-
precision floating-point numbers.
3-28

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.
3-29

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

CVTPI2PD—Packed Signed Doubleword Integer to Packed Double-
Precision Floating-Point Conversion

Description

Converts two signed doubleword integers to two packed double-precision floating-point
numbers. When converting from a memory operand, only 64 bits are used by the instruction.

Operation

xmm[63-0] = (double) (mm/m64[31-0]);
xmm[127-64] = (double) (mm/m64[63-32]);

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#MF If there is a pending FPU exception.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#MF If there is a pending FPU exception.

Instruction Description

CVTPI2PD xmm, mm/m64 Convert lowest two signed doubleword integers from mm/mem64 to two
double-precision floating-point numbers.
3-30

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.

Comments

This instruction behaves identically to an MMX instructions in the presence of an x87 FPU
instructions, including:

• Transition from x87 FPU to MMX technology operations (TOS=0, floating point valid bits
set to all valid).

• MMX instructions write ones (1’s) to the exponent part of the corresponding x87 FPU
register.

However, the use of a memory source operand with this instruction will not result in the above
transition from x87 FPU to MMX technology.

Prioritization for fault and assist behavior for the CVTPI2PS instruction is as follows:

• Memory source

a. 1) Invalid opcode (CR0.EM=1)

b. 2) DNA (CR0.TS=1)

c. 3) #SS or #GP, for limit violation

d. 4) #PF, page fault

e. 5) Streaming SIMD Extensions numeric fault (i.e., precision)
3-31

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

• Register source

a. 1) Invalid opcode (CR0.EM=1)

b. 2) DNA (CR0.TS=1)

c. 3) #MF, pending x87 FPU fault signaled

d. 4) After returning from #MF, x87 FPU or MMX technology transition

e. 5) Streaming SIMD Extensions numeric fault (i.e., precision)
3-32

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

CVTPS2PD—Packed Single-Precision to Packed Double-Precision
Floating-Point Conversion

Description

Converts the two low single-precision floating-point numbers from xmm2/m64 to two packed
double-precision floating-point numbers, and returns the result to xmm1.

Operation

xmm1[63-0] = (double) (xmm2/m64[31-0]);
xmm1[127-64] = (double) (xmm2/m64[63-32]);

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

Instruction Description

CVTPS2PD xmm1, xmm2/m64 Convert two single-precision floating-point numbers to two double-
precision floating-point numbers.
3-33

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

Invalid, Denormal.
3-34

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

CVTSD2SI—Scalar Double-Precision Floating-Point to Signed
Doubleword Integer Conversion

Description

Converts the low double-precision floating-point number in xmm or a double-precision
floating-point number from memory to a signed doubleword integer, and returns the result to a
general-purpose register. When the conversion is inexact, the value returned is rounded
according to the rounding control bits in the MXCSR register.

Operation

r32 = (int) (xmm/m64[63-0]);

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

Instruction Description

CVTSD2SI r32, xmm/m64 Convert one double-precision floating-point number from xmm/m64 to
one doubleword signed integer using the rounding mode specified by
MXCSR, and return the result to a general-purpose register.
3-35

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

Invalid, Precision.
3-36

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

CVTSD2SS—Scalar Double-Precision Floating-Point to Scalar
Single-Precision Floating-Point Conversion

Description

Converts the low double-precision floating-point number in xmm2 or a to a double-precision
floating-point number in memory to a single-precision floating-point number, and returns the
result to the low doubleword of xmm1. The upper 3 doublewords in the destination register are
left unchanged.

Operation

xmm1[31-0] = (float) (xmm2/m64[63-0]);
xmm1[63-32] = xmm1[63-32];
xmm1[95-64] = xmm1[95-64];
xmm1[127-96] = xmm1[127-96];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

Instruction Description

CVTSD2SS xmm1, xmm2/m64 Convert double-precision floating-point number in xmm2/m64 to
single-precision floating-point number in xmm1.
3-37

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.
3-38

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

CVTSI2SD—Scalar signed INT32 to Double-Precision Floating-
Point Conversion

Description

Converts a signed doubleword integer from a general-purpose register or from memory to a
double-precision floating-point number, and stores the result in xmm. The high quadword of the
destination register is left unchanged.

Operation

xmm[63-0] = (double) (r/m32);
xmm[127-64] = xmm[127-64];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

Instruction Description

CVTSI2SD xmm, r/m32 Convert signed doubleword integer from r/m32 to a double-precision
floating-point number.
3-39

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

None.
3-40

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

CVTSS2SD—Scalar Single-Precision Floating-Point to Scalar
Double-Precision Floating-Point Conversion

Description

Converts the single-precision floating-point number from the low doubleword of xmm2 or
memory to a double-precision floating-point number, and returns it to the low quadword of
xmm1. The high quadword of the destination register is left unchanged.

Operation

xmm1[63-0] = (double) (xmm2/m32[31-0]);
xmm1[127-64] = xmm1[127-64];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

Instruction Description

CVTSS2SD xmm1, xmm2/m32 Convert single-precision floating-point number to double-precision
floating-point number.
3-41

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

Invalid, Denormal.
3-42

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

CVTTPD2PI—Packed Double-Precision Floating-Point to Packed
INT32 Conversion (truncate)

Description

Converts the two double-precision floating-point numbers in xmm/m128 to two doubleword
signed integers in mm. If the conversion is inexact, the truncated result is returned.

Operation

mm[31-0] = (int) (xmm/m128[63-0]);
mm[63-32] = (int) (xmm/m128[127-64]);

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#MF If there is a pending FPU exception.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

Instruction Description

CVTTPD2PI mm, xmm/m128 Convert two double-precision floating-point numbers from xmm2/m128
to two signed doubleword integers in mm using truncate.
3-43

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

#MF If there is a pending FPU exception.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

Invalid, Precision.

Comments

This instruction behaves identically to an MMX instruction, in the presence of x87 FPU instruc-
tions, including:

• Transition from x87 FPU to MMX technology operations (TOS=0, floating point valid bits
set to all valid).

• MMX instructions write ones (1’s) to the exponent part of the corresponding x87 FPU
register.

Prioritization for fault and assist behavior for the CVTPI2PS instruction is as follows:

• Memory source

a. Invalid opcode (CR0.EM=1)

b. DNA (CR0.TS=1)

c. #MF, pending x87 FPU fault signaled

d. After returning from #MF, x87 FPU or MMX technology operation transition

e. #SS or #GP, for limit violation

f. #PF, page fault

g. Streaming SIMD Extensions numeric fault (i.e., invalid, precision)

• Register source
3-44

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

a. Invalid opcode (CR0.EM=1)

b. DNA (CR0.TS=1)

c. #MF, pending x87 FPU fault signaled

d. After returning from #MF, x87 FPU or MMX technology operation transition

e. Streaming SIMD Extensions numeric fault (i.e., precision)
3-45

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

CVTTPD2DQ—Packed Double-Precision Floating-Point to Packed
Doubleword Integer Conversion (Truncate)

Description

Converts the two double-precision floating-point numbers in xmm/m128 to two doubleword
signed integers, and returns the result to the two low doublewords of xmm1; the high 64 bits of
xmm1 are set to all 0s. If the conversion is inexact, the truncated result is returned.

Operation

xmm1[31-0] = (int) (xmm2/m128[63-0]);
xmm1[63-32] = (int) (xmm2/m128[127-64]);
xmm1[95-64] = 0x00000000;
xmm1[127-96] = 0x00000000;

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Instruction Description

CVTTPD2DQ xmm1, xmm2/m128 Convert two double-precision floating-point numbers from
xmm2/m128 to two signed doubleword integers in XMM using
truncate.
3-46

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

Invalid, Precision.
3-47

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

CVTTSD2SI—Scalar Double-Precision Floating-Point to Signed
Doubleword Integer Conversion (Truncate)

Description

Converts the double-precision floating-point number in the low quadword of xmm or from
memory to a signed doubleword integer, and returns the result to a general-purpose register. If
the conversion is inexact, the truncated result is returned.

Operation

r32 = (int) (xmm/m64[63-0]);

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

Instruction Description

CVTTSD2SI r32, xmm/m64 Convert one double-precision floating-point number from xmm/m64 to
one signed doubleword integer using truncate, and return the result to
r32.
3-48

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

Invalid, Precision.
3-49

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

DIVPD—Packed Double-Precision Floating-Point Divide

Description

Divides the packed double-precision floating-point numbers in xmm2/m128 by the packed
double-precision floating-point numbers in xmm1.

Operation

xmm1[63-0] = xmm1[63-0] / (xmm2/m128[63-0]);
xmm1[127-64] = xmm1[127-64] / (xmm2/m128[127-64]);

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

Instruction Description

DIVPD xmm1, xmm2/m128 Divide packed double-precision floating-point numbers in xmm1 by
xmm2/mem128
3-50

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

Overflow, Underflow, Divide-By-Zero, Invalid, Precision, Denormal.
3-51

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

DIVSD—Scalar Double-Precision Floating-Point Divide

Description

Divides the double-precision floating-point number in the low quadword of xmm2 or from
memory by the double-precision floating-point number in the low quadword of xmm1, and
returns the result to the low quadword of xmm1. The high quadword of the destination operand
is left unchanged.

Operation

xmm1[63-0] = xmm1[63-0] / (xmm2/m64[63-0]);
xmm1[127-64] = xmm1[127-64];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD If CR0.EM = 1.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Instruction Description

DIVSD xmm1, xmm2/m64 Divide low double-precision floating-point numbers in xmm1 by
xmm2/mem64
3-52

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

Overflow, Underflow, Divide-By-Zero, Invalid, Precision, Denormal.
3-53

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

MAXPD—Packed Double-Precision Floating-Point Maximum

Description

Returns the maximum double-precision floating-point numbers from the pairs of elements in
xmm1 and xmm2/mem128. If the values being compared are both zeros, source operand 2
(xmm2/m128) is returned. If a value in source operand 2 is an SNaN, that SNaN is forwarded
unchanged to the destination (i.e., a quieted version of the SNaN is not returned).

Operation

xmm1[63-0] =
(xmm1[63-0] == NAN) ? xmm2[63-0] :
xmm2[63-0] == NAN) ? xmm2[63-0] :

 (xmm1[63-0] > xmm2/m128[63-0]) ? xmm1[63-0] ? xmm2/m128[63-0];
xmm1[127-64] =

xmm1[127-64] == NAN) ? xmm2[127-64] :
(xmm2[127-64] == NAN) ? xmm2[127-64] :

 (xmm1[127-64] > xmm2/m128[127-64]) ? xmm1[127-64] ? xmm2/m128[127-64];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD If CR0.EM = 1.

Instruction Description

MAXPD xmm1, xmm2/m128 Return the maximum double-precision floating-point numbers between
xmm2/mem128 and xmm1.
3-54

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

Invalid (including QNaN source operand), Denormal.

Comments

Note that if only one source is a NaN for these instructions, the Src2 operand (either NaN or real
value) is written to the result; this differs from the behavior for other instructions as defined in
Table 2-3, which is to always write the NaN to the result, regardless of which source operand
contains the NaN. This approach for MAXPD allows compilers to use the MAXPD instruction
for common C conditional constructs. If instead of this behavior, it is required that the NaN
source operand be returned, the min./max functionality can be emulated using a sequence of
instructions: comparison followed by AND, ANDN and OR.
3-55

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

MAXSD—Scalar Double-Precision Floating-Point Maximum

Description

Returns the maximum double-precision floating-point number from the low double-precision
floating-point numbers of xmm1 and xmm2/mem64. If the values being compared are both
zeros, source operand 2 (xmm2/m128) is returned. If source operand 2 is an SNaN, that SNaN
is forwarded unchanged to the destination (i.e., a quieted version of the SNaN is not returned).

Operation

xmm1[63-0] =
(xmm1[63-0] == NAN) ? xmm2[63-0] :
(xmm2[63-0] == NAN) ? xmm2[63-0] :

 (xmm1[63-0] > xmm2/m64[63-0]) ? xmm1[63-0] ? xmm2/m64[63-0];
xmm1[127-64] = xmm1[127-64];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Instruction Description

MAXSD xmm1, xmm2/m64 Return the maximum double-precision floating-point number between
the low double-precision floating-point numbers from xmm2/mem64
and xmm1.
3-56

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

Invalid (including QNaN source operand), Denormal.

Comments

Note that if only one source is a NaN for these instructions, the Src2 operand (either NaN or real
value) is written to the result; this differs from the behavior for other instructions as defined in
Table 2-3, which is to always write the NaN to the result, regardless of which source operand
contains the NaN. The upper three operands are still bypassed from the src1 operand, as in all
other scalar operations. This approach for MAXSD allows compilers to use the MAXSD
instruction for common C conditional constructs. If instead of this behavior, it is required that
the NaN source operand be returned, the min/max functionality can be emulated using a
sequence of instructions: comparison followed by AND, ANDN and OR.
3-57

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

MINPD—Packed Double-Precision Floating-Point Minimum

Description

Returns the minimum double-precision floating-point numbers from the pairs of elements in
xmm1 and xmm2/mem128. If the values being compared are both zeros, source operand 2
(xmm2/m128) is returned. If a value in source operand 2 is an SNaN, that SNaN is forwarded
unchanged to the destination (i.e., a quieted version of the SNaN is not returned).

Operation

xmm1[63-0] =
(xmm1[63-0] == NAN) ? xmm2[63-0] :
(xmm2[63-0] == NAN) ? xmm2[63-0] :

 (xmm1[63-0] < xmm2/m128[63-0]) ? xmm1[63-0] ? xmm2/m128[63-0];
xmm1[127-64] =

(xmm1[127-64] == NAN) ? xmm2[127-64] :
(xmm2[127-64] == NAN) ? xmm2[127-64] :
(xmm1[127-64] < xmm2/m128[127-64]) ? xmm1[127-64] ? xmm2/m128[127-64];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD If CR0.EM = 1.

Instruction Description

MINPD xmm1, xmm2/m128 Return the minimum double-precision floating-point numbers between
xmm2/mem128 and xmm1.
3-58

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

Invalid (including QNaN source operand), Denormal.

Comments

Note that if only one source is a NaN for these instructions, the Src2 operand (either NaN or real
value) is written to the result; this differs from the behavior for other instructions as defined in
Table 2-3, which is to always write the NaN to the result, regardless of which source operand
contains the NaN. This approach for MINPD allows compilers to use the MINPD instruction for
common C conditional constructs. If instead of this behavior, it is required that the NaN source
operand be returned, the min/max functionality can be emulated using a sequence of instruc-
tions: comparison followed by AND, ANDN and OR.
3-59

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

MINSD—Scalar Double-Precision Floating-Point Minimum

Description

Returns the minimum double-precision floating-point number from the low double-precision
floating-point numbers of xmm1 and xmm2/mem64. If the values being compared are both
zeros, source operand 2 (xmm2/m128) is returned. If source operand 2 is an SNaN, that SNaN
is forwarded unchanged to the destination (i.e., a quieted version of the SNaN is not returned).

Operation

xmm1[63-0] =
(xmm1[63-0] == NAN) ? xmm2[63-0] :
(xmm2[63-0] == NAN) ? xmm2[63-0] :

 (xmm1[63-0] < xmm2/m64[63-0]) ? xmm1[63-0] ? xmm2/m64[63-0];
xmm1[127-64] = xmm1[127-64];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Instruction Description

MINSD xmm1, xmm2/m64 Return the minimum double-precision floating-point number between the
low double-precision floating-point numbers from xmm2/mem64 and
xmm1.
3-60

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

Invalid (including QNaN source operand), Denormal.

Comments

Note that if only one source is a NaN for these instructions, the Src2 operand (either NaN or real
value) is written to the result (if SNaN, not converted to QNaN, but forwarded intact); this
differs from the behavior for other instructions as defined in Table 2-3, which is to always write
the NaN to the result, regardless of which source operand contains the NaN. This approach for
MINSD allows NaN data to be screened out of the bounds-checking portion of an algorithm. If
instead of this behavior, it is required that the NaN source operand be returned, the min/max
functionality can be emulated using a sequence of instructions: comparison followed by AND,
ANDN and OR.
3-61

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

MOVAPD—Move Aligned Two Packed Double-Precision Floating-
Point

Description

Moves a double quadword containing two packed double-precision floating-point numbers from
the source operand to the destination operand. When the source or destination operand is
memory operand, the linear address of the operand is the address of the least-significant byte of
the referenced data.

Operation

if (destination == xmm1) {
if (source == m128) {

// load instruction
xmm1[127-0] = m128;

}
else {

// move instruction
xmm1[127=0] = xmm2[127-0];

}
}
else {

if (destination == m128) {
// store instruction
m128 = xmm1[127-0];

}
else {

// move instruction
xmm2[127-0] = xmm1[127-0];

}
}

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

Instruction Description

MOVAPD xmm1, xmm2/m128 Move packed double-precision floating-point numbers from
xmm2/mem128 to xmm1.

MOVAPD xmm2/m128, xmm1 Move packed double-precision floating-point numbers from xmm1 to
xmm2/mem128.
3-62

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.

Comments

The MOVAPD instruction should be used when dealing with 16-byte aligned double-precision
floating-point numbers. If the data is not known to be aligned, the MOVUPD instruction should
be used instead of MOVAPD. The use of this instruction should be limited to the cases where
3-63

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

the aligned restriction is easy to meet. Processors that support Streaming SIMD Extensions 2
instructions technology will provide optimal aligned performance for the MOVAPD instruction.
3-64

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

MOVHPD—Move High Packed Double-Precision Floating-Point

Description

Moves a quadword containing a double-precision floating-point number from the source
operand to the destination operand. When the source or destination operand is xmm, the high
quadword of the register is affected. When the source or destination operand is memory operand,
the linear address of the operand is the address of the least-significant byte of the referenced
data.

Operation

if (destination == xmm) {
// load instruction
xmm[63-0] = xmm[63-0];
xmm[127-64] = m64;

}
else {

// store instruction
m64 = xmm[127-64];

}

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

Instruction Description

MOVHPD xmm, m64 Move double-precision floating-point number from memory to high quadword of
XMM register.

MOVHPD m64, xmm Move double-precision floating-point number from high quadword of XMM
register to memory.
3-65

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

#UD If CR0.EM = 1.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

Invalid (including QNaN source operand), Denormal.

Comments

The use of Repeat Prefixes (F2H, F3H) with MOVHPD is reserved. Different processor imple-
mentations may handle this prefix differently. Usage of this prefix with MOVHPD risks incom-
patibility with future processors.
3-66

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

MOVLPD—Move Low Packed Double-Precision Floating-Point

Description

Moves a quadword containing a double-precision floating-point number from the source
operand to the destination operand. When the source or destination operand is xmm, the low
quadword of the register is affected. When the source or destination operand is memory operand,
the linear address of the operand is the address of the least-significant byte of the referenced
data.

Operation

if (destination == xmm) {
// load instruction
xmm[63-0] = m64;
xmm[127-64] = xmm[127-64];

}
else {

// store instruction
m64 = xmm[63-0];

}

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Instruction Description

MOVLPD xmm, m64 Move double-precision floating-point numbers from memory to low quadword of
XMM register.

MOVLPD m64, xmm Move double-precision floating-point numbers from low quadword of XMM
register to memory.
3-67

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

None.

Comments

The use of Repeat Prefixes (F2H, F3H) with MOVLPD is reserved. Different processor imple-
mentations may handle this prefix differently. Usage of this prefix with MOVLPD risks incom-
patibility with future processors.
3-68

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

MOVMSKPD—Move Mask To Integer

Description

Moves a 2-bit mask containing the sign bits of the two packed double-precision floating-point
numbers in xmm to a general-purpose register.

Operation

r32[0] = xmm[63];
r32[1] = xmm[127];
r32[7-2] = 0x00;
r32[15-8] = 0x00;
r32[31-16] = 0x0000;

Protected Mode Exceptions

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Instruction Description

MOVMSKPD r32, xmm Move 2-bit mask to r32.
3-69

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

Numeric Exceptions

None.
3-70

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

MOVSD—Move Scalar Double-Precision Floating-Point

Description

Moves a quadword containing a double-precision floating-point number from the source
operand to the destination operand. When the source or destination operand is xmm, the low
quadword of the register is affected. When the source or destination operand is memory operand,
the linear address of the operand is the address of the least-significant byte of the referenced
data.

Operation

if (destination == xmm1) {
if (source == m64) {

// load instruction
xmm1[63-0] = m64;
xmm1[127-64] = 0x00000000;

}
else {

// move instruction
xmm1[63-0] = xmm2[63-0];
xmm1[127-64] = xmm1[127-64];

}
}
else {

if (destination == m64) {
// store instruction
m64 = xmm1[63-0];

}
else {

// move instruction
xmm2[63-0] = xmm1[63-0]
xmm2[127-64] = xmm2[127-64];

}
}

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

Instruction Description

MOVSD xmm1, xmm2/m64 Move scalar double-precision floating-point numbers from xmm2/m64 to
xmm1 register.

MOVSD xmm2/m64, xmm Move scalar double-precision floating-point numbers from xmm1
register to xmm2/m64.
3-71

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

None.
3-72

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

MOVUPD—Move Unaligned Two Packed Double-Precision
Floating-Point

Description

Moves a double quadword containing two packed double-precision floating-point numbers from
the source operand to the destination operand. When the source or destination operand is
memory operand, the linear address of the operand is the address of the least-significant byte of
the referenced data, and no assumption is made about alignment. That is, unaligned memory
accesses can be made without generating a general-protection (#GP) exception.

Operation

if (destination == xmm1) {
if (source == m128) {

// load instruction
xmm1[127-0] = m128;

}
else {

// move instruction
xmm1[127-0] = xmm2[127-0];

}
}
else {

if (destination == m128) {
// store instruction
m128 = xmm1[127-0];

}
else {

// move instruction
xmm2[127-0] = xmm1[127-0];

}
}

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

Instruction Description

MOVUPD xmm1, xmm2/m1281 Move two packed double-precision floating-point numbers from
xmm2/mem128 to xmm1.

MOVUPD xmm2/m128, xmm Move two packed double-precision floating-point numbers from
xmm1 to xmm2/mem128.
3-73

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.

Comments.

The MOVUPD instruction should be used with double-precision floating-point numbers when
that data is known to be unaligned. The use of this instruction should be limited to the cases
where the aligned restriction is hard or impossible to meet. Streaming SIMD Extensions 2
implementations guarantee optimum unaligned support for MOVUPD. Efficient Streaming
SIMD Extensions applications should mainly rely on MOVAPD, not MOVUPD, when dealing
with aligned data.
3-74

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

The use of Repeat-NE Prefix (F2H) and Operand Size Prefix (66H) with MOVUPD is reserved.
Different processor implementations may handle this prefix differently. Usage of this prefix
with MOVUPD risks incompatibility with future processors.

A linear address of the 128-bit data access, while executing in 16-bit mode, that overlaps the end
of a 16-bit segment is not allowed and is defined as reserved behavior. Different processor
implementations may/may not raise a GP fault in this case if the segment limit has been
exceeded; additionally, the address that spans the end of the segment may/may not wrap around
to the beginning of the segment.
3-75

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

MULPD—Packed Double-Precision Floating-Point Multiply

Description

Multiplies the packed double-precision floating-point numbers in xmm2/mem128 by the packed
double-precision floating-point numbers in xmm1, and returns the packed result to xmm1.

Operation

xmm1[63-0] = xmm1[63-0] * xmm2/m128[63-0];
xmm1[127-64] = xmm1[127-64] * xmm2/m128[127-64];

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

Instruction Description

MULPD xmm1, xmm2/m128 Multiply packed double-precision floating-point numbers in
xmm2/mem128 by xmm1.
3-76

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal
3-77

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

MULSD—Scalar Double-Precision Floating-Point Multiply

Description

Multiplies the low double-precision floating-point number in xmm2 or the double-precision
floating-point number in mem64 by the low double-precision floating-point number in xmm1,
and returns the result to the low quadword of xmm1.

Operation

xmm1[63-0] = xmm1[63-0] * xmm2/m64[63-0];
xmm1[127-64] = xmm1[127-64];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

Instruction Description

MULSD xmm1 xmm2/m64 Multiply the low double-precision floating-point number in xmm2/mem64
by low double-precision floating-point number in xmm1.
3-78

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.
3-79

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

ORPD—Bitwise Logical OR for Double-Precision Floating-Point
Data

Description

Performs a bitwise logical OR of the double quadwords in xmm1 and xmm2/mem128, and
returns the result to xmm1.

Operation

xmm1[127-0] |= xmm2/m128[127-0];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

Instruction Description

ORPD xmm1, xmm2/m128 Bitwise OR of xmm2/mem128 and xmm1.
3-80

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-81

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

SHUFPD—Shuffle Double-Precision Floating-Point

Description

Shuffles either of the two packed double-precision floating-point numbers from xmm1 to the
low quadword of xmm1; shuffles either of the two packed double-precision floating-point
numbers from xmm2/m128 to the high quadword of xmm1. Bit 0 of the immediate field selects
which of the two input double-precision floating-point numbers will be put in the low quadword
of the result; bit 1 selects which of the two input double-precision floating-point numbers will
be put in the high quadword of the result.

Operation

fp_select = (imm8 >> 0) & 0x1;
xmm1[63-0] = (fp_select == 0) ? xmm1[63-0] :
 (fp_select == 1) ? xmm1[127-64];
fp_select = (imm8 >> 1) & 0x1;
xmm1[127-64] = (fp_select == 0) ? xmm2/m128[63-0] :
 (fp_select == 1) ? xmm2/m128[127-64];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

Instruction Description

SHUFPD xmm1, xmm2/m128, imm8 Shuffle packed double-precision floating-point numbers.

X2 X1

Y2 Y1

{Y2 ... Y1} {X2 ... X1}

xmm1

xmm2/m128

xmm1
3-82

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-83

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

SQRTPD—Packed Double-Precision Floating-Point Square Root

Description

Computes the square roots of the two packed double-precision floating-point numbers from
xmm2/m128 and returns the packed result in xmm1.

Operation

xmm1[63-0] = sqrt (xmm2/m128[63-0]);
xmm1[127-64] = sqrt (xmm2/m128[127-64]);

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

Instruction Description

SQRTPD xmm1, xmm2/m128 Computes square roots of the packed double-precision floating-point
numbers in xmm2/mem128.
3-84

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

Invalid, Precision, Denormal.
3-85

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

SQRTSD—Scalar Double-Precision Floating-Point Square Root

Description

Returns the square root of the low double-precision floating-point number in xmm or the
double-precision floating-point number from memory and returns the result to xmm1. The high
quadword of xmm1 is left unchanged.

Operation

xmm1[63-0] = sqrt (xmm2/m64[63-0]);
xmm1[127-64] = xmm1[127-64];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

Instruction Description

SQRTSD xmm1, xmm2/m64 Computes square root of the low double-precision floating-point
number in xmm2/mem64.
3-86

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

Invalid, Precision, Denormal.
3-87

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

SUBPD—Packed Double-Precision Floating-Point Subtract

Description

Subtracts the two packed double-precision floating-point numbers in xmm2/mem128 from the
two packed double-precision floating-point numbers in xmm1, and returns the results to xmm1.

Operation

xmm1[63-0] = xmm1[63-0] - xmm2/m128[63-0];
xmm1[127-64] = xmm1[127-64] - xmm2/m128[127-64];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

Instruction Description

SUBPD xmm1 xmm2/m128 Subtract packed double-precision floating-point numbers in
xmm2/mem128 from xmm1.
3-88

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.
3-89

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

SUBSD—Scalar Double-Precision Floating-Point Subtract

Description

Subtracts the low double-precision floating-point number in xmm2 or the double-precision
floating-point number in mem64 from the low double-precision floating-point number in xmm1,
and returns the result to the low quadword of xmm1.

Operation

xmm1[63-0] = xmm1[63-0] - xmm2/m64[63-0];
xmm1[127-64] = xmm1[127-64];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

Instruction Description

SUBSD xmm1, xmm2/m64 Subtracts the low double-precision floating-point numbers in
xmm2/mem64 from xmm1.
3-90

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.
3-91

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

UCOMISD—Unordered Scalar Double-Precision Floating-Point
Compare and Set EFLAGS

Description

Performs an unordered compare of the low double-precision floating-point number in xmm2 or
the double-precision floating-point number in mem64 with the low double-precision floating-
point number in xmm1, and sets the ZF, PF, and CF flags in the EFLAGS register according to
the result. The OF, SF and AF flags of the EFLAGS register are cleared. The unordered predi-
cate is returned if either source operand is a NaN (QNaN or SNaN).

Operation

switch (xmm1[63-0] <> xmm2/m64[63-0]) {
case UNORDERED: ZF,PF,CF = 111;
case GREATER_THAN: ZF,PF,CF = 000;
case LESS_THAN: ZF,PF,CF = 001;
case EQUAL: ZF,PF,CF = 100;

 OF,SF,AF = 0;
}

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Instruction Description

UCOMISD xmm1, xmm2/m64 Compares (unordered) the low double-precision floating-point number
in xmm1 register with the low double-precision floating-point number in
xmm2/mem64 and set the EFLAGS register accordingly.
3-92

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

Invalid (if SNaN operands), Denormal. Integer EFLAGS values will not be updated in the pres-
ence of unmasked numeric exceptions.

Comments

The UCOMISD instruction differs from the COMISD instruction in that it signals an invalid
numeric exception when a source operand is an SNaN; COMISD signals invalid if a source
operand is either a QNaN or an SNaN.

The use of Repeat (F2H, F3H) and Operand-Size prefixes with UCOMISD is reserved. Different
processor implementations may handle this prefix differently. Usage of this prefix with
UCOMISD risks incompatibility with future processors.
3-93

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

UNPCKHPD—Unpack High Packed Double-Precision Floating-
Point Data

Description

Performs an interleaved unpack of the high quadwords of xmm1 and xmm2/mem128. It ignores
the low-order doublewords of the source operands.

When unpacking from a memory operand, an implementation may decide to fetch only the
appropriate 64 bits. Alignment to 16-byte boundary and normal segment checking will still be
enforced

Operation

xmm1[63-0] = xmm1[127-64];
xmm1[127-64] = xmm2/m128[127-64];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

Instruction Description

UNPCKHPD xmm1, xmm2/m128 Interleaves double-precision floating-point numbers from the high
quadwords of xmm1 and xmm2/mem128.

X1 X0

Y1 Y0

Y1 X1

xmm1

xmm2/m128

xmm1
3-94

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None
3-95

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

UNPCKLPD—Unpack Low Packed Double-Precision Floating-
Point Data

Description

Performs an interleaved unpack of the low quadwords of xmm1 and xmm2/mem128. It ignores
the high element of the sources. When unpacking from a memory operand, the full 128-bit
operand is accessed from memory but only the low order 64 bits are used by the instruction.

When unpacking from a memory operand, an implementation may decide to fetch only the
appropriate 64 bits. Alignment to 16-byte boundary and normal segment checking will still be
enforced

Operation

xmm1[63-0] = xmm1[63-0];
xmm1[127-64] = xmm2/m128[63-0];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

Instruction Description

UNPCKLPD xmm1, xmm2/m128 Interleaves double-precision floating-point numbers from the low
quadwords of xmm1 and xmm2/mem128.

X1 X0

Y1 Y0

Y0 X0

xmm1

xmm2/m128

xmm1
3-96

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None
3-97

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

XORPD—Bitwise Logical XOR for Double-Precision Floating-Point
Data

Description

Performs a bitwise logical XOR of the double quadwords in xmm1 and xmm2/mem128, and
returns the result to xmm1.

Operation

xmm[127-0] ^= xmm/m128[127-0];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

Instruction Description

XORPD xmm1, xmm2/m128 Bitwise XOR of xmm2/mem128 and xmm1.
3-98

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None
3-99

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

3.3. SIMD INTEGER INSTRUCTIONS

This section describes the new and extended SIMD integer instructions that have been intro-
duced with the Streaming SIMD Extensions 2 to operate on 128-packed integers. See Section
2.4.2., “SIMD Integer Instruction Extensions” for a summary of these additions.
3-100

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

CVTDQ2PS: Packed Signed Doubleword Integer to Packed Single-
Precision Floating-Point Conversion

Description

Converts four packed signed doubleword integers to four packed single-precision floating-point
numbers. When the conversion is inexact, rounding is performed according to the rounding
control bits in the MXCSR register.

Operation

xmm1[31-0] = (float) (xmm2/m128[31-0]);
xmm1[63-32] = (float) (xmm2/m128[63-32]);
xmm1[95-64] = (float) (xmm2/m128[95-64]);
xmm1[127-96] = (float) (xmm2/m128[127-96]);

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Instruction Description

CVTDQ2PS xmm1,xmm2/m128 Convert four signed doubleword integers to four single-precision
floating-point numbers.
3-101

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

Precision.
3-102

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

CVTPS2DQ—Packed Single-Precision Floating-Point to Packed
Doubleword Integer Conversion

Description

Converts the four packed single-precision floating-point numbers in xmm2/m128 to four packed
signed doubleword integers in xmm1. When a converted value is inexact, the value is rounded
according to the rounding control bits in the MXCSR register. If the converted result in one or
more integers is larger than the maximum signed doubleword integer, the indefinite integer
value (80000000H) is returned.

Operation

xmm1[31-0] = (int) (xmm2/m128[31-0]);
xmm1[63-32] = (int) (xmm2/m128[63-32]);
xmm1[95-64] = (int) (xmm2/m128[95-64]);
xmm1[127-96] = (int) (xmm2/m128[127-96]);

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Instruction Description

CVTPS2DQ xmm1, xmm2/m128 Convert four packed single-precision floating-point numbers from
xmm2/m128 to four packed doubleword signed integers in xmm1
using rounding specified by MXCSR.
3-103

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

Invalid, Precision.
3-104

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

CVTTPS2DQ—Packed Single-Precision Floating-Point to Packed
Signed Doubleword Integer Conversion (Truncate)

Description

Converts the four single-precision floating-point numbers in xmm2/m128 to four signed double-
word integers in xmm1; when the conversion is inexact, a truncated result is returned. If the
converted result in one or more elements is larger than the maximum signed doubleword integer,
the indefinite integer value (80000000H) is returned.

Operation

xmm1[31-0] = (int) (xmm2/m128[31-0]);
xmm1[63-32] = (int) (xmm2/m128[63-32]);
xmm1[95-64] = (int) (xmm2/m128[95-64]);
xmm1[127-96] = (int) (xmm2/m128[127-96]);

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Instruction Description

CVTTPS2DQ xmm1, xmm2/m128 Convert four single-precision floating-point numbers from
xmm2/m128 to four doubleword signed integers in xmm1 using
truncate.
3-105

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extensions 2 instructions numeric
exception (CR4.OSXMMEXCPT =0).

If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

Invalid, Precision.
3-106

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

MOVD—Move Doubleword

Description

Moves doubleword from the source operand to the destination operand. The destination and
source operands can be either XMM registers, 32-bit memory operands, or general-purpose
registers. The MOVD instruction cannot transfer data from an XMM register to an XMM
register, from memory to memory, or from an general-purpose register to an general-purpose
register.

When the destination operand is an XMM register, the source operand is written to the low
doubleword of the register, and the register is zero-extended to 128 bits. When the source
operand is an XMM register, the low quadword of the register are written to a general-purpose
register or a 32-bit memory location.

Operation

if (destination == xmm) {
xmm[31-0] = r/m32;
xmm[63-32] = 0x00000000;
xmm[95-64] = 0x00000000;
xmm[127-96] = 0x00000000;

}
else {

r/m32 = xmm[31-0];
}

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Instruction Description

MOVD xmm, r/m32 Move doubleword from general-purpose register or memory to XMM.

MOVD r/m32, xmm Move doubleword from XMM register to general-purpose register/memory.
3-107

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

None.
3-108

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

MOVDQA—Move Aligned Double Quadword

Description

Moves a double quadword from the source operand to the destination operand. When the source
or destination operand is memory operand, the linear address of the operand is the address of the
least-significant byte of the referenced data.

Operation

if (destination == xmm1) {
if (source == m128){

// load instruction
xmm1[127-0] = m128;

}
else {

// move instruction
xmm1[127-0] = xmm2[127-0];

}
}
else {

if (destination == m128) {
// store instruction
m128 = xmm1[127-0];

}
else {

// move instruction
xmm2[127-0] = xmm1[127-0];

}
}

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

Instruction Description

MOVDQA xmm1, xmm2/m128 Move aligned double quadword from xmm2/mem128 to xmm1.

MOVDQA xmm2/m128, xmm1 Move aligned double quadword from xmm1 to xmm2/mem128.
3-109

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.

Comments

The MOVDQA instruction should be used when dealing with 16-byte aligned integer numbers.
If the data is not known to be aligned, MOVDQU should be used instead of MOVDQA. The use
of this instruction should be limited to the cases where the aligned restriction is easy to meet.
Processors that support Streaming SIMD Extensions 2 instructions technology will provide
optimal aligned performance for the MOVDQA instruction.
3-110

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

MOVDQU—Move Unaligned Double Quadword

Description

Moves a double quadword from the source operand to the destination operand. When the source
or destination operand is memory operand, the linear address of the operand is the address of the
least-significant byte of the referenced data. No assumption is made about alignment.

Operation

if (destination == xmm1){
if (source == m128) {

// load instruction
xmm1[127-0] = m128;

}
else {

// move instruction
xmm1[127-0] = xmm2[127-0];

}
}
else {

if (destination == m128) {
// store instruction
m128 = xmm1[127-0];

}
else {

// move instruction
xmm2[127-0] = xmm1[127-0];

}
}

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

Instruction Description

MOVDQU xmm1, xmm2/m128 Move unaligned double quadword from xmm2/mem128 to xmm1.

MOVDQU xmm2/m128, xmm1 Move unaligned double quadword from xmm1 to xmm2/mem128.
3-111

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.

Comments

The MOVDQU instruction should be used with 128-bit integer data when that data is known to
be unaligned. The use of this instruction should be limited to the cases where the aligned restric-
tion is hard or impossible to meet. Streaming SIMD Extensions 2 instructions technology imple-
mentations guarantee optimum unaligned support for MOVDQU. Efficient Streaming SIMD
Extensions 2 instructions technology applications should mainly rely on the MOVDQA instruc-
tion, not MOVDQU, when dealing with aligned data.
3-112

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

MOVDQ2Q—Move Quadword

Description

Moves the low quadword from an XMM register to an MMX register.

Operation

mm[63-0] = xmm[63-0]

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Instruction Description

MOVDQ2Q mm, xmm Move low quadword from XMM to MMX register.
3-113

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

Numeric Exceptions

None.

Comments

This instruction behaves identically to an MMX instruction, in the presence of x87 FPU instruc-
tions:

• Transition from x87 FPU to MMX technology (TOS=0, FP valid bits set to all valid).
However, the use of a memory source operand with this instruction will not result in a
transition from x87 FPU to MMX technology.

• In the case of a Streaming SIMD Extensions numeric exception, the x87 FPU to MMX
technology transition will occur before the numeric exception is signaled.

• If there is an existing #MF fault, that will take priority over the Streaming SIMD
Extensions numeric exception and the x87 FPU to MMX technology transition.
3-114

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

MOVQ2DQ—Move Quadword

Description

Moves the quadword from an MMX register to the low quadword of an XXM register.

Operation

xmm[63-0] = mm[63-0];
xmm[127-64] = 0x00000000;

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Instruction Description

MOVQ2DQ xmm, mm Move quadword from MMX register to low quadword of XMM.
3-115

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

None.

Comments

This instruction behaves identically to an MMX instruction, in the presence of x87 FPU instruc-
tions:

• When there is a transition from x87 FPU to MMX technology (TOS=0, FP valid bits set to
all valid). However, the use of a memory source operand with this instruction will not
result in a transition from x87 FPU to MMX technology.

• If in the case of a Streaming SIMD Extensions numeric exception, the x87 FPU to MMX
technology transition will occur before the numeric exception is signaled.

• If there is an existing #MF fault, that will take priority over the Streaming SIMD
Extensions numeric exception and the x87 FPU to MMX technology transition.
3-116

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

MOVQ—Move Quadword

Description

Moves a quadword from the source operand to the destination operand. When the source or
destination operand is memory operand, the linear address of the operand is the address of the
least-significant byte of the referenced data. When the source operand is an XMM register, the
low quadword is moved; when the destination operand is an XMM register, the quadword is
stored to the low quadword of the register, and the high quadword is cleared.

Operation

if (destination == xmm1) {
if (source == m64){

// load instruction
xmm1[63-0] = m64;

 xmm1[127-64] = 0;
}
else {

// move instruction
xmm1[63-0] = xmm2[63-0];

 xmm1[127-64] = 0;
}

}
else {

if (destination == m64) {
// store instruction
m64 = xmm1[63-0];

}
else {

// move instruction
xmm2[63-0] = xmm1[63-0];
xmm2[127-64] = 0;

}
}

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

Instruction Description

MOVQ xmm1, xmm2/m64 Move quadword from xmm2/mem64 to xmm1.

MOVQ xmm2/m64, xmm1 Move quadword from xmm1 to xmm2/mem64.
3-117

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-118

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

PACKSSWB/PACKSSDW—Pack with Signed Saturation

Description

Packs with signed saturation the signed data elements from the source and the destination oper-
ands and writes the results to the destination operand. The destination operand is an XMM
register. The source operand can either be an XMM register or a 128-bit memory operand.

The PACKSSWB instruction packs eight signed words from the source operand and eight
signed words from the destination operand into sixteen signed bytes in the destination register.
If the signed value of a word is larger or smaller than the range of a signed byte, the value is
saturated (in the case of an overflow to 7FH, in the case of an underflow to 80H).

The PACKSSDW instruction packs four signed doublewords from the source operand and four
signed doublewords from the destination operand into eight signed words in the destination
register. If the signed value of a doubleword is larger or smaller than the range of a signed word,
the value is saturated (in the case of an overflow to 7FFFH, in the case of an underflow to
8000H).

Operation

if (instruction == PACKSSWB) {
xmm1[7-0] = SaturateSignedWordToSignedByte (xmm1[15-0]);
xmm1[15-8] = SaturateSignedWordToSignedByte (xmm1[31-16]);
xmm1[23-16] = SaturateSignedWordToSignedByte (xmm1[47-32]);
xmm1[31-24] = SaturateSignedWordToSignedByte (xmm1[63-48]);
xmm1[39-32] = SaturateSignedWordToSignedByte (xmm1[79-64]);
xmm1[47-40] = SaturateSignedWordToSignedByte (xmm1[95-80]);
xmm1[55-48] = SaturateSignedWordToSignedByte (xmm1[111-96]);
xmm1[63-56] = SaturateSignedWordToSignedByte (xmm1[127-112]);
xmm1[71-64] = SaturateSignedWordToSignedByte (xmm2/m128[15-0]);
xmm1[79-72] = SaturateSignedWordToSignedByte (xmm2/m128[31-16]);
xmm1[87-80] = SaturateSignedWordToSignedByte (xmm2/m128[47-32]);
xmm1[95-88] = SaturateSignedWordToSignedByte (xmm2/m128[63-48]);
xmm1[103-96] = SaturateSignedWordToSignedByte (xmm2/m128[79-64]);
xmm1[111-104] = SaturateSignedWordToSignedByte (xmm2/m128[95-80]);
xmm1[119-112] = SaturateSignedWordToSignedByte (xmm2/m128[111-96]);
xmm1[127-120] = SaturateSignedWordToSignedByte (xmm2/m128[127-112]);

}
else if (instruction == PACKSSDW) {

xmm1[15-0] = SaturateSignedDwordToSignedWord (xmm1[31-0]);
xmm1[31-16] = SaturateSignedDwordToSignedWord (xmm1[63-32]);

Instruction Description

PACKSSWB xmm1, xmm2/m128 Pack signed words from xmm1 and xmm2/mem128 into signed
bytes in xmm1, with signed saturation.

PACKSSDW xmm1, xmm2/m128 Pack signed doublewords from and xmm2/mem128 into signed
words in xmm1, with signed saturation.
3-119

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

xmm1[47-32] = SaturateSignedDwordToSignedWord (xmm1[95-64]);
xmm1[63-48] = SaturateSignedDwordToSignedWord (xmm1[127-96]);
xmm1[79-64] = SaturateSignedDwordToSignedWord (xmm2/m128[31-0]);
xmm1[95-80] = SaturateSignedDwordToSignedWord (xmm2/m128[63-32]);
xmm1[111-96] = SaturateSignedDwordToSignedWord (xmm2/m128[95-64]);
xmm1[127-112] = SaturateSignedDwordToSignedWord (xmm2/m128[127-96]);

}

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-120

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

PACKUSWB—Pack with Unsigned Saturation

Description

Packs eight signed words from the source operand xmm2/m128 and eight signed words from the
destination operand xmm1 into sixteen unsigned bytes in the destination register xmm1. If the
signed value of a word is larger or smaller than the range of an unsigned byte, the value is satu-
rated (in the case of an overflow to FFH, in the case of an underflow to 00H). The destination
operand is an XMM register. The source operand can either be an XMM register or a 128-bit
memory operand.

Operation

xmm1[7-0] = SaturateSignedWordToUnsignedByte (xmm1[15-0]);
xmm1[15-8] = SaturateSignedWordToUnsignedByte (xmm1[31-16]);
xmm1[23-16] = SaturateSignedWordToUnsignedByte (xmm1[47-32]);
xmm1[31-24] = SaturateSignedWordToUnsignedByte (xmm1[63-48]);
xmm1[39-32] = SaturateSignedWordToUnsignedByte (xmm1[79-64]);
xmm1[47-40] = SaturateSignedWordToUnsignedByte (xmm1[95-80]);
xmm1[55-48] = SaturateSignedWordToUnsignedByte (xmm1[111-96]);
xmm1[63-56] = SaturateSignedWordToUnsignedByte (xmm1[127-112]);
xmm1[71-64] = SaturateSignedWordToUnsignedByte (xmm2/m128[15-0]);
xmm1[79-72] = SaturateSignedWordToUnsignedByte (xmm2/m128[31-16]);
xmm1[87-80] = SaturateSignedWordToUnsignedByte (xmm2/m128[47-32]);
xmm1[95-88] = SaturateSignedWordToUnsignedByte (xmm2/m128[63-48]);
xmm1[103-96] = SaturateSignedWordToUnsignedByte (xmm2/m128[79-64]);
xmm1[111-104] = SaturateSignedWordToUnsignedByte (xmm2/m128[95-80]);
xmm1[119-112] = SaturateSignedWordToUnsignedByte (xmm2/m128[111-96]);
xmm1[127-120] = SaturateSignedWordToUnsignedByte (xmm2/m128[127-112]);

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

Instruction Description

PACKUSWB xmm1, xmm2/m128 Pack and saturate signed words from xmm1 and xmm2/mem128
into unsigned bytes in xmm1.
3-121

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-122

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

PADDB/PADDW/PADDD—Packed Add

Description

Adds the packed data elements of the source operand to the packed data elements of the desti-
nation operand. The result is written to the destination operand. If the result is larger than the
architectural limit, it wraps around. The destination operand is an XMM register. The source
operand can either be an XMM register or a 128-bit memory operand.

The PADDB instruction adds the packed bytes from the source operand xmm2/m128 to the
packed bytes in the destination operand xmm1 and writes the results to the xmm1 register. When
the result is too large to be represented in a packed byte (overflow), the result wraps around and
the low 8 bits are written to the destination register.

The PADDW instruction adds the packed words from the source operand xmm2/m128 to the
packed words in the destination operand xmm1 and writes the results to the xmm1 register.
When the result is too large to be represented in a packed word (overflow), the result wraps
around and the low 16 bits are written to the destination register.

The PADDD instruction adds the packed doublewords from the source operand xmm2/m128 to
the packed doublewords in the destination operand xmm1 and writes the results to the xmm1
register. When the result is too large to be represented in a packed doubleword (overflow), the
result wraps around and the low 32 bits are written to the destination register.

Operation

if (instruction == PADDB) {
xmm1[7-0] = xmm1[7-0] + xmm2/m128[7-0];
xmm1[15-8] = xmm1[15-8] + xmm2/m128[15-8];
xmm1[23-16] = xmm1[23-16] + xmm2/m128[23-16];
xmm1[31-24] = xmm1[31-24] + xmm2/m128[31-24];
xmm1[39-32] = xmm1[39-32] + xmm2/m128[39-32];
xmm1[47-40] = xmm1[47-40] + xmm2/m128[47-40];
xmm1[55-48] = xmm1[55-48] + xmm2/m128[55-48];
xmm1[63-56] = xmm1[63-56] + xmm2/m128[63-56];
xmm1[71-64] = xmm1[71-64] + xmm2/m128[71-64];
xmm1[79-72] = xmm1[79-72] + xmm2/m128[79-72];
xmm1[87-80] = xmm1[87-80] + xmm2/m128[87-80];
xmm1[95-88] = xmm1[95-88] + xmm2/m128[95-88];
xmm1[103-96] = xmm1[103-96] + xmm2/m128[103-96];
xmm1[111-104] = xmm1[111-104] + xmm2/m128[111-104];
xmm1[119-112] = xmm1[119-112] + xmm2/m128[119-112];

Instruction Description

PADDB xmm1,xmm2/m128 Add packed bytes from xmm2/mem128 to packed bytes in xmm1.

PADDW xmm1, xmm2/m128 Add packed words from xmm2/mem128 to packed words in xmm1.

PADDD xmm1, xmm2/m128 Add packed doublewords from xmm2/mem128 to packed doublewords
in xmm1.
3-123

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

xmm1[127-120] = xmm1[111-120] + xmm2/m128[127-120];
}
else if (instruction == PADDW){

xmm1[15-0] = xmm1[15-0] + xmm2/m128[15-0];
xmm1[31-16] = xmm1[31-16] + xmm2/m128[31-16];
xmm1[47-32] = xmm1[47-32] + xmm2/m128[47-32];
xmm1[63-48] = xmm1[63-48] + xmm2/m128[63-48];
xmm1[79-64] = xmm1[79-64] + xmm2/m128[79-64];
xmm1[95-80] = xmm1[95-80] + xmm2/m128[95-80];
xmm1[111-96] = xmm1[111-96] + xmm2/m128[111-96];
xmm1[127-112] = xmm1[127-112] + xmm2/m128[127-112];

}
else {

// instruction is PADDD
xmm1[31-0] = xmm1[31-0] + xmm2/m128[31-0];
xmm1[63-32] = xmm1[63-32] + xmm2/m128[63-32];
xmm1[95-64] = xmm1[95-64] + xmm2/m128[95-64];
xmm1[127-96] = xmm1[127-96] + xmm2/m128[127-96];

}

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.
3-124

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-125

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PADDQ—Packed Add Quadwords

Description

Adds the quadword from the source operand (mm2/m64) to the quadword integer in the desti-
nation operand (mm1) and writes the result to the mm1 register. When the result is too large to
be represented in a quadword (overflow), the result wraps around and the low 64 bits are written
to the destination register (that is, the carry is ignored).

Note that like the integer ADD instruction, the PADDQ instruction can operate on either
unsigned or signed (two’s complement notation) integers. Unlike the integer instructions, none
of the 64-bit or 128-bit integer instructions affect the EFLAGS register. With these integer
instructions, there is no carry or overflow flags to indicate when overflow has occurred, so the
software must control the range of values.

Operation

mm1[63-0] = mm1[63-0] + mm2/m64[63-0];

Exceptions: None.

Numeric Exceptions: None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

Instruction Description

PADDQ mm1,mm2/m64 Add quadword integers from mm2/Mem to mm1.
3-126

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

None.
3-127

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PADDQ—Packed Add Quadword 128 Bits

Description

Adds the packed quadword integers from the source operand (xmm2/m128) to the packed quad-
word integers in the destination operand (xmm1) and writes the results to the xmm1 register.
When a quadword result is too large to be represented in a quadword element (overflow), the
result wraps around and the low 64 bits are written to the destination element (that is, the carry
is ignored).

Note that like the integer ADD instruction, the PADDQ instruction can operate on either
unsigned or signed (two’s complement notation) integers. Unlike the integer instructions, none
of the 64-bit or 128-bit integer instructions affect the EFLAGS register. With these integer
instructions, there is no carry or overflow flags to indicate when overflow has occurred, so the
software must control the range of values.

Operation

xmm1[63-0] = xmm1[63-0] + xmm2/m128[63-0];
xmm1[127-64] = xmm1[127-64] + xmm2/m128[127-64];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Instruction Description

PADDQ xmm1,xmm2/m128 Add packed quadword integers from XMM2 /Mem to packed quadword
integers in xmm1 register.
3-128

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-129

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PADDSB/PADDSW—Packed Add with Saturation

Description

Adds the packed signed integer data elements of the source operand (xmm2/m128) to the packed
signed integer data elements of the destination operand (xmm1) and saturates the result. The
resulting packed signed integer elements are written to the destination operand (xmm1).

The PADDSB instruction operates on packed signed byte integers. If a result data element is
larger or smaller than the range of a signed byte integer, the element is saturated to 7FH (in the
case of an overflow) or to 80H (in the case of an underflow).

The PADDSB instruction operates on packed signed word integers. If a result data element is
larger or smaller than the range of a signed word integer, the element is saturated to 7FFFH (in
the case of an overflow) or to 8000H (in the case of an underflow).

Operation

if (instruction == PADDSB) {
xmm1[7-0] = SaturateToSignedByte (xmm1[7-0] + xmm2/m128[7-0]);
xmm1[15-8] = SaturateToSignedByte (xmm1[15-8] + xmm2/m128[15-8]);
xmm1[23-16] = SaturateToSignedByte (xmm1[23-16] + xmm2/m128[23-16]);
xmm1[31-24] = SaturateToSignedByte (xmm1[31-24] + xmm2/m128[31-24]);
xmm1[39-32] = SaturateToSignedByte (xmm1[39-32] + xmm2/m128[39-32]);
xmm1[47-40] = SaturateToSignedByte (xmm1[47-40] + xmm2/m128[47-40]);
xmm1[55-48] = SaturateToSignedByte (xmm1[55-48] + xmm2/m128[55-48]);
xmm1[63-56] = SaturateToSignedByte (xmm1[63-56] + xmm2/m128[63-56]);
xmm1[71-64] = SaturateToSignedByte (xmm1[71-64] + xmm2/m128[71-64]);
xmm1[79-72] = SaturateToSignedByte (xmm1[79-72] + xmm2/m128[79-72]);
xmm1[87-80] = SaturateToSignedByte (xmm1[87-80] + xmm2/m128[87-80]);
xmm1[95-88] = SaturateToSignedByte (xmm1[95-88] + xmm2/m128[95-88]);
xmm1[103-96] = SaturateToSignedByte (xmm1[103-96] + xmm2/m128[103-96]);
xmm1[111-104] = SaturateToSignedByte (xmm1[111-104] + xmm2/m128[111-104]);
xmm1[119-112] = SaturateToSignedByte (xmm1[119-112] + xmm2/m128[119-112]);
xmm1[127-120] = SaturateToSignedByte (xmm1[111-120] + xmm2/m128[127-120]);

}
else {

// instruction is PADDW
xmm1[15-0] = SaturateToSignedWord (xmm1[15-0] + xmm2/m128[15-0]);
xmm1[31-16] = SaturateToSignedWord (xmm1[31-16] + xmm2/m128[31-16]);
xmm1[47-32] = SaturateToSignedWord (xmm1[47-32] + xmm2/m128[47-32]);
xmm1[63-48] = SaturateToSignedWord (xmm1[63-48] + xmm2/m128[63-48]);

Instruction Description

PADDSB xmm1, xmm2/m128 Add packed signed byte integers from xmm2/mem128 to packed
signed bytes in xmm1, with saturation.

PADDSW xmm1, xmm2/m128 Add packed signed word integers from xmm2/mem128 to packed
signed words in xmm1, with saturation.
3-130

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

xmm1[79-64] = SaturateToSignedWord (xmm1[79-64] + xmm2/m128[79-64]);
xmm1[95-80] = SaturateToSignedWord (xmm1[95-80] + xmm2/m128[95-80]);
xmm1[111-96] = SaturateToSignedWord (xmm1[111-96] + xmm2/m128[111-96]);
xmm1[127-112] = SaturateToSignedWord (xmm1[127-112] + xmm2/m128[127-112]);

}

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-131

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PADDUSB/PADDUSW-Packed Add Unsigned with Saturation

Description

Adds the packed unsigned integer data elements of the source operand (xmm2/m128) to the
packed unsigned integer data elements of the destination operand (xmm1) and saturates the
results. The results are written to the destination operand (xmm1).

The PADDUSB instruction operates on packed unsigned byte integers. If a result data element
is larger or smaller than the range of an unsigned byte integer, the element is saturated to FFH
(in the case of an overflow) or to 00H (in the case of an underflow).

The PADDUSW instruction operates on packed unsigned word integers. If a result data element
is larger or smaller than the range of an unsigned word integer, the element is saturated to FFFFH
(in the case of an overflow) or to 0000H (in the case of an underflow).

Operation

if (instruction == PADDUSB) {
xmm1[7-0] = SaturateToUnsignedByte (xmm1[7-0] + xmm2/m128[7-0]);
xmm1[15-8] = SaturateToUnsignedByte (xmm1[15-8] + xmm2/m128[15-8]);
xmm1[23-16] = SaturateToUnsignedByte (xmm1[23-16] + xmm2/m128[23-16]);
xmm1[31-24] = SaturateToUnsignedByte (xmm1[31-24] + xmm2/m128[31-24]);
xmm1[39-32] = SaturateToUnsignedByte (xmm1[39-32] + xmm2/m128[39-32]);
xmm1[47-40] = SaturateToUnsignedByte (xmm1[47-40] + xmm2/m128[47-40]);
xmm1[55-48] = SaturateToUnsignedByte (xmm1[55-48] + xmm2/m128[55-48]);
xmm1[63-56] = SaturateToUnsignedByte (xmm1[63-56] + xmm2/m128[63-56]);
xmm1[71-64] = SaturateToUnSignedByte (xmm1[71-64] + xmm2/m128[71-64]);
xmm1[79-72] = SaturateToUnSignedByte (xmm1[79-72] + xmm2/m128[79-72]);
xmm1[87-80] = SaturateToUnSignedByte (xmm1[87-80] + xmm2/m128[87-80]);
xmm1[95-88] = SaturateToUnSignedByte (xmm1[95-88] + xmm2/m128[95-88]);
xmm1[103-96] = SaturateToUnSignedByte (xmm1[103-96] + xmm2/m128[103-96]);
xmm1[111-104] = SaturateToUnSignedByte (xmm1[111-104] + xmm2/m128[111-104]);
xmm1[119-112] = SaturateToUnSignedByte (xmm1[119-112] + xmm2/m128[119-112]);
xmm1[127-120] = SaturateToUnSignedByte (xmm1[127-120] + xmm2/m128[127-120]);

}
else {

// instruction is PADDUSW
xmm1[15-0] = SaturateToUnsignedWord (xmm1[15-0] + xmm2/m128[15-0]);
xmm1[31-16] = SaturateToUnsignedWord (xmm1[31-16] + xmm2/m128[31-16]

)

;
xmm1[47-32] = SaturateToUnsignedWord (xmm1[47-32] + xmm2/m128[47-32]);
xmm1[63-48] = SaturateToUnsignedWord (xmm1[63-48] + xmm2/m128[63-48]);

Instruction Description

PADDUSB xmm1, xmm2/m128 Add packed unsigned byte integers from xmm2/mem128 to packed
unsigned byte integers in xmm1, with saturation.

PADDUSW xmm1, xmm2/m128 Add packed unsigned word integers from xmm2/mem128 to packed
unsigned word integers in xmm1, with saturation.
3-132

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

xmm1[79-64] = SaturateToUnSignedWord (xmm1[79-64] + xmm2/m128[79-64]);
xmm1[95-80] = SaturateToUnSignedWord (xmm1[95-80] + xmm2/m128[95-80]);
xmm1[111-96] = SaturateToUnSignedWord (xmm1[111-96] + xmm2/m128[111-96]);
xmm1[127-112] = SaturateToUnSignedWord (xmm1[127-112] + xmm2/m128[127-112]);

}

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-133

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PAND—Bitwise Logical AND

Description

Performs a bitwise logical AND of the source operand (xmm/m128) and the destination operand
(xmm1), and writes the result to the destination operand. Each bit of the result is a 1 if the corre-
sponding bits of the operands are 1; otherwise, it is set to 0.

Operation

xmm1 = xmm1 & xmm2/m128;

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Instruction Description

PAND xmm1, xmm2/m128 Bitwise AND of xmm2/mem128 and xmm1.
3-134

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-135

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PANDN—Bitwise Logical And Not

Description

Performs a bitwise logical NOT on the destination operand, then performs a bitwise logical
AND on the inverted destination operand and source operand. Each bit of the result of the AND
instruction is a 1 if the corresponding bits are 1. Otherwise, it is set to 0. The result is written to
the destination register. The destination operand is an XMM register. The source operand can
either be an XMM register or a 128-bit memory operand.

Operation

xmm1 = (~xmm1) & xmm2/m128;

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Instruction Description

PANDN xmm1, xmm2/m128 Bitwise AND NOT of xmm2/mem128 and xmm1.
3-136

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-137

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PAVGB/PAVGW—Packed Average

Description

Adds the unsigned data elements of the source operand to the unsigned data elements of the
destination operand, along with a carry-in. The resulting data elements are then each indepen-
dently right-shifted by one bit position and the high-order bit of each element is filled with the
carry bit of the corresponding sum. The destination operand is an XMM register. The source
operand can either be an XMM register or a 128-bit memory operand.

The PAVGB instruction operates on packed unsigned bytes and the PAVGW instruction operates
on packed unsigned words.

Operation

if (instruction == PAVGB) {
x[0] = xmm1[7-0] y[0] = xmm2/m128[7-0];
x[1] = xmm1[15-8] y[1] = xmm2/m128[15-8];
x[2] = xmm1[23-16] y[2] = xmm2/m128[23-16];
x[3] = xmm1[31-24] y[3] = xmm2/m128[31-24];
x[4] = xmm1[39-32] y[4] = xmm2/m128[39-32];
x[5] = xmm1[47-40] y[5] = xmm2/m128[47-40];
x[6] = xmm1[55-48] y[6] = xmm2/m128[55-48];
x[7] = xmm1[63-56] y[7] = xmm2/m128[63-56];
x[8] = xmm1[71-64] y[8] = xmm2/m128[71-64];
x[9] = xmm1[79-72] y[9] = xmm2/m128[79-72];
x[10] = xmm1[87-80] y[10] = xmm2/m128[87-80];
x[11] = xmm1[95-88] y[11] = xmm2/m128[95-88];
x[12] = xmm1[103-96] y[12] = xmm2/m128[103-96];
x[13] = xmm1[111-104] y[13] = xmm2/m128[111-104];
x[14] = xmm1[119-112] y[14] = xmm2/m128[119-112];
x[15] = xmm1[127-120] y[15] = xmm2/m128[127-120];

for (i = 0; i < 16; i++) {
temp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8);
res[i] = (temp[i] +1) >> 1;
}

xmm1[7-0] = res[0];
...
xmm1[127-120] = res[15];

Instruction Description

PAVGB xmm1,xmm2/m128 Average packed unsigned bytes from xmm2/mem128 and xmm1, with
rounding.

PAVGW xmm1, xmm2/m128 Average packed unsigned words from xmm2/mem128 and xmm1, with
rounding.
3-138

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

}
}
else if (instruction == PAVGW){

x[0] = xmm1[15-0] y[0] = xmm2/m128[15-0];
x[1] = xmm1[31-16] y[1] = xmm2/m128[31-16];
x[2] = xmm1[47-32] y[2] = xmm2/m128[47-32];
x[3] = xmm1[63-48] y[3] = xmm2/m128[63-48];
x[4] = xmm1[79-64] y[4] = xmm2/m128[79-64];
x[5] = xmm1[95-80] y[5] = xmm2/m128[95-80];
x[6] = xmm1[111-96] y[6] = xmm2/m128[111-96];
x[7] = xmm1[127-112] y[7] = xmm2/m128[127-112];

for (i = 0; i < 8; i++) {
temp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16);
res[i] = (temp[i] +1) >> 1;

}
xmm1[15-0] = res[0];
...
xmm1[127-112] = res[7];
}

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
3-139

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

Numeric Exceptions

None.
3-140

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

PCMPEQB/PCMPEQW/PCMPEQD—Packed Compare for Equal

Description

Compares the data elements in the destination operand to the corresponding data elements in the
source operand for equal values. If the data elements are equal, the corresponding data element
in the destination register is set to all ones; if they are not equal, the corresponding data element
is set to all zeros. The destination operand is an XMM register. The source operand can either
be an XMM register or a 128-bit memory operand.

The PCMPEQB instruction compares the packed bytes in the destination operand to the packed
bytes in the source operand.

The PCMPEQW instruction compares the packed words in the destination operand to the
packed words in the source operand.

The PCMPEQD instruction compares the packed doublewords in the destination operand to the
packed doublewords in the source operand.

Operation

if (instruction == PCMPEQB) {
xmm1[7-0] = (xmm1[7-0] == xmm2/m128[7-0]) ? 0xFF : 0x00;
...
xmm1[127-120] = (xmm1[127-120] == xmm2/m128[127-120]) ? 0xFF : 0x00;

}
else if (instruction == PCMPEQW) {

xmm1[15-0] = (xmm1[15-0] == xmm2/m128[15-0]) ? 0xFFFF : 0x0000;

...
xmm1[127-112] = (xmm1[127-112] == xmm2/m128[127-112]) ? 0xFFFF : 0x0000;

}
else {

// instruction is PCMPEQD
xmm1[31-0] = (xmm1[31-0] == xmm2/m128[31-0]) ? 0xFFFFFFFF : 0x00000000;

...
xmm1[127-96] = (xmm1[127-96] == xmm2/m128[127-96] ? 0xFFFFFFFF :

0x00000000;
}

Instruction Description

PCMPEQB xmm1, xmm2/m128 Compare packed bytes in xmm2/mem128 to packed bytes in xmm1
for equality.

PCMPEQW xmm1, xmm2/m128 Compare packed words in xmm2/mem128 to packed words in
xmm1 for equality.

PCMPEQD xmm1, xmm2/m128 Compare packed doublewords in xmm2/mem128 to packed
doublewords in xmm1 for equality.
3-141

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-142

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

PCMPGTB/PCMPGTW/PCMPGTD—Packed Compare for Greater
Than

Description

Compare the signed data elements in the destination operand to the corresponding signed data
elements in the source operand. If the signed data elements in the destination register are greater
than those in the source operand, the corresponding data element in the destination operand is
set to all 1s, otherwise it is set to all 0s. The destination operand is an XMM register. The source
operand can either be an XMM register or a 128-bit memory operand.

The PCMPGTB instruction compares the signed bytes in the destination operand to the corre-
sponding signed bytes in the source operand.

he PCMPGTW instruction compares the signed words in the destination operand to the corre-
sponding signed words in the source operand.

The PCMPGTD instruction compares the signed doublewords in the destination operand to the
corresponding signed doublewords in the source operand.

Operation

if (instruction == PCMPGTB) {
xmm1[7-0] = (xmm1[7-0] > xmm2/m128[7-0]) ? 0xFF : 0x00;
...
xmm1[127-120] = (xmm1(127..120) > xmm2/m128[127-120]) ? 0xFF : 0x00;

}
else if (instruction == PCMPGTW) {

xmm1[15-0] = (xmm1[15-0] > xmm2/m128[15-0]) ? 0xFFFF : 0x0000;
...
xmm1[127-112] = (xmm1[127-112] > xmm2/m128[127-112]) ? 0xFFFF : 0x0000;

}
else {

// instruction is PCMPGTD
xmm1[32-0] = (xmm1[31-0] > xmm2/m128[31-0]) ? 0xFFFFFFFF : 0x00000000;
...
xmm1[127-96] = (xmm1[127-96] > xmm2/m128[127-96]) ? 0xFFFFFFFF : 0x00000000;

}

Instruction Description

PCMPGTB xmm1, xmm2/m128 Compare packed bytes in xmm1 with packed bytes in
xmm2/mem128 for greater than.

PCMPGTW xmm1, xmm2/m128 Compare packed words in xmm1 with packed words in
xmm2/mem128 for greater than.

PCMPGTD xmm1, xmm2/m128 Compare packed doublewords in xmm1 with packed doublewords in
xmm2/mem128 for greater than.
3-143

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-144

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

PEXTRW—Extract Word

Description

Moves the word in xmm selected by the three least-significant bits of imm8 to the low word of
a general-purpose register.

Operation

sel = imm8 & 0x7;
xmm_temp = (xmm >> (sel * 16)) & 0xffff;
r[15-0] = xmm_temp[15-0];
r[31-16] = 0x0000;

Protected Mode Exceptions

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

Numeric Exceptions

None.

Instruction Description

PEXTRW r32, xmm, imm8 Extract the word specified by imm8 from XMM and move it to a general-
purpose register.
3-145

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PINSRW—Insert Word

Description

Moves the low word from r32 or a word from memory xmm at a position specified by the three
least-significant bits of the immediate imm8. The seven other words from the destination
register are left untouched.

Operation

sel = imm8 & 0x7;
mask = (sel == 0)? 0x0000000000000000000000000000ffff :
 (sel == 1)? 0x000000000000000000000000ffff0000 :
 (sel == 2)? 0x00000000000000000000ffff00000000 :
 (sel == 3)? 0x0000000000000000ffff000000000000;
 (sel == 4)? 0x000000000000ffff0000000000000000;
 (sel == 5)? 0x00000000ffff00000000000000000000;
 (sel == 6)? 0x0000ffff000000000000000000000000;
 (sel == 7)? 0xffff0000000000000000000000000000;
xmm = (xmm & ~mask) | ((m16/rNone.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

Instruction Description

PINSRW xmm, r32/m16, imm8 Move the low word of r32 or from m16 into xmm at the position
specified by imm8.
3-146

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

None.
3-147

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PMADDWD—Packed Multiply and Add

Description

Multiplies the eight signed word integers in the destination operand by the corresponding eight
signed word integers in the source operand. The adjacent doubleword results are then summed
and stored in the destination operand. For example, the two pairs of low-order words (15-0) and
31-16) are multiplied by one another and the doubleword results are added together and stored
in the low doubleword of the destination register (31-0). The same operation is performed on the
other pairs of adjacent words. The result is four doublewords, stored in the destination operand.

The destination operand is an XMM register. The source operand can either be an XMM register
or a 128-bit memory operand.

The PMADD instruction wraps around only in one situation, when the four words of both the
source and destination operands are 8000H. In this case the result wraps around to 80000000H.

Operation

xmm1[31-0] = xmm1[15-0] * xmm2/m128[15-0] + xmm1[31-16] * xmm2/m128[31-16];
xmm1[63-32] = xmm1[47-32] * xmm2/m128[47-32] + xmm1[63-48] * xmm2/m128[63-48];
xmm1[95-64] = xmm1[79-64] * xmm2/m128[79-64] + xmm1[95-80] * xmm2/m128[95-80];
xmm1[127-96] = xmm1[111-96] * xmm2/m128[111-96] + xmm1[127-112] * xmm2/m128[127-
112];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Instruction Description

PMADDWD xmm1, xmm2/m128 Multiply the packed word integers in xmm1 by the packed word
integers in xmm2/mem128, and add the adjacent doubleword
results.
3-148

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-149

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PMAXSW—Packed Signed Word Integer Maximum

Description

Returns the maximum between each corresponding pair of signed word integers in xmm1 and
xmm2/mem128.

Operation

xmm1[15-0] = (xmm1[15-0] > xmm2/m128[15-0]) ? xmm1[15-0] : xmm2/m128[15-0];
xmm1[31-16] = (xmm1[31-16] > xmm2/m128[31-16]) ? xmm1[31-16] : xmm2/m128[31-16];
xmm1[47-32] = (xmm1[47-32] > xmm2/m128[47-32]) ? xmm1[47-32] : xmm2/m128[47-32];
xmm1[63-48] = (xmm1[63-48] > xmm2/m128[63-48]) ? xmm1[63-48] : xmm2/m128[63-48];
xmm1[79-64] = (xmm1[79-64] > xmm2/m128[31-16]) ? xmm1[79-64] : xmm2/m128[79-64];
xmm1[95-80] = (xmm1[95-80] > xmm2/m128[47-32]) ? xmm1[95-80] : xmm2/m128[95-80];
xmm1[111-96] = (xmm1[111-96] > xmm2/m128[63-48]) ? xmm1[111-96] : xmm2/m128[111-96];
xmm1[127-112]= (xmm1[127-112] > xmm2/m128[63-48]) ? xmm1[127-112] : xmm2/m128[127-
112];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

Instruction Description

PMAXSW xmm1,
xmm2/m128

Return the maximum signed word integers between xmm2/mem128
and xmm1.
3-150

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-151

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PMAXUB—Packed Unsigned Byte Integer Maximum

Description

Returns the maximum between each corresponding pair of unsigned byte integers in xmm1 and
xmm2/mem128.

Operation

xmm1[7-0] = (xmm1[7-0] > xmm2/m128[7-0]) ?
 xmm1[7-0] : xmm2/m128[7-0];
xmm1[15-8] = (xmm1[15-8] > xmm2/m128[15-8]) ?
 xmm1[15-8] : xmm2/m128[15-8];
xmm1[23-16] = (xmm1[23-16] > xmm2/m128[23-16]) ?
 xmm1[23-16] : xmm2/m128[23-16];
xmm1[31-24] = (xmm1[31-24] > xmm2/m128[31-24]) ?

 xmm1[31-24] : xmm2/m128[31-24];
xmm1[39-32] = (xmm1[39-32] > xmm2/m128[39-32]) ?

 xmm1[39-32] : xmm2/m128[39-32];
xmm1[47-40] = (xmm1[47-40] > xmm2/m128[47-40]) ?

 xmm1[47-40] : xmm2/m128[47-40];
xmm1[55-48] = (xmm1[55-48] > xmm2/m128[55-48]) ?

 xmm1[55-48] : xmm2/m128[55-48];
xmm1[63-56] = (xmm1[63-56] > xmm2/m128[63-56]) ?

 xmm1[63-56] : xmm2/m128[63-56];
xmm1[71-64] = (xmm1[71-64] > xmm2/m128[71-64]) ?

 xmm1[71-64] : xmm2/m128[71-64];
xmm1[79-72] = (xmm1[79-72] > xmm2/m128[79-72]) ?

 xmm1[79-72] : xmm2/m128[79-72];
xmm1[87-80] = (xmm1[87-80] > xmm2/m128[87-80]) ?

 xmm1[87-80] : xmm2/m128[87-80];
xmm1[95-88] = (xmm1[95-88] > xmm2/m128[95-88]) ?

 xmm1[95-88] : xmm2/m128[95-88];
xmm1[103-96] = (xmm1[103-96] > xmm2/m128[103-96]) ?

 xmm1[103-96] : xmm2/m128[103-96];
xmm1[111-104] = (xmm1[111-104] > xmm2/m128[111-104]) ?

 xmm1[111-104] : xmm2/m128[111-104];
xmm1[119-112] = (xmm1[119-112] > xmm2/m128[119-112]) ?

 xmm1[119-112] : xmm2/m128[119-112];
xmm1[127-120] = (xmm1[127-120] > xmm2/m128[127-120]) ?

 xmm1[127-120] : xmm2/m128[127-120];

Instruction Description

PMAXUB xmm1,xmm2/m128 Return the maximum unsigned byte integers between xmm2/m128 and
xmm1.
3-152

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-153

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PMINSW—Packed Signed Integer Word Minimum

Description

Returns the minimum between each corresponding pair of signed word integers in xmm1 and
xmm2/mem128.

Operation

xmm1[15-0] = (xmm1[15-0] < xmm2/m128[15-0]) ? xmm1[15-0] : xmm2/m128[15-0];
xmm1[31-16] = (xmm1[31-16] < xmm2/m128[31-16]) ? xmm1[31-16] : xmm2/m128[31-16];
xmm1[47-32] = (xmm1[47-32] < xmm2/m128[47-32]) ? xmm1[47-32] : xmm2/m128[47-32];
xmm1[63-48] = (xmm1[63-48] < xmm2/m128[63-48]) ? xmm1[63-48] : xmm2/m128[63-48];
xmm1[79-64] = (xmm1[79-64] < xmm2/m128[31-16]) ? xmm1[79-64] : xmm2/m128[79-64];
xmm1[95-80] = (xmm1[95-80] < xmm2/m128[47-32]) ? xmm1[95-80] : xmm2/m128[95-80];
xmm1[111-96] = (xmm1[111-96] < xmm2/m128[63-48]) ? xmm1[111-96] : xmm2/m128[111-96];
xmm1[127-112]= (xmm1[127-112] < xmm2/m128[63-48]) ? xmm1[127-112] : xmm2/m128[127-
112];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

Instruction Description

PMINSW xmm1, xmm2/m128 Return the minimum signed word integers between xmm2/mem128
and xmm1.
3-154

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-155

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PMINUB—Packed Unsigned Byte Integer Minimum

Description

Returns the minimum between each corresponding pair of unsigned byte integers in xmm1 and
xmm2/mem128.

Operation

xmm1[7-0] = (xmm1[7-0] < xmm2/m128[7-0]) ? xmm1[7-0] : xmm2/m128[7-0];
xmm1[15-8] = (xmm1[15-8] < xmm2/m128[15-8]) ? xmm1[15-8] : xmm2/m128[15-8];
xmm1[23-16] = (xmm1[23-16] < xmm2/m128[23-16]) ? xmm1[23-16] : xmm2/m128[23-16];
xmm1[31-24] = (xmm1[31-24] < xmm2/m128[31-24]) ? xmm1[31-24] : xmm2/m128[31-24];
xmm1[39-32] = (xmm1[39-32] < xmm2/m128[39-32]) ? xmm1[39-32] : xmm2/m128[39-32];
xmm1[47-40] = (xmm1[47-40] < xmm2/m128[47-40]) ? xmm1[47-40] : xmm2/m128[47-40];
xmm1[55-48] = (xmm1[55-48] < xmm2/m128[55-48]) ? xmm1[55-48] : xmm2/m128[55-48];
xmm1[63-56] = (xmm1[63-56] < xmm2/m128[63-56]) ? xmm1[63-56] : xmm2/m128[63-56];
xmm1[71-64] = (xmm1[71-64] < xmm2/m128[71-64]) ? xmm1[71-64] : xmm2/m128[71-64];
xmm1[79-72] = (xmm1[79-72] < xmm2/m128[79-72]) ? xmm1[79-72] : xmm2/m128[79-72];
xmm1[87-80] = (xmm1[87-80] < xmm2/m128[87-80]) ? xmm1[87-80] : xmm2/m128[87-80];
xmm1[95-88] = (xmm1[95-88] < xmm2/m128[95-88]) ? xmm1[95-88] : xmm2/m128[95-88];
xmm1[103-96] = (xmm1[103-96] < xmm2/m128[103-96]) ? xmm1[103-96] : xmm2/m128[103-
96];
xmm1[111-104] = (xmm1[111-104] < xmm2/m128[111-104]) ? xmm1[111-104] :
xmm2/m128[111-104];
xmm1[119-112] = (xmm1[119-112] < xmm2/m128[119-112]) ? xmm1[119-112] :
xmm2/m128[119-112];
xmm1[127-120] = (xmm1[127-120] < xmm2/m128[127-120]) ? xmm1[127-120] :
xmm2/m128[127-120];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

Instruction Description

PMINUB xmm1, xmm2/m128 Return the minimum unsigned byte integers between xmm2/mem128
and xmm1.
3-156

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-157

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PMOVMSKB—Move Byte Mask To Integer

Description

Returns a 16-bit mask formed of the most significant bits of each byte in xmm to the destination
register r32.

Operation

r32[15] = xmm[127]; r32[14] = xmm[119];
r32[13] = xmm[111]; r32[12] = xmm[103];
r32[11] = xmm[95]; r32[10] = xmm[87];
r32[9] = xmm[79]; r32[8] = xmm[71];
r32[7] = xmm[63]; r32[6] = xmm[55];
r32[5] = xmm[47]; r32[4] = xmm[39];
r32[3] = xmm[31]; r32[2] = xmm[23];
r32[1] = xmm[15]; r32[0] = xmm[7];
r32[31-16] = 0x0000;

Protected Mode Exceptions

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Instruction Description

PMOVMSKB r32, xmm Move the byte mask of xmm to r32.
3-158

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Numeric Exceptions

None.
3-159

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PMULHW—Packed Multiply High

Description

Multiplies the eight signed word integers in the destination operand by the corresponding eight
signed word integers in the source operand, and store the high word of the individual double-
word results in the destination operand. The destination operand is an XMM register. The source
operand can either be an XMM register or a 128-bit memory operand.

Operation

xmm1[15-0] = (xmm1[15-0] * xmm2/m128[15-0])[31-16];
xmm1[31-16] = (xmm1[31-16] * xmm2/m128[31-16])[31-16];
xmm1[47-32] = (xmm1[47-32] * xmm2/m128[47-32])[31-16];
xmm1[63-48] = (xmm1[63-48] * xmm2/m128[63-48])[31-16];
xmm1[79-64] = (xmm1[79-64] * xmm2/m128[79-64])[31-16];
xmm1[95-80] = (xmm1[95-80] * xmm2/m128[95-80])[31-16];
xmm1[111-96] = (xmm1[111-96] * xmm2/m128[111-96])[31-16];
xmm1[127-112] = (xmm1[127-112] * emm2/m128[127-112])[31-16];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Instruction Description

PMULHW xmm1, xmm2/m128 Multiply the packed signed word integers in xmm1 by the packed
signed word integers in xmm2/mem128, and store the high words of
the results in xmm1.
3-160

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-161

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PMULHUW—Packed Multiply High Unsigned

Description

Multiplies the eight unsigned word integers in the destination operand by the corresponding
eight unsigned word integers in the source operand, and store the high word of the individual
doubleword results in the destination operand.

Operation

xmm1[15-0] = (xmm1[15-0] * xmm2/m128[15-0])[31-16];
xmm1[31-16] = (xmm1[31-16] * xmm2/m128[31-16])[31-16];
xmm1[47-32] = (xmm1[47-32] * xmm2/m128[47-32])[31-16];
xmm1[63-48] = (xmm1[63-48] * xmm2/m128[63-48])[31-16];
xmm1[79-64] = (xmm1[79-64] * xmm2/m128[79-64])[31-16];
xmm1[95-80] = (xmm1[95-80] * xmm2/m128[95-80])[31-16];
xmm1[111-96] = (xmm1[111-96] * xmm2/m128[111-96])[31-16];
xmm1[127-112] = (xmm1[127-112] * xmm2/m128[127-112])[31-16];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

Instruction Description

PMULHUW xmm1, xmm2/m128 Multiply the packed unsigned word integers in xmm1 by the packed
unsigned word integers in xmm2/mem128, and store the high
words of the results in xmm1.
3-162

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-163

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PMULLW—Packed Multiply Low

Description

Multiplies the eight signed word integers in the destination operand by the corresponding eight
signed word integers in the source operand, and store the low word of the individual doubleword
results in the destination operand. The destination operand is an XMM register. The source
operand can either be an XMM register or a 128-bit memory operand.

Operation

xmm1[15-0] = (xmm1[15-0] * xmm2/m128[15-0])[15-0];
xmm1[31-16] = (xmm1[31-16] * xmm2/m128[31-16])[15-0];
xmm1[47-32] = (xmm1[47-32] * xmm2/m128[47-32])[15-0];
xmm1[63-48] = (xmm1[63-48] * xmm2/m128[63-48])[15-0];
xmm1[79-64] = (xmm1[79-64] * xmm2/m128[79-64])[15-0];
xmm1[95-80] = (xmm1[95-80] * xmm2/m128[95-80])[15-0];
xmm1[111-96] = (xmm1[111-96] * xmm2/m128[111-96])[15-0];
xmm1[127-112] = (xmm1[127-112] * xmm2/m128[127-112])[15-0];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Instruction Description

PMULLW xmm1, xmm2/m128 Multiply the packed signed word integers in xmm1 by the packed
signed word integers in xmm2/mem128, and store the low words of
the results in xmm1.
3-164

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-165

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PMULUDQ—Multiply Doubleword Unsigned

Description

Multiplies the low unsigned doubleword integer in the destination operand by an low unsigned
doubleword integer in the source operand, and stores the quadword result in mm1. The destina-
tion operand is a MMX register. The source operand can either be a MMX register or a 64-bit
memory operand.

Operation

mm1[63:0] = (mm1[31:0] * mm2/m64[31:0]);

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Instruction Description

PMULUDQ mm1, mm2/m64 Multiply unsigned doubleword integer in mm1 by unsigned doubleword
integer in mm2/m64, and store the quadword result in mm1.
3-166

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

None.
3-167

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PMULUDQ—Packed Multiply Doubleword Unsigned

Description

Multiplies two packed unsigned doublewords in the destination register by two packed unsigned
doublewords in the source register and stores the packed quadword results in the destination
register. The source operands used are the doublewords at bit positions 31-0 and 95-64. The
quadword results are written to the destination operand. The destination operand is an XMM
register. The source operand can either be an XMM register or a 128-bit memory operand.

Operation

xmm1[63:0] = (xmm1[31:0] * xmm2/m128[31:0]);
xmm1[127:64] = (xmm1[95:64] * xmm2/m128[95:64]);

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

Instruction Description

PMULUDQ xmm1, xmm2/m128 Multiply packed unsigned doublewords in xmm1 by packed
unsigned doublewords in xmm2/mem128, and then store the 64-bit
results in xmm1.
3-168

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-169

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

POR—Bitwise Logical OR

Description

Performs a bitwise logical OR of the source operand (xmm/m128) and the destination operand
(xmm1), and writes the result to the destination operand. Each bit of the result is set to 0 if the
corresponding bits of the two operands are 0; otherwise, it is set to 1.

Operation

xmm1 |= xmm2/m128;

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Instruction Description

POR xmm1, xmm2/m128 Bitwise OR of xmm2/mem128 and xmm1.
3-170

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-171

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PSADBW—Packed Sum of Absolute Differences

Description

Computes the absolute value of the difference of unsigned bytes for xmm1 and xmm2/m128.
These differences are then summed independently within the high and low 64-bit sections to
produce two separate word results; the high 3 words of each 64-bit section are cleared. The desti-
nation operand is an XMM register. The source operand can either be an XMM register or a 128-
bit memory operand.

Operation

temp1 = ABS(xmm1[7-0] - xmm2/m128[7-0]);
temp2 = ABS(xmm1[15-8] - xmm2/m128[15-8]);
temp3 = ABS(xmm1[23-16] - xmm2/m128[23-16]);
temp4 = ABS(xmm1[31-24] - xmm2/m128[31-24]);
temp5 = ABS(xmm1[39-32] - xmm2/m128[39-32]);
temp6 = ABS(xmm1[47-40] - xmm2/m128[47-40]);
temp7 = ABS(xmm1[55-48] - xmm2/m128[55-48]);
temp8 = ABS(xmm1[63-56] - xmm2/m128[63-56]);
temp9 = ABS(xmm1[71-64] - xmm2/m128[71-64]);
temp10 = ABS(xmm1[79-72] - xmm2/m128[79-72]);
temp11 = ABS(xmm1[87-80] - xmm2/m128[87-80]);
temp12 = ABS(xmm1[95-88] - xmm2/m128[95-88]);
temp13 = ABS(xmm1[103-96] - xmm2/m128[103-96]);
temp14 = ABS(xmm1[111-104] - xmm2/m128[111-104]);
temp15 = ABS(xmm1[119-112] - xmm2/m128[119-112]);
temp16 = ABS(xmm1[127-120] - xmm2/m128[127-120]);

xmm1[15:0] = temp1 + temp2 + temp3 + temp4 + temp5 + temp6 + temp7 + temp8;
xmm1[31:16] = 0x00000000;
xmm1[47:32] = 0x00000000;
xmm1[63:48] = 0x00000000;
xmm1[79:64] = temp9 + temp10 + temp11 + temp12 + temp13 + temp14 + temp15 +

temp16;
xmm1[95:80] = 0x00000000;
xmm1[111:96] = 0x00000000;
xmm1[127:112] = 0x00000000;

Instruction Description

PSADBW xmm1,xmm2/m128 Absolute difference of packed unsigned byte integers from xmm2
/m128 and xmm1; these differences are then summed within separate
high and low 64-bit sections to produce two word results.
3-172

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-173

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PSHUFD—Packed Shuffle Doubleword

Description

Shuffles the four doublewords in xmm2/mem128 in the order selected by imm8 and stores the
result in xmm1. Bits 1 and 0 of imm8 encode the source for destination doubleword 0
(xmm1[31-0]), bits 3 and 2 encode for doubleword 1, bits 5 and 4 encode for doubleword 2, and
bits 7 and 6 encode for doubleword 3 (xmm1[127-96]). Similarly, the two bit encoding repre-
sents which source doubleword is to be used, e.g., an binary encoding of 10 indicates that source
doubleword 2 (xmm2/mem128[95-64]) will be used.

Operation

xmm1[31-0] = (xmm2/m128 >> (imm8[1-0] * 32))[31-0]
xmm1[63-32] = (xmm2/m128 >> (imm8[3-2] * 32))[31-0]
xmm1[95-64] = (xmm2/m128 >> (imm8[5-4] * 32))[31-0]
xmm1[127-96] = (xmm2/m128 >> (imm8[7-6] * 32))[31-0]

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

Instruction Description

PSHUFD xmm1, xmm2/m128, imm8 Shuffle the doublewords in xmm2/mem128 based on the
encoding in imm8 and store result in xmm1.
3-174

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-175

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PSHUFHW—Packed Shuffle High Words

Description

Shuffles the four high words in xmm2/mem128 in the order selected by imm8 and stores the
result in the high quadword of xmm1. Bits 1 and 0 of imm8 encode the source for destination
word 4 (xmm1[79-64]), bits 3 and 2 encode for word 5, bits 5 and 4 encode for word 6, and bits
7 and 6 encode for word 7 (xmm1[127-112]). Similarly, the two bit encoding represents which
source word is to be used, e.g., a binary encoding of 10 indicates that source word 6
(XMM2[111-96] or Mem[111-96]) will be used. The low quadword of the destination register
is written with the low 64 bits of the source register.

Operation

if (source == m128) {
xmm1[79-64] = (m128 >> (imm8[1-0] * 16))[79-64]
xmm1[95-80] = (m128 >> (imm8[3-2] * 16))[79-64]
xmm1[111-96] = (m128 >> (imm8[5-4] * 16))[79-64]
xmm1[127-112] = (m128 >> (imm8[7-6] * 16))[79-64]

xmm1[63-0] = m128[63-0];
} else {

xmm1[79-64] = (xmm2 >> (imm8[1-0] * 16))[79-64]
xmm1[95-80] = (xmm2 >> (imm8[3-2] * 16))[79-64]
xmm1[111-96] = (xmm2 >> (imm8[5-4] * 16))[79-64]
xmm1[127-112] = (xmm2 >> (imm8[7-6] * 16))[79-64]

xmm1[63-0] = xmm2[63-0];
}

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

Instruction Description

PSHUFHW xmm1, xmm2/m128, imm8 Shuffle the high words in xmm2/mem128 based on the
encoding in imm8 and store the result in xmm1.
3-176

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-177

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PSHUFLW—Packed Shuffle Low Word

Description

Shuffles the four low words in xmm2/mem128 in the order selected by imm8 and stores the
result in the low quadword of xmm1.Bits 1 and 0 of imm8 encode the source for destination
word 0 (xmm1[15-0]), bits 3 and 2 encode for word 1, bits 5 and 4 encode for word 2, and bits
7 and 6 encode for word 3 (xmm1[63-48]). Similarly, the two bit encoding represents which
source word is to be used, e.g., an binary encoding of 10 indicates that source word 2
(xmm2/mem128[47-32]) will be used. The high quadword of the destination register is written
with the high 64 bits of the source register.

Operation

if (source == m128) {
xmm1[15-0] = (m128 >> (imm8[1-0] * 16))[15-0]
xmm1[31-16] = (m128 >> (imm8[3-2] * 16))[15-0]
xmm1[47-32] = (m128 >> (imm8[5-4] * 16))[15-0]
xmm1[63-48] = (m128 >> (imm8[7-6] * 16))[15-0]

xmm1[127-64] = m128[127-64];
} else {

xmm1[15-0] = (xmm2 >> (imm8[1-0] * 16))[15-0]
xmm1[31-16] = (xmm2 >> (imm8[3-2] * 16))[15-0]
xmm1[47-32] = (xmm2 >> (imm8[5-4] * 16))[15-0]
xmm1[63-48] = (xmm2 >> (imm8[7-6] * 16))[15-0]

xmm1[127-64] = xmm2[127-64];
}

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

Instruction Description

PSHUFLW xmm1, xmm2/m128, imm8 Shuffle the low words in xmm2/mem128 based on the
encoding in imm8 and store in xmm1.
3-178

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-179

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PSLLDQ—Packed Shift Left Logical Double Quadword

Description

Shifts the first operand to the left by the number of bytes specified in the immediate operand.
The empty low-order bytes are cleared (set to zero). If the value specified by the second operand
is greater than 15, then the destination is set to all zeros. The destination operand is an XMM
register. The count operand is an immediate 8-bit operand.

Operation

temp = imm8;
if (temp > 15) temp = 16;
xmm1 = xmm1 << (temp * 8);

Protected Mode Exceptions

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.

Instruction Description

PSLLDQ xmm1, imm8 Shift left xmm1 by imm8 bytes, clearing low-order bits.
3-180

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

PSLLW/PSLLD/PSLLQ — Packed Shift Left Logical

Description

Shift the bits of the first operand to the left by the number of bits specified in the count operand.
The result of the shift operation is written to the destination register. The empty low-order bits
are cleared (set to zero). If the value specified by the second operand is greater than 15 (for
words), 31 (for doublewords), or 63 (for quadwords) then the destination is set to all zeros. If
the shift amount is specified by xmm2/m128, only the low 64 bits of this operand are used; the
high 64 bits are ignored. The destination operand is an XMM register. The count operand
(second operand) can be either an XMM register, a 128-bit memory operand, or an immediate
8-bit operand.

The PSLLW instruction shifts each of the eight words in the destination register to the left by
the number of bits specified in the count operand. The low-order bit positions (of each word) are
filled with zeros.

The PSLLD instruction shifts each of the four doublewords in the destination register to the left
by the number of bits specified in the count operand. The empty low-order bit positions (of each
doubleword) are filled with zeros.

The PSLLQ instruction shifts each of the two quadwords in the destination register to the left by
the number of bits specified in the count operand. The empty low-order bit positions (of each
quadword) are filled with zeros.

Operation

if (second_operand == imm8) {
temp = imm8;

}
else {

// second operand is xmm2/m128
 temp = xmm2/m128[63-0];
}
if (instruction == PSLLW) {

xmm1[15-0] = xmm1[15-0] << temp;
xmm1[31-16] = xmm1[31-16] << temp;
xmm1[47-32] = xmm1[47-32] << temp;

Instruction Description

PSLLW xmm1, xmm2/m128 Shift words in xmm1 register left by amount specified in xmm2/mem128,
while shifting in zeros.

PSLLW xmm1, imm8 Shift words in xmm1 left by imm8.

PSLLD xmm1, xmm2/m128 Shift doublewords in xmm1 left by amount specified in xmm2/mem128,
while shifting in zeros.

PSLLD xmm1, imm8 Shift doublewords in xmm1 by imm8.

PSLLQ xmm1, xmm2/m128 Shift quadwords in xmm1 left by amount specified in xmm2/mem128,
while shifting in zeros.

PSLLQ xmm1, imm8 Shift quadwords in xmm1 by imm8.
3-181

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

xmm1[63-48] = xmm1[63-48] << temp;
xmm1[79-64] = xmm1[79-64] << temp;
xmm1[95-80] = xmm1[95-80] << temp;
xmm1[111-96] = xmm1[111-96] << temp;
xmm1[127-112] = xmm1[127-112] << temp;

}
else if (instruction == PSLLD) {

// instruction is PSLLD
xmm1[31-0] = xmm1[31-0] << temp;
xmm1[63-32] = xmm1[63-32] << temp;
xmm1[95-64] = xmm1[95-64] << temp;
xmm1[127-96] = xmm1[127-96] << temp;

}
else {

// instruction is PSLLQ
xmm1[63-0] = xmm1[63-0] << temp;
xmm1[127-64] = xmm1[127-64] << temp;

}

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.
3-182

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-183

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PSRAW/PSRAD—Packed Shift Right Arithmetic

Description

Shift the bits of the first operand to the right by the number of bits specified in the count operand.
The result of the shift operation is written to the destination register. The empty high-order bits
of each element are filled with the initial value of the sign bit of the data element. The destination
operand is an XMM register. The count operand (second operand) can be either by an XMM
register, a 128-bit memory operand, or an immediate 8-bit operand.

The PSRAW instruction shifts each of the eight words in the destination register to the right by
the number of bits specified in the count operand. If the value specified by the second operand
is greater than 15, each destination element is filled with the initial value of the sign bit of the
element.

The PSRAD instruction shifts each of the four doublewords in the destination register to the
right by the number of bits specified in the count operand.If the value specified by the second
operand is greater than 31, each destination element is filled with the initial value of the sign bit
of the element.

Operation

if (second_operand == imm8) {
temp = imm8;

}
else {

// second operand is xmm2/m128
temp = xmm2/m128;

}
if (instruction == PSRAW) {

xmm1[15-0] = SignExtend (xmm1[15-0] >> temp);
xmm1[31-16] = SignExtend (xmm1[31-16] >> temp);
xmm1[47-32] = SignExtend (xmm1[47-32] >> temp);
xmm1[63-48] = SignExtend (xmm1[63-48] >> temp);
xmm1[79-64] = SignExtend (xmm1[79-64] >> temp);
xmm1[95-80] = SignExtend (xmm1[95-80] >> temp);
xmm1[111-96] = SignExtend (xmm1[111-96] >> temp);
xmm1[127-112] = SignExtend (xmm1[127-112] >> temp);

}
else {

Instruction Description

PSRAW xmm1, xmm2/m128 Shift words in xmm1 right by amount specified in xmm2/mem128 while
shifting in sign bits.

PSRAW xmm1, imm8 Shift words in xmm1 right by imm8 while shifting in sign bits

PSRAD xmm1, xmm2/m128 Shift doubleword in xmm1 right by amount specified in xmm2 /m128
while shifting in sign bits.

PSRAD xmm1, imm8 Shift doublewords in xmm1 right by imm8 while shifting in sign bits.
3-184

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

// instruction is PSRAD
xmm1[31-0] = SignExtend (xmm1[31-0] >> temp);
xmm1[63-32] = SignExtend (xmm1[63-32] >> temp);
xmm1[95-64] = SignExtend (xmm1[95-64] >> temp);
xmm1[127-96] = SignExtend (xmm1[127-96] >> temp);

}

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-185

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PSRLDQ—Packed Shift Right Logical Double Quadword

Description

Shifts the first operand to the right by the number of bytes specified in the count operand. The
empty high-order bytes are cleared (set to zero). If the value specified by the immediate operand
is greater than 15, then the destination is set to all zeros. The destination operand is an XMM
register. The count operand is an immediate 8-bit operand.

Operation

temp = imm8;
if (temp > 15) temp = 16;
xmm1 = xmm1 >> (temp * 8);

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

Instruction Description

PSRLDQ xmm1, imm8 Shift right xmm1 by imm8, clearing high-order bits.
3-186

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-187

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PSRLW/PSRLD/PSRLQ— Packed Shift Right Logical

Description

Shift the bits of the first operand to the right by the number of bits specified in the count operand.
The result of the shift operation is written to the destination register. The empty high-order bits
are cleared (set to zero). If the value specified by the second operand is greater than 15 (for
words), 31 (for doublewords), or 63 (for quadwords) then the destination is set to all zeros. If
the shift amount is specified by xmm2/m128, only the low 64 bits of this operand are used; the
high 64 bits are ignored. The destination operand is an XMM register. The count operand
(second operand) can be either an XMM register, a 128-bit memory operand, or an immediate
8-bit operand.

The PSRLW instruction shifts each of the eight words in the destination register to the right by
the number of bits specified in the count operand. The empty high-order bits (of each word) are
filled with zeros.

The PSRLD instruction shifts each of the four doublewords in the destination register to the right
by the number of bits specified in the count operand. The empty high-order bits (of each double-
word) are filled with zeros.

The PSRLQ instruction shifts each of the two quadwords in the destination register to the right
by the number of bits specified in the count operand. The empty high-order bits (of each quad-
word) are filled with zeros.

Operation

if (second_operand == imm8) {
temp = imm8;

}
else {

// second operand is xmm2/m128
temp = xmm2/m128[63-0];

}

if (instruction == PSRLW) {
xmm1[15-0] = xmm1[15-0] >> temp;

Instruction Description

PSRLW xmm1, xmm2/m128 Shift words in xmm1 right by amount specified in xmm2/mem128 while
shifting in zeroes.

PSRLW xmm1, imm8 Shift words in xmm1 right by imm8.

PSRLD xmm1, xmm2/m128 Shift doublewords in xmm1 right by amount specified in XMM2 /Mem
while shifting in zeroes.

PSRLD xmm1, imm8 Shift doublewords in xmm1 right by imm8.

PSRLQ xmm1, xmm2/m128 Shift quadwords in xmm1 right by amount specified in xmm2/mem128
while shifting in zeroes.

PSRLQ xmm1, imm8 Shift quadwords in xmm1 right by imm8.
3-188

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

xmm1[31-16] = xmm1[31-16] >> temp;
xmm1[47-32] = xmm1[47-32] >> temp;
xmm1[63-48] = xmm1[63-48] >> temp;
xmm1[79-64] = xmm1[79-64] >> temp;
xmm1[95-80] = xmm1[95-80] >> temp;
xmm1[111-96] = xmm1[111-96] >> temp;
xmm1[127-112] = xmm1[127-112] >> temp;
}
else if (instruction == PSRLD) {

 // instruction is PSRLD
xmm1[31-0] = xmm1[31-0] >> temp;
xmm1[63-32] = xmm1[63-32] >> temp;
xmm1[95-64] = xmm1[95-64] >> temp;
xmm1[127-96] = xmm1[127-96] >> temp;

}
else {
 // instruction is PSRLQ

xmm1[63-0] = xmm1[63-0] >> temp;
xmm1[127-64] = xmm1[127-64] >> temp;

}

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.
3-189

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-190

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

PSUBB/PSUBW/PSUBD—Packed Subtract

Description

Subtracts the data elements of the source operand from the corresponding data elements of the
destination register and writes the results to the destination register. If the result is larger or
smaller than the architectural limit, it wraps around. The destination operand is an XMM
register. The source operand can either be an XMM register or a 128-bit memory operand.

The PSUBB instruction subtracts the bytes of the source operand xmm2/m128 from the bytes
of the destination operand xmm1.When a result is too large or too small to be represented in a
byte, the result wraps around and the low 8 bits are written to the destination element.

The PSUBW instruction subtracts the words of the source operand xmm2/m128 from the words
of the destination operand xmm1.When a result is too large or too small to be represented in a
word, the result wraps around and the low 16 bits are written to the destination element.

The PSUBD instruction subtracts the doublewords of the source operand xmm2/m128 from the
doublewords of the destination operand xmm1. When a result is too large or too small to be
represented in a doubleword, the result wraps around and the low 32 bits are written to the desti-
nation element.

Operation

if (instruction == PSUBB){
xmm1[7-0] = xmm1[7-0] - xmm2/m128[7-0];

 xmm1[15-8] = xmm1[15-8] - xmm2/m128[15-8];
xmm1[23-16] = xmm1[23-16] - xmm2/m128[23-16];
xmm1[31-24] = xmm1[31-24] - xmm2/m128[31-24];
xmm1[39-32] = xmm1[39-32] - xmm2/m128[39-32];
xmm1[47-40] = xmm1[47-40] - xmm2/m128[47-40];
xmm1[55-48] = xmm1[55-48] - xmm2/m128[55-48];
xmm1[63-56] = xmm1[63-56] - xmm2/m128[63-56];
xmm1[71-64] = xmm1[71-64] - xmm2/m128[71-64];
xmm1[79-72] = xmm1[79-72] - xmm2/m128[79-72];
xmm1[87-80] = xmm1[87-80] - xmm2/m128[87-80];
xmm1[95-88] = xmm1[95-88] - xmm2/m128[95-88];
xmm1[103-96] = xmm1[103-96] - xmm2/m128[103-96];
xmm1[111-104] = xmm1[111-104] - xmm2/m128[111-104];
xmm1[119-112] = xmm1[119-112] - xmm2/m128[119-112];
xmm1[127-120] = xmm1[127-120] - xmm2/m128[127-120];

}

Instruction Description

PSUBB xmm1, xmm2/m128 Subtract packed bytes in xmm2/mem128 from packed bytes in xmm1.

PSUBW xmm1, xmm2/m128 Subtract packed words in xmm2/mem128 from packed words in xmm1.

PSUBD xmm1, xmm2/m128 Subtract packed doublewords in xmm2 /mem128 from packed
doublewords in xmm1.
3-191

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

else if (instruction == PSUBW){
xmm1[15-0] = xmm1[15-0] - xmm2/m128[15-0];
xmm1[31-16] = xmm1[31-16] - xmm2/m128[31-16];
xmm1[47-32] = xmm1[47-32] - xmm2/m128[47-32];
xmm1[63-48] = xmm1[63-48] - xmm2/m128[63-48];
xmm1[79-64] = xmm1[79-64] - xmm2/m128[79-64];
xmm1[95-80] = xmm1[95-80] - xmm2/m128[95-80];
xmm1[111-96] = xmm1[111-96] - xmm2/m128[111-96];
xmm1[127-112] = xmm1[127-112] - xmm2/m128[127-112];

}
else {

// instruction is PSUBD
xmm1[31-0] = xmm1[31-0] - xmm2/m128[31-0];
xmm1[63-32] = xmm1[63-32] - xmm2/m128[63-32];
xmm1[95-64] = xmm1[95-64] - xmm2/m128[95-64];
xmm1[127-96] = xmm1[127-96] - xmm2/m128[127-96];

}

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.
3-192

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-193

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PSUBQ—Packed Subtract Quadword

Description

Subtracts the quadword from the source operand mm2/m64 from the quadword in the destina-
tion operand mm1 and writes the result to the mm1 register. When the result is too large to be
represented in a packed quadword (overflow), the result wraps around and the low 64 bits are
written to the destination register (that is, the carry is ignored). The destination operand is a
MMX register. The source operand can either be an MMX register or a 64-bit memory operand.

Note that like the integer SUB instruction, the PSUBQ instruction can operate on either
unsigned or signed (two’s complement notation) integers. Unlike the integer instructions, none
of the 64-bit or 128-bit integer instructions affect the EFLAGS register. With these integer
instructions, there are no carry or overflow flags to indicate when overflow has occurred, so the
software must control the range of values.

Operation
mm1[63-0] = mm1[63-0] - mm2/m64[63-0];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

Instruction Description

PSUBQ mm1,mm2/m64 Subtract quadword from mm2 /m64 from quadword in mm1.
3-194

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Numeric Exceptions

None.
3-195

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PSUBQ—Packed Subtract Quadword

Description

Subtracts the packed quadwords from the source operand xmm2/m128 from the corresponding
quadwords in the destination operand xmm1 and writes the results to the xmm1 register. When
an individual result is too large to be represented in a packed quadword (overflow), the result
wraps around and the low 64 bits are written to the destination register (that is, the carry is
ignored). The destination operand is an XMM register. The source operand can either be an
XMM register or a 128-bit memory operand.

Note that like the integer SUB instruction, the PSUBQ instruction can operate on either
unsigned or signed (two’s complement notation) integers. Unlike the integer instructions, none
of the 64-bit or 128-bit integer instructions affect the EFLAGS register. With these integer
instructions, there are no carry or overflow flags to indicate when overflow has occurred, so the
software must control the range of values.

Operation
xmm1[63-0] = xmm1[63-0] - xmm2/m128[63-0];
xmm1[127-64] = xmm1[127-64] - xmm2/m128[127-64];

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Instruction Description

PSUBQ xmm1,xmm2/m128 Subtract quadwords from xmm2 /m128 from quadwords in xmm1.
3-196

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-197

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PSUBSB/PSUBSW—Packed Subtract with Saturation

Description

Subtracts the data elements of the source operand from the corresponding data elements of the
destination operand. The result is saturated to the limits of a signed data element and is written
to the destination operand. The destination operand is an XMM register. The source operand can
either be a 128-bit XMM register or a 128-bit memory operand.

The PSUBB instruction subtracts the signed byte integers of the source operand xmm2/m128
from the signed byte integers of the destination operand xmm1, and writes the results to the
destination register xmm1. If an individual is larger or smaller than the range of a signed byte,
the value is saturated; in the case of an overflow to 7FH and in the case of an underflow to 80H.

The PSUBW instruction subtracts the signed word integers of the source operand xmm2/m128
from the signed word integers of the destination operand xmm1 and writes the results to the
destination register xmm1. If an individual result is larger or smaller than the range of a signed
word, the value is saturated; in the case of an overflow to 7FFFH, and in the case of an underflow
to 8000H.

Operation

if (instruction == PSUBSB) {
xmm1[7-0] = SaturateToSignedByte (xmm1[7-0] - xmm2/m128[7-0]);
xmm1[15-8] = SaturateToSignedByte (xmm1[15-8] - xmm2/m128[15-8]);
xmm1[23-16] = SaturateToSignedByte (xmm1[23-16] - xmm2/m128[23-16]);
xmm1[31-24] = SaturateToSignedByte (xmm1[31-24] - xmm2/m128[31-24]);
xmm1[39-32] = SaturateToSignedByte (xmm1[39-32] - xmm2/m128[39-32]);
xmm1[47-40] = SaturateToSignedByte (xmm1[47-40] - xmm2/m128[47-40]);
xmm1[55-48] = SaturateToSignedByte (xmm1[55-48] - xmm2/m128[55-48]);
xmm1[63-56] = SaturateToSignedByte (xmm1[63-56] - xmm2/m128[63-56]);
xmm1[71-64] = SaturateToSignedByte (xmm1[71-64] - xmm2/m128[71-64]);
xmm1[79-72] = SaturateToSignedByte (xmm1[79-72] - xmm2/m128[79-72]);
xmm1[87-80] = SaturateToSignedByte (xmm1[87-80] - xmm2/m128[87-80]);
xmm1[95-88] = SaturateToSignedByte (xmm1[95-88] - xmm2/m128[95-88]);
xmm1[103-96] = SaturateToSignedByte (xmm1[103-96] - xmm2/m128[103-96]);
xmm1[111-104] = SaturateToSignedByte (xmm1[111-104] - xmm2/m128[111-104]);
xmm1[119-112] = SaturateToSignedByte (xmm1[119-112] - xmm2/m128[119-112]);
xmm1[127-120] = SaturateToSignedByte (xmm1[127-120] - xmm2/m128[127-120]);

}
else {

// instruction is PSUBW

Instruction Description

PSUBSB xmm1, xmm2/m128 Subtract packed signed byte integers in xmm2/mem128 from packed
signed byte integers in xmm1 and saturate.

PSUBSW xmm1, xmm2/m128 Subtract packed signed word integers in xmm2/mem128 from packed
signed word integers in xmm1 and saturate.
3-198

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

xmm1[15-0] = SaturateToSignedWord (xmm1[15-0] - xmm2/m128[15-0]);
xmm1[31-16] = SaturateToSignedWord (xmm1[31-16] - xmm2/m128[31-16]);
xmm1[47-32] = SaturateToSignedWord (xmm1[47-32] - xmm2/m128[47-32]);
xmm1[63-48] = SaturateToSignedWord (xmm1[63-48] - xmm2/128[63-48]);
xmm1[79-64] = SaturateToSignedWord (xmm1[79-64] - xmm2/m128[79-64]);
xmm1[95-80] = SaturateToSignedWord (xmm1[95-80] - xmm2/m128[95-80]);
xmm1[111-96] = SaturateToSignedWord (xmm1[111-96] - xmm2/m128[111-96]);
xmm1[127-112] = SaturateToSignedWord (xmm1[127-112] - xmm2/m128[127-112]);

}

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
3-199

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

Numeric Exceptions

None.
3-200

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

PSUBUSB/PSUBUSW—Packed Subtract Unsigned with Saturation

Description

Subtract the data elements of the source operand from the data elements of the destination
register. The results are saturated to the limits of an unsigned data element and written to the
destination operand. The destination operand is an XMM register. The source operand can either
be an XMM register or a 128-bit memory operand.

The PSUBUSB instruction subtracts the unsigned byte integers of the source operand
xmm2/m128 from the unsigned byte integers of the destination operand xmm1 and writes the
results to the destination register xmm1. In the case where a result element is less than zero (a
negative value), it is saturated to 00H.

The PSUBUSW instruction subtracts the unsigned word integers of the source operand
xmm2/m128 from the unsigned word integers of the destination operand xmm1 and writes the
results to the destination register xmm1. In the case where a result element is less than zero (a
negative value), it is saturated to 0000H.

Operation

if (instruction == PSUBUSB) {
xmm1[7-0] = SaturateToUnsignedByte (xmm1[7-0] - xmm2/m128[7-0]);
xmm1[15-8] = SaturateToUnsignedByte (xmm1[15-8] - xmm2/m128[15-8]);
xmm1[23-16] = SaturateToUnsignedByte (xmm1[23-16] - xmm2/m128[23-16]);
xmm1[31-24] = SaturateToUnsignedByte (xmm1[31-24] - xmm2/m128[31-24]);
xmm1[39-32] = SaturateToUnsignedByte (xmm1[39-32] - xmm2/m128[39-32]);
xmm1[47-40] = SaturateToUnsignedByte (xmm1[47-40] - xmm2/m128[47-40]);
xmm1[55-48] = SaturateToUnsignedByte (xmm1[55-48] - xmm2/m128[55-48]);
xmm1[63-56] = SaturateToUnsignedByte (xmm1[63-56] - xmm2/m128[63-56]);
xmm1[79-64] = SaturateToUnSignedByte (xmm1[79-64] - xmm2/m128[79-64]);
xmm1[95-80] = SaturateToUnSignedByte (xmm1[95-80] - xmm2/m128[95-80]);
xmm1[111-96] = SaturateToUnSignedByte (xmm1[111-96] - xmm2/m128[111-96]);
xmm1[127-112] = SaturateToUnSignedByte (xmm1[127-112] - xmm2/m128[127-112]);

}
else {

// instruction is PSUBUSW
xmm1[15-0] = SaturateToUnsignedWord (xmm1[15-0] - xmm2/m128[15-0]);
xmm1[31-16] = SaturateToUnsignedWord (xmm1[31-16] - xmm2/m128[31-16]);
xmm1[47-32] = SaturateToUnsignedWord (xmm1[47-32] - xmm2/m128[47-32]);
xmm1[63-48] = SaturateToUnsignedWord (xmm1[63-48] - xmm2/m128[63-48]);
xmm1[79-64] = SaturateToUnSignedWord (xmm1[79-64] - xmm2/m128[79-64]);

Instruction Description

PSUBUSB xmm1, xmm2/m128 Subtract packed unsigned byte integers in xmm2/mem128 from
packed unsigned byte integers in xmm1 and saturate.

PSUBUSW xmm1, xmm2/m128 Subtract packed unsigned word integers in xmm2/mem128 from
packed unsigned word integers in xmm1 and saturate.
3-201

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

xmm1[95-80] = SaturateToUnSignedWord (xmm1[95-80] - xmm2/m128[95-80]);
xmm1[111-96] = SaturateToUnSignedWord (xmm1[111-96] - xmm2/m128[111-96]);
xmm1[127-112] = SaturateToUnSignedWord (xmm1[127-112] - xmm2/m128[127-112]);

}

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-202

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

PUNPCKH—Unpack High Packed Data

Description

Unpack and interleave the high-order data elements of the destination and source operands into
the destination operand. The low-order data elements are ignored. The destination operand is an
XMM register. The source operand can either be an XMM register or a 128-bit memory operand.

The PUNPCKHBW instruction interleaves the eight high-order bytes of the source operand and
the eight high-order bytes of the destination operand and writes them to the destination register.

The PUNPCKHWD instruction interleaves the four high-order words of the source operand and
the four high-order words of the destination operand and writes them to the destination register.

The PUNPCKHDQ instruction interleaves the two high-order doublewords of the source
operand and the two high-order doublewords of the destination operand and writes them to the
destination register.

The PUNPCKHQDQ instruction interleaves the high-order quadword of the source operand and
the high-order quadword of the destination operand and writes them to the destination register.

Operation

if (instruction == PUNPCKHBW) {
xmm1[7-0] = xmm1[71-64];
xmm1[15-8] = xmm2/m128[71-64];
xmm1[23-16] = xmm1[79-72];
xmm1[31-24] = xmm2/m128[79-72];
xmm1[39-32] = xmm1[87-80];
xmm1[47-40] = xmm2/m128[87-80];
xmm1[55-48] = xmm1[95-88];
xmm1[63-56] = xmm2/m128[95-88];
xmm1[71-64] = xmm1[103-96];
xmm1[79-72] = xmm2/m128[103-96];
xmm1[87-80] = xmm1[111-104];
xmm1[95-88] = xmm2/m128[111-104];
xmm1[103-96] = xmm1[119-112];
xmm1[111-104] = xmm2/m128[119-112];
xmm1[119-112] = xmm1[127-120];

Instruction Description

PUNPCKHBW xmm1, xmm2/m128 Interleave bytes from the high quadwords of xmm1 and
xmm2/mem128 into xmm1.

PUNPCKHWD xmm1, xmm2/m128 Interleave words from the high quadwords of xmm1 and
xmm2/mem128 into xmm1.

PUNPCKHDQ xmm1, xmm2/m128 Interleave doublewords from the high quadwords of xmm1 and
xmm2/mem128 into xmm1.

PUNPCKHQDQ xmm1, xmm2/m128 Interleave high quadwords of xmm1 and xmm2/mem128 into
xmm1
3-203

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

xmm1[127-120] = xmm2/m128[127-120];
}
else if (instruction == PUNPCKHWD) {

xmm1[15-0] = xmm1[79-64];
xmm1[31-16] = xmm2/m128[79-64];
xmm1[47-32] = xmm1[95-80];
xmm1[63-48] = xmm2/m128[95-80];
xmm1[79-64] = xmm1[111-96];
xmm1[95-80] = xmm2/m128[111-96];
xmm1[111-96] = xmm1[127-112];
xmm1[127-112] = xmm2/m128[127-112];

}
else if (instruction == PUNPCKHDQ) {

xmm1[31-0] = xmm1[95-64];
xmm1[63-32] = xmm2/m128[95-64];
xmm1[95-64] = xmm1[127-96];
xmm1[127-96] = xmm2/m128[127-96];

}
else if (instruction == PUNPCKHQDQ) {

xmm1[63-0] = xmm1[127-64];
xmm1[127-64] = xmm2/m128[127-64];

}

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.
3-204

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.

Comments

When unpacking from a memory operand, an implementation may fetch only the appropriate 64
bits. Alignment to 16-byte boundary and normal segment checking will still be enforced.
3-205

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PUNPCKL—Unpack Low Packed Data

Description

Unpack and interleave the low-order data elements of the destination and source operands into
the destination operand. The high-order data elements are ignored. The destination operand is
an XMM register. The source operand can either be an XMM register or a 128-bit memory
operand.

When unpacking from a memory operand, the full 128-bit operand is accessed from memory.
The instruction uses only the low-order 64 bits.

The PUNPCKLBW instruction interleaves the eight low-order bytes of the source operand and
the eight low-order bytes of the destination operand and writes them to the destination register.

The PUNPCKLWD instruction interleaves the four low-order words of the source operand and
the four low-order words of the destination operand and writes them to the destination register.

The PUNPCKLDQ instruction interleaves the two low-order doublewords of the source
operand and the two low-order doublewords of the destination operand and writes them to the
destination register.

The PUNPCKLQDQ instruction interleaves the low-order quadword of the source operand and
the low-order quadword of the destination operand and writes them to the destination register.

Operation

if (instruction == PUNPCKLBW) {
xmm1[7-0] = xmm1[7-0];
xmm1[15-8] = xmm2/m128[7-0];
xmm1[23-16] = xmm1[15-8];
xmm1[31-24] = xmm2/m128[15-8];
xmm1[39-32] = xmm1[23-16];
xmm1[47-40] = xmm2/m128[23-16];
xmm1[55-48] = xmm1[31-24];
xmm1[63-56] = xmm2/m128[31-24];
xmm1[71-64] = xmm1[39-32];
xmm1[79-72] = xmm2/m128[39-32];
xmm1[87-80] = xmm1[47-40];

Instruction Description

PUNPCKLBW xmm1, xmm2/m128 Interleave bytes from the low quadwords of xmm1 and
xmm2/mem128 into xmm1.

PUNPCKLWD xmm1, xmm2/m128 Interleave words from the low quadwords of xmm1 and
xmm2/mem128 into xmm1.

PUNPCKLDQ xmm1, xmm2/m128 Interleave doublewords from the low quadwords of xmm1 and
xmm2/mem128 into xmm1.

PUNPCKLQDQ xmm1, xmm2/m128 Interleave the low quadwords of xmm1 and xmm2/mem128 into
xmm1 register
3-206

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

xmm1[95-88] = xmm2/m128[47-40];
xmm1[103-96] = xmm1[55-48];
xmm1[111-104] = xmm2/m128[55-48];
xmm1[119-112] = xmm1[63-56];
xmm1[127-120] = xmm2/m128[63-56];

}
else if (instruction == PUNPCKLWD) {

xmm1[15-0] = xmm1[15-0];
xmm1[31-16] = xmm2/m128[15-0];
xmm1[47-32] = xmm1[31-16];
xmm1[63-48] = xmm2/m128[31-16];
xmm1[79-64] = xmm1[47-32];
xmm1[95-80] = xmm2/m128[47-32];
xmm1[111-96] = xmm1[63-48];
xmm1[127-112] = xmm2/m128[63-48];

}
else if (instruction == PUNPCKLDQ) {

xmm1[31-0] = xmm1[31-0];
xmm1[63-32] = xmm2/m128[31-0];
xmm1[95-64] = xmm1[63-32];
xmm1[127-96] = xmm2/m128[63-32];

}
else if (instruction == PUNPCKLQDQ) {

xmm1[63-0] = xmm1[63-0];
xmm1[127-64] = xmm2/m128[63-0];

}

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.
3-207

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.

Comments

When unpacking from a memory operand, an implementation may fetch only the appropriate 64
bits. Alignment to 16-byte boundary and normal segment checking will still be enforced.
3-208

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

PXOR—Bitwise Logical XOR

Description

Performs a bitwise logical XOR of the destination and source operands and writes the result to
the destination register. Each bit of the result is 1 if the corresponding bits of the two operands
are different. Each bit is 0 if the corresponding bits of the operands are the same. The source
operand can either be an XMM register or a 128-bit memory operand.

Operation

xmm1 ^= xmm2/m128;

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Instruction Description

PXOR xmm1, xmm2/m128 Bitwise XOR of xmm2/mem128 and xmm1.
3-209

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-210

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

3.4. CACHEABILITY CONTROL AND MEMORY ORDERING
INSTRUCTIONS

This chapter describes the cacheability control instructions, which enable programs to minimize
data access latency and cache pollution, and the memory ordering instructions.
3-211

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

CLFLUSH—Cache Line Flush

Description

Invalidates the cache line associated with the linear address specified by the value of m8 from
all levels of the processor cache hierarchy (data and instruction). The invalidation is broadcast
throughout the coherence domain. If, at any level of the cache hierarchy, the line is inconsistent
with memory (dirty) it is written to memory before invalidation.

The line size affected is at least 64-bytes (aligned on a 64-byte boundary) and the region flushed
must contain the m8 address. An implementation may flush a larger region.

The memory attribute of the page containing the affected line has no effect on the behavior of
this instruction.

CLFLUSH is an unordered operation with respect to other memory traffic including other
CLFLUSH instructions. Software should use an SFENCE (memory fence) or a serializing
instruction (as needed) before or after using CLFLUSH for cases where ordering is a concern.
For example, software can use an SFENCE instruction to insure that previous stores are included
in the write-back.

The CLFLUSH instruction can be used at all privileged levels and is subject to all permission
checking and faults associated with a byte load. Like a load, the CLFLUSH instruction sets the
A bit but not the D bit in the page tables.

Operation

Cache line containing m8 is flushed and invalidated from all caches in the coherency domain.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#UD If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#UD If CPUID.WN(EDX bit 26) = 0.

Instruction Description

CLFLUSH m8 Cache line containing m8 is flushed and invalidated from all caches in the
coherency domain.
3-212

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.
3-213

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

LFENCE—Load Fence

Description

Guarantees ordering between two loads and prevents speculative loads from passing the
LFENCE instruction. LFENCE is ordered with respect to other LFENCE, MFENCE instruc-
tions and serializing instructions (such as CPUID.). It is not ordered with respect to stores or the
SFENCE instruction.

Operation

while (!(preceding_loads_globally_visible)) wait();

Protected Mode Exceptions

None.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

None.

Numeric Exceptions

None.

Comments

LFENCE ignores the value of CR4.OSFXSR. LFENCE will not generate an invalid exception
if CR4.OSFXSR = 0

Instruction Description

LFENCE Guarantees that every load instruction that precedes, in program order, the load
fence instruction is globally visible before any load instruction which follows the
fence in program order is globally visible.
3-214

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

MASKMOVDQU—Byte Mask Write Unaligned

Description

Stores the contents of the xmm1 register to the location specified by the DI/EDI register (using
DS segment). The size of the store address depends on the address-size attribute. The most
significant bit in each byte of the mask register mm2 is used to selectively write the data (0 = no
write, 1 = write), on a per-byte basis. Behavior with a mask of all zeroes is as follows:

• No data will be written to memory.

• For memory references, a zero byte mask does not prevent addressing faults (i.e., #GP,
#SS) from being signaled.

• Signaling of page faults (#PF) is implementation-specific.

• The #UD, #NM, #MF, and #AC exceptions are signaled irrespective of the value of the
mask.

• Signaling of breakpoints (code or data) is not guaranteed; different processor implementa-
tions may signal or not signal these breakpoints.

• If the destination memory region is mapped as UC or WP, enforcement of associated
semantics for these memory types is not guaranteed (i.e., is reserved) and is implemen-
tation-specific. Dependence on the behavior of a specific implementation in this case is not
recommended, and may lead to future incompatibility.

Operation

if (xmm2[7]) m128[edi] = xmm1[7-0];
if (xmm2[15]) m128[edi+1] = xmm1[15-8];
if (xmm2[23]) m128[edi+2] = xmm1[23-16];
if (xmm2[31]) m128[edi+3] = xmm1[31-24];
if (xmm2[39]) m128[edi+4] = xmm1[39-32];
if (xmm2[47]) m128[edi+5] = xmm1[47-40];
if (xmm2[55]) m128[edi+6] = xmm1[55-48];
if (xmm2[63]) m128[edi+7] = xmm1[63-56];
if (xmm2[71]) m128[edi+8] = xmm1[71-64];
if (xmm2[79]) m128[edi+9] = xmm1[79-72];
if (xmm2[87]) m128[edi+10] = xmm1[87-80];
if (xmm2[95]) m128[edi+11] = xmm1[95-88];
if (xmm2[103]) m128[edi+12] = xmm1[103-96];
if (xmm2[111]) m128[edi+13] = xmm1[111-104];
if (xmm2[119]) m128[edi+14] = xmm1[119-112];
if (xmm2[127]) m128[edi+15] = xmm1[127-120];

Instruction Description

MASKMOVDQU xmm1, xmm2 Move 128 bits representing integer data from xmm1 to memory
location specified by the EDI register, using the byte mask in
xmm2.
3-215

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.

Comments

MASKMOVDQU can be used to improve performance for algorithms which need to merge data
on a byte granularity. MASKMOVDQU should not cause a read for ownership; doing so gener-
ates unnecessary bandwidth since data is to be written directly using the byte-mask without allo-
cating old data prior to the store. Similar to the Streaming SIMD Extensions non-temporal store
instructions, MASKMOVDQU minimizes pollution of the cache hierarchy. MASKMOVDQU
implicitly uses weakly-ordered, write-combining stores (WC). See Section 2.4.3.2., “Caching of
Temporal Vs. Non-Temporal Data” for further information about non-temporal stores.

As a consequence of the resulting weakly-ordered memory consistency model, a fencing oper-
ation such as SFENCE should be used if multiple processors may use different memory types to
read/write the same memory location specified by EDI.
3-216

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

MFENCE—Memory Fence

Description

Ensures that all prior loads and stores before the memory fence are globally observed prior to
any loads or stores after the memory fence. MFENCE is ordered with respect to other explicit
fences (SFENCE, LFENCE, and other MFENCE instructions) and serializing instructions (such
as CPUID).

Operation

while (!(preceding_loads&stores_globally_visible)) wait();

Protected Mode Exceptions

None.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

None.

Numeric Exceptions

None.

Comments

MFENCE ignores the value of CR4.OSFXSR. MFENCE will not generate an invalid exception
if CR4.OSFXSR = 0

Instruction Description

MFENCE Guarantees that every memory access that precedes, in program order, the memory
fence instruction is globally visible before any memory instruction that follows the fence,
in program order, is globally visible.
3-217

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

MOVNTPD—Move Aligned Four Packed Double-Precision
Floating-Point Non-Temporal

Description

Moves the double quadword representing packed double-precision floating-point data from
XMM register to m128, minimizing pollution in the cache hierarchy. The linear address corre-
sponds to the m128 address of the least-significant byte of the referenced memory data. This
store instruction minimizes cache pollution.

Operation

m128 = xmm;

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

Instruction Description

MOVNTPD m128, xmm Move 128 bits representing packed double-precision floating-point data from
xmm to m128, minimizing pollution in the cache hierarchy.
3-218

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

If CPUID.WN(EDX bit 26) = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.

Comments

MOVTNPD should be used when dealing with 16-byte aligned double-precision floating-point
numbers. MOVNTPD minimizes pollution in the cache hierarchy. As a consequence of the
resulting weakly-ordered memory consistency model, a fencing operation such as SFENCE
should be used if multiple processors might use different memory types to read/write the
memory location. See Section 2.4.3.2., “Caching of Temporal Vs. Non-Temporal Data” for
further information about non-temporal stores.
3-219

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

MOVNTDQ—Move Double Quadword Non-Temporal

Description

Moves the double quadword representing integer operands (bytes, words, doublewords, quad-
words) from XMM register to m128, minimizing pollution within cache hierarchy The linear
address corresponds to the address of the least-significant byte of the referenced memory data.
This store instruction minimizes cache pollution.

Operation

m128 = xmm;

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Instruction Description

MOVNTDQ m128, xmm Move double quadword representing integer operands (bytes, words,
doublewords, quadwords) from xmm to m128, minimizing pollution within
cache hierarchy.
3-220

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.

Comments

MOVNTDQ minimizes pollution in the cache hierarchy. As a consequence of the resulting
weakly-ordered memory consistency model, a fencing operation such as SFENCE should be
used if multiple processors might use different memory types to read/write the memory location.
See Section 2.4.3.2., “Caching of Temporal Vs. Non-Temporal Data” for further information
about non-temporal stores.
3-221

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

MOVNTI—Move Integer Non-Temporal

Description

Moves a double word from the specified general-purpose register r32 to m32, minimizing pollu-
tion in the cache hierarchy. The linear address corresponds to the address of the least-significant
byte of the referenced memory data. This store instruction minimizes cache pollution.

Operation

m32 = r32;

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.WNI(EDX bit 26) = 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Interrupt 13 If any part of the operand lies outside the effective address space from 0
to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR (bit 9) = 0.

If CPUID.WN(EDX bit 26) = 0.

Instruction Description

MOVNI m32, r32 Move 32 bits from r32 to m32, minimizing pollution in the cache hierarchy.
3-222

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Numeric Exceptions

None.

Comments

MOVNTI minimizes pollution in the cache hierarchy. As a consequence of the resulting weakly-
ordered memory consistency model, a fencing operation such as SFENCE should be used if
multiple processors may use different memory types to read/write the memory location. Note:
Unlike store instructions supported in x87 numeric processor, MMX technology, single-preci-
sion, floating-point SIMD instructions in the Streaming SIMD Extension instructions and
double-precision, floating-point SIMD instructions in the Streaming SIMD Extensions 2, this
does not trigger a #NM (DNA exception). See Section 2.4.3.2., “Caching of Temporal Vs. Non-
Temporal Data” for further information about non-temporal stores.
3-223

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

PAUSE—Pause For Preset Amount of Time

Description

Delays execution of the next instruction an implementation-specific amount of time. The delay
is finite and can be zero for some processors. This instruction does not change architectural state
(that is, it performs essentially a delaying no-op operation). This instruction is useful in situa-
tions where it is beneficial to moderate execution speed. For example, the PAUSE instruction
can be used in the spin-wait loop of a routine implementing a lock. The PAUSE instruction can
be inserted in the loop testing the status of the lock.

Operation

Execution of next instruction delayed implementation specfic amount of time.

Protected Mode Exceptions

None.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

None.

Numeric Exceptions

None.

Instruction Description

PAUSE Delays execution of next instruction implementation-specific amount of time.
3-224

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

3.5. MODIFIED INSTRUCTIONS

The Streaming SIMD Extensions 2 modify the behavior of the following IA-32 architecture
instructions:

• CPUID instruction.

• RDPMC instruction.

• Branch instructions.

These modifications are described in the following sections.

3.5.1. CPUID Instruction

The CPUID instruction has been modified as functions:

• Operation of the CPUID instruction has been changed.

• New flags added to indicate the existence of Streaming SIMD Extensions 2.

The following pseudo code shows the operation of the CPUID instruction in Willamette family
processor, depending on the value entered in the EAX register:

Switch(EAX)

case 0:

EAX=X; # Highest value supported by the Willamette processor/*

Currently X=3 */

EBX:EDX:ECX = "GenuineIntel"

;

case 1:

EAX[3:0] = X /* Stepping ID = 0 */

EAX[7:4] = X /* Model ID = 0 */

EAX[11:8] = F /* Family = F */

EAX[13:12] = 0 /* Processor Type = 0 */

EAX[31:14] = reserved(0)

EBX[7:0] = X /* Brand Index */

EBX[15:8] = CLFLUSH chunk count

EBX[23:16] = Reserved

EBX[31:24] = X /*APIC ID assigned at hardware reset*/

ECX[31:0] = Reserved

EDX = Feature_flags (see Figure 7 below)

;

case 2:

EAX[7:0] = Number_Param_Descrip_Blocks = 1

EAX[31:8] = 0x665b50 /* cache and TLB parameters. */

EBX, ECX = Reserved 0

EDX = 0x007A7023 /* cache and TLB parameters. */
3-225

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

;

Table 3-2 shows the complete list of feature flags returned in the EDX register when the
CPUID instruction is executed on a Willamette processor.

Table 3-2. Feature Flags Returned in EDX Register

Bit # Mnemonic Setting Description

31-30 Reserved 0 Reserved.

29 Reserved 1 Reserved.

28 Reserved X Reserved.

27 SLFSNP 1 Self-Snoop. The processor supports the management of conflicting
memory types by performing a snoop of its own cache structure for
transactions issued to the bus

26 SSE-2 1 The processor supports the Streaming SIMD Extensions 2 to the IA-32
architecture.

25 SSE 1 The processor supports the Streaming SIMD Extensions to the IA-32
architecture.

24 FXSR 1 Indicates whether the processor supports the FXSAVE and FXRSTOR
instructions for fast save and restore of the floating point context.
Presence of this bit also indicates that CR4.OSFXSR is available for
an operating system to indicate that it uses the fast save/restore
instructions

23 MMX 1 The processor supports the MMX technology extensions to the IA-32
architecture.

22 Reserved 1 Reserved.

21 DTES 1 Debug Trace Store and Event Montior support. The processor has the
ability to write a history of the taken branch to and from addresses or
precise execution statistics into a memory based buffer.

20 Reserved 0 Reserved.

19 CLFSH 1 CLFLUSH Instruction. CLFLUSH instruction is supported.

18 PN X Processor Number. The processor supports the 96-bit Processor
Number feature, and the feature is enabled.

17 PSE 1 Indicates whether the processor supports 4-Mbyte pages that are
capable of addressing physical memory beyond 4 Gbytes. This feature
indicates that the upper four bits of the physical address of the 4-Mbyte
page is encoded by bits 13-16 of the page directory entry.

16 PAT 1 Indicates whether the processor supports the Page Attribute Table.
This feature augments the Memory Type Range Registers (MTRRs),
allowing an operating system to specify attributes of memory on a 4K
granularity through a linear address.

15 CMOV 1 Conditional Move Instructions. The conditional move instruction CMOV
is supported. Furthermore, if floating point is present as indicated by
the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions
are supported
3-226

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET
Prelim
inary

14 MCA 1 Machine Check Architecture. The Machine Check Architecture, which
provides a compatible mechanism for error reporting in P6 and future
processors, is supported. MCG_CAP itself contains feature bits
describing how many banks of error reporting MSRs are supported.

13 PGE 1 PTE Global Bit. The global bit in Page Directory Entries (PDEs) and
Page Table Entries (PTEs) is supported, indicating TLB entries that are
common to different processes and need not be flushed. The
CR4.PGE bit controls this feature.

12 MTRR 1 Memory Type Range Registers. Memory Type Range Registers are
supported. MTRRcap itself contains feature bits describing what
memory types are supported, how many variable MTRRs are
supported, and whether the fixed MTRRs are supported.

11 SEP 1 SYSENTER/SYSEXIT If SEP=1, then the CPU supports the
SYSENTER and SYSEXIT instructions and associated MSRs.

10 Reserved 0 Reserved

9 APIC 1 APIC On-chip. The processor contains an Advanced Programmable
Interrupt Controller (APIC), responding to memory mapped commands
in the physical address range FFFE0000H to FFFE0FFFH (by default -
some processors permit the APIC to be relocated).

8 CX8 1 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64
bits) instruction is supported (implicitly locked and atomic).

7 MCE 1 Machine Check Exception. Exception 18 is defined for Machine
Checks, including CR4.MCE for controlling the feature. This feature
does not define the model-specific implementations of machine-check
error logging, reporting, and processor shutdowns. Machine Check
exception handlers may have to depend on processor version to do
model specific processing of the exception, or test for the presence of
the Machine Check feature.

6 PAE 1 Physical Address Extension. Physical addresses >32 bits are
supported: extended PTE formats, an extra level in the page
translation tables is defined, 2Mbyte pages are supported instead of
4Mbyte pages if PAE=1. The actual number of address bits beyond 32
is not defined, and is implementation specific.

5 MSR 1 Model Specific Registers RDMSR and WRMSR instructions exist.
Some of the actual registers are implementation dependent.

4 TSC 1 Time Stamp Counter. The RDTSC instruction is supported, including
CR4.TSD for controlling privilege.

3 PSE 1 Page Size Extension. Large pages of size 4Mbyte are supported,
including CR4.PSE for controlling the feature, the defined dirty bit in
PDE (Page Directory Entries), optional reserved bit trapping in CR3,
PDEs, and PTEs.

2 DE 1 Debugging Extensions. Support for I/O breakpoints, including CR4.DE
for controlling the feature, and optional trapping of accesses to DR4
and DR5.

Table 3-2. Feature Flags Returned in EDX Register
3-227

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SET INTEL CORPORATION
Prelim
inary

3.5.2. RDPMC Instruction
Willamette processors support both “fast” and “slow” reads of the performance counters via
the RDPMC instruction. Bit 31 of ECX, if set, will cause the RDPMC instruction to perform
a read of the low 32 bits of the performance counter that is addressed in ECX[31:0]. The 32-
bit counter result will be returned in EAX and EDX will be set to zero. The 32-bit read will
execute faster on the Willamette processor than the full 40-bit read. If Bit 31 of ECX is clear
then RDPMC will execute a full 40-bit read of the performance counter addressed in
ECX[31:0] with data returned in EDX:EAX.

3.5.3. Branch Hints

The Streaming SIMD Extensions 2 instructions have enhanced the behavior of branch instruc-
tions to allow the user to supply branch direction hints by means of instruction prefixes. Prefixes
will be supported on branching instructions that provide the hint semantics listed in Table 3-3.

1 VME 1 Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements,
including CR4.VME for controlling the feature, CR4.PVI for protected
mode virtual interrupts, software interrupt indirection, expansion of the
TSS with the software indirection bitmap, and EFLAGS.VIF and
EFLAGS.VIP flags.

0 FPU 1 Floating Point Unit On-Chip. The processor contains an FPU
supporting the x87 FPU instruction set.

Table 3-3. Branch Hints

Hint Description

HWNT Hint weakly not taken

HST Hint strongly taken

Table 3-2. Feature Flags Returned in EDX Register
3-228

INTEL CORPORATION
Prelim
inary

CHAPTER 4
CODE OPTIMIZATION

This chapter provides some guidelines for optimizing code for the Willamette family of proces-
sors. In its current form, guidelines are provided without much detail. Later versions of this
chapter will flesh out some justification for these guidelines.

The intended audience for this chapter includes compiler writers, assembly language program-
mers, high-level language programmers, and operating system programmers.

4.1. CODE OPTIMIZATION GUIDELINES

This section describes guidelines for code optimizations that are can be used to maximize the
performance of Willamette processors.

4.1.1. Improve Branch Predictability

Use the following guidelines to improve branch prediction.

• Avoid unnecessary branches

• Arrange basic blocks that form the most likely sequence so that they are
contiguous in memory.

• Unroll loops to eliminate branches if the number of iterations is known.

• Avoid misprediction penalties

• Arrange code and set branch conditions so that the target of a backwards
conditional branch is on the most likely path.

• Arrange code and set branch conditions so that the code following a forward
conditional branch is on the most likely path.

• For loops with a small number of iterations, exit the loop using a forward
conditional branch and follow the loop back edge using an unconditional branch.

• Convert indirect jumps which have a directional bias into a sequence of
conditional branches or predictable indirect branches. Mispredicted indirect
branches are likely to have the same cost as mispredicted conditional branches, so
this optimization should not be applied to indirect branches with evenly-weighted
targets.

• Make use of branch hints.
4-1

CODE OPTIMIZATION INTEL CORPORATION
Prelim
inary

• Avoid implementing a call by pushing the return address and jumping to the
target. The hardware can pair up call and return instructions to enhance predict-
ability.

4.1.2. Scheduling

Use the following scheduling guidelines to maximize the flow of instructions through the
processor:

• Trace cache scheduling guidelines

• When possible, space branches out by an average of 2 intervening uops.

• Let IBR stand for the class of branches that includes CALL, RET, IRET, indirect
JMP and far transfers.

• Avoid scheduling a branch less than 5 uops after an IBR.

• Avoid scheduling a CISC less than 2 uops after an IBR or CISC instruction.

• Avoid scheduling a FXCH less than 2 uops after an IBR, a CISC instruction, or
another FXCH.

• Calculate store addresses as early as possible to avoid having stores block loads.

4.1.3. Code Selection

Use the following coding guidelines improve processor performance:

• The template restrictions that the P6 family processors issue no longer apply with
Willamette family processor; however, there is still an overhead for CISC instructions.

• Avoid more than one instruction prefix.

• The LEA instruction tends to be more efficient in terms of encoding and latency than an
equivalent set of macro instructions, except if the target register or address is 16 bits.

• Avoid instructions that contain both an immediate and a displacement.

• Avoid changing the segment registers.

• Avoid sign-extended moves from memory or to 16-bit registers.

• Avoid referencing the high-byte general-purpose registers (such as AH) since referencing
them generally requires a shift.

• If there is more than one PUSH or POP instruction, use loads or stores and adjust the stack
pointer once.

• The latencies of some integer instructions, e.g. shifts and multiplies, changed with respect
to P6 family processors, which has implications on whether to emit a series of adds in
place of a shift, or a series of shifts and adds in place of a multiply. Using a series of add
can be more advantageous because add instruction has one half clock latency.
4-2

INTEL CORPORATION CODE OPTIMIZATION
Prelim
inary

• The FXCH instruction has 0 latency, but is subject to issue restrictions. FXCH should be
used only where it is expressly needed by the algorithm.

• Take advantage of hardware register renaming: do not worry about false Write-after-Write
and Write-after-Read dependencies, which are handled by the hardware.

4.1.4. Memory

Use the following guidelines improve processor performance on memory accesses:

• Avoid misaligned memory accesses.

• Eliminate redundant loads and stores.

• For integer stores, avoid scaling and using multiple registers or ESP in the addressing
mode. This enables mapping to single-uop stores.

• Avoiding breaking a single load into smaller pieces, e.g. loading 16 bits with two 8-bit
loads.

• Avoid writing an operand of one size and then reading a larger operand from the same
location.

• If possible, let a store and a following load to the same address have two other intervening
loads to a different address. This has implications for object-oriented code. Rather than
pushing and popping in the reverse order, stores and loads should be made asymmetric.

• Block caches to optimize for locality. If there are two threads which are using the shared
cache, block for half-sized caches.

4.1.5. General Principles for Code and Data Layout

Use the following general principles for regarding code and data layout maximize processor
performance:

• Do not put code and data on the same 4K page.

• Put code with temporal and spatial locality in the same line and on the same page, move
other code elsewhere, even to another page.

• Lay out probable sequences of basic blocks contiguously to optimize prefetch.

• Align branch targets on a 16B boundary, if possible. There may be some additional benefit
to aligning branch targets to 64B boundaries.

• Align words, doublewords, quadwords, and double quadwords on 2-, 4-, 8-, and 16-byte
boundaries, respectively. Consider alignment issues on the stack as well as for static data,
whether by explicit manipulation of SP or of a pointer to stack data which must be aligned.
4-3

CODE OPTIMIZATION INTEL CORPORATION
Prelim
inary

4.1.6. Make Use of Prefetching

Use the following guidelines for data prefetching to improve processor performance:

• Target time-consuming innermost loops, loads at the beginning of a critical dependence
chain.

• Schedule the prefetch far enough ahead to cover the expected latency from main memory.

• Do not place prefetches too far ahead, otherwise pollution will result.

• Prefetch to the appropriate cache level. If fetching far ahead, prefetch to a higher level
cache, making sure the capacity is there.

• Do not prefetch excessively. Prefetching uses up instruction, memory and bus bandwidth.
Prefetched lines will occupy the load buffer resource, and instruction issue may be stalled
because of a lack of this resource.

• Intersperse prefetch instructions with other computational instructions to increase potential
ILP, spread out burden on the load buffer and to allow potential dirty writebacks to proceed
concurrently with other instructions.

• Use strip mining and loop blocking to enhance locality, thus reducing the total number of
prefetches required.

• Use non-temporal prefetch for data which can be replaced soon. This enhances the cache-
ability of other data since the non-temporally-prefetched data is less likely to replace it.

• Do not prefetch code using the prefetch instructions.

4.1.7. New Instructions

Use the following instruction selection guidelines to maximize processor performance:

• Maximize the amount of SIMD-type parallelism exploited, especially for vectorizable
loops.

• When possible, use the Streaming SIMD Extensions 2 floating-point instructions instead
of corresponding x87 FPU instructions. The Streaming SIMD Extensions 2 floating-point
instructions have a shorter latency.

• Use the PAUSE instruction to temporarily suspend an operating system thread during
synchronization

4.1.8. Code Size

The following guidelines for minimizing code size can be used to improve performance on all
IA-32 processors:

• Using ESP in a mod/rm addressing mode uses an extra byte. Avoid this if possible.

• Using EAX instead of other registers for loading immediates saves a byte.
4-4

INTEL CORPORATION CODE OPTIMIZATION
Prelim
inary

• For code that will be executed out of the trace cache, the decoder costs for bad code density
or prefixes are amortized. Be more concerned with trace cache line packing constraints.

4.2. NOTABLE DIFFERENCES BETWEEN THE WILLAMETTE
AND P6 FAMILY PROCESSORS

The following sections highlight some notable differences between Willamette and the P6
family processors that affect code performance.
0

4.2.1. Code Selection

• The decoder template restrictions found in the P6 family processor no longer apply with
the Willamette family processors.

• Integer shifts are more expensive in Willamette family processors, and integer multiplies
are somewhat more expensive.

• In Willamette family processors, the architected registers are renamed as a single unit, i.e.
AL and AH reference different parts of the same register, and are not independent.

• Register partial stalls are no longer an issue in Willamette family processors.

4.2.2. New Instructions

• Make use of single and double precision floating point SIMD.

• Use Streaming SIMD Extensions 2 floating-point scalar instructions instead of corre-
sponding x87 FPU instructions.

• Use prefetching (see Section 4.1.6., “Make Use of Prefetching”).
4-5

CODE OPTIMIZATION INTEL CORPORATION
Prelim
inary
4-6

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SUMMARY
Prelim
inary

APPENDIX A
STREAMING SIMD EXTENSIONS 2

INSTRUCTION SUMMARY

This appendix provides an alphabetical list of the instructions added to the IA-32 architecture
with the Streaming SIMD Extensions 2. Given for each instruction is the assembly language
mnemonic and instruction format, a description of the operation performed, and the SIMD float-
ing-point exceptions that can be generated. The list is divided into three tables:

• Packed and scalar double-precision floating-point instructions.

• SIMD integer instructions.

• Cacheability control and memory ordering instructions.

Table A-1. Packed and Scalar Double-precision Floating-point Instructions

Instruction Description #I #D #Z #O #U #P

ADDPD xmm1, xmm2/m128 Add packed double-precision
floating-point numbers from
xmm2/mem to xmm2.

Y Y Y Y Y

ADDSD xmm1, xmm2/m64 Add the low double-precision
floating-point number from
xmm2/mem64 to xmm1.

Y Y Y Y Y

ANDNPD xmm1, xmm2/m128 Invert the 128 bits of xmm1, then
bitwise AND the result with the
128 bits of xmm2/mem128.

ANDPD xmm1, xmm2/m128 Bitwise logical AND of
xmm2/mem128 and xmm1.

CMPPD xmm1, xmm2/m128,
imm8

Compare packed double-
precision floating-point numbers
from xmm2/mem128 with packed
double-precision floating-point
numbers in xmm1, using imm8 as
predicate.

Y Y

CMPSD xmm1, xmm2/m64,
imm8

Compare low double-precision
floating-point number from
xmm2/mem64 with low double-
precision floating-point number in
xmm1 register using imm8 as
predicate

Y Y
A-1

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SUMMARY INTEL CORPORATION
Prelim
inary

COMISD xmm1, xmm2/m64 Compare low double-precision
floating-point number in xmm1
register with low double-precision
floating-point number in
xmm2/mem64 and set the
EFLAGS flags register
accordingly.

Y Y

CVTDQ2PD xmm1, xmm2/m64 Convert two packed doubleword
signed integers from xmm2/m128
to two packed double-precision
floating-point numbers.

CVTPD2DQ xmm1,
xmm2/m128

Convert two packed double-
precision floating-point numbers
from xmm2/m128 to two packed
doubleword signed integers in
xmm1 using rounding specified
by MXCSR.

Y Y

CVTPD2PI mm, xmm/m128 Convert two packer double-
precision floating-point numbers
from xmm/m128 to two packed
doubleword signed integers in
mm using rounding specified by
MXCSR.

Y Y

CVTPD2PS xmm1, xmm2/m128 Convert two double-precision
floating-point numbers to two
single-precision floating-point
numbers.

Y Y Y Y Y

CVTPI2PD xmm1, mm2/m64 Convert lowest two signed
doubleword integers from
mm/mem64 to two double-
precision floating-point numbers.

CVTPS2PD xmm1, xmm2/m64 Convert two single-precision
floating-point numbers to two
double-precision floating-point
numbers.

Y Y

CVTSD2SI r32, xmm/m64 Convert one double-precision
floating-point number from
xmm/m64 to one doubleword
signed integer using the rounding
mode specified by MXCSR, and
return the result to a general-
purpose register.

Y Y

CVTSD2SS xmm1, xmm2/m64 Convert double-precision floating-
point number in xmm2/m64 to
single-precision floating-point
number in xmm1.

Y Y Y Y Y

Table A-1. Packed and Scalar Double-precision Floating-point Instructions

Instruction Description #I #D #Z #O #U #P
A-2

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SUMMARY
Prelim
inary

CVTSI2SD xmm, r/m32 Convert signed doubleword
integer from r/m32 to a double-
precision floating-point number.

CVTSS2SD xmm1, xmm2/m128 Convert single-precision floating-
point number to double-precision
floating-point number.

Y Y

CVTTPD2DQ xmm1,
xmm2/m128

Convert two double-precision
floating-point numbers from
xmm2/m128 to two signed
doubleword integers in XMM
using truncate.

Y Y

CVTTPD2PI mm1, xmm2/m128 Convert two double-precision
floating-point numbers from
xmm2/m128 to two signed
doubleword integers in mm using
truncate.

Y Y

CVTTSD2SI r32, xmm/m64 Convert one double-precision
floating-point number from
xmm/m64 to one signed
doubleword integer using
truncate, and return the result to
r32.

Y Y

DIVPD xmm1, xmm2/m128 Divide packed double-precision
floating-point numbers in xmm1
by xmm2/mem128

Y Y Y Y Y Y

DIVSD xmm1, xmm2/m64 Divide low double-precision
floating-point numbers in xmm1
by xmm2/mem6

Y Y Y Y Y Y

MAXPD xmm1, xmm2/m128 Return the maximum double-
precision floating-point numbers
between xmm2/mem128 and
xmm1.

Y Y

MAXSD xmm1, xmm2/m64 Return the maximum double-
precision floating-point number
between the low double-precision
floating-point numbers from
xmm2/mem64 and xmm1.

Y Y

MINPD xmm1, xmm2/m128 Return the minimum double-
precision floating-point numbers
between xmm2/mem128 and
xmm1.

Y Y

MINSD xmm1, xmm2/m64 Return the minimum double-
precision floating-point number
between the low double-precision
floating-point numbers from
xmm2/mem64 and xmm1.

Y Y

Table A-1. Packed and Scalar Double-precision Floating-point Instructions

Instruction Description #I #D #Z #O #U #P
A-3

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SUMMARY INTEL CORPORATION
Prelim
inary

MOVAPD xmm1, xmm2/m128 Move packed double-precision
floating-point numbers from
xmm2/mem128 to xmm1.

MOVAPD xmm2/m128, xmm1 Move packed double-precision
floating-point numbers from
xmm1 to xmm2/mem128.

MOVHPD xmm, m64 Move double-precision floating-
point number from memory to
high quadword of XMM register.

MOVHPD m64, xmm Move double-precision floating-
point number from high quadword
of XMM register to memory.

MOVLPD xmm, m64 Move double-precision floating-
point numbers from memory to
low quadword of XMM register.

MOVLPD m64, xmm Move double-precision floating-
point numbers from low
quadword of XMM register to
memory

MOVMSKPD r32, xmm Move 2-bit mask to r32.

MOVSD xmm1, xmm2/m64 Move scalar double-precision
floating-point numbers from
xmm2/m64 to xmm1 register.

MOVSD xmm2/m64, xmm1 Move scalar double-precision
floating-point numbers from
xmm1 register to xmm2/m64.

MOVUPD xmm1, xmm2/m128 Move two packed double-
precision floating-point numbers
from xmm2/mem128 to xmm1.

MOVUPD xmm2/m128, xmm1 Move two packed double-
precision floating-point numbers
from xmm1 to xmm2/mem128

MULPD xmm1, xmm2/m128 Multiply packed double-precision
floating-point numbers in
xmm2/mem128 by xmm1.

Y Y Y Y Y

MULSD xmm1 xmm2/m64 Multiply the low double-precision
floating-point number in
xmm2/mem64 by low double-
precision floating-point number in
xmm1.

Y Y Y Y Y

ORPD xmm1, xmm2/m128 Bitwise OR of xmm2/mem128
and xmm1.

SHUFPD xmm1,
xmm2/m128,imm8

Shuffle packed double-precision
floating-point numbers.

Table A-1. Packed and Scalar Double-precision Floating-point Instructions

Instruction Description #I #D #Z #O #U #P
A-4

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SUMMARY
Prelim
inary

SQRTPD xmm1, xmm2/m128 Computes square roots of the
packed double-precision floating-
point numbers in xmm2/mem128.

Y Y Y

SQRTSD xmm1, xmm2/m64 Computes square root of the low
double-precision floating-point
number in xmm2/mem64.

Y Y Y

SUBPD xmm1 xmm2/m128 Subtract packed double-precision
floating-point numbers in
xmm2/mem128 from xmm1.

Y Y Y Y Y

SUBSD xmm1, xmm2/m64 Subtracts the low double-
precision floating-point numbers
in xmm2/mem64 from xmm1.

Y Y Y Y Y

UCOMISD xmm1, xmm2/m64 Compares (unordered) the low
double-precision floating-point
number in xmm1 register with the
low double-precision floating-
point number in xmm2/mem64
and set the EFLAGS register
accordingly.

Y Y

UNPCKHPD xmm1,
xmm2/m128

Interleaves double-precision
floating-point numbers from the
high quadwords of xmm1 and
xmm2/mem128.

UNPCKLPD xmm1,
xmm2/m128

Interleaves double-precision
floating-point numbers from the
low quadwords of xmm1 and
xmm2/mem128.

XORPD xmm1, xmm2/m128 Bitwise XOR of xmm2/mem128
and xmm1.

Table A-1. Packed and Scalar Double-precision Floating-point Instructions

Instruction Description #I #D #Z #O #U #P
A-5

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SUMMARY INTEL CORPORATION
Prelim
inary

Table A-2. SIMD Integer Instructions

Instruction Description #I #D #Z #O #U #P

CVTDQ2PS xmm, xmm/m128 Convert four signed doubleword
integers to four single-precision
floating-point numbers.

Y

CVTPS2DQ xmm, xmm/m128 Convert four packed single-
precision floating-point numbers
from xmm2/m128 to four packed
doubleword signed integers in
xmm1 using rounding specified
by MXCSR.

Y Y

CVTTPS2DQ xmm, xmm/m128 Convert four single-precision
floating-point numbers from
xmm2/m128 to four doubleword
signed integers in xmm1 using
truncate.

Y Y

MOVD xmm, r/m32 Move doubleword from general-
purpose register or memory to
XMM.

MOVD r/m32, xmm Move doubleword from XMM
register to general-purpose
register/memory.

MOVDQA xmm1, xmm2/m128 Move aligned double quadword
from xmm2/mem128 to xmm1.

MOVDQA xmm2/m128, xmm1 Move aligned double quadword
from xmm1 to xmm2/mem128.

MOVDQU xmm1, xmm2/m128 Move unaligned double
quadword from xmm2/mem128 to
xmm1.

MOVDQU xmm2/m128, xmm1 Move unaligned double
quadword from xmm1 to
xmm2/mem128.

MOVDQ2Q mm1, xmm2 Move low quadword from XMM to
MMX register.

MOVQ2DQ xmm2, mm1 Move quadword from MMX
register to low quadword of XMM.

MOVQ xmm1, xmm2/m64 Move quadword from
xmm2/mem64 to xmm1.

MOVQ xmm2/m64, xmm1 Move quadword from xmm1 to
xmm2/mem64.

PACKSSWB xmm1,
xmm2/m128

Pack signed words from xmm1
and xmm2/mem128 into signed
bytes in xmm1, with signed
saturation.
A-6

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SUMMARY
Prelim
inary

PACKSSDW xmm1,
xmm2/m128

Pack signed doublewords from
and xmm2/mem128 into signed
words in xmm1, with signed
saturation.

PACKUSWB xmm1,
xmm2/m128

Pack and saturate signed words
from xmm1 and xmm2/mem128
into unsigned bytes in xmm1.

PADDB xmm1,xmm2/m128 Add packed bytes from
xmm2/mem128 to packed bytes
in xmm1.

PADDW xmm1, xmm2/m128 Add packed words from
xmm2/mem128 to packed words
in xmm1.

PADDD xmm1, xmm2/m128 Add packed doublewords from
xmm2/mem128 to packed
doublewords in xmm1.

PADDQ mm1,mm2/m64 Add quadword integers from
mm2/Mem to mm1.

PADDQ xmm1,xmm2/m128 Add packed quadword integers
from XMM2 /Mem to packed
quadword integers in xmm1
register

PADDSB xmm1, xmm2/m128 Add packed signed byte integers
from xmm2/mem128 to packed
signed bytes in xmm1, with
saturation.

PADDSW xmm1, xmm2/m128 Add packed signed word integers
from xmm2/mem128 to packed
signed words in xmm1, with
saturation.

PADDUSB xmm1, xmm2/m128 Add packed unsigned byte
integers from xmm2/mem128 to
packed unsigned byte integers in
xmm1, with saturation.

PADDUSW xmm1, xmm2/m128 Add packed unsigned word
integers from xmm2/mem128 to
packed unsigned word integers in
xmm1, with saturation.

PAND xmm1, xmm2/m128 Bitwise AND of xmm2/mem128
and xmm1.

PANDN xmm1, xmm2/m128 Bitwise AND NOT of
xmm2/mem128 and xmm1.

PAVGB xmm1,xmm2/m128 Average packed unsigned bytes
from xmm2/mem128 and xmm1,
with rounding.

Table A-2. SIMD Integer Instructions

Instruction Description #I #D #Z #O #U #P
A-7

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SUMMARY INTEL CORPORATION
Prelim
inary

PAVGW xmm1, xmm2/m128 Average packed unsigned words
from xmm2/mem128 and xmm1,
with rounding.

PCMPEQB xmm1, xmm2/m128 Compare packed bytes in
xmm2/mem128 to packed bytes
in xmm1 for equality.

PCMPEQW xmm1, xmm2/m128 Compare packed words in
xmm2/mem128 to packed words
in xmm1 for equality.

PCMPEQD xmm1, xmm2/m128 Compare packed doublewords in
xmm2/mem128 to packed
doublewords in xmm1 for
equality.

PCMPGTB xmm1, xmm2/m128 Compare packed bytes in xmm1
with packed bytes in
xmm2/mem128 for greater than.

PCMPGTW xmm1, xmm2/m128 Compare packed words in xmm1
with packed words in
xmm2/mem128 for greater than.

PCMPGTD xmm1, xmm2/m128 Compare packed doublewords in
xmm1 with packed doublewords
in xmm2/mem128 for greater
than.

PEXTRW r32, xmm, imm8 Extract the word specified by
imm8 from XMM and move it to a
general-purpose register.

PINSRW xmm, r32/m16, imm8 Move the low word of r32 or from
m16 into xmm at the position
specified by imm8.

PMADDWD xmm1, xmm2/m128 Multiply the packed word integers
in xmm1 by the packed word
integers in xmm2/mem128, and
add the adjacent doubleword
results.

PMAXSW xmm1, xmm2/m128 Return the maximum signed word
integers between xmm2/mem128
and xmm1.

PMAXUB xmm1, xmm2/m128 Return the maximum unsigned
byte integers between
xmm2/m128 and xmm1.

PMINSW xmm1, xmm2/m128 Return the minimum signed word
integers between xmm2/mem128
and xmm1.

PMINUB xmm1, xmm2/m128 Return the minimum unsigned
byte integers between
xmm2/mem128 and xmm1.

Table A-2. SIMD Integer Instructions

Instruction Description #I #D #Z #O #U #P
A-8

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SUMMARY
Prelim
inary

PMOVMSKB r32, xmm Move the byte mask of xmm to
r32.

PMULHW xmm1, xmm2/m128 Multiply the packed signed word
integers in xmm1 by the packed
signed word integers in
xmm2/mem128, and store the
high words of the results in
xmm1.

PMULHUW xmm1, xmm2/m128 Multiply the packed unsigned
word integers in xmm1 by the
packed unsigned word integers in
xmm2/mem128, and store the
high words of the results in
xmm1.

PMULLW xmm1, xmm2/m128 Multiply the packed signed word
integers in xmm1 by the packed
signed word integers in
xmm2/mem128, and store the
low words of the results in xmm1.

PMULUDQ mm1, mm2/m64 Multiply unsigned doubleword
integer in mm1 by unsigned
doubleword integer in mm2/m64,
and store the quadword result in
mm1.

PMULUDQ xmm1, xmm2/m128 Multiply packed unsigned
doublewords in xmm1 by packed
unsigned doublewords in
xmm2/mem128, and then store
the 64-bit results in xmm1.

POR xmm1, xmm2/m128 Bitwise OR of xmm2/mem128
and xmm1.

PSADBW xmm1,xmm2/m128 Absolute difference of packed
unsigned byte integers from
xmm2 /m128 and xmm1; these
differences are then summed
within separate high and low 64-
bit sections to produce two word
results.

PSHUFD xmm1, xmm2/m128,
imm8

Shuffle the doublewords in
xmm2/mem128 based on the
encoding in imm8 and store result
in xmm1.

PSHUFHW xmm1, xmm2/m64,
imm8

Shuffle the high words in
xmm2/mem128 based on the
encoding in imm8 and store the
result in xmm1.

Table A-2. SIMD Integer Instructions

Instruction Description #I #D #Z #O #U #P
A-9

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SUMMARY INTEL CORPORATION
Prelim
inary

PSHUFLW xmm1, xmm2/m64,
imm8

Shuffle the low words in
xmm2/mem128 based on the
encoding in imm8 and store in
xmm1.

PSLLDQ xmm1, imm8 Shift left xmm1 by imm8 bytes,
clearing low-order bits.

PSLLW xmm1, xmm2/m128 Shift words in xmm1 register left
by amount specified in
xmm2/mem128, while shifting in
zeros.

PSLLW xmm1, imm8 Shift words in xmm1 left by imm8.

PSLLD xmm1, xmm2/m128 Shift doublewords in xmm1 left by
amount specified in
xmm2/mem128, while shifting in
zeros.

PSLLD xmm1, imm8 Shift doublewords in xmm1 by
imm8.

PSLLQ xmm1, xmm2/m128 Shift quadwords in xmm1 left by
amount specified in
xmm2/mem128, while shifting in
zeros.

PSLLQ xmm1, imm8 Shift quadwords in xmm1 by
imm8.

PSRAW xmm1, xmm2/m128 Shift words in xmm1 right by
amount specified in
xmm2/mem128 while shifting in
sign bits.

PSRAW xmm1, imm8 Shift words in xmm1 right by
imm8 while shifting in sign bits

PSRAD xmm1, xmm2/m128 Shift doubleword in xmm1 right
by amount specified in xmm2
/m128 while shifting in sign bits.

PSRAD xmm1, imm8 Shift doublewords in xmm1 right
by imm8 while shifting in sign bits.

PSRLDQ xmm1, imm8 Shift right xmm1 by imm8,
clearing high-order bits.

PSRLW xmm1, xmm2/m128 Shift words in xmm1 right by
amount specified in
xmm2/mem128 while shifting in
zeroes.

PSRLW xmm1, imm8 Shift words in xmm1 right by
imm8.

Table A-2. SIMD Integer Instructions

Instruction Description #I #D #Z #O #U #P
A-10

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SUMMARY
Prelim
inary

PSRLD xmm1, xmm2/m128 Shift doublewords in xmm1 right
by amount specified in XMM2
/Mem while shifting in zeroes.

PSRLD xmm1, imm8 Shift doublewords in xmm1 right
by imm8.

PSRLQ xmm1, xmm2/m128 Shift quadwords in xmm1 right by
amount specified in
xmm2/mem128 while shifting in
zeroes.

PSRLQ xmm1, imm8 Shift quadwords in xmm1 right by
imm8.

PSUBB xmm1, xmm2/m128 Subtract packed bytes in
xmm2/mem from packed bytes in
xmm2 register.

PSUBW xmm1, xmm2/m128 Subtract packed words in
xmm2/mem from packed words in
xmm2 register.

PSUBD xmm1, xmm2/m128 Subtract packed doublewords in
xmm2 /mem from packed
doublewords in xmm2 register.

PSUBQ mm1,mm2/m64 Subtract quadword from mm2
/m64 from quadword in mm1.

PSUBQ xmm1,xmm2/m128 Subtract quadwords from xmm2
/m128 from quadwords in xmm1.

PSUBSB xmm1, xmm2/m128 Subtract packed signed byte
integers in xmm2/mem128 from
packed signed byte integers in
xmm1 and saturate.

PSUBSW xmm1, xmm2/m128 Subtract packed signed word
integers in xmm2/mem128 from
packed signed word integers in
xmm1 and saturate.

PSUBUSB xmm1, xmm2/m128 Subtract packed unsigned byte
integers in xmm2/mem128 from
packed unsigned byte integers in
xmm1 and saturate.

PSUBUSW xmm1, xmm2/m128 Subtract packed unsigned word
integers in xmm2/mem128 from
packed unsigned word integers in
xmm1 and saturate.

PUNPCKHBW xmm1,
xmm2/m128

Interleave bytes from the high
quadwords of xmm1 and
xmm2/mem128 into xmm1.

Table A-2. SIMD Integer Instructions

Instruction Description #I #D #Z #O #U #P
A-11

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SUMMARY INTEL CORPORATION
Prelim
inary

PUNPCKHWD xmm1,
xmm2/m128

Interleave words from the high
quadwords of xmm1 and
xmm2/mem128 into xmm1.

PUNPCKHDQ xmm1,
xmm2/m128

Interleave doublewords from the
high quadwords of xmm1 and
xmm2/mem128 into xmm1.

PUNPCKHQDQ xmm1,
xmm2/m128

Interleave high quadwords of
xmm1 and xmm2/mem128 into
xmm1

PUNPCKLBW xmm1,
xmm2/m128

Interleave bytes from the low
quadwords of xmm1 and
xmm2/mem128 into xmm1.

PUNPCKLWD xmm2,
xmm2/m128

Interleave words from the low
quadwords of xmm1 and
xmm2/mem128 into xmm1.

PUNPCKLDQ xmm1,
xmm2/m128

Interleave doublewords from the
low quadwords of xmm1 and
xmm2/mem128 into xmm1.

PUNPCKLQDQ xmm1,
xmm2/m128

Interleave the low quadwords of
xmm1 and xmm2/mem128 into
xmm1 register

PXOR xmm1, xmm2/m128 Bitwise XOR of xmm2/mem128
and xmm1.

Table A-2. SIMD Integer Instructions

Instruction Description #I #D #Z #O #U #P
A-12

INTEL CORPORATION STREAMING SIMD EXTENSIONS 2 INSTRUCTION SUMMARY
Prelim
inary

Table A-3. Cacheability Control and memory Ordering Instructions

Instruction Description

CLFLUSH r32/m8 Cache line containing r32/m8 is flushed and invalidated from all caches in the
coherency domain.

LFENCE Guarantees that every load instruction that precedes, in program order, the
load fence instruction, is globally visible before any load instruction that
follows the load fence, in program order, is globally visible.

MASKMOVDQU
m128[edi], xmm1, mm2

Move 128 bits representing integer data from xmm1 to memory location
specified by the EDI register, using the byte mask in xmm2.

MFENCE Guarantees that every memory access that precedes, in program order, the
memory fence instruction is globally visible before any memory instruction
that follows the fence, in program order, is globally visible.

MOVNTPD m128, xmm Move 128 bits representing packed double-precision floating-point data from
xmm to m128, minimizing pollution in the cache hierarchy.

MOVNTDQ m128, xmm Move double quadword representing integer operands (bytes, words,
doublewords, quadwords) from xmm to m128, minimizing pollution within
cache hierarchy.

MOVNTI m32, r32 Move 32 bits from r32 to m32, minimizing pollution in the cache hierarchy.

PAUSE Execution of the next instruction is delayed an implementation specific
amount of time.
A-13

STREAMING SIMD EXTENSIONS 2 INSTRUCTION SUMMARY INTEL CORPORATION
Prelim
inary
A-14

	CHAPTER 1 Introduction to the Willamette Processor
	1.1. The Willamette Processor Architecture
	1.2. Compatibility With the P6 Family Processor Architecture
	1.3. The Willamette Processor Microarchitecture
	1.3.1. Higher Instruction Fetch Bandwidth
	1.3.2. Increased Depth of Speculation
	1.3.3. Integer And Floating Point Execution Core
	1.3.4. Branch Prediction

	CHAPTER 2 Programming with the Streaming SIMD Extensions 2
	2.1. Streaming SIMD Extensions 2 Feature Overview
	2.2. New Data Types
	2.3. Streaming SIMD Extensions 2 Registers
	2.4. Streaming SIMD Extensions 2 Instructions
	2.4.1. Packed and Scalar Double-Precision Floating-Point Instructions
	2.4.1.1. Packed/Scalar Addition and Subtraction
	2.4.1.2. Packed/Scalar Multiplication and Division
	2.4.1.3. Packed/Scalar Square Root
	2.4.1.4. Packed Maximum/Minimum
	2.4.1.5. Packed Logical Operations
	2.4.1.6. Compare Operations
	2.4.1.7. Shuffle OPerations
	2.4.1.8. Conversion Instructions
	2.4.1.9. Conversion Between Double-Precision Floating-Points and 32-Bit Integers
	2.4.1.10. Conversion Between Double-Precision Floating-Points and Single-Precision Floating-Points
	2.4.1.11. Conversion BETWEEN Packed Single-Precision Floating- Points and Packed Integers
	2.4.1.12. Data Movement Instructions

	2.4.2. SIMD Integer Instruction Extensions
	2.4.2.1. New SIMD Integer Instructions
	2.4.2.2. Extended SIMD Integer Instructions

	2.4.3. Cacheability Control and Memory Ordering Instructions
	2.4.3.1. Cache Flush
	2.4.3.2. Caching of Temporal Vs. Non-Temporal Data
	2.4.3.3. Memory Ordering INstructions
	2.4.3.4. Pause

	2.5. Floating-Point Terminology and Operations
	2.5.1. Real Numbers and Floating-Point Formats
	2.5.1.1. Real Number System
	2.5.1.2. Floating-Point Format
	2.5.1.3. Normalized Numbers
	2.5.1.4. Biased Exponent
	2.5.1.5. Real Number and Non-Number Encodings
	2.5.1.6. Signed Zeros
	2.5.1.7. Normalized and Denormalized Finite Numbers
	2.5.1.8. Signed Infinities
	2.5.1.9. NaNs
	2.5.1.10. Indefinite

	2.5.2. Operating on NaNs
	2.5.3. Streaming SIMD Extensions 2 Data Formats
	2.5.3.1. Double Quadword Data Formats
	2.5.3.2. Packed Double-Precision Floating-Point Format
	2.5.3.3. IEEE Compliance
	2.5.3.4. 128-Bit Packed Integer Format

	2.5.4. MXCSR Register
	2.5.5. Rounding Control Field
	2.5.6. Flush to Zero
	2.6. Writing Programs Using the Streaming SIMD Extensions 2
	2.6.1. Using the CPUID Instruction to Detecting the Existence of the Streaming SIMD Extensions 2
	2.6.2. Updating Existing MMX Technology Routines Using 128- bit Integer Enhancements
	2.6.3. Interaction of Streaming SIMD Extensions 2 and x87-FPU and MMX Instructions
	2.6.3.1. FXSAVE/FXRSTOR Replaces Use of FSAVE/FRSTOR
	2.6.3.2. Interaction of Packed or Scalar Floating-Point Instructions with the x87 FPU and MMX Ins...
	2.6.3.3. Intermixing of Packed and Scalar Floating-Point Instructions and Data

	2.6.4. Caller-Save Requirement for Function Calls
	2.6.5. Cacheability Hint Instructions
	2.6.6. Branching on Streaming SIMD Extensions 2 Arithmetic Operations
	2.6.7. Saving the Streaming SIMD Extensions and Streaming SIMD Extensions 2 State
	2.6.7.1. Cooperative Multitasking Operating System Environment
	2.6.7.2. Preemptive Multitasking Operating System Environment

	2.6.8. Initialization of Streaming SIMD Extensions and Streaming SIMD Extensions 2 Technology
	2.6.9. Interfacing with Streaming SIMD Extensions 2 Procedures and Functions
	2.7. Handling Exceptions in Streaming SIMD Extensions 2 Operations
	2.7.1. Non-Numeric Exceptions
	2.7.2. SIMD Floating-Point Exceptions
	2.7.2.1. Exception Priority
	2.7.2.2. Automatic Masked Exception Handling
	2.7.2.3. Handling- Unmasked Exceptions in Software
	2.7.2.4. Interaction with x87 Floating-Point exceptions

	2.7.3. Streaming SIMD Extensions 2 Floating-Point Exception Conditions
	2.7.3.1. Invalid Operation Exception(#I)
	2.7.3.2. Division-By-Zero Exception (#Z)
	2.7.3.3. Denormal Operand Exception (#D)
	2.7.3.4. Numeric Overflow Exception (#O)
	2.7.3.5. Numeric Underflow Exception (#U)
	2.7.3.6. Inexact-Result (Precision) Exception (#P)

	2.8. System Programming Model
	2.8.1. Enabling Streaming SIMD Extensions 2 Support
	2.8.2. Device Not Available Exception
	2.8.3. Streaming SIMD Extensions 2 Emulation
	2.8.4. Numeric Error flag and IGNNE#

	CHAPTER 3 Streaming SIMD Extensions 2 Instruction Set
	3.1. Notation
	3.2. Packed and Scalar Double-Precision Floating- Point Instructions
	3.3. SIMD Integer Instructions
	3.4. Cacheability Control and Memory Ordering Instructions
	3.5. Modified Instructions
	3.5.1. CPUID Instruction
	3.5.2. RDPMC Instruction
	3.5.3. Branch Hints

	CHAPTER 4 Code Optimization
	4.1. Code Optimization Guidelines
	4.1.1. Improve Branch Predictability
	4.1.2. Scheduling
	4.1.3. Code Selection
	4.1.4. Memory
	4.1.5. General Principles for Code and Data Layout
	4.1.6. Make Use of Prefetching
	4.1.7. New Instructions
	4.1.8. Code Size
	4.2. Notable Differences Between the Willamette and P6 Family Processors
	4.2.1. Code Selection
	4.2.2. New Instructions

	APPENDIX A Streaming SIMD Extensions 2 Instruction Summary

